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Preface

The intention of the Special Issue dedicated to mass spectrometric proteomics is to highlight

the results obtained when applying sophisticated methods that have the ability to identify

proteins from biological fluids/cells/tissues, as well as to address an array of biological questions

(including measuring dynamic changes in protein expressions, modifications, and interactions). The

final purpose is to investigate the molecular mechanisms behind different human disorders. All

researchers who study protein modifications involved in a specific pathology will benefit from the

information obtained through the application of this strategy.

Paolo Iadarola

Editor
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Mass Spectrometric Proteomics 2.0

Paolo Iadarola 1,* and Simona Viglio 2,3

1 Department of Biology and Biotechnologies “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
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* Correspondence: paolo.iadarola@unipv.it

This Special Issue, “Mass Spectrometric Proteomics 2.0”, presents the second volume of
a series dedicated to the dissemination of results obtained from the application of MS-based
proteomics across different areas. Although not all problems in MS proteomics have been
solved, this is currently a mature technique that has prompted the publication of thousands
of articles in the biochemical sector to date [1]. That being said, the question arises as to
whether the release of a “new” series on proteomics would make sense. A careful reading
of this Special Issue suggests that it can rightly find its own place in the international
literature among the journals dedicated to proteomics. The contributions that this volume
has attracted have dealt with such diverse fields of life science research that they confirm,
if required, the leadership of MS-based proteomics in handling the complexity of biological
challenges that other methods cannot manage. Flexibility, reliability, and speed of execution
are the three fundamental features of proteomics that have emerged from these papers.
Interestingly, most of these reports are not purely focused on cataloging the total proteins
present in any given samples but also provide new insights into the role played by some
proteins in specific human disorders. This provides proof that proteomics has outgrown
its infancy and entered the era of “systems biology”. Given its unique characteristics,
proteomics, in synergy with other complementary methods (i.e., transcriptomics and
metabolomics), makes it possible to obtain a global and integrated view of biological
questions [2]. Another aspect that has not been neglected in this volume is the pivotal
role played by proteomics in the area of biomarker discovery for the early diagnosis
of human disorders. On the assumption that modifications occurring in an organism in
response to different stimuli can be mirrored (to some degree) by changes in protein profiles,
investigating how proteins are modulated between different conditions may shed light
on the biological mechanisms involved in these processes [3,4]. The area focused on the
investigation by MS of the proteome dynamics over time has witnessed enormous progress
in recent years [5,6]. A crucial role in MS proteomics is also played by the availability
of sophisticated methodological strategies to explore the molecular mechanisms behind
different human disorders on a deeper level. In this context, an article that delves into the
development of a new software tool for the visualization and validation of protein turnover
rates must be acknowledged [7].

Given these premises, we hope that this new volume, “Mass Spectrometric Proteomics
2.0”, will soon be published.

Author Contributions: Writing—original draft preparation, P.I.; writing—review and editing, S.V.
All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The liver and ovary perform a vital role in egg production in hens. In the later laying
period, the egg-laying capacity of female hens, particularly that of local breeds, declines significantly.
Hence, it is essential to study the features and conditions of the ovary and liver during this period.
In this research, we characterized the proteins and metabolites in the liver and ovary of 55-week-
old Guangyuan gray chickens (Group G) and Hy-Line gray chickens (Group H) by using liquid
chromatography chip/electrospray ionization quadruple time-of-flight/mass spectroscopy (LC-
MS/MS). In total, 139 differentially expressed proteins (DEPs) and 186 differential metabolites (DMs)
were identified in the liver, and 139 DEPs and 36 DMs were identified in the ovary. The upregulated
DEPs and DMs in both the liver and ovary of Group G were primarily enriched in pathways involved
in amino acid and carbohydrate metabolism. This suggests that energy metabolism was highly active
in the Guangyuan gray chickens. In contrast, the upregulated DEPs and DMs in Group H were mainly
enriched in pathways associated with lipid metabolism, which may explain the higher egg production
and the higher fatty liver rate in Hy-Line gray hens in the later laying period. Additionally, it was
found that the unique protein s-(hydroxymethyl) glutathione dehydrogenase (ADH4) in Group G was
implicated in functions such as fatty acid degradation, glycolysis, and pyruvate metabolism, whereas
the unique proteins, steroid sulfatase (STS), glucosylceramidase (LOC107050229), and phospholipase
A2 Group XV (PLA2G15), in Group H were involved in the metabolism of steroid hormones and
glycerol phosphate. In conclusion, variations in how carbohydrates, lipids, and amino acids are
processed in the liver and ovary of local breeds of chicken and commercial hens towards the end of
their laying period could explain the disparities in their egg production abilities.

Keywords: aged hens; proteomics; metabolomics; UHPLC-MS/MS; reproductive performance

1. Introduction

Poultry play a vital role in providing food for humans, and the reproductive perfor-
mance of poultry directly impacts the development and benefits of the poultry industry.
The utilization cycle of commercial chickens has been extended from 72 to 80 weeks as
a result of enhancements in egg production capabilities [1], and Hy-Line chickens still
maintain an egg production rate of about 80% at 53 weeks of age [2]. However, the egg
production performance of laying hens declines significantly in the later laying period,
which has a considerable impact on economic profitability. For the purpose of reducing
breeding costs and increasing the utilization effectiveness, extending the egg-laying cycle
with better reproductive performance of hens during the later laying period is a crucial task.

Previous research on animals’ reproductive performance has primarily concentrated
on studying the ovary and liver. In the later laying period, the ovary and liver of chickens

Int. J. Mol. Sci. 2023, 24, 14394. https://doi.org/10.3390/ijms241814394 https://www.mdpi.com/journal/ijms3
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undergo changes in their structure and declines in their function, which subsequently
impact their reproductive capacity [3]. The proper development of follicles in the ovary is
crucial for egg production, and this process is regulated by the hypothalamic–pituitary–
gonad (HPG) axis [4,5]. As chickens reach the later laying period, the release of sex
hormones decreases, the number of pre-grade follicles decreases, and yolk synthesis and
accumulation reduces, ultimately resulting in a decline in ovarian function [6]. The liver
has multiple functions in poultry. It plays a major part in fatty acid metabolism and is
responsible for producing the building blocks needed for yolk formation [7]. Estrogen
(E2) controls this process and ensures that the follicles receive the necessary nutrients [8].
However, laying hens often accumulate excessive amounts of fat due to continuous egg
production and high-energy diets during the later stages of laying [3]. This often leads to
liver failure [9] and lipid metabolism disorders [10,11] in laying hens. Consequently, the
overall health and egg production performance of the poultry during the later stages of
laying can be adversely affected.

Previously, researchers have focused on improving the reproductive performance
of later laying hens through feed additives to improve the synthesis of hormones [12,13],
eggshell quality [14], and antioxidant capacity [15–17]. With the development of technolo-
gies such as the transcriptomics, many genes and transcription factors have been identified
that affect the reproductive performance of poultry during the later laying period. For
example, ACSF2, a gene involved in lipid metabolism, was highly expressed in the liver of
high-producing chickens [18]. However, transcriptomic information does not fully explain
the complexity and dynamics of the regulation of reproduction in poultry. Proteomics and
metabolomics, as new technologies in the post-genomic era, provide new insights into and
means to understanding the molecular changes in reproduction in poultry. Proteomics and
metabolomics are now widely used in avian breeding, such as in screening for key growth
factors by evaluating differently expressed proteins (DEPs) and differential metabolites
(DMs) in the pectoral muscle and intramuscular fat of chickens with contrasting growth
rates [19], investigating the mechanisms of the functional regulation of granulosa cells in
poultry by identifying DEPs and DMs in the ovary of laying chickens before and after
sexual maturity [20], and screening for disease biomarkers of laying hens with fatty liver
hemorrhagic syndrome (FLHS) by proteomics [21].

Until now, few studies have been reported on key regulatory proteins and metabolites
in the liver and ovary of later laying chickens. The Guangyuan gray chicken is a high-
quality meat and egg chicken in China. However, as it is a local breed, its egg production
rate is only 80% during the peak laying period, and it mostly stops laying eggs at 55 weeks
of age. In this study, to investigate the DEPs and DMs in the liver and ovary of local breeds
of chicken and commercial laying hens during the later laying period, liver and ovary
tissues from Guangyuan gray chickens (Group G) and Hy-Line gray chickens (Group H)
were collected for proteomic and metabolomic analyses to distinguish the different proteins
and metabolites in the liver and ovary of different chicken breeds during the later laying
period. This research will lay the foundation for improving the performance of Guangyuan
gray chickens in the later laying period.

2. Results

2.1. Comparison of the Morphological and Histological Characteristics of the Liver and Ovary
between Guangyuan Gray Chickens and Hy-Line Gray Chickens

Body weight, liver weight, ovarian weight, oviduct length, and follicle number were
collected from Guangyuan gray chickens (Group G) and Hy-Line gray chickens (Group
H). As shown in Table 1, compared to Group H, Group G had a markedly lower body
weight, liver weight, number of yellow follicles (YF, 5–10 mm), number of F1–F6 follicles,
and oviduct length, but no apparent difference in counts of white follicles (WF, <5 mm).

According to the morphological and histological observations, the livers of Group G
were smaller in size and reddish in color (Figure 1A), and HE staining showed that the
cytoplasm of the hepatocytes in Group G was mildly stained, but the nuclei of the cells were
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darkly stained (Figure 1B). Oil Red O staining showed that the cellular interstitial space
was narrow, and the distribution of lipid droplets was uniform (Figure 1C). In contrast,
the livers from Group H were larger and yellowish in color (Figure 1D). The hepatocytes
were neatly and clearly arranged, with a pink cytoplasm and light blue nuclei (Figure 1E),
and the cytoplasm was sparse with large lipid droplets (Figure 1F). Observations of the
ovaries showed that the ovaries in Group G contained only a small number of primordial
follicles and pre-grade follicles (Figure 1G,H), and the ovaries were low in lipid droplets
and had a low rate of yolk deposition in the follicles (Figure 1I). In contrast, Group H had
ovaries containing more than four graded follicles (>12 mm), follicles filled with yolk and
containing more than two layers of granulosa cells (Figure 1J,K), and ovaries with a high
content of lipid droplets and a high rate of yolk deposition in the follicles (Figure 1L).

Figure 1. Histological analysis of the liver and ovary in Groups G and H. (A) appearance of the liver
from Group G. (B,C) HE result and Oil Red O result of liver staining in Group G. (D) appearance of the
liver from Group H. (E,F) HE result and Oil Red O result of liver staining in Group H. (G) appearance
of the ovaries from Group G. (H,I) HE result and Oil Red O result of ovary staining in Group G.
(J) appearance of the ovaries from Group H. (K,L) HE result and Oil Red O result of ovary staining in
Group H. n = 3.
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Table 1. Measurements of liver and ovary indices at 55 weeks in Groups G and H.

Groups Body Weight (g)
Liver Weight

(g)
Number of

F1–F6 Follicles
Number of YF Number of WF

Oviduct
Length (mm)

G 1611.00 ± 194.44 29.89 ± 3.06 1.50 ± 2.12 12.80 ± 3.39 17.70 ± 5.73 43.25 ± 10.59
H 1858.00 ± 185.34 ** 36.21 ± 1.13 ** 5.70 ± 0.48 ** 16.80 ± 3.15 * 14.20 ± 2.85 76.32 ± 6.68 **

YF, yellow follicles, diameter 5–10 mm; WF, white follicles, diameter < 5 mm. All results are presented as the
mean ± SD. n = 10. * p < 0.05, ** p < 0.01.

2.2. Identification of Differentially Expressed Proteins in the Liver and Ovary

Prior to the LC-MS/MS analysis, the quality of the samples was examined using
BCA and SDS-PAGE, which showed that no degradation of the proteins occurred and
that the amount of protein was sufficient for the subsequent experiments (Tables S1 and S2,
Figure S1). The results revealed that in the liver, the number of spectra, peptides, and
proteins identified in the non-redundant (NR) database and the Uniprot database were
140,517, 30,026, and 4167, respectively (Figure S2A). The mass distribution of the proteins
showed that the minority of proteins had a mass of 180–190 kDa, while the majority of
proteins were distributed in the 20–30 kDa range (Figure S2B). The results for the distri-
bution of protein coverage showed that the majority of proteins had a peptide sequence
coverage of 5–10% and the minority of proteins had a coverage of 90–95% (Figure S2C). In
the ovary, the number of spectra, peptides, and proteins identified was 159,983, 34,497, and
4964, respectively (Figure S2D). The mass distribution and peptide sequence coverage of
the proteins were the same as in the liver (Figure S2E,F). A principal component analysis
(PCA) of the proteins revealed a high degree of intra-group aggregation and significant
inter-group separation, proving the reliability of the model (Figure 2A,B). The results of the
DEP analysis showed that 139 DEPs were identified in the liver between Groups G and H,
of which 41 were downregulated and 98 were upregulated (Figure 2C). In total, 139 DEPs
were identified in the ovary, of which 73 were downregulated and 66 were upregulated
(Figure 2D). A hierarchical clustering analysis showed that the significant DMs obtained
from the previous analysis could effectively separate the two groups (Figure 2E,F). Notably,
the volcano plots and hierarchical clustering analyses did not include unique proteins for
both groups, whereas all subsequent functional analyses included unique proteins.

2.3. Functional Enrichment Analysis of Differentially Expressed Proteins in the Liver and Ovary

A GO analysis showed that DEPs in the liver were involved in several biological
processes (BP), with more DEPs included in functions such as cellular processes, metabolic
processes, and bio-regulation. Among the cellular components (CC) in which the DEPs
were involved, more DEPs were included in functions such as cells, cell fractions, and
organelles, while among the molecular functions (MF) in which the DEPs were involved,
more DEPs were included in functions such as binding and catalytic activity (Figure 3A).
The results of the GO analysis of DEPs in the ovary were consistent with those of the liver
(Figure 3B).

The results of the KEGG analysis showed that the DEPs identified in the liver were
enriched in 93 pathways. Among them, the upregulated DEPs were enriched in 46 and
13 unique pathways in the livers of Groups G and H, respectively. Among the unique path-
ways in Group G, four pathways were associated with amino acid metabolism, four path-
ways were associated with carbohydrate metabolism, and three pathways were involved
in lipid metabolism. Among them, ALDH18A1, which is involved in lipid metabolism,
and ADH4, which is involved in a variety of metabolic pathways, were unique proteins in
Group G. In Group H, DEPs were enriched in two pathways related to lipid metabolism and
in the pathway related to amino acid metabolism. All three DEPs were involved in trypto-
phan metabolism, with CYP1A4 being a unique protein in Group H (Tables 2 and S3). The
DEPs upregulated in Groups G and H in the ovary were enriched in 36 and 33 unique path-
ways, respectively. In Group G, seven pathways were involved in amino acid metabolism
and four pathways were involved in carbohydrate metabolism. Notably, ADH4 was also
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expressed in the ovary of Group G. It is involved in the fatty acid degradation and tyrosine
metabolism pathways in the liver, and in the retinol metabolism, methane metabolism,
pyruvate metabolism, and tyrosine metabolism pathways in the ovary. In Group H, in
addition to the pathways related to amino acid metabolism and carbohydrate metabolism,
three pathways associated with the lipid metabolism and oocyte meiosis pathways were
also identified (Tables 3 and S4). In addition, STS, LOC107050229, and PLA2G15 were
enriched in the lipid metabolic pathway in the ovary, and were also unique proteins in
Group H.

Figure 2. Differential expression analysis of proteins in the liver and ovary between Groups G and H.
(A,B) principal component analysis (PCA) of proteins in the liver and ovary. (C,D) volcano map of
differentially expressed proteins (DEPs) in the liver and ovary. Upregulated DEPs were indicated
by red dots, downregulated DEPs by blue dots, and proteins with no significant changes by gray
dots. (E,F) hierarchical clustering analysis of DEPs in the liver and ovary. Red and blue regions
indicate significantly upregulated or downregulated proteins, respectively; gray regions indicate no
quantitation information.
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Figure 3. Bar graphs of the GO annotations of the DEPs. (A) GO functional annotations of DEPs in
the liver including biological processes (BP), cellular components (CC), and molecular functions (MF).
The y-axis indicates the number of proteins. (B) GO functional annotations of DEPs in the ovary.

Table 2. Pathways of upregulated differentially expressed proteins (DEPs) enriched in the liver
between Groups G and H.

Group Classification KEGG Pathway Protein ID Name

G

Carbohydrate
metabolism

Pyruvate metabolism sp|P07032|ACYP1_CHICK ACYP1
Pyruvate metabolism tr|E1BZT9|E1BZT9_CHICK ACSS1B
Pyruvate metabolism tr|F1NI89|F1NI89_CHICK ADH4
Propanoate metabolism tr|E1BZT9|E1BZT9_CHICK ACSS1B
Glycolysis, gluconeogenesis tr|E1BZT9|E1BZT9_CHICK ACSS1B
Glycolysis, gluconeogenesis tr|F1NI89|F1NI89_CHICK ADH4
Glycolysis, gluconeogenesis tr|A0A3Q2UE29|A0A3Q2UE29_CHICK HK2
Fructose and mannose metabolism tr|A0A3Q2UE29|A0A3Q2UE29_CHICK HK2

Amino acid
metabolism

Valine, leucine, and isoleucine
degradation tr|A0A1D5P6E8|A0A1D5P6E8_CHICK CDH15

Tyrosine metabolism tr|F1NI89|F1NI89_CHICK ADH4
Histidine metabolism tr|E1BVP5|E1BVP5_CHICK ASPA
Arginine and proline metabolism tr|F1N914|F1N914_CHICK PYCR1
Arginine and proline metabolism tr|E1BSN3|E1BSN3_CHICK L3HYPDH
Arginine and proline metabolism tr|A0A1L1RR71|A0A1L1RR71_CHICK ALDH18A1

Lipid metabolism

Fatty acid degradation tr|F1NI89|F1NI89_CHICK ADH4
Fatty acid biosynthesis tr|A0A1L1RR71|A0A1L1RR71_CHICK ALDH18A1
Fatty acid biosynthesis sp|P21611|B2MG_CHICK B2M
Arachidonic acid metabolism tr|Q5F370|Q5F370_CHICK PTGR2

H

Lipid metabolism Cutin, suberin, and wax biosynthesis sp|Q5ZM72|FACR1_CHICK FAR1
Biosynthesis of unsaturated fatty acids tr|E7EDS8|E7EDS8_CHICK FADS1

Amino acid
metabolism

Tryptophan metabolism sp|P79760|CP1A4_CHICK CYP1A4
Tryptophan metabolism tr|F1NEK9|F1NEK9_CHICK ACMSD
Tryptophan metabolism tr|A0A1D5P0J6|A0A1D5P0J6_CHICK TDO2
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Table 3. Pathways of upregulated DEPs enriched in the ovary between Groups G and H.

Group Classification KEGG Pathway Protein ID Name

G

Amino acid
metabolism

Tyrosine metabolism tr|F1NTM7|F1NTM7_CHICK GOT1
Phenylalanine, tyrosine, and
tryptophan biosynthesis tr|F1NTM7|F1NTM7_CHICK GOT1

Cysteine and methionine
metabolism tr|F1NTM7|F1NTM7_CHICK GOT1

Arginine biosynthesis tr|F1NTM7|F1NTM7_CHICK GOT1
Arginine and proline metabolism tr|F1NTM7|F1NTM7_CHICK GOT1
Alanine, aspartate, and glutamate
metabolism tr|F1NTM7|F1NTM7_CHICK GOT1

Glycolysis, tyrosine metabolism tr|F1NI89|F1NI89_CHICK ADH4

Carbohydrate
metabolism

Starch and sucrose metabolism tr|A0A3Q2U8J2|A0A3Q2U8J2_CHICK G6PC3
Pyruvate metabolism tr|F1NI89|F1NI89_CHICK ADH4
Glycolysis, gluconeogenesis tr|A0A3Q2U8J2|A0A3Q2U8J2_CHICK G6PC3
Glycolysis, gluconeogenesis tr|F1NI89|F1NI89_CHICK ADH4
Galactose metabolism tr|A0A3Q2U8J2|A0A3Q2U8J2_CHICK G6PC3

H

Amino acid
metabolism

Valine, leucine, and isoleucine
degradation tr|A0A1L1RZ64|A0A1L1RZ64_CHICK HMGCS1

Tryptophan metabolism tr|A0A3Q3AW56|A0A3Q3AW56_CHICK GCDH
Lysine degradation tr|A0A3Q3AW56|A0A3Q3AW56_CHICK GCDH
Histidine metabolism tr|E1C378|E1C378_CHICK HNMT

Carbohydrate
metabolism

Propanoate metabolism tr|F1P5S5|F1P5S5_CHICK AC0SS3
Pentose phosphate pathway tr|A0A1L1RP44|A0A1L1RP44_CHICK RBKS
Citrate cycle (TCA cycle) tr|Q5F3V2|Q5F3V2_CHICK RCJMB04_6f14
Butanoate metabolism tr|A0A1L1RZ64|A0A1L1RZ64_CHICK HMGCS1

Lipid metabolism
Steroid hormone biosynthesis tr|A0A1D5PEM6|A0A1D5PEM6_CHICK STS
Sphingolipid metabolism tr|A0A1D5NWE6|A0A1D5NWE6_CHICK LOC107050229
Glycerophospholipid metabolism tr|A0A1D5PU31|A0A1D5PU31_CHICK PLA2G15

Cell growth and death Oocyte meiosis tr|A0A3Q2U5L9|A0A3Q2U5L9_CHICK RPS6KA1

2.4. Identification of Differential Metabolites in the Liver and Ovary

A comparison of the spectral overlap of the total ion chromatograms (TIC) of quality
control (QC) samples was carried out and the results showed that the response strengths
and holding times of the peaks were basically superimposed, suggesting that there was little
alteration due to instrumental errors during the whole experiment (Figure S3). A partial
least squares discriminant analysis (PLS-DA) was conducted on all metabolites identified
in the positive and negative ion modes to assess the association between the metabolites’
expression and the samples’ class. In addition, an orthogonal PLS-DA (OPLS-DA) was
used to modify the results of the PLS-DA (Figure S4).

In the liver, the results of the PLS-DA showed more significant intra-group aggrega-
tion and inter-group segregation of the samples, indicating that the model was reliable
(Figure 4A,B). By using UHPLC-MS/MS, 1619 differential metabolites (DMs) with iden-
tifying information were found in Groups G and H in this study (p < 0.05). Chemical
classification showed that the largest proportion of these metabolites was made up of or-
ganic acids and derivatives (28.474%), followed by lipids and lipid-like molecules (17.542%)
(Figure 4C). The results of the analysis of DMs showed that 978 metabolites were upreg-
ulated and 1514 metabolites were downregulated in the liver between two groups (Fold
change (FC) > 1.5 or FC < 0.67) (Figure 4D,E). According to the results of analyzing the sig-
nificant DMs, 186 significant DMs with annotation information were identified in the liver
between two groups, of which 63 DMs were upregulated and 77 DMs were downregulated.
A correlation analysis showed that 119 DMs were identified as relevant in the positive ion
mode and 67 DMs were identified in the negative ion mode (Figure 4F,G). In the ovary,
the PLS-DA analysis also showed the high reliability of the model (Figure 5A,B). In the
positive and negative ion modes, 1191 DMs with annotation information were identified,
most of which belonged to lipids and lipid-like molecules (28.67%), followed by organic
acids and derivatives (21.662%) (Figure 5C). The analysis of the DMs showed that 223 DMs
were upregulated and 225 DMs were downregulated (Figure 5D,E). In total, 36 significant
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DMs with annotation information were screened, of which 17 DMs were upregulated and
12 DMs were downregulated. The correlation analysis showed that 14 DMs were identified
to be correlated in the positive ion mode, while 22 DMs were identified to be correlated in
the negative ion mode (Figure 5F,G).

Figure 4. The patterns of differential metabolites (DMs) in the liver between Groups G and H were
examined in the positive and negative ion modes. (A,B) PLS-DA distribution of 12 samples in
the positive and negative ion modes. (C) the chemical classification of all liver metabolites was
determined. (D,E) volcano plots displayed the DMs identified in the positive and negative ion modes.
Upregulated DMs were indicated by red dots, downregulated DMs by blue dots, and metabolites
with no significant changes by gray dots. (F,G) heat maps depicted correlations in the positive
and negative ion modes, where red represented positive associations, blue represented negative
associations, and white represented non-significant associations.
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Figure 5. The patterns of DMs in the ovary between Groups G and H were examined in the positive
and negative ion modes. (A,B) PLS-DA distribution of 12 samples in the positive and negative
ion modes. (C) the chemical classification of all ovary metabolites was determined. (D,E) volcano
plots displayed the DMs identified in the positive and negative ion modes. Upregulated DMs were
indicated by red dots, downregulated DMs by blue dots, and metabolites with no significant changes
by gray dots. (F,G) heat maps depicted correlations in the positive and negative ion modes, where
red represented positive associations, blue represented negative associations, and white represented
non-significant associations.

2.5. Functional Enrichment Analysis of Differential Metabolites in the Liver and Ovary

The significant DMs identified in this study were functionally annotated with refer-
ence to the KEGG and HMDB databases, and DMs without annotation information were
excluded. The results showed that the upregulated DMs were enriched in 42 and 14 unique
pathways in the liver of Groups G and H, respectively. In Group G, six pathways were as-
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sociated with amino acid metabolism and six pathways were associated with carbohydrate
metabolism. In addition, three pathways were linked to the endocrine system and two
pathways were linked to lipid metabolism. In contrast, in Group H, four pathways were
associated with lipid metabolism, and DMs were also involved in amino acid metabolism
and translation. Among them, the pathways related to amino acid metabolism in Group G
mainly included valine, leucine, histidine, tyrosine, and phenylalanine, while the DMs re-
lated to amino acid metabolism in Group H were all involved in the tryptophan metabolism
pathway (Tables 4 and S5). In addition, DMs upregulated in the ovaries of Groups G and H
were enriched in six and eight unique pathways, respectively. In Group G, two pathways
were linked to amino acid metabolism and two pathways were associated with carbohy-
drate metabolism. In Group H, four pathways were involved in carbohydrate metabolism
and two pathways were involved in amino acid metabolism. Furthermore, the DMs were
enriched in ABC transporters and biosynthesis of primary bile acid (Tables 5 and S6).

Table 4. Pathways of upregulated differential metabolites (DMs) enriched in the liver between Groups
G and H.

Group Classification KEGG Pathway Metabolite

Group G

Amino acid metabolism

Valine, leucine, and isoleucine
degradation Ketoleucine

Valine, leucine, and isoleucine
biosynthesis Ketoleucine, pyruvate

Histidine metabolism 4-Imidazoleacetic acid, anserine,
histamine, N-acetylhistamine

Alanine, aspartate, and glutamate
metabolism Pyruvate

Phenylalanine, tyrosine, and tryptophan
biosynthesis

4-Hydroxyphenylpyruvate,
phenylpyruvate

Phenylalanine metabolism Phenylpyruvate, pyruvate

Carbohydrate metabolism

Pyruvate metabolism Pyruvate
Propanoate metabolism Dl-a-hydroxybutyric acid
Pentose and glucuronate
interconversions Pyruvate

Glycolysis, gluconeogenesis Pyruvate
Citrate cycle (TCA cycle) Pyruvate
Ascorbate and aldarate metabolism L-arabinono-1,4-lactone, pyruvate

Endocrine system

Progesterone-mediated oocyte
maturation Camp

Insulin signaling pathway Camp
GnRH signaling pathway Camp

Lipid metabolism Sphingolipid metabolism O-phosphoethanolamine
Primary bile acid biosynthesis Taurocholate

Group H

Lipid metabolism

Glycerolipid metabolism Glyceric acid
Fatty acid elongation Palmitic acid
Fatty acid biosynthesis Cis-9-palmitoleic acid, palmitic acid
Alpha-linolenic acid metabolism Linolenic acid

Amino acid metabolism Tryptophan metabolism
Serotonin, 3-(2-hydroxyethyl) indole,
3-hydroxyanthranilic acid,
N-acetyl-5-hydroxytryptamine
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Table 5. Pathways of upregulated DMs enriched in the ovary between Groups G and H.

Group Classification KEGG Pathway Metabolite

Group G
Amino acid metabolism

Lysine degradation L-pipecolic acid

Histidine metabolism 1-Methyl-l-histidine,
3-methyl-l-histidine

Carbohydrate metabolism
Propanoate metabolism Dl-a-hydroxybutyric acid
Glyoxylate and dicarboxylate metabolism Glycolate

Group H

Carbohydrate metabolism

Pentose phosphate pathway 2-Dehydro-3-deoxy-D-gluconate
Pentose and glucuronate interconversions 2-Dehydro-3-deoxy-D-gluconate
Galactose metabolism D-sorbitol
Fructose and mannose metabolism D-sorbitol

Amino acid metabolism
Tyrosine metabolism 3,4-Dihydroxymandelic acid
Cysteine and methionine metabolism 1-Aminocyclopropanecarboxylic acid

Membrane transport ABC transporters D-sorbitol

Lipid metabolism Primary bile acid biosynthesis Chenodeoxycholate

2.6. Comprehensive Analysis of DEPs and DMs in the Liver and Ovary

By comparing the unique pathways of DEPs and DMs enriched in the liver and ovary
of Group G and H, the overlapping enrichment pathways of DEPs and DMs were screened.
The analysis showed that in the liver of Group G, upregulated DEPs and DMs were co-
enriched in the MAPK signaling pathway, glutathione metabolism, ferroptosis, pyruvate
metabolism, glycolysis/gluconeogenesis, propanoate metabolism, histidine metabolism,
and the degradation of valine, leucine, and isoleucine (Figure 6A). In contrast, in Group
H, upregulated DEPs and DMs were co-enriched in the tryptophan metabolism pathway
(Figure 6B). In the ovary of Group G, upregulated DEPs and DMs were co-enriched in the
thiamine metabolism pathway (Figure 6C), while in Group H, upregulated DEPs and DMs
were co-enriched in ABC transporters and the pentose phosphate pathway (Figure 6D).

Figure 6. Comprehensive analysis of the KEGG pathways of DEPs and DMs in the liver and ovary
between Groups G and H. (A,B) Sankey diagram of the KEGG pathways of DEPs and DMs in the
liver of Groups G and H. (C,D) Sankey diagram of the KEGG pathways of DEPs and DMs in the
ovary of Groups G and H.
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2.7. Validation of DEPs Associated with Carbohydrate Metabolism and Lipid Metabolism Pathways
in the Liver and Ovary

The biochemical indices in the serum of the two groups were determined. The results
showed that the level of FSH in Group G was significantly lower than in Group H. The
levels of the follicle stimulating hormone (FSH) (Figure 7A), luteinizing hormone (LH)
(Figure 7B), lecithin (LEC) (Figure 7C), vitellogenin (VTG) (Figure 7D), very-low-density
lipoprotein (VLDLy) (Figure 7E), total cholesterol (TC) (Figure 7F), and triglyceride (TG)
(Figure 7G) were significantly lower than those in Group H. We also validated the protein
expression levels of the DEPs. In the liver, the expression of ADH4 was significantly higher
in Group G than in Group H, and it was hardly expressed in Group H. And the protein
level of FADS1 was significantly higher in Group H than in Group G (Figure 7H,I). In the
ovary, the protein levels of STS and HMGCS1 were significantly higher in Group H than
in Group G, and STS was basically not expressed in Group G (Figure 7J,K). The protein
expression trends of these DEPs were consistent with the results of proteomic analysis.

Figure 7. Validation of blood biochemical indicators and protein expression of DEPs found in Groups
G and H. (A) follicle stimulating hormone (FSH) levels in serum. (B) luteinizing hormone (LH) levels
in serum. (C) lecithin (LEC) levels in serum. (D) vitellogenin (VTG) levels in serum. (E) very-low-
density lipoprotein (VLDLy) levels in serum. (F) total cholesterol (TC) levels in serum. (G) triglyceride
(TG) levels in serum. (H,I) protein expression of DEPs (ADH4 and FADS1) enriched in carbohydrate
and lipid metabolic pathways in the liver. (J,K) protein levels of DEPs (STS and HMGCS1) enriched in
carbohydrate and lipid metabolic pathways in the ovary. All results are presented as the mean ± SD.
n = 3. * p < 0.05; ** p < 0.01.

3. Discussion

The laying performance of local breeds of chickens differs considerably from that of
commercial laying hens and remains so during the late laying period [22]. The liver is the
major organ of energy metabolism and fatty acid metabolism [21], and yolk deposition in

14



Int. J. Mol. Sci. 2023, 24, 14394

the follicle depends on the transport of lipids and proteins from the liver to the ovary [23].
In this study, the proteomic and metabolomic profiles were compared between the liver and
ovary of 55-week-old Guangyuan gray chickens and Hy-Line gray chickens. Morphological
and histological studies showed that the livers of Group H were yellowish in color, with
more loosely arranged liver cells, and were richer in lipid droplets than those of Group
G under the same feeding conditions. The altered morphology of liver cells in Group H
may be attributed to the long-term absorption of large amounts of nutrients, such as TC
and TG, by the liver in order to maintain a high egg production [23]. Eventually, the fat
absorbed by the liver exceeds the transport capacity of the apolipoproteins, leading to fatty
liver syndrome (FLS) [24]. The ovaries of Group G were basically atrophied, whereas grade
follicles filled with yolk still existed in the ovaries of Group H. In addition, the serum levels
of FSH and LH, which are related to follicular development [25]; the yolk precursors LEC,
VTG, and VLDLy [26]; and TC and TG, which are related to steroid hormone synthesis and
lipid deposition [27], were significantly higher in Group H. All the results indicated that
the liver and ovarian functions of commercial laying hens are still active in the later laying
period, which is the reason for their superior laying performance.

In general, carbohydrate metabolism is more vigorous in the liver of broiler chickens,
whereas lipid metabolism is more vigorous in laying hens [28] because broiler chickens
need more energy to maintain rapid growth but laying hens need lipids to maintain egg
production. Proteomics studies have shown that upregulated DEPs in the liver and ovary
of Group G were mainly enriched in pathways related to carbohydrate metabolism, which
may be because Guangyuan gray chickens, as a local breed, tend to be used for both
meat and eggs. DEPs such as acetyl-coenzyme A synthetase (ACSS1B), s-(hydroxymethyl)
glutathione dehydrogenase (ADH4), and hexokinase (HK2), which are involved in carbohy-
drate metabolism, were identified in the liver of Group G, among which acylphosphatase-1
(ACYP1) and ACSS1B were also shown to be involved in the regulation of heat stress in
chickens [29,30], which may be because Guangyuan gray chickens have a more energetic
metabolism and produce more heat, and therefore rely on ACYP1 and ACSS1B to reduce
the apoptosis of liver cells in hot environments [29]. In the ovary, glucose-6-phosphatase
(G6PC3) [31] and ADH4 have been identified as being involved in carbohydrate metabolism.
Notably, ADH4, a unique protein of Group G involved in the catabolism of a variety of
substrates such as ethanol, retinol, steroids, and lipids [32,33], has been demonstrated
to be a key gene for energy metabolism in cancer cells [34] and can be critical in energy
metabolism in the liver and ovary in Group G. Among the DEPs identified in the liver
of Group H, only one DEP was enriched in a unique pathway related to carbohydrate
metabolism. However, propionate-CoA ligase (ACSS3), ribokinase (RBKS), ATP-citrate
synthase (RCJMB04_6f14), and hydroxymethylglutaryl-CoA synthase (HMGCS1) were
identified to be involved in carbohydrate metabolism and were found in the ovary of Group
H, of which ACSS3 was also found to be involved in the regulation of heat stress [35] and
HMGCS1 is also involved in the degradation of amino acids and cholesterol [36], which
may, to some extent, alleviate fatty liver syndrome in Hy-Line gray chickens.

Notably, in addition to carbohydrate and lipid metabolism, DEPs were enriched in
pathways related to amino acid metabolism in Groups G and H. Among them, DEPs such as
pyrroline-5-carboxylate reductase (PYCR1), ALDH18A1, aspartate aminotransferase, and
cytoplasmic (GOT1) were identified to be significantly enriched in the arginine biosynthesis
pathway in the liver of Group G, which is able to inhibit fatty acid synthesis and promote
fatty acid β-oxidation [37], which may interfere with the synthesis of substances such as
TG and TC in the liver of Guangyuan gray chicken.

On the other hand, most of the upregulated DEPs in the liver and ovary of Group
H were enriched in pathways associated with lipid metabolism. No DEPs were iden-
tified in the ovary of Group G that were enriched in unique pathways related to lipid
metabolism, but ADH4, beta-2-microglobulin (B2M), delta-1-pyrroline-5-carboxylate syn-
thase (ALDH18A1), and 15-oxoprostaglandin 13-reductase (PTGR2), which are involved in
lipid metabolism, were identified in the liver. Among them, ADH4 is involved in fatty acid
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degradation, whereas the overexpression of PTGR2 suppressed PPARG’s transcriptional
activity and inhibited lipid synthesis. ALDH18A1 was also a unique protein found in
Group G. The loss of function of ALDH18A1 was found to be associated with larger lipid
droplets and was positively correlated with leanness in chickens [38], which was consistent
with our findings. On the other hand, DEPs such as fatty acid desaturase 1 (FADS1), cy-
tochrome P450 1A4 (CYP1A4), and tryptophan 2,3-dioxygenase (TDO2) were identified in
the liver of Group H. These are involved in lipid metabolism, of which CYP1A4 is a protein
unique to Group H involved in the metabolism of a variety of compounds, including
substances such as steroids and fatty acids [39]. It was identified that steroid sulfatase
(STS), glucosylceramidase (LOC107050229), and phospholipase A2 Group XV (PLA2G15)
were all involved in the metabolism of functional lipids in the ovary of group H. Among
them, STS was identified as a key gene for the secretion of reproductive hormones [40].
These three DEPs were unique proteins of group H and may be associated with the high
egg production of Hy-Line gray hens at the end of the laying period.

In metabolomic studies, the functional enrichment of DMs was consistent with that of
the DEPs. The most abundant metabolites identified in the liver and ovary were organic
acids and their derivatives, and lipids and lipid-like molecules, respectively. The involve-
ment of pyruvate, Dl-a-hydroxybutyric acid, L-arabinono-1, 4-lactone, and glycolate in
carbohydrate metabolism was identified in the liver and ovary of Group G. Among them,
4-lactone and glycolate have been have been discovered to be critical in fighting oxidative
stress [41]. 2-Dehydro-3-deoxy-D-gluconate and D-sorbitol were identified in the ovary
of Group H and are involved in carbohydrate metabolism. Sorbitol catalyzes the conver-
sion of fructose in the liver. Excess fructose increases liver stress and contributes to the
accumulation of fat [42]. Additionally, the more abundant lipids and lipid-like molecules
in the liver of Group G were o-phosphoethanolamine and taurocholate; taurocholate is
involved in the biosynthesis of primary bile acid, and bile acid can promote the digestion
and absorption of fat [43].

The more abundant lipid and lipid-like molecules in the liver of Group H were glyceric
acid, palmitic acid, cis-9-palmitoleic acid, and linolenic acid; the most abundant in the
ovary was chenodeoxycholate. A former study found that the liver of laying hens with
fatty liver hemorrhage syndrome (FLHS) contained high levels of beta-hydroxybutyric
acid, oleic acid, palmitoleic acid, glutamic acid, and other metabolites, which could be used
as biomarkers for diagnosing disease [44]. These results were consistent with our findings.
Therefore, although Hy-Line gray hens performed better in terms of egg production than
Guangyuan gray chickens, prolonged overlaying also caused liver lesions in Hy-Line
gray hens. It is also noteworthy that DMs identified in the liver and ovary of Group H
were also significantly enriched in the ABC transporter pathway, suggesting the higher
transmembrane transport capacity for amino acids, sugars, and other nutrients in Hy-Line
gray hens [45]. Moreover, 1-aminocyclopropanecarboxylic acid was identified in the ovary
of Group H, which is involved in the synthesis of methionine, a major component of
apolipoproteins that significantly increases serum TG levels in laying hens and is important
for yolk deposition [46]. In summary, the results of this study suggest that DEPs and DMs
involved in the metabolism of carbohydrates, lipids, and amino acids in the liver and ovary
of local breeds of chicken and commercial chickens may be responsible for the differences
in egg production performance between them in the later laying period.

4. Materials and Methods

4.1. Birds and Sample Collection

All animal experiments were carried out in accordance with the relevant regulations
formulated by the Experimental Animal Operation Standards and Welfare Management
Committee of Sichuan Agricultural University (approval no. DKY2021202030).

The chickens used in this experiment were reared by Sichuan Tianguan Agricultural
and Animal Husbandry Co., Ltd. (Guangyuan, China). One hundred 1-day-old female
chicks were reared, with fifty each of Guangyuan gray chicks and Hy-Line gray chicks. At
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six weeks of age, each breed was divided into 10 groups, with replicates in each group, and
reared in a single cage. At 55 weeks of age, 10 healthy chickens with a similar bodyweight
were randomly selected from each of the two breeds (Group G and Group H). Blood was
obtained from the pterygoid vein, followed by weighing and euthanizing the chickens
by neck dislocation. Liver and ovarian tissues were collected, the livers were weighed,
and the pre-grade follicles and grade follicles were counted. The liver and ovary tissues
were separated into two sections. One section was immersed in a 4% paraformaldehyde
fixative (Sigma-Aldrich, St. Louis, MO, USA) for histological observations, and the other
was rapidly refrigerated in liquid nitrogen and kept at −80 ◦C for later analysis.

4.2. Protein Extraction, Digestion and Quality Control

Six liver and ovary samples were collected from each breed for protein profiling. Three
replicate groups were established for each of the different tissues of each breed, and each
group consisted of a mixed sample of tissues from two chickens of the same breed. An
SDT buffer (4% SDS, 1 mM DTT) was used for extracting protein under a high pH. The
protein quantification was conducted with the BCA Kit (Bio-Rad, Hercules, CA, USA).
Protein digestion followed the Filter-Aided Sample Preparation (FASP) procedure [47].
Each sample initially contained 200 μg of protein, which was mixed with 30 μL of the
SDT buffer comprising 4% SDS, 100 mM DTT, and 150 mM Tris-HCl at pH 8.0. We then
removed small molecules by treating the samples with a UA buffer containing 8 M urea.
Then, 100 μL of iodoacetamide was added, and the samples were incubated in the dark for
30 min. The filters were washed sequentially with the UA buffer and a 25 mM NH4HCO3
buffer. Next, 4 μg of trypsin (Promega, Madison, WI, USA) was added to a protein/enzyme
ratio of 50:1, and the protein suspension was digested at 37 ◦C overnight, then, the peptides
in the filtrate were collected. The digested peptides from each sample were desalted on
C18 cartridges (Empore™ SPE Cartridges C18 (standard density) on a bed with an inner
diameter of 7 mm and a volume of 3 mL, Sigma-Aldrich, St. Louis, MO, USA), then, they
were concentrated by vacuum centrifugation and reconstituted in 40 μL of 0.1% formic
acid. Finally, the peptide content was calculated at 280 nm.

A quality control of the protein extraction process was performed using SDS-PAGE.
Briefly, 20 μg of protein from each sample was mixed with the loading buffer diluted
fivefold and heated for 5 min. The proteins were then separated on a 12.5% SDS-PAGE gel.
Finally, we visualized the protein bands by staining with Coomassie Blue R-250.

4.3. LC-MS/MS Analysis of Proteins

In this study, a 4D label-free approach and shotgun approach were used for the
proteomics experiments, i.e., ion mobility separation was added to the original three
dimensions of proteomic separation (retention time, m/z, and intensity) [48]. The samples
were separated using the HPLC liquid phase system Easy nLC, loaded with 400 ng of
peptides per run. The peptides were loaded onto a reverse-phase trap column (Acclaim
PepMap100, 100 μm × 2 cm, nanoViper C18, Thermo Fisher Scientific, Waltham, MA,
USA) connected to the C18 reverse-phase analytical column (Easy Column; 10 cm long,
75 μm inner diameter, 3 μm resin, Thermo Fisher Scientific, Waltham, MA, USA) in Buffer
A (0.1% formic acid). The separation of peptides was achieved using a linear gradient
of Buffer B (84% acetonitrile and 0.1% formic acid) at a flow rate of 300 nL/min. Then,
we conducted the LC-MS/MS analysis using a timsTOF Pro mass spectrometer (Bruker
Daltonics, Billerica, MA, USA) coupled with Nanoelute equipment (Bruker Daltonics,
Billerica, MA, USA). The mass spectrometer in this study was operated in positive ion
mode and the data acquisition mode was the DDA-PASEF mode. The mass range of
ion mobility for mass spectrometry acquisition was 100–1700 (m/z) and 0.6–1.6 (1/k0).
Additionally, 10 cycles of PASEF MS/MS with a target intensity of 1.5 k and a threshold of
2500 were performed. To prevent repeated analysis, active exclusion with a release time of
15 s was enabled.
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4.4. Bioinformatic Analysis

The NR databases (GenBank, Refseq, SwissProt, etc.) and the UniProt databases (Swis-
sProt, TrEmbl) were used for identifying proteins in this study. MaxQuant software 1.6.14
was used for quantitative analysis and the QC of the protein mass spectrometry data [49].
In the analysis, the raw data from the mass spectrometry analysis were entered and the
relevant parameters were set to check the database for identification and quantitative
analysis. The following configurations were used: a maximum tolerance of 2 missed sites
was allowed, with primary and secondary ion mass tolerances set at ±6 ppm and 20 ppm.
Moreover, carbamidomethyl (C) and oxidation (M) were designated as fixed and variable
modifications, respectively. The database pattern used to calculate the false discovery rate
(FDR) was reversed, with a peptide FDR of ≤0.01 and a protein FDR of ≤0.01 as the screen-
ing criteria. A quantitative comparison of the proteins between groups was performed
using LFQ, and the main algorithm was applied after pairwise correction of the peptide
and protein multiples. FC > 2 or FC < 0.50, with p < 0.05, was used to screen DEPs that were
significantly up- and downregulated between the groups, and volcano plots were generated
using the volcano 3D R package (R 4.2.2). We utilized the Complexheatmap R 4.2.2 (R Foun-
dation for Statistical Computing, Vienna, Austria), Cluster 3.0 (Michelson Laboratories,
Tokyo, Japan), and Java Treeview software 3.0 (Eisen Lab at Stanford University, Stanford,
CA, USA) for sample classification and protein expression level analysis. The classification
was performed using the Euclidean distance algorithm and average linkage for clustering.
Hierarchical clustering heatmaps were generated based on significant changes in protein
expression levels (FC > 2, p < 0.05). The DEPs were then functionally annotated with
Gene Ontology (GO) terms using Blast2Go software (https://www.blast2go.com, accessed
on 20 April 2023, BioBam Bioinformatics, Valencia, Spain), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) annotation was performed on the DEPs using KAAS software
(https://www.genome.jp/tools/kaas, accessed on 20 April 2023, Kanehisa Laboratories at
Kyoto University, Kyoto, Japan). In addition, unique proteins were obtained by using the
screening criterion that half or more than half of the samples in one group were not null
and all data in the other group were null.

4.5. Metabolite Extraction

Six liver and six ovarian samples from each of the two breeds were selected for
metabolic profile analysis between the two breeds. After slowly thawing the samples,
5 mg of each sample was added to a pre-cooled solution of methanol, acetonitrile, and
water in a ratio of 2:2:1. Then, we vortexed the mixture and treated it ultrasonically at a
low temperature for 30 min, followed by ultrasonic treatment at −20 ◦C for 10 min, and
we finally centrifuged the sample at 14,000× g at 4 ◦C for 20 min. The supernatant was
then dried and 100 μL of an aqueous solution of acetonitrile was added. We centrifuged
the mixture at 14,000× g for 15 min and collected the supernatant for ultra-high pressure
liquid chromatograph (UHPLC)-MS/MS analysis. The temperature was maintained at
4 ◦C throughout the experiment.

4.6. UHPLC-MS/MS Analysis and Data Analysis

The samples were separated on a Vanquish LC UHPLC (Thermo Fisher Scientific,
Waltham, MA, USA) with a HILIC column (ACQUITY UPLC BEH Amide, 1.7 μm,
2.1 mm × 100 mm, Waters, Milford, MA, USA). The detection conditions were as follows:
column temperature, 25 ◦C; flow rate, 300 μL/min. The composition of Mobile Phase A
was composed of water, 25 mM acetic acid, and 25 mM ammonia; Phase B was acetonitrile.
By gradient elution, within 17 min, B was linearly changed from 98% to 2%, then to 98%,
and finally returned to and maintained at 98%. QC samples were inserted in the sample
queue to ensure the system stability and data reliability. Metabolite spectra were obtained
using a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA). The positive and negative ion modes of electric spray ionization (ESI) were used
for primary and secondary mass spectra acquisition, with the following ESI settings: Gas1
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and Gas2: 60, CUR: 30 psi, ion source temperature: 600 ◦C, ISVF: ±5500 V. Mass spectra
were acquired in DDA mode with secondary spectra obtained by segmented acquisition.
Primary and secondary spectra were acquired with the following settings: mass-to-charge
ratio detection ranges of 80–1200 Da and 70–1200 Da, resolutions of 60,000 and 30,000,
cumulative scan times of 100 ms and 50 ms, asnd a dynamic exclusion time of 4 s.

The raw data format was converted to mzXML using ProteoWizard. Metabolite data
were extracted using XCMS software 3.5.1 (Scripps Research Institute, La Jolla, CA, USA),
and a substance match value of 0.7 was obtained by considering retention time, molecular
mass (molecular mass error: <25 ppm), and mass spectral match (m/z < 10 ppm, peak
width = c (10, 60), prefilter = c (10, 100)). The obtained data were then identified using an
in-house database (Shanghai Applied Protein Technology, Shanghai, China) and verified
twice. Based on the standards for metabolite identification, the metabolites in this study
were classified as Level 2 or higher [50]. PLS-DA was performed on the metabolites that
differed between the groups, and the PLS-DA was corrected by OPLS-DA. FC analysis
was performed on all metabolites, including those without identification information, to
screen for up- or downregulated DMs on the basis of FC > 1.5 or FC < 0.67, and p < 0.05.
Significant DMs were screened among DMs with identifying information using OPLS-DA,
with variable importance in projection (VIP) > 1 as a criterion, and subsequent analysis was
performed. Pearson’s correlation analysis was used to identify the relationship between
two breeds. In addition, we used Blast2GO and KAAS to perform GO and KEGG pathway
annotation of the target metabolite collection. R package (ropls) was used to visualize
analyses such as volcano maps and correlation heat maps.

4.7. Detection of Serum Biochemical Parameters

The separated serum was centrifuged at 4000 r/min to remove impurities. Then, the
hormone levels were tested with an ELISA kit (MyBioSource, Wuhan, China) for chicken
VTG, LH, FSH, LEC, and VLDLy according to the manufacturer’s instructions. In addition,
TC and TG test kits (Solarbio, Beijing, China) were used to detect the TC and TG levels.
The assay was repeated 14 times for three QC samples (1.23 ng/mL, 4.25 ng/mL, and
19.45 ng/mL, respectively) to test the reproducibility of the kit between wells in the assay
plate, and the results showed that the CV value of each sample was less than 10% (4.23%,
7.52%, and 7.67%, respectively), indicating that the kit had high precision. The results
on the serum hormone levels were visualized using GraphPad Prism 9.0.0 (GraphPad
Software, La Jolla, CA, USA).

4.8. Oil Red O Staining

Frozen samples were sectioned to 8 μm, fixed in 10% formalin (Solarbio, Beijing, China)
for 10 min, and washed. The sections were immersed in 60% isopropanol (Sinopharm,
Beijing, China) for 2 min. The sections were stained with an Oil Red O solution (Sangon
Biotech, Shanghai, China) for 15 min while protected from the light. The sections were again
immersed in 60% isopropanol for 5 s to remove the staining solution and washed again
in ice-cold distilled water. The nuclei were stained with Mayer’s hematoxylin (Sangon
Biotech, Shanghai, China) for 5 min, washed, dried, and embedded in glycerol gelatin
(Xilong Scientific, Shantou, China). The sections were observed under a BX53F inverted
microscope (Olympus, Tokyo, Japan) and photographed.

4.9. Hematoxylin–Eosin (HE) Staining

The samples were first immobilized in 4% paraformaldehyde (Solarbio, Beijing, China)
for 24 h, then immersed in 70%, 80%, 90%, 95%, and 100% ethanol solutions for 30 min
to dehydrate the samples. They were then placed in xylene for 2 h to make the samples
transparent and embedded in paraffin wax for 3 h. The embedded samples were sectioned
into 5 μm pieces and immersed in xylene for 20 min to dewax the samples. The sections
were then immersed in a series of ethanol solutions from high to low concentrations and
finally in distilled water. The sections were stained with a hematoxylin solution (Beyotime,
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Haimen, China) for 4 min, fractionated in hydrochloric acid and ethanol for 3 s each, rinsed
in running water for 1 h, immersed in distilled water for 10 min, and dehydrated in 70%
and 90% ethanol solutions for 10 min each, followed by staining with the eosin staining
solution for 3 min. The stained sections were dehydrated by immersion in an ethanol
solution and then immersed in xylene to make the sections transparent, and they were
finally sealed and stained with gum. The sections were sealed with resin, observed under a
BX53F inverted microscope (Olympus, Tokyo, Japan), and photographed.

4.10. Western Blot Validation of DMs Expression

After tissue collection, proteins were extracted using the Total Tissue Protein Extraction
Kit (Servicebio, Wuhan, China) according to the provided instructions. Protein concen-
trations were determined using the BCA kit (Servicebio, Wuhan, China) and the samples
were made consistent. Protein samples (5 μL) were loaded onto SDS-PAGE gels (separation
gel: 10%, concentration gel: 5%) along with a 4:1 ratio of protein to sample loading buffer
for electrophoresis. The proteins were then moved to the PVDF membranes with the wet
transfer device and blocked for 1 h with blocking solution (Beyotime, Haimen, China). The
primary antibodies (Table S7) were co-incubated with target proteins overnight at 4 ◦C,
followed by removal of unbound antibodies using TBST (Servicebio, Wuhan, China). The
membranes were then treated with appropriate secondary antibodies, excess secondary
antibody was washed off, and the protein bands were visualized using the Ultra Hyper-
sensitive ECL Chemiluminescence Kit (Servicebio, Wuhan, China). Quantification was
performed using ChemiScope Analysis software 6200 (CLINX, Shanghai, China).

4.11. Statistical Analysis

This study presented all the findings in the form of the mean ± standard deviation
(SD). To determine the significance, we conducted a statistical analysis using either one-way
ANOVA or an unpaired Student’s t-test with the help of SPSS 26.0 software (IBM Corpora-
tion, Armonk, NY, USA). The significance levels were defined as * p < 0.05, ** p < 0.01, and
ns p ≥ 0.05.

