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Preface

Cancer remains a major threat to human health and one of the leading causes of death

worldwide. In recent years, there has been continuous progress in the development of new anticancer

drugs, and several compounds (small molecules, engineered antibodies, immunomodulators, etc.)

have been approved for the treatment of cancer.

In recent decades, computational methods have become an essential tool in the drug design

process, as they are able to reduce research costs and accelerate the development process. The

application of computational methods has been proven to be very effective in the design of anticancer

drugs. Given the wide variety of tumor types and the large number of possible pharmacological

targets, this area of research is very fruitful.

This Special Issue on “Computational Methods in the Design of Anticancer Drugs” collected nine

articles and two reviews covering a large number of targets and several computational approaches,

ranging from ligand- to structure-based methods, representing the latest discoveries in the field of

computational anticancer drug design. The Special Issue is addressed to all scientists working in the

anticancer field, especially those interested in computer-aided drug design.

As guest editors, we would like to thank all the authors for their excellent contributions and Kate

Zhou from MDPI for the editorial support.

Marialuigia Fantacuzzi and Mariangela Agamennone

Editors
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Computational Methods in the Design of Anticancer Drugs
Marialuigia Fantacuzzi * and Mariangela Agamennone *

Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via Dei Vestini, 31, 66100 Chieti, Italy
* Correspondence: marialuigia.fantacuzzi@unich.it (M.F.); mariangela.agamennone@unich.it (M.A.)

In recent years, continuous progress has been made in the development of new
anticancer drugs, and several compounds (small molecules, engineered antibodies, im-
munomodulators, etc.) have been approved, dramatically changing the landscape of tumor
treatment [1]. Despite these efforts, cancer remains a major threat to human health and one
of the leading causes of death worldwide [2]. This underscores the need for an even better
understanding of the molecular mechanisms behind cancer initiation and progression. To
date, the advent of immunotherapy, gene therapy and molecular targeted therapy has
revolutionized the treatment of most cancers. In targeted therapy, the genetic signature
of each type of cancer is targeted with drugs designed to act against actionable driver
genes, avoiding the side effects of conventional chemotherapy and improving treatment
efficacy. The advent of cancer immunotherapy and gene therapy has enriched the available
armamentarium in the fight against this pathology, even with some limitations [3]. The
efforts of the scientific community against cancer can also be seen in the number of drugs
approved by the FDA for cancer treatment in 2023 (15 out of a total of 55 new drugs) [4].

Over the past few decades, computational methods have become an essential tool
in the drug design process because they can reduce research costs and accelerate the
development process [5]. Several factors have been contributing to the expansion of in
silico applications. The increasing availability of 3D macromolecule structures through
experimental (X-ray or cryo-EM) or computational methods (AlphaFold) [6] allows us to
study most of the genome. The development of supercomputers enables the atom-based
simulation of even larger systems. The availability of ultra-large compound libraries,
which expand the explorable chemical space through screening campaigns, is another
important factor. Furthermore, the growing application of artificial intelligence algorithms
to drug discovery is having an increasing impact: AI algorithms are being applied in a
variety of areas, such as the aforementioned protein structure prediction, QSAR/QSPR,
structure-based modeling, and the prediction of AD-ME/toxicity profiles [7].

The application of computational methods in the design of anticancer drugs has
proven to be very effective [8]. Given the wide variety of tumor types and the large number
of possible pharmacological targets, this is a challenging area of research [2].

For the Special Issue on “Computational Methods in the Design of Anticancer Drugs”,
we aimed to collect the most recent discoveries in the field of anticancer drug design using
computational methods. The 11 articles (8 papers and 3 reviews) cover a wide range of
topics, from pharmacophore modeling to molecular docking, molecular dynamics, and
ADMET prediction, and focus on many different targets, highlighting the diverse target
landscape in cancer treatment.

Bülbül et al. (contribution 1) focused on the development of novel selective HDAC3
(Histon DeACetylase 3) inhibitors containing the alkylhydrazide zinc-binding group. They
generated and evaluated pharmacophore and atom-based QSAR models, and the binding
mode of compounds was determined using molecular docking and molecular dynamics
simulations. The developed models provide a clear explanation for the in vitro data.

Moreover, Córdova-Bahena et al. (contribution 2) generated a pharmacophore model
using a set of well-known Casein Kinase 1 isoform epsilon (CK1ε) inhibitors. The resulting
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model was used to screen a library of FDA-approved drugs for repositioning purposes.
Molecular docking and molecular dynamics were used to analyze new compounds. The
antineoplastic drug Etravirine, which activates the WNT pathway in osteosarcoma cells by
increasing the expression of the cyclin-dependent kinase (CDK) inhibitor p21, emerged as a
CK1ε inhibitor.

In addition, Bhujbal et al. (contribution 3) focused on Polo-like kinase 1 (PLK1) in-
hibitors, which can be used to treat various types of cancer, such as lung, colon, prostate,
ovarian, breast, melanoma, and AML. They performed hybrid 3D-QSAR and molecu-
lar docking to design potent and selective inhibitors. Two compounds showed good
IC50 values.

Crocetti and coworkers (contribution 4) used a ligand-based technique to develop more
potent fatty acid binding protein 4 (FABP4) inhibitors, starting with a known pyrimidine
ligand and applying bioisosteric replacements and scaffold hopping in the pyrimidine skele-
ton. They synthesized and biologically tested novel 4-amino and 4-ureido-pyridazinone-
based compounds as FABP4 inhibitors. The molecular docking study confirmed the ability
of the most active molecules to better interact inside the FABP4 binding pocket.

Al-Zahrani et al. (contribution 5) virtually screened 1289 flavonoids using molecular
docking to the mitogen-activated protein kinase (MAPK) MEK1. ADMET prediction and
100 ns molecular dynamics (MD) simulations were then applied to the top five docked
compounds, revealing them as promising potent inhibitors.

Franco et al. (contribution 6) focused on the inhibition of nicotinic acid phospho-
ribosyl transferase (NAPRT), the rate-limiting enzyme of the Preiss–Handler NAD biosyn-
thetic pathway, which can overcome resistance to nicotinamide phosphoribosyl transferase
(NAMPT) inhibition and lead to better anti-tumor effects. Selected hits from the virtual
screening were tested in a cellular assay using the ovarian cell line OVCAR-5, and the
recombinant hNAPRT and showed a synergistic effect with the NAMPT inhibitor FK866.

The same research group (contribution 7) performed a structure-based virtual screen-
ing on a 537,009 drug-like compound library and identified two additional chemical
scaffolds that functioned as NAPRT inhibitors. The new compounds showed compa-
rable anti-cancer activity with respect to the previously discovered NAPRT inhibitor, 2-
hydroxynicotinic acid (2-HNA), a better predicted solubility, and favorable
drug-like properties.

Bartelink et al. (contribution 8) applied a computational method to develop a physio-
logical pharmacokinetic (PBPK) model to predict the image quality (tumor-to-lung contrast)
of three PET radiotracers binding the epidermal growth factor receptor tyrosine kinase
(EGFR TKI PET/CT: 11C-erlotinib, 18F-afatinib and 11C-osimertinib), used to assess EGFR
overexpression and mutation in NSCLC. The model was also developed to predict the
uptake of healthy tissue in three radiolabeled EGFR ligands.

Finally, there are three reviews in this Special Issue. One, written by Wang et al.
(contribution 9), focuses on applications of artificial intelligence in the design of anticancer
drugs, demonstrating the basic ideas behind these techniques, as well as their advantages
and disadvantages. The authors reviewed the literature from the past decade, focusing
on all articles presenting computational studies using AI to assist in the identification
of effective cancer treatments. In addition, the authors provided a compilation of useful
databases (omics, chemical compounds, drugs, etc.) as a valuable tool in the application of
AI for drug discovery.

Primavera et al. (contribution 10) focused on small-molecule AKT inhibitors that
were validated for anticancer activity using computer-aided drug design methods. The
authors provided an introductory analysis of AKT structural features and binding sites.
Then, a comprehensive analysis of inhibitors identified via different approaches (pharma-
cophore screening, docking, QSAR, machine learning) is reported, distinguishing between
orthosteric and allosteric binders.

In our review (contribution 11), we examined the most relevant papers that elucidated
the binding mechanism of PD-L1 with PD-1 and small molecules through computational
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analyses. In particular, the hot spot residues involved in the interaction between PD-L1
and PD-1 and the PD-L1 dimerization induced by small molecule binding are described.
Virtual screening campaigns, mainly structure-based, that were performed to identify new
small-molecule PD-L1 binders are also reported.

As Guest Editors, we hope that the findings included in this Special Issue will inspire
further investigations in this challenging field.

Acknowledgments: The Guest Editors thank all the authors for their high-quality contributions and
the reviewers for providing critical feedback.

Conflicts of Interest: The authors declare no conflicts of interest.
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Application of Ligand- and Structure-Based Prediction Models
for the Design of Alkylhydrazide-Based HDAC3 Inhibitors as
Novel Anti-Cancer Compounds
Emre F. Bülbül 1 , Dina Robaa 1, Ping Sun 1 , Fereshteh Mahmoudi 1, Jelena Melesina 1, Matthes Zessin 2,
Mike Schutkowski 2 and Wolfgang Sippl 1,*

1 Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg,
06120 Halle (Saale), Germany; efbulbul@gmail.com (E.F.B.); dina.robaa@pharmazie.uni-halle.de (D.R.);
sunpingmc@gmail.com (P.S.); fereshteh.mahmoudi85@gmail.com (F.M.); jelenamelesina@gmail.com (J.M.)

2 Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg,
06120 Halle (Saale), Germany; matthes.zessin@gmail.com (M.Z.);
mike.schutkowski@biochemtech.uni-halle.de (M.S.)

* Correspondence: wolfgang.sippl@pharmazie.uni-halle.de

Abstract: Histone deacetylases (HDAC) represent promising epigenetic targets for several diseases
including different cancer types. The HDAC inhibitors approved to date are pan-HDAC inhibitors
and most show a poor selectivity profile, side effects, and in particular hydroxamic-acid-based
inhibitors lack good pharmacokinetic profiles. Therefore, the development of isoform-selective
non-hydroxamic acid HDAC inhibitors is a highly regarded field in medicinal chemistry. In this
study, we analyzed different ligand-based and structure-based drug design techniques to predict
the binding mode and inhibitory activity of recently developed alkylhydrazide HDAC inhibitors.
Alkylhydrazides have recently attracted more attention as they have shown promising effects in
various cancer cell lines. In this work, pharmacophore models and atom-based quantitative structure–
activity relationship (QSAR) models were generated and evaluated. The binding mode of the studied
compounds was determined using molecular docking as well as molecular dynamics simulations and
compared with known crystal structures. Calculated free energies of binding were also considered to
generate QSAR models. The created models show a good explanation of in vitro data and were used
to develop novel HDAC3 inhibitors.

Keywords: docking; binding free energy; pharmacophore; atom-based QSAR; alkylhydrazide; histone
deacetylases (HDAC)

1. Introduction

Epigenetics refers to reversible alterations in the gene expressions that do not modify
the DNA sequence [1]. Post-translational modifications such as methylation, acetylation,
and others introduce changes on the N-terminal tails of histones [2]. Histone acetylation
and deacetylation are controlled by different classes of enzymes, namely histone acetyl-
transferases (HAT) and histone deacetylases (HDAC) [3,4]. Thus, chemical modification is
reversible [5,6].

To date, 18 human HDACs have been characterized. HDACs are separated into two
groups and four classes depending on their sequence similarity to yeast HDAC [7]. Zinc-
dependent HDACs are class I, class II, and class IV HDACs, while nicotinamide adenine
dinucleotide (NAD+)-dependent enzymes are class III HDACs which are also known as
sirtuins [8–10]. Class I HDACs (HDAC1, 2, 3, and 8) are located in the nucleus [11]. HDAC1
and HDAC2 interact with the nucleosome remodeling and deacetylase complex (NuRD), tran-
scriptional regulatory protein sin3A, corepressor of REST (CoREST), and mitotic deacetylase
complex (MIDAC) [12–16], while HDAC3 forms a complex only with the silencing mediator
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for retinoid and thyroid receptors (SMRT) and nuclear receptor corepressor (NCoR) [17,18].
HDAC8 does not need to form a complex and works alone [19,20].

HDACs are involved in signal transduction, cell growth, and cell death [21]. So
far, several inhibitors including SAHA, FK228, belinostat, and panobinostat have been
approved by the FDA against T-cell lymphoma [22–25]. However, due to reported side
effects and unfavorable pharmacokinetics, much effort has been made to develop novel
selective and better bioavailable HDAC inhibitors against several diseases such as cancer,
parasitic diseases, inflammation, and others [26–29].

The majority of HDAC inhibitors consist of three pharmacophore features: a zinc-binding
group (ZBG), which chelates the zinc ion at the bottom of the catalytic pocket, a linker group,
which is located at the lysine binding tunnel, and a cap group, which is solvent-exposed at the
rim of the pocket [7,30]. Some HDACs can be selectively inhibited by compounds addressing
available subpockets of HDACs such as the side-pockets, lower pocket, and foot pocket
(FP) [31–39]. For example, class I HDACs show an additional foot pocket [40]. Targeting
this foot pocket resulted in class I HDAC-selective inhibitors [31,34,35,41–44]. However, the
development of selective inhibitors for the class I members of HDACs, particularly HDAC1-3,
remains a critical challenge to overcome. The zinc-binding group is an integral part of most
HDAC inhibitors. Until now, hydroxamic acid, 2-aminobenzamide, 2-substituted benzamide,
alkyl/arylketone, and thiol groups have often been used as warheads in the inhibitors of class
I HDACs [35,37,38,41–45].

Recently, Wang et al. discovered a lead compound containing a benzoylhydrazide moi-
ety that selectively inhibits HDAC1, HDAC2, and HDAC3 [46]. These compounds showed
a fast-on/slow off binding mechanism [46]. Consequently, the alkylhydrazide scaffold
attracted attention for the development of HDAC3 inhibitors, and some alkylhydrazide
derivatives were found to show high potency, increased selectivity, and good bioavail-
ability [46–52]. Therefore, the alkylhydrazide zinc-binding group represents a promising
alternative to classical hydroxamic acids. The general structures of thealkylhydrazides are
shown in Figure 1.

Interestingly, increasing the length of the N-alkyl group (from n-propyl to n-hexyl)
resulted in a shift of the selectivity towards HDAC8 and provided substrate-competitive
and highly potent inhibitors [53].

HDAC3 deacetylates various histone and non-histone proteins [54]. The catalytic
activity of HDAC3 is dependent on the formation of a complex with silencing of mediator
co-repressor 1 (NCoR1) and retinoic acid and thyroid hormone receptor (SMRT3) [55]. As a
class I HDAC member, HDAC3 deletes the acetyl mark from histone tails, resulting in a
tightly packed and transcriptionally inactive chromatin structure [56]. HDAC3 has hence
been implicated in several pathophysiological processes and disorders including different
cancer types, inflammatory conditions such as rheumatoid arthritis, neurodegenerative
disorders like Huntington’s and Alzheimer’s disease, diabetes, kidney diseases, as well as
cardiovascular diseases [54,56–63]. The exact role of HDAC3 in the various pathological
conditions remains poorly understood, as potent and selective HDAC3 inhibitors have
been scarce. Often, the described HDAC3 inhibitors in cells are also able to inhibit the
structurally very similar HDAC1 and HDAC2 [41–46]. Therefore, it is a promising task to
develop effective and selective HDAC3 inhibitors.

In the current study, we performed docking and molecular dynamics studies of alkyl-
hydrazides as HDAC3 inhibitors. In order to understand the structure–activity relationship
of this class of inhibitors, available data were compiled to apply ligand-based and structure-
based methods. Various quantitative structure–activity relationship (QSAR) methods were
evaluated for this purpose, including pharmacophore models, atom-based 3D QSAR mod-
els, and binding-free-energy-based QSAR models. In addition, we tested the models on
novel designed alkylhydrazides. The workflow followed in this study is shown in Figure 2.
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2. Results and Discussion
2.1. Diversity Analysis of the Datasets

A dataset containing 63 compounds with an N-monosubstituted hydrazide scaffold
was collected from the literature [47,49,51]. The 2D structures and IC50 values of all
alkylhydrazides are shown in Table S1 (Supplement). The selected compounds cover a
reasonable biological activity range (Table 1). All compounds were measured in vitro
using recombinant human HDAC3 and the peptidic substrate (Boc-Lys(acetyl)-AMC). The
fluorescence intensity was measured at excitation and emission wavelengths of 360 and
460 nm, respectively [47,49,51].

Table 1. Distribution of inhibitors in the training and test sets according to their HDAC3 IC50 values.

HDAC3 Dataset Number of
Compounds

7 < pIC50
Highly Active

5.3 < pIC50 < 7
Moderately Active

pIC50 < 5.3
Inactive

Training 39 30 9 -
Test 17 11 6 -

Inactive 7 - - 7
Total 63 41 15 7

We first grouped the compounds into three activity classes according to their HDAC3
inhibitory data (Table 1, Table S1 Supplement):

1. Highly active inhibitors showing pIC50 > 7
2. Moderately active inhibitors showing pIC50 between 5.30 and 7
3. Inactive inhibitors showing pIC50 < 5.30

The compounds were randomly divided into a training set (70%; 39 compounds)
and a test set (30%; 17 compounds) using the “RAND” function in the MOE program
(MOE–Molecular database calculator–RAND) [64]. The compounds either having no
exact IC50 values or showing an IC50 value higher than 5 µM were classified as inactive
(Table 1). The same training and test sets were used for the ligand- and structure-based
model development studies. The training set was used to generate the models, while the
independent test set was utilized to evaluate the predictive accuracy of the selected best
models. The inactive set was only utilized for the validation of the pharmacophore models
by calculating the inactive-survival score (detail in Section 2.2).

The applicability domains of the training and external test sets were analyzed by
plotting the three most important principal components (PCA1, PCA2, and PCA3) [60,65]
of the calculated descriptors (PEOE_VSA_HYD, GCUT_SLOGP_0, TPSA, b_single, lip_acc,
lip_don, and vsa_hyd—explained in Table 2). The most important PCA of the molecular
descriptors can explain about 100% of the original space. The PCA analysis showed that
the training set and external test set were homogeneously distributed in the chemical
space (Figure 3).

Table 2. List of selected molecular descriptors for the PCA analysis.

Abbreviations Molecular Descriptors

PEOE_VSA_HYD The partial equalization of orbital electronegativity (PEOE). Total hydrophobic van der
Waals surface area

GCUT_SLOGP_0 The GCUT descriptors using atomic contribution to logP
TPSA Polar surface area

b_single Number of single bonds (including implicit hydrogens). Aromatic bonds are not considered
to be single bonds

lip_acc The number of O and N atoms
lip_don The number of OH and NH atoms
vsa_hyd Approximation of the sum of VDW surface areas of hydrophobic atoms.
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2.2. Analysis of the Pharmacophore Model

An important step in establishing a 3D-QSAR model is the development of the correct
alignment, usually based on a generated pharmacophore model. In the current work, the
pharmacophore model was generated using the Phase module implemented in Schrödinger
considering 30 active compounds (pIC50 > 7) [66]. Then, seven inactive compounds were
used to analyze the ability of the generated models to discriminate between the active and
inactive compounds.

The pharmacophore model shows the 3D (three-dimensional) structural features
which might be essential for the biological activity [67,68]. Hence, the pharmacophore
features that are common to the 30 active compounds showing a pIC50 more than 7 were
investigated. In total, 38 pharmacophore hypotheses were generated and scored according
to the survival score. The survival score was generated by evaluating how well the selected
pharmacophore hypothesis fits to the most active inhibitors. Additionally, the Phase module
penalizes the generated pharmacophore hypothesis that cannot discriminate the actives
from inactives. Thus, the developed hypotheses were mapped onto the inactive compounds
and scored to yield the inactive-survival score. Pharmacophore hypotheses which showed a
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better inactive score than survival score was discarded since it cannot discriminate between
active and inactive compounds. For the selected pharmacophore hypothesis, all inactive
compounds should show low fitness to the pharmacophore hypothesis.

After scoring the generated pharmacophore hypotheses, the best-scored pharma-
cophore model consisting of seven pharmacophore features (ADDDHRR–Figure 4A) was
selected. The survival score (6.923) and the inactive score (1.688) of the hypothesis are
shown in Table 3. The pharmacophore features were specified as the hydrogen-bond ac-
ceptor (A), the hydrogen bond donor (D), the hydrophobic (H), the negative ionic (N), the
positive ionic (P), and the aromatic ring (R). It is worth noting that the less feature-based
pharmacophores show weak discrimination between actives and inactives. Most inactive
compounds showed a high fitness to the established pharmacophore features which led to
an increase in the inactive score as shown for the DDDHRR and DDHR hypotheses (Table 3).
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position of compound 1 and the pharmacophore hypothesis (hydrogen bond acceptor—red color,
hydrogen bond donor—cyan color, hydrophobic—green color, and ring—orange color).

Table 3. Calculated scores of the best performing pharmacophore hypotheses.

HYPO ID Survival Score Inactive Score

ADDDHRR 6.923 1.688

DDDHRR 6.464 1.711

DDHR 5.405 2.069

The generated pharmacophore model (ADDDHRR) was mapped onto the most active
compound 1. This pharmacophore model shows the importance of the hydrogen bond
donor and acceptor functions of the hydrazide moiety (Figure 4B). The carbonyl oxygen
of the hydrazide serves as a hydrogen bond acceptor, while the two nitrogen atoms serve
as hydrogen bond donor groups. The alkyl chain shows hydrophobic features while the
two aromatic ring systems are assigned as aromatic features. The amide moiety between
the linker acts as a hydrogen bond donor via the amide-NH (details shown in the docking
part). Accordingly, the selected ADDDHRR pharmacophore model shows the important
structural features which can interact with the HDAC3 pocket.

In conclusion, the common pharmacophore features were determined using the active
compounds in this step. The established pharmacophore model shows the required features
for the binding to HDAC3. Since there is no reported X-ray structure of HDAC3 with an
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alkylhydrazide, the pharmacophore model gives an insight into the possible binding mode
of alkylhydrazide derivatives.

2.3. Analysis of the Atom-Based 3D-QSAR Model

The atom-based 3D-QSAR model was built in Schrödinger19 using the 39 compounds
in the training set [66–68]. Atom-based QSAR treats molecules as a set of overlapping van
der Waals spheres. The spheres are divided into six categories: hydrogen bond donors;
hydrophobic/non-polar; negative ionic; positive ionic; electron withdrawing; and miscella-
neous [67,68]. The 3D-QSAR model enables us to consider all relevant structural features
such as steric clashes as well as pharmacophores which play a role in the HDAC3 activity
of the compounds. In this step, the previously selected seven-featured pharmacophore
model (ADDDHRR) was used as an alignment rule for the generation of an atom-based
QSAR model. First, 39 compounds were aligned to the pharmacophore model and then
the atom-based 3D-QSAR models were generated and cross-validated. The best atom-
based 3D-QSAR model was obtained with a good correlation coefficient (R2: 0.95) and
cross-validated correlation coefficient (Q2: 0.88) (Table 4).

Table 4. The best performing atom-based 3D_QSAR model.

HDAC3 Model N SD R2 RMSE Q2

1 39 0.27 0.95 0.39 0.88

Abbreviations: SD (standard deviation of the regression), R2 (correlation coefficient of the regression), RMSE (root
mean square error of test set prediction), and Q2

LOO (leave one-out cross-validation for the prediction values).

The atom-based 3D-QSAR techniques visualize the compounds as 3D (three-dimensional)
based on the non-covalent protein–ligand interactions such as the hydrogen bond acceptor
and donor, hydrophobic, and positive and negative ionic interactions. The model marks
the favorable structural features with green cubes and unfavorable structural features with
red cubes. To understand the most favorable and less favorable interactions, we analyzed
all compounds from the training set. As examples, three compounds with low activity
(compounds 35, 36, and 38) and three compounds with good activity (compounds 1, 2, and
3) from the training set were chosen to analyze the atom-based QSAR model (Figure S1,
Supplement). According to the atom-based QSAR model, compound 35 exhibited poor
activity due to its heptyl alkyl chain (Figure S1A, Supplement). As shown in Figure S1B
(Supplement), the meta-substituent on the phenyl linker, as exemplified with compound
36, showed an unfavorable effect on the HDAC3 activity. In the case of compound 38,
the thiophene ring showed unfavorable structural features, decreasing the HDAC3 activity
(Figure S1C, Supplement). On the other hand, the propyl alkyl chain attached to the hydrazide
group is favored for three active compounds (Figure S1D–F, Supplement). In addition to
that, para-substituted cap groups are also favored and covered by green cubes. According
to the model visualization, the least active compounds (Figure S1A–C, Supplement) are
mainly covered by red cubes, while the more active compounds, especially the cap groups
(Figure S1D–F, Supplement), are mostly covered by green cubes.

The external validation was performed using a test set which was not used for model
generation, with the aim of evaluating the predictive accuracy and reliability of the gen-
erated atom-based QSAR model. The scatter plot of the training and test set is shown in
Figure 5. The prediction results of the training, test, and inactive databases are shown
in Table S2.

Analysis of the test set revealed that the atom-based QSAR model predicts the active
inhibitors well, with differences less than 1 log unit. However, several of the moderately
active inhibitors (compounds 51, 53, 55, and 56) in the external test set as well as the seven
inactive compounds were predicted, with differences of more than 1 log unit (Table 5,
Table S2 Supplement). The atom-based QSAR model classified most of the moderately
active and inactive inhibitors into the active class. Due to the limited accuracy of the atom-
based models in correctly predicting the inactives/weakly actives, we tried to overcome
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this by generating structure-based prediction models. For this, we applied the docking and
binding free energy calculation techniques discussed in the next section.
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Table 5. Prediction results of the test set compounds (atom-based QSAR model).

Compound
Number

pIC50
HDAC3

Prediction by
Atom-Based

QSAR

Difference
(Experimental—Predicted

Activity) Atom-Based
References

40 9.29 8.69 0.60 [47]
41 9.24 8.87 0.37 [47]
42 9.21 9.14 0.07 [47]
43 7.90 8.43 0.53 [49]
44 7.78 7.13 0.64 [49]
45 7.46 7.17 0.29 [49]
46 7.31 7.65 0.34 [49]
47 7.17 6.92 0.24 [51]
48 7.16 7.54 0.38 [51]
49 7.11 7.96 0.85 [49]
50 7.07 7.81 0.74 [51]
51 6.73 7.88 1.16 [51]
52 6.51 7.32 0.81 [51]
53 5.96 7.85 1.89 [51]
54 5.87 6.19 0.33 [51]
55 5.81 8.08 2.26 [51]
56 5.72 6.74 1.01 [51]

2.4. Analyzing the Binding Mode of Alkylhydrazides in HDAC3

We started with docking all inhibitors to HDAC3 (PDB ID: 4A69 [69]) (Figure S2,
Supplement). We used a docking set-up in Glide which we previously validated for
HDAC inhibitors from different chemical series [31,34,53]. To date, there is no crystal
structure of an HDAC in complex with an alkylhydrazide, but we have recently shown that
alkylhydrazides similar to inhibitors 1 and 47 (Table S1, Supplement) [47,51] are reversible
and substrate competitive inhibitors of HDACs [53]. Thus, we docked the alkylhydrazides
into the catalytic pocket of HDAC3 and analyzed whether they are able to chelate the
catalytic zinc ion. The analysis of the docking results of the active inhibitors, as exemplified
by compounds 1 and 2 from the training set (Figure 6), showed that the hydrazide moiety
chelates the zinc ion in a bidentate manner through its nitrogen and carbonyl oxygen and
exhibits conserved hydrogen bond interactions with H134, H135, and Y298 at the bottom
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of the catalytic pocket. The aromatic linker group was placed into the hydrophobic tunnel
consisting of F144, H172, F200, and L266, where it undergoes aromatic pi–pi interactions
with F144 and F200. The cap group interacts with residues at the surface by forming
hydrogen bond interactions with D93 as well hydrophobic interactions with H22 and P23 in
HDAC3. A structural difference which influences the potency and selectivity on HDAC3 is
observed in the foot pocket region. According to the docking results, the propyl and butyl
chains of the alkylhydrazides fit well into the foot pocket of HDAC3. However, replacing
the propyl or butyl chains by pentyl or longer side chains resulted in a dramatic decrease in
HDAC3 activity due to the steric hindrance observed in HDAC3. The Y107 residue pushes
L133, resulting in a narrower foot pocket region [31,34]. Hence, the pentyl and longer alkyl
chains in the foot pocket region show steric clashing with M24 and L133, causing a decrease
in or loss of HDAC3 activity.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 9 of 25 
 

 

53 5.96 7.85 1.89 [51] 
54 5.87 6.19 0.33 [51] 
55 5.81 8.08 2.26 [51] 
56 5.72 6.74 1.01 [51] 

2.4. Analyzing the Binding Mode of Alkylhydrazides in HDAC3 
We started with docking all inhibitors to HDAC3 (PDB ID: 4A69 [69]) (Figure S2, 

Supplement). We used a docking set-up in Glide which we previously validated for 
HDAC inhibitors from different chemical series [31,34,53]. To date, there is no crystal 
structure of an HDAC in complex with an alkylhydrazide, but we have recently shown 
that alkylhydrazides similar to inhibitors 1 and 47 (Table S1, Supplement) [47,51] are 
reversible and substrate competitive inhibitors of HDACs [53]. Thus, we docked the 
alkylhydrazides into the catalytic pocket of HDAC3 and analyzed whether they are able 
to chelate the catalytic zinc ion. The analysis of the docking results of the active inhibitors, 
as exemplified by compounds 1 and 2 from the training set (Figure 6), showed that the 
hydrazide moiety chelates the zinc ion in a bidentate manner through its nitrogen and 
carbonyl oxygen and exhibits conserved hydrogen bond interactions with H134, H135, 
and Y298 at the bottom of the catalytic pocket. The aromatic linker group was placed into 
the hydrophobic tunnel consisting of F144, H172, F200, and L266, where it undergoes 
aromatic pi–pi interactions with F144 and F200. The cap group interacts with residues at 
the surface by forming hydrogen bond interactions with D93 as well hydrophobic 
interactions with H22 and P23 in HDAC3. A structural difference which influences the 
potency and selectivity on HDAC3 is observed in the foot pocket region. According to the 
docking results, the propyl and butyl chains of the alkylhydrazides fit well into the foot 
pocket of HDAC3. However, replacing the propyl or butyl chains by pentyl or longer side 
chains resulted in a dramatic decrease in HDAC3 activity due to the steric hindrance 
observed in HDAC3. The Y107 residue pushes L133, resulting in a narrower foot pocket 
region [31,34]. Hence, the pentyl and longer alkyl chains in the foot pocket region show 
steric clashing with M24 and L133, causing a decrease in or loss of HDAC3 activity. 

 
Figure 6. Docking poses of 1 (A, green-colored sticks), 2 (B, orange-colored sticks) in HDAC3 (PDB 
ID: 4A69). The hydrogen bonds (cyan dashed lines), hydrophobic interactions (magenta dashed 
lines), and metal coordination (red dashed lines) between the inhibitors and the protein are shown. 
Relevant residues are shown in stick representation with salmon carbon atoms in HDAC3. The zinc 
ion is shown as a cyan-colored sphere. The conserved water molecule is shown as a red sphere. 

Figure 6. Docking poses of 1 ((A), green-colored sticks), 2 ((B), orange-colored sticks) in HDAC3
(PDB ID: 4A69). The hydrogen bonds (cyan dashed lines), hydrophobic interactions (magenta dashed
lines), and metal coordination (red dashed lines) between the inhibitors and the protein are shown.
Relevant residues are shown in stick representation with salmon carbon atoms in HDAC3. The zinc
ion is shown as a cyan-colored sphere. The conserved water molecule is shown as a red sphere.

Although the docking poses show reasonable binding modes in the HDAC3 active
site, the correlation between the docking scores and pIC50 values was poor (R2 = 0.28 for
HDAC3). Thus, we rescored the docking poses by calculating the binding free energies.

In addition to the docking results, we checked the stability of the predicted interac-
tions of the potent inhibitors 1 and 2 with the binding site using 100 ns MD simulation
(Figures 7, 8, S3 and S4, Supplement). MD simulation analysis of compounds 1 and 2 re-
vealed that the n-propyl chain attached to the hydrazide fit into the foot pocket consisting
of M24 and L133. Notably, M24 and L133 play a key role as a gate keeper in the foot pocket
region of HDAC3. M24 and L133 closed the foot pocket and made the volume narrower
where only a propyl or butyl side chain favorably fit. This conformational change of M24
and L133 might explain the decrease in or loss of HDAC3 activity of the compounds with
longer alkyl chains than butyl and propyl. The zinc-binding group which is the common
part of compounds 1 and 2 preserves its bidentate coordination and undergoes hydrogen
bond interactions with H134, H135, and Y298 throughout the MD simulation. Furthermore,
the linker groups of compounds 1 and 2 remain sandwiched between F144 and F200. Be-
sides these similar protein–ligand interactions of compounds 1 and 2, the MD simulation
analysis displayed some differences in the cap region of compounds 1 and 2.
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According to the MD simulation of compound 1, the selected docking pose was stable
during the 100 ns MD simulation (Figures 7 and S3, Supplement). Throughout the MD
simulation, the ligand maintained the predicted binding conformation, albeit two of the
predicted interactions were lost, namely the hydrogen bond interaction between the amide
group and D93 as well as the interaction between the hydrazide-carbonyl-O and Y298,
due to the flexibility of the latter residue (Figure 7). The hydrogen bond distances of
the HDAC3-inhibitor 1 complex throughout the 100 ns MD simulations were analyzed
and plotted in Figure S4 (Supplement). No significant fluctuation was observed for the
benzofuran cap group of compound 1, which remains embedded in a hydrophobic pocket
and undergoes aromatic interaction with H22 at the surface of the protein.

In the case of compound 2 (Figure 8), the flexible 2-methylindole cap group showed
conformational changes. Hence, the ligand RMSD of compound 2 showed higher fluc-
tuations (Figure S5, Supplement). During the MD simulation, the 2-methylindole group
showed two different orientations: between 40–60 ns of the MD simulation, the cap group
adopts an orientation where it undergoes edge-to-face interaction with F144. For the rest of
the simulation time, the cap group showed the initially observed position and interacted
with H22. In contrast to compound 1, Y298 showed less fluctuation and maintained its
interaction with compound 2. Throughout the 100 ns MD simulation, compound 2 showed
stable binding and maintained its bidentate chelation with the zinc ion. The hydrogen bond
distances of the HDAC3-inhibitor 2 complex throughout the 100 ns MD simulations were
analyzed and plotted in Figure S6 (Supplement).

14



Pharmaceuticals 2023, 16, 968

In conclusion, since so far no X-ray structure has been released of an HDAC with an
alkylhydrazide inhibitor complex, we docked the compounds to HDAC3 to examine the
putative binding mode and to rationalize the observed SAR. Additionally, the observed
proteinligand interactions were analyzed by MD simulations. The interaction at the catalytic
pocket was found to be highly stable whereas some fluctuation was observed for the
flexible capping groups that are located at the solvent-exposed part of the binding pocket.
To provide further support for the predicted binding poses of the alkyl hydrazides, we
previously examined the substrate competition of two alkyl hydrazides for the related
class I member HDAC8 and confirmed that they reversibly inhibit and exhibit competitive
substrate binding. However, cocrystal structures of HDACs with alkylhydrazide-based
inhibitors have to be obtained to confirm the modeling results.
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Figure 8. MD frames of the HDAC3-2 complex. (A) The frame at 1 ns MD simulation, (B) the frame at
50 ns MD simulation, (C) the frame at 75 ns MD simulation, and (D) the frame at 100 ns MD simulation.
The hydrogen bonds (cyan dashed lines), hydrophobic interactions (magenta dashed lines), and metal
coordination (red dashed lines) between the inhibitors and the protein are shown. Relevant residues
are shown in stick representation with salmon carbon atoms in HDAC3. The ligand is shown in stick
representation with green carbon atoms. The zinc ion is shown as a cyan-colored sphere.

2.5. Binding Free Energy Calculation

Due to the low correlation between the docking scores and pIC50 values, rescoring of
the selected docking poses was performed using the MM/GBSA method in AMBER16 [70].
The total energies of HDAC3–inhibitor complexes were calculated using four different
parameter settings (solvation models) and six different frame settings (see the Methods
part for details). The same training set including the 39 compounds that was used for the
atom-based 3D-QSAR model was also used for model generation based on the calculated
binding free energies of the compounds. In total, 24 models were generated. The models
were assessed based on the correlation coefficients (R2) between the biological data and
the calculated energy values, taking into account Tropsha’s criteria for reliable QSAR mod-
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els [71] (Figure 9). The prediction results of the training, test set, and inactive compounds
are shown in Table S3 (Supplement).
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According to the Tropsha criteria [71], a good QSAR model should abide by the
following rules; R2 > 0.6 and Q2 > 0.5. Based on the mentioned rule, models showing
a calculated R2 value > 0.6 were considered for further statistical analysis (MODEL1, 7,
13, and 19). Interestingly, the four selected models are all based on the protein–ligand
complex obtained with one minimization step (Emin1, Table 6). Further internal validation
of the selected models was analyzed using the leave-one-out (LOO) method, 3-fold-cross-
validation (cv), and 10-fold cv.

Table 6. Best performing BFE models.

LOO CV 3-Fold CV 10-Fold CV

Model
Number N Method Frame 2D

Descriptor R2 RMSE Q2 QMSE Q2 QMSE Q2 QMSE

MODEL1 39 GB1 Emin1 - 0.63 0.69 0.58 0.73 0.60 0.74 0.60 0.73
MODEL7 39 GB2 Emin1 - 0.66 0.65 0.63 0.69 0.64 0.69 0.64 0.69

MODEL13 39 GB5 Emin1 - 0.67 0.65 0.64 0.68 0.65 0.69 0.65 0.68
MODEL19 39 GB8 Emin1 - 0.81 0.49 0.78 0.52 0.78 0.54 0.77 0.53

MODEL19_1 39 GB8 Emin1 PEOE_VSA_HYD 0.87 0.40 0.84 0.44 0.85 0.45 0.83 0.45

Abbreviations: R2 (correlation coefficient), RMSE (root mean square error), Q2
LOO (leave one-out cross-validation),

QMSE (crossed-root mean square error), and Emin1 (single frame after the first energy minimization step).

The four selected models showed R2 > 0.6 and Q2 > 0.5. Among the selected four
models, the GB8 (GBNeck) implicit solvation model outperformed the other methods
(GBHCT refers to GB1, and GBOBC refers to GB2-5 in the article). The reason might be that
the GBNeck model (referred to GB8) was generated to correct the van der Waals surface that
is inaccessible to water [72]. This improvement in GB8 might help to obtain better results
for the compounds used in this article. Model 19 based on the GB8 implicit solvation model
showed the highest R2 and Q2 values (LOO-method) with 0.81 and 0.78, respectively, and
the lowest RMSE and QMSE values with 0.49 and 0.52, respectively (Figure 10 and Table 6).
In addition, we tested whether the inclusion of a 2D descriptor for the shape/electronic
properties of the inhibitors could improve the models. Two-dimensional descriptors were
computed for all compounds in MOE [64]. All available 2D descriptors were then assessed
for their ability to improve the model. The total hydrophobic van der Waals surface area
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(PEOE_VSA_HYD) gave the best improvement. The combination of this 2D descriptor
and energy term improved the R2 from 0.81 to 0.87 and the Q2 (LOO) from 0.78 to 0.84. In
addition, this model (MODEL19_1) exhibited lower RMSE and QMSE values compared to
MODEL19 (Table 6).
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The test set was used to evaluate the accuracy of the best generated model (Model19_1).
In the test set (Table 7), all compounds were predicted with less than 1 log unit difference.
Additionally, the prediction of the inactive compounds was more satisfying compared to
the previously described atom-based QSAR models, with a difference of less than 1 log
unit except for compound 61 (Table S3, Supplement). For compound 61, the docking poses
could not explain the incorrect prediction. The scatter plot and prediction results are shown
in Figure 10 and Tables 7 and S3 (Supplement), respectively.

