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Preface

The global energy crisis due to the depletion of fossil fuel resources, the need to reduce

greenhouse emissions, the climate change phenomenon, and the unexpected increase in fuel prices

due to global conflicts have increased the need to focus on using new and renewable energy systems.

These systems can work autonomously and in a hybrid manner with other energy generation

systems. The operation of these single or hybrid energy systems can be in the form of islanded or

grid-connected mini or microgrids. Microgrid power fluctuation due to renewable energy systems

requires energy storage systems to balance the energy and provides a continuous flow of energy

even when energy fluctuates from renewable sources. Energy management strategies are essential

in such systems for reliability, good power quality, and optimizing the operation of different energy

and storage distributed systems in the microgrid. Energy management systems (EMS) are control

techniques for managing the power flow in response to supply, demand, power quality, and storage

conditions. The research work is currently focusing on different topics related to the optimization

and control design of energy management systems using the mathematical modeling and simulation

of different operation scenarios of these systems under different environmental and grid conditions.

The present book contains the 14 articles accepted for publication among the 30 in total

manuscripts submitted to the Special Issue “Optimization and Control in Energy Management:

Mathematical Modeling and Simulation” of the MDPI journal Mathematics.

The idea for this Special Issue arose from the interest of the Guest Editors in energy management

topics, which have been a large part of their research experience over the past 20 years. From this

standpoint, the researchers specialized in these topics were invited to contribute their research results

to enrich this book.

The 15 articles, which appear in the present book, cover important and specialized research

topics in the field of energy management systems, including Real-Time Management for an EV

Hybrid Storage System Based on Fuzzy Control, Efficient Red Kite Optimization Algorithm for

Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution

Networks, Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy

Community, Performance Evaluation of Grid-Connected DFIG-Based WECS with Battery Energy

Storage System under Wind Alterations Using FOPID Controller for RSC, Strategic Electricity

Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting,

Reinforcement Learning-Enabled Electric Vehicle Load Forecasting for Grid Energy Management,

Coordinated Economic Operation of Hydrothermal Units with HVDC Link Based on Lagrange

Multipliers, Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing

Energy Losses and CO2 Emissions, Blockchain-Driven Real-Time Incentive Approach for Energy

Management System, An improved Fractional MPPT Method by Using a Small Circle Approximation

of the P–V Characteristic Curve, Optimal Location and Operation of PV Sources in DC Grids to

Reduce Annual Operating Costs While Considering Variable Power Demand and Generation, Robust

Flatness-Based Tracking Control for a “Full-Bridge Buck Inverter–DC Motor” System, Optimal

Location and Sizing of PV Generation Units in Electrical Networks to Reduce the Total Annual

Operating Costs: An Application of the Crow Search Algorithm, Design of Space Efficient Electric

Vehicle Charging Infrastructure Integration Impact on Power Grid Network, and a systematic

literature review on the research area of Variable-Speed Wind Turbines for Grid Frequency Support.

It is anticipated that the book will become interesting and useful for those working in the area

of energy management systems, renewable energy systems, and hybrid electric vehicles, as well as

for those having the proper mathematical background and the willingness to become familiar with

ix



the recent advances in the mathematical modeling and simulations of these systems and the design

of their optimal controllers for a reliable and stable operation of smart electrical grids.

As the Guest Editors of this Special Issue, we are grateful to the authors of the papers for their

quality contributions, to the reviewers for their valuable comments towards the improvement of the

submitted studies, and to the administrative staff of MDPI publications for their support to complete

this project.

Atanda Kamoru Raji and Khaled M. Abo-Al-Ez

Editors
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Abstract: With an ever-increasing number of electric vehicles (EVs) on the roads, there is a high
demand for EV charging infrastructure. The present charging infrastructure in the market requires a
lot of space and sometimes leads to traffic congestion, increasing the risk of accidents and obstruction
of emergency vehicles. As the current infrastructure requires ample space, the cost of setting up
this charging infrastructure becomes very high in metropolitan cities. In addition, there are a lot of
adverse effects on the power grid due to the integration of EVs. This paper discusses a space-efficient
charging infrastructure and multi-agent system-based power grid balance to overcome these issues.
The proposed multi-level EV charging station can save a lot of space and reduce traffic congestion
as more vehicles can be accommodated in the space. Depending on the size, capacity, and type of
multi-level vehicle charging system, it can serve as a reliable charging solution at sites with medium
and high daily footfall. We integrated the EV charging station with IEEE 33 bus test system and
analyzed the grid and charging stations. The proposed scheme is exhaustively tested by simulation
in a discrete-time event simulator in MATLAB and analyzed with varying EV arrival rates, time
periods, etc.

Keywords: multi-level charging stations; power grid network; multi-agent system; stability

MSC: 93C95

1. Introduction

Energy management is one of the major challenging tasks in this fast-changing world.
The concept of the smart grid has brought a new change in the utilization of technology.
However, on the other hand, the massive increase in the demand for production and
managing the optimized energy within the grid structure is one of the significant issues
with which the R&Ds are currently engaged. Not only within the intelligent grid network
but also with the other minor ancillaries attached to the grid structure that accurately
measure the energy utilization within the grid. Thus, the increase in Demand for Energy is
one of the significant issues that is needed to be addressed [1]. In addition, EV charging
stations help the industry optimize its grids’ load management. It can also be used to aid
the utilities in managing peak demand.

On the other hand, the smart grid (SG) also handles the demand response of the
industrial and residential load. Thus, the management facility deployed in the SG Network
should be strong enough to provide constant optimized power output. It should also be
capable of monitoring and rectifying itself in case of any malfunction.

Recently, integrating electric vehicles with the smart grid network has been one of
the standard techniques used to conserve energy. The SG network [1,2] is a combination

Mathematics 2022, 10, 3450. https://doi.org/10.3390/math10193450 https://www.mdpi.com/journal/mathematics1
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of various distributed systems and functions such as Advanced Metering Infrastructure
(AMI), Distribution Automation (DA), and Distributed Management System (DMS), which
all integrate to produce the most optimized power flow. Load flow management is also
another vital management technique. Especially when the EVs are integrated with the grid
structure, the demand for electricity reaches its peak demand. Thus, monitoring the load at
various times during the day is necessary, ensuring the overload condition is not reached.
Similar load management techniques should be well implemented at various stages of the
grid for constant load monitoring. The conventional load management techniques in the SG
network are not well suited. Advanced load management techniques such as distributive
load response (DLR) and advanced metering infrastructure (AMI) are integrated for the
more intelligent operation of the network [3,4]. Thus, the SG greatly depends on the
design, development, and integration of advanced devices and techniques for its efficient
performance. Integrating the charging stations with the smart grid contributes to load
management techniques and provides ample opportunity for research in this domain.

One of the biggest issues in crowded metropolitan areas is the space due to the
increased population. There is no extra space for creating the charging infrastructure, and
it may become complicated to create one in the future. Therefore, this paper proposes
on-demand space-efficient multi-level EV charging station infrastructure for metropolitan
cities. We have integrated the novel structure of the infrastructure with the 33-bus power
grid for power transaction, load management, and power grid network balance. A novel
methodology, that is, a multi-agent system, is deployed on each bus and charging station
to collect, share and analyze various power system parameters. The analyzed parameters
are used to control and maintain the stability of the power grid. The multi-level charging
infrastructure’s stress and displacement analysis has been done, and the cost analysis of
the proposed infrastructure has been discussed. Developed the analytical model of the
proposed method, optimization problem is formulated and is solved using the Genetic
algorithm, and simulation has been conducted with varying parameters such as arrival
rates, service rates, and the number of charging points available at the charging station.

The rest of the paper is organized as follows: Section 2 presents the literature review
in which a discussion on existing studies is given. Section 3 provides an overview of
the charging stations. Section 4 provides the detail of the proposed approach. Section 5
provides a discussion on the cost analysis of multi-level charging stations. Section 6
provides a brief discussion on the stress analysis of the designed structure. Section 7
provides a discussion on the mathematical modeling of the proposed multi-level EV 344
charging station infrastructure. Section 8 details the simulation study and result analysis.
Section 9 concludes the article.

2. Related Works

This section presents the smart grid network and EV charging station as follows:

2.1. Smart Grid Network

A traditional grid generally works as a medium and distribution hub for electricity
transmission from the distribution station to the end-users. The grid model is based on
the principle of electromagnetism, with few sensors and a manual degree of control. The
efficiency of the system thus becomes low during the high demand. Moreover, the system’s
reliability and security are very low compared to that of the other system [5]. The major
drawback of the system is the manual distributing mechanism. The flexibility and the
extension of the system thus become much more difficult.

However, the Smart Grid solves all the drawbacks mentioned above. It is an intelligent
distributed electrical network that operates in an automated mode. The reliability, flexibility,
security, sustainability, and efficiency are much more as compared to the conventional
grid [6]. Moreover, the Smart Grid provides two-way communication, numerous sensors,
self-diagnostics capabilities, and remote monitoring facilities.
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The application of power electronics in the intelligent grid is off to a vast extent. Hence,
the issue of the EMI in the current flow increases rapidly. The EMI issues in the smart grid
have been reported to depend upon the magnitude of fault currents, their flowing paths,
and harmonic contents. This interference may degrade the devices’ efficiency and the
system [7]. Moreover, the EMI sources coupling into a nearby device may also cause EMI
radiations and lead to cascading effects. Thus, minimizing the EMI effect is one of the most
critical issues to be handled in the SG network. When the circuit space becomes preferable,
the size of the EMI filters can be reduced in proportional order and can be conducted simply
by increasing the switching frequency of the filters. The smart meter is an important content
of the Smart Grid Network. It works on the principle of the communication infrastructure
to monitor real-time energy consumption and either distribute or optimize the energy per
consumption. It consists of the micro-controller unit, metering chips, voltage converter,
current converter, and peripheral circuit. The intelligent meters generally operate at the
end-user level, primarily via LAN. Thus, a significant source of EMI issues is reported
via the transmission line that causes transmission error, loss of message, and delay in the
communication channel. The power Line Communication (PLC) system is the unique
technology that makes the smart grid better than the others. It offers a modeling solution
by importing bit error rates into the system via various architectures. The high-speed
transmission with real-time bill generation, data processing, fault diagnostics, and reporting
makes the PLC in the Smart grid a most crucial component. The PLC operates at a very high
frequency, which might lead to EMI issues. As a result, the signal propagating generates
multiple impulsive and stationary noises [5,8]. The recent Ultra-wideband (UWB) pulse
transmission technique shows lower power spectral density lowers the EMI in the channel
approximately by 10 dB as compared to other modulation schemes. Another important
electromagnetic issue concerns the intelligent grid’s AC transmission system. The current
switching is one of the major sources of the generation of interferences and noises in the
channel. The AC transmission consists of components such as a DC-AC inverter, setup
transformer, harmonic blocking transformer, and associated hardware control. Operating
at a high frequency with constantly switching with the demand response gives rise to
high electromagnetic disturbances. Thus, some techniques such as a thyristor-switched
capacitor, static synchronous compensators along with the use of passive filters, and active
filters can be used to reduce the EMI issues. The intelligent grid network plays a significant
role in the electric vehicle market. EVs and PHEVs have entered the market and are gaining
significant importance. The charging infrastructure of the battery of the electric vehicles
and meeting the energy demand is an essential aspect of the smart grid. The intelligent
meter fixed at various levels determined the grid’s capacity. Integrating the smart grid
with the battery charging system without any compatibility issues is one of the significant
challenges. The public charging station must be deployed in optimum numbers and be
integrated with the grid network. The cost of the operation should also be optimized to
meet the daily needs of the standard public [9,10]. The cost of operation is the last factor that
should be considered. The policy formation and the implementation should be conducted
in a secure manner that provides the optimum operating cost [11,12]. The detailed related
works reflect the major issues of the intelligent grid network, which are to be addressed.
This work implements and analyses the power flow results through the smart grid. The
various algorithms, network structure, and operating technology are being modeled, and
the results are discussed and analyzed.

2.2. EV Charging Stations

The paper [8] talks about the various charging connector types and presents the com-
parison between the American and European standards. In addition, the paper discusses
the various energy storage systems and how to incorporate them with charging stations.
A useful ESS for linking fast EV charging stations might be considered a system that in-
cludes batteries and ultra-capacitors: the first for their high energy densities and the second
for their high power density. The paper [9] presents a novel design strategy for rapid
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EV charging stations on a round motorway that takes into account spatial and temporal
mobility habits. The planning approach is divided into three parts: an EV charging point
spatial-temporal model, a placement determination model, and a capacity determination
model. The established planning approach not only precisely determines the most ideal
sites for EV charging stations while taking into account the travel convenience of EV users,
but also minimizes the total cost. The paper [10] presents a data-driven robust EV charging
infrastructure design strategy for residential car parks that takes into account the uncer-
tainty of future EV charging behavior. For more realistic modeling of individual billing
behavior, the suggested data-driven system makes use of real-world identity unit data
and a queuing mechanism. The non-parametric estimation of charging power probability
density may be derived by aggregating EV individuals. Following that, a distributionally
robust optimization strategy for planning EV infrastructure under stochastic charging
demand and maximum queue time is devised. The paper [11] proposes a business case for
a battery switching station as well as an optimization model. Customers’ complaints about
long charging periods and range anxiety can be alleviated with the BSS. The BSS not only
benefits users financially, but it also benefits the electrical system by participating in electric-
ity markets and avoiding or postponing costly infrastructure changes. To be profitable, the
BSS must ensure that the fees it collects, the risk it takes of failing to satisfy its clients, and
the discounts it offers are all correctly constructed. The author of the paper [12] implements
a periodic fluid model to represent charging operations at a BSS with time-varying demand
for battery swap and time-varying prices for charging empty batteries, with the goal of
determining the best battery purchasing and charging policy that best trades off battery
investment cost and operating cost, including charging cost and customer waiting for cost.
The authors of the [13] focus on a design concept and methodology for promoting EV adop-
tion by automated battery pack switching at battery sharing stations as part of a battery
sharing network, which would become an integral element of the smart grid. In addition,
the advantages and disadvantages of traditional battery swapping were also discussed.
The authors in [14] focus to address the issue of optimally locating charging stations in
metropolitan environments. There are two optimization criteria used: maximization of
reachable households and minimization of overall e-transportation energy cost. Mixed
integer programming with linear and nonlinear energy-aware constraints is utilized to
make decisions in both scenarios. A multi-objective optimization model is also offered,
which addresses both criteria (number of reachable homes and transportation energy) at
the same time. The author of the paper [15] describes the development of a universal
inductive charger (UIC) for electric vehicles. The suggested UIC can provide a constant or
regulated charging voltage to various EVs thanks to a wide range of magnetic coupling
between the transmitting and receiving coils. Zero-voltage switching of the primary dc-ac
inverter is universally realized in every charging cycle with a series-connected LC circuit.
To automatically pick the best frequency in varied coupling situations and modify the
frequency during the charging process, a simple and very effective control mechanism
based on a variety of frequencies is used. The proposed system has advantages: Universal
application, adaptive frequency, effective V and I sensing, and high efficiency. The authors
in the paper [16] presented a cost-effective vehicle charging technique particularly designed
for smart homes/buildings with a PV(solar panels) system is presented and developed.
They suggested a smart algorithm for electric vehicle charging which can be used for
smart homes/buildings and is divided into two stages: the photovoltaic output and power
consumption prediction, and scheduling of EV charging. The prototype application for the
home/building that has been created can give EV charging schedules based on customer
preferences. This paper [17] discusses the challenges of electric vehicle charging infrastruc-
ture and also discusses the Indian Government policies. The paper also discusses the basic
guidelines and standards to install public charging stations as described by the Ministry of
Power and the Ministry of housing and urban affairs. Table 1 provides a brief comparison
of relevant existing works with the current work.
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Table 1. Comparisons of Related works and Proposed work.

Paper ID Approach
SG Ecosystem,

Network Power
Distribution

V2G,
MAS

Power Flow
Monitoring

Integration
of

Micro-Grids

Optimization
Techniques

[11,18–21]

Distributed Power
flow network model

with energy
management

systems for EV
Infrastructure

� � × × ×

[5,8,16,22–26]
Power Flow in

microgrids in SG
Network

� � � × ×

[27–30]
Cyber Physical

Protection in SG
Network

� � � × �

[6,13,14,21,31–33]

Efficient
Management

Algorithms and
optimised power
flow mechanism

� × � � ×

Proposed Work

A comprehensive
power flow analysis
of the SG Network

Infrastructure

� � � � ×

3. Overview of Charging Stations

EVs have battery capacity with them, which, depending on the size and capacity of the
battery pack, require charging from time to time. The charging need is determined by the
type of vehicle (two-wheeler, three-wheeler, four-wheeler, and bus), as well as the utilitarian
purpose (passenger or commercial). By 2030, the Indian Government wants to electrify
30 percent of private automobiles. This goal necessitates the simultaneous deployment of
charging stations across India. Table 2 provides a comparison of charging stations.

Electric vehicles in India are currently separated into two-wheelers, passenger cars,
and commercial vehicles (Buses and three-wheelers). Two-wheelers have compact batteries
that can be removed and carried to homes, businesses, or stores to be charged using
standard wall sockets; alternatively, they may be linked to any public charging station.
Three-wheelers are excellent candidates for battery replacement. In this concept, batteries
are charged in a big industrial-scale facility and trucked to three-wheeler concentration
sites, where a 3-wheeler driver can exchange the used battery with a fully charged one.
Swap stations can also be installed at a PCS by technology owners. Three-wheelers may be
taxed at any PCS. Buses with batteries larger than 100 kWh would be sold with the battery
manufacturer’s approved proprietary charging standards. These batteries will set you back
many million rupees, and charging them from any PCS is not recommended. The charging
devices supplied (or recommended) by the bus manufacturer will be installed at bus depots
and bus depots as needed by bus operators. Currently available electric car batteries range
in size from 11 kWh to 40 kWh.Fast charging is required for these EVs. The issue of EVSE
interoperability between different EV types is basically limited to automobiles. In this
paper, we are mainly focusing on the charging infrastructure for electric cars.
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Table 2. Comparison of Charging Station.

Parameters
On-Board
Charging

Station

Off-Board
Charging

Station

Fast
Charging

Station

Wireless
Charging

Station

Smart
Charging

Station

Battery
Swapping

Station

Multi-Level
Charging

Station

Energy
transfer (in

kW)
Less High

Different
ports for
multiple

levels

Bi-
directional

Depends
upon the
distance

between coils

Bidirectional
Bidirectional,

Safe and
High

Level of
battery

heating issue
Low Very high Medium Medium Low Low Very low

Battery
weight on EV Added Removed Removed Removed Moderate Constant Removed

Battery
charging

time
More

Depends on
the controller

of EV

Depends on
the controller

of EV

Depends on
user control

Depends on
power

transmission
coils

More No delay

Flexibility Anywhere
charge No flexibility Anywhere

charge
Anywhere

charge More flexible More flexible No flexibility

Cost and
complexity

Low cost and
complexity

High cost
and

complexity

High cost
and low

complexity

High cost
and

complexity

High cost
and medium
complexity

Medicum
cost and high

complexity

Low cost and
low

complexity

3.1. Electric Vehicle Charging Infrastructure in India

Currently, in India, the electric vehicle charging infrastructure is mainly divided
into Battery Swapping and Charging the Battery which is further divided into AC (slow)
Charging and DC (fast) Charging. In the case of alternating current charging, alternating
current is provided to the electric car’s onboard charger, which converts AC to DC and is
then used to charge the vehicle battery. DC charging, on the other hand, converts AC to
DC at the charge point and feeds DC straight to the car battery. Based on the

1. Home Charging: Home chargers commonly use a 230 V/15 A single-phase socket with
a maximum output capacity of 2.5 kW. Home charging is clearly an AC (Alternating
Current) charging method. The amount of electricity used is factored into the home-
metering system. The time it takes to charge an electric vehicle is determined by
the charging rate and the quantity of charge necessary (which is determined by the
battery’s usable capacity). Electric scooters can be charged in 2–3 h and electric cars in
6–7 h using home charging.

2. Public Charging: Public charging means charging the electric vehicle outside the
home. For example charging the vehicle either in the supermarket, cinema hall, retail
parks, etc.

3. Battery Swapping: The electric vehicles swap their drained batteries with fully
recharged batteries. The Battery Swapping concept decouples battery charging from
vehicle use, which benefits both the swapping station operator and the power system.
No rapid charging is necessary, and electrical grid management is straightforward [11].

3.2. Types of Chargers

1. Type 1 AC Charger: This is the most basic EV charger, which is used by some entry-
level electric vehicles. It may charge a vehicle slowly using an AC outlet or a home
charging system. It has a charging power of up to 220 volts and a maximum current
of 16 amps. It can handle up to 3 kW of single-phase input electricity. When using
these types of chargers, the vehicle must convert AC electricity to DC, which is a
time-consuming procedure.
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2. Type 2 Charger: The Type 2 Charger can charge at a quicker rate and works with both
AC and DC charging methods. These chargers are designed to work with three-phase
power systems. In European charging stations, it’s fairly frequent. With a 400 volt AC
supply, it can handle input power ranging from 7.4 kW to 43 kW. These chargers are
also commonly installed in EV owners’ houses for faster charging periods because
they are compatible with vehicles that use CCS connections.

3. CCS or Combined Charging System: With new-generation electric vehicles, a com-
bination charging system plug, often known as a CCS type plug (or CCS Type 2),
is becoming more widespread. These charging systems are capable of offering DC
fast-charging for cars from commercial charging stations as well as standard charging
from home charging stations. For DC rapid charging, the plug contains two additional
contact points. Input power for most DC fast chargers is 50 kW, however, this type of
socket can handle charge power of up to 350 kW.

4. CHAdeMo Charger: It was developed by Nissan, Tokyo Electric Power Company
(TEPCO), Mitsubishi, Subaru, and Toyota and was first deployed in Japan [34]. This
was one of the first fast-charging systems to be created, and it is now used in over
70 nations across the world. It can handle up to 50 kW of DC fast charging [35].
Newer automobiles, on the other hand, are converting to the CCS system since it is
more versatile.

5. GB/T Charger Under the Bharat DC 001 standard, the Indian Government suggested
the GB/T type charger for EVs. These chargers, which were erected by the govern-
ment’s Energy Efficiency Services Limited (EESL), are capable of DC fast-charging
with a 10–15 kW output for low-power EVs. On the other hand, this sort of connector
can handle capacities of up to 230 kW.

4. Proposed Space Efficient Multi-Level Charging Station Infrastructure Method

In the past decade, there has been a significant upward trend in the use of electric
vehicles or EVs mainly because of the idea, that as this number goes higher we need
infrastructure in place that can deliver the necessary power and electricity and also at
the same time decreasing the operating costs of the said infrastructure. In metropolitan
areas, creating extra infrastructure there is a necessity of space and it has become one of
the biggest issues. Therefore, to provide a temporary charging station, especially at the
shopping mall, big shops, etc. Hence, this can be achieved with a multi-agent system (MAS)
and multi-level charging system, especially in metropolitan cities all over the world.

We developed MAS-based multi-level charging system architecture as shown in
Figure 1.

Multi-level charging will help in charging more vehicles in the smaller area. This
system involves stacking vehicles layer by layer thus requiring less space and greatly
helping in reducing traffic congestion. Making the system automated would require less
manual intervention, thus reducing damage and cost. Figure 2 shows that the EV or battery
is connected as a load to each of the busses in the 33-bus power grid network. Each bus
is also connected with a Multi-Agent System (MAS) and this MAS with the help of IoT
Technology transmits the data from the bus and over to the cloud and it is further routed to
the main/central MAS moves the data to the edge computing technology involved. When
the data are transmitted to the central MAS it is processed through edge computing, this
way we can save on computation costs and also use minimal hardware, this can make the
whole system much cheaper. In this case, there are a few conditions that must be met to
declare the bus stable or unstable, that decision is taken here.

Figure 3 shows the different components used while designing the architecture of
the proposed system, such as socket, charging kiosk with cable and connector gun, and
charging kiosk connected with the socket.
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Figure 1. Multi-Level EVs Charging Design CAD Model.

Figure 2. EV Charging Stations with 33-bus Distribution Network.
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(a) (b) (c)

Figure 3. Charging System Entities. (a) Socket. (b) Charging Kiosk with cable and connector gun. (c)
Charging kiosk connected with socket.

Implementation of an EV Charging Station with 33-Bus Distribution Network

Figure 2 is designed and implemented in Matlab/Simulink environment by adhering
to the following parameters:

• Each bus is connected to the agent, and this agent, in turn, connects to the charging
station. Therefore, the agent analysis its respective bus and shares the information
with the charging station.

• Every EV/EV battery connected to the station has 40% of the initial state of charge
(SoC).

• Every EV has the same battery parameters.
• Each charging station is equipped with similar chargers in order to linearize the

distributed observations.
• The simulation assumes a charging station to be operating at 100% capacity in order

to make distinct observations.
• Residential/Industrial loads are always connected and running at full power.
• A single three-phase power source powers the entirety of the grid.

Observations and Inferences from IEEE 33-Bus Distribution Network

The following observations made for the above system simulation and their results
obtained are presented are as follows:

• Utility grid simulation is conducted with only residential/industrial loads and the
charging station kept off. For this scenario, we have observed a stable 3-phase voltage
of 9.7 kV as shown in Figure 4a in the grid.
Figure 4b shows the reactive power of 11 MW in the system. It is absorbed by harmonic
filters and some residential/industrial loads.

• When all CSs are operated at total capacity and no DC Fast Chargers are operated,
there is a voltage drop to 8.88 kV as shown in Figure 4c along with the injection of
reactive power as shown in Figure 4d in the system which scaled up to −8.5 MW.
Total Harmonic Distortion (THD) has been observed that is 1.8% as shown in Figure 5a
using the Powergui FFT analysis tool.

• When the simulated charging station’s power draw crossed the 50% capacity threshold,
the charger switched to energy stored in battery banks by enabling DCFCs at half
time of simulation, and there is a significant drop of reactive power to −9.6 MW has
been observed as shown in Figure 5b and a considerable increase in voltage of 9.25 kV
has been observed as shown in Figure 5c. This increased the grid’s power quality
significantly. A substantial decline in THD that is, 1.17%. This decline is due to the
disconnection of chargers at the instance of time as shown in Figure 5d.
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• To reduce harmonics, we developed two advanced doubly-tuned passive harmonics
filters in the grid. These filters consist of a circuit formed by inductance, capacitance,
and resistances. The intended design was shown to observe an optimal amount of
reactive power from the grid which decreases the harmonics distortion. By using
this, we observed a drop to 0.07% in THD as shown in Figure 6 as compared to 1.8%
THD without a filter. This falls within the range of acceptable limits of both THD and
reactive power as shown in Figure 5a.
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Figure 4. Voltage and Reactive power in utility grid when operated with all chargers and without
chargers. (a) Voltage in utility grid when operated without chargers. (b) Reactive power in utility
grid when operated without chargers. (c) Voltage in utility grid when operated with all chargers.
(d) Reactive power in utility grid when operated with all chargers.
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Figure 5. Harmonics, Reactive power and voltage in utility grid. (a) Harmonics when all chargers are
operated. (b) Reactive power in utility grid when CSs operated with DCFCs. (c) Voltage in utility
grid when CSs operated with DCFCs. (d) Harmonics in utility grid when CSs operated with DCFCs.
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Figure 6. Harmonics in utility grid when operated with all chargers and harmonic filters.

Figure 7a shows the simulation results when there is no multiagent system (MAS) in
the power distribution or grid network which is resulted in the instability at bus 20.

(a) (b)

(c) (d)

Figure 7. Stability and instability of 33-busses with and without multiagent system. (a) Unstable bus
20: Without MAS deployment in it. (b) Stable bus 20 after MAS deployment in it. (c) When one of the
buses is unstable: Without-MAS deployment in the system. (d) 33-busses are stable after deployment
of MAS in the system.

Figure 7b shows a stable bus that is due to the deployment of MAS at bus 20. Figure 7c
shows when we consider all 33-bus in the simulation, one of the bus instability results in
the whole power distribution network instability. Figure 7d shows the simulation results
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when we deploy the MAS to all 33-bus in the distribution network resulting in the stability
of the system.

5. Cost Analysis of Multi-Level Charging Station Infrastructure

The cost estimation of the system depends on various factors for example the set-up
city location, government norms in that area, the sizing of the system, etc. In the below table
we have taken the location as Jaipur city and we have taken our base case as the minimum
infrastructure (charger connectors) suggested by the government of India (Table 3).

From Tables 3 and 4, the total cost of setting up the charging station can be divided
into two parts. The first is the capital cost (CAPEX) as shown in Table 3 which is the
one-time fixed cost and the second one is the operational cost (OPEX) as shown in Table 4.
The CAPEX comes out to be around Rs. 2,955,000 and the OPEX comes out to be around
Rs. 972,000.

Table 3. CAPEX: Cost estimation of the proposed multi-level charging infrastructure.

Type of Charger
Number of
Chargers in

PCS

Power
Output

Approx. Cost in
Indian Rupees

Number of EVs That
Can Be Charged
Simulataneously

Maximum Power
Sold to EVs per Day

(24 h/day) kWh

CCS 1 50 kW 72,500 1 1200

CHAdeMO 1 50 kW 72,500 1 1200

Type 2 AC 1 22 kW 12,500 1 528

Bharat DC-001 1 15 kW 24,000 1 360

Bharat AC-001 1 9.9 kW 7000 3 237.6

Swap station - - - - 360

New electricity
connection (2SO KVA),
Transformer, Cabling,
Panels, Breakers, and

Energy meter

- - 75,000 - -

Civil works (Flooring,
painting, Boards,

Branding,
Shed/covers, etc.

- - 750,000 - -

EVSE Management
Software-integration

with chargers and
payment gateway

- - 40,000 - -

CCTV Camera Setup - - 30,000 - -

Total CAPEX - - 2,955,000 - 3885.6

Table 4. OPEX: Cost estimation of the proposed multi-level charging infrastructure.

Type of Service Cost in Indian Rupees

Technician’s charges 150,000 for 6 months

Site maintenance staff 180,000 per year

Land lease rental (50,000 per month) 600,000 per year

Advertising (3000 per month) 36,000 per year

Total cost 972,000 + EVSE software fees for 1st year.
822,000 + EVSE software fees for 2nd year
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6. Stress Analysis of the Designed Structure of Multi-Level Charging
Station Infrastructre

The structure is made up of mild steel of which Young’s modulus is 220,000 MPa, Yield
Strength is 207 MPa and Ultimate Tensile Strength is 345 MPaThe bottom-most surface
(1st level) of the system is assumed to be a constraint to the ground and the sidewalls are
also assumed to be fixed. The kerb weights of the available electric vehicles range from
1235 N (Tata Tigore EV) to 2595 N (Audi e-tron). So for the stress analysis, we have taken
the weight of the car (or load) to be 3000 N.

Numerical analysis shows that the maximum stress in the structure is 68.53 MPa as
shown in Figure 8a and the maximum displacement is 0.06716 mm as shown in Figure 8b.

(a) (b)

Figure 8. Stress Analysis of the multilevel charging station. (a) Von-Mises Stress Distribution of the
designed structure. (b) Maximum Displacement of the designed structure.

7. Multi-Level EV Charging Station Infrastructure Model

In this section, we discuss the mathematical modeling of the proposed multi-level
EV charging station infrastructure, the optimization model, and to solve the optimization
problem GA algorithm is developed.

7.1. Analytical Model

The conceptual framework of EVs queuing model at multi-level EV charging station
infrastructure is shown in Figure 9. The state transition diagram of EVs at the charging
station is shown in Figure 10. The stochastic model is based on the “M/M/S/K” queuing
model, where the first M indicates the Poisson distribution for EV arrivals, the second M
indicates the Exponential distribution for service time at the charging station, S represents
a maximum number of charging sockets at charging stations, and K represents the length
of the queue at charging station. In this queuing model, all EVs charging stations have
plug-in sockets with identical characteristics, queue access or charging socket service is
based on first come first service (FCFS), and the EVs service time depends upon the number
of EVs waiting and the amount of time the station takes to charge the vehicle.
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Figure 9. Conceptual Framework of EVs queuing model at Multi-level EV Charging Station
Infrastructure.

Figure 10. Stochastic EVs queuing model at Multi-level Charging Station Infrastructure: Discrete
Time Markov Chain M/M/S/K Model.

In the transition diagram as shown in Figure 10, there are two major functions that
will be carried out

1. Arrival rate (λ): λi = λ∀iεK.

2. Service rate (μ): μi =

{
iμ 0 ≤ i ≤ S
Sμ S < i ≤ K

The steady-state probabilities of EVs at multi-level charging stations are denoted as Pn
and are given as follows:

Pn =

⎧⎪⎨
⎪⎩

(ρ)n

n! P0, 0 ≤ n < s

(ρ)n

S(n−s)n!
, s ≤ n ≤ K

(1)

where ρ = λ/μ is the utilization of charging points at the charging station. The basic
condition in the Little’s theorem and Markov chain is the sum of all the probabilities in
the system is equal to one, that is, ∑K

n=0 Pn = 1. Using the above condition we can get P0
as follows:

P0 =

[
s−1

∑
n=0

(ρ)n

n!
+

K

∑
n=s

(ρ)n

S(n−s)S!

]−1

(2)

The average number of EVs in the system is given as

EVavg =
P0

S!

(
s−1

∑
n=0

nρn + Ss
K

∑
n=s

n
ρn

sn

)
(3)

The probability of the charging station is full, that is, the probability of blocking the
EVs to get charged at the charging station which is an equal probability that the charging
station is in the state K, and is given as

PB = Pm =
ρK

K!
· P0 (4)
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PB =
ρK

K!

[
s−1

∑
n=0

(ρ)n

n!

]−1

(5)

PB =
ρK/K!

∑K
n=0

(ρ)n

n!

(6)

The above Equation is called as Erlang-B formula used for blocking the EVs from
charging at the multi-level charging station.

7.2. Optimization Model

The multilevel EV charging station infrastructure planning optimization model de-
pends upon the factors, such as initial construction cost, vehicle retention, EV charging cost,
characteristics of the battery, etc.

CML
CS is the objective function that minimizes the total cost of multi-level charging

station infrastructure, that is initial infrastructure cost and EV users’ charging cost.

CML
CS =minimize ∑

i
∑

j
Cinit

j Yij + C
′
∑
k

∑
i

DkXkidistki (7)

subject to:

∑
i

Xki = 1, ∀kεK (8)

Xki ≤ Yij, ∀kεK, iεI, jεJ (9)

∑
k

DkXki ≤ ∑
j

SjYij, ∀iεI (10)

∑
j

Yij ≤ 1, ∀iεI (11)

∑
i

∑
j

Yij = Q (12)

Yijε{0, 1}, iεI, jεJ (13)

Xkiε{0, 1}, ∀kεK, iεI. (14)

where K is the set of demands of charging points, kεK refers to a charging point, I is the
candidate charging point set, iεI refers to a candidate charging point, Dk is the demand
quantity at charging point k, Cinit

j is the EV charging station initial construction cost of level

j, C
′

is the EV charging station’s unit cost of user, Sj is the mth level serviceability of the
charging station, distki is the distance between charging point demand k and candidate
charging point i, Q is the number of charging station to be constructed, Yij, it is 1 when the
charging point i of charging station’s level j, otherwise it is 0, Xki its value is 1 when the
users at charging point k and receives service at candidate charging point i, otherwise 0.
In the above optimization model, Equation (8) indicates the respective EV users arrive at
their respective charging points in the charging station at a particular time. Equation (9) is
used to make a candidate’s charging point into the function using prerequisite conditions.
Equation (10) is the condition of the charging demands at one station should not exceed
its maximum service rate. Equation (11) is developed for constructing only one of the EV
charging station levels. Equation (12) is the constraint of the total amount of charging
stations that need to be developed. Equations (13) and (14) are variables required for the
possible zones.

7.3. GA for Multi-Level Charging Station Infrastructure

To solve the problems described in the previous subsection in Equations (7)–(14), a
genetic algorithm (GA) is proposed. The solution of the GA includes the following steps:
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1. Initialization of population: We have randomly generated the initial population.
Here, binary coding is employed, that is 1 means the point is selected to develop the
charging station, otherwise 0.

2. Estimation of each individual fitness metric. During each scheme performance evalu-
ation, extra work needs to be taken in order to complete the solution, that is all the
charging station’s charging demand points should be allocated to the potential station
to end the evaluation process.

3. Estimating the next generation. For generating qualified offspring, especially the
designed crossover and mutation operators are employed.

4. Convergence: There are two convergences, either the generated the best fitness out
of 50 generations or the limit has reached, the developed algorithm will produce the
best individual of that generation as the final output.

8. Simulation and Results Analysis

In this section, we present the simulation results of the proposed system’s M/M/S/K
queuing model and objective function using a genetic algorithm.

We have developed and simulated the queuing model in MATLAB. In the simulation,
the EVs arrival flow fluctuation is modeled using a Poisson distribution. We presume that
all EVPSS have a level 3 plug-in, which is the fastest type of EV charger. We have assumed
that the time it takes for the smart grid to respond to each EV is zero and all vehicles
must be satisfied once the total charge time has expired. In addition, the charging station’s
number of charging kiosks (servers) is expected to be 20.

The simulation demonstrates the performance of the queuing model with varying
performance parameters. The blocking probability of the EVs with varying arrival rates,
service rates, and the number of charging points available. The number of charging points =
NC = {3, 4, 5} for DC fast charging infrastructure (DFCI), On-Road Charging Infrastructure
(ORCI), and Multi-level Charging Infrastructure (MLCI) with arrival rates λ = {7, 5, 3} and
service rates μ = {1, 1.5, 2}. As shown in Figure 11, increasing the arrival of DFCI leads
to an increase in the probability of blocking and vice versa. We can also notice that the
variations are more in the ORCI than in the MLCI. Figures 12 and 13 shows the similar
effects. We have solved the objective function using the Genetic Algorithm, the result
is shown in Figure 14. The Figure 14 shows that convergence is quick and the solution
is optimal.

(a) (b) (c)

Figure 11. EVs Blocking Probability at Charging Station with Varying Arrival Rates. (a) DC Fast
Charing Infrastructure. (b) On Road Charging Infrastructure. (c) Multi-level Charging Infrastructure.
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(a) (b) (c)

Figure 12. EVs Blocking Probability at Charging Station with Varying Service Rates. (a) DC Fast
Charing Infrastructure. (b) On Road Charging Infrastructure. (c) Multi-level Charging Infrastructure.

(a) (b) (c)

Figure 13. EVs Blocking Probability at Charging Station with Varying Number of chargers. (a) DC
Fast Charing Infrastructure. (b) On Road Charging Infrastructure. (c) Multi-level Charging Infrastructure.

Figure 14. GA-based optimal solution.

Table 5 shows the comparisons between existing charging stations (such as on-board,
off-board, battery swapping station) and multilevel charging station.

17



Mathematics 2022, 10, 3450

Table 5. Comparisons between Existing charging stations and Multilevel charging station.

Type of Charging Station Safety Traffic
Waiting

Time
Cost Complexity

On-board charging station Less High More Low Low

Off-board charging station Medium High More High High

Battery swapping station Less Low Medium Medium High

Multi-level charging station High Low Low Low Low

9. Conclusions

This paper developed the space-efficient multi-level charging station infrastructure
method for metropolitan cities. A novel design of the multi-level charging station infras-
tructure has been discussed. The developed design is integrated with the smart grid. 33-bus
simulation has been conducted, and a MAS is deployed for each bus to control the grid’s
stability. Discussed the observations and inferences of 33-bus with MAS and proved that
the system’s stability is maintained with MAS. The cost analysis has been conducted for the
new design of the multi-level charging station infrastructure. In addition, the stress analysis
of the designed structure is evaluated and verified the maximum stress in the structure
is 68.53 MPa and the maximum displacement is 0.06716 mm. Moreover, developing the
mathematical model of multi-level EV charging station infrastructure using the M/M/S/K
queuing model and critical results analysis have also been carried out. The limitation of
this study is that the proposed approach is designed for dense metropolitan areas with
high populations, such as Indian metropolitan cities. In the future, the new approach can
be designed for less densely populated areas.
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Abstract: As the finite nature of non-renewable energy resources is realised and climate change
concerns become more prevalent, the need to shift to more sustainable forms of energy such as
the adoption of renewable energy has seen an increase. More specifically, wind energy conversion
systems (WECS) have become increasingly important as a contribution to grid frequency support, to
maintain power at the nominal frequency and mitigate power failures or supply shortages against
demand. Therefore, limiting deviations in frequency is imperative and, thus, the control methods
of WECS are called to be investigated. The systematic literature review methodology was used and
aimed at investigating these control methods used by WECS, more specifically variable-speed wind
turbines (VSWT), in supporting grid frequency as well as the limitations of such methods. The paper
identifies these to be de-loading, energy storage systems and emulated inertial response. Further
classification of these is presented regarding these control methods, which are supported by literature
within period of 2015–2022. The literature indicated a persistent interest in this field; however, a few
limitations of VSWTS were identified. The emulated inertial response, specifically using a droop
control-based frequency support scheme, was the primary means of providing frequency support.
This systematic literature review may be limited by the number of papers selected for the study.
Results and conclusions will not only be useful for WECS development but also in assisting with the
security of the transmission grid’s frequency stability. Future work will focus on further studying the
limitations of WECS providing frequency support.

Keywords: variable-speed wind turbine (VSWT); frequency support; frequency regulation;
systematic literature review (SLR); wind energy conversion system (WECS); renewable energy

MSC: 37M05

1. Introduction

The transmission network, commonly referred to as the grid, is the high-voltage
system that interconnects and transfers electrical energy from the generation network of
power plants to the distribution network. The nominal frequency of the transmission
network in South Africa is 50 Hz [1]. The frequency of a transmission network or grid
is maintained at its nominal value by the balance between generation and consumption.
In other words, a generator is required to either increase or decrease the active power
produced in reaction to deviations around the nominal system frequency [2]. A significant
deviation in the frequency of the transmission network may lead to the instability of the
system or damage to connected devices [3]. More specific to the topic of this paper, a
deviation too far below the nominal frequency can cause generation units to fall out of step
and cause out-of-step protection relays, disconnecting the generator units from the grid.
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This will place further demand on the remaining generators and will potentially lead to
grid collapse if this frequency event continues.

Conventional rotating synchronous generators that are committed to the grid add
rotational inertia to the grid. This is due to their large rotating masses that are coupled
to the grid via an electro-mechanical interaction between the rotor and stator [4]. This
electro-mechanical interaction enables the synchronous generator to exchange (both absorb
and release) its kinetic energy with the grid, proportional to the rate of change of frequency
(ROCOF) [5]. This is known as an inertial response and is described by the swing equa-
tion [6]. It acts to overcome the immediate imbalance between supply and demand of the
network. The generator, at the instant of the disturbance, will convert the kinetic energy
of the rotor to electrical energy, limiting the rate of change of frequency and frequency
nadir as the rotor slows down in the process. In power systems, a loss of generators, load
shedding or a 3–5% load change is considered a large disturbance [7]. Following the inertial
response, the generator’s governor will adjust the setpoint and bring the machine up to
speed again within a period in the order of seconds, thus providing primary frequency
regulation. Secondary frequency regulation mechanisms, such as generation redispatch and
automatic generation control, occur within an order of tens of seconds to a few minutes.

Conversely, variable-speed wind turbines with back-to-back power electronic con-
verters provide no inertia to the power system, since the power electronic converters
decouple the rotating mass of the variable-speed wind turbine (VSWT) from the grid [4].
Consequently, the effective inertia of the power system begins to decline with the increase
in wind power penetration. VSWTs, therefore, do not naturally respond to a system fre-
quency change. The operation of a VSWT is governed by its MPPT (maximum power
point tracking) algorithm so as to extract the maximum possible power from the wind
to convert to electrical power [8]. The decline in rotating inertia leads to an increase in
speed of grid frequency dynamics and may lead to situations where traditional frequency
controllers become too slow, relative to the disturbance, to limit large frequency deviations.
The problem of low grid inertia is more prevalent in isolated systems or systems with high
wind power penetration. When a frequency drop occurs in such a system, the system can
experience a large ROCOF and frequency nadir. This concern is further asserted by the
stochastic nature of wind energy which can cause an appreciable imbalance between supply
and demand [9]. This is of concern to the frequency stability of such electrical networks.

To overcome the challenges associated with frequency stability, wind turbine gener-
ators (WTGs) need to implement frequency control systems to allow them to partake in
the regulation of the power system frequency [10]. Modern technologies and new control
systems aid in the feasibility for wind power plants (WPPs) to achieve this. Escalated
by the finite nature of fossil fuels, in conjunction with climate change, the reliance on
such renewable energy systems is increasing globally. More specifically, South Africa’s
installed wind turbine generating capacity has increased from 790 MW in 2015 to 1468 MW
in 2017 [11]. As a country that has signed the Paris Climate Accord (and is still an active
member at the time of writing), an agreement that endorses a limit of a 1.5 ◦C increase in
global temperature, South Africa may be turning to renewable energy sources such as, but
not limited to, WTGs to decrease the dependency of the power system on fossil fuels [10]. It
is of importance to address the frequency stability concerns that may arise with an increase
in wind power penetration.

This systematic literature review aims to evaluate the recent work, within the period of
2015–2022, of wind energy conversion systems for grid frequency support. More specifically,
it aims to review the methods in which this is achieved as well as provide an analytical
view based on the frequency of research papers published annually pertaining to this field.
Thereafter, a conclusion can be formulated to determine whether wind energy conversion
systems for grid frequency support have gained interest and relevance.

Structed as follows—Section 2 sets out the methodology used to conduct this study,
which is followed by the findings thereof, presented in Section 3. Based on the findings,
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Section 4 identifies areas to be considered for future works within this field. Finally,
Section 5 concludes this study.

2. Materials and Methods

A research methodology is the practical framework used to identify, select, process,
and analyse information within a research study [12]. In the context of a research paper,
this section allows the reader to critically evaluate the study’s validity and reliability [12].

Specifically, this review adopts the basic systematic literature review methodology, as
described by Kitchenham [13]. This method of review is often used in software engineering
research with success due to its success and easy implementation into other fields such as
economics and education [14]. The following actions were followed when conducting the
research for this study:

1. The formulation of research questions;
2. Search process;
3. Inclusion criteria;
4. Exclusion criteria;
5. Quality assessment;
6. Data collection;
7. Data analysis.

As stipulated by the methodology, the first process involves the formulation of research
questions from which the basis and focus of the study are determined. The research
questions are rooted in identifying solutions and limitations to VSWTs providing grid
frequency support. The two research questions investigated in this study include:

RQ1: What control methods are VSWTs using to support the grid frequency?
RQ2: What are the limitations of VSWTs in supporting the grid frequency?
The search process included the manual entry of simple search strings based on title,

keywords and abstract. Given the relevance of IEEE to this research topic, IEEE Xplore
Digital Library was the primary library used, whilst ScienceDirect and Wiley Online Library
were included to supplement the search process.

The inclusion and exclusion criteria for this study are criteria used to refine the search.
The inclusion criteria included all papers relevant to the keywords searched and period set
by this study: 2015–2022.

Conversely, all papers outside this period were excluded. The exclusion criteria further
excluded papers which were not written in English and/or were unpublished, including
conference papers, reviews and case studies. In addition, duplicate papers and/or those
not relevant to the topic were excluded. Furthermore, papers related to frequency support
but not in the context of wind energy conversion systems or wind turbine generators were
excluded. Table 1 summarizes the search criteria and filters applied to each of the digital
libraries searched.

A secondary screening was applied to each paper that satisfied the keywords used
during the search to determine if it addressed the research questions. Those papers that
did not were excluded. Based on the refinement and screening criteria, a sum of 56 papers
were included in this review. Figure 1 shows the distribution and number of the articles
across libraries included in this study.

A consistent data collection and analysis process for each of the 56 papers was applied,
with respect to the research questions posed. In this way, the data collected were classified
and categorized based on the control methods used by VSWTs to support grid frequency
and further evaluated by their limitations thereof.
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Table 1. Search Criteria Applied.

Digital Library Search Criteria

IEEE Xplore Digital Library

1. WECS Grid Frequency support

a. Journals

b. 2015–2022

2. Wind turbine Frequency support

a. Journals

b. 2015–2022

3. Variable-speed wind turbine frequency support

a. Journals

b. 2015–2022

ScienceDirect (Elsevier)

1. WECS Grid Frequency support

a. Article

b. Engineering

c. 2015–2022

2. Wind turbine frequency support

a. Article

b. Engineering

c. 2015–2022

3. Variable-speed wind turbine frequency support

a. Article

b. Engineering

c. 2015–2022

Wiley Online Library

1. WECS Grid Frequency support

a. Journals

b. Energy

c. Electrical and Electronics Engineering

d. 2015–2022

2. Wind turbine Frequency support

a. Journals

b. Energy

c. Electrical and Electronics Engineering

d. 2015–2022

3. Variable-speed wind turbine frequency support

a. Journals

b. Energy

c. Electrical and Electronics Engineering

d. 2015–2022
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Figure 1. Article Sources and Number of Articles Found.

3. Results

The following section discusses the results of the literature review conducted in
supporting the two research questions posed by this paper. The results associated to
each research question are sub-categorized and each paper’s contribution is discussed
thereunder.

3.1. RQ1: How Are VSWTs Supporting the Grid Frequency?

Wind energy conversion systems differ from conventional synchronous generators
since they do not have an inertial response to naturally suppress frequency disturbances
by exchanging the kinetic energy of the rotor with the grid. The rate at which the grid
frequency will change in an imbalance between supply and demand is related to system
inertia [15]. As the number of wind turbine generators connected to the grid increases,
the effective system inertia will decrease and, by extension, grid frequency dynamics will
increase. The literature suggests that it is indeed possible for VSWTs to provide grid
frequency support through either an inertial response or by partaking in grid frequency
regulation. This research question (RQ1) is aimed at investigating the various methods and
implementations of WECS supporting the grid frequency.

Recent works within the literature that were surveyed identified three prevailing
methods of supporting the grid frequency. These include VSWTs which operate in a de-
loaded state, implement an embedded energy storage and those which emulate an inertial
response. Systems which emulate an inertial response either rely on the kinetic energy
of the rotor or the electrostatic energy stored within the DC-link capacitor of the VSWT
WTG itself. These classifications are illustrated by a hierarchical diagram in Figure 2. The
surveyed works from the literature are classified by these three prevailing methods.
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Figure 2. General Classification of VSWTs Frequency Control Systems [16].

3.1.1. De-Loading

Wind turbines operate along an MPPT curve to extract the maximum energy from
the wind. However, operating along this MPPT curve leaves no additional power reserve
for frequency support [17]. To provide additional power reserve for frequency support,
a de-loading control system can be implemented. A de-loading control system operates
a WTG at a suboptimal point, where the WTG deviates from the MPPT curve to provide
additional active power for grid frequency support functions [18]. There are two different
methods to implement de-loading, namely overspeed control and pitch angle control [17].
A summary of the papers classified as de-loading control, grouped by research area, is
shown in Table 2.

Table 2. Publications in De-loading Control for VSWTs.

Research Area Reference Year of Publication

Overspeed Control

[19] 2018

[20] 2016

[21] 2017

[22] 2018

[23] 2021

Pitch Angle Control

[24] 2020

[25] 2017

[26] 2015

[27] 2016

[28] 2021

The paper [19] evaluates pitch de-loading, kinetic energy recovery and WTG over-
speeding, which enable WTGs to provide short-term frequency support, from an electrical
and mechanical perspective. The authors found that WTG overspeeding showed a faster
response to a frequency event, accompanied by a higher initial power surge, while pitch
de-loading provided a more sustainable support followed by a smoother recovery. WTG
overspeeding could have implications on the mechanical stability of the WTG; however,
the method wasted less energy when compared to pitch de-loading. An important aspect
of kinetic energy recovery is that it does not deviate from the MPPT curve at normal
operation. However, the system is most likely to suffer a second frequency dip as the rotors
of the WTGs recover to the nominal rotor speed. The simulation environment used was
MATLAB/Simulink.
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The paper [20] presents an analytical model for short-term grid frequency report to
evaluate the contribution of inertial and droop responses from a wind farm. The available
mechanical power of a VSWT was approximated by a second-order polynomial which
quantified the kinetic energy and wind power reserve over a wide range of operating
points. Since the VSWT operating characteristics and conditions were now quantified, the
frequency controller gains could be adjusted accordingly, thereby ensuring stable perfor-
mance of the wind farm during frequency transients. To stimulate the frequency response
of a wind farm during wind power fluctuations, a modified system frequency response
model which considered the inertial and droop responses was developed. The efficacy of
the model was verified by comparisons of the results with those obtained empirically.

Two virtual inertia control schemes, an equation-based scheme and an adaptive fuzzy
logic-based scheme, are proposed in [21]. The proposed control schemes dynamically
modulate the gains of the inertia control schemes based on system events to improve
the primary frequency response of the WECS. The efficacy of the proposed schemes was
validated in MATLAB/Simulink, while additional hardware-in-the-loop simulations on the
OPAL-RT real-time simulator platform were presented to further substantiate the proposed
schemes. It was concluded that the adaptive fuzzy logic-based scheme provided better
frequency regulation when compared to the dynamic equation-based scheme.

The paper [22] proposes an active power control scheme which enables DFIGs (doubly
fed induction generators) to partake in grid frequency support. Herein, a power surge-
based co-ordination strategy provides an inertial response, while a power reserve control
method assists with primary frequency control. The DFIG is, therefore, designed to provide
both inertial and primary frequency support by adjusting the reserve amount whilst
considering under- and over-frequency events. The effectiveness of this proposed control
scheme was validated through case studies on a 181-bus WECC system with 50% wind
penetration. The paper concludes by stating that future work will see the inclusion of
secondary frequency control within the control scheme, which will make use of a co-
ordinated strategy between DFIGs and conventional synchronous generators.

A droop control scheme for WTGs that uses rotor speed control for frequency support
is proposed in [23]. The proposed control scheme does not add frequency-droop control
signals to the WTG’s power reference, but instead relies on the method of power tracking
by adjusting the wind turbine’s power tracking curve for primary frequency regulation.
The efficacy of the proposed control scheme was validated through simulations in DIgSI-
LENT Power Factory on a modified IEEE 39-bus power system. The results showed that
the proposed scheme produces a linear frequency-droop response independent of the
power tracking method used. This is an improvement over conventional frequency-droop
controllers whose frequency-regulating responses are dependent on the method of power
tracking used.

In [24], the authors propose an optimisation function which determines the operating
point of de-loaded WTGs to reduce the magnitude of speed deviation and settling time
caused by the inertial response and participation in frequency control. The optimisation
function was integrated into a combined inertial and frequency control strategy for type-
4 (fully rated power converter) WTGs, based on the concept of a virtual synchronous
generator. The paper presents an analysis of the impact of the inertial response and
frequency control on the dynamics of VSWTs. The results showed that the kinetic energy
and mechanical energy variations in the WTG depend on its operating point. The control
strategy and optimisation process were evaluated by non-linear time-domain simulations
using the ODE23tb solver in MATLAB. The validation of the optimisation function included
wind speed and load variations.

In [25], an integrated controller to provide both an inertial response and primary
frequency regulation is proposed. More specifically, this includes a de-loaded pitch control
system, which is proposed alongside an optimised MPPT controller to reserve capacity for
frequency regulation and provide an inertial response while under de-loaded operation.
The de-loading controller can estimate the proper pitch angle or regulate the tip ratio to
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attain the required de-loading. Under the de-loading option, the MPPT controller will
switch from the MPPT curve to a virtual inertial control curve depending on the frequency
variation. In this way, the WTG may provide frequency support to the grid by shifting its
active power reference.

The authors in [26] present a method which estimates the grid frequency response as
a result of a generator tripping. This method applies to both conventional synchronous
machines and wind turbine generators for grid frequency support. In this way, system oper-
ators can continuously evaluate the inertia and headroom produced and adjust the amount
of WTG inertia and active power control required for reliable system operation accordingly.
The authors’ full proposed model was validated by simulation on PSS/E. As concluded by
the authors, determining the optimal amount of WTG inertia and active power support
from conventional synchronous generators will be the focus of their future work.

The authors in [27] present a co-ordinated, distributed control scheme which allows
offshore wind power plants (WPPs), connected through an HVDC system, to support the
primary frequency control efforts of AC grids on land. The control scheme is designed to
account for AC areas and WPPs which may be operated by different operators. In addition,
the control scheme considers the limited power reserve of the wind turbine generators in
the WPPs and will adjust accordingly to maintain a suitable frequency regulation. In the
case of a large change in the power demand, the control scheme will permit all stations to
share their power reserves so that the frequency in the AC areas converges to the nominal
frequency. Small changes to the power demand result in the control scheme restoring
the frequency in the AC areas to the nominal frequency value. This control scheme was
validated through transient simulations in a modified version of Cigré DC grid benchmark,
which included a five-terminal HVDC grid, comprised of two WPPs and three AC networks.
MATLAB/SimPowerSystem was the simulation environment used in this paper.

A dynamic de-loading control scheme for a DFIG to provide additional active power
for grid frequency support is proposed in [28]. The proposed control scheme co-ordinates
the rotor acceleration control and pitch angle control while considering the frequency
regulation demands of the grid and the prediction error of wind power. This control
scheme was simulated in MATLAB. The results show that despite a small amount of wind
abandonment, this control scheme can provide frequency support to the grid and mitigate
the secondary frequency drop following frequency regulation.

3.1.2. Energy Storage Systems

Energy storage systems can partake in frequency regulation and work with WTGs to
improve the system inertia or augment the frequency response of WTGs [17]. Specifically,
in the context of frequency regulation, energy storage systems can mitigate the secondary
frequency drop of WTGs during the rotor recovery phase of the WTG [17]. A summary of
the papers classified as regarding ESS is shown in Table 3.

Table 3. Publications in ESS for VSWTs.

Research Area Reference Year of Publication

Energy Storage Systems

[15] 2015

[29] 2021

[30] 2016

[31] 2015

[32] 2021

[33] 2019

[34] 2019

[35] 2020

[36] 2022
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The authors in [15] propose a strategy that provides better performance of tempo-
rary frequency support and addresses the problem of system frequency oscillation and
secondary frequency drop. The solution is based on a co-ordinated control of WTGs in
conjunction with an energy storage system (ESS). The proposed strategy was simulated
on PSCAD/EMTDC to verify its effectiveness. The authors concluded that a secondary
frequency drop may be avoided by an ESS rated to only 10% of the WTG.

A specified-time consensus (STC) control for ESS-assisted DFIG WTGs to assist in
frequency regulation is proposed in [29]. The efficacy of the proposed control scheme
is validated by simulations conducted in MATLAB/Simulink. The results showed that
the proposed strategy can provide a smooth power output of the WTG and improve the
frequency regulation capability.

The paper [30] presents a hybrid operation strategy for a WECS using an ESS for
grid frequency support. This operating strategy provides a reserve power margin by
de-loaded operation in addition to relying on the kinetic energy of the rotor. The ESS is
used concurrently with the kinetic energy discharge to provide additional energy to the
grid during a frequency deviation. Furthermore, the ESS is used to maintain the power
balance between generation and consumption, thereby mitigating the stochastic nature
of wind. The effectiveness of the proposed hybrid operation strategy was verified using
PSCAD/EMTDC.

In [31], an algorithm is proposed to integrate hydro-electric pumped storage (HEPS)
station with WECS, providing grid frequency support. This strategy embeds the idea that
excess energy from the WECS is stored in a HEPS, providing energy during frequency
drops. The major benefit in this is that the WTG will always follow its MPPT curve since no
frequency support methods are applied to the WTG allowing for deviation. This ensures
that the maximum energy will always be extracted from the wind. The major HEPS aspects
of this system were estimated, while case studies examined the impact of the algorithm on
frequency recovery at 40% wind power penetration. The simulation environment used was
MATLAB/Simulink.

A co-operative control strategy of a WECS and compressed air energy storage for
frequency regulation is proposed in [32]. The effectiveness of the proposed co-ordinated
control strategy was evaluated under various scenarios and load profiles using MAT-
LAB/Simulink simulations.

The authors in [33] present an embedded solution that uses a hierarchal controller on a
microgrid comprising wind turbines and battery units. In this way, the solution provides a
co-ordinated frequency support to a weak grid by adjusting the active power flow through
the tie-line in accordance with grid frequency requirements. To deal with the interactions
between the impedance of the weak grid and output impedance of the microgrid, a stability
analysis model was developed. This proposed approach was validated through simulation
using MATLAB/SimPowerSystem toolbox.

The paper [34] proposes a multilevel embedded ESS consisting of super-capacitors
and lead–acid batteries inside a PMSG (permanent magnet synchronous generator) to
provide frequency support. The super-capacitors are used to emulate an inertial response
while the lead–acid batteries are used to provide the primary frequency response. The
secondary frequency response is provided by the mechanical power reserved in the wind
turbine by using a suboptimal MPPT strategy. In addition, a supplementary control
strategy is proposed, which makes use of the super-capacitors and lead–acid batteries
to provide a primary and secondary frequency response, respectively. Simulations were
performed using MATLAB/SimPowerSystem and laboratory tests were conducted to
validate the effectiveness of the proposed control strategy. By utilising the complimentary
characteristics of lead–acid batteries and super-capacitors, the solution eliminates frequent
cycling of the lead–acid batteries while also relieving mechanical stress from WECS due to
abrupt electromagnetic changes when partaking in frequency regulation.

An inertial response control scheme with a super-capacitor ESS is proposed in [35].
The inertial response is designed using the generator torque limits. The energy released
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from the ESS is used to augment the active power deficit during the recovery process of the
turbine rotor. In addition, a damping controller is added to the inertial control to suppress
mechanical oscillations in the shaft and tower of the turbine during frequency support. The
mechanical system of the wind turbine generator is modelled and simulated using FAST
by the NREL, whilst the electrical system of the wind turbine generator is developed in
MATLAB/Simulink. The simulation results show that the proposed method can improve
the frequency nadir, mitigate the secondary frequency dip and reduce the magnitude in the
mechanical subsystem.

To mitigate the impact of the wake effect in grid frequency support, the paper [36]
proposes an optimal ESS allocation (OEA) scheme for DFIG-based wind turbines. To realise
the OEA scheme, wind turbines are placed in a cluster, considering their received wind
speed. Each wind turbine within a cluster will share the same ESS. The OEA scheme tries
to optimise the coherency of all the clusters’ frequency support margins so that all wind
turbines maintain the same frequency stability. In the OEA scheme, the ESSs do not directly
provide frequency support services to the grid, rather, they serve to improve the wind
turbine’s frequency support capability and the system security. In this implementation,
the required capacity of the ESSs need not be so large as in the case of when ESSs directly
provide frequency support, thereby reducing the level of investment needed to deploy an
ESS. The effectiveness of the OEA is verified by simulation studies conducted on a modified
29-bus Hydro-Quebec transmission system with one DFIG wind farm.

3.1.3. Emulated Inertial Response

The energy contained within a WTG system can be used when the frequency deviation
exceeds the allowable frequency range [16]. Droop control provides additional power in
proportion to the frequency deviation [17]. When a wind turbine operates at its maximum
power, the additional power required is obtained from the kinetic energy of the rotating
mass [16]. Similar to droop control, hidden inertia emulation also releases kinetic energy
from the wind turbine generator, but the inertial response is instead based on the response
of traditional synchronous generators [16]. Kinetic energy from the wind turbine can also
be released by the fast power reserve controller, which acts on the rotor speed signal [16].
A summary of the papers classified as regarding emulated inertial control, grouped by
research area, is shown in Table 4.

Table 4. Publications in Emulated Inertial Control for VSWTs.

Research Area Reference Year of Publication

Droop Control

[37] 2020

[38] 2017

[39] 2016

[40] 2017

[41] 2020

[42] 2015

[43] 2016

[44] 2016

[45] 2016

[46] 2017

[47] 2017

[48] 2017
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Table 4. Cont.

Research Area Reference Year of Publication

Droop Control

[37] 2020

[7] 2017

[49] 2017

[50] 2020

[51] 2021

[52] 2021

[53] 2020

[54] 2018

[55] 2021

[56] 2018

[57] 2020

[58] 2022

Hidden Inertia Control

[59] 2019

[60] 2018

[61] 2021

[62] 2020

[63] 2015

[64] 2018

[65] 2021

Fast Power Reserve

[66] 2020

[67] 2017

[68] 2019

[69] 2019

[70] 2018

[71] 2016

[72] 2017

To improve the primary frequency response of wind power plants, the authors in [37]
propose a distributed synchronised control technique. The droop control uses an optimum
power share ratio and the frequency of each WPP at the point of common coupling (PCC)
to calculate the droop. The control technique finds the optimum power share ratio through
an interactive algorithm. The synchronised droop characteristics of the WPPs are functions
of the frequency variation at the PCC and are inversely proportional to the respective
power share ratios. The droop is, therefore, changed with frequency variation followed
by a load-generation imbalance due to the disturbance. The synchronised droop varies
with increasing communications delay between nodes, which mitigates the effects of
communications delay on the proposed method. The effectiveness of the proposed control
technique was tested on a WPP-integrated 39-bus New England system and simulated in
PSCAD/EMTDC. The simulation results show that the primary frequency response of the
proposed control technique is better than that of the distributed Newton method. However,
the performance of the distributed synchronised droop control deteriorates in the event of
a false data-injection attack on the communications system.

The paper [38] presents a communication-free alternative co-ordinated control scheme
that prioritises frequency versus active power droop, fitted onto onshore VSCs. This scheme
aims to transfer the wind turbine recovery power to undisturbed AC grids and allow for
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the correct control operation of multi-terminal high-voltage direct current (MTDC) systems
during multiple power imbalances on different AC grids. The control scheme presented
in the paper is compared with another co-ordinated control scheme which uses frequency
versus DC voltage droop; the MTDC frequency support capability when wind farms do
not provide extra power is also evaluated using a four-terminal HVDC system. The results
presented in this paper show that during a single power imbalance in one AC grid, the fast
frequency response from MTDC-connected wind farms limits the RoCoF on disturbed AC
grids and transfers additional active power from another AC system, containing the system
frequency deviation. The MTDC-connected windfarms were equipped with both the
alternative co-ordinated control scheme and the co-ordinated control scheme. However, the
co-ordinated control scheme was shown to have larger power oscillations when compared
to the alternative co-ordinated control scheme under certain conditions. A three-terminal
HVDC system was used to test the effectiveness of the co-ordinated control scheme and the
alternative co-ordinated control scheme, both of which were modelled using PSCAD and
experimental results were obtained using the RTDS tool of RSCAD. The MTDC frequency
support capability when find farms do not provide extra power was verified using a
four-terminal system and modelled using MATLAB/Simulink.

In [39], a control scheme is proposed for DFIG-based wind turbines for improved
transient response and participation in grid frequency support. The proposed control
scheme consists of a main controller with two auxiliary controllers. The main controller is
a fuzzy-based controller whose parameters are optimised using the genetic algorithm to
achieve an optimal transient response. The two auxiliary controllers, frequency deviation
and wind speed oscillation controllers, enable the DFIG to provide frequency to the grid
and mitigate the impacts of wind speed fluctuations on the WTG output power by using the
kinetic energy of the WTG. The performance of the controllers is highly dependent on the
operating point of the WECS. Simulations were performed considering various scenarios
to prove that the proposed control scheme can enhance the power system’s frequency
performance after disturbances.

The authors in [40] propose a non-linear dynamic model for the DFIG’s output power
integrated into a dynamic model of the power grid. In addition to this, a state feedback
controller is proposed by considering if DFIGs participate in grid frequency regulation or
not. The stability of the entire system is considered using the input-to-state stability theory.
The controller was embedded in the DFIG’s detailed model and simulations were conducted
to evaluate its performance. In comparison to a conventional controller presented in the
paper, the proposed controller delivered more output power during grid frequency support
and a negated transient recovery period.

A fast frequency support scheme for wind turbine systems to raise the frequency
nadir close to the settling frequency and eliminate the secondary frequency dip is proposed
in [41]. The frequency support scheme uses the kinetic energy of the wind turbine to raise
the frequency nadir close to the settling frequency. In addition to raising the frequency
nadir, an adaptive gain function of the real-time rotor speed and wind power penetration
level is proposed to provide frequency nadir improvements under various wind speed and
wind penetration levels. The last aspect of the proposed frequency support scheme is a new
speed recovery strategy to mitigate the secondary frequency deviation associated with the
rotor recovering its speed. The speed recovery strategy of the proposed frequency support
scheme does not require the wind turbine to recover to the MPPT operating point during
the primary frequency support phase. This allows the release of kinetic energy to be large,
and no secondary frequency deviation will occur as no energy is extracted from the grid
to recover the rotor speed. The three aspects of the proposed frequency support scheme
have been implemented together, and the performance and stability of the wind turbines
have been verified by comparisons of simulation results using the two-are power system
for DFIG-based wind turbines and an IEEE 39-bus power system for PMSG-based wind
turbines. The simulations were conducted using RTDS and Dymola.
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In [42], an active power control method for VSWTs to enhance the inertial response and
damping capability during transient events is proposed. The control method implements
an optimised power point tracking controller, which shifts the wind turbine operating
point from the MPPT curve to the virtual inertia control curves in relation to the frequency
deviation. This allows the wind turbine to use its kinetic energy to provide grid frequency
support. In addition to frequency support, the authors also theoretically evaluate the
effects of the virtual inertia curves on damping power oscillations. When compared with a
supplementary derivative control, the proposed optimised power point tracking control
method avoids an interaction between the inertial response and the MPPT controller. The
optimised power point tracking control method can also contribute to the power system
damping and provides a smoother recovery of the rotor speed. The control method was
prototyped on a three-machine system comprising two synchronous generators and a
PMSG WTG with a wind penetration level of 31% to validate the proposed method.

The authors in [43] propose a control strategy that shifts the MPPT curve of the WTG
to a virtual inertial control curve in relation to the frequency deviation so as to recover the
kinetic energy of the wind turbine to provide grid frequency support. When compared to a
PD-based inertial controller, the proposed virtual inertia control scheme provides a rapid
response in the event of a sudden change in power and a smoother recovery to the MPPT
operation. Comparative studies of the network frequency responses with and without the
proposed virtual inertial control curves following a sudden system load and wind power
change were conducted using MATLAB/Simulink. The simulation results show that the
proposed control scheme can provide rapid dynamic frequency support to the grid with a
reduction in frequency variations during fluctuations in both load and generation.

In [44], a control strategy for primary and inertial responses for high-wind-integrated
power systems is proposed. The proposed method couples the pitch and power control
loops and provides control at both sub- and super-synchronous operation. This method
can be used for either a WTG or can be used to dispatch an entire wind farm for a primary
frequency response and avoid individual turbine control. The proposed control scheme
was evaluated on a 39-bus dynamic IEEE New England test system with 39 buses and
10 generators. Two aggregated windfarms were placed at bus 38 and bus 32. The dynamic
models of the turbine and converter dynamics were modelled in DIgSILENT Power Factory.

The authors in [45] propose an inertial control scheme for a DFIG-based wind power
plant. The proposed scheme aims to improve the frequency nadir and stable operation of
the DFIG, especially when wind speed decreases during inertial control, by using adaptive
gains set to be proportional to the kinetic energy stored in the DFIG, and the gains decrease
with the declining kinetic energy. The results presented in the paper indicate that the
proposed scheme improves the frequency nadir and prevents over-deceleration under
certain wind and system conditions. The performance of the proposed adaptive gain
scheme was verified through simulations of case studies using EMTP-RV.

The paper [46] proposes two novel control strategies that enable an inertial response
from PMSG wind turbines during transient events. The first strategy aims to provide
inertia to the system by simultaneously using the energy of the DC-link capacitor and
kinetic energy of the wind turbine rotor. The second strategy aims to provide inertia to the
system by first using the energy of the DC-link capacitor and then the kinetic energy of
the rotor in a cascading control scheme. The two control strategies were validated using a
case study of one PSMG-based wind turbine subject to sudden load variations and then
compared. Subject to the same disturbance event, it is shown that both control strategies
can provide similar performance in stabilising the system frequency, permitting that the
control parameters are set correctly in advance. However, the cascaded control scheme
characterises itself by enabling a better energy harvest during a frequency disturbance. The
simulation environment used in [46] was not mentioned.

A non-linear system model of a VSWT may experience large deviations from its
operating point during times of frequency support when linear control techniques are used.
In [47], a novel non-linear controller used to enable an inertial response from a VSWT is
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presented. A regular controller based on the input–output feedback linearisation approach
was first designed, and then replaced by the proposed controller, where the output power of
the wind turbine is expressed in terms of state variables and its Taylor series expansion used
in the design of the control system. The proposed controller was embedded in a detailed
model of a VSWT in MATLAB/Simulink and the various effects of different controller
parameters were investigated. It is also emphasized that an appropriate co-ordination
between conventional generating units and VSWTs equipped with the proposed controller
results in a negligible transient recovery period. In addition to this, the behaviour of
the controller was also investigated in the presence of fluctuating wind power input and
was shown to provide a smoother frequency response. The advantages of the proposed
controller over that of conventional PI control were also verified.