5. Conclusions

In conclusion, in this study, morphological and histological observations of the liver
and ovary of local breeds of chicken and commercial chickens in the later laying period
revealed that the serum levels of reproductive hormones in Guangyuan gray chickens were
significantly lower than those in Hy-Line gray chickens, there were fewer lipid droplets in
the livers of the Guangyuan gray chickens, and their ovaries were atrophied. In contrast,
the Hy-Line gray chickens had abundant lipid droplets in the liver and showed fatty
liver-like lesions, but the ovaries were still active with follicles in all stages. The results of
the proteomic and metabolomic analyses showed that the DEPs and DMs in the liver and
ovary were mainly involved in carbohydrate metabolism, lipid metabolism, and amino
acid metabolism. These findings can be used to improve the egg production of local breeds
of chicken in the later laying period.
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Abbreviations

LC-MS/MS
liquid chromatography chip/electrospray ionization quadruple time of
flight/mass spectroscopy

DEPs differentially expressed protein
DMs differential metabolites
HPG hypothalamic-pituitary-gonad
E2 estrogen
FLHS fatty liver hemorrhagic syndrome
YF yellow follicles
WF white follicles
NR non-redundant
PCA principal component analysis
BPs biological processes
CCs cellular components
MFs molecular functions
TIC total ion chromatograms
QC quality control
PLS-DA partial least squares discriminant analysis
OPLS-DA orthogonal partial least squares discriminant analysis
FC fold change
FSH follicle stimulating hormone
LH luteinizing hormone
LEC lecithin
VTG vitellogenin
VLDLy very-low-density lipoprotein
TC total cholesterol
TG triglyceride
FLS fatty liver syndrome
FASP Filter-Aided Sample Preparation
FDR false discovery rate
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
UHPLC ultra-high pressure liquid chromatograph
ESI electric spray ionization
VIP variable importance for the projection
HE Hematoxylin–Eosin
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Abstract: The O6-methylguanine-DNA methyltransferase (MGMT) is a DNA suicide repair enzyme
that might be important during sepsis but has never been explored. Then, the proteomic analysis of
lipopolysaccharide (LPS)-stimulated wild-type (WT) macrophages increased proteasome proteins
and reduced oxidative phosphorylation proteins compared with control, possibly related to cell
injury. With LPS stimulation, mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated
less profound inflammation; supernatant cytokines (TNF-α, IL-6, and IL-10) and pro-inflammatory
genes (iNOS and IL-1β), with higher DNA break (phosphohistone H2AX) and cell-free DNA, but not
malondialdehyde (the oxidative stress), compared with the littermate control (mgmtflox/flox; LysM-
Cre-/-). In parallel, mgmt null mice (MGMT loss only in the myeloid cells) demonstrated less severe
sepsis in the cecal ligation and puncture (CLP) model (with antibiotics), as indicated by survival and
other parameters compared with sepsis in the littermate control. The mgmt null protective effect was
lost in CLP mice without antibiotics, highlighting the importance of microbial control during sepsis
immune modulation. However, an MGMT inhibitor in CLP with antibiotics in WT mice attenuated
serum cytokines but not mortality, requiring further studies. In conclusion, an absence of mgmt
in macrophages resulted in less severe CLP sepsis, implying a possible influence of guanine DNA
methylation and repair in macrophages during sepsis.

Keywords: sepsis; lipopolysaccharide; macrophages; epigenetics; mgmt

1. Introduction

The imbalanced immune responses in patients with sepsis, a potentially life-threatening
condition from severe infection regardless of the organisms, result in severe hyperinflamma-
tion, despite effective microbial control by antibiotics [1–3]. Although there is improved sup-
portive care in sepsis [4], the inflammatory blockage during sepsis-hyperinflammation [5–12]
may still help reduce sepsis mortality. Among several sepsis pro-inflammatory factors,
the presence of LPS (a major cell wall component of Gram-negative bacteria) in the blood,
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referred to as endotoxemia [13–16], possibly due to Gram-negative bacteremia or translo-
cation of LPS from the gut into the blood circulation (leaky gut) [17–19] is a well-known
cause. Interestingly, monocytes (or macrophages) are important cells controlling microbial
molecules (LPS and other substances) [20,21], and the responses to LPS lead to several cell
activities, including epigenetic modifications, chromatin remodeling, and interferences on
cell energy status [22–24]. Epigenetics, the phenotypic alterations without the changes in
the DNA sequence [25,26] used for the switch-on and -off DNA transcription through the
modifications on DNA and histone (methylation and acetylation) or with the noncoding
RNA (microRNA) [27], are one of the interesting macrophage responses after LPS activa-
tion. Indeed, the modifications of DNA and histone rely on several enzymes to modify the
physiological outcomes [28]. DNA methylation, among all modifications, for regulating
DNA repair is a fascinating mechanism in LPS responses. Because any forms of oxidative
stress from both regular procedures or pathogenic processes (such as LPS stimulation and
exposure to alkylating agents) in the cells can induce DNA modifications, DNA methylation
is a common process regularly found in every body cell [29]. Indeed, DNA methylation,
especially the N-methylated purines and O6-methylguanine (O6MeG), are common DNA
damage that can trigger point mutation with high mutagenicity and carcinogenicity [30].
The O6MeG, which the alkylating agent usually activates, is mutagenic because polymerase
enzymes typically mismatch insert thymine instead of cytosine (O6MeG:T) due to the
similar strength of the hydrogen bonds to cytosine and thymine [31]. Not only alkylating
agents and environmental compounds but several endogenous factors, particularly oxida-
tive stress, are also responsible for producing O6MeG during routine cell activities [32].
Base damage, single-strand breaks (SSB), double-strand breaks (DSB), and inter-strand
cross-links are all types of DNA damage caused by normal metabolic processes (hydrolysis,
deamination, alkylation, and oxidation) which occur about 50,000 lesions per cell per day
(or about 30,000 nucleoside sites in DNA per cell) [33]. Although the number of modifica-
tions at the O6 position of guanine (O6MeG) may not be significantly high compared to
the methylation in the total lesions on DNA [34], the amount of O6MeG may be increased
in sepsis or LPS hyper-responsiveness due to high levels of oxidative stress as indirectly
indicated by inflammation-induced cancer in some situations [35]. Interestingly, O6MeG
may result in more severe DNA damage and cell death than methylation at the other DNA
locations due to the easier point mutation and more potent DNA damage [36], which might
also profoundly affect macrophages than other mechanisms of epigenetic changes.

To maintain genome stability, DNA repair is necessary, partly through the removal
of methyl groups, on the DNA by base excision repair initiated by the alkyladenine-
DNA glycosylase, the family of alkylation B (AlkB) homologs proteins, and the suicidal
enzyme O6-methylguanine-DNA methyltransferase (MGMT) [30,37]. Following DNA
repair, these enzymes’ methylated and alkylated forms are rapidly broken down. Intact
MGMT prevents the malignant transformation of various tissues. MGMT blocking is
employed for adjuvant chemotherapy [30] in malignancies that depend on the rate of
MGMT re-synthesis in the cancer cells [37]. The DNA methylation and damage in the
activated macrophages are conceivable because of several activator signals and immune
activation-induced oxidative stress [38], particularly after induction with LPS, a microbial
molecule with an inflammatory-inducing solid property. Indeed, DNA methylation in
macrophages is directly induced by LPS [39] and indirectly activated by reactive oxygen
species (ROS) generated by LPS responses [40]. In patients with sepsis, higher levels of
genomic DNA hypermethylation patterns are linked to pro-inflammatory pathways [41].
The effects of this methylation and MGMT on macrophages, the cells with a potentially
high stress-induced DNA methylation [42], are still unknown, despite a strong conclusion
on the involvement of O6MeG in malignant cells. Accordingly, sepsis and LPS cause
DNA methylation in several sites, perhaps including Q6MeG [41], and the MGMT enzyme
reduces O6MeG during the DNA repair that revitalizes the cell functions. Then, the MGMT
inhibitors (such as Lomeguatrib) enhance the death of cancer cells through interference
with DNA repair [43], and this interference on macrophages during sepsis may reduce
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macrophage hyper-inflammation [44]. Additionally, the screening of epigenetic inhibitors
reveals that MGMT inhibitors change the expression of inflammatory cytokines in LPS-
activated macrophages [45], and the MGMT inhibitors not only neutralize O6MeG in DNA
but also link to the repair of other pathways [46]. Despite several active research areas,
controlling macrophage responses through epigenetic manipulations is an exciting method
for managing immune responses during sepsis [10,47].

Then, we hypothesized that failure of DNA repair causes a reduction in macrophage
functions, especially cytokine production, that might attenuate sepsis-induced hyper-
inflammatory responses. Here, we explored the impact of mgmt on macrophage responses
to LPS and cecal ligation and puncture (CLP) sepsis model using the conditional mgmt
deletion mice with LysM-Cre system that selectively affected mgmt only in myeloid cells.

2. Results

2.1. Proteomic Analysis of Lipopolysaccharide (LPS)-Activated Wild-Type Macrophages and
Impacts of mgmt Null and MGMT Inhibitor on LPS Stimulation

The alteration of wild-type (WT) macrophages after LPS stimulation was explored
by proteomic analysis through the list of the genes that generated proteins, enrichment
pathway, and KEGG analysis (Figures 1A–C and 2A–C). There were proteins from 119
and 206 up-and down-regulated genes in LPS-activated macrophages compared with the
control (Figures 1A and 2A). Functions of the elevated proteins in LPS-stimulated cells
compared with the control, as indicated by the enrichment analysis, involved in the protea-
some, carbohydrate metabolism, antigen presentation, and several infections (Figure 1B).
The KEGG analysis of these LPS-enhanced proteins in proteasome was demonstrated in
Figure 1C, and the genes that appeared in the analysis were Rpn3, Rpn6, Rpn7, Rpn8, Rpn9,
PA28α, and PA28β (Figure 1C; red color boxes). Notably, the RPN is a subunit of the 19S
regulatory particle (RP) at the lid portion of the 26S proteasome [48], while PA28α and
PA28β are proteasome activators forming a heteropolymer that binds to both ends of the
20S proteasome, referred to as “immunoproteasome”, using for the processing of certain
antigens [49]. In parallel, functions of the LPS-decreased proteins in macrophages by the
enrichment analysis involved in cell energy (citrate cycle and oxidative phosphorylation),
synthesis of protein and lipid, and several diseases (Figure 2B). Additionally, the KEGG
analysis of these LPS-suppressed proteins in the oxidative phosphorylation, a significant
mechanism for providing cell energy, was demonstrated in Figure 2C, including sev-
eral Ndufs (NADH: Ubiquinone Oxidoreductase Core Subunits) of NADH (nicotinamide
adenine dinucleotide + hydrogen) dehydrogenases [50], a component of cytochrome C
reductase and oxidase, consisting of a few QCRs (quinol-cytochrome c oxidoreductases)
and COX5B (cytochrome c oxidase subunit 5B) [51,52], with several parts of F-type ATPase,
such as OSCP (oligomycin-sensitivity-conferring protein) [53]. The list and details of the
genes generating the up and down- proteins from LPS-activated macrophages using the
GO enrichment analysis were demonstrated in Supplementary Tables S1 and S2.

Because the reduced cell energy status (mitochondrial oxidative phosphorylation)
possibly leads to abnormal molecules and proteins degraded by the proteasome [54,55],
the decreased proteins in oxidative phosphorylation and increased proteins of proteasome
might be due to LPS-induced cell injury [56–58], partly including the DNA methylation.
Then, the impact of LPS activation was further explored in macrophages from mgmt null
and littermate control (mgmt control) mice. Indeed, mgmt null macrophages demonstrated
lower inflammatory responses as indicated by supernatant cytokines (TNF-α, IL-6, and
IL-10) and expression of pro-inflammatory M1 macrophage polarization genes, including
nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) without an impact on M2 polar-
ization genes; arginase-1 (Arg-1), transforming growth factor-β (TGF-β), and resistin-like
molecule-1 (Fizz-1) (Figure 3A–H). Likewise, administration of the MGMT inhibitor in
LPS-activated wild-type (WT) macrophages also demonstrated anti-inflammatory effects
through these parameters (except for supernatant IL-6) (Figure 3I–P), suggesting a possible
use of MGMT inhibitor to attenuate sepsis-induced hyperinflammation. These data also
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imply the reduced macrophage cytokine production, perhaps due to methylation of the
DNA that is responsible for the production of these cytokines, due to the lack of MGMT to
repair the DNA [42]. Because mgmt null macrophages might demonstrate higher cell injury
than the control cells due to persistent DNA methylation from the loss of MGMT enzymes,
several injury parameters were evaluated. As such, mgmt null macrophages demonstrated
higher supernatant cell-free DNA and the DNA break (phosphohistone H2A.X) but not cell
reactive oxygen species (evaluated by Malondialdehyde; MDA) (Figure 4A–D). Notably,
phosphorylation of the histone variant H2AX is a critical factor for DNA damage response
to assembly of the DNA repair proteins at the chromatin damaged sites [59], and MDA is
the final peroxidation products of polyunsaturated fatty acids activated by several inducers,
including LPS [60]. Perhaps, the loss of MGMT enzyme leads to more profound DNA
damage without repair, as indicated by the DNA break indicator (Figure 4C,D), which
results in more potent cell injury (cell-free DNA) (Figure 4A) but does not affect lipid
peroxidation injury (MDA) (Figure 4B).

Figure 1. The proteome profiles of genes that generate peptides from wild-type bone marrow-derived
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macrophages after 24 h lipopolysaccharide (LPS) activation compared with media control as indicated
by heatmap analysis (average value from 3 samples) using log2 of the count per million (TPM) of
the upregulated genes (A) fold enrichment pathway of this list (B). KEGG analysis of the path
(proteasome) (C) is demonstrated. The red boxes with the white letters in the gene’s name of KEGG
pathway (C) indicate the analysis results. Macrophages were isolated from three different mice to
perform triplicate experiments. Picture (C) is created by BioRender.com accessed on 15 March 2023.

Figure 2. The proteome profiles of genes that generate peptides from wild-type bone marrow-derived
macrophages after 24 h lipopolysaccharide (LPS) activation compared with media control as indicated
by heatmap analysis (average value from 3 samples) using log2 of the count per million (TPM) of
the downregulated genes (A) fold enrichment pathway of this list (B). In addition, KEGG analysis of
the pathway (oxidative phosphorylation) (C) is demonstrated. The red boxes with the white letters
in the gene’s name of KEGG pathway (C) indicate the analysis results. Macrophages were isolated
from three different mice to perform triplicate experiments. Picture (C) is created by BioRender.com
accessed on 15 March 2023.
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Figure 3. The characteristics of bone marrow-derived macrophages (BMDM) from mgmt control
(mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl; LysM-Crecre/-) mice at 24 h after activation by lipopo-
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lysaccharide (LPS) as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10) (A–C), expression
of pro-inflammatory genes of M1 polarization (iNOS and IL-1β) (D,E), and anti-inflammatory genes
of M2 polarization (Arg-1, TGF-β, and Fizz-1) (F–H) are demonstrated. Parallelly, the characteristics
of BMDM from wild-type mice at 24 h after activation by media (DMEM) or MGMT inhibitor
(Lomeguatrib) with or without LPS as indicated by these parameters (I–P) is also demonstrated.
Triplicated independent experiments were performed. Mean ± SEM with the one-way ANOVA
followed by Tukey’s analysis was used. #, p < 0.05 vs. mgmt control DMEM; δ, p < 0.05 vs. control
DMEM; *, p < 0.05 between the indicated groups.

Figure 4. The characteristics of bone marrow-derived macrophages (BMDM) from mgmt control
(mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl; LysM-Crecre/-) mice at 24 h after activation by
lipopolysaccharide (LPS) as indicated by supernatant cell-free DNA (A), malondialdehyde (MDA;
a reactive stress molecule) (B), and immunofluorescent stained for DNA break (phospho-histone
H2A.X; green color) and actin filament (red color) in intensity score and representative pictures
(C,D) are demonstrated. Triplicated independent experiments were performed. Mean ± SEM with
the one-way ANOVA followed by Tukey’s analysis was used. #, p < 0.05 vs mgmt control DMEM;
*, p < 0.05 between the indicated groups.

2.2. The Mgmt Null Mice Demonstrated Less Severe Cecal Ligation and Puncture (CLP) Sepsis
than the Littermate Control

Because of the impacts of mgmt-manipulated macrophages (Figures 3 and 4) and the
importance of antibiotics in sepsis [61], further exploration in mgmt null mice (mgmtfl/fl;
LysM-Crecre/-) and mgmt littermate control (mgmtfl/fl; LysM-Cre-/-) using CLP surgery
with and without antibiotics were performed. With antibiotic use, mgmt null mice demon-
strated less severe sepsis than sepsis in littermate control, as indicated by survival analysis,
kidney injury (serum creatinine and renal histology score), liver damage (serum alanine
transaminase and liver histological score), spleen apoptosis, cell-free DNA, endotoxemia,
bacteremia, and serum cytokines (TNF-α, IL-6, and IL-10) (Figures 5A–G and 6A–G).
However, the protective effect against sepsis of mgmt null mice was lost in CLP without
antibiotics as indicated by survival analysis, serum creatinine, alanine transaminase, and
serum cytokines (TNF-α, IL-6, and IL-10) (Figure 7A–F) supporting the necessity of micro-
bial control during immune modulation in sepsis [62]. For clinical translation purposes,
Lomeguatrib (an MGMT inhibitor) was further tested in WT mice with an antibiotic-
administered CLP model. Although the inhibitor could not attenuate mortality and organ
injury (kidney and liver), the serum cytokines of the treated mice were lower than the
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control mice (Figure 7G–L). Notably, there was no kidney and liver injury in sham mice
with the inhibitor, implying less toxicity to the kidney and liver of the inhibitor.

Figure 5. The characteristics of mice in mgmt control (mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl;
LysM-Crecre/-) group after cecal ligation and puncture (CLP) sepsis or sham control (Sham) surgery
as indicated by survival analysis (A), and the parameters at 24 h-post surgery, including serum creati-
nine (B), alanine transaminase (C), renal histological score with representative pictures (D,E), liver
injury score (F), and spleen apoptosis (activated caspase three immunohistochemistry) (G), is demon-
strated (n = 10/group for A and n = 5–7/group for (B–G)). Mean ± SEM with the one-way ANOVA
followed by Tukey’s analysis was used. #, p < 0.05 vs. Sham mgmt control; *, p < 0.05 between the
indicated groups. Inset pictures, increased magnification; narrow arrows, tubular cell injury; broad
arrows, renal tubular casts.
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Figure 6. The characteristics of mice in mgmt control (mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl;
LysM-Crecre/-) group after 24 h of cecal ligation and puncture (CLP) sepsis (with antibiotic use) or
sham control (Sham) surgery as indicated by representative pictures of the liver in Hematoxylin
& eosin (H&E) staining and spleen activated caspase 3 (A), serum cell-free DNA (cf-DNA) (B),
endotoxemia (C), bacteremia (D), and serum cytokines (TNF-α, IL-6, and IL-10) (E–G) are demon-
strated (n = 5–7/group). Mean ± SEM with the one-way ANOVA followed by Tukey’s analysis was
used. #, p < 0.05 vs. Sham mgmt control; *, p < 0.05 between the indicated groups. Narrow arrows,
hepatocyte apoptosis.
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Figure 7. The characteristics of mice in mgmt control (mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl;
LysM-Crecre/-) group after 24 h of cecal ligation and puncture (CLP) sepsis (without antibiotic use) or
sham control (Sham) surgery as indicated by survival (A), and the parameters at 24 h-post surgery,
including serum creatinine (B), alanine transaminase (C), and serum cytokines (TNF-α, IL-6, and
IL-10) (D–F) are demonstrated. In parallel, the characteristics of wild-type (WT) mice after CLP
(with antibiotics) or Sham surgery with or without MGMT inhibitor (Lomeguatrib) as indicated
by survival analysis (G), and the parameters at 24 h-post surgery, including serum creatinine (H),
alanine transaminase (I), and serum cytokines (TNF-α, IL-6, and IL-10) (J–L), are demonstrated
(n = 10/ group for survival studies and n = 5–7/group for others). Mean ± SEM with the one-way
ANOVA followed by Tukey’s analysis was used. #, p < 0.05 vs. Sham mgmt control; *, p < 0.05 between
the indicated groups.
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3. Discussion

3.1. Possible LPS-Induced Macrophage Injury from the Proteomic Analysis in the Wild-Type Cells

The presence of lipopolysaccharide (LPS) in blood circulation (endotoxemia) can be
found in several conditions [63–65], predominantly due to gut barrier damage [3,18,20,66]
and Gram-negative bacteremia [2,3,67]. As such, LPS (one of the pathogen-associated molecu-
lar patterns; PAPMs) stimulates all cells in the body, including immune cells, and macrophages
are the major cells responsible for recognising and controlling most foreign molecules, in-
cluding LPS [68,69]. Although only the high abundance proteins are detectable by proteomic
analysis, evaluating these proteins might crudely identify the direction of cell response. Here,
we demonstrated a higher number of down-regulated proteins than the up-regulated groups
in LPS-stimulated macrophages, as listed in Supplementary Tables S1 and S2. With enrich-
ment pathway analysis, the upregulated proteins correlated with the proteasome, the
protein complexes used for degrading the damaged proteins by proteolysis with several
protease enzymes [70,71]. Despite several functions of the proteasome in cell homeostasis,
the 26S proteasome regulates DNA repair by degrading the proteins or acting as a molecu-
lar chaperone to promote the disassembly of the repair complex [54]. Increased proteasome
in LPS-activated macrophages indirectly indicates an increased abundance of unneeded
proteins after LPS stimulation supporting previous publications [72,73].

On the other hand, enrichment pathways of the down-regulated proteins were corre-
lated with cell metabolisms and energy status, including 2-oxocarboxylic acids (association
with pyruvate pathway), citrate cycle (glycolysis), and oxidative phosphorylation (mito-
chondrial function). Perhaps, the increased cell energy utilization during macrophage
responses to LPS (cytokine production, inflammatory signaling synthesis, etc.) uses up
these proteins that partly be associated with mitochondrial injury and increased reactive
oxygen species [74]. Although proteins for the modulation of DNA and histone were not
found in the proteome results, possibly due to too little abundance of these proteins, the
proteomic analysis indirectly supported a possible cell injury, including LPS-induced DNA
methylation as previously published [57].

The DNA methylation is more frequently demonstrated at the cytosine site than the
guanine position, especially at the cytosine-phosphate-guanine (CpG), as more than 70–80%
of CpG sites in humans are modified, despite the lower abundance of CpG in humans
compared with prokaryotic cells [75,76]. Both DNA and histone alterations are critical regu-
lators of gene expression through the chromatin structures [77], using several key enzymes
to control the chromatin accessibility that is well-known in cancer [78] but has fewer data
in sepsis [79]. For DNA methylation, it is the transfer of a methyl group, frequently to
the C-5 position of the cytosine ring of DNA-by-DNA methyltransferase (DNMT) in any
cytosines of the genome, especially at the CpG regions [80]. In previous publications, the
enhanced DNMT activity increases DNA methylation and aggravates pro-inflammatory
macrophages and the dnmt1 deletion of enhanced anti-inflammation [42] and attenuates
macrophage inflammatory responses [81]. Despite the common cytosine methylation at
CpG sites [82], methylation of guanine at the O-6 positions (O6MeG) that are controlled
by O6-methylguanine-DNA methyltransferase (MGMT) caused genotoxicity [83,84] as the
insufficient MGMT worsens cell injury [85].

Interestingly, DNA methylation impairs DNA transcription and induces programmed
cell death, especially apoptosis [86]. Because (i) previous studies of DNA methylation
in sepsis are mentioned [41,87–89], (ii) the possibility that increased O6MeG (due to the
loss of mgmt for DNA repair) might enhance cell injury [85], (iii) the availability of mgmt
inhibitor for anti-cancer [90] that possibly be helpful for sepsis [91], and (iv) epigenetic
changes and in vitro tests of mgmt inhibitors in LPS-activated macrophages [45,92], further
tests on mice with the depletion of MGMT enzyme only in the myeloid cells are inter-
esting. Theoretically, MGMT deficiency should interfere with the macrophage activities
leading to an anti-inflammatory direction which might be beneficial for treating sepsis
hyper-inflammation [93–95]. Then, further tests on mgmt null macrophages and mice
were performed.
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3.2. Impact of mgmt and DNA Repair in Sepsis, In Vitro and In Vivo

To test the impacts of MGMT enzyme in sepsis, bone marrow-derived macrophages
from mgmt null mice (mgmtfl/fl; LysM-Crecre/-) and an MGMT inhibitor were used. As such,
mgmt null macrophages and MGMT inhibitors induce anti-inflammatory effects as indicated
by reduced supernatant cytokines and the down-regulated genes of M1 pro-inflammatory
macrophages (iNOS and IL-1β) compared with the control. Due to the influence of MGMT
enzyme on the DNA repairs through the removal of O6MeG (methyl group at the 6th
oxygen molecule on guanine) of DNA, the deletion of MGMT in macrophages might be
responsible for the enhanced cell injury as indicated here, by the higher abundance of DNA
break and supernatant cell-free DNA in mgmt null macrophages than the control cells after
LPS activation. Accordingly, phosphor-H2AX (γ-H2AX) is a marker of DNA double-strand
break (DSB), a disruption of both DNA strands compromising genomic stability [96], which
regularly occurs in any eukaryotic cells in the order of 10 to 50 per cell per day, depending
on the cell cycles and cell types [97], due to the exogenous and endogenous inducers,
including radiation, chemicals, LPS, ROS, DNA replication, and repair [98,99]. Interest-
ingly, LPS increased ROS, and both factors (LPS and ROS) are well-known to induce DNA
methylation [57,100], especially the methylation at essential sites on DNA, which is mostly
mentioned as DNA break in the mutated cells [101]. In non-immune cells, several alkylating
agents induce DNA methylation, especially at the guanine sites more than the cytosine
positions, causing DNA mismatch binding that is toxic to the cells resulting, at least in
part, in DNA break, cell mutation, or cell death [102,103]. In macrophages, LPS-induced
DNA damage through LPS-mediated ROS is well-known as the damage is detectable in
more than 95% of macrophages (in vitro) within only 30 min of LPS incubation, and the
damage is completely protected by anti-oxidants [99]. The increased ROS and cell death
in macrophages after LPS activation are also mentioned [104,105]. While DNA damage
may enhance macrophage inflammation through several DNA sensors responding to the
damage [106], the damage that cannot be repaired might negatively affect macrophages.
Then, the interfered equilibrium between the generation of DNA break and DNA repair
might be another important intervention on macrophages [40]. Here, more prominent DNA
break and cell-free DNA in mgmt null macrophages over the control cells indirectly indicate
the possible presence of DNA methylation at the guanine (O6MeG), despite the technical
limitation on the direct O6MeG detection [107]. Notably, the detectable DNA damage
in control untreated macrophages supports DNA injury from normal cellular processes,
possibly due to stress-induced ROS, which might be more prominent in macrophages than
other cell types [105,108,109]. The DNA methylation at guanine seems important in LPS-
activated macrophages, perhaps due to the maintenance of cell viability and attenuation of
cell injury, despite the uncommon DNA methylation at the guanine site compared with
cytosine sites [80]. The extended use of an MGT inhibitor (Lomeguatrib), a chemotherapeu-
tic agent [110], on attenuation of sepsis hyper-inflammation was also proposed following
these in vitro results.

Following the in vitro results, the cecal ligation and puncture (CLP) abdominal sepsis
model was tested in the littermate control (mgmtfl/fl; LysM-Cre-/-) and mgmt null mice. As
such, the CLP model is used because it is a sepsis model that more resembles human condi-
tions than the LPS injection model, as indicated by the presence of bacteremia, cytokine
levels, and other parameters [67]. Interestingly, sepsis in mgmt null mice was less severe
than in the littermate control mice, as indicated by survival, serum cytokines, and organ
injury, only with antibiotics, supporting the importance of microbial control during sepsis
immunotherapy [111]. However, sepsis was not worsened in mgmt null mice. However,
macrophages in these mice might be more susceptible to injury than the control due to an
abnormality in DNA repair from the loss of the MGMT enzyme.

Interestingly, sepsis attenuation in the mice without MGMT only in myeloid cells
(macrophages and neutrophils), but not other cells, implying the importance of these cells
in sepsis hyper-immune responses [112] and the blockage of only the MGMT enzyme
in macrophages might effectively prevent severe sepsis with fewer drug complications.
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However, the administration of MGMT inhibitor in CLP mice did not improve survival
rate compared with the vehicle control, even with antibiotic administration, perhaps due
to the drug effects on all cells in the body, not only on macrophages. Nevertheless, the
MGMT inhibitor in CLP mice attenuated serum cytokines but not liver and kidney injury.
Although there was no liver and kidney injury in sham mice with the MGMT inhibitor,
these organs during sepsis might be more susceptible to the injury and the MGMT inhibitor
effect on renal cells, and hepatocytes might be responsible for the non-improved organ
injury in MGMT inhibitor-administered mice with sepsis. Perhaps, the dose adjustment,
a better drug formula preparation, and/ or the selective delivery of MGMT inhibitors
only on myeloid cells [113] might increase MGMT inhibitors’ effectiveness and reduce
complications. Despite the necessity of more studies, we reported a proof of concept to use
MGMT inhibitors, the available adjunctive anti-cancer drugs, to attenuate sepsis-induced
hyper-inflammation.

3.3. Clinical Aspect and Future Experiments

Overall, LPS activation during sepsis induces DNA methylation in macrophages that
requires some enzymes, including MGMT, to remove the methyl groups (DNA repair) to
revitalize and maintain regular macrophage functions (continuous cytokine production and
inflammatory response). Then, failure of DNA repair causes a reduction in macrophage
functions, especially cytokine production and hyper-inflammatory responses, which possi-
bly turns out to be a beneficial effect on sepsis. In cancer therapy, several alkylating agents
destroy cancer cells through the induction of DNA methylation, and some malignant cells
resist these anti-malignant drugs partly by the increased production of DNA methylation
enzymes, including MGMT, to counteract the DNA damage [90]. Hence, the administration
of MGMT inhibitors and some alkylating agents enhances the anti-malignant effect of
some cancers, which is used as adjuvant therapy in some types of cancer [90]. In sepsis,
inflammation-induced DNA methylation in macrophages seems important for the patho-
physiology of sepsis-induced organ injuries (kidney, liver, and spleen). MGMT deletion
only in myeloid cells (mostly macrophages and neutrophils) attenuated the injury. Indeed,
infiltration of immune cells in several organs during systemic inflammation, such as sepsis
and auto-immune diseases, is one of the main pathogenesis of organ injury, and the infiltra-
tion of cells with less pro-inflammatory activities by the MGMT interference here might
induce less severe injury than infiltration by the very active immune cells [14,69]. Thus, the
reduction of immune cell activities, including by the MGMT blockage, might be beneficial
in sepsis.

Because MGMT enzyme is an essential enzyme, not only for cancer cells but also
for every cell due to the physiologic DNA methylation induced by regular cell activities,
MGMT blockage might be toxic or mutagenic [110] to the cells, and the short course of
treatment and/or the direct drug delivery into macrophages are interesting. Moreover,
administration of MGMT blockage should be used only in a condition with a well microbial
control as inflammation is necessary for organismal control, and too less inflammation
might enhance secondary infection [114,115]. Therefore, although the direct detection of
Q6MeG on macrophages in patients with sepsis might be the most interesting indicator
for using MGMT blockage in sepsis, proper methods of O6MeG detection in patients will
be needed [107,116]. For instance, high serum IL-6 and IL-1 as the hyper-inflammation
markers [117,118] plus elevated Q6MeG and normal HLA-DR (a marker of sepsis immune
exhaustion [114,115]) with negative blood culture (a biomarker of good control of the
source of infection) might be the indicators for properly using of MGMT inhibitors in sepsis.
Therefore, further experiments on MGMT inhibitors in sepsis are interesting.

4. Materials and Methods

4.1. The Proteomic Analysis

Bone marrow-derived macrophages (BMDM) were prepared from the femurs of wild-
type (WT) mice using supplemented Dulbecco’s Modified Eagle’s Medium (DMEM) with a
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20% conditioned medium of the L929 cells (ATCC CCL-1) as previously described [68,119–121].
Macrophages at 5 × 104 cells/well in supplemented DMEM (Thermo Fisher Scientific) were
incubated in 5% carbon dioxide (CO2) at 37 ◦C for 24 h before being treated by lipopolysac-
charide (LPS; Escherichia coli 026:B6) (Sigma-Aldrich, St. Louis, MO, USA) at 100 ng/mL or
DMEM (control) for 24 h before in-solution digestion and peptides labeling using the light
reagents (CH2O and NaBH3CN) and heavy reagents (13CD2O and NaBD3CN), respectively.
The pooled peptides from macrophages in the wells were fractionated using a high pH
reversed-phase peptide fractionation kit (Thermo Fisher Scientific, San Jose, CA, USA) and
Liquid chromatography–tandem mass spectrometry (LC-MS/MS) was performed on an
EASY-nLC1000 system coupled to a Q-Exactive Orbitrap Plus mass spectrometer equipped
with a nanoelectrospray ion source (Thermo Fisher Scientific, San Jose, CA, USA). The
mass spectrometry (MS) raw files were searched against the Mouse Swiss-Prot Database
(17,138 proteins). In parallel, the search parameters were set for fixed modifications; car-
bamidomethylation of cysteine (+57.02146 Da), light and heavy dimethylation of N termini
and lysine (+28.031300 and +36.075670 Da), and variable modification: oxidation of me-
thionine (15.99491 Da). The false positive discovery rate of the identified peptides based
on Q-values using The Proteome Discoverer decoy database together with the Percolator
algorithm was set to 1%, and the relative MS signal intensities of dimethyl labeled peptides
were quantified and presented as ratios of LPS/ control. Log 2 of the ratios in triplicate was
used to calculate the p-values using Student’s t-test with a p-value < 0.05 as a significant
difference. Then, these proteins were applied to the online DAVID Bioinformatics Resources
6.8 to investigate the enriched biological processes. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD041265. Then, the data visualization was performed using
Excel and R packages. Meanwhile, KEGG pathway and Go enrichment analyses were
generated by PathfindR and Shiny 0.77 (http://bioinformatics.sdstate.edu/go/, accessed
on 28 May 2023), respectively.

4.2. The In Vitro Experiments

The BMDM from mgmt control (mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl; LysM-
Crecre/-) mice were extracted from mouse femurs and macrophages at 5 × 104 cells/well
were activated by LPS (Escherichia coli 026:B6) (Sigma-Aldrich) at 100 ng/mL or DMEM
for 24 h. Then, supernatant cytokines (TNF-α, IL-6, and IL-10) and gene expression were
measured by ELISA (Invitrogen, Carlsbad, CA, USA) and quantitative real-time polymerase
chain reaction (PCR), respectively, as previously described [87]. In brief, TRIzol Reagent
(Invitrogen, Carlsbad, CA, USA) together with RNeasy Mini Kit (Qiagen, Hilden, Germany)
was used to extract RNA from the samples, and 1 mg of total RNA was used for cDNA
synthesis with iScriptreverse transcription supermix (Bio-Rad, Hercules, CA, USA) on a
QuantStudio 5 real-time PCR system (Thermo Fisher Scientific) using SsoAdvanced Uni-
versal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). The gene expressed values
normalized by Beta-actin (β-actin; an endogenous housekeeping gene) with the calculated
fold change by the ΔΔCt method was conducted with primers listed in Table 1. In par-
allel, BMDM of WT mice were used. As such, WT BMDM at 5 × 104 cells/well were
activated with LPS (100 ng/mL) or DMEM with or without MGMT inhibitor (Lomeguatrib)
(SML0586, Sigma-Aldrich) (20 μM/well) for 24 h before the collection of supernatant and
cells for supernatant cytokines and PCR as mentioned above. Notably, Lomeguatrib was
dissolved in DMSO (Sigma-Aldrich) with the stock solution of 6.13 mM and was stored at
−80 ◦C. Then, the stock solution was immediately diluted in DMEM before use to control
the final DMSO concentration of less than 0.3%, according to a previous publication [122].
Additionally, several injury parameters, including cell-free DNA, malondialdehyde (MDA;
a representative reactive oxygen species), and DNA break, were measured in mgmt null
and mgmt control macrophages because of the influence of LPS in cell injury. As such,
cell-free DNA in supernatants was measured by a PicoGreen assay kit (Invitrogen) fol-
lowing the manufacturer’s protocol [123]. For MDA, the activated macrophages were
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homogenized by the Ultra-Turrax homogenizer (IKA, Staufen, Germany) and centrifuged
at 12,000× g for 15 min at 4 ◦C to separate the supernatant. Then, malondialdehyde (MDA)
in the supernatant was measured by an MDA assay kit (colorimetric) (Abcam, Cambridge,
UK) according to the manufacturer’s protocol for the intracellular reactive oxygen species
(ROS) [124]. In parallel, immunofluorescence was used to determine DNA break. Accord-
ingly, macrophages at 3 × 106 cells were seeded on covered glass-bottomed 6-well plates
before activation with LPS (100 ng/mL) or DMEM control for 24 h. Then, the cells were
fixed with 4% paraformaldehyde in Tris Buffered Saline (TBS) for 15 min, permeabilized
with 0.1% triton X-100, and washed three times in 1X TBS with 0.05% Tween-20. Fixed sam-
ples were blocked with 2% bovine serum albumin in 1X TBS for 1 h at room temperature
and then incubated overnight at 4 ◦C with phospho-histone H2A.X (Ser139) (20E3) rabbit
mAb (Cell signaling). Proteins were visualized using goat anti-mouse IgG H&L tagged
Alexa Flour 488 (Abcam; ab150113) (green), and actin filaments have been labeled with
DY-554 phalloidin (red) and snapped by confocal laser scanning microscope (CLSM, Zeiss,
Germany) at 630× magnification in 10 randomly selected fields.

Table 1. Lists of primers used in the study.

Name Forward Reverse

Inducible nitric oxide synthase (iNOS) 5′-ACCCACATCTGGCAGAATGAG-3′ 5′-AGCCATGACCTTTCGCATTAG-3′
Interleukin-1β (IL-1β) 5′-GAAATGCCACCTTTTGACAGTG-3′ 5′-TGGATGCTCTCATCAGGACAG-3′

Arginase-1 (Arg-1) 5′-CTTGGCTTGCTTCGGAACTC-3′ 5′-GGAGAAGGCGTTTGCTTAGTT-3′
Resistin-like molecule-α1 (Fizz-1) 5′-GCCAGGTCCTGGAACCTTTC-3′ 5′-GGAGCAGGGAGATGCAGATGA-3′

Transforming growth factor-β (TGF-β) 5′-CAGAGCTGCGCTTGCAGAG-3′ 5′-GTCAGCAGCCGGTTACCAAG-3′
Beta-actin (β-actin) 5′-CGGTTCCGATGCCCTGAGGCTCTT-3′ 5′-CGTCACACTTCATGATGGAATTGA-3′

4.3. Animal and Animal Model

The animal protocol (017/2562) was approved by the Institutional Animal Care and
Use Committee of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,
according to the National Institutes of Health (NIH) criteria. For the proteomic analysis,
macrophages were prepared from mouse long bones (8-week-old) of wild-type (WT) male
C57BL/6 mice purchased from Nomura Siam (Pathumwan, Bangkok, Thailand). For other
experiments, mgmtflox/flox and LyM-CreCre/Cre mice were purchased from RIKEN BRC
Experimental Animal Division (Ibaraki, Japan) and cross-breed to produce mgmt littermate
control (mgmtfl/fl; LysM-Cre-/-) or mgmt null (mgmtfl/fl; LysM-Crecre/-) mice in F3 of the
breeding protocol. Of note, the mgmtflox/flox mice with the loxP sites were bred with LysM-
CreCre/Cre mice and the cre recombinase mice with the control of lysozyme M targeted
deleted mgmt only in the myeloid cells (macrophages and neutrophils). The offsprings were
(i) mgmtflox/flox with no LysM-Cre (mgmtfl/fl; LysM-Cre-/-), categorized as the littermate con-
trols or mgmt control, and (ii) mgmtfl/fl; LysM-Crecre/- (mgmt null) with positive for the Cre
driver that lacks MGMT enzyme. Both groups of mice, including the conditional targeted
Cre positive mice (mgmt null) and floxed/floxed littermate controls (mgmt control), were
age- and gender-matched with the use of only 8–10 weeks-old male mice. To genotype these
mice on the loxP sites insertion, the following primers were used; (i) LysM-cre primer; F: 5′-
GAACGCACTGATTTCGACCA-3′, R: 5′-GCTAACCAGCGTTTTCGTTC-3′, (ii) mgmt-loxP
primer F: 5′-TGGGCTTCAAATCAAGGAACAGAA-3′, R: 5′-AACTATCCTGCTCACTC-
TCTGTAG-3′, and (iii) Cre recombination (for Cre activity); F: 5′-GGTGTGGATCCCAAGA-
AATTGAAG-3′, R: 5′-TGTTCAAGAGTGACACACAGTCA-3′. The mice homozygous for
the flox were selected and genotyped for the expression of LysM-Cre using the primers;
F: 5′-CTTGGGCTGCCAGAATTCTC-3′; R: 5′-CCCAGAAATGCCAGATTACG-3′. For the
test of MGMT inhibitor, only 8–10 weeks old male mice were used. Then, mgmt control,
mgmt null, and WT C57BL/6 mice were used for the cecal ligation and puncture (CLP)
surgery to induce sepsis or sham operation under isoflurane anesthesia following previous
publications [125–127]. Briefly, the cecum was ligated at 10 cm from the cecal tip, punctured
twice with a 21-gauge needle, and gently squeezed to express a small amount of fecal
material before closing the abdominal wall (a midline abdominal incision) layer by layer
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with sutures (Nylon 4-0). After that, tramadol (25 mg/kg/dose) in 0.25 mL prewarmed
normal saline solution (NSS) and imipenem/cilastatin (14 mg/kg/dose) in 0.2 mL NSS
were subcutaneously administered in both frank area after surgery, and at 6 and 18 h post-
CLP [6]. In the sepsis protocol without antibiotics, NSS in the same volume was used. In
WT mice with CLP sepsis, an MGMT inhibitor (Lomeguatrib, SML0586, Sigma-Aldrich) at
1 mg/kg [43,128] mice in 3% dimethyl sulfoxide (DMSO) or DMSO alone (vehicle control)
was subcutaneously administered at 15 min before surgery and at 6 h later (15 min before
tramadol and the antibiotics). For sham-operated mice, the cecum was isolated and closed
the abdomen by suturing without either ligated or punctured.

4.4. Mouse Sample Analysis

For kidney and liver injury, serum creatinine and alanine transaminase, respectively,
were measured by colorimetric method using QuantiChrom™ Creatinine Assay (BioAssay
System, Hayward, CA, USA) and EnzyChrom Alanine Transaminase assay (EALT-100,
BioAssay), respectively [129]. Serum cell-free DNA and LPS (endotoxin) were detected by
Quanti PicoGreen assay (Sigma-Aldrich) and HEK-Blue LPS Detection Kit 2 (InvivoGen™,
San Diego, CA, USA), respectively. Blood bacterial abundance (bacteremia) was evaluated
using the direct spread of mouse blood onto blood agar plates (Oxoid, Hampshire, UK) in
serial dilutions and incubating at 37 ◦C for 24 h before colony enumeration. Meanwhile,
ELISA (Invitrogen, Carlsbad, CA, USA) was used to detect serum cytokines (TNF-α, IL-6,
and IL-10). For kidney injury determination, the injury score was semi-quantitatively
evaluated on Hematoxylin and eosin (H&E) staining in 4 mm thick paraffin-embedded
slides at 200× magnification by the area of injury (tubular epithelial swelling, loss of brush
border, vacuolar degeneration, necrotic tubules, cast formation, and desquamation) us-
ing the following score: 0, area < 5%; 1, area 5–10%; 2, area 10–25%; 3, area 25–50%; 4,
area > 50%. The liver injury score was also measured through an area of hepatic injury,
defined as congestion, degenerative cellular changes, cytoplasmic vacuolization, leukocyte
infiltration, or cellular necrosis, in 200x magnification of 4 mm thick H&E-stained slides us-
ing ten randomly selected fields for each animal with the following scores per examination
field: 0 for an area of damage of;10%, 1 for an area of damage of 10 to 25%; 2 for damage
involving 25 to 50% of the area; 3 for damage involving 50 to 75% of the area, and 4 for
75 to 100% of the area being affected [130]. In parallel, for spleen apoptosis, spleens with
10% formalin fixation were stained by anti-active caspase three antibodies (Cell Signaling
Technology, Beverly, MA, USA), using immunohistochemistry, and expressed in positive
cells per high-power field (200× magnification) as previously published [66,131].

4.5. Statistical Analysis

All data were analyzed with GraphPad Prism6 and demonstrated in mean ± S.E.M
(standard error). The one-way analysis of variance (ANOVA) with Tukey’s comparison test
was used to compare among groups. Survival analysis was evaluated by the Log-rank test.
A p-value less than 0.05 was considered significant.

5. Conclusions

There were several key findings from our data. First, LPS-induced macrophage injury,
as indicated by the proteomic analysis, increased ROS (MDA), cell-free DNA, and DNA
break. Second, the importance of MGMT for immune responses against LPS in macrophages
using siRNA and mgmt null cells. Third, the MGMT influence in sepsis was demonstrated
by the reduced severity in CLP sepsis of mgmt null mice. Fourth, the importance of
effective antibiotics during immune modification therapy in sepsis as sepsis protective
effect of mgmt null mice was lost without antibiotics. As such, the proteomic analysis of
LPS-activated macrophages demonstrated possible cell injury as indicated by reduced
proteins on oxidative phosphorylation with the high proteasome, perhaps correlating with
mitochondrial ROS and ubiquitination of the deformed proteins, respectively. The role of
MGMT enzyme to counteract LPS-induced DNA methylation was demonstrated through
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the attenuation of LPS-induced cell injury (DNA break and cell-free DNA) and responses
(reduced cytokine production) in mgmt null cells compared with LPS-activated control cells.
Likewise, less severe sepsis in mgmt null mice (MGMT loss only in myeloid cells) in CLP
sepsis with antibiotics indicates the importance of myeloid cells and antibiotics in sepsis.
Nevertheless, MGMT blockage, an available drug in cancer therapy, attenuated only serum
cytokines but not mortality in CLP with antibiotics, implying further drug administration
and delivery development.
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Abstract: Despite a previous report on less inflammatory responses in mice with an absence of the
enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation,
using a lipopolysaccharide (LPS) injection model, proteomic analysis and cecal ligation and puncture
(CLP), a sepsis model that more resembles human conditions was devised. As such, analysis of
cellular and secreted protein (proteome and secretome) after a single LPS activation and LPS tolerance
in macrophages from Ezh2 null (Ezh2flox/flox; LysM-Crecre/−) mice (Ezh2 null) and the littermate
control mice (Ezh2fl/fl; LysM-Cre−/−) (Ezh2 control) compared with the unstimulated cells from each
group indicated fewer activities in Ezh2 null macrophages, especially by the volcano plot analysis.
Indeed, supernatant IL-1β and expression of genes in pro-inflammatory M1 macrophage polarization
(IL-1β and iNOS), TNF-α, and NF-κB (a transcription factor) were lower in Ezh2 null macrophages
compared with the control. In LPS tolerance, downregulated NF-κB compared with the control was
also demonstrated in Ezh2 null cells. In CLP sepsis mice, those with CLP alone and CLP at 2 days
after twice receiving LPS injection, representing sepsis and sepsis after endotoxemia, respectively,
symptoms were less severe in Ezh2 null mice, as indicated by survival analysis and other biomarkers.
However, the Ezh2 inhibitor improved survival only in CLP, but not LPS with CLP. In conclusion, an
absence of Ezh2 in macrophages resulted in less severe sepsis, and the use of an Ezh2 inhibitor might
be beneficial in sepsis.
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1. Introduction

Sepsis is a potentially life-threatening condition in response to severe infection re-
gardless of the organismal causes of the infection [1–3], which is roughly divided into the
hyperinflammation stage and immune exhaustion (immune paralysis) phase [4,5]. Sepsis-
induced hyperinflammation is a well-known cause of sepsis mortality, partly through
hypercytokinemia-mediated septic shock, especially at an early phase of sepsis [6]. Mean-
while, sepsis-induced immune exhaustion is developed at the same time or shortly af-
ter the hyperinflammation, at least in part, due to immune cell death from overwhelm-
ing responses against several stimulators from the pathogens and hosts, referred to as
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs), respectively [6]. Subsequently, an inadequate response to control the
organism during sepsis-induced immune exhaustion results in another episode of sec-
ondary infection and another episode of septic shock from the different pathogens [7].
Due to the opposite direction of immune responses in different phases of sepsis, differ-
ent strategic treatments are necessary. As such, an anti-inflammatory treatment might
be beneficial for sepsis-hyperinflammation to attenuate the unnecessary overwhelming
immune responses that might be harmful to the host. Meanwhile, an escalation of immune
responsiveness during immune exhaustion may be helpful to enhance the microbial control
ability of the host to prevent secondary infections [8–15]. Despite the successful decrease in
short-term sepsis mortality due to improved supportive care, immune exhaustion-induced
secondary infection seems to become more common [16]. Indeed, immune cell apopto-
sis, myeloid-derived suppressor cells, regulatory T cells, and lipopolysaccharide (LPS)
tolerance are mentioned as underlying mechanisms of sepsis-induced immune exhaus-
tion [17–20]. Among these topics, data on LPS tolerance in sepsis are relatively fewer
compared with those on other mechanisms. The presence of LPS, a major molecule of
Gram-negative bacteria, in blood circulation during sepsis (endotoxemia) is common due
to Gram-negative bacterial infection and/or the translocation of LPS from the intestine
into the blood circulation, referred to as “leaky gut”, and is a common cause of endo-
toxemia [21–23]. Because of the highest abundance of Gram-negative bacteria in the gut
compared with other organisms, endotoxemia from a leaky gut is mentioned in several
conditions with gut barrier defects, including sepsis [1–3]. Subsequently, an adaptation
to the prolonged LPS stimulations in sepsis may initiate LPS tolerance [24,25]. Among
several models of sepsis, cecal ligation and puncture (CLP) is a standard model used for
sepsis hyper-inflammation [14,23,26–29] that more resembles the human condition than
a single LPS injection [30]. Meanwhile, sepsis immune exhaustion consists of several
models, based on increased susceptibility of the secondary infection [31,32], and the more
severe sepsis in CLP surgery after LPS tolerance, using twice-administered LPS injection,
compared with CLP without LPS pre-conditioning is previously mentioned [25]. Indeed,
the more severe sepsis, especially bacteremia, in CLP after LPS tolerance compared with
CLP alone is matched with the common characteristic of the worsened infection in sepsis-
induced immune exhaustion compared with the normal immune regulation [33]. Then,
CLP and CLP after LPS tolerance were used as models of hyperinflammation and LPS
tolerance-associated immune exhaustion with sepsis, respectively.

Interestingly, the tolerance against LPS, especially in monocytes or macrophages, is pos-
sibly due to the epigenetic modifications, chromatin remodeling, and interferences in cell en-
ergy status [34–36], among which epigenetic alteration is the most extensively studied [37,38].
Epigenetics is the phenotypic alterations without the changes in the DNA sequence for the
switch “on” and “off” of DNA transcription through (i) the modifications of DNA and/
or histone through several enzymes [3,39], and (ii) noncoding RNA (microRNA) [2]. Among
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all, the methylation at histone 3 lysine 27 (H3K27) is one of the most common epigenetic pro-
cesses through histone changes for several cell activities, including after LPS activation [40].
In LPS-activated macrophages, the insertion of methyl groups at lysine 27 on histone 3
(H3K27) by histone demethylase is controlled by the polycomb repressor complex group 2
(PCR2), a repressor molecule consisting of several subunits, including Ezh2 (histone-lysine
N-methyltransferase-2 or enhancer of zeste homolog) [41,42], to switch off the DNA tran-
scription (reduce cytokine production) through this histone modification [43,44]. Due
to the important Ezh2 catalytic activity on PCR2, Ezh2 overexpression enhances PCR2
inhibitory function with an anti-inflammatory effect [45,46] and Ezh2 deletion should
enhance pro-inflammatory responses [47]. Indeed, the enhanced pro-inflammatory effect
of Ezh2 blockage is mentioned via (i) increased tumoricidal impact of tazemetostat (an
Ezh2 inhibitor) [48] and (ii) worsened colitis after Ezh2 downregulation [49]. In contrast,
the anti-inflammatory property of Ezh2 blockage is also mentioned in the atherosclerosis
model [50]. Hence, Ezh2 not only downregulates pro-inflammatory cytokines but also
can decrease the anti-inflammatory process, partly through the downregulation of the
suppressor of cytokine signaling 3 (Socs3) [51]. Ezh2 causes histone methylation that block
transcription of both pro-inflammatory genes (cytokines) and anti-inflammatory genes
(Sosc3) and the impact of Ezh2 might be different among various genes and cell types.
Indeed, in mice with conditional Ezh2 deletion by the LysM-Cre system, Ezh2 deletion only
in the myeloid cells (monocytes, macrophages, and neutrophils) demonstrates less severe
responses against a single LPS injection, but not LPS tolerance (two LPS injections), and
bone marrow-derived macrophages from these mice indicated less potent LPS responses
(lower supernatant cytokines) and less severe LPS tolerance (higher supernatant cytokines)
compared with the control cells [39]. Although Ezh2 impacts on sepsis are still incon-
clusive, Ezh2 is one of the upregulated genes in LPS-tolerant macrophages [52] which is
improved by the Ezh2 inhibitor (enhanced TNF-α expression) [53] as an interesting control
of macrophage through epigenetic manipulation [13,54].

Here, the influence of Ezh2 on LPS was further explored through proteomic analysis
and tested in a model with sepsis hyper-inflammatory responses (CLP) and a sepsis
model after LPS tolerance (twice-administered LPS injection before CLP surgery) using the
conditional Ezh2 deletion mice and an Ezh2 inhibitor.