Table 7. Prediction results of the test set compounds using the BFE model (MODEL19_1).

Compound
Number

pIC50
HDAC3

Prediction of
BFE

Difference
(Experimental—Predicted

Activity)
References

40 9.29 8.60 0.70 [47]
41 9.24 9.75 0.51 [47]
42 9.21 9.37 0.17 [47]
43 7.90 8.53 0.63 [49]
44 7.78 8.10 0.33 [49]
45 7.46 7.42 0.03 [49]
46 7.31 8.06 0.75 [49]
47 7.17 7.85 0.68 [51]
48 7.16 8.12 0.96 [51]
49 7.11 6.30 0.81 [49]
50 7.07 7.32 0.25 [51]
51 6.73 7.56 0.83 [51]
52 6.51 6.89 0.38 [51]
53 5.96 6.19 0.22 [51]
54 5.87 6.41 0.55 [51]
55 5.81 6.27 0.46 [51]
56 5.72 6.42 0.69 [51]

2.6. Evaluation of the Generated Models on Newly Designed Compounds

The created models, the atom-based 3D QSAR model and Model 19_1, and the generated
docking poses were then used to predict alkyl hydrazides with other linkers and capping
groups that were synthesized (chemistry and in vitro testing were published elsewhere [53]).
These compounds were designed starting from compound 47 (Table S1, Supplement), where
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several structural modifications were introduced to extend the SAR on this series of HDAC3
inhibitors. In the first series of compounds, the effect of a different length for the alkyl side
chain was evaluated. In the second series of compounds, different substitutions on position 3
or 4 of the phenyl ring were introduced. In the next series of compounds, the aminopyrimidine
linker group with different N-arylmethyl, N-arylethyl, or N-ethylpiperazinyl moieties were
tested, while in the last series of compounds, piperazinyl-piperidine linker groups were
attached to the phenylalkylhydrazide core of the compounds. The general structures of
the new inhibitors are summarized in Figure 11. The experimentally determined HDAC3
IC50 values and the prediction results are shown in Tables 8, S5 and S6 (Supplement, all 2D
structures are summarized in Table S4, Supplement).
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Figure 11. General structures of the newly synthesized compounds [53].

First, the ligand-based models; i.e., the pharmacophore models and 3D_atom-based
QSAR models, were tested. The developed pharmacophore model was used to align the
26 new compounds to apply the atom-based QSAR model.

Analyzing the atom-based prediction results of the 26 new compounds revealed
interesting results (Table 8). Based on the atom-based QSAR model prediction results,
the absolute difference between the experimental and predicted pIC50 of the nine com-
pounds, which are moderately active or inactive, was more than >1 log unit, i.e., these
compounds were predicted to be more active than experimentally determined. The atom-
based QSAR model makes predictions based on the effect of electron-withdrawing groups,
electron-donating groups, and hydrophobic groups of compounds considering the created
pharmacophore hypothesis. However, in the case of HDAC3, the shape of the foot pocket
plays an important role in the inhibitor activity. Due to the smaller volume of the HDAC3
foot pocket, compounds with alkyl groups longer than butyl are moderately active or inac-
tive as determined by the in vitro results. Atom-based QSAR models do not take the pocket
volume into account, hence resulting in the observed weak prediction of these derivatives.
In conclusion, the atom-based QSAR model showed a weak discriminatory power.
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Table 8. Experimental and predicted activities of the BFE-based and atom-based models.

Compound
Number

pIC50
HDAC3

Prediction by
Atom-Based

QSAR

Difference
(Experimental—

Predicted Activity)
Atom-Based

Prediction by
BFE Model

Difference
(Experimental—Predicted

Activity) BFE

64 7.04 7.03 0.01 7.16 −0.12
65 6.46 6.59 −0.13 6.89 −0.43
66 5.82 6.57 −0.75 6.36 −0.54
67 <5.00 6.43 <−1.43 5.41 -
68 5.80 7.25 −1.46 6.69 −0.89
69 <5.00 7.05 <−2.05 5.07 -
70 <5.00 6.98 <−1.98 3.92 -
71 9%@1 µM 6.82 - 0.24 -
72 7.37 7.85 −0.49 7.60 −0.23
73 6.70 7.29 −0.59 6.68 0.02
74 41%@1 µM 7.39 - 7.29 -
75 7.09 7.82 −0.73 8.06 −0.97
76 7.22 7.12 0.10 6.86 0.36
77 7.43 7.96 −0.53 7.06 0.38
78 7.24 7.03 0.20 7.98 −0.75
79 6.92 6.80 0.12 6.32 0.60
80 6.96 8.10 −1.14 7.42 −0.46
81 <5.00 6.54 <−1.54 1.65 -
82 <5.00 6.86 <1.86 1.61 -
83 5.52 7.25 −1.73 3.26 2.26
84 <5.00 7.61 <−1.67 2.69 -
85 7.52 7.63 −0.10 7.64 −0.11
86 7.00 7.18 −0.18 7.29 −0.29
87 6.52 6.52 0.00 6.86 −0.33
88 6.00 7.40 −1.40 6.13 −0.13
89 5.85 7.13 −1.28 6.11 −0.26

Then we evaluated the binding-free-energy-based prediction results (Table 8). Initially,
all 26 compounds were docked to HDAC3 using the same protocol as for the training set.
Similar docking poses in HDAC3 were obtained for all 26 new compounds as obtained
for compounds 1 and 2 (exemplified in Figure 12). The docking studies showed that the
hydrazide moiety as well as the aromatic linker groups of all 26 compounds exhibited
similar interactions as observed for compounds 1 and 2. A bidentate chelation between the
zinc ion and hydrazide moiety was observed for all compounds. In addition, the hydrazide
moiety showed hydrogen bonds with H134, H135, and Y298 in the zinc-binding region
of the HDAC3 catalytic pocket. The aromatic linker groups were accommodated into
the hydrophobic tunnel and interacted with F144 and F200, showing pi–pi interactions.
Meanwhile, the cap groups and foot-pocket-targeting groups showed significant differences
which has an impact on the HDAC3 activity.

In the first series, exemplified by compound 64 (Figure 12), the acetoamidomethyl cap
group was placed at the entrance of the pocket and showed hydrogen bond interactions
with D93. The different length of the hydrazide alkyl side chain resulted in a significant
difference in HDAC3 activity. Compound 64 possessing a propyl side chain was predicted
to be more active than 65, 66, and 67, which is in line with the experimentally determined
data. The difference between the experimental and predicted values is indeed less than
<1 log unit for this series. Moreover, compound 67 with a hexyl side chain was predicted to
be inactive. This result confirms that the BFE model is sensible to the side chain effects on
this dataset.
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model also predicted compound 68 as a moderate inhibitor, while 69, 70, and 71 were 
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Figure 12. (A) Docking pose of compound 64, (B) docking pose of compound 68, (C) docking pose
of compound 72, and (D) docking pose of compound 85. The hydrogen bonds (cyan dashed lines),
hydrophobic interactions (magenta dashed lines), and metal coordination (red dashed lines) between
the inhibitors and the protein are shown. Relevant residues are shown in stick representation with
salmon carbon atoms in HDAC3. The ligand is shown in stick representation with green carbon
atoms. The zinc ion is shown as a cyan-colored sphere.

In the second series, only compound 68 (Figure 12) bearing the acetamidomethyl cap
group and propyl side chain in the foot-pocket-targeting region showed moderate activity
on HDAC3. The other compounds 69, 70, and 71 with a hexyl side chain, did not show
significant activity on HDAC3. Similar to the experimentally determined activity, the BFE
model also predicted compound 68 as a moderate inhibitor, while 69, 70, and 71 were
predicted as inactive compounds.

In the third series of compounds bearing an aminopyrimidine moiety as a linker
group, different N-arylmethyl, N-arylethyl, or N-methylpiperaziniyl moieties as capping
groups were tested. This series is exemplified by compound 72 (Figure 12). All compounds
bearing a propyl side chain except compound 74 were predicted with less than <1 log unit
compared to the experimentally determined activities. Interestingly, compound 74 bearing
an N-arylethyl cap group did not show significant inhibitory activity (41%@1µM) on
HDAC3; however, it was predicted by the model as an active inhibitor. The flexible cap
group could be the reason for the reduced activity on HDAC3. Finally, compounds 81–84
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possessing a hexyl side chain were predicted as inactive inhibitors which is in line with the
experimental findings.

The last series of compounds bearing indole or N-methylindole groups attached via
a methyl or ethyl linker to the piperazinyl–pyrimidine scaffold were predicted close to the
experimental activities. The difference between the experimental and predicted values is less
than <1 log unit. The docking poses of this series are exemplified by compound 85 (Figure 12).

In conclusion we applied the validated BFE models to the further development of
the alkylhydrazide-based class I HDAC inhibitors. The best inhibitors from this series
were also tested for their immunmodulatory effects in Jurkat cells and showed promising
cellular effects [53]. As we have recently demonstrated a potent T cell memory response by
combined class I HDAC inhibition and immune-checkpoint blockade in hepatocellular car-
cinoma (HCC) therapy, the new alkylhydrazides represent an interesting class of inhibitors
to explore their potential for cancer therapy.

3. Materials and Methods
3.1. Ligand Database Preparation

A ligand dataset of 63 compounds with hydrazide as the zinc-binding group (ZBG) was
collected from the literature [47,49,51]. Only compounds having an N-monosubstituted
hydrazide scaffold were considered. The IC50 values of the selected compounds were
retrieved from three publications and they all were determined against HDAC3 using the
same fluorogenic substrate (Boc-Lys(acetyl)-AMC (amino methyl coumarin)). The same
human recombinant HDAC3 enzyme was used for the in vitro studies [47,49,51]. The
compounds were prepared in ligprep tool using the OPLS3e forcefield in Schrödinger
suite [73]. Subsequently, the output of the ligprep step was submitted the Confgen to
generate 64 conformers per ligand while minimizing the output conformers using the
OPLS3e forcefield [73,74]. The compounds were automatically divided into a training
(70%) and external test set (30%) using the “RAND” function in the MOE program (MOE–
Molecular database calculator–RAND) [64]. The same training set and external test set were
used for the model development studies. The compounds with no exact IC50 values were
considered as inactive. The QSAR models were built using the most active and moderate
inhibitors for which exact IC50 values were available.

The diversity analysis of the compounds was performed by analyzing the three most
important principal components using the principal component analysis (PCA) imple-
mented in MOE [60,64,65]. The 2D descriptors were computed in MOE [64]. Several 2D
descriptors were selected using the Contingency tool in MOE. The three most important
principal components (PCA1, PCA2, and PCA3) were calculated using the selected 2D de-
scriptors. These principal components were used to check the diversity of the compounds.

The 26 compounds were collected from the article published by our group to evaluate
the established models and check their reliability in different datasets [53]. The ligands
were prepared using the same protocol as used for the validation set.

3.2. Pharmacophore Model

The pharmacophore model was established using 30 inhibitors with IC50 values lower
than 100 nM in the training set and the 7 inactive compounds in the Phase module of
Schrödinger [66]. The compounds were prepared in ligprep using the OPLS3e forcefield in
the previous step [73,74]. The conformational search was performed in the Phase module
by adjusting 64 conformers per compound and minimizing the output conformers using
the “Develop Pharmacophore model” module in Schrödinger [66]. The common pharma-
cophore hypotheses were developed, scored, and ranked. The selected pharmacophore
model was used as an alignment rule for the atom-based 3D-QSAR model.

3.3. Atom-Based 3D-QSAR Model

The ligand-based 3D-QSAR model was generated using the training dataset in the
Phase module of Schrödinger [66]. The 39 compounds in the training database were aligned

21



Pharmaceuticals 2023, 16, 968

using the selected pharmacophore hypothesis from the previous step. The QSAR models
were built with four latent factors and 1.0 Å grid spacing as well as the leave-one-out-
cross-validation approach. The generated models were evaluated by means of standard
deviation of the regression (SD), R2 (correlation coefficient of regression), RMSE (root mean
square error of test set prediction), and Q2 (cross-training of test set prediction).

3.4. Docking Study

The hydroxamic acid scaffold and hydrazide scaffold are structurally similar groups.
Therefore, the X-ray crystal structures of HDAC2 (PDB ID: 4LXZ [35]) and HDAC3 (PDB
ID: 4A69 [69]) were retrieved from the Protein Data Bank (PDB, rcsb.org [(accessed on
20 May 2022) [75]) and analyzed in MOE [64]. SAHA with a hydroxamic acid scaffold in
complex with the HDAC2 protein (PDB ID: 4LXZ) was defined as a pan-HDAC inhibitor
and showed activity on HDAC3 [35]. First, HDAC2 (PDB ID: 4LXZ) and HDAC3 (PDB
ID: 4A69) were superposed in MOE [64]. Then, SAHA was transferred from the HDAC2
protein (PDB ID: 4LXZ) to HDAC3 to mimic the induced fit effect of the zinc-binding group.

The HDAC3–SAHA complex was prepared in the protein preparation wizard of
Schrödinger’s suite by adding hydrogen bonds and missing side chains and assigning the
bond orders [73]. The water molecules (except W2083) and ions (except Zn+2 ions) were
deleted. The protonation states and tautomers were optimized at pH 7.4 using the PROPKA
tool. The optimized complex was minimized using the OPLS3e force field to remove the
steric clashes [74].

Molecular docking studies were carried out by applying the standard precision (SP)
mode in Glide implemented in Schrödinger Suite [73]. The grid box including the informa-
tion on the active site coordinates of the proteins was defined with a 10 Å radius around
the ligand. Ten docking poses were employed for further post-docking minimization. The
other settings were kept as the default. The docking results were visually analyzed in the
MOE program [64].

3.5. Molecular Dynamics Simulation

The selected docking poses of compounds 1 and 2 in complex with HDAC3 (PDB
ID: 4A69) were subjected to a 100 ns MD simulation in AMBER16 [70]. The Antechamber
package was used to prepare the topologies, force field parameters, atom types, and
bond types by applying the semi-empirical Austin Model1 with bond charge correction
(AM1-BCC) [76,77]. Then, the tLEaP module was employed to prepare the protein–ligand
complexes. General amber force field (GAFF), the Duan force field (ff03.r1), and 12-6-
4LJ ionic model were used for the ligand, protein, and zinc, respectively [78–81]. The
system was solvated by the TIP3P water model and a margin of 10 Å. Two minimization
steps including the two sub-steps in each minimization were carried out. In the first step,
4000 iterations (2000 cycles of steepest descent and then 2000 of the conjugate gradient)
were performed, while the protein residues, ligand, and zinc ion were restrained to their
initial geometries (force constant of 10 kcal*mol−1* Å−2) to relieve the bad contacts. In the
second step, 4000 iterations (2000 cycles of steepest descent and then 2000 of the conjugate
gradient) were performed to remove the steric clashes in the entire complex. The restraint
on the protein, ligand, and zinc were removed during the second minimization. Then,
the system was heated at 300 K through 100 ps of MD. The protein–ligand complex was
restrained to prevent large structural deviations (force constant of 10 kcal*mol−1* Å−2).
The SHAKE algorithm was activated to constrain bonds involving hydrogens [82]. Finally,
the system was equilibrated within a period of 200 ps. Langevin dynamics was applied
to keep the temperature at 300 K with a collision frequency of 2 ps [83]. The pressure was
kept at 1 bar using isotropic position scaling with a relaxation time of 2 ps. Afterwards,
a 100 ns MD simulation was run with a time step of 2 fs using the same conditions as in
the equilibration step. A non-bonded cut-off distance of 10 Å was used. The electrostatic
interactions were calculated by applying the particle mesh Ewald (PME) method. After the
MD simulation, CPPTRAJ module of AMBER was used to analyze the MD snapshots.
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3.6. Binding Free Energy Calculation

The binding free energies (BFE) of the prepared protein–ligand complexes were cal-
culated using the AMBER16 program [70]. The MMPBSA.py script was utilized for the
calculations [84]. Different implicit solvent models (GB HCT (igb = 1), GB OBC (igb = 2),
GB OBC2 (igb = 5), and GBn (igb = 8)) were tested [85–87]. Molecular mechanics (MM)
and solvent models were combined for the MMGBSA calculations [88–90]. Short 2 ns MD
simulation was performed for all BFE calculations. The results of BFE were analyzed using
the following six different methods: (1) a single frame at the first minimization step (Emin1),
(2) a single frame at the second minimization step (Emin2), (3) a single frame at the third
minimization after MD (Emin3), (4) 1–50 frames during MD (MD-1) with an interval of 5,
(5) 51–100 frames during MD (MD-2) with an interval of 5, and (6) 101–500 frames during
MD (MD-3) with an interval of 5. The correlation between biological activity and the energy
results was measured by using the QSAR tool in the MOE program [64].

4. Conclusions

In the current study, we have evaluated several QSAR models including ligand-
based and structure-based techniques to understand the structure–activity relationship of
alkylhydrazides developed as HDAC3 inhibitors. Additionally, the binding modes of the
two most potent HDAC3 inhibitors (compounds 1 and 2) were verified through 100 ns MD
simulation since there is no X-ray structure crystallized with an alkylhydrazide derivative.
With the aid of ligand-based and structure-based approaches, in-house computational
models have been developed for the prediction of the HDAC3 inhibitory activity of the
alkylhydrazide scaffold.

The ligand-based models enabled us to obtain a general overview of the binding of the
compounds in the HDAC3 protein. The established pharmacophore model and atom-based
3D-QSAR model can be used to filter the big databases. Since the shape of the foot pocket
of HDAC3 has a crucial impact on the HDAC3 inhibitory activity, the predictive power of
the ligand-based models was not satisfactory. These models predicted moderate inhibitors
and inactive compounds as active compounds, although they predicted the actives as
actives. Thus, these methods should be used to reduce the number of compounds in the
big database.

The weakness of the ligand-based methods directed us to generate the structure-
based methods. The binding mode of the alkylhydrazide was predicted by docking. The
selected binding modes from the validation set (compounds 1 and 2) were verified by the
100 ns MD simulation. The analysis of the MD simulation revealed that M24 and L133 are
gatekeepers in the foot pocket of HDAC3. Additionally, the alkylhydrazides kept their
bidentate chelation to the zinc ion during the 100 ns MD simulation. The compounds were
rescored by means of BFE calculations. The binding free energies were correlated with the
experimentally derived inhibitory activities. The established binding-free-energy-based
QSAR model predicted all of the compounds in the test set with less than 1 log difference.
Additionally, we tested the established model on a new dataset containing 26 molecules
which were designed, synthesized, and tested taking knowledge of the developed BFE
models [53]. The structure-based model was able to predict these novel compounds
with less than 1 log unit error and showed its value for chemical optimization. For the
different test sets, the structure-based model showed better accuracy than the ligand-based
models. The combination of structure-based and ligand-based models resulted in predictive
QSAR models in the current study. These provide useful tools for the further design and
optimization of alkylhydrazide derivatives as HDAC inhibitors.
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Abstract: CK1ε is a key regulator of WNT/β-catenin and other pathways that are linked to tumor
progression; thus, CK1ε is considered a target for the development of antineoplastic therapies. In this
study, we performed a virtual screening to search for potential CK1ε inhibitors. First, we characterized
the dynamic noncovalent interactions profiles for a set of reported CK1ε inhibitors to generate a
pharmacophore model, which was used to identify new potential inhibitors among FDA-approved
drugs. We found that etravirine and abacavir, two drugs that are approved for HIV infections, can be
repurposed as CK1ε inhibitors. The interaction of these drugs with CK1εwas further examined by
molecular docking and molecular dynamics. Etravirine and abacavir formed stable complexes with
the target, emulating the binding behavior of known inhibitors. However, only etravirine showed
high theoretical binding affinity to CK1ε. Our findings provide a new pharmacophore for targeting
CK1ε and implicate etravirine as a CK1ε inhibitor and antineoplastic agent.

Keywords: cancer; drug repurposing; pharmacophore model; CK1ε; etravirine; abacavir

1. Introduction

The casein kinase 1 (CK1) family comprises enzymes that regulate signal transduction
pathways by reversible phosphorylation of their substrate proteins [1]. They are involved in
many cellular processes, including DNA repair, cell differentiation, intracellular trafficking,
immune responses, and apoptosis [2]. In mammals, the CK1 family has seven members: α,
β1, γ1, γ2, γ3, δ, and ε.

Physiologically, CK1ε participates in circadian clock control via phosphorylation
of PER2 and PER3. Phosphorylated PER2/3 translocate into the nucleus, suppressing
the activity of the CLOCK/BMAL1 transcriptional complex [3]. However, CK1ε also
modulates the transduction of many signals in cancer cells. For example, it phosphorylates
p53 and Mdm2, which are important in cell proliferation and the maintenance of genomic
integrity [4,5].

Further, CK1ε is a pivotal regulator of the WNT pathways [6], which are commonly
altered in various human cancers [7,8]. The upregulation of CK1ε activity that is elicited by
WNT ligands [9] leads to the phosphorylation of Dishevelled [10], activating the canonical
WNT pathway. Conversely, in the absence of WNT ligands, CK1ε phosphorylates β-catenin,
promoting its degradation [11]. This latter activity occurs in glioblastoma cells, in which
the of inhibition CK1ε activates β-catenin and induces apoptosis [12]. CK1ε can also
interact and phosphorylate the tyrosine-protein kinase WNT co-receptors ROR1/ROR2 in
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cancer cells [13,14], triggering AKT-mediated signaling and promoting proliferation [14].
Furthermore, CK1ε protects ROR2 protein from degradation [15].

Addition protumoral effects of CK1ε include its control of the expression of the
mitochondrial protein adenine nucleotide translocase 2 (ANT2). In ovarian cancer cells,
CK1ε interacts with ANT2 to support ATP production [16]. Accordingly, the inhibition
of CK1ε suppresses cell proliferation, reduces xenograft growth in vivo, and increases
the susceptibility to chemotherapy. Thus, CK1ε is considered an antineoplastic target on
several levels [17–19].

Structurally, CK1ε has a highly conserved kinase domain that is organized into a
bilobal arrangement [20,21]. The N-terminal lobe is composed primarily of β-sheets,
and the C-terminal lobe comprises α-helices [22]. The catalytic site is located between
the two lobes. An analysis of the binding mode of ATP has defined five regions [23]:
(1) adenine-interacting, (2) sugar-interacting, (3) phosphate-interacting, (4) buried region,
and (5) solvent accessible region. The active residues for ATP binding are Ala36, Lys38, and
Met80 in the N-lobe; Glu90, Leu91, and Phe95 in the C-lobe; and Met82, Glu83, Leu84, and
Leu85 in the linker loop between the two lobes [24].

This extensive characterization of the catalytic pocket of CK1ε has guided the devel-
opment of several competitive inhibitors with moderate to high biological activity [24–27].
For example, the CK1ε inhibitor PF-4800567 (hereafter referred to as inhibitor 1 [IN1]) is an
efficacious inhibitor of circadian rhythms in cycling Rat1 fibroblasts and mice [27]. In Febru-
ary 2021, the Food and Drug Administration (FDA) granted approval to the CK1ε inhibitor
umbralisib for the treatment of marginal zone lymphoma and follicular lymphoma [28].
Nevertheless, no other CK1ε inhibitor has attained clinical use, highlighting the need of
new inhibitors.

We generated a pharmacophore model by characterizing the binding modes of five
reported CK1ε inhibitors. Our model was then used to identify potential molecules that
bind the catalytic domain of CK1ε from a database of FDA-approved drugs. We found that
the anti-HIV drugs etravirine and abacavir have conformers that match our pharmacophore
and were the most likely binding modes in molecular docking experiments. Etravirine
emulated the noncovalent interactions in reported CK1ε inhibitors, with a similar theoretical
∆G as IN1. Further, we observed that additional residues outside of the catalytic domain
participated in stabilization of the etravirine-CK1ε interaction. Thus, we propose the
repurposing of etravirine as a CK1ε inhibitor. Biological validation of our findings will
constitute the basis for the development of new clinical CK1ε inhibitors.

2. Results
2.1. Identification of Binding Modes for Noncrystallized CK1ε Inhibitors

The set of inhibitors used in this study is listed in Table 1. The binding mode for
inhibitors without available structural data (inhibitors [IN] 2–5) was determined by molec-
ular docking. The protocol was validated by docking IN1 into the catalytic site of CK1ε
using 12 combinations of search algorithms and scoring functions. Eight poses were cal-
culated for each combination. Hierarchical clustering of the 96 predicted poses identified
subclusters with poses that had a root-mean-square deviation (RMSD) of atomic positions
<2.0 Å (Figure 1A). A comparison of a representative pose of the largest subcluster and
the bioactive conformer in the structure [22] of PDB 4HNI yielded an RMSD of 0.5 Å
(Figure 1B). The largest subcluster included the binding modes with the best scores for var-
ious combinations of search algorithms and scoring functions, indicating that the strategy
can predict the experimental binding mode.
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Table 1. Characteristics of the CK1εATP-competitive inhibitors employed for pharmacophore modeling.

Assigned Code Original Name Structure IC50 (µM) Reference
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Figure 1. Docking protocol reproduces the active conformer of IN1. (A) Hierarchical clustering of
96 poses obtained by molecular docking. Inset shows the largest subcluster. Poses are labeled using
letters that indicate the combination of search algorithm/scoring function employed (see “Methods”)
and a number indicating the ranked position. The crystal pose of IN1 (REF) and the best scored pose
calculated using PLANTS scoring function and Optimizer search algorithm (pO-1) are highlighted
in gray and pink, respectively. Color scale shows the RMSD between poses. (B) Superimposition of
co-crystallized (gray) and pO-1 docked (pink) poses.

Four additional CK1ε inhibitors with unknown binding mode were docked using
the validated protocol. For these inhibitors, the largest subclusters that were generated by
hierarchical clustering included poses with RMSD < 2.0 Å (Figure S1). From the representa-
tive poses of these subclusters, we identified the binding regions and the intermolecular
interactions formed (Figure 2). For all inhibitors, the binding modes were mainly driven by
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hydrogen bonds with the backbone of residues Glu83, and Leu85. Additional hydrogen
bonds were found with Glu52 and Ser88, for IN2 and IN4 respectively. The fused rings of
IN2, IN3, IN4, and IN5 were oriented toward the buried region of the catalytic pocket, and
the groups on the side opposite to the fused rings were oriented to the solvent accessible re-
gion. In contrast, the fused rings of IN1 remained directed toward the adenine region in the
middle area of the catalytic pocket. In addition, for all inhibitors the binding was mediated
largely by hydrophobic interactions, although charged amino acids also participated.
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Figure 2. Binding modes calculated by molecular docking for the five inhibitors analyzed. Cartoon
representation of CK1εwith residues Glu52, Glu83, and Leu85, and Ser88 on licorice model. Hydrogen
bonds are shown as blue lines.

2.2. Characterization of Relevant CK1ε-Inhibitor Interactions by Molecular Dynamics

To examine the conformational dynamics of the ligands in the catalytic site of CK1ε,
we performed simulations by molecular dynamics (MD). As expected for compounds
with proven biological activity, all systems showed stable binding, although IN1 and
IN2 conformers had greater stability (average RMSD < 2 Å) than IN3 and IN5 (average
RMSD < 4 Å). The greatest changes for IN3 and IN5 occurred in the anisole and tetrazole
groups, respectively, in the solvent accessible region. For IN4, the ligand showed transient
variability at the beginning of MD but eventually stabilized.

RMSDs of the protein backbone in the apo enzyme and CK1ε-inhibitor complexes
were used to analyze structural changes in the target protein. The complete trajectory for
the apo enzyme showed an RMSD value of 1.85 ± 0.26 Å (average ± standard deviation).
For the CK1ε-inhibitor complexes, the average RMSD was below 2.5 Å, indicating that no
significant structural changes occur in CK1εwhen bound to inhibitors (Figure 3A).

The root-mean-square fluctuation (RMSF) values from atomic positions of the alpha
carbons in the backbone protein showed that all systems behaved similarly, except for a
few residues. The loops that comprised residues 42–48 and 74–76 were particularly flexible
in the complex with IN3 compared with other inhibitors. Similarly, the 139–140 loop and
216–226 loop-helix, which lie outside of the catalytic site, showed increased mobility in the
complexes with IN4 and IN1, respectively (Figure 3B).
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Figure 3. Molecular dynamics analysis identified key inhibitor-CK1ε interactions. (A) Protein
backbone and ligand RMSDs for apoCK1ε and CK1ε-inhibitor complexes. (B) Protein backbone
RMSF for all systems. Secondary structure of CK1ε is shown at the bottom with regions comprising
the catalytic domain in red squares. (C) Heatmap of the non-covalent interaction profile occurrence.
For clarity, only residues with occurrence higher than 20% are shown.

An analysis of the 15,000 bioactive conformations that were accessible for each inhibitor
allowed us to create dynamic noncovalent interaction profiles for each residue (Figure 3C).
Hydrogen bonds with the Leu85backbone in the adenine region were noted, ranging from
13,204 to 14,998 conformations (88.02% to 99.99% occurrence) for all inhibitors, indicating
that such an interaction occurs independently of the inhibitor. Similar but less frequent
interactions were identified for residues Ile15, Ile23, Leu135, and Ile148 for all inhibitors.
Conversely, Phe20 in the phosphate-binding region of the catalytic domain formed 3239
pi-stacking interactions in the simulation for IN3, 4713 for IN4, and 7421 for IN5 (occurrence
of 21.59%, 31.42%, and 49.47%, respectively); thus, pi-stacking that is mediated by Phe20
favors the binding of certain compounds.

Finally, we identified residues that mediate only the binding of a particular inhibitor.
Hydrophobic interactions with Phe20 and Pro66 occurred frequently for IN4 (63.36% and
33.79% of the time, respectively). Hydrogen bonds with Glu83 appeared for IN1 (97.48% of
the time). Several hydrogen bonds with Lys38 and Glu52 were found with IN2; however,
Lys38 participated in binding primarily through hydrophobic interactions, and Glu52 had
no function in any of the other inhibitors.

2.3. Generation of Pharmacophore Model

Based on their frequency in our MD analyses, we selected eight intermolecular inter-
actions to generate a 3D pharmacophore model (Figure 4):

1. a hydrogen bond acceptor (HBA) from the interactions of all inhibitors with the
Leu85 backbone;

2. a hydrogen bond donor (HBD1) from the interactions of all inhibitors with the
Leu85 backbone;
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3. a second hydrogen bond donor (HBD2) from the interaction of IN1 with Glu83;
4. an aromatic (Aro1) feature from the pi-stacking interactions of IN3, IN4, and IN5

with Phe20;
5. a hydrophobic (Hyd1) feature—at the same position of Aro1—from the hydrophobic

interaction of IN4 with Phe20;
6. a second hydrophobic element (Hyd2) from the interactions of inhibitors with Ala36,

Pro66, Met82, Leu135, and Ile148;
7. a second aromatic element (Aro2)—at the same position as Hyd2—because a ring can

fix the hydrogen bond elements to each other;
8. a third hydrophobic element (Hyd3) from the interactions of IN1 and IN2 with the

lateral chain of Lys38.
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Figure 4. Pharmacophore modeling. (A) CK1ε catalytic site representation with selected amino
acids showed on licorice model. Residues forming hydrophobic interactions, hydrogen bonds, or
stacking interactions are colored green, yellow and white, or purple, respectively. (B) The generated
pharmacophore model included eight elements. Hydrogen bond donors (HBD) are represented as
sphere grid colored white, hydrogen bond acceptor (HBA) on yellow, aromatic (Aro) on purple, and
hydrophobic (Hyd) on green.

2.4. Virtual Screening

The generated pharmacophore was used to search a virtual library of FDA-approved
drugs. When the complete pharmacophore model was queried, only etravirine appeared
as a match. Thus, we performed a second search with a submodel without the Aro1/Hyd1
dual element. These elements were eliminated because Hyd1 makes a less important
energetic contribution and because the position of the element remains solvent-exposed.
Seven additional compounds matched this simplified pharmacophore model. The set of
candidate drugs is presented on Table S1.

Of the eight identified drugs, four were discarded because they have predominant
species at physiological pH with protonation states different to the species matching the
pharmacophore. The remaining four compounds were docked into the catalytic site of
CK1ε to analyze their binding mode. Two compounds bound to the target in modes that
clearly differed from that predicted by the pharmacophore models (RMSD > 5.1 Å) and
thus were not further studied. In contrast, etravirine and abacavir bound to CK1ε per the
model that was used for their identification (Figure 5).
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Figure 5. Docking poses of etravirine and abacavir. Overlap of pharmacophore features with the
calculated binding modes of etravirine (magenta) and abacavir (cyan). Hydrogen bonds are shown
as blue lines. Note that the pharmacophoric submodel used for abacavir lacks the dual element
Aro1/Hyd1 (see text for details).

2.5. MD Analyses Support the Repurposing of Etravirine as a CK1ε Inhibitor

Complexes of etravirine or abacavir with CK1ε were examined by MD. The CK1ε-
etravirine complex had an RMSD of 2.4 ± 0.5 Å for the enzyme backbone and 3.1 ± 0.5 Å
for the ligand, suggesting that the system remains stable during the MD simulation
(Figure 6A). Further, etravirine reproduced the pattern of interactions in the known in-
hibitors (Figure 6B). Etravirine formed a trident of hydrogen bonds with Glu83 and Leu85,
with a prevalence of 87.7% and 98.3%, respectively, playing a major role in binding of the
compound. Similarly, stacking interactions with Phe20 were 38.2% of the time. In addition,
several hydrogen bonds were noted with Ser17, Lys38, and Tyr56 13.7%, 13.1%, and 7.8%
of the time, respectively, but hydrophobic interactions were predominant.
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Figure 6. MD analyses for CK1ε-etravirine and CK1ε-abacavir complexes. (A) Protein backbone
(black) and ligands (colored) RMSDs. (B) Heatmap of the non-covalent interactions occurrence for
selected residues. (C) Protein backbone RMSF. The apo enzyme and the system CK1ε-IN1 are shown
for comparison. Secondary structure of CK1ε is shown at the bottom with the catalytic domain in
red squares.

The CK1ε-abacavir complex had an RMSD of 2.4 ± 0.3 Å for the enzyme backbone
and 6.0 ± 1.5 Å for the ligand (Figure 6A), indicating that although the protein remained
stable, abacavir undergoes significant conformational changes. A dynamic noncovalent
interaction profile analysis (Figure 6B) identified the predicted hydrogen bonds with Glu83
and Leu85 at a prevalence of 67.7% and 98.8%, respectively, and an additional one with
Ser88 at 63.4%. Thus, abacavir partially reproduces the interactions in the pharmacophore,
lacking stacking interactions and participating in fewer hydrophobic interactions.
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The RMSF analysis (Figure 6C) showed that fluctuation in Ser31, which lies adjacent
to the catalytic domain, is reduced by both drugs, compared with the apo enzyme. Similar
behavior occurred with the control compound IN1. The CK1ε-abacavir complex showed
high fluctuation in Phe20 versus systems with IN1 or etravirine, in which Phe20 was rigid
due to stacking interactions with the ligand. Finally, the binding of both drugs restricted
the conformational dynamics of the loop conformed by residues 217–226. Given that
such a loop showed increased fluctuation with IN1 and it resides outside of the catalytic
site, the relevance of the changes that are induced by etravirine and abacavir remain to
be determined.

The binding energy of the identified drugs was calculated by MM-PBSA for the entire
MD simulation (Figure 7A). The contribution of van der Waals interactions and energy that
was associated with a solvent-accessible surface were similar in magnitude for etravirine
and IN1, but the electrostatic contribution was slightly higher for etravirine. Thus, the
total binding energy of etravirine to CK1ε approximates that of IN1. Conversely, the total
binding energy for abacavir was lower by three-fold, suggesting that this drug should not
be prioritized in experimental assays.
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Figure 7. Binding energy-analysis. (A) Energy decomposition from systems with etravirine or
abacavir were calculated from MD simulations. The system with IN1 is included for comparison.
(B) Per-residue energy decomposition. Highlighted residues are part of the catalytic domain.
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Analysis of the energetic contribution of each residue to the binding energy (Figure 7B)
showed that residues Asp22, Ile23, Tyr24, Ala36, Met82, Leu135, and Ile148 contributed
more to IN1 but still cooperated in the binding of etravirine and abacavir. Phe20 was crucial
in binding etravirine but was minor in interactions with abacavir and IN1. Similar behavior
was observed for Glu34, Lys45, Lys54, Tyr56, Pro66, Leu85, and Phe150. Notably, the
large and positively charged residues Lys155, Lys171, Arg178, Lys221, Arg222, and Lys224,
located in front of the catalytic domain, contributed uniquely to the binding mode of
etravirine. However, Lys38, Glu52, Lys69, Gly86, Arg115, Lys130, Asp132, Lys140, Lys141,
and Asp149 negatively affected the stability of the CK1ε-etravirine complex. To determine
the function of Lys38 and Glu52, the prevalence of a salt bridge between such residues in
the CK1ε-etravirine complex was evaluated. Our findings suggest that etravirine competes
with Glu52 for Lys38 (Figure S2).

3. Discussion

CK1ε has been implicated as a biological target due its importance in the initiation and
progression of various types of cancer [1,4–6,12,17,29]. In this study, we aimed to identify
potential CK1ε inhibitors by repurposing FDA-approved drugs by virtual screening. Drug
repurposing is an effective strategy for identifying new activities of approved drugs [30–32].
This approach has several advantages, including its accelerated clinical translation, given
the known pharmacokinetics and safety profiles of the candidate compounds [33].

Although several ATP-competitive inhibitors of CK1ε have been reported [22,24–26],
only 1 has a known binding mode [22]. Thus, we determined the most likely binding
modes of four additional CK1ε inhibitors, observing that a fraction of each molecule
remains solvent-exposed in the limits of the catalytic pocket, as has been reported for
IN1 [22]. The binding of ligands is mediated primarily by hydrophobic residues into the
catalytic site. The inhibitors form nonpolar interactions with the side chains of Ile23 and
Ala36 and the aliphatic chain of Lys38, located in the buried region of the catalytic pocket.
In addition, the backbone of Leu85 forms hydrogen bonds with all inhibitors, as has been
reported for the adenine moiety in the binding mode of ATP [20]. These results are in good
agreement with the reported binding modes of CK1δ inhibitors and other inhibitors of
kinases with bilobal stucture [34–36]. Our findings suggest that common key residues of
CK1εmediate the binding of various inhibitors.

To generate information on the prevalence of such interactions, we performed MD
experiments for all five inhibitors. As suggested by our previous experiments, the backbone
of Leu85 plays a major role in the binding of the inhibitors, forming hydrogen bonds most
of the time. Further, the Leu85 and Glu83 backbones remain highly synchronized, making
hydrogen bonds with IN1. We also identified new, frequent hydrophobic interactions with
Met82, Leu135, and Ile148, in addition to those by Ile23, Ala36, and Lys38. Finally, Phe20,
in the phosphate-binding region, forms stacking interactions that stabilize the regions of
the inhibitors that remain exposed to the solvent.

These identified patterns of intermolecular interactions drove the generation of a target-
based pharmacophore. A similar strategy has been used successfully in the identification
of kinase inhibitors [37–39]. Our model is disposed on a triangle conformation, wherein the
first one of the vertexes is situated in the buried region, the second one is situated interacting
with the adenine region, and the third one is situated at the phosphate binding region. This
model is compatible with the one proposed by Bolcato et al. for CK1δ inhibitors [40], but
implies improvement since our analysis revealed additional hotspots.