A co-ordinated control strategy to provide system inertial support for an offshore
windfarm connected via an HVDC transmission line to an onshore main grid is discussed
in [48]. The authors compare two proposed strategies: one where the energy of the
HVDC capacitors and the kinetic energy of the wind turbine are used simultaneously to
provide inertial support without the installation of remote communication between the two
terminals of the HVDC transmission line, while the other strategy employs a sequential
release of energy starting with the HVDC capacitors and then using the kinetic energy of
the wind turbine, with the aid of communication between the onshore and offshore grids.
A detailed design and case study of the two control strategies have been conducted to
compare and demonstrate the effectiveness of the control strategies in DIgSILENT Power
Factory. It was shown from the test system that when subject to the same disturbance
event, both strategies exhibit similar performance in stabilising the system frequency,
permitting that the control parameters are set correctly in advance. However, the cascaded
control scheme has been shown to have better wind energy harvest during a frequency
disturbance event. The impact of the time delay, introduced by the communication of
the two converters in the cascaded control scheme, may have some limited impact on the
control system performance and overall system stability.

A distributed virtual inertia scheme that can be implemented by grid-side-connected
power converters without any modification to the system hardware is proposed in [7]. The
virtual inertia provided to the grid uses the energy stored in the DC-link capacitors of the
grid-side-connected power converters, and by regulating the DC-link voltages in proportion
to the grid frequency, the DC-link capacitors are aggregated into a large equivalent capacitor.
The limitations of the virtual inertia along with the design parameters such as DC-link
capacitance, DC-link voltage and maximum DC-link voltage deviation were identified in
this paper. The concept was verified by MATLAB/Simulink simulations and additional
experimental results were also obtained to verify the efficacy of the proposed concept. The
proposed concept indicates improvements in both the reduction in frequency deviation
and the improvement in the RoCoF.

In [49], the system frequency dynamics during inertia emulation and primary fre-
quency support from wind turbine generators are studied and a mode-switching scheme
of a wind turbine generator for frequency support is proposed. A proposed concept, the
region of safety, which is the initial set of safe trajectories, is used to determine switching
instances. The barrier certificate methodology was used to derive a new algorithm to
enlarge the region of safety for given desired safety limits and worst-case disturbance
scenarios that lead to finding the critical switching instants and a safe recovery procedure.
Furthermore, the inertial response and load-damping effects are derived in the respective
time frames of both inertial and primary frequency responses, respectively. The paper [50]
presents theoretical results under critical cases.

The paper [50] proposes a torque limit-based method to emulate an inertial response.
The efficacy of two torque limit-based methods is investigated through a power system
with varying degrees of wind penetration levels in DIgSILENT Power Factory 2018. The
first torque limit-based method considers a definite ramp rate for the inertial power of the
wind turbines, while the second torque limit-based method varies the key parameters to
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obtain a linear relation between its characteristics and the operating point of the VSWT. It
was shown that the second torque limit-based method places lower stress on the mechanical
parts of the wind turbine, particularly at low rotor speeds, compared to the first torque
limit-based method. While the results show a more stable system operation due to the
emulated inertia, the results do, however, also reveal a deteriorated frequency nadir for
both torque limit-based methods, while the degree of wind penetration is high due to the
incoordination of the VSWT inertial response and the governor response of fossil-fuelled
generating units. To mitigate this, it is suggested that the inertial power of the VSWT is
multiplied by a frequency-dependent gain.

Based on a frequency response model derived in [51], an estimation method to calcu-
late the virtual moment of inertia provided by a DFIG-based wind farm is proposed. By
using the Routh approximation method, an expression for the virtual moment of inertia for
the grid-connected DFIG system is derived. To augment the availability of the expression,
an estimation method based on the matrix pencil method and least squared algorithm
for estimating the virtual moment of inertia provided by the wind farm is proposed. The
effectiveness of the proposed method and the derived expression are tested on a DFIG
grid-connected system and a modified IEEE 30-bus system in MATLAB/Simulink. Based
on the results, the derived expression of the virtual moment of inertia directly expresses
the inertial behaviour of a VSWT with additional frequency control and the estimation can
efficiently calculate the virtual moment of inertia provided by the wind farm, regardless
of whether VSWTs are involved in the frequency regulation of the grid or not. The ability
to distinguish whether VSWTs are involved or not has value in power systems with high
wind power penetration since it avoids the complex processing of parametric derivation
and frequency response integration.

The frequency nadir and RoCoF are two metrics that temporary grid frequency sup-
port schemes strive to improve. The paper [52] proposes a rotor speed-based inertia control
scheme aimed at improving the performance of the system’s frequency regulation. Several
case studies were performed, by varying wind speed conditions and wind power penetra-
tion levels, to investigate the performance of the proposed control scheme. The proposed
control scheme was tested on a seven-machine power system, with an aggregated wind
farm on MATLAB/Simulink. The results showed that the proposed scheme contributes to
reducing the frequency nadir and RoCoF. In addition, the rotor speed-based inertia control
scheme is decoupled from the system frequency which, in turn, decouples the inertial
response speed from the inertia response amplitude, allowing an appropriate response to
be realised, ensuring the stable operation of the WTG and the system.

In [53], a frequency support scheme for DFIG wind turbines that implements a two-
stage switching control scheme is proposed. The first stage of the control scheme uses a
variable proportion coefficient designed to emulate an inertial response from the DFIG
wind turbine, while the second stage of the control scheme uses a fuzzy logic control
scheme to determine the variable proportion coefficient to both quickly restore the DFIG
wind turbine to MPPT operation and avoid a secondary frequency dip in the system.
The proposed control scheme was simulated in MATLAB/Simulink and case studies were
performed on a WSCC 9-bus and IEEE 39-bus power system to verify the effectiveness of the
proposed control scheme. The results show that the proposed control scheme can provide
a satisfactory performance for frequency support despite varying operating conductions.
The paper concludes by stating that in future work, the feasibility of implementing the
control scheme in large-scale power systems with integrated wind turbines will be verified
by hardware-in-the-loop simulation.

A time-variable droop control method for WTGs to provide grid frequency support
is proposed in [54]. In the proposed method, a positive droop characteristic provides
frequency support and is followed by a period of negative droop to restore the kinetic
energy of the rotor. The proposed method is simulated in DIgSILENT Power Factory, and
the performance of the proposed control method is studied when subjected to various
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operating conditions. The results show that the frequency nadir can be improved while
WTGs regain their kinetic energy and continue MPPT operation.

An adaptive droop control scheme for DFIGs to provide frequency support is proposed
in [55]. The initial value of the adaptive droop gain is determined in accordance with the
wind speed and decreases with time. The efficacy of the proposed control scheme was
simulated on a modified IEEE 14-bus system in EMTP-RV. The results show that the
proposed method prevents a DFIG from stalling and reduces the second frequency drop
during the rotor recovery phase.

A RoCoF droop control strategy to mitigate the problems of frequency deviation and
high RoCoF is proposed in [56]. In response to a high-frequency event, power is contributed
to the grid from the reserve margin stored in the DC-link capacitor to mitigate the RoCoF.
Once a new steady state has been reached, the reserve energy expended from the DC-link
capacitor is recovered. An experimental comparison between the proposed RoCoF droop
control strategy and conventional droop control strategy is conducted on the RT-LAB
platform. The results of the comparison show that by adjusting control parameters such as
increasing the droop coefficient or decreasing the bandwidth, a larger virtual inertia can be
obtained than that contributed by the capacitor alone.

The paper [57] proposes a strategy to co-ordinate the use of the kinetic energy of
a VSWT and the energy stored in the DC-link capacitor from a VSC-HVDC-connected
offshore wind farm to provide grid frequency support. The minimum rotor speed limit for
the VSWT is determined by the rate of change of the mechanical power with rotor speed,
which reduces the reduction in mechanical power caused by the low rotor speed, while the
capacitor energy of the VSC-HVDC is used to contribute to the frequency nadir when the
output power of the VSWT is less than the initial value. A detailed selection process of the
controller parameters to improve the efficacy of the frequency control strategy is discussed
and the proposed strategy was verified using a power system model in MATLAB/Simulink.
The simulation results show that the proposed strategy can significantly reduce the grid
frequency variation and maintain frequency stability in grids with high penetration of
renewable energy.

In [58], a time-sharing frequency co-ordinated control scheme is proposed. The imple-
mentation of the proposed scheme uses a frequency dead-band to co-ordinate the priority
of the rotor virtual inertia control, DC-link virtual inertia control and a new adaptive
frequency droop control. In the proposed control scheme, the electrostatic energy stored
within the DC-link capacitor is always used first for frequency support, while the kinetic
energy of the rotor is only used once the energy stored within the DC-link capacitor has
been depleted. The performance of the proposed control scheme is simulated and studied
in PSCAD/EMTDC. The results indicate that the time-sharing frequency co-ordinated
control scheme has better performance in wind energy harvesting and system stability
when compared to either traditional cascaded control or co-ordinated control strategies. In
addition, the proposed scheme can also effectively avoid power oscillations.

In [59], a co-ordinated control strategy for PMSG-based VSWTs to provide frequency
support services is proposed. An inertial response is emulated by using the energy stored
in the DC-link capacitor. However, since the available energy is relatively small, it is
supplemented by a virtual capacitor control strategy which uses the rotor-side converter
to provide a virtual capacitance that is larger than the actual DC-link capacitance by
using the wind turbine’s kinetic energy in a similar way to the inertial response of a
synchronous generator. Lastly, a power–frequency droop control is used to simulate
the primary frequency control of a synchronous generator. The efficacy of the proposed
control strategy was verified by simulation results in PSCAD/EMTDC and indicated that
the RoCoF is mitigated and the frequency nadir is improved by adopting the proposed
co-ordinated control strategy.

The authors in [60] present a control approach based on the VSM concept. The
approach presented in [60], called an enhanced virtual synchronous machine (eVSM), uses
the existing inertia of the DC-link component and does not emulate the rotating inertia
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based on an assumption of unlimited energy. The eVSM concept aims to reduce the need
of a large DC-link component or battery storage while providing the same inertial response
of an equivalent synchronous machine.

The paper [61] proposes a two-level combined control strategy for offshore wind farms
to provide frequency support for an onshore system. On the wind turbine level, each wind
turbine implements inertial and droop control with adaptive coefficients, which allow
wind turbines with high rotor speeds to release more kinetic energy, while working at
MPPT mode. To mitigate the second frequency dip that occurs after frequency support,
the wind turbines are divided into clusters based on their rotor speed and a step start-up
control scheme is implemented for the wind turbine clusters to provide frequency support
sequentially. The sequential frequency support allows one cluster to provide frequency
support, while another recovers their rotor speed. At the system level, a communication-
free allocation control strategy is proposed using the local frequency signal of onshore
voltage-source converter stations to share the active power among the onshore stations.
Case studies were conducted on a three-area four-terminal voltage-source converter-based
multi-terminal high-voltage direct current offshore windfarm, in MATLAB/Simulink, to
determine effectiveness of the two-level combined control strategy. The simulation results
show the efficacy of the proposed control scheme under various scenarios. The paper
concludes by stating that future work will consider optimising the number of clusters and
asynchronous interconnection to the onshore system.

The authors in [62] propose a control strategy for offshore HVDC-connected wind-
farms to provide an inertial response and primary frequency support. The proposed control
strategy uses the HVDC converters to map the onshore frequency variation onto a voltage
variation in the offshore grid. The authors have identified various limitations of conven-
tional frequency support strategies from offshore-connected windfarms including large
frequency deviations and high RoCoF in the offshore gird. In contrast, the proposed control
strategy achieves the frequency requirements of the regional grid code without stressing
the offshore grid as the frequency deviations and RoCoF are kept low. The proposed control
strategy was tested on two test systems, one built entirely in the DIgSILENT Power Factory
environment and the other on an IEEE 39-bus system. However, the proposed control
strategy relies on using existing local communication systems to monitor the HVDC link
voltage to distinguish between internal disturbances of the offshore AC grid and distur-
bances that arise due to a frequency disturbance of the main onshore AC grid. The authors
are developing an adaptive control strategy with minimal reliance on local communication
systems that can discern between internal and external disturbances.

The paper [63] expands on a communication-less approach previously proposed in
the literature for offshore wind turbines connected though a DC grid to multiple onshore
AC grids. To extend this concept, the authors instead adopt a strategy where the onshore
frequency variations are communicated to the offshore converters by using a fibre optic
link embedded within the sub-sea DC cables. In the paper, a case study on a four-terminal
DC grid connecting an offshore wind farm and two onshore AC systems illustrates the
inertial support from the offshore wind farms with the proposed strategy. An aggregated
model of the WTGs within the wind farm was used in the simulations and the parameters
were obtained from a simulation model in DIgSILENT Power Factory. It is shown that
the proposed weighted frequency scheme strategy can improve the transient frequency
deviation in AC grids experiencing an under-frequency event.

The authors of [64] propose a clustering-based co-ordinated control scheme for large-
scale wind farms to provide frequency support. The proposed control scheme considers the
distributed layout of WTGs and the wake effects inside the wind farm. WTGs are grouped
by their wind profiles and the same control commands are dispatched to the same group.
This effectively realises a group of WTGs as one single WTG and greatly reduces the control
variables and complexity of the optimization problem. Simulations were conducted in
MATLAB/Simulink to verify the effectiveness of the proposed control strategy.
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A hierarchical non-linear model predictive control (MPC) for frequency support is
proposed in [65]. The proposed hierarchical non-linear MPC reduces the computational bur-
den of the central controller when compared to a centralised non-linear MPC. The efficacy,
efficiency and robustness of the proposed hierarchical non-linear MPC is validated by nu-
merical simulations in MATLAB/Simulink. The results show that the non-linear MPC can
reduce the computation time by as much as 50% when compared to a centralised non-linear
MPC. This makes the proposed MPC method more favourable for large-scale wind farm
implementations by avoiding the requirement of higher performance computation facilities.

The authors of [66] present a short-term frequency support method for doubly fed
induction generators (DFIGs) to improve the frequency nadir of the system using less kinetic
energy and negate the second frequency drop caused by the rotor speed recovery. The
proposed method adds a time-varying constant to the power reference for the maximum
power point tracking (MPPT) function and allows the rotor to recover its speed along
with the MPPT curve. The proposed method was analysed and validated on a modified
IEEE 14-bus test system; however, the simulation environment was not disclosed. The
simulation results indicate that the proposed method could provide a frequency nadir
improvement with a lower kinetic energy cost for the DFIG in various scenarios and reduces
the secondary frequency nadir. The performance of the proposed method is affected by
wind speed, as the winds speed affects the levels of kinetic energy available. The proposed
method was only tested against two wind speed conditions: 8 m/s and 10 m/s. The paper
concludes by stating that due to the inherent variability and uncertainty of wind power, the
frequency support capacity of DFIGs may be unable to meet the instantaneous frequency
system requirements and may be required to operate with ESS systems. The authors
state that future work will focus on a co-ordinated frequency control scheme between
DFIGs and ESSs for frequency control will be studied in power systems with high wind
power penetration.

In [67], the effect of different power curves in releasing kinetic energy for grid fre-
quency support is considered and two solutions are proposed. The first of the two proposed
solutions aims at reducing the rate of change of frequency (RoCoF) while the second method
is aimed at improving the RoCoF and the frequency nadir. The amount of kinetic energy
used for frequency support was considered and the minimum wind turbine rotor speeds
at various wind conditions were defined to avoid a large reduction in mechanical power
while the wind turbine supports the grid frequency. The proposed solutions were validated
by simulations using MATLAB/Simulink and indicate that the proposed solutions can
reduce the RoCoF and frequency nadir while minimising the power imbalance when the
rotor is reaccelerated. Given that wind turbines can regulate their power quicker than
conventional generators and only have a limited and temporary kinetic energy reserve that
can be used to support the grid frequency (that has to return to the wind turbine system
after frequency control), it might be beneficial to use wind turbines to improve the RoCoF
while using conventional generators to reduce the frequency nadir.

A power reference model that operates reliably during uncertain wind conditions
while providing grid frequency support is proposed in [69]. The proposed frequency
support scheme provides an emulated inertial response to a disturbance by releasing a
portion of the rotor’s available kinetic energy and decreases linearly with rotor speed. To
determine the effectiveness of the proposed scheme, the proposed scheme was studied—along
with other methods—on large-scale integrated wind farms on IEEE 9-bus and New England
39-bus systems simulated in DIgSILENT Power Factory and MATLAB.

In [69], a dynamic demand control strategy that co-ordinates with the DFIG control is
presented. This co-ordinated control strategy for DFIGs can provide an inertial response
and primary frequency support. In addition, it can mitigate the secondary frequency
dip following frequency support and improve the performance of the primary frequency
support. For the demand control to work optimally, controllable loads with high power
ratings that can accept a changing connection state and have minimal user impact are
suggested. The proposed control strategy was simulated in MATLAB/Simulink, while the
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DFIG unit model and aggregated controllable load model were developed in OpenModelica
and linked to ePHASORsim, a real-time power system transient simulation software.

To improve the frequency nadir while ensuring a rapid frequency stabilisation for
high wind power penetration levels, a temporary frequency support scheme of a DFIG
is proposed in [70]. At the onset of a frequency disturbance, the power reference is in-
cremented by the incremental power, which is a value that varies with rotor speed and
wind power penetration level and is maintained for a pre-set period. The reference will
decrease during this deceleration phase with the reduction in speed and release less kinetic
energy. This, however, will aid in the rapid recovery of the rotor speed and, during the
acceleration phase, the scheme will decrease the output of the DFIG with both rotor speed
and time until the reference intersects the MPPT curve again. The results are obtained by
running various scenarios on an IEEE 14-bus system and indicate that the scheme arrests
the frequency nadir at a higher level, except for Scenario 2. The proposed control scheme
was simulated using EMTP-RV.

The paper [71] proposes a method to control variable-speed wind turbines to provide
a frequency response through temporary over-production. The control method aims to
determine the optimal power extraction profile between multiple generators to minimize
the total loss of efficiency while allowing for an increase in generation. In case of frequency
events, the cumulative generation is increased by a specified amount, while the power
profile of individual turbines is determined by resolving an optimal control problem
to minimise the loss of efficiency. The results of this method were evaluated through
simulations and the concept was also extended to recover the VSWTs to their initial state of
maximum efficiency in minimum time.

In [72], a stable stepwise short-term frequency support scheme based on a DFIG wind
farm is proposed and aims to improve the frequency nadir while quickly recovering the
rotor speed. When a frequency event occurs, the output power is raised by increasing
the power reference prior to the event and sustaining it for some predetermined period
determined by the frequency nadir. The power reference then linearly decreases with the
rotor speed until it converges with rotor speed to some pre-set value. To then recover the
rotor speed, at the pre-set rotor speed, the power reference decreases with the rotor speed
and time until it intersects with the MPPT reference. The proposed scheme was deployed
on an IEEE 14-bus system with one DFIG-based wind farm and simulated on EMTP-RV. The
simulation results of the four case studies showed that the proposed stepwise short-term
frequency support scheme can raise the frequency nadir while recovering the rotor quicker
than other conventional schemes in the case studies.

3.2. RQ2: What Are the Limitations of VSWTs in Supporting the Grid Frequency

The rate of change of power of wind turbines could limit the effective implementation
of frequency support methods. High rate of change of power in wind turbines leads to
an increase in maintenance cost. Simply applying a rate limiter to the power function
of the wind turbine generator may reduce the efficacy of frequency support strategies.
In [73], a small-signal analysis is performed to study the effects of frequency regulation
methods on the rate of change of power of wind turbines. Both DFIG and PMSG wind
turbine generators are considered. A detailed model of a wind turbine generator was
developed in the paper. The model considered the double-mass nature of the mechanical
system, active damping controller and frequency support mechanisms, namely droop and
virtual inertia. The model in the paper allowed for a small-signal analysis of the frequency
support dynamics in the wind turbine generator and the characterisation of the associated
mechanical stresses imposed on the generator. The paper has shown that droop and virtual
inertia frequency support methods subject the mechanical system to high rates of change
of torque and power which accelerate the aging process. The paper has investigated the
use of DC-link capacitors to respond to the fast transient portion of the frequency support
dynamics while the kinetic energy stored within the rotating mass of the turbine is still used
in the slower but high-energy portion of the frequency support. Furthermore, the paper
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also studies the management of these two sources and verifies all analytical results using
time-domain simulations in MATLAB/Simulink based on detailed non-linear models.

The paper [74] considers the potential issues associated with system-wide integration
of emulated inertia technologies and issues associated with implementing large-scale
frequency support controls, namely the potential delayed frequency recovery and the
variation in the optimal response with different frequency conditions, are identified in this
paper. Two differently sized systems with wind integration and emulated inertial response
capabilities that represent simplified dynamic power system models are developed in
MATLAB/Simulink to investigate the impact of varying system conditions. The findings of
the paper show that there are implications for the development of ancillary service markets
and grid code requirements for systems with a high penetration level of non-synchronous
generation. The differences between the emulated inertial response from wind power
plants and the inertial response from conventional synchronous generator-based plants
should be considered if the integrity and stable operation of the grid are to be maintained.
System planners and operators should ensure that the way in which energy is delivered
and recovered from wind turbines is realised as a function of the system demand, wind
penetration level, geographical wind distribution and reserve level. Failure to consider
this may lead to an undesirable frequency response from wind generation and impact the
grid stability.

In [75], the frequency support capabilities of VSWTs are studied. The impact of inertial
control is analysed, and it has been determined that at a large scale, VSWTs may lead to a
potential delayed grid frequency recovery and a variation in the optimal response under
varying system conditions. In addition, the paper states that should inertial control or
emulated inertia technology be adopted at scale, further development will be required. Two
simplified dynamic power system models, one small- and one medium–large-sized system,
were developed in MATLAB/Simulink with inertial control capabilities to investigate the
impact of varying system conditions on the optimal tuning of the inertial control parameters.
The results highlight the importance of resource tuning and issues relating to what is
defined as an optimal response, while implementation approaches for system operators
considering the use of inertial control to emulate an inertial response are proposed.

4. Discussion

With the relevance of VSWTs for frequency support owing to the increase in wind
power penetration and concerns about the frequency of the grid [16], research in this
field can make a great impact in addressing practical concerns. The categories of VSWT
frequency support are based on the prevailing methods used, since each method has
advantages and practical limitations.

The period from which surveyed works were drawn showed a marked increase in
publications from 2017 to 2019, followed by a period of consistent publications except
for the current year, as seen in Figure 3. The absence of exponential growth and, instead,
a consistent rate of publication could be attributed to the well-understood problem of
increasing wind power penetration and grid frequency stability without ancillary support
from WTGs. Recent publications surveyed revealed that the focus is in improving the
frequency support characteristics of VSWTs by modifying already understood frequency
support methods, combining methods or proposing novel methods.
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Figure 3. Cumulative Search Strings SCOPUS Look up.

Figure 4 shows a graph of the number of journal articles admitted to this study,
based on the inclusion and exclusion criteria, grouped by the year of publication. From
this graph, it can be noted that there is a persistent interest in this field, with a peak in
publications in 2017 and a reduction in publications in 2019 but recovering in 2020. The
year 2022 is excluded from comment as this is present year, and some journals may not
have published papers at the time of conducting this study. This indicates a consistent
interest in this research area. This may be attributed to the periodic publishing of journals
and the extensive review process resulting in a more even distribution of published papers.
Nevertheless, this does indicate relevance in this area of study. Furthermore, the trend of
the graph in Figure 4 likely deviates from the general trend (Figure 3) due to the exclusion of
conference papers and not necessarily because of a decline in interest in this research area.

0

2

4

6

8

10

12

2015 2016 2017 2018 2019 2020 2021 2022

Cumulative Number of Journal Papers 
Published by Year

Number of Journal Papers Poly. (Number of Journal Papers)

Figure 4. Cumulative Number of Journal Papers Grouped by Year of Publication.

Of the journal papers studied in this systematic literature review, 11 papers were
classified as those that used de-loading as a primary means of providing frequency support,
9 relied on ESS and 45 implemented an emulated inertial response. The research area that
gained the most focus identified in this review was droop control-based, with 23 journal
publications. The distribution of the papers surveyed in this study classified by research
focus is shown in Figure 5.
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When screening the literature, it was observed that a limited number of publications
identified and studied the limitations of VSWTs providing grid frequency support. Since
the impact of low inertia has been studied, this area of research will continue to be relevant
as the prevalence of WTGs increases. However, a better understanding of the impacts
of VSWTs providing grid frequency support on the VSWT structure and the small-signal
stability of the grid would greatly benefit this field of research. Future works will focus on
understanding the limitations of VSWTs providing grid frequency support and small-signal
stability of the grid.

5. Conclusions

VSWTs for grid frequency support is a research area that can provide solutions to
grids with high wind power penetration in a world where grids seek to decarbonise their
generating fleet. The main objective of this paper is to present relevant information in a
modern timeframe on the current implementations and limitations for VSWTs to provide
grid frequency support to provide the reader with a comprehensive view on the topic. The
study was conducted using the systematic literature review methodology, which facilitated
the systematic process of searching, locating, assessing, analysing and categorising existing
papers in the literature. An extensive review was conducted from various databases from
2015 to mid-August 2022. From the results, it is seen that there is a consistent interest in the
research at the present time.

The main limitation of this work is that number of papers selected for the study and the
number of studies identifying the limitations of VSWTs providing grid frequency support
were limited. This will be examined in future works.
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Abstract: This study presents a master–slave methodology to solve the problem of optimally locating
and sizing photovoltaic (PV) generation units in electrical networks. This problem is represented
by means of a Mixed-Integer Nonlinear Programming (MINLP) model, whose objective function is
to reduce the total annual operating costs of a network for a 20-year planning period. Such costs
include (i) the costs of purchasing energy at the conventional generators (the main supply node
in this particular case), (ii) the investment in the PV generation units, and (iii) their corresponding
operation and maintenance costs. In the proposed master–slave method, the master stage uses the
Discrete–Continuous version of the Crow Search Algorithm (DCCSA) to define the set of nodes where
the PV generation units will be installed (location), as well as their nominal power (sizing), and the
slave stage employs the successive approximation power flow technique to find the value of the
objective function of each individual provided by the master stage. The numerical results obtained
in the 33- and 69-node test systems demonstrated its applicability, efficiency, and robustness when
compared to other methods reported in the specialized literature, such as the vortex search algorithm,
the generalized normal distribution optimizer, and the particle swarm optimization algorithm. All
simulations were performed in MATLAB using our own scripts.

Keywords: crow search algorithm; discrete–continuous codification; master–slave strategy; location
and sizing of photovoltaic generation units; reduction in total annual operating costs; alternating
current networks

MSC: 65K05; 65K10; 68N99; 90C26; 90C59

1. Introduction

1.1. General Context

In recent years, the rapid modernization of countries, the fast advancement of tech-
nology, and the ongoing population growth have led to a significant increase in electrical
energy consumption and, therefore, to a looming global energy crisis. As a result, conven-
tional energy resources—often used to meet the energy demand—have begun to run out [1].
In fact, energy sources based on, for instance, coal, natural gas, and oil are unable to meet
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the current energy demands [2]. Additionally, these sources have a negative impact on
the environment. This issue has attracted the attention of researchers, who are constantly
looking for ways to transform the current energy system (based on conventional energy
resources) into a cleaner one (based on renewable energy resources) in order to meet the
energy demand while also protecting the environment [1,3].

Distributed energy resources, such as photovoltaic (PV) generation units and wind
turbines, are becoming increasingly popular and widely employed because they are consid-
ered clean and limitless energy sources. Likewise, better and more advanced technologies
are being developed to use these resources in a practical and cost-effective manner [1,4].
In Colombia, thanks to the abundance of the solar resource in the Caribbean and Pacific re-
gions, PV systems are the most extensively employed technology to produce electricity and
displace fossil fuel generation [5]. The country, thus, has a huge potential for integrating
PV generation sources, which will allow it to propose solutions that are both energetically
and environmentally sustainable in order to meet the energy demand while reducing the
use of fossil fuels [6].

Optimally designing PV generation units and installing them in electrical systems,
however, is a challenging task because an improper planning may result in overvoltages
and overcurrents in the nodes and lines that make up the electrical system. This, in turn,
can cause a variety of problems [7], including an increase in energy losses and a decline
in energy quality, which affect not only the network’s operational capabilities but also its
financial viability by failing to meet the standards enforced by regulatory bodies as the
Commission for the Regulation of Energy and Gas in Colombia (CREG, by its Spanish
acronym) [8]. This poses a challenge for engineers in charge of the design, planning,
and operation of electrical networks, as effective strategies for the proper integration of
PV generation units must be devised. These strategies must be able to ensure the project’s
financial viability over a specific time horizon as well as the safe and reliable provision of
the service while adhering to the standards set out by regulatory bodies.

A lot of research has been completed, from a technical approach, on the optimal loca-
tion and sizing of PV generation units in electrical systems to reduce power losses [9], im-
prove voltage profiles [10], and enhance voltage stability [11]. Such an approach, however,
does not analyze the financial viability of the proposed solutions, as the costs associated
with the investment in PV generation units and their related operation and maintenance
costs, as well as the planning horizon, are not taken into account in the calculation of the
objective function. Considering these two aspects as well would ensure that the solution is
both technically and economically feasible [12,13].

1.2. State of the Art

In recent years, different combinatorial optimization techniques mostly based on
master–slave methodologies that use a discrete–continuous codification have been de-
veloped to solve the problem of optimally locating and sizing PV generation units in
electrical systems. These techniques consider financial aspects that respect the technical
and operating conditions of the network.

A discrete–continuous codification allows optimal location and sizing problems to
be solved jointly. For example, the authors of [14] presented a master–slave methodology
that combines the Discrete–Continuous version of the Chu and Beasley Genetic Algorithm
(DCCBGA) and the successive approximation power flow method. Their main goal was
to reduce the total annual operating costs of electrical networks, including the costs as-
sociated with the investment in PV systems, as well as their corresponding maintenance
and operation costs. In order to assess the applicability and effectiveness of their proposed
methodology, the 33- and 69-node test systems were used. In addition, they compared
the results obtained by their proposed methodology with the exact solution to the Mixed-
Integer Nonlinear Programming (MINLP) model (which represented the problem being
addressed) produced by the BONMIN solver of the General Algebraic Modeling System
(GAMS). Additionally, the authors performed a statistical analysis and examined process-

47



Mathematics 2022, 10, 3774

ing times in order to assess the repeatability and robustness of the algorithm. Importantly,
the mathematical model developed in their study has been used as the basis to design
new optimization techniques that employ a discrete–continuous codification to solve the
problem of optimally integrating PV generation units in electrical networks.

In [15], the authors employed the Newton Metaheuristic Algorithm (NMA) for solv-
ing the problem of optimally siting and sizing PV generation units in the IEEE 34- and
85-node test systems. Their main goal was also to minimize the annual operating costs of
electrical networks. When compared to the results obtained by the BONMIN solver and
the DCCBGA, their proposed methodology was found to be effective. The authors did
not perform a statistical analysis or examine processing times to evaluate the repeatability
and robustness of their algorithm. For their part, the authors of [12] proposed using the
Discrete–Continuous Vortex Search Algorithm (DCVSA) to solve the problem of optimally
integrating PV generation units in alternating and direct current networks. In fact, this is the
first study to assess the reduction in total annual operating costs in both types of networks.
According to the results obtained in the 33- and 69-node test systems, the proposed method-
ology was capable of finding an optimal solution while observing the voltage and current
constraints established in the MINLP model. The authors also compared their proposed
methodology with the BONMIN solver and the DCCBGA, conducted statistical analyses,
and evaluated the processing times with the purpose of evaluating the repeatability and
robustness of the algorithm.

In [16], as in the previous study, the authors tested a Discrete–Continuous version
of the Generalized Normal Distribution Optimizer (DCGNDO) in the 33- and 69-node
test systems. When compared to the DCVSA, their proposed methodology achieved
significant reductions in the total annual operating costs. The authors, however, did not
perform a statistical analysis or examine processing times, which does not guarantee
the repeatability or the robustness of the algorithm. Finally, the work by [17] employed
a Discrete–Continuous version of the Parallel Particle Swarm Optimization algorithm
(DCPPSO) algorithm. When compared to other optimization methodologies that also use a
discrete–continuous codification, their proposed methodology obtained the best results in
terms of best solution, processing time, and standard deviation in the 33- and 69-node test
systems. Moreover, the authors conducted a statistical analysis and examined processing
times, thus proving that their proposed methodology is a robust and reliable tool to solve
the problem of optimally integrating D-STATCOMs units in electrical systems.

1.3. Motivations, Contributions, and Scope

From the literature review, the importance of considering an objective function focused
on financial aspects was identified. This is because the primary goals are to (i) provide an
efficient and cost-effective service, (ii) reduce the costs associated with the investment in
PV generation units and their operation while adhering to the standards of energy quality,
voltage, and service, and (iii) meet the energy demand in compliance with the regulations
in force. In addition, it was observed that the Crow Search Algorithm (CSA) has not been
yet used to solve the optimization problem addressed in this study.

Therefore, this paper presents a master–slave method whose master stage uses a
Discrete–Continuous Crow Search Algorithm (DCCSA) to solve the problem of optimally
locating and sizing PV generation units in electrical systems, and the slave stage employs
the successive approximation power flow technique to find the value of the objective
function, which is the reduction in the total annual operating costs of an electrical system
over a 20-year planning and operation horizon. These costs include (i) the annual costs of
purchasing energy at the conventonal generators (Slack node in this particular case); (ii) the
annual investment in PV generation units; and (iii) their corresponding annual operation
and maintenance costs. The following are the main contributions of this study to solving
the optimization problem under analysis:
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• A thorough description of the mathematical model that represents the problem of
optimally locating and sizing PV generation units in electrical systems. This model
has, as the objective function, the reduction in the total annual operating costs and
observes the set of constraints that represent the behavior of electrical networks in a
DG scenario.

• A new master–slave methodology to solve the MINLP model that represents the prob-
lem under study. In this methodology, the master stage uses a Discrete–Continuous
version of the Crow Search algorithm (DCCSA) to define the set of nodes where the
PV generation units will be installed (location), as well as their corresponding nominal
power (sizing). Meanwhile, the slave stage employs the successive approximation
power flow method to evaluate the total annual operating costs of the network.

• A new master–slave methodology that finds a global optimal solution to the problem
of optimally locating and sizing PV generation units in electrical systems and produces
the best results in terms of solution quality and repeatability.

Figure 1 shows the graphical abstract that summarizes the contents of the article.
The main idea of this research paper is to use a CSA-based master–slave methodology
that employs the successive approximations power flow method for solving the problem
of siting and sizing PV generation units to minimize the total annual operating costs in
electrical distribution systems.

Location and
size? 

PV generator units

Optimization methodology

Crow Search Algorithm

Master stage

Successive Approximation 
Power Flow Method

Slave stage

Location
SizeObjective

function value

Optimal location
and size of PV 

generator units

Distribution system

Total annual operating costs

Figure 1. Graphic proposed methodology.

1.4. Structure of the Paper

This paper is organized as follows. Section 2 introduces the mathematical formulation
of the problem regarding the optimal location and sizing of PV generation units in electrical
systems, with the objective function being the reduction in the total annual operating
costs. Section 3 presents the proposed methodology, which combines the DCCSA and the
successive approximation power flow technique. Section 4 presents the main character-
istics of the 33- and 69-node test systems, the generation and demand curves employed,
and the parametric information necessary to find the value of the fitness function. Section 5
presents a discussion on the results obtained for the problem under analysis as well as the
total annual operating costs. Finally, Section 6 outlines the conclusions and future lines
of research.

2. Mathematical Formulation

The problem of optimally locating and sizing PV generation units in electrical systems
can be expressed and solved using an MINLP model. In this model, the decision variables
(i.e., those of a binary nature) are associated with the selection of the nodes where the PV
generation units will be installed [18], whereas its nonlinearities appear in the formulation
of the power flow due to the nonlinear nature of its equations [19,20].

The next subsections present the objective function and the set of constraints that
represent the problem under analysis.
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2.1. Formulation of the Objective Function

The main focus of power system planning projects is to recover the initial investment
made by the grid operator. In this case study, in order to recover the investment made to
integrate the PV generation units into electricity systems, the aim is the minimization of
the total power purchase costs at the node that interconnects the distribution system with
the transmission/subtransmission grid. Note that the installation and maintenance costs of
the PV generation units are charged to the distribution system operators (DSO), as they are
the body in charge of distributing and managing the power required to supply the demand
of the users together with the system losses, in order to provide a service with high power
quality that is as economical as possible.

In this context, the objective function considered is the reduction in the total annual
operating costs of an electrical network, which will allow the initial investment to be
recovered. Such costs include (i) the costs of purchasing energy at the main supply node
(also known as the slack node or substation node), (ii) the investment in PV generation
units, and (iii) their corresponding maintenance and operation costs. Such an objective
function is presented in (1)–(4).

min Acost = f1 + f2 + f3, (1)

f1 = CkWhT fa fc

(
∑

h∈H
∑

k∈N
pcg

k,hΔh

)
, (2)

f2 = Cpv fa

(
∑

k∈N
ppv

k

)
, (3)

f3 = CO&MT

(
∑

h∈H
∑

k∈N
ppv

k,hΔh

)
, (4)

with

fa =

(
ta

1 − (1 + ta)−Nt

)
,

fc =

(
∑
t∈T

(
1 + te

1 + ta

)t
)

,

where Acost is the objective function value and represents the total annual operating costs of
the system. f1 denotes the annual costs of purchasing energy at the main supply node. f2 is
the annual investment in PV generation units; and f3 is their corresponding operation and
maintenance costs. CkWh represents the average energy purchasing cost at the substation
node. T is the number of days in an ordinary year (365). fa denotes the annuity factor that
can be used to calculate the regular payments that the network operator must make, which
are dependent on the expected internal return rate (ta) and the planning horizon (years, Nt).
fc represents the factor associated with the increase in the cost of energy during the planning
period, which depends on the annual percentage rise in the cost of energy expected by the
network operator (te). pcg

k,h is the active power produced by each conventional generator
connected to node k in time period h. Δh denotes the time during which the electrical
variables are assumed constant (i.e., 1 h for a one-day operation scenario). Cpv represents
the average installation cost for 1 kW of PV power. ppv

k is the nominal power of each PV
generation unit connected to node k. CO&M denotes the maintenance and operation costs
associated with each PV generation unit. ppv

k,h represents the active power produced by each
PV generation unit connected to node k in time period h. Finally, N , H, and T are the sets
containing all the network nodes, the time periods in a one-day operation scenario, and the
number of years in the planning horizon, respectively.
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2.2. Set of Constraints

The set of constraints of the problem regarding the optimal placement and sizing of
PV generation units in electrical systems represents the different operational limits found
in such systems, such as active and reactive power balance, maximum and minimum
capacities of each device, and voltage regulation bounds at each node in the system. Such
constraints are presented in (5)–(13).

pcg
k,h + ppv

k,h − Pd
k,h = vk,h ∑

j∈N
Ykjvj,h cos

(
θk,h − θj,h − ϕkj

)
,
{
∀k ∈ N , ∀h ∈ H

}
, (5)

qcg
k,h − Qd

k,h = vk,h ∑
j∈N

Ykjvj,h sin
(

θk,h − θj,h − ϕkj

)
,
{
∀k ∈ N , ∀h ∈ H

}
, (6)

ppv
k,h = ppv

k Gpv
h ,

{
∀k ∈ N , ∀h ∈ H

}
, (7)

Pcg,min
k ≤ pcg

k,h ≤ Pcg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (8)

Qcg,min
k ≤ qcg

k,h ≤ Qcg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (9)

xkPpv,min
k ≤ ppv

k ≤ xkPpv,max
k ,

{
∀k ∈ N

}
, (10)

vmin
k ≤ vk,h ≤ vmax

k ,
{
∀k ∈ N , ∀h ∈ H

}
, (11)

∑
k∈N

xk ≤ Navail
pv , (12)

xk ∈ {0, 1},
{
∀k ∈ N

}
, (13)

where Pd
k,h and Qd

k,h are the active and reactive power demanded at node k in time period
h, respectively. qgc

k,h denotes the reactive power produced by each conventional generator
connected to node k in time period h. vk,h and vj,h denote the voltages at nodes k and j
in time h, respectively. Ykj is the admittance relating nodes k and j and whose angle is
ϕk,j. θk,h and θj,h denote the voltage angles at nodes k and j in time period h, respectively.
Gpv

h represents the expected PV generation curve in the area of influence of the electrical

system. Pcg,min
k and Pcg,max

k are the active power bounds for each conventional generator

connected to the node k, whereas Qcg,min
k and Qcg,max

k denote the reactive power bounds for

each conventional generator connected to node k. P f v,min
k and P f v,max

k represent the active
power bounds for the PV generation units connected to node k. xk is the binary variable
in charge of locating each PV generation unit in a node k of the system. vmin

k and vmax
k

denote the minimum and maximum voltage regulation values allowed at each node that
makes up the electrical system. Finally, Navail

f v represents a constant parameter related to
the maximum number of PV generation units available for installation along the network.

2.3. Model Interpretation

The model presented in (1)–(13), which represents the problem of optimally locating
and sizing PV generation units in electrical systems, can be interpreted as follows: Equa-
tion (1) defines the objective function of the problem, which is the sum of (i) the annual
energy purchasing costs at the node that connects the electrical system with a transmis-
sion/distribution network, as shown in Equation (2); (ii) the annual investment in PV
systems, as shown in Equation (3); and (iii) their corresponding maintenance and operation
costs, as shown in Equation (4). Equality Equations (5) and (6) represent the active and
reactive power balance at each system node in each time period, respectively. These are the
most complex constraints in the problem under analysis, and, due to their nonlinear and
nonconvex nature, they require numerical methods to be properly solved [21]. Equation (7)
establishes that the active power produced by the PV generation units varies depending
on their nominal power and the expected generation curve in the area of influence of the
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network. Inequality Equations (8) and (9) define the minimum and maximum active and re-
active power injected by the conventional generators. Inequality Equation (10) determines
the minimum and maximum active power produced by the PV generation units that will
be installed along the system. Box-type Equation (11) presents the lower and upper voltage
regulation bounds for all nodes and time periods. Equation (12) defines the maximum
number of PV generation units available for installation along the network. Equation (13)
shows the binary nature of the decision variable xk.

Note that the MINLP model in Equations (1)–(13) is a general representation of the
problem under study. The two main drawbacks of this model are (i) its nonlinearities and
nonconvexities in the active and reactive power balance equations and (ii) the fact that it
combines binary and integer variables. Consequently, as there might be multiple solutions
to this model, which will be local optima, several authors have proposed using master–slave
methods to solve it because they enable separating the continuous optimization problem
from its discrete part [22].

Therefore, to solve the problem under study, this research presents a master–slave
methodology that combines the DCCSA and the successive approximations method. This
technique has not been reported in the specialized literature and belongs to the main
contributions of this work.

3. Proposed Solution Methodology

To solve the problem of optimally locating and sizing PV generation units in elec-
trical systems, which was described above, this study proposes using a master–slave
methodology that employs a Discrete–Continuous version of the Crow Search Algo-
rithm (DCCSA) [23] in the master stage and the successive approximations power flow
method [24] (slave stage). In this methodology, the master stage defines the set of nodes
where the PV generation units will be installed, as well as the size of such units, and the
slave stage evaluates the objective function and constraints associated with network opera-
tion, which were presented in (5)–(13).

The next subsections present the codification used to represent the problem under
analysis as well as each component of the proposed methodology (i.e., master stage and
slave stage).

3.1. Proposed Codification

The DCCSA is the cornerstone of our proposed solution methodology because it
is responsible for determining the optimal locations and sizes of PV generation units in
electrical networks. To that end, each individual in the metaheuristic algorithm uses a
discrete–continuous codification of the form

Ct
i =

[
2, z, ..., n |0.0000, ppv

z , ..., 2.4000
]
; i = 1, 2, ..., Ni, (14)

where Ct
i is an individual i from population C at iteration t, whose size is 1 × (2Navail

pv ). z is
a random number that defines the node where each PV generation unit will be installed.
This number can take a value between 2 and the number of nodes in the system (i.e., n),
which means that the PV generation units are only placed in the demand nodes. Finally, Ni
is the number of individuals in the population.

As can be seen in Equation (14), each individual in the population has two components:
(i) the first Navail

pv parameters of the solution vector, which define the demand nodes where
the PV generation units are to be installed, and (ii) the subsequent Navail

pv parameters of
the solution vector, which determine the optimal sizes of each PV generation unit to be
installed in the system.

The main advantage of this codification is that it allows the optimal location and sizing
problem to be solved in a single stage by transforming the MINLP model defined from
(1)–(13) into a nonlinear programming model. Consequently, the solution space can be
efficiently explored and exploited in shorter processing times [16].
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3.2. Master Stage: The Discrete–Continuous Version of the Crow Search Algorithm (DCCSA)

The DCCSA is a bio-inspired optimization metaheuristic algorithm, which is based on
the intelligent behavior of crow flocks [23]. In the animal kingdom, crows are considered the
smartest birds because they are capable of memorizing and remembering faces, using tools,
communicating with one another, and properly feeding throughout the year [23]. They
are known to be ambitious birds because they compete with one another for better food
sources and pay attention to where other birds hide their food to steal it [25]. After stealing
food, crows take the necessary precautions to avoid becoming victims, such as changing
their hiding places and course [26].

This behavior can be modeled mathematically by considering the following simple
principles in order to properly explore and exploit the solution space [23]:

� Crows live in flocks.
� Crows remember where they hide their food.
� Crows follow other crows to steal their food.
� Crows protect their hiding places from theft via stochastic processes.

3.2.1. Initial Population

The DCCSA is a population-based algorithm. The population in this algorithm consists
of crows that are randomly located in the environment, which allows it to start exploring
and exploiting the solution space. The structure of the initial population of crows is as
shown below:

Ct =

⎡
⎢⎢⎢⎢⎣

Ct
11 Ct

12 · · · Ct
1Nv

Ct
21 Ct

22 · · · Ct
2Nv

...
...

. . .
...

Ct
Ni1

Ct
Ni2

· · · Ct
Ni ,Nv

⎤
⎥⎥⎥⎥⎦, (15)

where Ct is the population of crows at iteration t, and Nv is the number of variables or the
dimension of the solution space, that is, the number of PV generation units to be installed
in the electrical system and their sizes, i.e., 2Nava

pv .
To generate an initial population of crows that respects the structure shown in (14),

Equation (16) is used. This equation creates a matrix of random numbers (within the lower
and upper limits) containing all possible solutions.

C0 = yminones(Ni, Nv) + (ymax − ymin)rand(Ni, Nv) (16)

In (16), ones(Ni, Nv) ∈ RNi×Nv is a matrix filled with ones. rand(Ni, Nv) ∈ RNi×Nv is a
matrix filled with random numbers between 0 and 1, which are generated with a uniform
distribution. Finally, ymin ∈ RNv×1 and ymax ∈ RNv×1 are vectors that represent the lower
and upper bounds of the solution space, respectively:

ymin =

[
y1,min
y2,min

]
, ymax =

[
y1,max
y2,max

]
,

where y1,min ∈ R
Nava

pv ×1 and y1,max ∈ R
Nava

pv ×1 denote the lower and upper bounds, re-
spectively, of the decision variables related to the locations of the PV generation units
in the demand nodes, and y2,min ∈ R

Nava
pv ×1 and y2,max ∈ RNava

pv × 1 are the lower and
upper bounds, respectively, of the decision variables associated with the sizes of the PV
generation units.

Finally, at each iteration (t), each crow (i) in the population memorizes the position
of its hiding place, as shown in Equation (17). This equation thus stores the position of
the best food source found thus far by each crow. Note that crows memorize their best
experience thanks to the fact that they move around in their environment in search of the
best food source.
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Mt =

⎡
⎢⎢⎢⎢⎣

Ct
11 Ct

12 · · · Ct
1Nv

Ct
21 Ct

22 · · · Ct
2Nv

...
...

. . .
...

Ct
Ni1

Ct
Ni2

· · · Ct
Ni ,Nv

⎤
⎥⎥⎥⎥⎦ (17)

3.2.2. Crows’ Movement

One could say that in iteration t, crow j wants to visit its hideout (i.e., best food source
found thus far), which is at position Mt

j , and crow i decides to follow crow j to be near its
cache. At this point, there are two possible scenarios:

1. Scenario 1: Search
In this scenario, crow j is unaware that crow i is following it. Hence, i can get close to
the cache of crow j and updates its position in the solution space. This new position
can be modeled mathematically as follows:

Ct+1
i = Ct

i + rand f l (Mt
j − Ct

i ), (18)

where rand is a random number between 0 and 1, generated with a uniform distribu-
tion, and f l is the flight length of crow i. As per [23], small values of f l allow for a
local exploration of the solution space (close to Ct

i ), whereas large values of f l allow
for a global exploration of the solution space (far from Ct

i ).
2. Scenario 2: Evasion

In this scenario, crow j is aware that crow i is following it. Hence, to prevent its
hidden food from being stolen, it tries to fool crow i by moving to a random position
in the solution space.

These two scenarios can be summarized as follows:

Ct+1
i =

{
Ct

i + rand f l (Mt
j − Ct

i ) If rj ≥ Ap

a random position otherwise
, (19)

where rj is a random number between 0 and 1, which is generated by a uniform distribution,
and Ap is the probability that crow j finds out that crow i is following it.

3.2.3. Memory Updating

Once the position of the crows is updated considering the two scenarios described
above, the new position of the food source must be memorized based on its quality. Thus,
if the fitness function value of the new food source is better than the fitness function value of
the previously memorized food source, crows update their memory with the new position:

Mt+1
i =

{
Ct+1

i If FF(Ct+1
i ) < F(Mt

i )
Mt

i otherwise
, (20)

where Ff (·) represents the fitness function to minimize.

3.2.4. General Implementation of the DCCSA

Algorithm 1 shows how the DCCSA is implemented to solve the problem addressed
in this study.

3.3. Slave Stage: Successive Approximation Power Flow Method

The successive approximation method used to solve the power flow in electrical
systems was first introduced by Montoya and Gil-González in [24]. The active and reactive
power balance equations given by (5) and (6), respectively, can be solved iteratively using
this method. It enables the slave stage to evaluate the fitness function value for each
individual in the population of crows while ensuring that the constraints specified in the
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MINLP model (described in Section 2) are respected. Likewise, this method was selected
because it requires short processing times and rapidly converges toward the solution.

Algorithm 1: Crow search algorithm used to solve optimization problems

1 Define parameters Ni, Nv, Ap, f l, tmax, ymin, and ymax;
2 Generate the initial population using Equation (16);
3 Calculate the fitness function value (see Equation (24)) of each individual;
4 Initialize the memory (M0

i ) of each crow (i);
5 for t ≤ tmax do

6 for j = 1 : Ni do

7 Randomly select a crow (i);
8 if randj ≥ AP then

9 Generate the new position of crow i using Equation (18);
10 else

11 Generate a random position for crow i;

12 Evaluate the fitness function value of crows’ new position (see Equation (24));
13 Update crows’ memory (Mt+1) using Equation (20);

14 Result: The best solution is found for Ctmax
i , and its fitness function is F(Ctmax

i ).

The recursive formula that can be employed to solve the power flow presented in (5)
and (6) is given by

V
t+1
d,h = −Y−1

dd

[
diag−1(Vt,∗

d,h)(S
∗
d,h − S

∗
pv,h) + YdsVs,h

]
, (21)

where t is the iteration counter. Vd,h denotes the vector that contains the voltage at the
demand nodes for each time period h, i.e., the variables of interest. Yds is the component
of the admittance matrix that associates the slack node with the demand nodes, whereas
Ydd denotes the component of the admittance matrix that relates the demand nodes to
each other. Sd,h represents the vector in the complex domain that contains the active and
reactive power demanded at the load nodes for each time period h. Spv,h is the vector in the
complex domain that contains the active power produced by each PV unit for each time
period h. Vs,h denotes the vector that contains the voltage at the terminals of the substation
node for each time period h, which is a known parameter in the solution of the power flow.
Finally, diag(z) represents a diagonal matrix made up of the elements of vector z.

To assess the convergence of the iterative process, the criterion shown in (22) is used.
According to this criterion, the maximum difference between the demand voltages (i.e.,
Vd,h) for each time period h in two consecutive iterations should be below a predefined
threshold.

max
h

{
||Vt+1

d,h | − |Vt
d,h||

}
≤ ζ (22)

In (22), ζ represents the convergence error, which, for the purposes of this study, will
be 1 × 10−10, as recommended by the authors of [24].

Once the power flow is solved for all time periods h using the successive approxima-
tion method, the power produced at the terminals of the substation node must then be
calculated, as follows:

S
∗
s,h = diag(V∗

s,h)(YssVs,h + YsdVd,h), (23)

where Ss,h denotes the vector in the complex domain that contains the active and reactive
power produced at the slack node for each time period h. Yss is the component of the
admittance matrix associated with the slack node, while Ysd is the component of the
admittance matrix that associates the slack node to the demand ones.
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Note that the value of f1 can be obtained by solving (23). Similarly, the solutions
provided by each individual in the master stage, which respect the codification established
in (14), can be used to obtain the value of f2 and f3. However, to rule out possible infea-
sible solutions, which violate the boundaries of the solution space, the objective function
described in (1) is replaced by the fitness function shown in (24) [27,28].

Ff =Acost + β1 max
h

{
0, |Vd,h| − vmax}− β2 min

h

{
0, |Vd,h| − vmin

}
− β3 min

h

{
0, real(Ss,h − Pgc,min

k )
} (24)

In (24), Ff is the value of the fitness function, and β1, β2, and β3 denote the penalty
factors applied to the objective function. These penalty factors come into play when the
solutions provided by the master stage violate the voltage regulation constraints or power
generation capacities at the substation node. In this study, the value of such penalty factors
is 1 × 106, and each penalty factor has its corresponding unit.

One of the main advantages of using a fitness function is that it helps the metaheuristic
optimization algorithm to efficiently explore and exploit the solution space. If all the
constraints presented in (5)–(13) are met, the final value of Ff equals the original value
of the objective function (Acost). If not, the solution is discarded as a possible optimal
solution [29].

4. Test Systems

To validate the master–slave methodology proposed in this paper to solve the problem
of optimally locating and sizing PV generation units in electrical systems, the 33- and
69-node test systems were used, both of which have a radial topology [30]. These test
systems are selected for the sake of comparison, as they have been previously used in the
literature to solve the problem of locating and sizing PV generation units. This allows
evaluating and comparing the best response, repeatability, and processing times of the
proposed master–slave methodology. The next subsections present the main characteristics
of each test system.

4.1. First Test Feeder: 33-Node Test System

This system consists of 33 nodes and 32 distribution lines, as shown in Figure 2. It
operates at a base voltage of 12.66 kV and a base power of 100 kVA. In the peak power
consumption scenario, the loads of this system demand (3715 + j2300) kVA. Its parametric
information can be found in [31].

4.2. Second Test Feeder: 69-Node Test System

This system consists of 69 nodes and 68 distribution lines, as illustrated in Figure 2. It
operates at a base voltage of 12.66 kV and a base power of 100 kVA. In the peak power con-
sumption scenario, the loads of this system demand (3890.7 + j2693.6) kVA. Its parametric
information can be found in [31].

4.3. Calculation of the Objective Function

To calculate the value of the fitness function defined in (24), the parametric data shown
in Table 1 were used [32,33].

To assess the impact of integrating PV generation units in the systems described above,
typical generation and demand curves reported for Medellín (Colombia) were used, which
are illustrated in Figure 3.
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Figure 2. Single-line diagram of the two test feeders used in this study: (a) 33-node test system and
(b) 69-node test system.

Table 1. Parameters used to calculate the objective function.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
Δh 1 h te 2 %
Cpv 1036.49 USD/kWp C0&M 0.0019 USD/kWh

Navail
pv 3 - ΔV ±10 %

Ppv,min
k 0 kW Ppv,max

k 2400 kW
β1 1 × 106 USD/V β2 1 × 106 USD/V
β3 1 × 106 USD/W - - -
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Figure 3. Typical behavior of the generation and demand curves reported for Medellín (Colombia).

5. Numerical Results and Discussion

This section discusses the numerical results obtained by the DCCSA in solving the
problem of optimally locating and sizing PV generation units in the two test systems
under analysis. To show the efficiency of the proposed metaheuristic algorithm, it was
compared against the following six methods, which have also been used to solve the same
problem: (i) the BONMIN solver of the GAMS (exact solution to the MINLP model) [14],
(ii) the Discrete–Continuous version of the Chu and Beasley Genetic Algorithm (DC-
CBGA) [14], (iii) the Discrete–Continuous version of the Newton Metaheuristic Algorithm
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(DCNMA) [15], (iv) the Discrete–Continuous version of the Vortex Search Algorithm
(DCVSA) [12], (v) the Discrete–Continuous version of the Generalized Normal Distribu-
tion Optimizer (DCGNDO) [16], and (vi) the Discrete–Continuous version of the Parallel
Particle Swarm Optimization (DCPPSO) algorithm [17].

For both test systems, this study considered installing three PV generation units, each
with a maximum capacity of 2400 kW. All simulations were performed in MATLAB (version
2022a) using our own scripts on a desktop computer with an Intel(R) Core(TM) i9-11900
CPU@2.50Ghz processor and 64.0 GB RAM, which was running 64-bit Windows 10 Pro.

5.1. DCCSA Parameters

The information presented in Table 2 was used to implement the master–slave method-
ology proposed in this study to solve the problem of optimally locating and sizing PV
generation units in electrical systems.

Table 2. Parameters of the DCCSA employed in the master stage.

Parameter DCCSA

Number of individuals (Ni) 87
Maximum iterations (tmax) 816

Flight length ( f l) 2.8741
Awareness probability (Ap) 0.0046

To define the parameters shown in Table 2, the DCCSA was tuned using the Chu
and Beasley genetic algorithm [34], with an initial population of 50 individuals and a
maximum number of iterations of 350 for the 69-node test system because it is the largest
of the two systems used to validate the proposed methodology. The tuning parameters
were: (i) a population size (Ni) in the [1, 100] range, (ii) a maximum number of iterations
(tmax) in the [1, 1000] range, (iii) a flight length ( f l) in the [0, 3.5] range, and (iv) an
awareness probability (Ap) in the [0, 1] range. Moreover, the proposed methodology was
evaluated 100 consecutive times to find the best, average, and worst values for the objective
function. Additionally, the standard deviation and average time required by the algorithm
to determine the optimal locations and sizes of the PV generation units were calculated for
the two test systems under analysis.

5.2. Results Obtained in the First Test System under Analysis
5.2.1. Numerical Results

Table 3 shows the numerical results of the proposed methods and of those used as com-
parison in the 33-node test system. From left to right, this table specifies the methodology
implemented, the nodes where the PV generation units were installed and their nominal
power, the annual operating costs provided by each solution methodology, the reduction
percentage obtained by each methodology with respect to the base case (values reported in
the second row), the average processing time, and the standard deviation.

According to the information in Table 3, the solution provided by each metaheuristic
algorithm outperformed that by the BONMIN solver (i.e., the exact solution to the MINLP
model), which confirms that the presence of binary variables causes conventional opti-
mization techniques to get stuck in local optima. Additionally, the proposed DCCSA, like
the DCGNDO and the DCPPSO, managed to reduce the total annual operating costs by
1,000,783.62 USD/year when compared to the base case. This suggests that the global
optimal solution for this test system is 2,699,671.76 USD/year, which is found by placing
the PV generation units at nodes 10, 16, and 31, for a total installed capacity of 3647.65 kWp.
Finally, all the methods allowed a reduction of more than 26.95% with respect to the base
case, with the DCCSA allowing the highest reduction (27.0449%). When compared to
the other methods in terms of reduction in total annual operating costs, the DCCSA out-
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performed the BONMIN solver by 0.0581%, the DCNMA by 0.0151%, the DCCBGA by
0.0071%, the DCVSA by 0.0025%, and the DCGNDO and the DCPPSO by 0.0013%.

Table 3. Numerical results obtained in the 33-node test system.

Method Location (Node)/Power (MW) Acost (USD/Year) Reduction (%) Time (s) STD (%)

Base case

-
3,700,455.38 0 - --

-

BONMIN
17/1.3539

2,701,824.14 26.9867 3.64 018/0.2105
33/2.1452

DCNMA
8/2.0961

2,700,227.33 27.0298 20.21 0.081216/1.2688
30/0.2770

DCCBGA
11/0.7605

2,699,932.29 27.0378 5.30 0.045215/0.9690
30/1.9060

DCVSA
11/0.7606

2,699,761.71 27.0424 170.23 0.042714/1.0852
31/1.8030

DCGNDO
10/1.0083

2,699,671.76 27.0436 268.69 0.070016/0.9137
31/1.7257

DCPPSO
10/1.0092

2,699,671.76 27.0436 8.32 0.024616/0.9137
31/1.7245

DCCSA

10/1.0093
2,699,671.76 27.0449 77.00 0.003716/0.9138

31/1.7246

5.2.2. Statistical Analysis

To show the effectiveness and robustness of the DCCSA in solving the problem of
optimally locating and sizing PV generation units in electrical systems, it was run 100 con-
secutive times in the 33-node test system. The results of such validation are illustrated in
Figure 4, which shows the improvements obtained by the DCCSA in terms of best solution,
processing time, and standard deviation when compared to the other solution method-
ologies. The numbers in red indicate that the method used for comparison outperformed
the DCCSA.

As observed in Figure 4, the DCCSA produced the best results in terms of reduction in
annual operating costs when compared to the other methods. It outperformed the BONMIN
solver by 0.0797%, the DCNMA by 0.0206%, the DCCBGA by 0.0097%, the DCVSA by
0.0053%, and the DCNGDO and the DCPPSO by 1 × 10−7%.

Regarding processing times, the BONMIN solver, the DCNMA, the DCCBGA, and the
DCPPSO were faster than the proposed solution methodology. When compared to the
DCCSA, they reduced processing times by 95.2727%, 73.7529%, 93.1168%, and 89.1947%,
respectively. Importantly, these differences in processing times are attributed to the fact
that the population size employed for the proposed DCCSA included 77 more individuals
than those used for the other methods. This means that at each iteration, the proposed
algorithm had to evaluate 1848 power flows more than the other techniques. The DCCSA,
however, was faster than the DCVSA and the DCNGDO; it reduced processing times by
121.0809% and 248.6963% when compared to the DCVSA and the DCNGDO, respectively.
The processing times obtained by the DCCSA can be considered negligible when compared
to the planning horizon chosen for this study (i.e., 20 years).
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Figure 4. Improvements obtained by the DCCSA in the 33-node test system.

As for the standard deviation, the proposed DCCSA was superior to the other methods,
as it achieved an improvement of 2075.4620% with respect to the DCNMA, of 1109.8241%
with respect to the DCCBGA, of 1043.0023% with respect to the DCVSA, of 1775.1372%
with respect to the DCNGDO, and of 559.0663% with respect to the DCPPSO. Note that
in this case, the DCCSA was not compared to the BONMIN solver. The reason for this
is that the solution of the BONMIN solver will always be the same because it is an exact
solution to the MINLP model, so even if it is run 100 times, its standard deviation will
always be 0.

The results mentioned above confirm the effectiveness and reliability of the DCCSA,
as when solving the problem of optimally locating and sizing PV generation units in
electrical networks to reduce the annual operating costs, it produced the best results in
terms of solution quality and repeatability. Hence, the proposed methodology is regarded
as the best option to solve such a problem in the 33-node test system.

5.2.3. Feasibility Check

To verify that the optimal solution yielded by the DCCSA is feasible, i.e., it satisfies
the electrical constraints proposed by the mathematical model presented in (5)–(13) and
considered in the formulation of the fitness function given by (24), the active power
generation at the main supply node was analyzed before and after implementing the
solution obtained by the proposed methodology (see Figure 5).

When the solution provided by the DCCSA was implemented in the 33-node test
system, the power produced by the slack node was inversely proportional to the power
produced by the PV units. This means that as the power produced by the PV units increased
from hour 7 to 14 (see Figure 3), the power produced at the substation node decreased until
it hit zero (right when the PV power reached its maximum value). Similarly, as the power
produced by the PV units decreased from hour 15 to 20, the power produced at the slack
node increased. This proves that power generation respected the capacity constraint, as it
yielded positive or zero values.

Finally, to confirm that the voltage profiles were within the regulation bounds (i.e.,
±10%), the behavior of the minimum and maximum voltages was examined for all time
periods once the solution provided by the DCCSA was implemented (see Figure 6).

As may be concluded from Figure 6, the minimum and maximum voltage values in
all time periods respected the voltage regulation bounds, as they remained within ±10%.
Additionally, the maximum voltage (i.e., 1.0322 pu) was recorded at node 16 when the PV
units injected 100% of their nominal power. The minimum voltage (i.e., 0.9038 pu), which
coincided with the minimum voltage of the base case, was recorded at node 18 when the
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PV units did not inject power and during the period of peak demand (from hour 20 to
hour 21).
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Figure 5. Impact of PV integration in the 33-node test system.

2 4 6 8 10 12 14 16 18 20 22 24
0.9

0.95

1

(a
)M

ax
.v

ol
ta

ge
(p

u)

2 4 6 8 10 12 14 16 18 20 22 24
0.9

0.92
0.94
0.96
0.98

Time (h)

(b
)M

in
.v

ol
ta

ge
(p

u)

Figure 6. Voltage behavior during one day in the 33-node test system: (a) maximum voltage and
(b) minimum voltage.

5.3. Results Obtained in the Second Test System under Analysis
5.3.1. Numerical Results

Table 4, which was organized the same way as Table 3, shows the numerical results of
the proposed technique and the methods used for the sake of comparison in the 69-node
test system. Importantly, the BONMIN solver was not employed for comparison purposes
in this test system because it failed to converge to any feasible solution. This can be
explained by the fact that the solution space in this test system was larger than that in the
first test system.

According to the information in Table 4, the proposed DCCSA provided the best
solution for the 69-node test system, with a reduction in the total annual operating costs of
approximately 1,053,276.87 USD/year with respect to the base case. This means that the
optimal solution for this test system is 2,824,923.05 USD/year, which is found by placing
the PV generation units at nodes 21, 61, and 64, for a total installed capacity of 3807.02 kWp.
Moreover, all the methods used to solve the problem addressed in this paper allowed a
reduction of more than 27% with respect to the base case, with the DCGNDO, the DCPPSO,
and the DCCSA allowing the highest reduction (27.1589%). When compared to the other
methods in terms of reduction in the annual operating costs, the proposed methodology
outperformed the DCNMA by 0.0373%, the DCCBGA by 0.0192%, and the DCVSA by
0.0087%.
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Table 4. Numerical results obtained in the 69-node test system.

Method Location (Node)/Power (MW) Acost (USD/Year) Reduction (%) Time (s) STD (%)

Base case

-
3,878,199.93 0 - --

-

DCNMA
12/0.0794

2,826,368.60 27.1216 91.81 0.190060/1.3805
61/2.3776

DCCBGA
24/0.5326

2,825,783.33 27.1397 22.36 0.099961/1.8954
64/1.3772

DCVSA
16/0.2632

2,825,264.56 27.1502 887.64 0.094261/2.2719
63/2.2934

DCGNDO
21/0.4812

2,824,923.38 27.1589 1237.23 0.255861/2.4
64/0.9259

DCPPSO
21/0.4890

2,824,923.29 27.1589 55.15 0.026761/2.4
64/0.9169

DCCSA

21/0.4816
2,824,923.05 27.1589 377.49 0.022561/2.4

64/0.9254

5.3.2. Statistical Analysis

As in the previous test system, the proposed methodology was run 100 consecutive
times in the 69-node test system to validate its efficiency and robustness in solving the prob-
lem of optimally locating and sizing PV generation units in electrical systems. The results
of such validation are shown in Figure 7, which shows the improvements obtained by the
DCCSA in terms of best solution, processing time, and standard deviation when compared
to the other solution methodologies. The numbers in red indicate that the method used for
comparison outperformed the DCCSA.

As can be seen in Figure 7, the DCSSA provided the best results in terms of reduction
in annual operating costs when compared to the others methods. It outperformed the
DCNMA by 0.0512%, the DCCBGA by 0.0306%, the DCVSA by 0.01198%, the DCGNDO
by 1.1589 × 10−5%, and the DCPPSO by 8.621 × 10−6%.

Figure 7. Improvements obtained by the DCCSA in the 69-node test system.
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Regarding processing times, the DCNMA, the DCCBGA, and the DCPPSO were faster
than the proposed methodology. When compared to the DCCSA, they reduced processing
times by 75.6789%, 94.0767%, and 85.3903%, respectively. Importantly, these differences
in processing time are attributed to the population size used for the DCCSA. The DCCSA,
however, was faster than the DCVSA and the DCGNDO; it reduced processing times by
135.1417% and 227.75044% when compared to the DCVSA and the DCGNDO, respectively.
The processing times obtained by the DCCSA can be considered negligible when compared
to the planning horizon chosen for this study (i.e., 20 years).

As for the standard deviation, the proposed DCCSA produced the best results, as it
achieved an improvement of 743.5249% with respect to the DCNMA, of 343.5967% with
respect to the DCCBGA, of 318.4626% with respect to the DCVSA, of 1035.6953% with
respect to the DCNGDO, and of 18.6085% with respect to the DCPPSO.

According to this, the proposed DCCSA provided the best results in terms of solu-
tion quality and repeatability, which makes it the best option for solving the problem of
optimally locating and sizing PV generation units in the 69-node test system.

5.3.3. Feasibility Check

To verify whether the optimal solution yielded by the DCCSA is feasible, the active
power generation at the main supply node was evaluated before and after implementing
the solution obtained by the proposed methodology (see Figure 8).
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Figure 8. Impact of PV integration in the 69-node test system.

Before implementing the solution provided by the DCCSA, the power produced at
the slack node followed the same behavior of the demanded active power (see Figure 3)
along with the system losses. However, once the best solution delivered by the DCCSA
was implemented, the power produced at the slack node significantly decreased as the
power produced by the PV units increased until it hit zero in time period 14 when the PV
units injected 100% of their capacity. This proves that power generation at the slack node
respected the capacity constraint, as it yielded positive or zero values.

Finally, to confirm that the voltage profiles were within the regulation bounds (i.e.,
±10%), the behavior of the minimum and maximum voltages was examined for all time
periods once the solution delivered by the DCCSA was implemented (see Figure 9).

As may be concluded from Figure 9, the minimum and maximum voltage values in
all time periods respected the voltage regulation bounds, as they remained within ±10%.
In addition, the maximum voltage (i.e., 1.0322 pu) was recorded at node 64 when the PV
units injected 100% of their nominal power. The minimum voltage (i.e., 0.9092 pu), which
coincided with the minimum voltage of the base case, was recorded at node 65 when the
PV units did not inject power and during the period of peak demand (from hour 20 to 21).
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Figure 9. Voltage behavior during one day in the 69-node test system: (a) maximum voltage and
(b) minimum voltage

6. Conclusions and Future Work

This study presented a master–slave method that employs a discrete–continuous
version of the Crow Search Algorithm to solve the problem of optimally locating and sizing
PV generation units in electrical networks. In the slave stage, the DCCSA is responsible
for defining the set of nodes where the PV generation units are to be installed as well
as the sizes of such units. In the slave stage, the successive approximations power flow
method is in charge of finding the fitness function value. The objective function was the
reduction in the total annual operating costs of a electrical network, which include (i) the
energy purchasing costs at the main supply node, (ii) the investment in the PV generation
units, and (iii) their corresponding operation and maintenance costs. The parameters of the
proposed methodology were tuned using the CBGA.

The numerical results generated by our solution method in the 33- and 69-node test
systems proved its applicability and effectiveness in comparison with other six methods
reported in the specialized literature (the BONMIN solver of the GAMS, the DCCBGA,
the DCNMA, the DCVSA, the DCGNDO, and the DCPPSO algorithm). The following are
the key findings of this study:

� The DCCSA managed to reduce the total annual operating costs by approximately
1,000,783.62 USD/year and 1,053,276.87 USD/year in the 33- and 69-node test systems,
respectively. These values represent reductions of 27.0449% and 27.1589%. These are
the largest reductions found for the problem of locating and sizing PV generation
units, which indicates that the overall optimal solutions to this problem for both test
systems are 2,699,671.76 USD/year and 2,824,923.05 USD/year, respectively.

� After 100 consecutive evaluations, the proposed DCCSA showed the lowest standard
deviation values in both test systems, with improvements of 559.0663% and 18.6085%
with respect to the DCPPSO (the second method with the best results) in the 33- and 69-
node test systems, respectively. These results confirm the repeatability and robustness
of the DCCSA in solving the problem under study, which makes the methodology used
in this study the best option (i.e., over the other methodologies used in this topic) to
solve the problem regarding the location and sizing of PV generation units. Moreover,
this guarantees that in each evaluation, the solutions will be close to 80 USD/year and
637 USD/year for the 33- and 69-node test systems, respectively.

� The processing times required by the proposed technique to find an optimal and
feasible solution was 76.9990 s in the 33-node test system and 377.4915 s in the 69-node
test system. These are good values, considering that at each iteration, the DCCSA
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evaluated 1848 power flows more than the other methods. Additionally, processing
times are not critical in power system planning because the quality of the solution
provided by the methodology is what really matters.