2. Results

2.1. Proteomic Analysis of Lipopolysaccharide (LPS)-Induced Macrophages from Control and Ezh2
Null Mice

The difference in bone marrow-derived macrophage (BMDM) after activation with
three protocols, namely control, a single LPS stimulation, and LPS tolerance (Figure 1A),
of macrophages from Ezh2 control (Ezhfl/fl; LysM-Cre−/−) or Ezh2 null (Ezhfl/fl; LysM-
Crecre/−) mice were analyzed by proteome and secretome, using the cells and cell super-
natant, respectively. With a single LPS stimulation, there were prominent alterations in
the peptides of Ezh2 control macrophages compared with the neutral state of Ezh2 control
cells as indicated by the up- and downregulation at 188 and 119 proteins, respectively
(Figure 1B, left upper). Meanwhile, the values of LPS-activated Ezh2 null cells were 32 and
9 proteins, respectively (Figure 1B, lower left), suggesting possible less activity of Ezh2 null
macrophages compared with that in the cells from littermate control mice. Likewise, the
up- and downregulated molecules in LPS tolerance of Ezh2 control macrophages compared
with the neutral state were 392 and 296 proteins, respectively (Figure 1B, upper right),
while for the Ezh2 null cells they were 107 and 68 proteins, respectively (Figure 1B, lower
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right). With the fold enrichment pathway analysis (ShinyGo 0.77), most of the proteins
were correlated to immune response pathways and cell energy status in macrophages from
both mouse strains with either single or twice LPS stimulation (Figure 2). The proteins
with aerobic respiration and interferon-gamma responses were the groups with the highest
fold enrichment in Ezh2 control cells and Ezh2 null macrophages, respectively, after a
single LPS activation (Figure 2, left). In LPS tolerance, the proteins with interferon-gamma
responses and the negative regulation of innate immune responses were the groups with
the highest fold enrichment in Ezh2 control cells and Ezh2 null macrophages, respectively
(Figure 2, right). These data implied similar downstream LPS responses in macrophages
of both mouse strains. Although there was no direct comparison between Ezh2 control
macrophages versus Ezh2 null cells, the Venn diagram analysis, using the Venny 2.1
program (https://bioinfogp.cnb.csic.es/tools/venny) accessed on 15 March 2023, from the
list of proteins roughly indicated differences in the deviation of the macrophage proteome
away from the resting control condition (activated cells versus control cells) (Figure 3). With
a single LPS, 307 and 42 proteins were up- or downregulated in macrophages of littermate
control mice (LPS Ezh2 control vs. Ezh2 control) and Ezh2 null mice (LPS Ezh2 null vs. Ezh2
null), respectively, with 32 unique proteins presenting only in the latter group (Figure 3,
upper). Because the unique proteins in Ezh2 null macrophages might be responsible for
the phenotypic differences between Ezh2 null versus Ezh2 control cells after LPS activation,
these proteins were further evaluated by the ShinyGO 0.77 program. Interestingly, these
32 proteins were the member of only 2 pathways, including nuclear factor-κB (NF-κB)
and Toll-like receptor (TLR) pathways (Figure 3, upper). Similarly, after LPS tolerance,
1248 and 1269 proteins were altered from the neutral state (up- or downregulation) in
the proteome of macrophages from littermate control mice (Ezh2 control) and Ezh2 null
mice, respectively, with 104 unique peptides presenting only in Ezh2 null macrophages
(Figure 3, lower) which also were mostly associated with cell energy status and immune
responses (Figure 3, lower). Details of the proteins from macrophages uniquely elevated
in Ezh2 null cells but not in Ezh2 control macrophages are indicated in Supplementary
Tables S1 and S2.

As expected, analysis of the secreted proteins from supernatant (secretome analysis)
that deviated from the neutral status demonstrated the lessor proteins (Figure 4) compared
with the analysis from the cell lysate (Figure 2). There were 6 and 23 up- and downregulated
proteins, respectively, in the secretome of LPS Ezh2 control vs. Ezh2 control and 2 and
22 up- and downregulated proteins, respectively, in the secretome of LPS Ezh2 null vs.
Ezh2 null (Figure 4, left). Meanwhile, there were 26 and 66 up- and downregulated
proteins, respectively, in the secretome of LPS/LPS Ezh2 control vs. Ezh2 control and 8
and 1 up- and downregulated proteins, respectively, in the secretome of LPS/LPS Ezh2
null vs. Ezh2 null (Figure 4, right). Additionally, The Venn diagram demonstrated 106
and 11 overlapped proteins after the activation compared with the neutral state in the
cells from each mouse strain after a single LPS and LPS tolerance, respectively (Figure 5).
The fold enrichment pathway analysis of the unique proteins in Ezh2 null macrophages
indicated an involvement in cell energy status and responses against infection in a single
LPS stimulation (Figure 5, upper), while mostly involved in responses to infection in the
LPS tolerance group (Figure 5, lower). Details of the proteins in secretome analysis that
were uniquely elevated in Ezh2 null cells but not in Ezh2 control macrophages are indicated
in Supplementary Tables S3 and S4. These data implied fewer activities of Ezh2 null
macrophages compare with the control cells after activation by either LPS or LPS tolerance
that might be responsible for the phenotypic responses against LPS.

50



Int. J. Mol. Sci. 2023, 24, 8517

Figure 1. Schema of the experiments using bone marrow-derived macrophages (macrophages) from
control mice (Ezhfl/fl; LysM-Cre−/−) or Ezh2 null mice (Ezhfl/fl; LysM-Crecre/−) after activation by
lipopolysaccharide (LPS) in a single protocol (N/LPS) that started with the culture media (DMEM)
followed by LPS 24 h later or LPS tolerance (LPS/LPS) by the repeated LPS stimulations or no
stimulation control (N/N) with DMEM incubation (A) is demonstrated. The volcano plot indicating
the up- and downregulated proteins, in green and red color, respectively, as compared between the
activated cells versus the non-stimulated cells (B) is demonstrated. Macrophages were isolated from
3 different mice for the triplicate analysis.
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Figure 2. Fold enrichment analysis of cellular proteins in macrophages (proteome) from Ezh2 control
(Ezhfl/fl; LysM-Cre−/−) (Ezh2 control) or Ezh2 null mice (Ezhfl/fl; LysM-Crecre/−) (Ezh2 null) after
a single lipopolysaccharide (LPS) activation (left side) or LPS tolerance (right side) between Ezh2
control cells or Ezh2 null macrophages with versus without activation is demonstrated.

2.2. Less Prominent M1 Macrophage Polarization in LPS-Activated Ezh2 Null Cells with the
Downregulation of NF-κB after A Single and Twice LPS Stimulation

Then, macrophages from Ezh2 control (Ezhfl/fl; LysM-Cre−/) and Ezh2 null (Ezhfl/fl;
LysM-Crecre/−) mice were tested. Here, the supernatant was removed and the cells were
washed 1 day post-incubation before the difference between single and twice LPS stimula-
tions was determined at 2 days to control the duration of culture in both groups (Figure 6A).
As such, both a single (N/LPS) and LPS tolerance (LPS/LPS) upregulated M1 macrophage
polarization compared with control, as determined by supernatant interleukin (IL)-1β with
upregulated IL-1β and inducible nitric oxide synthase (iNOS), without an alteration in
genes of M2 polarization, including resistin-like-α (Retnla or Fizz-1), arginase-1 (Arg-1),
and transforming growth factor beta (TGF-β) (Figure 6B–F). In addition, the characteris-
tic of LPS tolerance, a less potent response to the following LPS stimulations compared
with the first response to LPS [55–57] was demonstrated in both control and Ezh2 null
cells, as the gene expression of TNF-α and IL-6 (but not IL-10) in N/LPS were more
prominent than LPS tolerance (Figure 6G–I). However, the expression of genes for pro-
inflammatory molecule nuclear factor kappa B (NF-kB) was similarly higher than in the
control group (N/N) (Figure 6J). On the other hand, there was a less prominent M1 polar-
ization (pro-inflammatory macrophages), as indicated by IL-1β and iNOS, together with
less pro-inflammatory responses (TNF-α, IL-6, and NF-κB) in Ezh2 null macrophages com-
pared with control cells after a single LPS stimulation (N/LPS) (Figure 6C–J) supporting a
pro-inflammatory effect of Ezh2 on macrophages [39]. In LPS tolerance (LPS/LPS), there
was a non-difference in supernatant IL-1β, macrophage polarization, and cytokine genes
between Ezh2 null macrophages and control cells, despite lower NF-κB expression in Ezh2
null macrophages (Figure 6B–J). Between Ezh2 null macrophages with a single LPS and
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LPS tolerance, all of these parameters were similar (Figure 6B–J). Despite lower NF-kB (a
pro-inflammation molecule) in Ezh2 null macrophages with LPS tolerance compared with
control cells (Figure 6J), supernatant IL-1β (Figure 6B) and expression of cytokine genes
(Figure 6G–I) in Ezh2 null macrophages were similar to that in control cells, implying a lim-
ited Ezh2 impact on the control of macrophage responses during LPS tolerance. Although
there was a limited impact on LPS tolerance, these data supported an anti-inflammatory
response of Ezh2 null macrophages after a single LPS stimulation that might be useful as
an anti-inflammation in sepsis.

Figure 3. The Venn diagrams of proteome analysis from macrophages of Ezh2 control (Ezhfl/fl;
LysM-Cre−/−) (Ezh2 control) or Ezh2 null mice (Ezhfl/fl; LysM-Crecre/−) (Ezh2 null) after a single
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lipopolysaccharide (LPS) activation (upper) or LPS tolerance (lower) between Ezh2 control cells or
Ezh2 null macrophages versus the non-activated control of each group are demonstrated. The fold
enrichment pathway of the unique proteins that presented only in LPS-stimulated macrophages but
not in the Ezh2 control cells (dashed circles with arrows) is also demonstrated. Notably, percentages
in the Venn diagram are the number of proteins in each part divided by the total number of proteins
from both groups.

Figure 4. The volcano plots of secretome analysis from macrophages of Ezh2 control (Ezhfl/fl;
LysM-Cre−/−) (Ezh2 control) or Ezh2 null mice (Ezhfl/fl; LysM-Crecre/−) (Ezh2 null) after a single
lipopolysaccharide (LPS) activation (left side) or LPS tolerance (right side) between Ezh2 control
cells (upper) or Ezh2 null macrophages (lower) with versus without the activations are demonstrated.
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Figure 5. The Venn diagrams of secretome analysis from macrophages of Ezh2 control (Ezhfl/fl;
LysM-Cre−/−) (Ezh2 control) or Ezh2 null mice (Ezhfl/fl; LysM-Crecre/−) (Ezh2 null) after a single
lipopolysaccharide (LPS) activation (upper) or LPS tolerance (lower) between Ezh2 control cells or
Ezh2 null macrophages versus the non-activated control of each group are demonstrated. The fold
enrichment pathway of the unique proteins that presented only in LPS-stimulated macrophages but
not in the Ezh2 control cells (dashed circles with arrows) is also demonstrated. Notably, percentages
in the Venn diagram are the number of proteins in each part divided by the total number of proteins
from both groups.
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Figure 6. The schema of the experiments in bone marrow-derived macrophages (BMDM) from
Ezh2 control (Ezhfl/fl; LysM-Cre−/−) or Ezh2 null (Ezhfl/fl; LysM-Crecre/−) mice after activation by
lipopolysaccharide (LPS) in a single protocol (N/LPS) that started with the culture media followed
by LPS at 24 h later or LPS tolerance (LPS/LPS) by the twice LPS stimulations or control (N/N) using
the twice culture media incubation (A) is demonstrated. The characteristics of these macrophages
with different protocols, as indicated by supernatant IL-1β (B) with the expression of genes for M1
macrophage polarization (IL-1β and iNOS) and M2 polarization (Fizz-1, Arg-1, and TGF-β) (C–G),
inflammatory genes (TNF-α, IL-6, and IL-10) (H–J), and inflammatory mediators (NF-κB) (K) are
demonstrated. Triplicated independent experiments were performed. Mean ± SEM is presented with
the one-way ANOVA followed by Tukey’s analysis (*, p < 0.05 vs. WT N/N and #, p < 0.05).
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2.3. Characteristics of Ezh2 Control (Ezhfl/fl; LysM-Cre−/−) or Ezh2 Null (Ezhfl/fl; LysM-Cr cre/−)
Mice after Cecal Ligation and Puncture (CLP) and LPS Tolerance before CLP Surgery

To investigate the impact of Ezh2 in macrophages on hyper-inflammatory sepsis
and sepsis after LPS tolerance, CLP after PBS injection (CLP) and CLP after twice LPS
administration (LPS-CLP), respectively, in Ezh2 control (Ezhfl/fl; LysM-Cre−/−) and Ezh2
null (Ezhfl/fl; LysM-Cr cre/−) mice was performed (Figure 7A). In the survival analysis,
CLP after LPS tolerance (LPS-CLP) in control mice showed the most severe sepsis as
all mice died within 72 h post-surgery (Figure 7A). The more severe sepsis in LPS-CLP
mice compared with CLP, especially in the control mice (Figure 7A), implied a possible
impact of LPS tolerance on a defect of microbial control. Interestingly, the best survival
rate of Ezh2 null mice with CLP and the better survival rate after LPS-CLP of Ezh2 null
compared with control mice (Figure 7A) indicated a possible beneficial impact of Ezh2
blockage in macrophages during sepsis. Among the control group, LPS-CLP demonstrated
more severe sepsis than CLP alone as indicated by cell-free DNA, bacteremia, and pro-
inflammatory cytokines (TNF-α and IL-6), but not other parameters (serum creatinine,
alanine transaminase, renal histology score, spleen apoptosis, endotoxemia, and IL-10)
(Figures 7C–L and 8). These data indicated more severe sepsis after LPS tolerance compared
with no LPS tolerance in the Ezh2 control mice, possibly due to immune exhaustion.
However, there was no difference in most of the sepsis severity biomarkers between Ezh2
null mice with LPS-CLP and those with CLP alone, except the higher histology score in LPS-
CLP Ezh2 null mice (Figure 7C–L). The data implied no or less immune exhaustion after
LPS tolerance in Ezh2 null mice, as mentioned in previous publications [39,58]. Between
Ezh2 null versus Ezh2 control mice with CLP-induced sepsis hyperinflammation (CLP) and
LPS tolerance with subsequent sepsis (LPS-CLP), sepsis severity was more severe in Ezh2
control mice as indicated by survival analysis, organ injury (kidney and liver), cell-free
DNA, endotoxemia, bacteremia, and serum cytokines (TNF-α and IL-6, but not IL-10)
(Figure 7C–L), supporting a beneficial impact of Ezh2 deletion in macrophages during
sepsis in both conditions.

2.4. Ezh2 Inhibitor Attenuated Cecal Ligation and Puncture (CLP) Sepsis in Wild-Type (WT) Mice
with Less Impact on CLP after LPS Tolerance

Due to the reduced sepsis severity of Ezh2 null over Ezh2 control mice from our data
and the control of inhibitory Socs3 by Ezh2 gene from previous publications [59,60], an
Ezh2 inhibitor was further tested, similar to the experiments on Ezh2 null mice mentioned
above (Figure 9A). In WT mice, CLP after LPS tolerance (LPS-CLP) also demonstrated the
highest mortality rate as all mice died within 96 h of the observation, while approximately
25% of the mice survived at 96 h post-surgery with CLP alone (Figure 9B), supporting more
severe sepsis after LPS tolerance similar to Ezh2 control mice (Figure 7A–L). However,
Ezh2 inhibitor attenuated disease severity only in CLP alone, but not LPS-CLP (Figure 9B),
perhaps because of the more severe sepsis in LPS-CLP compared with CLP alone, as
indicated by higher cell-free DNA and serum cytokines (TNF-α and IL-6) in vehicle-
administered LPS-CLP mice compared with the CLP alone group (Figure 9E,H,I). In CLP
alone, the Ezh2 inhibitor attenuated kidney damage (serum creatinine) and serum cytokines
(TNF-α, IL-6, and IL-10) but not cell-free DNA, endotoxemia, and bacteremia (Figure 9B–J).
On the other hand, the Ezh2 inhibitor did not attenuate LPS-CLP mice, as indicated by the
non-difference in survival analysis, organ damage (kidney and liver), endotoxemia, and
bacteremia (Figure 9B–D,F,G), despite the reduction of cell-free DNA and serum cytokines
(TNF-α, IL-6, and IL-10) in Ezh2 inhibitor-administered mice (Figure 9E,H–J).
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Figure 7. The schema of the experiments in Ezh2 control (Ezhfl/fl; LysM-Cre−/−) (Control) or Ezh2
null (Ezhfl/fl; LysM-Crecre/−) mice (Ezh2 null) in sham, cecal ligation and puncture surgery (CLP),
and lipopolysaccharide (LPS) tolerance before CLP surgery (LPS-CLP). The protocol start by injection
of phosphate buffer solution (PBS) or LPS intraperitoneal (ip) injection (0.8 mg/kg) followed by PBS
or LPS (ip 4 mg/kg) at 5th day before sham or CLP surgery at 6th day, and sacrifice with sample
collection at 7th day of the experiment (A). Characteristics of these mice as indicated by survival
analysis (B), kidney injury (serum creatinine) (C), liver damage (alanine transaminase) (D), renal
injury score (E), spleen apoptosis (F), cell-free DNA (G), endotoxemia (H), bacteremia (I), and serum
cytokines (TNF-α, IL-6, and IL-10) (J–L) are demonstrated (n = 15/group for B and n = 5–7/group for
(C–J)). Mean ± SEM is presented with the one-way ANOVA followed by Tukey’s analysis (*, p < 0.05
vs. Sham control and #, p < 0.05).
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Figure 8. Representative pictures of renal histology with hematoxylin and eosin (H&E) stain (upper)
and activated caspase 3 spleen apoptosis (lower) of Ezh2 control (Ezhfl/fl; LysM-Cre−/−) (littermate)
or Ezh2 null (Ezhfl/fl; LysM-Crecre/−) mice (Ezh2 null) in cecal ligation and puncture surgery (CLP),
and lipopolysaccharide (LPS) tolerance before CLP surgery (LPS-CLP) are shown. Only the sham of
Ezh2 null mice, but not the sham of littermate control, in renal histology and spleen apoptosis are
demonstrated in the inset pictures due to the non-difference between both shams. Arrows indicate an
example of renal tubular cell injury.
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Figure 9. The schema of the experiments in wild-type mice in sham, cecal ligation and puncture
surgery (CLP), and lipopolysaccharide (LPS) tolerance before CLP surgery (LPS-CLP). The protocol
start by injection of phosphate buffer solution (PBS) or LPS intraperitoneal (ip) injection (0.8 mg/kg)
followed by PBS or LPS (ip 4 mg/kg) at 5th day before sham or CLP surgery at 6th day, and sacrifice
with sample collection at 7th day of the experiment. Mice were subcutaneously administered with
vehicle or an Ezh2 inhibitor at 0 and 6 h post-surgery on the 6th day of protocol (A). Characteristics
of these mice as indicated by survival analysis (B), kidney injury (serum creatinine) (C), liver damage
(alanine transaminase) (D), cell-free DNA (E), endotoxemia (F), bacteremia (G), and serum cytokines
(TNF-α, IL-6, and IL-10) (H–J) are demonstrated (n = 15/group for B and n = 5–7/group for (C–J)).
Mean ± SEM is presented with the one-way ANOVA followed by Tukey’s analysis (*, p < 0.05 vs.
Sham vehicle control and #, p < 0.05).
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3. Discussion

Lipopolysaccharide (LPS) is one of the potent activators of macrophages, as indicated
by the up- and downregulation of several proteins compared with the neutral state of the
cells. The macrophages from Ezh2 littermate control or Ezh2 null mice without activation
were used as the controls to see the deviation away from the neutral state due to the possible
differences between littermate control and Ezh2 null mice. Less profound activities of Ezh2
null macrophages were indicated by a lower number of proteins with similar functions (im-
mune responses, cytokines, and cell energy) between control and Ezh2 null cells, implying
similar downstream signals. Because of (i) the possibly reduced adverse effects of selective
inhibition only on macrophages but not all cells in the body [61], (ii) endotoxemia in several
conditions [62–64], partly through gut barrier damage [1,22,24,26] with profound LPS recog-
nition by macrophages [65,66] and (iii) the epigenetic regulation in LPS responses [67], LPS
was used to test Ezh2 null macrophages. Notably, Ezh2 reduced chromatin accessibility by
adding methyl marks at the tail of histone H3, and the presence of trimethylation of H3K27
(H3K27me3) at promoter regions [68] is mentioned in sepsis [69]. Indeed, the increased
mortality in patients with high Ezh2 and H3K27 is mentioned [70,71] and inhibition of
Ezh2 [72] might be beneficial. M1 macrophage polarization (IL-1β and iNOS) along with
pro-inflammatory molecules (TNF-α, IL-6, and NF-κB) were less prominent in LPS-activated
Ezh2 null macrophages than the control (Figure 6), possibly correlated with more profound
suppressor of cytokine signaling 3 (Socs3; an anti-inflammatory molecule) as mentioned in
our previous publication [39]. Perhaps Ezh2 more potently inhibits some molecules than
others. In a single LPS stimulation, Ezh2 more profoundly suppressed Socs3 than NF-κB
(a transcriptional factor for several cytokines), resulting in less inhibition of NF-κB with
high cytokine production. Without Ezh2, elevated Socs3 downregulated NF-κB and led to
lower TNF-α and IL-6 expression after a single LPS stimulation. Indeed, cytosolic Socs3
inhibits the NF-κB-dependent inflammatory genes through enhanced ubiquitination and
proteasomal degradation [44,59]. Additionally, Ezh2 blockage enhances anti-inflammatory
Socs3 that inhibits hyperinflammation in sepsis (here and others), multiple sclerosis, and
glucose-activated peritoneal fibrosis [60,69,73]. In contrast, suppression of Ezh2 might
enhance pro-inflammatory genes, including NF-κB, that possibly worsens inflammatory
bowel diseases and muscle cell apoptosis in sepsis [49,74–76]. Although Socs3 can inhibit
both anti- and pro-inflammatory cytokines [77], possibly driven by different molecules [78],
Socs3 seems to have less impact on anti-inflammatory IL-10 as serum TNF-α and IL-6,
but not IL-10, were lower in LPS-injected Ezh2 null mice [39]. Accordingly, Socs3 might
be correlated with IL-10 in macrophages responses because (i) IL-10 directly upregulates
Socs3 [79], (ii) Socs3 and IL-10 are simultaneously used to inhibit inflammation [80,81], and
(iii) Ezh2 inhibitor (EPZ-6438) upregulated IL-10 [82].

In mice, the deletion of Ezh2 only in myeloid cells in Ezh2 null mice was enough
to induce less severe sepsis, similar to the LPS injection model [39] and pneumococcal
sepsis model [70,83], highlighting the major impact of macrophages in the cytokine pro-
duction [84]. Then, blockage of cytokine production only on the myeloid cells, especially
macrophages, might be beneficial. Despite the improved sepsis mortality with the previ-
ously known hepatic protection of Ezh2 inhibitor [85], liver enzyme and bacteremia were
not different from sepsis in Ezh2 control mice (Figure 7) implying a possible hepatoxicity
and incomplete Ezh2 blockage of the selected inhibitor (GSK126). Notably, injection of
Ezh2 inhibitor [86] in mice inhibits Ezh2 in all cells which might be harmful in some cell
types and the selective Ezh2 blockage only in macrophages might reduce the adverse effect.
However, the balance between the pro- and anti-inflammatory directions (a yin–yang effect)
after Ezh2 blockage might be different in individual patients.

Because leaky gut causes endotoxemia [1,66] and relatively low inflammation (repeat
or chronic exposure of LPS), or LPS tolerance [24,87] possibly causes more severe sepsis [25]
and/or secondary infection [31,88,89], CLP surgery after LPS tolerance (LPS-CLP) might
be different from CLP without LPS priming (CLP). In control mice, LPS-CLP was more
severe than in those with CLP alone, possibly due to inadequate inflammation to control
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organisms at an early phase of sepsis [25] leading to a higher blood bacterial burden and
higher cytokines than in the CLP alone group. Because chronic endotoxemia might induce
LPS tolerance [25,57], sepsis in these individuals, such as obesity and uremia, might be more
severe than the non-endotoxemia cases [90–95], partly, due to LPS tolerance. Despite the
higher disease severity of LPS-CLP over CLP alone, Ezh2 null mice still demonstrated less
severe sepsis compared with LPS-CLP in control mice, supporting the anti-inflammatory
effect of Ezh2 deletion in macrophages. Although the Ezh2 inhibitor did not reduce LPS-
CLP mortality, there was less severe systemic inflammation, implying a possible benefit of
the dose adjustment. More studies are interesting. Despite the broad spectrum antiviral of
Ezh1/2 inhibitors [96], the influence of Ezh1/2 blockage on bacterial infection needs further
testing. In cancer, Ezh2 blockage might induce anti-inflammatory macrophages, resulting
in less severe sepsis or more infection susceptibility due to the inadequate inflammation
to control organisms. Importantly, an effective antibiotic with good microbial control is
a main strategy for the treatment of sepsis-induced hyper-inflammation [97]. Hence, our
results are a proof of concept to use clinically available Ezh2 inhibitors in sepsis, especially
the blockage of Ezh2 specifically only in macrophages.

Several limitations should be mentioned. First, only male mice were used and the
impact of gender differences in sepsis might affect the translation of the results. Second,
details of mechanistic pathways, including the Western blot analysis, were not performed.
Despite a proof of concept for the translational use of Ezh2 inhibitors in clinical sepsis,
more experiments would be interesting. Third, the results need to be validated in human
situations before a solid conclusion. Nevertheless, we concluded that Ezh2 inhibitors,
an available anticancer treatment, might be beneficial in some situations of sepsis. More
studies are warranted.

4. Materials and Methods

4.1. Animal

The Institutional Animal Care and Use Committee of the Faculty of Medicine, Chula-
longkorn University, Bangkok, Thailand approved the protocol (No. 017/2562) according to
the National Institutes of Health (NIH) criteria. Wild-type (WT) 8-week-old C57BL/6 male
mice were purchased from Nomura Siam, Pathumwan, Bangkok, Thailand. Meanwhile,
Ezh2flox/flox and LyM-CreCre/Cre mice were obtained from RIKEN BRC Experimental Ani-
mal Division (Ibaraki, Japan) and cross-bred until having Ezh2 littermate control (Ezhfl/fl;
LysM-Cre−/−) or Ezh2 null (Ezhfl/fl; LysM-Crecre/−) in F3 generation of the breeding pro-
tocol. As such, the Ezh2flox/flox mice had loxP sites upstream and downstream of the 2.7 kb
SET domain, while bred with LysM-CreCre/Cre mice, the mice with a Cre recombinase
under the control of lysozyme M to target Ezh2 for deletion in myeloid cells (macrophages
and neutrophils). Mice with Ezh2flox/flox without LysM-Cre (Ezhfl/fl; LysM-Cre−/−) were
used as littermate controls (Ezh2 control). To genotype these mice on the loxP sites’ in-
sertion, the following primers were used for Ezh2: reverse 1: 3′ of loxp: 5′-AGG GCA
TCA GCC TGG CTGTA-3′; forward 2: 5′ of loxp: 5′-TTA TTC ATA GAG CCA CCTGG-3′;
forward 3: left loxp: 5-ACG AAA CAG CTC CAG ATTCAG GG-3′ according to a previous
publication [83]. The mice homozygous for the flox were selected and genotyped for the
expression of LysM-Cre using the primers; forward: 5′-CTTGGGCTGCCAGAATTCTC-3′;
Reverse: 5′-CCCAGAAATGCCAGATTACG-3′.

4.2. Animal Models

Cecal ligation and puncture (CLP) surgery was used to induce sepsis, following pre-
vious publications, under isoflurane anesthesia [98–100]. Briefly, a median abdominal
incision was performed and the cecum was ligated at 10 cm from the cecal tip, punc-
tured twice with a 21-gauge needle, and gently squeezed to express a small amount
of fecal material before closing the abdominal wall layer by layer with sutures. Then,
tramadol (25 mg/kg/dose) in 0.25 mL prewarmed normal saline solution (NSS) and
imipenem/cilastatin (14 mg/kg/dose) in 0.2 mL NSS were subcutaneously administered
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in abdominal areas after surgery, and at 6 and 18 h post-CLP [9]. In sham-operated mice,
the cecum was isolated and closed by suturing without ligation or puncture. In parallel,
a sham operation was performed with only cecal identification before closing abdomen
layer by layer. Because lipopolysaccharide (LPS) tolerance inhibits macrophage cell res-
piration and induces global proteomic changes in macrophages [35], sepsis during LPS
tolerance might be different from the regular condition. Then, CLP after LPS tolerance
using twice-administered LPS injection (LPS-CLP) was conducted. Hence, the mice were
divided into 3 groups. First, for CLP in LPS tolerance (LPS-CLP), intraperitoneal injection of
0.8 mg/kg LPS (Escherichia coli 026:B6) (Sigma-Aldrich, St. Louis, MO, USA) with another
dose of 4 mg/kg LPS at 5 days later and followed by CLP surgery at 1 days after the
2nd dose of LPS was performed. Second, for CLP alone (CLP), the experiments started
with intraperitoneal injection of phosphate buffer solution (PBS) at 0 and 5 days followed
by CLP surgery. Third, in sham control mice (Sham), 2 doses of PBS at 0 and 5th days
of experiments followed by sham surgery was conducted. Of note, the lower 1st dose
(0.8 mg/kg) followed by the higher 2nd LPS dose (4 mg/kg) for LPS tolerance induction
was performed according to a previous protocol [25]. Mice were sacrificed with cardiac
puncture under isoflurane anesthesia with sample collection at 24 h or 96 h post-surgery
for blood biomarkers and survival analysis, respectively. On the other hand, these mouse
protocols, including CLP, LPS-CLP, and sham, were also used for the test of Ezh2 inhibitor
using WT mice in all groups. The Ezh2 inhibitor (GSK343; Medchemexpress, Monmouth,
NJ, USA) at 4 mM/25 g mice in 3% dimethyl sulfoxide (DMSO) or DMSO alone (vehicle
control) was subcutaneously administered 15 min before surgery and 6 h later (15 min
before tramadol and the antibiotics). These mice were sacrificed with the same protocol of
experiments in the transgenic mice.

4.3. Mouse Sample Analysis

Serum creatinine and alanine transaminase [40] were measured by colorimetric method
(QuantiChrom™ Creatinine Assay Kit, BioAssay System, Hayward, CA, USA) and Enzy-
Chrom Alanine Transaminase assay (EALT-100, BioAssay), respectively. Serum cell-free
DNA and LPS (endotoxin) were detected by Quanti PicoGreen assay (Sigma-Aldrich) and
HEK-Blue LPS Detection Kit 2 (InvivoGen™, San Diego, CA, USA), while ELISA (Invit-
rogen, Carlsbad, CA, USA) was used for detection of cytokines (TNF-α, IL-6, and IL-10).
In parallel, blood bacterial abundance (bacteremia) was evaluated using the direct spread
of mouse blood onto blood agar plates (Oxoid, Hampshire, UK) in serial dilutions and
incubating at 37 ◦C for 24 h before colony enumeration. For the kidney injury score, the
injury score was semi-quantitatively evaluated on hematoxylin and eosin (H&E) stain-
ing in 4 mm thick paraffin-embedded slides at 200× magnification by the area of injury
(tubular epithelial swelling, loss of brush border, vacuolar degeneration, necrotic tubules,
cast formation, and desquamation) using the following score: 0, area < 5%; 1, area 5–10%;
2, area 10–25%; 3, area 25–50%; 4, area > 50% [23]. In parallel, for spleen apoptosis, spleens
with 10% formalin fixation were stained by anti-active caspase 3 antibody (Cell Signaling
Technology, Beverly, MA, USA), using immunohistochemistry, and expressed in positive
cells per high-power field (200× magnification) as previously published [23].

4.4. Bone Marrow-Derived Macrophages and the In Vitro Experiments

Bone marrow-derived macrophages from mouse femurs using supplemented Dul-
becco’s Modified Eagle’s Medium (DMEM) with conditioned medium of the L929 cells
(ATCC CCL-1) were derived as previously described [65,101–103]. The macrophages at
5 × 104 cells/well in supplemented DMEM (Thermo Fisher Scientific, Waltham, MA, USA)
were incubated in 5% carbon dioxide (CO2) at 37 ◦C for 24 h before being treated by
3 different protocols, including (i) a single LPS stimulation; started with DMEM followed
by LPS (100 ng/mL) 24 h later (N/LPS), or (ii) LPS tolerance; using the twice stimulations
by 100 ng/mL of LPS (LPS/LPS), or control (N/N) using the twice DMEM incubation,
before the sample collection (supernatant and cells). Notably, the supernatant of the
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stimulated cells in all groups was gently removed and washed with DMEM before the
re-administration of LPS or DMEM, as previously mentioned [39,87,104]. Supernatant
interleukin (IL)-1β was evaluated by ELISA (Invitrogen, Carlsbad, CA, USA) and the gene
expression was evaluated by quantitative real-time polymerase chain reaction (PCR), as
previously described [102,105–107]. Briefly, the RNA was extracted from the cells with
TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) together with RNeasy Mini Kit (Qiagen,
Hilden, Germany) as 1 mg of total RNA was used for cDNA synthesis with iScript reverse
transcription supermix (Bio-Rad, Hercules, CA, USA). Quantitative real-time PCR was per-
formed on a QuantStudio 6 real-time PCR system (Thermo Fisher Scientific, Waltham, MA,
USA) using SsoAdvance Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA).
Expression values were normalized to beta-actin (β-actin) as an endogenous housekeeping
gene and the fold change was calculated by the ΔΔCt method. The primers used in this
study are listed in Table 1.

Table 1. List of primers used in the study.

Name Forward Reverse

Inducible nitric oxide synthase (iNOS);
Gene ID: 18126 5′-ACCCACATCTGGCAGAATGAG-3′ 5′-AGCCATGACCTTTCGCATTAG-3′

Interleukin-1β (IL-1β)
Gene ID: 16176 5′-GAAATGCCACCTTTTGACAGTG-3′ 5′-TGGATGCTCTCATCAGGACAG-3′

Tumor necrosis factor α (TNF-α)
Gene ID: 21926 5′-CCTCACACTCAGATCATCTTCTC-3′ 5′-AGATCCATGCCGTTGGCCAG-3′

Interleukin-6 (IL-6)
Gene ID: 16193 5′-TACCACTTCACAAGTCGGAGGC-3′ 5′-CTGCAAGTGCA TCA TCGTTGTTC-3′

Interleukin-10 (IL-10)
Gene ID: 16153 5′-GCTCTTACTGACTGGCATGAG-3′ 5′-CGCAGCTCTAGGAGCATGTG-3′

Arginase-1 (Arg-1)
Gene ID: 11846 5′-CTTGGCTTGCTTCGGAACTC-3′ 5′-GGAGAAGGCGTTTGCTTAGTT-3′

Resistin-like molecule-α1 (FIZZ-1)
Gene ID: 57262 5′-GCCAGGTCCTGGAACCTTTC-3′ 5′-GGAGCAGGGAGATGCAGATGA-3′

Transforming growth factor-β (TGF-β)
Gene ID: 21813 5′-CAGAGCTGCGCTTGCAGAG-3′ 5′-GTCAGCAGCCGGTTACCAAG-3′

Nuclear factor kappa B (NFκB)
Gene ID: 18033 5′-CTTCCTCAGCCATGGTACCTCT-3′ 5′-CAAGTCTTCATCAGCATCAAACTG-3′

β-actin
Gene ID: 11461 5′-CGGTTCCGATGCCCTGAGGCTCTT-3′ 5′-CGTCACACTTCATGATGGAATTGA-3′

4.5. Mass Spectrometry Proteomic and Secretome Analysis

The proteomic and secretome analyses were performed, using the cells and super-
natant media, respectively, according to previous publications [35,56,104]. Briefly, for
proteome analysis, the activated macrophages (1 × 106 cells/well) with 3 protocols, N/N,
N/LPS, and LPS/LPS as mentioned above, were processed for in-solution digestion. For
secretome analysis, an equal volume of culture medium from 3 conditions was centrifuged
to remove intact cells, concentrated by centrifugation in an Amicon Ultracel—3K (EMD
Millipore, Billerica, MA, USA), and the buffer exchanged using 8 M urea lysis buffer. The
concentrated proteins were also subjected to in-solution digestion. Then, the peptides from
N/N, N/LPS, and LPS/LPS from the cells and culture media samples, for proteome and
secretome, respectively, were labeled with light reagents (CH2O and NaBH3CN), medium
reagents (CD2O and NaBH3CN), and heavy reagents (13CD2O and NaBD3CN), respec-
tively. The pooled peptides were fractionated using a high pH reversed-phase peptide
fractionation kit (Thermo Fisher Scientific, San Jose, CA, USA). Liquid chromatography–
tandem mass spectrometry (LC-MS/MS) analysis of samples was performed on an EASY-
nLC1000 system coupled to a Q-Exactive Orbitrap Plus mass spectrometer equipped
with a nanoelectrospray ion source (Thermo Fisher Scientific, San Jose, CA, USA). The
mass spectrometry (MS) raw files were searched against the Mouse Swiss-Prot Database
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(17,138 proteins, November 2022) with a list of common protein contaminants. The search
parameters were set for the following fixed modifications: carbamidomethylation of cys-
teine (+57.02146 Da), as well as light, medium, and heavy dimethylation of N termini and
lysine (+28.031300, +32.056407, and +36.075670 Da) and variable modification: oxidation of
methionine (15.99491 Da). The false positive discovery rate of the identified peptides based
on Q-values using The Proteome Discoverer decoy database together with the Percolator
algorithm was set to 1%. The relative MS signal intensities of dimethyl labeled peptides
were quantified and presented as ratios of single LPS/no stimulation and LPS tolerance/no
stimulation. Log 2 of the ratios in triplicate was used to calculate the p-values using
Student’s t-test. The proteins with a p-value < 0.05 were considered significant proteins,
and these proteins were subjected to the online DAVID Bioinformatics Resources 6.8 to
investigate the enriched biological processes. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD041265. Then, the data visualization was performed using R
packages. Volcano plots were generated by ggplot2 version 3.4.2. KEGG pathway analyses
were generated by PathfindR. Go enrichment analysis was performed using Shiny 0.77
(http://bioinformatics.sdstate.edu/go/) accessed on 20 March 2023.

4.6. Statistical Analysis

The results are shown as mean ± S.E.M. All data were analyzed with GraphPad
Prism6. Student’s t-test or one-way analysis of variance [41] with Tukey’s comparison test
was used for the analysis of experiments with two and more than two groups, respectively.
The survival analysis was determined by the log-rank test. For all datasets, a p-value less
than 0.05 was considered significant.

5. Conclusions

The Ezh2-deleted macrophages induced fewer activities (proteomic and secretome
analyses) after LPS stimulation compared with the control states, supporting the less severe
sepsis in Ezh2 null (Ezhfl/fl; LysM-Crecre/−) over the control (Ezhfl/fl; LysM-Cre−/−) mice. The
more severe sepsis in CLP after LPS tolerance over CLP alone supported the less effective
microbial control during LPS tolerance. The Ezh2 inhibitor was more effective in the CLP
model than the CLP after LPS tolerance, perhaps due to the more profound sepsis severity
in the latter condition. More studies on the use of Ezh2 blockage in sepsis are warranted.
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Abstract: Affinity-based proteomic profiling is widely used for the identification of proteins involved
in the formation of various interactomes. Since protein–protein interactions (PPIs) reflect the role of
particular proteins in the cell, identification of interaction partners for a protein of interest can reveal
its function. The latter is especially important for the characterization of multifunctional proteins,
which can play different roles in the cell. Pyruvate kinase (PK), a classical glycolytic enzyme catalyzing
the last step of glycolysis, exists in four isoforms: PKM1, PKM2, PKL, and PKR. The enzyme isoform
expressed in actively dividing cells, PKM2, exhibits many moonlighting (noncanonical) functions.
In contrast to PKM2, PKM1, predominantly expressed in adult differentiated tissues, lacks well-
documented moonlighting functions. However, certain evidence exists that it can also perform some
functions unrelated to glycolysis. In order to evaluate protein partners, bound to PKM1, in this
study we have combined affinity-based separation of mouse brain proteins with mass spectrometry
identification. The highly purified PKM1 and a 32-mer synthetic peptide (PK peptide), sharing high
sequence homology with the interface contact region of all PK isoforms, were used as the affinity
ligands. This proteomic profiling resulted in the identification of specific and common proteins bound
to both affinity ligands. Quantitative affinity binding to the affinity ligands of selected identified
proteins was validated using a surface plasmon resonance (SPR) biosensor. Bioinformatic analysis
has shown that the identified proteins, bound to both full-length PKM1 and the PK peptide, form a
protein network (interactome). Some of these interactions are relevant for the moonlighting functions
of PKM1. The proteomic dataset is available via ProteomeXchange with the identifier PXD041321.

Keywords: pyruvate kinase; pyruvate kinase isoforms; PKM; moonlighting functions; PKM binding
proteins; interactome

1. Introduction

Affinity-based proteomic profiling is a powerful approach used in proteomic studies
for separation of various groups of proteins [1]. The combination of affinity chromatography
with mass spectrometry represents an effective tool for the generation of a broad range
of data for protein–protein interactions (PPIs), mapping post-translational modifications
or recovering a certain target from the whole proteome, characterization of intracellular
signaling networks and particular interactomes, etc. [2–6].

In the context of PPIs, so-called moonlighting proteins attract much interest because
these proteins exhibit more than one function in the cell [7]. The repertoire of protein
partners interacting with such moonlighting proteins significantly differs in the dependence
of particular biochemical/physiological processes in which the moonlighting protein is
involved. Currently, several hundred moonlighting proteins have been recognized [7–10].

Glycolytic enzymes are one of the most abundant groups of moonlighting proteins [10,11].
Pyruvate kinase (PK, EC 2.7.1.40) is a highly conserved enzyme catalyzing the irreversible
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conversion of ADP and phosphoenolpyruvate to ATP and pyruvate (substrate-level phos-
phorylation reaction). Mammalian PK exists in four isoforms differed by expression
patterns and regulatory properties: PKM1, PKM2, PKL, and PKR [12,13]. PK is most
active as a tetramer, and dissociation into dimers and monomers results in its inactiva-
tion [13]. The isoform PKM2 is typical of embryonic and adult dividing cells [14]. Besides
its role in glycolysis, PKM2 performs many moonlighting functions and participates in
different cellular processes, such as: transcription, translation, signaling, and cytoskeletal
dynamics [10,13–20]. In contrast to PKM2, PKM1 lacks well-documented moonlighting
functions [14]. It is predominantly expressed in adult differentiated tissues including brain
and musculature [12], and skeletal muscles are frequently used as the source for purification
of this enzyme [21,22]. In the mouse brain, PKM1 was found in gray matter neurons and
white matter bundles [23], but no functions of PKM1 unrelated to glycolysis have been
reported so far.

Certain evidence exists that PKM1 can perform some functions unrelated to its role in
glycolysis. For example, a PKM1 monomer is known as a thyroid hormone (T3) binding
protein [24]. PKM1 can bind to ribosomes [20,25]. In a rabbit reticulocyte in vitro translation
system, exogenously added PKM1-GST decreased the translation of some mRNAs [25].
In addition, PKM1 can form hetero-oligomers with other PK isoforms [13]. This suggests
an important role of oligomer-to-monomer transition and the interface contact region that
could be potentially involved in PKM1 functioning unrelated to glycolysis.

Since classical and moonlighting functions obviously require different sets of protein
partners, proteomic profiling with the protein of interest as an affinity ligand may give a
hint for further search and research of its moonlighting. The latter is especially interesting in
the context of PKM1, which shares high sequence similarity with PKM2 [26] and therefore
could be considered “as a substitute player in the PKM2 game”. Thus, the aim of this study
was to investigate profiles of mouse brain proteins bound to the highly purified PKM1 or a
synthetic 32-mer linear PK peptide. This PK peptide corresponds to the interface of PKL/R
isoforms and exhibits high homology with PKM isoforms. Results of this study suggest that
the profiles of proteins bound to either purified PKM1 or the PK peptide significantly differ.
However, common proteins, bound to both full-length PKM1 and the PK peptide, form a
protein network (interactome) that may reflect some moonlighting functions of PKM1.

2. Results

2.1. Proteomic Profiling of Mouse Brain Proteins Using PKM1 as the Affinity Ligand

Proteomic profiling of cleared lysates of mouse brain homogenates performed using
immobilized PKM1 as the affinity ligand resulted in confident identification of 44 indi-
vidual proteins including brain PKM (Table 1, Supplementary Materials Table S1). This
suggests that the immobilized affinity ligand, purified rabbit muscle PKM1, was function-
ally competent to form PKM oligomers. All the identified brain proteins belonged to the
following functional groups: (1) metabolic enzymes; (2) proteins involved in cytoskeleton
formation and trafficking; (3) proteins involved in signal transduction and enzyme activity
regulation; (4) protective proteins and components of the ubiquitin–proteasome system;
and (5) protein regulators of gene expression, cell division, and differentiation.

2.2. Biosensor Validation of PKM1 Interaction with Selected Identified PKM Binding Proteins

Interaction of some of the identified PKM binding proteins with PKM1 has been
validated in the optical biosensor experiments using available purified rabbit muscle
enzymes: PKM1, aldolase, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), lactate
dehydrogenase (LDH), and creatine phosphokinase (CK). Correctness of extrapolation of
the results obtained using the rabbit muscle enzyme for validation of PKM1 interaction is
determined by high similarity between mouse and rabbit glycolytic enzymes [27]. All the
selected proteins demonstrated quantitative binding to the PKM1 (Figure 1), with the Kd
values ranging from 10−8 M (CK) to about 5·10−6 M (LDH) (Table 2).
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Table 1. Distribution of the identified mouse brain proteins among functional groups.

Group No. Protein Functions
Number of Identified Proteins Bound to

Immobilized Full-Length PKM1 Immobilized PK Peptide

1 metabolic enzymes 13 8

2 proteins involved in cytoskeleton
formation and trafficking 10 29

3 proteins involved in signal transduction
and enzyme activity regulation 6 19

4 protective proteins and components of
the ubiquitin–proteasome system 6 14

5 protein regulators of gene expression, cell
division, and differentiation 9 22

total 44 92

Figure 1. Biosensor validation of PKM1 interaction with selected identified PKM binding proteins. In
the case of A, B, and C, purified rabbit muscle PK1 was used as an analyte, and purified rabbit muscle
GAPDH (A), LDH (B), and aldolase A (C) were immobilized onto a chip surface; in (D) PKM1 was
immobilized on the chip surface and CK was used as the analyte.

Table 2. Biosensor validation of the interaction of selected proteins with pyruvate kinase.

Immobilized Ligand Analyte ka, M−1·s−1 kd, s−1 Kd, M

Pyruvate kinase Creatine kinase B-type (8.64 ± 0.03) × 104 (9.24 ± 0.18) × 10−4 1.07 × 10−8

Glyceraldehyde-3-phosphate
dehydrogenase Pyruvate kinase (1.53 ± 0.17) × 103 (1.62 ± 0.05) × 10−3 1.06 × 10−6

Lactate dehydrogenase Pyruvate kinase (1.37 ± 0.08) × 103 (6.57 ± 0.13) × 10−3 4.8 × 10−6

Aldolase A Pyruvate kinase (1.69 ± 0.06) × 103 (2.38 ± 0.1) × 10−3 1.41 × 10−6

2.3. Proteomic Profiling of Mouse Brain Proteins Using the PK Peptide as the Affinity Ligand

Identification of PKM as the protein bound to the immobilized PKM1 (PKM1-binding
protein) suggested involvement of a PKM oligomer-forming interface in this interaction. In
order to investigate the role of the PK interface in the PKM proteome formation we have
compared profiles of mouse brain proteins bound to PKM1 and the PK peptide. The PK
peptide corresponds to the sequence fragment (residues 406–437) of PKR/L and shares
high homology with PKM1 and PKM2.

Proteomic profiling of cleared lysates of mouse brain homogenates performed using
the immobilized PK peptide as the affinity ligand resulted in confident identification of
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more than 75 individual proteins (Supplementary Table S2). These proteins fell into the
same functional groups as the mouse proteins bound to the full-length PKM1. Although
the total number of brain proteins bound to the PK peptide was significantly higher
than in the case of PKM1, 15 proteins were common for both affinity ligands (Table 3). At
least 10 of 15 common proteins are known to exhibit some moonlighting functions (Table 3).

Table 3. Common mouse brain proteins interacting with the full-length PKM1 and the synthetic
PK peptide *.

no. Accession Number Gene Protein Name (Uniprot) Functional Group

1 Q61937 NPM Nucleophosmin 5
2 P52480 KPYM Pyruvate kinase PKM 1
3 P61979 HNRPK Heterogeneous nuclear ribonucleoprotein K 5
4 P63017 HSP7C Heat shock cognate 71 kDa protein 4
5 P63101 1433Z 14-3-3 protein zeta/delta 3
6 P63038 CH60 60 kDa heat shock protein, mitochondrial 4
7 P0DP26 CALM1 Calmodulin-1 3
8 P16858 G3P Glyceraldehyde-3-phosphate dehydrogenase 1
9 P17182 ENOA Alpha-enolase 1
10 P63242 IF5A1 Eukaryotic translation initiation factor 5A-1 5
11 P57780 ACTN4 Alpha-actinin-4 2
12 Q9QUM9 PSA6 Proteasome subunit alpha type-6 4
13 P11499 HS90B Heat shock protein HSP 90-beta 4
14 P05064 ALDOA Fructose-bisphosphate aldolase A 1
15 P68372 TBB4B Tubulin beta-4B chain 2

* Moonlighting proteins are shown in bold. Numbers in the functional group column designate the following
protein functions: 1. metabolic enzymes; 2. proteins involved in cytoskeleton formation and trafficking; 3. proteins
involved in signal transduction and enzyme activity regulation; 4. protective proteins and components of the
ubiquitin–proteasome system; 5. protein regulators of gene expression, cell division, and differentiation.

The commonly identified proteins bound to both the PK peptide and full-length PKM1
were submitted for plotting an interactome map. The resultant map contained 15 nodes
and 60 edges in the interactome (Figure 2). The core of the interactions was formed by
glycolytic proteins exhibiting moonlighting functions (ALDOA, GAPDH, ENO1, and PKM)
and a group of proteins involved in protein folding and chaperoning (HSP90AB1, HSPA8,
and NPM1). Results of our study indicate direct interactions between PKM1 and the mouse
brain proteins with documented moonlighting functions. These proteins may be relevant
for the performance of moonlighting functions of PKM1.

Figure 2. The interactome map reflecting the interaction between mouse brain proteins bound to the
full-length PKM1 and the PK peptide. Explanations are given in the text.
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3. Discussion

Performance of canonical and moonlighting functions by multifunctional proteins
obviously involves different sets of proteins and PPIs. In the case of unknown moonlighting
functions of a protein of interest, certain information could be obtained by analyzing its
protein partners and PPIs.

In the context of putative moonlighting functions, PKM1, an enzyme of adult non-
proliferating tissues (skeletal and cardiac musculature, and the brain), is always “in the
shadow” of PKM2, expressed by embryonic and adult actively proliferating tissues. Being
encoded by a single gene (PKM), PKM1 and PKM2 are formed due to alternative splicing:
the alternative exons encode peptide products of the same length, but their identity is about
50% [28]. Moonlighting functions of PKM2 are associated with various cellular processes.
Mitogenic and oncogenic stimulation of proliferating cells induces PKM2 translocation into
the nucleus [29,30], where it functions as a transcriptional coactivator and a protein kinase
phosphorylating histone [31,32].

The moonlighting role of PKM1 is poorly investigated and there are a few examples
suggesting that PKM1 could have moonlighting functions in some cells. In this case
proteomic profiling with PKM1 as the affinity ligand may help to find putative protein
partners for such moonlighting functions.

Using highly purified skeletal rabbit PKM1 and the synthetic 32-mer PK peptide as the
affinity ligands, we have identified 44 and 92 individual mouse brain proteins, respectively
(Tables 1 and 3, and Supplementary Tables S1 and S2). PKM has been identified among
common mouse brain proteins bound to both affinity sorbents (PKM1 and the PK peptide,
Table 3). This suggests functional importance of the interface contact region for interaction
of PKM1 with potential protein partners. The higher repertoire of proteins bound to the
PK peptide may be explained by the higher conformational accessibility of the peptide
interaction sites. Nevertheless, there were common proteins bound to both affinity ligands
and formed several groups of functional interactions (Figure 2).

PKM1 participates in interactions with proteasome subunits (PSMA6), known gly-
colytic proteins exhibiting moonlighting functions (ALDOA, GAPDH, and ENO1), and also
with proteins involved in protein folding and chaperoning (HSP90AB1, HSPA8, and NPM1).
Some of these interactions obviously reflect canonical functions of the glycolytic enzymes
supporting proteasomes with additional energy resources and promoting maintenance of
nucleotide-dependent functions of proteasomes [33]. The group of proteins involved in
protein folding and chaperoning is particularly interesting. It includes several chaperones,
HSP90AB1, HSPA8, HSPD1, and NPM1, directly interacting with PKM1. Nucleophosmin
(NPM1) is a multifunctional protein, which shuttles between nucleoli, nucleoplasm, and
cytoplasm and performs its multifaceted roles (see for review [34]). It exhibits histone- and
protein-chaperone activity, participates in DNA replication and repair, ribosome assembly
and export, and centrosome duplication and cell cycle control [34–41]. In nucleoli NPM1
acts as a hub protein, which contributes to nucleolar organization through multiple (het-
erotypic and homotypic) interactions [34]. The number of NPM1-binding proteins exceeds
several dozens, and their list is constantly growing [34]. It is possible that PKM1 interaction
with NPM1 and other proteins has a regulatory importance in various cell compartments
including the nucleus.

Convincing evidence exists in the literature that PKM2, but not PKM1, can move into
the nucleus due to the exclusive presence of exon 10, encoding the nuclear localization
signal [31,32]. Since the nuclear localization signal is located in the interface contact
region, it appears that realization of this scenario requires dissociation of PKM2 tetramers.
However, recently it has been demonstrated that under certain conditions PKM1 can also
be translocated to the nucleus [42] and therefore interact with potential nuclear targets.

Thus, results of this proteomic profiling have shown that, in addition to proteins related
to the classical functioning of PKM1, there are other PKM1-binding proteins. These proteins
may be relevant to some activities unrelated to the role of PKM1 as an important glycolytic
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enzyme. Since binding capacities obviously involve the PKM1 interface contact region, this
suggests an important role of oligomer-to-monomer transition for PKM1 moonlighting.

4. Materials and Methods

4.1. Reagents

CNBr-activated Sepharose 4B, creatine kinase from rabbit muscle, dithiothreitol,
iodoacetamide, Tris (hydroxymethyl) aminomethane, urea, guanidine hydrochloride, glyc-
erol, a cocktail of protease inhibitors, 4-vinylpyridine, sodium deoxycholate, ammonium
bicarbonate, sodium chloride, Triton X-100, and Coomassie brilliant Blue were from Merck
(Branchburg, NJ, USA); acetonitrile was from Fisher Chemical (Loughborough, Leices-
tershire, UK); sodium acetate, boric acid, formic acid, sodium tetraborate, and sodium
hydroxide were from Acros Organics (Morris Planes, NJ, USA); modified trypsin (sequenc-
ing grade) was purchased from Promega (Madison, WI, USA); 10 kDa membrane filters
were from Sartorius Stedium Biotech (Goettingen, Germany); Amicon Ultracel-10K cen-
trifugal concentration filters were from Millipore (Burlington, MA, USA); and Acclaim
PepMap® RSLC C18 column (150 mm × 75 μm, particle size 2 μm, pore size 100 Å) were
from Dionex (Sunnyvale, CA, USA). The remaining reagents of the highest degree of purity
were obtained from local suppliers.

Reagents for the Biacore biosensor were obtained from Cytiva (Marlborough, MA,
USA). These included HBS-EP buffer (150 mM NaCl, 3 mM EDTA, 0.005% surfactant
P20, 10 mM HEPES, pH 7.4); 10 mM acetate buffer, pH 4.0, pH 5.0, and pH 5.5; and
amine coupling reagents kit, containing 1–ethyl–3–(3–dimethylaminopropyl) carbodiimide
hydrochloride (EDC), N–hydroxysuccinimide (NHS), and 1 M ethanolamine–HCl, pH 8.5.