The pharmacophore, and a simplified submodel in which we removed the stacking
interaction with the phosphate-binding region, allowed us to identify the non-nucleoside
reverse-transcriptase inhibitors etravirine and abacavir from a library of approved drugs.
The pharmacophore that we have described can also be used to search for hits in other
chemotheques to identify additional compounds that can be developed into CK1ε inhibitors.
Given that our study aimed to repurpose approved drugs, additional screens are outside of
its scope, constituting a limitation of this report.
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Our MD analysis showed that both drugs stably bind CK1ε, reproducing the inter-
actions that conform the pharmacophore(s). Although both compounds remained fixed
to the interconnection loop between lobes, important differences between their binding
modes were noted. For etravirine, we corroborated the key role of Phe20. There was also
cooperation of additional hydrogen bonds between the ammonium group of Lys38 and
the nitrile substituent of the benzonitrile moiety. However, in apo CK1ε, Lys38 and Glu52
frequently form a salt bridge, but etravirine competes with Glu52 for Lys38, driving the
energetic contribution of Lys38 to become unfavorable. Conversely, additional hydrogen
bonds that formed between the benzonitrile moiety of etravirine and Tyr56 were beneficial
for the binding mode. Further, the aliphatic residues Ile15, Ile23, Ala36, Pro66, Leu85,
Pro87, Leu135, Ile148, and Phe150 contributed favorably to the binding mode. Notably,
many charged residues in the C-lobe contribute favorably to the binding energy, except for
Glu52 and Asp132, which interacted with the two nitrile substituents of etravirine, having
a prejudicial effect. Finally, the theoretical binding affinity of etravirine approximated that
of the reference compound IN1.

In contrast, the calculated binding affinity of abacavir to CK1ε was significantly
reduced. As expected for a hit that was obtained with a pharmacophore that lacked the
stacking interaction with Phe20, this residue was irrelevant to the interaction. However, we
identified several hydrogen bonds with Glu83, Leu85, and Ser88; thus, these three residues
fix the fused rings of abacavir. Yet, the cyclopropane moiety remained in movement without
strong interactions. In contrast to etravirine and IN1, abacavir received little contribution
from van der Waals interactions. Hydrogen bonds appeared in the adenine region, pulling
the compound from the pocket and preventing the interaction between the hydroxymethyl
cyclopentene and the buried region. Thus, abacavir is not a promising candidate for
inhibiting CK1ε.

In summary, our results support the repurposing of etravirine as a CK1ε inhibitor and
antineoplastic agent. Notably, etravirine activates the WNT pathway in osteosarcoma cells,
increasing the expression of the cyclin-dependent kinase (CDK) inhibitor p21 [41]. This
effect correlates with our findings and encourages further studies. Our data suggest that
etravirine inhibits CK1ε at similar concentrations as IN1 [22,27].

4. Materials and Methods
4.1. Protein Preparation

The structures of CK1ε apo (PDB ID 4HOK), alone and cocrystallized with IN1 (PDB
ID 4HNI) [22], were obtained from the RCSB Protein Data Bank. The unresolved fragments
of the structures were built by homology modeling using the GapRepairer server [42].

4.2. Selection of Inhibitors and Ligand Preparation

Five potent CK1ε inhibitors were selected for this study. The ligand 3-[(3-chlorophenoxy)
methyl]-1(oxan-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (IN1), was considered the ref-
erence compound. The compounds (3Z)-3-[(2,4,6-trimethoxyphenyl) methylidene]-2,3-
dihydro-1H-indol-2-one (IN2), N-(2,2-difluoro-5H-[1,3]dioxolo[4,5-f]benzimidazol-6-yl)-3-
methoxybenzamide (IN3), N-(5-chloro-6-fluoro-1,3-benzodiazol-2-yl)-4-[2-(trifluoromethoxy)
benzamido]-4,5-dihydro-1,3-thiazole-2-carboxamide (IN4), and N-(2,2-difluoro-5H-[1,3]
dioxolo[4,5-f]benzimidazol-6-yl)-3-(2H-tetrazol-5-yl)benzamide (IN5) were selected be-
cause they have reported IC50 values that ranged between 16–1000 nM [24–26].

The two-dimensional chemical structures of the ligands were drawn manually using
Marvin Sketch ChemAxon, and the protonation states were calculated at pH > 7.2 (the
reported intracellular pH in cancer cells) [43]. Subsequently, three-dimensional structures
were built, and their geometries were optimized at the PM6 semiempirical level [44] using
Spartan software, and the output files were exported in pdb format.

40



Pharmaceuticals 2022, 15, 8

4.3. Molecular Docking

Docking simulations were performed with the Molegro Virtual Docker suite [45].
The exploration region was delimited by a 10-Å-radius sphere that was centered on the
catalytic site of CK1ε, with 0.2 Å grid spacing. All rotatable bonds of ligands were set
free in the experiments, and protonation states were adjusted as discussed. We used
12 combinations of 3 search algorithms [Iterated Simplex (X), MolDock Simplex Evolution
(S), and MolDock Optimizer (O)] and four scoring functions [MolDock Score (m), MolDock
Score [GRID] (M), Plants Score (p), and Plants Score [GRID] (P)]. For every combination,
eight runs were performed, with a maximum of 1500 iterations and an initial population of
50 poses. To find the most probable binding mode, all poses were analyzed by clustering,
as reported [46]. A representative pose of the largest subcluster was selected as the input
file for MD simulations.

4.4. MD Simulations

MD simulations of the CK1ε–IN complexes were performed in GROMACS 4.5.5 [47]
using the CHARMM36m force field [48]. The ligand parameters were generated with the
CHARMM graphical user interface module in the force field framework [49]. Each complex
was in a periodic 75 Å × 75 Å × 75 Å cubic box and solvated using a three-point (TIP3P)
model for water molecules. Further, Na+ and Cl− atoms were added to neutralize the
charge of the system and achieve an ionic concentration of 0.15 M. All simulations were
carried out at 1 bar and 310.15 K. Before production of MD, the energy of the system was
minimized using the steepest-descent algorithm, followed by equilibration in an NVT
ensemble using a modified Berendsen thermostat. MD simulations were generated for
150 ns with an integration time frame of 2 fs, and the trajectories were saved after every
10 ps. Analysis of ligand-target interactions was carried out by a python tailored-made
script (https://github.com/AngelRuizMoreno/Scripts_Notebooks/blob/master/Scripts/
plipMD_V3.1.py; last accessed 12 December 2021) implementing MDAnalysis [50] and
PLIP [51]. The complete trajectories were visualized in VMD [52].

4.5. Pharmacophore Modeling

We calculated the occurrence of intermolecular interactions between INs and CK1ε. We
considered an interaction to be relevant only if it occurred > 20% of the total simulation time;
thus, only interactions with higher frequency were analyzed to define the pharmacophoric
elements. The generated pharmacophore comprised eight elements (see Results).

4.6. Virtual Screening
4.6.1. Pharmacophore-Based Selection

Pharmacophore-matching compounds were selected from a database of 21,850 con-
formers from 1856 FDA-approved drugs using Pharmit [53]. Compounds with a molecular
volume that was greater than 270 Å3 were eliminated, due to the size restrictions of the
catalytic site of CK1ε. Compounds with at least six elements of the pharmacophore model
were candidates for further study.

4.6.2. In Silico Molecular Docking

The candidates were docked using the protocol above. Only compounds for which
the most likely binding mode did not differ from the pharmacophore-predicted binding
mode (RMSD < 1.5 Å) were selected.

4.6.3. Binding Free Energy

The binding free energy for the etravirine-, abacavir-, and IN1-CK1ε complexes was
evaluated using the complete trajectories of the MD simulations (generated as described
above). We used the Poisson–Boltzmann surface area (MM/PBSA) method [54] in the
g_mmpbsa v1.6 package [55]. van der Walls, electrostatic, polar solvation, and solvent-
accessible surface area energies were determined to calculate the average binding energy.
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Per-residue decomposition analysis was performed to demonstrate the primary amino
acids that were involved in stabilizing the systems.

5. Conclusions

In this study, two drugs that have been approved by the FDA for the treatment of
HIV were identified as potential ATP-competitive CK1ε inhibitors. Both emulate the
binding mode of known CK1ε inhibitors, but etravirine binds to CK1εwith greater stability
and affinity. Our data encourage the evaluation of etravirine as an antineoplastic agent
against CK1ε.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15010008/s1, Figure S1: Docking protocol for selected inhibitors set; Figure S2: Salt bridge
between Lys38 and Glu52 in CK1ε-Etravirine; Table S1: Hits from virtual screening.
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Abstract: Cancer continues to be one of the world’s most severe public health issues. Polo-like kinase
1 (PLK1) is one of the most studied members of the polo-like kinase subfamily of serine/threonine
protein kinases. PLK1 is a key mitotic regulator responsible for cell cycle processes, such as mitosis
initiation, bipolar mitotic spindle formation, centrosome maturation, the metaphase to anaphase
transition, and mitotic exit, whose overexpression is often associated with oncogenesis. Moreover,
it is also involved in DNA damage response, autophagy, cytokine signaling, and apoptosis. Due
to its fundamental role in cell cycle regulation, PLK1 has been linked to various types of cancer
onset and progression, such as lung, colon, prostate, ovary, breast cancer, melanoma, and AML.
Hence, PLK1 is recognized as a critical therapeutic target in the treatment of various proliferative
diseases. PLK1 inhibitors developed in recent years have been researched and studied through
clinical trials; however, most of them have failed because of their toxicity and poor therapeutic
response. To design more potent and selective PLK1 inhibitors, we performed a receptor-based
hybrid 3D-QSAR study of two datasets, possessing similar common scaffolds. The developed hybrid
CoMFA (q2 = 0.628, r2 = 0.905) and CoMSIA (q2 = 0.580, r2 = 0.895) models showed admissible
statistical results. Comprehensive, molecular docking of one of the most active compounds from the
dataset and hybrid 3D-QSAR studies revealed important active site residues of PLK1 and requisite
structural characteristics of ligand to design potent PLK1 inhibitors. Based on this information, we
have proposed approximately 38 PLK1 inhibitors. The newly designed PLK1 inhibitors showed
higher activity (predicted pIC50) than the most active compounds of all the derivatives selected for
this study. We selected and synthesized two compounds, which were ultimately found to possess
good IC50 values. Our design strategy provides insight into development of potent and selective
PLK1 inhibitors.

Keywords: cancer; PLK1; kinase; 3D-QSAR; molecular docking; inhibitors

1. Introduction

The genetic stability of all eukaryotes is governed by the flawless segregation of
chromosomes during mitosis. Disruption of this phenomenon can lead to aneuploidy,
which is a vital cause of cancer [1]. Cancer continues to be one of the most serious public
health problems worldwide. As per the statistics of WHO, cancer is the second major
cause of death worldwide, with approximately 9.6 million deaths in 2018. Men are more
likely to develop prostate, lung, colorectal, stomach, and liver cancer than women, who
are more likely to develop colorectal, breast, lung, thyroid, and cervical cancer. Protein
kinase inhibitors developed to treat various cancer types have been of great advantage
in recent years [1]. However, these inhibitors are merely efficient and are limited by the
emergence of resistant mutations [1,2]. Interestingly, polo-like kinase 1 (PLK1), which is an
important type of serine-threonine kinase, controls several phases of mitosis [1,3]. PLK1 is
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a primary regulator of mitotic progression, the overexpression of which is often related to
oncogenesis and is an important therapeutic target for anticancer drug discovery [4].

There are five isoforms of PLKs in humans, referred to as PLK1, PLK2, PLK3, PLK4,
and PLK5 [5,6]. PLK1 is highly characterized among them and has the utmost degree of
homology with the single PLK gene [5]. PLK1 is structurally defined by the presence of
3 functional domains; a disordered and highly conserved N-terminal domain, C-terminal
polo-box domain (PBD) for substrate targeting and implied in its subcellular localization,
and a kinase domain (KD) that is regulated through phosphorylation by upstream ki-
nases [7–9]. The N-terminal domain is a Ser/Thr kinase domain that has a T-loop, whose
phosphorylation is directly associated with the PLK1’s kinase activity [6]. The PBD is C-
terminal domain, made of two polo-box structures, which is activated upon ligand binding
and separates with T-loop of the kinase domain [6,10].

PLK1 is predominantly related to regulation of the cell cycle, disruption of which is the
primary cause of cancer [10]. In addition to its role in the activity of tumor suppressors and
oncogenes, PLK1 has a distinctive function in regulating cancer cell metabolism, promoting
the growth of cancer cells [5]. It also has an indisputable role in controlling several key
transcription factors that promote cell proliferation, transformation, and epithelial-to-
mesenchymal transition. PLK1 expression begins to increase from the S/G2 phase and
peaks at mitosis [9]. PLK1 activates the cyclin B/cdc2 complex by phosphorylating CDC25,
which stimulates cell proliferation [5,6]. A few recent studies have reported that PLK1 also
plays role in autophagy, chromosomal stability, and DNA damage response. Considering
the crucial role of PLK1 during DNA damage repair and cell-cycle regulation, it is not
astonishing that it is upregulated in various types of cancers, such as melanoma, colorectal
cancer, non-small cell lung cancer, thyroid carcinoma, esophageal carcinoma, ovarian
carcinoma, colorectal cancer, breast cancer, and prostate cancer [3–5]. Moreover, PLK1 is
linked to diverse immune and neurological disorders, such as graft versus host disease,
liver fibrosis, Huntington’s disease, and Alzheimer’s disease [11–13].

Consequently, inhibition of PLK1 has been an appealing goal for researchers, who
have made substantial efforts to design and develop small molecule PLK1 inhibitors
(Figure 1). The FDA has approved at least 55 small molecule anticancer kinase inhibitors as
of February 2020 [14]. Researchers from Boehringer Ingelheim developed one of the earliest
PLK1 inhibitors, BI2536, a dihydropteridinone derivative. It was the first pioneered PLK1
inhibitor to enter clinical trials for the treatment of cancer, however it was not very effective
during monotherapy regimens in clinical trials [5,10,14]. One more Boehringer Ingelheim
compound, volasertib (aka BI6727), is an ATP-competitive inhibitor that was developed by
modifying the chemical structure of BI2536 and was shown to inhibit the growth of acute
myeloid leukemia (AML) cell lines. However, when combined with Trematinib, BI6727 was
more effective at arresting dual G1 and G2-M in an NRAS-mutant melanoma cell line [15].
Both of these drugs passed phase I and III clinical trials for breast cancer, B-cell lymphoma
and AML but were found to be more effective in combination with other drugs and are no
longer used in monotherapy [5,16].

Onvansertib is a 3rd generation, highly selective and oral PLK1 NCD (N-terminal
catalytic domain) inhibitor that exhibited promising synergic results during clinical trials
as part of a combination regimen treatment of AML and metastatic colorectal cancer [6,15].
Currently, it is the only PLK1 inhibitor under clinical trials for solid tumors. In addition,
Rigosertib is presently in Phase III clinical trials for treatment of cancers, including AML.
Nevertheless, it is a non ATP-competitive dual inhibitor of PI3K and PLK1 [6,15]. Further-
more, Phase I clinical trials for two PLK1 NCD inhibitors, GSK461364, and Tak960, were
finished in 2009 and 2013, respectively, but did not undergo further development [16]. PLK1
inhibitor, NMS-P937 (pyrazoloquinazoline derivative), has shown remarkable reduction
of osteosarcoma tumor growth. NMS-P937 is under phase 1 trials for patients having ad-
vanced metastatic solid tumors, nevertheless, no findings have yet been published [16,17].
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Figure 1. Chemical structures of the previously reported PLK1 inhibitors. 

In summary, there are numerous small molecule PLK1 inhibitors in research and in 
the early stages of clinical progress. Nonetheless, most of these convincing drugs targeting 
PLK1 have been inefficient in clinical trials due to their toxicity leading to serious side 
effects or low therapeutic response [15,17]. PLK1 inhibitors that are highly selective are 
anticipated to overcome side effects impelled by off-target effects. An effective way is to 
design selective PLK1 inhibitors by using structure-based drug design methods, as in our 
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In summary, there are numerous small molecule PLK1 inhibitors in research and in
the early stages of clinical progress. Nonetheless, most of these convincing drugs targeting
PLK1 have been inefficient in clinical trials due to their toxicity leading to serious side
effects or low therapeutic response [15,17]. PLK1 inhibitors that are highly selective are
anticipated to overcome side effects impelled by off-target effects. An effective way is
to design selective PLK1 inhibitors by using structure-based drug design methods, as
in our study. We selected two datasets as PLK1 inhibitors with similar scaffolds, such
as pyrimidine derivatives [3] and quinazoline derivatives [4]. We chose compound 17
(Table S1) from dataset 1 as a reference compound (as shown in Figure 2) to combine
the remaining compounds from both datasets for hybrid 3D-QSAR because a detailed
mechanistic study of compound 17 showed that PLK1 inhibition by 17 enhanced mitotic
arrest at the G2/M phase checkpoint and led to apoptosis of cancer cells. Compound 17 is
also one of the most active compounds among datasets 1 and 2.
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Figure 2. Chemical structure of Compound 17 (The most active compound used in our study).

The docking of compound 17 into the active site of PLK1 revealed important inter-
actions with crucial binding site residues, which were accountable for inhibition of PLK1.
Combining the specific structural information from 3D-QSAR contour maps with the over-
all molecular docking analysis about ligand–protein interactions provided insight toward
understanding and modifying pyrimidine scaffold of PLK1 inhibitors for better potency.
Hence, we designed few PLK1 inhibitors of aminopyrimidinyl scaffold, which showed
better predicted activity (pIC50) than the most active compound in the datasets used in our
study. Among our designed compounds, we synthesized two compounds for experimental
validation, which showed good inhibitory activity (IC50). Our designed strategy, which
was validated by experimental study could be a great start to develop potent and selective
PLK1 inhibitors for medicinal chemists and pharmaceutical companies.
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2. Results and Discussion
2.1. Molecular Docking

Molecular docking was performed to interpret the binding mode of the most active
compound, 17, inside the active site of PLK1. We utilized an extended sampling protocol
to perform induced fit docking that produced 80 binding poses for compound 17. All
80 poses were checked for a docking score and bonding and non-bonding interactions.
One of the poses displayed a docking score of −12.04 and yielded a binding pose with
PLK1 that was similar to that witnessed between the co-crystallized ligand (BI6727) and
the protein (PDB ID: 3FC2) (Figure 3). This pose was chosen to analyze further interactions.
The most active compound 17 docked within the binding pocket, mimicked the binding
mode of ATP, and formed three hydrogen bonds (H-bonds) with crucial active site residues
of PLK1. The hydrogen and nitrogen atoms from the aminopyrimidine ring of compound
17 formed 2 H-bonds with the key hinge region residue CYS133. This interaction was also
observed in previously reported docking studies of several other PLK1 inhibitors including
BI6727, which was considered important for inhibition of PLK1 [3,4]. Another H-bond
was found between the oxygen atom from the dimethylamino-propan-2-one moiety at
R3 position and the residue SER137. This moiety docked very well within a pocket lined
primarily with residues of the kinase C-lobe, including SER137 that formed the floor of the
C-lobe [4]. In addition, pyrimidine ring formed pi–pi interaction with GLU131, which is
also a part of the hinge region. Overall interactions were alike to those observed between
a co-crystallized ligand and PLK1. Hence, the docked pose of compound 17 validated a
strong binding conformation.
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lined by hydrophobic residues CYS67, ALA80, LYS82, LEU59, and LEU130. Additionally, 
the dimethylamine group at R3 position formed hydrophobic interactions with LEU139 
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in the hydrophobic pocket, since their interaction with compound BI6727 (co-crystallized 
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Figure 3. (A) Docked pose of the most active compound, 17, within the active site of PLK1 (Hydrogen
bonds are represented as yellow dotted lines, pi-pi interactions are represented as cyan dotted lines);
(B) The most active compound 17 (shown in stick model) within the hydrophobic pocket of PLK1;
the red colored region represents the most hydrophobic surface of the protein, and the white color
represents the least hydrophobic surface. Hydrophobic residues are indicated with red lines.

The docked pose of compound 17 was further analyzed to assess hydrophobic in-
teractions. A Python script ‘color h’ was utilized to color the hydrophobic residues of
PLK1 and to identify their interactions with compound 17. PyMOL uses this script and
Eisenberg hydrophobicity scale (Figure 3b) to color the receptor [18]. The most hydrophobic
residues were colored red, whereas the least hydrophobic residues were colored white.
The substituents, trifluoromethylpyrimidine at the R2 position and methylthiophene-2-
carboxylate at the R1 position of the ligand, were docked within the hydrophobic pocket
lined by hydrophobic residues CYS67, ALA80, LYS82, LEU59, and LEU130. Additionally,
the dimethylamine group at R3 position formed hydrophobic interactions with LEU139
and GLY180. The hydrophobic residues CYS67, ALA80, LYS82, and LEU130 were crucial
in the hydrophobic pocket, since their interaction with compound BI6727 (co-crystallized
ligand) was observed. Comprehensive docking analysis suggested that the selected docked
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pose of the most potent compound 17 was appropriate, thus it was employed to further
perform 3D-QSAR studies.

2.2. Hybrid 3D-QSAR Models

We obtained the receptor-based hybrid 3D-QSAR models (CoMFA and CoMSIA) after
combining two datasets with pyrimidine and quinazoline scaffolds. These two datasets
were combined in order to acquire and understand the structural characteristics requisite
to propose more potent PLK1 inhibitors and to study structure–activity relationships. The
docked pose of the most active compound, compound 17 was selected as a reference
compound to align the remaining compounds of the dataset using a common scaffold
alignment method (Figure 4), which provided better statistical CoMFA and CoMSIA models
in SYBYL-X 2.1. The dataset was separated into a training set of 52 compounds and a
test set of 18 compounds using the criteria proposed in activity ranking algorithm 4 in
a previously reported article [19]. Accordingly, our test set contained compounds with
low, moderate, and high activity (pIC50) values. The test set compounds are specified by
* in Table S1 entitled the chemical structures of the selected PLK1 inhibitors with their
IC50 values.
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Figure 4. Alignment of the dataset compounds for hybrid 3D-QSAR.

The reliability of the developed hybrid 3D-QSAR models was examined by computing
different statistical parameters, such as the non-cross validated correlation coefficient (r2),
cross-validated correlation coefficient (q2), standard error of estimate (SEE), F-value, and the
optimal number of components (ONC) with the help of partial least square (PLS) analysis.
Initially, hybrid CoMFA (q2 = 0.517, ONC = 6, r2 = 0.847) and CoMSIA (q2 = 0.540, ONC = 6,
r2 = 0.855) models were obtained for the complete dataset compounds (training + test
set), which were called full models. Test set 12 was used to develop CoMFA (q2 = 0.628,
ONC = 6, r2 = 0.905) and CoMSIA (q2 = 0.580, ONC = 6, r2 = 0.895) models. CoMFA models
were generated using steric and electrostatic fields, while CoMSIA employed hydrogen
bond acceptor, donor, and hydrophobic fields along with steric and electrostatic fields.
Thus, CoMSIA models were produced using various combinations of these fields (Table S2).
The model with the best q2 and r2 values was chosen as the concluding model. The
combination of steric, electrostatic, and hydrophobic fields yielded reasonable CoMSIA
model. In conclusion, CoMFA and CoMSIA models obtained using external test set 12 were
selected for further statistical analysis. Several methods were used to validate these models.
Table 1 provides thorough statistical values of the validated CoMFA and CoMSIA models.
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Table 1. Detailed statistical values of the selected CoMFA and CoMSIA models.

Parameter
Full Model Test Set 12

CoMFA CoMSIA (SEH) CoMFA CoMSIA (SEH)

q2 0.517 0.540 0.628 0.580
ONC 6 6 6 6
SEP 0.844 0.824 0.717 0.762
r2 0.847 0.855 0.905 0.895

SEE 0.475 0.462 0.363 0.381
F value 58.087 61.993 71.401 63.990

LOF - - 0.607 0.609
BS-r2 - - 0.929 0.936
BS-SD - - 0.020 0.020
r2pred - - 0.796 0.783
rm2 - - 0.665 0.581

Delta rm2 - - 0.181 0.214

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard error
of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F value: F-test value; LOF:
leave-out-five; BS-r2: bootstrapping r2 mean; BS-SD: bootstrapping standard deviation; r2

pred: predictive r2; rm2:
average rm2 metric calculation; Delta rm2: standard error.

Validation of 3D-QSAR Models

The selected hybrid 3D-QSAR models were validated using a number of validation
techniques to evaluate predictive ability and robustness. Validation techniques of predictive
r2 (r2pred), bootstrapping, leave-out-five (LOF), and rm2 metric calculations presented ac-
ceptable statistical values [20,21]. Hence, the generated models were robust and predictive.
Table 1 depicts the detailed statistical values. Residual values as well as the experimental
and predicted activity values of the selected CoMFA and CoMSIA models can be seen
in Table S3 of the Supplementary Materials. The scatter plots for the same are depicted
in Figure 5.
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Figure 5. (A) Scatter plot for the selected CoMFA model; (B) Scatter plot for the selected CoMSIA
model; the plot shows the actual pIC50 versus predicted pIC50 activity of the training and test sets;
the training set compounds are represented as blue diamonds; the test set compounds are represented
as dark red squares.

2.3. Contour Map Analysis
2.3.1. CoMFA Contour Maps

The contour maps of the hybrid CoMFA model are depicted superimposed with those
of compound 17 in Figure 6. In the steric contour map (Figure 6A), green and yellow colored
contour maps revealed favorable and unfavorable regions for steric substitution, respec-
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tively. In Figure 6B (electrostatic contour map), the blue contour denoted a favorable region
for electropositive substitution, whereas the red contour denoted unfavorable regions.
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Figure 6. Contour maps for the selected CoMFA model. (A) Steric contour map; (B) electrostatic
contour map; green contours show the region is favorable for bulky substitutions, and yellow
contours show the region is unfavorable; blue contours favor electropositive substitutions, whereas
red contours favor electronegative substitutions.

Two green colored contours were observed at the R1 and R3 positions, illustrating
that bulky groups were favorable at these positions to increase potency. The R1 position
that holds a steric group could interact with the hydrophobic residues of PLK1. This could
be signified by hydrophobic interactions of methylthiophene-2-carboxylate with residues
GLY60 and LEU130, which were also identified in the docking analysis of compound 17.
Conversely, two yellow contour maps were spotted near the indoline ring at the R3 position,
which conveyed the inferiority of bulky groups at this position. There was also a small
yellow contour near the methyl acetate moiety at the R1 position, indicating that addition
of bulky groups at this position might not increase potency.

Furthermore, red and blue contours were observed near the aminopyrimidine ring
at the R3 position among which, red contours seemed to be position specific. Therefore,
the presence of blue contours at this position showed that electropositive groups were
favorable, which could be verified by looking at key hydrogen bond interactions of amine
groups with the hinge region residue CYS133 in the docking study of compound 17.
Another red contour was seen near the indoline ring at the R3 position, which meant that
electronegative substitution was favorable at this position. This was verified with a docking
study of compound 17 where H-bond interactions were found between the oxygen atom
from dimethylamino-propan-2-one moiety and the residue SER137. Compounds 13, 33,
and the most active compound 17, which have moderate to high activity, could be the result
of this.

2.3.2. CoMSIA Contour Maps

The combination of steric, electrostatic and hydrophobic (SEH) fields was utilized to
produce CoMSIA contour maps (Figure 7). The steric and electrostatic contour maps are
quite similar to the CoMFA steric and electrostatic contours, thus only a hydrophobic con-
tour map is discussed below. The hydrophobic contour map is displayed in the Figure 7C,
in which magenta contours represent favorable areas for hydrophobic substitution, however
cyan contours denote unfavorable regions.
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Two big magenta contours are present at R1 and R2 positions, which illustrates that
occurrence of hydrophobic group at this position could increase the activity of the com-
pound. This can be proved by hydrophobic interactions of trifluoromethylpyrimidine and
methylthiophene-2-carboxylate with residues GLY60, CYS67, ALA80, LYS82, LEU59, and
LEU130 that were seen in our docking analysis of the compound 17. Moreover, two cyan
contour maps are present near the R3 position, which explain that substituting hydrophobic
groups at this location can reduce the activity of a compound.

2.4. Designing New PLK1 Inhibitors

The created 3D-QSAR models revealed crucial structural properties in terms of steric,
electrostatic, and hydrophobic fields. These structural characteristics and the important
interactions detected in the docking analysis of the most potent compound 17 were utilized
to derive a drug design strategy with a new scaffold to design new PLK1 inhibitors
(Figure 8). As per this design strategy, we modified the substituent at the R1 position, while
keeping others fixed to assess differences in activity. The same procedure was followed for
each position and identified new PLK1 inhibitors. The methoxy group at the R1 position,
dimethylacetamide at the R2 position, CF3 at the R3 position, amide (CONH2) at the R4

position, and chlorine at the R6 position showed better activity (pIC50) than the most potent
compound 17 in the dataset.
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The structures and the predicted pIC50 values of the newly designed compounds are
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are
shown below in Table 2.
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Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors.

Compound Structure Name R1 R2 R3 R4 R5 R6 Predicted
pIC50

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

D3

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

CF3 CONH2 H Cl

10.217

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

D5

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

9.715

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

D10

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

10.272

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

D14

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

9.811

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

D17

Pharmaceuticals 2022, 15, 1170 9 of 15 
 

 

The structures and the predicted pIC50 values of the newly designed compounds are 
presented in Table S4 of the Supplementary Materials. A few selected PLK1 inhibitors are 
shown below in Table 2. 

Table 2. The structures and predicted pIC50 values of few selected designed PLK1 inhibitors. 

Compound Structure Name R1 R2 R3 R4 R5 R6 
Predicted 

pIC50 

 

D3 

 

 

CF3 CONH2 H Cl 

10.217 

 

D5 
 

9.715 

 

D10 
 

10.272 

 

D14 
 

9.811 

 

D17 
 

9.903 

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 values 
Depending on the their fastest synthetic route in order to validate our PLK1 drug 

design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carbox-
ylate] and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-
yl)amino)-N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these com-
pounds are added in the methodology section. Synthesis of the rest of the compounds is 

9.903

Synthesis of New PLK1 Inhibitors and Evaluation of IC50 Values

Depending on the their fastest synthetic route in order to validate our PLK1 drug
design, we selected two compounds for the synthesis: compound D39 [ethyl €-1-(2-((1-
(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carboxylate]
and compound D40 [(E)-6-((4-(3-carbamoyl-4-styryl-1H-pyrazol-1-yl)pyrimidin-2-yl)amino)-
N,N-dimethylindoline-1-carboxamide]. NMR and HRMS data for these compounds are
added in the methodology section. Synthesis of the rest of the compounds is under process,
which upon completion will be published as a separate article with detailed procedure and
experimental evaluations. Furthermore, we docked these two compounds inside the active
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site of PLK1 to check their binding mode (Figures S1 and S2 in Supplementary Materials).
Both compounds formed two key hydrogen bonds with hinge region residue CYS133
similar to compound 17. Compound D39 also formed pi–pi and pi–cation interactions with
residues PHE183 and LYS82, respectively. Furthermore, a hydrogen from amide group at
R4 position of compound D40 formed additional hydrogen bond with residue ASP194 that
is considered to be crucial for the selectivity over other kinases. It also possessed pi–pi
interaction with PHE183.

Moreover, IC50 evaluation of compounds D39 and D40 revealed that they possess
good inhibitory activities of 1.43 µM and 0.359 µM, respectively (Table 3). These results
validates our designed compounds and design scheme that could be further utilized to
develop more potent PLK1 inhibitors.

Table 3. The comparison of the actual and calculated IC50 values of two synthesized PLK1 inhibitors.

Compound Structure Name R1 R2 R3 R4 R5 R6 IC50
(µM)

Predicted
IC50 (nM)
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3. Materials and Methods
3.1. Training Set/Test Set Selection for CoMFA and CoMSIA

We selected two datasets comprising pyrimidine derivatives [3] and quinazoline
derivatives [4] as PLK1 inhibitors for the hybrid 3D-QSAR study. Dataset 1 and dataset 2
consisted of 35 and 39 compounds, respectively, exhibiting a log value of greater than
3.5 logarithmic units, which was within the required range [22]. Compound structures
were drawn using the sketch module in SYBYL-X 2.1 and were optimized using energy
minimization with Tripos force field [23]. Biological activities (IC50) of all compounds in
the study were converted into pIC50 (−log IC50) values, which were used as dependent
variables to develop 3D-QSAR models. The compounds from both the datasets were
divided into training set of 52 compounds for model generation and 18 compounds as test
set for model validation. The structure and activity of the compounds were considered in
order to separate them into training and test sets. The compounds with low, medium, and
high activity values were carefully added to the test set as suggested in Algorithm 4 [19].
Compounds with undefined activity values were eliminated as outliers. The chemical
structures of the selected dataset compounds with their IC50 values are depicted in Table S1
of the Supporting Materials.

3.2. Molecular Docking

Molecular docking of the most active compound 17 from the selected dataset was
performed using Schrodinger Maestro 12.8 (Release 2021-2, Schrödinger, LLC, New York,
NY, USA) [24]. The structure of compound 17 was drawn using Chemdraw [25] and its
3D conformation was generated using the Schrödinger LigPrep program [26]. LigPrep
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produced all probable tautomers and states at pH 7.0 using Epik [27] for compound 17,
and specified chiralities were retained following minimization using the OPLS 2005 force
field [28]. The crystal structure of PLK1 co-crystallized with BI6727 (PDB ID: 3FC2) was
taken from the Protein Data Bank (PDB). The Protein Preparation Wizard was utilized
to prepare protein by assigning bond orders, hydrogens at pH 7.0, and removing water
molecules [29]. Prime was used to complete missing side chains and loops. Finally, a
restrained minimization was performed using the default constraint of 0.30 Å RMSD and
the OPLS 2005 force field to finalize the protein preparation. Molecular docking simulations
were executed with the help of a Glide induced fit docking module in extended sampling
protocol mode [30]. The docked conformations of compound 17 were examined to identify
important interactions with the active site residues of PLK1. The selected docked pose of
compound 17 was employed as a template to align the rest of the dataset compounds for
3D-QSAR model generation.

3.3. Receptor-Based Hybrid CoMFA and CoMSIA Models

SYBYL-X 2.1 [31] was used to develop 3D-QSAR (3-Dimensional Quantitative Structure–
Activity Relationship) models utilizing CoMFA (Comparative Molecular Field Analy-
sis) [32] and CoMSIA (Comparative Molecular Similarity Indices Analysis) [33] to correlate
3D structures of the PLK1 inhibitors with the biological activity. The alignment of dataset
compounds was performed inside the active site of the receptor using a common scaffold
alignment method using the most active compound 17 as a template molecule. In CoMFA,
the steric and electrostatic potential energies were estimated using Lennard–Jones and
Coulombic potentials, respectively [31].

The application of appropriate partial charge was crucial toward obtaining reason-
able 3D-QSAR models. We used Gastegeir Marsili as a partial charge scheme and default
parameters to generate 3D-QSAR models [34]. A grid spacing of 2.0 Å and an sp3 hy-
bridized carbon as a probe atom with +1 charge were used. Statistically acceptable CoMFA
and CoMSIA models were obtained using partial least squares (PLS) regression. CoMFA
descriptors as independent variables and biological activity values (pIC50) as dependent
variables were used in PLS regression. The reliability of the generated models was as-
sessed through PLS analysis with leave-one-out (LOO) cross-validation and to calculate
the squared cross-validated correlation coefficient (q2) value, an optimal number of compo-
nents (ONC) and the standard deviation of prediction (SEP). A column filtering value of
2.0 and obtained ONC were used in non-cross-validation analysis to compute the squared
correlation coefficient (r2), F-test value (F), and standard error of the estimate (SEE).

Nevertheless, CoMSIA utilizes descriptors, such as steric, electrostatic, hydrophobic,
hydrogen bond acceptor, and donor. All of these CoMSIA similarity indices were calculated
using a probe atom of radius 1.0 Å and an attenuation factor of 0.30. A Gaussian function
was used to calculate the CoMSIA model between the grid point and each atom of the
molecule. Various CoMSIA models were derived based on different descriptor combi-
nations using the same lattice box that was used in CoMFA. The model that exhibited
acceptable q2 and r2 statistical values was chosen as the final model. Additionally, the
selected models were statistically validated using the following validation methods.

3D-QSAR Model Validation

Several validation techniques, including bootstrapping, leave-out-five (LOF), rm2

metric calculation, and external test set validation were implemented to assess the stability,
robustness, and predictive ability of the resulting models. To evaluate model’s reliability,
bootstrapping for 100 runs and progressive scrambling of 10 samplings with 2–10 bins
were performed [35]. Last, the predictive ability was calculated as expressed through the
predictive correlation coefficient (r2

pred), using the formula given below:

r2
pred = (SD − PRESS)/SD
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where SD is the sum of the squared deviations of each experimental value from the mean and
PRESS is the sum of the squared differences between the predicted and actual affinity values.

Standard contour maps were developed for both CoMFA and CoMSIA models. A
new design strategy was derived using the structural information from an analysis of the
contour maps and molecular docking, and we designed more potent PLK1 inhibitors.

3.4. Synthesized PLK1 Inhibitors

We selected two compounds for synthesis to validate our design of PLK1 inhibitor:
compound D39, Ethyl (E)-1-(2-((1-(dimethylcarbamoyl)indolin-6-yl)amino)pyrimidin-4-yl)-
4-styryl-1H-pyrazole-3-carboxylate and compound D40, (E)-6-((4-(3-carbamoyl-4-styryl-
1H-pyrazol-1-yl)pyrimidin-2-yl)amino)-N,N-dimethylindoline-1-carboxamide. We state
the spectral data of the two synthesized compounds below in Table 4.

Table 4. The spectral data (NMR and HRMS) of the synthesized compounds.