� Due to the nonlinearities and nonconvexities of the mathematical model used to
express the problem of optimally locating and sizing PV generation units in electrical
systems, the complexity of the problem rises as the number of nodes increases. As a
result, the BONMIN solver of the GAMS was unable to find an optimal solution in
the 69-node test system. The proposed DCCSA, on the contrary, was found to be
independent of the number of nodes in the electrical system because it produced the
best results in terms of reductions in the total annual operating costs and standard
deviation, even as the complexity of the problem increased. This allows concluding
that the proposed DCCSA is the best option to solve the problem under analysis. Yet,
as the number of system nodes increases, so does the size of the solution space, which
implies that the time required to find an optimal solution will increase as well.

Based on our findings, future studies could reformulate the mathematical model of
the problem under study, taking into account the maximum thermal current supported by
the conductors in an electrical network. They could also solve the problem addressed in
this paper using a multi-objective optimization approach that improves not only economic
but also technical and environmental aspects that represent the operating conditions of
electrical systems. Finally, the optimal conductor selection problem could be included in
power system planning, and the costs associated with the investment in each conductor
could be considered.
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Abstract: By developing a robust control strategy based on the differential flatness concept, this paper
presents a solution for the bidirectional trajectory tracking task in the “full-bridge Buck inverter–DC
motor” system. The robustness of the proposed control is achieved by taking advantage of the
differential flatness property related to the mathematical model of the system. The performance of
the control, designed via the flatness concept, is verified in two ways. The first is by implementing
experimentally the flatness control and proposing different shapes for the desired angular velocity
profiles. For this aim, a built prototype of the “full-bridge Buck inverter–DC motor” system, along
with Matlab–Simulink and a DS1104 board from dSPACE are used. The second is via simulation
results, i.e., by programming the system in closed-loop with the proposed control algorithm through
Matlab–Simulink. The experimental and the simulation results are similar, thus demonstrating the
effectiveness of the designed robust control even when abrupt electrical variations are considered in
the system.

Keywords: motor drivers; power converters; full-bridge Buck inverter; DC motor; differential flatness;
flatness-based control; trajectory tracking task

MSC: 37N35; 57N45; 93-05; 93B52; 93C73; 93D20

1. Introduction

During the 21st century, the progress in energy transformation has allowed expansion
of the spectrum of technological applications from a purely industrial sector to a domestic
one. A clear example of such a change has been the diversification of devices that require the
transformation of electric energy into mechanical energy. With the aim of accomplishing the
aforesaid task of energetic transformation, one of the electric machines mainly used is the
DC motor. Thus, currently there is wide use of the DC motor in applications ranging from
home and public services to the entertainment industry. This fact, joined with the historical
necessity of DC motors in industrial applications [1], means the research community is
still interested in developing drivers for DC motors. Moreover, derived from the excellent
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benefits arising from feeding DC motors with power electronics converters, in the last
two decades, several efforts have developed new controllers for different “DC/DC power
electronic converters–DC motor” connections [2–60]. In particular, for the DC/DC Buck
converter, these connections can be classified into systems generating unidirectional [2–35]
or bidirectional movement [36–41], both related to the shaft of the DC motor. Based on
the fact that the angular velocity is one of the variables of interest to be controlled in these
kinds of systems, this work focuses on the trajectory tracking problem of a “full-bridge
Buck inverter–DC motor” system. Thus, the state-of-the-art associated with controller
design for the DC/DC Buck power electronic converter connected with the DC motor is
presented next.

1.1. Unidirectional “DC/DC Buck Converter–DC Motor” System

At the beginning of this millennium, Lyshevski proposed the first mathematical model
of the DC/DC Buck converter–DC motor system and solved the regulation control task
via a nonlinear PI control [2]. Afterwards in [3], Ahmad et al., designed and compared
the performance of the PI, fuzzy PI, and LQR control algorithms. In the same way, Bingöl
and Paçaci reported in [4] the development of software for controlling the system under
study via neural networks. Meanwhile, Sira-Ramírez and Oliver-Salazar in [5] studied the
concepts of active disturbance rejection control and differential flatness in two combinations
of the Buck converter with DC motors. Moreover, in recent years, several active disturbance
rejection control schemes have been developed for governing Buck converter-driven motor
systems, e.g., [6–11], while the study of controls based on differential flatness enabling
solving the trajectory tracking task have been proposed in [12–14]. On the other hand,
the applications of zero average dynamics of fixed point induction control techniques to
control the speed of a permanent magnet DC motor with a Buck converter were detailed by
Hoyos et al., in [15–18]. In the meantime, papers based on the sliding mode control (SMC)
were presented by Wei et al., Silva-Ortigoza et al., and Hernández-Guzmán et al. in [19–21],
respectively. More recently, other studies based on SMC were exhibited by Rauf et al.
in [22,23] and by Ravikumar and Srinivasan in [24]. Another solution was implemented
by Khubalkar et al. via fractional order PID controllers, whose tuning was executed with
a dynamic particle swarm optimization (dPSO) technique [25], with an improved dPSO
technique [26], and by using an ant colony optimization technique [27]. Additionally,
Srinivasan et al. [28,29] introduced a sensitivity analysis applied to the DC/DC Buck
converter–DC motor system by exploiting the exact tracking error dynamics passive output
feedback (ETEDPOF) methodology. Other recent control techniques investigated in the
literature include neuroadaptive backstepping based control, intelligent nonlinear adaptive
control, and neural network based intelligent control by Nizami et al. [30–32], piecewise
affine PI-based control by Hanif et al. [33], and adaptive neurofuzzy H∞-based control by
Rigatos et al. [34], while Kazemi and Montazeri in [35] elaborated a fault detection control
algorithm by combining a switching observer with the bond graph method.

1.2. Bidirectional “DC/DC Buck Converter–DC Motor” Systems

When the bidirectional rotation of the DC motor shaft is considered, and in the
search to overcome the intrinsic dynamic limitations associated with the DC/DC Buck
converter, two alternatives have been proposed. On the one hand, Silva-Ortigoza et al. [36]
proposed the dynamic model and experimental validation of the “DC/DC Buck converter–
inverter–DC motor” topology. In addition, a sensorless passivity-based control, via the
ETEDPOF methodology, for executing the bidirectional angular velocity trajectory tracking
task in this topology, was addressed in [37]. Meanwhile, two robust differential flatness-
based tracking controls for the “DC/DC Buck converter–inverter–DC motor” topology
were designed by Hernández-Márquez et al. [38]. Lastly, an adaptive backstepping SMC
associated with Chebyshev neural network estimation for the angular velocity trajectory
tracking task for such a topology was considered by Chi et al. [39]. On the other hand,
Hernández-Márquez et al. [40] developed a mathematical model, experimentally validated,
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for a new “full-bridge Buck inverter–DC motor” system that accomplishes bidirectional
rotation of the DC motor shaft. Later, the angular velocity trajectory tracking problem
related to this system was tackled by Silva-Ortigoza et al. [41], where a sensorless control
based on the ETEDPOF methodology was utilized.

1.3. Other “DC/DC Power Converters–DC Motor” Systems

Complementary to the control schemes that have been developed for the connection
between the DC/DC Buck converter and the DC motor, other topologies of DC/DC power
electronic converters to drive the DC motors include the following. For the unidirectional
and bidirectional “DC/DC Boost converter–DC motor” systems, several controllers have
been presented in [42–51], respectively. For the DC/DC Buck-Boost converter with a DC
motor, different control schemes were introduced for the unidirectional case in [52,53]
and for the bidirectional case in [54,55]. On the other hand, the design of controllers for
the Sepic, Luo, and Cuk converters feeding DC motors have been reported in [56–58],
respectively. Finally, control algorithms for the multilevel DC/DC Buck converter and
parallel DC/DC Buck converter connected with the DC motor have been studied in [59,60],
respectively.

1.4. Discussion of Related Work, Motivation, and Contribution

Regarding the aforementioned literature on the “DC/DC Buck converter–DC motor”
system [2–35], it is worth noting that all these control solutions for the angular velocity
regulation and tracking problems have only dealt with the unidirectional rotation of the
DC motor shaft. This is because the DC/DC Buck converter only supplies electric power in
the form of unipolar voltage. This restriction is solved by integrating an inverter in such
systems with the aim of providing them with the capability of supplying electric power
with bipolar voltage. As a consequence, bidirectional “DC/DC Buck converter–DC motor”
systems have emerged, and proposals to solve the bidirectional control of the motor shaft
angular velocity have been introduced in [36–41].

Related to some applications of these systems, it is possible to find mechatronic
systems [61], robotic arms [62], and wheeled mobile robots [63] for the unidirectional
“DC/DC Buck converter–DC motor” system, whereas, applications of the bidirectional
“DC/DC Buck converter–DC motor” system have been recently presented in renewable
energy by Chi et al. in [39] and wheeled mobile robots by Hernández-Guzmán et al. in [64].
On the other hand, important research works recently developed and devoted to the design
of controllers for the “full-bridge Buck inverter” system have been reported in [65,66].

In the context of the bidirectional “DC/DC Buck converter–DC motor” systems, one
of these bidirectional proposals is the “full-bridge Buck inverter–DC motor” system. This
system, recently reported in [40], was controlled by designing a passive tracking control
based on the ETEDPOF method in [41]. With such an approach, the control objective is
achieved, i.e., the angular velocity ω converges to a desired angular velocity profile ω∗.
However, when abrupt variations in load R are introduced into the system in closed-loop,
ω no longer tracks ω∗. This can be seen in Figure 1, which corresponds to the experimental
results reported in [41] associated with abrupt changes in load R.

Motivated by the benefits of the “full-bridge Buck inverter–DC motor” system topol-
ogy presented in [40], the possible potential applications of this topology, and the exper-
imental results of the passivity-based control reported in [41], the main contribution of
this study is twofold: (1) to develop a robust differential flatness-based tracking control
for the “full-bridge Buck inverter–DC motor” system and (2) to experimentally validate
such a proposed scheme on a built platform of the system and to corroborate the results
with the corresponding simulation results in closed-loop. It is worth noting that, compared
with [41], the control algorithm designed herein is robust against parametric variations.
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Figure 1. Experimental results of the passivity-based control reported in [41], when ω∗ is of the
Bézier type (22), and the abrupt variations in load R, declared in (26), are carried out in the system.

From the aforementioned discussion of the state-of-the-art, motivation, and contri-
butions of the work, the remaining parts of this paper are organized as follows. Section 2
presents the generalities of the “full-bridge Buck inverter–DC motor” system. Section 3
provides the design of the robust flatness-based control for solving the angular velocity
trajectory tracking problem on the system. In Section 4, the blocks of the built experimental
platform used for the experimental tests in closed-loop are described. In Section 5, the
experimental and the corresponding simulation results of the system in closed-loop are
detailed and discussed. Finally, in Section 6, the conclusions of this study are presented.

2. “Full-Bridge Buck Inverter–DC Motor” System

The electric circuit of the full-bridge Buck inverter–DC motor system is depicted in
Figure 2.

Figure 2. Full-bridge Buck inverter–DC motor system and clock signals u associated with Q1, Q1, Q2,
and Q2, for the negative duty cycle (uav < 0) and for the positive duty cycle (uav ≥ 0).

The circuit shown in Figure 2 can be divided into two subsystems:

• The subsystem full-bridge Buck inverter, which modulates and feeds with bipolar
voltage υ the DC motor through the input u. It is composed of a power supply E
and an array of four transistors, denoted as Q1, Q1, Q2, and Q2, which operate in
accordance with the clock cycles shown in Figure 2. This subsystem is made up of an
LC filter, where i is the circulating current over the inductor L, and υ is the voltage
appearing across the terminals of the parallel connection between the capacitor C and
the load R.
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• The subsystem DC motor, which relates to the actuator system and comprises the ar-
mature resistance Ra, armature inductance La, and armature current ia. ω corresponds
to the angular velocity associated with the motor shaft. Additional parameters are the
moment of inertia of the rotor and motor load J, the viscous friction coefficient of the
motor b, the counterelectromotive force constant ke, and the motor torque constant km.

As stated in [40], the switched model of the full-bridge Buck inverter–DC motor system
shown in Figure 2 is given by

L
di
dt

= −υ + Eu,

C
dυ

dt
= i − υ

R
− ia,

La
dia

dt
= υ − Raia − keω,

J
dω

dt
= kmia − bω,

(1)

where u ∈ {−1, 0, 1} represents the positions of the transistors Q1, Q1, Q2, and Q2 when
operating in the negative or positive cycles according to the clock signals u that are shown
in Figure 2. The rest of the variables and constants associated with the mathematical
model (1) were previously defined. Moreover, according to [40], the average mathematical
model of the full-bridge Buck inverter–DC motor system is determined by

L
di
dt

= −υ + Euav,

C
dυ

dt
= i − υ

R
− ia,

La
dia

dt
= υ − Raia − keω,

J
dω

dt
= kmia − bω,

(2)

with uav ∈ [−1, 1], where uav is the duty cycle or average input signal of the system. The
rest of the variables and constants concerning the mathematical model (2) were previously
defined.

3. Robust Flatness-Based Tracking Control

This section presents the development of a robust differential flatness-based tracking
control for the full-bridge Buck inverter–DC motor system. Such a control exploits the
differential flatness property employed by the mathematical model of system (2). The
following proposition summarizes the main result.

Proposition 1. Consider the average mathematical model of the full-bridge Buck inverter–DC
motor system given in (2), in closed-loop, with the following controller:

uav =
[

CJLLa
kmE

]
μ+

[
bCLLaR+CJLRRa+JLLa

kmRE

]
ω(3)

+αω̈ +
[

bLR+bLRa+bLaR+kekm L+JRRa
kmRE

]
ω̇ +

[
bRa+kekm

kmE

]
ω,

(3)

where

μ = ω∗(4) − k4

[
ω(3) − ω∗(3)

]
− k3[ω̈ − ω̈∗]− k2[ω̇ − ω̇∗]− k1[ω − ω∗]

−k0
∫ t

0 [ω − ω∗]dτ,
(4)
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and

k0 = aω4
n,

k1 = 4aζω3
n + ω4

n,

k2 = 2aω2
n + 4aζ2ω2

n + 4ζω3
n, (5)

k3 = 4aζωn + 2ω2
n + 4ζ2ω2

n,

k4 = a + 4ζωn.

Then, ω(t) → ω∗(t) exponentially, where ω∗(t) is continuously differentiable up to the
fourth time derivative.

Proof. In [40], it was demonstrated that the full-bridge Buck inverter–DC motor system
average model given in (2) is differentially flat, with the motor angular velocity as the flat
output, i.e.,

F = ω. (6)

This means that all of the state variables x as well as the input uav are given as functions
of the flat output and a number of its time derivatives, which is [40]

x =
[

i(ω), υ(ω), ia(ω), ω
]T , uav = uav(ω), (7)

where
i(ω) =

[
CJLa

km

]
ω(3)+

[
bCLaR+CJRRa+JLa

kmR

]
ω̈

+
[

bLa+JR+JRa+bCRRa+kekmCR
kmR

]
ω̇ +

[
bR+bRa+kekm

kmR

]
ω,

(8)

υ(ω) = JLa
km

ω̈ +
[

bLa+JRa
km

]
ω̇ +

[
bRa
km

+ ke

]
ω, (9)

ia(ω) = J
km

ω̇ + b
km

ω, (10)

and
uav(ω) =

[
CJLLa
kmE

]
ω(4) +

[
bCLLaR+CJLRRa+JLLa

kmRE

]
ω(3) + αω̈

+
[

bLR+bLRa+bLaR+kekm L+JRRa
kmRE

]
ω̇ +

[
bRa+kekm

kmE

]
ω,

(11)

with
α =

bLLa+JLR+JLRa+bCLRRa+kekmCLR+JLaR
kmRE

.

Notice there are four variables that can be known by direct measurements, i.e., i, υ, ia,
and ω. Moreover, there are three linear Equations (8)–(10). Hence, the three unknowns
ω̇, ω̈, and ω(3) can be computed. This means that the control law in (3) can be obtained
by mimicking (11) and replacing the unknown variable ω(4) by another variable, say
μ. Likewise, notice that (11) represents the flatness-based model of the full-bridge Buck
inverter–DC motor system. Thus, (11) and (3) can be equated to obtain the closed-loop
dynamics, i.e.,

ω(4) = μ. (12)

This expression represents a linear system given by a chain of four integrators, i.e.,
an unstable linear system. Hence, μ must be designed in order to stabilize this chain of
integrators. This motivates the definition of μ in (4) to obtain

e(4)+ k4e(3)+ k3 ë + k2 ė + k1e + k0

∫ t

0
e(τ)dτ = 0, (13)
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where e(t) = ω(t)− ω∗(t). The integral component ensures zero static error in steady state
and compensates the abrupt variations that can be generated in some parameters of the
system. Differentiating once the above expression with respect to time yields

e(5) + k4e(4) + k3e(3) + k2 ë + k1 ė + k0e = 0. (14)

This linear fifth-order dynamics is exponentially stable if and only if all of the five
roots of the following polynomial have negative real parts

P(s) = s5 + k4s4 + k3s3 + k2s2 + k1s + k0. (15)

This is ensured if the set of gains {k0, k1, k2, k3, k4} are chosen such that P(s) is identical
to the following Hurwitz polynomial

PH(s) = (s + a)
(

s2 + 2ζωns + ω2
n

)2
,

where a, ζ, and ωn are positive constants. This is accomplished if we choose {k0, k1, k2, k3, k4}
as in (5). Since (14) has been ensured to be exponentially stable, we have that ω(t) →
ω∗(t) exponentially.

Now, consider the expressions in (8)–(10), and suppose that ω is constant, i.e., that all
velocity time derivatives are zero. Then, the following is found:

i(ω) =

[
bR + bRa + kekm

kmR

]
ω, (16)

υ(ω) =

[
bRa

km
+ ke

]
ω, (17)

ia(ω) =
b

km
ω. (18)

Assume that uncertainty exists in some of the system parameters appearing in (16)–(18).
From these expressions, it can be realized that the steady-state value of the velocity changes
if i, υ, and ia, do not change. Hence, consider (13). In order to take into account that the ve-
locity has deviated from its desired steady-state value, we replace k1e by k1(ω + Δω − ω∗),
where Δω stands for the constant velocity deviation. Then, we obtain

e(4)+ k4e(3)+ k3 ë + k2 ė + k1e + k0

∫ t

0
e(τ)dτ = −k1Δω. (19)

After differentiating once the above expression, and since −k1Δω is a constant, (14) is
obtained again. Thus, it is concluded one more time that ω(t) → ω∗(t) exponentially. This
completes the proof of Proposition 1.

4. Description of the Built Experimental Platform

This section describes the connections of the built prototype full-bridge Buck inverter–
DC motor system and the implementation of the designed robust flatness-based control.

A photograph showing the connections of the built full-bridge Buck inverter–DC
motor system in closed-loop is exhibited in Figure 3. The elements associated with
this photograph are the following: (1) energy power source E, (2) desktop computer,
(3) dSPACE DS1104 R&D controller board, (4) voltage differential probe to obtain υ (via a
Tektronix P5200A probe), (5) current probe to find i (via a Tektronix A622 probe), (6) full-
bridge Buck inverter, (7) energy power source for the instrumentation of the electronics
stage, (8) current probe to acquire ia (via a Tektronix A622 probe), (9) Omron E6B2-CWZ6C
encoder to determine ω, and (10) Engel GNM 5440E-G3.1 DC motor.
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Figure 3. Photograph of the hardware used for the experimental tests of the full-bridge Buck inverter–
DC motor system in closed-loop.

Figure 4 shows the block diagram of the connections between the system, Simulink,
and the dSPACE DS1104 controller board.

Figure 4. Connections between the software and hardware blocks of the built full-bridge Buck
inverter–DC motor system in closed-loop.
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The blocks composing the diagram of Figure 4 are as follows:

• System. This block corresponds to the built full-bridge Buck inverter–DC motor system.
Here, the variables i, υ, ia, and ω were measured via a Tektronix A622 current probe,
a Tektronix P5200A voltage probe, a Tektronix A622 current probe, and an Omron
E6B2-CWZ6C encoder, respectively. On the other hand, the values of the parameters
associated with the Buck converter and the Engel GNM 5440E-G3.1 DC motor were

E = 32 V, L = 4.94 mH, C = 4.7 μF, R = 48 Ω, (20)

and

La = 2.22 mH, Ra = 0.965 Ω, km = 120.1 × 10−3 N·m
A ,

ke = 120.1 × 10−3 V·s
rad , J = 118.2 × 10−3 kg·m2, b = 129.6 × 10−3 N·m·s

rad ,
(21)

respectively.
• Flatness-based tracking control. The flatness-based control (3) was implemented in this

block with Simulink. On the one hand, the determination of the angular velocity
ω, required by the control, was carried out via an E6B2-CWZ6C encoder. On the
other hand, the desired angular velocity profile ω∗, also required by the control, was
produced from the desired trajectory subblock. Meanwhile, the control gains were
obtained after the parameters a = 0.2, ζ = 10 and ωn = 1200 were introduced in (5).
Lastly, the reference variables i∗, υ∗, i∗a , and u∗

av were generated when ω∗ was replaced
into (8)–(10), and (11), respectively.

• Controller board and signal conditioning. In this block, the implementation of the
switched control, u, corresponding to the obtained flatness-based tracking control
uav (3), was carried out via the PWM subblocks of the dSPACE DS1104 controller
board. Thus, after obtaining u, the correct on/off activation of the transistors Q1,
Q1, Q2, and Q2 of the full-bridge inverter circuit was achieved. Such a circuit was
built with four IRF640N MOSFET transistors, two IR2101 drivers, and two 6N137
optocouplers. Finally, the signals i, υ, ia, and θ were correctly adjusted through signal
conditioning (SC) blocks.

5. Experimental and Simulation Tests in Closed-Loop and Discussion of the Results

In order to validate the performance of the designed robust flatness-based tracking
control, experimental tests were carried out on the aforementioned built experimental
platform. After this, by using Matlab–Simulink, the corresponding simulation results were
derived, which are presented.

5.1. Results of the System in Closed-Loop

Five different experimental tests were implemented. From the first test to the fourth
one, four desired trajectories of ω∗, along with the system nominal parameters declared
in (20) and (21), were considered. In the fifth experimental test, with the aim of verifying
the control’s robustness, some perturbations were introduced into the system. In all the
plotted graphs, the variables of the system are shown; first ω and ia and then i, υ, and uav.
To corroborate the experimental results, the associated simulation results are also shown.

5.1.1. Experimental and Simulation Test 1

In this experiment, the desired angular velocity profile ω∗ was declared by the tenth-
order Bézier polynomial as follows:

ω∗(t) = ωi(ti) + [ω f (t f )− ωi(ti)]ϕ
(

t, ti, t f

)
, (22)
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being ϕ
(

t, ti, t f

)
defined by

ϕ
(

t, ti, t f

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 t ≤ ti,(
t−ti

t f −ti

)5
×

[
252 − 1050

(
t−ti

t f −ti

)
+ 1800

(
t−ti

t f −ti

)2

−1575
(

t−ti
t f −ti

)3
+ 700

(
t−ti

t f −ti

)4
− 126

(
t−ti

t f −ti

)5
] t ∈ (ti, t f ),

1 t ≥ t f .

Here, we proposed ωi = −10 rad
s and ω f = 10 rad

s for times ti = 4 s and t f = 6 s,
respectively. Figure 5 shows the experimental evaluation performed by the full-bridge
Buck inverter–DC motor system in closed-loop.
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Figure 5. Experimental dynamic response of the full-bridge Buck inverter–DC motor system in
closed-loop for the first desired trajectory ω∗ (22).

The obtained simulation results of this test are shown in Figure 6.
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Figure 6. Simulation results of the full-bridge Buck inverter–DC motor system in closed-loop for the
first desired trajectory ω∗ (22).
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5.1.2. Experimental and Simulation Test 2

To demonstrate the effectiveness of the developed control when periodic signals are
contemplated, sinusoidal trajectories were explored as desired angular velocity profiles.
Thus, in the second experiment ω∗ was chosen as:

ω∗(t) = 10 sin(0.8πt). (23)

Figure 7 exhibits the corresponding experimental results of the full-bridge Buck inverter–
DC motor system in closed-loop.
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Figure 7. Experimental results when the second desired angular velocity profile, given by (23), is
contemplated for the system in closed-loop.

The simulation results associated with this desired trajectory are exhibited in Figure 8.
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Figure 8. Simulation results when the second desired angular velocity profile, given by (23), is
contemplated for the system in closed-loop.

5.1.3. Experimental and Simulation Test 3

A second sinusoidal waveform was considered as the desired trajectory ω∗ in the
implementation of the third experiment. Here, ω∗ was given by

ω∗(t) = 10
(

1 − e−2t2
)

sin(0.8πt). (24)
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The evolution of the system variables associated with the proposed flatness control
approach is illustrated in Figure 9.
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Figure 9. Experimental response of the system in closed-loop for the third desired angular velocity
ω∗ (24).

The simulation results associated with the experimental results depicted in Figure 9
are presented in Figure 10.
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Figure 10. Simulation response of the system in closed-loop for the third desired angular veloc-
ity ω∗ (24).

5.1.4. Experimental and Simulation Test 4

In the realization of the fourth experiment, the sinusoidal signal determined by (25)
was introduced as the desired trajectory ω∗, i.e.,

ω∗(t) = 10 sin(0.125πt
3
2 ). (25)

For this experiment, the desired trajectory tracking performance of the system in
closed-loop is presented in Figure 11. The corresponding simulation results are shown in
Figure 12.
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Figure 11. Experimental results of the system in closed-loop, when the fourth desired trajectory for
ω∗, determined by (25), is taken into account.
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Figure 12. Simulation results of the system in closed-loop when the fourth desired trajectory for ω∗,
determined by (25), is taken into account.

5.1.5. Experimental and Simulation Test 5

Lastly, the fifth experiment was carried out with abrupt perturbations in the converter
load R inserted in real time into the built platform of the system. For this experiment, the
desired angular velocity profile ω∗ to be followed by the motor shaft was considered as
in (22). Meanwhile, the abrupt perturbations in R were selected as:

Rm =

{
R 0 s ≤ t < 7.5 s,
30%R 7.5 s ≤ t ≤ 10 s.

(26)

The experimental performance of the flatness-based control when (26) was executed
in the system is displayed in Figure 13. The simulation results are displayed in Figure 14.
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Figure 13. Experimental results associated with the designed flatness-based control (3), when ω∗ is
of the Bézier type (22), and the abrupt variations in load R, declared in (26), are introduced into the
system.
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Figure 14. Simulation results associated with the designed flatness-based control (3), when ω∗ is
of the Bézier type (22), and the abrupt variations in load R, declared in (26), are introduced into
the system.

5.2. Discussion of the Experimental and Simulation Results

The results of the experimental and simulation tests are discussed here. According to
the experimental results presented in Figures 5, 7, 9, 11, and 13 along with the corresponding
simulation results depicted in Figures 6, 8, 10, 12, and 14, respectively, we deduced that
the flatness-based control satisfactorily accomplished the execution of the angular velocity
trajectory tracking task in the full-bridge Buck inverter–DC motor system, i.e., ω → ω∗.
Thus, since we have shown that the obtained experimental results and their corresponding
simulation results had a similar behavior, the remainder of this section is devoted to the
comparative analysis of the experimental results obtained (i.e., by using the flatness concept)
with the results reported in the literature.

To highlight the good performance of the designed flatness-based control (3) on the
system, in the following, for the four different desired profiles ω∗, i.e., (22)–(25), the plotted
graphics of the tracking errors corresponding to ω and υ are presented for the next three
cases:
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1. The associated experimental tests of the system in closed-loop with the flatness-based
control (studied in this paper). Here, the closed-loop tracking errors for the angular
velocity (eω EjF ) and voltage (eυ EjF ) were determined by

eω EjF = ω − ω∗,

eυ EjF = υ − υ∗,
(27)

where subscript EjF, for j ∈ {1, 2, 3, 4}, associates the experimental test from which
the tracking error was obtained. That is, for j = 1, j = 2, j = 3, and j = 4, the desired
trajectories ω∗ correspond to (22)–(25), respectively.

2. The experimental dynamic responses of the system in closed-loop with the passive
control based on the ETEDPOF strategy, developed in [41]. Here, the closed-loop track-
ing errors of the angular velocity and voltage denoted by eω EjP and eυ EjP , respectively,
were declared as

eω EjP = ω − ω∗,

eυ EjP = υ − υ∗,
(28)

where subscript EjP, for j ∈ {1, 2, 3, 4}, represents the experimental response from
which the tracking error was obtained.

3. The obtained experimental results for the system in open-loop, analyzed in [40]. Here,
the open-loop tracking errors of the angular velocity (eω Ejol ) and voltage (eυ Ejol ) were
defined by

eω Ejol = ω − ω∗,

eυ Ejol = υ − υ∗,
(29)

where subscript Ejol , for j ∈ {1, 2, 3, 4}, indicates the experimental result in open-loop
from which the tracking error was obtained.

Figure 15 depicts the plotted graphics of the tracking errors related to ω and υ given
by (27)–(29) of the full-bridge Buck inverter–DC motor system. On the one hand, according
to Figure 15a,c,e,g, it can be seen that the closed-loop tracking errors obtained with the
flatness-based control for ω (i.e., eω E{1,2,3,4}F

) were lower in magnitude than the closed-
loop tracking errors associated with the passive control (i.e., eω E{1,2,3,4}P

). In addition,
in accordance with Figure 15b,d,f,h, a similar evaluation was achieved for the flatness
closed-loop tracking errors corresponding to υ (i.e., eυ E{1,2,3,4}F

) in comparison with their
associated passive closed-loop tracking errors (i.e., eυ E{1,2,3,4}P

). Meanwhile, note that the
open-loop tracking errors, defined in (29) for ω and υ (i.e., eω E{1,2,3,4}ol

and eυ E{1,2,3,4}ol
),

are also presented in Figure 15 with the aim of exhibiting how the system profited from the
proposed flatness-based control and the developed passive control reported in [41] and not
for the purpose of comparative evaluation. On the other hand, a visual comparison between
the experimental results of the passivity-based control reported in [41] (see Figure 1) and
the experimental results of the designed flatness-based control (see Figure 13) shows how
the performance of the latter control was superior. This is due to the fact that it is robust
against parametric variations in comparison with the passivity-based control.

Lastly, from the aforementioned comments on the experimental results, it is inferred
that the developed flatness-based control given by (3) satisfactorily carried out the aim of
solving the angular velocity trajectory tracking problem in the full-bridge Buck inverter–DC
motor system, that is, ω → ω∗.
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Figure 15. Plotted graphics of the tracking errors associated with variables ω and υ of the full-bridge
Buck inverter–DC motor system. The signal pairs eω E{1,2,3,4}F

–eυ E{1,2,3,4}F
, eω E{1,2,3,4}P

–eυ E{1,2,3,4}P
,

and eω E{1,2,3,4}ol
–eυ E{1,2,3,4}ol

are the tracking errors obtained for ω and υ, when the system con-
siders the flatness-based control, the passivity-based control [41], and the experimental results in
open-loop [40], respectively. (a) Tracking errors of ω, for the desired trajectory ω∗ declared in (22).
(b) Tracking errors of υ, for the desired trajectory ω∗ declared in (22). (c) Tracking errors of ω, when
the desired profile ω∗ is given by (23). (d) Tracking errors of υ, when the desired profile ω∗ is given
by (23). (e) Tracking errors of ω, for ω∗ defined by (24). (f) Tracking errors of υ, for ω∗ defined by (24).
(g) Tracking errors of ω, for the desired trajectory considered in (25). (h) Tracking errors of υ, for the
desired trajectory considered in (25).
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6. Conclusions

A robust differential flatness-based control for carrying out the angular velocity tra-
jectory tracking task associated with the full-bridge Buck inverter–DC motor system was
developed and experimentally validated in this work. This robust control was designed
by exploiting the differential flatness property of the mathematical model related to the
full-bridge Buck inverter–DC motor system. Then, the experimental implementation of the
robust flatness-based control was programmed by utilizing Simulink and a dSPACE DS1104
controller board on a built prototype of the full-bridge Buck inverter–DC motor system.
Lastly, the closed-loop system was also programmed in Matlab–Simulink with the purpose
of obtaining the corresponding simulation results. After analyzing the experimental results
of the closed-loop system, it was concluded that the control objective, i.e., ω → ω∗, was
solved even when abrupt variations were added to the nominal parameters of the system.
Such a conclusion was corroborated by comparison with the simulation results.

Finally, derived from the experimental results satisfactorily obtained, future work
could be developed on proposing this system as a viable electronics power stage for AC
motors, renewable energy systems, electromechanical systems, robotic arms, wheeled
mobile robots, uncrewed underwater vehicles, and mechatronic systems.
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Abstract: Due to the need to include renewable energy resources in electrical grids as well as the
development and high implementation of PV generation and DC grids worldwide, it is necessary
to propose effective optimization methodologies that guarantee that PV generators are located and
sized on the DC electrical network. This will reduce the operation costs and cover the investment
and maintenance cost related to the new technologies (PV distributed generators), thus satisfying
all technical and operative constraints of the distribution grid. It is important to propose solution
methodologies that require short processing times, with the aim of exploring a large number of
scenarios while planning energy projects that are to be presented in public and private contracts,
as well as offering solutions to technical problems of electrical distribution companies within short
periods of time. Based on these needs, this paper proposes the implementation of a Discrete–
Continuous Parallel version of the Particle Swarm Optimization algorithm (DCPPSO) to solve the
problem regarding the integration of photovoltaic (PV) distributed generators (DGs) in Direct Current
(DC) grids, with the purpose of reducing the annual costs related to energy purchasing as well as
the investment and maintenance cost associated with PV sources in a scenario of variable power
demand and generation. In order to evaluate the effectiveness, repeatability, and robustness of the
proposed methodology, four comparison methods were employed, i.e., a commercial software and
three discrete–continuous methodologies, as well as two test systems of 33 and 69 buses. In analyzing
the results obtained in terms of solution quality, it was possible to identify that the DCPPSO proposed
obtained the best performance in relation to the comparison methods used, with excellent results
in relation to the processing times and standard deviation. The main contribution of the proposed
methodology is the implementation of a discrete–continuous codification with a parallel processing
tool for the evaluation of the fitness function. The results obtained and the reports in the literature for
alternating current networks demonstrate that the DCPPSO is the optimization methodology with
the best performance in solving the problem of the optimal integration of PV sources in economic
terms and for any kind of electrical system and size.

Keywords: DC networks; discrete–continuous metaheuristic; parallel processing tool; photovoltaic
generation; variable power demand; variable renewable generation

MSC: 65K05; 90C26; 90C27

1. Introduction

Nowadays, DC grids are widely used around the world given their different advantages
in comparison with their alternate current (AC) counterparts, i.e., their easy implementation,
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low investment and maintenance costs, and low operating complexity [1–4]. For these reasons,
several electrical industry manufacturers and researchers have put their efforts and money
into developing efficient methodologies for the operation and planning of this kind of
grid, with the optimal integration of distributed energy resources currently being the topic
of interest [5–8]. The optimal integration of distributed energy resources aims to locate
and operate distributed generators (DGs) and energy storage systems within electrical
systems in order to improve the different technical, economic, and environmental indices
of DC grids [9–11]. This problem has been highly studied in alternating current networks
by multiple authors, who obtained excellent results in terms of solution and processing
times [12–14] and have taken advantage of different methodologies for solving problems
with similar characteristics proposed in the literature [15,16], with particular adaptations
to different electrical issues. However, the performance of the methodologies for AC
networks reported in the literature must be evaluated in DC grids through the proposal
of very new methodologies; in each of these cases, the mathematical formulations are
different due to the absence of reactive or frequency components in the DC networks,
which generates a completely different problem. Consequently, the optimal integration
of PV sources into DC grids has become a widely studied topic in recent years [17–19].
In the specialized literature, many studies have been reported with regard to solving
the problem of the optimal integration of PV sources into DC grids in order to improve
technical conditions (power loss, voltage profiles, system chargeability, etc.) and reduce the
environmental impact associated with fossil fuel-based generation as well as with operating
and investment costs [20–22].

As for the methodologies used to improve the technical characteristics of the grids,
multiple works can be found in the literature. One example is [23], which proposed the
use of mixed-integer quadratic programming and the General Algebraic Modeling System
(GAMS) software as a solution. In this work, the authors demonstrated the effectiveness
of GAMS solvers in terms of standard deviation and processing times. However, this
kind of software is often stuck in the local optima and increases the costs and complexity
of the solution methodology. Other works have used integer non-linear programming
methods to represent the mathematical model that could describe the optimal integration
of DGs into DC grids for the reduction of power losses [24], which also requires specialized
software, thus increasing the acquisition costs and the complexity of the solution. In or-
der to minimize the implementation of specialized software, different authors have used
optimization methods that were based on sequential programming and developed in free
software, aiming to reduce power losses via algorithms such as the particle swarm opti-
mization method [12] and the vortex search algorithm [25], among others [26]. The solution
impact, standard deviation, and processing time from these works’ simulation results were
then evaluated in order to demonstrate the effectiveness and robustness of the proposed
solution methodologies.

In the last decade, several works have been reported whose objective function is
to reduce CO2 emissions in DC grids by optimally sitting and sizing PV sources. These
works employed optimization methods based on sequential programming and aimed to
improve the quality of the solution as well as reduce processing times by avoiding the
implementation of specialized software [27,28]. However, most of the works published
in recent years have focused on improving economical indices such as the reduction of
energy purchasing/production, investment, and maintenance costs associated with DG
as these indices directly affect both users and electrical operators. In this vein, PV sources
are the most developed and installed technology around the world. An example of this
is the work presented in [29], which used the BONMIN solver of GAMS to solve the
mathematical model that represents the problem of optimal integration of DGs in DC grids
in order to reduce annual costs. This methodology remained stuck in the local optima,
with short processing times and a standard deviation of zero. Similarly, in [30], a two-stage
optimization process was proposed for the integration of PV and wind generators in a DC
grid, with the aim of reducing production and investment costs. The results demonstrated
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the effectiveness of the proposed methodology in terms of its objective function. However,
the authors did not analyze the method’s repeatability and processing times. In addition,
this work employed a master–slave methodology that is traditionally used in the literature
to solve for the optimal integration of DGs in both DC and AC grids [31]. This methodology
employs two kinds of optimization methods, i.e., discrete and continuous, thus requiring
more time and increasing the complexity of the solution.

Seeking to improve the effectiveness and robustness of the solution methodologies for
the problem under study, the literature has proposed modified optimization algorithms that
employ discrete–continuous methodologies to solve the problem of PV sources’ optimal
integration into DC grids. These techniques involve continuous optimization methods
that force some variables within the solution to be discrete, thus offering a solution to the
location problem while keeping the rest of the variables continuous in order to solve the
DG sizing problem. An example of this is [29], where a discrete–continuous version of the
vortex search algorithm for integrating PV sources in DC grids was proposed. Its aim was
to reduce the annual costs associated with energy purchasing, investment, and maintenance.
In this paper, the authors compared the results obtained by the proposed methodology to a
discrete–continuous version of the Chu and Beasley genetic algorithm and the BONMIN
solver of GAMS, which are used to solve the same problem in AC grids [32]. This work
compared the average results obtained by the solution methodologies, demonstrating the
effectiveness of the proposed solution, but it did not analyze the effects of all solution meth-
ods on aspects such as standard deviation and processing times. Furthermore, within the
mathematical model and its validation, the voltage and branch current limits associated
with the test systems were not analyzed. By using a discrete–continuous codification,
ref. [33] proposed a modified version of the generalized normal distribution optimizer to
solve the studied problem. In their manuscript, the authors compared the results obtained
with a discrete–continuous version of the vortex search algorithm, a genetic algorithm,
and the BONMIN solver of GAMS. The results obtained demonstrated the effectiveness of
the proposed methodology, and all constraints related to the operation of the microgrids
were satisfied. However, the proposed methodology reported longer times in compari-
son with other methods. Moreover, the authors did not include the analysis of standard
deviation and the impact of processing times.

Based on the aforementioned works, it is possible to conclude that it is currently neces-
sary to propose new methodologies for solving the problem of integrating PV sources into
DC grids, ones that reduce complexity by implementing discrete–continuous codifications
and by reducing the processing times. These must also guarantee excellent performance in
terms of the objective function and standard deviation, with the aim of obtaining a solution
of good quality each time that the algorithm is executed. Another objective should be to
achieve shorter processing times in order to explore a large number of scenarios while
planning the energy projects that are to be presented in public and private contracts, as well
as to offer a solution to the technical problems in distribution electrical companies within a
short period of time [34].

In light of the issues mentioned above, this study implemented a discrete–continuous
parallel version of the particle swarm optimization (PSO) algorithm to solve the problem
regarding the integration of PV sources into DC grids. This solution methodology employs
a parallel processing tool that takes advantage of all the functions of the computer, with the
purpose of reducing processing times. This methodology has been used in the literature to
solve the problem of the optimal integration of PV sources in AC grids [13]; however, its
performance has not been validated in DC grids. The reduction of annual costs associated
with energy purchasing, investment, and maintenance in PV sources installed in DC
grids was thus used as an objective function by implementing a fitness function to ensure
compliance with the technical and operative constraints that represent the operation of the
DC in an environment of PV sources. Furthermore, to demonstrate the effectiveness of the
proposed methodology, two test systems of 33 and 69 buses were used, and we focused
on the methodologies that consider the integration of distributed energy resources into
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DC grids. In addition, four methods were employed for comparison (most of which were
discrete–continuous, as identified in the state of the art), including the BONMIN solver of
GAMS. This paper makes the following contributions:

i. A new approach for the discrete–continuous version of the particle swarm optimiza-
tion algorithm;

ii. The implementation of parallel processing to solve the problem concerning the inte-
gration of PV sources into DC grids in order to reduce processing times and improve
the exploration of the algorithm;

iii. The identification of the most efficient methodology to date via simulation results,
which could solve the problem of the optimal integration of PV sources into AC and
DC grids for annual cost reduction. This considers the results reported in [13] for AC
networks.

This paper is structured as follows: Section 2 presents the mathematical model used
to solve the problem of the optimal integration of PV sources into DC grids for annual
cost reduction; Section 3 describes the proposed solution methodology; Section 4 describes
the 33- and 69-node test systems as well as the generation and demand curves used and
the considerations made in obtaining the simulation results; Section 5 analyzes the results
obtained by the methodologies in terms of the solution, processing times, and repeatability;
and Section 6 presents the conclusions and future works derived from this research.

2. Mathematical Formulation

This section presents the mathematical formulation of the problem concerning the
integration of PV sources into DC grids for the reduction of energy production/purchas-
ing costs associated with conventional generators (electrical grid, DIESEL generators,
among others) as well as the initial investment and maintenance costs related to PV genera-
tors. Furthermore, this mathematical model includes all constraints related to the technical
and operating constraints of DC grids in the context of PV sources.

2.1. Objective Function

The objective function is presented in Equation (1). This equation considers the mini-
mization of the annual costs associated with energy purchasing in relation to conventional
generators ( f1) as well as to investment and maintenance with regard to the installation of
PV sources ( f2).

OF = min Annualcosts = min( f1 + f2) (1)

To calculate the annualized energy purchasing costs while considering the lifetime
of the PV generators and the increase in power demand, Equation (2) was used, where
CkWh corresponds to the cost of each kWh, T represents the number of days in a regular
year (365), and Fa is the factor that annualizes the total energy purchasing/production
costs by conventional generators installed in the DC grid. In Equation (3), ta represents
the fixed return rate for the investment made in the integration of the PV generators, Nt
corresponds to the number of years contained inside the useful life of the PV sources,
and Fc corresponds to the annual increase in power demand within the planning horizon.
This factor is described in Equation (4), where te represents the increase in the energy
purchasing cost within the analyzed time (expressed as a percentage); pcg

i,h represents the
power supplied by the conventional generator located at node i in the period of time h; and
Δh is the duration of the said power supply. Finally, ΩN , ΩH, and ΩT represent the set of
nodes that make up the DC grid, the total periods of time considered for a day of operation,
and the useful life of the PV generators (years).

f1 = CkWhTFaFc

(
∑

i∈ΩH
∑

i∈ΩN

pcg
i,hΔh

)
(2)
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Fa =

(
ta

1 − (1 + ta)
−Nt

)
(3)

Fc =

(
∑
t∈T

(
1 + te

1 + ta

)t
)

(4)

Equation (5) calculates the investment and maintenance costs associated with the
integration of PV sources into the DC grid, where Cpv corresponds to the cost per kW of
the PV sources, ppv

i represents the total PV power installed at bus i, Cpv
O&M denotes the

maintenance cost of the PV generators by kW generated, and ppv
i,h is the power supply of

the PV sources located at bus i for the period of time h. In this equation, Ωpv denotes the
set of buses that contain PV sources.

f2 = CpvFa

⎛
⎝ ∑

i∈Ωpv

ppv
i

⎞
⎠+ T

⎛
⎝ ∑

i∈ΩH
∑

i∈Ωpv

Cpv
O&M ppv

i,hΔh

⎞
⎠ (5)

2.2. Constraints

The set of constraints that represent the problem of the optimal integration of PV
sources into DC grids while considering variable power demand and generation is pre-
sented in Equations (6)–(11).

pcg
i,h + ppv

i Cpv
h − Pd

i,h = vi,h ∑
j∈ΩN

Gijvj,h (6)

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i (7)

xi p
pv,min
i ≤ ppv

i ≤ xi p
pv,max
i (8)

∑
i∈Ωpv

xi ≤ Ndev
pv (9)

Vmin
i ≤ vi,h ≤ Vmax

i (10)

Iij,h ≤ Imax
ij (11)

Equation (6) represents the power balance of the electrical grid. Here, Pd
i,h denotes the

active power demanded at node i in the period of time h, Cpv
h is the factor that determines

(from 0 to 100%) the power production of PV sources in relation to the radiance potential of
the region where the electrical system is located, vi,h and vj,h represent the voltage profiles
at buses i and j in period of time h, and Gij denotes the conductance value related to the
branch that connects buses i and j. Equation (7) formulates the constraint that ensures that
the minimum (pcg,min

i ) and maximum (pcg,max
i ) power are supplied by the conventional

generator located at node i. Equation (8) establishes the minimum (ppv,min
i ) and maximum

(ppv,max
i ) power bounds for the PV sources located at node i, where xi corresponds to a

binary variable that takes a value of 1 when a PV source is located at node i and a value
of 0 when it is not. In this way, Equation (8) limits the maximum number of PV sources
(Ndev

pv ) to be located in the DC grid. Equation (10) describes the constraints related to the
voltage profile limits, where Vmin

i and Vmax
i correspond to the minimum and maximum

voltage profiles allowed at node i. Finally, Equation (11) represents the maximum branch
limit, where Iij,h and Imax

ij correspond to the branch and maximum current allowed for the
branch that connects buses i and j.

FF = min( f1 + βPF) (12)
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PF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max
{

0, ∑
i∈N

(ppv
i − Ppv,max

i xDG
i )

}

+

∣∣∣∣min
{

0, ∑
i∈N

(ppv
i − Ppv,min

i xDG
i )

}∣∣∣∣
+max

{
0, ∑

i∈N
(vi − Vmax

i )

}

+

∣∣∣∣min
{

0, ∑
i∈N

(vi − Vmin
i )

}∣∣∣∣
+max

{
0, ∑

i∈N
∑

j∈N
(Iij − Imax

ij )

}

+max
{

0,
(

∑
i∈N

xi − Ndev
pv

)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

In order to guarantee all the previously described constraints and improve the explo-
ration of the solution space, this paper used the fitness function presented in (12), which
allows the penalization of the objective function when some constraints are violated by
permitting the solution methodology to explore infeasible regions. This helps to improve
the solution and reduce processing times [35]. In FF, β is entrusted with normalizing the
values calculated by the penalty Factor (PF) described in Equation (13). For this manuscript,
β = 1000, which is obtained through a heuristic process.

3. Proposed Solution Methodology

This paper used a parallel discrete–continuous version of the PSO method [31] to solve
the problem regarding the optimal integration of PV sources into DC grids. This solution
methodology resolves the discrete–continuous codification that describes the problem. It
avoids the use of the traditional master–slave strategy used in the specialized literature for
sitting and sizing DGs in electrical networks [34,36], which requires two solution methods:
a binary/discrete optimization method to solve the location problem and a continuous
optimization method to solve the sizing problem. This offers a solution to the problem, but
it results in increased complexity and processing times.

The discrete–continuous codification used here is illustrated in Figure 1. It can be seen
that the location and power values (sizing) of the different PV sources in the DC grid are
included in the same vector of size 1X2Ndev

pv . The discrete variables are associated with the
location problem, and the continuous variables are related to the sizing of the DGs. Note
that in the same figure, the DGs located at node 4 have a nominal power of 0.19 Kw, while
the PV sources installed at node 41 have a nominal power of 2.4 kW.

Figure 1. Codification used for the optimal integration of PV sources.

To solve the problem concerning the optimal integration of PV sources into DC grids
via the aforementioned codification, this paper used the DCPPSO. This modified version of
PSO discretizes the variables related to the location for each particle by using the number
of candidate buses in the electrical system, and it allows for the variables associated with
PV source sizing to remain continuous. Furthermore, the modified PSO uses parallel
processing to evaluate the FF of each particle, which enables the reduction of processing
times. It is important to highlight that in order to evaluate the FF, it is necessary to use
an hourly power flow (HPF) that allows for the inclusion of variable power demand and
generation related to PV sources, which is caused by the variation in the solar radiance in
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the region where the electrical system is located [34]. The pseudo-code that describes the
DCPPSO/HPF methodology is presented below:

It can be observed that the first step of Algorithm 1 consists of reading all the DC
grid data and the parameters associated with DCPPSO. A maximum number of iterations
(itermax) is set as a stopping criterion. Then, the first iteration generates the initial particle
swarm via the codification presented in Figure 1 while considering random values between
the number of buses and the power limits assigned to the DGs. Afterwards, the FF of
each particle is calculated using Equation (12), for which an hourly power flow based on
the successive approximations method is used [35]. Every hour, this method updates the
power demand and PV generation during an average operation day in order to calculate the
objective function described in Equation (1), thus taking variable demand and generation
into account.

Algorithm 1: Pseudo-code for the DCPPSO/HPF
Data: Read DC grid data and optimization parameters
for iter = 1 : itermax do

if iter == 1 then
Generate the particle swarm;
Calculate the FF for each particle by using the HPF;
Select the FF and position obtained by each particle as the best particle
solution and position;

Select the best solution in the swarm and its position as the incumbent;
else

Calculate the velocity vector (VV);
Update the position of the particle swarm by using the last position,
the incumbent, and the VV;

Calculate the FF for each particle by using the HPF;
Update the best particle solution and position;
Update the incumbent;
if The stopping criterion has been met? then

Finish the optimization process;
Print the incumbent;
Break;

else
Continue;

end

end

end

The base of the Particle Swarm Optimization algorithm (PSO) is the use of a population
to explore the solution space in each iteration, taking advantage of the social and cognitive
knowledge to converge on a solution of good quality. In each iteration of the algorithm, it is
necessary to evaluate the FF of each particle that makes up the population, which requires
long processing times. The proposed methodology considered the implementation of a
parallel processing tool that uses all Workers (W) of the computer to evaluate as individuals
the number of workers that exist, which reduces the processing time [35]. In order to carry
out this task, a highly used the tool in the literature called “parfor” of Matlab [13] was
employed, which made the parallel evaluation of the FF that comprises the population
possible by allowing for the reduction of the processing times inside the iterative process.
In this parallel processing, the PC employs all workers to evaluate the different particles
that make up the swarm in groups with a size equal to W, executing as many processes
as necessary to evaluate all particles in the swarm. The time required for this task can be
calculated by means of Equations (14) and (15). The former allows obtaining the number of
parallel processes (NPP) required for evaluating all particles in the swarm, while the latter
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calculates the total processing time required to carry out the process (PPT). Here, MPT
represents the maximum processing time required for all particles to be evaluated [35].

NPP = CEIL(n/W) (14)

PPT = NPP · MTRP (15)

After evaluating the FF of all particles, in the first iteration, the solution and position of
each particle are assigned as the best values. Furthermore, the particle with the best solution
is selected as the incumbent of the problem (the best solution) by storing its position and FF.

From the second iteration until the end of the process, each iteration calculates the ve-
locity vector (VV) by using random values, as well as the position information of each parti-
cle (cognitive knowledge) and the incumbent (social knowledge). Subsequently, the particle
movement is generated by using the VV and the current position. Then, the FF of the
swarm is calculated, and the best particle position and solution as well as the incumbent are
updated. At the end of each iteration, the stopping criterion is analyzed. In this particular
case, it is verified whether the maximum number of iterations has been achieved. If this
has occurred, the optimization process ends; if not, another iteration is carried out.

4. Test Scenarios and Considerations

4.1. Test Systems

In this paper, the DC versions of the 33- and 69-bus test systems were used, which
are illustrated in Figure 2. These are widely used for validating planning strategies in DC
grids [33].
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Figure 2. Electrical configuration of the DC (a) 33- and (b) 69-bus test systems [33].

Figure 2a illustrates the first test system, which comprises 33 buses and 32 branches.
It employs a voltage of 12.66 kV and a power of 100 kW as base values. The parametric
information of this test system is described in [37]. To obtain the branch current limits for
this test system, the HPF described in the last section was used while considering the power
demand and generation curves for Antioquia, Colombia (Figure 3). Consequently, the max-
imum current allowed for this test system was 310 A, and the electrical conductor was
350 kcmils.

Figure 2b presents the second test system employed in this research. It comprises
69 buses and 68 branches and uses the same base values as the 33-bus grid [37]. To obtain the
branch current limits, the same methodology was employed, which provided a maximum
allowed current of 335 A for an electrical conductor with a caliber of 400 kcmils.

4.2. Power Generation and Demand

To estimate the average impact on the annual costs of the electrical grid, this study
considered the power demand and generation of PV sources in the region of Antioquia,
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Colombia for an average day of operation. Figure 3 describes this behavior for a period of
24 h.
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Figure 3. Typical power demand and PV generation behavior in Antioquia, Colombia [35].

4.3. Comparison and Considerations

One of the main objectives of this paper is to demonstrate the effectiveness of the
proposed methodology in terms of the solution, repeatability, and processing times. To this
effect, four comparison methods were selected from the specialized literature, which used
specialized software and sequential programming optimization methods to solve the
studied problem. The first solution method was the BONMIN solver of GAMS, the second
was a discrete–continuous version of the Chu and Beasley genetic algorithm, the third was
a discrete–continuous version of the vortex search algorithm (DCVSA), and the fourth was
a discrete–continuous version of the generalized normal distribution optimizer (DCGNDO).
The selection of these methods was based on the fact that they have all been used to
solve the problem regarding the optimal integration of PV sources into DC grids, and
that they have been evaluated in the same test systems and conditions as those used in
this paper [29,33]. Furthermore, most of these comparison methods take advantage of the
discrete–continuous codifications used by the proposed methodology (DCPPSO).

The main considerations and information used to validate the effectiveness and ro-
bustness of the proposed methodology in relation to the comparison methods are described
below:

• All parameters used to evaluate the effects of PV source methods are presented in
Table 1 [29].

• The maximum number of PV sources considered for installation was 3, and the
maximum power capacity was 2.4 p.u. [29].

• The maximum allowed oscillation for the voltage profiles was +/− 10% of each test
system’s nominal voltage.

• Both test systems considered non-telescopic grids, for which the maximum current in
all branches corresponds to the maximum current allowed: 310 and 350 A for 33- and
69-bus test systems, respectively.

• The optimization parameters of the comparison methods were taken from the original
paper [29,33], while the parameters of the DCPPSO are reported in Table 2.

• To evaluate the average processing time and the repeatability of the proposed method-
ology, each technique was executed 100 times while also analyzing the standard
deviation obtained.
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• The simulations were carried out in a Dell Precision T7600 Workstation with an
Intel(R) Xeon(R) CPU ES-2670 @2.50 GHz and 32 GB of RAM while running the
Matlab software, version 2022a.

Table 1. Parameters for the optimal integration of PV sources into electrical grids.

Param. Value Unit Param. Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
Δh 1 h te 2 %
Cpv 1036.49 USD/kWp C0&M 0.0019 USD/kWh
Nava

pv 3 - ΔV ±10 %

spv,min
k

0 kW spv,max
k 2400 kW

α1 100 × 104 USD/V α2 100 × 104 USD/V
α3 100 × 104 USD/W α4 100 × 104 USD/A

Table 2. DCPPSO parameters.

Parameter 33-Bus Test System

Number of particles (Ni) 100
Maximum iterations (tmax) 1000

Maximum inertia 0.4133
Cognitive component 1.96236

Social component 2

5. Simulation Results

Tables 3 and 4 present and analyze the simulation results obtained with the proposed
methodology and the comparison methods in the 33- and 69-bus test systems. This table
shows, from left to right, the following information: the methodology used, the PV source
location and capacity, the total annual costs, the reduction achieved with respect to the
baseline case (the scenario without PV sources), the average processing time, the standard
deviation, the worst voltages, and the maximum current.

Table 3. Simulation results obtained via different methodologies in the 33-bus test system in both AC
and DC grids.

Methodology
Bus/Power

(MVAr)
Acost (USD/year)/

Reduction (%)
Time

(s)
STD
(%)

Vworst
(p.u)

Imax
(A)

Baseline case [0–2.4] 3,644,043.01 - - - - - - [0.9–1.1] 310

BONMIN
18/1.4301
32/2.0611
33/1.7155

2,664,089.12/26.8919 0.77 0 0.93 304

DCCBGA
11/1.1629
14/0.9434
31/1.4827

2,662,724.82/26.9293 2.43 0.0557 0.93 304

DCVSA
9/0.5803

15/1.2913
31/1.7155

2,662,425.32/26.9375 76.86 0.0620 0.93 304

DCGNDO
10/0.9742
16/0.9202
31/1.6925

2,662,371.59/26.9390 166.15 0.0601 0.93 304

DCPPSO
10/0.9680
16/0.9189
31/1.6999

2,662,371.59/26.9390 8.52 0.0398 0.93 304
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Table 4. Simulation results obtained by solution methods in the 69-bus test system.

Methodology
Bus/Power

(MVAr)
Acost (USD/year)/

Reduction (%)
Time

(s)
STD
(%)

Vworst
(p.u)

Imax
(A)

Base case [0–2.4] 3,817,420.38 - - - - - - [0.9–1.1] 335

BONMIN
21/0.4971
61/2.3999
65/0.8530

2,785,208.63/27.0395 2.02 0 0.93 304

DCCBGA
19/0.7908
61/1.7890)
64/1.1474

2,785,598.84/27.0292 7.74 0.1289 0.93 319

DCVSA
23/0.7720
62/2.3402
63/0.6185

2,785,538.58/27.0308 269.22 0.0974 0.93 319

DCGNDO
19/0.4969
61/2.3999
64/0.8470

2,785,011.53/27.0446 376.88 0.2384 0.93 319

DCPPSO
22/0.5310

61/2.4
64/0.8105

2,784,987.68/27.0452 28.24 0.0226 0.93 319

5.1. 33 Bus Test System

In the results presented in Table 3, it can be observed that all solution methodologies re-
duce the annual costs by 26.92% on average in comparison with the baseline case. However,
the DCPPSO obtained the best results. Figure 4 illustrates the improvement achieved with
this methodology, which obtained reductions of 6.44 × 10−2%, 1.32 × 10−2%, 2 × 10−3%,
and 0 when compared to the BONMIN, DCCBGA, DCVSA, and DCGNDO techniques,
respectively. Thus, the average annual cost reduction was 2.62 × 10−2%. It is possible to
conclude that DCGNDO achieved the same results as DCPPSO in this test system.
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Figure 4. Improvements regarding annual cost reduction achieved by the DCPPSO with respect to
the comparison methods in the 33-bus test system.

As for the processing times, the fastest method was the BONMIN solver, followed
by the DCCBGA (Figure 5). These methods required 95.41% and 85.54% less time than
the DCPPSO. In the 33-bus test system, the DCPPSO was in third place, with a reduction
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of 78.12% and 89.88% in processing times when compared to the DCVSA and DCGNDO.
Despite these results, DCPSO had the best performance in terms of the solution. Figure 5
shows that the proposed methodology obtained the best results in terms of repeatability
when compared to the solution methods based on sequential programming; it achieved an
average standard deviation (STD) reduction of 48.80%. It is important to highlight that the
BONMIN solver showed an STD of 0% since it belongs to the family of specialized software
that guarantees the same solution each time that the algorithm is executed, although it has
disadvantages in terms of purchase costs and implementation complexity [35,38].

Finally, columns 6 and 7 of Table 3 show that all solution methods satisfy the voltages
and branch current bounds.
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Figure 5. Improvements obtained by the DCPPSO with respect to the comparison methods in the
33-bus test system in terms of processing time and standard deviation.

5.2. 69-Bus Test System

The results obtained for the 69-node test system are shown in Table 4. Figure 6
illustrates the improvements achieved by the DCPPSO with respect to the comparison
methods. Figure 6 shows that the proposed methodology obtained the best results in terms
of annual cost reduction, with an average reduction of 1.24 × 10−2%.

As for the processing times (Figure 7), DCPPSO was in third place, being outperformed
by BONMIN and DCCBGA by 92.81% and 72.59%, respectively. However, DCPPSO was
superior to the DCVSA and DCGNDO, reducing the processing times by 89.51% and
92.50%. When comparing these results with those obtained in the 33-bus test system, it
can be observed that the differences with respect to the faster methods (BONMIN and
DCCBGA) were reduced, while the quality of the solution was also the best. The proposed
methodology achieved STD reductions of 82.46, 82.46, and 82.46% with respect to the
DCCBGA, the DCVSA, and DCGNDO, respectively, (i.e., 83.23% on average). In this
test system, the BONMIN solver reported an STD equal to 0, given its aforementioned
characteristics. Finally, columns 6 and 7 of Table 4 demonstrate that all methodologies
satisfied the voltage and current branch bounds established for the 69-bus test system.
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Figure 6. Improvements in the reduction of annual costs as achieved by DCPPSO with respect to the
comparison methods in the 69-bus test system.
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Figure 7. Improvements obtained by the DCPPSO with respect to the comparison methods in the
69-bus test system in terms of processing time and standard deviation.

6. Conclusions and Future Work

This paper proposed a discrete–continuous version of the particle swarm optimization
algorithm to solve the problem regarding the optimal integration of PV sources into DC
grids, with the purpose of reducing the energy purchasing/production costs associated
with conventional generators as well as the investment and maintenance costs related to
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distributed generation. To evaluate the effectiveness, repeatability, and robustness of this
solution methodology, four comparison methods and two test systems (33 and 69 buses)
were used, which executed each methodology 100 times.

The advantages that the DCPPSO have are related to the implementation of a discrete–
continuous codification that allows for the resolution of discrete and continuous problems
at the time of its execution, which considers the discrete variables related to the location
problem in this particular case as well as the continuous variables associated with the sizing
problem of PV distributed generators on the DC grid. Furthermore, this methodology takes
advantage of the PSO, a metaheuristic optimization technique that has been highly used
in the literature to solve non-linear problems [12,35] due to its excellent effectiveness and
robustness in solving non-linear and non-convex problems, such as those addressed here.
Finally, inside the DCPPSO proposed, a parallel processing tool for evaluating the objective
function of the population in each iteration was used, which allowed for the reduction of
the processing time required for the solution methodology; thus, it was possible to present
a solution of excellent quality with short processing times.

As for the results obtained in the 33-bus test system, even though DCPPSO was not
the fastest method, it yielded excellent results in terms of processing times, with an average
of 16.81 seconds. This method also achieved the best result in terms of the quality of the
solution (annual cost reduction), with an average reduction of 0.0199% in comparison
with the other methods. Furthermore, the proposed methodology was in second place
in terms of the standard deviation, with a reduction of 48.80% when compared to the
other discrete–continuous methodologies; it was only surpassed by the BONMIN solver of
GAMS, a commercial software that increases the complexity and cost of solving the studied
problem. Based on these results, the DCPPSO is considered to be an excellent methodology
for the optimal integration of PV sources into small DC grids, with excellent results in
terms of processing times and standard deviation.

For the 69-bus test system, the simulation results showed a similar behavior. Regarding
the solution impact, DCPPSO obtained the best results, with an average reduction of
0.0126% with respect to the other methods. It also obtained the best results in terms of
standard deviation; it was only surpassed by the BONMIM solver. As for the processing
times, the DCPPSO was also in third place, taking longer than the BONMIN solver and
the DCCBGA. This was due to the fact that BONMIN is a commercial solver and that the
DCCBGA does not operate similarly to the other discrete–continuous solution methods;
it does not work with population in its iterative process, which reduces the processing
times and negatively impacts the quality of the solution. With respect to the other discrete–
continuous methods, DCPPSO obtained an average processing time reduction of 91%.
These methods were the most efficient methods after DCPPSO with regard to the quality
of the solution. Based on the last results, the DCPPSO is the solution methodology with
the best outcome in terms of the solution (annual cost reduction), as it showed excellent
performance in terms of standard deviation and processing times for DC grids of any
size. Furthermore, the results reported in [13] concluded that the DCPPSO is the most
effective methodology for solving the problem of the optimal integration of PV sources in
AC networks of different sizes. It can thus be concluded that to date, the DCPPSO is the
solution methodology with the best trade-off in economic terms to solve the integration
problem of PV sources in any kind of electrical network, with reduced processing times.
The above-mentioned conclusions are based on the state-of-the-art knowledge acquired by
the authors.

The proposed methodology works in other DC networks that consider the main
generator, distribution system load, and PV distributed generators due to the mathematical
model used, which considered all technical and operative constraints that represent the
DC grids in an environment of PV distributed generations. However, in the particular case
when other distributed energy resources are considered, e.g., energy storage systems, all
equations that model this kind of electric devices must be included in the mathematical
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formulation with the aim of guaranteeing an adequate representation of the electrical
networks used.

Future work could consider the implementation of new solution methodologies and
other parallel processing tools that allow for the improvement of the results in terms of the
quality of the solution and processing times. In addition, the mathematical model could
include other technical, economic, and environmental indices related to the operation of
the DC grid, such as the power losses produced in the transport of energy, voltage stability,
load chargeability, reductions in fossil fuel-based energy production and CO2 emissions,
among others. By including the technical, economic, and environmental aspects of the grid,
it is possible to consider a multi-objective optimization algorithm in solving the problem
of the optimal integration of PV sources into the DC grid. Finally, DCPPSO could be
used to solve the problem concerning the optimal integration of energy storage systems
into DC grids by taking advantage of the power of PV sources at times without solar
production, which would improve the technical, economic, and environmental conditions
of electrical networks.
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Abstract: This paper presents an analytical solution to the maximum power point tracking (MPPT)
problem for photovoltaic (PV) applications in the form of an improved fractional method. The pro-
posal makes use of a mathematical function that describes the relationship between power and
voltage in a PV module in a neighborhood including the maximum power point (MPP). The function
is generated by using only three points of the P–V curve. Next, by using geometrical relationships,
an analytical value for the MPP can be obtained. The advantage of the proposed technique is that it
provides an explicit mathematical expression for calculation of the voltage at the maximum power
point (vMPP) with high accuracy. Even more, complex calculations, manufacturer data, the mea-
surements of short circuit current (iSC) and open-circuit voltage (vOC) are not required, making the
proposal less invasive than other solutions. The proposed method is validated using the P–V curve
of one PV module. Experimental work demonstrates the speed in the calculation of vMPP and the
feasibility of the proposed solution. In addition, this MPPT proposal requires only the typical and
available measurements, namely, PV voltage and current. Consequently, the proposed method could
be implemented in most PV applications.

Keywords: PV module; mathematical model; MPP reference generator; maximum power point
trackers

MSC: 00-02; 00A05; 00A06; 00A69

1. Introduction

Nowadays, PV technology is widely used in several applications such as portable
devices, home applications and large-scale projects. However, in order to obtain the
maximum benefit of PV modules, the maximum power must be obtained. With this in mind,
some operating conditions have been identified as the main challenges to be solved [1].
For example, sudden irradiance changes [2], temperature variations and partial shading
conditions [3,4]. It should be noted that if the condition changes, then the maximum power
point also changes and should be recalculated. These problems have been addressed in
many contributions with different approaches.

In the literature, the well-known conventional tracking algorithms, such as Perturb and
Observe (P&O), Incremental Conductance (InC), Fractional Open Circuit Voltage (FOCV),
Fractional Short Circuit Current (FSCC) and others, are very popular due to their ease of
implementation, high rate of success and low computational requirements. However, P&O
and InC are prone to showing oscillatory behavior near the maximum power point (MPP)
and therefore they can provide a low performance. As for FOCV and FSCC, they have poor
accuracy as their main drawback. There are several reviews that show the advantages and
disadvantages of the classical MPPT algorithms [1,2,5]; in such contributions it is shown
that these algorithms can still be useful under certain conditions, such as uniform solar
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irradiation. Moreover, these basic solutions became the basis for more elaborated proposals
that present important improvements in P&O [6,7], FOCV [8] and InC [9] techniques.

In this sense, another approach for solving the MPPT issue can be seen in the use
of model-based non analytical approaches. In these cases, it is possible to find solutions
based on fuzzy logic [10], neural networks [4], amongst others [2,11]. Such solutions
have shown improvements over time and provided more efficient solutions at the cost of
complexity. Over time, hybrid schemes provide even better response to the challenges in
PV applications, as can be seen in reviews and in several contributions [3,4,7].

In general, it is possible to say that the better the performance, the more the complexity,
as can be observed in the reviews [1,2]. In fact, if high efficiency is demanded then high
computation cost and a high number of sensors is a usual requirement. For example,
a highly efficient solution would require the use of voltage, current, temperature and
irradiance sensors.

In order to deal with the disadvantages of elaborated solutions, the improvement
of basic approaches is very attractive [12]. Basically, the main drawbacks of Fractional
Open Circuit Voltage (FOCV) or Fractional Short Circuit Current (FSCC) are the lack of
accuracy at the calculation of the reference voltage at MPP (vre f ) and the periodical connec-
tion/disconnection of the PV module [13]. The main characteristics of FOCV and FSCC are
well presented in several papers in comparison with other methods [1,2,13]. It should be
noted that conventional algorithms are still useful under uniform solar irradiance. For the
case of non-uniform solar irradiance, the conventional techniques have been mixed with
others in order to cope with the accuracy problem with good results [13].

Another interesting approach is the curve-fitting (CF) method [13–18]. This approach
consists of the proposal of an equation that allows the calculation of vre f . This method
makes use of manufacturing information or/and real time measurements in order to
provide a solution [14]. The main disadvantage of this approach is the large amount of data
and knowledge of physical parameters [13,17,18]. Under this approach, some proposals
even require irradiance (G) and temperature (T) measurements. Furthermore, this approach
may require the measurement of vOC and iSC, which can be a disadvantage. Another
important drawback is that ageing is not considered and for this reason some physical
parameters may change (such as vOC, iSC, RS, etc), producing errors in the calculated value
of vre f . However, the main goal of the curve-fitting method is to find an equation that
describes, as precisely as possible, the I–V and/or P–V curves. In this sense, the proposed
equation, so far, provides an explicit solution for the vre f value.

This paper proposes an alternative method for the Fractional Open Circuit Voltage
MPPT technique. The proposal allows us to obtain a precise value for vre f based on some
minimal measurements that should be updated periodically or when a change occurs.
In this way, the main events that change the value of vre f can be faced properly, such as:
temperature changes, sudden irradiation variations, ageing, etc. The proposed equation
requires some minimal measurements that should be updated when a change occurs; this
low data requirement is the main drawback of the CF method. This proposal requires three
points near the MPP and in exchange, it provides a precise value of vre f , dealing with the
inaccuracy problem presented using the basic approaches of FOCV and FSCC. In the long
term, the proposed method can also deal with the ageing problem due to its periodic nature.
Besides, the proposed method does not require measurements of vOC and iSC. Therefore,
PV module disconnections are not necessary. Moreover, the proposed method relies on the
use of some basic algebraic equations that require very few computing resources; this is
important from a numerical analysis perspective [19].

2. Proposed Method

2.1. The MPPT Problem Formulation

A PV module produces electricity in the form of a current or a voltage. Under a
normal operation and with specific climate conditions, temperature, solar illumination, etc.,
the electrical behavior of a PV module can be illustrated, as with Figure 1. In this figure,
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the relationship between current and available power versus voltage is shown. However,
changes in temperature and solar irradiation can change the IV and PV curves and create a
new MPP; these phenomena are widely reported in the available literature.

Figure 1. Photovoltaic I–V and P–V graphs.

Normally, a complete PV solar tracking system, as is depicted in Figure 2, allows
the obtainment of maximum power by using a proper MPPT strategy and a suitable
controller. Notice that the main contribution of this work is a method for the vre f generation.
In the available literature, a lot of proposals can be found about new control systems that
effectively follow the provided value for vre f ; however, a proper generation of vre f is a
requirement as a previous stage before the controller design. In the following, this paper
proposes a method for the calculation of the MPP voltage value (vMPP)—see Figure 1. Then,
the calculated vMPP voltage value will be used as the vre f voltage by the controller—see
Figure 2.

Figure 2. Typical solution for photovoltaic energy harvesting.

Despite the fact that equations for PV modules are well-known, it is not possible to
obtain an equation for the vMPP voltage because the main equation has a transcendental
nature, making vMPP calculation a challenging task. The original equations that describe
the relationship between current and voltage are studied in several papers and exhibit
a dependence of several factors which may be difficult to obtain [17]. Several proposals
of analytical solutions for the MPP problem can be found in [14,17], and they provide
equations for the calculation of a proper vMPP voltage. However, the proposed equations
require the measurement of iSC and/or vOC, photovoltaic current (iPV) and voltage (vPV),
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amongst other information. It should be noted that the measurement of iSC and/or vOC
gives the system a hard time because with the generation of two undesired situations,
short circuit and open circuit, both situations stop the power flow from the PV modules to
the load.