Electrophoretically homogeneous PKM1, GAPDH, aldolase A, and LDH were iso-
lated from skeletal muscles of adult (five months old) rabbits according to [22]. The
specific activity of the enzyme preparations was 295 μmol/min per mg of protein (PKM1),
170 μmol/min per 1 mg of protein (evaluated in the reaction of 3-phosphoglycerate reduc-
tion by NADH; (GAPDH), 10.4 μmol/min per 1 mg of protein (aldolase A), 28 μmol/min
per 1 mg of protein (LDH). Before use, the purified enzymes were kept as an ammonium
sulfate suspension at 4 ◦C for not more than two months.

4.2. Selection of the PK Peptide

The PK peptide synthesized by Immunotex (Stavropol, Russia; custom made order)
corresponds to the sequence fragment (residues 406–437) of PKR/L. It shares high homol-
ogy with PKM1 and PKM2 (See Supplementary Materials Figure S1).

4.3. Animals

Adult (three months old) male C57BL/6 mice (weighing 20–25 g) obtained from
the Stolbovaya nursery (Moscow region), were used in this study. Experiments were
performed one week after their arrival from the nursery. Animals were maintained at
natural illumination and had free access to standard laboratory chow and water. All
procedures conform to the Russian version of the Guide for the Care and Use of Laboratory
Animals (Washington, DC, USA, 1996) and have been approved by the Animal Care and
Use Committee at the Institute of Biomedical Chemistry.

4.4. Preparation of Brain Homogenate Lysates

After decapitation of mice under light ether anesthesia, the brain tissue was homoge-
nized using a SilentCrusher S homogenizer (Heidolph, Wood Dale, IL, USA) at 50,000 rpm
in 0.05 M potassium phosphate buffer, pH 7.4 (buffer A), to obtain a 30% homogenate.
After addition of Triton X-100 (final concentration 3%), incubation for 60 min at 4 ◦C, and
subsequent three-fold dilution with buffer A, the samples were centrifuged at 16,000× g
for 30 min. The resultant supernatant (lysate) was used for affinity chromatography on
Sepharose with the immobilized PKM1 for subsequent mass spectrometric analysis.
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4.5. Immobilization of PKM1 and the PK Peptide on Cyanogen Bromide-Activated Sepharose 4B,
Affinity Chromatography and Sample Preparation for Mass Spectrometric Analysis

Immobilization of PKM1 and the PK peptide onto Cyanogen Bromide-Activated
Sepharose 4B (CNBr-Sepharose) was carried out according to the previously described
protocol [43]. For determination of proteins nonspecifically bound to the sorbent, a control
CNBr-Sepharose was used. It was subjected to the same procedures but without the
addition of PKM1.

Lysates of brain homogenates (protein concentration of 6 mg/mL) were added to the
affinity resin washed with buffer A. The suspension (1:1), containing a cocktail of protease
inhibitors added at a concentration recommended by the manufacturer, was incubated
overnight at 4 ◦C and gentle stirring. The affinity resin was then washed with 100 volumes
of buffer A to remove nonspecifically bound proteins (protein content in the washings was
controlled by OD280). The remaining proteins were eluted at room temperature with 0.1 M
glycine buffer, pH 2.8, containing 3 M NaCl (at a flow rate of 0.5 mL/min), using a column
1 cm × 2 cm. The eluate (30 mL) was concentrated to 0.25 mL using an Amicon Ultra
centrifuge device. Proteins were extracted with a mixture of chloroform–methanol [44].
The reduction of disulfide bonds, the alkylation of sulfhydryl groups, and trypsinolysis
were performed on Vivaspin 500 centrifuge filters with a 10,000 Da membrane, as described
in [44]. Samples were evaporated using a 5301 vacuum concentrator (Eppendorf, Hamburg,
Germany), dissolved in 0.1% formic acid and analyzed using liquid chromatography
tandem mass spectrometry (LC-MS/MS).

4.6. The Mass Spectrometric Analysis (LC-MS/MS)

The mass spectrometric analysis was performed using an Ultimate 3000 RSLCnano
(Thermo Scientific, Waltham, MA, USA) integrated system for high-performance liquid
separation of peptides in the nanoflow mode. Chromatographic separation of peptides was
carried out on an analytical reverse phase column Acclaim Pepmap® C18 (75 μm × 150 mm,
2 μm particle size, Thermo Scientific, USA) in a linear elution gradient of mobile phase A
(0.1% aqueous solution of formic acid) and mobile phase B (80% acetonitrile, 0.1% formic
acid) from 2% to 40% at a flow rate of 0.3 μL/min for 60 min, followed by equilibration of
the chromatographic system in the initial conditions of the gradient (A:B = 2:98) for 5 min.

A Thermo Scientific Q Exactive HF-X mass spectrometer equipped with a nanoelec-
trospray ionization source (nESI) was operated in the positive ionization mode with a
resolution of 120,000 at m/z 200, the ion accumulation volume in the trap was set to 1 × 106,
the ion accumulation time in the trap was maximum 50 ms. The dominant charge state
of precursor ions was set as 2+, charge states above 4+ and below 2+ were excluded from
further analysis. Scanning of tandem spectra was carried out in the mode of automatic
selection of 20 dominant peaks of precursor ions recorded at m/z = 350–1400. The resolution
for detecting fragment ions was set to 15,000 at m/z 200, the ion accumulation volume in
the trap was 1 × 105, and the ion accumulation time in the trap was a maximum of 50 ms.
Parent ions were isolated in a window of 2.0 m/z offset by 0.5 m/z for better isotope capture.
Measured precursor ions were excluded from subsequent analysis for 20 s after scanning.
The obtained mass spectrometric data with the *.raw extension were processed by the
MaxQuant software (v 1.6.3.4) with the built-in Andromeda search algorithm. Mouse (Mus
musculus) Swiss Prot/Uniprot complete proteome protein sequence database was down-
loaded from the Uniprot database with the addition of reversed sequences and commonly
encountered contaminating sequences to apply the target decoy approach. The method
was used to calculate the FDR (False Discovery Rate) parameter; the FDR parameter of
1% was taken as a cutoff for protein registration. The following parameters were used
for signal extraction and its subsequent processing: the proteolytic cleavage enzyme was
trypsin; the maximum allowable amount of intrapeptide residues of lysine or arginine
was not more than 1; and the allowable error in measuring the monoisotopic mass of the
peptide was ±0.01 Da, and the allowable error in measuring the fragment ion was ±0.05 Da.
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Carbamide methylation of cysteine residues was chosen as a fixed chemical modification,
and methionine oxidation was chosen as a variable modification [20].

The relative abundance (quantitation) of the proteins defined as an emPAI value
(Exponentially Modified Protein Abundance index) was based on the protein coverage by
the peptide matches in a database search result. The obtained proteome was percolated to
extract proteins for bioinformatic analysis. The confidence score for these proteins was at
least 95%.

Each protein presented in the tables was identified in at least three independent
experiments with a Bonferroni-adjusted p-value cut-off of 0.001 (raw p-value cut-off 0.01).
Protein function identification was performed using UniProt functional information.

4.7. Biosensor Analysis
4.7.1. Immobilization of Proteins

Measurements were performed with a Biacore T200 instrument (Cytiva, Marlbor-
ough, MA, USA), thermostated at 25 ◦C. The surface of the CM5 chip was activated by
a mixture 0.2 M 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide hydrochloride/0.05 M
N-hydroxysuccinimide for 7 min at 5 μL/min. The 50 μg/mL samples of pyruvate kinase,
LDH, aldolase, or GAPD in 10 mM acetate buffer, pH 5.0, pH 4.0, or pH 5.5, respectively,
were injected over an activated chip surface for 10 min at 5 μL/min followed by a 2 min in-
jection of HBS-EP buffer to remove excess ligand, and a 2 min injection of 1 M ethanolamine,
pH 8.5, to inactivate residual active groups.

4.7.2. Binding Measurements

Protein–protein interactions were monitored by injecting proteins dissolved at vari-
ous concentrations in buffer A (running buffer) at the flow rate of 10 μL/min for 5 min.
The sensor surface was regenerated between sample injections by washing with 1 M
NaCl in running buffer for 0.5 min at the flow rate of 50 μL/min. Interactions were es-
timated by subtracting the response in a blank flow cell from the response in a cell with
immobilized ligands.

Data analysis was performed using the BIAevaluation v.4.1 software. Kinetic rate
constants were calculated from the sensorgrams by globally fitting response curves obtained
at various ligand concentrations to the 1:1 binding model.

4.8. Bioinformatic Analysis of Protein–Protein Interactions

Analysis of protein interactions was performed using the STRING (version 11.5)
tool. Common proteins interacting with both full-length PKM1 and the PK peptide were
submitted for plotting an interactome map with at least 0.7 confidence interaction score.
Pathways and processes were picked up from the KEGG and Reactome databases provided
that FDR was <1.0 × 10−5, the interaction strength coefficient was more than 1.0, and
a subset of at least four different members of the network fell into the certain pathway
or process. We selected the most preferable signaling pathways and biological processes
that fit the proposed network of interactions. The resultant map contained 15 nodes and
60 edges in the interactome (with the confidence level at least 0.40 and higher, and the
average local clustering coefficient of 0.698).

5. Conclusions

The affinity-based proteomic profiling of mouse brain proteins, performed by using
highly purified PKM1 as the affinity ligand, resulted in the identification of 44 PKM1-
binding proteins. Since one of the identified proteins was PKM, the immobilized affinity
ligand, purified rabbit muscle PKM1, was functionally competent to form PKM oligomers.
This suggests involvement of the interface contact region in the interaction with PKM bind-
ing proteins. The use of the 32-mer peptide (PK peptide) significantly increased the reper-
toire of brain proteins bound to this affinity ligand. Nevertheless, there were 15 common
proteins bound to both PKM1 and the PK peptide. These common proteins form a protein
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network (interactome) and some interactions especially with proteins involved in protein
folding and chaperoning are relevant for moonlighting functions of PKM1.
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Abstract: Precise characterization of a tissue’s extracellular matrix (ECM) protein composition (ma-
trisome) is essential for biomedicine. However, ECM protein extraction that requires organ-specific
optimization is still a major limiting factor in matrisome studies. In particular, the matrisome of
mouse kidneys is still understudied, despite mouse models being crucial for renal research. Here, we
comprehensively characterized the matrisome of kidneys in healthy C57BL/6 mice using two ECM
extraction methods in combination with liquid chromatography tandem mass spectrometry (LC-
MS/MS), protein identification, and label-free quantification (LFQ) using MaxQuant. We identified
113 matrisome proteins, including 22 proteins that have not been previously listed in the Matrisome
Database. Depending on the extraction approach, the core matrisome (structural proteins) comprised
45% or 73% of kidney ECM proteins, and was dominated by glycoproteins, followed by collagens
and proteoglycans. Among matrisome-associated proteins, ECM regulators had the highest LFQ
intensities, followed by ECM-affiliated proteins and secreted factors. The identified kidney ECM
proteins were primarily involved in cellular, developmental and metabolic processes, as well as in
molecular binding and regulation of catalytic and structural molecules’ activity. We also performed
in silico comparative analysis of the kidney matrisome composition in humans and mice based
on publicly available data. These results contribute to the first reference database for the mouse
renal matrisome.

Keywords: extracellular matrix; matrisome; kidneys; proteomics; mass spectrometry; mouse; tissue
extraction; protein identification; label-free quantification (LFQ) of proteins

1. Introduction

The extracellular matrix (ECM) is a complex macromolecular network that surrounds
the cells of all tissues and organs [1]. The ECM is a product of the cells; thus, it is organ-
and tissue-specific. By providing adhesion and anchorage to the cells [2], the ECM ensures
tissue integrity. The composition and architecture of the ECM change with modifications
of cellular phenotypes. In turn, the differentiation and biological activity of the cells are
reciprocally controlled via signaling from the ECM [1,3,4]. Proteins of the ECM (collectively
termed the “matrisome” [5]) play an essential role in tissue and organ development [6]
and cellular metabolism [7]. According to the classification proposed by Naba et al. [5],
the matrisome consists of the “core matrisome” and “matrisome-associated proteins”. The
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core matrisome is formed by structural ECM components (collagens, ECM glycoproteins
and proteoglycans) [8,9]. The term “matrisome-associated proteins” covers the proteins
which are found in the ECM but can not be classified as core matrisome components. These
proteins are further categorized as (i) ECM-affiliated proteins, which have a similar archi-
tecture to ECM proteins and/or are known to be associated with ECM proteins, (ii) ECM
regulators, and (iii) secreted factors, which are shown to interact with the ECM [5,10].
Identified matrisome proteins of different human and mouse tissues and tumors are de-
posited in the “Matrisome Database” (MD) (http://matrisomeproject.mit.edu/, accessed
on 23 January 2023).

Pathological changes of the matrisome (e.g., excessive accumulation, destruction
or dysfunctionality of certain proteins or protein groups) orchestrate many diseases of
diverse etiologies, with particular involvement in inflammation, wound healing, cancers
and fibrosis [11–13]. A deep analysis of the matrisome is an invaluable instrument for
understanding tissues’ and organs’ functions, as well as the mechanisms and biomarkers
of various diseases.

In the last decade, mass spectrometry (MS) has become the leading analytical approach
in matrisome studies. It is intensively used for the discovery of biomarkers and assessment
of the ECM [14]. Rapid technological developments in proteomics, such as enhanced sample
preparation protocols, database searching, and bioinformatics analysis now allow unbiased
protein quantification, identification and characterization, including the discovery of post-
translational modifications (PTMs) [15]. However, despite these impressive advancements,
standard protein extraction techniques, which use whole tissue lysates, need to be better
adapted to matrisome studies. The continuing challenges in ECM proteomics are the
enrichment of matrisome proteins in the samples by separating low-abundance ECM
proteins from intracellular proteins, and solubilizing heavily cross-linked [9] extracted
proteins. Additionally, identification and quantification of the matrisome proteins in the
presence of abundant PTMs is a complex task [16].

To tackle the difficulty of matrisome enrichment, several variations of decellularization
methodologies that gradually reduce the amount of cellular components in the sample
while preserving the ECM proteins have been proposed. The most widely used extraction
method applicable for proteomic studies of the matrisome [5,17–20] employs a commercially
available kit from Millipore for tissue protein fractionation by sequential incubations of the
sample in buffers of different pH, salt and detergent concentrations. This procedure results
in the biochemical separation and removal of the proteins of the cells’ cytosolic, nuclear,
membrane and cytoskeletal compartments. It then allows the enrichment of ECM proteins
in the residual insoluble product. This method is further referred to as “Compartmental
Matrix Enrichment” (CME). Another method is termed “Sequential Matrix Enrichment”
(SME). It uses guanidine hydrochloride (Gu-HCl) to further solubilize insoluble matrisome
proteins after a decellularization step [20–23]. This extraction method is performed with an
ionic (NaCl) buffer to additionally extract loosely bound ECM proteins (enzymes, secreted
factors, ECM-associated and newly deposited proteins), as well as a low-concentration
detergent (sodium dodecyl sulphate, SDS) with a shorter incubation time to eliminate
intracellular proteins, and then uses a Gu-HCl buffer to enhance the obtaining of heavily
cross-linked ECM proteins.

In the current study, we applied these two ECM extraction methods (Figure 1a) to
explore the matrisome of kidneys in healthy adult mice with an overall goal of creating
a reference database for future renal research. This work was particularly motivated by
the fact that, now, information on the matrisome composition of mouse kidneys is very
limited and incomplete. While mouse models are crucial for studies of renal morphogenesis
and diseases [24], chronic kidney disease (CKD) [25], as well as for drug and biomarker
discovery [26,27], only two recent studies are currently available on the identification of
ECM proteins in the insoluble tissue fractions of mouse kidney extracts [20,28]. Importantly,
the methodology applied in these studies did not allow the identification of loosely bound
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ECM proteins, which suggests incomplete characterization of the matrisome. Moreover,
quantification of ECM proteins in mouse kidneys has yet to be achieved.

Figure 1. Schematic illustration of the methods applied in the current study. (a) Matrisome protein
extraction from healthy mouse kidneys by CME and SME methods. (b) Further processing and analy-
sis of proteins after obtaining samples from methods CME and SME. Yellow color in the extraction
products indicates the supernatant, and the orange color shows insoluble pellets. Abbreviations: SDS
(Sodium Dodecyl Sulfate) and Gu-HCl (Guanidine Hydrochloride).

The matrisome proteins extracted using CME and SME methods were further studied
with liquid chromatography using a tandem mass spectrometry (LC-MS/MS) system
(Figure 1b). Firstly, the identified proteins were explored with the Matrisome Database
(MD) and UniProt databases. To compare the abundance of identified matrisome proteins
from the two extraction methods, MaxQuant label-free quantification (LFQ) was employed,
and the data was then analyzed using LFQ-Analyst [29].

2. Results

2.1. Qualitative Analysis of Mouse Kidney Matrisome
2.1.1. Identification of the Proteins of the Mouse Kidney Matrisome

The raw data results of the proteomic study are available in Table S1 in Supplementary
Materials.

Based on unique peptides, a total of 2442 proteins were identified by the CME and SME
methods. Collectively, this resulted in the identification of a total of 113 matrisome proteins
in healthy mouse kidneys. The summary on the mouse kidney matrisome composition
identified in the current study is shown in Figure 2. The detailed and referenced lists of
the matrisome proteins identified in the current study by using CME and SME approaches
and classified by the MD divisions and categories are presented in Table A1 (collagens),
Table A2 (ECM glycoproteins), Table A3 (ECM proteoglycans), Table A4 (ECM regulators),
Table A5 (ECM-affiliated proteins), and Table A6 (ECM secreted factors), in Appendix A.
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Figure 2. Identified matrisome proteins with unique peptides obtained from the samples processed
via CME and SME methods. Venn diagram illustrates the common and unique matrisome proteins
identified using each method. The proteins highlighted proteins in yellow have not been previously
listed in the MD.

As follows from Figure 2, among the proteins identified by combination of the two
ECM extraction and enrichment methods, 51 (45%) were classified as core matrisome
proteins. By frequency of observation, the core matrisome of healthy mouse kidneys was
dominated by ECM glycoproteins (28 identified proteins), followed by sixteen collagens
and seven ECM proteoglycans. The remaining 62 identified proteins (55%) were regarded
as matrisome-associated proteins. Most of the identified matrisome-associated proteins
belonged to the category of ECM regulators (36 proteins). This division of the matrisome
also included nineteen ECM-affiliated proteins and seven secreted factors.

Notably, 22 proteins among the 113 identified ECM proteins have not been previously
classified in the MD (see Figure 2, the yellow highlights; refer to Table A7, Appendix A for
the more detailed descriptions). These 22 proteins were attributed as matrisome compo-
nents based on their extracellular location, functions, and, also, on their interactions with
extracellular proteins—as reported in the literature and in the UniProt database. Then,
they were classified into the Matrisome categories of ECM glycoproteins, ECM regulators,
ECM-affiliated proteins, and secreted factors. The majority of the newly classified mouse
kidney matrisome proteins belonged to the division of the matrisome-associated proteins,
including 14 ECM regulators, five ECM-affiliated proteins, and two secreted factors, and
only one was classified as a core matrisome component (an ECM glycoprotein: Galectin-3-
binding protein). Notably, six of these matrisome proteins identified in mouse kidneys for
the first time were revealed only by SME.
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2.1.2. Gene Ontology Analysis of Identified Mouse Matrisome Proteins

Gene Ontology (GO)-enriched terms analysis based on the top five biological pro-
cesses revealed that the majority of the identified mouse kidney matrisome proteins
primarily belonged to the classes of “cellular process” (GO:0009987), “developmental
process” (GO:0032502), “response to stimulus” (GO:0048583) and “metabolic processes”
(GO:0019538) and other processes, including multicellular organismal processes, biologi-
cal adhesion localization, immune system processes, locomotion, interspecies biological
processes, reproductive processes, behavior, biomineral tissue development, growth, vi-
ral processes, trans-synaptic signaling, removal of superoxide radicals and estrous cycle
(Figure 3a). These attributions indicate a key involvement of the matrisome in the regula-
tion of the cellular physiological activity in the kidneys.

Figure 3. Mapping of the identified healthy mouse kidney matrisome proteins against GO
terms using Uniprot database: (a) GO terms for the Biological Process and (b) GO terms for the
Molecular Function.

The top five GO-enriched terms for molecular function of identified proteins revealed
the “binding (GO:0005515)” proteins, which interact with other molecules via a specific site,
as a leading category. This was followed by “regulation of catalytic activity (GO:0050790)”,
“structural molecule activity” (GO:0005198), “molecular function regulator” (GO:0098772),
“transporter activity” (GO:0005215) and others including signaling receptor activity, tran-
scription coregulators, scavenger receptor activity, antioxidant activity, ATPase activity,
translation activator activity and protein–macromolecule adaptors (Figure 3b).

2.1.3. Comparative Efficiency of ECM Extraction Methods in Mouse Kidneys
Matrisome Identification

Table A8 in Appendix A shows the outcomes of the CME and SME methods in
detection of matrisome composition in terms of the number of proteins belonging to
various categories of the matrisome. As follows from Figure 2 and detailed in Table A8,
the SME method allowed identification of more matrisome proteins than CME (105 vs.
83, respectively).

There were no statistically significant differences in identification of proteins belonging
to matrisome divisions and categories compared to the total number of proteins revealed by
each method individually or both methods in total. However, in comparing the 113 mouse
kidney matrisome proteins identified in total in the current study to the combination of
two ECM extraction methods, SME contributed to the observed outcomes more than CME
(105/113, or 93% vs. 83/113, or 73%, with the CI95% [87; 99]% vs. [64; 82]%, respectively).
The relative efficiency of CME and SME in the detection of core matrisome proteins was
statistically similar (41%, CI95% [31; 51]% vs. 38% CI95% [28; 48]%, respectively). At the
same time, SME identified more matrisome-associated proteins than CME in the totally
detected matrisome (62/113, or 55%, CI95% [45; 65]% vs. 37/113, or 33%, CI95% [23; 42]%,
respectively). Both of the ECM enrichment methods used in this study demonstrated
similar efficiency in identification of the proteins belonging to the subordinal categories of
the matrisome.
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2.1.4. Comparative Analysis of the Composition of the Mouse and Human
Kidney Matrisome

Next, we compared our results regarding matrisome protein identification with the pub-
lished data on the healthy mouse kidney ECM proteins identified in recent studies [20,28,30]
and the published data on the matrisome proteins from healthy human kidneys [31,32]. It
is important to note that across the studies included in this comparison, different protein
extraction and analysis methods were used (Figure A1 in Appendix A). There was also a
variation in the sample size, age and gender of mice and humans (Table A9 in Appendix A).

By combining our data with other published data obtained in mouse kidney matrisome
studies [20,28,30], in total 229 different proteins have been identified. Prior studies [31,32]
together identified 178 matrisome proteins in adult human kidneys. The comparison of
mouse and human data revealed that 134 matrisome proteins are shared between mouse
and human matrisomes, while 95 of these proteins were found only in mouse kidneys and
44 were identified only in human kidneys (Tables A10–A15 in Appendix A).

A summary of the contribution of the identified proteins of different categories to
mouse and human matrisomes based on the data reported in the current study and the
cited references is shown in Figure A2 in Appendix A. This figure indicates that the
qualitative composition of mouse and human matrisome is similar. The average numbers
of identified matrisome proteins in mouse and human kidneys are 126 and 124, respectively.
A similar number of proteins were identified in the matrisome categories as well (eighteen
and seventeen collagens, forty-one and forty-three ECM glycoproteins, seven and nine
proteoglycans, thirty-seven and twenty-nine ECM regulators, seventeen and nineteen
ECM-affiliated proteins, and seven and nine secreted factors, respectively).

2.2. Mouse Kidney Matrisome Protein Quantification

The quantitative characterization of the healthy mouse kidney matrisome was per-
formed by analyzing the MaxQuant LFQ protein intensities data. The analysis revealed
a total of 87 distinct matrisome proteins that were able to be quantitatively examined
(Figure 4).

Figure 4. Relative abundance of matrisome proteins in healthy mouse kidneys according to
MaxQuant LFQ protein intensities. The results are presented separately for the products of CME and
SME methods.

From the total LFQ intensities, the core matrisome of the healthy mouse kidneys is
predominantly composed of ECM glycoproteins (45% or 51%, as quantified following the
CME and SME sample preparation methods, respectively). Collagens comprise 36% of the
core mouse kidney matrisome according to both extraction methods. Proteoglycans form
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19% or 13% of the core matrisome, according to the quantifications of the samples prepared
by CME and SME, respectively. The matrisome-associated proteins in mouse kidneys are
represented mostly by the ECM regulators, followed by the ECM-affiliated proteins and
secreted factors.

The detailed presentation of the results of quantitative analysis of the mouse kidney
matrisome is visualized in Figure 5. As can be seen from this figure, using both ECM
enrichment methods, collagen type IV (Col4a1) is defined as the most abundant collagen,
with collagen type VI (Col6a1, Col6a2, Col6a3) and collagen type XVIII (Col18a1) also
being expressed at above the average level of LFQ intensities observed for collagens. The
most highly expressed ECM glycoproteins quantified in the products of both CME and
SME include nidogen (Nid1, Nid 2), agrin (Agrn), laminin (Lama5, Lamb2, Lamc1), and
fibronectin (Fn1). The top-expressed proteoglycan is perlecan (Hspg2). Among ECM regu-
lators, the top-expressed proteins include meprin A (Mep1a, Mep1b), protein-glutamine
gamma-glutamyltransferase 2 (Tgm2), serpin H1 (Serpinh1), and Dipeptidyl peptidase 4
(Dpp4). The category of ECM-affiliated proteins is dominated by the complement compo-
nent 1 Q subcomponent-binding protein (C1qbp), protein ERGIC-53 (Lman1), and annexin
A2 (Anxa2; plus, Anxa5 and Anxa6 that were only overexpressed in the product of SME).
Overexpressed matrisome-associated secreted factors included uromodulin (Umod) and
hepatoma-derived growth factor (Hdgf).

Some of the quantifiable proteins were more abundant either in CME or SME, while
other proteins were detected in similar intensities in the products of both extraction meth-
ods. In general, CME allowed quantification of more intensities of core matrisome proteins,
but fewer ECM-associated proteins, compared to SME. On the other hand, SME processing
detected a higher abundance of ECM-affiliated proteins, ECM regulators and secreted
factors than did CME. The complete list of protein FC data between SME fractions and
CME is presented in Table S2 in the Supplementary Information.

The comparative analysis of the LFQ quantification of ECM proteins extracted by
CME and SME methods also revealed the following. Fifty one matrisome proteins (ten
collagens, sixteen ECM glycoproteins, three proteoglycans, eleven ECM regulators, seven
ECM-affiliated and four secreted factors) were shared between the products of both extrac-
tion methods. CME additionally allowed quantification of six matrisome proteins (two
collagens, one ECM glycoprotein, two proteoglycans and one ECM regulator). SME added
another 30 quantifiable matrisome proteins to the list (two ECM glycoprotein, fifteen ECM
regulator and twelve ECM-affiliated and one secreted Factor). The comparative analy-
sis of the quantification efficiency of the two studied protein extraction methods shows
that there were no significant differences in abundances of shared matrisome proteins.
However, higher FCs were observed in the majority of the proteins in CME, with the
exception of one collagen (Col14a1), four ECM regulators (Ace, P4hb, Plg and Nucb1), four
ECM-affiliated (Anxa2, Anxa5, Anxa6 and Lgals3) and two secreted factors (S100a10 and
S100a11) (Figure A3 in Appendix A).

Furthermore, the comparison of CME with SME fractions showed that Ace, Mep1b
and Ctsa (ECM regulators, and matrisome-associated proteins) were significantly higher
in SME-F1 fraction, compared to CME, whereas CME obtained more abundances of core
matrisome proteins including ECM glycoproteins such as Nid1, Nid2, Tinagl1 and Agrn.
There were significant FC differences for some matrisome proteins in the comparison
between SME-F2 fraction and CME. Serpina1a and A2m are matrisome-associated ECM
regulators and were 49.8 (p-value < 0.0001) and 20.1 (p-value < 0.001) folds higher in SME-
F2, respectively. Nid1 and Lamb1 are core matrisome ECM glycoproteins and were 64.4
(p-value < 0.001) and 33.3 (p-value < 0.001) folds higher in CME, respectively, compared
to SME-F2. These observations indicate that specific extraction methods may be required
for the enrichment of specific matrisome proteins. The SME-F3 and CME comparison
also showed that the majority of highly abundant proteins are matrisome-associated (e.g.,
ECM-affiliated proteins and ECM regulators), whereas core matrisome proteins (e.g., ECM
glycoproteins and collagens) were higher in the CME.
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Figure 5. Heatmap of abundance of quantifiable matrisome proteins in the products of the CME and
SME methods of sample preparation. Color coding in the heatmap depicts the variation between the
maximum (coded in blue tones) to minimum (coded in red tones) observed LFQ intensity for each
matrisome category and protein extraction method. The protein names shown by blue and red fonts
are expressed above and below the average LFQ values in each matrisome category, respectively.
The color coding scales (from blue for maximum LFQ intensity to red for minimum intensity per
category) are provided on side of heatmaps (a–f).

In addition, we compared the composition of the quantifiable matrisome proteins in
SME fractions (Figure A4 in Appendix A). This analysis showed that 48, 42 and 56 matri-
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some proteins were quantitatively detected in SME-F1, SME-F2, and SME-F3, respectively.
Among core matrisome proteins, collagens and glycoproteins were mostly detected (LFQ
intensities) in SME-F1 and SME-F3, while proteoglycans were predominantly detected
in SME-F3. In parallel, different ECM-associated proteins were detected in different frac-
tions. However, SME-F2 allowed for the detection of more ECM regulators, ECM-affiliated
proteins and secreted factors alone compared to other fractions.

3. Discussion

The current understanding of matrisome composition and how it is regulated during
pathophysiological processes remains very limited. One of the major obstacles is the need
for optimization of ECM protein extraction and characterization methods. Many previous
studies which examined kidney tissues of different species mainly used the decellular-
ization approach that was developed for tissue engineering applications and involved
removal of cellular proteins followed by matrisome protein examination in the decellular-
ized scaffolds [33–35]. However, long detergent incubations in tissue engineering-focused
decellularization methods may cause degradation and elimination of some matrisome
proteins [36].

In the current study, we aimed to comprehensively characterize the mouse renal
matrisome using proteomic technologies. In order to overcome the limitations imposed by
the tissue engineering decellularization technologies, we first examined two ECM extraction
and enrichment methods (CME and SME) in healthy mouse kidney tissues (see Figure 1).

The first method, CME, relied on using a commercially available Millipore Compart-
ment Protein fractionation kit. This method biochemically separates subcellular proteins
and enriches matrisome proteins in the insoluble pellet at the final step of the extraction
series. The method is well documented in previous studies, and many ECM proteins have
been identified by using this extraction method. For example, Naba et al. [5] identified
100 matrisome proteins in mouse lungs and colon, Schiller et al. [18] identified 435 matri-
some proteins in healthy mouse lungs and Gocheva et al. [19] identified 113 matrisome
proteins in human lungs. Just recently, this method has been applied for the first time by
Lipp et al. [28] to identify 79 matrisome proteins of mouse kidneys. In our study using
Millipore Compartment Fractionation (here termed the CME method), we detected 83
matrisome proteins of which 16 proteins were not previously listed in the MD. Although
our study and Lipp et al. [28] used the same matrisome enrichment method, the protein
precipitation, deglycosylation and LC-MS/MS set-up were different. This could explain
the higher total number of matrisome proteins identified in our work, compared to the
reference [28]. It is important to note that the Millipore Compartment Fractionation only
analyses one fraction, while the loosely bound and soluble matrisome proteins potentially
remain in the “cellular” fractions that are not used in matrisome studies.

In an attempt to improve the ECM protein isolation on the second half of the same
kidney sample, we applied another matrisome enrichment method, a sequential matrix
extraction (SME). This method allowed the extraction of loosely bound or soluble matrisome
proteins using a high-salt buffer before removal of cellular components by SDS and enriched
the matrisome fractions by solubilizing the insoluble pellet with Gu-HCl [22]. Using a
method similar to our SME approach, Massey et al. [23] identified 79 matrisome proteins
from all three fractions of mouse liver. This extraction technique is potentially more
comprehensive for identifying matrisome proteins, but it has not yet been optimized
for kidney tissue. Our study, for the first time, used this sequential approach (SME)
to identify matrisome proteins in mouse kidneys. We have identified 105 matrisome
proteins, of which 22 proteins were yet to be listed in the currently available MD (http:
//matrisomeproject.mit.edu/, accessed on 23 January 2023) (see Figure 2). Compared to the
results obtained by Lipp et al. [28], our study could distinctly detect 57 matrisome proteins.
These 57 proteins included mostly the matrisome division of ECM-associated proteins.
We can infer from these findings that SME fractions allow for more efficient detection of
ECM-associated proteins compared to CME.
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It should be noted that the location of most of the 22 proteins have not previously been
exclusively attributed to ECM compartments, but to different “Gene Ontology-Cellular
Components” or/and “Subcellular Locations”, including ECM space/regions in UniProt.
For example, Nucleobindin-1 (Nucb1) was previously shown to be localized in the Golgi
apparatus, cytoplasm, or extracellular regions which were inferred from genome-based
computational annotations (https://www.uniprot.org/help/gene_ontology). However,
it was additionally manually asserted in UniProt as “Secreted” and recently it has been
shown that Nucb1 is secreted with metalloproteinase-2 (MMP-2) and regulates ECM
remodeling [37]. Hence, we described this protein as an ECM-regulator. Another set of
examples includes enzymes with transmembrane domains such as Ace, Ace2, Dpp-4 and
Mme. These enzymes are localized at the cell surface and have extracellular, cytoplasmic
and transmembrane domains. However, it has been shown that they may also be present
in soluble forms after cleavage and play a role in ECM remodeling ([37–42]). Similar to the
examples above, we referred to the literature in order to confirm the identified proteins as
components of the matrisome (see Table A7 in Appendix A).

We then compared mouse matrisome proteins identified by studies of McCabe et al. [20],
Lipp et al. [28] and Liu et al. [30], and human matrisome proteins identified by the studies of
Louzao-Martinez et al. [31] and Randles et al. [32]. These studies also differed in matrisome
protein enrichment, protein precipitation, deglycosylation, digestion and LC-MS/MS meth-
ods (see Figure A1, Table A9 in Appendix A). The comparison was undertaken to identify
mouse and human species-specificity of kidney matrisome proteins. The comparison could
identify 95 matrisome proteins only identified in mice and 44 only identified in human
kidneys (see Tables A10–A15 in Appendix A). Interestingly, five of the matrisome proteins
shown in this study—namely Lgals3bp (glycoprotein), Mfge8 (glycoprotein) Emcn (ECM-
affiliated), Apoe (ECM regulator) and Sod3 (ECM regulator)—were previously identified
only in human kidneys but not in mouse kidneys [32]. However, among mouse kidney
studies, only our work identified those proteins in mouse kidneys. Hence, our study shows
the necessity of using different approaches to identify matrisome proteins and thus develop
a robust matrisome protein list.

In addition to matrisome protein identification, our study for the first time allowed
quantification of the ECM proteins extracted from heathy mouse kidneys. We performed
a discovery proteomics study known as shotgun proteomics, which uses bottom-up ap-
proaches based on unbiased analysis. To compare the quantities of proteins obtained via
each extraction method, we applied label-free-based quantification (LFQ) data generated
with MaxQuant analysis [29]. This is a widely used method in which the quantitation can
be performed either based on chromatographic ion intensities or based on spectral counting
of identified proteins [43]. It provides high throughput and does not have the limitations of
label-based quantifications such as high complexity of sample preparation, requirement
of high concentrations of samples and incomplete labelling [15,43]. In our study using
LFQ, we successfully quantified 57 matrisome proteins via CME and 81 proteins via SME
(see Figure 5). Some of the quantifiable proteins were more abundant either in CME or
SME. This study demonstrated that CME could detect greater intensities of core matrisome
proteins, but fewer ECM-associated proteins, compared to SME (see Figure 4). To show
the benefit of each extraction method, which can be used as a guideline to study different
matrisome proteins in different kidney diseases, we compared SME fractions with CME,
separately (see Table S2 in Supplementary Information). For example, IgA nephropathy
(IgAN), which is one of the most prevalent chronic glomerular diseases, had significantly
more matrisome proteins (Col4a1, Lamb1, Hspg2, Emilin, Fgg and Fbln) in diseased pa-
tients compared to healthy patients [34]. These proteins could be better detected using
CME, while Col4a1 and Col15a1, which can be detected by both methods and were also
elevated in IgAN, could be better detected by CME or in the SME-F3 fraction. In renal
fibrosis, the hallmark of CKD, it is known that Col 1, 2, 3, 5, 6, 7 and 15, Fn1, Dcn and Bgn
accumulate in the ECM [44]. We detected those matrisome proteins using both extraction
methods, although some of them had higher abundances in CME product. Collectively,
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CME was powerful at extracting several matrisome proteins in higher abundances, while
SME allowed for the quantification of more matrisome proteins.

Subsequently, we quantitatively analyzed matrisome proteins in SME fractions. It has
previously been shown in mouse lung [21] and liver [23] that sequential extraction methods,
similar to that of the SME used in our study, can extract loosely bound matrisome proteins
by using a NaCl buffer which displaces polyanionic interactions and further solubilizes
the insoluble proteins using Gu-HCl [21,23]. The SME-F1 fraction allowed detection of
mostly secreted, basement membrane proteins and some interstitial matrix proteins (Col1
and Col6). SME-F3 distinctly revealed proteoglycans which could not be found in other
fractions, but also detected interstitial matrix and basement membrane proteins. Conversely,
the SME-F2 fraction allowed for detection of only a few core matrisome proteins which
are located in the interstitial matrix, and also secreted and basement membrane proteins.
Although the fractions of the extracted samples revealed matrisome proteins from different
ECM locations, each fraction had advantages in extracting different matrisome proteins.

Although many matrisome proteins identified in this study have also been previously
identified in other studies, our study was able to detect additional matrisome proteins.
The most plausible explanation is the use of different extraction methods. For example,
LOX enzymes, which are involved in collagen cross-linking, could not be detected in our
extraction methods, but were detected in another mouse kidney proteomic study where
different extraction methods were used with a combination of a modified deglycosyla-
tion/protein digestion process [20,28]. In addition, the removal of glycosaminoglycans
(GAGs) by digestion enzymes such as chondroitinase and heparinase has been suggested
to improve peptide identification [22,45,46]. However, McCabe et al. [20] reported that
using GAG-digesting enzymes only improved proteoglycan identification, but not for other
matrisome proteins. It is important to note that this study was performed on healthy
kidney tissue, while it is known that GAG deposition in the ECM is increased during
disease, e.g., fibrosis [47,48]. Hence, the opportunities for the improvement of analysis
by GAG-digesting enzymes are still not completely clear, and our study is limited as we
used only PNGaseF to remove N-glycans. We would suggest performing a pilot study
using GAG-digesting enzymes to analyze whether it improves matrisome protein iden-
tification before applying it to all samples. Finally, the native biological variation in the
proteome needs to be considered. In particular, the role of the age of the animals has been
demonstrated in several tissue-specific proteomic studies in mice [49,50].

4. Materials and Methods

4.1. Animal Preparation and Kidney Tissue Collection

Mouse kidney tissues were obtained via the post-mortem animal tissues sharing
program encouraged and approved by the UNSW Animal Care and Ethics Committee
(ACEC). WT C57BL/6 mice (female, aged 4–10 weeks, Australian Bioresources, Moss
Vale NSW, Australia) were housed in a stable environment at 21 ± 2 ◦C with a 12 h/12 h
light-dark cycle. On the day of experimentation, the animals were anesthetized with 4%
vaporized isoflurane delivered into an induction chamber and euthanized by cervical
dislocation. First, the retinas were collected for the main experiment approved by the
UNSW ACEC. After that, the animal bodies were placed on ice and underwent further
dissection and kidney extirpation. The obtained kidneys were kept on ice, and one of the
kidneys per animal was quickly transversely cut. Then, each half of a kidney (~50 mg) per
animal was designated for CME and SME protein extraction (see Figure 1a).

4.2. ECM Proteins Extraction

The dissected kidney tissue samples were processed using the CME and SME methods
of protein extraction as described below. For each extraction method, three biological
replicates were used.
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4.2.1. Compartmental Matrix Enrichment (CME) Method

The dissected kidney halves were grinded using a glass tissue homogenizer, on ice.
The homogenized tissue was processed using the CME method in the following way. The
Millipore Compartment Protein Extraction Kit (Merck-Millipore, Bayswater VIC 3153,
Australia, Cat. #2145) was used to deplete cytosolic, nuclear, membrane and cytoskeletal
proteins and to enrich ECM proteins as described in [17]. The obtained ECM enriched
pellets were washed with 1× PBS (1.7 mM KH2PO4, 5 mM Na2HPO4, 150 mM NaCl,
25 mM EDTA, pH 7.4) containing 1:100 (v:v) of protease inhibitors (PI) (Halt Protease
Inhibitor Cocktail, #78429, Thermo Scientific, North Ryde NSW 2113, Australia) three times
to remove detergents, and stored at −20 ◦C.

4.2.2. Sequential Matrix Enrichment (SME) Method

When using the SME method, enrichment of ECM proteins was performed according
to the protocol described elsewhere [22]. Briefly, half-kidney samples were diced into
2–3 mm pieces and washed five times with ice-cold 1x PBS containing 1:100 (v:v) of PI (Halt
Protease Inhibitor Cocktail, #78429, Thermo Scientific) to minimize blood contamination. To
extract ECM-associated, loosely bound ECM proteins and newly synthesized ECM proteins,
the washed samples were incubated in NaCl buffer (0.5 M NaCl, 10 mM Tris-HCl and
25 mM EDTA, pH 7.5 and 1:100 (v:v) of PI) for 1 h at room temperature (RT) by vortexing
at a speed of 65 rpm (Stuart Orbital Shaker). Samples were centrifuged at 16,000× g for
10 min at 4 ◦C and the supernatant was saved as Fraction 1. The pellet was treated with SDS
buffer (0.1% SDS, 25 mM EDTA and 1:100 (v:v) of PI) by vortexing at RT for 16 h at a speed
of 65 rpm and was centrifuged at 16,000× g for 10 min at 4 ◦C to separate intracellular
proteins. Then, pellets were treated with GuHCl buffer (4 M guanidine hydrochloride,
50 mM Na acetate, 25 mM EDTA, pH 5.8, and 1:100 (v:v) of PI) by vortexing at RT for
72 h at speed 225 rpm to solubilize ECM proteins. Supernatants after centrifugation at
16,000 × g for 10 min at 4 ◦C were saved as Fraction 2 and pellets were saved as Fraction
3 after washing three times with ice-cold 1x PBS containing 1:100 (v:v) of PI. All saved
fractions were stored at −20 ◦C.

4.2.3. Protein Precipitation

Pellets obtained from the CME and the three fractions obtained via SME methods
(see Figure 1b) were precipitated in EtOH separately to remove detergents/agents. Ten
times volume of ice-cold 100% EtOH was added to each fraction and incubated overnight
at −20 ◦C. Protein precipitates were obtained by centrifugation at 16,000× g for 10 min at
4 ◦C and then by drying pellets. Dried pellets were resuspended in the buffer (8 M urea in
100 mM ammonium bicarbonate, pH 8.0) for the following downstream processes.

4.2.4. Deglycosylation and In-Solution Digestion

Deglycosylation and in-solution digestion were performed as described in [17]. Briefly,
the obtained pellets for each fraction after protein precipitation were resuspended by
adding the appropriate volume (50 μL/5–10 mg dry weight) of 8 M urea and dithiotreitol
(DTT) at a final concentration of 10 mM. Samples were incubated with continuous agitation
at 150 rpm (Stuart Orbital Shaker) for 2 h at 37 ◦C.

Alkylation was performed by adding iodoacetamide (IAA) to a final concentration of
25 mM. To complete alkylation, the DTT:IAA ratio was adjusted to 1: 2.5 and incubation
was carried out in the dark for 30 min at RT.

Deglycosylation was performed by diluting urea to 2M using 100 mM ammonium
bicarbonate, pH 8.0 and adding 2 μL/5–10 mg dry weight (DW) of PNGaseF (Peptide-N-
Glycosidase F) (New England Biolabs, #P0704S). Samples were incubated with continuous
agitation at 150 rpm (Stuart Horizontal Shaker) for 2 h at 37 ◦C.

Digestion was continued by diluting samples with 100 mM ammonium bicarbon-
ate pH 8.0 to reduce the concentration of urea in the samples’ solution to 1 M. Then,
2 μL/5–10 mg DW of Trypsin/Lys-C (Endoproteinase LysC) Mix (Promega, Cat #V5071)
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was added to samples and incubated with continuous agitation at 150 rpm overnight at
37 ◦C. The digestion reaction was inactivated with freshly prepared 8 μL of 50% trifluoro-
acetic acid (TFA) per 5–10 mg DW of pellet to reach a final concentration of 1% of TFA. The
acidified samples were centrifuged at 16,000× g for 5 min at RT and the supernatants were
saved for desalting steps.

Desalting was performed by using Pierce C18 stage tips (#SP301, Thermo Scien-
tific). Prior to proteomics analysis, desalted peptides were eluted with freshly prepared
HPLC-grade water-based solution containing 60% acetonitrile and 0.1% TFA, followed
by concentrating in a vacuum concentrator. Samples were then resuspended in freshly
prepared 3% acetonitrile and 0.1% TFA water-based solution and analyzed via LC-MS/MS.

4.3. LC-MS/MS and Data Analysis

Digested peptides were separated using nanoLC with an Ultimate nanoRSLC UPLC
and autosampler system (Dionex, Amsterdam, The Netherlands). Samples (2.5 μL) were
concentrated and desalted onto a micro C18 precolumn (300 μm × 5 mm, Dionex) with
H2O:CH3CN (98:2, 0.1% TFA) at 15 μL/min. After a 4 min wash the pre-column was
switched (Valco 10 port UPLC valve, Valco, Houston, TX, USA) into line with a fritless nano-
column (75 μ × ~20 cm) containing C18AQ media (1.9 μ, 120 Å Dr Maisch, Ammerbuch-
Entringen, Germany) manufactured according to Gatlin. Peptides were eluted using a linear
gradient of H2O:CH3CN (98:2, 0.1% formic acid) to H2O:CH3CN (64:36, 0.1% formic acid)
at 200 nL/min over 30 min. High voltage (2000 V) was applied to low-volume Titanium
union (Valco) with the column oven-heated to 45 ◦C (Sonation, Biberach, Germany) and
the tip positioned at ~0.5 cm from the heated capillary (T = 300 ◦C) of a QExactive Plus
(Thermo Electron, Bremen, Germany) mass spectrometer. Positive ions were generated by
electrospray and the QExactive operated in data-dependent acquisition mode (DDA).

A survey scan m/z 350–1750 was acquired (resolution = 70,000 at m/z 200, with an
accumulation target value of 1,000,000 ions) and lock mass enabled (m/z 445.12003). Up
to the 10 most abundant ions (>80,000 counts, underfill ratio 10%) with charge states >
+2 and <+7 were sequentially isolated (width m/z 2.5) and fragmented by higher-energy
C-trap dissociation (HCD) (normalized collision energy, NCE = 30) with an automatic gain
control (AGC) target of 100,000 ions (resolution = 17,500 at m/z 200). M/z ratios selected
for MS/MS were dynamically excluded for 30 s.

MS raw files were analyzed by the MaxQuant software [51] (version 2.0.3.0), and
peak lists were searched against the mouse UniProt FASTA (reviewed and unreviewed)
database (version Aug 2019), and a common contaminants database using the Andromeda
search engine [52]. For protein identification and LFQ quantification, fractions of SME
were nominated as fractions in MaxQuant [53], and a proprietary Maxquant algorithm
was applied to merge and normalize the fractions to give an output as one sample. A
fixed modification carbamidomethylation (C) and variable modifications, oxidation (M,P),
acetyl (protein N-term), hydroxyproline, and deamidation (N,Q) were used. The false
discovery rate was set to 1% for proteins and peptides (minimum length of 7 amino acids)
and was determined by searching a reverse database. Enzyme specificity was set as trypsin
and lys-C, and a maximum of two missed cleavages were allowed in the database search.
Peptide identification was performed with an allowed precursor mass deviation of up to
4.5 ppm after time-dependent mass calibration and an allowed fragment mass deviation of
20 ppm. For LFQ, in MaxQuant, the minimum ratio count was set to two. For matching
between runs, the retention time alignment window was set to 30 min and the match time
window was 1 min.

For protein identification in CME vs. SME—the first round of matrisome protein
identification—unique peptides which were present in at least two of the biological replicates
were searched using “Matrisome Annotator” in the MD (http://matrisomeproject.mit.edu/,
accessed on 23 January 2023). The matrisome proteins were classified as core matrisome
proteins (collagens, ECM glycoproteins, and proteoglycans) and matrisome-associated
proteins (ECM-affiliated, ECM Regulators, and Secreted Factors). In the second round, the
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protein list obtained from LC-MS/MS was matched using the UniProt Database for Mus
musculus, and possible matrisome proteins were searched based on their tissue locations
using “extracellular matrix”, “extracellular space”, “basement membrane”, “secreted”,
“lysosome” and “exosome”. To verify potential candidates, their possible interactions with
matrisome proteins were searched in protein interaction databases (BioGRID, STRING).
In the final stage, the short list of proteins was searched in the literature to confirm that
proteins have been located in the ECM by other studies.

For protein quantification, LFQ intensity values were taken from the MaxQuant protein
“Groups” table, which represented the values after inter-experiment normalization [54].
Differential abundant analysis was performed using the LFQ-Analyst online software (https:
//bioinformatics.erc.monash.edu/apps/LFQ-Analyst/, accessed on 23 January 2023) [29].
Matrisome proteins which had LFQ intensities in at least 2 of 3 biological replicates were
included in the comparison of CME and SME or SME-fractions. In LFQ-Analyst, parameters
were set as Perseus-type imputation, adjusted p-value cutoff <0.05 and Log2 fold- change
(FC) cutoff = 1 (i.e., 2-FC). The comparison was presented with FC and p-values. All p-values
were corrected for multiple hypothesis testing using the Benjamini–Hochberg method.
Proteins with p < 0.05 and up- or downregulated 2-FC were presented as significantly
different between the samples obtained by the extraction methods CME and SME.

To compare the fractions of the SME and CME products, LFQ analysis was performed
separately for each SME fraction, and the same parameters used to compare CME and SME
were applied, although in this fraction comparison analysis, fractions were set as “separate
method” instead of as “fractions”.

5. Conclusions

In conclusion, a better understanding of the mouse kidney matrisome is likely to
inform future studies in the areas of kidney disease modelling, kidney development biology,
ageing and tissue engineering. In this study, we have successfully progressed knowledge
towards understanding the composition of the mouse kidney matrisome via identification
and quantification of matrisome proteins and via identification of a set of proteins which
were not previously listed as matrisome components. In addition, this study showed the
importance of using different protein extraction steps to fractionate matrisome proteins for
a better understanding of the mouse kidney matrisome composition. Hence, we suggest
to obtain different fractions of matrisome proteins to discover more ECM proteins for
further studies of kidney ECM turnover in normal and pathological conditions, and also
to identify novel drug targets and biomarkers for the treatment and diagnosis of chronic
kidney disease.
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Appendix A

Table A1. The list of core matrisome proteins belonging to the category of collagens and identified in
at least two of the biological replicates.

Protein ID Protein Name
Gene

Symbol

Identified by Method
Ref *

CME SME

P11087 Collagen alpha-1(I) chain Col1a1 + + MD
Q01149 Collagen alpha-2(I) chain Col1a2 + + MD
P08121 Collagen alpha-1(III) chain Col3a1 + + MD
P02463 Collagen alpha-1(IV) chain Col4a1 + + MD
P08122 Collagen alpha-2(IV) chain Col4a2 + + MD

Q9QZS0 Collagen alpha-3(IV) chain Col4a3 + − MD
Q9QZR9 Collagen alpha-4(IV) chain Col4a4 + − MD
Q9CPW5 Collagen alpha-5(IV) chain Col4a5 + + MD
O88207 Collagen alpha-1(V) chain Col5a1 + + MD
Q3U962 Collagen alpha-2(V) chain Col5a2 + + MD
Q04857 Collagen alpha-1(VI) chain Col6a1 + + MD
Q02788 Collagen alpha-2(VI) chain Col6a2 + + MD
Q61001 Collagen alpha-3(VI) chain Col6a3 + + MD
Q80X19 Collagen alpha-1(XIV) chain Col14a1 + + MD
O35206 Collagen alpha-1(XV) chain Col15a1 + + MD

P39061 Collagen alpha-1(XVIII)
chain Col18a1 + + MD

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; MD—Matrisome
Database; Reference *—source of information for the provided protein identification; “+” indicates that protein
has been identified; “−“ indicates that protein has not been identified by the method.

Table A2. The list of core matrisome proteins belonging to the category of glycoproteins and identified
in at least two of the biological replicates. A row highlighted in yellow describes an identified
matrisome protein which was not previously listed in the MD.

Protein ID Protein Name
Gene

Symbol

Identified by Method
Ref *

CME SME

A2ASQ1 Agrin Agrn + + MD
Q9QZZ6 Dermatopontin Dpt + − MD
Q91VF5 EMI domain-containing protein 1 Emid1 + + MD
Q99K41 EMILIN-1 Emilin1 + + MD
Q61554 Fibrillin-1 Fbn1 + − MD
Q61555 Fibrillin-2 Fbn2 − + MD
E9PV24 Fibrinogen alpha chain Fga + + MD
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Table A2. Cont.

Protein ID Protein Name
Gene

Symbol

Identified by Method
Ref *

CME SME

Q8VCM7 Fibrinogen gamma chain Fgg + + MD
P11276 Fibronectin Fn1 + + MD

A2ASQ1 Progranulin Grn − + MD

Q61581 Insulin-like growth factor-binding
protein 7 Igfbp7 + + MD

P19137 Laminin subunit alpha-1 Lama1 + + MD
P97927 Laminin subunit alpha-4 Lama4 + + MD
Q61001 Laminin subunit alpha-5 Lama5 + + MD
P02469 Laminin subunit beta-1 Lamb1 + + MD
Q61292 Laminin subunit beta-2 Lamb2 + + MD
P02468 Laminin subunit gamma-1 Lamc1 + + MD
Q07797 Galectin-3-binding protein Lgals3bp + + [55]
Q8K4G1 Latent TGF-b-binding protein 4 Ltbp4 − + MD
P21956 Lactadherin Mfge8 + + MD

A6H6E2 Multimerin-2 Mmrn2 + + MD
P10493 Nidogen-1 Nid1 + + MD
O88322 Nidogen-2 Nid2 + + MD
Q91V88 Nephronectin Npnt − + MD

Q99JR5 Tubulointerstitial nephritis
antigen-like Tinagl1 + + MD

P29788 Vitronectin Vtn + − MD

Q8R2Z5 von Willebrand factor A
domain-containing protein 1 Vwa1 + − MD

Q99KC8 von Willebrand factor A
domain-containing protein 5A Vwa5a − + MD

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; MD—Matrisome
Database; Ref *—source of information for the provided protein identification; ; “+” indicates that protein has
been identified; “−“ indicates that protein has not been identified by the method.