Compound Structure NMR HRMS
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3.5. Evaluation of IC50 Values

We used Reaction Biology Corp. Kinase Hot SpotSM service (www.reactionbiology.
com, accessed date 11 January 2022) for screening of D39 and D40 (10 µM) and IC50 Profiler
Express for IC50 measurement. Assay protocol: In a final reaction volume of 25 µL, substrate
[Casein], 1 µM, ATP 10 µM, PLK1 (h) (5–10 mU) is incubated with 25 mM Tris pH 7.5,
0.02 mM EGTA, 0.66 mg/mL myelin basic protein, 10 mM Mg acetate, and [33P-ATP]
(specific activity approximately 500 cpm/pmol, concentration as required). The reaction is
initiated by addition of the Mg-ATP mix. After incubation for 40 min at room temperature,
the reaction is stopped by addition of 5 µL of a 3% phosphoric acid solution. Next, 10 µL
of the reaction is spotted onto a P30 filtremat and washed three times for 5 min in 75 mM
phosphoric acid and once in methanol prior to drying and scintillation counting.
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4. Conclusions

One of the most important cell cycle regulators, PLK1, a type of serine-threonine kinase
has garnered the attention of the academic research community as well as pharmaceutical
companies to develop anticancer inhibitors. PLK1 regulates the cell cycle, and cell cycle
dysregulation is the primary cause of cancer. In addition to its role in mitosis, PLK1 has a
unique function in regulating cancer cell metabolism, which promotes the growth of cancer
cells. Therefore, it is imperative to design and develop new PLK1 inhibitors. Several PLK1
inhibitors were discovered in the past few years; some were unsuccessful due to their low
therapeutic response and side effects. Some of these inhibitors, such as volasertib, Onva-
nsertib, etc., were in use for treatment of AML, prostate cancer, and thyroid cancer but were
later found to be more effective in combination with other drugs and are no longer used
in monotherapy. Hence, we focused on designing more potent PLK1 inhibitors through
receptor-based hybrid 3D-QSAR and molecular docking studies. Molecular docking of
compound 17 revealed important active site residues of PLK1, such as CYS133, SER137,
CYS67, ALA80, LYS82, LEU59, and LEU130. The generated hybrid CoMFA (q2 = 0.628,
ONC = 6, r2 = 0.905) and CoMSIA (q2 = 0.580, ONC = 6, r2 = 0.895) models possessed
acceptable statistical results and provided very useful structural information to modify the
pyrimidine and quinazoline scaffolds used in this study. Hence, we developed a design
strategy and identified additional potent PLK1 antagonists. Our designed compounds
showed better predicted activity (pIC50) than the most active compound in the dataset.
Altogether, results of our study provided crucial structural insights to develop and synthe-
size more selective and potent PLK1 inhibitors. Therefore, we synthesized and evaluated
IC50 values of two designed compounds D39 and D40. The IC50 value of compound D39
and D40 was found to be 1.43 µM and 0.359 µM, respectively. Our designed strategy and
designed inhibitors can be used as a reference by the drug design community to develop
more potent PLK1 antagonists.
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Abstract: Fatty acid binding protein (FABP4) inhibitors are of synthetic and therapeutic interest and
ongoing clinical studies indicate that they may be a promise for the treatment of cancer, as well as
other diseases. As part of a broader research effort to develop more effective FABP4 inhibitors, we
sought to identify new structures through a two-step computing assisted molecular design based
on the established scaffold of a co-crystallized ligand. Novel and potent FABP4 inhibitors have
been developed using this approach and herein we report the synthesis, biological evaluation and
molecular docking of the 4-amino and 4-ureido pyridazinone-based series.

Keywords: fatty acid binding protein; FABP4; FABP4is; FABP4 inhibitors; pyridazinone; computing
assisted molecular design

1. Introduction

Fatty acids (FAs) are long carbon chain organic carboxylic acids responsible for differ-
ent actions in the human organism [1,2]. Their chronic high concentration in circulation
leads to various disorders [3,4], including atherosclerosis [5], diabetes [6] and obesity [7].
Considering that their chemical structure is characterized by high lipophilicity, FAs are
insoluble in water, and their trafficking into the body requires specific carriers such as the
fatty acid-binding proteins (FABPs). [8]. Since their discovery, FABPs have been classified
into different families based on their localization in the human body, such as A-FABP
(adipocyte), B-FABP (brain), E-FABP (epidermal), H-FABP (muscle and heart), I-FABP
(intestinal), Il-FABP (ileal), L-FABP (liver), M-FABP (myelin), and T-FABP (testis). FABP4
(aP2 or A-FABP) is the subtype expressed in adipocytes [9], and the research into small
molecule inhibitors for such protein initially started when it was reported that knockout
animal models of FABP4 produced protective effects against the development of insulin
resistance [10], as well as several pathological events linked to the metabolic syndrome and
atherosclerosis [11–13]. Interestingly, pharmacological approaches with small molecules
that inhibit the normal function of the protein are also valid in this regard, demonstrating
similar results as the genetic procedures by mimicking the phenotype of FABP4-deficient
mice [14]. This family of transporter proteins also has a role in cancer progression [15], and
it was discovered that non-physiological expressions of FABPs are present in some of the
most common cancers such as renal cell carcinoma, bladder and prostate, as well as other
types of cancer cells [16–18]. It was recently discovered that FABP4 promotes the metas-
tasis and invasion of colon cancer and that the treatment with a classical small molecule
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inhibitor (BMS309403) weakened the migration and invasion of colon cancer cells [19].
FABP4 leads also to abnormal metastasis patterns in ovarian cancer, and recent findings
demonstrate that the protein is responsible for the disease’s aggressivity, contributing to
poor prognosis in this tumor [20]. Moreover, the transporter has also been shown to play
a role in accelerating glioblastoma cell growth [21]. All these recent findings related to
cancer research proved that FABP4 targeting may represent an effective and promising
therapeutic strategy against oncological conditions, in addition to the established effects on
metabolic and cardiovascular diseases.

Recently, a variety of effective FABP4 inhibitors (FABP4i) have been developed, but
unfortunately, none of them is currently in the clinical research phases [14,22]. Computer-
aided drug design represents a promising and effective tool for the identification of molec-
ular hits as FABP4i [23–27]. In line with our recent interest in the development of new
antitumor compounds and the identification of novel bioactive heterocycles [28–32], herein
we report the design, synthesis and in vitro characterization of 4-amino and 4-ureido
pyridazinone-based series of FABP4i inspired by the scaffold hopping of an established
ligand co-crystallized within the protein.

2. Results and Discussion
2.1. Heterocyclic Small-Molecule Design

To generate a novel series of FABP4 inhibitors we have exploited a two-step computing
assisted molecular design. As shown in Figure 1, in the first step of the drug-design
process we focused on the search for bioisosteric-replacements/scaffold hopping of the
pyrimidine scaffold of the co-crystallyzed ligand (2-[(2-oxo-2-piperidin-1 -ylethyl)sulfanyl]-
6-(trifluoromethyl)pyrimidin-4-ol; pdbID: 1TOU). Our bioisosteric replacement analysis led
to the selection of three nitrogen-containing heterocyclic frameworks, i.e., pyridazinones,
pyridines and benzo[d]thiazole (see Supplementary Materials). Considering the synthetic
accessibility of pyridazinone-based molecules and that pyridazinone was not investigated
earlier as a scaffold to access FABP4 inhibitors, we envisaged to use this heterocycle to
carry out automated ligand growing experiments inside the FABP4 cavity, as described in
the Section 3, leading to 52 target molecules. The compounds were then synthesized and
screened against FABP4 and the chemical structures are reported in Tables 1 and 2. Both
the scaffold hopping and the ligand growing experiments were conducted using Spark
(https://www.cresset-group.com/products/spark/ accessed on 15 June 2022) [33].
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Table 1. Cont.

Comp. R2 R5 R6

4a H CONHPh Ph
4b H CONHnC3H7 Ph
5a C2H5 CONHPh Ph
5b C2H5 CONHnC3H7 Ph
6 H CONH2 Ph
7 H CN Ph
16 Ph CONH2 CH3
17 Ph CN CH3
18 Ph COCH3 H
21 cC6H11 CONH2 Ph
22 cC6H11 CN Ph

24d iC3H7 H Ph
24e nC3H7 H Ph
24f nC4H9 H Ph
27 - H Ph
32 CH3 H Ph

37a H H 3-thienyl
37c H H cC6H11
37d H H iC3H7
38a CH3 H 3-thienyl
38b CH3 H cC6H11
38c CH3 H iC3H7
38d CH3 H CH2-Ph
42a CH3 H 2-(OH)-Ph
42b CH3 H 4-(NH2)-Ph
44 CH3 H 4-(NHCOCH3)-Ph
48 CH3 H 2-pyridinyl
54 Ph H CH3
57 Ph pyrazole CH3

Table 2. 4-Amino and 4-ureido pyridazinones synthesized and screened against FABP4.
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25a CH3 NHCONH2 Ph
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25c C2H5 NHCONH2 Ph
25d iC3H7 NHCONH2 Ph
25e nC3H7 NHCONH2 Ph
25f nC4H9 NHCONH2 Ph
28 H NHCONH2 Ph

29a CH3 NHCOCH3 Ph
29b CH3 NHCOC2H5 Ph
29c CH3 NHCOiC3H7 Ph
29d CH3 NHCOnC3H7 Ph
30a CH3 NH-(3-CN)-Ph Ph
30b CH3 NH-(2-CN)-Ph Ph
31a CH3 NH-(3-CONH2)-Ph Ph
31b CH3 NH-(2-CONH2)-Ph Ph
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Table 2. Cont.

Comp. R2 R4 R6

35 CH3
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2.2. Chemistry

The synthetic procedures carried out to obtain the target compounds containing the
pyridazinone scaffold are reported in Schemes 1–9. The structures were confirmed on the
basis of analytical and spectral data. Scheme 1 shows the synthetic pathway affording
the final compounds 4a,b, 5a,b, 6 and 7. Intermediate 2 [34] was obtained starting from
isoxazole-pyridazinone 1, synthesized by adopting previously reported protocols [29–32]
and using methanol and triethylamine for opening the isoxazole nucleus. The subsequent
hydrolysis (acid 3 [35]) and acylation with thionyl chloride, triethylamine and appropriate
amine led to final compounds 4a,b. Products 5a,b were obtained from alkylation reaction of
4a,b with ethyl bromide in standard conditions. The opening of isoxazole core of the starting
material 1 with 33% NH4OH afforded to amide 6 [28] which, by subsequent dehydration
with POCl3, led to compound 7. The synthesis of final compounds 16–18 is reported in
Scheme 2. The reaction between sodium salt of diketone 8 with the commercially available
ethyl chloro(hydroximino)acetate 9 in ethanol led to a mixture of isomers 10 and 11 [36]
that were cyclized to isoxazole-pyridazinone 12 and 13 using phenylhydrazine and PPA.
After chromatographic separation, the latter were subjected to a series of reactions to obtain
the compounds 16–18. The treatment of intermediate 13 with ammonium formate and
Pd/C provided compound 18, while the treatment of 12 with methanol and triethylamine
led to pyridazinone 14. Intermediate 14 was first hydrolyzed to acid (15), then converted
to amide (16) and finally treated with POCl3 to obtain the cyano derivative 17. The final
compounds 21 and 22 were obtained through a procedure similar to that shown in Scheme 1
for amide derivative 6 and cyano derivative 7, using intermediate 20 as the starting material,
which was obtained by reaction of cyclohexyl hydrazine and PPA with isoxazole 19 [34]
(see Scheme 3). Scheme 4 reports the synthesis of the pyridazinone-based derivatives
of type 24 and 25 (unsubstituted at position 5), compound 28 and the thio-derivative
27. Intermediate 23 [37] was reacted with the appropriate brominated alkylating agent
in presence of potassium carbonate and dry DMF to afford 24a–f derivatives (24a, [38];
24c, [34]). The formation of urea derivatives of type 25 was carried out using sodium acetate
and triphosgene in dry THF at reflux, and then treated with ammonia. The urea 28 was
directly obtained from intermediate 23 using the same conditions used for compound type
25. The transformation of the carbonyl (C=O) in thiocarbonyl group (C=S) was carried out
using the Lawesson’s reagent in toluene (26) and the subsequently alkylation with methyl
iodide in standard condition led to the thio derivative 27. In Schemes 5 and 6 are reported
the synthetic procedures of other un-substituted pyridazinones at position 5, but bearing
different groups/functions at position 4 and 6. In particular, Scheme 5 depicts the synthetic
pathways for compounds with a phenyl ring at position 6 and a methyl group at N-2,
while different substituents are introduced at position 4. Starting from compound 24a [38]
(Scheme 4), the amino group at position 4 was acylated using the suitable anhydride in
pyridine in a sealed/pressure vessel to obtain the final compounds 29a–d. Moreover,
the same amino group was also subjected to a coupling reaction using the appropriate
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R-phenylboronic acid in presence of copper (II) acetate and triethylamine to furnish the
derivatives 30a,b and 33. The substituent R on the phenyl at position 4 was further
elaborated. The m/o-CN group of compounds 30a,b was converted into m/o-CONH2
(compounds 31a,b, respectively) with 80% sulfuric acid under reflux. The 4-carbethoxy
function in product 33 was firstly hydrolyzed to acid 34, converted into the corresponding
acid chloride with thionyl chloride and then acylated with 1-acetylpiperazine (compound
35). Lastly, the carbonyl group of intermediate 24a was converted in thiocarbonyl (32) using
the same procedure discussed in Scheme 4. In Scheme 6 are depicted pyridazinone-based
derivatives with a methyl group or a hydrogen at N-2, an amino group or urea functionality
at position 4, but bearing different groups e/o functions (e.g., R-phenyl, alkyl, cycloalkyl)
at position 6. Starting from commercially available intermediates 36a–f, the introduction of
an amino group at position 4 with hydrazine hydrate at high temperature led to compounds
37a–e (37e, [38]) and the subsequent alkylation with methyl iodide provided products 38a–
d. The derivatives 39a,b and 40 were obtained from reaction with triphosgene and ammonia
in the same conditions reported in Scheme 4, starting from 38b,c and 37e, respectively. The
direct alkylation of the intermediates 36e and 36f afforded the corresponding N-methyl
derivatives 41a,b (41a, [39]), which were subsequently converted into compounds 42a,b
through the same reaction used to obtain 37a–e. In particular, the reaction conditions used
to introduce an amino group at position 4 led also to the reduction in the nitro group
in compound 42b. The latter was subjected to acylation reaction with acetyl chloride to
obtain product 44. Instead, intermediate 42a was subjected to triphosgene treatment to
obtain the urea derivative 43. Scheme 7 reports the synthesis of final compounds 48 and
49. Intermediate 47 was obtained starting from isoxazole 45, previously synthesized by
us [34] by cyclization reaction with methyl hydrazine (46) and subsequent opening of the
isoxazole ring with ammonium formate and palladium on carbon. The deacetylation (on
47) with 48% bromic acid at high temperature led to compound 48, which was subsequently
treated with triphosgene and ammonia to obtain the urea derivative 49. Compound 51
was obtained through alkylation reaction using standard conditions [40], but starting from
product 50 [41] (Scheme 8). Lastly, the final compound 55 (Scheme 9) was obtained starting
from intermediate 52 [42], through the same reactions of isoxazole nucleus opening (53 [42]),
deacetylation (54 [43]) and formation of the urea function. In Scheme 9 is also illustrated
the treatment of 52 with dimethylformamide dimethyl acetal to generate intermediate 56,
which was subsequently converted into compound 57 using hydrazine hydrate.
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Scheme 1. Reagents and conditions: (a) Et3N, CH3OH, 60 ◦C, 2 h; (b) 6N NaOH, EtOH, reflux,
30 min; (c) (i) SOCl2, Et3N, r.t., 30 min; (ii) R-NH2, anhydrous THF, r.t., 2 h; (d) CH3CH2Br, K2CO3,
anhydrous DMF, reflux, 30–90 min; (e) 33% NH4OH, C5H11N, 60 ◦C, 90 min; (f) POCl3, 60 ◦C, 2h.
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Scheme 2. Reagents and conditions: (a) anhydrous EtOH, 0 ◦C, 1h; (b) phenylhydrazine, PPA, EtOH,
70 ◦C, 30 min; (c) CH3OH, Et3N, 60 ◦C, 2h; (d) NaOH, EtOH, reflux, 30 min; (e) (i) SOCl2, Et3N,
reflux, 30 min.; (ii) 33% NH4OH, anhydrous THF, r.t., 15 min; (f) POCl3, 60 ◦C, 2h; (g) HCOONH4,
10% Pd/C, EtOH, reflux, 2 h.
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Scheme 3. Reagents and conditions: (a) cyclohexylhydrazine, PPA, EtOH, 70 ◦C, 30 min; (b) 33%
NH3, piperidine, 60 ◦C, 90 min; (c) POCl3, 60 ◦C, 2h.
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Scheme 4. Reagents and conditions: (a) suitable R-Br, K2CO3, anhydrous DMF, reflux, 1–4 h; (b) (i) dry
THF, CH3COONa, 0 ◦C then triphosgene, reflux, 2 h; (ii) NH3 33%, 0 ◦C, 1 h; (c) Lawesson’s reagent,
anhydrous toluene, reflux, 5 h.
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Scheme 5. Reagents and conditions: (a) suitable (R-CO2)O, anhydrous C6H5N, closed tube, 140 ◦C,
5 h; (b) 2/3-cyanophenylboronic acid (for 30a,b) or 4-ethoxycarbonylphenylboronic acid (for 33),
Cu(Ac)2, Et3N, dry CH2Cl2, r.t., 12 h; (c) H2SO4 80%, 80 ◦C, 4 h; (d) Lawesson’s reagent, anhydrous
toluene, reflux, 10 h; (e) NaOH 6N, EtOH 96%, reflux, 1 h; (f) (i) SOCl2, Et3N (catalytic), reflux, 1 h;
(ii) anhydrous THF, 1-acetylpiperazine, 0 ◦C then r.t., 1 h.
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Scheme 6. Reagents and conditions: (a) NH2NH4·H2O, sealed/pressure vessel, 180 ◦C, 12 h; (b) CH3I,
K2CO3, anhydrous DMF, 80 ◦C, 2–4 h; (c) (i) anhydrous THF, CH3COONa, 0 ◦C then triphosgene,
reflux, 2 h; (ii) NH4OH 33%, 0 ◦C, 1 h; (d) ClCOCH3, anhydrous THF, 0 ◦C, then r.t., 20 min.
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Based on the analytical and spectral data (proton and carbon NMR) and mass spec-
trometry (MS), all the new compounds confirmed the predicted chemical structures, as
well as satisfactory results in terms of formulation and purity (See Section 3; in Support-
ing Information are reported representative examples of analytical characterization data
of the compounds processed to FABP4 inhibition assay in vitro). Reversed phase liquid
chromatography was used to perform a qualitative analysis of the dataset’s purity. The
formation of the products was monitored by UV absorbance at wavelengths of 281 nm and
254 nm. The retention times range was from 6 to 17 min (See Section 3 and Supporting
Information). The overall feature of mass spectra (LC-MS) of this series of pyridazinone-
derivatives is the presence of a predominant peak corresponding to the molecular ion
[M + H]+ (See Section 3 and Supporting Information).
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Scheme 9. Reagents and conditions: (a) HCOONH4, Pd/C 10%, EtOH 96%, reflux, 2 h; (b) HBr 48%,
sealed/pressure vessel, 130 ◦C, 3 h; (c) (i) anhydrous THF, CH3COONa, 0 ◦C then triphosgene, reflux,
2 h; (ii) NH4OH 33%, 0 ◦C, 1 h; (d) DMF-DMA, 90 ◦C, 1 h; (e) NH2NH4·H2O, anhydrous EtOH,
70 ◦C, 10 h.

2.3. FABP4 Inhibition Evaluation

FABP4 inhibitory activity was assessed by measuring the decrease in fluorescent signal
of a detection reagent (DR) when displaced by a strong FABP4 ligand. Specifically, the
DR exhibits an increased fluorescence intensity when bound to FABP4. Therefore, any
effective ligand of the protein, which binds to the same binding pocket and can displace
the DR, determines a reduction in the fluorescence read-out. The new molecular series was
screened in a two-step procedure. Firstly, a single concentration of 5 µM was used to gain
an estimation of the overall inhibitory effect of all the molecules. Subsequently, only the
compounds that were able to reduce the fluorescence reading of at least 95% were further
evaluated by measuring the IC50 values (µM), which were lastly compared with the activity
of the arachidonic acid (i.e., FABP4 established ligand). The single point displacement
results are reported in Figure 2. Based on the data of the first screening, 10 molecules were
selected as most effective compounds—i.e., able to reduce the fluorescence of the DR to at
least 95%, for which the IC50 (µM) was calculated. Arachidonic acid was used as a positive
control, resulting with an IC50 of 3.42 µM. The IC50 values of our set of compounds are
reported in Table 3. Compound 25a demonstrated a potent inhibitory activity, with an IC50
value (i.e., 2.97 µM) lower than the reference arachidonic acid.
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Figure 2. Single point displacement experiment for selected compounds.

Table 3. Measured IC50 values for selected compounds.

Compounds IC50 (µM)

Arachidonic acid 3.42 ± 0.54
4b 8.27 ± 0.20
25a 2.97 ± 0.26
30b 23.18 ± 0.52
22 15.23 ± 0.76
25c >50
35 >50

25e >50
54 >50
55 >50
27 >50

2.4. Molecular Modelling Studies

Since the first apo-FABP crystal structure was published in 1992, many other holo-
FABP structures with a variety of ligands have been solved. The hydrophobic pocket side
chains engage a hydrogen bond to the carboxylate of FAs toward several amino acids.
Moreover, a network of water molecules may be involved in mediating these interactions.
The docking experiments of the molecular series compounds were conducted on the most
active compounds 4b, 25a, 30b, and 22. Figure 3 shows the 2D binding interactions for
the molecules, while Figure 4 displays the predicted poses inside the binding pocket of
FABP4. All the compounds are able to engage several interactions with relevant residues
in the binding pocket, such as R126 and Y128, as well as R106. R126 can interact with
both the carbonyls of the most potent compound 25a, that also interacts directly with Y128
and, through the network of water molecules, with S53. The 4b is well allocated inside
the binding pocket and is engaging a strong H-bond interaction with R126. Differently,
compound 22 is not suitably allocated inside the pocket to generate appropriate binding
with R126 and Y128 and most of the stabilizing interactions are due to pi–pi stacking
with A75, F16 and M20. Lastly, the -CN group of 30b results responsible of the stabilizing
interaction with R126 and Y128, that are likely to account for the lower activity of the
compound, as determined by the lower binding interaction for this group with the residues.
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Figure 4. Docked poses inside FABP4 of molecules 4b (green), 25a (blue), 30b (dark yellow) and 22
(light red).
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3. Experimental Section
3.1. General Remarks

All the chemical reagents were purchased from Merk and Sigma Aldrich of reagent
grade and were used without any further purification. Extracts were dried over Na2SO4
and the solvents were removed under reduced pressure. All reactions were monitored
by thin-layer chromatography (TLC) using commercial plates (Merck) pre-coated with
silica gel 60 F-254. Visualization was performed by UV fluorescence (λmax = 254 nm) or
by staining with iodine or potassium permanganate. Chromatographic separations were
performed on silica gel columns by gravity (Kieselgel 40, 0.063–0.200 mm; Merck) or flash
chromatography (Kieselgel 40, 0.040–0.063 mm; Merck). Yields refer to chromatographically
and spectroscopically pure compounds, unless otherwise stated. When reactions were per-
formed in anhydrous conditions, the mixtures were maintained under nitrogen atmosphere.
Compounds were named following IUPAC rules as applied by Beilstein-Institut AutoNom
2000 (4.01.305) or CA Index Name. All melting points were determined on a microscope hot
stage Büchi apparatus and are uncorrected. 1H-NMR and 13C-NMR spectra were obtained
on a Bruker AVANCE 400 spectrometer at 400 MHz and 100 MHz, respectively, using
5 mm i.d. glass tubes. Chemical shifts (δ) values are expressed as parts per million (ppm)
using DMSO (d6) (2.50 for proton and 39.52 for carbon), methanol (d4) (3.31 for proton and
49.00 for carbon) or CDCl3 (7.26 for proton and 77.16 for carbon) as solvents. The coupling
constants (J) are reported in Hz. The following splitting patterns are identified: s, singlet;
d, doublet; t, triplet; m, multiplet; or any combination of these e.g., dd, dt, etc. Analytical
reversed-phase high performance liquid chromatography (reversed-phase HPLC) was
conducted out on HP 1050 instrument (Agilent Technologies, Waldbronn, Germany) to
ascertain the chromatographic purity of compounds. The system includes a quaternary
pump, an autosampler, and a Kontron DEG 104 degasser (Kontron, Tokyo, Japan). A C18
column, Zorbax,80 Å, 3.5 µm, 2.1 × 100 mm was used with a total run time of 30 min.
The mobile phase is composed of 0.1% Trifluoro acetic acid (TFA) in Milli-Q H2O and
Acetonitrile (can) at a flow rate of 0.3 mL/min with an injection volume of 10–30 µL [44].
The compounds were detected at 281 nm and 254 nm UV wavelengths. The values of the
retention times (tR) are given in minutes. Mass spectrometry (LC-MS) experiments were
performed on all the samples. The stock solutions (1 mg/mL in MeOH) where diluted with
0.1% HCOOH in MeOH/H2O (50:50) to a final concentration of 50 µg/mL prior to analysis.
The instrument used consisted of a Thermo Accela LC system interfaced to a Thermo TSQ
Access triple quadrupole mass spectrometer with a HESI source. The data were processed
with Xcalibur software (version 2.0). An amount of 10 µL of sample was analyzed in flow
injection, with a flow rate of 0.2 mL/min of mobile phase 0.1% HCOOC in MeOH/H2O
(50:50). Parameters used for the analysis in positive ion mode were: spray voltage 3500 V;
vaporizer temperature 300 ◦C; sheath gas pressure 50 au; capillary temperature 350 ◦C;
capillary offset 35.

3.2. Chemistry
3.2.1. General Procedure for Compounds 4a,b

A mixture of 3 (0.35 mmol) [35], a catalytic amount of Et3N (0.1 mL) and SOCl2
(9.35 mmol) was stirred at room temperature for 30 min. Then the excess of SOCl2 was
removed in vacuo and the residue oil was dissolved in cold anhydrous THF (1 mL). To this
suspension, the appropriate amine (0.75 mmol) was added and the mixture was stirred at
room temperature for 2 h. After cooling, cold water was added (2–5 mL) and the suspension
was extracted with CH2Cl2 (3 × 15 mL); the solvent was evaporated under vacuum to
afford the desired final compounds, which were purified by flash column chromatography
using cyclohexane/ethyl acetate 1:2 as eluent (4a), or by crystallization from ethanol (4b).

5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid phenylamide (4a)

Yield = 40%; mp = 228–229 ◦C (EtOH). Light brown solid, 1H NMR (400 MHz, DMSO-
d6) δ 6.57 (s, 2H, NH2), 7.02 (t, 1H, J = 7.4 Hz, ArCONH), 7.23 (t, 2H, J = 7.8 Hz, Ar), 7.32 (d,
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2H, J = 7.3 Hz, Ar), 7.39 (d, 2H, J = 8.0 Hz, Ar), 7.47–7.49 (m, 2H, Ar), 10.04 (s, 1H, CONH2),
12.88 (s, 1H, ArNH). 13C NMR (100 MHz, DMSO-d6) δ163.75, 156.35, 155.43, 145.54, 141.87,
138.61, 128.43, 128.24, 127.93, 123.86, 119.95, 109.88. MS-ESI for C17H14N4O2 (Calcd, 306.11),
[M + H]+ at m/z 306.96, tR = 11.825. Anal. Calcd for C17H14N4O2: C, 66.66; H, 4.61; N, 18.29.
Found C, 66.92; H, 4.63; N, 18.36.

5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid propylamide (4b)

Yield = 35%; mp = 228–230 ◦C (EtOH). Yellow coloured solid, 1H NMR (400 MHz,
DMSO-d6) δ 0.57–0.61 (m, 2H, CH3), 1.18 (dp, 2H, J = 14.2, 7.2 Hz, CH2), 2.94 (q, 2H,
J = 6.8 Hz, NHCH2), 6.31 (s, 2H, NH2), 7.36 (dt, 2H, J = 4.5, 1.6 Hz, Ar), 7.44 (dq, 2H, J = 6.4,
1.7 Hz, Ar), 7.98 (t, 1H, J = 5.8 Hz, Ar), 12.79 (s, 1H, ArNH). 13C NMR (100 MHz, DMSO-d6)
δ 164.94, 156.30, 145.52, 141.61, 137.07, 128.17, 127.90, 127.80, 110.26, 40.55, 21.51, 11.24.
MS-ESI for C14H16N4O2 (Calcd, 272.13), [M + H]+ at m/z 273.02, tR = 9.970. Anal. Calcd for
C14H16N4O2: C, 61.75; H, 5.92; N, 20.58. Found C, 61.99; H, 5.94; N, 20.66.

3.2.2. General Procedure for Compounds 5a,b

A mixture of 4a,b (0.43 mmol), K2CO3 (0.86 mmol) and 0.50 mmol of ethyl bromide in
anhydrous DMF (2 mL) was refluxed for 30–90 min. After cooling, the mixture was diluted
with cold water (15 mL) and compound 5a was recovered by filtration under vacuum. For
compound 5b the suspension was extracted with CH2Cl2 (3 × 15 mL) and the solvent was
evaporated in vacuo. The crude products were purified by crystallization from ethanol.

5-Amino-1-ethyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid
phenylamide (5a)

Yield = 90%; mp = 172–173 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.42 (t, 3H,
CH3CH2, J = 7.2 Hz), 4.26 (q, 2H, CH3CH2, J = 7.2 Hz), 6.70 (exch br s, 1H, CONH), 6.93 (d,
2H, Ar, J = 8.0 Hz), 7.04 (t, 1H, Ar, J = 8.0 Hz), 7.20 (t, 2H, Ar, J = 8.0 Hz), 7.49–7.54 (m, 3H,
Ar), 7.55–7.60 (m, 2H, Ar). Anal. Calcd for C19H18N4O2: C, 68.25; H, 5.43; N, 16.76. Found
C, 68.41; H, 5.44; N, 16.72.

5-Amino-1-ethyl-6-oxo-3-phenyl-1,6-dihydro-pyridazine-4-carboxylic acid
propylamide (5b)

Yield = 80%; mp = 141–143 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 0.64 (t, 3H,
NH-CH2CH2CH3, J = 7.2 Hz), 1.15 (sex, 2H, NH-CH3CH2CH2, J = 7.6 Hz), 1.43 (t, 3H,
N-CH2CH3, J = 7.2 Hz), 3.05 (q, 2H, NH-CH2CH2CH3, J = 7.2 Hz), 4.25 (q, 2H, N-CH2CH3,
J = 7.2 Hz), 5.02 (exch br s, 1H, CONHCH2), 6.95 (exch br s, 2H, NH2), 7.45–7.51 (m, 5H, Ar).
Anal. Calcd for C16H20N4O2: C, 63.98; H, 6.71; N, 18.65. Found C, 63.83; H, 6.70; N, 18.70.

3.2.3. 5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid amide (6)

A mixture of isoxazolopyridazinone 1 (0.94 mmol) [29], 2 mL of 33% NH3 and a cat-
alytic amount of piperidine was stirred at 60 ◦C for 90 min in a sealed/pressure vessel.
After cooling the precipitate was recovered by suction and recrystallized with diethyl ether.
Yield = 46%; mp > 300 ◦C (Et2O). Light brown solid, 1H NMR (400 MHz, DMSO-d6) δ
6.38 (s, 2H, NH2), 7.38 (dd, 3H, Ar, J = 5.0, 2.1 Hz), 7.47–7.49 (m, 2H, Ar), 12.79 (s, 1H,
ArNH). 13C NMR (100 MHz, DMSO-d6) δ 167.25, 156.28, 145.36, 141.66, 137.17, 128.17,
127.97, 127.83, 109.75. MS-ESI for C11H10N4O2 (Calcd, 230.08), [M + H]+ at m/z 230.95,
tR = 6.091. Anal. Calcd for C11H10N4O2: C, 57.39; H, 4.38; N, 24.34. Found C, 57.16; H, 4.36;
N, 24.24.

3.2.4. 5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carbonitrile (7)

A suspension of 6 (0.40 mmol) in POCl3 (8 mmol) was stirred at 60 ◦C for 1–2 h. After
cooling, the reaction mixture was treated with cold water (15 mL) and the suspension
was extracted with CH2Cl2 (3 × 15 mL). The organic solvent was evaporated to afford the
desired final compound which was purified by crystallized from diethyl ether. Yield = 48%;
mp = 287–289 ◦C (Et2O). Yellow coloured solid, 1H NMR (400 MHz, DMSO-d6) δ 6.78 (s,
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1H, NH2), 7.48 (tt, 3H, J = 3.9, 2.4 Hz, Ar), 7.57–7.61 (m, 2H, Ar), 12.98 (s, 1H, ArNH). 13C
NMR (100 MHz, DMSO-d6) δ154.47, 154.06, 149.95, 145.72, 135.21, 129.28, 128.29, 128.13,
115.68, 113.42. MS-ESI for C11H8N4O (Calcd, 212.07), [M + H]+ at m/z 212.89, tR = 10.234.
Anal. Calcd for C11H8N4O: C, 62.26; H, 3.80; N, 26.40. Found C, 62.01; H, 3.78; N, 26.29.

3.2.5. 4-Acetyl-isoxazole-3-carboxylic acid ethyl ester (10)

To a cooled (−5 ◦C) and stirred suspension of 8 (9.9 mmol) in anhydrous ethanol,
a solution of ethyl chloro(hydroximino)acetate 9 (6.6 mmol) in the same solvent (11 mL)
was added dropwise. The solvent was evaporated in vacuo, cold water was added (10 mL)
and the suspension was extracted with CH2Cl2 (3 × 15 mL). A mixture of isoxazoles 10
and 11 [36] was obtained and they were separated by flash column chromatography using
cyclohexane/ethyl acetate 2:1 as eluent. Yield = 15%; oil. 1H NMR (400 MHz, CDCl3) δ
1.45 (t, 3H, CH2CH3, J = 7.2 Hz), 2.55 (s, 3H, COCH3), 4.51 (q, 2H, CH2CH3, J = 7.2 Hz),
8.95 (s, 1H, Ar). Anal. Calcd for C8H9NO4: C, 52.46; H, 4.95; N, 7.65. Found C, 52.33; H,
4.94; N, 7.67.

3.2.6. General Procedure for Compounds 12 and 13

To a cooled and stirred mixture of isoxazoles 10 or 11 (6.56 mmol) and 2.5 g of PPA
(25 mmol) in 2 mL of anhydrous EtOH, 7.87 mmol of phenylhydrazine were added. The
reaction was carried out at 70 ◦C for 30 min. After cooling the solvent was evaporated
under vacuum, cold water was added (10 mL) and the suspension was extracted with
CH2Cl2 (3 × 15 mL). Evaporation of the solvent afforded the desired compounds.

4-Methyl-6-phenyl-6H-isoxazolo [3,4-d]pyridazin-7-one (12)

Yield = 90%; mp = 200–201 ◦C (Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 2.54 (s,
3H, CH3), 7.38 (t, 1H, Ar, J = 7.6 Hz), 7.45–7.50 (m, 2H, Ar), 7.55–7.60 (m, 2H, Ar), 9.22 (s,
1H, C=CH). Anal. Calcd for C12H9N3O2: C, 63.43; H, 3.99; N, 18.49. Found C, 63.58; H,
4.00; N, 18.44.

3-Methyl-6-phenyl-6H-isoxazolo [3,4-d]pyridazin-7-one (13)

Yield = 80%; mp = 188–190 ◦C (Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 2.88 (s,
3H, CH3), 7.42 (t, 1H, Ar, J = 7.4 Hz), 7.51 (t, 2H, Ar, J = 7.8 Hz), 7.60 (d, 2H, Ar, J = 7.6 Hz),
8.16 (s, 1H, N=CH). Anal. Calcd for C12H9N3O2: C, 63.43; H, 3.99; N, 18.49. Found C, 63.55;
H, 3.99; N, 18.46.

5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carboxylic acid methyl
ester (14)

A mixture of 12 (6.21 mmol) and Et3N (0.8 mL) in 2 mL of CH3OH was heated at 60 ◦C
for 2 h. After cooling, ice water (20 mL) was added and the suspension was extracted with
CH2Cl2 (3 × 15 mL). Then the solvent was evaporated in vacuo to afford compound 14
which was purified by flash column chromatography using cyclohexane/ethyl acetate 1:1
as eluent. Yield = 80%; mp = 91–93 ◦C (Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 2.53 (s,
3H, CH3), 3.95 (s, 3H, COOCH3), 7.39 (t, 1H, Ar, J = 7.4 Hz), 7.49 (t, 2H, Ar, J = 8.4 Hz), 7.65
(d, 2H, Ar, J = 8.4 Hz), 8.16 (exch br s, 2H, NH2). Anal. Calcd for C13H13N3O3: C, 60.22; H,
5.05; N, 16.21. Found C, 60.08; H, 5.06; N, 16.26.

3.2.7. 5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carboxylic acid (15)

A mixture of 14 (2.12 mmol), ethanol (3 mL) and 6N NaOH (2 mL) was stirred at reflux
for 30 min. After cooling, the solvent was evaporated under vacuum, cold water was added
(2–3 mL) and the mixture was acidified with 6N HCl. The precipitate was recovered by
vacuum filtration and crystallized from cyclohexane. Yield = 90%; mp = 214–216 ◦C (Cyclo-
hexane). 1H NMR (400 MHz, DMSO-d6) δ 2.37 (s, 3H, CH3), 7.39 (t, 1H, Ar, J = 7.2 Hz), 7.46
(t, 2H, Ar, J = 8.0 Hz), 7.54 (d, 2H, Ar, J = 8.0 Hz), 8.25 (exch br s, 2H, NH2). Anal. Calcd for
C12H11N3O3: C, 58.77; H, 4.52; N, 17.13. Found C, 58.61; H, 4.51; N, 17.16.
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3.2.8. 5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carboxylic acid
amide (16)

A mixture of 15 (1.88 mmol), a catalytic amount of Et3N (0.1 mL) and SOCl2 (51 mmol)
was refluxed for 30 min. After cooling, the excess of SOCl2 was removed in vacuo and
the residue oil was dissolved in cold dry THF (1 mL). To this suspension a solution of
33% NH3 (2 mL) in 1.5 mL of dry THF was added and the mixture was stirred at room
temperature for 15 min. After evaporation of the solvent, the mixture was diluted with
cold water (20 mL) and the precipitate obtained was filtered and crystallized from ethanol.
Yield = 80%; mp = 247–249 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz, DMSO-
d6) δ 2.21 (s, 3H, CH3), 7.35–7.40 (m, 1H, Ar), 7.45–7.51 (m, 5H, Ar), 7.65 (s, 1H, NH2), 7.88
(s, 1H, CONH2). 13C NMR (100 MHz, DMSO-d6) δ 167.39, 155.53, 143.12, 141.99, 141.63,
128.82, 127.99, 125.85, 110.42, 20.24. MS-ESI for C12H12N4O2 (Calcd, 244.10), [M + H]+ at
m/z 244.95, tR = 7.921. Anal. Calcd for C12H12N4O2: C, 59.01; H, 4.95; N, 22.94. Found C,
59.24; H, 4.97; N, 23.03.

3.2.9. 5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carbonitrile (17)

Compound 17 was obtained starting from compound 16, through the same procedure
described for 7. After dilution with cold water, the precipitate was recovered by filtration
under vacuum and the solid obtained was purified by flash column chromatography using
cyclohexane/ethyl acetate 1:1 as eluent. Yield = 20%; mp = 201–203 ◦C (EtOH). 1H NMR
(400 MHz, DMSO-d6) δ 2.26 (s, 3H, CH3), 7.38 (ddd, 1H, J = 7.7, 5.5, 3.6 Hz, Ar), 7.42–7.51
(m, 4H, Ar). 13C NMR (100 MHz, DMSO-d6) δ 153.37, 149.50, 144.17, 141.60, 130.03, 127.68,
125.90, 115.14, 100.83, 20.47. MS-ESI for C12H10N4O (Calcd, 226.08), 226.96 m/z [M + H]+,
435.11 m/z [2M+H-H2O]+, 451.07 m/z [2M-H2+H]+. tR =11.385. Anal. Calcd for C12H10N4O:
C, 63.71; H, 4.46; N, 24.76. Found C, 63.96; H, 4.48; N, 24.85.

3.2.10. 5-Acetyl-4-amino-2-phenylpyridazin-3(2H)-one (18)

Intermediate 13 (1.01 mmol) was suspended in 3.5 mL of EtOH, then 6.08 mmol of
HCOONH4 and 40 mg of 10% Pd/C were added. The mixture was refluxed for 2 h and after
cooling, CH2Cl2 (5 mL) was added. The solution was stirred for 5 min, then the catalyst
was filtered off and the solvent was evaporated in vacuo to furnish desiderd compound 18.
Yield = 98%; mp = 181–183 ◦C (Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 2.60 (s, 3H,
COCH3), 6.95 (exch br s, 1H, NH2), 7.42 (t, 1H, Ar, J = 7.6 Hz), 7.51 (t, 2H, Ar, J = 7.6 Hz),
7.64 (d, 2H, Ar, J = 7.6 Hz), 8.13 (s, 1H, C6-H), 9.15 (exch br s, 1H, NH2). Anal. Calcd for
C12H11N3O2: C, 62.87; H, 4.84; N, 18.33. Found C, 62.69; H, 4.83; N, 18.28.