2.2. Proposed Analitycal Solution

In the literature, it is a well-known fact that the mathematical relationship between
voltage and current is expressed using a transcendental equation. Hence, it is not possible
to find an explicit equation for the MPP voltage value (vMPP). This paper proposes the
using of the mathematical relationship between PV power and voltage in order to describe
a small vicinity of the actual PV module operation.

The proposed solution begins with the identification of the zone of interest in the P–V
graph, as in Figure 3.

Figure 3. P–V curve illustrating the zone of interest.

Under this proposal, it is stated that the most important zone in the P–V curve cor-
responds to the shaded area because it contains the MPP. It should be clear that, even if
we have the complete curve information, the most important region is where the MPP
is contained. In order to have a definition for the zone of interest, the boundaries stab-
lished via the fractional method are used for this paper and represented with the following
equations [12,13]:

vMPP = k ∗ vOC (1)

with
0.7 < k < 0.9 (2)

In this regard, the present proposal pretends to make an improved fractional method
by considering the established boundaries in the conventional fractional method, (1) and
(2), and the general equation for a circle suggested as the main model of this proposal.
In comparison with other solutions of the same nature, this proposal does not pretend to
generate an equation for the entire PV module behavior, but only for the zone of interest.
It should be noted that, under this approach, only the vOC voltage is required for defining
the initial boundaries.

The proposed model (3) belongs to the circle family and has the following structure:

(x − vc)
2 + (y − pc)

2 = r2 (3)

where the variables x and y are vPV and PV power (pPV), respectively. The point (vc, pc)
represents the coordinates of the center of the circle and r the corresponding radius. The
proposed equation emulates the P–V curve behavior in the zone of interest. By taking
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the first derivative in (3) with respect to x, it is possible to demonstrate that the MPP
corresponds with x = vc, then the MPP problem is reduced to the calculation of the
coordinates (vc, pc), where vc = vMPP.

In order to find the coordinates, the following procedure is proposed:
First, three arbitrary points on the P–V curve, Q1(v1, p1), Q2(v2, p2) and Q3(v3, p3),

must be selected so that these points belong to the zone of interest, as shown in Figure 4.

Figure 4. P–V curve with three arbitrary points.

Next, we need to find the equations for two perpendicular lines (l1 and l2) to the

segments
→

Q1Q2 and
→

Q2Q3, which can be visualized in Figure 5. It is worth noting that the
intersection of l1 and l2 will define the vMPP. To define the equations for l1 and l2, we need

to find the middle point of the segments
→

Q1Q2 and
→

Q2Q3, which are represented by the
coordinates (x1, y1) and (x2, y2). Also, we need to find the slopes (m11 and m22) of l1 and l2.

Figure 5. Proposed model within the zone of interest.
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For this, the coordinates (x1, y1) and (x2, y2) can be calculated departing from the
three arbitrary points, as described in (4) and (5):

x1 =
v1 + v2

2
, y1 =

p1 + p2

2
, (4)

x2 =
v2 + v3

2
, y2 =

p2 + p3

2
. (5)

While the slopes are calculated with (6) and (7):

m11 = − 1
m1

= −
(

v2 − v1

p2 − p1

)
, (6)

m22 = − 1
m2

= −
(

v3 − v2

p3 − p2

)
. (7)

Figure 5 contains the main elements of the proposed circle modeling.
In this way, the equations for l1 and l2 are given using:

y = m11(x − x1) + y1 (8)

y = m22(x − x2) + y2 (9)

Finally, the value of vMPP is calculated with the intersection of l1 and l2 and is repre-
sented by Equation (10).

vc = vMPP =
m22x2 − m11x1 + y1 − y2

m22 − m11
(10)

In addition, we can find the values for pc and r. However, these values are not relevant
for the calculation of vMPP.

It is worth mentioning that some operating conditions must be avoided when using
Equation (10), which are summarized in the following:

(a) p1 
= p2 and p2 
= p3,
(b) m22 
= m11,

i.e., the PV power in the three different points, Q1, Q2 and Q3, must be different so that
zero division can be avoided in Equations (6) and (7). Also, the slopes m11 and m22 must be
different to avoid the indetermination of (10). Note that the conditions given in (a) and (b)
can be guaranteed through the MPPT algorithm implementation in a digital processor.

It should be noted that all the previous elements of analytic geometry are widely
known in the available literature. However, this proposal provides a solution to the MPP
problem with minimum measurements and computing requirements.

3. Experimental Results

The experimental validation of the present MPPT proposal is presented in this sec-
tion. For this, two scenarios have been considered, which are detailed in the following
subsections:

(a) Case 1: Offline test using I–V and P–V curves.
(b) Case 2: Online test under a closed-loop control operation.

In case one, the characteristics (I–V and P–V) curves of a PV module were obtained by
using a variable resistance connected in the PV module terminals, as described in Figure 6.
Hence, three operating points were selected as shown in Table 1. Then, by applying
the proposed method in this paper, the voltage at the maximum power point (vMPP)
was calculated departing from (10). For case two, a closed loop control operation was
implemented in a digital platform, as illustrated in Figure 2.
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Figure 6. Test Bench for Solartec S72MC-175.

Table 1. Numerical evaluation with Solartec S72MC-175.

Parameter Value Equation

Q1(v1, p1) Q1(35.51, 174.52) -
Q2(v2, p2) Q2(36.57, 174.90) -
Q3(v3, p3) Q3(37.10, 174.44) -
(x1, y1) (36.04, 174.71) (4)
(x2, y2) (36.835, 174.67) (5)

m11 −2.7894 (6)
m22 1.11521 (7)

vMPP 36.28 V (10)

3.1. Case 1: Offline Test Using I-V and P-V Curves

In this case, the curves of the Solartec S72MC-175 PV module were obtained by using
the simulation test bench depicted in Figure 6. The proposed test bench was implemented
in Psim software and the functional model was used for the PV module.

The functional model in Psim requires VOC, ISC, maximum power voltage (VM)
and maximum power current (IM). The parameter values included in the datasheet are
VOC = 44.40V, ISC = 5.30A, VM = 36.30V and IM = 4.82A. The I–V and P–V curves were
obtained by varying the load resistance value (RL). These measurements are presented in
Appendix A. Note that the exact value for vMPP corresponds with VM = 36.30V. With this
information, the effectiveness of the proposed method can be evaluated.

Once the I–V and P–V curves were available, three points were selected to feed the
proposed algorithm. As a result, it was possible to calculate the vMPP voltage using
Equations (4)–(7) and (10). The numerical evaluation of the proposed method is summa-
rized in Table 1.

In addition, Figure 7 shows all the elements considered in the proposed method.

Figure 7. vMPP with Solartec S72MC-175.
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Finally, the error between the exact and calculated voltage values is presented in
Table 2. In the table is also included a comparison with the error produced using the typical
fractional method (see fourth column).

Table 2. Calculated error for vMPP voltage.

Exact
vMPP

Calculated
vMPP

Fractional Method
vMPP

Proposed
Method

Error (%)

Fractional
Method

Error (%)

36.30 V 36.28 V Between 31.08 V
to 39.96 V 0.05% 14.3% (worst

case)

Where the error value can be calculated with:

Error(%) =
|vexact − vcalculated|

vexact
× 100 (11)

It should be noted that this section serves just for validation of the proposed method.
Using the offline information provided by the I–V and P–V curves, it was possible to calcu-
late the vMPP value with minimal error. However, in real life applications, the calculation of
vMPP must be carried out in real time. This situation is addressed in the following section.

3.2. Case 2: Online Test Using Closed Loop Control

In order to validate the proposed method, an experimental test bench was built
considering the elements showed in Figure 2. A Chroma programmable DC Power Supply,
model 62050H-600S with Solar Array Emulation capabilities was used as the power source
and connected to a dc-dc Boost converter with a rated capability of 350 W. Table 3 contains
the main parameters of the power converter. A series connection of six batteries was used
as load with 12 volts in each battery. The proposed MPPT algorithm and the closed loop
controller were implemented in a DS1104 dSpace digital board with a sampling frequency
of 70 kHz. The PWM technique, for the dc–dc converter, was implemented with analog
circuits at a frequency of 10 kHz.

Table 3. Parameters of the dc–dc boost converter.

Parameter Value

Mosfet IRFP250N
Diode STTH30R04W

L 1.5 mH
Cin 30 μ F
Cout 680 μ F

Figure 8 shows the simplified diagram of the experimental platform including dc–dc
boost converter details. The complete experimental platform is shown in Figure 9 and
illustrates the mentioned elements.
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Figure 8. Simplified diagram.

 
Figure 9. Experimental test bench.

It should be noted that the control strategy is based on a previous contribution of the
authors and is based on a high-performance input–output linearization controller; details
about the controller can be found in [20].

First, three arbitrary points of the PV curve were required as the input information of
the proposed algorithm. This can be accomplished with an induced change in the setpoint
reference of the closed-loop control. Figure 10a shows two setpoint changes (upper side)
and their corresponding PV power (lower side). Its corresponding PV curve is illustrated
in Figure 10b. The obtained results are summarized in Table 4 for a solar irradiance of
500 W/m2.
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(a) 

(b) 
Figure 10. Three arbitrary points of the PV curve with 500 W/m2. (a) Experimental generation of
three points with setpoint changes and (b) location of the three points in the PV curve.

Table 4. Experimental selected points under an irradiance of 500 W/m2.

PV Module Q1(v1,p1) Q2(v2,p2) Q3(v3,p3)

Solar Array Emulator (27.0 V, 73.72 W) (28.0 V, 75.30 W) (31.0 V, 75.55 W)
Calculated vMPP 29.69 V

Exact vMPP 29.73 V
Error % 0.13%

In order to prove that the proposed methodology can be applied under different
conditions, another set of points were generated with a solar irradiance of 1000 W/m2.
Figure 11a shows the setpoint changes (upper side) and their corresponding PV power
(lower side). Its corresponding PV curve is illustrated in Figure 11b. The obtained results
are summarized in Table 5.
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(a) 

 
(b) 

Figure 11. Three arbitrary points on the PV curve with 1000 W/m2. (a) Experimental generation of
three points with setpoint changes and (b) location of the three points on the PV curve.

Table 5. Experimental selected points under an irradiance of 1000 W/m2.

PV Module Q1(v1,p1) Q2(v2,p2) Q3(v3,p3)

Solar Array Emulator (28.00, 146.70) (31.00, 147.70) (32.00, 143.50)
Calculated vMPP 30.14 V

Exact vMPP 30.00 V
Error % 0.46%

Notice that in Tables 4 and 5, the vMPP value was calculated with Equation (10);
such an equation involves purely algebraic operations, thus making a very fast algorithm.
Another benefit is the absence of a voc and isc measurement, making this proposal less
invasive than other solutions. This is important because the measurement of voc or isc
produce a temporal stop of power flow from the PV module to the load. In addition, the
arbitrary selected points of the P–V curve were selected according to (1) and (2).

It should be observed that the time between setpoint changes (Δt) in Figures 10 and 11
can be reduced. The employed Δt was selected only for the validation of the proposed
algorithm and to clearly show the proposed method: Δt ∼= 0.25s.

In real time applications Δt will be limited by the settling time (ts) of the closed-loop
controller. This situation is observed in Figure 12, where after the calculation of the new
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vMPP value and its corresponding actualization, a set point change occurs and ts is required
in order to obtain a new measurement under steady-state conditions.

Figure 12. Transient time response (tS) under closed-loop control.

Considering the transient response under a closed-loop controller, the following
criteria of Δt selection is proposed.

Δt > 2 ∗ ts (12)

In the present experiments, the closed-loop controller allows us to establish ts with the
following relationship:

ts = 7 ∗
(

1
fsw

)
, (13)

where fsw stands for the PWM switching frequency on the dc–dc boost converter. More
details about the high-performance closed-loop controller can be found in [20].

Based on the previous relationships, the minimum required time to perturb vre f for
taking a new measurement will be

Δt(min) = 14 ∗
(

1
fsw

)
. (14)

In the experiments, and with fsw = 10kHz, we have Δt(min) = 1.4ms as the time
required to take a new measurement, which is illustrated in Figure 12, where ts = 0.7ms.

Finally, the flowchart for the proposed method is included in Appendix B. The
flowchart shows that the measurement of vOC is only needed at the beginning of the
operation. As a starting point, it is suggested that vMPP = 0.8 ∗ voc and then Q1, Q2 and
Q3 can be measured. Next, by using the proposed method, a new vMPP can be calculated.
Then, the update of the voltage reference is applied by making vre f = vMPP. Note that the
flowchart includes a delay time (tD); this time is required between each iteration and is a
user-defined parameter.

4. Discussion

In this paper, an improved Fractional Open Circuit Voltage (FOCV) MPPT method
was presented, which requires only three points of the P–V curve of PV modules. Here, an
analytical equation has been proposed in this paper by using the classical circumference
equation, thereby allowing the calculation of the voltage at the maximum power point
(vMPP). This proposal has been validated through numerical and experimental tests by
considering a closed-loop operation in the power converter. Furthermore, there is no need
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for iSC measurement; also, vOC would be required only at the beginning of the day, making
it ideal for online applications. Currently, sudden irradiance changes produce changes in
iSC and have minimal impact in the vOC value. For this reason, the proposed method can
be employed to deal with this phenomenon. In contrast, temperature changes produce a
direct impact on the vOC voltage value, just as reported in the literature. For this reason,
the proposed method flowchart includes an initial measurement of vOC. However, after
the initial measurement of vOC, it is no longer required for the calculation of vMPP. Indeed,
the proposed method produces minimal interference between the PV module and the load
by avoiding the measurement of iSC and reducing the number of times vOC is measured.
Additionally, this proposal copes with the main disadvantage of analytical approaches that
require a huge amount of data from manufacturer datasheets. As a final characteristic, the
proposed algorithm has very few computational requirements.

Finally, note that the proposed method includes elements of the CF approach. In
addition, the present proposal is considered as an improved FOCV method because it
uses the same boundaries. However, in comparison with the regular FOCV, the proposed
method can be used to calculate a precise value of vMPP.
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Appendix A

Table A1. PV module data.

Solartec S72MC-175

V I P

0.53 5.3 2.809
15.90 5.29 84.26
18.55 5.29 98.30
21.20 5.29 112.30
23.85 5.29 126.21
26.50 5.27 139.87
28.00 5.26 147.32
30.21 5.22 157.75
32.33 5.14 166.18
34.45 5.01 172.77
35.51 4.91 174.52
36.04 4.85 174.91
36.57 4.78 174.90
37.10 4.70 174.44
39.22 4.24 166.37
40.80 3.68 150.27
41.87 3.14 131.61
42.93 2.37 102.15
43.99 1.13 50.00
44.40 0 0
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Appendix B

Figure A1. Suggested flowchart for the proposed method.
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Abstract: In the current era, the skyrocketing demand for energy necessitates a powerful mechanism
to mitigate the supply–demand gap in intelligent energy infrastructure, i.e., the smart grid. To handle
this issue, an intelligent and secure energy management system (EMS) could benefit end-consumers
participating in the Demand–Response (DR) program. Therefore, in this paper, we proposed a
real-time and secure incentive-based EMS for smart grid, i.e., RI-EMS approach using Reinforcement
Learning (RL) and blockchain technology. In the RI-EMS approach, we proposed a novel reward
mechanism for better convergence of the RL-based model using a Q-learning approach based on the
greedy policy that guides the RL-agent for faster convergence. Then, the proposed RI-EMS approach
designed a real-time incentive mechanism to minimize energy consumption in peak hours and reduce
end-consumers’ energy bills to provide incentives to the end-consumers. Experimental results show
that the proposed RI-EMS approach induces end-consumer participation and increases customer
profitabilities compared to existing approaches considering the different performance evaluation
metrics such as energy consumption for end-consumers, energy consumption reduction, and total cost
comparison to end-consumers. Furthermore, blockchain-based results are simulated and analyzed
with the help of deployed smart contracts in a Remix Integrated Development Environment (IDE)
with the parameters such as transaction efficiency and data storage cost.

Keywords: residential energy management; reinforcement learning; Q-learning; smart grid; blockchain
technology; smart contracts; energy infrastructure

MSC: 68M25

1. Introduction

The proliferation of energy demand necessitates the effective production and distribu-
tion of energy in modern grid infrastructure, i.e., a smart grid with an automated control
facility for an energy management system (EMS). Energy management (EM) can be realized
using three ways, i.e., energy efficiency, strategic load growth, and Demand–Response
(DR). Strategic load and energy efficiency involve long-term planning problems and do not
consider real-time planning, whereas DR is a mechanism that controls load in real time [1].
There are several ways to implement load control in real time, such as direct load control,
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time-based techniques, and many more. In direct load control, an electric utility company
(EUC) can switch off/on the end-consumer electric appliances and provide incentives
to the end-consumer as per the agreement. Furthermore, the total energy consumption
associated with the end-consumer in the time-based techniques remains the same. Only
the time to consume energy is changed considering the varying price signal forwarded
by the EUC to the consumer. It also changes the shape of the energy load curve with
the help of minimization of peak-to-average ratio (PAR) and reduces the energy bill of
the end-consumer [2,3]. Moreover, DR can be characterized [4] into price-based DR and
incentive-based DR, both of which have been comprehensively investigated in smart grid
systems [5,6].

The usage of the DR mechanism can be defined with the time of use (TOU), critical
peak pricing (CPP), and real-time pricing (RTP) mechanisms. As per the available literature
survey, it is found that end-consumers are comfortable with the TOU mechanism, and
system complexity is also less. Still, it suffers from a rebound peak problem, which is not
the scenario in RTP. In recent decades, different DR strategies have been presented that
aim to control residential houses or commercial buildings [7,8]. For example, Sun et al. [9]
study the importance of heating, ventilation, and air conditioning, i.e., (HVAC) with distri-
butions and physical parameters. Next, Zhang et al. [10] presented a service pricing-based
load balancing approach for residential end-consumers. In [11], a secure and effective
real-time scheduling mechanism is proposed for residential DR. Next, Ruzbahani et al. [12]
presented an optimal incentive-based DR program for smart homes. Most studies focused
on the deterministic rule, abstract model, or mathematical approach that suffers from
various issues. For example, optimality cannot be obtained by the deterministic rules in
the dynamic energy systems that can cause financial losses. It is heavily dependent on the
operator’s skill and suffers from scalability issues (for example, game-theoretic or MILP
optimization) due to the involvement of a high number of binary variables.

To tackle the aforementioned issues associated with optimality and scalability, one of
the noteworthy solutions is Artificial Intelligence (AI), which has proved its effectiveness
toward optimal decision making utilizing Deep Learning (DL) and Reinforcement Learning
(RL). Several RL approaches, such as Q-learning, Deep Q-Network, etc., have been incorpo-
rated by researchers worldwide to mitigate the decision-making problems [13–15]. Then,
Zheng et al. [16] focused on the behavioral coupling of end-consumers by incorporating
an incentive-based integrated DR approach for multiple energy carriers. In [17], a priority
double deep Q-learning approach is presented to improve residential EMS. Most of the
existing techniques used in Q-learning are modeled as Markov Decision Processes (MDPs).
Still, it has not been exploited fully with real-time incentives and the accessibility of data
for all stakeholders such as smart grid, end-consumers, and EUC. Other challenges, such
as confidentiality, security, and privacy, must also be considered for efficient and trustable
EM. Therefore, blockchain technology is the only solution to handle all these challenges
mentioned above.

Blockchain is a secure, immutable, distributed ledger technique (DLT) that contains
a chain of data blocks to mitigate security and trust issues such as single-point-of-failure,
anonymity, and data manipulation [18]. It has been adopted to monitor EMS securely
in the smart grid environment efficiently. For example, the authors of [19] formulated
a Stackelberg game approach for achieving optimal energy pricing for efficient energy
trading. In [18], blockchain achievability is presented in a smart grid system. Next, Jindal et
al. [1] projected a blockchain-based system, i.e., GUARDIAN, to ensure the security of DR.
Later, researchers adopted the decentralized blockchain technology in EMS for residential
research areas as well [20]. As a result, existing blockchain-based approaches have several
limitations, such as data storage cost (relatively high), high energy consumption, low trans-
action efficiency, and the requirement of high bandwidth to access data in real time [21–23].
Table 1 shows the comparative analysis of energy management systems with the proposed
approach, which highlights how the proposed approach surpasses the research gaps such
as the reliability, data storage cost, and transaction efficiency of related research work with
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the help of blockchain and interplanetary file system (IPFS)-based framework. Motivated
by the above-mentioned gap, this paper proposed the RI-EMS approach: a Real-time
Incentive-based Energy Management System using RL (i.e., Q-learning) and blockchain.
The proposed RI-EMS approach stores energy data transactions utilizing an off-chain data
storage platform, i.e., IPFS, that improves the scalability, data storage cost, reliability, and
throughput of the EM.

Table 1. Comparative analysis of various state-of-the-art EMSs with the proposed.

Author Year Objective
Pricing

Mechanism
Pros Cons

Zhang et al. [10] 2020

Presented a load
dispatch energy

storage method for
residential area

Iteration algorithm Reduced operation
cost, convergent

Need to consider
energy trading

for dynamic
energy loads,

privacy issues

Kumari et al. [11] 2020

Implemented the
smart contract to

ensure secure
energy trading for

smart grid

No mechanism

High scalability,
reduced storage

cost, and
low latency

Should focus on
optimal pricing,

efficiency,
and energy

consumption

Zheng et al. [16] 2020

Presented a DR
model to obtain
the incentives
for multiple

energy carriers

Incentive-based
approach

Improved accuracy,
reduced

dissatisfaction cost

Reduced energy
consumption and

transaction
efficiency is
not focused

Mathew et al. [17] 2021

Proposed a DR
learning model for

an efficient
residential EM

DR-based
greedy policy

Optimized peak
cost and peak load

Need to implement
with larger state

space for
optimal incentive

Li et al. [19] 2018

Discussed a secure
energy-trading
system for the

Industrial Internet
of Things using

consortium
blockchain

Stackelberg game

Optimized price,
secure against

double-spending
and adversary

attacks

No discussion
on energy

consumption
reduction and cost

Hupez et al. [24] 2022

Formulated a
game-theoretical

approach for
efficient energy
scheduling in

residential
communities

Non-cooperative
game theory

Optimized
incentive and fair

No discussion
on energy

consumption, data
storage cost, and

transaction
efficiency

Bruno et al. [25] 2022

Presented a
residential demand

response
management for

optimal load
scheduling

Genetic algorithm
Reduced energy

cost and
electricity bill

Reliability, data
storage cost,
and energy

consumption need
to be considered

The proposed
approach 2022

Proposed a
real-time incentive
approach for EMS
using blockchain

Q-learning

Optimal price,
incentive, high

efficiency,
and reliability

-
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1.1. Research Contributions

The following are the research contributions of this paper.

• This paper proposes an RI-EMS approach for DR based on Q-learning to priori-
tize the experience of an agent and for faster convergence of DR using an epsilon
greedy policy.

• A novel real-time incentive mechanism is proposed using a smart contract for the end-
consumer to motivate them to participate in DR due to the appropriate and optimal
incentives obtained for each participant in the EM.

• The proposed RI-EMS approach is evaluated compared to the conventional approaches
in terms of consumer participation, energy consumption reduction, transaction effi-
ciency, and data storage cost.

1.2. Organization of the Paper

The rest of the paper is organized as follows. First, Section 2 highlights the system
model and problem formulation of the proposed RI-EMS approach, and Section 3 dis-
cusses the proposed RI-EMS approach in detail. Next, Section 4 presents the performance
evaluation of the RI-EMS approach. Finally, the paper is concluded with future work in
Section 5.

2. System Model and Problem Formulation

This section presents the system model and problem formulation of the proposed
RI-EMS approach.

2.1. System Model

The proposed RI-EMS approach (as shown in Figure 1) involves the utilization of a
smart grid platform to optimize and preserve energy consumption for consumers with
the incorporated blockchain network. Now, energy consumption associated with the
consumers σi participating in the energy management scheme can be defined based on the
different types of energy load (El) in the particular locality, i.e., residential or commercial.
For that, initially, energy consumption data are considered to optimize the incentive for
consumers as residential σr or commercial σc. Based on the residential or commercial
consumers, we can contemplate the energy consumption to optimize it further using the
smart grid.

Therefore, if we consider the case of residential consumers, then energy consumption
is affected by various energy loads, i.e., thermal (θσr ), time-shiftable (τσr ), power-shiftable
(μσr ), and other non-controllable (Nc

σr ) energy loads. Meanwhile, we assume the energy
consumption associated with the commercial consumers to be affected by the controllable
(βσc ) and non-controllable (δσc ) energy loads. Next, we need to reduce the evaluated energy
consumption of residential and commercial consumers with the help of a smart grid. Thus,
consumers with higher energy consumption can be given an incentive, which will also
encourage them to save more energy in real time [18]. It seems difficult for consumers to
save energy due to the involvement of high energy consumption. To achieve the optimum
energy consumption, we have formulated an incentive mechanism for the residential and
commercial consumers by applying a Q-learning approach in which ε greedy policy is
applied to attain reduced energy consumption and convergence for a better response from
consumers. TOU-based EMS is introduced in a smart grid to incentivize consumers based
on their energy usage. Furthermore, to ensure the fair incentive mechanism in the scheme,
we have employed a blockchain network enabled with IPFS to store the data in a distributed
and immutable manner to add data transactions in the blockchain network further (with
the help of a smart contract) [26]. However, before storing the energy consumption data in
IPFS, data should be legitimate and authenticated by the introduced validation authority
(VA). Once data are authorized by VA, they can be made available for storage in IPFS based
on smart contract execution. So, real-time data accessibility and storage can be performed
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over a blockchain network in a real-time incentive-based energy management scheme using
the smart grid.

Figure 1. System model.

2.2. Problem Formulation

The proposed RI-EMS approach is a real-time incentive-based energy management sys-
tem in which s number of consumers {σ1, σ2, σs′ , . . . . . . , σs} are categorized into residential
σr and commercial consumers (σc) based on their energy consumption. However, to enable
the classification of consumers, energy consumption data can be defined based on the
consumers, i.e., residential or commercial. Next, energy consumption associated with the
residential consumer is determined by considering the energy loads, i.e., {θσr , τσr , μσr , Nc

σr }
of various appliances. Similarly, the energy consumption corresponding to the commercial
consumers also depends on the types of energy loads of appliances, which is assumed to be
controllable γσc and non-controllable Nc

σr . Therefore, we can mention the various energy
loads (Eσr

l , Eσc

l ) which affect the energy consumption of the residential and commercial
consumer. The aforementioned association is represented as follows:

Eσr

l =

⎧⎪⎪⎨
⎪⎪⎩

θ, if thermal load
τ, if time-shiftable load
μ, if power-shiftable load
Nc, if non-controllable load

(1)
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Eσc

l =

{
β, if controllable load
δ, if non-controllable load

(2)

Thus, we have discussed the variables affecting the energy loads of residential and
commercial consumers. Then, based on the several energy loads, we can focus on the
energy consumption corresponding to the residential and commercial consumers. Firstly,
we have to evaluate the energy consumption associated with the consumers εσr , εσc based
on the classification, i.e., residential and commercial. Therefore, the energy consumption of
residential and commercial consumers can be calculated considering the energy demand ε
of various energy loads at a time interval ξ, which can be mentioned as follows:

ε
ξ
σr = ε

ξ
θσr

+ ε
ξ
τσr

+ ε
ξ
μσr

+ ε
ξ
Nc

σr
(3)

ε
ξ
σc = ε

ξ
βσc

+ ε
ξ
δσc

(4)

Next, we have to determine the reduction in energy consumption of residential and
commercial consumers to achieve the maximum incentive for optimal energy management
using the smart grid. However, the incentive obtained by the residential and commercial
consumers depends on the reduction in energy consumption. Thus, the reduction in energy
consumption of residential consumers can be calculated as follows:

ε
ξ

σMin
r

=
∣∣∣εξ

σa
r
− ε

ξ
σo

r

∣∣∣2 (5)

where ε
ξ
a and ε

ξ
o denote the actual and objective energy consumption at a time interval ξ.

Furthermore, objective energy consumption is decided based on previous energy usage
in energy management. The actual energy consumption of residential consumers can be
evaluated based on the types of energy loads along with their energy usage, which is
mentioned as follows:

ε
ξ
σa

r
= Nξ

τ εk + Nξ
με l + Nξ

Nc εm − Nξ
s εn (6)

Similarly, the reduction in energy consumption of commercial consumers can be
determined as follows:

ε
ξ

σMin
c

=
∣∣∣εξ

σa
c
− ε

ξ
σo

c

∣∣∣2 (7)

Here, the actual energy consumption of commercial consumers can be calculated
based on the types of energy load, i.e., controllable and non-controllable. As we have not
considered the shiftable types of energy load for commercial consumers (not included in the
scope of this research work), the calculation of actual energy consumption of commercial
consumers with the number of controllable and non-controllable energy loads can be
represented as follows:

ε
ξ
σa

c
= Nξ

βεk + Nξ
δ (8)

Thus, we have considered the N and P number of energy loads for residential and
commercial consumers to reduce energy consumption, which further leads to efficient and
optimal energy management using a smart grid. In the proposed system, the main criteria
of the smart grid are to provide an incentive to the consumers based on the reduction in
energy consumption σMin

r and σMin
c . Therefore, we have deduced the objective function

CO, CO′
to optimize the real-time incentive for consumers σr,c with the help of a smart grid

at a time interval (in hours) ξ ∈ {1, 2, . . . . . . , 24}, which can be mentioned as follows:

Optimize (CO, CO′
) =

24

∑
ξ=1

4,2

∑
(N,P)=1

ε
ξ

σMin
r,c ,(N,P)

∗ ρs (9)

where N and P number of energy loads affecting the energy consumption of residential
and commercial consumers are considered for optimizing the incentive price based on
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the obtained reduced energy consumption σMin
r,c with the help of smart grid ρs. Moreover,

the energy consumption data of residential and commercial consumers are stored in IPFS
immutable data storage after being made legitimate by VA. After being authenticated by
VA, a smart contract runs to check the energy data’s validity that must be stored in the
IPFS. As a distributed and secure ledger, the blockchain network stores data transactions
with improved cost-efficiency with the help of integrated IPFS protocol. Furthermore, the
proposed incentive mechanism ensures the optimal energy management of the consumers
with the help of a smart grid. The real-time incentive mechanism works on the principle
of an optimal Q-value and action-value function determined to achieve the reward for
consumers at a particular state in a dynamic environment. Furthermore, the employed 5G
network helps to provide the incentive to consumers with high efficiency, availability, and
reliability in the blockchain-based energy management system. A 5G wireless network,
along with its low latency, high availability, and high data rate (DR) features, is being
considered in the blockchain and IPFS-based energy management scheme.

3. The Proposed Approach

Figure 2 shows the proposed RI-EMS approach, i.e., a blockchain-based real-time
incentive energy management scheme, which is divided into a 3-layered architecture
consisting of an energy layer, incentive layer, and blockchain layer. These layers are
explained in detail to provide an overview of the proposed approach, which is represented
as follows:

Figure 2. RI-EMS: The proposed approach [27,28] .

3.1. Energy Layer

The proposed scheme initiates with the energy layer, which involves collecting en-
ergy consumption data of residential and commercial consumers to deduce the maximum
incentive for using various energy loads. The RI-EMS utilizes the Q-learning-based RL
approach to attain the real-time incentive by extracting the Q-value with the help of the
Q-table. Consumers’ energy consumption is affected by the usage of various appliances
associated with the energy loads, i.e., thermal, time-shiftable, power-shiftable, and other
non-controllable loads for residential consumers and controllable and non-controllable en-
ergy loads for commercial consumers. The proposed scheme mainly focuses on optimizing
the energy consumption associated with residential and commercial consumers using the
smart grid. The energy consumption of consumers, along with their corresponding energy
loads, can be represented as follows:

εσr −→ {θσr , τσr , μσr , Nc
σr} (10)

σc = {βσc , δσc} (11)

Moreover, the energy consumption of residential and commercial consumers fluctuates
based on the usage of appliances of various energy loads. Therefore, we have formulated
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the incentive mechanism for consumers based on the reduction in energy consumption
explained in the incentive layer. Figure 3a shows the flowchart for the energy layer that
mainly indicates the energy consumption associated with several energy loads, which the
RL agent handles.

(a) Energy layer (b) Incentive layer

Figure 3. Flowchart for the proposed RI-EMS approach.

3.2. Incentive Layer—Reinforcement Learning Approach

The incentive layer serves as a middle layer between the energy and blockchain layer
to provide real-time incentives to the residential and commercial consumers based on
the optimized dynamic energy consumption ε

ξ

σMin
r

and ε
ξ

σMin
c

calculated using actual and
objective energy consumption. We have applied the RL approach to obtain the minimized
cost for residential and commercial consumers based on dynamic energy consumption.
Furthermore, Figure 3b depicts that the RL method comprises multiple agents, i.e., res-
idential and commercial consumers, whose main aim is to choose an action that yields
the minimized cost in a dynamic environment. To implement the RL method, we need to
consider three elements, i.e., state, action, and cost.

Assume S denotes the state set which represents the state of the RL agent, i.e., resi-
dential and commercial consumers (sσr ,ξ , sσc ,ξ) at a time interval ξ. Action is defined by
A, which signifies the action of consumers (aσr ,ξ , aσc ,ξ) ∈ (εξ

σMin
r

, ε
ξ

σMin
c

) to the dynamic en-
vironment to obtain the maximized cost. For example, how residential and commercial
consumers act in a dynamic environment based on the dynamic energy consumption can
decide their optimized cost CO

ξ and CO′
ξ . After obtaining the optimized cost, the dynamic

environment can be forwarded to the next state (sσr ,ξ+1, sσc ,ξ+1). However, we have already
discussed the associated energy loads of residential and commercial consumers and how
they influence energy consumption. We have evaluated the reduced energy consumption
of the consumers with the help of actual and objective energy consumption. Based on the
calculated reduced energy consumption, we have deduced an objective function specifying
the cost for residential and commercial consumers varying with the reduced energy con-
sumption, and the smart grid ensures the low pricing for consumers.
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Therefore, firstly, we can define the optimal policy Δ for agents, i.e., residential and
commercial consumers, to optimize the objective cost evaluated using reduced energy
consumption. Thus, the action-value function QΔσr

for residential consumers considering
the state, action, and policy can be represented as follows:

QΔ(sσr ,ξ , aσr ,ξ) =
T

∑
j=ξ+1

ω j−ξ−1CO
j−1|sσr ,ξ , aσr ,ξ (12)

∀sσr ,ξ ∈ S, aσr ,ξ ∈ A (13)

where ω denotes the discount factor associated with the residential consumers. Similarly,
we can calculate the action-value function QΔσc

for commercial consumers with the help
of objective cost CO′

. Moreover, the optimality of the action value for residential and
commercial consumers is represented by Q∗

Δ(sσr ,ξ , aσr ,ξ) and Q∗
Δ′(sσc ,ξ , aσc ,ξ).

Furthermore, agents, i.e., (sσr ,ξ , sσc ,ξ) should take action (aσr ,ξ , aσc ,ξ) to maximize the
reward or incentive η(sσr ,ξ , aσr ,ξ) using the Q-learning approach based on the policy at a
particular state (sσr ,ξ , sσc ,ξ). The Q-learning approach works on the principle of Q-value
Ω(sσr ,ξ , aσr ,ξ) by preparing the Q-table containing the action (aσr ,ξ , aσc ,ξ) and state (sσr ,ξ , sσc ,ξ).
As a result, the flow of the incentive layer with Q-value is considered an important aspect to
obtain the optimal price, which is further forwarded to the consumers based on the reduced
energy consumption calculated using actual and objective energy consumption. Therefore,
the calculation of the Q-value for residential consumers is represented as follows:

Ω(sσr ,ξ , aσr ,ξ) ←− Ω(sσr ,ξ , aσr ,ξ) + β(ηξ+1(sσr ,ξ , aσr ,ξ)

+ ω max Ω(sσr ,ξ+1, aσr ,ξ)− Ω(sσr ,ξ , aσr ,ξ)) (14)

where β represents the learning rate which lies in the range of [0, 1] and ω is considered as
the discount factor associated with the action–value pair calculated to maximize the cost
objective function of residential consumers. Similarly, we can calculate the optimization of
incentive or reward η′(sσc ,ξ , aσc ,ξ) for commercial consumers based on the Q-value, which
is expressed as follows:

Ω(sσc ,ξ , aσc ,ξ) ←− Ω(sσc ,ξ , aσc ,ξ) + β(η′
ξ+1(sσc ,ξ , aσc ,ξ)

+ κ max Ω(sσc ,ξ+1, aσc ,ξ)− Ω(sσc ,ξ , aσc ,ξ)) (15)

Furthermore, Algorithm 1 shows how the Q-learning approach can be used to deter-
mine the optimization of the Q-value for residential and commercial consumers with the
help of optimal policy in terms of time complexity of O(e) (which represents the number of
episodes to compute the optimization of Q-value), which is expressed as follows:

Therefore, we have applied the Q-learning approach to maximize the incentive
η(sσr ,ξ , aσr ,ξ) and η′(sσc ,ξ , aσc ,ξ) for residential and commercial consumers based on the
dynamic energy consumption that is considered as the action (εξ

σMin
r

, ε
ξ

σMin
c

) taken by the
consumers for each state of sσr ,ξ , sσc ,ξ at a time interval ξ. After obtaining the incentive
mechanism for consumers using the Q-learning approach, the secure storage of reduced
energy consumption has been explained in the blockchain layer, which focuses on real-time
incentive energy storage with the help of the introduced IPFS.

{δ, δ′} = argmax(Ω(sσr ), Ω(sσc), ξ) (16)
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Algorithm 1 Incentive for Consumers using Q-learning
Input: sσr ,ξ , sσc ,ξ , aσr ,ξ , aσr ,ξ , QΔ, QΔ′ , ξ
Output: Optimized incentive

1: procedure INCENTIVE_CONSUMER(sσr ,ξ , sσc ,ξ , ξ )
2: if σ ∈ σr then
3: for ξ time interval < 0 do
4: AssignQ − value −→ 0
5: for E dopisode e
6: Calculate action value for residential consumer
7: Assign State sσr ,ξ

8: QΔ = ∑T
j=ξ+1 ω j−ξ−1CO

j−1|sσr ,ξ , aσr ,ξ

9: Compute incentive η(sσr ,ξ , aσr ,ξ)
10: Transit to new state sσr ,ξ+1
11: Compute optimization of Q-value
12: δ = argmax(Ω(sσr ,ξ , aσr ,ξ))
13: end for
14: end for
15: else
16: for ξ time interval < 0 do
17: AssignQ − value −→ 0
18: for Episode e do
19: Calculate action value for commercial consumer
20: Assign State sσc ,ξ

21: QΔ′ = ∑T
j=ξ+1 ω j−ξ−1CO′

j−1|sσc ,ξ , aσc ,ξ

22: Compute incentive κ(sσc ,ξ , aσc ,ξ)
23: Transit to new state sσc ,ξ+1
24: Compute optimization of Q-value
25: δ′ = argmax(Ω(sσc ,ξ , aσc ,ξ))
26: end for
27: end for
28: end if
29: end procedure

3.3. Blockchain Layer

Ethereum blockchain, as a secure and decentralized platform, is introduced to ensure
secure and real-time incentive energy management for consumers implemented with a
value-based Q-learning algorithm. To accomplish real-time data accessibility and energy
consumption data stored securely in the blockchain, IPFS as an immutable peer-to-peer
protocol is employed in the system to improve the scalability and reliability of the com-
munication between multiple agents in the dynamic environment [29]. Initially, VA as
an authorizing entity is considered to confirm the identity of consumers participating in
energy management. To legitimize the authorization of data storage in IPFS, an intelligent
contract run as a self-executable code to check the authenticity of energy consumption
data. If it becomes authenticated for data storage, then IPFS as a cost-efficient protocol
allocates hash keys φσr and ψσc to residential and commercial consumers. Next, the con-
sumers containing the hash keys φσr and ψσc provided by the IPFS can use them as data
access and storage keys to perform the transactions of real-time energy management in the
blockchain network.

Algorithm 2 depicts how energy data can be stored securely with the help of a
blockchain network considering the time complexity, i.e., O(s), and O(s′) associated with
the number of residential and commercial consumers request for data storage. Furthermore,
the security of energy management transactions of the consumers needs to be ensured in the
blockchain network. For that, we have utilized the pair of keys, i.e., public key and private
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key of consumers Pckσr
, Pekσr

and Pckσc
, Pekσc

using asymmetric public key cryptography
to preserve the energy management of consumers in the dynamic environment, which is
denoted by DE:

Algorithm 2 Blockchain-based algorithm for secure energy data storage

Input: σr, σc, IPFShk, VA
Output: Add energy data transactions to the blockchain

1: procedure ENERGY_DATA(φσr , φσc , σr, σc )
2: if σ ∈ σr then
3: for x = 1, 2, . . . , s do
4: IPFShk ←data_requests(σr)

5: σr authorize←−−−−− VA
6: Execute smart contract
7: if σr ∈ authorized then

8: σr φσr←− IPFShk

9: blockchain ←− Add_data (σr)
10: Secure data storage in the blockchain
11: else
12: Invalid consumer
13: end if
14: end for
15: else if σ ∈ σc then
16: for y = 1, 2, . . . , s′ do
17: IPFShk ←data_requests(σc)

18: σc authorize←−−−−− VA
19: Execute smart contract
20: if σc ∈ authorized then

21: σr ψσc←−− IPFShk

22: blockchain ←− Add_data (σr)
23: Secure data storage in the blockchain
24: else
25: Invalid consumer
26: end if
27: end for
28: end if
29: end procedure

Dh((σr, σc), DE) = ((φσr , ψσc), DE) (17)

ϕPck(σr ,σc)(Ds
Peαr

k
d )(Dh((σr, σc), DE) = Dh((σr, σc), DE) (18)

where Dh signifies the hash digest of the energy transactions of consumers σr and σc in the
dynamic environment DE. Dsd represents the digital signature of consumers associated
with their private key {Pekσr

, Pekσc
}. Furthermore, Figure 4 shows the basic working of

the blockchain layer in which energy data optimized from the incentive layer are stored
securely in the blockchain network through the IPFS intermediary protocol. Then, the
smart grid operator manages the energy data that can be forwarded to consumers based on
their reduced energy consumption.
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Figure 4. Blockchain layer.

4. Performance Evaluation

This section gives an overview of the performance evaluation of the proposed RI-
EMS approach. The proposed RI-EMS approach is implemented with python high-level
programming language on the Windows operating system with the configuration of Intel(R)
Core(TM) CPU of 2.60 GHz and 8 GB RAM to maximize the incentive for consumers
based on the Q-learning approach considering the performance metrics such as energy
consumption for end-consumer, energy consumption reduction, and total cost comparison.
Furthermore, blockchain-based results are evaluated and analyzed by deploying the smart
contracts in Remix IDE with the help of parameters such as transaction efficiency and data
storage cost.

4.1. Dataset Description

The performance evaluation of the proposed RI-EMS approach is conducted using
the standard dataset, i.e., Open Energy Information (openEI) [30]. It contains energy
consumption data for residential houses and commercial buildings as well. Then, the
pre-processing of the energy data is performed with a sci-kit-learn library to tackle noise,
Not-a-Number (NaN), missing values, duplicate values, etc. Next, the critical load data
(such as AC and other appliances) is obtained from Pecanstreet [31]. Then, hourly energy
prices are considered from PJM Data Miner as 2nd August 2022 [32]. Finally, Table 2 shows
the several simulation parameters considered for implementing and predicting the results
for the proposed RI-EMS approach.

Table 2. Simulation settings.

Particular Values

ξ 1 h
Peak hour 5 PM to 12 PM
Mid-peak 8 AM to 5 PM
Off-peak 12 AM to 8 AM

δC 0.01
φ 0.001
β {0,1}

4.2. Energy Consumption Reduction and Comparative Analysis

Figure 5a highlights the energy consumption of the end-consumers by considering
the distinguished non-controllable and controllable energy loads. In the proposed ap-
proach, the energy consumption of commercial consumers has been calculated with the
help of controllable and non-controllable energy demand. Furthermore, the reduction in
energy consumption is determined using the respective consumer’s actual and objective
energy consumption. The graph depicts the acquired energy consumption of the pro-
posed approach in a time interval (hours) of [0, 25]. It can be observed from the graph
that a controllable energy load yields higher energy consumption than non-controllable
energy consumption, which leads to the increased incentive of consumers in the case of a
non-controllable energy load.
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Figure 5b presents the energy consumption reduction due to the incentive mechanism
used in the proposed approach. Here, energy demand is marked in orange color, and
consumption of energy by the consumer is marked in green. The dotted line represents the
hourly energy prices. This graph depicts the consumption reduction in peak hours and
the increase in consumption in non-peak hours; for example, in the morning (1 AM to 8
AM), consumption is high, and during peak hours, consumption is reduced to receive more
incentives from the consumer. Furthermore, the proposed RI-EMS approach is compared
with the baseline approach such as Gurobi optimizer [33] by having the same simulation
parameters setting. Figure 6 depicts the costs comparison, which comprises total energy
consumption reduction and discomfort costs to the end-consumer. It is evident from the
graph that the proposed RI-EMS approach learns through a trial and error mechanism and
performs well with the increasing number of episodes compared to the baseline model.

(a) Energy consumption for end-consumer (b) Energy consumption reduction

Figure 5. Comparative analysis: (a) Energy consumption by a particular end-consumer, (b) Energy
consumption reduction with the proposed RI-EMS approach.

Figure 6. Comparison of RI-EMS with existing approach.

4.3. Transaction Efficiency

Figure 7a shows the transaction efficiency comparison considering two scenarios in
which one scenario is to perform data transactions in the proposed RI-EMS approach
with IPFS. Another scenario focuses on performing the data transactions in the proposed
approach with blockchain. It can be perceived from the scenarios that transaction efficiency
seems to lie at the same level when fewer data transactions are performed between multiple
agents. However, with the exponential increase in the number of data transactions, the
proposed RI-EMS approach with IPFS exhibits quite improved transactions efficiency
compared with the proposed scheme with blockchain. This is because IPFS works on
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generating a hash, which must be assigned to the consumers for secure and cost-efficient
data storage.

(a) Transaction efficiency comparison (b) Storage cost analysis

Figure 7. Comparative analysis: (a) Transaction efficiency comparison for the proposed RI-EMS
approach, (b) Storage cost analysis for proposed RI-EMS approach.

4.4. Data Storage Cost

In this subsection, we have focused on the data storage cost of the RI-EMS approach
to ensure cost-efficient energy management for consumers. Therefore, we have focused on
the data storage cost of the Ethereum blockchain network, which is a decentralized and
secure platform. Initially, we highlight an important metric, i.e., gas price for a single word,
which is denoted by Gpw. Furthermore, the gas price GpK for 1 KB of energy consumption
data correlates with Gpw in which GpK can be calculated as 20 ∗ 103 Gas and Gpw can be
written in the form of expression (210/256) ∗ (20 ∗ 103) Gas. Furthermore, data storage
cost CW associated with W number of words in a blockchain can be computed with the
parameters gas price and Ethereum price (gsbc, ETbc). Therefore, considering ether value
(Ev) as 109, data storage cost can be expressed in the form (w ∗ G)/Ev to calculate the cost
in USD as (gsbc ∗ CW) ∗ ETbc [34].

Storage Cost Analysis

The aforementioned computation for data storage cost proves that using blockchain as
a data storage platform incurs huge costs, which can demotivate consumers from utilizing
the energy of appliances associated with various energy loads. As a result, Figure 7b
shows the data storage cost analysis of the proposed RI-EMS approach considering the
data storage as blockchain and IPFS. Finally, the graph exhibits relatively low storage cost
when using IPFS as data storage with the proposed RI-EMS approach. Moreover, when
fewer consumers are involved in the energy data transactions, then the data storage cost for
both platforms lies at the exact alignment. Still, with the exponential surge in the number
of energy data transactions, the requirement of data storage cost for the proposed RI-EMS
approach with IPFS is relatively lower than the blockchain data storage. The main reason
for the cost-efficient behavior of IPFS is that it stores consumers’ energy data by generating
a hash, which requires a lower cost than the blockchain (stores a whole block of data).

5. Conclusions

The growth of smart homes has increased the research on EMS across the globe. So,
in this paper, we presented an incentive-based EMS for smart grid, RI-EMS integrated
with blockchain technology in real time. We have adopted the DR-based Q-learning
approach to optimize the incentive for residential and commercial consumers based on the
calculated reduction in energy consumption. We have categorized consumers based on
the several energy loads to obtain insights into energy consumption. Moreover, we have
formulated a real-time incentive mechanism based on the action-value function and Q-value
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applied using the Q-learning approach implemented in the python programming language
to obtain the reward or incentive for consumers. The consumer incentive mechanism
has been optimized based on the ε greedy policy to guide multiple agents for better
convergence. Finally, the performance of the proposed RI-EMS approach is simulated
against important metrics, i.e., consumer participation, energy consumption reduction, and
total cost comparison to end-consumers. Next, blockchain-based results are implemented
by deploying the smart contracts in Remix IDE in terms of transaction efficiency and data
storage cost.

In the future, we will implement a DL model with the Q-learning approach to obtain
the optimum energy consumption for consumers managed by the multiple agents. DL and
Q-learning approaches can improve the incentive for consumers monitored by multiple
agents. Furthermore, we can consider a real-time and dynamic scenario to implement the
blockchain-based technology for efficient and optimal EM in smart homes.
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Abbreviations
Acronym Definition

AI Artificial intelligence
CPP Critical peak pricing
DLT Distributed ledger technique
DR Data rate
DL Deep learning
DR Demand response
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EMS Energy management system
EUC Electric utility company
EM Energy management
IPFS Inteplanetary file system
IDE Integrated development environment
MDP Markov decision process
NaN Not-a-number
PAR Peak-to-average ratio
RTP Real-time pricing
RL Reinforcement learning
TOU Time of use
VA Validation authority
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Abstract: This work addressed the problem regarding the optimal integration of battery systems (BS)
in grid-connected networks (GCNs) with the purpose of reducing energy losses and CO2 emissions,
for which it formulates a mathematical model that considers the constraints associated with the
operation of GCNs in a distributed generation environment that includes BS and variable power
generation related to photovoltaic (PV) distributed generation (DG) and demand. As solution
strategies, three different master–slave methodologies are employed that are based on sequential
programming methods, with the aim to avoid the implementation of commercial software. In the
master stage, to solve the problem regarding the location and the type of batteries to be used, parallel-
discrete versions of the Montecarlo method (PMC), a genetic algorithm (PDGA), and the search crow
algorithm (PDSCA) are employed. In the slave stage, the particle swarm optimization algortihm
(PSO) is employed to solve the problem pertaining to the operation of the batteries, using a matrix
hourly power flow to assess the impact of each possible solution proposed by the master–slave
methodologies on the objective functions and constraints. As a test scenario, a GCN based on the 33-
bus test systems is used, which considers the generation, power demand, and CO2 emissions behavior
of the city of Medellín (Colombia). Each algorithm is executed 1000 times, with the aim to evaluate
the effectiveness of each solution in terms of its quality, standard deviation, and processing times. The
simulation results obtained in this work demostrate that PMC/PSO is the master–slave methodology
with the best performance in terms of solution quality, repeatability, and processing time.

Keywords: grid connected network; optimization algorithm; master-slave strategy; parallel
processing; photovoltaic generation; battery systems; energy loss; environmental emissions

MSC: 65K05; 90C26; 90C27

1. Introduction

1.1. General Context

In the last decades, the continuous growth of the global population and the wide
implementation of electrical devices have generated an increased energy demand, which is
generally supplied with fossil fuels. This increases CO2 emissions and the energy losses
associated with energy transport, directly affecting the quality of electrical services and
the life conditions of GCN users [1]. With the aim to mitigate this issue, in the last years,
grid operators and researchers have been given the task of integrating environmentally
friendly distributed energy resources, which involves the smart integration and operation
of renewable energy resources, battery systems, capacitor banks, and static compensators,
among others [2,3]. BS have been the most widely installed and studied distributed en-
ergy resources in recent years, as they allow managing the energy of the grid, mitigating
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the variability of renewable energy resources, and improving the economic, technical,
and environmental conditions of the network (i.e., the reduction of energy purchasing costs,
energy losses, and CO2 emissions, as well as voltage profile improvements, among oth-
ers) [4]. In turn, GCNs are the most widely studied electrical grids [5], as they are the most
developed networks around the world and the ones with the most technical problems
(i.e., energy losses, voltage profile limit violations, and line overloadability, among oth-
ers) [6]. Furthermore, since they are located in cities and towns, fossil fuel-based generation
contributes to CO2 emissions in their corresponding regions, affecting the health of their
inhabitants. Based on the above, the authors of this work focus on the problem regarding
the selection, location, and operation of BS in GCNs, with the aim to reduce energy losses
and CO2 emissions.

1.2. State of the Art

Aiming to take advantage of the different benefits associated with the integration of
BS in electrical GCNs, many researchers have proposed different strategies for the correct
integration of BS in this kind of grid [7,8]. A large portion of these works has been oriented
towards developing mathematical models that describe all of the technical and operating
constraints involved in the operation of electrical networks within an environment of
distributed energy resources (DERs) [9,10]. These mathematical models formulate the
objective functions or goals to be achieved through the optimal integration and operation
of BS in GCNs, with two the most studied being the reduction of energy production costs
and energy losses [11,12]. In [13,14], a literature review on the objective functions used
in the optimal integration of BS in electrical systems was carried out, finding that a large
number of works focus on economic and technical indicators. Therefore, objective functions
related to environmental indicators are a topic that requires exploration. By analyzing the
different mathematical formulations reported in the literature to represent the problem
regarding the optimal operation of BS in GCNs [13], it was possible to notice that the set
of constraints that make up the problem under study must include active and reactive
constraints, the power limitations of conventional and renewable generation resources,
the power limitations and state of charge of the batteries, and the current line and voltage
profile limits that represent the operating constraints of the GCN. It is necessary to include
all of these constraints into the mathematical formulation, with the aim to reap the benefits
associated with the studied objective functions, while also including the variations in power
demand and renewable generation that are involved in the real behavior of a GCN.

To solve the problem regarding the optimal integration of BS in GCNs while consider-
ing technical and environmental aspects, many works have been reported in the specialized
literature. An example of this is the work reported in [15], whose authors proposed a
solution methodology for sizing and operating distributed generators and energy storage
systems in an electrical system located in India, with the aim to improve its technical condi-
tions. In this work, the authors considered the variation in power generation and demand,
as well as all of the constraints that represent the analyzed electrical grid. However, this
work considers a mono-nodal electrical system that ignores the complications related to the
transport lines. Furthermore, the authors do not use comparison methods nor analyze the
processing times required by the proposed solution. The work by [16] used the artificial
electric field algorithm to size and operate distributed generators and BS in AC electrical
networks, considering the reduction of CO2 emissions and the improvement of the technical
aspects of the grid as objective functions. In this work, the authors compare the best and
average solutions obtained by means of the proposed methodology against those of other
works reported in the literature. However, they use a mono-nodal grid as a test system and
do not analyze the reported processing times and standard deviation values. In addition,
this work does not analyze the effectiveness of the studied solution methods regarding pro-
cessing times and repeatability. The authors of [17] also locate and size BS in a mono-nodal
grid. In this work, they describe the mathematical formulation for the integration of BS
and other energy resources that compose the electrical grid, (i.e., distributed generators
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and loads, among others). This study considers economical and technical indicators as
objective functions, comparing the results obtained with those of other works reported in
the literature. The main problem with these works is associated with the fact that multi-
nodal GCNs are more widely used in real life, which implies several constraints related to
voltage profiles and line currents in their mathematical formulations, thus increasing the
complexity of the problem. However, the analyzed works offer important information on
the variable power generation and demand of electrical grids, as well as data related to
the implementation of smart optimization methods in the problem regarding the optimal
operation and location of BS in GCNs.

Regarding the integration and operation of BS while considering multi-nodal grids,
different works based on specialized software and sequential programming methods have
been proposed in the last years [8], with the latter being the most used for solving the prob-
lem regarding the integration of BS in GCN, as this kind of solution methodologies avoid
the use of specialized software, which causes an increase in complexity and implementa-
tion costs [15]. Furthermore, exact optimization methods such as convex optimization and
specialized software are not commonly used, since these solution methodologies are often
stuck in local optima. This occurs due to the nonlinearities generated by the discrete vari-
ables that represent the selection of the bus where the battery will be located, as well as the
kind of battery to be used. Based on the above, a large number of solution methodologies
have been reported in the literature which use master–slave strategies based on sequential
programming methods. Here, the master stage is entrusted with solving the location and
selection problem of the BS to be installed in the GCN, while the slave stage deals with the
power operation schedule of the BS, allowing to obtain the best impact on the objective
function. These optimization methods use discrete (master stage) and continuous variables
(slave stage) and complex solution space exploration processes to find the optimal power
configuration for locating and operating batteries in GCNs.

Most of works reported in the literature focus on a single objective of the two analyzed
in this research, namely, reducing the energy losses [13]. An example of this is the work
presented in [18], where the authors propose a methodology based on genetic algorithms
to solve the problem concerning the optimal integration of BS in GCNs. The authors
compare their results to those of other methods reported in the literature in terms of the
best solution. However, this work does not include or analyze the standard deviation and
processing times required by the solutions methods. The authors of [19] use the coalition
formation algorithm for solving the problem regarding the optimal integration of BS in
GCN. Their results demonstrate the effectiveness of the proposed solution methodology.
However, they do not analyze the processing times and the standard deviation values
of the solution strategies under study. A methodology based on the coyote optimization
algorithm is proposed in [20] with the purpose of reducing the energy losses in an electrical
network by integrating BS. To assess the performance of this approach, different works in
the literature are used for the sake of comparison. The authors of this work do not evaluate
the repeatability and processing times of the solution methods employed. Another proposal
for reducing energy losses is made in [21], where the authors use a sensitivity indicator
to locate and operate BS in an electrical grid. These methods get stuck in local optima,
as heuristic methods cannot escape from bad solution regions. The authors of [22] propose
a methodology based on a discrete version of a continuous method for solving the problem
regarding the integration of BS in GCNs, aiming to improve the operating conditions of
the electrical system. This work highlights the advantage of using modified conventional
continuous optimization methods (discrete versions) in order to solve problems involving
discrete and binary variables. In the same way, different authors have recently addressed
the problem regarding the selection and location of BS in GCNs [23–25].

The reduction of environmental impacts, however, is still a topic in development,
with a small number of works reported in the literature. The work reported in [26] aimed
to reduce CO2 emissions and energy power losses by using a non-linear mathematical
formulation, which was solved with the GAMS software. Nevertheless, the results obtained
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were not compared with those of other works reported in the literature. By using specialized
software, the authors of [27] obtained the optimal location and operation scheme of BS in
an electrical grid, solving a second-order cone programming model with the MATLAB CVX
tool. This work used different test systems, but comparison methods were not considered.
In [28], a mixed-integer linear programming model was proposed for representing the
problem pertaining to the location and operation of BS in electrical networks, in order to
reduce investments and CO2 emissions from fossil fuel-based power generation. This work
considered different kinds of batteries and load curves, with the aim to analyze the effect of
different devices on the operation of an electrical system. Note that the works reported in
the literature for reducing CO2 emissions with the operation of BS use specialized software
for solving the proposed mathematical models. This is explained by the fact that the
mathematical models used are still being built and validated. Therefore, there is a need to
propose mathematical models that guarantee the correct operation of the grid when this
environmental indicator is used, as well as solutions based on sequential programming
methods that avoid the use of specialized software.

By analyzing the state of the art, it was possible to notice that it is currently necessary
to propose optimization methodologies that address the problem regarding the optimal
location and operation of BS in GCNs with the aim to reduce energy losses and CO2 emis-
sions. Furthermore, these new methodologies must guarantee the best results in terms of
technical and environmental indices, with the aim to obtain resilient strategies that consider
the needs of the GCN and the community while avoiding the implementation of specialized
software, which increases the costs and complexity of the solution methodologies [29].
Furthermore, these methodologies must be compared against other approaches, with the
aim to identify the solution methodology with the best performance in terms of solution
quality, repeatability, and processing times.

1.3. Scope and Main Contributions

Recognizing the advantage of discretizing continuous optimization methods for solv-
ing problems with binary and discrete variables, as well as the current needs to solve
the optimal integration problem of BS in GCNs for reducing the energy losses and CO2
emissions, the authors of this paper propose a complete mathematical formulation of
the problem regarding the selection, location, and operation of BS in GCN for reducing
energy losses and CO2 emissions. All this is conducted while including all constraints
related to the electrical network (global power balance and line current and voltage profile
limits), conventional and distributed generators (power limits), and BS (discharging and
charging power limits and state of charge limits). Furthermore, with the aim to use the
high-performance methodologies reported in the literature for solving electrical problems
similar to that studied herein, three discrete versions of some optimization methods were
used in the master stage. The first of these is the parallel Montecarlo algorithm (PMC) [30],
which employs a random search process to find the solution with the best performance
while taking advantage of parallel processing, using all workers in the computer to reduce
processing times. Moreover, following the suggestions made in the literature, this paper
generated two parallel-discrete versions of two continuous optimization methods: the
genetic (PDGA) and crow search (PDCSA) algorithms. For the slave stage, the particle
optimization algorithm proposed in [31] was adapted. This algorithm was developed for
operating batteries in direct current (DC) grids, with no application or validation in alter-
nating current (AC) networks. By combining the three optimization methods proposed in
master stage and PSO, it was possible to obtain three new master–slave methodologies for
solving the problem under study, namely, PMC/PSO, PDGA/PSO, and PDCSA/PSO (here-
inafter called PMC, PDGA, and PDCSA for the sake of simplicity). In addition, with the
aim to evaluate the objective function and constraints related to each solution offered by
these strategies, aiming for the shortest processing times and the best convergence, this
study used the hourly power flow matrix based on successive approximations, as proposed
in [23], which allows considering variations in distributed generation and power demand.
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As a test scenario, an adapted version of the 33-bus test system was used, which repre-
sents the technical and environmental conditions of the city of Medellín (Colombia), while
considering the operation of three photovoltaic (PV) generators with maximum power
point tracking, which is the traditional way to operate renewable generation technology in
this country. Finally, to evaluate the performance of the proposed solution methodologies,
1000 executions of each one were carried out, with the aim to evaluate the minimum and
average solution, as well as the standard deviation and average processing times. This
analysis allowed selecting the optimization methodology with the best performance for
solving the problem regarding the optimal integration and operation of BS in GCNs.

The main contributions of this paper regarding academic and industrial applications
are described below:

1.3.1. Academic Contributions

• A mathematical model for the optimal integration of BS in GCN whose objective
function is the reduction of energy losses and CO2 emissions, observing all of the
constraints that represent the operation of a GCN in an environment of variable
distributed generation and power demand.

• A discrete codification for the problem regarding the location and selection of BS.
• A continuous codification for the problem regarding the operation of the batteries

located in the GCN.
• Three new master–slave strategies (PMC, PDGA, and PDCSA) for solving the problem

regarding the optimal integration of BS in GCNs.
• The identification of PMC as the master–slave strategy with the best performance

in terms of solution quality and its repeatability and processing times for solving
the problem under study. This optimization methodology could be used in future
works for the sake of comparison, with the aim to obtain methodologies with a
better performance.

1.3.2. Industrial Applications

• A mathematical formulation that allows the grid operators to quantify energy losses
and CO2 emissions before and after considering the integration of BS in GCNs.

• An effective and fast optimization method based on sequential programming, which
allows determining the location and operation scheme of multiple batteries within
the grid, with the purpose of reducing the energy losses and CO2 emissions while
observing all operating constraints.

1.4. Paper Organization

The remainder of this paper is organized as follows. Section 2 describes the mathemat-
ical formulation of the problem regarding the optimal selection, location, and operation
of BS in GCNs. Section 3 presents the proposed master–slave methodologies. Section 4
describes the GCN used as a test scenario and explains the PV generation and demand
curves, as well as the technical and operating parameters of the electrical systems located
in Medellín. Finally, Sections 5 and 6, respectively, present the simulation results obtained
by the proposed methodologies, as well as the conclusions and future works derived from
this research.

2. Mathematical Formulation

In this mathematical formulation, two objective functions are employed which aim for
reducing the energy losses and CO2 emissions in GCNs. Furthermore, this section describes
all of the constraints related to the technical limitations of the devices that make up the
grid, as well as the operation limits associated with voltage profiles and line currents.
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FO1 = min Eloss = min

(
∑

h∈ΩH
∑

i∈ΩN
∑

j∈ΩN
Yijvi,hvj,hcos

(
θi,h − θj,h − ϕij

)
Δt

)
(1)

The first objective function used in this paper corresponds to the reduction of the
energy losses related to energy transport in the GCN, which is presented in Equation (1).
Here, ΩH and ΩN represent the periods of time contained in the horizon under study
and the total of nodes that make up the GCN, respectively. Furthermore, Yij and ϕij are
the magnitude and angle of the admittance of the line that interconnects nodes i and j,
respectively. vj,h and vi,h are the voltage profile magnitudes of buses i and j, while θi,h and
θj,h are their angles, respectively. Finally, Δt is associated with the duration of each period
of time (1 h for this work).

As it could be appreciated in Equation (1), this mathematical formulation does not
implicitly include the variables associated with the power supplied by the BS. However,
the effect of the location and operation of these devices is considered in the nodal voltage
profiles included in the equation.

FO2 = min CO2 emissions = min

(
∑

h∈ΩH
∑

i∈ΩN

Xcg
i Pcg

i,hCEcg
i Δt + Xgd

i Pgd
i Cgd

h CEgd
i Δt

)
(2)

Equation (2) describes the mathematical formulation proposed to represent the second
objective function, i.e., the reduction of CO2 emissions generated by the power supplied
by the conventional and distributed generators located in the grid. In this equation, Xcg

i

and Xgd
i are the binary variables, which take a value of 1 if a conventional or distributed

generator is located at bus i, respectively; otherwise, they take a value of 0. Pcg
i,h and Pgd

i,h are
the power supplied by the conventional and distributed generators at bus i in the hour h.
CEcg

i and CEgd
i are the emissions factors for the two generation technologies considered

in this work. Cgd
h is a variable that represents the behavior of the distributed generator

installed at bus i in the hour h. This factor is in p.u. and changes every hour as a function
of the technology used and the potential of the renewable energy in the region where
the DG is located. In this objective function, the variables associated with the problem of
integrating BS in the GCN are implicit.

The BS optimal integration problem is composed of multiple technical and operating
constraints, which apply for all buses in the GCN and the period considered in the time
horizon analyzed.

Xcg
i pcg

i,h + Xcg
i Cgd

h pgd
i,h ± XB

i PB
i,h − pd

i,h = vi,h ∑
j∈ΩN

Yijvj,hcos
(

θi,h − θj,h − ϕij

)
(3)

The first constraint is associated with the the active power balance in the electrical
network. In this equation, XB

i is a binary variable that takes the value of 1 or 0 if a battery
is located or not at bus i, respectively, while pB

i,h is the active power supplied or demanded
by the BS located at bus i in the hour h.

qcg
i,h − Qd

i,h = vi,h ∑
j∈ΩN

Yijvi,hsin
(

θi,h − θj,h − ϕij

)
(4)

Equation (4) ensures the reactive power balance in the grid. In this equation, qcg
i,h and

Qd
i,h are, respectively, the reactive power generated and demanded by the conventional

generators and loads located at bus i in the hour h. By analyzing this equation, it can be
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noted that this work does not consider the injection of reactive power by the distributed
generator and batteries located in the GCN.

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i (5)

The maximum (Pcg,min
i ) and minimum (Pcg,max

i ) power to be supplied by the conven-
tional generator located at bus i are modeled in Equation (5).

Qcg,min
i ≤ qcg

i,h ≤ Qcg,max
i (6)

The reactive power limits associated with the conventional generators are presented
in (6), where Qcg,min

i and Qcg,max
i denote the minimum and maximum reactive power to be

supplied by these generators, respectively.

Pgd,min
i ≤ pgd

i ≤ Pgd,max
i (7)

Equation (7) represents the power limits of the distributed generator located at bus
i in the hour h. In this equation, Pgd,min

i and Pgd,max
i denote the minimum and maximum

power, respectively, which are a function of the technology and renewable potential in the
region where the generator is located.

Pchargmax
B,i ≤ pB

i,h ≤ Pdischmax
B,i (8)

Pdischmax
B,i =

CB
i

tdB
i

(9)

Pchargmax
B,i = −CB

i
tcB

i
(10)

The power in the batteries of the electrical system is controlled by Equation (8).
The maximum charge and discharge powers are limited by Pchargmax

B,i and Pdischmax
B,i . To calcu-

late these values, Equation (9) and (10) are used, where CB
i is the nominal power capacity

of the BS located at bus i, while tci and tci are the charge and discharge times, respectively,
required by the battery type, which is related to the BS technology.

SOCB
i,h = SOCB

i,h−1 − φB
i PB

i,hΔt (11)

Equation (11) allows calculating the state of charge at the hour h of the battery located
at bus i (SOCB

i,h). This equation requires the state of charge of the previous hour (h − 1),
the charging coefficient of the battery located at bus i (φB

i ), the power supplied or stored by
the same battery at the hour h (PB

i,h), and its time of charge or discharge, (Δt). To calculate
φB

i , Equation (12) is calculated, which is expressed in terms of the previously described
parameters. On the other hand, Equations (13) and (14) define the initial (SOC0

i ) and final
(SOC f

i ) state of charge of the battery located at bus i.

φB
i =

1

tdB
i Pdischargmax

B,i

=
1

tcB
i Pchargmax

B,i

, {∀i ∈ ΩB, ∀h ∈ ΩH} (12)

SOCB
i,h=0= SOC0

i , {∀i ∈ ΩB} (13)

SOCB
i,h=24= SOCf

i, {∀i ∈ ΩB} (14)

Finally, with the aim to integrate the operating constraints of the electrical distribution
system, the mathematical formulation includes Equations (15) and (16), which ensure that
the voltage profiles and the current that flows through the lines are within the technical
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limits set by the electrical operator and the manufacturer. In these equations, Vmin
i and

Vmin
i correspond to the minimum and maximum nodal voltage at bus i, respectively, while

Iij,h and Imax
ij are the current flowing through the line that interconnects nodes i and j,

respectively, whose maximum level is set during the design of the electrical network.

Vmin
i ≤ vi,h ≤ Vmax

i ,
{

∀i ∈ ΩN , ∀h ∈ ΩH
}

(15)

Iij,h ≤ Imax
ij

{
∀ij ∈ ΩN , ∀h ∈ ΩH

}
(16)

3. Proposed Solution Methodologies

3.1. Master–Slave Methodology and Codifications Used

To solve the problem regarding the optimal selection, location, and operation of BS in
GCNs, this paper proposes the master–slave methodology illustrated in Figure 1.

Selection and 
location of BS 

 

operation of BS 
Evaluation of 

objective function and 
constraints 

Send information 

Receive information 
Master stage 

operation of BS

rmation
Slave stage 

v
Matrix power flow 

Figure 1. Proposed master–slave methodology.

The master stage is entrusted with the selection and location of the batteries, a discrete
problem that requires identifying the buses and battery types to be installed in the grid.
For its codification, a vector of size 1 × 6 was used, where the number of columns corre-
sponds to the three locations and types of batteries be to installed (Section 4). Figure 2 is
presented as an example, where three A-, B-, and C-type batteries were located at buses 33,
12, and 3, respectively.

33 12 3 A B C 
 

3 12 3
Bus location of batteries 

Kind of batteries 

Figure 2. Codification proposed for selecting and locating batteries in the GCN.

The slave stage is responsible for finding a battery power dispatch that allows for
the maximum possible reduction of the objective function, using the location and type of
batteries provided by the master stage. To this effect, the codification proposed in Figure 3
is employed. This codification includes a vector of size 1 × 72, in whose columns are
24 variables associated with the states of charge of each battery in the different periods of
the time horizon analyzed.

0.5 0.7 …. 0.3 0.5 0.5 0.35 … 0.7 0.5 0.5 0.2 … 0.4 0.5 
 Battery 3 

0 5 0 7 0 50 3
h=1    h=2    .…   h=23  h=24   

Battery 1 
0.35 … 0.

Battery 2 
0 5 0 35 0 7 0 5

 h=1    h=2    .…   h=23  h=24   
0 5 0 2 0 4 0 5

 h=1    h=2    .…   h=23  h=24   

Figure 3. Codification used to find the operation scheme of the batteries selected and located by the
master stage.