Table A3. The list of core matrisome proteins belonging to the category of proteoglycans and
identified in at least two of the biological replicates.

Protein ID Protein Name
Gene

Symbol

Identified by Method
Ref *

CME SME

Q99MQ4 Asporin Aspn + − MD
P28653 Biglycan Bgn + + MD
P28654 Decorin Dcn + + MD

Q05793
Heparan sulphate
proteoglycan core

protein
Hspg2 + + MD

P51885 Lumican Lum + + MD
Q62000 Mimecan Ogn + − MD
Q9JK53 Prolargin Prelp + + MD

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; MD—Matrisome
Database; Ref *—source of information for the provided protein identification; ; “+” indicates that protein has
been identified; “−“ indicates that protein has not been identified by the method.
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Table A4. The list of matrisome-associated proteins belonging to the category of ECM regulators and
identified in at least two of the biological replicates. Rows highlighted in yellow describe identified
matrisome proteins which were not previously listed in the MD.

Protein ID Protein Name
Gene

Symbol

Identified by Method
Ref *

CME SME

Q8JZZ0
Alpha-2-macroglobulin;

Alpha-2-macroglobulin 165 kDa subunit;
Alpha-2-macroglobulin 35 kDa subunit

A2m − + MD

P09470 Angiotensin-converting enzyme Ace + + [40]
Q8R0I0 Angiotensin-converting enzyme 2 Ace2 + + [38,39]

O35598 Disintegrin and metalloproteinase
domain-containing protein 10 Adam10 + + MD

P08226 Apolipoprotein E Apoe − + [56]
P50429 Arylsulfatase B Arsb − + [57]

Q99N23 Carbonic anhydrase 15 Ca15 + + [58]
Q62426 Cystatin-B Cstb - + MD
P16675 Lysosomal protective protein Ctsa + + MD
P10605 Cathepsin B Ctsb + + MD
P18242 Cathepsin D Ctsd + + MD
P49935 Pro-cathepsin H Ctsh + + MD

Q9WUU7 Cathepsin Z Ctsz − + MD
P28843 Dipeptidyl peptidase 4 Dpp4 + + [59,60]
P19221 Prothrombin F2 − + MD
Q571E4 N-acetylgalactosamine-6-sulfatase Galns − + [61]
Q8BFR4 N-acetylglucosamine-6-sulfatase Gns − + [62]
Q9ESB3 Histidine-rich glycoprotein Hrg − + MD

Q61703 Inter-alpha-trypsin inhibitor heavy chain
H2 Itih2 − + MD

O08677 Kininogen-1 Kng1 − + MD
P28825 Meprin A subunit alpha Mep1a + + MD
Q61847 Meprin A subunit beta Mep1b + + MD
Q61391 Neprilysin Mme + + [42]
Q02819 Nucleobindin-1 Nucb1 + + [37]
P09103 Protein disulfide-isomerase P4hb + + [63,64]
P20918 Plasminogen Plg + + MD
P06281 Renin-1 Ren1 − + [65]
P07758 Alpha-1-antitrypsin 1-1 Serpina1a − + MD
P22599 Alpha-1-antitrypsin 1-2 Serpina1b − + MD
Q00896 Alpha-1-antitrypsin 1-3 Serpina1c − + MD
P07759 Serine protease inhibitor A3K Serpina3k − + MD
Q60854 Serpin B6 Serpinb6 − + [66]
P19324 Serpin H1 Serpinh1 + + MD
O09164 Extracellular superoxide dismutase Sod3 + + [67]

Q9JLF6 Protein-glutamine
gamma-glutamyltransferase K Tgm1 + + MD

P21981 Protein-glutamine
gamma-glutamyltransferase 2 Tgm2 + + MD

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; MD—Matrisome
Database; Ref *—source of information for the provided protein identification; ; “+” indicates that protein has
been identified; “−“ indicates that protein has not been identified by the method.
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Table A5. The list of matrisome-associated proteins belonging to the category of ECM-affiliated
proteins and identified in at least two of the biological replicates. Rows highlighted in yellow describe
identified matrisome proteins which were not previously listed in the MD.

Protein ID Protein Name
Gene

Symbol

Identified by Method
Ref *

CME SME

P10107 Annexin A1 Anxa1 − + MD
P07356 Annexin A2 Anxa2 + + MD
O35639 Annexin A3 Anxa3 − + MD
P97429 Annexin A4 Anxa4 − + MD
P48036 Annexin A5 Anxa5 + + MD
P14824 Annexin A6 Anxa6 + + MD
Q07076 Annexin A7 Anxa7 − + MD
P97384 Annexin A11 Anxa11 − + MD

O35658 Complement component 1 Q
subcomponent-binding protein C1qbp + + [68,69]

Q62165 Dystroglycan Dag1 + + [70]
Q9R0H2 Endomucin Emcn + + MD
Q91X72 Hemopexin Hpx − + MD
P57016 Ladinin-1 Lad1 + + [71,72]
P16045 Galectin-1 Lgals1 + + MD
P16110 Galectin-3 Lgals3 + + MD

Q9D0F3 Protein ERGIC-53 Lman1 + + MD
P11152 Lipoprotein lipase Lpl + + [73,74]
B2RXS4 Plexin-B2 Plxnb2 + + MD
Q62219 TGF-b-1-induced transcript 1 protein Tgfb1i1 + + [75]

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; MD—Matrisome
Database; Ref *—source of information for the provided protein identification; ; “+” indicates that protein has
been identified; “−“ indicates that protein has not been identified by the method.

Table A6. The list of matrisome-associated proteins belonging to the category of secreted factors and
identified in at least two of the biological replicates. Rows highlighted in yellow describe identified
matrisome proteins which were not previously listed in the MD.

Protein ID Protein Name
Gene

Symbol
Identified by Method

Ref *
CME SME

P01132 Pro-epidermal growth factor Egf − + MD
Q8CJ70 Interleukin-19 Il19 + + MD
P14069 Protein S100-A6 S100a6 − + MD
P08207 Protein S100-A10 S100a10 + + MD
P50543 Protein S100-A11 S100a11 + + MD
Q91X17 Uromodulin Umod + + [76,77]

P51859 Hepatoma-derived growth
factor Hdgf + + [78,79]

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; MD—Matrisome
Database; Ref *—source of information for the provided protein identification; ; “+” indicates that protein has
been identified; “−“ indicates that protein has not been identified by the method.
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Table A7. Summary of the newly detected and classified mouse kidney matrisome proteins that are
not listed in the current Matrisome Database.

Protein ID Protein Name
Gene

Symbol
Identified by Methods

Role of Protein Reference
CME SME

Core matrisome: ECM Glycoproteins

Q07797
Galectin-3-

binding
protein

Lgals3bp + + ECM modulation, immune response [55]

Matrisome-associated proteins: ECM Regulators

P09470
Angiotensin-
converting

enzyme
Ace + + ECM remodeling [40]

Q8R0I0
Angiotensin-
converting
enzyme 2

Ace2 + + ECM remodeling [38,39]

P08226 Apolipoprotein E Apoe − + Protein binding [56]

P50429 Arylsulfatase B Arsb − +
Modulation of signaling in

cytoskeletal rearrangement and a
component of ECM

[57]

Q99N23 Carbonic
anhydrase 15 Ca15 + + Regulation of acid-base balance [58]

P28843 Dipeptidyl
peptidase 4 Dpp4 + + Signaling and

endothelial-mesenchymal transition [59,60]

Q571E4
N-

acetylgalactosamine-
6-sulfatase

Galns − + Glycosaminoglycan degradation [61]

Q8BFR4
N-

acetylglucosamine-
6-sulfatase

Gns − + Glycosaminoglycan degradation [62]

Q61391 Neprilysin Mme + + Elastin degradation [42]

Q02819 Nucleobindin-1 Nucb1 + + ECM remodeling and
metalloptroteinase-2 transport [37]

P09103 Protein disulfide-
isomerase P4hb + + Metalloproteinase activation and

platelet adhesion and migration [63,64]

P06281 Renin-1 Ren1 − + Protease activity [65]

Q60854 Serpin B6 Serpinb6 − + Protease binding [66]

O09164
Extracellular
superoxide
dismutase

Sod3 + + Removal of oxygen radicals and
response to hypoxia [67,80]

Matrisome-associated proteins: ECM-affiliated Proteins

O35658

Complement
component 1 Q
subcomponent-

binding
protein

C1qbp + + Regulation of complement activation
and cell adhesion [68,69]

Q62165 Dystroglycan
(α-Dystroglycan) Dag1 + + Laminin and dystroglycan binding [70,81]

P57016 Ladinin-1 Lad1 + + Component of basement membrane
and integrin signaling [71,72]

P11152 Lipoprotein
lipase Lpl + + Heparan sulphate binding and

lipolytic processing [73,74]

Q62219
TGF-b-1-induced

transcript 1
protein

Tgfb1i1 + + ECM remodeling and deposition [75]

Matrisome-associated proteins: Secreted Factors

Q91X17 Uromodulin Umod + + Regulation of kidney electrolyte
balance [76,77]

P51859
Hepatoma-

derived growth
factor

Hdgf + + Matrix bound growth factor [78,79]

Abbreviations: CME—compartmental matrix enrichment; SME—sequential matrix enrichment; “+” indicates that
protein has been identified; “−“ indicates that protein has not been identified by the method.
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Table A8. Composition of mouse kidney matrisome proteins identified in this study depending on
the ECM enrichment method.

Categories of
Identified Proteins

Number of Identified Proteins

CME SME Total, CEM and SME *

Total proteins 1526 2246 2442
Matrisome proteins 83 105 113

Including:
Core matrisome, overall 46 43 51

Including:
Collagens 16 14 16

ECM glycoproteins 23 24 28
Proteoglycans 7 5 7

Matrisome-associated proteins,
overall 37 62 62

Including:
ECM Regulators 19 36 36

ECM-affiliated Proteins 13 19 19
Secreted Factors 5 7 7

* This column shows all different proteins (identified based on unique peptides) obtained by CME and SME
methods together, without duplication of the proteins found by both methods.

Figure A1. Comparison of the methods of extraction of ECM proteins from mouse and human
kidneys tissues.
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Table A9. The comparative analysis of the matrisome composition revealed in mouse and human
kidney samples by different studies, including the current study, as well as publications by McCabe
et al. [20], Lipp et al. [28], Liu et al. [30], Louzao-Martinez et al. [31], and Randles et al. [32].

Characteristics Identification of Kidney Matrisome Proteins

Organism Mouse Mouse Mouse Mouse Human Human
Data source Our data McCabe et al. Lipp et al. Liu et al. Louzao-Martinez

2019 Randles 2021
# of methods

used 2 4 1 1 1 1
Age 4–10 weeks N/A adult 15 weeks 55 years 15–37 years

Gender F M N/A N/A M/F M
Strain C57BL/6J C67BL/6J C57BL/6J C57BL/6J N/A N/A
Size 3 3 3 N/A 13 3

# Total proteins 2442 N/A N/A 5044 N/A N/A
# Total matri-
someproteins 113 173 79 139 76 172

# Collagens 16 22 18 16 12 21
# GPs 28 55 38 41 33 53
# PGs 7 10 6 6 6 11

# ECM-regulators 36 57 9 46 11 47
# ECM-affiliated 19 22 6 20 9 28
# Secreted factors 7 7 2 10 5 12

N/A—not available; F—female; M—male; #—number of; GPs—ECM Glycoproteins; PGs—Proteoglycans.

Figure A2. The average composition of the matrisome revealed in mouse and human kidney samples
by different studies, including the current study, and the following publications by McCabe et al. [20],
Lipp et al. [28], Liu et al. [30], Louzao-Martinez et al. [31], and Randles et al. [32]. The bar graphs
show Mean ± Standard Deviation of the number of proteins in each category averaged across the
species-specific data reported in Table A9. Abbreviations: #—number of; GPs—ECM Glycoproteins;
PGs—Proteoglycans.
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Table A10. The combined list of core matrisome proteins belonging to the category of collagens and
identified in mouse and human kidneys. The mouse matrisome proteins were obtained from our
data and extracted from references [20,28,30]. Human matrisome proteins were obtained from the
studies [31,32]. Highlighted “X” refers to identified protein in the corresponding study.

Protein Name
Our data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

COL1A1 X X X X X X
COL1A2 X X X X X X
COL2A1 X
COL3A1 X X X X X
COL4A1 X X X X X X
COL4A2 X X X X X X
COL4A3 X X X X X
COL4A4 X X X X X
COL4A5 X X X X
COL4A6 X X
COL5A1 X X X X
COL5A2 X X X X
COL6A1 X X X X X X
COL6A2 X X X X X X
COL6A3 X X X X X
COL6A5 X X
COL6A6 X X
COL7A1 X
COL8A1 X
COL11A1 X
COL11A2 X
COL12A1 X X X X X
COL14A1 X X X X X X
COL15A1 X X X X X X
COL16A1 X X
COL18A1 X X X X X X
COL24A1 X

Table A11. The combined list of core matrisome proteins belonging to the category of ECM glycopro-
teins and identified in mouse and human kidneys. The mouse matrisome proteins were obtained
from our data and extracted from references [20,28,30]. Human matrisome proteins were obtained
from the studies [31,32]. Highlighted “X” refers to identified protein in the corresponding study.

Protein Name
Our data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

ADIPOQ X
AEBP1 X
AGRN X X X X X X
AHSG X
APOH X
CRELD1 X
CRELD2 X
DPT X X X X X
ECM1 X X X X
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Table A11. Cont.

Protein Name
Our data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

EFEMP1 X X
EFEMP2 X
ELN X X X X
EMID1 X X
EMILIN1 X X X X X X
FBLN1 X X X X
FBLN2 X
FBLN5 X X X X X
FBN1 X X X X X X
FBN2 X X
FGA X X X X X X
FGB X X X X X
FGG X X X X X X
FGL1 X
FGL2 X
FN1 X X X X X X
FRAS1 X X X X
IGFBP7 X X X X X X
KCP X X X X
LAMA1 X X X X X X
LAMA2 X X X X
LAMA3 X X X X X
LAMA4 X X X X X X
LAMA5 X X X X X X
LAMB1 X X X X X X
LAMB2 X X X X X X
LAMB3 X
LAMC1 X X X X X X
LAMC3 X X
LGALS3BP X X
LTBP1 X X
LTBP4 X X X X
MATN2 X X X X
MFAP2 X X X
MFAP4 X X X
MFAP5 X X X
MFGE8 X X
MMRN2 X X X X X
NID1 X X X X X X
NID2 X X X X X X
NPNT X X X X X
NTN1 X X
NTN4 X X
PAPLN X X X
POSTN X X X X X X
PXDN X X X X
SBSPON X X
SPARC X X
TGFBI X X X X X
THBS1 X X X
THSD4 X X
TINAG X X X
TINAGL1 X X X X X X
TNC X X X X
TNXB X
VTN X X X X X X
VWA1 X X X X
VWA2 X X
VWA5A X X X
VWF X X X
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Table A12. The combined list of core matrisome proteins belonging to the category of proteoglycans
and identified in mouse and human kidneys. The mouse matrisome proteins were obtained from our
data and extracted from references [20,28,30]. Human matrisome proteins were obtained from the
studies [31,32]. Highlighted “X” refers to identified protein in the corresponding study.

Protein Name
Our data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

ANGPTL2 X X
ASPN X X X X
BGN X X X X X X
DCN X X X X X X
HAPLN1 X
HSPG2 X X X X X X
LUM X X X X X X
OGN X X X X
PRELP X X X X X X
PRG2 X X
PRG3 X
VCAN X X X

Table A13. The combined list of matrisome-associated proteins belonging to the category of ECM
regulators and identified in mouse and human kidneys. The mouse matrisome proteins were obtained
from our data and extracted from references [20,28,30]. Human matrisome proteins were obtained
from the studies [31,32]. Highlighted “X” refers to identified protein in the corresponding study.

Protein Name
Our Data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

A2M X X X X
ACE X
ACE2 X
ADAM8 X
ADAM9 X
ADAM10 X X X
ADAM17 X
ADAMTSL1 X
ADAMTSL4 X
ADAMTSL5 X
AGT X
AMBP X X X X
APOE X X
ARSB X
CA15 X
CASP14 X
CPN2 X X
CST3 X
CSTB X X X
CTSA X X X X
CTSB X X X X
CTSC X X
CTSD X X X X X
CTSF X
CTSH X X X X
CTSL X X
CTSS X X
CTSZ X X X X
DPP4 X
ELANE X
F13A1 X
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Table A13. Cont.

Protein Name
Our Data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

F2 X X X
F3 X
F9 X X X
FAM20B X X X
GALNS X
GANAB X
GNS X
HRG X X X X X
HTRA1 X X
ITIH1 X X X X X
ITIH2 X X X X
ITIH4 X X X
ITIH5 X X
KNG1 X X X X
LOX X
LOXL1 X
LOXL2 X
LOXL4 X
MEP1A X X X X
MEP1B X X X X
MME X
MMP9 X
MUG2 X X
NGLY1 X
NUCB1 X
OGFOD2 X
P4HA1 X X
P4HB X
PLAU X
PLG X X X X X
PLOD1 X
PLOD2 X
PLOD3 X
PLSCR1 X
PRDX1 X
PRTN3 X
REN1 X
SERPINA1 X
SERPINA1A X X X X
SERPINA1B X X X
SERPINA1C X X X
SERPINA1D X X
SERPINA1E X X
SERPINA3 X
SERPINA3G X
SERPINA3K X X X
SERPINA3M X X
SERPINA3N X
SERPINA5 X
SERPINA6 X X
SERPINB1A X X
SERPINB6 X X
SERPINB12 X
SERPINC1 X X X X
SERPIND1 X X X
SERPINF1 X X
SERPINF2 X X X
SERPING1 X X X
SERPINH1 X X X X X
SOD1 X
SOD3 X X
ST14 X
TGM1 X X X X X
TGM2 X X X X X X
TGM3 X
TIMP3 X X X X
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Table A14. The combined list of matrisome-associated proteins belonging to the category of ECM-
affiliated proteins and identified in mouse and human kidneys. The mouse matrisome proteins
were obtained from our data and extracted from references [20,28,30]. Human matrisome pro-
teins were obtained from the studies [31,32]. Highlighted “X” refers to identified protein in the
corresponding study.

Protein Name
Our data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

ANXA1 X X X X X
ANXA2 X X X X X
ANXA3 X X X
ANXA4 X X X X X
ANXA5 X X X X X
ANXA6 X X X X X X
ANXA7 X X X X X X
ANXA9 X
ANXA11 X X X X X X
ANXA13 X X
APCS X
C1QBP X
CCT2 X
CCT6A X
CD109 X
CSPG4 X X X
CXCL14 X
DAG1 X
EMCN X X
FREM1 X
FREM2 X X X X
GPC4 X X
GRN X
HPX X X X X
LAD X
LGALS1 X X X X X
LGALS2 X
LGALS3 X X X
LGALS8 X X
LGALS9 X X
LMAN1 X X X X X X
LPL X
MBL1 X
MBL2 X
MGP X
MUC1 X
PLXNB1 X
PLXNB2 X X X X
PLXND1 X X
SDC4 X
SEMA4D X X
TGFB1I1 X
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Table A15. The combined list of matrisome-associated proteins belonging to the category of secreted
factors and identified in mouse and human kidneys. The mouse matrisome proteins were obtained
from our data and extracted from references [20,28,30]. Human matrisome proteins were obtained
from the studies [31,32]. Highlighted “X” refers to identified protein in the corresponding study.

Protein Name
Our data McCabe 2021 Lipp 2021 Liu 2020 Louzao-Martinez 2019 Randles 2021

Mouse Mouse Mouse Mouse Human Human

CLU X
CRLF3 X
DCD X
DEFA1 X
EGF X X X
EGFL7 X X
FGF1 X
FGF2 X
HCFC1 X
HDGF X
HRNR X X
II19 X
INHBE X
PF4 X
S100A1 X X
S100A6 X
S100A7 X
S100A8 X X X
S100A9 X X X
S100A10 X X X X
S100A11 X X X X X X
S100A13 X
S100A14 X
S100G X X
SFRP1 X
UMOD X

Figure A3. Quantitative comparison of protein extraction levels between SME fractions and CME.
Volcano plots represent significant differences in protein abundances (FC > 2, p-value < 0.05) between
(a) SME (fraction 1) and CME, (b) SME (fraction 2) and CME and (c) SME (fraction 3) and CME.
Top-right-hand sides of volcano plots are proteins that were significantly higher in SME fractions.
Top-left-hand sides are proteins that were significantly higher in CME. Blue dots indicate Matrisome-
associated proteins and red dots indicate core matrisome proteins that were significantly higher in
either SME fractions or CME.
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Figure A4. Quantified matrisome proteins in fractions of SME. Venn diagram illustrates the common
and unique matrisome proteins in each fraction. Matrisome proteins were classified as collagens,
ECM glycoproteins, proteoglycans, ECM-affiliated, ECM regulators and secreted factors.
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Abstract: Protein turnover rate is finely regulated through intracellular mechanisms and signals that
are still incompletely understood but that are essential for the correct function of cellular processes.
Indeed, a dysfunctional proteostasis often impacts the cell’s ability to remove unfolded, misfolded,
degraded, non-functional, or damaged proteins. Thus, altered cellular mechanisms controlling
protein turnover impinge on the pathophysiology of many diseases, making the study of protein
synthesis and degradation rates an important step for a more comprehensive understanding of these
pathologies. In this manuscript, we describe the application of a dynamic-SILAC approach to study
the turnover rate and the abundance of proteins in a cellular model of diabetic nephropathy. We
estimated protein half-lives and relative abundance for thousands of proteins, several of which are
characterized by either an altered turnover rate or altered abundance between diabetic nephropathic
subjects and diabetic controls. Many of these proteins were previously shown to be related to diabetic
complications and represent therefore, possible biomarkers or therapeutic targets. Beside the aspects
strictly related to the pathological condition, our data also represent a consistent compendium of
protein half-lives in human fibroblasts and a rich source of important information related to basic
cell biology.

Keywords: proteomics; protein turnover rate; protein half-life; SILAC; diabetes; nephropathy; fibroblasts

1. Introduction

Modern technological advances have provided investigators with sophisticated method-
ologies that allow an extensive characterization of the cell proteome. Wide-search pro-
teomics is a powerful tool to identify and quantify an enormous number of proteins and
to tackle problems related to all areas of biology and medicine [1]. In the past few years,
the study of the protein turnover rate on a large-scale has emerged as a new dimension in
proteomics research, and a number of different approaches have been proposed to allow a
reliable estimate of protein synthesis and degradation rates (extensively reviewed in [2]).
Indeed, protein turnover is tightly regulated by several cellular processes which allow
the maintenance of an efficient and functional protein pool and, at the same time, remove
from the cellular environment unfolded, misfolded, degraded, non-functional or damaged
proteins, as well as insoluble aggregates [3]. Hence, a dysfunctional proteostasis impacts
the pathophysiology of many diseases, in particular neurodegenerative disorders but also
cancer and metabolic conditions [4–6].

Historically, the first studies investigating the issue of protein synthesis and degra-
dation involved the incorporation into proteins of radiolabeled amino acids and allowed
the protein turnover rate to be expressed only as total protein dynamics [7]. Later on,
proteomic approaches, mainly based on the exposure to labelled amino acid(s) of either
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cells cultured in vitro, or of small experimental animals in vivo, were used to estimate the
rate of synthesis and/or degradation of individual proteins on a large-scale level [8–11].
The most widely used approach is known as dynamic-SILAC (often referred also as pulsed-
SILAC or pSILAC), an evolution of the classical SILAC approach [12] in which cells are
first cultured in normal unlabeled medium (the “light” medium) and then switched to a
medium containing stable isotope labeled amino acids (usually 13C labelled Lysine and/or
Arginine, generally indicated as “heavy” amino acids). Samples are collected at different
time points, and the rates of incorporation of the heavy amino acids (which correspond
mainly to the rate of synthesis) and of degradation of the pre-existing protein pool (cor-
responding to the degradation rate) are measured using liquid chromatography coupled
to tandem mass spectrometry (LC-MS/MS). The ratio between the signal of the heavy
peptide and the signal of the residual light peptide directly reflects protein turnover [2].
By applying this approach, the kinetics of each protein can be associated with its known
function(s), thus expanding our knowledge of the relationships between protein expression,
function, and turnover.

Primary cultures of cells are a powerful model to investigate several aspects of protein
metabolism, among them protein turnover [13]. Cultures of human fibroblasts have been
widely exploited as an in vitro system to investigate some pathophysiological mechanisms
of disease, such as diabetes mellitus [14–17], particularly those associated with the devel-
opment of diabetic complications [18–20]. Diabetic nephropathy (DN) is a leading cause
of morbidity and mortality in diabetes [21]. Both genetic and environmental factors are
associated with the development of diabetic nephropathy, particularly in type 1 diabetes
mellitus (T1DM) [22]. As a matter of fact, genetic factors may either convey the risk of, or
protect from, diabetic nephropathy [23]. Their expression profiles in skin fibroblasts from
type 1 diabetic patients, could reflect genetic influences; therefore, they were removed from
in vivo environmental influences [24].

Our laboratories have established and largely exploited the model of primary cultures
of human skin fibroblasts as a tool to study protein expression in type 1 diabetes [20,25,26].
In this study, we describe the application of a dynamic-SILAC approach to primary human
fibroblasts derived from diabetic subjects with and without diabetic nephropathy with
the purpose of extensively characterizing the dynamics and the abundance of the proteins
and, whenever possible, deriving meaningful information regarding the energetic factors
underlying the relationship between stability and protein abundance in this cellular model.

2. Results

2.1. Dynamic-SILAC Experiment and Determination of prOtein Half-Lives

To accurately estimate protein half-life in a model of diabetic nephropathy, we applied
a dynamic-SILAC approach to fibroblasts obtained from 10 type 1 diabetic patients, 5 of
whom were affected by diabetic nephropathy. Cells were cultured as described in Section 4,
and the dynamic-SILAC experiment was performed in steady-state conditions, when cells
were at confluence. To verify that no evident morphological changes occurred during the
timeframe of the experiment, we regularly checked cell morphology and counted viable
cells. Results for an exemplifying subject are reported in Table 1.

Table 1. Number of viable cells repeatedly counted during the experiment.

Time Point Average Cell Number

1 h 5.26 × 106

2 h 5.68 × 106

4 h 5.66 × 106

7.5 h 5.56 × 106

24 h 5.98 × 106
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The proteomic workflow adopted to estimate individual protein turnover rates is
described in Figure 1. On average, 1287 proteins were confidently identified and quantified
in each of the 10 subjects, with a standard deviation SD equal to 86 (more details about the
number of identified proteins in each sample are reported in Supplementary Table S1). As
described in the experimental procedures, to increase the robustness of the estimate of the
turnover constant k, we decided to consider only those proteins that were quantified at 24 h
and at least one out of the other two time points. After filtering, a total of 1661 different
proteins from the 10 subjects were considered for the parameter k estimate.

Figure 1. Proteomics workflow used to estimate turnover rates of individual proteins. Cells were
grown in the SILAC heavy medium and collected at 4, 7.5, and 24 h. Following cell lysis and protein
quantification, a fractionation step by SDS-PAGE was performed, and proteins were then digested
and analyzed by LC-MS/MS as detailed in Section 4.

As specified in Section 4, protein quantification was obtained by the software as the
median value of the quantification of all unique peptides belonging to each protein. For
these proteins, a model of technical variability was derived from peptide measurements
using these latter as replicated protein measurements (see Section 4). As shown in Figure 2,
neither the standard deviation (SD, empty circles) nor the coefficient of variation (CV, solid
circles) are constant; the former increases, whereas the latter decreases with the average of
the heavy to light ratio (H/L).

Therefore, we excluded a constant SD and constant CV model for our data and adopted
the following model describing the SD as a function of H/L ratio r:

SD =

√
α2 + β2·r2 (1)

where α and β are constants fixed at the values of 0.02 and 0.1, respectively. The fit of the
model of technical variability is shown in Figure 2.
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Figure 2. Model of technical variability. The standard deviation (SD, empty circles), and the coefficient
of variation (CV, solid circles) are not constant with the average of the heavy to light ratio (H/L).

Therefore, the model SD =
√

α2 + β2·r2 was used to fit the standard deviation. The model was
derived from replicated measurements of peptides.

The rate constant parameter k of the 1661 proteins in our dataset was identified by
fitting the H/L ratio r data across time (see details in Section 4), using the least square
method weighted accordingly to the model of technical variability (Equation (1)). To assess
the goodness of fit, we considered the CV of the parameter estimate, whose distribution is
shown in Figure 3.

Figure 3. Coefficient of variation of the parameter estimate. Distribution of the CV of the parameter k
estimate of the 1661 proteins in our dataset identified by fitting the H/L ratio across different time points.
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From the distribution plot, it is clear that for a vast majority of proteins, the parameter
k was estimated with very good precision, i.e., with a CV lower than 15%. A total of
1642 different proteins across all subjects (on average, 935 proteins for each subject, with a
standard deviation SD equal to 119) showed a CV of the parameter estimate lower than
50% and were retained for further analysis (Table S2).

Figure 4 shows the average half-life distribution of the 1642 analyzed proteins, where
the half-life T1/2 is computed as log2/k. Considering only the proteins for which a reliable
estimate of k could be obtained in at least 2 out of 10 samples (in total 1338 proteins), the
distribution of the mean values of T1/2 ranges between 3 and 573 h, being on average equal
to 59.9 h (Table S3). Note that the protein with the highest T1/2 is keratin 5, probably a
contaminant protein that could be filtered out of the dataset. In this case, the highest T1/2
would be 477 h.

Figure 4. Distribution of the mean values of half-life T1/2. The vast majority of proteins show a
half-life between 3 and 200 h with an average of 59.9 h.

2.2. Protein Turnover in Diabetic-Controls vs. Diabetic-Nephropathic Subjects

After evaluating the normal distribution of data (Saphiro-Wilk test at 0.05 level), a
t-test was performed on the T1/2 value of 974 proteins, for which k was estimated in at
least two subjects for each group, i.e., diabetic-controls vs. diabetic-nephropathic subjects.
For 20 proteins a p-value ≤ 0.05 was found (Table 2), although it was not significant after
correction for multiple testing. Probably the high variability of the data, mainly linked to
the biological variability of the human subjects, together with the low numerosity of the
dataset, does not allow for significant p-values after correction.

Gene set enrichment analysis was also performed to assess pathways associated with
the two phenotypes. The 29 Reactome pathways [27,28] were found to be significantly
associated with diabetic nephropathic subjects in terms of increased protein half-life with
respect to diabetic controls. These are reported in Table S4 and discussed later in the text.
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Table 2. Proteins with a significantly different half-life in Diabetic and Nephropathic subjects.

Gene Name Protein Description
Average Half-Lives in h (SD) p-Value

Valid Values
Diabetic Nephropathic Diabetic Nephropathic

RAB13 RAB13, member RAS
oncogene family 26.4 (1.5) 32.6 (0.1) 1.90 × 10−3 5 2

RAB23 RAB23, member RAS
oncogene family 33.0 (2.8) 42.9 (4.3) 1.10 × 10−2 5 3

SQRDL sulfide quinone
reductase-like (yeast) 74.6 (12.7) 123.6 (16.5) 1.54 × 10−2 4 2

PABPC1 poly(A) binding
protein, cytoplasmic 1 41.2 (3.9) 49.1 (4.4) 1.85 × 10−2 5 5

IPO7 importin 7 28.7 (1.8) 34.7 (3.9) 2.02 × 10−2 4 5

NPM1

nucleophosmin
(nucleolar

phosphoprotein B23,
numatrin)

48.2 (3.4) 55.6 (4.5) 2.10 × 10−2 5 5

TCP1 t-complex 1 58.0 (6.0) 73.7 (12.1) 2.71 × 10−2 5 5

EIF4A1 eukaryotic translation
initiation factor 4A1 29.8 (1.8) 34.7 (4.0) 3.31 × 10−2 5 5

CCT8 chaperonin containing
TCP1, subunit 8 (theta) 57.8 (5.2) 68.9 (9.3) 3.34 × 10−2 5 5

EIF4G1
eukaryotic translation

initiation factor 4
gamma, 1

26.8 (1.3) 32.2 (3.8) 3.66 × 10−2 4 4

TFRC transferrin receptor 23.3 (2.9) 29.2 (3.2) 3.72 × 10−2 4 5

TOP2B topoisomerase (DNA)
II beta 180kDa 33.0 (3.3) 25.9 (0.3) 3.93 × 10−2 3 2

ACTB actin, beta 65.3 (5.3) 89.8 (20.9) 4.12 × 10−2 5 4
ACLY ATP citrate lyase 35.2 (4.7) 43.5 (4.9) 4.25 × 10−2 5 5

ST13P4
Suppression of

tumorigenicity 13
pseudogene 4

21.8 (2.5) 37.6 (7.3) 4.36 × 10−2 3 2

GSTM5 glutathione
S-transferase mu 5 53.5 (5.9) 104.9 (18.5) 4.38 × 10−2 2 2

HNRNPF heterogeneous nuclear
ribonucleoprotein F 29.8 (4.0) 38.1 (6.0) 4.80 × 10−2 5 4

PA2G4
proliferation-

associated 2G4,
38kDa

49.4 (3.7) 62.2 (12.5) 4.85 × 10−2 5 5

CAPRIN1 cell cycle associated
protein 1 14.7 (0.9) 16.2 (1.1) 4.89 × 10−2 5 5

EIF4H eukaryotic translation
initiation factor 4H 28.9 (1.9) 37.6 (3.6) 4.90 × 10−2 2 3

2.3. Protein Quantification in Diabetic-Controls vs. Diabetic-Nephropathic Subjects

Protein abundance relative quantification was performed on a total of 2226 different
proteins across 10 subjects (Table S5). To note that protein half-life could be reliably
assessed for 1664 proteins, since for the estimate of k we decided to use data associated with
proteins identified at least at two temporal points, one of which was set to be 24 h. This
limitation does not apply for the estimate of protein abundance, which therefore led to the
quantification of a higher number of proteins. Abundance levels in the three time points
indirectly confirmed the steady state hypothesis. Indeed, for each protein, the variance
across different time points tends to be equal to or lower than the technical variation,
measured as the variance observed across peptides matching the same protein in the same
sample (Figure 5). Here it is clear that protein abundance does not significantly vary across
the three time points, thus indicating that a steady state can be confidently assumed.
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Figure 5. Variance across time vs. technical variance. The figure shows the variance across different
time points (x axis) vs. the technical variation (y axis), measured as the variance observed across
peptides matching the same protein in the same sample. The variance across time is equal to or lower
than the technical variation, in line with the steady state assumption.

After confirming the normal distribution of data (Saphiro-Wilk test at 0.05 level), a
t-test was performed on 1299 proteins, for which the relative abundance was measured
on at least two subjects for each group, i.e., diabetic-controls vs. diabetic-nephropathic
subjects (Table S5). For 40 proteins a p-value ≤ 0.05 was found (Table 3), although it was
not significant after correction for multiple testing.

Table 3. Proteins with a significantly different abundance in Diabetic and Nephropathic subjects.

Gene Name Protein Description
Fold Change

(Nephropathic vs. Diabetic)
p-Value

Valid Values
Diabetic Nephropathic

GLIPR2 GLI
pathogenesis-related 2 −1.8 3.30 × 10−3 4 4

RPS3A ribosomal protein S3A −1.6 3.90 × 10−3 5 5

TRIM25 tripartite motif
containing 25 −1.5 6.41 × 10−3 3 4

SLC25A6

solute carrier family 25
(mitochondrial carrier;
adenine nucleotide
translocator), member 6

−1.7 6.95 × 10−3 5 5

TUBB4A tubulin, beta 4A
class IVa 2.1 9.41 × 10−3 5 5

NDUFB10
NADH dehydrogenase
(ubiquinone) 1 beta
subcomplex, 10, 22kDa

−1.7 1.21 × 10−2 5 4

NPC2 Niemann-Pick disease,
type C2 2.5 1.47 × 10−2 2 4

SYNE1
spectrin repeat
containing, nuclear
envelope 1

−2.2 1.47 × 10−2 5 5
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Table 3. Cont.

Gene Name Protein Description
Fold Change

(Nephropathic vs. Diabetic)
p-Value

Valid Values
Diabetic Nephropathic

SEC31A SEC31 homolog A
(S. cerevisiae) 1.6 1.55 × 10−2 3 4

TUBB4B tubulin, beta 4B
class IVb 3.3 1.70 × 10−2 2 4

SLC25A3

solute carrier family 25
(mitochondrial carrier;
phosphate carrier),
member 3

−1.7 2.40 × 10−2 5 5

DNAJC8 DnaJ (Hsp40) homolog,
subfamily C, member 8 −1.8 2.40 × 10−2 5 4

COX4I1 cytochrome c oxidase
subunit IV isoform 1 −1.7 2.42 × 10−2 5 5

LGALS3
lectin,
galactoside-binding,
soluble, 3

−1.4 2.57 × 10−2 5 5

NQO1
NAD(P)H
dehydrogenase,
quinone 1

−2.1 2.64 × 10−2 5 5

SERPINB2
serpin peptidase
inhibitor, clade B
(ovalbumin), member 2

1.6 2.76 × 10−2 2 4

XRCC6

X-ray repair
complementing
defective repair in
Chinese hamster cells 6

−1.4 2.80 × 10−2 5 5

SDHB

succinate
dehydrogenase complex,
subunit B, iron
sulfur (Ip)

−1.6 2.85 × 10−2 4 5

FHL2 four and a half LIM
domains 2 −1.6 2.87 × 10−2 4 4

RBMX RNA binding motif
protein, X-linked −1.6 3.03 × 10−2 2 3

PSMA7
proteasome (prosome,
macropain) subunit,
alpha type, 7

−2.1 3.18 × 10−2 3 3

XRCC5

X-ray repair
complementing
defective repair in
Chinese hamster cells 5
(double-strand-break
rejoining)

−1.4 3.21 × 10−2 5 5

SLC25A5

solute carrier family 25
(mitochondrial carrier;
adenine nucleotide
translocator), member 5

−1.9 3.34 × 10−2 5 5

RNH1 ribonuclease/angiogenin
inhibitor 1 1.4 3.43 × 10−2 5 5

TUBA1C tubulin, alpha 1c 1.7 3.57 × 10−2 2 5
CAPNS1 calpain, small subunit 1 −1.8 3.71 × 10−2 4 5

RRAS related RAS viral (r-ras)
oncogene homolog −1.7 3.82 × 10−2 5 5
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Table 3. Cont.

Gene Name Protein Description
Fold Change

(Nephropathic vs. Diabetic)
p-Value

Valid Values
Diabetic Nephropathic

CYB5A cytochrome b5 type A
(microsomal) −1.8 3.90 × 10−2 4 5

CTSD cathepsin D −1.4 3.95 × 10−2 5 5

EEF1B2
eukaryotic translation
elongation factor 1
beta 2

−1.6 4.08 × 10−2 5 5

MAPK14 mitogen-activated
protein kinase 14 −1.6 4.09 × 10−2 2 3

PSMB2
proteasome (prosome,
macropain) subunit,
beta type, 2

−1.6 4.22 × 10−2 2 3

MTPN myotrophin −1.6 4.30 × 10−2 5 5
MYO1B myosin IB 1.6 4.35 × 10−2 5 5

APPL2

adaptor protein,
phosphotyrosine
interaction, PH domain
and leucine zipper
containing 2

−1.3 4.51 × 10−2 5 5

RPS3 ribosomal protein S3 −1.7 4.55 × 10−2 5 5
FKBP7 FK506 binding protein 7 −1.7 4.59 × 10−2 5 5

QDPR
quinoid
dihydropteridine
reductase

−2.8 4.72 × 10−2 4 3

HM13 histocompatibility
(minor) 13 −2.0 4.74 × 10−2 2 4

IMPA1 inositol(myo)-1(or
4)-monophosphatase 1 −2.6 4.99 × 10−2 3 3

2.4. Characterization of Proteins with Similar Half-Life and Abundance

Given the large range of protein half-lives spanning between 3 and 573 h (Figure 4
and Table S3), downstream analysis was performed to acquire further information on
the proteins characterized by a similar range of half-lives and abundance. Considering
that only a few proteins showed a significant change in protein half-life between diabetic
controls and nephropathic subjects (Table 2), we decided to use the average value of k
calculated on all 10 subjects to cluster proteins that consistently show half-life within arbi-
trarily predefined intervals. These groups of proteins were analyzed for their interactions
and functional enrichment using STRING v. 11.0, DAVID v. 6.7, and Revigo. Results
were filtered to keep only significant enriched terms with a minimum of 4 counts and
a p value < 0.001. The results in their full form are reported in Table S6 and graphically
displayed in Figure S1. A concise summary of this analysis is also presented in Table 4,
which reports the considered half-life intervals, the number of proteins falling in each
interval, and their functional characterization.

According to this analysis, the most stable proteins (with T1/2 > 80 h) are those in-
volved in energy metabolism, cellular respiration, chromatin organization, and DNA pack-
aging, while the proteins characterized by a higher turnover (i.e., those with T1/2 < 30 h)
are mainly secreted proteins such as collagens and proteins involved in extracellular ma-
trix organization.

A similar analysis was also performed using the protein abundance calculated from the
overall protein expression data. The range was divided into arbitrarily pre-defined intervals
to cluster proteins with similar abundance. Since only a limited number of proteins show
a significantly different abundance between diabetic controls and nephropathic subjects
(Table 3), we decided to average the values of all subjects, keeping only the proteins for
which an estimate could be obtained for at least 2 out of 10 patients. Figure 6 shows that
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our estimation of protein expression data for 1801 proteins spans four orders of magnitude.

Table 4. Gene Ontology annotation of proteins grouped according to their average half-life. Proteins
are grouped in 9 arbitrary ranges of half-life, and the most enriched and significant GO terms
(Biological Process, Cellular Component, Molecular Function, and KEGG pathways) are listed for
each group.

T1/2 Range (h) # of Proteins Biological Processes Cellular Components Molecular Functions KEGG Pathways

<20 64

Extracellular matrix
organization; collagen

metabolism; cell adhesion
and motility

Extracellular matrix;
vesicle; collagen trimer

Extracellular matrix
structural constituent;

Receptor binding;
Protein binding

ECM-receptor
interaction;

Focal adhesion

20–30 82
Small GTPase mediated

signal transduction; mRNA
splicing; localization

Cytoplasm;
Spliceosomal complex

RNA binding;
GTPase activity

30–40 157
Intracellular transport;

Translation; RNA
splicing; localization

Spliceosomal complex;
Nuclear part;

Cytoplasmic part;
Ribonucleoprotein

complex; EIF3 and EIF4F

Protein binding; RNA
binding; Nucleotide
binding; Nucleoside-

triphosphatase activity

Spliceosome

40–50 193
Protein transport; Golgi
vesicle transport; RNA

splicing; Translation

Cytoplasm; Vesicle; Golgi;
Cytoskeleton; EIF3;
Ribonucleoprotein
complex; Plasma
membrane part

Protein binding;
Nucleotide binding;
RNA binding; actin

binding; GTPase
activity; Translation

initiation
factor activity

Endocytosis

50–60 227

Vesicle mediated transport;
Cell cycle progress;

Membrane and cytoskeleton
organization; Translation

elongation; Protein folding

Cytoplasm; Ribosome;
Cytoskeleton;

Endoplasmic reticulum;

Protein binding;
Nucleotide binding;

RNA binding;
GTPase activity;

Structural constituent
of ribosome

Aminoacyl-tRNA
biosynthesis;

Ribosome

60–70 272

RNA processing; Translation;
Protein metabolism;

Ribosome biogenesis; Protein
folding; Ras protein
signal transduction

Cytosol; Mitochondria;
Nuclear part; Ribosome;

Cytoskeleton;
Proteasome complex

Structural constituent
of ribosome; actin
and cytoskeletal

protein binding; RNA
binding; Protein

binding;
Threonine-type en-

dopeptidase activity.

Ribosome;
Proteasome

70–80 170

Carbohydrate and protein
metabolism;

Oxidation-reduction process;
Cellular respiration; Protein

folding; Translation
elongation;

Acetyl-CoA metabolism;

Cytoplasm;
Mitochondrion;
Cytoskeleton;

Endoplasmic reticulum
part; Proteasome

complex; Melanosome

Peroxiredoxin
activity;

Oxidoreductase
activity;

endopeptidase
activity; Isomerase

activity; Cytoskeletal
protein binding;

Coenzyme binding;

Glycolysis/
Gluconeogenesis;

Proteasome;
Pyruvate metabolism;

TCA cycle;

80–90 76

Carbohydrate metabolism;
Generation of energy;

Carboxylic acid, alcohol, and
ketone metabolism;

Cytoplasm;
Mitochondrion;

Catalytic activity;
Monosaccharide

binding;
Oxidoreductase

activity;
Isomerase activity

Glycolysis/
Gluconeogenesis

>90 97

Generation of energy;
Oxidative phosphorylation;
Carboxylic acid, and ketone

metabolism; Chromatin
organization and
DNA packaging

Cytoplasm; ATP synthase
complex; Mitochondrion;

Nucleosome; Nuclear
membrane;

Protein-DNA complex
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Figure 6. Distribution of protein abundances. The average protein abundance estimated for the entire
protein set is shown in a logarithmic scale (Arbitrary Units) and spans 4 orders of magnitude.

This range was divided into 8 intervals, and proteins clustered in each interval were
analyzed for their interactions and functional enrichment using STRING v. 11.0, DAVID
v. 6.7, and Revigo. Results were filtered to keep only significant enriched terms with a
minimum of 4 counts and a p value < 0.001. The complete results are reported in Table S7
and graphically displayed in Figure S2. A summary of this analysis is reported in Table 5,
where Log2 abundance intervals, the number of proteins falling in each interval, and their
functional characterization are listed.

Table 5. Gene Ontology annotation of proteins grouped according to their average abundance.
Proteins are grouped in 8 arbitrary ranges of abundance (expressed as Log2 of arbitrary units), and
the most enriched and significant GO terms (Biological Process, Cellular Component, Molecular
Function, and KEGG pathways) are listed for each group.

Relative
Abundance
(Log2 A.U.)

# of Proteins
Biological
Processes

Cellular
Component

Molecular
Function

KEGG
Pathways

>9.0 202

Translation elongation;
Protein folding; DNA

packaging;
Cytoskeleton

organization; Cell
redox homeostasis,
Glycolytic process

Cytosol; Nucleus;
Protein-DNA

complex;
Cytoskeleton;
Vesicle; Large

ribosomal subunit

RNA binding;
Structural

constituent of
ribosome; GTP

binding; Protein
binding;

Cytoskeletal and
actin binding

Ribosome; Systemic
lupus

erythematosus;
Pathogenic
Escherichia

coli infection

8.0–9.0 224

Translational
elongation; RNA

splicing; Cytoskeleton
organization; Protein

transport; Small
GTPase mediated

signal transduction;
Generation of

precursor metabolites
and energy

Cytoplasm; Actin
cytoskeleton; Small
ribosomal subunit;

Spliceosomal
complex; Vesicle

Protein binding;
GTP binding; RNA

binding;
Cytoskeletal

protein and actin
binding; Structural

constituent of
ribosome;

Hydrogen ion
transmembrane

transporter activity

Ribosome;
Spliceosome;

Parkinson’s disease
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Table 5. Cont.

Relative
Abundance
(Log2 A.U.)

# of Proteins
Biological
Processes

Cellular
Component

Molecular
Function

KEGG
Pathways

7.5–8.0 180

Intracellular transport;
Vesicle mediated

transport; Localization;
Vesicle and membrane

organization; Small
GTPase mediated

signal transduction

Cytoplasm; Vesicle;
Endoplasmic

reticulum;
Cytoskeleton;

Arp2/3 protein
complex;

Proteasome core
complex;

Ribonucleopro-
tein complex

Protein binding;
Actin binding;

RNA binding; GTP
binding; GTPase

activity;
Threonine-type

peptidase activity

Proteasome;
Pathogenic
Escherichia

coli infection

7.0–7.5 220

Intracellular transport;
RNA processing and
splicing; Translation;

Membrane
organization; Protein

folding; Energy
derivation by
oxidation of

organic compounds

Cytosol;
Endoplasmic

reticulum; Vesicles;
Endomembrane

system;
Spliceosomal

complex;
EIF3 complex

Protein binding;
RNA binding;

Translation
initiation

factory activity;

6.5–7.0 283

Nucleotide
Metabolism;
Heterocycle

metabolism; Protein
metabolism; Protein

folding; RNA splicing;
Redox processes;

Cellular respiration;
Response to

oxidative stress

Cytoplasm;
Intracellular

organelle part;
Macromolecu-

lar complex

RNA binding;
Nucleotide

binding; NADH
dehydrogenase

activity;
Oxidoreductase
activity; Protein

binding;
Cofactor binding

Aminoacyl-tRNA
biosynthesis;
Proteasome;
Oxidative

phosphorylation;
Huntington’s

disease; Amino
sugar and nucleotide

sugar metabolism;
Alzheimer’s disease

6.0–6.5 261

Protein transport;
Protein metabolism;

Carboxylic acid
metabolism; Amine
metabolism; Mitotic

cell cycle; regulation of
ligase activity

Cytoplasm;
Mitochondrion;

Proteasome
complex;

Ribonucleoprotein
complex;
Organelle
membrane

Protein binding;
RNA binding;

Nucleotide
binding;

Cytoskeletal
proteins and actin

binding;
Translation
initiation

factor activity

Proteasome

5.0–6.0 298

Acetyl-CoA
metabolism;
Heterocycle
metabolism;
Nucleotide

biosynthesis;
carboxylic acid

metabolism; Cellular
respiration;

Protein transport

Cytoplasm;
Mitochondrion;
Golgi apparatus
part; Envelope

Catalytic activity;
Hydrolase activity;

Protein binding;
Purine nucleotide

binding; Pyrophos-
phatase activity

TCA cycle
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Table 5. Cont.

Relative
Abundance
(Log2 A.U.)

# of Proteins
Biological
Processes

Cellular
Component

Molecular
Function

KEGG
Pathways

<5.0 135

mRNA transport;
Protein transport;

Cellular localization;
Oxidation-reduction

process

Cytoplasm;
Nuclear

part; Envelope

Purine nucleotide
binding; Catalytic
activity; Electron

carrier activity

Valine, leucine, and
isoleucine

degradation

In general, when plotting average protein abundance vs. average protein turnover rate
k (Figure 7, left upper and lower panels) or, alternatively, average relative protein abundance
vs. average protein half-life (Figure 7, right upper and lower panels), several clusters of
proteins can be easily identified. Based on pre-defined intervals, similar to those used in
the preview analyses, it is possible to distinguish four main groups of proteins: (1) proteins
with low turnover rate (long half-life) and high abundance (in red in Figure 7); (2) proteins
with high turnover rate (short half-life) and high abundance (in blue); (3) proteins with
high turnover rate (short half-life) and low abundance (in green); and finally (4) proteins
with low turnover rate (long half-life) and low abundance (in pink).

Figure 7. Distribution of turnover rates as a function of protein abundance. Left panels show the
turnover rate constant k as a function of protein abundance, while right panels show the protein
half-life as a function of protein abundance. Zoomed data are on display in the lower panels. Proteins
characterized by a low turnover rate and high abundance are depicted in red, proteins with a high
turnover rate and high abundance in blue, proteins with a high turnover rate and low abundance in
green, and proteins with a low turnover rate and low abundance in pink.
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The proteins belonging to each of these groups were analyzed with STRING to high-
light possible interactions and functional enrichment. The results, graphically displayed in
Figure S3 and detailed in Table S8, show that the first group is particularly enriched for
cytoskeletal proteins, proteins involved in chromatin organization, and proteins related
to energy production. The second group involves mainly proteins related to extracellular
matrix organization, cellular response to stress, metabolism of mRNA, and vesicle mediated
transport. The third group is enriched for secreted proteins and proteins involved in RNA
splicing, membrane trafficking, and the cell cycle. Finally, to the fourth group belong
mainly proteins involved in the metabolism of proteins, hydrocarbons, and lipids.

3. Discussion

In this work, we quantified protein turnover using in vitro cultured fibroblast cells
harvested from ten diabetic subjects, five of whom had nephropathy.

We performed a dynamic SILAC experiment on the cultured fibroblasts that had
reached confluence. At time T = 0, the regular culture medium was replaced with a
medium containing the heavy amino acid 13C6 Lysine, and cells were sampled at 4, 7.5, and
24 h (Figure 1). During the entire duration of the experiment, cells were regularly checked,
and no significant changes in their number or morphology could be detected (Table 1).
Cells were lysed, proteins were subjected to SDS-PAGE to reduce sample complexity, and
in-gel digestion was performed with the protease LysC. The choice of using only labeled
lysine and not also labeled arginine, as it is usually done in SILAC experiments, was made
to avoid any problem that could arise from the possible arginine-to-proline metabolic
conversion [29–31] and that could therefore affect the estimate of turnover rate. The use of
LysC as a digesting enzyme yields a lower number of protein identifications with respect to
the classical digestion with trypsin, since less and larger peptides are generated. However,
we preferred to acquire more robust data at the expense of a smaller dataset. In total, we
performed 300 nLC-MS/MS analyses. SILAC H/L ratios at different times were used to
estimate the turnover parameter k by using weighted least squares (as detailed in Section 4).
The CV of the parameter estimate, used to assess the goodness of fit, was lower than
15% in the vast majority of cases, thus confirming that the adopted model is adequate to
describe the data (Figure 3). With this strategy, we were able to confidently estimate the
turnover parameter k (and therefore the half-life) for 1642 different proteins, generating a
high-quality dataset of protein turnover rate from human fibroblasts isolated from type 1
diabetic patients (Table S2).

3.1. Proteins with a Significantly Different Turnover in Nephropathic Subjects

On the 974 proteins for which k was estimated in at least two subjects for each group,
we could perform a t-test to highlight proteins with a significant (p ≤ 0.05) different turnover
rate between diabetic and nephropathic subjects. Only the 20 proteins listed in Table 2
turned out to have half-lives different in the two groups. By looking at the reported data, it
is evident that all proteins except one (namely TOP2B) are characterized by longer half-lives
in nephropathic subjects with respect to the diabetic controls. A screening of the literature
reveals that almost all proteins listed in Table 2 have been reported to be implicated in
nephropathy, often of diabetic origin.

3.1.1. Mesangial Proteins

The Rab family of small G proteins plays important roles in mediating vesicular
membrane trafficking in eukaryotic cells [32,33], and more than 60 mammalian Rab proteins
have been identified and characterized.

126



Int. J. Mol. Sci. 2023, 24, 2811

Rab13 and its effector protein, JRAB/MICAL-L2, are involved in the transport of the
cell adhesion molecules occludin and claudins to the tight junctional area in epithelial
cells [34,35]. Rab13 was identified in a gene expression profiling study to be altered in a
population of macrophages from nephritic NZB/W mice [36].