3.2.11. 6-Cyclohexyl-4-phenyl-6H-isoxazolo [3,4-d]pyridazin-7-one (20)

Compound 20 was obtained starting from 19 [34] adopting the general procedure
described for compounds 12 and 13, but using cyclohexyl hydrazine as reagent. The mixture
was heated at 70 ◦C for 5 h. After dilution with ice-water, the precipitate was recovered
by filtration under vacuum and crystallized from ethanol. Yield = 45%; mp = 211–213 ◦C
(EtOH). 1H NMR (400 MHz, CDCl3) δ 1.27–1.33 (m, 1H, C6H11), 1.45–1.51 (m, 3H, C6H11),
1.75–1.80 (m, 1H, C6H11), 1.85–1.95 (m, 5H, C6H11), 5.05–5.10 (m, 1H, C6H11), 7.50–7.60 (m,
3H, Ar), 7.85 (d, 2H, Ar, J = 7.2 Hz), 9.30 (s, 1H, isoxazole). Anal. Calcd for C17H17N3O2: C,
69.14; H, 5.80; N, 14.23. Found C, 69.33; H, 4.82; N, 18.28.

3.2.12. 5-Amino-1-cyclohexyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid
amide (21)

A mixture of 20 (0.64 mmol) and 33% NH3 was stirred at 120 ◦C for 3 h in a sealed/
pressure vessel. After cooling, ice-water was added and the suspension was extracted
with CH2Cl2 (3 × 15 mL). Evaporation of the solvent afforded the desired final compound.
Yield = 20%; mp = 125–128 ◦C (Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 1.20–1.25 (m,
1H, C6H11), 1.35–1.48 (m, 2H, C6H11), 1.60–1.65 (m, 2H, C6H11), 1.70–1.88 (m, 5H, C6H11),
4.77–4.82 (m, 1H, C6H11), 6.55 (exch br s, 2H, NH2), 7.25–7.31 (m, 3H, Ar), 7.44 (d, 2H, Ar,
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J = 7.6 Hz), 8.50 (exch br s, 2H, CONH2). Anal. Calcd for C17H20N4O2: C, 65.37; H, 6.45; N,
17.94. Found C, 65.52; H, 6.46; N, 17.99.

3.2.13. 5-Amino-1-cyclohexyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carbonitrile (22)

Compound 22 was obtained starting from compound 21, through the same procedure
described for 7 and 17. After dilution with cold water, the precipitate was recovered by suc-
tion and the solid was purified by crystallization from etanol. Yield = 90%; mp = 170–172 ◦C
(EtOH). Yellow coloured solid, 1H NMR (400 MHz, CDCl3) δ 1.23 (qt, 1H, J = 13.2, 3.3 Hz,
CH2-cyclohexane), 1.46 (ttt, 2H, J = 13.8, 7.8, 3.0 Hz, CH2-cyclohexane), 1.71 (dt, 1H, J = 13.3,
3.4 Hz, CH2-cyclohexane), 1.84–1.91 (m, 6H, J = 4.4, 3.5 Hz, CH2-cyclohexane), 4.84–4.93 (m,
1H, CH2-cyclohexane), 7.45–7.50 (m, 3H, Ar), 7.72–7.74 (m, 2H, Ar). 13C NMR (100 MHz,
CDCl3) δ 152.65, 148.93, 144.34, 135.02, 129.91, 128.75, 128.20, 114.83, 85.25, 58.19, 30.99,
25.60. MS-ESI for C17H18N4O (Calcd, 294.15), [M + H]+ at m/z 294.99, [M + ACN + H]+ at
m/z 336.01, tR = 17.509. Anal. Calcd for C17H18N4O: C, 69.37; H, 6.16; N, 19.03. Found C,
69.09; H, 6.13; N, 18.95.

3.2.14. General Procedure for 24b, 24d-f

A mixture of 23 [37] (0.80 mmol), K2CO3 (1.60 mmol) and 0.96–1.44 mmol of the
appropriate alkyl or cycloalkyl bromide in anhydrous DMF (1 mL) was refluxed for 2–4 h.
After cooling, the mixture was diluted with cold water (20 mL) and extracted with CH2Cl2
(3 × 15 mL). Evaporation of the solvent afforded the desired final compounds which were
purified by flash column chromatography using cyclohexane/ethyl acetate 1:1 (for 24b,e,f)
or 1:2 (for 24d) as eluent.

4-Amino-2-cyclohexyl-6-phenylpyridazin-3(2H)-one (24b)

Yield = 21%; mp = 120–124 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.20–1.35 (m,
1H, C6H11), 1.40–1.50 (m, 2H, C6H11), 1.70–1.80 (m, 1H, C6H11), 1.90–2.05 (m, 6H, C6H11),
4.85–5.10 (m, 3H, 1H C6H11 + 2H NH2), 6.75 (s, 1H, -CH pyridaz.), 7.35–7.50 (m, 3H, Ar),
7.70 (d, 2H, Ar, J = 7.6 Hz). Anal. Calcd for C16H19N3O: C, 71.35; H, 7.11; N, 15.60. Found
C, 71.52; H, 7.10; N, 15.56.

4-Amino-2-isopropyl-6-phenylpyridazin-3(2H)-one (24d)

Yield = 85%; mp = 122–124 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.45 (d, 6H,
CH(CH3)2, J = 6.8 Hz), 4.97 (exch br s, 2H, NH2), 5.41 (quin, 1H, CH(CH3)2, J = 6.8 Hz), 6.75
(s, 1H, -CH pyridaz.), 7.40–7.50 (m, 3H, Ar), 7.81 (d, 2H, Ar, J = 7.6 Hz). Anal. Calcd for
C13H15N3O: C, 68.10; H, 6.59; N, 18.33 Found C, 68.31; H, 6.60; N, 18.29.

4-Amino-6-phenyl-2-propylpyridazin-3(2H)-one (24e)

Yield = 83%; mp = 79–81 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.02 (t, 3H,
CH2CH2CH3, J = 7.2 Hz), 1.93 (sex, 2H, CH2CH2CH3, J = 7.2 Hz), 4.23 (t, 2H, CH2CH2CH3,
J = 7.2 Hz), 4.99 (exch br s, 2H, NH2), 6.73 (s, 1H, -CH pyridaz.), 7.38–7.50 (m, 3H, Ar), 7.78
(d, 2H, Ar, J = 8.0 Hz). Anal. Calcd for C13H15N3O: C, 68.10; H, 6.59; N, 18.33 Found C,
68.28; H, 6.60; N, 18.31.

4-Amino-2-butyl-6-phenylpyridazin-3(2H)-one (24f)

Yield = 94%; mp = 67–69 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.00 (t, 3H,
CH2CH2CH2CH3, J = 7.2 Hz), 1.45 (m, 2H, CH2CH2CH2CH3), 1.87 (m, 2H, CH2CH2CH2CH3),
4.26 (t, 2H, CH2CH2CH2CH3, J = 7.2 Hz), 4.99 (exch br s, 2H, NH2), 6.75 (s, 1H, -CH pyri-
daz.), 7.38–7.50 (m, 3H, Ar), 7.76 (d, 2H, Ar, J = 8.0 Hz). Anal. Calcd for C14H17N3O: C,
69.11; H, 7.04; N, 17.27 Found C, 69.29; H, 7.03; N, 17.32.

3.2.15. General Procedure for Compounds 25a–f

To a cooled (0 ◦C) and stirred suspension of the appropriate pyridazinone 24a–f
(0.65 mmol) in anhydrous THF (1–3 mL), anhydrous sodium acetate (1.55 mmol) and
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triphosgene (2.26 mmol) were added. The mixture was stirred for 10 min at room tem-
perature and refluxed for 2 h. Then, the suspension was cooled to 0 ◦C and 1 mL of 33%
NH3 was added and the mixture was stirred for 30–90 min at room temperature. After
evaporation of the solvent, ice/cold water was added (15 mL) and the precipitate obtained
was recovered by filtration under vacuum and purified by crystallization from ethanol to
obtain the pure samples of 25a–f.

(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25a)

Yield = 65%; mp > 300 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 3.77 (s, 3H, CH3),
7.42–7.51 (m, 3H, Ar), 7.73–7.76 (m, 2H, Ar), 8.35 (s, 1H, Ar), 8.98 (s, 1H, NHCONH2). 13C
NMR (100 MHz, DMSO-d6) δ 155.69, 155.11, 145.12, 137.92, 135.75, 129.39, 129.09, 126.02,
106.62, 20.93. MS-ESI for C12H12N4O2 (Calcd, 244.10), [M + H]+ at m/z 244.95, tR = 11.531.
Anal. Calcd for C12H12N4O2: C, 59.01; H, 4.95; N, 22.94 Found C, 59.24; H, 4.97; N, 23.03.

(2-Cyclohexyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25b)

Yield = 35%; mp = 261–263 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.18–1.31 (m, 1H,
C6H11), 1.40–1.51 (m, 2H, C6H11), 1.64–1.72 (m, 1H, C6H11), 1.70–1.90 (m, 6H, C6H11), 4.87
(m, 1H, C6H11), 6.80 (exch br s, 2H, NH2), 7.45–7.55 (m, 3H, Ar), 7.79 (d, 2H, Ar, J = 7.6 Hz),
8.37 (s, 1H, -CH pyridaz.), 8.96 (exch br s, 1H, NHCONH2). Anal. Calcd for C17H20N4O2:
C, 65.37; H, 6.45; N, 17.94. Found C, 65.18; H, 6.46; N, 17.91.

(2-Ethyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25c)

Yield = 25%; mp = 270–271 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz,
DMSO-d6) δ 1.33 (t, 3H, J = 7.1 Hz, NCH2CH3), 4.20 (q, 2H, J = 7.2 Hz, NCH2), 6.70 (exch
br s, 2H, NHCONH2) 7.47 (dt, 3H, J = 13.1, 7.1 Hz, Ar), 7.73 (dd, 2H, J = 23.5, 7.6 Hz, Ar),
8.34 (s, 1H, Ar), 8.98 (s, 1H, NHCONH2). 13C NMR (100 MHz, DMSO-d6) δ 155.36, 154.51,
150.89, 145.06, 137.97, 135.75, 128.88, 125.84, 106.29, 47.00, 13.39. MS-ESI for C13H14N4O2
(Calcd, 258.11), [M + H]+ at m/z 259.02, 215.90 m/z [M-CONH2 + H]+. tR = 12.090. Anal.
Calcd for C13H14N4O2: C, 60.45; H, 5.46; N, 21.69. Found C, 60.21; H, 5.44; N, 21.60.

(2-Isopropyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25d)

Yield = 68%; mp = 260–263 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz,
DMSO-d6) δ 1.36 (d, 6H, J = 6.7 Hz, NCH(CH3)2), 5.24 (q, 1H, J = 6.6 Hz, NCH), 7.47 (dt, 2H,
J = 15.9, 7.2 Hz, Ar), 7.67–7.79 (m, 3H, Ar), 8.34 (s, 1H, Ar), 8.95 (s, 1H, NHCONH2). 13C
NMR (100 MHz, DMSO-d6) δ 155.69, 154.31, 144.75, 137.69, 136.13, 132.04, 129.30, 129.08,
127.97, 125.91, 105.93, 49.71, 20.96. MS-ESI for C14H16N4O2 (Calcd, 272.13), [M + H]+ at m/z
272.95, tR = 14.248. Anal. Calcd for C14H16N4O2: C, 61.75; H, 5.92; N, 20.58. Found C, 61.99;
H, 5.94; N, 20.66.

(3-Oxo-6-phenyl-2-propyl-2,3-dihydro-pyridazin-4-yl)urea (25e)

Yield = 60%; mp = 273–275 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz,
DMSO-d6) δ 0.89 (td, 3H, J = 7.4, 2.7 Hz, NCH2CH2CH3), 1.79 (q, 2H, J = 7.3 Hz, NCH2CH2),
4.13 (t, 2H, J = 7.1 Hz, NCH2), 7.42–7.51 (m, 2H, Ar), 7.69 (d, 1H, J = 5.6 Hz, Ar), 7.73–7.76
(m, 2H, Ar), 8.33 (s, 1H, Ar), 8.96 (s, 1H, NHCONH2). 13C NMR (100 MHz, DMSO-d6) δ
155.68, 154.88, 145.06, 137.94, 135.87, 132.03, 129.36, 129.07, 128.06, 126.03, 106.37, 53.19,
21.39, 11.13. MS-ESI for C14H16N4O2 (Calcd, 272.13), [M + H]+ at m/z 272.95, 229.90 m/z
[M-CONH2 + H]+. tR = 14.037. Anal. Calcd for C14H16N4O2: C, 61.75; H, 5.92; N, 20.58.
Found C, 61.99; H, 5.94; N, 20.66.

(2-Butyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25f)

Yield = 85%; mp = 265–267 ◦C (EtOH). White solid, 1H NMR (400 MHz, DMSO-d6 +
D2O) δ 0.88 (t, 3H, J = 7.4 Hz, CH3), 1.27 (q, 2H, J = 7.3 Hz, CH2CH3), 1.73 (q, 2H, J = 7.2 Hz,
CH2CH2CH3), 4.13–4.16 (m, 2H, CH2ArN), 7.41–7.51 (m, 3H, Ar), 7.73–7.75 (m, 2H, Ar),
8.08 (s, 1H, NHCONH2), 8.36 (s, 1H, Ar), 9.10 (s, 2H, CONH2). 13C NMR (100 MHz, DMSO-
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d6) δ 154.80, 154.60, 137.56, 135.69, 129.20, 128.94, 127.78, 125.79, 118.03, 106.44, 51.11, 29.92,
19.24, 13.53. MS-ESI for C15H18N4O2 (Calcd, 286.14), [M + H]+ at m/z 286.94, tR = 31.162.
Anal. Calcd for C15H18N4O2: C, 62.92; H, 6.34; N, 19.57. Found C, 62.66; H, 6.31; N, 19.49.

3.2.16. 4-Amino-6-phenylpyridazine-3(2H)-thione (26)

A mixture of 23 [37] (0.86 mmol) and Lawesson’s reagent (1.71 mmol) in anhydrous
toluene (2–3 mL) was heated at 90 ◦C for 5 h. After cooling the solvent was evaporated
under vacuum, cold water was added (10 mL) and the mixture was extracted with CH2Cl2
(3 × 15 mL). Evaporation of the solvent afforded 26 which was purified by flash column
chromatography using CH2Cl2/CH3OH 10:1 as eluent. Yield = 63%; mp = 175–178 ◦C
(Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 5.77 (exch br s, 2H, NH2), 6.80 (s, 1H, -CH
pyridaz.), 7.45–7.55 (m, 3H, Ar), 7.75–7.81 (m, 2H, Ar). Anal. Calcd for C10H9N3S: C, 59.09;
H, 4.46; N, 20.67. Found C, 59.23; H, 4.45; N, 20.62.

3.2.17. 3-Methylsulfanyl-6-phenyl-pyridazin-4-ylamine (27)

Compound 27 was obtained, starting from compound 26, through the general pro-
cedure described for 24b and 24d–f. After dilution with cold water, the precipitate was
recovered by suction and purified by crystallization. Yield = 40%; mp = 168–170 ◦C (Cyclo-
hexane). Greenish colour solid, 1H NMR (400 MHz, DMSO-d6) δ 2.64 (s, 3H, SCH3), 6.27
(exch br s, 2H, NH2), 7.00 (s, 1H, Ar), 7.46 (dt, 3H, ArH, J = 12.6, 6.9 Hz), 7.90–7.93 (m, 2H,
Ar). 13C NMR (100 MHz, DMSO-d6) δ155.31, 147.71, 144.50, 137.20, 129.38, 129.02, 126.51,
102.80, 12.72. MS-ESI for C11H11N3S (Calcd, 217.07), [M + H]+ at m/z 217.86, tR = 9.922.
Anal. Calcd for C11H11N3S: C, 60.80; H, 5.10; N, 19.34. Found C, 60.56; H, 5.08; N, 19.26.

3.2.18. (3-Oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (28)

Compound 28 was obtained, starting from 23 [37], through the same procedure de-
scribed for 25a–f. Yield = 85%; mp >300 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ
7.41–7.50 (m, 3H, Ar), 7.72–7.75 (m, 2H, Ar), 8.33 (s, 1H, Ar), 8.94 (s, 1H, NHCONH2),
13.21 (s, 1H, ArNH). 13C NMR (100 MHz, DMSO-d6) δ156.00, 155.33, 145.54, 139.57, 138.27,
135.77, 134.50, 128.87, 125.70, 106.97. MS-ESI for C11H10N4O2 (Calcd, 230.08), [M + H]+ at
m/z 230.88, t = 10.042. Anal. Calcd for C11H10N4O2: C, 57.39; H, 4.38; N, 24.34. Found C,
57.62; H, 4.39; N, 24.44.

3.2.19. General Procedure for Compounds 29a–d

A mixture of 24a [38] (0.39 mmol) and the appropriate R-anhydride (13.1 mmol) in
1 mL of pyridine was heated at 140 ◦C for 5 h in a sealed/pressure vessel. After cooling,
ice/cold water was added (50 mL), the precipitate was recovered by filtration under
vacuum and purified by crystallization from ethanol to obtain the desired compounds.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)acetamide (29a)

Yield = 90%; mp = 211–212 ◦C (EtOH). Brownish black coloured solid, 1H NMR
(400 MHz, CDCl3) δ 2.28 (s, 3H, CH3CONH), 3.91 (s, 3H, CH3ArN), 7.42–7.48 (m, 3H, Ar),
7.80–7.83 (m, 2H, Ar), 8.61 (s, 1H, ArH). 13C NMR (100 MHz, CDCl3) δ 196.96, 155.66,
146.61, 135.61, 135.59, 129.59, 128.97, 126.46, 110.82, 40.91, 24.98. MS-ESI for C13H13N3O2
(Calcd, 243.10), [M + H]+ at m/z 243.90, tR = 13.311. Anal. Calcd for C13H13N3O2: C, 64.19;
H, 5.39; N, 17.27. Found C, 64.45; H, 5.41; N, 17.34.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)propionamide (29b)

Yield = 93%; mp = 210–211 ◦C (EtOH). Ash coloured solid, 1H NMR (400 MHz, CDCl3)
δ 1.26 (td, 3H, J = 7.5, 1.1 Hz, CH3CH2CONH), 2.49–2.55 (m, 2H, CH2CONH), 3.92 (s, 3H,
CH3ArN), 7.41–7.47 (m, 3H, Ar), 7.81–7.84 (m, 2H, Ar), 8.65 (s, 1H, Ar). 13C NMR (100 MHz,
CDCl3) δ 173.77, 155.73, 146.62, 135.63, 135.60, 129.58, 128.95, 126.43, 110.76, 40.90, 31.00,
9.24. MS-ESI for C14H15N3O2 (Calcd, 257.12), [M + H]+ at m/z 257.90, tR = 14.604. Anal.
Calcd for C14H15N3O2: C, 65.36; H, 5.88; N, 16.33. Found C, 65.10; H, 5.90; N, 16.39.
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N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)isobutyramide (29c)

Yield = 95%; mp = 146–148 ◦C (EtOH). Brown coloured solid, 1H NMR (400 MHz,
CDCl3) δ 1.28 (dd, 6H, J = 6.9, 1.2 Hz, (CH3)2CHCONH), 2.64–2.71 (m, 1H, CHCONH),
3.92 (s, 3H, CH3ArN), 7.41–7.46 (m, 3H, Ar), 7.81–7.85 (m, 2H, Ar), 8.66 (s, 1H, Ar). 13C
NMR (100 MHz, CDCl3) δ 177.10, 155.82, 146.61, 135.71, 135.59, 129.57, 128.94, 126.42,
110.83, 40.87, 36.95, 19.45. MS-ESI for C15H17N3O2 (Calcd, 271.13), [M + H]+ at m/z 272.04,
tR = 16.829. Anal. Calcd for C15H17N3O2: C, 66.40; H, 6.32; N, 15.49. Found C, 66.66; H,
6.34; N, 15.55.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)butyramide (29d)

Yield = 92%; mp = 187–189 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 1.05 (t, 3H,
CH2CH2CH3, J = 7.2 Hz), 1.80 (sex, 2H, CH2CH2CH3, J = 7.2 Hz), 2.49 (q, 2H, CH2CH2CH3,
J = 7.2 Hz), 3.94 (s, 3H, N-CH3), 7.45–7.50 (m, 3H, Ar), 7.85 (d, 2H, Ar, J = 7.6 Hz), 8.63 (exch
br s, 1H, NH), 8.68 (s, 1H, -CH pyridaz.). Anal. Calcd for C15H17N3O2: C, 66.40; H, 6.32; N,
15.49. Found C, 66.25; H, 6.31; N, 15.44.

3.2.20. General procedure for compounds 30a,b and 33

A mixture of compound 24a [38] (0.79 mmol), the appropriate R-phenylboronic acid
(0.79 mmol), copper acetate (1.19 mmol) and triethylamine (1.59 mmol) in CH2Cl2 (5 mL)
was stirred at room temperature for 3–12 h. After evaporation of the solvent, ethyl acetate
was added (15–20 mL) and the solution was extracted first with 33% NH3 (3 × 5 mL) and
then with water (2 × 5 mL). The organic layer was evaporated under vacuum and the
residue was purified by crystallization from ethanol.

3.2.21. 3-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzonitrile (30a)

Yield = 60%; mp = 234–235 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz,
DMSO-d6) δ 3.80 (s, 3H, CH3), 7.23 (s, 1H, Ar), 7.42–7.48 (m, 3H, Ar), 7.55–7.59 (m, 2H,
Ar), 7.80 (dd, 3H, J = 8.0, 1.8 Hz, ArCN), 7.86 (d, 1H, J = 1.8 Hz, ArCN), 9.03 (exch br s,
1H, NH). 13C NMR (100 MHz, DMSO-d6) δ 193.78, 157.05, 151.81, 140.85, 136.62, 129.18,
126.83, 111.09, 100.21, 23.94. MS-ESI for C18H14N4O (Calcd, 302.12), [M + H]+ at m/z 302.90,
[M + ACN + H]+ at m/z 343.92, tR = 16.247. Anal. Calcd for C18H14N4O: C, 71.51; H, 4.67;
N, 18.53. Found C, 71.22; H, 4.65; N, 18.45.

3.2.22. 2-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzonitrile (30b)

Yield = 32%; mp = 178–180 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz,
CDCl3) δ 3.95 (s, 3H, CH3), 7.12 (s, 1H, Ar), 7.41–7.47 (m, 3H, ArCN), 7.55 (d, 1H, J = 8.3 Hz,
ArCN), 7.65 (td, 1H, J = 7.8, 1.6 Hz, Ar), 7.72 (ddd, 3H, J = 7.6, 3.6, 1.7 Hz, Ar), 7.96 (exch
br s, 1H, NH). 13C NMR (100 MHz, CDCl3) δ 147.91, 138.56, 13.22, 129.42, 128.97, 126.44,
124.63, 121.19, 114.68, 100.94, 40.59. MS-ESI for C18H14N4O (Calcd, 302.12), [M + H]+ at m/z
302.97, [M + ACN + H]+ at m/z 344.06, tR = 16.180. Anal. Calcd for C18H14N4O: C, 71.51; H,
4.67; N, 18.53. Found C, 71.22; H, 4.65; N, 18.45.

3.2.23. 4-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzoic acid ethyl
ester (33)

Yield = 80%; mp = 171–172 ◦C (Cyclohexane). 1H NMR (400 MHz, CDCl3) 1.42 (t, 3H,
CH2CH3, J = 7.2 Hz), 3.96 (s, 3H, CH3), 4.41 (q, 2H, CH2CH3, J = 7.2 Hz), 7.30–7.40 (m, 3H,
2H Ar + CH pyridaz.), 7.45–7.50 (m, 3H, Ar), 7.77 (d, 2H, Ar, J = 8.8 Hz), 7.90 (exch br s, 1H,
NH), 8.12 (d, 2H, Ar, J = 8.8 Hz). Anal. Calcd for C20H19N3O3: C, 68.75; H, 5.48; N, 12.03.
Found C, 68.58; H, 5.47; N, 12.06.

3.2.24. General Procedure for Compounds 31a,b

A mixture of appropriate pyridazin-benzonitrile 30a or 30b (0.165 mmol) and 80%
H2SO4 (2 mL) was stirred at 80 ◦C for 4 h. After cooling, ice/cold water (2–3 mL) was
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slowly added, the precipitate obtained was recovered by filtration under vacuum and
purified by crystallization.

3.2.25. 3-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzamide (31a)

Yield = 93%; mp = 214–216 ◦C (Cyclohexane). 1H NMR (400 MHz, DMSO-d6) δ 3.81 (s,
3H, CH3), 7.13 (s, 1H, -CH pyridaz.), 7.40–7.50 (m, 5H, 4H Ar + 1H CONH2), 7.60 (d, 1H,
Ar, J = 9.2 Hz), 7.64 (d, 1H, Ar, J = 7.2 Hz), 7.76 (d, 2H, Ar, J = 8.0 Hz), 7.91 (s, 1H, Ar), 8.02
(exch br s, 1H, CONH2), 8.93 (exch br s, 1H, NH). Anal. Calcd for C18H16N4O2: C, 67.49; H,
5.03; N, 17.49. Found C, 67.36; H, 5.04; N, 17.53.

3.2.26. 2-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzamide (31b)

Yield = 95%; mp = 140–142 ◦C (Cyclohexane). 1H NMR (400 MHz, DMSO-d6) δ 3.80
(s, 3H, CH3), 7.15 (t, 1H, Ar, J = 7.6 Hz), 7.38 (s, 1H, -CH pyridaz.), 7.43–7.50 (m, 3H, Ar),
7.57 (t, 1H, Ar, J = 7.6 Hz), 7.66 (exch br s, 1H, CONH2), 7.77 (t, 2H, Ar, J = 9.2 Hz), 7.84 (d,
2H, Ar, J = 6.8 Hz), 8.17 (exch br s, 1H, CONH2), 10.68 (exch br s, 1H, NH). Anal. Calcd for
C18H16N4O2: C, 67.49; H, 5.03; N, 17.49. Found C, 67.36; H, 5.04; N, 17.53.

3.2.27. 4-Amino-2-methyl-6-phenylpyridazine-3(2H)-thione (32)

Compound 32 was obtained, starting from compound 24a [38], through the same
procedure described for 26. In this case, the mixture was refluxed for 10 h. After cooling,
ice/cold water was added. The precipitate was recovered by suction and purified by
flash column chromatography using cyclohexane/ethyl acetate 1:1 as eluent. Yield = 85%;
mp = 134–135 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 4.38 (s, 3H, CH3), 5.90 (exch br s,
2H, NH2), 6.78 (s, 1H, -CH pyridaz.), 7.45–7.50 (m, 3H, Ar), 7.80–7.85 (m, 2H, Ar). Anal.
Calcd for C11H11N3S: C, 60.80; H, 5.10; N, 19.34. Found C, 60.97; H, 5.11; N, 19.30.

3.2.28. 4-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzoic acid (34)

Compound 34 was obtained through the general procedure described for 15. After
cooling, the mixture was acidified with 6N HCl and the final product was filtered off to
obtain the desired compound. Yield = 90%; mp = 280–281 ◦C (Diethyl ether). 1H NMR
(400 MHz, DMSO-d6) δ 3.82 (s, 3H, CH3), 7.37 (s, 1H, -CH pyridaz.), 7.40–7.50 (m, 3H, Ar),
7.58 (d, 2H, Ar, J = 8.8 Hz), 7.84 (d, 2H, Ar, J = 8.4 Hz), 7.95 (d, 2H, Ar, J = 8.4 Hz), 9.16 (exch
br s, 1H, NH), 12.78 (exch br s, 1H, OH). Anal. Calcd for C18H15N3O2: C, 67.28; H, 4.71; N,
13.08. Found C, 67.44; H, 4.71; N, 13.05.

3.2.29. 4-[4-(4-Acetyl-piperazine-1-carbonyl)-phenylamino]-2-methyl-6-phenylpyridazin-
3(2H)-one (35)

Compound 35 was obtained starting from 34 through the same procedure described
for 4a,b. In this case the mixture was stirred at room temperature for 40 min. After cooling,
THF was removed in vacuo and cold water was added (10 mL). The crude precipitate
was recovered by filtration under vacuum and purified by crystallization. Yield = 94%;
mp = 213–215 ◦C (Cyclohexane). Ligrownown solid, 1H NMR (400 MHz, CDCl3) δ 2.14
(s, 3H, CH3CONH), 3.94 (s, 3H, CH3), 3.60 (d, 8H, J = 46.0 Hz, 2 × NCH2CH2N), 7.22
(s, 1H, Ar), 7.33 (d, 2H, J = 7.9 Hz, Ar), 7.47 (dd, 6H, J = 24.3, 7.9 Hz, Ar), 7.71–7.80
(m, 2H, NH + Ar). 13C NMR (100 MHz, CDCl3) δ 170.15, 169.37, 156.24, 146.00, 140.96,
139.58, 136.38, 130.72, 129.39, 129.32, 128.96, 126.42, 120.74, 99.58, 40.75, 21.55. MS-ESI for
C24H25N5O3 (Calcd, 431.20), [M + H]+ at m/z 432.10, [M + Na]+ at m/z 454.08, tR = 13.347.
Anal. Calcd for C24H25N5O3: C, 66.81; H, 5.84; N, 16.23. Found C, 66.54; H, 5.82; N, 16.16.

3.2.30. General procedure for compounds 37a–d and 42a,b

A suspension of appropriate pyridazinone 36a–d (1.29 mmol), commercially available,
and hydrazine hydrate (48 mmol) was stirred in a sealed/pressure vessel at 180–200 ◦C for
6–12 h. After cooling, ice-cold water was added (15 mL) and the precipitate obtained was re-
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covered by filtration under vacuum to obtain the desired compounds 37a–d. To obtain com-
pounds 42a,b we adopted the same procedure, using 41a,b (41a, [39]) as starting materials.

3.2.31. 4-Amino-6-thiophen-3-yl-pyridazin-3(2H)-one (37a)

Yield = 52%; mp > 300 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 6.40 (exch br s,
2H, NH2), 6.68 (s, 1H, -CH pyridaz.), 7.45 (dd, 1H, thiophene, J1 = 1.2 Hz and J2 = 4.8 Hz),
7.60 (dd, 1H, thiophene, J1 = 2.8 Hz and J2 = 4.8 Hz), 7.81 (ds, 1H, thiophene, J = 1.2 Hz),
12.54 (exch br s, 1H, NH). Anal. Calcd for C8H7N3OS: C, 49.73; H, 3.65; N, 21.75. Found C,
49.61; H, 3.65; N, 21.69.

3.2.32. 4-Amino-6-cyclohexylpyridazin-3(2H)-one (37b)

Yield = 46%; mp = 284–287 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 1.20–1.39 (m,
5H, C6H11), 1.72–1.83 (m, 5H, C6H11), 2.30–2.35 (m, 1H, C6H11), 6.14 (s, 1H, CH pyridaz.),
6.18 (exch br s, 2H, NH2), 12.24 (exch br s, 1H, NH). Anal. Calcd for C10H15N3O: C, 62.15;
H, 7.82; N, 21.74. Found C, 62.29; H, 7.80; N, 21.79.

3.2.33. 4-Amino-6-isopropylpyridazin-3(2H)-one (37c)

Yield = 40%; mp = 246–248 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 1.11 (d, 6H,
CH(CH3)2, J = 7.2 Hz), 2.67 (m, 1H, CH(CH3)2), 6.16 (s, 1H, -CH pyridaz.), 6.18 (exch br s,
2H, NH2), 12.23 (exch br s, 1H, NH). Anal. Calcd for C7H11N3O: C, 54.89; H, 7.24; N, 27.43.
Found C, 54.76; H, 7.23; N, 27.51.

3.2.34. 4-Amino-6-benzylpyridazin-3(2H)-one (37d)

Yield = 42%; mp = 247–250 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 3.70 (s, 2H,
CH2Ph), 6.04 (s, 1H, -CH pyridaz.), 6.22 (exch br s, 2H, NH2), 7.20–7.40 (m, 5H, Ar), 12.31
(exch br s, 1H, NH). Anal. Calcd for C11H11N3O: C, 65.66; H, 5.51; N, 20.88. Found C, 65.84;
H, 5.50; N, 20.83.

3.2.35. 4-Amino-6-(2-hydroxyphenyl)-2-methylpyridazin-3(2H)-one (42a)

Yield = 58%; mp = 212–213 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz,
CDCl3) δ 3.85 (s, 3H, CH3), 6.84 (s, 1H, Ar), 6.92 (td, 1H, J = 7.7, 1.2 Hz, Ar), 7.00–7.05 (m,
1H, Ar), 7.29 (td, 1H, J = 8.3, 7.8, 1.6 Hz, Ar), 7.58–7.50 (m, 1H, Ar). 13C NMR (100 MHz,
CDCl3) δ 157.81, 131.24, 126.35, 119.47, 118.30, 98.93, 29.87. MS-ESI for C11H11N3O2 (Calcd,
217.08), [M + H]+ at m/z 217.93, tR = 11.693. Anal. Calcd for C11H11N3O2: C, 60.82; H, 5.10;
N, 19.34. Found C, 60.57; H, 5.08; N, 19.26.

3.2.36. 4-Amino-6-(4-aminophenyl)-2-methylpyridazin-3(2H)-one (42b)

Yield = 55%; mp = 208–209 ◦C (Cyclohexane). 1H NMR (400 MHz, DMSO-d6) δ 3.65
(s, 3H, N-CH3), 5.35 (exch br s, 2H, NH2), 6.33 (exch br s, 2H, Ph-NH2), 6.59 (d, 2H, Ar,
J = 8.0 Hz), 6.63 (s, 1H, -CH pyridaz.), 7.42 (d, 2H, Ar, J = 8.0). Anal. Calcd for C11H11N4O:
C, 61.10; H, 5.59; N, 25.91. Found C, C, 61.27; H, 5.58; N, 25.85.

3.2.37. General Procedure for Compounds 38a–d

A mixture of the appropriate pyridazinone 37a–d (0.67 mmol), K2CO3 (1.34 mmol) and
CH3I (1.01 mmol) in anhydrous DMF (1.5 mL) was stirred at 80 ◦C for 1–4 h. After cooling,
the mixture was diluted with cold water (15 mL) and compound 38a was recovered by
suction and crystallized from ethanol. For compounds 38b–d the suspension was extracted
with CH2Cl2 (3 × 15 mL) and the solvent was evaporated in vacuo. The final compounds
were purified by flash column chromatography using cyclohexane/ethyl acetate 1:2 (for
38b,d) or CH2Cl2/CH3OH 9.5:0.5 (for 38c) as eluents.

3.2.38. 4-Amino-2-methyl-6-thiophen-3-yl-pyridazin-3(2H)-one (38a)

Yield = 62%; mp = 178–179 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 3.67 (s, 3H,
N-CH3), 6.50 (exch br s, 2H, NH2), 6.68 (s, 1H, -CH pyridaz.), 7.47 (d, 1H, thiophene,
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J = 4.8 Hz), 7.61 (m, 1H, thiophene), 7.84 (s, 1H, thiophene). Anal. Calcd for C9H9N3OS: C,
52.16; H, 4.38; N, 20.27. Found C, 52.05; H, 4.37; N, 20.22.

3.2.39. 4-Amino-6-cyclohexyl-2-methylpyridazin-3(2H)-one (38b)

Yield = 58%; oil. 1H NMR (400 MHz, CDCl3) δ 1.30–1.43 (m, 5H, C6H11), 1.68–1.92 (m,
5H, C6H11), 2.40 (m, 1H, C6H11), 3.75 (s, 3H, N-CH3), 4.91 (exch br s, 2H, NH2), 6.21 (s, 1H,
-CH pyridaz.). Anal. Calcd for C11H17N3O: C, 63.74; H, 8.27; N, 20.27. Found C, 63.87; H,
8.29; N, 20.23.

3.2.40. 4-Amino-6-isopropyl-2-methyl-2H-pyridazin-3-one (38c)

Yield = 49%; oil. 1H NMR (400 MHz, CDCl3) δ 1.18 (d, 6H, CH(CH3)2, J = 7.2 Hz),
2.75 (m, 1H, CH(CH3)2), 3.74 (s, 3H, N-CH3), 4.96 (exch br s, 2H, NH2), 6.21 (s, 1H, -CH
pyridaz.). Anal. Calcd for C8H13N3O: C, 57.46; H, 7.84; N, 25.13. Found C, 57.58; H, 7.82;
N, 25.07.

3.2.41. 4-Amino-6-benzyl-2-methylpyridazin-3(2H)-one (38d)

Yield = 48%; mp = 104–108 ◦C (EtOH). 1H NMR (400 MHz, CDCl3) δ 3.80 (s, 3H,
N-CH3), 3.82 (s, 2H, CH2Ph), 4.81 (exch br s, 2H, NH2), 6.07 (s, 1H, -CH pyridaz.), 7.22–7.35
(m, 5H, Ar). Anal. Calcd for C12H13N3O: C, 66.96; H, 6.09; N, 19.52. Found C, 66.83; H,
5.50; N, 20.83.

3.2.42. General Procedure for Compounds 39a,b, 40 and 43

Compounds 39a,b, 40 and 43 were obtained starting from 38b,c, 37e and 42a, respec-
tively, through the same procedure described for compound 25a–f.

3.2.43. (6-Cyclohexyl-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)urea (39a)

Yield = 66%; mp = 251–254 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 1.30–1.40 (m,
5H, C6H11), 1.70–1.85 (m, 5H, C6H11), 2.45 (m, 1H, C6H11), 3.64 (s, 3H, N-CH3), 6.74 (exch
br s, 2H, CONH2), 7.79 (s, 1H, -CH pyridaz.), 8.84 (exch br s, 1H, NHCO). Anal. Calcd for
C12H18N4O2: C, 57.58; H, 7.25; N, 22.38. Found C, 57.41; H, 7.23; N, 22.43.

3.2.44. (6-Isopropyl-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)urea (39b)

Yield = 60%; mp = 248–251 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 1.15 (d,
6H, CH(CH3)2, J = 6.8 Hz), 2.80 (m, 1H, CH(CH3)2), 3.65 (s, 3H, N-CH3), 6.74 (exch br
s, 2H, CONH2), 7.81 (s, 1H, -CH pyridaz.), 8.85 (exch br s, 1H, CONH). Anal. Calcd for
C9H14N4O2: C, 51.42; H, 6.71; N, 26.65. Found C, 51.31; H, 6,70; N, 26.61.

3.2.45. [6-(2-Hydroxy-phenyl)-3-oxo-2,3-dihydro-pyridazin-4-yl]-urea (40)

Yield = 85%; mp > 300 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 6.75 (exch br s,
2H, CONH2), 6.90–6.95 (m, 2H, Ar), 7.27 (t, 1H, Ar, J = 8.4 Hz), 7.45 (dd, 1H, Ar, J1 = 1.2 Hz
and J2 = 8.0 Hz), 8.39 (s, 1H, -CH pyridaz.), 8.92 (exch br s, 1H, NHCO), 10.43 (exch br s,
1H, OH), 13.18 (exch br s, 1H, NH). Anal. Calcd for C11H10N4O3: C, 53.66; H, 4.09; N, 22.75.
Found C, 53.51; H, 4,08; N, 22.81.