Due to the nature of electrical systems, in order to evaluate the impact on energy losses
and CO2 emissions, as well as the constraints that make up the problem, it is necessary to
determine the power flow for the different periods, with the aim to analyze the effect of the
power generated and demanded by the loads, PV generators, and batteries installed in the
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GCN. After evaluating each period of time and obtaining the values associated with the
objective function and constraints, this information is summarized with the aim to evaluate
the effect of the batteries on the grid during an average day of operation. A power flow
evaluation within a multi-hour scenario is known as an hourly power flow. In this work,
a matrix hourly power flow based on successive approximations (MHPF) was selected,
given the excellent results reported in [23]. Algorithm 1 describes this method:

Algorithm 1: Algorithm proposed for the matrix hourly power flow based on
successive approximations

Data: Load the electrical system data;
Load the BS information provided by the master–slave strategy: types of BS,
location, and operation;

Load Vt
dh (with t = 0), ε, and tmax data;

for t = 0 : tmax do

Evaluate the MHPF using Equation (17);

if max
(∣∣∣Vt+1

dh −Vt
dh

∣∣∣) ≤ ε then

Solution achieved;
Result: Vdh = V

t+1
dh .

break;
else

Vt
dh = V

t+1
dh ;

Summarize the objective functions obtained in each period of time;
Penalize the objective function if a constraint is violated;
Return the objective function to the slave stage;

In the first step, the MHPF loads the electrical system data described in Section 4.
Then, the information provided by the master–slave strategy is loaded (i.e., regarding the
selection, location, and operation of the batteries during an average day. Next, these data
on the BS are integrated into the hourly power flow, and the voltage profiles for all buses in
the 24 h of operation are loaded as 1 < 0 by using V

t+1
dh , which is a matrix of size |d|x|H|,

with |d| being the number of demand buses and |H| the entirety of the time period analyzed
(24). Furthermore, to control the iterative process, a maximum number of iterations (tmax)
for the MHPF of 10,000 and a convergence error (ε) of 1e−10 were set. These values allow
for a fast convergence and were heuristically selected.

V
t+1
dh = −Y−1

dd

[
(ones V

t,∗
dh ) ◦ (Sdh − Spvh)

∗ + YdsVsh

]
(17)

After setting the initial parameters of the algorithm, the iterative process to solve the
hourly power flow begins. In each iteration, the hourly power flow is simultaneously
evaluated in all periods of time by using Equation (17). This is made possible by the fact
that this power flow method uses the Hadamard product (◦) and division (). In this
equation, Vt+1

dh and Vt
dh represent the demand bus voltages in all periods considered in the

current and previous iteration. These matrices are of size |d|x|H|, where |d| is the number
of demand buses and |H| the total of periods in the time horizon analyzed. Furthermore,
in this equation, ones is a matrix of ones, and Sdh and Spvh correspond to a matrix composed
of the power demand and the PV power generated in all periods. These matrices have
the same size as Vt

dh. Finally, in this equation, Ydd and Yds denote the components of the
admittance matrix generated between the demand (d) and slack buses (s), with Vsh being
the voltage in the slack buses, which are composed of (1 < 0) at all times (i.e., the nominal
voltage of the GCN). In each iteration of the MHPF, this equation is evaluated by using the
hourly voltage profiles of the current and previous iteration.

Then, in order to evaluate the hourly power flow via Equation (17), the MHPF eval-
uates the stopping criterion (convergence error). To this effect, the current and previous
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voltage profiles are compared. If ε is achieved, the iterative process ends; otherwise, it con-
tinues. When ε or tmax is achieved, the objective function values obtained for the different
periods are summarized, obtaining the objective function related to the whole operation
day. Furthermore, the constraints associated with each period of time are analyzed. If any
of them is violated, a high value is added to the objective function, with the aim to discard
the solution from the master–slave strategy. This strategy allows obtaining a solution of
good quality that satisfies all of the constraints involved in the studied problem. Finally,
the MHPF returns the objective function to the slave stage, with the aim to continue with
the iterative process of the master–slave strategy proposed in this work.

3.2. Master Stage

This work used three discrete optimization methods for the master stage: a parallel
version of the Montecarlo method (PMC) and two parallel-discrete versions of traditional
continuous optimization methods, i.e., the genetic and crow search algorithms. The selec-
tion of these methods was based on the excellent results reported in the literature with
regard to the solution of similar electrical engineering problems [18,29,32,33]. This subsec-
tion outlines the iterative process of each of these algorithms. For a whole description of
each algorithm, please refer to the cited papers.

3.2.1. Parallel Montecarlo Method (PMC)

The PMC is a random optimization method that evaluates multiple randomly pro-
posed scenarios, thus allowing for a good-quality solution in a previously defined number
of iterations. In each iteration, the PMC generates a population that contains different
individuals, each of which represents a possible solution to the problem. After evaluating
the objective function of each individual and confirming that it satisfies all constraints,
the individual with the best solution (incumbent) is included in an elite list. This, in order
to select the best solution from this list at the end of the iterative process. The random
exploration of the algorithm allows covering the solution space in reduced processing times
with low standard deviation values. The original PMC was proposed in [30]. However,
with the aim to obtain the best performance, this paper used a PSO to tune the PMC
parameters, as per the suggestions made by [29], obtaining 10 as the maximum number of
iterations (itermax). In each iteration, a population of 8 individuals was used, as this is the
maximum number of workers in the workstation used. This limitation is explained by the
fact that, in parallel processing, a population size higher than the number of workers is not
recommended, as this does not ensure a single parallel process. This limitation applies to
all solution algorithms used in this work. The iterative process of the PMC is presented in
Algorithm 2 and described below.

Algorithm 2: Algorithm proposed for the PMC
Data: Read PMC parameters
for t = 1 : itermax do

Randomly generate the first population;
Evaluate the objective function of the population by using the slave stage
(parallel process);

Include the best solution of the population in the elite list;

Select the best solution of the elite list as the solution to the problem;
Print the solution;

The PMC employs an iterative process that generates a random population by using
the discrete codification proposed in Figure 2. After that, using the location and battery
type proposed by each individual, the slave stage is used to evaluate the objective function.
This stage uses PSO and the MHPF to find the power schedule (supply or storage) of the
batteries in the GCN. This also includes the aim to obtain the minimum possible objective
function (energy losses or CO2 emissions), satisfying the set of constraints that compose
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the problem under study. Therefore, each individual of the population must be processed
by the slave stage, which implies long processing times. This is addressed by using parallel
processing, with the aim to evaluate multiple individuals at the same time. After evaluating
the objective function values of the population, the best solution is included in the elite list,
a process that is repeated iteration to iteration until the maximum number of iterations is
reached. When this occurs, the best solution of the elite list is selected as the solution to the
problem. This solution contains the location, selection, and operation of the batteries for a
day which yields the lowest objective function value.

3.2.2. Parallel-Discrete Genetic Algorithm (PDGA)

The parallel-discrete version of the genetic algorithm performs the selection, recombi-
nation, and mutation steps of traditional genetic algorithms (GA). However, this discrete
version of the GA uses the codification proposed in Figure 2 and adapts the recombination
and mutation steps to work with discrete variables, but the nature of the process is the
same [23]. Algorithm 3 describes the iterative process of the PDGA.

Algorithm 3: Iterative process of the PDGA
Data: Read PDGA parameters
for t = 1 : itermax do

if iter == 1 then

Randomly generate the first population;
Evaluate the objective function of the population by using the slave stage
(parallel process);

Select the best solution as the incumbent;
else

Update the population by performing selection, recombination,
and mutation;

Evaluate the objective function of the population by using the slave stage
(parallel process);

Update the best solution;
if Has the stopping criterion been met? then

End the iterative process and select the incumbent as the solution to
the problem;

Break;
else

Continue;

The PDGA starts by reading all of its parameters. In the particular case of this work,
a population size of 8 individuals was used, as well as a recombination of 1 point and the
mutation of 1 individual, and, as a stopping criterion, an itermax of 1000 was employed.
The tuning process of this algorithm was carried out with the same PSO used for PMC.
This algorithm generates the first population by using the codification in Figure 2 and a
random process. Subsequently, the objective function of each individual is evaluated by
using the slave stage and the MHPF. With this information, the individual with the lowest
objective function value is selected as the incumbent of the problem.

From the second iteration until the iterative process ends, the PDGA updates the
population via selection, recombination, and mutation. Then, the objective function and
constraints of each individual are calculated. Based on this information, the incumbent
of the problem is updated (the best solution). After that, the stopping criterion (itermax)
is evaluated. If it is met, the iterative process ends, and the incumbent is selected as the
solution to the problem; otherwise, the algorithm continues. It is important to highlight
that, as in the PMC, the incumbent contains the location, types, and operation scheme of
the batteries that allow obtaining the lowest possible objective functions.
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3.2.3. Parallel-Discrete Crow Search Algorithm (PDCSA)

The parallel-discrete version of the crow search algorithm uses the hunting strategies
of crows and takes advantage of parallel processing to evaluate the objective function
in each iteration of the algorithm. The iterative process of the PDCSA is presented in
Algorithm 4 and described below.

Algorithm 4: Iterative process of the PDCSA
Data: Read PDCSA parameters
for t = 1 : itermax do

if iter == 1 then

Randomly generate the first population of crows;
Evaluate the objective function of the population by using the slave stage
(parallel process);

Store all individuals in the population (current position of the crows);
Select the crow with the best solution as the incumbent;

else
Update the population by using the information of the incumbent,

the population, and random values;
Evaluate the objective function of the population by using the slave stage
(parallel process);

Store all individuals in the population (current position of the crows);
Update the incumbent;
if Has the stopping criterion been met? then

End the iterative process and print the incumbent as the solution;
Break;

else

Continue;

The conventional CSA works with a population of crows that, iteration to iteration,
take the decision to follow the leader or go their own way [34,35]. In the first iteration,
the PDCSA reads the parameters and randomly generates the initial population by using
the discrete codification proposed in Figure 2. Then, as with the PMC and the PDGA, this
optimization algorithm evaluates the objective function of the population via the slave
stage and a parallel process. Subsequently, the information of all individuals is stored,
and the crow with the best solution is selected as the incumbent, i.e., the leader.

From the second iteration until the iterative process ends, the position of all crows
is updated. In other words, the information of the population is renewed. To this effect,
each individual decides to follow the leader or take a different path. This is made possible
by using a random value. In this case, if the random value is higher than 0.5, the crow
follows the leader; otherwise, its position is updated by using random values between the
maximum and minimum ones allowed (number of buses and battery types). After up-
dating the position of the crows, these values are stored and the incumbent is updated.
Subsequently, it is verified whether the maximum number of iterations has been met. If this
is true, the iterative process ends, and the incumbent is printed as the solution; otherwise,
the algorithm continues.

As with the other solution methodologies employed in the master stage, the PDCSA
was tuned via the PSO suggested in [29]. Thus, a population size of 8 individuals and a
maximum number of iterations of 1000 were obtained.

3.3. Slave Stage

For solving the problem regarding the optimal operation of BS in GCN, this paper
uses the PSO proposed in [31], given the excellent results reported by the authors. Fur-
thermore, as the Montercalo method and the genetic and crow search algorithms have
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been traditionally used the in the literature for solving continuous problems, as is the case
of the one studied herein, these optimization methods were validated in this research,
with a low performance in comparison with PSO. Additionally, to obtain these results, it
is necessary to present a lot of information that does not contribute to the state of the art.
For this reason, only PSO was used in the slave stage, which is presented in Algorithm 5
and described below.

Algorithm 5: Iterative process proposed for the PSO used in the slave stage
Data: Read PSO parameters
for t = 1 : itermax do

if iter == 1 then

Randomly generate the position of the particles (initial population);
Evaluate the objective function of all particles by using the MHPF;
Select the initial position of the particles as the best solution and store all of
the objective functions obtained;

Select the particle with the best objective function value and its position as
the incumbent;

else
Update the position of the swarm by using the information of the

particles and the incumbent;
Evaluate the objective function of all particles by using the MHPF;
Update the best particle position and its objective function;
Select the particle with the best objective function and its position as the
incumbent;

if Has the stopping criterion been met? then

End the iterative process and print the incumbent as the solution;
Break;

else

Continue;

The PSO used to solve the problem under study starts by reading the optimizer param-
eters. Using the same methodology as the master stage, the following values were obtained:
a population of 60 individuals, a maximum number of iterations of 971, a cognitive con-
stant of 1.5922, a social constant of 2, and an initial and final inertia of 0.0022 and 0.0477,
respectively. Note that the PSO does not consider the population size as the maximum
number of workers; it does not employ parallel processing.

In order to read the initial parameters, the PSO generates the initial population by
randomly spreading the particles throughout the solution space. This step is carried out
by using the codification presented in Figure 3, which assigns the state of charge for
each period of operation for the three batteries located by the master stage. After that,
the objective functions of all particles are evaluated by using the MHPF and observing all
constraints. If any constraint is violated, the objective function is penalized with a value
of 100,000. This value was heuristically obtained for both objective functions under study.
With the values of the objective functions, the first iteration selects the initial position of
the particles as the best solution and stores all of these values as the best ones found by
each particle. Furthermore, it selects the particle with the best objective function as the
incumbent, storing its location and objective function value.

From the second iteration until the end of the iterative process, the location of the
particle swarms is updated by using the information on the best particle position and
the incumbent. Then, the objective function of the swarms is calculated by analyzing the
constraints in order to penalize any solution that violates the technical and operating limits.
With the objective function values, the best position and objective function of the particles
are updated, as well as the incumbent of the problem. Subsequently, it is verified whether
the stopping criterion has been met. If this is true, the iterative process ends, and the
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incumbent returns to the master stage with the power dispatch of the BS located in the
GCN; otherwise, the iterative process continues until the maximum number of iterations is
reached, sending the information of the last incumbent to the master stage.

4. Test Scenarios and Considerations

Figure 4 presents the electrical diagram of the GCN used in this work.

Grid

1 2
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24
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26 27 28 29 30 31 32 33

A B C

Figure 4. Electrical diagram of the GCN.

Table 1 describes the electrical parameters of the test system regarding line and power
demand capacity. This table presents, from left to right, the line number l, the sending bus
i, the receiving bus j, the resistance and reactance of the line that interconnects buses i and
j, the active and nominal power demanded at bus j, and the maximum current allowed
by each line considered. Furthermore, for the voltage profile limits, this paper follows the
Colombian electrical regulations for electrical distribution networks, which stipulates a
bus voltage variation of +/− 10% of the main generator’s nominal voltage [36]. In this
particular case, the nominal and base voltage is 12.66 kV, with a base power of 100 kW.

In this figure, it can be noted that this work proposes a modified version of the
33-bus test system, which is highly used in the literature to validate planing and operation
strategies in electrical distribution networks [37–39]. The test scenario employed considers
the power energy solar production, power demand, and CO2 emissions from conventional
generators (electrical grid) of the city of Medellín (Colombia), as well as PV-DGs and three
different kinds of lithium-ion batteries (types A, B, and C), with different power capacities
and charge and discharge times [27]. Lithium-ion batteries are a type of rechargeable
battery which uses the reversible reduction of lithium ions to store energy. They are highly
used in the literature because they have a higher energy density, a higher efficiency, and a
longer useful life. Traditional lead acid batteries allow 1500 life-cycles, while lithium battery
technology offers a duration of up to 2500 [40].

In the test system used, the PV-DGs were located at buses 13, 25, and 36, with nominal
power capacities of 1.125, 1.320, and 0.999 MW, respectively [29]. The behavior of the solar
energy production and power demand of Medellín was taken from [23]. In the particular
case of PV generation, the temperature and solar radiation data reported by NASA [41]
were used, as well as technical data on the polycrystalline PV panels, in order obtain a curve
that represents the average behavior of the solar production in an average operation day
(see Figure 5a). Furthermore, this study obtained a power demand curve that represents
the average behavior of the users in Medellín by using power demand data reported by the
local operator, Empresas Públicas de Medellín, [42] (see Figure 5b). All of the data used to
elaborate these curves correspond to 2019. This year was selected with the aim to eliminate
the effect of the COVID-19 pandemic on power consumption.
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Table 1. Technical parameters of the 33-node test system (urban network).

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kVAr) Imax
ij (A)

1 1 2 0.0922 0.0477 100 60 385
2 2 3 0.4930 0.2511 90 40 355
3 3 4 0.3660 0.1864 120 80 240
4 4 5 0.3811 0.1941 60 30 240
5 5 6 0.8190 0.7070 60 20 240
6 6 7 0.1872 0.6188 200 100 110
7 7 8 1.7114 1.2351 200 100 85
8 8 9 1.0300 0.7400 60 20 70
9 9 10 1.0400 0.7400 60 20 70

10 10 11 0.1966 0.0650 45 30 55
11 11 12 0.3744 0.1238 60 35 55
12 12 13 1.4680 1.1550 60 35 55
13 13 14 0.5416 0.7129 120 80 40
14 14 15 0.5910 0.5260 60 10 25
15 15 16 0.7463 0.5450 60 20 20
16 16 17 1.2890 1.7210 60 20 20
17 17 18 0.7320 0.5740 90 40 20
18 2 19 0.1640 0.1565 90 40 40
19 19 20 1.5042 1.3554 90 40 25
20 20 21 0.4095 0.4784 90 40 20
21 21 22 0.7089 0.9373 90 40 20
22 3 23 0.4512 0.3083 90 50 85
23 23 24 0.8980 0.7091 420 200 85
24 24 25 0.8960 0.7011 420 200 40
25 6 26 0.2030 0.1034 60 25 125
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Figure 5. Average daily PV power generation power demand in the city of Medellín (Colombia).

This work considered three kinds of lithium-ion batteries, denoted with types A, B,
and C. Table 2 describes the technical parameters of the BS employed. It presents, from left
to right, the type of BSS, the nominal capacity in kWh, and the charge and discharge time
in hours. With these values and the equations presented in Section 2 of this manuscript, it
is possible to obtain all parameters for the operation of the batteries [18]. As the maximum
and minimum SOC for these batteries, the following limits were set for the lithium-ion
batteries [17]: 0.1 (10%) and 0.9 (90%), respectively. Finally, to obtain the best performance
out of the BS, an initial and final state of charge of 0.5 (50%) was used, following the
suggestions made in [31].

Table 2. Parameters of the batteries.

Type Capacity (kWh) Charge Time (h) Discharge Time (h)

A 1000 4 4

B 1500 4 4

C 2000 5 5

Finally, in order to calculate the CO2 emissions associated with the generators located
in the grid, this work considered 0.1644 kg of CO2 per kWh as the emissions factor for the
conventional generators, as well as a value of 0 kg of CO2 per kWh for the PV-DGs, as this
kind of generator does not emit greenhouse gases or release carbon-based pollutants when
producing energy [43]. The authors of this paper acknowledge the environmental impact
of constructing PV modules, just as well as the fact that this technology does not affect
environmental conditions when used for generating energy.

5. Simulation Results

This section presents the simulation results obtained after evaluating the master–slave
methodologies proposed for solving the problem regarding the optimal integration of BS
in GCNs with the aim to reduce energy losses and CO2 emissions. All simulations were
carried out in the Matlab 2023 software, on a Dell Workstation with an Intel(R) Xeon(R)
E5-1660 v3 3.0 GHz processor, 16 GB DDR4 RAM, and a 480 GB 2.5” solid state hard drive,
with 8 workers running on Windows 11 Pro. All simulations were executed 1000 times
in order to evaluate performance in terms of the average solution and processing times,
as well as regarding the standard deviation.

Table 3 presents the minimum solutions (i.e., the highest reduction in the objective
function) and the average reductions achieved by the three different master–slave method-
ologies, as well as the standard deviation and the average processing times.
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Table 3. Simulation results obtained by the proposed master–slave methodologies

Minimum Solution Average Solution

Method Eloss (kWh) Emissions (Ton CO2) Eloss (kWh) Emissions (Ton CO2)
PMC 2350.8270 9864.5471 2358.9454 9866.72854

PDGA 2336.0684 9862.8580 2347.9000 9865.1420

PDCA 2354.5459 9864.7264 2367.0639 9867.1920

Standard deviation (%) Processing time (s)

Method Eloss Emissions Eloss Emissions

PMC 0.2391 0.0112 75.0580 75.4806

PDGA 0.3829 0.0147 7477.4304 7338.0373

PDCA 0.4592 0.0143 6792.9205 7440.9693

To analyze the impact of the master–slave strategies on the GNC, the energy losses
and CO2 emissions were analyzed without considering the BS installed in the grid. Thus,
the base scenario involved variable power demand and the PV distributed generators
operating in maximum power point tracking (MPPT) mode (Figure 5). This scenario
obtained values of 2484.5746 kWh for energy losses and 9887.4082 kg of CO2 (9.88 Ton) for
the CO2 emissions.

Figure 6a compares these values against those of the PMC, PDGA, and PDCSA. This
figure presents the minimum and average reductions obtained by the solution methodolo-
gies for both objective functions with regard to the base case. Note that all solution methods
reduce the objective functions. In the particular case of Eloss, a minimum reduction of
130.0287 kWh was obtained, while the average reduction was 117.5107 kWh (5.2334% and
4.72961%, respectively). These reductions are significant for the GCN; in order to highlight
their importance, note that they imply a reduction of 42.8914 MWh for a year of operation.
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Figure 6. Reductions obtained by the proposed master–slave methodologies regarding the base case:
(a) minimum and average reductions of the objective function and (b) standard deviation (percentage)
and processing times.

The obtained emissions reductions are presented in Figure 6a. In the particular case
of the minimum emissions, the master–slave strategies obtained an average a value of
22.6818 kg of CO2. The average reduction in this environmental index (after 100 executions)
was 20.2162 kg of CO2. With respect to the base case, these values correspond to reductions
of 0.2294% and 0.2044%, respectively. As in the case of the Eloss, considering a year of
operation, the optimization methods would achieve a total reduction of 7.37 Ton of CO2
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on average, thus demonstrating the environmental importance and effectiveness of the
integration, selection, and smart operation of BS in GCNs.

Finally, Figure 6b presents the standard deviation and the processing times required
by the solution methodologies. In terms of the former, average values of 0.3220% and
0.0112% were obtained for Eloss and Emissions, respectively. These values demonstrate the
repeatability of the methodologies under study. In terms of the processing times, average
times of 6792.9204 (Eloss) and 7440.969347 s (Emissions) were obtained. These processing
times are short given the complexity of the problem and its large solution space, and these
values show the importance of the matrix hourly power flow used for calculating the
objective functions and constraints in all evaluated scenarios.

Figure 6 highlights, in blue and red, the methods with the best and worst performance,
respectively. By analyzing this figure, it is possible to appreciate that, in all indicators,
the PMC achieved the best results, which makes it the best solution method among those
analyzed in this study. Figure 7 illustrates the improvements obtained by the PMC when
compared to the other solution methods.
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Figure 7. Percent reductions obtained by the PMC with regard to the other comparison methods:
(a) in the minimum and average objective function values, (b) in the standard deviation and process-
ing times.

Figure 7a presents the reductions obtained by the PMC with regard to the minimum
objective function values, i.e., 5.8054% and 5.8977% when compared to the other solution
methodologies. Furthermore, the PMC achieved reductions of 6.8467% and 3.4328% in
the average Eloss and Emissions, respectively. By analyzing the standard deviation, it is
possible to calculate average reductions of 36.8430% and 21.2350% in Eloss and Emissions.
Finally, the PMC is the fastest solution method, as its processing times for calculating the
Eloss and Emissions were reduced by 99.3982% and 99.4618%, respectively, thus demon-
strating the superiority of the PMC with respect to the PDGA and the PDCSA.

Finally, with the purpose of demonstrating that the PMC satisfies all technical and
operating limits set for the GCN located in Medellín, Figures 8–10 are presented. It is
important to highlight that all master–slave strategies in this paper satisfy the technical
and operating constraints associated with a GCN in an environment of DERs. However,
this article only describes and analyzes the technical and operating behavior of the PMC,
as explaining the performance of the other methods would require a lot of unnecessary
information. Furthermore, in future works, comparisons should only be made with the
most efficient method, which is the PMC.
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Figure 8. State of charge set by the PMC: reductions in (a) energy losses and (b) CO2 emissions.
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Figure 9. Values obtained by the PMC regarding energy loss reductions: (a) line current (A),
(b) bus voltage (p.u.).
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Figure 10. Values obtained by the PMC regarding CO2 emissions reductions: (a) line current (A),
(b) bus voltage (p.u.).

Figure 8 describes the dynamics of the state of charge of the three BS integrated into
the GCN, considering an average day of power demand and PV generation in Medellín. It
is important to highlight that, following the suggestions made in [31] for obtaining the best
performance of the batteries, all BS start and finish with 0.5 (50%) of the SOC. Figure 8a
illustrates that, for Eloss, BS were installed at buses 12, 13, and 29 (types B, A, and C,
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respectively). Note that the behavior of the power supplied is similar for all three batteries,
with low dynamics in the first hours, complete charging before hour 17—when the power
demand of the system increases—and maximum demand on hour 20. The battery installed
at bus 12 supplies energy until it achieves the final state of charge (50%), the battery at bus
13 achieves the final SOC on hour 24, and the one at bus 29 supplies energy until hour 23,
starting its charging process until the last hour of the horizon, when it achieves the final
SOC. Note that, according to this figure, all BS satisfy their maximum and minimum SOC
of lithium-ion batteries: 0.1 (10%) and 0.9 (90%), respectively.

The operation of the BS regarding the reduction of CO2 emissions is illustrated in
Figure 8b. In this case, the BS were located at buses 25, 30, and 10 (all of them type A). The
batteries follow the same dynamics: they start at 50% SOC, discharging all batteries until
hour 9. They start the charging process from this hour until hour 16, and they discharge
until hour 24, achieving the final SOC (50%). The batteries satisfy the state-of-charge limits
at all times.

Finally, Figures 9 and 10 present the line currents and voltage profiles for the different
operation hours. By analyzing the current limits, it is possible to note that the maximum
line current limits are satisfied at all times. In the same way, all voltage profiles are within
the voltage limits set for the GCN (+/− 10% of the nominal voltage: 1 p.u.).

The above demonstrates that the solution obtained by the PMC with regard to the
objective functions satisfies all operating and technical constraints of the mathematical
model for the problem studied herein.

6. Conclusions and Future Work

This work formulated the problem regarding the optimal integration and operation
of BS in GCN in order to reduce energy losses and CO2 emissions. As solution methods,
three different master–slave methodologies were proposed. In the master stage, the PMC,
PDGA, and PDCSA were employed for selecting and locating three different BS types in a
GCN. Furthermore, the slave stage used PSO for the operation of the batteries, as well as a
matrix hourly power flow to calculate the objective functions and evaluate the technical
and operating constraints involved in the mathematical formulation. Finally, with the
aim to identify the solution methodology with the best performance, each algorithm was
executed 1000 times, analyzing the best and average solutions, the standard deviation,
and the processing times. The 33-bus test system was used for validation, which was
adapted to represent the power demand and PV power generation of the city of Medellín
(Colombia). This city constitutes an excellent test scenario, given its high energy losses
and CO2 emissions levels, as well as its excellent conditions for PV generation (this kind of
renewable energy is widely used in the city). In this paper, the PV-DGs were considered
to operate in maximum power point tracking mode, with the aim to make the best out of
this resource.

All methods achieved excellent results in terms of solution quality and processing
times. The master–slave strategies obtained average reductions of 4.72% and 0.20% regard-
ing energy losses and CO2 emissions for an average operation day, respectively. These
reductions are equivalent to 42.89 MWh and 7.37 Ton of CO2 in a year of operation. These
values are significant for the operation of grid-connected electrical distribution systems,
as they imply commercial and environmental benefits. In addition, the proposed solution
methodologies reported a low standard deviation, with average values of 0.3220% and
0.01124% for energy losses and CO2 emissions, respectively. Moreover, in a problem as
demanding as the integration of BS in GCN, the implementation of a matrix hourly power
flow based on successive approximations allowed reducing the processing times by about
68%, with values of 6792.92 and 7440.969347 s regarding energy losses and CO2 emissions.
With this information, it can be concluded that these strategies allow solving the problem
regarding the selection, location, and operation of multiple BS in a GCN in about 2 h,
which allows electrical operators to evaluate multiple generation and demand scenarios,
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as well as different electrical systems, in reduced times, which is very important for public
bidding processes.

The above demonstrates that all master–slave strategies are suitable for solving the
problem under study. However, the PMC was the best solution methodology in terms of
solution quality, repeatability, and processing time, for which it obtained average reductions
of 5.13%, 29.03%, and 99.42%, respectively.

The main limitation associated with the proposed methodology corresponds to the
implementation of single-objective optimization algorithms, which is why a multi-objective
analysis is not possible. However, the proposed methodologies obtained the best results
regarding the reduction of energy losses and CO2 emissions.

Future work could consider the implementation of new optimization methods that
allow improving the results reported in this paper. Furthermore, it is possible to include
variations in the power supplied by the PV generators, with the aim to achieve the best
solution quality. This, while allowing for the relocation of PV generators in the GCN. In ad-
dition, other kinds of distributed energy resources could be included, such as capacitors
and reactive static compensators, among others, with the aim to increase the reductions
in energy losses and CO2 emissions. Finally, the mathematical formulation could include
economical indicators with regard to the cost of the BS, by using multi-objective functions
that consider the improvement of technical, economical, and environmental indicators.
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Abbreviations

BS Battery systems.
GCN Grid-connected network.
PV Photovoltaic.
DG Distributed generator.
PMC Parallel-discrete version of the Montecarlo method.
PDGA Parallel-discrete version of the genetic algorithm.
PDSCA Parallel-discrete version of the search crow algorihm.
PSO Particle swarm optimization algorithm.
CO2 Carbon dioxide.
GAMS General Algebraic Modeling System.
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Abstract: Coordinated operation of hydrothermal scheduling with HVDC links considering network
constraints becomes a vital issue due to their remote location and recent induction in the existing
power system. The nonlinear and complex nature of the problem introduces many variables and
constraints which results in a heavy computational burden. A widespread approach for handling
these complexities is to reformulate the problem by several linearization methods. In this paper, a La-
grange multipliers-based method is proposed for the solution of hydrothermal economic scheduling
including HVDC link. This method solves equality constraint optimization problems. The linear pro-
gramming approach is embedded with the Lagrange method to consider both equality and inequality
constraints. The proposed technique has been used on piecewise linear variables and constraints
of the system considering generation, water volume, and line power flow limits. The formulated
method efficiently minimizes the operational cost of thermal units and maximizes the utilization of
hydro units while meeting all generation, water volume, and the HVDC link constraints. The method
was successfully implemented in two scenarios of a case study. In the first scenario, hydrothermal
scheduling was performed on the typical network without an HVDC line limit and equal nodal prices
were found with minimal thermal generation cost of $278,822.3. In the second scenario, the proposed
method optimally dispatches units to meet the HVDC line limit and minimizes thermal generation
cost to $279,025.4 while satisfying hydro, thermal, and other operating constraints. Both scenarios are
implemented for a 24 h period. The results have been presented to illustrate the performance of the
proposed method.

Keywords: linear programming; economic dispatch; hydrothermal scheduling; HVDC link; Lagrange
multipliers; optimal power flow

MSC: 49-11

1. Introduction

Recently, an increase in energy demand and fossil fuel prices has raised the cost
of energy generated by thermal power plants. The world has reduced the use of costly
and inefficient thermal plants by inducting renewable energy resources and hydel power
generation [1,2]. The energy prices can also be minimized by optimal scheduling of
resources [3,4]. Conventionally, power is transmitted to loads through AC transmission
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lines. However for long distance, the HVDC link becomes more efficient and cost effective
as compared to the conventional mode of transmission [5]. Therefore, the coordinated
economical operation of hydrothermal units with HVDC links has emerged as an interesting
research area in today’s world of increasing energy stress.

Different researchers have discussed different aspects of hydrothermal scheduling
considering HVDC systems. Hydrothermal scheduling is a complex and non-linear con-
strained optimization problem. Inclusion of HVDC links increases the complexity of the
problem that can be addressed by good computational tools. Hydrothermal scheduling
problems were successfully solved using conventional methods such as Lagrange multi-
pliers method (LMM) [6], Newton–Raphson method [7,8], gradient search algorithm [9],
mixed integer programming [10], and dynamic programming [11]. A number of heuristic
and metaheuristic algorithms are used to solve hydrothermal scheduling problems [12–14].
A few recently used algorithms in hydrothermal scheduling operation are rigid cuckoo
search algorithm [15], firefly and accelerated particle swarm optimization [16], Lagrangian
relaxation [13], grasshopper optimization algorithm (GOA) [17], and artificial bee colony
algorithm [18]. However, heuristic algorithms cannot deal effectively with premature
convergence problems. Additionally, when dealing with the large number of variables in
optimization, the computation time of heuristic algorithms increases drastically. Each meta-
heuristic technique has some weaknesses and strengths to find near the optimal solutions
for hydrothermal scheduling [19]. Meanwhile, mathematical programming methods are
computationally fast and provide stable solution each time [20]. In unit commitment and
economic dispatch cases, the linear programming (LP) method gives better results than the
genetic algorithm (GA) technique [21]. The literature shows that hydrothermal scheduling
has been effectively performed by the Lagrange multipliers method [6,22].

The induction of HVDC links in the existing power system requires an optimal power
flow (OPF) study for realistic hydrothermal scheduling. Formulation and implementation
of HVDC systems for OPF has been performed in reference [23]. Combined economic
operation of point-to-point VSC-HVDC and AC grids is also performed based on Lagrange
multipliers efficiently [24]. Joint operation of two area HVDC links has been performed
in reference [20] to improve the operational economy and efficiency. Optimal scheduling
of fixed head hydrothermal scheduling considering wind uncertainty is conducted in [25].
The literature survey signifies that hydrothermal scheduling was performed using various
optimization techniques under various operating conditions to minimize the fuel price of
thermal units.

A careful review of the above-mentioned excellent research shows that the existing
methods of the economical scheduling of hydrothermal power plants only consider the
price minimization of thermal units subject to meeting the load, losses, and water discharge
constraints. These calculations ignore the network details and result in snubbing effects of
transmission branch loading and bus voltages [9]. Therefore, economical hydrothermal
dispatching does have an important effect on line flows, and under HVDC line constraints,
these effects need to be taken into account.

The main contributions of this research are:

• Formulation of complex hydrothermal scheduling problem.
• Modelling of AC grids to add network constraints using DC optimal power flow

(DCOPF) in the existing scheduling problem.
• Induction of HVDC link with line flows limitation constraints in hydrothermal

problem.
• Linearization of quadratic cost curves of thermal generators to deal with inequality

constraints.
• Implementation of linear programming-based Lagrange multipliers methods on a case

study to check the robustness of the proposed method.

In this paper, a novel hydrothermal scheduling problem with an HVDC link is for-
mulated to meet the load demand and network constraints. The formulation is general
and allows to find out the economic impact of HVDC link power usage on hydrothermal-
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based AC system. An algorithm is developed to solve such a diverse problem using linear
programming-based Lagrange multipliers method as it is fast and less prone to convergence
issues and more deterministic in nature as compared to existing popular metaheuristic
algorithms. To the best knowledge of the authors, such a coordinated economic operation
of hydrothermal units with HVDC links keeping in view the power network constraints
has not been discussed before.

The rest of the paper is arranged as follows. Section 2 presents the detailed formulation
of the concerned problem and proposes the solution methodology. Section 3 explains the
proposed research methodology for a case study of a power system. Section 4 demonstrates
the results of the case study under two different scenarios to validate the effectiveness of
the proposed methodology. Section 5 concludes the discussion and presents some points
for future work.

2. Problem Formulation

The coordinated economic operation of hydrothermal units with HVDC link aims to
minimize the operating cost of thermal units while maximizing the utilization of available
reservoir water volume, fulfilling the HVDC line flow limits and satisfying the load power
balance. Figure 1 shows the generalized network diagram considered for this scenario.

Figure 1. Generalized network diagram.

Figure 1 shows an electric network in which a number of hydel and thermal power
plants are embedded. The inward arrows show that the power is delivered to the network.
The loads are attached to the network. Here, outward arrows show the flow of power from
the network to the loads. The HVDC blocks take power from certain buses (represented
by outward arrows) and deliver it to other buses of the network (represented by inward
arrows). The idea is to propose a Lagrange function for such a network considering all the
generation, load, and network constraints. The following steps are being followed.
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2.1. Hydrothermal Problem Formulation

The objective of hydrothermal is to utilize a given volume of water such that to
minimize the production cost of NT generating units subject to constraints of transmission
lines, generators, and HVDC line limits. Therefore, the problem is formulated in general
as minimize∑Jmax

j=1 ∑NT
t=1

[
Ft
(

Ptj
)]

subject to constraints p(x) = 0 and q(x) ≤ 0, where p(x) and
q(x) are equality and inequality constraints, respectively. Equation p(x) represents the
network DC optimal power flow (DCOPF)-based load power balances, while Equation q(x)
denotes water volume discharge and minimum and maximum limits of hydro and thermal
power generators. The cost of thermal generating units is approximated as a quadratic cost
rate given in (1). Similarly, the water flow from hydro power plants in j time intervals is
approximated using (2). The expressions (1) and (2) are used for the incremental cost of
thermal power and fictitious cost of water, respectively, that must be paid to satisfy power
balance, water volume, HVDC line limit, and generation constraints.

Jmax

∑
j=1

NT

∑
t=1

[
Ft
(

Ptj
)]

=
Jmax

∑
j=1

NT

∑
t=1

[
at
(

Ptj
)2

+ btPtj + ct

]
(1)

Jmax

∑
j=1

nj

NH

∑
h=1

qh(P hj

)
=

Jmax

∑
j=1

nj

NH

∑
h=1

[
xh

(
Phj

)2
+ yhPhj + zh

]
= qTOT (2)

2.2. HVDC Line Flow Problem Formulation

A point-to-point connected HVDC system consists of two converter stations, namely
rectifier and inverter stations, as shown in Figure 2. Both converter stations are connected
to AC systems on ‘r’ and ‘i’ nodes through filters and tap-changing transformers. Inverter
station maintains DC bus voltage within limits and rectifier station controls the active
power flow at specified value Pf low [24]. The power transfer in the system can be in either
direction. In the previous research, the investigations have been carried out to optimize the
controller gains to control the active power transfer in HVDC system [26]. HVDC problem
formulation consists of the following steps.

 

Figure 2. HVDC system.

Modelling of the point-to-point HVDC grids has been extensively performed to couple
the VSC station with an AC network as an ideal voltage source either through an impedance
or by phase shifting transformer for power flow analysis [27–31]. Similarly, intensive
literature exists in the domain of economic dispatch for renewables ([32–36] and references
therein). It is vital for economic dispatch applications to formulate the power flow equations
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of HVDC link from inverter to rectifier and vice versa. The DC power flow expression from
inverter and rectifier, respectively, are given in (3).

Pdci
=

(
V2

i − ViVr

)
Gdc, Pdcr =

(
V2

r − ViVr

)
Gdc (3)

where Vi and Vr are inverter and rectifier voltages, respectively, and Gdc =
1

Rdc
.

To formulate the combined equations for HVDC power flow and AC grids, some basic
assumptions are made on AC grid: (a) neglect conduction losses, i.e., Gi = Gr = 0, (b) set
Vi = Vr = 1 p.u, and (c) due to very small angular difference, set sin(θr − θi) ∼= (θr − θi).
Hence, (6) takes the form for nodal power balances in various nodes of HVDC grid and
defines the equality constraints for HVDC link. The resultant expression becomes as given
in (4):

Pri = (Br − Bi)(θr − θi) (4)

where Br,Bi and θr,θi represent susceptance and phase angle on rectifier and inverter side,
respectively. Susceptance is the inverse of reactance offered by AC filter, reactors, and
transformer on either side of the converter.

2.3. AC Network Problem Formulation

The nodal power balance is formulated based on the operating point of the AC system.
The power balance relation in (5) exhibits equality constraints p(x) as a function of nodal
power generation, demand, and calculated power in (6).

ΔPk = Pgk − Pdk − Pcal
k = 0 (5)

Pcal
K = GkkV2

k + ∑
mεk

VkVm[Gkmcos(θk − θm) + Bkmsin(θk − θm)] (6)

where Vk, Vm and θk, θm are the voltage magnitudes and phase angles of the transmission
lines linking buses ‘k’ and ‘m’, respectively. Moreover, G and B are conductance and
susceptance of lines connecting the respective busses, respectively.

Under steady state condition of AC grid, Vk = Vm = 1 p.u and with negligible power
loss Gkk = Gkm = 0, the expression (6) reduces to Pcal

K = ∑mεk Bkm(θk − θm). Then, this
expression can be generalized for lossless AC grids having α nodes in (7).

⎡
⎢⎣

P1
...

Pα

⎤
⎥⎦ =

⎡
⎢⎣

B11 . . . B1α
...

. . .
...

Bα1 · · · Bαα

⎤
⎥⎦
⎡
⎢⎣

θ1
...

θα

⎤
⎥⎦ =⇒ [P] = [B][θ] (7)

where P is nodal power, B is susceptance, and θ is the nodal phase angle.
The mostly used HVDC links occur either in embedded or decoupled form with

the AC grids [24]. These models are used for the investigation of optimal power flow in
HVDC links connected to AC systems. The embedded HVDC link model deduces that both
sending and receiving end converter stations consider same phase angles to AC grid. The
expressions (4) and (7) provide the relationship between two AC grids connected HVDC
link for sending and receiving end power flow. The mathematical expressions (1), (2), (4),
and (7) are added in the Lagrange function to augment DCOPF-based AC grid details and
HVDC flow limit in hydrothermal scheduling. The resultant expression is given in (8).

2.4. Overall Problem Formulation

The objective of the research is to minimize the thermal generation cost subject to meet
the load balance, generator limit, HVDC line flow, and water consumption constraints.
Based on the objective and constraints, the Lagrange function is stated as given in (8);
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L = ∑Jmax
j=1

[(
nj∑

Nb
t=1 Ft(Ptj)

)
+ λ

Nb
j

(
[Bx][θ]j −

(
Pthj − Pdj

))
+ λ

Nb+1
j

(
(P ri)j − PHVDCset

)
+ γ

(
nj∑

NH
h=1 qh(Phj)− qTOT

)
+ μ

[
g
(

Pmin
tj , Pmax

tj , Pmin
hj , Pmax

hj

)]]
(8)

where nj is the scheduling interval in hours, Nb is the number of buses, Ft is the ther-
mal cost function which needs to be minimized subjected to power balance constraint(
[Bx][θ]j −

(
Pthj − Pdj

))
and water storage constraint (n jqh

(P
hj

)
= qTOT), λ

Nb
j is La-

grange multiplier which shows nodal marginal price of bus number Nb in jth time interval
in $

MWh , Pdj is the load in each time interval, Pthj is the sum of power generated by thermal
and hydro units in each time interval, (P ri)j is the actual power flow on HVDC link from

rectifier to inverter, PHVDCset is the line flow limit of the HVDC link, Pmin
tj and Pmax

tj are

minimum and maximum limits of thermal generators, Pmin
hj and Pmax

hj are minimum and
maximum limits of hydro generators, γ is Lagrange multiplier which shows fictious cost of
water, H is number of hydro units, and qTOT is the total water volume available for hydro
power generation.

2.5. Constraints

The constraints of hydro and thermal power plants along with load balance and
transmission limits are explained.

• Load balance constraints

Pthj = Pdj + [Bx][θ]j (9)

where Pthj, Pdj, and[Bx][θ]j are the total thermal and hydropower, load demands, and

transmission line flows in jth time intervals, respectively.

• Thermal plant generation limit

Pmin
tj ≤ Ptj ≤ Pmax

tj (j = 1, 2 . . . , 24 h) (10)

where Pmin
tj and Pmax

tj are the minimum and maximum output of the NT thermal power

plants in jth time intervals, respectively.

• Hydro plant generation limit

Pmin
hj ≤ Phj ≤ Pmax

hj (j = 1, 2 . . . , 24 h) (11)

where Pmin
Hj and Pmax

Hj are the minimum and maximum output of the NH hydro power

plants in jth time intervals, respectively.

• Water volume limit

nj∑NH
h=1 qh(P hj

)
= qTOT (j = 1, 2 . . . , 24 h) (12)

where qTOT is the total water volume available for power generation and qh(P hj

)
is the

water flow rate at the output power of Phj hydro unit in nj number of hours. Constant head
is assumed to consume total available water volume for power generation in the jth time
intervals.

• HVDC line limitation

Pmin
rij

≤ Prij ≤ Pmax
rij

(j = 1, 2 . . . , 24 h) (13)
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This means power flow of lines is calculated by DC load flow to check the capacity
limitations of HVDC link. In real scheduling, HVDC line limitations are obeyed as specified
electric quantity trade limitations lines between regional distributors of electricity.

The proposed approach is a novel alternative to address fundamental problems, as
it is structured to augment DC power flow in hydrothermal scheduling. Moreover, it is
general to harmonize the number of HVDC links.

As already discussed, the quadratic cost expression, given in (1) of thermal power
plants, does not include the power system network details, transmission line parameters,
transmission line congestion constraints, HVDC links, etc. [37,38]. The expressions (1)
and (2) only consider equality constraints of load balance and water volume. While
considering the network constraints without line limits in an economic dispatch, the
gradient method is used to solve the Lagrange equation [9]. Moreover, the Lagrange
function considering all network constraints, hydrothermal, HVDC links, the generator’s
extreme limits, and line limitations can be optimized by linear programming (LP). Hence,
linear programming (LP) technique is used to solve combined hydrothermal scheduling
with DCOPF considering generators’ inequality and HVDC line limit constraints. As per
LP, the quadratic cost expression of thermal power plants does not satisfy the requirements.
Therefore, a piecewise linear approximation of the cost function given in (1) is performed.
The segment wise slopes of piecewise linear approximation are developed using (14).

Sa =
Fa+1 − Fa

Pa+1 − Pa
for a = 1, 2, 3, . . . . . . . . . . . . .Ns (Number of slope segments) (14)

In (14), the number of slope segments (Ns) depends on the minimum and maximum
limits of thermal power generators and step size defined by the user.

Previously, (7) gave important information about the nodal power injection consider-
ing the network admittances without real part and help in finding the angles. However, (7)
does not provide the line power flows. Therefore, the proposed approach considers the
line flows, network constraints, generation limits, etc., formally in (15).

Minimize F(Pt) = F
(

Pmin
t

)
+ ∑Ns

a=1 ∑NT
t=1 SatPat

Subject to P = Bθ
PB = (D × E)× θ

−Pmax
B ≤ PB ≤ Pmax

B
qTOT = ∑NH

h=1 qh(P h)
0 ≤ Pgk ≤ Pmax

gk , ∀k ∈ {generatorbuses}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15)

where Ns is the number of slope segments, NT is the number of thermal generators, P is
the nodal power injections at all nodes, θ is nodal angle, PB is line flow for AC and HVDC
system, D and E are node-arc matrices, and −Pmax

B and Pmax
B are line flow limits. The qTOT

is the total water volume available for generation, NH is the number of hydro units, and
qh is the water discharge rate to generate hydro power Ph in an interval. Moreover, (15) is
similar to (8) with constraints mentioned as Lagrange multipliers.

3. Research Methodology

The proposed linear programming based on Lagrange multipliers research methodol-
ogy shown in Figure 3 has been successfully implemented on a case study power system
network shown in Figure 4 by carrying out the following steps.
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Figure 3. Algorithm flow chart.
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Figure 4. Four (4) bus AC system with HVDC link.

3.1. Objective Function

The objective function is given in (16);

f (x) = Ax =
[

s1 s2 0 0 0 0 0 0 0 0 0 0 0 0
][

Pt1 Pt2 Ph PB1 PB2 PB3 PB4 PB5 θ1 θ2 θ3 θ4 W
]T (16)

In (16), the dimensions of ‘s1’ and ‘s2’ (in the row) depend on the number of slopes
based on step size, while Pmin

t and Pmax
t depend on the limits of the thermal power station.

3.2. Output Vector

The output vector ‘x’ for the given case study network and constraints is defined
in (17).

x =
[

Pt Ph PB θ W
]T

=
[

Pt1 Pt2 Ph PB1 PB2 PB3 PB4 PB5 θ1 θ2 θ3 θ4 W
]T (17)

where Pt is the incremental generation vector for two thermal generators connected to bus-1
and bus-2, Ph is hydropower generation, PB is the line power flows vector for five branches,
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θ is the vector of angles for all four buses in radian, and W is the water volume variable.
All these variables are added as equality constraints given in (15) to a single matrix relation.
For single matrix relation, one kind of equality constraint is given as injected powers and
another kind of equality constraint is given as line power flows as in (15), resulting in (18)
and (19).

−PB + (D × E)× θ = 0 (18)

−P + Bθ = 0 (19)

3.3. Equality Constraints

The equality constraints are given in (18) and (19). Matrix (Ax = b) form of equality
constraints requires dimensions. The dimensions of equality constraints based on the case
study are:

• Number of columns: As the vector x has 13 × 1, matrix A should have 13 columns to
multiply x.

• Number of rows: As there are five branches, four buses, and one water volume
constraint, (18) and (19) will have to contribute a total of ten (10) rows to matrix A.

Therefore, the dimension of matrix A will be 10 × 13. Let us start from line power
flow as in (18). The D-matrix is given in (20). The node-arc matrix E, is given as (21):

D =

⎡
⎢⎢⎢⎢⎣

B1 0
0 B2

0 0 0
0 0 0

0 0
0
0

0
0

B3 0 0
0
0

B4 0
0 B5

⎤
⎥⎥⎥⎥⎦ (20)

E =

⎡
⎢⎢⎢⎢⎣

1 0
1 −1

0 −1
0 0

0 1
0 0
1 0

−1 0
−1 1
−1 0

⎤
⎥⎥⎥⎥⎦ (21)

The product D × E required to find line power flows is given as (22):

D × E =

⎡
⎢⎢⎢⎢⎣

B1 0
0 B2

0 0 0
0 0 0

0 0
0
0

0
0

B3 0 0
0
0

B4 0
0 B5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0
1 −1

0 −1
0 0

0 1
0 0
1 0

−1 0
−1 1
−1 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

B1 0
B2 −B2

0 −B1
0 0

0 B3
0 0
B5 0

−B3 0
−B4 B4
−B5 0

⎤
⎥⎥⎥⎥⎦ (22)

The elements of (22) will be placed in the upper right corner of matrix A from columns
9 to 12. The first eight columns of the top five rows will be multiplied to generated powers
(Pt1, Pt2, Ph) and line power flows (PB1, PB2, PB3, PB4, PB5) variables. As generation variables
are not used within the line power flow equations, the first three (3) columns of the top five
rows will be zeros. The columns (4–8) will be zeros, except a single element in each row
will be −1 to obtain corresponding line power flows.

DC power flow equations corresponding to (19) are written in matrix A. The aug-
mented DC power flow matrix is given as (23):

B =

⎡
⎢⎢⎣

B11 −B12
−B21 B22

−B13 −B14
−B23 −B24

−B31 −B32
−B41 −B42

B33 −B34
−B43 B44

⎤
⎥⎥⎦ (23)
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Elements of (23) will be placed at the lower right of matrix A from rows 6 to 9 and
columns 9 to 12. The first three (3) columns of matrix A are reserved for generation variables.
The expression (19) requires negative injections for all buses and injected power is Pth − Pd.
However, load variables are not added in matrix A, which will be placed on the right side
of the expression Ax = b in matrix b. Additionally, generated power from generation plants
will be placed with a negative sign in the rows starting from 6 to 9 and the first three (3)
columns with respect to the respective bus in matrix A. Hydro power plant and water
volume constraints are added to the last (10th) row and column 3rd and 13th of the matrix
A, respectively. The resultant expression Ax = b in matrix form is given in (24):

Ax = b =>

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
−1
0
0
0
0

0
0
0
0
0
0
−1
0
0
0

0
0
0
0
0
0
0
0
−1

q(2) ∗ n

−1
0
0
0
0
0
0
0
0
0

0
−1
0
0
0
0
0
0
0
0

0
0
−1
0
0
0
0
0
0
0

0
0
0
−1
0
0
0
0
0
0

0
0
0
0
−1
0
0
0
0
0

B1
B2
0
0
B5
B11
−B21
−B31
−B41

0

0
−B2
B3
0
0

−B12
B22
−B32
−B42

0

0
0

−B3
−B4
−B5
−B13
−B23
−B33
−B43

0

−B1
0
0
B4
0

−B14
−B24
−B34
B44
0

0
0
0
0
0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt1
Pt2
Ph
PB1
PB2
PB3
PB4
PB5
θ1
θ2
θ3
θ4
W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

Pmin
t1

Pmin
t2

−Pload
Pmin

h
Wstart + in f low − q(1) ∗ n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

3.4. Inequality Constraints

These constraints are simple and are given in (25):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−Pmax
B1

−Pmax
B2

−Pmax
B3

−Pmax
B4

−Pmax
B5

−π
−π
−π
−π

Wend

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt1
Pt2
Ph
PB1
PB2
PB3
PB4
PB5
θ1
θ2
θ3
θ4
W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

step
step
Pmax

h
Pmax

B1
Pmax

B2
Pmax

B3
Pmax

B4
Pmax

B5
π
π
π
π

Wstart + max(w)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

In (25), the dimensions of Pt1 and Pt2 depend on the number of slope segments based
on Pmin

t1 and Pmax
t1 values of the thermal power generating stations. Hence, the row-wise

size of columns 1 and 2 will depend on the number of slope segments. The expressions
(24) and (25) are applicable to single load interval. For 24 h or daily load intervals, these
equations are modified as in (26):

Ax = b =>

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11
C11
0
...
0
0

0
A22
C22

...
0
0

0
0

A33
...
0
0

..

..

..
...
..
..

..

..

..
...
..
..

..

..

..
...
..
..

..

..

..
...
..
..

..

..

..
...
..
..

..

..

..
...

A(i−1)(j−1)
C(i−1)(j−1)

0
0
0
...
0

Aij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x11
x21
x31

...
..

xi1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b11
b21
b31

...
..

bi1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)
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where Aij and C(i−1)(j−1) matrices have dimensions 10 × 13, having ten rows and thirteen
columns for each load interval; i = j is the number of load intervals (1, · · · · · · 24 h) . The
elements of matrix A are shown in (24) for a single load interval. The elements of matrix C
are given as in (27):

C =

[
Zeros(9 × 12) Zeros(9 × 1)
Zeros(1 × 12) −1

]
(27)

Equation (27) is only used as leftover water volume in one interval to be used in the
next load interval in constraint expression (24). Inequality constraints for a single load
period given in (25) are modified for 24 h load intervals accordingly. The algorithm flow
chart of the proposed approach is shown in Figure 3 to implement (8) using (15) with
constraints from (9) to (13) and realistic equations from (16) to (27) for all load periods in
MATLAB Software.

The detailed step-by-step implementation procedure of the proposed approach in
MATLAB Software is given in Table 1.

Table 1. Step-by-step implementation of proposed procedure.

Step-by-Step Implementation of Proposed Procedure for Coordinated/Optimal Economic
Operation of Hydrothermal Units with HVDC Link Based on Lagrange Multipliers

1 Consider a power system network having ‘Nb’ number of buses and ‘NM’ number of
branches (shown in Figure 4).

2
Calculate the susceptance of each line following nodal power injection using (5), (6), and (7)
of AC network and (4) for HVDC network or directly follow (10) which is common for both
hydrothermal-based AC and HVDC power system.

3 Find slopes of cost functions of all thermal generators using (14) and define an objective
function based on (16).

4 Formulate the DCOPF coordinated economic dispatch problem using (8) and (15)

5
Find a single matrix for all equality constraints, load balance, line power flows, and nodal
power injections using (9), (18), and (19), respectively. This can be executed using node-arc
incidence matrix product (D × E) using (22).

6 Embed hydropower plant variable and water volume constraint using (11) and (12). Then,
develop a standard form of the matrix (Ax = b) using (24) for linear programming (LP).

7 Find parameters for b-matrix (of Ax = b) using load and generation buses of power system
network (shown in Figure 4) and objection function given in (15).

8 Define inequality constraints of the power system network under study using (10), (11),
and (13).

9 Apply the standard linear programming (LP) method using MATLAB software.

10 Check constraints. If all constraints are satisfied, then procedure is done. Otherwise, go to
step 3.

11 Print the optimal operating schedule and nodal price of each bus.

4. Results and Discussion

A case study is designed to verify the effectiveness of the proposed methodology.
Four bus AC systems with two AC grids are interconnected by point-to-point HVDC
transmission link, shown in Figure 4. It is ensured that the modelled HVDC link agrees
with (4). The cost curves of the thermal power plant and flow rate characteristics of the
hydro power plant are shown in Tables 2 and 3, respectively.
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Table 2. Thermal plants characteristics.

Unit at

[
$

MW2h

]
bt

[
$

MWh

]
ct

[
$
h

]
Pmin

t (MW) Pmax
t (MW)

Thermal-1 0.0033 10.8 1200 25 875
Thermal-2 0.003 12.6 1710 40 600

Table 3. Hydro plant characteristics.

Unit xh

[
AF

MW2h

]
yh

[
AF

MWh

]
zh

[
AF
h

]
Pmin

h (MW) Pmax
h (MW) qTOT(AF)

Hydro 0 4.9 50 0 500 30,000

The power system network has five transmission lines connected to four different
buses. The transmission line connected between bus-2 and bus-3 is considered an HVDC
link. This line has point-to-point converter stations connected to the respective buses. It
is assumed that all the AC lines have equal admittance with the assumption of zero real
parts. Thermal unit-1 connected to bus-1 can generate a minimum power of 25 MW and a
maximum power of 875 MW. However, thermal unit-2 connected to bus-2 can produce a
minimum of 40 MW and a maximum of 600 MW. The hydro plant connected to bus-4 can
produce a maximum of 500 MW output. The initial volume of water is 15,000 Acre-feet (AF).
The allowed inflow is 1250 AF per hour. For the 24 h period, the total water available for
power generation is 30,000 AF. The required ending capacity of the reservoir is 15,000 AF.

Two scenarios are implemented in Figure 4 network: (i) DCOPF including hydrother-
mal scheduling without line trading limitation on the HVDC line and (ii) DCOPF including
hydrothermal scheduling with line trading limitation (PHVDC = 400 MW) on the HVDC
line. Only HVDC line has direction power flow constrain, whereas all the other lines have
flexibility in the flow of power on either side.

The load is connected to bus-3 and the daily load on the four-bus system is shown in
Figure 5.

Figure 5. Load pattern on network.

Figure 6 shows the power contribution (bar charts) of each generating station to meet
the load demand. The power shared by the hydro unit to load is based on the availability
of water for power generation. The power shared by both thermal units to load demand is
optimized based on their cost rate characteristics shown in Table 2. Therefore, the cost of
thermal power units is the minimum for typical load demand in a specific time period.
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Figure 6. Hydrothermal scheduled power, bus price, and line limit price.

Due to combined investigations of economic hydrothermal scheduling and DCOPF at
the same time, the system lambdas (λ) represent the bus location marginal price (LMP) or
nodal price and line congestion price instead of the generator’s incremental cost. Figure 6
shows both lambdas (λ) under two different scenarios.

4.1. Scenario-1: Infinite HVDC Line Capacity

When the power system network shown in Figure 4 is operating under normal condi-
tions, there is no capacity limit on the HVDC transmission line. Then, the lambda (λ) of
each bus is constant for a specific load period, as shown in Figure 6. In this figure, for the
first load interval, the load demand is 680 MW, and the nodal price is fixed (11.7 $/MWh)
for each bus. In the first interval, the hydro plant contribution is maximum. During the
second load interval, load demand is 670 MW, and the nodal price is fixed (13.9 $/MWh)
for each bus with zero power contribution by the hydro plant. Similarly, for load periods
1 to 18th and 22nd to 24th, nodal prices of all buses are fixed when there is an infinite
line capacity limit. The resultant HVDC line limit lambda (λ2-3) is zero for these load
intervals due to the infinite line capacity limit; the network considered it as a single bus.
The respective power flow in each line branch and each interval is shown in Figure 7. The
optimal power generation of each generating station to meet the load demand in each
interval is shown in Figure 8.
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Figure 7. Line power flow during each load interval.

Figure 8. Generators optimal power during each load interval in infinite line capacity.

4.2. Scenario-2: Limited HVDC Line Capacity

In this case, line trading limitation PLine2–3 = PHVDC = 400 MW is added on the HVDC
link shown in Figure 4. The load power demand during time intervals 19, 20, and 21 is
1450 MW, 1500 MW, and 1400 MW, respectively, as shown in Figure 5. During these time
intervals, the power shared by a hydro unit is 500 MW, thermal-1 is 683 MW, 767 MW, and
600 MW, and thermal-1 is 267 MW, 233 MW, and 300 MW, as given in Figure 6. Due to
HVDC line limitations, the power is diverted to other transmission lines of the network.
Hence, the network does not consider a single bus which results in different buses’ nodal
lambdas (λ) price and line (λ) price. This makes the nodal price at bus-1 = λ1 = 15.4 $/MWh,
bus-2 = λ2 = 14.2 $/MWh, bus-3 = λ3 = 16.1 $/MWh, and bus-4 = λ4 = 15.7 $/MWh, as
shown in Figure 7. The line limit price in three different time intervals increased from
0 $/MWh to 3.1 $/MWh and 5.1 $/MWh due to line congestion heating and losses. The
line limit price is shown in Figure 7. Moreover, the optimal power generation of each
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generating station to meet the load demand in each interval with limited line capacity is
shown in Figure 9.

Figure 9. Generators optimal power during each load interval in limited line capacity.

The results described in both scenarios depict that all the buses’ nodal prices are the
same for specific time interval loads when there are no line limitations. Additionally, the
line price is zero. Meanwhile, when there are line capacity limitations, the bus nodal price
increases from 14.3 $/MWh to 17.2 $/MWh and the line price increases from 0 $/MWh
to 5.1 $/MWh. This results in total cost of power generation by the thermal-1 unit in
24 h period being $170,921.4 and the thermal-2 unit being $108,104 with PHVDC = 400 MW
limit. However, thermal-1 unit in 24 h period costs $166,739.8 and the thermal-2 unit costs
$112,082.5 without HVDC line limitation. The proposed approach optimally scheduled the
outputs of thermal generating stations under both scenarios to minimize the operating cost.
It can be concluded that limited capacity HVDC links may change the optimal operating
points of all generating stations throughout the load intervals. Hence, the electricity market
will affect generation companies (GENCOs) and transmission system operators (TSO).
Therefore, the proposed approach will be helpful in complex hydrothermal scheduling
including embedded HVDC lines in existing AC networks for GENCOs and TSO to find
their power generation price, bus nodal price, and line limit price.

The effectiveness of the proposed approach has been compared using interior-point
and dual-simplex method. The results are presented in Table 4.

Table 4. Comparison of different techniques.

Parameters Proposed Method
Interior-Point

Method
Dual-Simplex

Method

No. of iterations 6 10 292

Computational time (sec) 1.05 1.58 2.93

The interior-point method solves formulated problems in 10 iterations while dual-
simplex uses 292 iterations without changing any other results. However, the proposed
method takes only six iterations to solve the problem.

5. Conclusions

This research article has investigated the optimal operating point of hydrothermal
power plants on AC networks with the limited capacity of an HVDC line under the different
operating constraints. Modelling of AC power system including VSC-HVDC link has been
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described for hydrothermal scheduling. The method is computationally efficient as it
considers linear model of AC network with HVDC transmission link including DCOPF.
Nodal bus power injection matrix is modified to embed line flow constraint in DCOPF.
The quadratic cost curves of thermal generators are linearized segment wise to include
the minimum and maximum generation limits. The hydro power plant is operated at
maximum power (Ph = 500 MW) to obtain maximum efficiency. HVDC transmission line
flow was successfully limited at PHVDC = 400 MW. The Lagrange multipliers method is
used for optimal operation of hydrothermal plants on power networks. The proposed
formulation is applied to two scenarios of a case study. In the first scenario of the case
study, the total thermal generation cost comes out to $278,822.3. In the second scenario
of the case study, the total cost of thermal generation is $279,025.4. The difference in cost
in both scenarios is minimum. It is observed in both scenarios, with the change in load,
that this algorithm optimally selects the thermal generator to redispatch to meet the load
demand and other line constraints with minimum cost.

The proposed approach can be extended to perform hydrothermal scheduling on
seasonal load changes and deregulated electricity market in the future.
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Nomenclature

Phj Output power (MW) of hth hydro unit in jth period
Ptj Output power (MW) of tth thermal unit in jth period

Ft

(
Ptj

)
Fuel cost rate ($/hour) for tth unit in jth period

qh(P hj) Water flow rate (Acre-feet/hour) for hth unit in jth period
NT Number of thermal power plants
NH Number of hydro power plants
Nb Number of buses
NM Number of lines (branches)
Pthj= Ptj + Phj Total output power (MW) of tth thermal and hth hydro unit in jth period
Jmax Maximum number of periods
nj Number of hours in jth period
at, bt, ct Cost coefficients of tth thermal unit
xh, yh, zh Water flow rate coefficients of hth hydro unit
qTOT Total water volume available for power generation
L Lagrange function
λ, γ, μ Lagrange multipliers
Pf low HVDC line power flow limit
Rdc Resistance of HVDC line
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λr Locational marginal Price (LMP) of rectifier bus
λi Locational marginal Price (LMP) of inverter bus
PCC Point of common coupling (PCC)
Tr Coupling transformer
VXr , VCr Voltage at bus Xr and Cr on rectifier side
VXi , VCi Voltage at bus Xi and Ci on inverter side
C DC link capacitor
ΔPk kth bus nodal power balance
Pgk Power generation on kth bus
Pdk Power demand on kth bus
Pcal

k Calculated nodal power on kth bus
Gkm Conductance of line connecting bus node k and m
Bkm Susceptance of line connecting bus node k and m
θ Nodal phase angle
Subscript k, m Indicate the nodal bus
Subscript i, r Indicate the inverter and rectifier, respectively
V Bus voltage magnitude
p.u Per unit quantity
DCOPF Direct current optimal power flow
HVDC High voltage direct current
Ns Number of segments of quadratic cost function
Sa Slope of quadratic cost function
T Transpose of matrix
W Water volume
PB Line power flow
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Abstract: Electric vehicles are anticipated to be essential components of future energy systems,
as they possess the capability to assimilate surplus energy generated by renewable sources. With the
increasing popularity of plug-in hybrid electric vehicles (PHEVs), conventional internal combustion
engine (ICE)-based vehicles are expected to be gradually phased out, thereby decreasing greenhouse
gases and reliance on foreign oil. Intensive research and development efforts across the globe are
currently concentrated on developing effective PHEV charging solutions that can efficiently cater
to the charging needs of PHEVs, while simultaneously minimizing their detrimental effects on
the power infrastructure. Efficient PHEV charging strategies and technologies are necessary to
overcome the obstacles presented. Forecasting PHEV charging loads provides a solution by enabling
energy delivery to power systems based on anticipated future loads. We have developed a novel
approach, utilizing machine learning methods, for accurately forecasting PHEV charging loads
at charging stations across three phases of powering (smart, non-cooperative, and cooperative).
The proposed Q-learning method outperforms conventional AI techniques, such as recurrent neural
and artificial neural networks, in accurately forecasting PHEV loads for various charging scenarios.
The findings indicate that the Q-learning method effectively predicts PHEV loads in three scenarios:
smart, non-cooperative, and cooperative. Compared to the ANN and RNN models, the forecast
precision of the QL model is higher by 31.2% and 40.7%, respectively. The Keras open-source set was
utilized to simulate three different approaches and evaluate the efficacy and worth of the suggested
Q-learning technique.

Keywords: Q-learning; electric vehicles; artificial neural network; plug-in hybrid electric vehicles

MSC: 68T07

1. Introduction

Electric vehicles (EVs) have been mainly integrated into power grids because of
their significant benefit over traditional combustion engine vehicles, which includes bol-
stered energy self-sufficiency and diminished levels of carbon emissions [1]. There have
been numerous creative works on EV recharge infrastructure [2,3]. The surging demand
for EVs is introducing intricacy to the energy grid system, leading to difficulties in ef-
ficient management. One of the significant apprehensions for executives in this world
is accurately projecting the charging capacity of automobiles, to determine their energy
consumption requirements [4,5]. Recently, plug-in hybrid electric vehicle (PHEV) energy
control methods have used reinforcement learning (RL) [6]. The incorporation of fore-
casting methods was also used in [7] to explore the merging of PHEVs into microgrids.
Furthermore, Ref. [8] considered blockchain technology for trading energy. Additionally,
Ref. [9] proposed PHEV energy management with data-driven techniques to estimate
battery discharge depth.
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The forecasting of EV charging station load has drawn a lot of interest in the literature.
For instance, in [10], the load demand for Ev was predicted using online ride-hailing
services. To model the load demands of PHEVs and EVs, the authors examined the
stochastic load demand of EVs [11]. A statistical utilization strategy has been examined to
forecast the PHEVs load profile. The energy shift at midday and night has been predicted
using the inverse load flow and a localized charging time-shift procedure [12]. For example,
Refs. [13,14] used charging stations with battery storage systems to supplement energy
or capacity or to delay demand. Intelligent PHEV charging demand forecasting in [15]
aims to keep a constant daily network load profile while ensuring that each PHEVs load
requirement is fulfilled in [16]. Ensemble learning predicts load consumption of cooperative
PHEVs using innovative data mining to forecast charging sites [17].

1.1. Literature Survey

The battery charging of PHEVs is primarily done at night because everyday vehicle
travel considerably lowers the charging time. Due to the high number of these vehicles,
early night charging of vehicles damages power infrastructure traits like overloading and
fast ramping of energy sources. Increased EV adoption may also lead to more severe
grid features like feeder overcrowding, unfavourable peak demand, increased power loss,
decreased load factor, harmonic distortion, phase unbalance, etc. The charging of PHEVs
during high demand has these negative impacts [18]. Smart recharge for electric vehicles
is the remedy to the problems mentioned above [19]. EVSC can effectively handle EV
charging, particularly at night, to satisfy the network’s technical restrictions. According to
data, vehicles are typically only driven 4 to 5 percent of the time, with the remainder of the
day being spent in parking lots or basements [20]. The extra storage space provided by the
batteries of electric vehicles can be used to create a large-scale energy storage system [21].

PHEV owners have expressed high satisfaction with the cooperative charging of
EVs, and grid characteristics are considered when deciding the number of EVs to be
charged per time interval [22]. In addition to considering the use of renewable energy
production in a power network, the EVSC process should also consider PHEV owners and
technological limitations on renewable-based power [23]. PHEVs have the potential to
contribute significantly to helping keep or enhance the normal functioning of a power grid.
PHEV charging via EVSC can also provide extra services like frequency regulation [24].
The schematic diagram of EVSC is shown in Figure 1. Both centralized and decentralized
types of charging—in which electric vehicles are refuelled in intelligent houses, at home or
by fleet operators, as well as parking lots occupied by EVs parked overnight—can be used
to refill the batteries of electric cars. EVSCs flexible charging and auxiliary services can
reduce the energy cost of plug-in cars by as much as 60% when compared to conventional
vehicles [25].

A company that operates a fleet of electric vehicles must be able to forecast its load
in order to optimize the number of EVs, their charging rates and available charging sites.
Additionally, more energy-efficient use of existing resources can be enabled by predicting
the future capacity needs [26–28]. The load profile of EVs in particular geographic region
results from the habits people have while driving and contributes to the overall demand
for electricity [29,30]. A method has been developed to forecast electric vehicle travel
patterns and arrival/departure times. In addition, an ensemble learning-based forecasting
method can predict the number of charging stations required in any given area [31,32].
The proposed method was developed by combining three different types of learning
algorithms: Linear regression (to find the weighting for each primary learner), recurrent
neural networks, and long short-term memory. The ability of three neural network models
to predict the load profile in an EVS has been examined in other research [33]. The Radial
Basis Function technique has produced better results in load forecasting than the traditional
method, but it also had a higher error rate and processing cost. In [34], six distinct deep-
learning techniques have been examined from the EV usage prediction perspective. The
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methods included canonical LSTM, ANN, RNN, gated recurrent units, bi-directional LSTM
forecasting algorithms, and stacked auto-encoders.

Figure 1. A diagrammatic representation illustrating the charging process of plug-in hybrid electric
vehicles within power distribution networks.

1.2. Motivation and Problem Statement

Deep learning (DL) techniques are increasingly being used to improve the prediction
performance of highly nonlinear systems to reduce the computational burden on a design
and allow the real-time application of complex controllers [34]. The literature achieves the
aforementioned goals by utilizing a variety of machine learning (ML) methods [35]. Artifi-
cial neural networks (ANN) were mainly used in [36] for datasets with no time dependency
between the accessible datasets. Time-varying data sets are commonly processed using
recurrent neural networks (RNNs).RNNs and CNNs are two popular AI techniques used
to gather data for text and media applications, respectively [12]. SARSA and Q-learning
are two additional reinforcement learning techniques that facilitate real-time learning of
intricate problems. The action-reward system underlies these techniques [32–37]. Conse-
quently, the RL technique may impose a different reward for each activity that moves an
agent from one condition to another. This paper foresees PHEV loads using one of the RL
techniques, the Q-learning (QL) approach. Out of all possible actions and states, the QL
method can identify the best ones. As a result, by using the outputs of other ML techniques,
like ANN, LSTM, RNN, GRU, and CNN, as initial inputs, the efficacy of the QL technique
can be improved [38].