Knocking-down or overexpressing Rab23 affected the expression of collagen in cul-
tured mesangial cells, thus suggesting that Rab23 may be overexpressed in FSGS mice to
suppress hedgehog signaling and/or influence collagen synthesis [37]. A proteomic study
conducted on mesangial cells points to the possible involvement of Rab23 in a variety of
cellular events, such as gene expression, signaling, protein synthesis, organ and tissue
morphology, cellular movement, and contraction function [38].

3.1.2. Chaperone and Cytoskeleton Proteins

In this study, we identified TCP1 and CCT8 as proteins with an altered turnover rate
in nephropathic subjects. The chaperonin-containing T-complex (TRiC/CCT complex) is
a chaperone machinery that assists the folding of dozens of proteins, in particular those
that appear to be slow-folding and aggregation-prone [39]. However, this complex has
been known for a long time to fold actin and tubulin [40–42] and evidence suggests that
disruptions of actin dynamics result in altered cytoskeletal organization [43]. Interestingly,
TRiC/CCT was also identified in our Gene Set Enrichment Analysis as one of the major
Reactome Pathways to be affected in our model of diabetic nephropathy (Table S4). It has
been reported that the beta subunit of the complex may play a central role in mesangial cell
hypo-contractility in diabetic nephropathy [44], while both CCT2 and CCT8 were found
to be significantly altered in exosomes derived from primary human proximal tubular
epithelial cells (PTEC) under diseased conditions [45].

Actin and tubulin are the major components of the cytoskeletal structure. A disassem-
bly of the actin cytoskeleton and marked alterations of beta tubulin, a major component
of microtubules, represent prominent features of DN [46,47]. Modifications of chaperone-
like proteins have been previously detected in cultured fibroblasts from T1DM subjects
with nephropathy, and they may be patho-physiologically related to the development
of diabetic renal disease [20,48]. Changes in the cytoskeleton are key alterations in the
pathophysiology of DN: substantial differences in cytoskeletal and cytoskeleton-related
protein expression were found between normal subjects and T1DM patients with DN but
not with T1DM patients without DN [20], suggesting that nephropathy, and not diabetes
per se, was associated with the observed changes.

3.1.3. Proteins Associated to Hydrogen Sulfide (H2S) Metabolism

Just like other gaseous compounds, such as nitric oxide (NO) and carbon monoxide
(CO), H2S is known to act as a signaling molecule [49,50] and modulate a vast array of
biological functions [51]. The conversion of hydrogen sulfide to thiosulfate and sulfane is
catalyzed by the mitochondrial protein sulfide quinone oxidoreductase (SQRDL or SQOR)
with the help of a quinone, usually ubiquinone [52].

Ubiquinone (also known as Coenzyme Q10 or CoQ10) is involved in several processes
(primarily the electron transport chain) and functions as a cofactor for several enzymes,
among them the SQRDL protein. CoQ10 deficiency is the cause of several human diseases,
and mutations in the COQ8B gene result mainly in the disruption of kidney function,
causing a steroid-resistant nephrotic syndrome [53]. Interestingly, H2S oxidation impair-
ment causes CoQ10 associated nephrotic syndrome, a chronic kidney disease related to
CoQ10 deficiency, and it has been shown that reduced SQOR levels lead to increased
ROS production, thus contributing to oxidative stress in conditions of CoQ deficiency [54].
Our data show a strong increase in SQOR half-life in nephropathic subjects (123.6 h) with
respect to the diabetic controls (74.6 h); however, the physiological significance of such
a finding is difficult to grasp. On one hand, it may indicate a reduced enzyme efficiency
and a higher oxidative stress. On the other hand, longer enzyme survival could instead
determine a decrease in the H2S levels and a reduced oxidative stress. Therefore, the
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increased half-life of this enzyme in the cultured fibroblasts from T1DM subjects with
nephropathy could be interpreted as an attempt to activate a protective mechanism through
a reduction of oxidative stress, inflammation, mesangial cell proliferation, and an inhibition
of the renin-angiotensin system activity [55–57].

3.1.4. Proteins Involved in Translation and Kidney Hypertrophy

Kidney hypertrophy and matrix accumulation are associated with the development of
long-term complications of diabetes [58], and translation has been reported to represent a
potential biomarker for the prognosis of kidney disease [59].

We identified three subunits of the eIF4F complex (EIF4A1, EIF4G1, and EIF4H) and
the PABPC1 protein, all of which had a turnover rate ≈20% greater in the nephropathic
than in control subjects (Table 2). EIF4A is an ATP-dependent RNA helicase with low
activity. However, the ATPase and helicase activities are strongly stimulated when EIF4A
is in complex with eIF4G, eIF4E, eIF4B, and eIF4H [60].

Interestingly, accumulating evidence has highlighted a central role for translation in
hypertrophy in models of diabetic nephropathy, both in vivo and in vitro [61,62]. More-
over, EIF4F has been reported to be a potential biomarker for membranous nephropathy
prognosis [63], and PABPC1 is listed among the proteins associated with kidney diseases
from the curated CTD Gene-Disease Associations dataset (http://ctdbase.org/detail.go?
type=disease&acc=MESH:D007674 accessed on 1 July 2022).

3.1.5. Other Proteins with Altered Turnover Rate

Glutathione S-transferase Mu 5 protein (GSTM5) exhibits an almost doubled half-life
in the nephropathic vs. the non-nephropathic T1DM subjects (Table 2). Little has been
reported in the literature regarding the possible association between this protein and the
development or progression of diabetic nephropathy, although other members of the same
protein family have been reported as putative biomarkers of diabetic nephropathy [64,65].

The half-life of Heterogeneous Nuclear Ribonucleoprotein F (HNRNPF) in nephro-
pathic subjects is about 30% greater than that in non-nephropathic subjects (Table 2). Very
interestingly, this protein is known to exert a protective role against oxidative stress and
to attenuate nephropathy progression in diabetic mice and possibly in human kidneys
via stimulation of Sirtuin-1 expression [66]. Therefore, the reduced turnover rate might
be explained as an attempt to mitigate and counteract the adverse effects of nephropa-
thy. Moreover, HNRNPF has been suggested to be a potential target for the treatment of
hypertension and kidney injury in diabetes [67,68].

The transferrin receptor (TFRC) also shows an increased half-life in nephropathic
subjects. An altered expression of TFRC has been detected on mesangial cells in IgA
nephropathy [69,70], and recently the TFRC gene was reported to be downregulated in
tubules of samples derived from patients affected by chronic kidney diseases [71].

Caprin-1 is an ubiquitous protein highly expressed in dividing cells [72]. The Caprin-1
gene has been found to be downregulated in B2R knockout (B2R−/−) mice, a mouse model
of diabetic nephropathy [73].

The Proliferation-associated protein 2G4 (PA2G4) and the topoisomerase DNA II beta
(TOP2B) genes were found to be downregulated in the obstructive nephropathy of PAI-1–
overexpressing mice [74]. PA2G4 was also evaluated as a potential biomarker in the serum
of type 1 diabetes patients [75].

The ATP-Citrate Lyase (ACLY), the enzyme that converts citrate to acetyl-CoA, shows
an increased half-life of about 25% in nephropathic subjects with respect to the diabetic
controls. Interestingly, very recently, ACLY has been reported as a critical epigenetic
regulator that promotes renal injury in obesity and type 2 diabetes [76,77], while other
researchers have used two independent mouse models of kidney fibrosis to demonstrate
that the AKT-dependent modulation of this enzyme is involved in kidney fibrogenesis and
ECM deposition [78].
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3.1.6. GSEA Reveals That Proteasomal Proteins Have Longer Half-Lives in
Nephropathic Subjects

Although only 20 proteins show a significant difference in protein turnover rate
between diabetic controls and nephropathic subjects, GSEA highlighted a number of
Reactome Pathways that are significantly different (FDR q-value < 0.05) in the two groups
of patients. In particular, the proteins belonging to the pathways, identified and reported
in Table S4, show an increased half-life in in all nephropathic subjects. A scrutiny of the
GSEA output highlights that a large part of the proteins that contribute to the significant
pathways belong to the proteasomal complex.

The ubiquitin proteasome system (UPS) plays a central role in the pathogenesis and
progression of various diseases, among which is diabetic nephropathy [79,80]. The UPS is
predominantly involved in protein homeostasis through the ubiquitination and proteaso-
mal degradation of proteins. However, ubiquitination is not only involved in proteasome
degradation, but also regulates the participation of substrate proteins in a variety of cell
signaling pathways [80]. Proteasome inhibition has been shown to attenuate diabetic
nephropathy [81] and have a protective effect against renal dysfunction [82,83]. Moreover,
the deletion of the proteasome activator genes, PA28α and PA28β, resulted in protection
against renal injury and retinal microvascular injury in diabetic mouse models [84]. Other
researchers reported that an increased level of ROS induced by hyperglycemia covalently
modifies the 20S proteasome subunits, thus decreasing its activity in the diabetic kid-
ney [85]. Moreover, proteasome inhibitors improve renal fibrosis in rats with obstructive
nephropathy [86], reduce collagen production, proliferation, and inflammation in nasal
fibroblasts [87], and seem to be effective for the treatment of nephropathy [88]. Therefore,
our data showing an increased half-life for a high number of proteasomal proteins in
nephropathic subjects corroborates data already reported in the literature and suggests that
the UPS could be a potential target for treatment of diabetic nephropathy.

3.2. Proteins with Different Abundance in Nephropathic Subjects

Our analysis led to the identification of 40 proteins with a significantly different
abundance in diabetic controls vs. nephropathic subjects (Table 3). Most of these proteins
were already reported as related to DN and are listed among the proteins associated
with kidney diseases in the CTD Gene-Disease Associations dataset. For example, the
GLI pathogenesis-related 2 has a fold change of -1.8 in our dataset; curiously, it has been
reported that GLIPR-2 is elevated in the kidneys of patients affected by DN [89] and that
miR-30e targeting GLIPR-2 is downregulated in DN, while its overexpression inhibits
GLIPR-2, thus protecting from renal fibrosis in DN [90]. The fact that we found the protein
to have a lower abundance in DN with respect to the diabetic controls seems, therefore, to
be in contrast with the previous observations. However, it is worth noting that GLIPR-2
was found to be elevated in nephropathic kidneys with respect to normal kidneys, while
we observed a reduction with respect to diabetic subjects.

We identified three members of the SLC25A family (the phosphate carrier SCL25A3,
and the adenine nucleotide translocators SLC25A5 and SLCA25A6), all of them with a
reduced abundance in nephropathic subjects. SCL25A3 was found to be differentially ex-
pressed in sclerosis-prone ROP-Os/+ and sclerosis resistant C57-Os/+ mouse kidneys [91],
and both SLC25A5 and SLCA25A6 genes are reported to be modulated in type 2 diabetic
patients with end-stage renal disease [92]. Interestingly, other 3 proteins (NDUFB10, SDHB
and COX4I1) known to be functionally related to the SLC25 complex were identified with
a lower abundance in nephropathic subjects, and with a fold change very similar to that
found in the SCL25 proteins. Moreover, other three proteins that function generally in
the processes of electron transport (NQO1, CYB5A, and QDPR) were also found to have
decreased abundance in DN patients. The quinoid dihydropteridine reductase (QDPR)
has been suggested to be an important modulator of diabetic nephropathy through the
regulation of the TGF-β1/Smad3 signaling pathway [93] and to play an important role as a
protective factor against oxidative stress [94], while NQO1 polymorphism has been recently
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associated with the risk of diabetic nephropathy [95]. Altogether, these data suggest a possi-
ble impairment of general electron transfer activity—in particular in the mitochondria—in
nephropathic subjects, in agreement with data reported in the literature [96,97].

Three members of the tubulin family (namely TUBB4A, TUBB4B, and TUBA1C) show
an increased abundance, in agreement with previous data that demonstrated that tubulins
are strongly modulated in nephropathic subjects [20]. Moreover, other cytoskeletal proteins
and cytoskeletal-regulating proteins with different abundances were identified in our study,
namely SYNE1, CAPNS1, MTPN, MYO1B, and RRAS. Microarray studies have highlighted
CAPNS1 as being modulated in membranous nephropathy [63] and in immunoglobulin A
nephropathy [98], while other studies have reported the importance of miR-375 (for which
myotrophin MTPN is a target) for glucose homeostasis and as a potential biomarker in
type 2 diabetes [99,100]. Finally, both SYNE1 and MYO1B have been described as related
to diabetic nephropathy before [101–103].

Although, to the best of our knowledge, not much is known about a possible role
of the DNA repair proteins, XRCC5 and XRCC6, in the context of diabetic nephropathy.
Recently an association between other members of the same protein family (XRCC1 and
XRCC3) and diabetic nephropathy has been suggested [104].

We also identified two proteasomal proteins (PSMA7 and PSMB2), with some other
functional related proteins (RPS3, RPS3A, and EEF1B2), all of them with a lower abundance
in nephropathic subjects. The role of proteasomal proteins in the context of nephropathy
was discussed above (paragraph 3.1.6). Interestingly, RPS3 was described to be associated
with diabetic nephropathy [92], while RPS3A was also reported to have an increased
expression in membranous nephropathic kidneys [105].

Galectin-3 (LGALS3) is upregulated under diabetic conditions, providing protection
toward tissue injury induced by advanced glycation end-products (AGEs) [106]. It has been
considered as a possible therapeutic target for prevention and treatment of diabetes and its
complications [107]. In our analysis, LGALS3 has a reduced abundance in nephropathic
subjects, suggesting a possible lack of a protective effect in this group of patients. On the
other hand, we found SerpinB2 to be more abundant in nephropathic subjects. Interestingly,
reduced levels of SerpinB2 have been associated with the delayed development of diabetic
nephropathy [108].

Other proteins found with an altered abundance in our study and known to be re-
lated to diabetic nephropathy are CTSD, FHL2, and Sec31A. This latter was associated
with DN [109] and is involved in the inhibition of nerve regeneration in diabetic neu-
ropathy [110]. CTSD expression was found to be altered in the renal tubular epithelium
in patients with DN [111], and very recently, a urinary proteomic study conducted on a
large cohort of type 1 diabetic subjects identified cathepsin D as a promising biomarker of
rapid eGFR (estimated glomerular filtration rate) decline, which reflects kidney injury [112].
FLH2, a protein implicated in Wnt/β-catenin signaling, plays a crucial role in albuminuria
and has been indicated as a potential therapeutic target against diabetic kidney damage and
fibrotic kidney disease [113,114]. Finally, we found a member of the MAPK family, namely
MAPK14, with a reduced abundance in nephropathic subjects with respect to diabetic con-
trols. In agreement with our data, the implication of MAPK signaling in the development
and progression of diabetic nephropathy has been amply documented [115,116].

3.3. Proteins with Similar Half-Life and Abundance Are Functionally Related

The data synthetically summarized in Table 4 and fully displayed in Table S6 and
Figure S1 highlight the notion that proteins with similar half-lives are also very often
functionally related. To perform this analysis, proteins were divided into 9 arbitrary groups
based on their estimated half-lives, and the enrichment of gene ontology terms was assessed
using the bioinformatic tools specified in Section 4. What emerges from this analysis did
not come entirely as a surprise, since our data reveal that the most stable proteins (i.e., those
with T1/2 > 70 h) are mainly mitochondrial, nuclear, and cytoskeletal proteins involved in
energy metabolism, cellular respiration, structural functions, protein folding, translation,
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chromatin organization, and DNA packaging. All these basic and very important biological
functions rely on proteins that are also characterized by a medium-to-high abundance
(Tables 5 and S7 and Figure S2), and therefore their rapid turnover would require a very
high energy consumption. In other words, the cell invests lots of energy in the synthesis of
these proteins, and therefore their half-lives are conveniently long. On the other hand, if
cells need to modulate the abundance of these proteins (either increasing or decreasing it)
the adjustment to the new conditions cannot be obtained in a short time, therefore requiring
a longer adaptation.

Proteins characterized by shorter half-lives (between 60 and 70 h) are mainly ribosomal
and proteasomal, proteins related to RNA metabolism and to Ras signal transduction.
Half-lives in the range 50–60 h are typical of proteins related to cell cycle, vesicle mediated
transport, and actin cytoskeletal organization, while in the range 30–50 h fall predominantly
proteins involved in mRNA processing, in small GTPase mediated signal transduction
and Golgi vesicle transport. Finally, it was not completely surprising to identify mainly
secreted proteins and proteins involved in extracellular matrix organization among those
characterized by a higher turnover rate (i.e., those with T1/2 < 30 h). Indeed, for the
category of secreted proteins, our estimated half-life is given by the contribution of two
different processes: the turnover rate and the rate of secretion. Since we only measured
intracellular proteins, we cannot distinguish between these two processes, although the
particularly short half-life of these proteins suggests that the rate of secretion is probably
much faster than the intracellular turnover rate. Regarding this aspect, it is interesting
to note that collagens have estimated half-lives that are generally shorter (although not
statistically significant) in nephropathic subjects with respect to diabetic controls. This
might reflect the notion that nephropathic conditions are characterized by increased matrix
accumulation [58].

To further confirm, as already reported by others [13,117], that proteins involved
in common biological processes tend to have similar turnover rates, we compared the
half-lives of a number of proteins that are subunits of specific, well-characterized macro-
molecular complexes. Some examples of this analysis are reported in Figure 8, where the
half-lives of proteasomal alpha subunits, subunits of the coatomer and of the chaperone
protein TCP1 complex, and ribosomal subunits of the 40S complex are shown.

Figure 8. Half-lives of proteins belonging to selected macromolecular complexes. The graphs show
the estimated half-lives for proteins that are part of specific, well-characterized macromolecular
complexes. Error bars indicate standard errors.

It is evident that proteins belonging to the same functional complex have very similar
estimated half-lives, with the remarkable exception of proteins RPS27A and RPS27 of
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the 40S ribosomal complex, which show a much faster turnover rate as compared to
almost all the other subunits. Interestingly, the RPS27A gene codes for a single copy of
ubiquitin fused to the ribosomal protein S27a; therefore, it is post-translationally regulated,
and its turnover rate might therefore be strongly influenced by this process. RPS27 is a
ribosomal protein with extra-ribosomal functions: it has been reported as involved in DNA
repair, transcription, and signal transduction [118,119], and for these unique features, it
is conceivable that its turnover rate is regulated independently of the other ribosomal
subunits. To rule out the possibility that the constant trend visible in Figure 8 might be due
to a fortunate coincidence, we compared the distribution of half-lives of the subunits of
each complex with the distribution of 10 populations randomly generated starting from the
same dataset and using the same number of proteins. The selection of the populations was
performed automatically using the “Random” function of Excel. As shown in Figure 9, it is
evident that in all cases the pattern relative to the randomly selected proteins is much more
scattered compared to the behavior of the proteins belonging to some complex, indicating
that the similar turnover rate estimated for subunits belonging to the same complex reflects
a true cellular regulation.

Figure 9. Box plots showing the distribution of half-lives for proteins belonging to the macromolecular
complexes indicated in Figure 8, compared to the distribution of half-lives relative to 10 randomly
selected populations of proteins generated automatically from the same dataset.

Similarly to what we did for the categorization of proteins with comparable turnover
rate, we decided to group proteins based on their relative protein abundance. To this
purpose, the abundance range was divided in arbitrarily pre-defined intervals, and GO-
enriched terms were assessed for each cluster. Table 5 summarizes the results of this analysis
(for more detailed results, see Table S6 and Figure S2), which show that the most abundant
proteins are those related to DNA packaging, cytoskeletal organization, translation, RNA
metabolism, and energy production. Protein folding and vesicle-mediated transport are
mainly associated with proteins with an average medium/high abundance, while terms
related to nucleotide metabolism, RNA splicing, cellular respiration, and the cell cycle are
particularly enriched among proteins with a medium/low abundance. Finally, proteins
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characterized by low abundance are mainly related to the TCA cycle, mRNA and protein
transport, nucleotide biosynthesis, and redox processes.

When protein half-lives are plotted as a function of abundance (Figure 7), some
particularly interesting clusters of proteins emerge. Not surprisingly, proteins with both
a long half-life and high abundance (in red in Figure 7) belong mainly to the category
of structural proteins and proteins related to very basic and important cellular functions
such as chromatin organization and energy production. Proteins with a short half-life
and high abundance (in blue in Figure 7) require a particularly high energy consumption
to be maintained and are mainly involved in extracellular matrix organization, cellular
response to stress, metabolism of mRNA, and vesicle-mediated transport. Note that, as
discussed above, extracellular matrix proteins are probably in this category (i.e., short
half-life) only because we cannot distinguish between turnover rate and secretion rate.
Beside proteins that are secreted, proteins with a short half-life and low abundance (in
green in Figure 7) are mainly involved in RNA splicing, membrane trafficking, and the cell
cycle. It is worth noting that the concentration of these proteins can be rapidly increased in
case of need by simply limiting their degradation rate, leading to their fast accumulation.
Finally, proteins with a long half-life and low abundance (in pink in Figure 7) are involved
in the metabolism of proteins, hydrocarbons, and lipids. The cell does not require many
copies of these proteins, but nevertheless they are involved in basic cellular functions and
appear, therefore, particularly stable.

We must finally highlight that it is difficult to compare our results with similar data
previously published by other research groups. For instance, when comparing the average
protein half-lives obtained in this study across 10 subjects with those reported in the
seminal work of Schwanhausser et al. on a single sample [9], it appears that the half-life
that we estimate tends to be consistently lower, although the order of magnitude is pretty
similar. These differences can be attributed to several reasons. First of all, we used patient-
derived primary fibroblasts, whereas murine fibroblasts were used in [9], and moreover, we
considered cells at confluence, whereas in Schwanhausser et al., the total protein abundance
is assumed to double during the duration of one cell cycle. Another important difference is
that the last time-point measured in our experiment is 24 h vs. 13.5 h in Schwanhausser
et al. Given that the ratio r of proteins labeled with heavy and light amino acids increases
slowly for high half-life proteins, having late time points in the experimental set-up should
guarantee a better estimate of k for these kinds of proteins. Finally, while in Schwanhausser
et al., a simple least square estimation is used, here a weighted least square estimate of
parameter k was adopted.

A more reasonable comparison can be made with the data reported by Welle et al. [120],
where protein turnover rate is estimated in immortalized human fibroblasts. Although
both the analytical approach (classical dynamic-SILAC vs. a hyperplexing strategy) and
the cellular model (patient-derived primary fibroblasts vs. immortalized fibroblasts) are
not identical, the half-lives we estimated appear to be in good agreement with the data they
have published (same average value of k and a correlation coefficient > 0.6), thus further
supporting the reliability of our dataset.

4. Materials and Methods

4.1. Patients’ Selection and Enrolment

We sought to quantify protein turnover in unperturbed fibroblast cells in a popu-
lation of 10 diabetic subjects, five of whom had nephropathy. Five Caucasian T1DM
patients with DN (i.e., with a urinary albumin excretion rate (AER) > 200 mg/min in sterile
urine, not associated with other proteinuric diseases) and five T1DM patients without DN
(AER < 20 mg/min) were recruited. The aims of the study were explained in detail, and
each subject gave informed consent to the study. The protocol had been approved by the
Ethical Committee of the Medical Faculty at the University of Padova and was performed
according to the Helsinki Declaration (1983 revision).
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The patients’ characteristics are reported in detail elsewhere [20]. Age (means: 36–39 yrs),
male/female ratio (2/3), body mass index (BMI) (means: 22–24 kg/m2), diabetes duration
(≈20 yrs), and glycated hemoglobin levels (means: 9–11%) were not different between the
two groups of diabetic subjects. Their albumin excretion rate (AER) was determined on
three timed overnight urine collections, by a turbidimetric method (Turbiquant Albumin,
Dade Behring, Marburg, Germany), and the median value was used for DN classification.
The mean blood pressure was calculated as diastolic blood pressure plus one-third systolic
(i.e., pulse) pressure. All drugs were suspended the day before the study.

4.2. Cell Collection and Culture

The fibroblasts were obtained by skin biopsies as described in detail elsewhere [25].
The skin explants were incubated at 37 ◦C after addition of HAM’S F-10 Nutrient Mixture
medium (Sigma Aldrich, St. Louis, MO, USA) supplemented with 20% foetal bovine
serum (FBS Sigma Aldrich), 1 mM glutamine, (Sigma Aldrich), 100 U/mL penicillin
and 100 μg/mL streptomycin (Sigma Aldrich). The growth medium was changed ev-
ery 3–4 days. Usually, the fibroblasts became visible after 4–5 days of culture, and they
reached the confluence after about 3 weeks. Thereafter, the culture medium was aspirated,
and cells were washed three times with PBS. The fibroblasts were recovered by adding
0.05% trypsin and 0.02% EDTA (Sigma-Aldrich), transferred into 75 cm2 flasks and cultured
with the culture medium containing 10% FBS. After the third passage, cells were frozen and
kept in liquid nitrogen. Before each experiment, the fibroblasts were thawed and grown up
to the 4th–5th passage.

4.3. Dynamic-SILAC Experiment, Sample Preparation and In-Gel Protein Digestion

For the dynamic SILAC experiment a custom-made Dulbecco’s Modified Eagles
Medium (DMEM) without L-arginine, L-lysine, and L-glutamine (Athena Enzyme systems,
Baltimore, MD, USA) was used after adding L-arginine, L-glutamine, and L-lysine (Sigma)
or 13C6-Lysine (Cambridge Isotope Laboratories, Tewksbury, MA, USA), and 10% dialyzed
foetal bovine serum (FBS, Invitrogen, Paisley, UK). To determine protein half-lives, a
dynamic-SILAC approach was used. The fibroblasts were cultured in standard, light (L)
DMEM medium until they reached confluence. Thereafter, the standard medium was
removed, the cells were washed three times with 10 mL of phosphate-saline buffer (PBS,
pH = 7.4, Sigma Aldrich), and the heavy medium (containing the13C6-Lysine) was added
to the culture at time T = 0.

Cells were harvested at 4, 7.5, and 24 h, lysed by the addition of 70 μL of Tris-HCl
62.5 mM, pH 7.2, 1% SDS, and protease inhibitors (Protease Inhibitor Cocktails, Sigma
Aldrich), and by repeated freeze-thaw cycles in liquid nitrogen. The samples were then
centrifuged at 14,000 rpm for 15 min to remove cell debris, and the protein concentration in
the supernatant was quantified by the Lowry method. Thereafter, 70 μg of total proteins
for each time point and for each subject were loaded onto a 12% precast gel (NuPAGE,
Invitrogen). The electrophoretic separation was performed by applying a constant voltage
of 80 V for 30 min. Gel was then stained for 3 h with colloidal coomassie (SimplyBlue Safe
Stain, Invitrogen) and then destained with water. Each gel lane was cut into five bands that
were then subjected to in-gel enzymatic digestion with LysC protease (Promega, Madison,
WI, USA) as described in [121].

4.4. LC-MS/MS Analysis

Each of the fractions obtained as specified above was analyzed by LC-MS/MS. Data
were submitted for database search and quantification of SILAC H/L ratios. The analysis
was conducted with a LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific)
interfaced to a nano-HPLC Ultimate 3000 (Dionex—Thermo Fisher Scientific, Waltham,
MA, USA). Samples were loaded into a 10 cm pico-frit capillary column (75 μm I.D., 15 μm
tip, New Objective, Littleton, MA, USA) packed in-house with C18 material (Aeris peptide
3.6 um XB-C18, Phenomenex, Torrance, CA, USA), and peptides were separated by a linear
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gradient from 3% to 40% acetonitrile/0.1% formic acid in 40 min. The instrument operated
in a Top4 data-dependent mode, with a full MS scan from 300 to 1700 Da acquired at high
resolution (60,000) in the Orbitrap, followed by 4 MS/MS spectra of the most intense ions
acquired in the linear trap.

To increase the number of identifications and robustness of quantification, each sample
was analyzed twice. After the first round of analysis, all data files were searched against the
human section of the Uniprot database (as specified below). All peptides that were identi-
fied with high confidence were used to create a static exclusion list that was then inserted
into the instrument method. All samples were analyzed again under identical chromato-
graphic and instrumental conditions, but with the application of the static exclusion list.
The second round of analysis allows for an increase in the number of protein groups and
unique peptides confidently identified, thus increasing the robustness of quantification. A
series of representative Venn diagrams showing the performance of this analytical strategy
are reported in Figure S4. In total, 300 LC-MS/MS analyses were performed (2 analyses for
each of the five gel bands, for the three time points, and for the 10 patients).

4.5. Protein Identification and Quantification

All raw files generated in the study were analyzed with the software Proteome Dis-
coverer (version 1.2, Thermo Fisher Scientific) interfaced to a Mascot server (version 2.2.4,
Matrix Science, Chicago, IL, USA). The search was performed against the human section
of the Uniprot Database (www.uniprot.org, accessed on 1 April 2013) using the MudPIT
protocol. LysC was selected as the digesting enzyme, with up to one missed cleavage
allowed. Precursor and fragment tolerances were set at 10 ppm and 0.6 Da, respectively.
Carbamidomethyl cysteine was selected as a static modification, while methionine oxida-
tion and 13C6-lysine were set as variable modifications. Data were filtered based on the
search against a corresponding randomized database, and the false discovery rate (FDR)
was calculated by the software. Only proteins identified with at least 2 unique peptides
with high confidence (>99%) were considered positive hits. SILAC ratios were calculated by
the software for each identified peptide, and peptides were grouped into protein families
according to the principle of maximum parsimony. Protein quantification was calculated as
the median value of the quantification of all peptides belonging to the same protein family.
For each cell line, all the data obtained from the five gel bands, both with and without the
application of the excluding list, were merged into a single msf output file. Msf files relative
to the three time points for each cell line were finally merged into a single multi-report file.

4.6. Kinetic Analyses

As derived in the following equations, for constant incorporation rates, the logarithm
of the SILAC H/L ratios increases linearly with time; therefore, protein half-lives can be
obtained by properly fitting H/L rations measured at different time points. Five biological
replicates were available for each group to assess statistical significance.

Proteins labeled with light amino acids (PL) are assumed to decay exponentially with
the degradation rate constant k (Equation (2)).

PL = PTOT ·e−kt (2)

Our experiment is conducted with cells at confluence and at constant volume. Under
the hypothesis of steady state, i.e., PTOT, k and protein synthesis constant in time, no amino
acid recycling, and assuming a mono-compartmental model, the protein labelled with
heavy amino acids (PH) can be expressed as the difference between the total number of a
specific protein (PTOT) and PL as in Equation (3).

PH = PTOT − PL = PTOT ·
(

1 − e−kt
)

(3)
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The rate constant of the protein decay k can then be obtained by fitting the model
of the ratio r of protein labeled with heavy and light amino acids at different time points
(Equation (4)).

r =
PH
PL

=
1 − e−kt

e−kt (4)

By taking the natural logarithm (ln), Equation (4) can be transformed into:

ln(r + 1) = kt (5)

Proteins whose SILAC ratio was not available for the time of 24 h, and for at least
one of the other time points (4 or 7.5 h), were filtered out. For the remaining proteins, the
parameter k was identified by fitting the H/L ratio r data according to Equation (5), using
the weighted least square method. Weights were calculated as the inverse of the variance
of ln(r + 1) data, starting from Equation (1) and using the error propagation rules.

Equation (1) is a model of the technical variability of r derived from peptide measure-
ments, using these latter as replicate protein measurements. In more detail, the standard
deviation (SD) and the coefficient of variation (CV) of the H/L ratio r were calculated for
each protein, for each subject, and for each time point. Measurements with CV% higher
than 50% were excluded from downstream analysis. The range of r values were then
divided into intervals of the same bin size (0.05) or containing at least 10 protein measure-
ments, and, for each interval, the median of the SDs and the CVs was considered to fit a
model of technical variability.

The goodness of fit was evaluated using the precision of parameter k estimates; pa-
rameters with coefficients of variation higher than 50% were considered unreliable.

Once k is determined, the protein half-life, i.e., the time required for the amount of the
protein to fall to half its initial value if the synthesis is zero, can be calculated as:

T1/2 =
ln(2)

k
(6)

4.7. Protein Abundance

In parallel, we quantified the relative protein abundance using the sum of peak
intensities of all peptides matching a specific protein divided by the number of observed
peptides for that protein and by the total sum of peaks in each LC-MS/MS run [9]. Under
the hypothesis of steady state, protein abundance levels were averaged across the three
time points.

4.8. Bioinformatic and Statistical Analysis

A number of bioinformatic tools were used to assess whether proteins characterized
by similar half-lives or abundance tend to share interacting partners and be associated
with similar Gene Ontology (GO) terms. For this purpose, our datasets were analyzed
with STRING v. 11.0 [122] to highlight physical/functional interactions among proteins
and with David Bioinformatic Resources v. 6.7 [123,124] and Revigo [125] to underline and
graphically visualize enriched GO terms associated with the different classes of proteins.

Gene set enrichment analysis (GSEA) was also performed on our data using MSigDB
Canonical pathways gene set collection [126]. The GSEA was used to determine whether
the members of a given gene set were associated with a group. If a gene set had a positive
enrichment score, a significant number of its gene members had higher expression in
one of the predefined groups, and the gene set was termed “enriched”. A 1000 random
sample permutations were carried out, and the significance threshold was set at FDR < 0.05.
All comparisons between groups were performed using the two-tailed Student t-test for
unpaired data.
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5. Conclusions

In this manuscript, we describe the application of a dynamic-SILAC approach to
study the turnover rate and the relative abundance of proteins using a cellular model
of diabetic nephropathy. Under the hypothesis of steady state, no amino acid recycling,
and assuming a mono-compartmental model, we adopted a model describing the SD as
a function of heavy to light ratio and estimated the parameter k using the least square
method weighted accordingly to the model of technical variability. We could reliably
estimate the turnover rate for more than 1600 proteins and the relative abundance for more
than 2200 individual proteins. Several of these turned out to be significantly different in
either half-life or abundance between nephropathic subjects and diabetic controls. Many of
these proteins were already known to be related to diabetic complications and therefore
represent possible biomarkers or therapeutic targets. However, beside the aspects strictly
related to the pathological condition, the data collected in this study represent a reliable
compendium of protein half-lives in human fibroblasts and a rich source of important
information related to basic cell biology.
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Abstract: The continuous improvement of proteomic techniques, most notably mass spectrometry,
has generated quantified proteomes of many organisms with unprecedented depth and accuracy.
However, there is still a significant discrepancy in the reported numbers of total protein molecules
per specific cell type. In this article, we explore the results of proteomic studies of Escherichia coli,
Saccharomyces cerevisiae, and HeLa cells in terms of total protein copy numbers per cell. We observe up
to a ten-fold difference between reported values. Investigating possible reasons for this discrepancy,
we conclude that neither an unmeasured fraction of the proteome nor biases in the quantification of
individual proteins can explain the observed discrepancy. We normalize protein copy numbers in
each study using a total protein amount per cell as reported in the literature and create integrated
proteome maps of the selected model organisms. Our results indicate that cells contain from one
to three million protein molecules per μm3 and that protein copy density decreases with increasing
organism complexity.

Keywords: quantitative proteomics; absolute protein abundance; total protein; E. coli; S. cere-
visiae; HeLa

1. Introduction

The difference in observed phenotypes between cells of different organisms and
between individual cells of multicellular organisms can be largely explained by differences
in their proteome composition [1]. However, the proteome remains much more difficult to
quantify than the genome or the transcriptome since it is significantly more complex—the
number of different proteoforms in a typical human cell is estimated to be well into the
hundreds of thousands or even millions, and individual proteins can exhibit extremely
dynamic behavior [2,3]. Additionally, in contrast to genomics, proteomics currently lacks
methods for amplifying the signal from proteins present in low numbers, which makes
their quantification difficult [4].

Despite all the challenges, the field of proteomics has demonstrated great progress
in the quantification of proteomes of different organisms. This progress is, for the most
part, attributed to advancements in mass spectrometry that now has sufficient power to
quantify tens of thousands of individual proteins in a single experiment [5]. This has
resulted in the publication of hundreds of high-quality proteomes of various cell types [6]
or even whole tissues [7]. Several alternative approaches to mass spectrometry have also
been developed for the purpose of proteome quantification, for instance, fluorescence-
based quantification [8], immunoblotting [9] and ribosomal profiling [10]. However, in
contrast to mass spectrometry, these methods are less universal. One of the most interesting
questions of quantitative proteomics is how many protein molecules in total are present
per particular cell type. This question can be approached in two different ways. The first
way is to measure the total protein mass per cell and average protein mass, which allows
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one to calculate an approximate number of proteins per cell by simple division of these
two values. Since this calculation requires relatively simple biochemical measurements,
such an approach was used well before the development of robust strategies for whole
proteome quantification [11]. Another way to approach this question is to quantify levels
of individual proteins, and then sum them up to obtain a total protein copy number per
cell, which is where mass spectrometry is the method of choice.

A rigorous attempt to combine and contrast these two approaches was conducted by
R. Milo in 2013 [12]. Surprisingly, estimates of the total number of protein copies calculated
using protein density per cell and average protein mass contrasted with estimates of total
protein copy number from whole proteome quantification experiments. This difference
could be as high as ten fold for some cell types. Since the publication of the article in 2013, a
plethora of new whole proteome quantification datasets, as well as updated measurements
of physiological parameters of various cell types, have been published. This opens an
opportunity to explore the proteomes of common model organisms more rigorously and
to arrive at consensus values of total protein copies per cell, as well as copy numbers of
individual proteins.

2. Results

2.1. Overview of Selected Proteomic Studies of E. coli, S. cerevisiae, and HeLa Cells

To achieve our goal of understanding how many protein molecules were present per
cell, we chose three well studied model organisms for research: E. coli as an example of
a relatively simple prokaryotic cell, S. cerevisiae as a unicellular eukaryote organism, and
HeLa cell line as a cell from a complex multicellular organism such as human.

For the chosen cell types, we searched for published proteomic studies that reported
copies per cell for these model organisms. We only selected studies that quantified a signifi-
cant portion of the proteome and performed original calculations of protein copy numbers.
In addition, we also required that the studies use similar growth conditions for particular
cell types. In total, we found 21 such studies, with 7 studies for each model organism
(Table 1). These studies primarily utilized shotgun mass spectrometry. Additionally, one
study by Lawless et al. performed targeted protein quantification using the single reaction
monitoring (SRM) technique for an impressive number of proteins (>1000) [13]. While
mass spectrometry is the method of choice for proteome quantification, three of the se-
lected studies utilized alternative methods such as immunoblotting (Ghaemmaghami et al.,
2003 [9]), single molecule fluorescence-based protein abundance quantification (Taniguchi
et al., 2010 [8]), and ribosomal profiling (Li et al., 2014 [10]).

Table 1. Overview of selected proteomic studies of E. coli, S. cerevisiae, and HeLa.

Cell Type Study Code Method
Strategy for Calculation

of Protein Copies
Proteins

Quantified

Total Protein
Copies per

Cell
Ref.

E. coli

Taniguchi et al.,
2010 TA10 Fluorescence Single-molecule

fluorescence calibration 1018 94,571 [8]

Valgepea et al.,
2013 VA13 Shotgun MS

iBAQ, calibration with
standards (UPS2) * and

total protein per cell
1179 4,293,284 [14]

Li et al., 2014 LI14 Ribosomal
profiling

Relative protein synthesis
rates multiplied by total

protein per cell
3883 5,627,623 [10]

Wisniewski et al.,
2014 WI14 Shotgun MS TPA and total protein

per cell 2261 1,321,542 [15]

Soufi et al., 2015 SO15 Shotgun MS
iBAQ, calibration with

standards (UPS2) and cell
count

1913 11,214,979 [16]
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Table 1. Cont.

Cell Type Study Code Method
Strategy for Calculation

of Protein Copies
Proteins

Quantified

Total Protein
Copies per

Cell
Ref.

Schmidt et al.,
2016 SC16 Shotgun MS LFQ, calibration with

standards and cell count 2355 5,070,410 [6]

Radzikowski
et al., 2016 RA16 Shotgun MS LFQ and total protein

per cell 1959 2,220,410 [17]

S. cerevisiae

Ghaemmaghami
et al., 2003 GH03 Western

blotting
Calibration with

standards and cell count 3868 46,664,471 [9]

Kulak et al., 2014 KU14 Shotgun MS TPA and total protein
per cell 4570 48,114,163 [18]

Lawless et al.,
2016 LA16 SRM Standards (QconCAT) and

cell count 1167 56,322,039 [13]

Lahtvee et al.,
2017 LT17 Shotgun MS

iBAQ, calibration with
standards (UPS2) and

cell count
1788 96,407,334 [19]

Martin-Perez
et al., 2017 MP17 Shotgun MS “Proteomic ruler” 3318 250,751,159 [20]

Wang et al., 2019 WA19 Shotgun MS “Proteomic ruler” 2582 71,802,810 [21]

Xia et al., 2022 XI22 Shotgun MS
iBAQ, calibration with
standards (UPS2) and
total protein per cell

2526 73,823,343 [22]

HeLa

Nagaraj et al.,
2011 NA11 Shotgun MS iBAQ and total protein

per cell 8078 2,007,666,667 [23]

Wisniewski et al.,
2012 WI12 Shotgun MS TPA and total protein per

cell (estimate) 8094 8,236,921,797 [24]

Kulak et al., 2014 KU14 Shotgun MS TPA and total protein per
cell (estimate) 9677 2,982,812,197 [18]

Hein et al., 2015 HE15 Shotgun MS LFQ and total protein
per cell 8804 2,916,903,614 [25]

Itzhak et al., 2016 IT16 Shotgun MS “Proteomic ruler” 8710 7,837,554,944 [26]
Bekker-Jensen

et al., 2017 BJ17 Shotgun MS iBAQ and calibration with
standards 14178 4,077,816,932 [5]

Morgenstern
et al., 2021 MO21 Shotgun MS TPA and total protein

per cell 8436 4,883,462,397 [27]

* Data in Valgepea et al., 2013 are based on rescaling of data from Arike et al., 2012 [28], who performed
absolute quantification of E. coli cells using the iBAQ approach. Abbreviations: iBAQ—intensity-based absolute
quantification; UPS2—universal protein standard 2; LFQ—label-free quantification; TPA—total protein approach;
SRM—single reaction monitoring; QconCAT—quantification conCATamer

To obtain copies per cell, the first step in proteomic studies is to derive absolute
abundance values for each quantified protein, i.e., values that are directly proportional
to protein concentration in the cell. This is the most important step for studies that use
mass spectrometry. As peptides have different efficiencies of ionization, their individual
abundance alone cannot be directly converted to protein abundance [4]. A classic way to
circumvent this problem is to spike-in labeled peptides or proteins with known concentra-
tion, which allows us to infer the absolute abundance of their unlabeled counterparts by
comparison [29]. However, this is an extremely expensive and laborious approach if more
than a few proteins have to be quantified, and only one study in our selection performed
such a procedure for all proteins, which was by Lawless et al., 2016 [13]. However, most of
the other studies opted for a label-free quantification approach, which typically consisted
of inferring absolute protein abundance based on some form of integration of peptide-level
data. Such approaches, for example, total protein approach (TPA) [15] or intensity-based
absolute quantification (iBAQ) [30] have important technical differences but are nonetheless
considered to be similar for our goals. Regarding the studies that did not utilize mass
spectrometry, Western blotting and fluorescence only require calibration with standards
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of known quantity, although certain care must be taken when converting chemilumines-
cence/fluorescence intensity to protein abundance [31]. One remaining study by Li et al.
utilized ribosomal profiling to estimate absolute protein synthesis rates that were directly
proportional to protein abundance if the influence of post-translational control on protein
levels was negligible, as was true for E. coli cells [10].

The second step to obtaining protein copy numbers consists of converting absolute
abundance values to protein copies per cell, which is required for mass spectrometry
and other approaches alike. Again, at this step, there is significant difference in possible
approaches. The first approach is to introduce a limited set of labeled proteins into the
sample and build a calibration curve, thus, inferring protein abundances in copies/moles in
the sample, which was done, for instance, by Schmidt et al. [6]. After this step, however, to
obtain protein copy numbers per cell, cell counts that were used as input must be measured,
either by flow cytometry or plate counting. Alternatively, if the total protein content in
grams per cell is known, absolute abundance values can be converted to protein copies by
normalization of the sum of intensities to total protein per cell. One other approach, termed
“proteomic ruler” relies on the fact that the number of histones associated with DNA is
constant for a specific type of eukaryotic cell, and thus, protein copies can be calculated by
normalizing the summed intensity of histones to the protein/DNA ratio per cell [32]. To
summarize, selected proteomic studies of E. coli, S. cerevisiae, and HeLa cells utilize various
multi-step approaches to estimate the number of protein copies per cell, and discrepancies
at each step can lead to a compound effect on the difference in copy numbers of individual
proteins and, thus potentially, total protein copy number per cell.

2.2. Comparison of Reported Total Protein Copy Numbers for Selected Model Organisms

In terms of quantified proteins, studies have quantified variable numbers of them,
ranging from 1000 to almost 14,000 proteins (Figure 1). For each of the selected studies,
we extracted unadjusted values of protein copies per cell and summed them to obtain the
total number of protein copies per cell for each study. The results for each model organism
demonstrate significant discrepancies in terms of reported total protein copy numbers
(Figure 1).

As expected, there is no correlation observed between the number of quantified
proteins in a particular study and the calculated number of total protein copies per cell for
each model organism (Pearson’s r = 0.28 for E. coli, 0.05 for S. cerevisiae, and −0.26 for HeLa).
Consequently, some sort of normalization procedure is required before the results of these
studies can be integrated into a global proteomic map of the selected model organisms,
thus, obtaining a consensus value of total protein copies per cell for a particular model
organism and condition.
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Figure 1. Results of proteomic studies in terms of the number of quantified proteins and total protein
copies per cell for E. coli, S. cerevisiae, and HeLa.

2.3. Exploration of Possible Reasons for the Discrepancy in Reported Total Protein Copy Numbers

To enable cross-study comparisons, first, we mapped all identifiers in the study to the
universal UniProt IDs from the most recent release of the UniProt database. As a result,
some entries were lost due to possible nomenclature updates or because it was a protein
group, rather than a single protein that was quantified. However, despite these losses, our
procedure led to the assignment of >95% of all identifiers in most of the studies and led
to no more than 10% loss of protein copies reported, which was negligible for our needs
(Table S1).

To understand the source of the observed differences, we considered whether pro-
teomic studies can omit a certain part of the proteome from identification due to method-
specific biases. Since shotgun mass spectrometry and ribosomal profiling represent untar-
geted approaches to protein identification, biases in protein detection can leave a certain
part of the proteome undetected, depending on the specific method employed. In contrast,
targeted approaches such as Western blotting and fluorescence imaging can omit certain
proteins, which may have high copy numbers, from the initial selection of targets altogether.
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To analyze the extent of this “hidden proteome”, we quantified how proteins identified
in all untargeted studies (core proteins) contributed to the reported total protein copy
numbers. We additionally excluded a study by Lahtvee et al. for S. cerevisiae from the
calculation of the core because this study quantified significantly fewer proteins than in
other untargeted studies of S. cerevisiae proteome, and exclusion of this dataset improved
the contribution of core proteins to the total copy numbers, which was not true when
excluding one of any other untargeted studies. We identified 934 proteins present in all
untargeted studies of E. coli proteome (22% of all predicted protein-coding genes [33]), 1945
core proteins for S. cerevisiae cells (32% of all predicted protein-coding genes [34]), and
5051 proteins (24% of predicted number of human protein-coding genes [35]) for HeLa
cells. Despite representing from a quarter to a third of all quantified proteins in each study,
core proteins account for more than 70–80% of total protein copies per cell for all model
organisms (Figure 2). If we relax our definition of core proteins to include proteins present
in at least n−1 study (core 1), the contribution of such proteins increases to almost more
than 90% of total protein copies per cell for the majority of studies (Figure 2). Thus, we
reason that the most frequently detected proteins contribute to the majority of overall
copies irrespective of the study. Additionally, we observe that untargeted studies quantify
not all of the core proteins (Table S1), which may be the reason for the lower estimates of
total protein copy numbers in these datasets.

Figure 2. Contribution of proteins quantified in all untargeted datasets for a particular model
organism (core proteins) to the reported total protein copy numbers as a percent of total copies. Less
saturated portions of the bars represent contributions of proteins which are present in at least n − 1
untargeted dataset for a particular model organism (core 1) to total protein copies.

Nevertheless, it is unlikely but possible that some systematic bias prevents all studies
from detecting a certain part of the proteome. To estimate the contribution of this hypo-
thetical part of the proteome to the overall numbers, we analyzed how the frequency of
detection of proteins (as being present in a certain number of datasets) correlates with their
averaged normalized expression (Figure 3). The results indicate that there is a clear trend
of underrepresentation of proteins with low biological abundance. Therefore, the fraction
of unseen proteins likely represents proteins with very low expression values that cannot
have such a profound effect on the total protein copy numbers.

To explore the possible discrepancies in quantification of individual proteins, we
calculated pairwise Pearson’s correlation for selected datasets (Figure 4). The overall levels
of correlation are moderate (mean Pearson’s r = 0.63 for E. coli, 0.57 for S. cerevisiae, and 0.70
for Hela cells). Moderate levels of pairwise correlations are typical for mass spectrometry-
based experiments, although, of course, a better level is expected since identical cell types
in almost identical conditions are considered. Interestingly, a targeted immunoblot-based
study of S. cerevisiae by Ghaemmaghami et al. demonstrated lower-than-average levels
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of correlation with mass spectrometry studies. Additionally, a fluorescence-based study
of the E. coli proteome by Taniguchi et al. showed a moderate level of correlation with
other datasets despite quantifying a significantly smaller number of proteins in total. It is
also surprising that we do not observe an increased level of correlation when taking into
consideration only core proteins (lower left corner of heatmaps in Figure 4).

Figure 3. Normalized expression of most and least commonly detected proteins. Proteins per million
denote protein copy number divided by the sum of all protein copies in the dataset and multiplied by
a million.

Figure 4. Pairwise Pearson’s correlation of protein levels between individual datasets for all shared
proteins (top right half) or core proteins (lower left half).

In conclusion, we reason that although abundances of specific proteins can be the
reason for some of the discrepancies observed between total protein copy numbers, this
factor alone cannot explain a ten-fold difference in some cases. Therefore, we believe
that neither the unidentified portion of the proteome nor differences in quantification of
particular proteins can produce the observed effect. In turn, it is likely that some sort of a
study-specific coefficient can be applied to normalize quantitative information between
different studies of a particular model organism.

2.4. Estimation of Total Protein Copy Numbers per Cell from Total Protein Mass per Cell

To produce consensus values of protein abundances per cell, we opted for a simple,
but powerful approach of estimating the total number of protein copies per cell based on
the total protein mass per cell and average protein mass.

As our first step, we calculated average protein molecular masses as reported in
the datasets (Figure 5). Our results aligned with the well established observation that
prokaryotes have a lower average protein mass (around 30 kDa) than eukaryotes (around
40 kDa) [12], although we also noticed a small difference in the median protein mass
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between S. cerevisiae and HeLa cells, which may have reflected the relative extent of cell
complexity between yeast and humans.

Figure 5. Distribution of average protein masses in the selected proteomic studies of E. coli, S. cerevisiae,
and HeLa.

Next, we analyzed the reports of measured total protein weight per cell of E. coli,
S. cerevisiae, and HeLa cells. We selected close to average measurements that were preferen-
tially obtained in recent years. For E. coli cells, we took the value of 280 ng per cell, obtained
by Schmidt et al. for our conditions of interest [6]. For S. cerevisiae, values from 4.9 to 6.4 pg
were reported and we selected the average, i.e., 5.65 pg [36]. For HeLa cells, values from 200
to 300 pg were reported [18,37]. We took the average of these values for our calculations.
Our selected values differed slightly from those taken by Milo [12]. Next, we estimated
the total number of protein copies per cell by simply dividing the total protein mass per
cell by the median average protein mass obtained for the selected cell types. We obtained
the following numbers of total protein copies per cell: 5,774,718 for E. coli, 86,196,924 for S.
cerevisiae, and 3,698,713,400 for HeLa cells. Comparing the obtained results with reported
protein copy numbers from the selected studies, we noticed that our estimates were close
to the average of reported values (Figure 6). Therefore, we reasoned that it was correct to
normalize reported protein copies per cell to our calculated values for the chosen model
organisms.

Figure 6. Comparisons of reported numbers of total protein copies per cell and the average values
with estimates from total protein mass per cell.

To enable direct comparisons of the cellular proteome numbers between such different
organisms, we converted the values of total protein copies per cell to total protein copies per
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unit of volume, μm3, by dividing our estimates by a typical cellular volume in conditions
typical for the selected studies. While the measurements of cell volume for S. cerevisiae
(42 μm3 [38,39]) and for HeLa cells (2425 μm3 [40]) are fairly consistent in the available
literature, reported values for E. coli cells display significant discrepancy, ranging from
1 μm3 to almost 3 μm3 in similar growth conditions [17,41–43]. E. coli and bacteria, in
general, have a well documented phenomenon of demonstrating significant changes in cell
volume depending on the growth rate. However, this is unlikely to explain the observed
discrepancy as the aforementioned estimates were calculated for cells growing in similar
conditions, and thus, with a similar growth rate. As a consensus value, we selected 2.15 μm3,
reported by Radzikowski et al. [17] (see also supplementary note in Schmidt et al. [6]).
For the selected cell volumes, we obtained values of 2,685,915 protein copies per μm3 for
E. coli, 2,034,146 protein copies per μm3 S. cerevisiae, and 1,525,243 protein copies per μm3

for HeLa. As can be seen, there is a clear trend of decreasing protein copies per unit of cell
volume with increasing organism complexity, although it is not as profound as estimated
previously [12].

2.5. Normalization and Integration of Protein Copy Numbers in the Selected Studies

To enable the normalization of protein copy numbers according to a calculated total
number of copies per cell, we developed and applied a normalization procedure to all
datasets. Since individual studies quantified different numbers of proteins in total, simply
normalizing the sum of all protein copies to an estimated number of total copies per cell
would yield relatively increased values for datasets that quantified lower numbers of
proteins. Accordingly, we decided to base our normalization procedure on the contribution
of core proteins to the number of total copies. For each cell type, we calculated a minimal
contribution of core proteins to total copy numbers across untargeted studies. Then, we
normalized the sum of all core protein copies in each dataset to our estimated total number
of protein copies per cell multiplied by the minimal observed contribution of core proteins
to the total copy number. For untargeted studies, we also multiplied an estimated sum
of core protein copy numbers by a proportion of core proteins that were detected in the
untargeted study. Finally, we calculated the average copy number for each detected protein,
thus, obtaining an integrated proteome for each cell type (Table S3). Our data include
estimated copy number values for 3852 proteins in E. coli (91% of all predicted protein-
coding genes [33]), 4680 proteins for S. cerevisiae (77% of all predicted protein-coding
genes [34]), and 12,653 proteins for HeLa (60% of all predicted protein-coding genes [35]).