3.2.46. [6-(2-Hydroxyphenyl)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl]-urea (43)

Yield = 95%; mp = 278–280 ◦C (EtOH). 1H-NMR (400 MHz, DMSO-d6) δ 3.76 (s, 3H,
N-CH3), 6.79 (exch br s, 2H, NH2), 6.88–6.95 (m, 2H, Ar), 7.27 (t, 1H, Ar, J = 7.2 Hz), 7.44 (d,
1H, Ar, J = 6.8 Hz), 8.37 (s, 1H, -CH pyridaz.), 8.93 (exch br s, 1H, NHCO), 10.17 (exch br s,
1H, OH). Anal. Calcd for C12H12N4O3: C, 55.38; H, 4.65; N, 21.53. Found C, 55.49; H, 4,65;
N, 21,49.

3.2.47. N-[4-(5-Amino-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-phenyl]-acetamide (44)

To a cooled (0 ◦C) and stirred solution of 42b (0.93 mmol) in anhydrous THF (2–3 mL),
1.02 mmol of acetyl chloride was added and the mixture was stirred at room temperature
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for 20 min. After dilution with cold water (20–30 mL), the precipitate was recovered by
filtration under vacuum and purified by crystallization. Yield = 92%; mp = 270–272 ◦C
(Cyclohexane). 1H NMR (400 MHz, DMSO-d6) δ 2.06 (s, 3H, COCH3), 3.69 (s, 3H, N-CH3),
6.48 (exch br s, 2H, NH2), 6.71 (s, 1H, -CH pyridaz.), 7.60–7.70 (m, 4H, Ar), 8.80 (exch br s,
1H, NHCO). Anal. Calcd for C13H14N4O2: C, 60.45; H, 5.46; N, 21.69. Found C, 60.58; H,
5.45; N, 21.63.

3.2.48. 3,6-Dimethyl-4-pyridin-2-yl-isoxazolo [3,4-d]pyridazin-7(6H)-one (46)

To a cooled (0–4 ◦C) solution of 45 [34] (0.38 mmol) in EtOH (2–3 mL), methylhydrazine
(1.30 mmol) was added and the mixture was stirred at room temperature for 90 min. The
precipitate was recovered by filtration under vacuum to obtain the desired compound.
Yield = 84%; mp = 154–155 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 2.94 (s, 3H, C3-
CH3), 3.74 (s, 3H, N-CH3), 7.57 (t, 1H, Ar, J = 5.2 Hz), 7.95–8.05 (m, 2H, Ar), 8.76 (d, 1H,
Ar, J = 5.2 Hz). Anal. Calcd for C12H10N4O2: C, 59.50; H, 4.16; N, 23.13. Found C, 59.66; H,
4.16; N, 23.20.

3.2.49. 5-Acetyl-4-amino-2-methyl-6-pyridin-2-yl-pyridazin-3(2H)-one (47)

A mixture of 46 (0.82 mmol), 10% Pd/C (20 mg) and ammonium formate (4.9 mmol)
in EtOH (5 mL), was refluxed for 2 h. After addition of CH2Cl2 (4–5 mL) and filtration of
charcoal, evaporation of the solvent afforded the product 47. Yield = 65%; mp = 201–203 ◦C
(EtOH). 1H NMR (400 MHz, DMSO-d6) δ 1.89 (s, 3H, COCH3), 3.73 (s, 3H, N-CH3), 7.23
(exch br s, 2H, NH2), 7.44–7.50 (m, 1H, Ar), 7.89 (d, 1H, Ar, J = 7.2 Hz), 7.96 (t, 1H, Ar,
J = 7.2 Hz), 8.57 (d, 1H, Ar, J = 4.4 Hz). Anal. Calcd for C12H12N4O2: C, 59.01; H, 4.95; N,
22.94. Found C, 59.18; H, 4.96; N, 22.99.

3.2.50. 4-Amino-2-methyl-6-pyridin-2-yl-pyridazin-3(2H)-one (48)

A suspension of 47 (0.53 mmol) in 1 mL of 48% HBr was stirred in a sealed/pressure
vessel at 130 ◦C for 3 h. After cooling ice-cold water was added and the precipitate was
recovered by filtration under vacuum to obtain the desired product 48. Yield = 65%;
mp = 294–295 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6) δ 3.75 (s, 3H, N-CH3), 7.24 (s, 1H,
-CH pyridaz.), 7.51 (m, 1H, Ar), 8.00 (t, 1H, Ar, J = 7.2 Hz), 8.12 (d, 1H, Ar, J = 8.0 Hz), 8.66
(d, 1H, Ar, J = 4.4 Hz). Anal. Calcd for C10H10N4O: C, 59.40; H, 4.98; N, 27.71. Found C,
59.51; H, 4.99; N, 27.75.

3.2.51. (2-Methyl-3-oxo-6-pyridin-2-yl-2,3-dihydropyridazin-4-yl)-urea (49)

Compound 49 was obtained starting from 48, through the same procedure described
for compounds 25a–f, 39a,b, 40 and 43. Yield = 15%; mp > 300 ◦C (EtOH). 1H NMR
(400 MHz, DMSO-d6) δ 3.82 (s, 3H, N-CH3), 6.80 (exch br s, 2H, NH2), 7.46 (m, 1H, Ar),
7.92 (t, 1H, Ar, J = 7.6 Hz), 8.10 (d, 1H, Ar, J = 7.6 Hz), 8.67 (d, 1H, Ar, J = 4.8 Hz), 8.83 (s,
1H, -CH pyridaz.), 8.97 (exch br s, 1H, NHCO). Anal. Calcd for C11H11N5O2: C, 53.87; H,
4.52; N, 28.56. Found C, 53.78; H, 5.00; N, 27.71.

3.2.52. 2-Methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carboxamide (51)

Compound 51 was obtained starting from 50 [41], through the same procedure de-
scribed for compounds 38a–d. The compound was purified by crystallization from diethyl
ether. Yield = 55%; mp = 215–217 ◦C (Et2O). Light brown solid, 1H NMR (400 MHz, CDCl3)
δ 3.99 (s, 3H, CH3), 5.98 (exch br s, 1H, CONH2), 7.43–7.51 (m, 3H, Ar), 7.84–7.88 (m, 2H,
Ar), 8.72 (s, 1H, Ar), 9.41 (exch br s, 1H, CONH2). 13C NMR (100 MHz, CDCl3) δ 163.58,
160.21, 145.33, 134.16, 132.64, 130.02, 129.23, 129.04, 126.15, 41.53. MS-ESI for C12H11N3O2
(Calcd, 229.08), [M + H]+ at m/z 229.90, tR = 12.205. Anal. Calcd for C12H11N3O2: C, 62.87;
H, 4.84; N, 18.33. Found C, 62.62; H, 4.82; N, 18.26.
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3.2.53. 1-(6-Methyl-3-oxo-2-phenyl-2,3-dihydropyridazin-4-yl)urea (55)

Compound 55 was obtained strating from 54 [43], through the same procedure for
the formation of urea described for compounds 25a–f, 39a,b, 40 and 43. Yield = 95%;
mp = 288–290 ◦C (EtOH). White coloured solid, 1H NMR (400 MHz, DMSO-d6) δ 2.25 (s,
3H, CH3), 7.40–7.42 (m, 1H, Ar), 7.47 (d, 2H, J = 8.2 Hz, Ar), 7.50–7.54 (m, 2H, Ar), 7.78 (s,
1H, Ar), 8.91 (s, 1H, NHCONH2). 13C NMR (100 MHz, DMSO-d6) δ 155.56, 154.89, 146.52,
141.98, 138.04, 128.86, 128.12, 125.97, 109.55, 21.48. MS-ESI for C12H12N4O2 (Calcd, 244.10),
[M + H]+ at m/z 244.88, tR = 10.100. Anal. Calcd for C12H12N4O2: C, 59.01; H, 4.95; N, 22.94.
Found C, 59.25; H, 4.97; N, 23.03.

3.2.54. (E)-3-(2-(Dimethylamino)vinyl)-4-methyl-6-phenylisoxazolo
[3,4-d]pyridazin-7(6H)-one (56)

A mixture of 52 (1.04 mmol) [42] in 2.5 mL of DMF-DMA was hetaed at 90–100 ◦C
for 1 h. After cooling, ice/cold water was added (15 mL) and the precipitate obtained was
recovered by filtration under vacuum to obtained the pure desired compound. Yield = 90%;
mp = 224–226 ◦C dec. (Cyclohexane). 1H NMR (400 MHz, CDCl3) δ 2.50 (s, 3H, CH3), 3.00–3.20
(m, 6H, N(CH3)2), 5.25 (d, 1H, CH=CH-N, J = 10.0 Hz), 7.30–7.35 (m, 1H, Ar), 7.45–7.50 (m,
2H, Ar), 7.59–7.64 (m, 3H, 1H CH=CH-N + 2H Ar). Anal. Calcd for C16H16N4O2: C, 64.85;
H, 5.44; N, 18.91. Found C, 65.10; H, 5.46; N, 18.98.

3.2.55. 4-Amino-6-methyl-2-phenyl-5-(1H-pyrazol-5-yl)pyridazin-3(2H)-one (57)

A mixture of intermediate 56 (0.81 mmol) and 1 mL of hydrazine hydrate (excess)
in 2 mL of abs. EtOH was hetaed at 70 ◦C for 10 h. After cooling, ice/cold water was
added (15 mL). The precipitate obtained was recovered by filtration under vacum and
purified by crystallization from ethanol. Yield = 65%; mp = 119–121 ◦C. (Cyclohexane).
Yellow coloured solid, 1H NMR (400 MHz, Methanol-d4) δ 2.31 (s, 3H, CH3), 6.58 (exch br
s, 2H, NH2), 7.43 (t, 1H, J = 7.3 Hz, Ar), 7.52 (t, 3H, J = 7.6 Hz, Ar), 7.58 (d, 2H, J = 7.6 Hz,
Ar), 7.83 (s, 1H, NH). 13C NMR (100 MHz, Methanol-d4) δ 174.64, 147.92, 143.30, 129.88,
129.32, 127.14, 106.95, 24.30. MS-ESI for C14H13N5O (Calcd, 267.11), [M + H]+ at m/z 267.98.
tR = 10.882. Anal. Calcd for C14H13N5O: C, 62.91; H, 4.90; N, 26.20. Found C, 62.66; H, 4.88;
N, 26.09.

3.3. Molecular Modeling and Biological Data

The 2D chemical structures were built using Marvin Sketch and all the structures
were subjected to molecular mechanics energy minimization using the MMFF94 force
field present in the same software [45]. The 3D geometry of all compounds was then
optimized using the PM3 Hamiltonian [46], as implemented in MOPAC 2016 package
assuming a pH of 7.0 [47]. Once built and optimized, all structures were used in the
bioisostere replacement tool Spark 10.4.0. Five hundred compounds were generated for the
substitution (50 best compounds reported in the Supplementary Materials). The isosteric
replacement was performed using the same 178,558 fragments for each part; in particular,
the fragments derive from ChEMBL and Zinc databases with a protocol already reported
and validated [27,48,49]. Ligand growing experiments were performed in the selected
pyridazinone structure using an already reported protocol [50]. Docking calculations were
made using AutoDock with the default docking parameters and a validated protocol [51,52].
The setup was done with YASARA [47]. The Lamarckian genetic algorithm implemented
in AutoDock was used for the calculations. The ligand-centered maps were generated by
AutoGrid with a spacing of 0.375 Å and dimensions that encompass all atoms extending
5 Å from the surface of the ligand. All of the parameters were inserted at their default
settings. The X-ray crystal structures of the co-crystal FABP4/(2-[(2-oxo-2-piperidin-1-
ylethyl)sulfanyl]-6-(trifluoromethyl)pyrimidin-4-ol) (PDBid: 1TOU) was downloaded from
the Protein Data Bank (www.rcsb.org accessed on 15 June 2022).
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3.4. FABP Inhibitory Activity Assays

To analyze the inhibitory activity of FABP4 ligands, a displacement assay was utilized
as described by the Cayman’s instruction, FABP4 Inhibitor/Ligand Screening Assay Kit,
Item 10,010,231 (see Supplementary Materials for additional details). The samples of
compounds for activity determination were prepared as a stock solution (1 mM) in DMSO.
On the day of activity assay, the compounds were all diluted in phosphate buffer solution
(PBS, pH 7.4) to different concentrations (100, 50, 10, 5, 2, 1, and 0 µM). Appropriate
concentrations of DMSO in PBS were used as control. The detection reagent (FABP Assay
Detection Reagent, Item 10010376) was used as provided by the Cayman’s kit. The diluted
Detection Reagent probe was mixed with FABP4 protein present in the kit and incubated
for 10 min at room temperature. Compounds were then added and equilibrated for another
10 min. Lastly, the fluorescence signal was recorded at 470 nm (i.e., emission, with the
excitation fixed at 370 nm) with a CytoFluor® Series 4000 Fluorescence Multi-Well Plate
Reader. The IC50 was calculated as indicated in the kit booklet of FABP4 Inhibitor/Ligand
Screening Assay Kit (Item No. 10010231) Cayman chemicals, as follows: 1) calculate the
average fluorescence of each sample; 2) calculate the background corrected fluorescence
(BCF) by subtracting the blank; 3) divide the BCF of each sample by the maximum BCF
and multiply by 100% (this is the value in percent fluorescence units, i.e., % FU); 4) plot the
% FU values against the concentration of inhibitor/ligand used; 5) find the concentration of
inhibitor/ligand that corresponds to 50% FU, to determine IC50 values.

4. Conclusions

We have identified novel 4-amino and 4-ureido pyridazinone-based FABP4 inhibitors
whose design was directed by computing assisted molecular design of bioisosteric-replacements/
scaffold hopping of the pyrimidine skeleton of the co-crystallyzed ligand 1TOU. Selected
compounds have been synthesized and tested for their ability to inhibit FABP4. Among
the new series, ten compounds were further evaluated on the basis of their inhibitory
activity on FABP4 established via a single point displacement assay. In particular, 4b,
25a, 30b and 22 exhibited high FABP4 inhibitory activity with IC50 in the low micromolar
range. The results demonstrated that compound 25a was the most potent analogue in
terms of displacement of the arachidonic acid, with an IC50 value of 2.97 µM, which is
lower than the IC50 of the positive control (3.42 µM). Docking experiments, conducted with
the most active compounds 4b, 25a, 30b, 22, confirmed the ability of these molecules to
interact with several amino acid residues present inside the FABP4 binding pocket, with
the stronger interaction exhibited by compound 25a. This result is in agreement with the
higher activity recorded in vitro for 25a, in comparison to the other 4-amino and 4-ureido
pyridazinone-based analogues developed in this study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15111335/s1, 1H NMRs of selected compounds; 13C NMRs
of selected compounds; Mass spectra of selected compounds; HPLC/UV chromatograms of selected
compounds; 50 ‘best-fit’ compounds generated with scaffold hopping replacement; Info on the FABP4
inhibitor assay kit; Averaged data as Background corrected fluorescence for IC50 measured compounds.
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Abstract: The Mitogen-Activated Protein Kinase (MAPK) signaling pathway plays an important role
in cancer cell proliferation and survival. MAPKs’ protein kinases MEK1/2 serve as important targets
in drug designing against cancer. The natural compounds’ flavonoids are known for their anticancer
activity. This study aims to explore flavonoids for their inhibition ability, targeting MEK1 using
virtual screening, molecular docking, ADMET prediction, and molecular dynamics (MD) simulations.
Flavonoids (n = 1289) were virtually screened using molecular docking and have revealed possible
inhibitors of MEK1. The top five scoring flavonoids based on binding affinity (highest score for MEK1
is −10.8 kcal/mol) have been selected for further protein–ligand interaction analysis. Lipinski’s rule
(drug-likeness) and absorption, distribution, metabolism, excretion, and toxicity predictions were
followed to find a good balance of potency. The selected flavonoids of MEK1 have been refined with
30 (ns) molecular dynamics (MD) simulation. The five selected flavonoids are strongly suggested to
be promising potent inhibitors for drug development as anticancer therapeutics of the therapeutic
target MEK1.

Keywords: MEK1; flavonoids; virtual screening; molecular docking; ADMET; molecular dynamic
(MD) simulation

1. Introduction

Cancer is a leading cause of death in nearly every country in the world, as well as
being the most significant barrier to extending life expectancy in the twenty-first century [1].
More than nearly 20 million new cases are predicted to be registered by 2025. Various
implications are considered as hallmarks of cancer cells, including proliferative signaling,
growth suppressor escape, cell death resistance, immortality, and angiogenesis induced
by invasion–metastasis [2]. Since cancer is generally associated with several mutations
that affect the main signaling pathways [3], targeted cancer therapy takes advantage of
tumor-specific genetic vulnerabilities and mutations and designs therapeutics directly
targeting cancer cells. The important therapeutic targets (mostly enzymes) are those whose
suppression eventually kills cancer cells and that have minimal effect on normal tissues as
they are either mutated or over-expressed in cancer cells [4,5]. One of the pathways that is
commonly altered and activated, having a role in oncogenesis, the progression of the tumor,
and drug resistance in cancer, is the Mitogen-Activated Protein Kinases (MAPK) signaling
pathway [3,6]. The MAPK cascade, which is also known as RAS-regulated RAF-MEK1/2-
ERK1/2 or ERK signaling pathway [7], is comprised of a number of kinases that carry
out specific cell fate decisions in response to the input signal, explaining why numerous
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targeted therapies have been targeting this pathway [3,8]. By activating the epidermal
growth factor receptor (EGFR) and the RAS small guanosine triphosphatases (GTPases)
upstream, MAPK signaling promotes cell proliferation, survival, and metastasis. Mitogen-
Activated Protein Kinase/Extracellular Regulated Kinase/Kinase 1 and 2 (MEK1/2) dual-
specificity protein kinases are phosphorylated and activated by RAF kinases. MEK1/2 then
phosphorylate and activate the Extracellular Regulated Kinase 1 and 2 (ERK1/2). Activated
ERKs phosphorylate and regulate the activities of over 160 proteins that are estimated to be
involved [9].

Protein kinases and phosphatases control the phosphorylation of proteins which
makes them control nearly every aspect of the cell, therefore making them ideal candidates
for evolutionary studies [10,11]. MEK1 and MEK2 are dual-specificity protein kinases; both
are tyrosine (Y-) and serine/threonine (S/T-) protein kinases. A particular aspect of these
protein kinases is that they are the core component of kinases for the MAPK/ERK signaling
cascade as well as the gatekeepers of ERK1/2 activity, which is especially exciting since
downstream ERK has multiple targets and transcription factors that control the critical
processes in the cell. Thus, therapeutic targeting of MEK1/2 is relatively specific [12–14].
MEK1 and MEK2 are nearly identical, with a distinct pocket structure which is proximate
to the ATP-binding site despite being distinct at the same time. Several conformational
changes occur when an inhibitor binds to this region, locking unphosphorylated MEK1/2
into a catalytically inactive state. This occurs through the highly conserved DFG-out motif
(Asp, Phe, and Gly) in the activation loop which exposes a site adjacent to the ATP binding
site where inhibitors could bind to and lock the protein in an inactive state. Furthermore,
since this ATP-noncompetitive process does not inhibit other protein kinases via the highly
conserved ATP-binding pocket, unwanted side effects, such as inadvertent inhibition
of other protein kinases and the challenge of competing with millimolar intracellular
ATP concentrations, are largely avoided [15–17]. Unfortunately, most ATP-competitive
kinase inhibitors interact with numerous members of the protein kinase family, making it
challenging to build selective inhibitors for a single kinase target. Moreover, as a result of
changes in the kinase domain, cancer cells can develop acquired drug resistance, making
specific kinase inhibitors less effective. For these reasons, finding ATP-noncompetitive
kinase inhibitors is becoming more desirable as a therapeutic development method [18].
Various popular pharmaceutical companies have shown great interest in MEK1 since it’s
highly selective of the MAPK/ERK pathway [19], and several MEK inhibitors are currently
under clinical development [20].

Natural products can help treat a range of human disorders, including the world’s
second largest cause of death: cancer [21]. Lately, the interest in the natural products to
be used as anticancer agents has increased, and phytochemicals have become valuable in
anticancer drug development. More than 75% of the approved anticancer drugs between
1981 and 2007 are either natural products or have been developed based on them [22,23].
Flavonoids are among the proposed natural products for cancer prevention that have
been increasingly found to have a major health impact [24]. Flavonoids are polypheno-
lic compounds obtained as small plant derivatives’ secondary metabolites [25]. Since
the discovery of the first flavonoid (rutin) in 1930, more than 6500 different flavonoids
have been reported in various plant species, and their actual number is estimated to ex-
ceed 8000 [26,27]. A wide variety of biological and pharmacological effects have been found
in flavonoids, such as their numerous antioxidant, antiproliferative, anti-inflammatory, an-
tihypertensive, anti-carcinogenic, etc. effects, but the most notable activity is their potential
role as anticancer agents [22,25,26,28–31]. Regarding the exciting feature of flavonoids is
that they are by far the largest group of natural compounds that inhibit protein kinases
and fit well into the ATP binding pocket and the neighboring area [32]. Others reported
flavonoids’ inhibition activity against Ser/The protein kinases 18 and receptor tyrosine
kinases (RTKs) [33,34]. Various in silico, in vitro, and in vivo studies demonstrate the
anticancer activities of flavonoids in several types of cancer [35–44]. Few studies have
shown their anticancer relationship with the ERK and MAPK cascade in various can-
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cer types [45–51]. Myricetin is one of the flavonoids which has been found to inhibit
MEK1 in vivo and in vitro, in addition to being a potent ATP-noncompetitive inhibitor of
MEK1 [52,53]. Another flavonoid is nobiletin, which has shown an in vitro antitumor effect
against MEK in human fibrosarcoma HT−1080 cells [54]. Isorhamnetin is a flavonoid that
inhibits MEK1 in the ATP-noncompetitive binding site [55]. A flavonoid that has shown
potent and specific ATP-noncompetitive inhibition activity of MEK1 is PD 098059, which is
the first MEK inhibitor to be discovered [56] and mostly used in laboratory experiments.

The current work involved the use of computational methods for the design of an
MEK1 inhibitor. The computational methods, including molecular docking and binding
simulation analysis, have increasingly been used for binding pose and designing of novel
inhibitors or better derivatives of known existing inhibitors [57–68].

The current study proposed five novel MEK1 inhibitors and anticancer drug candidates
by virtual screening of the natural compound flavonoids. A library of all known flavonoids
was prepared and the top five screened compounds were proposed as potential MEK1
inhibitors and anticancer agents. The proposed compounds were further checked for key
interacting residues, molecular interactions, binding energy, and dissociation constant
using various methods. Finally, to show the stability of the protein–ligand, complexes were
subjected to MD simulation analysis. This study will provide novel MEK1 inhibitors and
anticancer agents with their action mechanism. The proposed flavonoids can further be
tested experimentally for their potential use as novel anticancer agents.

2. Results and Discussion
2.1. Virtual Screening of Natural Compound Class Flavonoids for MEK1 Inhibition

The capacity of molecular docking studies to anticipate the right binding conforma-
tions of small molecules as ligands to the appropriate target binding site is an important
feature of in silico drug discovery. In this view, the goal of our study was to do virtual
screening of flavonoids for possible MEK1 inhibition, which is an essential protein target
in the MAPK pathway in cancer cells. (Figure 1) shows the histogram of dock scores
for the screened compounds (Supplementary File S1) where the selected top five ranked
compounds are highlighted in the left. Most of the compounds are providing docking
affinity (>−7.0 kcal/mol), but the highest scoring and best fit compounds were selected
and the redundant compounds were omitted to give the best and most diverse struc-
ture compounds. The top five selected flavonoids (Figure 2) against MEK1 in (Table 1)
show the highest docking score of (−10.8 kcal/mol) and the fifth rank with a score of
(−10.4 kcal/mol) compared to the docking score of native inhibitor (−9.0 kcal/mol). The
native inhibitor of the 3D structure is PD318008 (5-bromo-N-(2,3-dihydroxypropoxy)-3,4-
dofluoro−2-[(2-fluoro-4-iodophenyl)amino]benzamide), an analog of PD184352 which is a
highly selective, ATP-noncompetitive, and potent MEK1 and MEK2 inhibitor [16]. These
results suggest that the selected flavonoids are probably better inhibitors of MEK1. Further,
the molecular docking of trametinib, a specific and highly selective inhibitor of MEK1/2,
was performed and gave the score of (−9.7 kcal/mol), which is also lower than those of the
selected flavonoids, providing credence to the selected compounds [69].

Table 1. The selected flavonoids and the binding strength score against MEK1 (Autodock Vina
docking energy, X-Score binding energy and pKd). The higher the absolute values of the scores, the
better the binding.

Rank Flavonoids Docking Affinity (kcal/mol) Binding Energy (Kcal/mol) pKd or −log(Kd)

1 129696793 −10.8 −10.25 7.52
2 10813589 −10.6 −10.96 8.03
3 10991656 −10.5 −9.49 6.95
4 10524567 −10.5 −10.83 7.94
5 10575055 −10.4 −10.11 7.41

Native −9.0 −8.95 6.56
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Figure 2. Two-dimensional sketch of flavonoid scaffold (A) and top selected flavonoids for MEK1
(B–F). The flavonoids are represented by their PubChem CID. Heteroatoms oxygen (O), and nitrogen
(N)with their balancing hydrogens are shown as red, blue, and green, respectively.

The molecular docking results of the first rank flavonoid (CID: 129696793) against
the MEK1 binding pocket showed that the pocket fit well in the catalytic site (Figure 3)
and interacted with 16 amino acids: Leu-115, Leu-118, Val-127, Gly-128, Phe-129, Ile-141,
Arg-189, Asp-208, Phe-209, Gly-210, Val-211, Ser-212, Leu-215, Ile-216, Met-219, and
Arg-234 (Figure 4B). The binding strength scores’ docking affinity (−10.8 Kcal/mol), bind-
ing energy (−10.25 Kcal/mol), and dissociation constant (pKd, 7.52) showed quality binding
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as required for adequate inhibition (Table 1). The molecular interaction (Table 2) showed
2 hydrogen bonds and 62 (16) non-bonded contacts (hydrophobic interactions). The key
interacting residues were Leu-118, Ile-141, Asp-208, Phe-209, and Ile-216 with 5, 6, 5, 9, and
9 non-bond contacts, respectively. The Met-219 turned out to have the maximum ∆ASA
(loss in Accessible Surface Area) (42.37 Å2) followed by Asp-208 (39.18 Å2). Hydrogen
bonds were formed by Val-127 and Gly-128 measure 2.42 Å and 3.21 Å, respectively. Ob-
serving amino acid residues from the flavonoid binding site within the target protein seeks
to predict the interactions that occur and that are thought to contribute to the flavonoid com-
pound’s pharmacological activities, such as MEK kinase inhibition. Inhibition of enzymatic
activity of a protein by a compound is largely due to non-covalent bonds, including non-
bonded contacts and hydrogen bonds [70]. The binding of native inhibitor with interacting
residues and their interactions is also provided for comparison (Figure 4A). Comparing to
the binding of the native inhibitor, there are six residues, Leu-118, Ile-141, Asp-208, Phe-209,
Leu-215, and Met-219, common to the lists of interacting residues of this compound and
the native inhibitor, and they include the key residues Asp-208 and Phe-209. The fact that
the proposed compound binds to the similar group of residues in the catalytic site validates
our prediction that it is comparable to the native inhibitor.
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Figure 3. Molecular docking of top 5 selected flavonoids to MEK1. The protein is shown in cartoon
representation colored yellow-orange, while compounds are shown in stick representations in various
colors: binding of flavonoids ‘129696793’ (blue), ‘10813589’ (green), ‘10991656’ (orange), ‘10524567’
(yellow), and ‘10575055’ (magenta).

The second highest ranked flavonoid (CID: 10813589) against the MEK1 binding
pocket docked well (Figure 3) and interacted with ATP and 19 amino acids residues:
Gly-79, Gly-80, Lys-97, Leu-98, Ile-99, His-100, Leu-115, Leu-118, Val-127, Gly-128, Phe-129,
Ile-141, Asp-190, Asn-195, Asp-208, Phe-209, Val-211, Leu-215, and Met-219 (Figure 4C).
The strength of binding scores’ docking affinity of (−10.6 Kcal/mol), binding energy
(−10.96 Kcal/mol) and dissociation constant (pKd, 8.03) were reasonably high, as required
for good inhibition (Table 1). The protein–ligand complex was stabilized by non-bonding
interactions (Table 3) through 78 (20) non-bonded contacts and 2 hydrogen bonds. The
key interacting residues were Ile-99, Asp-208, Lys-97, and Phe-209 with 15, 9, 8, and 6 non-
bonding interactions of each, respectively. Met-219 turned out to have the maximum ∆ASA
with (43.97 Å2), followed by Asp-208 with (39.24 Å2) and Lys-97 with (31.09 Å2). Hydrogen
bonds in Gly-80 and Lys-97 measured 2.80 Å and 2.99 Å, respectively. Of the 19 interacting
residues, 7 residues were common with those of the binding of the native inhibitor: Lys-97,
Leu-118, Ile-141, Asp-208, Phe-209, Leu-215, and Met-219 (Figure 4A), including the key
residues Lys-97, Asp-208, and Phe-209. The proposed compound bound to the same set of
residues in the catalytic site, making it promising as the native inhibitor.
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3) and showed interactions with 12 residues: Leu-115, Leu-118, Ile-141, Met-143, Asp-190, 
Asp-208, Phe-209, Val-211, Ser-212, Leu-215 Ile-216, and Met-219 (Figure 4D). The pre-
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10.5 Kcal/mol), binding energy (−9.49 Kcal/mol), and dissociation constant (ܭௗ , 6.95) and 
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Figure 4. MEK1 protein–ligand interaction plots of native inhibitor (A) and selected flavonoids (B–F).
The residues forming non-bonding interactions are shown as red bristles, while residues forming
hydrogen bond and the bound ligand are shown as ball-and-stick representations. The carbon atoms
are shown as black balls, nitrogen atoms as blue balls, oxygen atoms as red balls, fluorine atoms as
green balls, bromine atom as pink balls, and iodine atom as a yellow ball. The interacting residues
common with those of the native inhibitor are shown in circles. The hydrogen bonds are shown as
green dashed lines labeled with bond length (in Å).
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Table 2. The MEK1 residues interacting with selected flavonoid (CID: 129696793) are listed with the
number of non-bonding interactions and ∆ASA.

Interacting Residues Hydrogen Bonds Non-Bonding
Interactions ∆∆∆ASA (In Å

2
)

Leu-115 0 1 3.89
Leu-118 0 5 17.12
Val-127 1 2 10.27
Gly-128 1 1 0.78
Phe-129 0 2 6.45
Ile-141 0 6 21.79

Arg-189 0 3 11.93
Asp-208 0 5 39.18
Phe-209 0 9 25.06
Gly-210 0 1 8.22
Val-211 0 4 4.59
Ser-212 0 4 2.41
Leu-215 0 4 14.8
Ile-216 0 9 25.95

Met-219 0 4 42.37
Arg-234 0 2 16.78

Table 3. The MEK1 residues interacting with selected flavonoid (CID: 10813589) are listed with the
number of non-bonding interactions and ∆ASA.

Interacting Residues Hydrogen Bonds Non-Bonding
Interactions ∆∆∆ASA (In Å

2
)

Gly-79 0 3 17.63
Gly-80 1 4 15.78
Lys-97 1 8 31.09
Leu-98 0 1 0.55
Ile-99 0 15 27.12

His-100 0 2 16.96
Leu-115 0 2 3.89
Leu-118 0 3 16.47
Val-127 0 2 9.47
Gly-128 0 1 0.78
Phe-129 0 1 5.57
Ile-141 0 2 21.79

Asp-190 0 1 20.27
Asn-195 0 2 4.05
Asp-208 0 9 39.24
Phe-209 0 6 22.18
Val-211 0 3 4.59
Leu-215 0 1 12.45
Met-219 0 5 43.97

ATP 0 7

The third rank flavonoid (CID: 10991656) bound to the MEK1 binding pocket (Figure 3)
and showed interactions with 12 residues: Leu-115, Leu-118, Ile-141, Met-143, Asp-190,
Asp-208, Phe-209, Val-211, Ser-212, Leu-215 Ile-216, and Met-219 (Figure 4D). The pre-
dicted binding strength scores for the protein–ligand complex were docking affinity of
(−10.5 Kcal/mol), binding energy (−9.49 Kcal/mol), and dissociation constant (pKd, 6.95)
and showed quality binding as required for good inhibition (Table 1). The molecular
interaction showed one hydrogen bond through Ser-212 measures 3.17 Å and 54 (12) non-
bonded contacts (hydrophobic interactions). The key interacting residues (Table 4) are
Asp-208 and Phe-209, with 13 and 10 non-bonding interactions of each, respectively. The
maximum ∆ASA is with Met-219 residue (43.97 Å2) followed by Asp-208 with (40.1 Å2).
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The interacting residues and their interactions with the native inhibitor are also provided
for comparison (Figure 4A). Out of the 12 interacting residues, 7 residues were common
with those of the native inhibitor: Leu-118, Ile-141, Met-143, Asp-208, Phe-209, Leu-215,
and Met-219, which included the key residues Asp-208 and Phe-209. This also suggested
that the proposed compound was blocking the same set of residues as the native inhibitor,
thereby inhibiting the protein’s action.

Table 4. The MEK1 residues interacting with selected flavonoid (CID: 10991656) are listed with the
number of non-bonding interactions and ∆ASA.

Interacting Residues Hydrogen Bonds Non-Bonding
Interactions ∆∆∆ASA (In Å

2
)

Leu-115 0 2 3.89
Leu-118 0 1 15.6
Ile-141 0 2 21.79

Met-143 0 1 9.92
Asp-190 0 4 27.2
Asp-208 0 13 40.1
Phe-209 0 10 24.33
Val-211 0 3 4.59
Ser-212 1 3 2.41
Leu-215 0 5 14.8
Ile-216 0 5 13.79

Met-219 0 5 46.4

The dock results of the fourth ranked flavonoid (CID: 10524567) bound in the MEK1
binding pocket (Figure 3) showed interactions with 61 non-bonded contacts (hydrophobic
interactions) with 13 amino acids: Leu-118, Val-127, Gly-128, Phy-129, Ile-141, Met-143,
Asp-190, Cys-207, Asp-208, Phe-209, Leu-215 Ile-216, and Met-219 (Figure 4E). The binding
strength scores’ docking affinity (−10.5 Kcal/mol), binding energy (−10.83 Kcal/mol),
and dissociation constant (pKd, 7.94) showed as quality binding, as required for good
inhibition (Table 1). The key interacting residues are Asp-208 and Phe-209 with 11 and
14 non-bonding interactions of each, respectively. Met-219 turned out to have the maximum
∆ASA with (52.28 Å2), then Asp-208 with (38.96 Å2) and next Asp-190 with (30.23 Å2)
(Table 5). Compared to the native inhibitor (Figure 4A), there are seven common amino
acids: Leu-118, Ile-141, Met-143, Asp-208, Phe-209, Leu-215, and Met-219, and they share
the same key residue of Asp-208 and Phe-209 and thus, they may inhibit MEK1 kinase
activity in the same way as the native inhibitor does.

Table 5. The MEK1 residues interacting with the selected flavonoid (CID: 10524567) are listed with
the number of non-bonding interactions and ∆ASA.

Interacting Residues Hydrogen Bonds Non-Bonding
Interactions ∆∆∆ASA (In Å

2
)

Leu-118 0 6 16.62
Val-127 0 2 9.35
Gly-128 0 1 0.78
Phy-129 0 1 5.48
Ile-141 0 5 21.79

Met-143 0 6 9.92
Asp-190 0 2 30.23
Cys-207 0 2 4.33
Asp-208 0 11 38.96
Phe-209 0 14 24.77
Leu-215 0 4 14.8
Ile-216 0 3 21.97

Met-219 0 4 52.28
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This compound is a chiral compound and possesses R and S stereoisomeric configura-
tions, as shown in Supplementary Figure S1. The above docking results of this compound
are in R-stereoisomer configuration. In order to check the effect of S-stereoisomer of this
compound on the binding to MEK1, the molecular docking was performed. The molec-
ular docking of the (S) configuration of the chiral compound also showing high affinity,
with (−10.9 Kcal/mol), binding energy (−10.85 Kcal/mol), and dissociation constant (pKd,
7.96). The interaction showed 1 hydrogen bond and 58 non-bonded contacts with ATP and
16 amino acids: Lys-97, Ile-99, Leu-115, Leu-118, Val-127, Ile-141, Met-143, Asp-190, Leu-206,
Cys-207, Asp-208, Phe-209, Gly-210, Val-211, Leu-215, and Met-219 (Table S2 in Supplemen-
tary file2). The hydrogen bond with Lys-97 measures 3.01 Å. The key interacting residues
are: Phe-209 and Met-219 with 12 and 6 non-bonded contacts, respectively. Met-210 has
the maximum with (48.6 Å2), then Asp-208 with (44.44 Å2). Comparing the interaction
to the native inhibitor, the eight residues are common (Supplementary Figure S2): Lys-97,
Leu-118, Ile-141, Met-143, Asp-208, Phe-209, Leu-215, and Met-219, and they share the
same key residue, Phe-209. However, there is no literature upon the stereoisomerism of
this compound. This can be a good chance to study the effect of stereoisomerism of this
compound on the binding to the MEK1 kinase.

The dock results of the fifth ranked flavonoid (CID: 10575055) against the MEK1
binding pocket fit well within the catalytic site (Figure 3) and interacted with ATP and
11 amino acids residues, namely Leu-118, Val-127, Gly-128, Ile-141, Met-143, Arg-189,
Asp-190, Asp-208, Phe-209, Met-219, and Arg-234 (Figure 4F). The results showed docking
affinity of (−10.4 Kcal/mol), binding energy (−10.11 Kcal/mol), and dissociation constant
(pKd, 7.41) were also reasonably high as required for adequate MEK1 kinase inhibition
(Table 1). The molecular interaction shows 3 hydrogen bonds and 44 (11) non-bonded
contacts (hydrophobic interactions). The three hydrogen bonds with Asp-190, Arg-234,
and ATP measure 2.73 Å, 3.04 Å, and 3.10 Å, respectively. The key interacting residues
are Asp-208 and Phe-209, with 9 and 11 non-bonding interactions, respectively. Met-219
turned out to have the maximum ∆ASA with (50.93 Å2), and then Asp-208 with (40.01 Å2)
(Table 6). Of the 11 interacting residues, 6 residues were common among the interacting
residues of the native inhibitor: Leu-118, Ile-141, Met-143, Asp-208, Phe-209, and Met-219
(Figure 4A), including the same key residues Asp-208 and Phe-209; thus, they might inhibit
the MEK1 kinase activity similar to the native inhibitor.

Table 6. The MEK1 residues interacting with selected flavonoid (CID: 10575055) are listed with the
number of non-bonding interactions and ∆ASA.