Despite the variety of methods used to predict PHEV load demand [11–13], more
research still needs to be focussed on an overarching tactic that encompasses all PHEV load
demand scenarios, including smart, cooperative, and non-cooperative situations. In this
study, the authors have explored the potential of an RL-based QL approach in forecasting
PHEV load under diverse scenarios. This research evaluated three commonly used artificial
intelligence techniques–RNN, ANN, and QL–to determine their efficacy in prediction. The
investigation indicates that implementation of the QL technique, which leverages the initial
outcomes of the ANN and RNN methodologies, yields enhanced predictive precision.
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1.3. Real Contribution

The leading contributions and innovations of this article are as follows:

• A comprehensive investigation of load forecasting challenges for PHEV charging
remains imperative through implementing RL, a potent tool for combining multiple
ML models [6]. To address this matter, a new approach based on QL for forecasting
load at EV charging stations has been introduced in this publication. QL has been
frequently employed in problems with distinct states and actions. Our proposed QL
model is suitable for the control task that demands ongoing response to the prevailing
circumstances. The system comprises neural networks and deduces the differential
for the state evolution of unknown epistemic uncertainty. This solution presents
an opportunity to enhance the operational efficiency of PHEV charging, while also
serving as a mechanism of reinforcement for energy dispatching within power grids.

• The recommended RL methodology for determining the optimal framework for PHEV
load forecasting encompasses smart, cooperative, and non-cooperative scenarios. The
developed QL approach exhibits superior efficiency, precision, and flexibility in PHEV
load estimation when compared to traditional ANN and RNN models. Furthermore,
incorporating modifications such as adjusting the epoch, hidden layer, and node
quantities can significantly augment the accuracy of PHEV charging load predictions,
as evidenced by empirical analyses.

1.4. Paper Organization

This article is organized as follows. Section 2 presents the technical background for
the three models utilized in this paper. Section 3 describes the charging behaviour of
the PHEVS. Section 4 presents the proposed framework for the PHEVs load forecasting.
Sections 5 and 6 show the evaluation criteria and QL-model forecasting performance with
different network depths. The implementation of ANN, RNN and the proposed model
and simulation results considering the test cases are described in Section 7. Sensitivity
analysis, validation of the proposed model, QL in terms of speed, flexibility and accuracy,
and discussion are presented in Sections 8, 9, 10 and 11, respectively. Finally, Section 12
concludes the article.

2. Technical Background

The three models—ANN, RNN, and QL—used in this paper are briefly introduced in
this part.

2.1. ANN

Figure 2a shows the schematic unit of ANN [23]. The Artificial Neural Network (ANN)
comprises three distinctive layers i.e., input layer (X), hidden layer (H), and output layer
(Y) that operate using multiple nodes. As shown in Figure 2a, a weight (ωij) is used in
every line of the ANN technique in between each pair of successive layers (ith previous
layer, and jth present layer). The Equation (1) can be used to determine each output node:

NOp
j = σ

p
j

(np−1

∑
i=0

(NOp−1
i ωij) + bp

j

)
(1)

In the context of neural networks, the jth output of the pth layer is represented by NOp
j ,

whereas NOp−1
j represents the jth output of the p − 1th layer. Similarly, bp

j and σ
p
j respec-

tively refer to the bias and activation function of the jth node in the pth layer. Furthermore,
np−1 denotes the number of nodes in the p − 1th layer.
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(a) (b)
Figure 2. ANN and RNN Blocks Techniques. (a) ANN Block. (b) RNN Block.

2.2. RNN

The RNN technique’s block layout is depicted in Figure 2b. The time-series data
set’s future is predicted using RNNs [24]. It can be applied to various chores, including
predicting weather patterns, green energy trends, stock market trends, and other activities.
The line the RNN method uses between each hidden layer’s node is the primary distinction
between it and the ANN technique. The output of the RNN unit is shown in Equation (2):⎧⎪⎨

⎪⎩
rt = b + Kst−1 + Wxt

st = f (rt)

qt = g(d + Ust)

. (2)

At time t, the state of the hidden layers is denoted by st, while at time t − 1, it is indicated
by st−1. Similarly, the input and output of the RNN unit at time t are represented by rt
and qt, correspondingly. K, W and U are the weight matrices of st−1, xt, and qt respectively.
Both f and g are the activation functions (softmax, tanh, etc.) of memory and output of the
RNN unit, while b and d are the biases.

2.3. QL

The QL method, which uses the Markov decision process to select the most appropriate
action from all possible options, is one of the model-free RL techniques [25,26]. QL falls
under the category of off-policy methods. When choosing the best future action, the QL
technique selects the initial state, reward, current state, and accessible activities in a very
similar way to the SARSA. The primary equation, which is used by the QL technique to
choose, presented in (3):{

Qnew(ct, mt) ← Q(ct, mt) + β(Rt

+ d f maxm Q(ct+1, mt)− Q(ct, mt))
(3)

where ct and mt are the current states and current actions of the QL technique. Q(ct, mt)
is the Q-value updated Q-value of ct and mt can be denoted as Qnew(ct, mt). The QL
method has a learning rate β that satisfies the condition 0 ≤ β ≤ 1, while the discount
factor d f is between 0 and 1 (0 ≤ d f ≤ 1). The optimal future value estimation is given
by maxm(Q(ct1, mt)). The proposed QL reward for the future action and state is Rt. The
initial conditions for the Q-value in this proposed technique are zero. The optimal solution
for PHEV loads is found using the QL method. The proposed QL technique updates the
Q-value depending on ct and mt after each iteration. The best course of action for the
subsequent steps is determined using Equation (4):

mt = arg max
m

(Q(ct+1, mt)). (4)
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3. Charging Behavior of PHEVs

The charging strategy, charging time, amount of charged PHEVs, battery capac-
ity, battery state of charge (Bsoc), and start time are all unknown variables that affect
PHEV load behaviour. The three charging cases for PHEVs—smart, cooperative, and
non-cooperative—are explored in this article.

3.1. Non-Cooperative PHEV Charging

The simplest charging approach for PHEVs is the non-cooperative strategy, which
involves plugging them into charging stations. PHEVs are believed to commute daily from
their homes in the morning to their homes in the evening. In this instance, around 5:30 p.m.,
when most people get home, most PHEVs are hooked up and begin charging. As a result,
this strategy considers a limited range uniformly distributed probability density function
(PDF) with a charging start time of 5:30 p.m. Such a PDFs mathematical form is provided
in Equation (5) [25]:

y(τx) =
1

u − v
, v = 18, u = 19, u ≤ τx ≤ v (5)

where u and v are constant values, τx is the charging start time of PHEV.

3.2. Cooperative PHEV Charging

Stockholders in the cooperative charging plan typically link their cars to chargers
during off-peak hours to prevent confrontation with the sunset peak hours, when power
costs are higher. Consequently, to save money on their electricity prices, people defer
charging until after 9:30 p.m. The cooperative charging strategy presented in Equation (6)
is then modelled using the provided pdf:

y(τx) =
1

u − v
, v = 21, u = 24, u ≤ τx ≤ v (6)

3.3. Smart PHEV Charging

A smart charging plan schedules charging when energy is most reasonably priced,
demand is at its lowest point, or excess capacity exists. All smart charging techniques
adhere to the fundamental principle that a vehicle should only be charged when doing so
benefits both the owner and the utility. A typical pdf, as shown in Equation (7), illustrates
the difficulty of choosing the charging start time using various smart charging options [24]:

y(τx) =
1

β
√

2π
exp

(
− 1

2

(
τstart−α

β

)2
)

, α = 1, β = 3. (7)

where α is the mean of values and β is the covariance.
Once the PHEV is connected to the home charger, the battery begins to charge. The

battery’s leftover Bsoc is calculated using the vehicle’s daily mileage. The ratio of available
energy to maximal stored energy is known as a battery’s Bsoc. The daily mileage of a car is
said to follow a log-normal PDF presented in Equation (8):

y(z) =
1

zβ
√

2π
exp

−(ln(z)−α)2

2β2 , z > 0. (8)
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The Bsoc at the time of plug-in is then calculated using the vehicle’s driven mile and
all-electric range (AErange) as follows in Equation (9):

Bsoc =

{
0, z > AErange
AErange−z

AErange
× 100%, z ≤ AErange.

(9)

A multitude of PHEVs exist, including the PHEV-20, PHEV-30, PHEV-40, and PHEV-60,
each characterized by a unique AErange denoted by a numerical subscript. The PHEV-20 has
been selected as a primary example in the investigation of market potential over time [29],
but consideration may be extended to additional PHEV models given the unrestricted
nature of the methodology. Equation (10) is used to determine the charging time of a
PHEV [29].

τd =
Bcap × (1 − Bsoc)× Ddepth

η × T
. (10)

where Bcap, Ddepth, η and T and the PHEV battery capacity (in kWh), depth of discharge of
PHEV battery, charging efficiency, and PHEV charger rate (kW), respectively. The charging
types for PHEVs are outlined in the Table 1, and are contingent on the charging levels
provided by the charger [20]. Ethics dictate that the first two charging stages are suitable
for PHEVs that are charged domestically. As the charging stations with the third stage are
specifically constructed for public transportation, this write-up excludes their inclusion.
As per Table 2, PHEVs are segregated into four groups, with each group possessing
characteristic market and share traits. In this study, the market share of PHEVs can be
represented with a discrete distribution. Each PHEV group is arbitrarily selected from the
market shares shown in Equations (11) and (12) using a normal distribution.

αBcap =
Min Bcap + Max Bcap

2
(11)

βBcap =
Min Bcap − Max Bcap

4
(12)

The proposed QL approach can compile training data to forecast PHEV charging demand
using three simulated charging methods: Smart, non-cooperative, and cooperative, based
on the (5) to (12). Min and Max represent the minimum and maximum values, respectively.

Table 1. Various Charger Types for PHEVs.

Charging Type I/P Voltage Pmax (KW)

Level-I (AC) 120 Vac 1.42

Level-II (AC) 208–240 Vac 11.5

Level-III (AC) 208–240 Vac 97

Level-III (DC) 208–600 Vdc 239

Table 2. Various Classes for PHEVs.

Class Market Share Bcap (Min–Max)

Mini Vehicle 0.2 8–12

Mid Size Vehicle 0.3 14–18

Economy Vehicle 0.3 10–14

Light Truck 0.3 19–23
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4. Proposed QL-Based PHEV Charging Load Forecasting Framework

In this article, using the results of RNN and ANN, we developed a novel RL-based
model that optimally forecasts the load demands of smart, cooperative, and non-cooperative
PHEVs.The proposed model has two major parts: (1) Data Preprocessing Phase,
(2) QL-based forecasting considering the optimal results of ANN and RNN as initial
inputs. Figure 3 shows the structure of the proposed reinforcement learning-based forecast-
ing model.

Test
Data

Training
Data

PHEVs Load Data Data Preprocessing and Pre-filtering Data Normalization Ensembled ANN & RNN for PHEV load forecasting

Proposed QL based on ensembled results  for the
best PHEV load forecasting based  

Performance Evaluation metric  for the accuracy and
sensitivity analysis

Desired ResultsApplications of Electric Vehicles

Figure 3. Proposed QL based PHEVs load forecasting Model.

4.1. Data Source

Caltech has made the ACN-Data [39] available to academics for research purposes; this
dataset comprises EV charging events from various workplaces. More than 30,000 charging
events are organized in the dataset from two Californian workplace charging locations, the
Jet Propulsion Laboratory, and the Caltech campus. For this article, our test data consists
of charging information collected from the charging station on the Caltech campus. The
ACN (Adaptive Charging Network) is open to the public and equipped with a 50 kW DC
rapid charger, frequently used by non-drivers. The dataset covers details of all transactions
made within the architecture of ACN, with 54 EV supply equipment. The dataset’s related
data categories are described in Table 3. The exactitude of load forecasting depends on data
pre-processing because the initial data will contain anomalies and missing numbers.

Table 3. Data fields in ACN-Data.

Field Description

Time of connection The plugs in time of users.

Accomplished charging time The time of last non-zero charging rate.

Time of disconnection The unplugs time of users.

kWh supply Supplied energy measurement.

Session ID Unique identity for the session.

Station ID Unique identity of the EV Supply Equipment.

4.2. Preprocessing Module

The EV charging stack data were initially analyzed and refined for inquiry. To enable
real-time charging control based on energy usage during charging periods, it is imperative
to establish the average hourly charging capacity of the stations, taking into account the
variability of data encountered due to its random nature. To achieve this, the dataset was
pre-processed, whereby inaccurate data points were replaced with the average charging
load observed during a given time slot across different days. This step was essential to
ensure accurate forecasting without being impacted by erroneous data.
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For practical reasons, the data pertaining to the charging load operation were bifur-
cated into training and test sets using a proportion of 0.7/0.3. The model was suitably
trained with the training instances, while the final function evaluation utilized the test
collection. Multiple neural networks were employed to learn from the charging load data;
however, the efficiency of these networks was significantly influenced by the size of the
data. As a resolution, the input data of the forecast model were altered through min-max
normalisation, which constrained the information within a specific limit (0–1), as illustrated
in Equation (13):

Y′ =
Y − ymin

ymax − ymin
(13)

4.3. QL-Based Forecasting Module

The three primary learners, ANN, RNN, and QL, were trained using the training set
by the training technique. Following the last training session, predictions were made using
the training data and prepared elementary learners. Forecasts from the training data and
the proper labels were then set as the features. During the testing process, predictions were
generated using the trained base of learners on test data. The forecasts made by the primary
learners were then used to test the learned weighted averaging model. After reversing
normalization, the outcomes were obtained, and the test labels and marks used to calculate
the prediction accuracy.

• When using the ANN technique to forecast the load on PHEVs, the input and output
ANN units should be chosen appropriately. Due to the time series nature of PHEVS
load data, the ANN unit utilized prior PHEV load data. The baseline 24-h PHEVs load
data were helpful for more accurate one-hour-ahead load forecasting. The deployment
of ANN and RNN for predicting one hour ahead is shown in Figure 4.

• The proposed QL method for the PHEVs load forecasting used the previous days’
ANN and RNN forecasting results. In hopes of identifying the best day-ahead PHEV
load forecasting, the proposed QL approach chose the best course of action based on
the output of ANN and RNN. The proposed QL model’s reward function is shown in
Equation (14):

Rt(γj) =
1

exp
∣∣∣(JOptimalt − γj(JANN/RNNt))

∣∣∣ (14)

where γj is the random number of the jth action. The proposed approach chose
one of two possible courses of action for each time horizon (j = 0 for ANN and
j = 1 for RNN). The power forecast for the ANN or RNN method was (JANN/RNNt).
Additionally, JOptimalt

contains the PHEV data for the tth period. The ANN and RNN
predicted results were used in the devised method to predict the PHEV future load
and compare it with actual data. Thus, 24 optimal actions were chosen in the proposed
QL approach for the day ahead horizon. Therefore t can be any integer between 1 and
24 for the day ahead horizon. JOptimalt , JANNt , and JRNNt were the optimal, ANN, and
RNN PHEV load of the tth day, respectively. The γj values between 0 and 2 were used
to improve the ability of the QL technique to find the best search locations. When the
action was 1, the RNN technique chose the reward function. Alternatively, the reward
function was determined from the results of the ANN method.

QL is a learning system that is built on values. Value-based algorithms update the
value function based on a calculation (particularly Bellman equation). The other policy-
based version calculates the value function using the most recent policy improvement’s
greedy policy. QL is an ad hoc student. This implies that it learns the value of the best
strategy independent of the agent’s behaviours. On the other hand, an on-policy learner
learns the value of the policy being carried out by the agent, including the exploration
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stages, and it will find an optimum strategy that considers the exploration implicit in
the approach.

(a) (b)
Figure 4. Employing artificial neural network (ANN) and recurrent neural network (RNN) method-
ologies to forecast plug-in hybrid electric vehicle (PHEV) demand. (a) The PHEV load forecasting by
ANN method. (b) The PHEV load forecasting by RNN method.

5. Evaluation Criteria

The predicting performance of the analyzed techniques was evaluated using the mean
square error (MSE), a standard evaluation criterion. Considering Ptest and P̂test are the
actual and expected loads of the EV charging station at time step t, respectively. The MSE
measured the errors between the real and the forecasting values, which can be formulated
in Equation (15) as below:

MSE =

√
∑T

t=1
(

Ptest
t − P̂test

t
)2

T
(15)

6. QL-Model Forecasting Performance with Different Network Depths

We evaluated the predicting effectiveness in comparison to various network levels.
The results of the Mean Squared Error (MSE) and Mean Absolute Error (MAE) that were
found when the layers were changed from two to six when using the prepared dataset
are shown in Figure 5. The proposed QL model worked best with five layers. As the
network depth increased from two to five, the MSE and MAE values became smaller,
and the prediction performance improved. Properly boosting network depth and settings
significantly enhanced the predicting performance. Due to increased parameter redundancy
and reduced data variety, as a network’s depth grows, it may overfit and suffer from
performance loss. The training period needed for each layer of QL is listed in Table 4. As
layers increased, factors for training optimization increased, causing a longer required time.
More layers were needed to improve forecast accuracy, resulting in time consumption.

Table 4. Training time for different layers of QL.

Layer of QL CPU Time (s)

2 499.48

3 798.21

4 1401.98

5 2001.73

6 2312.19
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(a)

(b)
Figure 5. The metrics (a) MSE and (b) MAE for the QL model, adjusted for alterations in network
depth. (a) MSE versus different network layers. (b) MAE versus different network layers.

6.1. Convergence of the QL

In Figure 6, the state (c, m) = (0, 50) marks the convergence of the QL model. The
optimal value function V(0, 50) = 160.83 is approached as minm∈A Q(0, 50, m) converges.
The synchronized parallel Q-learning procedure involves offline learning of the QL model,
in which batch updates of all state-action pairs (Q-functions) occur at each training instance.
The step sizes utilized in this process are inversely proportional to the number of visits
(updates) to each combination of state and action.
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Figure 6. The convergence of the QL at state (c, m) = (0, 50). The red dotted line signifies the ideal
value, while the black dotted line denotes the point at which convergence occurs.

7. Test Cases Simulations and Results

This section compares three techniques (RNN, ANN, and QL) in various scenarios
to show the benefits and efficacy of the proposed ML techniques. The number of hidden
layers used for RNN and ANN is shown in Table 5. The number 24 is the input for the ML
methods. (For example, the charging load for the following hour is forecast using the most
current 24-h data). This analysis estimated the devised PHEV load forecasting approach
using the free and open-source Keras software [26]. Additionally, MATLAB was utilized to
build the original PHEV data for various charging techniques.

Table 5. Examining and projecting the charging demand of PHEVs utilizing ANN, RNN, and QL
approaches (MSE, MAPE and Epoch) across various penetrations (30%, 60% and 90%).

Techniques Charging Strategy Penetration (%) MSE (KW) Epoch MAPE(%)

ANN-1 (non-cop)
RNN-1 (non-cop)
QL-1 (non-cop)

Non-cooperative 30
4.2
9.3

0.79

3000
1000

10,000

4.3371
2.9189
2.4741

ANN-1 (Cop)
RNN-1 (Cop)
QL-1 (Cop)

Cooperative 30
7.06
9.12
6.21

3000
500

10,000

4.4901
3.0129
2.7210

ANN-1 (Smart)
RNN-1 (Smart)
QL-1 (Smart)

Smart 30
6.23
6.38
5.30

3000
500

10,000

4.3210
2.7112
2.4214

ANN-2 (non-cop)
RNN-2 (non-cop)
QL-2 (non-cop)

Non-cooperative 60
1.67
25.63
1.30

3000
500

10,000

5.2121
3.1489
2.9741
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Table 5. Cont.

Techniques Charging Strategy Penetration (%) MSE (KW) Epoch MAPE(%)

ANN-2 (Cop)
RNN-2 (Cop)
QL-2 (Cop)

Cooperative 60
9.54
9.67
9.37

3000
500

10,000

5.7371
4.2189
3.1451

ANN-2 (Smart)
RNN-2 (Smart)
QL-2 (Smart)

Smart 60
7.12
7.34
5.23

3000
500

10,000

5.9871
4.0189
2.9741

ANN-3 (non-cop)
RNN-3 (non-cop)
QL-3 (non-cop)

Non-cooperative 90
0.0031
0.0019
0.0019

1000
1000
1000

3.2171
2.7189
2.2741

ANN-3 (Cop)
RNN-3 (Cop)
QL-3 (Cop)

Cooperative 90
1.23
10.3
0.889

3000
500

10,000

3.3371
2.8189
2.1741

ANN-3 (Smart)
RNN-3 (Smart)
QL-3 (Smart)

Smart 90
7.11
7.45
4.45

3000
500

10,000

3.6371
2.7189
2.0741

7.1. Load Forecasting of Non-Cooperative PHEVs Charging

This article predicts non-cooperative PHEV load demands using ML approaches such
as RNN, ANN, and the proposed QL techniques. A predicted load with a 30% PHEV
adoption is shown in Figure 7a. The necessary information is given in Table 5, along with
the epoch numbers and means square errors (MSEs) used for the different ML techniques
in this work during the training phase. ANN and QL methods have lower MSEs but
higher accuracies than the RNN strategy. The more significant epoch number used during
training was the primary factor that makes the ANN technique perform better in terms
of accuracy than the RNN method. The non-cooperative PHEV hourly load forecasting
with 60% penetration is shown in Figure 7b. The charging of the PHEV load started at
5:30 p.m. and ended at 5:30 a.m. depicted in Figure 7. Additionally, the AI technique had
a 60% penetration of PHEV load and an insignificant MSE (significant accuracy). Table 5
shows that the RNN method had a more significant mean squared error (MSE) and smaller
epoch number than other techniques. The devised QL method predicted PHEV load using
ANN or RNN outcomes with lower MSEs than the other two methods, which makes this
approach more accurate. This illustration shows how the QL approach was more valuable
than ANN and RNN for predicting PHEV loads.

(a)
Figure 7. Cont.
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(b)
Figure 7. Non-cooperative charging PHEV load forecasting with a 30% and 60% penetrations.
(a) Non-cooperative charging PHEV load forecasting with a 30% penetration. (b) Non-cooperative
charging PHEV load forecasting with a 60% penetration.

7.2. Load Forecasting of Cooperative PHEVs Charging

The predicted load consumption for cooperative PHEVs is given in this subsection.
When PHEV penetration is 30%, Figure 8a shows the cooperative PHEVs hourly load
forecasting with 30% penetration using ANN, RNN, and QL algorithms. Training iterations
(1000 (ANN), 3000 (RNN), and 10,000 (QL)) were used. The cooperative PHEV charging
strategy lasted from 7:00 p.m. to 11:00 a.m. as shown in Figure 8. As shown in Table 5, the
QL method predicted the cooperative PHEVs hourly charging load more precisely (with
a reduced MSE) than the ANN and RNN approaches. Additionally, the output of the QL
method in Figure 8 demonstrates less deviation from the actual data.

(a)

(b)
Figure 8. Cooperative charging PHEV load forecasting with a 30% and 60% penetrations. (a) Cooper-
ative charging PHEV load forecasting with a 30% penetration. (b) Cooperative charging PHEV load
forecasting with a 60% penetration.
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7.3. Load Forecasting of Smart PHEVs Charging

The 60% and 30% penetration levels of the smart PHEVs charging hourly load are fore-
casted in this subsection. The training iterations (1000 (ANN), 3000 (RNN), and 10,000 (QL))
are used. Figure 9 shows that all techniques were capable of forecasting PHEV loads
with accuracy. However, because the RNN method employed fewer iterations than the
ANN and QL techniques, its error in calculating the PHEV load was more important. The
proposed QL approach has a reduced MSE (a better precision) than the ANN and RNN
methods because it chose the optimal policy from the potential actions for each state (each
hour). The proposed strategy’s accuracy can be improved by applying the QL method to
more extensive and diverse data sets.

(a)

(b)
Figure 9. Smart charging PHEV load forecasting with a 30% and 60% penetrations. (a) Smart charging
PHEV load forecasting with a 30% penetration. (b) Smart charging PHEV load forecasting with a
60% penetration.

8. Sensitivity Analysis of Three Charging Techniques

Figure 10 shows the sensitivity evaluations of three PHEV charging load strategies
implemented with different hidden layers, node numbers, and several neurons in the
proposed QL. Figure 10a shows how the proposed QL method’s forecasting accuracy
varied with different epoch spans when increased from three to four hidden layers, each
having 200–400 nodes. Table 5 shows that when more nodes and hidden layers were used
in the ML model, it accurately predicted PHEV loads for the cooperative charging method.
Table 5 shows that the quality of a forecast was improved by increasing the number of nodes
in each hidden layer. It can be seen from the Figure 10b that the QL technique for the non-
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cooperative PHEV load forecasting was unable to model the PHEV load filling consistently.
The more layers and nodes a QL has, the better it can handle large datasets. Figure 10c
shows the sensitivity analysis of the QL method for smart PHEV load forecasting with
various nodes and hidden layers when penetration was 30%. Therefore, it can accurately
predict PHEV load if the proposed QL method employed more nodes and hidden layers
than other techniques—such as ANNs or RNNs.

(a)

(b)

(c)
Figure 10. QL sensitivity analysis for the three PHEV charging (Cooperative, Non-cooperative and
Smart) (kW). (a) QL sensitivity analysis for cooperative PHEV charging (kW). (b) QL sensitivity
analysis for non-cooperative PHEV charging (kW). (c) QL sensitivity analysis for smart PHEV
charging (kW).
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9. Validation of Proposed QL

To produce accurate forecasting results for comparison, the parameters and hyper-
parameters of the QL approach should be developed appropriately. The validation test
selected these values through trial and error. For instance, the MAPE evaluated QL effi-
ciency, as seen in Figure 11. The QL with five hidden layers among ten guaranteed the best
MAPE and the QL selected 41 hidden neurons among fifty to achieve the smallest MAPE.

(a)

(b)
Figure 11. Demonstration of QLs validity with a various number of hidden neurons and layers.
(a) Demonstration of QLs validity with various numbers of hidden neurons. (b) Demonstration of
QLs validity with various numbers of hidden layers.

10. QL in Terms of Speed, Flexibility and Accuracy

The flexibility, speed, and accuracy of the three DL methods are discussed with their
ability to predict PHEV charging loads.

10.1. Faster Speed

In this paper, we integrate two ML methods—ANN and RNN—to enhance the QL
method’s real-time ability to forecast PHEV load. Our three ML methods focus on training
times but vary substantially across applications. When ANN and RNN have trained accu-
rately with PHEV data, their networks can efficiently predict the input data to implement
the QL technique in real-time. Therefore, utilizing ANN and RNN techniques to their
full potential can significantly improve the QL technique’s capability to carry out this
process quickly.

10.2. Improved Accuracy

It is essential to examine all DL techniques currently being used; after evaluating the
three ML techniques described in this article, the most efficient QL for forecasting PHEV
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charging loads was chosen. From the results of the simulations, predictions from ML
techniques may be inaccurate if there are substantial variations from the initial charging
points. Therefore, the QL approach, which gets its data from ANN and RNN, may precisely
forecast optimal PHEV charging. As Table 5 demonstrates, increasing the epoch number
can reduce forecasting errors.

10.3. Flexibility

The simulation results show that ML techniques can be used to model PHEVs by
training charge methodologies. Any complex load-charging scenario can be variably
predicted by increasing the training iterations for ML techniques. The estimate for PHEV
charging potential was correct as a consequence. Forecasting PHEV loads for cooperative,
non-cooperative, and smart charging can be elevated by combining nodes and hidden
layers of ANN and RNN techniques. Moreover, the QL technique’s capacity to choose the
best course of action out of numerous choices can be improved by having more precise
estimates of PHEV load charging.

11. Discussion

A significant study is being done to increase the accuracy of load forecasting for
PHEV charging sites, which can both guide the efficient dispatch of the power system
and advance the growth of EVs. This study proposes a QL method for forecasting the
demand at electric car charging sites. The data preprocessing unit handles the original
dataset, builds time series data, and adds characteristics to prediction data in our technique.
We use the QL forecasting technique and approximate the posterior distribution using
variational inference. Results show the success of this method in predicting PHEV charging
station demand. Comparing the devised method to some forecast methods further indicates
its better performance. The designed model is around 38.2%, 41.5% lower in MSE and
MAE, and 17.9% higher than the standard techniques, according to the findings of point
forecasting. The devised strategy can be used to forecast load for PHEV charging stations
in the real world, as evidenced by its outstanding performance on various datasets.

12. Conclusions

This manuscript presents a novel QL approach for PHEV load forecasting employing
ANN and RNN techniques. Various PHEV models, such as smart, cooperative, and non-
cooperative, are analyzed in this study. Our results indicate that the proposed QL method
achieved accurate predictions of PHEV load charging by leveraging data from the ANN
and RNN techniques. Importantly, our findings suggest that the QL method outperformed
the ANN and RNN techniques in predicting PHEV loads accurately, as substantiated by
the simulation outcomes. Table 5 shows that in the worst-case scenario for PHEV charging
(smart charging), the QL method exhibited superior performance compared to traditional
ANN and RNN techniques, surpassing them by over 60%. Furthermore, increasing the
number of iterations demonstrated that the ANN technique delivers more precise pre-
dictions of PHEV loads (MSE) than the RNN approach. The QL methodology under
consideration demonstrates superior tracking capabilities for PHEV loads when compared
to ANN and RNN techniques, exhibiting greater precision and adaptability in the process.
Further enhancements in the form of adjustments to the hidden layer, epoch, and node
numbers have been shown to significantly enhance the accuracy of PHEV charging load
forecasts, as corroborated by the case studies.The forecasting methodology developed here
demonstrates the potential for future implementation in expansive power networks that
contain complex PHEV loads. The performance of this probabilistic forecasting technique
can be improved through ongoing optimization efforts. Reliable load projections derived
from PHEV charging facilities will facilitate a structured approach to electric vehicle charg-
ing, and effectively reduce energy usage variations while optimizing distribution network
resource allocation. We are committed to further forecasting the load from various charging
stations, including those with AC, DC, and higher power capabilities. We plan to extend
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our suggested model to more PHEV charging data sets. Additionally, we intend to utilize
this methodology in additional applications, including dispersed grid capacity forecasting
and wind power forecasting, to expand its potential impact.
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Abstract: This study examines Turkey’s energy planning in terms of strategic planning, energy
policy, electricity production planning, technology selection, and environmental policies. A mixed
integer optimization model is proposed for strategic electricity planning in Turkey. A set of energy
resources is considered simultaneously in this research, and in addition to cost minimization, different
strategic level policies, such as CO2 emission reduction policies, energy resource import/export
restriction policies, and renewable energy promotion policies, are also considered. To forecast
electricity demand over the planning horizon, a variety of forecasting techniques, including regression
methods, exponential smoothing, Winter’s method, and Autoregressive Integrated Moving Average
methods, are used, and the best method is chosen using various error measures. The optimization
model constructed for Turkey’s Strategic Electricity Planning is obtained for two different planning
intervals. The findings indicate that the use of renewable energy generation options, such as solar,
wind, and hydroelectric alternatives, will increase significantly, while the use of fossil fuels in energy
generation will decrease sharply. The findings of this study suggest a gradual increase in investments
in renewable energy-based electricity production strategies are required to eventually replace fossil
fuel alternatives. This change not only reduces investment, operation, and maintenance costs, but
also reduces emissions in the long term.

Keywords: time series forecasting; strategy planning; electricity production; integer programming

MSC: 37M10; 90C05

1. Introduction

Strategic energy planning is the process of coming up with long-term energy policies
that will affect the future of energy systems in a region or the whole country. Due to
globalization, fast population growth, and countries’ efforts to become more industrialized,
the demand for energy and natural resources has grown a lot. The demand for energy
services is expected to grow by 1.3% per year until the year 2040 [1]. The main sources of
energy are hydraulic, nuclear power, and thermal. Renewable energy sources can also be
thought of as alternatives to traditional energy sources, such as wind, sunlight, geothermal
heat, waterpower, and biomass [2].

A lot of greenhouse gases are made by the main energy sources, which causes global
warming. On the other hand, the main problems with using renewable energy resources
are the high initial investment costs, the unknown operational risks, and the need to choose
different locations for facilities [2]. Due to these problems, energy resources are not used
as well as they could be, thus, optimal planning is very important and can help ensure
sustainability and protect the natural balance.

In this study, a strategic level energy planning model is proposed for Turkey. This
model can be used to figure out different ways to produce electricity during the planning
horizon, considering strategic goals, resource limits, available demand, emission goals
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and limits, and other factors. To forecast electricity demand over the planning horizon, a
variety of forecasting techniques, including regression methods, exponential smoothing,
Winter’s method, and Autoregressive Integrated Moving Average (ARIMA) methods, are
used, and the best method is chosen using various error measures. Thus, this ensures that
the information needed in optimization modeling is accurately predicted.

In the proposed optimization model different types of alternative energy sources are
considered, such as fossil, renewable, and nuclear. The cost to build, run, maintain, and
fuel each type of power plant is different. The levelized cost concept is used so that all costs
can be measured in the same way. This concept is defined as “the average cost over the
lifetime of the electricity generation plan per MWh of electricity generated” [3]. Optimiza-
tion methods are needed to choose the best portfolio of ways to produce electricity that
minimizes costs while meeting operational constraints and long-term goals. Mathematical
modeling is used to find the best way to reduce the total levelized cost of all power plants
that are running during the planning period.

All possible energy resources, such as fossil fuels, renewable energy resources, nuclear
energy, and so on, are considered in the production of electricity. As a result, in terms of
“classifying energy problems based on energy type,” our problem is an electricity planning
problem. Furthermore, we consider energy resources, such as solid fuels, oil/gas, renewable
energy sources, and nuclear energy sources. The research is a general energy planning
problem in this regard. The research problem includes a set of alternative energy policies,
such as reducing CO2 emissions, using fewer fossil fuels in electricity generation, and
utilizing more renewable energy resources. In terms of application, it falls into the category
of “energy policy analysis.” In addition, the proposed model performs strategic level
energy planning over the planning horizon while meeting annual total electricity demand
throughout the year. In this regard, the problem in this study can also be considered as an
“Energy Power Planning” issue.

In the rest of this study, Section 2 gives a detailed review of the related literature.
Section 3 goes over the methods used to figure out how much electricity costs and how
much energy it uses, and the prices and methods used to predict how much electricity will
be used. In Section 4, the results are analyzed based on a real-world application. Finally, in
Section 5, the study is summed up and future research ideas are given.

2. Literature Review

Multiple objectives are handled concurrently in energy planning issues, making it
a strong application area for operations research. As a result, the number of studies in
energy planning is expanding in the literature [4]. In the literature, problems, such as
energy efficiency improvement, energy decision-making, energy investment and planning,
energy plant selection, selection of the most suitable energy alternative, energy resource
sharing, and energy source reliability, are studied in terms of energy optimization applica-
tions [4]. Several researchers focus on decision-making challenges in the literature. The
most commonly used multi-criteria approaches in the literature are the Analytic Hierar-
chy Process (AHP), Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE), Elimination and Choice Translating Reality (ELECTRE), and Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) methods [5–13].

Since most energy resources are used in response to climatic circumstances, opti-
mization approaches are necessary for the design, planning, and control phases of energy
management. Challenges in the energy sector are complicated, unclear, and involve several
associated parties. As a result, the choices are constrained by many restrictions. As there
are so many choice factors and parameters, they are technically complicated to solve. It is
seen that a variety of studies are available in the literature [14–28].

Moreover, there are several evaluations on energy planning issues. These works
examine and categorize the literature on energy planning and suggest some future research
areas. For example, ref. [29] examined energy supply models to assess investment options
and expansions. It was assumed that demand quantities and input costs were known,
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and the model determined the investment choice with the lowest cost over time. Energy
type (fossil, nuclear, single hydro, or hydro), energy transport options, investment, and
replacement schedules, and optimal mode of system operation are all factors to consider.
Ref. [30] examined African countries’ electrical planning studies that used both qualitative
and quantitative methodologies. Ref. [31] studied Turkey’s generation plans up to 2023
and assessed the viability of the 2023 Vision. The capacity objectives were examined, and
projections were made using a semi-empirical electrical demand model. Other recent
studies on Turkish electricity markets are [32–34].

On the other hand, there are also many studies conducted on electricity demand
forecasting. Indeed, electricity demand forecasting is classified into three categories: short-
term, mid-term, and long-term forecasting. Short-term predictions range from one hour
to one week, mid-term forecasts range from one week to a year, and long-term forecasts
span more than a year [35,36]. Demand forecasting is a prominent study topic since it
occurs in practically every system that involves production and customers. In the literature,
several techniques and models have been established for electricity demand forecasting,
such as Holte Winters exponential smoothing approach, multivariate adaptive regression
splines, ARIMA, and support vector regression [37–43]. Another classification of demand
forecasting is based on the degree of mathematical analysis involved in the forecasting
process. These approaches are classified as quantitative and qualitative. Qualitative
approaches include the Delphi method and curve fitting. Regression, machine learning
by [44], smoothing approaches by [45], deep learning by [46,47], and the Box-Jenkins
methodology by [48], on the other hand, are examples of quantitative methods.

To summarize, electricity planning is a prominent research field in the literature, and
several works examine various elements of energy planning. Our study varies from the
previous research for many reasons. First, we address the energy planning problem for
Turkey over several time horizons. Some investigations have been undertaken in Turkey,
such as [49,50]. These studies also look at energy planning in Turkey, but only in the past,
therefore they do not address the present situation.

Furthermore, we evaluate the government’s most recent strategic aims under current
strategic plans in our research. As a result, we throw light on the near future. This
analysis takes into consideration not just Turkey’s present installed energy capacity, but
also projected energy investments and closures. In other words, in addition to present
capacity, prospective power plants must be opened or shuttered within the timeframes
specified. First, demand is forecasted for several planning horizons (e.g., 10 and 20 years)
utilizing a set of forecasting approaches in this work. The best forecasting technique is
chosen using several error measurements, and the prediction provided by the chosen
approach is incorporated into the mathematical model.

3. Methodology

Framework developed for the strategic planning of electricity production in Turkey is
summarized as shown in Figure 1. Forecasted data is the main requirement of strategic
plans. To generate this data there are different time series forecasting methods available in
the literature. All of these methods require past-time data to be used in the forecasting of
the future. Our framework begins with the gathering of the energy demands in the past and
these data were used to evaluate different time series forecasting methods under different
performance metrics, as explained in Section 4. Following the evaluation phase, the selected
forecasting method is used to forecast energy demand in the years 2021–2040 and this
data is used in the mixed integer programming model formulated to plan the number
and capacities of energy plants according to their types. Different types of time series
forecasting methodologies have been utilized and the one which has the best performance
metrics is used to get the future demand of electricity loads. The forecasted electricity loads
are used as the input of the model. The formulated mathematical model has been coded
in General Algebraic Modeling System (GAMS) software which includes built-in solvers
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to find the optimal solution for different types of mathematical models. Runs are made in
GAMS for two different time intervals and three additional scenarios.

Figure 1. Framework of the Proposed Methodology.

3.1. Time Series Forecasting

Determining the most appropriate energy resources to satisfy the yearly energy de-
mand requires consideration of alternative electricity generation options, such as fossil
fuels, renewable energy, and nuclear energy, and selecting a subset of these energy genera-
tion technologies while taking government strategic goals and environmental issues into
account. To assist this goal a methodology is developed to forecast yearly energy demands
and by using these demand forecasts a mathematical optimization model is formulated
to select the most appropriate energy resources to satisfy these demands. The developed
methodology is applied to the Turkey case to identify investment decisions for the next
twenty years. To accomplish this goal, demand data for Turkey from 1981 to 2020 is used
to forecast demand between 2021 and 2040. The steps described by [51] were followed to
determine the best forecasting model that fits the demand data.

Quantitative forecasting methods are used in this study to generate long-term fore-
casts of electricity demand. Regression Analysis (linear/exponential/beta growth and first,
second, and third order polynomial equations), Double Exponential Smoothing, Winters’
Method (linear, additive, and multiplicative models), and ARIMA for different autoregres-
sive, differencing, and moving average parameters are among the forecasting methods
considered. Regression analysis is a set of statistical methods for estimating the relation-
ships between one or more independent variables and a dependent variable. The least
squares method is used to approximate the model parameters, resulting in an improved
model. For parameter estimation, the method minimizes the sum of squares.

Yt = β0 + β1t + et, (1)

where t is the time, β0 is the constant, β1 is the average difference from one period to the
next, and et is the error term. The regression model can be linear or nonlinear and different
mathematical models can be used for modeling the input data, such as linear growth,
exponential growth, beta growth, the polynomial of the first order, second order, third
order, etc. In this study, different regression types are used for finding the best regression
model that fits the demand data and third order polynomial model produced the best fits.

Double exponential smoothing uses a level and a trend component at each period.
This method has two smoothing weights for updating the components in each period.
Winters’ Method smooths the data and provides forecasts for the short to medium term
using Holt–Winters’ exponential smoothing. When both seasonality and trend are present,
this procedure can be beneficial. These two components can have a linear, multiplicative,
or additive relationship. Winters’ Method generates dynamic estimates for three variables:
level, trend, and seasonal. When there is no seasonality in the data, the linear model is used,
and this method is known as the Holt–Winters nonseasonal algorithm. When the seasonal
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pattern in the data does not change with the data size, an additive model is used. When
seasonal patterns in data depend on data size, a multiplicative model is used. ARIMA
model is a modified traditional technique that is used for modeling time series [40,41,51].
In this research, the forecasting accuracy measures are calculated for the comparison of
different forecasting methods. Scale dependent measures are used commonly whose scale
depends on the scale of the data. Root mean square errors (RMSE) and mean absolute errors
(MAE) are the most commonly used scale dependent measures while percentage errors
are scale independent, they are frequently used to compare forecasting performance across
different data sets. Mean absolute percentage error (MAPE) and coefficient of determination
score (R2) are the most commonly used percentage error measures [51].

3.2. Optimization Model

In this section, the assumptions, sets and indices, parameters, decision variables, and
mathematical model are presented.

3.2.1. Assumptions

• Even if construction is completed within the previous year, the new power plants are
expected to be operational at the beginning of the following year;

• The availability factor determines the maximum working hours of power plants
while taking maintenance and other resource requirements into account. Unplanned
interruptions and plant failures are considered at the operational level;

• Due to the closing dates of the power plants are unknown due to the government’s
information privacy policy, it is assumed that the existing facilities will be operational
without interruption until the end of the planning period;

• Future costs are calculated using average escalation rates that are determined for each
cost component, and future cash flows are calculated using an average interest rate;

• There is no significant variation or dramatic change in economic indicators and de-
mand patterns, and they continue to follow the long-term trend;

• The potential energy resources in Turkey will not change significantly over the plan-
ning horizon;

• Power plant basic data, efficiency, initial investment costs, and CO2 emissions are
assumed to be constant over time.

3.2.2. Set, Indices, Parameters, and Decision Variables

The set of indices used in the mathematical model is as follows:

I:
Set of energy resources used for electricity production, indexed by i;
I = {lignite, hard coal, imported coal, natural gas, uranium};

J:
Set of electrical generation power plant types, indexed by j;
J = {Fluized Lignite, Elbistan Lignite, Hard Coal, Imported Coal, Natural Gas, Nuclear, Hydroelectric,
Wind, solar, Geothermal};

K:
Set of power plant categories indexed by k;
K = {Renewables (R), Fossil Fuels (F), Nuclear (N)};

Jk:

Set of power plants that are in resource category k;
JR = {Hydroelectric, Wind, Solar, Geothermal};
JF = {Fluized Lignite, Elbistan Lignite, Hard Coal, Imported Coal, Natural Gas};
JN = {Nuclear};

T:
Set of years considered in the planning period, indexed by t;
t = {2021,2023, . . . ,T}.
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The parameters of the model are:

Cj,tinv: Capital investment cost of type j power plant at year t ($);
Cj,tOM: Operation and maintenance cost of type j plant at year t;
Cj,tfuel: Fuel cost of type j power plan at year t ($);
Ej,t: Total energy generation of type j power plant at year t (MWh);
Tj: The operational lifetime of type j power plant (year);
Tjconst: Construction time of type j power plant (year);
ICapj: Installed capacity of type j power plant (MW);
β j: Availability percentage of type j power plant (%);
βhour

j : Availability factor of type j power plant (h/year);
LCj: Levelized cost of type j power plant ($/MWh);
Ctimp: Unit import cost in year t ($/MWh);
Ctexp: Export revenue in year t ($/MWh);
explimit: Annual export limit (MWh);
implimit: Annual import limit (MWh);
AVLj: Number of type j power plants that are operational before the planning horizon;

PLNjt:
Number of type j power plants that are already planned to be opened before the planning
horizon at year t

Dt: Electric Demand in Year t (MWh);

NJRopr:
Maximum number of renewable power plants that can be in operation in a year (calculated
based on resource potential);

Hnum
t :

Maximum number of hydroelectric power plants that can be opened in year t (calculated
based on construction capacity in Turkey);

ε j : The CO2 emission factor of type j power plant (ton/MWh);
εlimit

t : Emission limit of CO2 in year t (ton);
Yt: Percentage of renewable power plant capacity in year t (%);
M: A sufficiently large number;
r: Interest rate (%);
ef: Escalation rate for fuel type f (%);
eOM : Escalation rate for operation and maintenance costs (%).

The escalation rate is the price increase for goods and services caused by a variety
of factors, such as inflation, supply, and demand, engineering changes, or other similar
causes. Using historical data, average escalation rates for fuel types, and operation and
maintenance costs are estimated. Lastly, the decision variables are as follows:

xjt: Number of type j power plants opened in year t;
wjt: Number of type j power plants closed in year t;
Njt: Total number of type j power plants in year t;
vj: Binary variable, 1 if the capacity of type j power plants is increased, 0 otherwise;
yjt: The energy supply of type j power plant in year t (MWh);
expt: Electric energy exported in year t (MWh);
impt: Electric energy imported in year t (MWh);
z: Total levelized cost of power plants.

3.2.3. Mathematical Model

A mathematical optimization model is required to decide on the optimal combination
of different power plants and capacities required from each type. For this purpose, a
linear mixed integer programming model is formulated. As with all linear programming
models, real-life objectives and constraints are represented as mathematical equations in the
proposed model. Each equation formulated for this purpose is explained in detail below.

The objective function of the model seeks to minimize the total cost, which has three
sub goals. The first one is to minimize the levelized cost of power plants operating within
the planning horizon. The levelized cost is the average cost per MWh of electricity generated
over the life of a power plant. The lifetime cost of a power plant is expressed in terms
of generation cost in $/MWh. Investment costs, operation, and maintenance costs, and
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fuel costs are all included in the levelized cost. The second part of the objective function
minimizes the total energy import costs, and finally, the last part of the objective function
maximizes the total energy export revenues.

Minimize z = ∑
tεT

∑
jεJ

βhour
j ICapjNjtLCj + ∑

tεT
Cimp

t impt − ∑
tεT

Cexp
t expt (2)

LCj =
Total Capital and Operation Costs o f Power Plant j During Li f etime

Net Electricity Generation o f Power Plant j During Li f etime

LCj =
Cinv

j,0 + ∑
Tj
t=1

[(
Cinv

jt + COM
jt + C f uel

jt

)
/(1 + r)t

]
∑

Tj
t=1

[
Ejt

]
Ejt = βhour

j (ICap j

)

COM
jt = COM

j0 (1 + eOM)t

C f uel
jt = C f uel

j0

(
1 + e f

)t

Constraints (3) and (4) are the flow balance constraints, and they ensure that the sum
of already existing type j power plants in year t before the planning period, type j power
plants that have already planned to be opened or closed in year t, and new type j power
plants opened or closed in year t equals to the total number of type j power plants in year
t. Constraint (4) ensures that the number of type j power plants from the previous period
(t − 1) is updated accordingly in the following years.

AVLj + PLNjt + xjt − wjt = Njt for ∀j ∈ J and t = 2021 (3)

Nj,t−1 + PLNjt + xjt − wjt = Njt for ∀j ∈ J and t > 2021 (4)

Constraints (5) and (6) control the opening and closing decisions for power plants. A
power plant type can be either opened or closed within the planning horizon in a given
year, but not both.

xjt ≤ M vj for ∀j ∈ J and t ∈ T (5)

wjt ≤ M
(
1 − vj

)
for ∀j ∈ J and t ∈ T (6)

Constraint (7) prevents a power plant from being operational before the construction
time at the start of the planning horizon. For example, because nuclear power plants
take seven years to build, it is not possible to open one during the first seven years of the
planning horizon.

xjt = 0 for ∀j ∈ J and t ≤ Tconst
j (7)

Constraint (8) confirms that the total electricity generation capacity of type j power
plants cannot exceed the total installed electricity generation capacity of type j power plants
in any year during the planning horizon. The availability factor of a type j power plant, the
installed capacity of a unit type j power plant, and the number of type j power plants in
operation in year t are multiplied to calculate the electricity generation capacity of a type j
power plant in year t.

yjt ≤ βhour
j ICapjNjt for ∀j ∈ J and t ∈ T (8)
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The total electrical energy generated by power plants plus total imports minus total
exports should be greater than or equal to the forecasted demand at year t. This constraint
is formulized as follows:

∑
j∈J

[
yjt + impt − expt

]
≥ Dt for ∀t ∈ T (9)

Constraints (10) and (11) confirm that total exports and imports in year t cannot exceed
total export and import limits. The capacity of the transmission lines, which connect
the importing and exporting countries, determines export and import limits. There are
independent transmission lines between the countries in each direction (export and import),
thus we have different limits for exports and imports.

expt ≤ explimit for ∀t ∈ T (10)

impt ≤ implimit for ∀t ∈ T (11)

Renewable power plants should at least generate a certain percentage of the total
installed capacity. This percentage is determined by the government and stated in the
government’s strategic goals.

∑
j∈Jr

ICapjNjt ≥ γt∑
j∈J

ICapjNjt for ∀t ∈ T (12)

Constraint (13) confirms that power plants’ total CO2 emissions should be less than or
equal to the CO2 emission limit. CO2 emissions are proportional to the amount of electricity
generated by power plants.

∑
j∈J

ε jyjt ≤ εlimit
t for ∀t ∈ T (13)

Constraint (14) ensures that nuclear power plants are not closed due to the govern-
ment’s strategic goals.

vNuclearPP = 1 (14)

Due to construction capacity, Constraint (15) limits the number of hydroelectric power
plants built each year.

xHydroelectricPP,t ≤ Hnum
t for ∀t ∈ T (15)

Constraint (16) ensures that the total number of type j renewable energy plants does not
exceed renewable capacity. Potentials for each type of renewable energy plant are defined
for each country. For example, in the case of solar energy, the potential is determined by
the angle of solar radiation, total sunbathing time, the total area suitable for solar farms,
and so on. Wind power plant potentials are determined by wind speed, duration, and the
total area reserved for wind farms. The flow rates of the rivers, available areas for power
plants, and construction time and capacity limitations are all considered when determining
hydroelectric potential. The potential of geothermal energy is determined by the amount
of thermal water and its temperature.

Njt ≤ Nopr
j for ∀j ∈ JR and t ∈ T (16)

Finally, the sign restrictions of the model are as follows:

xjt, wjt, and Njt ≥ 0 and integer∀j ∈ J and t ∈ T
vj ∈ {0, 1}∀j ∈ J

yjt, expt, and impt ≥ 0∀j ∈ J and t ∈ T
(17)
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4. Time Series Analysis and Application of the Model

4.1. Time Series Analysis

For Turkey, demand data from 1981 to 2020 are used to forecast demand for the years
2021–2030 and 2021–2040 [52], respectively. As a result, 40 observations are gathered. The
obtained data shows an increase over the years. First, the data is represented graphically
to determine whether or not it is stationary. Several tests and analyses, including the
Augmented Dickey–Fuller Test (ADF) based on the unit root process, were used to analyze
the demand data. At a 5% significance level, the unit root test implies nonstationary. As [51]
suggests we differentiate the time series and this time we reject the null hypothesis of ADF.
Thus, the time series investigated is integrated as order 1 (I(1)). The first difference in the
time series is used for the ARIMA model in this study.

The demand data from 1980 to 2020 is used to forecast demand between 2021–2030 and
2021–2040. First, various regression methods are used, including beta growth, exponential
growth, and first, second, and third order polynomial equations. The third-order regression
model produced the best fit of these methods. Different ARIMA models, on the other
hand, are considered, and the best model is found to be ARIMA (2,1,2), which produces
the best fit. Furthermore, double exponential smoothing, and Holt-additive, Winter’s
multiplicative, and linear models, are considered. Table 1 compares selected forecasting
methods in terms of different performance measures. When the performance results of
all statistical models in this table are examined, it is seen that especially R2 and MAPE
values show very good performance results. Since these selected models produce extremely
good and sufficient results for the given data, the statistical modeling approach is preferred
instead of learning-based models.

Table 1. Comparison of Forecasting Methods.

Performance
Metrics

Nonlinear
Regression (Third
Order Polynomial)

Exponential
(Double)

Holt–Winters
(Additive)

Holt–Winters
(Multiplicative)

Holt–Winters
(Linear)

ARIMA (2,1,2)

RMSE 3984 4986 5600 5329 4771 3236
MAPE 2.160% 3.162% 3.541% 3.247% 2.844% 1.702%
MAE 2776 3689 4181 3842 3519 2322

R2 99.82% 99.69% 99.62% 99.65% 99.72% 99.87%

Based on these analyses, the ARIMA (2,1,2) model outperformed the other forecasting
methods across all performance metrics. As a result, the ARIMA (2,1,2) model can be used
to forecast electricity demand in Turkey. Hence, ARIMA forecast results are used in our
mathematical model.

4.2. Application of the Mathematical Model

In this section, we will look at Turkey’s strategic energy production planning problem
and apply the mathematical model defined in Section 3. The parameters’ values are
gathered from a variety of sources, including Turkey Electricity Transmission Company
(TEA), the International Energy Agency (IEA), the Turkish Statistical Institute, and others.

The proposed model is studied in terms of constraints and goal function during model
verification. The model is shown to perform correctly, and all imposed conditions are
met as expected. The validation stage confirms that the mathematical model’s outputs
are appropriate when compared to real-world strategies and goals. The suggested model
estimates power plant types and total installed capacities based on operational limitations
and strategic goals. The model’s outputs meet the strategic goals set by institutions, such
as Energy Market Regulatory Authority’s (EMRA), strategic plans. As a result, we find that
the suggested model accurately captures the real system. The model is solved with GAMS
optimization software for two distinct periods, namely 2021–2030 and 2021–2040.

The number of power plants in operation between 2020 and 2030 is shown in Table 2.
In general, the number of fossil power plants is decreasing while the number of renewable
power plants is increasing. Specifically, the coal power plants (Elbistan lignite, fluidized
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lignite, hard coal, and imported coal) are scheduled to close within the next ten years.
Natural gas power plants, another type of fossil fuel power plant, are reduced in numbers
(from 37 to 11), but not completely closed. On the other hand, the number of renewable
options, such as wind, solar, and hydroelectric power plants is increasing. Geothermal
power plants, the other renewable option, are scheduled to close within the planning
horizon. Finally, in 2024, five preplanned nuclear power plant modules are put into service
and used within the planning interval. In general, due to strategic goals, such as renewable
share constraints and emission limits, the renewable share is increasing.

Table 2. Number of Power Plants (Njt) for the 2020–2030 Period.

Power Plant (j) 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 8 3 3 0 0 0 0 0 0 0 0
Fluized Lignite 48 0 0 0 0 0 1 0 0 0 0
Geothermal 54 54 54 33 4 3 2 1 1 0 0
Hard Coal 3 1 1 0 0 0 0 0 0 0 0
Hydroelectric 214 214 214 214 214 225 277 285 288 291 295
Imported Coal 18 0 0 0 0 0 0 0 0 0 0
Natural Gas 37 37 37 37 28 25 19 17 15 13 11
Nuclear 0 0 0 0 5 5 5 5 5 5 5
Solar 133 133 133 233 352 452 552 652 752 852 950
Wind 221 221 321 464 564 664 764 864 964 1064 1164

The total installed capacity of power plants follows a similar pattern to the number
of power plants. Table 3 shows that the shares of wind, solar, hydroelectric, and nuclear
power plants are increasing while the share of other power plants is decreasing. Along
with strategic goals, the total share of fossil fueled power plants decreases significantly.

Table 3. Installed Capacities of Power Plants (MW) for the 2021–2030 Period.

Power Plant (j) 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 1080 1080 0 0 0 0 0 0 0 0
Fluidized Lignite 0 0 0 0 0 150 0 0 0 0
Geothermal 1620 1620 990 120 90 60 30 30 0 0
Hard Coal 300 300 0 0 0 0 0 0 0 0
Hydroelectric 28,676 28,676 28,676 28,676 30,150 37,118 38,190 38,592 38,994 39,530
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 25,900 25,900 25,900 19,600 17,500 13,300 11,900 10,500 9100 7700
Nuclear 0 0 0 5000 5000 5000 5000 5000 5000 5000
Solar 6650 6650 11,650 17,600 22,600 27,600 32,600 37,600 42,600 47,500
Wind 8840 12,840 18,560 22,560 26,560 30,560 34,560 38,560 42,560 46,560

During the planning horizon, the total supply of natural gas decreases significantly.
Wind and solar, on the other hand, are becoming increasingly important. In addition, the
hydroelectric contribution increases marginally. Finally, nuclear will make a consistent
contribution beginning in 2024. Wind, hydroelectric, solar, natural gas, and nuclear power
plant options are listed in decreasing order of contribution in 2030.

Finally, Figure 2 depicts the total emissions from all power plants. As can be seen,
emissions decrease over the planning horizon after a slight increase. This is because the
contribution of renewable resources is increasing while the contribution of fossil fuels is
decreasing. As a result, emissions decrease over time in tandem with the strategic goals.
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Figure 2. CO2 Emissions between 2021–2030 (tons).

Table 4 displays the number of power plants that will be operational between 2020
and 2040. In general, the number of fossil power plants is decreasing, while the number
of renewable power plants is increasing. Specifically, coal power plants (Elbistan lignite,
fluidized lignite, hard coal, and imported coal) and natural gas power plants are scheduled
to close within the next 20 years. On the other hand, the number of renewable options, such
as wind, solar, and hydroelectric power plants, is increasing. Geothermal power plants, the
other renewable option, are scheduled to close within the planning horizon. Additionally,
between 2024 and 2032, five preplanned nuclear power plant modules are put into service
and used within the planning interval. In general, due to strategic goals, such as renewable
share constraints and emission limits, the renewable share is increasing.

Table 4. Number of Power Plants (Njt) for the 2020–2040 Period.

Power Plant (j) 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 8 3 3 0 0 0 0 0 0 0 0
Fluidized Lignite 48 0 0 0 0 0 1 0 0 0 0
Geothermal 54 54 54 33 4 3 3 0 0 0 0
Hard Coal 3 1 1 0 0 0 0 0 0 0 0
Hydroelectric 214 214 214 214 214 225 277 288 299 311 335
Imported Coal 18 0 0 0 0 0 0 0 0 0 0
Natural Gas 37 37 37 37 28 25 19 17 15 12 8
Nuclear 0 0 0 0 5 5 5 5 5 5 5
Solar 133 133 133 233 352 452 552 652 752 852 1052
Wind 221 221 321 464 563 663 762 856 940 1040 1188

Power Plant (j) 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

Elbistan Lignite 0 0 0 0 0 0 0 0 0 0
Fluized Lignite 0 0 0 0 0 0 0 0 0 0
Geothermal 0 0 0 0 0 0 0 0 0 0
Hard Coal 0 0 0 0 0 0 0 0 0 0
Hydroelectric 347 357 367 378 390 402 415 428 442 456
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 0 0 0 0 0 0 0 0 0 0
Nuclear 10 10 10 10 10 10 10 10 10 10
Solar 1152 1252 1352 1452 1552 1652 1752 1852 1951 2050
Wind 1198 1198 1200 1200 1200 1200 1200 1200 1200 1200
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The total installed capacity of power plants follows a similar pattern to the number
of power plants. Table 5 shows that the shares of wind, solar, hydroelectric, and nuclear
power plants are increasing, while the share of other power plants is dropping. Along with
strategic goals, the total share of fossil fuel power plants drop dramatically.

Table 5. Installed Capacities of Power Plants (MW) for the 2021–2040 Period.

Power Plant (j) 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 1080 1080 0 0 0 0 0 0 0 0
Fluidized Lignite 0 0 0 0 0 150 0 0 0 0
Geothermal 1620 1620 990 120 90 90 0 0 0 0
Hard Coal 300 300 0 0 0 0 0 0 0 0
Hydroelectric 28,676 28,676 28,676 28,676 30,150 37,118 38,592 40,066 41,674 43,282
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 25,900 25,900 25,900 19,600 17,500 13,300 11,900 10,500 8400 7000
Nuclear 0 0 0 5000 5000 5000 5000 5000 5000 5000
Solar 6650 6650 11,650 17,600 22,600 27,600 32,600 37,600 42,600 47,600
Wind 8840 12,840 18,560 22,520 26,520 30,480 34,240 37,600 41,600 44,440

Power Plant (j) 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

Elbistan Lignite 0 0 0 0 0 0 0 0 0 0
Fluidized Lignite 0 0 0 0 0 0 0 0 0 0
Geothermal 0 0 0 0 0 0 0 0 0 0
Hard Coal 0 0 0 0 0 0 0 0 0 0
Hydroelectric 44,890 46,498 47,838 49,178 50,652 52,260 53,868 55,610 57,352 59,228
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 5600 0 0 0 0 0 0 0 0 0
Nuclear 5000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
Solar 52,600 57,600 62,600 67,600 72,600 77,600 82,600 87,600 92,600 97,550
Wind 47,520 47,920 47,920 48,000 48,000 48,000 48,000 48,000 48,000 48,000

During the planning horizon, the overall supply of natural gas and other coal power
plants is reduced to zero. Wind, solar, and hydroelectric solutions, on the other hand,
contribute much more. Finally, as additional power plants are built, nuclear will make a
consistent contribution from 2024 to 2032 and from 2032 to 2040. Solar, hydroelectric, wind,
and nuclear power plant choices are listed in decreasing order of contribution in 2040.

Figure 3 shows the total emissions from all power stations. As can be observed,
emissions drop across the planning horizon following a minor increase caused by increased
demand. This is because the contribution of renewable resources is increasing while the
contribution of fossil fuels is declining. As a result, emissions decrease over time in tandem
with the strategic goals.

As the last step in the mathematical model sensitivity analysis and validations are
conducted and we found no evidence of disruptions in the model. Additionally, scenario
analyses are completed, and they are summarized in the following paragraphs.

The first scenario is the case with no preplanned plants. In contrast to the base scenario,
it is envisaged that no preplanned power plants will be operational within the planning
horizon. The goal here is to see the model’s ideal selections considering the available power
plants at the beginning of the planning horizon. For example, in the base scenario, it is
envisaged that several nuclear power reactors will be operational in different years. In
this scenario, the model determines the number of new power plants to be built, and it
will be possible to see whether or not these preplanned power plants are chosen. Results
regarding the installed capacities of power plants for the first scenario are visualized as
shown in Figures 4 and 5 for 2021–2030 and 2021–2040 planning horizons, respectively.
According to this scenario, wind and solar power plant capabilities do not differ much from
the baseline scenario for the same period. Natural gas power plants are utilized instead
of nuclear energy, which was used in the base scenario, hence the percentage of natural
gas in 2030 is 6.7% greater than in the base scenario. In contrast, the share of hydroelectric
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power plants declined by 3.7% by 2030 when compared to base scenario. Wind and solar
power plant capabilities do not differ much from the baseline scenario for the same period.
Natural gas had a 0% share in the base scenario, whereas nuclear power plants had a 4.6%
share. However, in this situation, nuclear power plants are not used, and natural gas plants
are not completely shut down. Natural gas capacity will account for 6.2% of total capacity
by 2040. Finally, the share of hydroelectric power plants falls by roughly 2%.

 

Figure 3. CO2 emissions between 2021–2040 (tons).

 

Figure 4. Installed capacities for the first scenario in the 2021–2030 horizon.
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Figure 5. Installed capacities for the first scenario in the 2021–2040 horizon.

The starting capacity of each power plant type was supplied in the base scenario, and
the new power plant requirements were estimated based on this initial capacity. In the
second scenario, we want to explore what happens when the model determines all power
plant types and their capacities. Furthermore, as in the first scenario, it is anticipated that
no power plant openings are planned. To summarize, the model determines all power
plant types and capacities in this scenario. Since there is no available capacity at time
zero, the requisite number of power plants should be opened to meet demand throughout
the first period. As a result, we abandoned the power plant building schedule limits.
Otherwise, because no power plants can be operational in the early stages, demand cannot
be met, and the model becomes unsustainable. Furthermore, we remove the renewable
capacity restriction constraint to check if the model selects only renewable resources or not.
Installed capacities for 2021–2030 and 2021–2040 planning horizons under the assumptions
of the second scenario are visualized in Figures 6 and 7, respectively. The main power
plant types chosen in the second scenario for the period 2021–2030 are solar, wind, and
natural gas power plants. In comparison to the base scenario, solar share climbs to 39.9%
(7.4% higher), wind share decreases to 22.5% (9.3% lower), and natural gas share remains
same at around 32%. Hydroelectric and geothermal power plants are also used, but their
contributions are less than 4%. When compared to the baseline scenario, the geothermal
potential is fully utilized, while hydroelectric capacity is significantly reduced. Wind and
solar power plant shares are close to the base scenario for the period 2021–2040. Natural
gas capacity remains unchanged, but hydropower capacity drops by 17% towards the end
of the planning horizon compared to the base scenario, and geothermal potential is utilized
to maximum capacity.
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Figure 6. Installed capacities for the second scenario in the 2021–2030 horizon.

 

Figure 7. Installed capacities for the second scenario in the 2021–2040 horizon.
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In the third scenario, we considered the case that all power plants are renewable.
The goal of this scenario is to examine what occurs when all capacity is constrained to
renewable sources. We will also be able to determine whether the current renewable
potential is sufficient to meet the available demand. In this scenario, the available capacity
of renewables is stated as the beginning capacity, and additional power plants other than
renewables are not included. Furthermore, prospective nonrenewable power projects
are not considered. Construction time limits are dropped, as in the second scenario. In
addition to satisfy demands, import limits are removed. Findings under the assumptions
of the third scenario are shown in Figures 8 and 9 for 2021–2030 and 2021–2040 planning
horizons, respectively. All electricity demand is met by renewable power plants and
imports. As existing renewable potential is insufficient to fulfill demand, the import option
is adopted. The majority of the demand is met by solar, wind, and hydroelectric power
sources. Furthermore, geothermal power plants are utilized to their utmost capability.
Solar, hydroelectric, wind, and geothermal power plants, and imports, provide the demand.
The average import contribution is around 19%. Solar power plants supply around 49% of
energy, 28% of hydropower, 22% of wind, and 1% of geothermal energy.

 

Figure 8. Installed capacities for the third scenario in the 2021–2030 horizon.
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Figure 9. Installed capacities for the third scenario in the 2021–2040 horizon.

5. Conclusions

This study examines Turkey’s strategic level electrical energy planning challenge
from various perspectives, including the strategic plan, energy policy, capacity planning,
and environmental policies of the government. To tackle the given problem, a mixed
integer mathematical programming model that takes into account alternative power plant
categories, such as fossil fuels, renewable energy, nuclear energy, and so on, is proposed. As
several energy resources are included, the defined problem is characterized as a “general
electricity planning problem”. In addition to lowering electricity generation costs, a variety
of alternative policies, such as lowering CO2 emissions, limiting energy resource share
regulations (such as limiting the use of fossil fuels), and promoting renewable energy, are
taken into account in this study. This study is also falling under the “energy policy analysis”
category in this regard. Two different planning horizons are considered, namely 2021–2030
and 2021–2040, and it is observed that the share of renewable resources increases while the
share of fossil fuels declines with time.

As a result of this research, various key insights and outcomes involving power
investment and production planning have been achieved. Due to the highest levelized
costs of all choices, the first nuclear energy option is not chosen if the model is not required
to do so. If nuclear energy is required by government regulations, all fossil fueled power
facilities must be shut down during the planning horizon. Otherwise, coal power facilities
are shut down, while natural gas power plants are up and running. Hydroelectric power
plants are the least appealing renewable energy source because they have a higher levelized
cost than wind and solar power plants and a lower availability factor than geothermal
power plants.

The findings of this study indicate the trend toward renewable energy. Although
nuclear energy is perceived as an effective energy resource, it is shown that renewable
energy resources are more cost effective under the determination of CO2 emissions and
generation capabilities. These results can be used as a guide to update strategic energy
generation plans to improve the long-term effectiveness of future investments in power
plants. It is advocated in this research to steadily boost renewable energy expenditures
(particularly solar, wind, and geothermal) and eventually replace fossil fuel alternatives.
The proposed energy plan not only saves investment, operation, and maintenance expenses,
but also cuts emissions. Nuclear energy can also be used as an alternate and reliable source
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of energy, but the possible risks and greater costs must be addressed. Additionally, more
renewable energy resources, such as hydrogen power can be included in the analysis, and
minimization of total emission can be introduced as an additional goal in the objective
function in future research. Additionally, the suggested model is deterministic, and it is
assumed that the parameter values are known precisely. However, in reality, this is not
the case, and the values of various factors may fluctuate based on economic, political,
environmental, and strategic aims. The renewable shares, import and export limits, de-
mand, and levelized cost parameters can also be modeled as stochastic variables in future
studies. Moreover, as in [53] microstructure of Turkey’s renewable electricity sources can
be studied in the future to create cost efficiency and reduce carbon emissions. This type
of study may provide insights into developing countries. In conclusion, ARIMA is used
as a statistical time series model. Although statistical estimation methods are used in
optimization algorithms in some studies, the integration of forecasting results from the
ARIMA model to the mixed integer linear programming is a new and recently evolving
area of interest [54,55]. In addition to that, the contribution to energy planning is especially
appropriate for developing countries, such as Turkey, in which switching to renewable
energy resources is in the early phases. The findings of this study may serve as a guideline
to prioritize energy resource preferences in developing countries during the planning phase
since it is shown that optimization is required before the preparation of any regulations
since these regulations have a considerable effect on the distribution of plants used.

The results show that the use of renewable energy generation options is the most
preferable source of energy as expected. However, it is found that some regulations and not
optimized plans may prevent the effective use of these resources. As seen in the results of
the scenario analyses geothermal and hydroelectric alternatives are found as better options
when compared to nuclear power plants when current plans are neglected which causes
the shutdown of geothermal plants and inefficient increase in hydropower facilities. In
this context, it should be added that if there are not any existing hydropower facilities it is
found that building many new ones is not a feasible option. Furthermore, it is observed that
natural gas power plants are preferred to nuclear power plants and even as an alternative
to hydropower facilities. Even though natural gas is a fossil fuel-based resource, this
alternative is used to support renewable energy plants in optimal scenarios since CO2
emission rates can still be fulfilled. Finally, solar power plants are found to be the best
energy generation option, especially in long term plans as they become more feasible than
wind power plants, whereas geothermal resources are found to be used at full capacity
even though they are much scarcer than solar and wind options.

Author Contributions: Conceptualization, G.Y., U.B. and K.D.Ü.; methodology, G.Y., U.B. and F.Y.-
Ö.; software, G.Y., U.B. and F.Y.-Ö.; validation, G.Y., U.B., F.Y.-Ö. and K.D.Ü.; formal analysis, G.Y.,
U.B. and F.Y.-Ö.; investigation, G.Y., U.B., F.Y.-Ö. and K.D.Ü.; resources, G.Y.; data curation, G.Y.;
writing—original draft preparation, K.D.Ü.; writing—review and editing, U.B., F.Y.-Ö. and K.D.Ü.;
visualization, G.Y.; supervision, U.B. and F.Y.-Ö. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri (accessed
on 15 May 2020).

Acknowledgments: We appreciate the associate editor’s and four anonymous reviewers’ helpful
comments and revisions.

Conflicts of Interest: The authors declare no conflict of interest.

216



Mathematics 2023, 11, 1865

References

1. IEA. World Energy Outlook. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 1 Decem-
ber 2022).

2. Zhou, P.; Ang, B.W.; Poh, K.L. Decision analysis in energy and environmental modeling: An update. Energy 2006, 31, 2604–2622.
[CrossRef]

3. Lazard. Lazard’s Annual Levelized Cost of Energy Analysis (LCOE 12.0). Available online: https://www.lazard.com/ (accessed
on 1 December 2022).

4. Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and
sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [CrossRef]

5. Yörük, G. Strategic Energy Production Planning of Turkey Using Mixed Integer Programming Based on Electricity Demand
Forecasting. Master’s Thesis, Atilim University, Ankara, Turkey, 2021.

6. Ramanathan, R.; Ganesh, L.S. Energy alternatives for lighting in households: An evaluation using an integrated goal programming-
AHP model. Energy 1995, 20, 63–72. [CrossRef]

7. Pokharel, S.; Chandrashekar, M. A multiobjective approach to rural energy policy analysis. Energy 1998, 23, 325–336. [CrossRef]
8. Mavrotas, G.; Diakoulaki, D.; Papayannakis, L. An energy planning approach based on mixed 0-1 multiple objective linear

programming. Int. Trans. Oper. Res. 1999, 6, 231–244. [CrossRef]
9. Agrawal, R.K.; Singh, S.P. Energy allocations for cooking in UP households (India): A fuzzy multi-objective analysis. Energy

Convers. Manag. 2001, 42, 2139–2154. [CrossRef]
10. Antunes, C.H.; Martins, A.G.; Brito, I.S. A multiple objective mixed integer linear programming model for power generation

expansion planning. Energy 2004, 29, 613–627. [CrossRef]
11. San Cristóbal, J.R. A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain.