The sums of our averaged results are, as expected, close to the calculated number of
proteins per cell type, differing no more than 10% from initial estimates (5,852,319 for E.
coli, 81,627,580 for S. cerevisiae, and 3,360,824,528 for HeLa cells). Small differences can
be explained by discrepancies in quantification of individual proteins, plus the fact that
not all predicted proteins of the model organisms are present in the resulting proteomes.
Additionally, our results correlate well with a previously published integrated analysis of
S. cerevisiae proteome partly based on the datasets also selected for our study (Pearson’s
r = 0.82) [44]; however, our results are almost twice as high in terms of total protein copies
per cell despite more proteins being included in the published dataset. In terms of median
copy numbers for selected cell types, we calculated 145 median protein copies for E. coli,
1888 median protein copies for S. cerevisiae, and 15,654 median protein copies for HeLa cells.

To provide an additional measure of the integrity of the resulting consensus pro-
teomes, we explored how copy numbers of ribosomal proteins correlate with the published
numbers of ribosome complexes per cell. Ribosomal proteins are produced in equimolar
concentrations in the cell and their numbers are tightly regulated [45]. For E. coli, we
assume an approximate number of 31,739 ribosomes per cell in selected conditions (see
Section 4). For S. cerevisiae, a value of 220,000 ribosomes per cell has been reported [46].
Finally, for HeLa cells, differing values have been reported: 3.3 million [47], 4 million [37],
and 9.5 million [48]. We selected a median of these values. Generally, median copy num-
bers of ribosomal proteins (adjusted to the ribosomal composition, see Section 4) in the
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integrated proteomes are close to the selected numbers of ribosomal complexes except for
E. coli, which is a bit lower (Figure 7). We take this as an indication that the scale of our
transformation is in agreement with supplementary quantitative data for these cell types.

Figure 7. Distribution of adjusted copy numbers of ribosomal proteins in selected studies as well
as in consensus proteomes. Adjusted protein copy number per cell denotes copy number of the
ribosomal protein adjusted to the protein’s stoichiometry in the ribosome (see Section 4).

However, it must be noted that the results of experiments which utilize mass spectrom-
etry display considerable differences between copy numbers of ribosomal proteins. Lower
copy numbers than expected can be attributed to some loss of material during sample
preparation. However, considering the aforementioned phenomenon of tight balancing
of the levels of ribosomal proteins [45], it is surprising to see ribosomal proteins with
significantly higher copy numbers than expected. Nevertheless, it must also be taken into
consideration that estimates of the number of ribosomes can noticeably vary in the literature
(as is the case with HeLa). We expect that these results might prove to be stimulating to
re-examine the levels of ribosomes and ribosomal protein copies in future studies.

3. Discussion

The present study explores the discrepancy in total protein copy numbers reported in
whole proteome quantification studies. This discrepancy has been noticed before [12,49].
However, since then, more datasets have been published for common model organisms,
such as the ones selected in our study, i.e., E. coli, S. cerevisiae, and HeLa cells. Exploring the
results of 21 proteomic studies for these cell types, it seems likely that a variation in reported
numbers is associated with subtle miscalculation performed at different steps of proteome
quantification such as cell counting. First, selected datasets share proteins with the highest
copy numbers per cell, which suggests that proteins not quantified in any study are present
in low copies and would not have a large influence on the final result. Additionally, while
we observe moderate levels of correlation for levels of individual proteins between the
datasets, this factor alone cannot explain the observed difference in total protein copies
per cell.

While there are more datasets than the ones used in this study, we prioritized datasets
that performed original calculations of protein copy numbers. In fact, several published
proteome quantification studies that have reported protein abundance in copies per cell
used a presumed total number of protein copies for normalization [50,51]. While this is a
reasonable approach, these studies used a lower total protein copy number than the one
that can be calculated from the total protein mass per cell, as done in the present study.
This is explained by the fact that previous publications that calculated the total number
of protein copies per cell used different values of parameters, such as average protein
mass [11], or performed a targeted quantification that did not include some of the highly
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expressed proteins in initial target selection [9]. Altogether, these observations highlight
the importance of re-analysis and normalization of protein copy numbers. Our method of
normalization of protein copies to a calculated total number of total protein copies per cell
is based on total protein mass per cell and average protein mass. In the end, we obtained
consensus proteome maps of E. coli, S. cerevisiae, and HeLa cells.

Additional attention should be paid to the HeLa proteome. Despite the fact that the
HeLa proteome is supposed to be much more complex than proteomes of simpler organisms
such as E. coli and S. cerevisiae, we observe similar, if not higher levels of correlation between
individual datasets for HeLa. We believe that the reason for this is our data processing
strategy that focused only on canonical proteins (master proteins [2]). Despite the fact that
alternative splicing is known to diversify proteomes in higher eukaryotes, current mass
spectrometry methods capture predominantly canonical proteins, which usually have the
highest expression among all protein isoforms produced from one gene [52]. We reasoned
that our canonical proteome map is a good enough consensus proteome that would be
useful for most applications, but it is likely that, in the near future, isoform-resolved
proteome maps of HeLa and other cells of higher eukaryotes will be published.

4. Materials and Methods

4.1. Data Processing

For all data processing steps, Python v.3.11 was used. Canonical proteome data for
E. coli, S. cerevisiae, and HeLa were downloaded from UniProt (accessed on 17 August 2022).
Data for absolute protein copy numbers per cell were extracted from a supplementary
dataset for each of the selected whole proteome quantification studies. The exact supple-
mentary datasets used are listed in Supplementary Table S1. For ID assignment, first, we
considered whether a dataset contained UniProt IDs. If yes, we tested whether all UniProt
IDs were present in downloaded proteomes from UniProt. In the case of protein groups,
we contracted the protein group only to review canonical proteins. If the entry remained
a protein group, it was excluded from further cross-study comparisons. Since there had
been a change in nomenclature of several proteins since the publication of many of the
selected studies, some UniProt IDs could not be assigned. To try and infer the UniProt ID,
in these cases, we used B numbers for E. coli and ORF IDs for S. cerevisiae, if available, to
infer UniProt IDs. If, in this case, the ID could not be assigned, the entry was excluded from
cross-study comparisons and data integration. The results of ID assignment in terms of the
proportion of correctly assigned IDs for each study are found in Supplementary Table S1.

4.2. Core Protein Assignment and Calculation of Pairwise Correlations

Proteins which were quantified in all of the selected datasets for a particular model
organism were defined as the core proteins. Core 1 proteins were defined as proteins
which were quantified in at least n − 1 dataset for a particular model organism. To
perform calculations of the core, as well as pairwise Pearson’s correlation, only entries with
successfully assigned UniProt IDs were considered. Pairwise Pearson’s correlations were
calculated using a pearsonr function from the scipy.stats module. Heatmaps for correlations
were created using a heatmap function from the seaborn module.

4.3. Normalization of Protein Copy Numbers in Individual Datasets

To calculate the total number of protein copies per cell from total protein mass per
cell, we divided the literature-derived estimate of total protein mass per cell for each of
the selected model organisms by the median average protein mass in the selected whole
proteome quantification studies. Estimates of total protein mass per cell used were 280 ng
for E. coli [6], 5.65 pg for S. cerevisiae [36], and 250 pg for HeLa cells, obtained as the average
of values from several sources [18,37].

Next, the following formula was used for the calculation of the normalization factor
for individual datasets:

f = (T × A × I × C)/S,
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where T is the total number of protein copies per cell type as estimated from total protein
mass per cell, A is the proportion of proteins in the dataset with successfully assigned
UniProt IDs, I is the number of core proteins present in the dataset divided by total number
of calculated core proteins for cell type, C is the minimal proportion of contribution of core
proteins to total protein copy number across all studies which contributed to calculation of
core for cell type, S is the sum of copies of proteins which belong to core in the dataset.

Normalized protein copy numbers in datasets were obtained by multiplication of
original copy numbers by the dataset-specific normalization factor f.

4.4. Estimation of the Number of Ribosomes in E. coli in Selected Conditions

To estimate the number of ribosomes in cells of E. coli for the selected conditions, we
used the results of Bakshi et al., who counted 27,000 ribosomes per μm3 on average in
E. coli K-12 cells growing in rich medium (growth rate, μ = 1.11) [53]. For E. coli, it has
been estimated that the mass fraction of ribosomal proteins increased almost linearly with
growth rates of μ > 0.3 [54]. Accordingly, we calculated the number of ribosomes per μm3

for E. coli growing in minimal glucose medium (as is in most of the selected studies) by
multiplying 27,000 by the relation of growth rates between our datasets and the Bakshi
et al. study. For E. coli strain MG1655 cells growing in glucose minimal medium, a growth
rate of 0.6 has been reported [41], therefore, we obtained a value of 14,595 ribosomes per
μm3. Considering that E. coli strain MG1655 has been reported to have a volume of around
2.15 μm3 in corresponding conditions [17], we arrived at a final value of 31,739 ribosomes
per cell.

4.5. Calculating Adjusted Copy Numbers of Ribosomal Proteins

To provide estimates of the number of ribosomes based on the data for copy numbers
of individual proteins, it was required to account for organism-specific differences in
the organization of ribosomes. First, in E. coli ribosomes, 50S ribosomal protein L7/L12
(UniProt ID P0A7K2) is present in 4 copies per ribosome [55]. Accordingly, we divided the
copy numbers of this protein by 4 to calculate the distribution of ribosomal proteins for
E. coli as a proxy for the number of ribosomes.

In S. cerevisiae, multiple ribosomal proteins are encoded by pairs of genes and differ
slightly in the sequences of the resulting isoforms [56]. Accordingly, to provide estimates for
the number of ribosomes based on the data for copy numbers of individual proteins, it was
required to summarize copy numbers of such pairs of proteins to arrive at copy numbers
of “ribosomal parts” rather than individual proteins. We performed summation according
to our custom data based on the information from the UniProt database (Table S2).

In the case of HeLa cells, similar summations were performed only for RPS4X and
RPS4Y proteins, which are the only alternative ribosomal proteins in human cytoplasmic
ribosomes [57].

5. Conclusions

In conclusion, our study integrates multiple published protein abundance data for
E. coli, S. cerevisiae, and HeLa cells. Despite significant differences in reported total protein
copy numbers, we conclude that these datasets quantify dominant parts of the proteome,
and thus, can be normalized to total protein mass per cell. Our calculations indicate that a
typical E. coli cell contains around 6 million protein molecules, a S. cerevisiae cell contains
approximately 80 million proteins, and a HeLa cell contains around 3.4 billion protein
copies. In terms of protein copy density, it decreases from E. coli (which contains 2.5 million
protein molecules per μm3) to S. cerevisiae (which has 2 million protein molecules per μm3)
to HeLa cells (which have 1.5 million protein molecules per μm3). Our results generally
agreed with some of the previously published estimates and, in the case of S. cerevisiae,
improved the estimate of the total number of proteins, which was twice as low in some of
the previous work. In general, we believe our integrated proteome datasets will be a useful
resource for the scientific community.
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Abstract: Metabolic stable isotope labeling followed by liquid chromatography coupled with mass
spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies of individual proteins on
a large scale and with high throughput. Turnover rates of thousands of proteins from dozens of time
course experiments are determined by data processing tools, which are essential components of the
workflows for automated extraction of turnover rates. The development of sophisticated algorithms
for estimating protein turnover has been emphasized. However, the visualization and annotation of
the time series data are no less important. The visualization tools help to validate the quality of the
model fits, their goodness-of-fit characteristics, mass spectral features of peptides, and consistency of
peptide identifications, among others. Here, we describe a graphical user interface (GUI) to visualize
the results from the protein turnover analysis tool, d2ome, which determines protein turnover rates
from metabolic D2O labeling followed by LC-MS. We emphasize the specific features of the time
series data and their visualization in the GUI. The time series data visualized by the GUI can be saved
in JPEG format for storage and further dissemination.

Keywords: in vivo protein turnover; heavy water metabolic labeling; isotope distribution; time series
of isotope labeling; graphical user interface for mass spectral data

1. Introduction

Cellular proteins are in a dynamic equilibrium. Protein concentrations are maintained
while they are continuously synthesized and degraded. The equilibria are tissue-specific,
and they shift during organismal development, aging, and diseases. Metabolic stable
isotope labeling followed by liquid chromatography and mass spectrometry (LC-MS)
has been a powerful tool to study in vivo protein turnover on a large scale and high
throughput [1,2]. As a labeling agent, heavy water (drinking water enriched in D2O)
is easy to use, cost-efficient, and does not require adaptation period [3]. Low (<8%)
concentrations of D2O enrichments are normally used in drinking water [4]. It results
in the composite spectra of unlabeled and labeled forms of a peptide in MS1. Statistical [5]
and analytical [6] approaches to de-convolve the spectra have been described. A recent
study [7] revealed that the precursor enrichment in D2O labeling was nearly instantaneous,
and a single exponential curve was sufficient for the modeling. In contrast, the precursor
enrichment in heavy amino acid labeling [8] was delayed and tissue specific [7]. Therefore,
the modeling of label incorporation in amino acid labeling was more complex and required
more parameters.

Since the data are generated for thousands of proteins from tens of thousands of pep-
tides at every time point of labeling, manual data processing is impractical. Several publicly
available software tools [7,9,10] have been developed to process the mass spectral data and
database search results to automate protein turnover rate estimations. The turnover rates
are obtained from the exponential decay modeling of the monoisotopic relative isotope
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abundance (RIA). The tools generate protein turnover rates and goodness-of-fit (GOF)
measures of the model, such as coefficient of determination (R2), Pearson correlation, and
standard deviation, among others. The results are normally reported in tables and saved
in output files formatted in csv format. Though the turnover estimation tools automate
data processing, the visualization and annotation of the results are as important. The csv
formatted files can be read and processed using scripts in R [11] or Phyton environments.
However, it requires familiarity with these environments. Therefore, a graphical user
interface (GUI) to enter input data, easily access results for each protein/peptide, and
obtain information about the statistical GOF measures is important. A protein turnover
estimation software tool [12] for metabolic labeling with a heavy amino acid (13C6-Lys)
contained a GUI, ApplE Turnover, to facilitate the data analysis. Another tool for pro-
tein turnover estimation from [5,5,5-2H3] Lue labeled samples, TurnoveR [13], used the
functions of Skyline [14], an MS data analysis platform. Here, we report on our imple-
mentation of a GUI for a software tool, d2ome [10], to estimate protein turnover rates
from D2O labeling. The GUI facilitates several manually laborious steps in the data input,
the selection of data processing parameters, and, importantly, it plots experimental time
points and theoretical fit, shows the GOF measures, and spectral features (mass-to-charge
ratio, m/z, the monoisotopic abundance, charge state, and the number of exchangeable
hydrogens) of the peptide and its amino acid sequence. Every protein can be located by an
easy search or from a drop-down list of alphabetically sorted protein names. mzML [15]
(mass spectral) and mzid [16] (database search results) files are automatically matched in
the input. Considering that the data for protein turnover is highly voluminous, the GUI
will facilitate the data analysis, visualization, and validation of the results.

2. Results and Discussions

The time series data used in protein turnover studies is more complex than the static
proteomics data. Thus, in static proteomics, the proteome is normally characterized by
peptide sequence and its post-translational modifications, abundance, chromatographic
retention time, m/z, and charge state. In contrast, protein turnover data, in addition
to the listed information, requires the number of exchangeable hydrogens, body water
enrichment in deuterium, the number of experiments in which the peptide was quantified,
GOF measures (R2, RMSE, SD) between the experimental data and the theoretical fit,
the monoisotopic abundance, and the accuracy of the isotope distribution between the
estimated and LC-MS data for the unlabeled sample. A typical workflow of experimental
and data processing steps is shown in Figure 1.
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Figure 1. The figure shows the workflow of the main experimental and data processing of protein
turnover studies and the role of the graphical user interface (GUI). The GUI aids in setting up the
protein turnover rate estimations (creating input data from mzML and mzid files) and visualizing the
results to facilitate the validations.
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2.1. Data Input and Data Processing Parameters

Figure 2 presents a sample screenshot of the GUI for data and parameter input. The
GUI enables users to input sets of database search results and corresponding mass spectral
data, body water enrichment in deuterium, peptide and protein consistencies (the minimum
number of experiments in which a peptide and a protein are identified in MS/MS), and
the corresponding labeling duration in a tabular format. The software has a feature to
automatically populate pairs of input files from the source folder by matching the file
names. It allows users to reload all configurations from the previous runs for re-runs
with different parameters. The GUI allows users to optimize the quantification results
by customizing the input parameters. The parameters include spectral mass accuracy,
retention time window for peak detection and integration, the threshold of peptide score
(Mascot [17] Ion score), and expectation.

 

Figure 2. The graphical user interface (GUI) to input data and parameters for the protein turnover
rate estimations. Time and BWE are the labeling duration and body water enrichment in deuterium
for the corresponding mzML and mzid files (experiments).

Consistent identifications of peptides and proteins from tandem mass spectra are
essential in time series experiments. Since DDA is semi-stochastic in the selection of ions
to be fragmented, we implemented a match between-runs (MBR) approach to enable
the quantification of peptides that are missing in some experiments, but their features
(chromatographic elution profile corresponding to m/z and charge state at the allowed
chromatographic time elution window) are detectable. The approach implemented the
retention time alignment strategy using raw mass spectral profiles [18]. The time window
in which the missing peptide features will be searched is adjustable in the GUI. MBR
increases proteome coverage across the labeling duration time series.
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2.2. The Output of Data Processing

d2ome [10] computes turnover rates for proteins and peptides using the non-linear
least squares regression on the monoisotopic RIA. It generates two main outputs: En-
tryName.RateConst.csv and EntryName.Quant.csv. The first entry in the file names is
the Uniprot [19] entry name for a protein. The *.Quant.csv file contains comprehensive
information about each peptide of a protein. Each peptide entry is a row of information that
contains the amino acid sequence, the charge state of the precursor, theoretical m/z of the
peptide sequence, theoretical isotope abundances (natural isotope abundances), precursor
m/z, the highest Mascot Ion score, Mascot expectation, mass accuracy (in ppm), scan
number, the integrated (from MS1 scans in LC-MS) abundance of the mass isotopomers
(six), elution start and end times that were used to calculate the isotopomer abundances,
and the monoisotopic peak width in the mass-to-charge domain (used only for data in
profile mode).

The rows of *.RateConst.csv file of a protein contain: the peptide sequence, its unique-
ness (distinct or shared with other proteins), peptide rate constant and corresponding
confidence intervals, the correlation value between theoretical fit and experimental data,
RMSE, the absolute deviation between the theoretical and experimental isotope profiles
(before the start of labeling), peptide charge, sequence m/z, the number of accessible hy-
drogens (NEH), the number of data points (NDP), R2 of the theoretical fit, and the average
abundance of the monoisotope.

2.3. Visualization of the Results

The visualization tab of d2ome has two main charts that depict the time series [20]
data used for peptides and protein degradation rate computation, Figure 3. It provides easy
access to turnover rate estimation results for each protein. For every protein peptide, the
monoisotopic RIAs estimated from the isotope profiles in comparison with the theoretical fit
can be visualized. This approach visualizes the correspondence between the experimental
points and the expected theoretical values, which are computed based on the degradation
rate constant.

The estimation of the monoisotopic RIA requires accurate measurements of the abun-
dances of all mass isotopomers of a peptide. Since mammalian samples are complex,
peptide species often co-elude and interfere with the mass profile of the target peptide.
This GUI enables users to graphically validate the quality of experimental input data (the
time series of monoisotopic RIA) in comparison with the theoretical fit. Figure 4 shows the
monoisotopic RIAs estimated from the isotope profiles in comparison with the theoretical
fit for the peptide sequence, SDEAVKPLGVK+2 from FAS_MOUSE protein. For this protein,
the experimental isotope distributions of each peptide at every time of labeling are in the
FAS_MOUSE.Quant.csv file. The unlabeled and labeled [7] (7 and 31 days) isotope profiles
of the SDEAVKPLGVK+2 peptide are presented in Figure 5. The monoisotopic RIA was
computed as the ratio of monoisotopic abundance to the sum of abundances of all mass
isotopomers. The data can be used as additional validation of the label incorporation.
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Figure 3. The graphical user interface (GUI) for the results of protein turnover rate estimations. Re-
sults for each protein can be accessed by name search. For every peptide of a protein, the experimental
time series data and its theoretical fit can be visually examined.

Figure 4. The graphical user interface enables comprehensive visualization of the results of protein
turnover studies from metabolic D2O labeling and LC-MS experiments. Time series of monoisotopic
RIAs (y-axis) are shown along the labeling duration (x-axis). The solid line shows the fit from the
computed degradation constant for SDEAVKPLGVK+2 peptide from FAS_MOUSE protein.
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Figure 5. The monoisotopic RIA depletes with the labeling duration. Isotope profiles of
SDEAVKPLGVK+2 peptide (A) from an unlabeled sample (B) from a labeled sample (day 7) (C) from
a labeled sample (day 31).

As mentioned above, the quantifications using MBR transfers are important in stable
isotope labeling experiments. The MBR procedure may result in false positive transfers [21].
The GUI provides the opportunity to examine the quality of the label incorporation estima-
tion from the data obtained by using the MBR. Thus, the labeling time points, which were
quantified using MBR, can be shown in red; it is demonstrated in Figure 6 for the peptide
sequence NLLSVAYK+2 from the 1433B_MOUSE protein. Shown in red are the labeling time
points (experiments) in which the peptide was not identified from an MS/MS spectrum.
Instead, the quantification was performed based on the MBR. The use of MBR increases
proteome coverage across the labeling time points. It is helpful to visually examine the
MBR quantified time points, and the GUI provides this opportunity.

Figure 6. Time course plot of monoisotopic RIAs for NLLSVAYK+2 peptide from the 1433B_MOUSE
protein. The experimental time points quantified using the match between runs are shown in red.
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The GUI also graphically shows the overall label incorporation from all peptides of
a protein. It is illustrated in the time series of the FS. Figure 7 shows the protein FS in
comparison with the theoretical fit for the FAS_MOUSE protein. The graph presents each
peptide’s experimental FS as a scatter plot and the theoretical fit based on the protein
rate constant as a solid line. Both figures can be exported as high-quality JPEG images.
Furthermore, the software enables users to export charts separately or in a batch mode
for all identified proteins and peptides. The GUI is a user-friendly application that makes
searching and visualizing all proteins and peptides simpler. Users can easily switch between
the visualizations of different proteins/peptides.

Figure 7. Protein turnover rate is computed from the median of the degradation constant of quantified
peptides. The scatter plot indicates the fractional value of peptides in the FAS_MOUSE protein. The
solid line shows the fit from the computed turnover rate for the protein.

The visualization window also contains comprehensive information about each pep-
tide of a protein in a tabular format. Each peptide entry is a row of information that contains
the amino acid sequence, the charge state of the precursor, the theoretical m/z of the peptide
sequence, the correlation between theoretical fit and experimental time series, RMSE, the
absolute deviation between the theoretical and experimental isotope profiles, NEH, NDP,
R2 of the theoretical fit, and the monoisotopic average abundance.

The currently available software tools for protein turnover studies from LC-MS-
MS/MS data of deuterium-labeled samples (such as DeuterRator [9] and Riana [7]) simplify
data analyses also by means of a GUI component. The GUI in DeuteRator [9] simplifies
data entry and parameter selection. It plots and saves the FS time series and its theoretical
fit for each protein. Output from Riana can be visualized in the R environment using
supplied scripts. Our approach to the GUI development was motivated by that of ApplE
Turnover [12]. A user can search for each protein, plot the experimental time series and
theoretical fit of the monoisotopic RIA for every peptide, display the experimental time
series and corresponding theoretical fit for the FS of a protein, export all figures, and view
several GOFs of each peptide of a protein. It is possible to review previously processed
results. We believe the GUI features address user needs in many cases. Our main goal in
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developing the GUI was to facilitate the visualization, quality assessment, validation, and
dissemination of the turnover rate estimation.

2.4. Future Plans

The GUI developed in this work provides visualization of the theoretical fit to the
experimental data points, the GOF measures, and spectral features for a peptide. An
additional element for visual validation is the experimental isotope distribution of the
peptide at the apex of its elution. This visualization of the distribution would allow us
to validate the quality of the monoisotopic RIA estimation. We plan to implement this
interactive feature in a future iteration of the GUI. Currently, the GUI interfaces with the
database search output from Mascot. We intend to include support for other search engines.

3. Methods

In data modeling from metabolic D2O labeling and LC-MS experiments, the pep-
tide/protein turnover rate is estimated by exponential decay modeling of the time course
of the depletion of the monoisotopic RIA, I0(t), with the labeling duration, t:

I0(t) = Iasymp
0 +

(
I0(0)− Iasymp

0

)
e−kt (1)

where I0(0) is the monoisotopic RIA of an unlabeled peptide, I0
asymp is the monoisotopic

RIA at the plateau of labeling, and k is the turnover rate (degradation rate constant) of a
peptide. I0

asymp is obtained from the body water enrichment in deuterium (pW) and the
number of hydrogens accessible to deuteriums in the water (NEH):

Iasymp
0 = I0(0)

(
1 − pw

1 − pH

)NEH

The turnover rate is obtained from the non-linear regression of the experimental time
series data of I0(t) on the theoretical decay function in Equation (1). The modeling is
central to the turnover rate estimation. The GUI depicts experimental time points and the
theoretical curve resulting from the regression for every peptide.

Another property used for the analyses of protein turnover is the fractional synthesis.
For every peptide, the fractional synthesis (FS) is defined as:

FS(t) =
I0(0)− I0(t)

I0(0)− Iasymp
0

= 1 − e−kt (2)

In Equation (2), the explicit dependency on the number of exchangeable hydrogens
and natural monoisotopic RIA, which are characteristics of each peptide, are removed. The
GUI depicts the FSs of all peptides of protein in a single figure.

The GUI in d2ome is a Windows Forms application developed in C# programming
language. Windows Forms is a .Net Framework GUI library that provides an interface
to develop multipurpose applications. It is composed of controls such as combo boxes,
buttons, labels, list boxes, charts, and containers such as panels, group boxes, and others.
In the course of the development of the GUI for the d2ome software tool, we had used a
tab layout to switch between computation and visualization windows, a data grid view
to display detailed peptide information in a tabular format, charts to display peptides
time course data, and buttons to execute tasks such as loading data, searching proteins,
exporting charts, and others. The GUI can be initiated either from the command line or
from the application icon.

The GUI interfaces with d2ome in two stages, Figure 1. In the first stage, the GUI
automates data input (matching pairs of mzML [22] and mzid files, body water enrichment,
and labeling time course) and the specification of parameters (mass accuracy, the required
number of labeling time points, database search scores, etc.). There is no limitation on the
number of experiments (input files for processing). The GUI uses the experimental data
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and parameters to create an input set for d2ome to compute peptide/protein turnover
rates. d2ome writes out the results for every protein in .Quant.csv and .RateConts.csv
files. The .Quant.csv file of a protein contains information about the amino acid sequence,
theoretical isotope distribution of unlabeled peptide, m/z, charge, scan number of MS/MS
identification, mass accuracy, database search score, and mass isotopomer abundances
(M0-M5) from each experiment for every identified and quantified peptide of the protein.
The .Rate.Const.csv file of a protein contains the results of rate constant (turnover rate)
calculations for every peptide, GOF to the theoretical model, Equation (1), and statistical
properties of the computed rate constant, such as standard deviation (SD), root-mean-
squared-error (RMSE), coefficient of determination (R2), Pearson correlation, averaged
(from all experiments) monoisotopic abundance, and protein turnover rate. Normalized (by
the median of medians of base peak abundances from each experiment) protein abundance
is also reported in the file. These data are depicted by the GUI in the second stage of
interfacing with d2ome. All figures (experimental time series and its theoretical fit, FS for a
protein) can be exported as high-quality JPEG images. Furthermore, the software enables
users to export charts separately or as a batch process for all identified proteins and peptides.
The tool is available in the GitHub repository, https://github.com/rgsadygov/d2ome
(accessed on 17 November 2022).

Data Used in This Work

The figures and examples shown in the paper were obtained from processing a publicly
available data set of mouse liver proteome [7]. Labeling and LC-MS experiments are
described in the original publication. In brief, adult male C57BL/6JOlaHsd mice were
labeled with deuterium oxide. Murine liver tissues were collected at twelve labeling time
points: 0, 1, 2, 3, 6, 7, 9, 13, 16, 21, 24, and 31 days. The body water enrichment in deuterium
was determined to be 0.046 in all labeled samples. The mass spectral data were acquired in
the data-dependent acquisition mode (DDA) using a Q-Exactive HF quadrupole-Orbitrap
mass spectrometer. The raw mass spectral data are available on ProteomeXchange at
accession PXD029639.

4. Conclusions

We developed a graphical user interface to facilitate the data analysis of protein
turnover studies from time series data of metabolic labeling with D2O and LC-MS. The
turnover rate calculations use a large number of experimental inputs (time series of label
enrichment) and parameters (body water enrichment, mass accuracy, peptide/protein
identification consistency, etc.). The GUI automates data input and parameter selection.

The validation of the protein turnover results requires information about various
spectral features (m/z, the abundance of the monoisotopic RIA, NDP, etc.) and statistical
measures of GOF (R2, Pearson correlation, SD, RMSE, etc.). The GUI depicts the theoretical
fit to the experimental time series data, thus allowing a visual evaluation of the fit. The
statistical measures of the model show the quality of the GOF, which also helps to estimate
the quality of the theoretical fit. All generated figures for every peptide of a protein can be
exported in JPEG format for further dissemination.
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Abstract: Proteomics has been widely used to study muscle biology and meat quality traits from
different species including beef. Beef proteomics studies allow a better understanding of the biological
processes related to meat quality trait determination. This study aimed to decipher by means of
two-dimensional electrophoresis (2D-PAGE), mass spectrometry and bioinformatics the changes
in post-mortem muscle with a focus on proteins differentially expressed in the Longissimus thoracis
(LT) muscle of immunocastrated young heifers and steers. Carcass traits, chemical composition,
pH, instrumental color (L*, a*, b*), cooking loss and Warner-Bratzler shear force (WBSF) of meat
from F1 Montana-Nellore cattle were also evaluated. Backfat thickness (BFT) and intramuscular fat
content (IMF) were 46.8% and 63.6% higher in heifers (p < 0.05), respectively, while evaporation losses
(EL) were 10.22% lower compared to steers. No differences (p > 0.05) were observed for tenderness
evaluated by WBSF (3, 10, and 17 days post-mortem), pH, and color traits (L*, a* and b*) between the
experimental groups. The study revealed several proteins to be differentially expressed proteins in
heifers compared steers (p < 0.05). In heifers, proteins involved in nutrient transport (TF, ALB, and
MB), energy metabolism (ALDOA, GAPDH, and PKM), and oxidative stress and response to stress
(HSPA8 and CA3) were associated with a greater BFT and IMF deposition. The higher expression of
these proteins indicated greater oxidative capacity and lower glycolytic activity in the LT muscle of
heifers. In steers, there was greater abundance of protein expression related to muscle contraction
and proteins of structure (ACTA1, TPM2 and TNNT3), energy metabolism (ENO1, ENO3, PYGM,
PGM1 and TPI1) and ATP metabolism (ATP5F1B, PEBP1 and AK1), indicating greater glycogenolysis
in LT muscle, suggesting a shift in the glycolytic/oxidative fibers of steers.

Keywords: beef quality; proteome; carcass properties; gender; mass spectrometry; 2D-PAGE

1. Introduction

Gender or the sexual condition of cattle is known to be an important factor affecting
animal performances and growth, carcass properties and meat quality [1]. Such differences
are related to tissue growth as well as their distribution in the carcass. Likewise, castration
can improve body fat deposition in beef cattle, and limited sexual behavior leads to easier
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rearing practices and less carcass damage, which improves carcass fatness and, conse-
quently, meat quality traits [2]. Alternatively, immunological castration (immunocastration)
is a relatively new approach, and some studies have described the effects on meat quality
of beef cattle [3,4]. However, there is scarcity in the studies comparing young heifers and
steers produced according to the “super early-maturing” system that allocate animals to
feedlot feeding at 8 months of age (slaughtered up to 15 months of age, [5]). Although
immunocastration of female cattle is not a common practice in tropical beef production
systems like Brazil, it has the potential to be an easily applied tool to improve the wel-
fare of heifers and cows used for beef production, as reviewed [6]. Moreover, no studies
have reported so far reported the relationships between meat quality traits and muscle
tissue proteome and which pathways are impacted in crossbred young heifers and steers
immunocastrated and feedlot finished.

Proteomics is a powerful tool in meat science due to its technical performance in
understanding the effect of the factors influencing meat quality as well as in deciphering
the biochemical and metabolic mechanisms occurring to muscle-to-meat conversion in
the post-mortem period [7–10]. It further allows for the study each quality trait, such as
pH decline, muscle proteins degradation during ageing, oxidation and post-translational
modification of proteins in an in-depth manner [11–13]. Thus, omics-related analytical
technologies and bioinformatics tools have been significantly applied in the last two decades
in the field of meat research to identify proteins related to several meat quality traits, since
they are the main constituents of muscle tissue and are responsible for the regulation
of main metabolic pathways [11]. In this context, meat quality research in beef cattle
and other livestock species used the proteomic approach to evaluate tenderness [7,14,15],
marbling [10], color [16,17], water-holding capacity [18,19], and dark-cutting beef [20]
among other meat quality traits [11].

The hypothesis of the present study was that differences might exist in the carcass
properties and meat quality traits of heifers and steers, particularly the deposition of
subcutaneous and intramuscular fat, which can be a consequence of protein changes
and their expression. In this context, the aim of this study using a proteomics approach
was to identify proteins differentially expressed in the Longissimus thoracis (LT) muscle,
and how they are related with the physicochemical differences of meat produced by
immunocastrated F1 Montana-Nellore young heifers and steers feedlot finished. We further
aimed to reveal the molecular pathways and mechanisms behind such mechanisms using
advanced bioinformatics analyses.

2. Results

2.1. Carcass Traits, Chemical Composition and Meat Quality

Backfat thickness (BFT) of heifers’ carcasses was 46.8% higher (p < 0.05) compared
to steers’ (Table 1). The variables FBW and CY were not altered between genders, while
HCW and REA tended to be greater in steers (p < 0.10). Intramuscular fat (IMF) content
of heifers was 63.6% higher and moisture content was 2.22% lower than in steers (Table S1).
Evaporation loss (EL) was 10.22% higher in steers. On the other hand, DL was 22.3% higher
in heifers, while CL, WBSF, pH and lightness (L*) were influenced by the ageing period
(Table 2).

Table 1. Live body weight and carcass traits of immunocastrated F1 Montana-Nellore young heifers
and steers feedlot finished.

Variables 1 Heifers Steers SEM p-Value

IBW (kg) 289.40 284.00 9.57 0.78
FBW (kg) 373.75 391.13 10.41 0.57
HCW (kg) 202.18 219.25 5.97 0.09

CY (%) 54.81 55.82 0.00 0.53
BFT (mm) 14.90 10.15 1.10 0.04
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Table 1. Cont.

Variables 1 Heifers Steers SEM p-Value

REA (cm2) 75.99 90.48 1.66 0.06
1 IBW and FBW: initial and final body weight, respectively; HCW: hot carcass weight; CY: Carcass yield;
BFT: Backfat thickness; REA: Ribeye area.

Table 2. Meat quality traits of immunocastrated F1 Montana-Nellore young steers and heifers
feedlot finished.

Variables 1
Heifers Steers p-Value

Ageing (Days) Ageing (Days) SEM Gender Ageing Time

3 10 17 3 10 17
L* 33.76 34.78 36.54 32.94 34.50 34.84 0.49 0.24 0.06
a* 16.26 16.55 16.73 15.94 16.73 15.99 0.14 0.45 0.53
b* 6.08 6.18 6.53 5.93 6.21 6.05 0.08 0.41 0.63
pH 5.60 5.71 5.73 5.60 5.68 5.75 0.02 0.65 <0.01

WBSF (N) 55.70 40.40 31.28 54.42 40.79 37.26 3.62 0.42 <0.01
EL (%) 24.27 20.43 17.10 21.46 17.47 17.14 0.01 0.01 <0.01
DL (%) 6.69 4.49 4.28 7.13 6.54 5.22 0.00 0.02 0.003
CL (%) 30.96 24.92 21.38 28.59 24.01 22.36 0.01 0.25 <0.01

1 L*: lightness, a*: redness, b*: yellowness, pH = meat pH, WBSF: Warner-Bratzler shear force, EL: evaporation
loss, DP: drip loss, CL: cooking loss.

2.2. Muscle Tissue Proteome

The comparison of the 2DE gels allowed us to see that the mean number of protein
spots per treatment was 119 ± 25 for steers and 115 ± 32 for heifers. The number of spots
of the reference gels were 150 for steers and 160 for heifers. Of this total, after the imaging
analysis investigation, 50 spots were selected as differentially expressed (p < 0.05) in heifers
(Figure 1) and steers (Figure 2).

 

Figure 1. Protein spots selected for characterization by mass spectrometry (ESI-MS) after im-
age analysis. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): 12.5% (w/v) and
pH gradient 3–10. Muscle tissue samples (Longissimus thoracis) from immunocastrated F1 Montana-
Nellore young heifers feedlot finished. The information on the number IDs of differentially abundant
spot proteins are given in Table 3.
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Figure 2. Protein spots selected for characterization by mass spectrometry (ESI-MS) after im-
age analysis. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): 12.5% (w/v) and
pH gradient 3–10. Muscle tissue samples (Longissimus thoracis) from immunocastrated F1 Montana-
Nellore young steers feedlot finished. The information on the number IDs of differentially abundant
spot proteins are given in Table 3.

Several proteins were identified that were abundantly expressed in the muscle of
steers and heifers (Table 3). The proteins identified perform functions of muscle contrac-
tion/regulation, carbohydrate metabolism, ATP activity, cytoprotection, cellular defense,
energy metabolism, and binding. Three main groups (clusters) were distinguished in
heifers: oxidative stress and cell defense proteins (HSPA8 and CA3), proteins related to
muscle contraction (MYBPC1, TNNT1 and TNNI2), and energy metabolism proteins (CKM,
PKM, ALDOA and GAPDH). Regarding the proteins identified in steers, there were groups
(clusters) of proteins related to energy metabolism (ATPIF1, ENO1, ENO3, PEBP1, PYGM,
PGM1 and TPI1) and muscle contraction (TPM2, TNNT3 and ACTA1).
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Figure 3. Classification of proteins identified in tissue samples (Longissimus thoracis) from immuno-
castrated F1 Montana-Nellore young heifers feedlot finished. The OMICSBOX software was used
to classify the proteins according to biological process (BP), molecular function (MF), and cellular
component (CC).

Figure 4. Classification of proteins identified in tissue samples (Longissimus thoracis) from immuno-
castrated F1 Montana-Nellore young steers feedlot finished. The OMICSBOX software was used
to classify the proteins according to biological process (BP), molecular function (MF), and cellular
component (CC).

The main enriched terms and pathways identified in this study using the differentially
expressed proteins for heifers and steers are summarized in Figure 5. Based on gene
ontology terms, the ADP metabolic process through “striated muscle thin filament” was
highly and significantly up-regulated in steers compared to heifers. Cluster pathways
related with cellular and developmental processes were more enriched in heifers. Such
pathways of generation of metabolites and energy in heifers help to explain the higher IMF
found in the meat of these animals.
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Figure 5. Bioinformatics analyses based on the differentially expressed proteins identified in
this experiment. (A) Enriched ontology clusters based on the significantly enriched gene ontol-
ogy (GO) terms obtained using the protein lists of steers (n = 11) and heifers (n = 12) identified
in Longissimus thoracis muscle tissue of feedlot-finished immunocastrated F1 Montana-Nellore.
(B) Enriched biological process. The graphs highlight all the enriched terms across the protein
lists with the importance of energy metabolism (metabolic and ADP processes), metabolic, cellular
and developmental processes according to −Log p-values. (C) Enriched network related to the
previous terms of (A) highlighting the degree of interconnectedness. (D,E) Hierarchical heatmap
clustering comparing the enriched GO terms within steers and heifers as well the main biological
process in each condition. The heatmaps colored by the p-values are indicated by color, where grey
cells indicate the lack of significant enrichment, palest brown indicates a low p-value and darkest
brown indicates a high p-value.

The current GO analysis (Figure 5D) suggests that “secretory granule lumen and
“molecular carrier activity” are associated specific to heifers and can be associated with
greater fatness (BFT in carcass and IMF in meat). Additionally, “biological regulation” was
specifically associated with greater IMF found in heifers. Other GO terms were common
to both protein lists, some that were more significant for steers such as metabolic process
(Figure 5E). The protein-protein interactions were analyzed (Figure 6). There were two
main groups (clusters): proteins related to energy metabolism (PKM, PYGM, GAPDH,
CKM, TPI1, ENO1, ENO3, PGM1, AK1, ALDOA, and ATPSB) and proteins related to
muscle contraction (TNNT1, TNNT3, TNNI2, TPM2, ACTA1 and MYBPC1). Furthermore,
a small interaction network involving binding proteins (ALB, TF, MB, PEBP1 and CA3) and
heat shock protein (HSPA8) was identified.
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Figure 6. Analysis of protein-protein interactions using the differentially expressed proteins
in muscle tissue (Longissimus thoracis) of feedlot-finished immunocastrated heifers and steers
F1 Montana-Nellore.

Several Quantitative trait loci (QTL) were found to be related with carcass and meat
quality traits (n = 12). Overall, 10 chromosomes grouped the 21 proteins (gene names)
and, among the major QTLs, most of the proteins were related to the energy metabolism
pathway, followed by signaling and transport. Several of the proteins found to change in
this study were biomarkers of marbling degree, IMF, beef tenderness and QTLs at the same
time (Table 4).

Table 4. List of the Quantitative trait loci (QTL) of carcass and meat quality traits and their chro-
mosomes (Chr.) obtained using the list of the proteins from immunocastrated F1 Nellore-Montana
young heifers and steers feedlot finished.

QTL Linked to QTLdb 1 Gene Symboles UniProtID (Bovine) Chr.

Marbling score (n = 4) HSPA8; MYBPC1; PGM1; PYGM A6QP89; P19120; P79334; Q08DP0 Chr.15; Chr.5; Chr.3; Chr.29

Fat thickness at the 12th rib (n = 4) ATP5F1B; MB;
MYBPC1; PGM1

P00829; P02192;
A6QP89; Q08DP0

Chr.5; Chr.5;
Chr.5; Chr.3

Intramuscular fat (n = 1) ATP5F1B P00829 Chr.5;
Juiciness (n = 2) ENO1; PYGM P79334; Q9XSJ4 Chr.16; Chr.29

Shear force (n = 5) ALB; ALDOA; HSPA8;
PEBP1; PYGM

P02769; A6QLL8; P19120;
P13696; P79334

Chr.6; Chr.25; Chr.15;
Chr.17; Chr.29

Tenderness score (n = 2) ALDOA; PYGM A6QLL8; P79334 Chr.25; Chr.29
Adhesion (n = 1) TPM2 Q5KR48 Chr.8

Muscle pH (n = 1) PKM A5D984 Chr.10

1 ProteQTL tool included in ProteINSIDE (http://www.proteinside.org/, accessed on 20 August 2022) inter-
rogates a public library of published QTL in the Animal QTL Database (https://www.animalgenome.org/
QTLdb/, accessed on 20 August 2022) that contains cattle QTL and association data curated from published
scientific articles.

3. Discussion

In tropical countries, such as Brazil, more than 80% of the beef come from pasture
systems distributed over 170 million hectares of land. Feedlot systems are used as an alter-
native to ensure beef supply mainly during the dry season, with better quality to regional
and international markets. According to a recent survey, animals on these feedlots included
mostly Nellore (75%), a Bos indicus cattle, but also some European × Nellore crossbreeds,
and other Zebu breeds [21]. Although Nellore cattle is by far the most prevalent breed in
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tropical regions of Brazil, breeds like Aberdeen Angus and Bonsmara and, also, composite
programs (e.g., Montana Tropical) are increasingly growing in the last decades [22].

This is the first study to report that differences in the meat quality of F1 Nellore-
Montana young steers and heifers feedlot finished, are related with the expression of
several proteins from different pathways such as ALB, MB, CA3, ALDOA, GAPDH, PKM,
PYGM, PGM1, HSPA8, and CKM in the post-mortem LT muscle. Some of these proteins
were reported as biomarkers of IMF deposition in other studies [11,23–25].

3.1. Proteins with Possible Roles in Intramuscular Fat Content and Meat Quality

In the present study, the greater IMF of heifers can be linked with proteins involved
in nutrient transport (ALB and MB), energy metabolism (ALDOA, GAPDH, PKM), and
cell protection and response to stress (HSPA8). In fact, these proteins are known to be
associated with greater IMF deposition capacity, which consequently can be the reason for
the generation of lower EL. Proteins differentially expressed in the LT muscle of heifers
also revealed the enrichment of the oxidative activity pathways (ALB, MB and CA3 pro-
teins). Moreover, glycolytic/gluconeogenesis enzymes (ALDOA, GAPDH and PKM) may
characterize the use of non-carbohydrate substrates in the production of energy by the
tissue [26], thus helping to explain the higher proportion of IMF in the meat of immunocas-
trated heifers when compared to immunocastrated steers. Further studies using shotgun
proteomics approaches on a higher number of animals are needed to validate these proteins
as potential biomarkers.

Proteins such as ALB and MB indicated oxidative activity in the muscle of heifers.
Albumin regulates the colloidal osmotic pressure of the blood, and binds and transports
fatty acids, cholesterol and some ions (copper, zinc and calcium) via the bloodstream [27].
A previous study by Baldassini et al. [28], identified the higher expression of ALB in Nellore
bulls with higher IMF and lower WBSF (more tender meat). This protein was also described
in another study using a similar gel-based proteomic approach [29], whereby ALB was
associated with IMF content. The uptake of fatty acids by ALB indicates the use of lipids
as muscle oxidative substrate, used in slow-twitch fibers (type I) which can support the
oxidative activity in the muscle of heifers. In addition, myoglobin carries the oxygen
necessary for oxidative metabolism, a characteristic of slow-twitch (type I) fibers [30,31] in
the muscle of heifers.

The proteins ALDOA, GAPDH and PKM are enzymes of the glycolysis and gluconeo-
genesis pathways. ALDOA reversibly converts fructose-1,6-bisphosphate to glyceraldehyde-
3-phosphate and dihydroxyacetone phosphate. Picard et al. [32] reported similar results
to the present study for European cattle, in which ALDOA was more expressed in cows
compared to castrated males. The enzyme GAPDH also reversibly converts glyceralde-
hyde 3-phosphate to 1,3-bisphosphoglycerate. In this sense, an earlier study found higher
expression of the enzymes GAPDH and ALDOA in the proteome of steers, with higher
IMF content, when compared to Nellore bulls [24]. In the present study, these enzymes
were also more abundant in heifers due to the higher IMF content in the meat.

The allosteric enzyme PKM catalyzes the irreversible transfer of a phosphate group
from phosphoenolpyruvate to an ADP molecule with final production, at the substrate
level, of pyruvate and ATP [33]. In the present study, the proteome of heifers indicates
greater glucose degradation by the oxidative pathway, suggesting greater mitochondrial
activity with greater synthesis of fatty acids for IMF deposition.

Carbonic anhydrase (CA3) has the function of reversible hydration of carbon dioxide
(CO2) and is closely related to increased oxidative metabolism. In proteomic studies
conducted using steers of Asian origin, Qinchuan [34] and Hanwoo [35], CA3 was less
expressed in animals with high marbling, leading to divergent results to the present study.
The protein CA3 is present in higher concentrations in the cytoplasm of skeletal muscle cells
with a predominance of type I fibers, stimulating ATP synthesis by the rapid conversion of
glycolytic intermediates into oxaloacetate and citrate [36]. Again, the greater expression
of CA3, together with PKM, suggest greater oxidative metabolic activity in the muscle
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tissue of heifers compared to steers. Although characterization of muscle fibre type was
not performed in the current study, further biochemical approaches are needed to validate
this hypothesis.

In addition to that, creatine kinase Type M (CKM), converting ADP to ATP from
phosphocreatine, provides energy for muscle and reported to affect meat quality and
its variability [7,37,38]. The greater expression of CKM in the muscle of heifers may be
indicative of a greater energy demand of ATP to maintain muscle functions immediately
after slaughter.

The proteins PYGM and PGM1 are key enzymes in the use of glycogen as a substrate
for the synthesis of glucose-6-phosphate and glycogenolysis [39]. Researchers reported that
PYGM was overabundant in muscle from low growth rate than high growth rate crossbred
steers at the time of harvest [29]. After slaughter, this metabolic pathway is extremely
important in the anaerobic synthesis of ATP with the final accumulation of intracellular
lactate. The greater expression of these proteins in the muscle of steers indicates a greater
gluconeogenesis, probably due to the greater accumulation of glycogen ramifications,
typical of muscles with a greater number of glycolytic/oxidative fibers (Type IIA) [31,40],
fibers with greater hypertrophic capacity, and water accumulation.

The chemical composition of the meat from steers showed higher moisture compared
to heifers, which showed a higher amount of IMF. Each gram of glycogen retains four grams
of water that is released in the cooking process [41], a fact that could explain the lower water-
holding capacity (or higher EL) observed in beef from steers. Moreover, researchers [42]
analyzed proteins expression related to both IMF and visceral fat in cows and bulls, and
reported that TPM2 expression in adipose tissues were lower in bulls compared to cows,
suggesting that TPM2 is positively associated with marbling score and quality grade. Our
data also have demonstrated that TPM2 were differentially expressed depending on sex,
which indicates that sex hormones are key factors affecting the TPM2 expression and,
consequently, lipid accumulation in meat. Therefore, when there is more IMF there is less
water content in the heifers’ meat.

3.2. Key Roles of Oxidative Stress and Cell Defense

The cognate heat shock protein (HSPA8) has a key role in cellular cell death such
as apoptosis and autophagy, conferring greater selectivity to degrading proteins in the
lysosome [43]. They are also involved in the cytosolic export of nuclear proteins [43].
This is a well-known biomarker of beef quality (tenderness) from the heat shock proteins
pathways revealed by Gagaoua and co-workers in their integromics meta-analysis [7]. The
HSP70 was also shown to play a role in osteogenesis by upregulating the expression of
osteogenic genes [44]. Therefore, HSP70 could be associated with carcass traits through
an involvement in muscle and skeletal development as previously evidenced by Gagaoua
et al. [45]. Working with pigs, Di Luca et al. [19] reported the increased abundance of HSPs
in samples with low post-mortem muscle exudate. The greater expression of HSPA8 in
the muscle of heifers may be indicative of a more effective establishment of rigor mortis,
suggesting a greater proteolytic efficiency under stress conditions (hypoxia).

3.3. Muscle Structure, Contractile and Associated Proteins

In steers, the greater abundance of proteins related to muscle contraction and structure
(ACTA1 and TNNT3) allow for the explanation of the results of HCW and REA, which
trend to be greater in these animals compared to heifers. Some of these proteins identified
have been related to muscle growth in other previous studies [46,47], which agree with
the results observed in the current study. Moreover, an earlier proteomic study on feedlot
finished lambs [48] reported greater expression of proteins TNNT3 and MYL1 in LT muscle.
Both were related to the regulation of myosins and, consequently, muscle growth. Thus,
the main factors involved in muscle contraction, as observed in the present study, may be
affected by gender status.
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Similarly, steers and heifers slaughtered at the same final body weight (FBW) differ
in carcass traits and meat quality, as reported in previous studies [1]. Such differences
can be related to a greater abundance of protein expression related to muscle contraction
and proteins of structure (ACTA1 and TNNT3), tissue growth, as well as carcass fatness.
Moreover, as reported in the current study, whereby contractile and associated proteins
were highly and significantly up-regulated in steers, researchers [29] found that ACTA1
and TNNT3, involved in biological pathways such as glycolysis/gluconeogenesis and
muscle contraction, were upregulated in crossbreed feedlot finished steers, regardless of
meat aging period. These authors also reported that the growth rate (feedlot versus pasture
finishing systems) affected proteins expression in LT muscle and led to an overabundance
of ACTA1 and TNNT3, which are good biomarkers of beef tenderness, as reported in
other studies [7,17]. However, in the current study, despite the effects on the LT proteome,
tenderness evaluated by WBSF was not affected by gender.

3.4. Limitations

The inclusion of one additional biological type in the experimental design of the study,
for example, a third group (“control” bulls), would have been an advantage for this study
for robust comparisons of differences in skeletal muscle proteome and meat quality traits.
Such an experimental group may help to better describe the protein expression in LT muscle
to further dissect the contribution of the individual changing proteins belonging to energy
metabolism, nutrient transport and signaling pathways, as well as proteins of muscle
contraction in response to sexual condition or gender, as reported in the literature [1,2,24].

Although several molecular mechanisms are affected after slaughter according to the
literature [49,50], such differences sometimes do not reflect changes in final beef quality,
as observed in the current study for tenderness (WBSF), and the meat color of crossbred
young heifers and steers raised on feedlot. The WBSF and color variables did not reach
statistical significance, which may be due to the small number of animals used for the meat
quality. Taken together, these results suggest that a greater number of animals should be
evaluated in the future.

4. Materials and Methods

4.1. Animals, Carcass Traits and Muscle/Meat Sampling

Sixteen-immunocastrated F1 Montana-Nellore animals (eight heifers and eight steers),
half siblings, were fattened in an experimental feedlot at of the São Paulo State University
“Júlio de Mesquita Filho”–UNESP (Botucatu, São Paulo, Brazil) from December 2018 to
April 2019. The animals were housed in collective pens and separated by gender. All
animals received the same diet and three doses of the immunocastration vaccine (Bopriva®)
throughout the finishing period. The first, second and third doses of vaccine were applied at
30, 60 and 90 days after weaning (8 months of age), respectively. The immunocastration of
the females was carried out aiming to submit these animals to the same rearing conditions
as the males. Additionally, this condition causes temporary immune suppression of ovarian
function, reducing estrogen and progesterone levels, thus decreasing ovarian and uterine
weights. In addition, this practice was also applied to prevent mounting behaviors and
their associated injuries, which help to improve heifer welfare [6].

The diet (% dry matter, DM) was composed of 15% forage (sugarcane bagasse) and
85% concentrate (64% corn, 17% soybean meal, and 4% mineral mixture). Males and females
started the feedlot with an initial body weight (BW) of 284.00 ± 45.26 kg and 289.40 ± 17.40 kg,
respectively. The animals were weighed at the beginning and at the end of the exper-
imental period, which lasted 110 days. The experimental groups were slaughtered at
15 months of age in a commercial slaughterhouse in the city of Boituva, São Paulo, located
120 km from the place where the experiment was conducted. This followed the state
inspection procedures and was preceded by 16-h water and feed fasting. After slaughter,
the carcasses were individually weighed to record the hot carcass weight (HCW) and
carcass yield (CY), which was calculated using final BW and HCW (CY = HCW/BW × 100).
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Individual samples (approximately 2 g) of LT muscle were collected from the right half
carcass between the 12th and 13th thoracic vertebrae in the hot carcass (pre rigor mortis)
and frozen in liquid nitrogen.