Interacting Residues Hydrogen Bonds Non-Bonding
Interactions ∆∆∆ASA (In Å

2
)

Leu-118 0 4 16.73
Val-127 0 1 9.63
Ile-141 0 4 21.79

Met-143 0 3 9.92
Arg-189 0 3 14.72
Asp-190 1 4 41.14
Asp-208 0 9 40.01
Phe-209 0 11 25.06
Ile-216 0 1 18.14

Met-219 0 2 50.93
Arg-234 1 2 13.09

ATP 1 0

2.2. Drug-Likeness and Pharmacokinetics Prediction

The strength of the ligand binding on the target protein is not the only factor in the dis-
covery of novel medications. To assess the degree of effectiveness and therapeutic efficacy,
it is also studied in terms of drug-likeness, pharmacokinetics, and toxicity. Lipinski’s rule
of five predicts the drug-likeness of the selected compounds. Moreover, pharmacokinetics

98



Pharmaceuticals 2022, 15, 195

including Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) play
an important role in medicinal chemistry, which describes how drugs move through the
body. The prediction of drug-likeness for the selected inhibitor for MEK1 is presented in
(Table 7). Considering the desired values: molecular weight < 500, H-bond donors < 5,
H-bond acceptors < 10, Rotatable bonds < 10, and lipophilicity (logP) < 5, all the selected
compounds follow the desired values, except for (CID: 10813589) and (CID: 10524567),
where the lipophilicity is slightly higher than 5. All the ADMET predicted properties of
the top selected inhibitors for MEK1 are presented in (Table 8). The efficacy of the selected
compounds as oral medicine was determined using two models for measuring absorption
properties, including CaCO2 permeability and intestinal absorption. Where the desired
CaCO2 permeability is >0.90 and intestinal absorption >30%, the prediction of the screened
compounds shows the CaCO2 permeability values all in positive integers, with exception
of (CID: 10575055). While intestinal absorption shows a high percentage, all are higher than
70%, which is considered as good absorption. Skin permeability is the next important factor
in absorption. The ideal skin permeability is >−2.5 log Kp and all of the compounds under
study have permeability values of less than −2.5 log Kp, indicating poor skin permeability.
The ATP-binding cassette (ABC) transporter, which is necessary for efficient molecular
transport across cell membranes, contains P-glycoprotein. P-glycoprotein substrates, and
inhibitors of P-glycoprotein I and II which were examined in all of the substances that were
screened. Except for (CID: 10813589) and (CID: 10524567), all of the compounds were found
to be substrates, indicating that they can be transported through the cell membrane through
the ABC transporter. The (CID: 10575055) was found to be ineffective as an inhibitor of
P-glycoprotein I transporter, suggesting that they could be incapable of inhibiting these
drug efflux pumps. The distribution of the substances in the body was determined using
four distinct assays: volume of distribution (VDss), fraction unbound, BBB permeability,
and central nervous system (CNS) permeability. To begin with, in the VDss assay, which
is used to evaluate the total amount of drugs needed for uniform drug distribution in the
bloodstream, readings less than −0.15 log are considered negative, while values greater
than 0.45 log are considered good diffusion. Thus, (CID: 10991656) and (CID: 10524567)
show average VDss values, while other compounds have low distribution volume. The
potential of a drug to reach the brain is determined by the permeability of the blood–brain
barrier (BBB). If the logBB values are more than 0.3, they will cross BBB. The logBB value
of the screened compounds are less than 0.3, meaning that none of them will be able to
cross BBB except for (CID: 10991656). The desired value of the CNS permeability is >−2
and the screen shows good results except for (CID: 10575055), where it was less than the
desired value. Seven distinct cytochrome models were used to examine the test drug’s
metabolism in the body. All of the compounds were tested for their capacity to inhibit
CYP1A2, CYP2C19, CYP2D6, CYP2C9, and CYP3A4 as well as their ability to function
as a substrate for CYP2D6 and CYP3A4. The total clearance rates of all of the examined
compounds were varied, and none of them appeared to be a substrate for organic cation
transporter 2 (OCT2). They also failed to anticipate AMES toxicity, showing that these
chemicals are neither carcinogenic nor mutagenic, except for: (CID: 129696793), and (CID:
10813589). Three of the selected flavonoids predicted to be negative for hepatotoxicity were
(CID: 10813589), (CID: 10991656), and (CID: 10524567), whereas none of the substances
tested positive for skin sensitization. Overall, the selected compounds proposed to be safe
drug-candidates for human cancer therapy.
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Table 8. ADMET properties of the selected flavonoids against MEK1.

Property Model Name Predicted Value Unit

129696793 10813589 10991656 10524567 10575055

Absorption Water solubility −4.456 −5.914 −4.984 −5.161 −3.903 Numeric (log mol/L)

Caco2 permeability 1.089 1.073 1.004 1.116 0.549 Numeric (log Papp in
10−6 cm/s)

Intestinal absorption
(human) 90.869 98.737 95.566 96.435 88.343 Numeric (% Absorbed)

Skin Permeability −2.735 −2.731 −2.589 −2.729 −2.734 Numeric (log Kp)
P-glycoprotein substrate Yes No Yes No Yes Categorical (Yes/No)
P-glycoprotein I inhibitor Yes Yes Yes Yes No Categorical (Yes/No)
P-glycoprotein II inhibitor Yes Yes Yes Yes Yes Categorical (Yes/No)

Distribution VDss (human) −0.696 −0.157 0.121 0.363 −0.432 Numeric (log L/kg)
Fraction unbound

(human) 0.039 0.223 0.195 0.03 0.208 Numeric (Fu)

BBB permeability −0.371 −0.749 0.358 −0.005 −0.956 Numeric (log BB)
CNS permeability −1.883 −1.903 −1.595 −1.608 −2.889 Numeric (log PS)

Metabolism CYP2D6 substrate No No No No No Categorical (Yes/No)
CYP3A4 substrate Yes Yes Yes Yes Yes Categorical (Yes/No)
CYP1A2 inhibitor Yes No Yes No No Categorical (Yes/No)
CYP2C19 inhibitor Yes Yes Yes Yes No Categorical (Yes/No)
CYP2C9 inhibitor Yes Yes Yes Yes Yes Categorical (Yes/No)
CYP2D6 inhibitor No No No No No Categorical (Yes/No)
CYP3A4 inhibitor Yes Yes Yes Yes No Categorical (Yes/No)

Excretion Total Clearance 0.184 0.81 0.345 0.087 0.551 Numeric (log
mL/min/kg)

Renal OCT2 substrate No No No No No Categorical (Yes/No)

Toxicity AMES toxicity Yes Yes No No No Categorical (Yes/No)
Max. tolerated dose

(human) 0.204 0.64 −0.242 −0.067 0.742 Numeric (log
mg/kg/day)

hERG I inhibitor No No No No No Categorical (Yes/No)
hERG II inhibitor Yes Yes No No Yes Categorical (Yes/No)

Oral Rat Acute Toxicity
(LD50) 2.767 2.734 2.086 3.018 2.656 Numeric (mol/kg)

Oral Rat Chronic Toxicity
(LOAEL) 0.914 0.805 1.269 1.713 0.755 Numeric (log

mg/kg_bw/day)
Hepatotoxicity Yes No No No Yes Categorical (Yes/No)

Skin Sensitization No No No No No Categorical (Yes/No)
T.Pyriformis toxicity 0.29 0.287 0.555 0.491 0.285 Numeric (log ug/L)

Minnow toxicity 0.09 −2.72 −0.483 −0.22 −1.62 Numeric (log mM)

2.3. MD Simulation

Molecular Dynamic (MD) simulation was performed to refine and assess the stability
of protein after adding the missing loop (Supplementary Figure S3) and the binding stability
of the protein–ligand complex system. The MD simulation evaluates and delineates the
dynamic behavior of the ligand and the binding site residues. The best conformation
flavonoids obtained from virtual screening for MEK1 inhibition advanced to MD simulation.
The MD results were examined for RMSD of backbone, RMSD of heavy ligand atoms, RMSF
values, hydrogen bonds number, and the radius of gyration to assess the stability of the
protein–ligand complex. The RMSD value is a measure of how far a protein molecule
deviates from its initial conformation over the course of the simulation. The RMSD values
for the first rank were found to be within 0.2 nm for the backbone and 0.05–0.1 nm through
the simulation, and the protein–ligand complex was considered to be stable (Figure 5A).
The second rank RMSD value of backbone began at 0.2 nm then rose to 0.3 nm in 20 ns,
then went back to stabilize at 0.2 nm. For the heavy atoms of ligand RMSD (Figure 5B),
they showed values in a range of 0.05–0.1 nm then rose up to 0.25 nm after 20 ns to
stabilize back at 0.15 nm. RMSD values of interaction of the third rank showed a very stable
range, between 0.15 and 0.2 nm, throughout the 30 ns simulation for the backbone and
0.025–0.05 nm for the ligand’s heavy atoms. Fourth rank RMSD also showed fluctuations
around 0.2–0.3 nm for the backbone and 0.025–0.05 nm for the ligand’s heavy atoms. The
RMSD values of the fifth rank showed similar fluctuation, between 0.15 and 0.2 for the
backbone and between 0.025 and 0.125 nm for the ligand’s heavy atoms. The low RMSD
fluctuations indicate that the equilibration of a system is achieved through the simulation.
The RMSF of the protein coordinates from their beginning positions for each residue was
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computed to define the flexible areas of the protein during the course of the simulation.
The RMSF is a metric that measures how much ligand binding affects the flexibility of
MEK1 residues. The RMSF values (Figure 5C) show that the maximum fluctuation was
in the amino acid residue region 276–320, which is a proline rich loop and highly flexible
region, and the fluctuation was within the range of 1.25 nm. From this perspective also,
owing to low fluctuation in RMSF, the protein–ligand complex seems stable (Figure 5C).
The radius of gyration is a measure of protein compactness, and the low fluctuations in
its value indicate stability of the protein backbone. The radius of gyration fluctuates in
a range of around 2.0 nm for all the four simulations and during the entire simulation,
which points towards stability of the protein (Figure 5D). The presence of hydrogen bonds
is critical for a protein complex’s stability. Analysis of the number of hydrogen bonds
in (Figure 6) shows them appearing and disappearing during the course of simulation.
Looking more closely at (Figure 6), the maximum number of hydrogen bonds and pairs
reaches eight for first rank compound, five for the second, two for the third and fourth
ranks, and eight for the fifth rank compound. Due to the isolated hydrogen bonds and
low average hydrogen-bond number per time frame, the hydrogen-bond network in the
complexes appeared to be weak. Other interactions were thought to hold hydrogen bonds
in places where they had disappeared. As a result, no notable conformational changes in
the complexes were observed across the simulated time period. These findings suggested
that the MD simulation trajectory for the complex after equilibrium was reliable enough
for future investigation.
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Figure 5. MD simulation results of the docked flavonoids obtained from virtual screening. (A) Root–
mean–square deviation (RMSD) curve for the protein backbone of the protein–ligand complex. The
RMSD plot provides quantification of the overall stability of the protein backbone during 30 ns
simulation. (B) RMSD curve for ligands’ heavy atoms through the simulation. (C) Root–mean–square
fluctuations’ (RMSF) curve of the MEK1 residues for the protein–ligand complexes. (D) Radius of
gyration (total) of protein–ligand complex.
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3. Materials and Methods
3.1. Data Retrieval and Preparation

The three-dimensional structure coordinate of MEK1 complexed with the native in-
hibitor is retrieved from the protein data bank (PDB, https://www.rcsb.org/, accessed
on 19 January 2022). The structure of MEK1 (PDB code: 1S9J) with 2.40 Å resolution [16]
was selected and used for the study. MODLLER was used to model the missing prolin-
rich loop in the crystallized structure (residues from 276 to 305), which is a high flexible
region located after the catalytic site [71]. The unique allosteric site for MEK1 was veri-
fied [72], and the coordinates for the grid box covering the catalytic site were prepared
using AutoDockTools-1.5.6 [73]. Other preparations included: deleting water, check-
ing for missing atoms, removing heteroatoms, adding polar hydrogens, computing and
adding charges, and finally converting the protein into a (pdbqt) file for the molecular
docking, also performed using AutoDockTools-1.5.6 software package. A drug-like li-
brary prepared from PubChem (www.ncbi.nlm.nih.gov, accessed on 4 April 2021) and
2630 flavonoids were filtered to 1289 by 3D structure availability and the Lipinski rule
of five [74]. Ligands were prepared for virtual screening using Open Babel command
line [75] and converted from (sdf) file to (pdbqt) after adding charges and hydrogens. The
2-D illustrations for the chemical compounds were prepared using MarvinSketch v18.4,
ChemAxon (http://www.chemaxon.com/products/marvin, accessed on 6 June 2021).

3.2. Molecular Docking

Docking was carried out using AutoDock Vina [76] after preparing the configuration
file with the details of the grid box coordinates, with energy range of 4 and maximum
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exhaustiveness of 24. Best mode, least RMSD, and highest docking affinity results were
taken and ranked for MEK1. For further analysis of the docking, protein–ligand interaction
plots of selected flavonoids with MEK1 was performed using Ligplot+ v1.4.5 [77] and
illustrations of the docking were prepared using PyMOL v2.4.0 [78]. Further, calculations
of binding energy and dissociation constant were performed by XScore v1.2.11 [79]. The
degree of ligand filling the binding site was evaluated by loss in accessible surface area
(ASA).

∆ASAi = ASAprotien
i − ASAprotien−ligand

i

A residue is said to be taking part in filling the binding site if it loses more than 10 A2 ASA
due to binding [80]. All the ASA calculations of the protein–ligand complexes and the
unbound proteins were performed by Naccess v2.1.1 [81].

3.3. Drug-Likeness and Pharmacokinetics Prediction

The “pkCSM-pharmacokinetics” online web-server (http://biosig.unimelb.edu.au/
pkcsm/, accessed on 20 July 2021) was used for predictions of drug-likeness and phar-
macokinetic properties: Absorption, Distribution, Metabolism, Excretion, and Toxicity
(ADMET) [82].

3.4. Molecular Dynamic Simulation

The docked protein–ligand complexes were subjected to energy minimization using
Gromacs v2020.5 [83] with the CHARMM36 all atom force field. Ligand and protein were
separated to add ligand hydrogen atoms using Avogadro v2018 (https://avogadro.cc/,
accessed on 6 January 2022) and then converted for topology using CHARMM force field
(https://cgenff.umaryland.edu/, accessed on 6 January 2022), then wrote back with the
complex topology file. The models were solvated with a water model in a cubic periodic
box with 1 nm distance from the edge of the complex atoms. The solvated system was
neutralized by five sodium ions. Energy minimization was carried out through 50,000 steps.
An equilibration was conducted by number of particles, volume, and temperature (NVT),
and number of particles, pressure, and temperature (NPT) temperature was coupled for
ligand, protein, solvent, and ions, separately. Then the system proceeded to the actual MD
simulation. The final models obtained at the end of MD were validated and illustrated by
VMD (https://www.ks.uiuc.edu/Research/vmd/, accessed on 5 September 2021). For the
analysis, Gromacs and Xmgrace (https://plasma-gate.weizmann.ac.il/Grace/, accessed
on 7 September 2021) were used.

4. Conclusions

In conclusion, the molecular docking results suggest that some flavonoids could be
better inhibitors of MEK1 compared to the native inhibitor based on the binding affinity
and ligand interactions. The selected flavonoids could be potential drug candidates after
re-engineering to improve the pharmacokinetic properties. Further, MD simulation studies
with 100 ns time scale confirm the stability of the first rank flavonoid and MEK1 complex
by root–mean–square deviation, root–mean–square fluctuation, and the radius of gyration.
Our findings suggest that natural flavonoids are a promising and readily available source
of anticancer targeted therapy in the future. However, these interpretations need further
confirmatory analysis and validations for the screened molecules to ascertain their efficacy
in the illness treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15020195/s1, Table S1: Autodock Vina docking results of
flavonoids against MEK1 binding pocket. Figure S1: Two dimensional sketches of two stereoiso-
mers (R & S) of 4th rank compound (CID: 10524567). Figure S2: S-stereoisomer of (CID: 10524567)
interaction with MEK1 compared to the native inhibitor, Table S2: MEK1 interaction residues with
S-stereoisomer of (CID: 10524567), Figure S3: Modified MEK1 molecular dynamic (MD) simulation
for 2 (ns).
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Abstract: NAPRT, the rate-limiting enzyme of the Preiss–Handler NAD biosynthetic pathway, has
emerged as a key biomarker for the clinical success of NAMPT inhibitors in cancer treatment. Previous
studies found that high protein levels of NAPRT conferred resistance to NAMPT inhibition in several
tumor types whereas the simultaneous blockade of NAMPT and NAPRT results in marked anti-
tumor effects. While research has mainly focused on NAMPT inhibitors, the few available NAPRT
inhibitors (NAPRTi) have a low affinity for the enzyme and have been scarcely characterized. In
this work, a collection of diverse compounds was screened in silico against the NAPRT structure,
and the selected hits were tested through cell-based assays in the NAPRT-proficient OVCAR-5
ovarian cell line and on the recombinant hNAPRT. We found different chemotypes that efficiently
inhibit the enzyme in the micromolar range concentration and for which direct engagement with
the target was verified by differential scanning fluorimetry. Of note, the therapeutic potential of
these compounds was evidenced by a synergistic interaction between the NAMPT inhibitor FK866
and the new NAPRTi in terms of decreasing OVCAR-5 intracellular NAD levels and cell viability.
For example, compound IM29 can potentiate the effect of FK866 of more than two-fold in reducing
intracellular NAD levels. These results pave the way for the development of a new generation of
human NAPRTi with anticancer activity.

Keywords: NAPRT inhibitors; NAD biosynthesis; Preiss–Handler pathway; OVCAR-5; bioactive
molecules; NAMPT; molecular design; virtual screening

1. Introduction

Nicotinamide adenine dinucleotide (NAD) is a vital pyridine nucleotide. The first role
that was discovered for NAD+ and its phosphorylated form (NADP+) was as an essential
coenzyme in redox reactions that are involved in cell energy and anabolic metabolism. By
exchanging hydride, NAD(P)+ is constantly shuttling between its oxidized and reduced
forms in hundreds of enzymatic reactions that take part in key pathways in mammalian
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cells, such as glycolysis, tricarboxylic acid cycle (TCA cycle), oxidative phosphorylation,
and serine biosynthesis [1–3]. In addition, marked cell regulatory properties have been as-
cribed to NAD by acting as a substrate for several families of enzymes, which always release
nicotinamide (Nam) as a result of NAD degradation [1,4–6]. Indeed, NAD is consumed
in post-translational modifications of target proteins by mono- and poly-(ADP–ribose)
polymerases (PARPs) and sirtuins (SIRT1-7), the last endowed with protein deac(et)ylase
activity [7,8]. NAD is also the precursor of the Ca2+-mobilizing second messenger cyclic
ADP-ribose (cADPR), produced by the ectoenzymes CD38 and CD157 [9]. The enzyme
sterile alpha and TIR motif-containing 1 (SARM1) exerts NAD-cleavage activity in neurons
and represents a new family of NAD-consuming enzymes [10]. The activities of these
enzymes are modulated by NAD availability and regulate a series of fundamental cellular
processes including DNA repair, apoptosis, cell metabolism, cell cycle progression, and
immune responses [11].

Unlike a redox cofactor, NAD is consumed when acting as a substrate. Therefore,
continuous NAD biosynthesis is required in normal human tissues to preserve NAD home-
ostasis and thus health [12]. Due to aberrant metabolism, cell growth, and proliferation,
tumor cells require higher NAD production with respect to healthy tissues to support
the increased activity of NAD-degrading enzymes [13]. Therefore, interfering with the
NAD biosynthetic machinery was conceived as a promising therapeutic strategy against
cancer [11,14]. The depletion of NAD strongly affects multiple cellular metabolic pathways,
leads to a rapid decline in adenosine triphosphate (ATP) levels, and ultimately causes
cancer cell death [15]. For a more detailed overview of the in vitro and in vivo effects of
chemical agents targeting NAD biosynthesis in cancer cells, we refer the readers to recent
review articles [16].

There are three main pathways contributing to NAD biosynthesis in mammals: the
de novo pathway with tryptophan as a NAD precursor, the Preiss–Handler pathway,
which utilizes nicotinic acid (NA) as a starting block, and the nicotinamide (Nam) salvage
pathway (Figure 1) [17]. In addition, the ribosylated precursors nicotinamide riboside (NR)
and nicotinic acid riboside (NAR) represent additional forms of vitamin B3 that can be
converted into NAD.

Figure 1. Graphical depiction of NAD biosynthesis in mammals. Trp, tryptophan; NA, nicotinic
acid; NAR, nicotinic acid riboside; NR, nicotinamide riboside; Nam, nicotinamide; QA, quino-
linic acid; NAMN, nicotinic acid mononucleotide; NMN, nicotinamide mononucleotide; NAAD,
nicotinic acid adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; QPRT, quinolinate
phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; NAMPT, nicotinamide
phosphoribosyltransferase; NRK, nicotinamide riboside kinase; NMNAT, nicotinamide mononu-
cleotide adenylyltransferase; NADSYN, nicotinamide adenine dinucleotide synthetase.

The Nam salvage pathway plays a key role in maintaining NAD homeostasis in
mammalian cells [18]. Duarte-Pereira and colleagues observed that the gene of the rate-
limiting enzyme of this pathway, nicotinamide phosphoribosyltransferase (NAMPT), was
ubiquitously expressed at the mRNA level in all human normal tissues and tumors that
were studied [19]. Moreover, NAD-consuming enzymes release nicotinamide as a by-
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product, which makes Nam the most accessible NAD precursor. Accordingly, research
focusing on NAD-lowering as an anticancer strategy has largely focused on NAMPT and
led to the identification of numerous inhibitors, including FK866 and CHS-828 [20–22].
Despite the potent antitumor activity of these agents in preclinical models, the efficacy of
these compounds in clinical trials has been disappointing. In addition, thrombocytopenia
and gastrointestinal symptoms arose as dose-limiting toxicities [23,24]. Studies show that
the limited clinical activity of these agents reflects the overexpression of enzymes from the
Preiss–Handler pathway, at least in a subset of human malignancies [25,26].

Human nicotinate phosphoribosyltransferase (hNAPRT, Uniprot: Q6XQN6) is the
rate-limiting enzyme of the Preiss–Handler pathway. The enzyme catalyzes the conversion
of NA and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide
(NAMN) and pyrophosphate (PPi) in an ATP-dependent manner [27]. The Preiss–Handler
pathway continues with the adenylation of NAMN catalyzed by NMNAT1-3 and ends with
the amidation of NAAD into NAD, which is catalyzed by NAD synthetase (NADSYN).
Human NAPRT belongs to the Type II phosphoribosyltransferase family of functional
dimeric proteins that are involved in NAD biosynthesis, together with quinolinate phos-
phoribosyltransferase (QPRT) and NAMPT. The crystal structure of hNAPRT was solved
by Marletta et al. and evidenced that the NAPRT monomer consists of an irregular α/β
barrel domain and of a second open-faced sandwich domain [28]. Despite the low sequence
similarity between hNAPRT and its bacterial homologs, the main amino acids that are
involved in the recognition and stabilization of NAPRT substrates are strictly conserved, as
demonstrated through site-directed mutagenesis experiments [29].

NAPRT displays marked tissue and tumor specificity in terms of expression and its
regulation mechanisms and is mostly present in several catabolic healthy mammalian
tissues including the heart, kidney, liver, and small intestine [19,25,30–33]. In tissues
that express the NAPRT protein, NA is the preferred precursor of NAD. Accordingly,
the NAD pool of HEK293 cells was dramatically increased when these were cultured in
NA-rich conditions, whereas similar doses of Nam resulted in a much lower effect [33].
This observation is likely related to the fact that, unlike NAMPT, NAPRT activity is not
inhibited by NAD [33]. Interestingly, in addition to the role of NAMPT and NAPRT as
intracellular NAD-producing enzymes (mostly located in the nucleus and the cytoplasm),
NAMPT and NAPRT also exist as extracellular proteins, which exert pro-inflammatory and
pro-tumorigenic effects [34,35].

With respect to the amplification of the NAPRT gene and to its expression, these are
very variable in human tumors [19,25,31]. Tumors originating from normal tissues that
highly express NAPRT were found to amplify the NAPRT gene at a high frequency (and
to express it at high levels as a result), whereas tumors arising from tissues that do not
express NAPRT will strongly rely on NAMPT activity for NAD biosynthesis and for cell
survival [31]. In ovarian, prostate, breast, and pancreatic cancers, NAPRT was to be found
upregulated [25]. On the contrary, gastric, renal, and colorectal carcinoma, as well as sev-
eral leukemia cell lines, were reported to have low or no NAPRT expression [19]. Among
the mechanisms that regulate NAPRT expression, hypermethylation of the NAPRT gene
promoter leads to gene silencing and has been found in several NAPRT-negative tumors.
NAPRT promoter hypermethylation in cancer is frequently associated with mutations in
the protein phosphatase Mg2+/Mn2+-dependent 1D (PPM1D) or isocitrate dehydrogenase
1 (IDH1) genes, as well as with the epithelial-mesenchymal transition (EMT)-subtype
of gastric cancer [36–38]. Due to their dependency on the Nam salvage pathway for
survival, NAPRT-deficient cancers are extremely sensitive to treatment with NAMPT in-
hibitors [39,40]. On the other hand, NAPRT upregulation confers resistance to NAMPT
inhibitors to many malignancies. Piacente et al. demonstrated that NAPRT-proficient
ovarian and pancreatic cancers are resistant to FK866, whereas NAPRT downregulation
through gene silencing or chemical inhibition with 2-hydroxynicotinic acid (2-HNA) sen-
sitized tumor cells to NAMPT inhibitors both in vitro and in vivo [25]. In line with these
results, another study highlighted that sensitivity to NAMPT inhibition in several ovar-
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ian cancer cell lines was inversely proportional to NAPRT expression [41]. Despite its
usefulness in basic research as NAPRTi, the low molecular weight and high functionality
of 2-hydroxynicotinic acid suggest that this compound could have non-specific effects.
Together with its low potency, such features make it unlikely that 2-HNA could be utilized
as a NAPRTi in the clinic.

To the best of our knowledge, additional NAPRT inhibitors were reported in the
1970s, including nicotinic acid analogs and non-steroidal anti-inflammatory agents such as
flufenamic acid, salicylic acid, mefenamic acid, and phenylbutazone [42–44]. Unfortunately,
the available data, which were mostly obtained by monitoring NAPRT activity in human
platelet lysates, suggest a weak inhibitory activity for these agents. Thus, the expected low
specificity of 2-HNA combined with the limited activity and characterization of the other
reported NAPRTi mandate the search for new, potent NAPRTi. In this work, we identified
several new small-molecule NAPRTi which, upon further compound optimization, could
lead to a new generation of molecules that sensitize NAPRT-proficient malignancies to
NAMPT inhibitors and, possibly, to other anticancer agents.

2. Results
2.1. Sensitization of OVCAR-5 Cells to FK866

As described in the experimental section, a structure-based virtual screening was run
on NAPRT to identify putative inhibitors. The docking results were thoroughly inspected
and resulted in a selection of 62 compounds (Table 1 and Table S1 of Supplementary
Information) to be tested employing in vitro assays on the ovarian cancer cell line OVCAR-
5 that expresses high levels of NAPRT.

Table 1. The number of in silico screening hit compounds that were obtained from each provider
after visual inspection of the top-score docking binding poses.

Provider Number of Compounds

University of Seville 22
MCULE 16
EDASA 13

Prestwick 11

As noted in the methodology section, a 50 mM stock solution in DMSO was prepared
for each compound. Compound IM 28 could not be solubilized in DMSO at the specified
concentration and was excluded from the study.

The first assay that we performed to test the putative NAPRT inhibitors was based
on the principle that NAPRT-expressing OVCAR-5 cells are resistant to FK866 whereas
the simultaneous chemical inhibition of NAPRT with 2-HNA renders the cells sensitive to
the NAMPT inhibitor due to the cooperation between FK866 and 2-HNA in depleting the
intracellular NAD pool [25]. We observed that, in line with the work that was conducted
by Piacente et al., OVCAR-5 cells withstood 72 h treatments with 100 nM FK866 or 1 mM 2-
HNA, whereas co-treatment with both compounds at the specified concentrations resulted
in a marked synergistic effect exerting pronounced cell death (Figure 2). Thus, 2-HNA
was used throughout the study as a positive control in our cell viability assay and any test
compound resembling its activity was considered a potential NAPRT inhibitor. It is worth
mentioning that, to reflect the physiological contribution of the Preiss–Handler pathway to
NAD biosynthesis, all cell-based assays that are presented in this study were performed
under a nicotinic acid concentration of 0.3 µM in the cell culture medium (Figure S1).
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Figure 2. CI of compounds that were tested in combination with FK866 on OVCAR-5 cells. The cells
were cultured in RPMI 1640 medium containing test compounds at a 100 µM concentration with and
without 100 nM FK866 and the cell viability was determined following 72 h treatments. The data
are shown as CI vs. cytotoxicity exerted on cells. Blue dots represent the reference NAPRT inhibitor,
2-HNA. Red dots belong to the best performing test compounds.

We decided to use combination index (CI) as a measure to determine the degree of
interaction between FK866 and the test compounds i.e., to identify potential new NAPRT
inhibitors. A CI < 1 indicates a synergistic interaction between the test compound and
FK866 in decreasing cell viability. A CI = 1 and a CI > 1 are indicative of an additive and of
an antagonistic effect, respectively.

Figure 2 shows that the simultaneous administration of FK866 and 2-HNA produced
the lowest CI out of all the combinations that were tested (CI = 0.08) and marked cytotox-
icity. Among all the tested compounds, eight (represented by red dots in Figure 2) were
considered to be especially interesting for their low CI or their high cytotoxicity when they
were combined with FK866. Compounds IM 29, IM 43, MMB-128, and MMB-268 exhibited
a CI ranging between 0.62 and 0.82 and high cytotoxicity in combination with FK866 and
these results might suggest other interactions within the cells while some degree of syn-
ergism (CI < 1) with FK866 was evident, suggesting the inhibition of the Preiss–Handler
NAD biosynthetic pathway.

Compounds IM 38, IM 49, MMB-131, and MMB-312 produced less pronounced cy-
totoxicity when they were combined with FK866. However, this subset of compounds
showed especially low combination indexes (0.12 ≤ CI ≤ 0.53) and, therefore, a larger
synergism with FK866.

These eight compounds were all considered promising candidates for NAPRT inhibi-
tion and were selected for further in vitro assays.

2.2. Effect of Test Compounds on Intracellular NAD Levels

The assay that was performed on OVCAR-5 cell viability led to a set of potential
NAPRT inhibitors, namely IM 29, IM 38, IM 43, IM 49, MMB-128, MMB-131, MMB-268,
and MMB-312. In order to confirm that the cited compounds sensitized OVCAR-5 cells
to the NAMPT inhibitor FK866 by interfering with NAD biosynthesis, we quantified the
intracellular NAD+ levels in OVCAR-5 cells after 20-h treatments with these compounds
with or without FK866.

As Figure 3 shows, treatment with 30 nM FK866 alone decreased the NAD+ levels by
24%. The effect of FK866 was strongly enhanced when the drug was combined with 1 mM
2-HNA, yielding an 86 % drop in the intracellular NAD+ concentration, thus evidencing
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marked synergism between the two compounds in depleting NAD+. This observation is in
line with the fact that the combination of FK866 and 2-HNA achieved the lowest CI and the
highest cytotoxicity in the cell viability studies.

Figure 3. A subset of test compounds cooperates synergistically with FK866 in decreasing intracellular
NAD+ levels in OVCAR-5 cells. The compounds were administered to cells alone or in combination
with FK866 for 20 h. Quantification of NAD+ was performed via an enzyme cycling assay and
normalized to cell lysate protein content. The results are the mean ± SD of two technical replicates
with two biological replicates each. *, p < 0.05; **, p < 0.01; ***, p < 0.001 vs. the respective control,
i.e., FK866-untreated control for the test compounds that were administered alone to cells, and FK866-
treated control for the combinations of test compound and FK866; §, p < 0.05 versus FK866-untreated,
control cells.

In keeping with the cell viability experiments, the test compounds IM 29, IM 38, MMB-
128, MMB-131, and MMB-268 were found to mimic the effect of 2-HNA on intracellular
NAD+ levels and thus represent a set of potential NAPRT inhibitors. Indeed, co-treatments
with the cited compounds at a 100 µM concentration and 30 nM FK866 produced a marked
drop in the NAD+ levels (42.9–56.4%). A similar decrease in NAD+ was obtained in re-
sponse to the NAMPT inhibitor combined with compound IM 49. Nevertheless, compound
IM 49 by itself strongly reduced the OVCAR-5 intracellular NAD+ levels. Therefore, a
lower degree of synergism was observed between this test compound and FK866. Possibly,
IM 49 can interfere with other enzyme(s) that are involved in NAD synthesis in addition
to hNAPRT.

Besides the test compounds that effectively cooperate with FK866 in decreasing NAD+

levels, the co-administration of compounds IM 43 and MMB-312 with FK866 only yielded
additive effects in terms of NAD+ reduction in OVCAR-5 cells. As depicted in Figure 3,
cotreatments with the cited compounds and FK866 did not cause a major reduction of the
NAD+ levels. These results appear not to be in line with our cell viability assay, where IM
43 exerted high cytotoxicity in combination with FK866 in OVCAR-5 cells, while MMB-312
achieved the lowest CI value (CI = 0.12) out of all the tested compounds. These results
suggest that other mechanisms may come into play to justify the synergy between IM 43 or
MMB-312 and FK866, which need to be addressed in further studies.

2.3. Inhibition of the Recombinant hNAPRT

The six test compounds that were found to exert a synergistic effect with FK866 on
OVCAR-5 intracellular NAD+ levels were tested in a biochemical assay with recombinant
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hNAPRT as inhibitors of the enzyme catalytic activity. These inhibition studies resulted in
the identification of five new hNAPRT inhibitors with IC50 values in the micromolar range.
Compound IM 29 exhibited the highest activity against the formation of nicotinic acid
mononucleotide with an IC50 of 160 µM (Figure 4). Comparable results were obtained for
compounds IM 38, IM 49, MMB-128, and MMB-131, with estimated IC50 in the 200–300 µM
range. This enzymatic assay confirmed that the observed cooperation between FK866
and the tested compounds in decreasing OVCAR-5 cell viability and intracellular NAD+

levels was due to the ability of the compounds to inhibit hNAPRT. Noteworthy, compound
MMB-268 showed negligible inhibition of hNAPRT (data not shown).

Figure 4. Compounds IM 29, IM 49, MMB-131, IM 38, and MMB-128 inhibit recombinant hNAPRT
in the µM range. The test compounds were added at different concentrations to reaction mixtures
containing hNAPRT and substrates and the half maximal inhibitory concentration (IC50) was obtained
for each compound by measuring the amounts of NA and NAMN that was present after the reactions.

2.4. hNAPRT Melting Temperature Experiment

With the purpose to provide support to the results that were obtained in the enzymatic
activity assay, the ability of the new hNAPRT inhibitors to stabilize the protein through
binding was evaluated via the measurement of the hNAPRT melting temperature in the
presence or absence of the inhibitors at a 100 µM concentration. The resulting Tm shifts are
depicted in Figure 5. Interestingly, a significant positive shift by approximately 0.5 ◦C in the
Tm of hNAPRT was induced by compounds MMB-128 and MMB-131, suggesting a certain
affinity of the inhibitors towards the protein that results in thermal stabilization. On the
contrary, the melting temperature of hNAPRT remained unchanged when the enzyme was
exposed to compounds IM 29, IM 38, or IM 49. A plausible explanation for this outcome
is that larger compounds are more likely to establish a higher number of interactions and
thus result in greater stabilization of a given protein. Indeed, significant Tm shifts were
reached with the two largest inhibitors (MMB-128 and MMB-131).
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Figure 5. NAPRT inhibitors MMB-128 and MMB-131 directly engage recombinant hNAPRT. Dif-
ferential scanning fluorimetry (DSF) was used to determine the thermal stabilization of hNAPRT
protein upon inhibitor binding. Recombinant hNAPRT protein was exposed to 100 µM hNAPRT
inhibitors over a defined temperature gradient and the melting temperature Tm was calculated for
each compound. The data are shown as means ± standard error of the means (SEM) of two technical
replicates with three biological replicates each. * p < 0.05; unpaired t-test.

2.5. Analysis of Inhibitor Binding Pose

Following the in vitro characterization of the new hNAPRT inhibitors, a molecular
docking on the hNAPRT structure was performed to shed light on the binding mode
features that are likely related to the enzyme inhibition. Docking of compound IM 29 shows
that the small and rigid molecule binds deep into the active site pocket of hNAPRT and it
is stabilized by several interactions with protein residues (Figure 6A,B). Remarkably, IM
29 establishes two pi-cation contacts with ARG318A, a residue that is reported to exert a
key role in catalysis that is potentially hampered by IM 29 binding [28,29]. The ionization
at a physiological pH of the amino group of IM 29 appears relevant for engagement and
inhibition of hNAPRT. Indeed, the carboxylate side chain of GLU167A in proximity to the
ammonium moiety of IM 29 indicates suitable ligand-receptor electrostatic complementarity
and results in a salt bridge and short-distance hydrogen bond between the cited amino acid
and the hNAPRT inhibitor.

As for compound IM 29, docking into the hNAPRT active site provides a favorable
binding mode for IM 38. The ligand fits in the active site maintaining the inherent pla-
narity of its amide conjugated system, resulting in negligible ligand strain. Electrostatic
potential mapping of the protein (Figure 6C) shows that the most electronegative atoms
of the inhibitor are surrounded by positively charged active site residues. As for many
drug candidates in medicinal chemistry, the affinity of hNAPRT towards IM 38 is largely
explainable by the occurrence of numerous hydrogen bonds upon ligand binding. The
carboxylate moiety of the ligand is key for its bioactivity, participating in two H-bonds
with the backbone of hNAPRT residues HIS213A and SER214A (Figure 6D). Furthermore,
through its amide and ether groups, IM 38 establishes several hydrogen bonds with the
amino acids ARG318A and LEU170A. The latter residue also interacts with the chlorine
atom of IM 38, albeit the poor directionality of the halogen bond suggests this interaction
to be of limited relevance.
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Figure 6. Binding mode that is predicted by molecular docking of compounds IM 29 (A,B) and IM
38 (C,D) in the hNAPRT active site. The analysis of the docking binding poses was performed on
the academic version of Schrodinger Maestro v.2017-4. Protein is represented in thin sticks whereas
ligands are depicted in thick tubes. Hydrogen bonds appear as yellow dotted lines. Salt bridges
are represented by pink dotted lines. Pi-cation interactions are depicted as green dotted lines and
halogen bonds are shown as purple dotted lines.

3. Discussion

Since NAD depletion emerged as a promising anticancer strategy, most of the research
has focused on disabling the nicotinamide salvage pathway, which overall represents the
main route to NAD biosynthesis in mammals. Indeed, several families of potent NAMPT
inhibitors have emerged over the last decades with encouraging preclinical antitumor
efficacy. Unfortunately, the expectations on some of these NAMPT inhibitors were not
met later on in clinical trials, which showed limited clinical activity for these compounds.
Piacente et al. hypothesized that alternative NAD production routes could represent a
mechanism of tumor resistance to NAMPT inhibitors and demonstrated that the Preiss–
Handler pathway gene, NAPRT, is frequently amplified and overexpressed in a subset
of human tumors such as ovarian, breast, pancreatic, and prostate cancer. In the cited
study, targeting NAPRT through silencing or chemical inhibition effectively sensitized
NAPRT-expressing cancer cells to FK866 both in vitro and in vivo. In addition, the authors
highlighted the need to discover new NAPRT inhibitors with increased potency with respect
to 2-hydroxynicotinic acid and other active compounds that date back to the last century.

Here we report the first study that is aimed at identifying new hNAPRT inhibitors
through a structure-based drug design approach with the evaluation of bioactivity with
state-of-the-art in vitro assays.