Renew. Sustain. Energy Rev. 2012, 16, 4461–4464. [CrossRef]
12. Özcan, E.C.; Erol, S. A multi-objective mixed integer linear programming model for energy resource allocation problem: The case

of Turkey. Gazi Univ. J. Sci. 2014, 27, 1157–1168.
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50. İncekara, Ç.Ö. Türkiye’nin Sürdürülebilir Stratejik Enerji Politikalarının Oluşturulması için Optimizasyon Modellerinin Geliştir-
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Abstract: In the present energy scenario, wind energy is the fastest-growing renewable energy
resource on the globe. However, wind-energy-based generation systems are also associated with
increasing demands for power quality and active power control in the power network. With the
advancements in power-electronics-based technology and its use in non-conventional energy conver-
sion systems, it has witnessed tremendous growth in wind energy conversion systems (WECSs). At
the same time, integrating wind farms into the grid system also results in many power quality issues
in the power system that involve these renewable energy sources feeding power networks. This paper
reports the effectiveness of grid-connected doubly fed induction generator (DFIG)-based WECS with
a battery energy storage system (BESS) under variable wind conditions. In this study, a rotor side
converter (RSC) is controlled to achieve the optimal torque for a given maximal wind power. The
control scheme is simulated using MATLAB for a 2 MW-rated DFIG used in a WECS. Additionally, in
this paper, a new fraction order proportional integral derivative (FOPID) controller is introduced into
the system’s RSC, and its performance is also observed. The BESS technique is used with a DC link
to improve the overall performance of the DFIG-based WECS under different wind conditions. To
control the BESS, a proportional integral (PI) controller is introduced to increase the charging and
discharging rates. Two models are developed in MATLAB/Simulink: one model is a basic model,
and other model is equipped with a BESS and a PI controller in the BESS. The results validate the
effectiveness of the proposed PI-controller-equipped BESS at improving the overall performance of
the WECS system under study.

Keywords: renewable energy; WECS; DFIG; BESS; PI controller; FOPID-controller; RSC
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1. Introduction

One third of global greenhouse gas (GHG) releases are attributed to the source materi-
als responsible for producing power, such as fossil fuels, petroleum, and gasses. India’s
present attempts at commercial improvement are leading to an increase in the nation’s
energy requirements. Indeed, the maximal extraction of natural resources is a necessary
component of the expansion of a country’s economic growth [1]. The changing climate
could result in a shift in the planet’s natural balance. The UNFCCC (UN Framework for
Convention on Climatic Changes) and the PT (Paris Treaty) have both received submissions
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of INDCs (intended national voluntarily determined contributions), with the latter aimed
at limiting the rise in the global mean temp. to far below 2 ◦C.

Among the alternatives mentioned above, the most well-known and prevalent sources
of clean energy in India are wind and solar [2]. The power scenario in India up to 2022 is
shown in Figure 1.

Figure 1. Power scenario in India as of 31 December 2022.

By 2023, India aims to produce 180 GW of power in the form of renewable sources. Of
the 180 GW, 5 GW will come from small hydroelectric plants, 10 GW from biofuels, 100 GW
from photovoltaic cells, and 65 GW from wind farms [3]. The government must provide
330,000 new jobs in order to meet the challenging goal of 180 GW of sustainable power
generation by 2023 [4].

Disabling an RSC results in a loss of power control and the occurrence of significant
transients immediately after the fixation of the fault. In some cases, this may necessitate
disconnecting the machine from the grid [5]. The power scenario expected by 2039–2040 is
in Figure 2.

Figure 2. Power scenario expected by 2039–2040.
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However, the operation limit of a changing-velocity WECS may be split into four
main zones. In first zone, low wind speeds do not produce enough energy. In second
zone, the structure is optimized to produce maximum power while adjusting to changes
in wind velocity using the maximum/peak power point tracking (MPPT) approach, in
which the angle of the blade pitch is fixed to its perfect value. In third zone, when the wind
velocity goes above the predefined values, the angle of the pitch is adjusted to control the
electrical energy generated around its predefined value. In the fourth zone, high wind
speeds can cause damage to the wind turbine (WT), requiring the devices that work in
emergency situations to stop the turbine so that the damage can be prevented [6]. A. Santhi
Mary Antony et al. [7] presented simulation results for different types of WECS generators,
including the permanent magnet synchronous generator (PMSG), squirrel cage induction
generator (SCIG), and DFIGs with bridge and bridgeless configurations, all of which utilize
a WT with a horizontal axis. The conventional system couples the RSC and GSC through a
direct current capacitor link, which helps in to maintain a steady direct current voltage and
reduce voltage ripple but also has the disadvantage of being bulky [8].

However, with a direct connection to the power grid, the DFIG can struggle with more
variations in torque and harmonic content in the grid, leading to shaft vibration, increased
mechanical wear and tear, and higher maintenance costs [9]. To mitigate these issues, ESSs
can be employed to store excess wind energy during high-production periods. Additionally,
integrating the system of energy storage directly at the DC link terminals of the DFIG to
maintain the variability of the WE on the grid side has been proposed by Singh et al. [10].

According to the reviewed literature, adaptation control has been employed less ex-
tensively than vector control with DFIG power transformers. This same application of
adaption control to grid-connected photo voltaic arrays has shown outstanding perfor-
mance. To exploit its advantages, Singh et al. [11] used adaption control to effectively
operate the GSC of an induction generator for a WT. It has also been discovered that
the use of adaption control methods leads to increased weighted computation efficiency,
less fluctuations, and a quicker settling time, which are critical factors in determining
power balancing, PQ, resilience, and the maximum supply of energy fed into network in
rotary-machine-integrated systems. Different types of energy storage systems are shown in
Figure 3, some of which are briefly explained herein. Batteries are the most commonly used
energy storage devices and store electrical energy in a chemical form. Some common types
of batteries are lithium-ion, lead–acid, nickel–cadmium, and sodium-ion, etc. Flywheels
store energy in the form of rotational kinetic energy. A flywheel consists of a rotor that
rotates at a high speed in a vacuum, and energy is extracted by slowing down the rotor. In
the case of pumped hydroelectric storage, energy is stored by pumping water uphill to a
reservoir during periods of low demand and then releasing it through a turbine to generate
electricity during high-demand periods. In the case of compressed air energy storage,
energy is stored by compressing air in an underground reservoir during low-demand
periods and then releasing it through a turbine to generate electricity during high-demand
periods. Thermal energy storage involves storing energy in the form of heat; common
types of thermal energy storage are water-based systems, phase-change materials, molten
salt systems, etc. Superconducting magnetic energy storage stores energy in the magnetic
field generated by a superconducting coil, which can be used to generate electricity during
periods of peak demand. Hydrogen energy storage involves using excess electricity to
produce hydrogen through electrolysis, which can then be stored and used to generate
electricity during periods of peak demand. Capacitors store energy in an electric field and
are commonly used in electronics and power electronics.

221



Mathematics 2023, 11, 2100

Figure 3. Classification. of energy storage system (ESSs).

To achieve these objectives, the proposed control scheme integrates a BESS with a direct
current link through a power conversion device which compensates for wind alterations
and employs a high-order adaption control for the GSC of the DFIG, supplying the system
with a consistent amount of high energy [12]. An application scenario of an energy storage
system is shown in Figure 4.

Figure 4. Application scenario of an ESS.

The control architecture’s purpose is to maintain a constant V and f at the terminal of
the DFIG in response to wind velocity alterations and additional load variations. However,
developing a control system for a grid-integrated WECS is a challenging task due to
the erratic patterns of wind velocity. However, the high switching frequency associated
with DTC leads to increased current harmonic distortion, elevated electromagnetic torque
fluctuations, and elevated heating in IGBT components [13]. These controllers, including
back stepping control, feedback linearization control, H-infinity control, adaptive control,
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model predictive control, and sliding model control, have the ability to handle nonlinearities
in a wide range of operations [14].

The use of sliding mode control (SMC) is advantageous in grid-tied DFIG systems
due to its quick calculation time and straightforward installation. Fuzzy logic (FL) and
artificial neural networks (ANNs) are examples of AI (artificial intelligence) approaches
that are employed to improve the effectiveness of SMC and to lessen the buzzing influence.
In HOSMCs (higher-order sliding mode controllers), the super twisting technique (STT) is
frequently employed [15]. Several state of charge (SOC) restrictions have also been taken
into consideration in distinct experiments towards the fuzzy-logic-based charging and
discharging control of Li-ion battery systems [16]. An FL-based BESS is mainly proposed
to regulate the condition of a battery’s SOC. This SOC restriction was set in the range of
50% to 100% [17]. Martinez et al. [18] also employed a similar approach, utilizing 5 MF to
create 21 FL rules to restrict the battery’s SOC.

In the coastal and Himalayan regions of Himachal Pradesh, wind input conditions
vary greatly, with some areas experiencing high wind speeds that are not constant. Data for
an entire year from Dharamshala in the Kangra district of Himachal Pradesh are analyzed
and depicted in Figure 5. Twin capacitors are charged using a DC link voltage thanks
the R and L series connection of the BESS. Quick velocity resolution, power control, and
the regulation of the DC link voltage via the GSC are all ensured by the recommended
converters and control techniques applied to the RSC. Using MATLAB Simulation, the
overall efficiency of the suggested technique was confirmed, has and it was shown to work
superbly under typical operational settings.

Figure 5. Continuous average velocity of nearby Kangra in Himachal Pradesh for 1 year.

The contributions of this paper are as follows: first, we recommend various energy
storage devices for direct current links in place of capacitors and provide scenarios of
their application in a wind energy conversion system. We observed the wind speeds at
Dharamshala in HP for an entire year. Section 2 provides a model and control for a doubly-
fed-induction-generator-based wind energy conversion system; Section 3 provides the
design of a battery energy storage system; Section 4 explains the design of a fractional order
proportional integral derivative controller used in the converter. In Section 5, we provide an
analysis of the proposed technique in MATLAB. In Section 6, the results from the simulation
performed in this study are presented and analyzed. Section 7 concludes the paper. This
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paper investigates the impact of a BESS on the performance and stability of the system
under varying wind conditions. This research problem statement could contribute to the
development of more efficient and reliable DFIG-based WECSs with BESSs, which can help
increase the prevalence of renewable energy sources in the power grid. The performance of
the proposed algorithms is discussed, and potential areas for future research are outlined.

2. Modeling and Control

2.1. Modeling of WT

The core component of a WECS is the WT, which converts the wind energy into
mechanical energy. A gearbox is employed to link the WT to the DFIG. The generated
power is then integrated into an electrical grid through a control system with the aim of
minimizing disruptions, enhancing stability, and optimizing the quality of the system. The
power output (o/p) of a WT is a nonlinear function that is dependent on the wind velocity;
therefore, the amount of power o/p is described by Equation (1), as indicated in [19]. The
main components of a WECS are shown in Figure 6.

Pm = 0.5ρACp(λ, β)V3 (1)

Figure 6. Main components of a WECS.

Moreover, λ is outlined as the ratio of the linear velocity at the tip of the wind rotor
blade to the wind velocity and may be written as in Equation (2):

λ =
ωR
V

(2)

where ρ represents the density present in the wind (kg/m3), A refers to the area covered by
the WT blades (m2), V denotes the wind velocity (m/s), R stands for the sweep of turbine
blades in (rad/s), and Cp represents the performance coefficient of the WT.

The evolution of torque is as follows:

Ta =
ρ

ωt
=

1

2λ
ρπR3V3

wCp(λ, β) (3)

where R is the radius of the WT and ωt signifies the rotational velocity of the WT. The role
of the gearbox is to link the WT shaft with the DFIG’s rotor, enabling an increase in the low
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velocity of the WT to increase the external velocity of the DFIG. The equation that governs
this gearbox is as follows:

ωt =
ωm

G
and Tm =

Ta

G
The expression for the velocity of the WT is provided through the use of fundamental

dynamic relationship and is shown in Equation (4) as:

J
dωm

dt
= Tg − Tem − fωm (4)

J = Moment of inertia (MOI) on the generator side (GS) of the WECS;
f = Coefficient of viscous friction (VFC) on the GS;
Tg = Torque of the gearbox;
Tem = Electro-magnetic torque of the generator;
ωm = Mechanical velocity of generator.
The output power of the WT is dependent on the rotor velocity and the wind velocity.

Coefficients λ and β, which are functions of the rotor velocity, determine the performance
coefficient Cp. Equation (2) provides the optimal speed, which is obtained by considering
the power o/p as a function of the rotor velocity for various wind speeds (whenever the
angle of pitch β = 0◦). A performance factor diagram for different values of β is shown in
Figure 7.

ωopt =
λoptV

R
(5)

Figure 7. Performance factor diagram for different values of β.

2.2. DFIG Modeling and Control

The dynamic voltages of the rotor (Vdr,Vqr) and stator (Vds, Vqs) in the dq frame of
reference are determined using Equations (6)–(9) as follows:

Vdr = RrIdr + PΦdr − nrΦqr (6)
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Vqr = RrIqr + PΦqr + nrΦqr (7)

Vds = RsIds + PΦds − nsΦqs (8)

Vqs = RsIqs + PΦqs + nsΦds (9)

The fluxes on the rotor side
(
Φdr, Φqr

)
and the fluxes on the stator side

(
Φds, Φqs

)
are in proportion to their identical d and q currents of the rotor and stator, respectively,
i.e., Idr, Iqr, Ids and Iqs, as shown in Equations (10)–(13) as:

Φdr = LrIdr + MIds (10)

Φqr = LrIqr + MIqs (11)

Φds = LsIds + MIdr (12)

Φqs = LsIqs + MIqr (13)

The electro-magnetic torque Tem is provided in Equation (14) is shown as:

Tem =
PM
Ls

(
ΦqsIdr − ΦdsIqr

)
(14)

where:
Rr = Resistance of each phase in the rotor;
Rs = Resistance of each phase in the stator;
Lr = Inductance of each phase in the rotor;
Ls = Inductance of each phase in the stator;
M = Magnetizing inductance;
nr = Speed of rotor;
ns = Speed at the stator terminals.
The voltage equations of the generator in the dq rotating reference frame are shown in

Equations (15) and (16), as in [20]:

Vgq = −Rriq = PLqiqωeLdid
+ ωeλm (15)

Vgd = −Rrid − PLdid − ωeLqiq (16)

The generator’s voltages in the dq axis (Vgd and Vgq) and the generator’s currents in
the dq axis (id and iq) are also characterized by the generator’s inductances in the d-q axis(
Ld and Lq

)
, stator resistance (Rg), electrical rotating speed (ωe), and magnetic flux (λm).

The electro-magnetic torque is defined by Equations (17) and (18) as:

Te =
3

2
P
[
λmiq −

(
Ld − Iq

)
idiq

]
(17)

Te =
3

2
Piqλm (18)

Here, P shows the no. of pole pairs. The direct axis of frame is in line with the magnetic
flux through the application of field-oriented control (FOC), and as a result of considering
id = 0, the EM torque can be explained by the equation shown above. The graph for the
maximum power output of a wind turbine is shown in Figure 8.
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Figure 8. Graph for maximum power output from a wind turbine.

The q-axis current can be utilized for generator speed regulation through the imple-
mentation of MPPT, while the d-axis current is kept at zero.

2.3. MPPT Control

The MPPT approach seeks to maximize the amount of electricity that can be obtained
from the WT by tracking power curves, as shown in Figure 9. This can be achieved via the
optimal power and can be defined by Equation (18).

Popt = 0.5ρACp−Max

(
λopt

)
V3 (19)

Figure 9. Schematic of DFIG WT for PQ improvement using a BESS and controllers.

The speed controller adjusts the rotor speed to the optimal value for each wind speed,
thus controlling the electrical power generated by the generator. By adjusting the rotor
speed ωr,λ can be maintained at its optimum value, λopt, thereby maximizing the power
output that can be obtained from the WT. The defined Equations (20) and (21) show the
correlation between the maximum power and the corresponding torque at the optimum
speed of the generator.

PMPPT = Kω3
opt (20)
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TMPPT = Kω2
opt (21)

3. Design of BESS (Battery Energy Storage System)

Various energy storage devices can also be used in DFIG-based WECS, depending
upon the specific requirements of the system and the available technologies. The major
advantage of this is that the BESS has a high power density and fast response time, making
it well-suited for use in applications that require a high power output and rapid load
response, such as wind energy systems. It has a long life cycle and can operate in harsh
environments, making it a reliable and durable option for energy storage in wind energy
systems. For this reason, many authors use a BESS rather than another energy storage
device. The characteristics of different ESS devices are provided by [21].

Such a model analyses the overall power transfers across a battery bank and up-
dates the device’s SOC across the specified time period while considering its steady-state
performance [22–24]. This approach does not take into account factors such as lifetime dete-
rioration, temperature changes, capacity fluctuations that are dependent upon operational
voltage, and particular electrical circuits [25–27]. The battery model obtains the intended
1PSET (specified in units of nominal capacity) from its regulation model and updates the
SOC of the battery. The BESS model and parameters are shown in Figure 10. According to
generator conventions, the calculation of the actual power, 1PB, needed from or inserted
into the battery is described in Equations (22) and (23) as:

ΔPB = ηCHARGEΔPSET, ΔPSET < 0 (22)

PB =
ΔPSET

ηDISCHARGE
, ΔPSET ≥ 0 (23)

where ηDISCHARGE and ηCHARGE are the discharge and charge efficiencies of the BESS,
respectively. It should be noted that the outcome of the BESS is calculated in the form of Δ.
This implies that a portion of the BESS’s usable capacity may be put to use for other tasks,
such as energy storage or buffering.

Figure 10. BESS Model and Parameters.
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At each time step, the SOC variation can be computed by Equation (24) as follows:

ΔSOC =

∫ t+1
t ΔPBdt

EPR
(24)

where EPR stands for the energy–power ratio of the BESS.

4. Tuning of FOPID Controller

The main limitation of the PI controller is that it cannot provide satisfactory control
performance for systems with complex dynamics and non-linearities. In DFIG-based
WECSs, the system has complex dynamics due to the presence of wind turbine dynamics,
power electronics converter dynamics, and grid dynamics. The non-linear behavior of the
wind turbine and converter also affect the control performance.

On the other hand, an FOPI controller is a variant of the traditional PI controller that
uses fractional calculus. FOPI controllers have been shown to achieve better performance
than traditional PI controllers in some applications, and they do not have the additional
derivative term that is present in an FOPID. The derivative term in an FOPID controller
can help provide a faster and more accurate response to changes in the system, especially
in cases of non-linear systems. As the wind speed and load conditions can change rapidly
in the case of a DFIG-based WECS, the system must respond quickly to maintain stability
and optimal power generation.

The FOPID controller is a more advanced and flexible version of the traditional
PID controller. It uses fractional calculus to improve the performance of traditional PID
controllers. In the context of DFIG-based WECSs, the FOPID controller can be used in the
RSC to improve the power quality of the system. It introduces three additional parameters
(alpha, beta, and gamma) that allow for better tuning and control of the system. These
additional parameters include the fractional order derivative and fractional order integral
terms, which provide more flexibility in controlling the system dynamics. These regulate
the rotor currents in a better way, which improves the power quality of the system. This
helps in reducing the impact of disturbances, such as wind speed variations, on the system.
In the RSC of a DFIG-based WECS, this controller can provide better control over the
system’s dynamic response, transient stability and output performance. Compared with
the PID controller, it has additional degree of freedom that allows it to better handle
nonlinearities and uncertainties in the system. This is important in DFIG-based WECSs in
which the wind turbine’s operating conditions can vary widely and quickly. It also provides
better robustness against disturbances, noise, and other factors that can affect the system’s
performance. The results with the FOPID controller are provided in the Results section.

Although fractional calculus is an ancient branch of mathematics, it has only recently been
applied in variety of scientific and technical fields. The differential equations for the PIλDμ

controller in the time and frequency domains are presented in Equations (25) and (26) as:

ψ(t) = Kpδ(t) + KiH−λ
t δ(t) + KdHμ

t δ(t) (25)

ψ(s) = Kp + Kis−λ + Kdsμ (26)

Here, Ki, Kd, and Kq represent the gains of the integral, derivative, and proportional
components, respectively; μ and λ are the real numbers, with 0 < μ < 2 and 0 < λ < 2.
The block diagram of an FOPID controller is shown in Figure 11. The settings are changed
to maximize or lower the index of performance to achieve the best CS, which is, in this case,
the integral of time absolute error (ITAE), a measure of error that includes time weighting.
This is defined by Equation (27) as:

ITAE =

t∫
0

t(|ΔV|+ |ΔI|+ |ΔP|)dt (27)
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Figure 11. Block diagram of a FOPID controller.

The errors between the actual parameters (voltage, current, and power) and the
reference parameters are represented by ΔV = V*

i − Vt, ΔI = I* − I, and ΔP = P* − P,
respectively. The FOPID controller parameters were calculated by considering a 0.1 step
change in the reference and minimizing the performance index through the use of algo-
rithms [28–31]. The design of the fractional order PID (FOPID) controller was achieved
through the minimization of the performance index, which has the property of weighing
initial large errors lightly and penalizing late-occurring errors heavily. The classical tuning
method was employed, which is based on trial-and-error or heuristic methods, and it was
used to adjust the parameters of the controller until satisfactory performance was achieved.
For an FOPID controller in the RSC of a DFIG-based WECS, the classical tuning method
can be carried out using the following steps: setting the integral and derivative gains to
zero, setting the proportional gain and low value, increasing the proportional gain until
the system oscillates continuously, tuning the integral gain to reduce the steady-state error,
tuning the derivative gain to reduce the overshoot and settling time, and finally, tuning the
fractional order of the controller to improve the overall system response. The fopid_optim
tool was utilized to carry out the design of the FOPID controller in which the LTI system
contains the workspace name of the plant and could either be in state space or transfer
function form.

The classical tuning method is used in the FOPID and PI controllers to find the
values of Kp, Ki, and Kd gains. This involves determining the values of these gains using
mathematical formulas that are based on the system parameters. The perturb and observe
(P and O) algorithm is used for MPPT in DFIG-based WECS.

5. Analysis of the Proposed and Established Control Technique in MATLAB

The PI controller for the basic MATLAB model is shown below (Figure 12). The
classical tuning approach was used for the PI controller. The various waveforms for the
same controller are shown in Figures 15–25.

The proposed FOPID controller for the DFIG-based WECS is shown in Figure 13.
The main purpose of the FOPID controller in the RSC of DFIG-based WECS is to

regulate the rotor current and voltage, which, in turn, control the speed of the generator. It
improves the response of the system. By using a FOPID in the RSC, the system can achieve
better control of the rotor speed and ultimately increase the energy conversion efficiency of
the system. It also improves the stability of the system by regulating the reactive power of
the generator, ensuring that the generator operates at a stable voltage and maintaining the
stability of the grid.
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Figure 12. PI controller.

Figure 13. Proposed FOPID controller for RSC.

The proposed BESS for the DFIG-based WECS with a PI controller is as shown in
Figure 14.

The parameters of the BESS in a DFIG-based WECS may vary depending on the
system’s specific applications and requirements. Some common parameters that can be
considered in a DFIG-based WECS are battery capacity, battery voltage, battery chemistry,
battery management system, and charging and discharging strategies.

Here, the function of the BESS is to mitigate the effects of the intermittency and
variability of wind power by storing excess energy during periods of high wind speed
and supplying energy to the grid during periods of low wind speed. The controller in the
BESS can regulate the charging and discharging of the battery, ensuring that the battery
operates within safe and optimal operating conditions. The function of the controller in
a BESS is to provide or improve the power quality of the system by reducing the total
harmonic distortion (THD) of the output voltage. By using a controller in the BESS, the
output voltage waveform can be made more sinusoidal, reducing THD and improving
the quality of power. It also provide power quality support by regulating the voltage and
frequency of the output power. The controller can respond quicky to changes in voltage
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and frequency, injecting and absorbing power from the grid as needed to maintain the
stability of the system.

Figure 14. Proposed battery energy storage system (BESS) for DFIG-based WECS.

6. Results and Discussions

The various waveforms for the coefficient of performance (Cp), rotor current, rotor
speed, output power, i.e., stator and rotor power, bus voltage (Vbus), and torque are
analyzed at different wind velocities in the MATLAB/Simulink and are provided below.
We have taken three wind velocities of 3 m/s (less than minimum), 11 m/s (within limits),
and 15 m/s (greater than maximum).

The performance coefficient (Cp) in vertical axis with respect to time (t) in the horizon-
tal axis for a wind turbine at different wind velocities with an FOPID and a PI controller
(i) at 3 m/s (ii), at 11 m/s (iii), and at 15 m/s are presented in Figure 15a–f. The performance
coefficient (Cp) is the ratio of the power captured by the rotor to the total power available
in the wind (P) just before it interacts with the rotor of the wind turbine. As can be seen
in Figure 15a,b, (Cp) fluctuates when the WECS is started and has a constant value of
−0.43 after some time with a wind velocity of 3 m/s. When the wind speed is further
increased to 11 m/s and 15 m/s, we can then see that in Figure 15c–f, it is around 0.44.

The waveforms for rotor currents in the vertical axis for three phases with respect to
time in the horizontal axis for a wind turbine at different wind velocities with an FOPID
and PI controller for (i) 3 m/s, (ii) 11 m/s, and (iii) 15 m/s are shown in Figure 16a–f. In
Figure 16a,b, we can see that in the initial rotor current is not sinusoidal; however, after
some time, it has a sinusoidal waveform. The magnitude of the current is significantly
lower with a PI controller but increases slightly with the FOPID controller, whereas in
Figure 16c–f, the rotor currents are, once again, initially not sinusoidal, but the magnitude
of the rotor currents is high with the FOPID controller.

The waveforms for rotor speed in the vertical axis with respect to time in the horizontal
axis for a wind turbine at different wind velocities with an FOPID and PI controller for
(i) 3 m/s, (ii) 11 m/s, and (iii) 15 m/s are shown in Figure 17a–f. In Figure 17a,b, we can
see that at a wind velocity of 3 m/s, the speed of the rotor slowly increases and reaches up
to 950 rpm after some time; in Figure 17c,d, at a wind velocity of 11 m/s, the rotor speed
slowly increases and reaches up to 1750 rpm after some time; in Figure 17e,f, at a wind
velocity of 15 m/s, the rotor speed slowly increases and reaches up to 2250 rpm.
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(a)

(b)

(c)

Figure 15. Cont.
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(d)

(e)

(f)

Figure 15. (a–f). Performance coefficient of a wind turbine at different velocities. (a) Performance
coefficient with FOPID controller for wind speed of 3 m/s. (b) Performance coefficient with PI
controller for wind speed of 3 m/s. (c) Performance coefficient with FOPID controller for wind speed
of 11 m/s. (d) Performance coefficient with PI Controller for wind speed of 11 m/s. (e) Performance
coefficient with FOPID controller for wind speed of 15 m/s. (f) Performance coefficient with PI
controller for wind speed of 15 m/s.
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(a)

(b)

(c)

Figure 16. Cont.
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(d)

(e)

(f)

Figure 16. (a–f). Waveforms of rotor current of a wind turbine at different wind velocities. (a) Rotor
current with FOPID controller for wind speed of 3 m/s. (b) Rotor current with PI controller for wind
speed of 3 m/s. (c) Rotor current with FOPID controller for wind speed of 11 m/s. (d) Rotor current
with FOPID controller for wind speed of 11 m/s. (e) Rotor current with FOPID controller for wind
speed of 15 m/s. (f) Rotor current with PI controller for wind speed of 15 m/s.
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(a)

(b)

(c)

Figure 17. Cont.
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(d)

(e)

(f)

Figure 17. (a–f). Rotor speed of a wind turbine at different wind velocities. (a) Rotor speed with
FOPID controller for wind speed of 3 m/s. (b) Rotor speed with PI controller for wind speed of 3 m/s.
(c) Rotor speed with FOPID controller for wind speed of 11 m/s. (d) Rotor speed with PI controller
for wind speed of 11 m/s. (e) Rotor speed with FOPID controller for wind speed of 15 m/s. (f) Rotor
speed with PI controller for wind speed of 15 m/s.

The stator and rotor power in the vertical axis with respect to time in the horizontal
axis for a wind turbine at different wind velocities with an FOPID and PI controllers for
(i) 3 m/s, (ii) 11 m/s, and (iii) 15 m/s are shown in Figure 18a–f. The red color indicates
the real stator power and pink color indicates the real rotor power. As can be seen in
Figure 18a,b, at a wind velocity of 3 m/s, the stator power and rotor power delivered by
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the wind turbine are very low, of the orders of 0.1 MW and 0.2 MW, respectively, because
the wind speed is low; in the initial phase, it fluctuates and begins to increase as it achieves
its speed. The rotor power is high because the BESS supplies power to the grid during
low-wind-speed periods. In Figure 18c,d, at a wind velocity of 11 m/s, we can see that the
power developed by the stator and the power developed by the rotor are around 2 MW
and zero, respectively, because at this point, the rotor is not supplying any power and all
the real power is received across the stator. In Figure 18e,f, the power developed is around
2.5 MW; as the wind velocity is 15 m/s at this time, the excess power is stored in the BESS.

(a)

(b)

(c)

Figure 18. Cont.
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(d)

(e)

(f)

Figure 18. (a–f). Stator and rotor power of a wind turbine at different wind velocities. (a) Stator
and rotor power with FOPID controller for wind speed of 3 m/s. (b) Stator and rotor power with
PI controller for wind speed of 3 m/s. (c) Stator and rotor power with FOPID controller for wind
speed of 11 m/s. (d) Stator and rotor power with PI controller for wind speed of 11 m/s. (e) Stator
and rotor power with FOPID controller for wind speed of 15 m/s. (f) Stator and rotor power with PI
controller for wind speed of 15 m/s.

The bus voltage (Vbus) in the vertical axis at the DC link with respect to time (t) in
the horizontal axis for a wind turbine at different wind velocities with an FOPID and PI
controllers for (i) 3 m/s, (ii) 11 m/s, and (iii) 15 m/s are shown in Figure 19a–f. As we can
see in Figure 19a–f, the bus voltage is received at the DC link and is almost constant for all
wind velocities. This is because the BESS is always connected in the system, and it supplies
power to the grid during periods of low wind velocity. When there are wind gusts, it stores
the excess power in the BESS.
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(a)

(b)

(c)

(d)

Figure 19. Cont.
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(e)

(f)

Figure 19. (a–f). Waveform for bus voltage (Vbus) of a wind turbine at different velocities. (a) Bus
voltage with FOPID controller for wind speed of 3 m/s. (b) Bus voltage with PI controller for wind
speed of 3 m/s. (c) Bus voltage with FOPID controller for wind speed of 11 m/s. (d) Bus voltage
with PI controller for wind speed of 11 m/s. (e) Bus Voltage with FOPID controller for wind speed of
15 m/s. (f) Bus voltage with PI controller for wind speed of 15 m/s.

From Figures 20–25, it can be seen that the FFT analysis was performed for the
rotor current with an FOPID controller and PI controller. From the FFT analysis, it can
be observed that with the FOPID, the THD was improved when compared with the PI
controller at same wind speeds. The FOPID provides a major contribution to the power
quality in a DFIG-based WECS. We can see that the with the FOPID controller, performance
was improved at all wind speeds, and it can further be improved by providing the BESS
with some new control algorithms.

Implementing the model in a practical way involves designing the control algorithms
(PI, FOPID, FL, and ANFIS) and tuning the controller parameters to achieve the desired
performance, hardware selection, and simulation; this involves obtaining appropriate
hardware components for the BESS and RSC, i.e., selecting the battery type and capacity for
the BESS and selecting the power electronics components (IGBTs, capacitors, and inductors)
for the RSC. The next step is to design the circuitry for the BESS and RSC, which involves
designing a battery management system (BMS) for the BESS and designing the power
electronics circuitry for the RSC. The next step is the development of a prototype, which
involves assembling hardware components and circuitry according to the design. The
last step is to test and validate the prototype, which involves conducting experiments and
taking measurements to verify that the BESS and RSC are functioning as expected and
that the prototype meets the desired performance criteria. For the low-power scale, it has
a lower efficiency, which results in increased losses and decreased power generation. It
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also requires larger generators and power electronics converters, and it has a high cost and
complex grid integration, which makes it less suitable for low-power applications.

Figure 20. FFTT analysis of rotor current for wind speed of 3 m/s with FOPID controller.

Figure 21. FFT analysis of rotor current at wind speed of 3 m/s with PI controller.

Figure 22. FFT analysis of rotor current for wind speed of 11 m/s with FOPID controller.
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Figure 23. FFT analysis of rotor current for wind speed of 11 m/s with PI controller.

Figure 24. FFT analysis of rotor current for wind speed of 15 m/s with FOPID controller.

 
Figure 25. FFT analysis of rotor current for wind speed of 15 m/s with PI controller.
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7. Conclusions

In the proposed work, we have introduced the utilization of an FOPID controller
with five system variables which has been shown to be more efficient than conventional
controllers in several areas. The FOPID which was used to execute the suggested controllers
within the RSC, whichwas implemented using the FOPID and the fractional order PID
controller block from the Fractional-Order Modeling and Control (FOMCON) toolbox,
which was used for simulation purposes. fopid_optim is a Simulink toolbox that was used
to optimize the FOPID controller. The purpose of the controller is to automatically regulate
the rated power of a 2 MW wind turbine generation system in response to varying wind
speeds. The WECS consisted of a WT and a DFIG with a BESS incorporated into the DC
link with an initial SOC of 71.2%. The BESS stores energy when the wind speed exceeds the
MPPT threshold and supplies voltage to the grid through the GSC when the wind speed
falls below the MPPT. A simple PI controller was used instead of a conventional controller
to increase the storing and releasing charge rate of the battery. The simulation findings were
developed in a MATLAB/Simulink environment with validated parameters for the WT and
generator. The various waveforms shown in Figures 14–18 are from MATLAB/Simulink
software, such as the performance coefficient of the WT, stator power, rotor power, rotor
current, DC bus voltage through the DC link, and the speed of the rotor at multiple wind
velocities of 5 m/s, 11.2 m/s, and 15 m/s. The performance coefficient of the WT exhibits
fluctuations during start-up and periods of low wind speeds, while the rotor speed and the
output power at the rotor and stator increase. There is a slight increase in the voltage at
the DC link terminal when the wind velocity is high. The study was conducted using the
parameters shown in Table 1, with a fluctuating wind velocity applied to the WECS, and
various parameters for the BESS are shown in Table 2.

Table 1. Parameters of Wind Turbine.

Total O/P Power at Generator Terminals 2 MW

Pole Pair 2

Frequency 50 Hz

Voltage 690 V (L–L)

Current 1760 A

Type of Machine Wound Rotor IM

Stator Resistance, (Rs) 2.6 mΩ

Resistance of the Rotor, (Rr) 2.9 mΩ

Inductance of the Stator, (Ls) 2.587 mH

Stator Leakage Inductance and Rotor Leakage Inductance, (Lsi and Lsr) 87 μH

Rotor Inductance, (Lr) 2.587 mH

Mutual Inductance, Lm 2.5 mH

Inertia of the M/C (J) 130 kg.m2

Friction Factor for Damping 0.001 N.m.s.

Rated Torque, (Tem) 12,732 N.m.

Reference Frame Rotor

Stator/Rotor Turns Ratio 0.34

Stator Flux 1.8

Gearbox Ratio 100

Air Density 1.225 kg/m3

Switching Frequency 4000 Hz
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Table 2. Battery characteristics, wind profile, and control parameters.

Name of Parameter Rating and Control Strategy Used

Battery Capacity 100 Ah

Battery Voltage 1200 V

Battery Chemistry Li-Ion Battery

Battery Management System, such asSOC 71.4%

Charging and Discharging strategy PI Controller with Buck-Boost Converter

Wind Profile 3 m/s, 11 m/s and 15 m/s

Every controller we used has its own advantages and limitations. The FO-PID con-
troller has a complex control strategy, higher computational requirements, non-linear
behavior, a high sensitivity to parameter variations, and difficulties in physical implementa-
tion. On the other hand, we used a PI controller in the BESS, which had certain limitations
such as its limited control, poor dynamic control, sensitivity to load changes, fixed tuning
parameters, sensitivity to model uncertainties, difficulty in tuning, and limited capability.

In the future, to address the limitations of FOPID controllers, we can improve the
design and tuning processes of the FOPID controllers and reduce their computational
requirements. Some new control techniques are being explored that may offer improved
performance in specific situations. For BESS control, we can also use advanced control
techniques that can provide better control over the BESS. On the other hand, the use
of advanced sensors and communication systems can help improve the accuracy and
responsiveness of the control system.
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Abstract: In order to encourage energy saving and the adoption of renewable sources, this study
provides a comprehensive experimental framework that integrates socioeconomic and behavioral
objectives for the local energy community. The experiment aims to find out how successfully using
behavioral interventions might encourage customers to save electrical energy and encourage them to
adopt renewable energy, e.g., solar photovoltaic energy, in the present case. Using this method, we can
calculate the causal impact of the intervention on consumer participation in the local electricity sector.
The study uses consumer data on the import and export of electrical power from retailer electricity
utilities at a predetermined power exchange price and a midmarket price for local energy community
power transactions. The local energy community model simulates the consumption, storage, and
export of 20 residential customers who, in different scenarios, are the test subjects of an empirical
experiment and embrace electricity conservation and renewable energy. We address the optimization
issue of calculating the power exchange cost and revenue in various scenarios and comparing them
with the base case cost. The cases are built on the customers’ behavioral interventions’ empirical
response. The findings demonstrate that the interaction of socioeconomic and behavioral objectives
leads to impressive cost savings of up to 19.26% for energy utility customers. The policy implication
is suggested for local energy utilities.

Keywords: behavioral economics; cost optimization; energy community; energy conservation; energy
economics; energy policy; local electricity market; renewable energy; social nudge

MSC: 90C90

1. Introduction

Reducing the world’s energy needs through efficient electricity consumption is now
more crucial than ever. This situation calls for challenging the current efficiency policies’
investment-focused concepts and the involvement of behavioral interventions [1] that
encourage electricity conservation and utilize renewable energy. Our present culture
requires energy conservation and appropriate energy resource management to address
significant issues like global warming mitigation and heat regulation within a particular
range [2]. The renewable energy revolution cannot be governed as a purely technical or
commercial endeavor as it was in the past due to its extensive societal impacts [3]; it should
be understood as developing a sophisticated sociotechnical system that necessitates novel
types of cooperation. The ability to test innovative concepts such as energy auctions [4]
and energy-saving behavior [5] should be provided in order to develop relevant contextual
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factors for business and technology models that aid in the achievement of the environment
and energy policy priorities [6]. The research in [7] suggests three energy policies using
solar PV and battery storage; the results showed that self-usage of generated power and
energy strategy focused on capital expenditure or subsidies would give customers more
financial benefits. The study in [8] suggests that a behavioral intervention method for
energy conservation can increase the willingness of energy users to adopt and engage in
lowering their energy consumption.

A case study is used in the research [9] to identify the best electrification options
based on the unique characteristics and needs of an isolated energy community without
electricity. Several specific system behavioral findings based on yearly, monthly, and
hourly energy patterns with seasonal fluctuations were also displayed to demonstrate how
well the ideal microgrid solution performs. In this energy community, it was possible
to construct load consumption, power loss, voltage profile, and storage as optimization
issues in order to reduce system costs. This was acheived by taking into account the
technological uncertainties associated with the generation of renewable energy [10]. As
solar photovoltaic power generation [11] is frequently uncertain, it may affect the planning
and operational performance of the system [12], yet, research in [13] proved that by taking
an optimization approach in uncertain power generation, a cost saving up to 15% could be
achieved. In the proposed optimization model of our paper, any uncertainty in solar power
generation would result in higher energy storage in the battery and so power export will
be optimized accordingly. We introduced a power balance equation to minimize the effect
of such uncertainty.

Scholars in various disciplines have begun to pay more attention to electricity con-
servation and have presented novel ideas, theories, and methods. However, only a few
studies try to capture the various aspects of electricity conservation in a more comprehen-
sive manner. The findings of the study [14] imply that by taking into account the role of
cognitive mechanisms that underlie the implementation of electricity-saving activities, our
comprehension of these behaviors may be enhanced. A field experiment [15] conducted
on 237 individuals confirmed that 6% of electricity was achieved by sending behavioral
interventions. The authors of [16] conducted a social comparison treatment for electricity
saving on 525 households and found a 6.7% reduction in electricity use. A study on the
same objective of electricity conservation in 2927 households showed electricity savings of
8.6% using the social nudge approach [17]. An energy-saving nudge approach reported a
10% reduction in electricity usage in the field experiment [18] conducted for 528 households.
The possibility of reducing home energy usage with non-fiscal rewards that respond to
consumer environmental values was looked at in [19]; the results showed a 5% monthly
reduction in energy consumption. In research conducted on a government workplace,
electricity savings of up to 14% resulted from social nudges that contained comparable
energy consumption facts [20]. In the quarter year from the intervention, an 8.5% electricity
saving was achieved, while social power participants sustained saving more electricity in
an experiment conducted [21] in Switzerland. A meta-analysis [22] found that electricity
consumption has been reduced by about 3.91% from the most recent experimental results
of publications. The study suggests a few points for policy implications, e.g., the inclusion
of control groups with and without incentives, collection of sociodemographic information,
focus on individual incentives, and more experimental analysis. In order to help regulators,
utilities, and politicians use energy efficiency as a resource, the study [23] offers insights into
the economics of consumer-subsidized efficiency initiatives. Conclusive proof for energy
saving was discovered by the authors, suggesting that regions with lower energy savings
compared to retail sales can expand the scope of their energy efficiency plans without
significantly increasing the electricity costs saved. The authors describe cases of energy
efficiency predictions and prospective modeling and pinpoint technical advancements
essential to utilities and energy providers.

Interventions in behavior that rely on social pressure might be potential tools for
changing people’s preferences to opt for renewables. In contrast to other actions, it is
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important to be more circumspect before implementing a norm-based intervention since
different people may interpret the same information differently. Consequently, it is essential
to identify the type of behavior that has to be altered. It is challenging to draw in customers
when they have little knowledge or engagement. [24]. It is possible that people will not
pick renewable energy since they are worried about the high purchase prices associated
with it because it demands an initial investment. The fact that humans have a propensity
to myopically overrate things that are close in time and underrate those that are far in
the future is the root cause of this phenomenon [25]. Individuals may also choose not to
utilize renewable energy since they overestimate the cost reductions in the future owing
to a lack of knowledge needed to make optimal judgments, as is believed by rational
decision-making. It may be useful to change attitudes toward renewables by letting
them know that their peers have made the same decision and have already adopted solar
electricity. Making the potential cost reductions from renewables more visible may prove
to be a successful method for assisting the local electricity community in appreciating
the benefits of renewables in the future. Additionally, heterogeneity in behavior may
influence a variety of personal decisions. Considering the behaviors practiced by others
in the relevant social environment is another important consideration when determining
whether to embrace new technology [26]. A research study in [27] suggests that customers
have the chance to choose low-emission electrical retailers inside the liberalized market,
helping to reduce pollutants from power-producing facilities. The study [28] looks at how
customer aspirations to adopt smart appliances are impacted by both interpersonal and
technology-specific views. The results show that there are differences in the proportional
weight of personal views and particular technologies across different smart energy offers.

Service quality and behavioral intention have a large and favorable impact on a per-
son’s decision to purchase smart appliances. In a laboratory experiment [29] involving
300 participants, researchers looked at how social norms and decision observability affect
acceptability for renewable electricity, even at one’s own financial cost. According to the
findings, when requested to adhere to pro-environmental public standards, individuals
contributed 35% more to a running renewable energy program compared to their con-
trol groups. This suggests that the government might enlighten people more about the
renewable energy sector so they may make better purchase decisions. Information does
not, however, guarantee a change in energy consumption behavior [30] or a movement in
the preferences of the electricity community. Instead, when information is presented in a
way that respects community members’ poor information processing abilities, it may be
more successful in altering behavior. The authors of the work [31] combined studies on
societal support for energy policy with the idea of vocal partisanship for energy conserva-
tion. An optimization approach was proposed in [32] to model the local energy market by
considering a mid-market rate tariff for prosumers. A demand response program [33] was
suggested to motivate customers to participate in the energy transition.

By suggesting behavioral economics as a path from the root to determine how be-
havioral aspects can be used to understand energy costs and to supplement conventional
interventions aimed at addressing them, this research involves an idea that emphasizes
the significance of human initiative in affecting energy conservation and the adoption of
renewable energy sources. The goal is to emphasize how behavioral economics might offer
an enhancing competencies framework to analyze and handle the challenging problem of
lowering the cost of energy rather than to give an exhaustive overview of the pertinent
literature. We provide a local energy community model that illustrates and includes socioe-
conomic elements and investigates the effects of these factors on operational costs. Beyond
its theoretical appeal, the study’s justification is to investigate the notion that, in order to
enhance the current policy, policymakers should take advantage of the many components
and be conscious of the results of their interactions.

The structure of the paper is as follows: Section 2 describes the synergy of behavioral
interventions and the energy community; Section 3 provides the details of the mathemat-
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ical model, case study, and result details; We provide a general discussion and policy
implication suggestions in Section 4; and the conclusion is discussed in Section 5.

2. Behavioral Intervention and Energy Community

2.1. Behavioral Economics and Intervention

Behavioral economics acknowledges the enormous effect that situation has on conduct.
The specifics of the choice issue, in particular, impact the chance that decisions may display
implicit dissonance. Individuals are also more likely to regard things as more important
when they are closer in time or when they may provide greater benefits if delayed from
now on [1]. This method focuses on the short-term costs and long-term benefits of energy
measures such as energy conservation and renewable energy adoption. Behavioral inter-
vention methods, such as energy conservation measures, may provide monetary benefits to
residents in a nearby local energy region. Giving advice on the most effective approach to
save energy, for example, might encourage improved energy consumption habits and, as a
result, save money. To modify behavior that is recognized as a situational social practice,
a more detailed investigation of behavior determinants beyond the focus on people is
required. People also demonstrate persuasive departures from prudent choice suspicions
in behavioral economics, in addition to demonstrating mental abnormalities. People differ
not just in their preferences but also in their levels of personal responsibility and inspira-
tion [34]. People are considered sane leaders with limited mental assets, such as bounded
rational individuals, in the behavioral science perspective, and as a result, when making
decisions under limited self-assuredness, they choose different methods.

The ethical consequences of legislation and technology interventions have recently
received much attention throughout the world [35]. The hypothesis [36] anticipates that
people’s behavior is unaffected by their surroundings and results in decisions based on a
scientific connection of the costs and benefits associated with alternative choices, which can
be changed simply by adjusting financial motivators and providing additional data. Using
commitment devices [37] is one technique for overcoming the challenge of energy-saving
behavior. It is a system that pushes people to follow through on their goals by laying out
negative consequences, such as financial or social repercussions, if they do not.

2.2. Energy Community

An energy community would be prepared to engage in renewable energy even in the
presence of advantages or government subsidies that are greater than costs is explained by a
variety of motives and levels of self-interest. In a consumer-centric energy community [38],
significant advantages are provided by the electricity savings brought about by energy
efficiency [39]. These include lowering regional emissions, enhancing business efficiency,
lowering home energy costs, increasing productivity, enhancing resident wellbeing, and
helping to lower energy scarcity. Energy conservation strategies may have various other
benefits for the community in addition to lowering energy costs. Living in disadvantaged
areas has a negative impact on a community’s ability to build the social capital required to
impose desirable behaviors via socialization.

From an economic viewpoint, the choice to invest in renewable power is generally
portrayed as being driven by energy and cost reserves. This suggests that the energy
community may decide to put resources into environmentally friendly energy, consider-
ing that this is monetarily ideal. Adopting renewable energy does not just increase the
probability that the energy objectives are accomplished; it likewise improves individuals’
self-achievement and mental self-portrait discernments by giving them the option to ac-
complish the presented objectives. Saving electricity or making investments in renewable
energy is a choice to advance the common good and is thus a form of ethical behavior.

Given that the local energy community may make various assumptions from the sort
of information presented, social interventions should be built with extra care. When people
are simply informed about other people’s electricity consumption habits, for instance, a
boomerang effect could occur. This would have a positive impact on people who were
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previously using more electricity than recommended and a negative impact on people
who were previously using less electricity than recommended. As a result, for behavioral
interventions to be successful, it is crucial to accurately assess the behavior that needs
to change. The social problem that results from encouraging electricity conservation in
a community is caused by the conflict between each family’s individual and communal
goals, which is to consume energy as they see fit. It is important to understand the barriers
to energy-efficient technology, which may lead to insight into locally based solutions for
adaptability so that distributed electricity production from renewable sources may be
incorporated [40]. Strategies for information dissemination account for the influence of
energy community behavior. These actions significantly contribute to strengthening the
energy community’s knowledge of their rights and market rates and their comprehension
of common electricity issues and energy conservation consciousness. By being encouraged
to carry out beneficial activities, the energy community may improve their willingness to
do so and, in turn, improve their level of self-efficacy, which is often lower due to the social
isolation brought on by their status on the periphery.

3. Empirical Study and Analysis

3.1. Mathematical Model

The power cost minimization is considered an optimization problem and is solved by
a mixed integer linear programming method. The objective of cost minimization is shown
in Equation (1):

Minimize

(
Nt

∑
t=1

Nx

∑
x=1

(
Cimport

x,t − Rexport
x,t

)
+ FCx,t

)
(1)

where Cimport
x,t is the cost associated with the import of electrical power and Rexport

x,t is the
revenue made by customers while exporting power, and FCx,t is the fixed charge paid by x
customers for utilizing the energy community resources.

Equations (2) and (3) signify the cost and revenue for buying and selling electricity to
the utility by all players in time t, subject to constraints (4)–(8):

Cimport
x,t =

(
lbuy
x,t × Ebuy

x,t × Pbuy
x,t

)
× dt ∀x ∈ Nx , ∀t ∈ Nt (2)

Rexport
x,t =

(
lsell
x,t × Esell

x,t × Psell
x,t

)
× dt ∀x ∈ Nx , ∀t ∈ Nt (3)

where Ebuy
x,t and Esell

x,t denote the electric power purchase and sell to the community, respec-

tively. Pbuy
x,t and Psell

x,t are the buy and sell price of electric power, and dt is the time period

adjustment factor. The power loss multipliers for power purchase and sell are lbuy
x,t and lsell

x,t ,
correspondingly. The sum of the power loss multipliers is taken as 5% [41].

In this local energy community model, the customers are limited to buy or sell electric
power within their upper limits of power import and export, as per Equations (4) and (5).
They are also limited to buy or sell the power in the community at the same time, as per
constraints Equations (6)–(8):

0 ≤ Ebuy
x,t ≤ Ebuy max

x,t × XEB
x,t ∀x ∈ Nx , ∀t ∈ Nt (4)

0 ≤ Esell
x,t ≤ Esell max

x,t × XES
x,t ∀x ∈ Nx , ∀t ∈ Nt (5)

where the upper limits for power purchase and sell are designated as Ebuy max
x,t and Esell max

x,t ,
respectively. The binary variables for power purchase are XEB

x,t and for power sale is XES
x,t.

They are introduced to limit the power trading simultaneously:

0 ≤ XEB
x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (6)
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0 ≤ XES
x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (7)

XEB
x,t + XES

x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (8)

In some cases, the customers are permitted to exchange power at a mid-market price.
A mid-market price allows customers to buy power from the local community at a lower
price and sell power at a higher price compared to utility grid prices. The condition for this
power transaction in the local community, as per Equation (9), is the total electric power
buy and total electric power sell should be the same. The mid-market price is calculated as
Equation (10) [42]:

Nx

∑
x=1

Ebuy mmp
x,t =

Nx

∑
x=1

Esell mmp
x,t ∀x ∈ Nx , ∀t ∈ Nt (9)

Pmmp
x,t =

min(Pbuy
x,t ) + Psell

x,t

2
∀x ∈ Nx , ∀t ∈ Nt (10)

where Ebuy mmp
x,t and Esell mmp

x,t are electric power buy and sell by the customer at a mid-
market price Pmmp

x,t . It should be noted that power trading at mid-market price will also
follow a similar power exchange constraint as per Equations (11)–(15):

0 ≤ Ebuy mmp
x,t ≤ Ebuy max

x,t × XEB mpp
x,t ∀x ∈ Nx , ∀t ∈ Nt (11)

0 ≤ Esell mpp
x,t ≤ Esell max

x,t × XES mmp
x,t ∀x ∈ Nx , ∀t ∈ Nt (12)

The binary variables, at a mid-market price, for power purchase is XEB mmp
x,t and the

same for power sale is XES mmp
x,t . They are limiting factor power exchange simultaneously

as mid-market price:
0 ≤ XEB mmp

x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (13)

0 ≤ XES mmp
x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (14)

XEB mmp
x,t + XES mmp

x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (15)

Further, power purchase from the utility grid and from the local energy community is
limited as per Equation (16), and the same goes for power sell, as per Equation (17):

XEB
x,t + XEB mmp

x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (16)

XES
x,t + XES mmp

x,t ≤ 1 ∀x ∈ Nx , ∀t ∈ Nt (17)

The customers can store the electrical power generated by their solar PV in a battery;
the battery power is estimated by Equation (18):

Ebat
x,t = Ebat

x,ini + Ebat ch
x,1 × ηx,ch −

Ebat dch
x,1

ηx,dch
∀x ∈ Nx (18)

where Ebat
x,t is the electric energy content of the battery, Ebat

x,ini is the initial electric energy
of the battery, ηx,ch and ηx,dch are the charging and discharging efficiencies of the battery,
respectively. The battery charging power Ebat ch

x,1 and discharging power Ebat dch
x,1 are limited
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to staying within the maximum limit of the battery, and customers can either charge or
discharge the battery at the same time. Equation (19) represents power balance:

Ebuy
x,t + Ebat dch

x,t + Egen
x,t = Eload

x,t + Esell
x,t + Ebat ch

x,t ∀x ∈ Nx , ∀t ∈ Nt (19)

where Egen
h,t is power generated by the customers and Eload

h,t is the electric load.

3.2. Case Study and Result Analysis

The study is carried out for a total of five cases to determine the operating cost of a
small local energy community consisting of 20 household customers. All these customers
are assumed to be prosumers, i.e., they own the solar PV power generation and the battery
storage according to their contracted power limits with the power grid. The first case is a
base case where the customers buy and sell electric power without energy conservation and
without adopting higher PV installation. In case 01, it is assumed that half of the customers
respond positively to the energy conservation interventions and reduce their electric power
consumption by 3–5%. However, this case does not include behavioral interventions for
adopting a higher PV installation. Case 02, on the other hand, considers a 3–5% higher PV
installation by half of the total customers collectively, resulting from responding positively
to behavioral interventions. Case 03 is formulated as all customers being nudged by energy
conservation and higher PV installation requests. In this case, it is assumed that half of
the customers reduce their power consumption by 3–5% and the other half increase their
PV installation capacity by 3–5% collectively. Case 04 is similar to case 03, but in this
case, the customers are allowed to exchange their power at the mid-market price in their
local community. All these assumptions are based on the studies and proof provided in
the literature [14–20]. As this is an empirical study, the authors have also taken liberty
with assumptions, yet at a level acceptable based on the literature. The various cases are
depicted in Table 1.

Table 1. Cases under study.

Case Energy Conservation
Higher PV
Installation

Mid-Market Price

Base case No No No
Case 01 Yes No No
Case 02 No Yes No
Case 03 Yes Yes No
Case 04 Yes Yes Yes

The system under study consists of a total of 20 customers, which is a part of the
system used in research [42,43] and is available publicly to download and use [44]. All
the community participants have a contract with a retailer about the power buy/sell
limits, power exchange rate, fixed cost to use resources, and storage of power. The power
consumption, generation, and storage are recorded by a smart meter, and aggregators or
system operators may use it to forecast future values. In the proposed energy community
model, forecasted data can also be used to estimate the system cost and revenue. The local
energy community system specifications are listed in Table 2. The power capacity of the
battery and solar PV installation for each customer is shown in Figure 1. The power trade
prices are shown in Figure 2.

The simulation platform is MATLAB, and a mixed integer linear programming op-
timization problem is solved by using the TOMLAB toolbox. The results of system cost
Cimport

x,t and customer revenue Rexport
x,t were obtained for five cases, as stated in Table 3.
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Table 2. System specification.

Parameter Symbol
Value

Unit
Min Max

Number of customers Nx 20 -

Customers’ buy limit - 4.6 10.35 kW

Customers’ sell limit - 2.3 5.175 kW

Fixed cost FCx,t 0.32 0.62 EUR/day

Power buy price Pbuy
x,t 0.0922 0.1836 EUR/kWh

Power sell price Psell
x,t 0.045 EUR/kWh

Mid-market price Pmmp
x,t 0.0686 0.0937 EUR/kWh

Electric load of customer Eload
x,t 0 7.07 kW

Generation of customer Egen
x,t 0 7.75 kW

Initial battery power Ebat
x,ini 0 kW

Battery capacity of customers Ebat
x,t 13.5 15 kWh

Charging efficiency of battery ηx,ch 90% -

Discharging efficiency of battery ηx,dch 90% -

Figure 1. Battery capacity and PV installed capacity.

Figure 2. Buy and sell energy prices.
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Table 3. System cost results, cost saving, and revenue.

Case System Cost (EUR) % Cost Saving Revenue (EUR)

Base case 42.25 - 2.09
Case 01 39.88 5.60% 2.13
Case 02 41.04 2.86% 2.42
Case 03 38.70 8.40% 2.46
Case 04 34.11 19.26% 5.48

The system cost was highest in the base case and lowest in case 4. The cost reduction
was achieved in each case with respect to the base case. The economic savings were in
the range of 2.86–19.26%. This result indicates that when the behavioral interventions
work positively for energy conservation and increase solar power adoption in the mid-
market price scenario, the local energy community achieved an economic benefit of 19.26%.
While considering the revenue of customers for selling the power, the lowest revenue was
observed in the base case. If the customers responded positively to interventions and
changed their behavior for energy conservation and adoption of solar power at the same
time, i.e., comparing the base case with case 03, an economic benefit of 17.7% was obtained
by the local energy community. The same behavior with the mid-market price increased
the revenue from EUR 2.09 to EUR 5.48. In overall comparison, case 04 was the most
economical way of operating the system, as it corresponded to the lowest system cost and
the highest revenue.

Figure 3 depicts the peak power export of all twenty customers. As the optimization
model for reducing the economic cost of the community ran, it was discovered that only a
few customers exported a negligible quantity of energy to the community. Therefore, the
most cost-effective option for these consumers was to generate their own electricity. On
the other hand, exporting excess electricity to a utility or community was the best method
to reduce system costs, so few customers had a substantial quantity of excess electricity.
Comparing the average power exported in all five cases, the base case exported the least
power, while case 04 exported the most.

Figure 3. Peak power export by customers.

Table 4 and Figure 4 present the statistics for the local cost of purchasing electricity for
five cases. The case-by-case results presented in Table 4 depict the minimum and maximum
power purchase costs incurred by customers, the average power purchase cost, and the
reduction in power purchase costs compared to the base case. In this context, average
power buy cost refers to the ratio of the sum of power buy costs for all customers in a
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specific case to the total number of customers. Figure 4 depicts the comprehensive results
of the power purchase cost for all consumers in all circumstances.

Table 4. Power buy cost values.

Case
Cost Range

(Min–Max) (EUR)
Average Cost (EUR)

% Reduction in avg.
Power Buy Cost

Base case 0.46–3.13 1.788 -
Case 01 0.40–3.13 1.671 6.53%
Case 02 0.46–2.99 1.745 2.40%
Case 03 0.40–2.93 1.628 8.95%
Case 04 0.66–2.49 1.262 29.41%

Figure 4. Cost of power bought in community.

Case 04 was the exception; in all other instances, consumers purchased power from
the utility power grid at a price indicated in Figure 2’s price chart. In case 04, consumers
were permitted to purchase electricity at the calculated mid-market price (5). Considering
battery energy storage, case 04 gave optimum results compared to the other cases. Battery
power trading was the most economical, as the lowest system cost and highest revenue
were reported. According to the results, it is evident that the base case had the maximum
power purchase cost, and case 04 had the lowest.

Table 5 and Figure 5 detail the revenue derived from the sale of energy to the commu-
nity. Comparing all cases, it is evident that the base case had the lowest economic benefit
for customers, while case 04 had the highest. Case 04 has an average revenue of 0.274 EUR,
which was 163.46% higher than the base case. Customers were permitted to sell power in
their local community at a mid-market price that was less than the utility grid export price,
and they were also permitted to purchase power at a mid-market price that was less than
the utility grid import price.

Table 5. Power sold revenue values.

Case
Revenue Range

(Min–Max) (EUR)
Average Revenue

(EUR)
% Increase in Avg.

Power Sell Revenue

Base case 0–0.398 0.104 -
Case 01 0–0.559 0.106 1.92%
Case 02 0–0.553 0.121 16.34%
Case 03 0–0.561 0.123 18.26%
Case 04 0–0.874 0.274 163.46%
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Figure 5. Revenue of power sold in the community.

4. Discussion and Policy Implication

We will now go through how the experiment’s findings could be relevant to policy-
makers who are debating whether to execute a behavioral intervention or a cost-based
intervention aimed at encouraging consumers to use less energy and switch to renewable
sources. When people are unable to charge higher premiums, social intervention may be a
particularly attractive policy instrument to urge them to conserve electricity. We contend
that motivating factors and social position, in addition to economic reasons, also play a role
in making judgment calls and that policymakers may take advantage of these elements to
boost policy effectiveness. We conducted an experiment based on the local energy commu-
nity members’ heterogeneity, a characteristic common to social computational science, to
examine how a policy will progress after the socioeconomic drivers of electricity savings
and renewable energy adoption are taken into consideration. The research we used to
develop an effective approach to electricity community simulation is a good illustration
of how behavioral elements, including ecological issues, are becoming more and more
important to policymakers. Additionally, our findings imply that a further step is required:
details on objectives should be collected in a way that enables communicating their relative
importance within the energy community member’s decision-making strategy in order to
obtain a complete picture of the policy receivers.

Overall, by experimentally examining the effect of local energy communities on costs,
our results add to studies on energy conservation and the uptake of renewable energy
sources. Despite this, there are certain limitations to our study. First, this study evaluated a
hypothetical decision between adopting renewable energy sources and energy conservation.
Even so, we think that this analysis offers policymakers an important empirical understand-
ing of how to deploy interventions for local power cost reduction, despite some evidence
to the contrary. Secondly, we assume the infrastructure required for communication is in
a ready condition in the local electric community. For instance, it gave decision-makers
new instruments for influencing social behavior as well as new perspectives for more
precisely forecasting the effects of current policies. Social interventions are commands to
do or not do something that are supported by the acceptance or rejection of others. Social
influencing frequently promotes collaboration and has a significant impact on behavior in
the local community. They may be successful, for instance, in lowering energy use. Because
of this, social interventions may be used to address significant social problems. This is
particularly vital for the energy local area because, by saving more energy costs, they will
have more monetary assets accessible for other important merchandise that they generally
can not manage.
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While we have reproduced intervention-based cases independently, further exami-
nation ought to explore the possibility in future that behaviorally informed interventions
could be utilized mixed with conventional ones, for example, how and what mixtures
of traditional, behavioral, and socially informed instruments are powerful at advancing
energy viability choices. One method for evaluating its viability would be by investigating
the instruments on which such combinations work. An incentive-based policy proposal
might be interesting research work in the future.

Due to its explicit behavior expectations and good mathematical representation, the
projected model can be used as a reference for policymaking. Policymakers can address the
social drivers of energy saving and embracing renewables by planning interventions that
recognize that people are not generally judicious leaders, particularly when the unfortunate
circumstances where they live drain the mental assets important for reasonable direction.
Only behavioral interventions that are fair to the target population, that are designed to
meet people’s demands and aspirations, and that stop the private sector from creating
deceptive interventions should be supported by policymakers. Nevertheless, relying solely
on behavioral economic perspectives is insufficient for policymakers to determine if the
behavioral intervention has been successful in encouraging better choices and results at a
wider level, if it should be improved, whether it can be scaled up, or if it is reproduced in
other locations. They must make use of the insights from impact evaluations in order to rely
on the strongest evidence. According to this branch of study, interventions can produce the
best evidence because they make it possible to establish the ideal circumstances to take into
account when developing an intervention’s effects.

The proposed model would also work in the urban population. However, if the local
community is larger, i.e., customers exchanging the power are located at a far distance,
the internal power losses would significantly affect the system cost. In such cases, a
sophisticated optimization model with customer groups in large quantities would be an
option to get the optimum system cost.

5. Conclusions

Behavioral economics emphasizes economic incentives and offers a wider view of the
problem that considers the diversity of people. We also offer an additional explanation that
involves the social framework in which contact takes place via behavioral intervention.
Most people agree that social involvement encourages technology adoption through emula-
tion. To encourage more consumers to modify their energy behavior and foster bottom-up
initiatives, an energy policy that provides more opportunities for investment in renewable
power and behavioral interventions for energy conservation is required.

To the best of our knowledge, this is the first empirical study experiment that uses
behavioral intervention results to calculate the system cost of a local energy community.
In this study, we looked at how much behavioral changes like electricity conservation
and renewable energy adoption may lower the cost of the local electrical grid. Based on
the efficacy of interventions for a locally controlled power system, we examined a variety
of instances. While adopting energy conservation only and while adopting higher PV
generation individually, the system cost was reduced by 5.60% and 2.86%, respectively.
The lowest system cost of EUR 34.11 for case 04 and the highest revenue of EUR 5.48 in
the same case were achieved. The average cost reduction of up to 29.41% was achieved in
case 04 compared to the base case, and also the average power sell revenue increased by
up to 163.46% when energy conservation and higher renewable power generation were
considered. The results point to favorable effects and give policymakers proof to use when
adopting behavioral intervention strategies for energy conservation and preference for
renewable energy sources. Outcomes of an empirical study show that when socioeconomic
and behavioral objectives are taken into consideration, policy interventions may result in
paradoxical results, notwithstanding a few constraints. The findings also imply that the
path followed is worthwhile continuing as long as this kind of modeling is improved, and
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perhaps as quantitative social science develops by gathering additional qualitative data on
the judgment process of the energy community.

Author Contributions: Conceptualization, P.M.; methodology, P.M. and J.S.; software, P.M. and
J.S.; validation, P.M., J.S. and K.P.; formal analysis, K.P.; investigation, P.M.; data curation, J.S.;
writing—original draft preparation, P.M.; writing—review and editing, K.P., J.S. and Z.V.; supervision,
Z.V. All authors have read and agreed to the published version of the manuscript.

Funding: This article is a result of the project RETINA (NORTE-01-0145-FEDER-000062), supported
by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020
Partnership Agreement, through the European Regional Development Fund (ERDF). João Soares
has received funding from FCT, namely CEECIND/00420/2022. The authors acknowledge the work
facilities and equipment provided by GECAD research center (UIDB/00760/2020).

Data Availability Statement: The dataset utilized in our publication can be accessed at the following
link: https://zenodo.org/record/4737293#.ZCxOUXZBxPY, accessed on 15 November 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Indices

x customers
t periods
Parameters

Nx number of customers
Nt number of periods
Ebuy max

x,t power purchase upper limit
Esell max

x,t power sell upper limit
Ebat

x,ini initial battery energy
dt time period adjustment factor
FCx,t fixed cost
Eload

h,t electric load of customer
Egen

h,t power generation of customer
ηx,ch charging efficiency of battery
ηx,dch discharging efficiency of battery
Pmmp

x,t mid-market price
Psell

x,t power sell price
Pbuy

x,t power buy price
lsell
x,t power loss multiplier for power sell

lbuy
x,t power loss multiplier for power buy

Variables

Ebuy
x,t power purchased by community members

XEB
x,t binary variable for power purchase

Ebuy mmp
x,t power buy at mid-market price

XEB mpp
x,t binary variable for power buy at mid-market price

Esell
x,t power sell by community member

XES
x,t binary variable for power sell

Esell mmp
x,t power sell at mid-market price

XES mmp
x,t binary variable for power sell at mid-market price

Ebat
x,t electric energy content of the battery

Ebat ch
x,t battery charging power

Ebat dch
x,t battery dis-charging power

Cimport
x,t cost of power import from grid

Clem
h,t cost of power buy in LEM

Rexport
x,t revenue from power export to grid

Rlem
h,t revenue from power sell in LEM
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Abstract: The high penetration of renewable energy resources’ (RESs) and electric vehicles’ (EVs)
demands to power systems can stress the network reliability due to their stochastic natures. This can
reduce the power quality in addition to increasing the network power losses and voltage deviations.
This problem can be solved by allocating RESs and EV fast charging stations (FCSs) in suitable
locations on the grid. So, this paper proposes a new approach using the red kite optimization
algorithm (ROA) for integrating RESs and FCSs to the distribution network through identifying their
best sizes and locations. The fitness functions considered in this work are: reducing the network
loss and minimizing the voltage violation for 24 h. Moreover, a new version of the multi-objective
red kite optimization algorithm (MOROA) is proposed to achieve both considered fitness functions.
The study is performed on two standard distribution networks of IEEE-33 bus and IEEE-69 bus. The
proposed ROA is compared to dung beetle optimizer (DBO), African vultures optimization algorithm
(AVOA), bald eagle search (BES) algorithm, bonobo optimizer (BO), grey wolf optimizer (GWO),
multi-objective multi-verse optimizer (MOMVO), multi-objective grey wolf optimizer (MOGWO),
and multi-objective artificial hummingbird algorithm (MOAHA). For the IEEE-33 bus network, the
proposed ROA succeeded in reducing the power loss and voltage deviation by 58.24% and 90.47%,
respectively, while in the IEEE-69 bus it minimized the power loss and voltage deviation by 68.39%
and 93.22%, respectively. The fetched results proved the competence and robustness of the proposed
ROA in solving the problem of integrating RESs and FCSs to the electrical networks.

Keywords: electric vehicles; charging stations; renewable energy; red kite optimization algorithm

MSC: 90C31

1. Introduction

Recently, there has been a rapid growth in the use of fossil fuel sources, especially
in electric power generation plants and the transportation sector. These sources increase
environmental pollution as they emit greenhouse gas; they also cause global warming [1].
Therefore, many countries are looking to replace gasoline vehicles with clean energy
cars, known as electric vehicles (EVs), to reduce the amount of pollution [2]. EVs are
environmentally friendly, but have different economic costs than gasoline ones. EVs have
advanced batteries and power electronic devices that enable them to be installed to grids
as controllable loads. The integration of EVs to power systems faces great challenges
like violation of transmission line thermal constraints due to overload; this may cause a
voltage drop in some sensitive buses. Also, the uncertainties associated with these vehicles
represent challenges to: the distribution network operator, as the sources of uncertainties
are time rounding; the amount of daily energy consumption; the range of driving; and
the EV battery capacity [3]. When EVs charge from public charging stations, mostly fast
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charging stations (FCSs) are utilized by demanding high power from the grid to reduce the
required charging duration to meet the required battery state-of-charge (SOC). However,
the high demand required by these stations causes negative effects on the distribution
network, as they increase the network power losses and voltage deviations. However, to
reduce the demand on the grid, renewable energy sources (RESs) can be installed to supply
the excess loads during peak time. Identifying the optimal allocations of RESs and FCSs
in the distribution network is mandatory to minimize their associated negative effects.
Improvement of the power generation from RESs is essential; various technologies have
been presented to improve the power quality of renewable energy sources integrated in the
microgrid [4,5].