Subsequently, the LT samples were stored in a freezer (−80 ◦C) until they were used
in proteomic analyses. The carcasses were cooled for approximately 48 h at 1 ◦C. During
deboning (48 h of cooling), the backfat thickness (BFT) was then measured with a caliper
between the 12th and 13th thoracic vertebra in the LT muscle. The rib eye area (REA) at the
12th/13th rib interface was also measured. Subsequently, beef samples were collected and
later sectioned into 2.54 cm steaks for physicochemical analyses. The first steak was taken
between the 11th and 13th ribs and the others were in the cranio-caudal direction.

4.2. Chemical Composition of Meat

To evaluate the proximate composition, the samples were thawed in a refrigerator at
4 ◦C for 24 h and the subcutaneous fat was removed with the aid of a scalpel. The steak was
then ground in a multiprocessor for five minutes, using approximately 180 g of sample [51].
The analyses were carried out by infrared spectroscopy in a FoodScan™ equipment (FOSS,
Hillerød, Denmark), in which the average levels of moisture, protein, fat and total collagen
were determined. The averages of moisture, protein, fat and ash were obtained through
three readings per sample, and at each reading the sample was removed from the plate,
homogenized again and returned to the plate for the next reading.

4.3. pH and Meat Color

The pH, instrumental color, cooking loss and shear force were measured according
to the ageing periods (3, 10, and 17 days post-mortem). Ageing was carried out in a
refrigerated BOD incubator (TE-371, TECNAL, Piracicaba, Brazil) at a temperature of
0 to 2 ◦C, in polyethylene packaging bags (20 × 30 cm; Bemis Company, São Paulo,
Brazil) for high vacuum and low oxygen permeability. The pH was determined with
a Hanna digital pH meter (Model HI 99163, Hanna Instruments, Woonsocket, RI, USA)
equipped with a penetration electrode. Standard buffers (pH 4.0 and 7.0) were used in
calibration procedures.

Meat color (L* = lightness; a* = redness; b* = yellowness) was obtained from the
average value of three readings for each variable (L*, a* and b*), after 30 min of oxygenation.
The CIELab system of the CR-400 colorimeter (light source A, absorbance angle 10◦, display
Y: 0.01% to 160% reflectance, Konica Minolta Sensing, Inc., Tokyo, Japan) was used. The
colorimeter calibration was performed with a standard black and white plate.

4.4. Cooking Loss and Shear Force

To assess cooking loss (CL) and Warner-Bratzler shear force (WBSF), the procedure
proposed by Wheeler et al. [52] was adopted and the recommendations of the American
Meat Science Association were followed [53]. The samples were placed on a grid coupled
to a glass refractory. A thermocouple connected to a digital thermometer (DT-612, ATP
Instrumentation, Ashby-de-la-Zouch, England) was used, which was inserted in the center
of each sample to monitor the internal end-point temperature.

The samples were cooked in an industrial electric oven (Feri90 Venâncio, Venâncio
Aires, Rio Grande do Sul, Brazil) preheated to 170 ◦C and equipped with a thermostat to
minimize temperature variations. Once the internal temperature of the steaks reached 40 ◦C,
they were turned over and remained in the oven until the final temperature reached 71 ◦C.
The samples were then kept at room temperature for 15 min, weighed, and refrigerated at
4 ◦C for 24 h. The CL was divided into evaporation loss (EL) and drip loss (DL), determined
as percentage. The DL was obtained by weighing only the refractory before and after
cooking the sample. The EL was obtained by weighing the sample before and after cooking.

For the determination of WBSF, eight cylinders with a diameter of 1.27 cm were
sectioned in a Brookfield CT-3 Texture Analyzer (AMETEK Brookfield, Middleborough,
MA, USA), equipped with a stainless steel 3.07-mm-thick Warner–Bratzler blade with a
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vee-shaped (60◦ angle) cutting edge. Results were reported as the average of eight values
per sample, in Newton (N).

4.5. Proteomics

The extraction, precipitation, separation, imaging and protein identification proce-
dures were carried out according to the literature [7,28], with minimal adaptations.

4.5.1. Extraction and Precipitation of Proteins

Individual samples of LT muscle collected during the pre-rigor mortis period were
individually processed to obtain two-dimensional electrophoresis gels (2D-PAGE). For
each treatment (sex class), eight individual samples (biological replicates) were used (eight
steer gels and eight heifer gels) with three technical replicates (three gels for each sample),
totaling 48 gels. For each sample, approximately 0.2 g of the muscle was ground in
1.0 mL lysis buffer using an Ultra-Turrax high shear mixer (Marconi–MA102/E, Piracicaba,
São Paulo, Brazil) at 20,000 rpm twice for 30 s. The protein extracts were separated from
the solid part by 15 min of centrifugation at 10,000× g rpm at 4 ◦C. The protein content
of these extracts was placed in 80% (v/v) acetone solution and kept at 5 ◦C for 2–3 h to
ensure that the procedure occurred for a sufficient time. The centrifugation process was
then repeated for 25 min at 10.000× g rpm to obtain protein pellets for quantification
and 2D-PAGE. The obtained pellets were washed beforehand to quantify proteins and
were used in electrophoretic runs. One portion of the protein pellets was re-solubilized in
0.5 M NaOH to quantify total protein. The total protein concentration of the bovine muscle
tissue samples was quantified by the Biuret method [54].

4.5.2. Protein Separation by Two-Dimensional Electrophoresis (2D-PAGE)

An additional protein fraction was re-solubilized in a specific buffer containing 0.07 M
urea, 0.02 M thiourea, 2% 3-[(3-cholaminopropyl)-dimethylammonium]-1-propanesulfonate–
CHAPS (m/v), 10% ampholyte (pH range 3–10), and 0.002% bromophenol blue. Moreover,
2.8 mg of 1,4-dithiothreitol was added and this solution was used in
electrophoretic separations.

Briefly, approximately 375 μg of protein extracts (1.5 μg/μL) were loaded into first
dimension strips (13 cm) and hydrated for 12 h. Subsequently, the protein extracts were
separated on pH 3–10 with isoelectric focus in an Ettan IPGphor 3 device (GE Healthcare,
United States), in which the proteins were fractionated by the isoelectric point, pH value
when the net charge total protein is zero.

The strips were placed in equilibrium solutions for reduction, alkylation and weresub-
jected to the second dimension (2D) of electrophoresis in a 12.5% (m/v) polyacrylamide gel.
At the end of the 2D run, approximately 500 mL of colloidal Coomassie stain was used to
mark the protein spots of the gels for 72 h. These gels were subsequently destained with
ultrapure water.

The gels were scanned, and the images were imported into ImageMaster Platinum
software, version 7.0, for comparisons (contrasts) of images between treatments and obtain-
ing information such as number of spots per gel, percentage of matching (correspondence
between the spots proteins in the gels), isoelectric point (pI), molecular weight (MW), and
volume of the spots. The correspondence (matching) of the gels within each sample (three
technical repetitions) was greater than 95%, demonstrating that 95% of the spots were
present in the technical replicates, indicating good reproducibility. For image comparisons,
a reference gel per treatment was listed [55], which contained the highest number and best
definition of spots, and the reference gel of a treatment was contrasted with each gel of
another treatment, totaling 15 comparisons.

4.5.3. Tryptic Digestion of Protein Spots and Identification of Proteins by ESI-MS/MS

Protein spots from experimental groups (heifers versus steers) were selected based
on the molecular weight (MW) and isoelectric point (pI) obtained by image analysis and
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then cut out (fragments of approximately 1 mm3), and prepared according to the method
of [56]. The sediments were transferred to microtubes and submitted to the following four
steps: The first step involved the removal of the dye with 25 mM ammonium bicarbonate
(Ambic)/acetonitrile (50:50, v/v) Step two was the reduction and alkylation in which the
gel fragments were rehydrated in a reducing solution and incubated for 40 min at 56 ◦C.

After removal of the reducing solution, an alkylating solution was added and the
fragments were incubated in the dark for 30 min at room temperature. Step three in-
volved the digestion consisting of overnight incubation at 37 ◦C with 10 ng·μL−1 trypsin in
25 mM Ambic for 15 min (Trypsin Gold Mass Spectrometry, Promega, Madison, WI, United States).
The final step saw the elution of peptides extracted from the gel using three steps:
(A) 50% ACN with 1% formic acid incubated for 15 min at 40 ◦C under sonication, and the
supernatant was collected and transferred to a new tube; (B) 60% methanol with 1% formic
acid incubated for 15 min at 40 ◦C under sonication, and the supernatant was collected
and transferred to a new tube; and (C) 100% ACN; the extracts were dried in a vacuum
centrifuge and peptides were dissolved in 10 μL of 3% ACN with 0.1% formic acid.

The mass spectra of the peptides were obtained by analyzing aliquots of the solutions
in a nanoACQUITY UPLC-Xevo TQ-MS System (Waters, Manchester, UK). The proteins
were identified in the UniProt database (UniProtKB/Swiss-Prot database) for the Bos
taurus genome.

4.5.4. Bioinformatics

Bioinformatics analyses were conducted for the classification of differentially ex-
pressed proteins in muscle tissues from animals (heifers versus steers) in terms of biological
processes (BP), molecular function (MF), and cellular components (CC). For this purpose,
the accession number of the proteins identified by ESI/MS/MS were entered into the
UniProt database (www.uniprot.org, accessed on 5 August 2022) and their FASTA se-
quences were extracted. After this step, the proteins were analyzed using the OMICSBOX
v.2.0 (https://www.biobam.com/omicsbox/, accessed on 5 August 2022) and Blast2GO
tools [57].

Additionally, the interactions between the proteins identified in the treatments were
analyzed using the open source STRING 11.0 platform (https://string-db.org/, accessed
on 20 August 2022). The same list of proteins whose expression differed between the
experimental groups were used in these analyses [58].

Subsequently, further bioinformatics analyses were performed following the proce-
dures described by Gagaoua et al. [7] using Metascape® platform. Briefly, gene identifiers
were converted using Uniprot Retrieve/ID mapping. Thus, key information regarding the
proteins (gene names [GN]) and their relationships with carcass and meat quality traits
described in the current study were annotated for each gender. These procedures aiming to
compare the two protein lists to better understand the common and divergent molecular
signatures. Hierarchical heatmap clustering was also created using enriched GO terms
analyzed by Metascape® (https://metascape.org/, accessed on 20 August 2022).

Additionally, the ProteQTL tool included in ProteINSIDE (http://www.proteinside.org/,
accessed on 20 August 2022) was used for rapid searching of carcass and meat qual-
ity quantitive trait loci (QTL) among the list of putative biomarkers following the details
described by Gagaoua et al. [59]. ProteQTL interrogates a public library of published
QTL in the Animal QTL Database (https://www.animalgenome.org/QTLdb, accessed
on 20 August 2022) that contains cattle QTL and association data curated from published
scientific articles [7].

4.5.5. Statistical Analysis

Carcass and meat quality variables were analyzed regarding the homogeneity and
normality of the residues, which expressed by means and their respective errors. Data
were submitted to analysis of variance (ANOVA) using the F Test and using the SAS GLM
procedure (version 9.1, Cary, NC, USA). Comparisons between means were made using a

184



Int. J. Mol. Sci. 2022, 23, 12259

Tukey’s Test and the p value < 0.05 was adopted as the critical level of probability [60–62].
The design was completely randomized according to the following model:

Yij = μ + ti + εij,

where, Yij is the observed value for the experimental unit referring to treatment i in
repetition j; μ is the general effect of the mean; t is the treatment effect (gender) and ε is the
experimental error.

The protein spot volumes data were imported into ImageMaster Platinum (v. 7.0)
software and mean and standard deviation were calculated for selected spots. The images
were compared between treatments by means of the matching of the spots regarding their
distribution, volume, relative intensity, pIs and MW. The program generated an ANOVA
within the comparisons between treatments, and the divergent protein spots (p < 0.05)
were selected. Additionally, the Mann-Whitney test (Wilcoxon rank-sum test) was used
when the normality criteria was violated in any of the treatments. For both tests (Student
or Mann-Whitney), significance was detected at the 0.05 level. For all data, trends were
considered at 0.05 < p ≤ 0.10.

5. Conclusions

The results obtained showed higher IMF content in meat from heifers compared to
steers, with a better response to stress in the muscle of heifers. Even with immunocastration,
males did not increase lipid synthesis in muscle tissue in the same proportion as females.
The expression pattern of transport proteins, energy metabolism, cellular defense, and
glycogenolysis differ among heifers and steers, suggesting greater oxidative capacity and
lower glycolytic activity in the muscle of heifers. Such proteome changes in LT muscle help
to explain the differences found in meat quality traits, particularly marbling.
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Abstract: Seminal plasma (SP) mirrors the local pathophysiology of the male reproductive system and
represents a non-invasive fluid for the study of infertility. Matrix-Assisted Laser Desorption/Ionization-
Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) provides a high-throughput platform to rapidly
extrapolate the diagnostic profiles of information-rich patterns. In this study, dispersive solid phase
extraction (d-SPE) combined with MALDI-TOF-MS was applied for the first time to the human SP,
with the aim of revealing a diagnostic signature for male infertility. Commercially available octadecyl
(C18)-, octyl (C8)-bonded silica sorbents and hexagonal mesoporous silica (HMS) were tested and the
robustness of MALDI-TOF peptide profiling was evaluated. Best performances were obtained for
C18-bonded silica with the highest detection of peaks and the lowest variation of spectral features. To
assess the diagnostic potential of the method, C18-bonded silica d-SPE and MALDI-TOF-MS were
used to generate enriched endogenous peptide profiles of SP from 15 fertile and 15 non-fertile donors.
Principal component analysis (PCA) successfully separated fertile from non-fertile men into two
different clusters. An array of seven semenogelin-derived peptides was found to distinguish the two
groups, with high statistical significance. These findings, while providing a rapid and convenient
route to selectively enrich native components of SP peptidome, strongly reinforce the prominent role
of semenogelins in male infertility.

Keywords: MALDI-TOF/TOF; mass spectrometry; proteome; seminal plasma; male infertility;
seminal fluid; biomarker; semenogelins; dispersive solid phase extraction

1. Introduction

Human seminal plasma (SP) is an acellular fluid, easily obtained after semen centrifu-
gation, which contains specific proteins and endogenous peptides originating from the
testis, epididymis, and male accessory glands [1,2]. Due to its intrinsic nature, being much
closer to the male reproductive tract, it is significantly more enriched than serum and urine
in secreted and/or shed proteins relevant for the study of infertility, male disorders, and
other related pathologies [3]. SP has therefore captured a growing interest as a clinical
sample for noninvasive diagnostics, with special attention being paid to the highly complex
mixtures of small peptides present therein, which may offer a great potential for informa-
tion rich patterns for clinical diagnosis. Indeed, several investigations have identified SP
peptides involved in sperm motility and fertility [4,5]. Other studies have recognized the
importance of SP peptides not only as putative markers for primary prostate cancer diag-
nosis [6] but also for their potential role in bactericidal activity [7,8]. Finally, recent studies
have highlighted the pivotal role of specific peptides released by physiological cleavage
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of semen coagulum proteins (Semenogelins and Prostatic acid phosphatase) in forming
amyloidogenic fragments, which are abundant in SP and which boost semen-mediated
enhancement of HIV infection [9,10].

The delineation of new omics platforms, which accurately and rapidly provide a
wide array of molecular entities from clinical specimens, including tissues and bodily
fluids, may be of interest in the field of diagnostic and personalized medicine. With
the rapid development of mass spectrometry (MS) technology, Matrix-Assisted Laser
Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has gradually
increased its applications in biomedicine and clinical diagnostics, owing to its low acqui-
sition times, ease of use, ruggedness, very high automation and throughput, and good
sensitivity [11,12]. In particular, in this direction, MALDI-TOF MS provides an accessible
and high-throughput platform to rapidly extrapolate by comparative analysis information-
rich patterns arising from altered expression of specific peptides between normal and
pathological conditions [13–16].

However, until now, in the case of human SP only a few investigations used MALDI-
TOF MS either to assess fingerprints of SP lipids [17] or to assess the N-glycome profile for
human SP [18]. Liu et al., by isobaric tags for relative and absolute quantitation (iTRAQ)
labeling and liquid chromatography (LC)-MALDI strategy discovered infertility-related
SP proteins in men with normal semen parameters and clinical pregnancy by R-ICSI after
IVF failure [19]. However, MALDI-TOF peptidic profiles of non-digested human SP is
reported only in one study. Fung and colleagues described direct analysis of unfractionated
human SP showing peptide peaks features in a m/z range from 500 to 10,000 [20]. Addi-
tionally, only one investigation based on Surface-enhanced laser desorption/ionization
(SELDI)-TOF MS reported differential protein expression in SP from fertile and infertile
males [21]. In view of the above reported considerations, acquisition of rich and informative
MALDI-TOF spectra preserving valuable information about endogenous and naturally
occurring peptides of SP might be an attractive strategy to deliver fast and sensitive clinical
diagnostic assays for pathologies and disorders of the male reproductive tract. In order to
reach this goal, a practical and efficient SP peptide enrichment strategy is required before
MALDI-TOF MS analysis. Currently, solid-phase extraction (SPE) prior to MALDI-TOF
MS analysis is a rapid and convenient tool for profiling of clinical specimens [22]. We
previously developed a procedure based on dispersive-SPE (d-SPE) in which the sorbent
phase is suspended in a specific bio-fluid, providing more effective interaction between
the sorbent and the peptides [23,24]. In the present study, for the first time, we applied a
d-SPE coupled to MALDI-TOF MS to the enrichment and detection of human SP peptide
patterns. Commercially available octadecyl (C18)- and octyl (C8)-bonded silica sorbents and
hexagonal mesoporous silica (HMS) were used to enrich and selectively harvest peptidic
components of SP. We systematically optimized a convenient procedure based on different
sorbents performances, assessing the ability of the method to generate highly stable and
reproducible spectra. Finally, as proof-of-concept a key peptide-pattern within spectra was
extrapolated by differential display statistical analysis that was able to distinguish between
fertile and unfertile groups.

2. Results and Discussion

2.1. Pre-Analytical Assessment of Residual Proteolytic Activity in SP

It is well accepted that the presence in SP of proteins as well as tissue-specific me-
diators should provide new insights in the origin of male infertility [25]. In particular,
the expression in SP of naturally occurring peptides, mainly arising from proteolysis of
abundant and larger proteins, might be correlated to specific function of male reproductive
organs [26–28]. As a result, the complexity and large variety of the size and the charge of
peptides make peptidomic analysis of SP quite challenging. Therefore, in this study, we
firstly assessed pre-analytical and analytical variables, aiming to establish an optimized
protocol based on d-SPE coupled to MALDI-TOF/TOF MS for peptide pattern analysis of
human SP in the low molecular weight mass spectral range. It is well known, that sample
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collections and processing procedures may significantly affect mass spectra profile. In
particular, since semen liquefaction depends on a complex proteolytic cascade [26–28], a
major challenge with SP low molecular weight profiling study is to check and to monitor
if residual proteolytic activity is still present in SP and if it might influence the spectral
readouts. The addition of a protease inhibitor cocktail (PIC) containing 4-(2-aminoethyl)
benzenesulfonyl fluoride hydrochloride (AEBSF), a serine protease inhibitor that blocks
PSA activity, was already described by Robert et al. [28]. However, in order to set up a valid
pre-analytical processing protocol for our study, the stability of SP peptide profile obtained
from a normozoospermic healthy volunteer was firstly investigated. PIC containing AEBSF
was immediately added after the liquefaction of coagulum as described in the Material and
Methods section. Specifically, the sample was prepared in three independent experiments
and the variation of the total peak numbers between samples with and without PIC was
assessed at several time points, more precisely at 0 and after 60, 90, 120, and 150 min at
room temperature and after 1 and 120 days of storage at −80 ◦C. The total number of m/z
peaks with a signal-to-noise (S/N) ≥ 10 detected in the MALDI-TOF mass spectra is shown
in Supplementary Figure S1 as function of the time. No statistically significant variation
in peak number was observed neither up to 2.5 h at room temperature nor up to 120 days
of storage at −80 ◦C. Moreover, no statistically significant difference in peak number was
observed at any time point between samples with and without the use of PIC. Definitively,
these data demonstrate that SP is stable for at least 2.5 h at room temperature and for at
least 4 months when stored at −80 ◦C. Additionally, any potential variation that might be
observed between different cohorts of subjects would hardly be an artifact due to storage
conditions, provided that the analysis is performed at any time within 4 months from the
collection if the sample is stored at −80 ◦C within 2.5 h. Therefore, it might be tempting
to speculate that no significant, residual proteolytic activity is still present in SP after the
liquefaction of coagulum because no statistically significant difference in peak number was
observed at any time point between samples with and without the use of PIC.

2.2. d-SPE Enrichment with Hydrophobic C18 and C8 silica Sorbents and with HMS

Selective enrichment strategies before MALDI-TOF MS analysis may represent an
important tool to finely modulate the low molecular weight profiling of clinical sam-
ples [22,29]. In fact, depending on the efficiency of the extraction method used, poor,
medium, or rich peptide fingerprints can be obtained. A molecular profile rich in peaks
is highly desirable, as more informative pattern diagnostic features could be achieved for
discriminant peaks analysis [15,30]. In this investigation, our efforts were mainly devoted
to identifying an optimal sample preparation method suitable for desalting and efficiently
enriching peptides from human SP specimens in order to generate rich informative and
robust MALDI-TOF screens.

Ideally, MALDI-TOF analysis of a clinical specimen should be accomplished by as few
as possible processing steps in order to reduce sample loss. Additionally, it would be neces-
sary to remove interferences and contaminants, which might generate high background and
ambiguous peaks in the spectra. Another important requirement is to enrich the analytes of
interest, in our case SP peptides, for increased sensitivity. SPE is a well known separation
procedure based on the property of a chromatographic medium (the solid phase) to se-
quester one analyte or a subset of them from a specific solution of interest and is normally
used not only for food matrices but also for clinical specimens. In d-SPE, the higher contact
surface between the solid phase and the analytes allows reducing time needed to reach
the extraction equilibrium in comparison to SPE. Consequently, d-SPE requires a shorter
extraction time, providing a more effective capture of analytes. Owing to its outstanding
rapidity, to low solvent consumption compared to standard SPE, to high efficiency, and to
its wide applicability, this procedure is attracting growing interest [24,31,32].

Based on this rationale, in this study we explored for the first time commercially
available C8- and C18-bonded silica beads and HMS as harvesting sorbents for human SP
peptide enrichment by d-SPE. Optimal conditions were assessed for adsorption, washing,
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and elution steps, in order to ensure the best MALDI-TOF mass spectra in terms of number
of detected peaks, repeatability on peak heights, area, and signal-to-noise ratio (see Supple-
mentary Materials and Supplementary Tables S1–S4, Supplementary Figures S2–S5). Other
critical parameters, such as the number of absorbents, the pH, the type of washing solvent,
and the elution time, were established on the basis of our previous results obtained with
clinical biological matrices for the enrichment/extraction of peptides [24].

Silica bonded C18 and C8 sorbents were tested owing to their well-known interactions
for hydrophobic peptides. In general, slight differences in selectivity are observed between
C18 and C8 sorbents [33]. Instead, in the case of HMS a larger spectrum of peptides might be
extracted because the textural properties of these silica sorbents coupled to the characteristic
wormhole mesostructured ensure very satisfactory results for integrating size selectivity
with effective adsorptive mechanism [24]. Representative examples of the SP peptidic
profiles obtained from the same sample before and after d-SPE processing with the different
sorbents used in our study are shown in Figures 1 and 2.

 

Figure 1. MALDI-TOF MS full view of SP using SA and CHCA matrices. MALDI-TOF mass spectra
of SP obtained from the same fertile normozoospermic man using SA (A) and CHCA (B) as matrix,
before and after processing by C18, ZipTip®C18, C8, and HMS. For SA, the spectra are shown in the
m/z range from 1500 to 14,000. For CHCA, the spectra are shown in the m/z range from 800 to 6000,
with labeled monoisotopic peaks.

In particular, the spectra were acquired both in sinapinic acid (SA) and α-cyano-4-
hydroxycynnamic acid (CHCA), which are the most common MALDI matrices used for
peptide profiling. Different m/z ranges are shown, in order to better highlight both in “full”
(Figure 1) and “zoom” (Figure 2) views, the high peaks enrichment provided by the use of
the d-SPE processing.
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Figure 2. MALDI-TOF MS zoom view of SP using SA and CHCA matrices. MALDI-TOF mass spectra
of SP obtained from one fertile normozoospermic subject using SA (A) and CHCA (B), before and
after processing by C18, ZipTip®C18, C8, and HMS. For SA, the spectra are shown in the m/z range
from 3500 to 10,000. For CHCA, the spectra are shown in the m/z range from 900 to 3500, with labeled
monoisotopic peaks.

Commercial ZipTip Pipette Tips equipped with C18 chromatographic media (conven-
tionally used SPE approach) were also included in this study for comparative purposes.
As expected, the use of these pre-treatment methods, removing salts, interferences and
other contaminants, which generate signal suppression in the MALDI-TOF analysis, sig-
nificantly amplified the peptidic repertoire of SP compared to the same untreated sam-
ple (Figures 1 and 2). Comparing each of the spectral view of d-SPE processed samples
(Figures 1 and 2) to the same untreated sample, the fine tuning in the peptide profiling
through the different sorbents allowed the detection of specific subset of SP peptides,
which were missing without pre-treatment. Moreover, in the described dispersive pro-
cedure (see Section 3), since the contact area between the sorbents and the analytes is
amplified in comparison to the classical SPE, a more effective interaction reduces the
times of the protocol and the volumes of the solvent required for the elution of the pep-
tides retained on the sorbents. In fact, only 10/15 min are required for the adsorption
step and few microliters (15/25) for the elution of peptides adsorbed on the sorbents
(Supplementary Table S1–S3). Dispersive methods appear to generate MALDI-TOF spec-
tral portraits with an increased number of peaks and with higher intensity, area, and S/N
after the enrichment (see Figures 1,2 and 3A,B). Generally, for all sorbent tested, in the case
of SA, the best detection of the SP peptide peaks was observed in a m/z range from 1500
to 14,000 (Figure 1A). For CHCA, the m/z range showing the best detection was lower
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than that observed for SA, displaying best peaks fingerprints in the range between 800 and
6000 (Figure 1B).

 

Figure 3. MALDI-TOF peaks number distribution using different d-SPE sorbents and peptides
enrichment comparison between C18 d-SPE and ZipTip®C18. Panel (A) shows the mean peaks
number distribution for SP samples over different m/z ranges using SA and CHCA before and after
processing by C18, ZipTip®C18, C8 and HMS. Panel (B) displays the total peaks number detected
for SP samples using SA and CHCA before and after processing by C18, ZipTip®C18, C8, and HMS.
Panels (C,D) display the comparison of spectral portraits in SA of SP between C18 and ZipTip®C18
in the m/z range from 3820 to 5000 and from 5680 to 8200, respectively. Asterisks indicate peaks
selectively extracted by C18 sorbent, which are absent or detected with a lower signal intensity in
ZipTip®C18 treated sample.

A more detailed study of d-SPE performances was obtained through the distribution
of peaks eluted by the diverse sorbents in different m/z regions of the spectrum (Figure 3A).
An increase of the peak number was observed from 800 to 4000 in CHCA for all kinds of
sorbents. Among all stationary phases, pre-processing using C18 silica sorbent showed
the best performance (in term of extracted peaks) in the low mass range (1500–4000)
for spectra acquired in CHCA and in the medium mass range (4000–7000) for spectra
acquired in SA (Figure 3A). C8 silica sorbent (and ZipTip) showed a peak distributions
similar to C18 (Figure 3A). Specifically, C8 sorbent paralleled the C18 peak distribution
behavior although running in a slightly lower region of the y-axis. The similar trend in peak
distribution is explained by the quite similar adsorption behavior based on hydrophobic
interactions. A different peaks distribution of the eluted peaks was observed when HMS
particles were used, in particular for the spectra acquired in SA. In fact, as shown in
Figure 3A, the maximum of the distribution for HMS was shifted to 7000–10,000 m/z region
of mass spectra acquired in SA. While, for the spectra acquired in CHCA, the maximum
was observed in the same range (1500–4000) of the other sorbents. The HMS shows
hydrophilic silica features and mesoporous wormhole structure that warrants not only an
exceptional dispersibility but also an optimal enrichment ability for peptides based on a
cut-off mechanism (depending on the mesopore diameter) and a variety of interactions [24].
Therefore, it is reasonable to observe a different shape in the distribution of peaks in the
different regions of the mass spectra. The distribution of peptides for HMS mirrors mainly
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the size exclusion effect and, as a consequence, the majority of peaks were detected in the
m/z range between 7000 and 10,000 (Figure 3A), while a low efficiency was observed for
higher molecular weight species.

In the case of the CHCA, the shorter m/z ranges analyzed do not allow highlighting
differences in the maximum, although a different slope is observed from 1500 to 4000. Con-
sidering the total number of peaks detected with an S/N ≥ 10, best results were obtained
for C18 sorbent, with ~140 peaks detected over the entire m/z range from 800 to 20,000
when the spectra were acquired in SA, and ~120 peaks when the spectra were acquired
in CHCA (Figure 3B). Although the total peak number was slightly lower, also C8 and
HMS showed an optimal efficiency in SP peptide capture as illustrated in Figure 3B with
comparable total peaks detected (approximately 110) in SA. In the C18 sorbent, the presence
of a great coverage of octadecyl chain bound to the silica surface, associated to the great
methylene selectivity, while reducing silanols interactions, allows for very hydrophobic
interactions between the SP peptides and the stationary phase. For the C8, the shorter
octyl chain provides less hydrophobic interactions, and maybe this provides a possible
explanation for the slightly lower number of peaks extracted for this sorbent in comparison
to C18 (Figure 3B). A lower number of peaks was detected for HMS in CHCA in comparison
to the other sorbents (Figure 3B). As already stated above, the adsorptive mechanism
for this mesoporous sorbent is quite different from the C8 and C18; moreover, we do not
exclude that during our d-SPE procedure with HMS some low mass proteins might have
been removed during the washing step. Furthermore, it might be also possible that a part
of the low molecular weight SP peptides are bound to larger SP proteins as it happens in
the case of plasma or serum peptides for the presence of carrier proteins, such as human
serum albumin [34]. In this case, due to the cutoff mechanism of HMS, the large carrier
proteins with bound LMWP cannot be adsorbed into the nanometric porous network
wormhole channels of the HMS. This phenomenon might explain the lower number of
peptides extracted by HMS in the low molecular m/z range in comparison to the other
sorbents (Figure 3A,B).

Figure 3C,D show the comparison of spectral portraits in absolute intensity units
of SP between C18 and Ziptip C18 in the m/z range from 3820 to 5000 and 5680 to 8200,
respectively. In particular, several peaks (indicated by asterisks) extracted by C18 sorbent
are not observed or show a lower intensity in the case of ZipTip C18. These data highlight
the higher performance of d-SPE in comparison to SPE.

Although inter-individual variations of protein composition in SP might influence
differential proteomic/peptidomics analysis [35,36], our effort was to standardize and
optimize the experimental procedure with the aim to provide a robust tool for biomarker
discovery. In order to warrant a robust analytical tool, repeatability and reproducibility
of the method were assessed for spot-to-spot and within-spot reproducibility as reported
in the Materials and Method section and in the Supplementary Materials. The results are
summarized in Supplementary Figures S2–S5. Mean CVs% obtained for peak heights, area
and S/N ranged between 10% and 15% both for inter and intra spot for all spectra obtained
after pre-treatment, while in the case of the untreated sample, the CV% was comprised
between 20% and 25% (Supplementary Figure S5). Among all d-SPE sorbents and ZipTip,
the lowest variation in signal intensity, area, and S/N was observed for C18 d-SPE (mean
CVs less than 10%-see also Supplementary Figure S5). Overall, the data showed a well
adequate analytical robustness, suggesting that these SP peptidic fingerprints might be
part of a diagnostic profile for properly weighing substantial alterations between fertile
and infertile groups, likely reflecting the physiological or pathological state of the male
reproductive tract.

2.3. Differential Comparative Analysis between Fertile and Infertile Groups

To assess the diagnostic potential of this platform, 15 SP specimens from normo-
zoospermic fertile subjects and 15 from non-fertile subjects were analyzed and peptide
enriched fingerprints by C18 d-SPE were compared by statistical data analysis and statis-
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tical assessment model (principal component analysis-PCA). Table 1 reports the clinical
characteristics of the cohort subjects enrolled in this study including all semen parameters
for semen subtype classification according to the World Health Organization (WHO) 2010
guidelines [37]. Further details of the study groups are listed in Supplementary Table S5.

Table 1. Clinical characteristics of the subjects enrolled in the study.

Patient Features (Mean ± SD) NZ 1 n = 15 AT 2 n = 2 OAT 3 n = 5 TZ 4 n = 6 OZ 5 n = 2

Age 28.7 ± 7.3 43 ± 2.8 31.2 ± 5.6 30.8 ± 7.9 33 ± 14.1
Ejaculated volume (mL) 3.3 ± 1.6 3.4 ± 1.3 2.3 ± 0.8 4.3 ± 2.1 3.15 ± 0.2

pH 7.7 ± 0.3 7.5 ± 0 7.7 ± 0.4 7.5 ± 0.4 8.25 ± 0.2
Sperm count (million) 209.2 ± 125.7 155.9 ± 62.3 3.4 ± 2.4 269.1 ± 72.9 20 ± 5.3

Progressive motility (%) 49.3 ± 7.3 23 ± 7.1 10.6 ± 12.3 41.2 ± 6.5 40.5 ± 7.8
Total motility (%) 61.6 ± 7 45 ± 4.2 16.8 ± 10.1 57.2 ± 8.5 53.5 ± 2.1

Normal morphology (%) 7.4 ± 3.4 2.5 ± 0.7 0.7 ± 0.5 2.4 ± 0.9 4.25 ± 0.3

1. Normozoospermic subject, fertile man. In this category all semen parameters are normal within the accept-
able reference values provided by the World Health Organization (WHO) 2010 guidelines: total number of
spermatozoa, and percentages of progressively motile and morphologically normal spermatozoa, equal to or
above the lower reference limits (total sperm number ≥ 39 × 106 spermatozoa per ejaculate, sperm progressive
motility ≥ 32% and normal sperm morphology ≥ 4%). 2. Asthenoteratozoospermic patient, an infertile man with
percentages of both progressively motile and morphologically normal spermatozoa below the lower reference
limits. 3. Oligoasthenoteratozoospermic patient, an infertile man with total number of spermatozoa and percent-
ages of both progressively motile and morphologically normal spermatozoa below the lower reference limits.
4. Teratozoospermic patient, an infertile man with percentage of morphologically normal spermatozoa below the
lower reference limit. 5. Oligozoospermic patient, an infertile man with total number of spermatozoa below the
lower reference limit.

As an explorative effort, we assessed by PCA if SP C18 sorbent enriched peptide
MALDI signatures from the 30 donors (15 fertile vs. 15 infertile) allow any possible
clustering in an unsupervised modality. PCA is a processing tool that analyzes the variance
of a dataset in an unsupervised manner, considering the expected and unexpected variance,
with high dimensionality data sets [38]. In particular, PCA, performed with the use of
MarkerView™ software, reduces the complexity of a mass spectral dataset. Based on
an unbiased assessment of inherent spectral differences, this tool shows any intrinsic
clustering of examined samples. The results are shown in Figure 4: two separate clusters
were visualized indicating that unsupervised PCA satisfactorily segregates infertile patients
from fertile normozoospermic controls. Infertile individuals (red dots) appear quite tightly
clustered and quite cleanly separated in the plot from the fertile individuals (green dots).
Samples clustering and differentiation confirm data homogeneity (Figure 4) and strongly
suggest that the platform described might provide a useful baseline resource for future
fertility biomarker studies.

Table 2 lists the peaks differentially expressed between the fertile and infertile groups
in a statistically significant manner.

Table 2. Discriminant peaks significantly different between fertile (n. 15) and infertile (n. 15) men.

m/z 1 Uniprot ID
(Accession Number)

Protein Identity Peptide Sequence
Study Groups and

Peptide Expression Level
p Value 2

2331 P04279 SEM I;
Fragm:330–349 ITIPSQEQEHSQKANKISYQ ↑Fertile/↓Infertile 0.007

2362 Q02383 SEM II;
Fragm:248–267 HGPKDIFTTQDELLVYNKNQ ↑Fertile/↓Infertile 0.001

2482 P04279 SEM I;
Fragm:195–215 VLQTEELVANKQQRETKNSHQ ↑Fertile/↓Infertile 0.00003

2893 P04279 SEM I;
Fragm:428–453 HGSHGGLDIVIIEQEDDSDRHLAQHL ↑Fertile/↓Infertile 0.0000006

3059 P04279 SEM I;
Fragm:248–273 HGSKDIFSTQDELLVYNKNQHQTKNL ↑Fertile/↓Infertile 0.001

3083 Q02383 SEM II;
Fragm:248–273 HGPKDIFTTQDELLVYNKNQHQTKNL ↑Fertile/↓Infertile 0.010

3938 Q02383 SEM II;
Fragm:549–582 ESSESHNIVITEHEVAQDDHLTQQYNEDRNPIST ↑Fertile/↓Infertile 0.001

1. The m/z values of precursor ions refer to average masses MH+. 2. The p values were calculated with unpaired
t-test on peak intensity; significance was set at a p value less than 0.05.
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Figure 4. Unsupervised PCA of SP from fertile and infertile men enrolled in this study. Unsupervised
PCA scores plot acquired by MarkerView™ software represents SP clustering of fertile (green dots) vs.
infertile men (red dots). Pareto scaling was applied on the MALDI-MS data set.

The graphical comparison of the normalized peak heights between the two groups,
illustrated in the box plots reported in Figure 5, shows that each main discriminant m/z
peak is downregulated in infertile men with very significant p-value for the peaks 2893
(p = 0.0000006) and 2482 (p = 0.00003). Highly significant p-values were also found for the
peaks 2362, 3059, and 3938 with p-values < 0.005. The other peaks 2331 and 3083 show a
p-value ≤ 0.01 (Figure 5).

In order to better mark differential peak expressions, the overlaid mass traces from the
15 fertile (green profiles) and 15 infertile men (red profiles) are shown in the m/z regions
from 2300 to 2400 (Figure 6A) for the peaks 2331 and 2362. The other m/z peaks are shown
in the spectral ranges from 2440 to 2530 (Figure 6B), from 2860 to 2930 (Figure 6C), from
3050 to 3090 (Figure 6D), and in the m/z range from 3930 to 3950 (Figure 6E).

The seven differentially expressed peptides were then identified by direct sequencing
by MALDI-TOF/TOF mass analysis, as shown in Table 2 and Supplementary Figure S6 in
which the primary sequences, the identities, and the MS/MS mass spectra are shown. These
peaks resulted as array of seven Semenogelins-derived peptides. In particular, four peaks
(m/z = 2331, 2482, 2893, 3059) originated from Semenogelin-1 (SEM I) and three peaks
(m/z = 2362, 3083, 3938) were fragments semenogelin-2 (SEM II). Interestingly, the SEM I
fragments with m/z 2362 and 3059 (see Table 2) shared a common aminoacidic sequence
248–267. More intriguingly, the SEM II fragment with m/z = 3083 covers the sequence
248–273, which shows very high sequence similarity with SEM I fragment 248–273.
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Figure 5. Main discriminant peaks box plot analysis. Box plot of the peak intensities for statisti-
cally discriminant m/z signals between 15 fertile and 15 infertile men performed by OriginLab®

software. The p values were calculated with unpaired t-test on normalized peak intensity and the
asterisks show the level of significance between the two groups; * p values < 0.01, ** p values < 0.005,
*** p values < 0.0001.

 

Figure 6. Traces overlay for discriminant peaks between fertile and infertile men. MALDI-TOF
fingerprints comparison of SP samples between fertile (green) subjects and infertile (red) patients,
obtained using Data Explorer software. Spectra overlay in absolute units highlights the peak intensity
variation resulted statistically significant for the m/z peaks 2331 and 2362 (A), 2482 (B), 2893 (C), 3059
and 3083 (D), 3938 (E).

Semenogelins are abundant proteins in SP; as a consequence, the amount of these frag-
ments may reflect the balance between the activity of specific enzymes (including proteases)
and their inhibitors [6,39]. In fact, immediately after ejaculation, the spermatozoa are im-
mobilized in the semen coagulum matrix. The semenogelins, which are the main proteins
forming the semen coagulum, are proteolytically cleaved by prostate-specific antigen (PSA
also known as KLK3). Owing to its proteolytic activity, PSA breaks up the coagulum bound
to the spermatozoa surface, which increases their motility [40]. The resulting liquefaction of
the clot after semenogelins fragmentation, warrants the physiological motility required by
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spermatozoa to reach the female reproductive tract [40,41]. Interestingly, PSA expression is
decreased in infertile subjects with reduced sperm motility [42,43]. Moreover, in a recent
study, comparative and quantitative proteome analysis between two groups of men with
oligoasthenozoospermia (total number of spermatozoa and percentages of progressively
motile spermatozoa below the lower reference limits) and normozoospermia (total number
of spermatozoa and percentages of progressively motile and morphologically normal sper-
matozoa are equal to or above the lower reference limits), PSA was found decreased in SP
of men with oligoasthenozoospermia [44]. Therefore, it is tempting to speculate that the
decreased level of expression of semenogelins-derived peptides in the SP of infertile men
may be associated to a decreased expression of PSA in the unfertile group.

SEM I was found increased in oligoteratozoospermia (total number of spermatozoa
and percentages of morphologically normal spermatozoa are below the lower reference
limits) [45], while in the recent proteomics study by Martins et al. [46] both SEM I and SEM
II resulted under-expressed in primary and secondary infertile individuals in comparison
to the control group. However, western blot validation experiments confirmed only SEM II
decreased in primary infertility, while any change in the expression of SEM I and SEM II by
western blot analysis was observed in secondary infertility group [46].

These contrasting findings on semenogelins change of expression may arise from
the intrinsic limitations of bottom up approaches and the presence in SP of both intact
semenogelins and peptide-derived semenogelins. In fact, in a bottom up approach all the
proteins are digested before LC-MS/MS analysis, therefore it is not possible to discriminate
if the peptides that contribute to the identification of SEM I and II originate from intact
precursors or from a fragment derived peptide. It is important to underline that, as top-
down strategy, our method does not require the use of trypsin or more in general proteolytic
digestion in comparison to bottom-up strategy. Therefore, the spectral readouts acquired
by this platform reveal SP peptides in their native and biologically active forms.

Currently, mechanism underlying the physiological roles of the semenogelins, in-
cluding their proteolytically-derived peptides, are still unclear; however, their implication
and clinical relevance in male infertility is well described in literature [47–49]. Consider-
ing the important role of semenogelins in coagulation and liquefaction process and their
great impact on fertility, our platform provides a new rapid and robust tool to reveal new
potential diagnostic semenogelin-derived signature of male infertility hidden in SP. The
data obtained in this pilot study will be further extended to a larger cohort in order to
validate these preliminary findings. Additionally, the use of other sorbents, such as C4 and
mesoporous silica, are currently under investigation in our group with the aim to test their
potential to amplify the peptidomic repertoire of SP.

3. Materials and Methods

3.1. dSPE Sorbents

Silica gel C8-Reversed phase (60759) and Discovery® DSC-18 SPE Bulk Packing
(52600-U) were purchased from Supelco (Merck, Darmstadt, Germany).

HMS (code 541036 wormhole silica mesostructured) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). HMS (code 541036 wormhole silica mesostructured).
ZipTip®C18 was purchased from Merk Millipore Corporation (Darmstadt, Germany).

3.2. Reagents

All the chemicals and reagents were analytical grade. Water was purchased from
Sigma Aldrich. Acetonitrile (ACN) (HPLC grade) and trifluoroacetic acid (TFA) (ACS
grade) were obtained from Merck (Darmstadt, Germany). The MALDI matrices Sinapinic
Acid (SA) and alpha-cyano-4-hydroxycinnamic acid (CHCA) were purchased from Fluka
(St. Louis, MO, USA). Peptide mass standards kit for calibration of AB SCIEX MALDI-
TOFTM instruments (AB Sciex, Framingham, MA, USA). Protease inhibitor cocktail (PIC;
P8340, Sigma, St. Louis, MO, USA) and Pierce™ BCA Protein Assay Kit (23225, Thermo
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Scientific™, Rockford, IL, USA) were used, according to the manufacturer’s instructions.
Ammonium bicarbonate (09830) was purchased from Sigma Aldrich (St. Louis, MO, USA).

3.3. Patient Recruitment

The study on the volunteer subjects was conducted in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of MAGNA GRAECIA UNIVER-
SITY and MATER DOMINI HOSPITAL (protocol code 2014.39, date of approval 16 April
2014). All subjects were enrolled after the informed written consent was obtained from
each participant. Only the first sperm evaluation was used in this analysis. Samples from
patients who had vasectomy or history of orchitis, testicular trauma, sexually transmit-
ted disease, varicocele, inguinal hernia operation, and cryptorchism were excluded. A
questionnaire was distributed to obtain information on age, smoking habits, alcohol use
(regular, irregular, or total abstinence), and use or abuse of other substances and drugs (yes
or no). Semen from fertile men and infertile patients was obtained by masturbation into
sterile containers after (3–5) days of sexual abstinence. All specimens were processed and
analyzed anonymously.

The detailed clinical characteristics of the subjects enrolled in this study are summa-
rized in Table 1.

3.4. Preparation of Seminal Plasma

Each collected ejaculated sample was allowed to liquefy for 15–30 min at 37 ◦C.
Semen parameters were assessed according to the World Health Organization guidelines
2010 [37]. After the complete liquefaction of coagulum, liquefied sample from each donor,
was divided into two aliquots. In one aliquot a protease inhibitor cocktail (PIC) was
immediately added in a 1:100 v/v ratio. Then, both aliquots were processed to obtain
SP. In particular, each clinical sample was centrifuged at 15,000× g for 15 min at 4 ◦C.
The supernatant (the SP) resulted as a clear and fluid phase that was separated from
pellets (debris) and cellular components, aliquoted, and stored at −80◦ C until use. Protein
concentration of SP was determined by the bicinchoninic acid (BCA) assay according to the
manufacturer’s instructions. Supplementary Table S5 summarizes for each SP sample the
determined total protein content.

3.5. Assessment of Protease Activity in SP

To assess stability of SP peptidic profile the freshly obtained semen from a normo-
zoospermic fertile donor was used. After the complete liquefaction of coagulum, liquefied
sample was split in two and PIC was added to one of the samples. Then, both samples were
processed to obtain SP. In particular, each clinical sample was centrifuged at 15,000× g for
15 min at 4 ◦C. The supernatant (the SP) resulted as a clear and fluid phase that was sepa-
rated from pellets (debris) and cellular components. Aliquots were analyzed immediately
and after 60, 90, 120, and 150 min at room temperature; then, aliquots were frozen at −80◦C
and analyzed after 1 and 120 days of storage. The number of peaks were comparatively
analyzed (Supplementary Figure S1).

3.6. Seminal Plasma Samples Normalization

The total protein content of SP specimens obtained from each study participant was
determined by BCA assay (Supplementary Table S5). The concentrations of SP specimens
collected from each donor patient, ranged from 30.7 to 82.0 mg/mL. Therefore, an adequate
volume of each clinical sample was either concentrated (by vacuum centrifugation) or
diluted (by the addition of deionized water) to 50 μL, in order to obtain a final concentration
of 50 mg/mL and a total protein content of 2.5 mg

3.7. C18 and C8 d-SPE Optimized Procedure

A total of 10 mg of C18 or C8 silica sorbents were mixed with 100 μL of SP sample
(50 μL of normalized SP sample in 50 μL of deionized water). The slurry was gently
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vortexed at room temperature for 10 min, then it was centrifuged at 2000× g for 2 min. The
sorbent was then separated from the supernatant and was washed twice with 20 μL of 0.1%
TFA. After the last wash, peptides bound to solid phase were eluted with 15 μL of a 1:1
(v/v) solution of ACN/0.1% TFA. Eluates were in part aliquoted and stored at −80 ◦C and,
in part, immediately used for MALDI-TOF MS analysis.

Detailed experimental procedures for optimization of final protocols are described in
the Supplementary Materials.

3.8. d-SPE HMS Optimized Procedure

A total of 10 mg of HMS were mixed with 100 μL of SP sample (50 μL of normalized
SP sample in 50 μL of deionized water). The slurry was shaken at room temperature for
15 min. The suspension was centrifuged at 2000 g for 2 min, then HMS particles were
separated from the supernatant and washed twice with 20 μL 0.1% TFA. After the last wash,
species adsorbed on HMS were extracted with 25 μL of a 1:1 (v/v) solution of ACN/0.1%
TFA. Eluates were in part aliquoted and stored at −80 ◦C and in part immediately used for
MALDI-TOF MS analysis.

Detailed experimental procedures for optimization of final protocols are described in
the Supplementary Materials.

3.9. ZipTip C18

After protein quantification, each SP sample was diluted (by the addition of deion-
ized water) to a final concentration of 0.4 mg/mL, as suggested by the manufacturer’s
instructions of ZipTip®C18 pipette tips.

3.10. MALDI-TOF MS Analysis

For MALDI-TOF MS sample preparation, a saturated matrix solution of SA in 35%
ACN/0.1% TFA was prepared. The CHCA matrix was prepared by dissolving 4 mg in 1 mL
of a solution prepared with 50% of ACN in 0.1% TFA. The solutions were then sonicated for
1 min. SP samples were prepared by a dry-droplet method. A total of 1 μL of non-treated
SP or previously treated with HMS, C18, C8 sorbent, or ZipTip®C18 was mixed with 4 μL
of SA or CHCA solution prepared as described above and 1 μL of the resulting mixture
was spotted on the MALDI target plate (Opti-TOF 384-Well Insert, ABSciex, Framingham,
MA, USA).

MALDI-TOF mass spectra were acquired on AB SCIEX MALDI-TOF/TOF 5800 mass
spectrometer (ABSciex, Framingham, MA, USA), equipped with a diode-pumped, Nd:YLF
laser with λ = 345 nm wavelength. Each sample was run in triplicate. For MALDI MS
measurements in SA the following settings were applied: bin size was set at 4 ns, final
detector voltage was 2.070 kV with multiplier value at 0.75; 3000 laser shots were accu-
mulated for each spectrum. MS data were calibrated via external calibration using the
5800 Mass Standards kit (AB SCIEX, Framingham, MA, USA) containing insulin bovine
(MH+ 5734.59), thioredoxin (MH+ 11,674.48), and horse apomyoglobin (MH+ 16,952.56).
For MALDI MS measurements in CHCA the following settings were applied: bin size was
set at 1 ns, final detector voltage was 1.980 kV with multiplier value at 0.66; 3000 laser shots
were accumulated for each spectrum. MS data were calibrated via external calibration
using the 5800 Mass Standards kit (AB SCIEX, Framingham, MA, USA) containing des-
Arg1-Bradykinin (MH+ 904.4681), Angiotensin I (MH+ 1296.6853), Glu-Fibrinopeptide B
(MH+ 1570.6774), ACTH (clip 1–17) (MH+ 2093.0867), ACTH (clip 18–39) (MH+ 2465.1989),
ACTH (clip 7–38) (MH+ 3657.9294).

Data Explorer version 4.11 software (AB SCIEX, Framingham, MA, USA) was used for
data acquisition and data processing.

3.11. Repeatability Assessment

The SP sample from one normozoospermic donor was used to assess the repeatability
of the MALDI analysis by three independent experiments performed on non-treated (con-
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trol) and treated (C18, C8, HMS,) samples. For each experiment, 6 spectra were acquired
with a total of 18 replicates.

3.12. Spot-to-Spot and within Spot Reproducibility

A total of 10 samples were prepared for MALDI-TOF MS analysis. Two samples
included control SP samples in CHCA and SA collected from one normozoospermic donor.
The other eight samples were obtained from four different SP enrichment preparations,
three using d-SPE with three different sorbents (C8, C18 and HMS), one using SPE by ZipTip
collected from the same normozoospermic donor using control SP sample.

For each of the ten MALDI samples three spots were loaded on the MALDI target
plate. Six MALDI-TOF mass spectra were acquired from each spot. Eighteen spectra for
each sample were acquired for intra and inter spot MALDI-TOF reproducibility assessment.
A total of 180 mass spectra were acquired for experiments in SA. At the same manner, a
total of 180 mass spectra were acquired for experiments in CHCA. S/N, peak intensity and
peak area from 30 selected peaks both in CHCA and in SA acquired spectra were used for
calculating spot-to-spot and within spot reproducibility (Supplementary Figure S5).

3.13. Differential Statistical Peptide Pattern Analysis

MALDI-TOF mass spectra were first acquired and processed using Data Explorer
version 4.11 software (AB SCIEX, Framingham, MA, USA) and subsequently analyzed
for differential peptide patterns. Mass t2d data files were uploaded into MarkerView™
software 1.2.1.1 (AB Sciex, Foster City, CA, USA) and differential peptide profiling was
assessed by unpaired, two-tailed Student’s t-test with aligned MALDI-TOF mass spectra
and the normalized peak height for each m/z value. The list of differentially expressed
peaks was then filtered by manual inspection and each peak was verified as described in
a previous report [50]. Box plot analysis between fertile and infertile men for statistically
discriminant m/z signals was performed by OriginLab® software (version 7.0, OriginLab
Corporation, Northampton, MA, USA).

3.14. MALDI-TOF/TOF Sequencing Experiments

The differentially expressed peptides were directly subjected to the MALDI-TOF/TOF
analysis for acquiring sequence information (Supplementary Figure S6). For the MS/MS
measurements, 1 μL of SP sample was mixed with 4 μL of matrix solution (4 mg/mL of
CHCA in 50% ACN and 0.1% TFA), and 1 μL of the obtained solution was spotted on the
MALDI target plate. The voltage settings were 8.0 kV and 15.0 kV for the ion source 1 and
source 2, respectively. Air was used as the collision gas and MS/MS spectra were acquired
by accumulating twenty spectra (1000 shots each) at 1000 Hz pulse rate and laser energy
setting of 5000–6000. The experimental collision-induced dissociation (CID)-MS/MS ion
spectra were compared to theoretical MS/MS spectra generated from Protein Prospector
(http://prospector.ucsf.edu/, accessed on 18 July 2022). In Supplementary Figure S6, the
MALDI-TOF/TOF mass spectra with b and y ion series and the assigned peptide sequences
of identified species are reported.

3.15. PCA

MS data were exported from the 5800 MALDI ABScieX as t2d files and were then
processed with MarkerView™ software 1.2.1.1 (AB Sciex, Foster City, CA, USA), with
well-defined mass tolerance limits imposed for PCA. Specifically, unsupervised PCA was
performed in order to visualize samples clustering. PCA results are commonly plotted in
two- or three-dimensional plots that reflect the behavior of the samples (scores plot) or
variables (loadings plot). Pareto scaling and no weighting was applied on the MALDI-
MS data set comprising the normalized m/z peak intensities from SP peptides enriched
with C18 sorbent using three replicate spectra for each subject. In brief, Pareto data set
processing performs mean centering and scaling using square root of standard deviation of
peak intensities.
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