Many reported approaches have been implemented to identify the best allocations and
sizes on both RESs and FCSs. Amer et al. [6] presented a planning model to evaluate the
sizes and sites of FCSs in addition to wind turbines in distribution networks. The authors
considered the stochastic features of RESs, FCSs, and residential EV loads. In [7], parking
lots and capacitor allocations have been identified in the electrical distribution network
via a biogeography-based optimizer (BBO) to compensate the system reactive power. A
multi-objective problem was introduced and solved via hybrid and grey wolf optimizers
(GWO) and the particle swarm optimizer (PSO) to allocate FCSs, and shunt capacitors
and distributed generators (DGs) [8]. Reducing the cost of power loss, minimizing the
voltage fluctuation, reducing the development costs of FCSs, minimizing the costs of
EV energy consumption, and reducing the costs of DGs have been considered as targets.
Bayram et al. [9] determined the allocations of parking lots via a combinatorial optimization
algorithm and the two-stages stochastic programming model. A comprehensive review of
allocating the EV rapid charging stations based on economic benefits has been conducted
by Gupta et al. [10]. A planning method for penetrating FCSs in the electrical distribution
network has been presented in [11] to find the optimal operators, traffic conditions, vehicles,
power grids, and drivers. Moreover, the authors used real-time data for the practical third
ring of Beijing. In [12], the non-dominated sorting genetic algorithm II (NSGA-II) was
presented to evaluate the places and sizes of FCSs and DGs installed in the electrical
distribution network. The considered targets are mitigating the EV user loss, minimizing
the power loss, reducing the cost of FCS development, and enhancing the voltage shape. A
FCS connected to the grid has been simulated in [13] such that the harmonic currents were
minimized. Moreover, an energy management strategy has been presented via integrating
the photovoltaic (PV) generation system. Pal et al. [14] identified the best allocations of FCSs
and solar DGs in addition to battery storage system in the electrical distribution network
using the hybrid Harris hawks optimizer and GWO. The targets are mitigating the energy
loss, investment costs, operating and maintenance costs, and the voltage violation index.
Moreover, the number of charging ports, FCSs’ capacities, and the captured power via EVs
have been evaluated. A planning model of FCS has been introduced and solved by binary
PSO to minimize the costs of construction, operating and maintenance, trips to the station,
and power loss [15]. In [16], optimal places and capacities of FCSs and RESs integrated
to the distribution network have been identified when considering the uncertainties of
renewable-based generators. Also, the capacitated deviation flow refueling location-based
model has been presented to cover the EVs’ charging demands on transportation network.
Amer et al. [17] developed a stochastic program to evaluate the optimal locations and
sizes of small wind turbines connected to FCSs in urban and suburban areas. Moreover, a
worthiness metric has been employed to classify the FCS candidate sites according to the
EV drivers’ attractiveness. The EV charging station place was evaluated in the electrical
network and covered by the transportation network using HHO and differential evolution
(DE) [18]. The targets are mitigating the voltage fluctuation, minimizing the energy loss, and
reducing the cost of land for maximizing the service to EV with minimized founding costs.
A quantum-behaved Gaussian mutational dragonfly algorithm (QGDA) has been employed
to conduct the best planning of capacitors and EV charging stations in the distribution
network [19]. The authors in [20] reviewed various configurations of charging station
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designs, and the different modes of renewable DGs were summarized. Ahmad et al. [21]
solved the problem of sitting solar-operated charging stations integrated to the grid using
an improved chicken swarm optimizer where the network voltage profile was enhanced
while the power loss and operating cost were minimized. Moreover, the authors used a
stochastic method to forecast the EV demand and the neural network to predict the power
generated from the solar PV plant. The places of charging stations integrated to the grid
have been evaluated via the hybrid metaheuristic approach comprising the chicken swarm
optimizer (CSO) and the teaching learning-based optimizer (TLBO) [22]. A solar hybrid EV
charging station has been presented to mitigate the dependence on the main grid [23]. The
authors used a stochastic model to forecast the EV arrival time, battery SOC, and charging
demand. Moreover, a stochastic firefly algorithm (SFA) has been used as a maximum power
point tracker (MPPT) for the solar system to extract its maximum power. Furthermore,
SFA has been employed to solve multi-objective planning to mitigate the investment cost
and enhance the charging profit. In [24], the sizing problem of EV charging stations
has been solved via optimization frameworks to reduce the charging station investment
cost and provide a certain quality of service to the client. The locations of FCSs in the
distribution network have been identified via solving multi-objective problems using a
transient search optimizer (TSO) to mitigate the active and reactive losses and enhance the
network voltage stability [25]. A model with two stages for optimizing charging stations
and charging schedules has been presented by Yi et al. [26] to achieve complete satisfaction
among members of society. The load demand and starting point of the trip have been
predicted via Monte Carlo simulations in the first phase while a binary PSO has been
employed in the second one to find the optimal path of the trip. In [27], the state-of-the-
art features for many design approaches of FCSs have been reviewed in addition to the
future challenges of each one. Zhou et al. [28] presented a model to calculate the charging
station’s total operating cost which is divided into economic and environmental costs.
Also, the locations of these stations in Irish regions have been identified using a genetic
algorithm (GA) where the total cost is reduced. A black widow optimizer (BWO) has
been used to identify the optimal places of charging stations and renewable DGs in the
distribution system with the aid of model predictive control (MPC) that simulates the
actual SOC of storage batteries [29]. Many methods conducted in optimizing the charging
station have been reviewed and categorized according to the fitness functions, algorithms,
constraints, modeling of EV uncertainties, and DG integration [30]. In [31], FCSs, solar
PV, and storage batteries have been installed in distribution networks with sizes and
locations decided by hybrid NSGA-II and Fuzzy satisfaction. The authors considered many
targets, like system power loss, voltage violation, flow of served EVs, costs of investment,
operation and maintenance of PV, and charging stations. The planning of charging station
location and battery-swapping stations have been presented as multi-objective problems
to mitigate the total cost, enhance the satisfaction of user, and reduce the EV’s consumed
energy [32]. A hybrid approach combining the student psychology optimizer and the
AdaBoost algorithm has been introduced to allocate the EV charging station linked to
distribution generation such that the peak power and voltage regulation are mitigated [33].
Al Wahedi et al. [34] implemented a techno-economic analysis via the HOMER software for
renewable-based charging stations to evaluate its optimal configuration in different cities
in Qatar. Excessive review of different nature-inspired optimizers employed in solving
the problem of FCS placement has been presented in [35]. The optimal planning of FCSs
has been expressed as a multi-objective problem with multi-criteria decision-making [36].
Minimizing the total charging time and cost is the main target of the work presented
in [37] to model the vehicle charging via a bi-level optimizer. The optimal locations of EV
parking lots in smart distribution systems have been identified using a hybrid metaheuristic
algorithm to reduce the network loss and voltage fluctuation [38]. Moreover, the cost of EV
charging/discharging and the cost of purchased power from the grid are considered in the
presented problem. Fathy et al. [39] presented a competition over resource (COR) approach
to determine the optimal sites and sizes of EV parking lots in the electrical distribution
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system. The authors considered the cost of reliability enhancement, investment cost, and
the cost of power loss improvement as the targets to be minimized. Table 1 outlines most
of the reported methods to integrate RESs and FCSs in electrical networks, the reader can
observe the following items:

• Most of the reported works used metaheuristic optimization algorithms to integrate
RESs and FCSs to the network.

• Many of these methods lack accuracy due to the fall in local optimal solution in
addition to the slow convergence rate of some approaches.

• Also, the reported hybrid algorithms were complicated to implement and required
excessive effort and time.

• Many researchers ignored the installation of distributed generators (DGs) and they
relied mainly on the grid as the source of energy.

The authors considered all these shortages in the reported methods and covered them
via the following contributions:

• A new methodology incorporating the simple and efficient red kite optimization
algorithm (ROA) is proposed to evaluate the optimal capacities and places of RESs
and FCSs in distribution networks.

• The considered fitness functions are: reducing the network active loss and minimizing
the voltage deviation.

• A multi-objective red kite optimization algorithm (MOROA) is proposed to reduce
both targets.

• The proposed approach competency is proved through the obtained results.

The paper is outlined as follows: Section 2 explains the model of th considered system;
the form of the optimization problem is presented in Section 3; the basics of ROA are
introduced in Section 4; the proposed ROA-based methodology is explained in Section 5;
the results and discussions are presented in Section 6; and Section 7 handles the conclusions.
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2. The Considered System Model

The integration of renewable-based DGs and EVs in the distribution network is con-
sidered in this work. This section presents the models of the photovoltaic (PV) system,
wind turbines (WT), and electric vehicles (EVs).

2.1. Model of the PV System

The PV system transforms light to electrical energy, and has many methods employed
in producing electrical energy from sunlight irradiance. It composes a series of cells to
produce the required voltage. The generation of the PV system relies on temperature and
solar radiation striking its surface, so it is essential to consider both terms while studying the
PV system’s behavior. Normal operating cell temperature (NOCT) is used as an indicator
of cell temperature that can be computed as follows [40]:

Tc = Ta +
NOCT − 20◦

0.8
·G (1)

where Ta is ambient temperature and G is irradiance.
The cell generated power can be expressed as

Pc = P × [η × (Tc − 25◦)] (2)

where P is the cell rated power and η is the efficiency of the solar cell. The PV panel
generated power can be obtained via multiplying the cell output power by the number of
cells as follows:

PPanel = ncell × Pc (3)

where ncell denotes the number of cells in the panel. The used temperature and solar
radiation daily profiles are shown in Figure 1 [41].

Figure 1. Daily profiles of temperature and solar radiation.

2.2. Model of a Wind Turbine

The wind turbine (WT) output power depends on the wind speed and wind direction
in addition to the geography site of installation and wind density. The extracted power
from WT can be written as follows:
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PWT(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 V < Vcut−in or V > Vcut−o f f

Pr
WT

(
PWT0−Pr

WT
Vcut−o f f −Vr

)
(V(t)− Vr) Vr < V ≤ Vcut−o f f

Pr
WT

(
V(t)−Vcut−in
Vr−Vcut−in

)3
Vcut−in ≤ V ≤ Vcut−o f f

(4)

where Pr
WT is the WT rated power, Vcut−in, Vr, and Vcut−o f f are the cut-in, rated, and cut-off

speeds of the turbine, respectively, V is wind speed, and PWT0 is WT power at the cut-off
speed. The WT output power can be calculated as [42]

PWind−total = nWT × PWT (5)

where nWT denotes wind turbine number. The wind speed daily profile is given in
Figure 2 [41].

Figure 2. Wind speed daily profile.

2.3. Model of an Electric Vehicle

In order to model the EVs, three elements should be considered which are the expected
mileage per day, the consumed energy per mile, and the wait time spent in the station. The
first one can be simulated through lognormal distribution [43]; the lognormal distribution
probability density function (PDF) can be computed as

f (x) =
1√

2πσx
exp

(
− (ln(x)− μ)2

2σ2

)
, x > 0 (6)

where x is a random number with one variance and zero mean, μ and σ denote the location
and scaling parameters, respectively, and they can be calculated as follows:

μ = ln

⎛
⎝ m√

1 + v
m2

⎞
⎠, σ =

√
ln
(

1 +
v

m2

)
(7)

where m and v represent the standard deviation and mean created via historical data. The
expected mileage per day can be expressed as follows:

Md = e(μm+σm×√−2×lnc1×cos(2πc2)) (8)
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where σm and μm are the parameters of lognormal probability distribution, respectively,
and c1 and c2 are random variables that follow the normal distribution; they are in the
range of [0, 1]. The values of σm and μm can be calculated with the aid of the standard
deviation (σmd) and mean (μmd) of EV mileage statistical data as follows:

μm = ln

⎛
⎝ μ2

md√
μ2

md + σ2
md

⎞
⎠, σm =

√√√√ln

(
1 +

σ2
md

μ2
md

)
(9)

The second important parameter that should be considered while modeling the EV is
the consumed energy per mile, it can be computed as [44]

Em = α × Kb
EV (10)

where α and b represent the EV model constant coefficients and KEV is the total energy
supplied via battery. The EV can travel the maximum mileage (MdMax) with a fully charged
battery through the following formula:

MdMax =
BCap

Em
(11)

where BCap is the battery capacity, and the charging demand can be computed as follows:

Ed =

{
BCap Md ≥ MdMax

Md × Em Md < MdMax
(12)

A Gaussian distribution can be used to calculate the waiting time spent in the station
as follows [45]:

ta = μa + σa·x1, td = μd + σd·x2 (13)

tdur = td − ta (14)

where ta, td, and tdur are arrival, departure, and charging duration times, respectively, σa,
σd, μa, μd are standard deviations and means of entrance/leaving of EV to/from the station,
and x1 and x2 are random numbers with one variance and zero mean.

The required state of charge (SOCdesired) of EV battery can be calculated as follows [44]:

SOCdesired = min

{(
SOCinit +

Ed
BCap

)
,

(
SOCinit +

tdur
BCap

·rch

)}
(15)

where SOCinit and rch are the battery’s initial state of charge and charging rate, respectively.
In this study, four EVs with specifications given in Table 2 are considered [44]. The layout
of the considered model is shown in Figure 3.

Table 2. The specifications of the four considered EVs.

Vehicle Model Honda Accord Toyota Prius Chevrolet Volt Ford Fusion

Consumed power 29 kW/mile 29 kW/mile 36 kW/mile 34 kW/mile
Distance with battery

capacity 13 miles 11 miles 37 miles 21 miles

Capacity of battery 6.6 kWh 4.4 kWh 16 kWh 7.6 kWh
Maximum rate of charge 6.6 kW 3.5 kW 3.5 kW 3.5 kW
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Figure 3. Layout of the considered model.

3. Form of Optimization Problem

In this section, the objective function and constraints are established to allocate and
seize the renewable energy DGs and EV charging stations. Minimizing the total power
loss of the network and reducing the voltage violation are the two considered objective
functions. The accompanied constraints are supply-demand balance, limits of bus voltage,
thermal constraint, generation limits, and constraints related to EVs.

3.1. Network Power Loss

The active power loss of the network is considered as the first target, it can be written
as follows:

f1 = Minimize Ploss (16)

Ploss = ∑24
t=1 ∑nb

i=1 ∑nb
j>1 Yij

(
V2

i,t + V2
j,t + 2Vi,tVj,tcos

(
δi,t − δj,t

))
(17)

where nb is the number of branches, Vi,t and Vj,t are the magnitudes of voltage at buses
i and j during time t, respectively, δi,t and δj,t are the voltages’ angles at buses i and j,
respectively, and Yij is the admittance of feeder i − j. The mitigation of the network losses
is the required target from the distribution system operator perspective.

3.2. Network Voltage Violation

The second target is reducing the network voltage violation; the penetrations of RESs
and FCSs to the grid may increase the capacity of supply part, this helps in reducing the
losses and enhancing the voltage violation. This can be expressed as follows:

f2 = Minimize ∑24
t=1 ∑nb

i=1|1 − Vi,t| (18)

3.3. Constraints

Balance of supply-demand, limits of bus voltage, thermal limits, generation limits,
and constraints related to EVs are five constraints considered in the formulated problem.
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3.3.1. Supply-Demand Balance

This constraint is given by load flow analysis, the supplied power at each bus should
be equal to the demand power plus the power losses of the branches connected to this bus.
This can be written as follows:

Pgi,t − Pdi,t = Pchi,t + |Vi,t|∑nb
j=1

∣∣Yij
∣∣∣∣Vj,t

∣∣cos
(
δi,t − δj,t − θij

)
(19)

Qgi,t − Qdi,t = |Vi,t|∑nb
j=1

∣∣Yij
∣∣∣∣Vj,t

∣∣sin
(
δi,t − δj,t − θij

)
(20)

where Pgi,t, Pdi,t, and Pchi,t are the generated, demand, and EV charged active powers at bus
i during time t, respectively, Qgi,t and Qdi,t are the generated and demand reactive powers
at bus i during time t, respectively, and θij is the angle of Yij.

3.3.2. Bus Voltage Constraint

During integrating charging station and RESs, the bus voltage should be kept inside
its normal limits as follows:

Vmin ≤ Vi,t ≤ Vmin (21)

δmin ≤ δi,t ≤ δmin (22)

where min and max denote minimum and maximum values.

3.3.3. Thermal Constraint

Integrating the EV to the grid increases the transmission line power flow, therefore the
temperature of lines will raise, the power flow should not exceed the allowable range, this
can be written as follows:

|Si,t| ≤ |Si
max|, i = 1, 2, . . . , nb (23)

where Si,t is the power flow in line i at time t while Si
max is the maximum allowable flow in

line i.

3.3.4. Generation Limit

The generated power from renewable energy DGs should be in its normal limits
as follows:

PRES
min ≤ PRESi,t ≤ PRES

max (24)

where PRESi,t is the output power from RES installed at bus i during time t, and PRES
min

and PRES
max denote the minimum and maximum generated powers from RES, respectively.

3.3.5. EV Constraint

The power required by the EV should be inside min and max limits as follows:

PEV
min ≤ PEVi,t ≤ PEV

max (25)

where PEVi,t is the output power from EV connected to bus i at time t, and PEV
min and

PEV
max represent the minimum and maximum required powers by EV, respectively.

4. The Basics of the Red Kite Optimization Algorithm

The red kite optimization algorithm (ROA) is a novel metaheuristic approach intro-
duced by Gahruei et al. [46]; it was inspired by the red kites’ social life. The red kites usually
build nests near lakes and wooded areas that are suitable for hunting. They live together,
with random movements, and are affected by each other’s positions during flight, and
they use high speed while hunting. They have voices, called the sound of unity, that have
been generated in times like finding good bait, water source, migration, and birth. Also,
the sounds that occur in times of danger such as enemy attack, death of another animal,
earthquake, and storm are known as the sound of danger. To simulate the behavior of a
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red kite in finding food, each bird can be defined through its position, value of evaluation
function, amount of displacement of points, sound of danger (in the direction of the indi-
vidual component), sound of unity (in the direction of the social component), new position
of the bird, and new evaluation function. In order to obtain good results, the metaheuristic
algorithm must first navigate the problem search space well to prevent trapping in local
optima. Then it gradually moves from the exploration to exploitation phase and exploits
the best solution in the last iterations. ROA has three main stages which are explained
as follows:

1. The first stage—the initial position of the birds: In this stage, according to Equation
(26), the position of red kites can be initialized randomly as,

Posi,j(t) = lb + rand × (ub − lb), i = 1, 2, . . . , n and j = 1, 2, . . . , d (26)

where Posi,j(t) is ith red kite’s position at iteration t, lb and ub are lower and upper
boundaries, respectively, n is size of population, d denotes problem dimension, and
rand is a random number in [0, 1].

2. The second stage—selection of the leader: Selecting the leader is obtained according
to Equation (27):

−−−→
Best(t) =

−−−→
Posi(t) i f fi(t) < fbest(t) (27)

where Best(t) denotes position of the best bird in iteration t, Posi(t) denotes the
position of ith red kite in iteration t, fi(t) is value of the bird evaluation function
in iteration t, and fbest(t) is the value of the evaluation function of the best bird in
iteration t.

3. The third stage—the movement of the birds: It is considered that red kites must
gradually move from exploration phase to exploitation stage through considering
decreasing coefficient (D) according to Equation (28).

D =

(
exp

(
t

t _max

)
− t

t _max

)−10
(28)

where t is the current iteration and t _max denotes the maximum iteration.

The birds update their positions through Equations (29) and (30):

−−−−−−−−→
posnew

i (t + 1) =
−−−→
Posi(t) +

−−−−−−−→
Pmi(t + 1) (29)

−−−−−→
Pmi(t + 1) = D(t)×

−−−→
Pmi(t) +

−−−→
SC(t) �

(−−−−−→
Posrws(t)−

−−−→
Posi(t)

)
+
−−−→
UC(t) �

(−−−→
Best(t)−

−−−→
Posi(t)

)
(30)

where Posrws(t) is the bird position selected by roulette wheel in iteration t, posnew
i (t + 1)

denotes the new position of the bird, and SC and UC are random vectors of social and
individual components, respectively. After updating the position, it is important to check
the search space boundaries, this can be conducted using Equation (31) as,

−−−−−−−−→
posnew

i
(
t + 1

)
= max

(
min

(−−−−−−−−→
posnew

i
(
t + 1

)
+ ub

)
, lb

)
(31)

The new temporary position will be replaced if the evaluation function is improved.
In such case, Posi(t + 1) is equal to posnew

i (t + 1). As mentioned, SC and UC are random
vectors of social and individual components, they represent the voice of unity and danger
of each bird, and they are obtained according to the following relation:

276



Mathematics 2023, 11, 3305

⎧⎨
⎩

−−−−−→
SC(t + 1) =

→
r1

−−−−−→
UC(t + 1) =

→
r2

i f rand ≤ 0.5

⎧⎨
⎩

−−−−−→
SC(t + 1) =

→
r3

−−−−−→
UC(t + 1) =

→
r1

Otherwise (32)

where
→
r1 is a random vector in [1, 2],

→
r2 is a random vector in [1, 3], and

→
r3 is a random

vector in [0, 1].
In the ROA, based on the current position of each bird, the position of a neighbor

is randomly chosen via a roulette wheel and the best solution found so far. In the early
iterations, the value of D(t) is close to one for exploring and searching new spaces. In the
movement based on the individual component, the red kite explores new spaces based on
its position and that of a randomly selected neighbor. The social component also leads the
algorithm to global optimum. Gradually, as the algorithm moves from the initial iterations
to intermediate iterations, the coefficient D(t) decreases to achieve balance between the
exploration and exploitation phases. In the final iterations, this coefficient tends to zero and
the algorithm exploits searching for the best solution among the obtained good solutions.
The ROA is characterized by its ease in structure and execution, also it has few controlling
parameters and a high convergence rate. The flowchart of the ROA is shown in Figure 4.

Figure 4. ROA flowchart.
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5. The Proposed ROA-Based Methodology

This work proposes a new approach of the ROA to identify the optimal sites and sizes
of RESs and FCSs in a radial distribution network. The considered objective functions are
selected based on the distributor operator’s point of view, and are mitigating the network
power loss and minimizing the voltage fluctuation. Also, a new multi-objective ROA is
proposed to achieve both targets. The assigned memory of the problem is divided into
four vectors that represent the locations and sizes of RESs and FCSs as shown in Figure 5.
The process of updating followed in the ROA using Equations (29) and (30) is adapted
such that the first and third vectors of the variables have integer numbers assigned to the
best sites of both RESs and FCSs. The most key features that characterize the proposed
ROA are simplicity of the construction, need of few controlling parameters, and balance
between exploration and exploitation phases. These features enhance the convergence
rate of the algorithm and prevent falling in local optima. All these merits encourage the
authors to apply the ROA in solving the presented problem. The proposed ROA pseudo
code assigned to solve the single objective problem is given in Algorithm 1.

Algorithm 1 The proposed ROA pseudo code to solve the single objective optimization problem.

1: Define the ROA parameters like max iteration (t_max), size of population (n), d, lb, ub, and
number of runs (n_run).
2: Input the load data and line data of the network under study.
3: Conduct load flow analysis and keep the voltage fluctuation and power loss.
4: Formulate the initial population using Equation (26).
5: for i = 1: n
6: Integrate Posi in the network, where Posi is the probable solution from the population.
7: Conduct power flow for the network with integrating Posi.
8: Compute the initial evaluation function ( fi(Posi)).
9: end for
10: while k > n_run do
11: for t > t_max do
12: for i = 1: n
13: Calculate the values of SC, UC, and D using Equations (28) and (32).
14: Calculate the red kites’ new positions using Equations (19) and (30).
15: Check the positions’ limits using Equation (31).
16: Compute the new objective function ( f t

i
(

posnew
i

)
.

17: if f t
i
(

posnew
i

)
> ( f t−1

i (Posi)
18: Update Posi bu posnew

i
19: end if
20: i = i + 1
21: end for
22: t = t + 1
23: end for
24: end for
25: k = k + 1
26: end while
27: Save the optimal places and sizes of RESs and FCSs.

RESs’ sites RESs’ sizes (kW) FCSs’ sites FCSs’ sizes (kW) 
Lr1 … Lrn Pr1 … Prn Lc1 … Lcm Pc1 … Pcm 

Figure 5. The proposed ROA memory.

A multi-objective red kite optimization algorithm (MOROA) is proposed to minimize
both power loss and voltage violation, two components of archiving and hunting the
food are proposed in MOROA. The first one saves the nondominant solutions achieved so
far while the other component selects the best one from the obtained archive. Moreover,
the solution entrance to the archive is controlled via considering the archive controller.
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When the new solution is governed by one archived solution, it should be excluded from
the archive entering. On the other hand, if the new solution is governed via one or more
archived solutions, it will be included in the archive and the governed solutions are ignored.
Also, when recent solutions and archive members have no control between them, it must
be included in the archive. The top solution is chosen from the archive using the roulette
wheel method as follows:

Pi =
C
Ni

(33)

where C is a constant with a value greater than unity and Ni is the number of pareto solutions.

6. Numerical Analysis and Discussions

The analysis was performed on two standard distribution systems, which are the
IEEE-33 bus network and the IEEE-69 bus network; the proposed ROA was simulated for
100 iterations, 50 population sizes, and 10 independent runs [47]. The maximum generation
of RESs (PV and WT) was 1000 kW, and 1500 kW for FCS [44]. Three cases were studied
in each network, the first one was minimizing power loss whereas the second one was
mitigating network voltage fluctuation. The last case was a multi-objective to reduce both
power loss and voltage fluctuation.

6.1. IEEE-33 Bus Network

The network single line diagram is shown in Figure 6; the network had 32 branches
and 33 nodes, its nominal voltage was 12.66 kV while 100 MVA was the base power. In
this network, it was assumed that two RESs were required to be installed, the first one was
PV and the second one was WT. Also, two FCSs were integrated to the network to serve
200 vehicles selected randomly from Table 2 over 24 h. The base loads were 3.715 MW and
2.3 MVar while the network losses were 3905.628 kW and 2604.031 kVar. Figure 7 shows the
demand level as a percentage of the base demand during each hour. The proposed ROA
was implemented, and the fetched results were compared to other approaches of the dung
beetle optimizer (DBO) [48], the African vultures optimization algorithm (AVOA) [49],
the bald eagle search (BES) algorithm [50], the bonobo optimizer (BO) [51], and the grey
wolf optimizer (GWO) [52] which are programmed. The analysis was performed using a
laptop with specifications of 11th Gen Intel(R) Core(TM) i7-11370 @3.30 GHz processor, and
16.00 GB RAM.

Figure 6. IEEE-33 bus network single line diagram.
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Figure 7. The daily load demand of the IEEE-33 bus network.

The fetched results during minimizing the power loss are given in Table 3. The
proposed ROA achieved the best power loss over 24 h with a value of 1631.1189 kW
obtained with integrating a RES of 770.3162 kW and 1126.969 kW on buses 13 and 30,
respectively, and a FCS of 63.34486 kW and 50.23074 kW on buses 30 and 2, respectively.
In such case, the voltage violation of the network was 14.5663 pu. On the other hand,
BO came second with a power loss of 1633.4916 kW through integrating RESs and FCSs
of 1072.105 kW, 870.675 kW, 103.400 kW, and 103.950 kW on buses 30, 13, 2, and 13,
respectively. The highest power loss was 1716.946 kW, obtained via AVOA. The results
proved the preference of the proposed ROA in such case. Another important item that is
considered in comparison is the computational time required to implement one run, it is
clear that the proposed ROA is the fastest one as it consumed 64.569 s., whereas the slowest
one is BES with 131.489 s. The power loss versus number of iterations is shown in Figure 8.
The voltage profiles of the network throughout minimizing the power loss are shown in
Figure 9. The proposed ROA achieved good improvement in the voltage profile, being
better than the original network.

Table 3. The optimal results throughout minimizing the first objective function of the IEEE-33
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
1172.455/(30) 1415.316/(8) 767.7161/(13) 1072.105/(30) 796.258/(13) 770.3162/(13)
768.3386/(13) 841.6776/(30) 1073.831/(30) 870.675/(13) 1179.83/(30) 1126.969/(30)

FCS (kW)/location
99.000/(33) 109.800/(26) 104.8500/(2) 103.400/(2) 79.4101/(6) 63.34486/(30)
107.05/(2) 107.625/(19) 112.6125/(19) 103.950/(13) 95.9678/(30) 50.23074/(2)

Active power loss (kW) 1650.078 1716.946 1641.0623 1633.4916 1652.1002 1631.1189

Reactive power loss (kVar) 1067.1 1104.5 1060.6 1067.3 956.48116 947.36830

Vmin (pu)/location 0.9718/(33) 0.9609/(18) 0.9724/(33) 0.9692/(18) 0.9707/(33) 0.9708/(33)

Vmax (pu)/location 1.000/(1) 1.000/(1) 1.000/(1) 1.000/(1) 1.000/(1) 1.000/(1)

Voltage deviation (pu) 14.1639 15.2245 14.2351 15.2438 14.5806 14.5663

Time (s) 92.287 89.6085 247.461 66.547 131.489 64.569
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Figure 8. Power loss variation throughout minimizing the first objective function of the IEEE-33 network.

Figure 9. The network voltage profile throughout minimizing the first objective function of the
IEEE-33 network.

The second fitness function minimized the voltage violation; the original network
had a voltage violation of 36.477 pu. The fetched results in such case are given in Table 4,
the proposed ROA accomplished the best voltage violation of 3.4762 pu, about a 90.47%
enhancement of the original network, by installing RESs of 1499.994 kW and 1500 kW on
buses 10 and 30, respectively, as well as 50 kW and 79.68228 kW FCSs on buses 2 and 10,
respectively. This integration resulted in an active power loss of 1643.5811 kW. AVOA
was the worst optimizer with a voltage deviation of 3.7866 pu. The voltage fluctuation
versus number of iterations is shown in Figure 10, while the voltage patterns of the network
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are displayed in Figure 11, the profile clarified significant improvement of the network
voltages. The proposed ROA was the best optimizer compared to the others in achieving
the least voltage deviation.

Table 4. The optimal results throughout minimizing the second objective function of the IEEE-33
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
1498.299/(10) 1449.13/(11) 1485.9678/(10) 1500/(10) 1500/(10) 1499.994/(10)

1500/(31) 1500/(31) 1500/(30) 1380.22/(31) 1500(20) 1500/(30)

FCS (kW)/location
50/(2) 89.58208/(30) 50/(33) 50/(2) 74.7382/(10) 50/(2)

181.6571/(33) 82.92387/(33) 50/(26) 52.7957/(23) 121.3876/(3) 79.68228/(10)

Active power loss (kW) 1838.1837 1748.6105 1743.0893 1840.8733 1654.1723 1643.5811

Reactive power loss (kVar) 1307.9386 1246.4018 1223.3889 1307.5806 1154.3989 1148.2444

Vmin (pu)/location 0.9833/(25) 0.9833/(25) 0.9837/(25) 0.9833/(25) 0.9828/(25) 0.9831/(25)

Vmax (pu)/location 1.0024/(10) 1.0026/(11) 1.0036/(10) 1.0025/(10) 1.0/(1) 1.0/(1)

Voltage deviation (pu) 3.7273 3.7866 3.5632 3.7378 3.5399 3.4762

Figure 10. The voltage deviation versus the number of iterations throughout minimizing the second
objective function of the IEEE-33 network.

The third case involved solving a multi-objective problem to minimize power loss
and volage fluctuation; the proposed MOROA was compared to the multi-objective grey
wolf optimizer (MOGWO), the multi-objective multi-verse optimizer (MOMVO), and the
multi-objective artificial hummingbird algorithm (MOAHA) [47]. The optimal results are
given in Table 5, RESs with 994.2378 kW and 1472.334 kW, and FCSs with 128.1094 kW and
165.3984 kW are recommended to be installed via the proposed MOROA on buses 13, 30,
2, and 30, respectively. This integration achieved active power loss and voltage violation
of 1763.93 kW and 6.6547 pu, respectively, while MOAHA achieved the worst power loss
and voltage violation of 1829.26 kW and 6.7704 pu, respectively. The results demonstrated
the superiority of the proposed MOROA over the others. Moreover, the variations of
both targets with number of iterations obtained via the proposed approach are given in
Figure 12. Furthermore, the network voltage profiles before and after installing RESs and
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FCSs are shown in Figure 13. The curves revealed that there is significant improvement in
the network voltage profile.

Figure 11. The network voltage profile throughout minimizing the second objective function of the
IEEE-33 network.

Table 5. The optimal results throughout solving the multi-objective problem for the IEEE-33
bus network.

MOAHA [47] MOMVO MOGWO MOROA

RES (kW)/location
1475.0424/(30) 885.715/(14) 1283.274/(11) 994.2378/(13)
1073.4234/(15) 1465.69/(30) 1264.667/(30) 1472.334/(30)

FCS (kW)/location
63.763105/(14) 51.3188/(3) 190.1696/(2) 128.1094/(2)
188.82647/(17) 92.0779/(2) 96.09850/(10) 165.3984/(30)

Active power loss (kW) 1829.26 1810.31 1801.96 1763.93

Voltage deviation (pu) 6.7704 6.2317 6.4819 6.6547

Reactive power loss (kVar) 1152.29 1122.65 1108.20 1025.81

Vmin (pu)/location 0.9813/(25) 0.9813/(25) 0.9802/(18) 0.9798/(33)

Vmax (pu)/location 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1)

The obtained results confirmed the efficiency of ROA as it achieved the best fitness
values for all scenarios investigated on the IEEE-33 bus network.

6.2. IEEE-69 Bus Network

The proposed ROA was also applied on the IEEE-69 bus system, it consisted of
68 branches and 69 nodes, the network nominal voltage was 12.66 kV and the base power
was 100 MVA. The single line diagram of the IEEE-69 bus system is shown in Figure 14.
The demand and branch data of the network were given in [53], the network is loaded by
24 h demand level given in Figure 7, the active power loss was 8665.356 kW whereas the
reactive power loss was 3938.366 kVar. It was assumed that three renewable DGs were
integrated in addition to three FCSs.
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Figure 12. Variations of power loss and voltage violation throughout solving the multi-objective
problem for the IEEE-33 network.

Figure 13. The network voltage profile throughout solving the multi-objective problem for the
IEEE-33 network.
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Figure 14. IEEE-69 bus network single line diagram.

The fetched results obtained by ROA and others throughout minimizing the network
power loss are given in Table 6. The best loss was 2738.731 kW, achieved through the
proposed ROA via installing RESs of 1500 kW, 663.715 kW, and 502.0473 kW on buses
61, 69, and 19, respectively, in addition to FCSs of 156.5290 kW, 50 kW, and 346.3399 kW
on buses 19, 4, and 69, respectively. This integration reduced the active power loss by
68.39% compared to the original network. BO came in the second rank with a power loss
of 2742.766 kW, while the worst one was 2905.728 kW, obtained by AVOA. Moreover, the
proposed ROA required 62.078 s. to implement one run, this was the best obtained time.
Figure 15 shows the variations of power losses during iterative process followed in each
optimizer. Moreover, the voltage profile of the network is shown in Figure 16, it is clear
that the voltage pattern is improved after integrating RESs and FCSs with sizes and sites
obtained via the proposed ROA. The fetched results proved the superiority of ROA in
minimizing the IEEE-69 bus system power losses.

Table 6. The optimal results throughout minimizing the first objective function of the IEEE-69
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
1500/(61) 1500/(61) 713.821/(17) 1500/(61) 1500/(61) 1500/(61)

518.641/(17) 295.224/(6) 584.281/(62) 426.56/(17) 47.971/(23) 663.715/(69)
54.7547/(14) 813.401/(10) 1036.10/(61) 485.21/(53) 575.167/(12) 502.0473/(19)

FCS (kW)/location
51.0967/(18) 67.2109/(4) 58.7486/(18) 50.019/(53) 64.7808/(35) 156.5290/(19)

50/(69) 53.2949/(51) 82.7298/(47) 50/(2) 196.489/(47) 50/(4)
50.6284/(5) 54.3663/(29) 191.153/(17) 50/(47) 173.715/(29) 346.3399/(69)

Active power loss (kW) 2810.358 2905.728 2775.538 2742.766 2819.619 2738.731

Reactive power loss (kVar) 1291.968 1311.428 1274.645 1259.164 1296.032 1276.838

Vmin (pu)/location 0.9796/(65) 0.9798/(27) 0.9836/(65) 0.9819/(65) 0.9804/(65) 0.9800/(65)

Vmax (pu)/location 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1)

Voltage deviation (pu) 11.4739 13.3273 11.5038 10.4405 13.3135 12.1014

Time (s) 159.893 104.103 347.468 62.493 145.821 62.078

285



Mathematics 2023, 11, 3305

Figure 15. The power loss versus the number of iterations throughout minimizing the first objective
function of the IEEE-69 network.

Figure 16. The network voltage profile throughout minimizing the first objective function of the
IEEE-69 network.

The original network had a voltage violation of 39.229 pu; minimization of the volt-
age fluctuation was the second target, Table 7 tabulates the optimal fetched results in
such case. The proposed ROA succeeded in mitigating the network voltage deviation
to 2.6607 pu, about 93.22% enhancement of the original value, via installing RESs of
1464.69 kW, 1495.45 kW, and 891.503 kW on buses 63, 56, and 15, respectively, in addition to
FCSs of 311.624 kW, 337.688 kW, and 231.826 kW on buses 7, 16, and 5, respectively. AVOA
was still in the last rank, achieving a voltage deviation of 4.2701 pu. The performances of the
optimizers considered are given in Figure 17, while the voltage patterns with/without the
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installed DGs and stations are given in Figure 18. The results demonstrated the excellence
of the proposed method while reducing the voltage fluctuation of the IEEE-69 bus network.

Table 7. The optimal results throughout minimizing the second objective function of the IEEE-69
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
987.669/(63) 1500/(12) 1499.996/(63) 801.0936/(64) 549.582/(19) 1464.69/(63)
1152.20/(13) 1500/(64) 1499.999/(68) 1500/(59) 1500/(62) 1495.45/(56)
1416.90/(63) 607.458/(54) 469.3114/(58) 1500/(69) 1500/(55) 891.503/(15)

FCS (kW)/location
245.784/(43) 350/(7) 53.66301/(58) 50/(36) 162.323/(29) 311.624/(7)
253.716/(64) 234.083/(46) 50/(2) 350/(58) 58.5327/(21) 337.688/(16)
308.648/(56) 333.914/(31) 163.3407/(67) 192.210/(66) 149.570/(47) 231.826/(5)

Active power loss (kW) 3316.866 3518.4419 3534.8244 3636.6704 3176.7778 3284.3169

Reactive power loss (kVar) 1626.321 1740.1091 1659.1212 1696.3122 1602.5207 1645.6244

Vmin (pu)/location 0.9941/(56) 0.9870/(61) 0.9912/(65) 0.9922/(61) 0.9903/(65) 0.9915/(65)

Vmax (pu)/location 1.0040/(13) 1.0055/(12) 1.0096/(68) 1.0100/(69) 1.0024/(55) 1.0021/(56)

Voltage deviation (pu) 3.748 4.2701 3.4861 3.5533 2.7751 2.6607

Figure 17. Voltage deviation variation throughout minimizing the second objective function of the
IEEE-69 network.

Finally, the multi-objective problem for the IEEE-69 bus network was solved via the
proposed MOROA in comparison to others, the fetched results are tabulated in Table 8.
The best power loss and voltage violation were 2929.075 kW and 4.3347 pu, respectively,
obtained via the proposed algorithm. The MOGWO achieved the worst power loss with
a value of 3351.509 kW, whereas the largest voltage deviation was 6.832 pu, obtained via
MOMVO. Also, the power loss and voltage fluctuation versus the number of iterations
are shown in Figure 19, while the network voltage patterns are shown in Figure 20. The
proposed approach proved its preference in finding the best locations and sizes of RESs
and charging stations while solving the multi-objective problem.
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Figure 18. The network voltage profile throughout minimizing the second objective function of the
IEEE-69 network.

Table 8. The optimal results throughout solving the multi-objective problem for the IEEE-69
bus network.

MOAHA [47] MOMVO MOGWO MOROA

RES (kW)/location
1469.52/(61) 1249.069/(49) 1260.96/(68) 917.811/(9)
916.516/(18) 1500/(61) 1395.23/(51) 647.6445/(15)
301.015/(59) 855.449/(14) 1470.41/(62) 1500/(61)

FCS (kW)/location
307.607/(47) 98.1616/(34) 305.866/(68) 248.222/(28)
60.7376/(52) 80.8805/(43) 307.682/(6) 135.164/(2)
207.741/(26) 207.898/(31) 296.051/(51) 336.811/(37)

Active power loss (kW) 2974.105 2960.5889 3351.509 2929.075

Voltage deviation (pu) 5.1243 6.832 5.4632 4.3347

Reactive power loss (kVar) 1294.045 1232.638 1501.993 1303.072

Vmin (pu)/location 0.9881/(65) 0.9817/(65) 0.9812/(65) 0.9856/(65)

Vmax (pu)/location 1.0002/(18) 1.0/(1) 1.0008/(68) 1.0005/(15)

A new methodology incorporating the ROA is proposed to find the best locations and
capacities of RESs and FCSs in distribution systems. Power loss and voltage fluctuation are
the considered targets to be minimized. Both single objective and multi-objective problems
are formulated and solved via the proposed ROA. The power loss and voltage deviation
of the IEEE-33 bus were reduced by 58.24% and 90.47%, respectively, with the aid of the
proposed ROA. While benefits of 68.39% for losses and 93.22% for voltage deviation were
achieved for the IEEE-69 bus network. Finally, the proposed ROA can be recommended
as an effective tool to solve the problem of integrating RESs and EV FCSs in a radial
distribution network.
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Figure 19. Variations of power loss and voltage violation throughout solving the multi-objective
problem for the IEEE-69 network.

Figure 20. The network voltage profile throughout solving the multi-objective problem for the
IEEE-69 network.

7. Conclusions

This paper proposed a new metaheuristic approach of the red kite optimization
algorithm (ROA) to identify the best sites and sizes of RESs and FCSs in distribution
networks. The ROA was selected due to its simplicity, requirement of less controlling
parameters, high convergence rate, and balance between exploration and exploitation
phases that enabled the algorithm to escape from local optima. The targets were minimizing
the network active power loss and voltage fluctuation. Also, a multi-objective red kite
optimization algorithm (MOROA) was proposed to mitigate both targets. Two standard
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radial distribution networks, the IEEE-33 bus and the IEEE-69 bus, were analyzed. In the
first network, two RESs and two FCSs were installed while in the second network three
RESs and three FCSs were integrated. Comparisons to DBO, AVOA, BES, BO, and GWO
in the single objective problem in addition to MOGWO, MOMVO, and MOAHA in the
multi-objective problem were conducted. The proposed ROA gave the best solution in
the IEEE-33 bus, reducing the network loss and voltage violation by 58.24% and 90.47%,
respectively, whereas it achieved benefits of 68.39% for losses and 93.22% for voltage
deviation of the IEEE-69 bus network. The obtained results revealed the robustness and
competence of the proposed ROA in achieving the best results. Minimizing the period of
charging for EVs will be considered as the target in future works. Also, the investigation of
a real distribution network will be conducted in the next works.
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Abstract: Following the European Climate Law of 2021 and the climate neutrality goal for zero-
emission transportation by 2050, electric vehicles continue to gain market share, reaching 2.5 million
vehicles in Q1 of 2023. Electric vehicles utilize an electric motor for propulsion powered by lithium
batteries, which suffer from high temperatures caused by peak operation conditions and rapid
charging, so hybridization with supercapacitors is implemented. In this paper, a fuzzy logic controller
is employed based on a rule-based scheme and the Mamdani model to control the power distribution
of the hybrid system, driven by the state of charge and duty cycle parameters. An active topology
with one bi-directional DC-to-DC converter at each source is exploited in the MATLAB/Simulink
environment, and five power states like acceleration and coasting are identified. Results show that
the ideal duty cycle is within 0.40–0.50 as a universal value for all power states, which may vary
depending on the available state of charge. Total efficiency is enhanced by 6%, sizing is increased
by 22%, leading to a more compact layout, and battery life is extended by 20%. Future work
includes testing with larger energy sources and the application of this management strategy in
real-time operations.

Keywords: battery; ultracapacitor; hybrid; energy; management; fuzzy; control

MSC: 93C42

1. Introduction

The need for a cleaner environment and the reduction of greenhouse gases has been
identified as the primary target for the global population. The Paris Agreement of 2015
and the European Climate Law of 2021 set the need for a reduction of mean global tem-
perature by two degrees Celsius via green transportation adoption by 2050 [1]. With those
regulations, a 55% reduction in greenhouse gases is expected to be achieved. This margin
is mainly focused on the road transport sector and especially light-duty passenger cars
powered by internal combustion engines (ICE), which represented over 25% of total carbon
dioxide emissions over the last five years, and are expected to increase until 2030 [2]. There-
fore, decarbonizing the transportation sector and increasing energy efficiency in all other
sectors is imminent for the protection of the environment [3].

Over the last 20 years, the trend of green transportation and improving fuel efficiency
has led to hybrid (HEV) and battery electric vehicles (BEV). HEVs utilize an electric
motor to assist the ICE or even power the car fully in conditions like traffic or low-speed
driving. Hence, fuel consumption can be limited up to 30% in certain conditions without
any significant changes in driving habits [4]. Due to their manufacturing simplicity, low
emissions, and public demand for a sustainable price, a market share of 28% for EVs
was achieved in 2021. However, the road to emission-free transportation can only be
fully accomplished with the adoption of pure electric vehicles (EVs). An electric motor is
responsible for the propulsion of the vehicle powered by lithium batteries and an advanced
battery management system [5]. There are major benefits to the utilization of EVs like:
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• No greenhouse gases emissions;
• Noiseless operation;
• Energy recovery through regenerative braking;
• Ability to charge at home via renewable sources.

These parameters played a major role in the recent sales of EVs. Up to 12% of the
market share for 2022 is pure electric, with huge waiting lists due to the limited resources
that manufacturers face, with diesel cars declining [6]. This trend is expected to continue
strongly in 2023, with almost 2.5 million EVs sold in the first quarter, about to reach
15 million units in total, resulting in 35% year-on-year escalation and 18% of the total
market share. By following this direction, 5 million crude oil barrels can be saved per day
by 2030, ensuring the utilization of green environmental transportation means. Additional
policies and measures are shown in Figure 1.

Figure 1. Policies and actions required for full electrification of the light duty vehicles [6].

However, there are still certain limitations regarding the operation of EVs, as summa-
rized in previous work [5]. High charging time, a lack of chargers, low mileage causing
range anxiety, and increased purchase costs as rare minerals are required for current battery
and motor manufacturing are still considered major and practical limitations. It is evident
that the main issues refer to the battery pack’s limited operational conditions and sensitivity
to extreme setups. The temperature window of a typical lithium battery is within 20 to
65 degrees Celsius, while functioning outside this range can cause lithium deposition,
dendrites, or even total breakdown [7]. Proper cooling is crucial for protecting the cells
from overheating, and while unified with the climate control system, it can decrease total
energy consumed while offering maximum thermal comfort [8]. Additionally, charging
and discharging sequences are supervised and controlled by complex power electronics
to ensure safety and protection, avoiding peak conditions. As the battery is a part of the
vehicle chassis for better weight management, even maintenance is practically unfeasible,
so the layout has to be precisely designed and sized.

There are certain parameters affecting battery life [9–13]. State of charge (Soc) and
state of health (SoH), which reveal the degradation of the cells, are crucial to calculating
battery aging and cannot be measured directly on the pack. State of Power (SoP) supplies
information about the battery’s peak current capabilities, while state of voltage refers to
the ratio of current-voltage divided by the nominal value and can be connected to the
SoC. Lastly, Depth of Discharge (DoD) represents the percentage that the battery pack is
discharged and proved to be valuable as a low DoD massively affects battery degradation,
limiting stress on the cells and increasing its viability. It is essential to monitor all values to
ensure battery-safe operation and nominal performance within the projected time applied
by the manufacturer, as depicted in Figure 2.
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Figure 2. Limitations and operational parameters for a lithium battery.

To address those restrictions, a hybrid energy storage system (HESS), consisting of
batteries and supercapacitors, is utilized. In everyday use, battery life is shortened due to
significant heat generation caused by the need to cover the high power requirements of
electrically powered vehicles [14]. Supercapacitors (SC) or ultracapacitors (UC) solve this
problem by providing both average and peak power loads, reducing the maximum current
of the battery by up to 55% and ensuring lower voltage drops, hence fewer fluctuations
and capacity costs [15,16]. SC also inherits a lifespan of over 1 million operating cycles,
making it the perfect auxiliary source. However, since the energy density is low, they
cannot operate as a standalone source for an EV.

The combination of these different systems enables electric vehicles to operate over
a longer range using high-energy-density batteries while increasing performance with
ultracapacitors acting as power buffer units. In addition, the supercapacitor takes advantage
of regenerative braking harvesting, providing better control and up to 16.2% more range
with less wear [17]. The system performs greatly in low-temperature conditions where
conventional batteries are outside their safety zone. However, the connection of power
modes, as well as the duty cycle indication are not studied widely in the literature. The
power demand has to be classified into different states for better understanding, and the
operation cycle or duty cycle, namely the energy used in each time interval compared to
the maximum, e.g., acceleration, are important parameters of proper power distribution.

The purpose of this work Is the implementation of a fuzzy logic simulation model
for the operation of HESS via MATLAB/Simulink. This model calculates the various
parameters affecting the hybrid system states (SOC, SOH, etc.) to manage the power split
between the two sources connected in active topology. The introduction of duty cycle
and power mode sequences is also a major step in designing the ideal scheme for power
distribution, which is the contribution of this paper. Additionally, the energy management
strategy (EMS) will be validated for enhanced efficiency of the system with constant
protection of the battery cells.

The manuscript is structured into five main sections. Section 2 describes the equations
and the methodology used to conduct the experiment, along with an explanation of duty
cycles term and classification of the distinct power modes. In Section 3, the results of the
simulation are presented. In Section 4, discussion about the outcome and comparison with
other works is thoroughly examined. In the last section, conclusions about the model are
included along with suggestions about future work.
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2. Materials and Methods

2.1. Methodology
2.1.1. Hybrid Storage System Bank

The topology of the applied HESS is a key parameter in the power-split and dynamic
performance of the whole setup. There are three different topologies: Passive, semi-active,
and active [5]. In passive configuration, the two sources are simply connected in parallel,
reducing peak currents adequately, but the ultracapacitor voltage is limited by the battery
bank [18]. Semi-active format, which requires a DC-to-DC converter plugged into the
battery or the SC while the other is connected in parallel with the converter, offers better
cell protection and HESS sizing, but the layout is restricted by a low performance-to-cost
ratio and increased converter sizing. Lastly, active topology implies two bi-directional
converters directly connected to both the energy sources (battery and SC) and then toward
the DC bus powering the motor and other electronics. Both sources can be coupled or
decoupled from the load simultaneously. This arrangement was chosen for this project as
performance, control, efficiency, and voltage regulation are the main priorities, even though
it is by far the most complex setup. Power distribution is vastly configurable, offering
the ability to test different energy management strategies [19]. The projected topology is
depicted in Figure 3 below.

Figure 3. Experimental layout with two buck-boost converters connected directly to the DC bus with
power output directly connected to power mode and duty cycle.

For calculations, the power loss model is considered. Since the internal parameters
of both converters cannot be neglected, like inductor resistance, voltage drop, and switch
on-resistance, the assumption that both models are identical, as found in [20], will be
utilized. The power loss of the DC/DC components is related to the term known as the
duty cycle. This describes the percentage that each source operates until it is recharged
again, for example, 80% to 30% SoC and off to recharging, which complies with 50% duty
cycle. As it is suggested, the duty cycle is expressed as the energy supplied by each source
to cover the projected power demand within specified time interval. A 30% drop in the
ultracapacitor SoC required to cover the vehicle acceleration from stop is also indicated as
30% duty cycle. It is renowned that small duty cycles and low charging times or rates (total
amperage drawn), are essential for prolonging battery lifetime or prevent any possible
breakdown as well as increasing charging capacity [21]. To calculate the power loss, the
following equations are required [20]:

Boost mode :

{
PVEHICLE − VH × IUC = VL × IB − PCON ,LOSS

PVEHICLE
VH

= IUC + IB × (1 − DBOOST)
(1)

Buck mode :

{
PVEHICLE − VH × IUC = VL × IB + PCON ,LOSS

PVEHICLE
VH

= IUC + IB × DBUCK
(2)

where PD is the power demand of the vehicle, PCON,LOSS refers to the power loss of the
converter, VH equals to voltage of the low voltage side, VL is the high voltage value,
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IB is the DC/DC inductor current, mainly affecting the battery, IUC denotes the current of
the supercapacitor, and DBOOST and DBUCK represent the duty cycles at boost and buck
modes, respectively.

Accordingly, further processing with the conversation of power and Kirchhoff’s cur-
rent law shows that the power loss of the total system is equal to the square of the inductor’s
current multiplied by internal resistances, the duty cycles at each state, and the voltages of
the switches of the converters, which cannot be neglected [20]:

PCON,LOSS =

{
IB × [ (V S + VD)×DBOOST ]+×I2

B × [R L + (RS + RD)×DBOOST ]

IB × [ (V S + VD)×DBUCK ]+×I2
B × [R L + (RS + RD)×DBUCK]

(3)

where VD and RD are the voltage drop and resistance of the diode, VS and RS denote the
voltage drop and resistance of the switch, and RL refer to the inductor resistance [20].

2.1.2. Energy Sources Models

As every component and energy source, battery and supercapacitor can be simplified
following Thevenin modeling for better explanation, ignoring losses that are infinitesimal.
So, the battery model consists of the internal resistance RB, the polarization voltage VP,
polarization capacitance CP, polarization resistance RP, and Terminal voltage VT. VOC ac-
counts as the open circuit voltage, thus the maximum voltage the battery can provide with
no load. So, the final model is presented in Figure 4 below [20].

Figure 4. Lithium Battery Thevenin model by [20].

Depending on the state of charge and temperature at each specific time k, the polar-
ization values are different and the terminal voltage has to be calculated from equations
by [20,21]. It is obvious that these parameters are always in a dynamic state and must be
supervised by the energy management system for further adjustments, improving efficiency
and control.

VT(k) =VOC × SOC(k) − IB(k) × RB × SOC(k) − VP(k) (4)

State of charge, at the time k is expressed at the next equation.

SOC(k) =
(VP(k) + VT(k)

VOC

)
(5)

Finally, the lithium battery losses PB,LOSS can be calculated at any specific time k
including all losses induced by polarization and internal resistance [20].

PB,LOSS = I2
B × RB × SOC +

VP
RP × SOC

(6)

The ultracapacitor can be simplified as an RC model or a electrical model containing
the equivalent series resistance (ESR) or heat losses, the equivalent parallel resistance (EPR),
representing leakage current and capacitance [22]. However, this model adds complexity
to the simulation, so the RC model is preferred. For simplicity, both rated capacitance
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(CR) and internal resistance (RUC) will be accounted consistently even though they differ
during charging-discharging due to the effects of ESR and EPR. VUC and IUC represent the
ultracapacitor voltage and current, with VT as the voltage terminal, similar to the battery
layout. Figure 5 illustrates the final model of the supercapacitor.

Figure 5. Supercapacitor RC model [20–22].

Since the model has been simplified, it is now possible to calculate all values, along
with the power losses, by utilizing Kirchhoff’s laws. The next Equations (7)–(11) modified
from [20–22] are expressing these computations.

The Open circuit voltage of the ultracapacitor at a certain n time:

VUC(n) = VUC(n − 1)−
IUC(n)

CR
(7)

Next is the equation for the terminal voltage of the SC at n time:

VT(n) = VT(n−1) − IUC(n) × RUC (8)

The total power delivered by the ultracapacitor is expressed as:

PUC(n) = VT(n) × IUC(n) (9)

The current flowing in and out of the capacitor is calculated with Equation (10). The
same equation applies for charging or discharging with a minus when the capacitor is
being charged:

IUC =
VUC –

√
V2

UC − 4 × RUC × PUC

2 × RUC
(10)

Equation (11) shows the power losses due to internal resistance and leakage current:

PUC,LOSS = RUC × IUC
2 (11)

The state of voltage, similar to SOC for supercapacitors equals to the terminal voltage di-
vided by the maximum rated voltage by the manufacturer as presented in Equation (12) [23].

SOV =
VT

VRATED
(12)

Equation (13) is applied to calculate the state of health parameter revealing battery
lifetime where charge is expressed as capacity, measured in ampere-hours [12].

SOH =
Qmax
Qrated

(13)

Finally, the total power losses of HESS plus the converter are calculated with Equation (13)
below [14,20].

PLOSS,TOTAL = PCON,LOSS + PB,LOSS + PUC,LOSS (14)

2.1.3. Duty Cycles

As mentioned previously, the duty cycle is an essential term for proper energy manage-
ment and power distribution. The SOC, SOV, and other parameters should be maintained
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high to cover the necessary power for the electric motor. At fractional levels, battery over-
charging or discharging will lead to the end of the service life or even a failure. It is crucial
to keep the frequency fixed without major fluctuations while keeping the state of charge
of both sources above 25% as a lower threshold for protection and efficiency [22–24]. The
topology chosen offers great control through buck-boost mode by the converters, along
with fast power switching for adjustments in different power modes, minimizing volt-
age ripple and losses. Since the efficiency of the DC/DC can reach over 94% at average
power/current outputs, the duty cycle should be low and focused on maintaining the SC
charge high, thus keeping the converter at its rated power area [23–25].

The hybrid energy system Is required to cover the driving power demand PVEHICLE of
the vehicle which is described in Equation (15) below [23].

PVEHICLE =
VA

3600 ∗ η
× (M × g × f × cos(β) + M × g × sin(β) +

CARC × A
21.15

∗ VA
2 +

δ × M
3.6

× dVA
dt

) (15)

where VA is the car speed, η denotes the powertrain efficiency, M is the total mass, g is the
gravitational acceleration, f and CARC represent the rolling assistance and air resistance
coefficients, β indicates the road incline, A is the wind exposed area and δ designates the
rotation mass coefficient correction factor.

Based on Equation (14), the size of HESS utilized must be able to meet and overcome
the power demand of the vehicle. For safety reasons, the battery power alone should also
be able to meet this requirement, so the total number of cells, needed capacitance, and
voltage are expressed at Equation (16) [23].

UR × CR × nP × nS ≥ PVEHICLE (16)

where UR is the rated voltage, CR denotes the rated capacitance of each cell, nP indicates
the battery cells required in parallel and nS represents the cells in series.

2.1.4. Power Modes

There are various power modes for an EV based on the motor, and HESS states [24–26]:
Initialization: When the vehicle starts, HESS needs to provide high torque quickly. At this
time, the power is only provided by the SC, taking advantage of its high-power density.
During acceleration, high current is required, so the battery should assist the SC in covering
the motor power demand. The battery voltage is stepped up by a DC-DC converter to
obtain a high DC bus voltage; hence, the HESS provides the energy required. The output
power ratio of these sources should be reasonably distributed, with the supercapacitor
providing most of the power and minimizing losses. However, as the voltage of SC
decreases, the duty cycle lessens, so power losses can be minimized by discharging the
lithium-ion battery and the ultracapacitor simultaneously. As a result, HESS can perfectly
adapt to future instantaneous power demand.

The next mode is regenerative braking. If the vehicle is decelerating or coasting at
high speeds, the engine is running as a generator and is in a power-generating state. The
electrical energy generated is sent back to the HESS, almost entirely on the SC, to avoid
high-frequency current on the battery. Then, depending on the state of charge of each
source, energy is strategically distributed. During the braking phase, the voltage of the DC
busbar is low and the DC/DC duty cycle is small. When the voltage of the ultracapacitor is
higher, the DC/DC duty cycle is smaller, so losses are minimal.

Finally, in coasting, or cruising mode, the motor is running at constant speed due to a
low load or road slope; thus, only a small current may be required. Therefore, SC is used
to supply all load currents, as it is sufficient. The battery DC-DC converter is temporarily
switched off to reduce circuit losses. However, if the SC voltage drops below the battery
voltage, the battery can supply energy to the drive and charge the SC.
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2.2. Fuzzy Model

For this project, the deployment of a fuzzy logic model via MATLAB/Simulink is
selected. Fuzzy logic is a math model leading to a non-binary state of mind and a sophisti-
cated control system [27]. Fuzzy control systems consist of four main parts: fuzzification,
rule-based, fuzzy reasoning, and defuzzification. The power requirement is a valuable
operating parameter and a key factor in the project. Even though increased processing
power is required to run the models, there are multiple benefits regarding the use of FL
strategy and controllers [28,29]. They are as follows:

1. Voltage regulation of the DC bus during load variations;
2. Limited battery current and frequency fluctuations hence lower temperatures;
3. High performance, simplicity, reliability, and enhanced lifetime;
4. The linearity pattern of data acquisition is a crucial parameter for a fuzzy model.

A weighted memory H controller is utilized at [30] for increased precision in non-
linear monitoring and identification of memory states based on Takagi-Sugeno fuzzy
systems. The Wavelet packet decomposition method can be utilized for time sequence
determination for consistent data retrieval, identification of charging or discharging
states, and even power mode classification [31]. In addition, fuzzy logic modeling can
be applied not only to EVs but also to smaller applications like electric scooters or
three wheelers as well, limiting fluctuations and enhancing range [32].

5. The developed fuzzy set-based controller has five inputs: Power demand, UC, and
battery voltages, and SoC. The controller uses a list of fuzzy rules to manipulate the
correlation between inputs and outputs. According to the principles, efficient energy
management must be provided with respect to the operating conditions of the energy
source [33]. The supply is based on the SoC of each source and the power modes
described before, which may also indicate the driving style [34]. The basic relationship
between input and output, as defined by the fuzzy rules, is that the battery acts as the
main energy source for the vehicle as long as the SOC is above 25% and the voltage of
the ultracapacitor is below 50%.

6. At constant speeds with low energy consumption, energy is provided by the lithium
battery, while the SC should be saved for peak demand loads like high slopes and
rapid accelerations. Additionally, supercapacitors are efficient in regenerative braking
exploitation since their high power density allows swift charging, even with high-
frequency currents. Afterwards, SC can charge the battery or utilize a low-pass filter
for that case to avoid high frequencies. The rules that comprise the fuzzy model are
the following [35,36]:

7. Power demand and SOCSC are M to H:SC will provide the demand entirely.
8. Power demand is H and SOCSC is ML: SC will provide its available power.
9. Power demand is M to H and SOCSC is L: Both sources output will be balanced.
10. Power demand is L to ML and SOCSC is L: Again, sources are balanced.
11. Power demand is ML and SOCSC is L: Battery will cover the power mostly.
12. Power demand is L to ML and SOCSC is M to H: SC will provide most of the power.

Where L is low, ML stands for Medium Low, M for Medium and H for High. The scale
is represented as a percentage as follows:

13. Low: 0–25%
14. Medium Low: 25–50%
15. Medium: 50–75%
16. High: >75%

The fuzzy control aims to generate commands for charging and discharging the two
energy sources as a function of the fuzzy logic controller, presented in Table 1.
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Table 1. Rules for the proposed fuzzy logic controller.

Power State
Power Output

SC Battery

Regenerative braking Charging * Charging *
Coasting Charging Charging

Initialization Maximum Low
Slow Acceleration Medium Medium
Fast Acceleration High Medium

* Depending on SoC and duty cycle.

The scheme selected for the EV is presented at Figure 6 below.

Figure 6. Experimental layout highlighting the power flow to the motor through the converter and
the importance of the fuzzy logic controller.

Next, the power management flowchart shows the strategy followed by the FL con-
troller to cover the power demand and handle the output of both sources. Membership
functions are shown in previous works [32–38], based on the Mamdani model, and are
projected in this paper as illustrated in Figure 7. The fuzzy model incorporates a small
difference in rule definition (low to high) to specify the value of temperature and duty cycle
in the power distribution scenarios implemented.

(a) (b) 

Figure 7. Membership functions utilized for this fuzzy model (a) Distinct energy sources SoC to cover
the power demand; (b) Motor power (PVEHICLE parameter) function depending on the power state.

The regulation of charging and discharging as well as energy demand coverage are
priorities shown in Figure 8 below:
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Figure 8. Fuzzy logic controller scheme as utilized in this work.

The power distribution ratios will vary depending on the state of charge of each
source, as previously mentioned. In previous work, a specific ratio of 70% battery and
30% supercapacitor was presented to offer better sizing, cost, and weight, but with a
modestly lower range [39]. Over 100,000 values validated the result, while temperature
management and prevention of high-frequency currents provided increased battery life.
This dataset will be utilized in this study, as well as a more advanced and precise control
pattern is followed. However, control and charging were conducted manually at [39] so
the limitations were escalated. The modelling of the fuzzy logic controller is implemented
through MATLAB/Simulink via the ready-to-use libraries. Therefore, the diagram of this
model in the application environment is projected in Figure 9.

Figure 9. Fuzzy logic controller simulation using MATLAB/Simulink.
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3. Results and Discussion

3.1. HESS Power Variations under Different Duty Cycles

Duty cycles play a major role in the power distribution of HESS. At low values, below
40%, the majority of power is covered by the supercapacitors due to their high-power
density, so the battery pack is protected. As the duty cycles increase, batteries undertake
more and more of the power demand while the ultracapacitor output becomes minimum,
as depicted in Figure 10. Therefore, it is crucial to keep the duty cycle ratio as low as
possible, ideally at 0.50, depending on the power state shown in Table 1.

 

Figure 10. Power output variations of HESS based on powertrain demand and duty cycle.

3.2. Power Distribution of HESS Depending on Total Demand

The power required from the powertrain varies as the vehicle overcomes different
power states; thus, the fuzzy logic controller prompts the HESS to properly distribute the
power, with the rule of SoCmin ≥ 25% without depleting any source. At the start of the
simulation, after defuzzification, the motor power state is high so the ultracapacitor covers
that demand while the battery supply is gradually increasing to level the power split, as
represented in Figure 11. Then, after 500 ms, the motor enters a regenerative braking state
so both sources are recharged quickly. Afterward, at T = 1000 ms, the acceleration state
is engaged, but since the power demand is not rapid, the battery can sufficiently handle
the energy needed without overheating, and the supercapacitor remains with high SoC
for high-density operation occurring at T = 1250 ms. Similarly, the battery will provide
power in a steady function, leading to T = 2000 ms, where the supercapacitor is reaching a
lower limit based on the rules applied, so the battery has to cover the load and charge the
ultracapacitor as well since demand is medium. Finally, UC is now recharged and available
to cover peak loads.

Figure 12 presents the load and power distribution fluctuations shown before. Fuzzy
logic controllers based on utilized rules, keep the state of charge at safe levels not leaving
any source depleted, a situation that can lead to major breakdown or damage to the EV
electrical systems.

The battery temperature operating range is maintained within 20–40 ◦C, the nominal
power of the motor is 50 kW, the battery energy capacity is 40 kWh running at 360 V, and
the ultracapacitor bank has a total capacitance of 5000 F at 320 V. The SoC range as stated
previously, should be maintained at 20–80% effective range for both sources, but due to
DC/DC converter limitations for cut-off voltage in real applications, testing mainly refers
to 30% and more available SoV for the entire HESS. The dataset mainly used is available
from previous work conducted [39]. However, for the previous figure, the data sequence is
summarized in Table 2 below.
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Figure 11. Power distribution of the hybrid storage system under different loads.

 

Figure 12. SOC fluctuations of the two sources separately according to the powertrain output.

Compared to a typical HESS with fuzzy rules or other management system, this
work shows safe and high operation time, sufficiently prolonging battery life. With the
introduction of duty cycles and constant parameter calculation, each energy source is
obliged to function within a specified power, temperature, and voltage range to cover the
demand of the motor or even auxiliary loads, like climate control. Based on the simulation,
efficiency increases by 6% as regenerative braking utilization is highly achievable through
the UC bank. The range is 2.5% boosted as HESS can cover the demand for more time,
hence the distance traveled is increased. Sizing is improved by 22% as fewer batteries are
required if the distance is planned as consistent and weight minimization is the requisite,
while the energy source’s lifetime is enhanced by 20% as battery last longer, since less stress
is applied due to UC. This gain is further explained at Figure 13 below. As the charge rate
increases, an energy source cannot operate for adequate amount of time. Sizing must be
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sufficient, but dimensions are a key factor associated with duty cycle and useful range.
Supercapacitors have an elevated ability to handle high charge rates as the left diagram
explained, compared to the lithium discharge curve by [40], where the battery cells show
low tolerance to high currents and charge rates, causing immense temperatures.

Table 2. Data sequence employed for Figure 12.

Time (ms) PVEHICLE (kW) SoCBAT (%) SoCUC (%)

100 0 92 100

200 30 92 70

300 35 91 50

400 20 91 30

500 25 90 25

600 40 89 25

700 10 88 30

800 −20 90.2 70

900 −15 92.4 100

1000 5 90.2 95

1100 20 88 90

1200 15 86.9 85

1300 40 85.8 50

1400 30 82.5 40

1500 25 80.3 35

1600 −20 80 32

1700 −20 79 28

1800 30 79 25

1900 15 78 23

2000 10 78 22

2100 25 76 40

2200 25 75 60

2300 −5 74 59

2400 −30 72 70

2500 −20 75 35

  
(a) (b) 

Figure 13. Difference of the two energy sources behavior and voltage output at various charge rates
(a) Ultracapacitor operating time and voltage at five distinct rates; (b) Battery voltage and operating
time drop at low–high charging rates and temperatures by [40].
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Furthermore, the efficiency chart of the proposed method compared to the reference
scheme tested in [39] is presented in Figure 14. A mean 3% efficiency improvement is
available at the entire power range due to enhanced power distribution and regenerative
braking utilization, except at minimal loads where the HESS is still slow in providing
the supply due to DC/DC switching lag. Efficiency peaks at medium power demand,
20–30 kW, reaching 90% efficiency, including all losses from Equation (14). Motor losses are
not incorporated as the HESS and converter are the main components studied in this project.

 

Figure 14. Efficiency chart of the experimental layout followed in [39] and this paper.

Compared to previous literature this work’s novelty is the introduction of battery-safe
operational zone indication, that is 20 to 80% State of charge, along with the connection of
the power mode criteria with duty cycles. Depending on the power state of the engine, each
source has to work in a specified duty cycle so depletion is prevented while covering the
power demand completely without lag or unsafe operation. This assessment is summarized
in Table 3.

Table 3. Contribution of this work supported by the latest literature.

A/A Paper Layout Outcome

1 [7] Sustainable Fuzzy Model Power distribution through duty cycles,
Utilization for lower battery stress

2 [8] Fuzzy PID Controller Smaller battery aging

3 [11] Model Predictive Control Lower battery current fluctuations,
SOV indication, Single power mode

4 [13] Fractional Order Modelling Optimized SoC and HESS
discharge time calculation

5 [19] Semi-Active Topology Smooth distribution for 2.5 C
operation rates

6 [20] Optimization Control for Trams Power mode differentiation utilize better efficiency and
safe operation

7 [21] Fine tuning resistance and
duty cycle method

Safe HESS Operation, battery life
prolonging but higher charging time

8 [23] Rule based Strategy with CanBUS Power modes approach minimize
Battery current and high UC employment

9 [24] Multi-Layer Strategy on HESS 20–80% SoC indication for safe operation
Single power mode
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Table 3. Cont.

A/A Paper Layout Outcome

10 [25] Buck-Boost Converter modelling Two power modes implementation
for lower operational temperature

11 [26] Particle Filter Accurate state of charge calculation,
with power mode introduction

12 [27] Genetic Algorithm Optimization Better efficiency at higher
temperatures, no power modes

13 [29] Semi-Active adaptive controller High recovery through regenerating
braking at all drive states

14 [33] Fuzzy logic controller for electric bus UC exploitation as primary source
for better sizing, no power modes

15 [35] Fuzzy Logic Control Optimization Power demand-based distribution
achieving 50% lower fluctuations

16 [36] Fuzzy Logic rule-based Strategy Duty cycle and sources SoC
Consideration for better control

17 This paper Fuzzy Logic Rule-Based Strategy
Duty cycle and power modes connection for

optimized power distribution within safe
Source operational range

4. Conclusions

This paper describes an energy management strategy for electric vehicles using a
fuzzy logic controller for a hybrid storage system. Different power modes of the propulsion
system are stated with the introduction of duty cycle importance for power distribution.
Battery should be maintained within safe SoC limits (20–80%), while the ultracapacitors
bank supplies the power demand as an auxiliary source and further exploits regenerative
braking. The novelty of this work is the introduction and classification of power modes,
providing better power distribution possibilities as duty cycles can be constantly modified,
leading to better and more accurate control in real time. Power modes also indicate
the driving style of the user and can be easily monitored with certain sensors, like the
throttle potentiometer output. The results show that the FLC is able to regulate the power
supply between the battery and the supercapacitor by changing the duty cycle value of the
buck-boost converter. The proposed system is then able to adjust the power distribution
according to the current power state. When the vehicle is in the acceleration state, the
supercapacitor provides more or all of the power to the powertrain while the battery output
gradually increases. When the vehicle is operating under normal conditions or coasting,
the battery acts as the main energy source, and the ultracapacitor is utilized supportively or
charging if the SoC is low. At regenerative breaking, both sources are charged depending
on the converter voltage. It has been validated that duty cycles from 0.40 to 0.50 are the
ideal ratios for most of the states without stressing the battery or depleting any source. This
scheme achieves 6% better efficiency and 2.5% range, with 22% enhanced sizing plus 20%
higher battery longevity. Future work implies testing with larger energy sources and the
implementation of this management strategy in real-life applications.
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Abbreviations

PVEHICLE Power demand of the Vehicle
VH Buck Boost converter high voltage side
IUC Ultracapacitor current
VL Buck-Boost converter high voltage side
IB Battery Current
PCON,LOSS Buck-Boost converter power losses
DBOOST Duty cycle on the boost mode
DBUCK Duty cycle on the buck mode
VS Voltage drop on the converter switch
VD Voltage drop on the converter diode
RS Resistance on the converter switch
RL Inductor resistance of the converter
RD Resistance on the converter diode
VP Battery polarization voltage
RP Battery polarization resistance
RB Battery internal resistance
CP Battery polarization capacitance
VOC Open circuit voltage
VT Terminal voltage
k Time interval for the battery pack
PB,LOSS Battery power losses
RUC Ultracapacitor internal resistance
IUC Ultracapacitor current
CR Ultracapacitor rated capacitance
n Time interval for the ultracapacitor bank
PUC Ultracapacitor power
PUC,LOSS Ultracapacitor power losses
VRATED Rated voltage by the manufacturer
PLOSS,TOTAL Total power losses
η Powertrain efficiency
M Vehicle mass
g Gravitational acceleration
f Rolling assistance coefficient
β Road incline
CARC Air assistance coefficient
A Wind exposed area of the vehicle
VA Vehicle speed
δ Road mass coefficient correction factor
UR Battery rated voltage
CR Battery rated voltage
nP Battery cells in parallel
nS Battery cells in series
SoC State of Charge
SoH State of Health
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