As we were particularly interested in identifying active compounds in NAPRT-
expressing cells, our first assay was designed as an in vitro screening to study which
test compounds successfully sensitized OVCAR-5 cells to the NAMPT inhibitor FK866,
essentially recreating the results that were obtained with the reference NAPRT inhibitor, 2-
HNA. A total of eight compounds demonstrated synergism along with FK866 in decreasing
cell viability, suggesting an impairment of the Preiss–Handler pathway. Most of these hits
also showed the ability to cooperate with FK866 synergistically to decrease intracellular
NAD+ levels in OVCAR-5 cells. Specifically, such an effect on intracellular NAD+ was
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observed in response to six compounds (IM 29, IM 38, IM 49, MMB-128, MMB-131, and
MMB-268) when these were combined with FK866. Conversely, two compounds (IM 43
and MMB-312) showed promising results in the cell viability assay but failed to cooperate
with FK866 to lower the NAD+ levels, suggesting that their antitumor effect may reflect an
off-target activity.

Following cell assays, we proceeded to elucidate the regulatory properties of the best
compounds on recombinant hNAPRT. A total of five compounds (IM 29, IM 38, IM 49,
MMB-128, and MMB-131) showed inhibitory properties against hNAPRT and IC50 in the
micromolar range. The suitability of our assays is supported by the fact that only one
compound (MMB-268) out of the pool of candidates that exerted cytotoxicity and intra-
cellular NAD+ decrease in combination with FK866 failed to inhibit hNAPRT enzymatic
activity. Therefore, MMB-268 that showed promising activities on the OVCAR-5 cell line
may be related to a biological target other than hNAPRT. For instance, one possibility is
that MMB-268 could impair NAD synthetase (NADSYN) activity, catalyzing the conversion
of NAAD into NAD independently of the Nam salvage biosynthetic pathway. NADSYN
inhibition could lead to results that are comparable to hNAPRT inhibition in our in vitro
cell assays. Finally, we decided to study the capability of the hNAPRT inhibitors that were
herein identified to confer thermal stability to hNAPRT by DSF. Direct engagement of
compounds MMB-128 and MMB-131 to hNAPRT was confirmed by positive shifts in the
protein melting temperature when exposed to the inhibitors.

In summary, our findings broaden the chemical space of known hNAPRT inhibitors
and pave the way for the identification of new NAD-lowering anticancer drugs. The new
hNAPRT inhibitors that we report are characterized by a low molecular weight and, thus,
are susceptible to undergo optimization studies shortly to increase their potency through
chemical structure modifications.

4. Materials and Methods
4.1. High Throughput Virtual Screening

A high-throughput molecular docking screening was performed to discover new
inhibitors of hNAPRT. The crystal structure of hNAPRT (PDB code: 4YUB) was retrieved
from The Protein Data Bank [45]. This structure was prepared with the academic version
of Schrodinger Maestro v.2017-4 with standard preparation procedures, that include the
removal of water molecules, correct assignment of bond orders, the addition of hydrogens,
and the optimization of protonation states and restrained energy minimization. A 15 Å
grid centered on the enzymatically relevant active site residues LEU170A, ARG318A, and
TYR21B was generated and docking virtual screening was run with the modeling tools that
are offered by the Mcule platform, performing ligand preparation with Gypsum-DL using
the default settings [28,29,46,47].

The docking results were thoroughly visually inspected considering widely accepted
aspects in the scientific community such as quality of ligand-receptor interactions, docking
score, fitting in the active site, ligand strain, and drug-likeness [48]. The most promising
compounds were purchased or provided by collaborators and tested in vitro.

4.2. Virtual Screening Libraries

The chemical compounds that were subjected to docking screening were obtained
from several sources. The list of libraries and providers is numbered below.

(1) Approximately 1 × 105 molecules from the “Potentially purchasable compounds”
Mcule database, selected based on simple physicochemical properties.

(2) The Prestwick Chemical Library® [49].
(3) Approximately 2000 in-stock compounds from EDASA Scientific [50].
(4) A small selection of approximately 100 molecules that were synthesized by the Uni-

versity of Seville, some of which have already been described in the literature (see
Supplementary Information for synthetic procedures and compounds characteriza-
tion) [51–54].

118



Pharmaceuticals 2022, 15, 855

Compounds were obtained in mg quantity and subsequently dissolved in DMSO to
prepare a 50 mM stock solution. The purity of all compounds was > 95%, as declared by
vendors or collaborators.

4.3. Cell Lines and Reagents

OVCAR-5 cells were obtained from the NCI-60 panel in 2015 as a kind gift from
Prof. Zoppoli. The cells were passaged for less than six months before resuscitation
for the experiments. Testing for mycoplasma was routinely done with the MycoAlert
Mycoplasma Detection Kit (Lonza Group, Basel, Switzerland). The cells were maintained
and treated with RPMI 1640 medium that was supplemented with 10% heat-inactivated
FBS, penicillin (50 units/mL), and streptomycin (50 µg/mL) (Life Technologies, Monza,
Italy). FK866 was kindly provided by the NIMH Chemical Synthesis and Drug Supply
Program. 2-hydroxynicotinic acid was purchased (Sigma Aldrich S.r.l., Milan, Italy).

4.4. Cell Viability Assay

A total of 3 × 103 OVCAR-5 cells/well were plated in 96-well plates in the regular
culture medium. 24 h later the cell medium was removed and the cells were subsequently
incubated either in the regular medium that was supplemented with 0.3 µM nicotinic
acid (control wells) or in the treatment medium which contained 0.3 µM nicotinic acid
and combinations of 100 nM FK866, 1 mM 2-HNA, and 100 µM of test compounds. Each
condition was performed in triplicate and the cells remained under treatment for a total
of 72 h at 37 ◦C. Thereafter, the culture plates were fixed with 10% trichloroacetic acid at
4 ◦C for 20 min, washed with cold water, and dried overnight. The plates were stained
with 0.04% sulforhodamine B (SRB) in 1% acetic acid, washed four times with 1% acetic
acid to remove the unbound dye, and dried overnight. Lastly, Trizma®-base 10 mM was
added to the plates and cell viability was quantified by absorbance measurements on a
Tecan Infinite® 200 PRO instrument.

To quantify the extent of the interaction between FK866 and the putative NAPRT in-
hibitors or 2-HNA, we applied the combination index (CI) equation that is depicted below:

CI =
mortality % A + mortality % B

mortality % (A + B)
(1)

where: ‘A’ refers to the treatment of cells with FK866 100 nM; ‘B’ refers to the treatment
of cells with the test compound 100 µM or 2-HNA 1 mM; ‘A + B’ refers to the coadmin-
istration of FK866 100 nM and the test compound at 100 µM or 2-HNA 1 mM. A syner-
gistic interaction is evidenced by CI < 1, additive effect produces CI close to 1, whereas
CI > 1 corresponds to antagonistic effect.

4.5. Intracellular NAD Quantification

A total of 1 × 105 OVCAR-5 cells/well were plated in 24-well plates in the regular
culture medium. 24 h later the cell medium was removed and the cells were cultured either
in the regular medium that was supplemented with 0.3 µM nicotinic acid (control wells) or
in the treatment medium (regular medium with 0.3 µM nicotinic acid and combinations of
30 nM FK866, 1 mM 2-HNA and 100 µM of test compounds). Each condition was performed
in duplicate and the cells remained under treatment for a total of 20 h at 37 ◦C. Thereafter,
the cell medium was removed and the cells were harvested and lysed with 0.6 M perchloric
acid (PCA). Samples in PCA were neutralized by diluting the extracts in 100 mM sodium
phosphate buffer (pH 8) and the total intracellular NAD+ content was determined with a
sensitive enzyme cycling assay that exploits the use of alcohol dehydrogenase [55]. The
obtained NAD+ values were normalized to cell lysate protein content that was quantified
by the Bradford method.
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4.6. Recombinant hNAPRT Production

The production of recombinant hNAPRT employed E. coli bacteria as an expression
system. The human coding sequence for NAPRT was codon optimized for the expression in
E. coli and cloned in a pET-23a vector containing a C-terminal His-tag by GenScript. A total
of 5 ml of bacterial culture was grown overnight at 37 ◦C in the Luria–Bertani medium that
was supplemented with 100 µg/mL ampicillin. The day after the culture was diluted at
1:100 in fresh medium and incubated at 25 ◦C. When a 0.3–0.4 OD600 was reached, protein
expression was started at 20 ◦C by adding 1 mM IPTG, followed by overnight incubation.

The induced cells were harvested by mild centrifugation (5000 rpm, 10 min) in a
Beckman Coulter J6-HC centrifuge with JA-10 rotor and resuspended in 1:50 original
volume with equilibrium buffer (100 mM K2HPO4, 300 mM KCl, and 5 mM imidazole,
pH 7.4). After sonication (18 × 10 s), the crude extract was clarified by centrifugation
(6000 rpm, 15 min) with JA-20 rotor, and purified by His-tag affinity chromatography as
follows. The supernatant was batch-mixed (1 h) with a HisPur Cobalt resin (Thermo Fisher
Scientific, Pittsburg, PA, USA), previously equilibrated in the above equilibrium buffer,
and then packed into a chromatographic column. The flow-through and the subsequent
10 mM imidazole wash buffer were discarded. The recombinant protein was eluted by
equilibration buffer containing 150 mM imidazole.

After centrifuge-assisted protein concentration in a Protein Concentrator 10K (Pierce-
Thermo Fisher Scientific, Pittsburg, PA, USA), the hNAPRT amount was quantified by
absorbance measurement at 280 nm. The solution containing the protein was dialyzed
overnight against 50 mM Tris/HCl, pH 7.4, 10 mM KCl, and 1 mM DTT, to remove
imidazole and change the buffer with the reaction buffer. To improve enzyme stability, after
dialysis, 0.5 mM PRPP and 20% glycerol were added and the protein was aliquoted and
kept at −20 ◦C. All the steps were performed at 4 ◦C.

4.7. hNAPRT Inhibition Assay

hNAPRT was expressed in E. coli with an N-terminal His-tag and purified as described
above. The enzymatic reactions were carried out at 37 ◦C in standard reaction mixtures
containing 50 mM Tris-HCl, pH 7.4, 10 mM KCl, 2 mM MgCl2, 100 µM nicotinic acid,
200 µM PRPP, 0.1 mg/mL purified recombinant hNAPRT, and the test compound at five
different concentrations ranging from 20 µM to 1000 µM.

Blank mixtures without compounds but with equal amounts of DMSO were set in
parallel and their rates fixed as 100% activity. NAPRT was pre-incubated with the com-
pounds for 5 min and reactions were started by the addition of the enzyme substrates
and stopped after 45 min of incubation by heating to 85 ◦C for 3 min. Following centrifu-
gation of the reaction mix, the supernatant was analyzed by HPLC by injection into a
reverse-phase column (XTerra MS C18 Column, 125Å, 5 µm, 4.6 × 150 mm, Waters). The
eluted species were monitored at 260 nm and the peaks of nicotinic acid and nicotinic
acid mononucleotide were quantified with reference to standard curves. The percentage
of nicotinic acid conversion was calculated for each reaction and the IC50 values for the
active compounds were determined with GraphPad Prism 8 software (GraphPad Software,
S. Diego, CA, USA).

4.8. NAPRT Melting Temperature Determination

The melting temperature ™ of hNAPRT was determined through the differential
scanning fluorimetry (DSF) technique. Triplicates of 100 µM of each test compound and
DMSO were added to a 96-well clear bottom BioRad PCR plate. Subsequently, DSF protein
buffer, containing 5 µM of recombinant hNAPRT protein and 5X SPYRO® Orange (S5692,
Sigma-Aldrich) in 20 mM HEPES pH 7.5, 100 mM NaCl, 10 mM Mg-acetate, and 1 mM DTT
was added. The plate was sealed and exposed to a temperature gradient from 20 to 95 ◦C
in a BioRad CFX96 Real-Time System. The fluorescence for each temperature increment
was measured at 465–580 nm with an excitation wavelength of 465 nm. The DSF templates
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that were provided by Niesen et al. were used for data analysis followed by GraphPad
Prism 8 for statistical analysis of the generated data [56].

4.9. Statistical Analyses

All the experiments were repeated at least 3 times. Statistics were performed with
GraphPad Prism v.8 software (GraphPad Software, S. Diego, CA, USA). All the parameters
were tested by paired t-test or one-way ANOVA followed by the Tukey test. p-values < 0.05
were considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15070855/s1, Table S1: Details of chemical structures of tested
compounds as putative hNAPRT inhibitors. Figure S1: Nicotinic acid in culture medium determines
the susceptibility of the OVCAR-5 cell line to treatments with FK866 and 2-hydroxynicotinic acid.
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Abstract: Depriving cancer cells of sufficient NAD levels, mainly through interfering with their
NAD-producing capacity, has been conceived as a promising anti-cancer strategy. Numerous in-
hibitors of the NAD-producing enzyme, nicotinamide phosphoribosyltransferase (NAMPT), have
been developed over the past two decades. However, their limited anti-cancer activity in clinical
trials raised the possibility that cancer cells may also exploit alternative NAD-producing enzymes.
Recent studies show the relevance of nicotinic acid phosphoribosyltransferase (NAPRT), the rate-
limiting enzyme of the Preiss–Handler NAD-production pathway for a large group of human cancers.
We demonstrated that the NAPRT inhibitor 2-hydroxynicotinic acid (2-HNA) cooperates with the
NAMPT inhibitor FK866 in killing NAPRT-proficient cancer cells that were otherwise insensitive to
FK866 alone. Despite this emerging relevance of NAPRT as a potential target in cancer therapy, very
few NAPRT inhibitors exist. Starting from a high-throughput virtual screening approach, we were
able to identify and annotate two additional chemical scaffolds that function as NAPRT inhibitors.
These compounds show comparable anti-cancer activity to 2-HNA and improved predicted aqueous
solubility, in addition to demonstrating favorable drug-like profiles.

Keywords: NAPRT inhibitors; cancer metabolism; NAD; anti-cancer agents; NAMPT; NAD synthesis;
in silico drug design

1. Introduction

Nicotinamide adenine dinucleotide (NAD) is broadly involved in fundamental biolog-
ical processes inside the cell. It is particularly unique in its ability to function not only as a
cofactor in redox reactions that are intimately involved in energy metabolism but also as a
substrate for NAD-consuming enzymes, including poly(ADP-ribose) polymerases (PARPs),
sirtuins, CD38, and CD157 [1–5]. Since NAD gets degraded by the catalytic activity of
these enzymes, continuous NAD production is required. Most mammalian tissues generate
NAD starting from nicotinamide (NAM) through the salvage pathway (also known as
the ”amidated” pathway). A parallel NAD-generating route named the Preiss–Handler
(PH) pathway (or ”deamidated” pathway) utilizes nicotinic acid (NA) as its building block
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and also operates in many tissues [6–8]. In addition, NAD can be synthesized from the
amino acid tryptophan through the de novo pathway, which is mainly active in hepatic
and renal tissues [9,10]. It is also worth mentioning that nicotinamide riboside (NR) and its
reduced form (NRH) were recently recognized as additional NAD precursors that boost
NAD production through alternative salvage pathways [11–13].

Cancer cells extensively rely on these NAD-biosynthetic routes (summarized in
Figure 1) in order to keep adequate NAD levels, which, in turn, are necessary to fuel
their reprogrammed metabolism [14] and to compensate for the extensive NAD breakdown
caused by vital, NAD-consuming, enzymatic activities, such as PARP-mediated DNA
repair [1–4]. Accordingly, interfering with the NAD biosynthetic machinery has been put
forward as an appealing therapeutic approach against cancer. Most studies in this field
focused on interrupting the NAM salvage pathway by targeting its rate-limiting enzyme,
nicotinamide phosphoribosyltransferase (NAMPT). This reflects the fact that potent and
highly active (at least in preclinical models) NAMPT inhibitors, such as FK866 and CHS828,
were among the first NAD-lowering agents to be reported [15–17] and the observation that
NAMPT is commonly overexpressed in a variety of human cancers [17,18]. Regrettably,
despite their efficacy in preclinical models, NAMPT inhibitors showed poor efficacy in
clinical trials [19–22], indicating that tumor cells exploit surrogate NAD-producing routes,
in particular the PH pathway, to circumvent NAMPT blockade [23,24].
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Figure 1. Schematic representation of the NAD–generating pathways in mammalian cells. NAMN,
nicotinic acid mononucleotide; NMN, nicotinamide mononucleotide; NAAD, nicotinic acid ade-
nine dinucleotide; NAD, nicotinamide adenine dinucleotide; QPRT, quinolinate phosphoribosyl-
transferase; NAPRT, nicotinic acid phosphoribosyltransferase; NAMPT, nicotinamide phospho-
ribosyltransferase; NRK, nicotinamide riboside kinase; NMNAT, nicotinamide mononucleotide
adenylyltransferase; NADSYN, nicotinamide adenine dinucleotide synthetase; PncA, nicotinami-
dase; SARM1, sterile alpha and toll/interleukin receptor [TIR] motif-containing protein 1; PARPs,
poly(ADP-ribose) polymerases.
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In this context, the relevance of nicotinic acid phosphoribosyltransferase (NAPRT), one
of the key enzymes from the PH pathway, as a viable antitumor target has gathered growing
attention. NAPRT boosts and regulates NAD biosynthesis under certain conditions and
in specific tissues [8,25]. Several studies indicated that the therapeutic activity of NAMPT
inhibitors is largely dictated by the NAPRT expression status of the tumor cells [26–28].
Susceptibility to NAMPT inhibitors was particularly noted in epithelial-to-mesenchymal
transition (EMT)-subtype gastric cancers, in isocitrate dehydrogenase 1 (IDH1)-mutant
gliomas, and in protein phosphatase Mg2+/Mn2+-dependent 1D (PPMD1)-mutant gliomas
as a result of the epigenetic loss of the NAPRT gene expression that frequently accompanies
these cancer subtypes [29–31]. NAPRT was found to be amplified in a large subset of solid
human cancers such as ovarian, pancreatic, and breast cancers [23,24]. Accordingly, we
showed that several ovarian cancer cell lines became responsive to FK866 upon NAPRT
knock-down both in vitro and in vivo (in mice ovarian cancer xenografts) [23]. We also
demonstrated that NAPRT plays a central role in energy metabolism, DNA repair, and
in protein synthesis in cancer cells via its ability to promote NAD production [23]. Based
on the above findings, the development of NAPRT inhibitors holds promise for potential
application as anti-cancer agents.

Very few NAPRT inhibitors have been reported so far. Early studies on human
platelets discovered several compounds that displayed NAPRT inhibitory activity, includ-
ing 2-hydroxynicotinic acid (2-HNA) and several non-steroidal anti-inflammatory drugs
(NSAIDs) such as flufenamic acid, mefenamic acid, and phenylbutazone (Table 1) [32–34].
We demonstrated that 2-HNA was indeed able to sensitize NAPRT-expressing ovarian
and pancreatic cancer cells to NAMPT inhibitors and recapitulated the effect of NAPRT
silencing [23]. A series of endogenous NAPRT-inhibiting metabolic intermediates were
also identified, with CoA being the most potent metabolite [35]. To our best knowledge,
2-HNA remains the only reported NAPRT inhibitor with proven anti-cancer activity, al-
though its clinical use is limited by poor aqueous solubility. In this work, we performed a
high-throughput molecular docking screen with the aim of identifying chemical scaffolds
with inhibitory activity on the human NAPRT enzyme. Hence, we were able to identify and
characterize as NAPRT inhibitors two compounds that show favorable drug-like properties
and potency in the micromolar range.

Table 1. Known inhibitors of human NAPRT enzyme.

Compound Reported Ki * (µM) Compound Reported Ki (µM)

Flufenamic acid 10 6-Chloronicotinic acid 560
Mefenamic acid 50 Isonicotinic acid 750
2-Pyrazinoic acid 75 3-Pyridylsulfonic acid 750
Phenylbutazone 100 Pyridine 780
Indomethacin 150 2-Aminonicotinic acid 820
Salicylic acid 160 Acetanilide 1000
2-Hydroxynicotinic acid 230 Aminopyrine 1000
2-Fluoronicotinic acid 280 Antipyrine 1000
Oxyphenbutazone 300 Picolinic acid 1160
Acetylsalicylic acid 500 3-Pyridylacetic acid 1280
Sulfinpyrazone 500 Benzoic acid 1900

* Ki, inhibition constant.

2. Results
2.1. Structure-Based Virtual High-Throughput Screening
2.1.1. Analysis of Available 3D Structures of NAPRT

At the time of this work, only one X-ray structure of human NAPRT was available in
the public domain (PDB accession code 4YUB), in its ligand-free form [36]. This NAPRT
structure was solved at a resolution of 2.9 Å, which usually allows for the unambiguous
assignment of the main chain and side chains for the rigid parts of a protein, although
a chance of an incorrectly placed side chains still exists. This potential issue, which, at
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least in principle, could affect the results of subsequent docking studies, was addressed by
applying standard protein preparation procedures, such as restrained energy minimization
(see methods section). The crystal structure of human NAPRT (Figure 2A) reveals that
its monomer folds into 17 α-helices, 24 β-strands, and the connecting loops organized
in two domains: a first domain characterized by an irregular α/β barrel and a second
open-faced sandwich domain. The structural organization of human NAPRT is highly
similar to that of bacterial NAPRT, e.g., the enzyme expressed by T. acidophilum or E.
faecalis, for which the X-ray structures are also available (PDB codes 1YTD/1YTE/1YTK
and 2FTF, respectively). Despite the low sequence identity (34%), many active site residues
are conserved among the different species, suggesting a very similar mode of binding
for substrates. The model also reveals the presence of an intimately associated dimer in
the asymmetric unit; the two monomers are arranged head to tail with the N-terminal
domain in one monomer contacting the α/β barrel in the other monomer (Figure 2A).
When structurally compared, the structures of the two monomers showed similarity in
terms of the overall protein conformation but slight differences in terms of the shape of the
active site; in fact, some residues in the active site, such as Leu170, Arg171, Arg172, His213,
and Tyr21, translated into a different conformation between the two protein chains, leading
to a significant difference in active site shape and volume (Figure 2B).
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Figure 2. Analysis of the 3D structure of human NAPRT enzyme. (A) Overall oligomeric structure of
human NAPRT. The enzyme has a dimeric structure and monomers A and B are colored in red and
green, respectively. The two active sites are highlighted by black squares. (B) Structural superposition
of the two active sites in the NAPRT dimer colored red and green, respectively; residues with relevant
differences in conformation are drawn in thick tubes.

2.1.2. Virtual Screening Procedure

The crystal structure of human NAPRT was used as a template for our virtual screen-
ings, which were aimed at identifying compounds with inhibitory activity on NAPRT.
This structure was prepared with standard preparation procedures that include the correct
assignment of bond orders, adding hydrogen, the optimization of protonation states of
residues, and restrained energy minimization. Although some water molecules are present
in the NAPRT crystal structure, none of these seem to be involved in stable interactions
with active site residues; therefore, all water was removed. To maximize the probability of
identifying active molecules, two different high-throughput virtual screening procedures
were carried out: 1) a functional dimeric model of human NAPRT was taken as the docking
target and 2) the single NAPRT monomer was taken as the docking target. For model 1), in
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order to tackle the differences in active site conformation (see Figure 2), both active sites
identified in the functional dimeric model were used as targets, applying the so-called
ensemble docking technique. This strategy allows the docking of a single ligand library
against multiple rigid receptor conformations and the combining of the results.

In both models, the HTS Compound Collection from Life Chemicals (https://lifech
emicals.com/screening-libraries/hts-compound-collection, accessed on 23 March 2016)
consisting of 537,009 drug-like compounds, was docked into a docking grid of 18 Å centered
on the active site residues, as shown in Figure 3. Docking results were ranked based on
the score, and the first 500 hits were visually inspected to prioritize compounds that
reproduced, at least in part, the putative binding mode of the NAPRT substrates. This
evaluation led to a final list of 35 purchasable compounds to be tested in vitro as putative
NAPRT inhibitors. In addition, from the same Life Chemicals compound collection, a
set of 2-hydroxynicotinic acid (2-HNA) analogs (Figure 4) was manually selected, as 2-
HNA is known to inhibit NAPRT in the micro/millimolar range of concentration. A brief
description of the compounds selected for in vitro characterization can be found in Table 2.
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Figure 3. Representation of the NAPRT active site grids employed in docking-based virtual screenings.
(A) Docking grid of the functional dimeric model of human NAPRT. (B) Docking grid of the human
NAPRT monomer.
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Table 2. Selected structurally diverse compounds and 2-HNA analogs for in vitro characterization as
putative NAPRT inhibitors.

Compound
ID Structure Vendor ID M.W. * Compound

ID Structure Vendor ID M.W.

1
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2.2. Biological Annotation of the Selected Compounds 
2.2.1. In vitro Compound Screening 

To rapidly screen the 50 selected compounds for their ability to inhibit NAPRT, we 
used their capacity to sensitize the NAPRT-proficient ovarian cancer cell line, OVCAR-5, 
to FK866 as a reading frame (since this cell line is normally resistant to the NAMPT 
inhibitor but becomes sensitized to it through either NAPRT silencing or inhibition). By 
itself, the addition of putative NAPRT inhibitors is postulated to show minimal anti-
proliferative activity due to the ability of the cells to use the NAM that is present in the 
cell culture media to synthesize NAD [23]. OVCAR-5 cells were treated with the putative 
NAPRT inhibitors at 100 µM concentration with or without 100 nM FK866. As depicted 
in Figure 5A,B, five compounds out of the 50 that were tested (i.e., compounds 1, 2, 8, 16, 
and 19) led to significant cancer cell growth inhibition when coupled with FK866 while 
being minimally active when used alone. The remaining compounds were discarded since 
they were either completely inactive or caused remarkable anti-proliferative activity 
without FK866 (as observed in Figure 5A with compound 5 and compound 7). The 
complete inactivity of some compounds could be ascribed to their inability to bind 
NAPRT or to poor cell membrane permeability. The intrinsic anti-cancer effect of some of 
the compounds (i.e., without FK866) was considered to be indicative of non-specific 
toxicity that would possibly also affect healthy cells. 

Afterwards, we aimed at assessing the downstream effects of inhibiting both 
enzymes in cancer cells, particularly in terms of intracellular NAD concentration. In line 
with our previous observations with NAPRT silencing, by themselves 2-HNA and the 
new 5 putative NAPRT inhibitors failed to reduce intracellular NAD levels [23]. However, 
2-HNA and the new putative inhibitors did cooperate with the NAMPT inhibitor, FK866, 
to blunt intracellular NAD concentrations (Figure 5C). We next evaluated the ability of 
these compounds to sensitize OVCAR-5 cells to lower concentrations of FK866. Four out 
of the five compounds (i.e., compounds 1, 2, 8, and 19) were indeed able to sensitize 
OVCAR-5 cells when incubated (at 200 µM) with increasing concentrations of FK866 
(Figure 5D). The degree of sensitization varied among the putative inhibitors, with 
compound 8 exhibiting the most potent sensitization effect. Notably, the sensitizing 
activity of compound 8 was even more pronounced than that of the classical NAPRT 
inhibitor, 2-HNA (Figure 5D). On the other hand, compound 16 was the only compound 
that completely failed to sensitize the ovarian cancer cells to FK866, and thus it was not 
further investigated. 

 
 

F2711-0182 305.3042 49

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 10 of 21 
 

 

24 

 

F2711-0182 305.3042 49 

 

F6523-1712 367.4017 

25 

 

F2721-0331 346.2091 50 

 

F9994-0201 397.4078 

*M.W: Molecular weight 

2.2. Biological Annotation of the Selected Compounds 
2.2.1. In vitro Compound Screening 

To rapidly screen the 50 selected compounds for their ability to inhibit NAPRT, we 
used their capacity to sensitize the NAPRT-proficient ovarian cancer cell line, OVCAR-5, 
to FK866 as a reading frame (since this cell line is normally resistant to the NAMPT 
inhibitor but becomes sensitized to it through either NAPRT silencing or inhibition). By 
itself, the addition of putative NAPRT inhibitors is postulated to show minimal anti-
proliferative activity due to the ability of the cells to use the NAM that is present in the 
cell culture media to synthesize NAD [23]. OVCAR-5 cells were treated with the putative 
NAPRT inhibitors at 100 µM concentration with or without 100 nM FK866. As depicted 
in Figure 5A,B, five compounds out of the 50 that were tested (i.e., compounds 1, 2, 8, 16, 
and 19) led to significant cancer cell growth inhibition when coupled with FK866 while 
being minimally active when used alone. The remaining compounds were discarded since 
they were either completely inactive or caused remarkable anti-proliferative activity 
without FK866 (as observed in Figure 5A with compound 5 and compound 7). The 
complete inactivity of some compounds could be ascribed to their inability to bind 
NAPRT or to poor cell membrane permeability. The intrinsic anti-cancer effect of some of 
the compounds (i.e., without FK866) was considered to be indicative of non-specific 
toxicity that would possibly also affect healthy cells. 

Afterwards, we aimed at assessing the downstream effects of inhibiting both 
enzymes in cancer cells, particularly in terms of intracellular NAD concentration. In line 
with our previous observations with NAPRT silencing, by themselves 2-HNA and the 
new 5 putative NAPRT inhibitors failed to reduce intracellular NAD levels [23]. However, 
2-HNA and the new putative inhibitors did cooperate with the NAMPT inhibitor, FK866, 
to blunt intracellular NAD concentrations (Figure 5C). We next evaluated the ability of 
these compounds to sensitize OVCAR-5 cells to lower concentrations of FK866. Four out 
of the five compounds (i.e., compounds 1, 2, 8, and 19) were indeed able to sensitize 
OVCAR-5 cells when incubated (at 200 µM) with increasing concentrations of FK866 
(Figure 5D). The degree of sensitization varied among the putative inhibitors, with 
compound 8 exhibiting the most potent sensitization effect. Notably, the sensitizing 
activity of compound 8 was even more pronounced than that of the classical NAPRT 
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to blunt intracellular NAD concentrations (Figure 5C). We next evaluated the ability of 
these compounds to sensitize OVCAR-5 cells to lower concentrations of FK866. Four out 
of the five compounds (i.e., compounds 1, 2, 8, and 19) were indeed able to sensitize 
OVCAR-5 cells when incubated (at 200 µM) with increasing concentrations of FK866 
(Figure 5D). The degree of sensitization varied among the putative inhibitors, with 
compound 8 exhibiting the most potent sensitization effect. Notably, the sensitizing 
activity of compound 8 was even more pronounced than that of the classical NAPRT 
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2.2. Biological Annotation of the Selected Compounds
2.2.1. In Vitro Compound Screening

To rapidly screen the 50 selected compounds for their ability to inhibit NAPRT, we
used their capacity to sensitize the NAPRT-proficient ovarian cancer cell line, OVCAR-5, to
FK866 as a reading frame (since this cell line is normally resistant to the NAMPT inhibitor
but becomes sensitized to it through either NAPRT silencing or inhibition). By itself, the
addition of putative NAPRT inhibitors is postulated to show minimal anti-proliferative
activity due to the ability of the cells to use the NAM that is present in the cell culture media
to synthesize NAD [23]. OVCAR-5 cells were treated with the putative NAPRT inhibitors
at 100 µM concentration with or without 100 nM FK866. As depicted in Figure 5A,B,
five compounds out of the 50 that were tested (i.e., compounds 1, 2, 8, 16, and 19) led to
significant cancer cell growth inhibition when coupled with FK866 while being minimally
active when used alone. The remaining compounds were discarded since they were either
completely inactive or caused remarkable anti-proliferative activity without FK866 (as
observed in Figure 5A with compound 5 and compound 7). The complete inactivity
of some compounds could be ascribed to their inability to bind NAPRT or to poor cell
membrane permeability. The intrinsic anti-cancer effect of some of the compounds (i.e.,
without FK866) was considered to be indicative of non-specific toxicity that would possibly
also affect healthy cells.
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final concentration, except for 2-HNA, which was used at 1 mM). Each point is the mean of three 
experimental replicates normalized to the control. The green circles indicate the five most promising 
putative inhibitors, and the red circles represent 2-HNA as the control NAPRT inhibitor. (B) The 
viability results for the five most-promising NAPRT inhibitors from (A) are also represented in a 
bar graph. *, p < 0.05; **, p < 0.01 (C) OVCAR-5 cells were plated in 12-well plates (1 × 105 cells/well) 
and allowed to adhere overnight. The following day, the culture media were replaced with new 
media containing the respective treatments (i.e., with or without 100 nM FK866 and the putative 
NAPRT inhibitors, all at 100 μM final concentration, except for 2-HNA, which was used at 1 mM). 
After 24 h, intracellular NAD levels were measured. *, p < 0.05 (D) OVCAR-5 were plated in 96-well 
plates (2 × 103 cells/well) and allowed to adhere overnight. The following day, the culture media 
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increasing concentrations from 0.3 to 100 nM and the putative NAPRT inhibitors, added at 200 μM 
final concentration), and the plates were then incubated for 72 h. Afterwards, the cell viability was 
determined using the sulforhodamine B assay. 

To further confirm the observed sensitization effect of our putative inhibitors on the 
anti-tumor activity of NAMPT inhibitors, we extended our experiments in two additional 
NAPRT-expressing cancer cell lines (i.e., HCT116 and OVCAR-8). Consistent with our 
previous observations in OVCAR-5 cells, compound 8 and compound 19 also sensitized 
these other two cell models to FK866 when they were used at 100 µM concentration 
(Figure 6A–C). By contrast, compound 1 and compound 2, when used at the same 
concentration, failed to sensitize these two cancer cell lines to FK866, with compound 2 
even showing unspecific anti-proliferative activity in these models (Figure 6D,E). Since 
compound 8 (4-hydroxynicotinic acid) and 2-HNA are structural isomers, we decided to 

Figure 5. In vitro screening of the putative NAPRT inhibitors. (A) Graphical representation of the cell
viability results obtained from screening our selected compounds in ovarian cancer cells. OVCAR-5
cells were plated in 96-well plates (2 × 103 cells/well) and left to adhere overnight. The following
day, the culture media were replaced with new media containing the respective treatments (i.e., with
or without 100 nM FK866 and the putative NAPRT inhibitors, all at 100 µM final concentration,
except for 2-HNA, which was used at 1 mM). Each point is the mean of three experimental replicates
normalized to the control. The green circles indicate the five most promising putative inhibitors,
and the red circles represent 2-HNA as the control NAPRT inhibitor. (B) The viability results for
the five most-promising NAPRT inhibitors from (A) are also represented in a bar graph. *, p < 0.05;
**, p < 0.01 (C) OVCAR-5 cells were plated in 12-well plates (1 × 105 cells/well) and allowed to
adhere overnight. The following day, the culture media were replaced with new media containing
the respective treatments (i.e., with or without 100 nM FK866 and the putative NAPRT inhibitors, all
at 100 µM final concentration, except for 2-HNA, which was used at 1 mM). After 24 h, intracellular
NAD levels were measured. *, p < 0.05 (D) OVCAR-5 were plated in 96-well plates (2× 103 cells/well)
and allowed to adhere overnight. The following day, the culture media were replaced with new
media that contain the respective treatments (i.e., with or without FK866 at increasing concentrations
from 0.3 to 100 nM and the putative NAPRT inhibitors, added at 200 µM final concentration), and
the plates were then incubated for 72 h. Afterwards, the cell viability was determined using the
sulforhodamine B assay.

Afterwards, we aimed at assessing the downstream effects of inhibiting both enzymes
in cancer cells, particularly in terms of intracellular NAD concentration. In line with
our previous observations with NAPRT silencing, by themselves 2-HNA and the new
5 putative NAPRT inhibitors failed to reduce intracellular NAD levels [23]. However,
2-HNA and the new putative inhibitors did cooperate with the NAMPT inhibitor, FK866, to
blunt intracellular NAD concentrations (Figure 5C). We next evaluated the ability of these
compounds to sensitize OVCAR-5 cells to lower concentrations of FK866. Four out of the
five compounds (i.e., compounds 1, 2, 8, and 19) were indeed able to sensitize OVCAR-5
cells when incubated (at 200 µM) with increasing concentrations of FK866 (Figure 5D). The
degree of sensitization varied among the putative inhibitors, with compound 8 exhibiting
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the most potent sensitization effect. Notably, the sensitizing activity of compound 8 was
even more pronounced than that of the classical NAPRT inhibitor, 2-HNA (Figure 5D). On
the other hand, compound 16 was the only compound that completely failed to sensitize
the ovarian cancer cells to FK866, and thus it was not further investigated.

To further confirm the observed sensitization effect of our putative inhibitors on
the anti-tumor activity of NAMPT inhibitors, we extended our experiments in two ad-
ditional NAPRT-expressing cancer cell lines (i.e., HCT116 and OVCAR-8). Consistent
with our previous observations in OVCAR-5 cells, compound 8 and compound 19 also
sensitized these other two cell models to FK866 when they were used at 100 µM concen-
tration (Figure 6A–C). By contrast, compound 1 and compound 2, when used at the same
concentration, failed to sensitize these two cancer cell lines to FK866, with compound 2
even showing unspecific anti-proliferative activity in these models (Figure 6D,E). Since
compound 8 (4-hydroxynicotinic acid) and 2-HNA are structural isomers, we decided to
evaluate whether the remaining 2-HNA analogs [i.e., 5-hydroxynicotinic acid (5-HNA)
and 6-hydroxynicotinic acid (6-HNA)] are also capable of inhibiting NAPRT. We tested
this hypothesis in OVCAR-8 cells. Neither 5-HNA nor 6-HNA could recreate the effects of
compounds 8 and 2-HNA in terms of cell sensitization to FK866 (Figure 6F). We hypothesize
that this reflects the inability of these compounds to bind within the NAPRT enzymatic
pocket. Overall, these findings highlight the specificity of compound 8, since shifting the
position of the -OH group from position 4 to position 5 or 6 entirely abolished their ability
to sensitize cancer cells to FK866 (and thus, arguably, to inhibit NAPRT). Ultimately, these
experiments indicate that the NAPRT-inhibitory activity of these hydroxylated analogs of
nicotinic acid strictly relies on -OH substitution at position 2 or 4 of the pyridine ring.

In the PH pathway, NAPRT catalyzes the transfer of a phosphoribosyl group from
phosphoribosyl pyrophosphate (PRPP) to its substrate NA, thereby yielding nicotinic acid
mononucleotide (NAMN). The latter is converted into nicotinic acid adenine dinucleotide
(NAAD) and, finally, amidated into NAD (Figure 1). In order to confirm that the ability of
our new inhibitors to sensitize NAPRT-proficient cancer cells to FK866 is on-target, i.e., due
to NAPRT obstruction, we supplemented HCT116 and OVCAR-8 cells with NA or NAMN
(at 10 µM) while treating them with our putative NAPRT inhibitors, in the presence or
absence of FK866. Both NA and NAMN fully rescued these cells from the marked anti-
proliferative effect that was achieved by combining FK866 with 2-HNA, compound 8, or
compound 19 (Figure 6G,H). Taken together, these observations are in line with compound
8 and compound 19 being NAPRT inhibitors.
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Figure 6. Compound 8 and compound 19 sensitize ovarian and colon cancer cells to FK866 via
NAPRT inhibition. (A–F) HCT116 and OVCAR-8 were plated in 96-well plates (2 × 103 cells/well)
and allowed to adhere overnight. The following day, culture media were replaced with new media
containing the respective treatments (i.e., with or without FK866 at increasing concentrations from 1
to 100 nM and the putative NAPRT inhibitors, added at 100 µM final concentration), and the plates
were then incubated for 72 h. Afterwards, the cells were imaged using light microscopy as in (C),
and cell viability was determined using the sulforhodamine B assay. Data are mean ± SD of three
experimental replicates. (G,H) The same experimental procedure was employed as in (A–F). Single
concentrations of the NAPRT inhibitors (100 µM), 100 nM FK866, 10 µM NA, and 10 µM NAMN
were added. Data are mean ± SD of 4 experimental replicates. One representative experiment is
shown. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001; $$$$, p < 0.0001. The * symbols refer to the statistical
significance compared to the treatment with FK866 alone, whereas the $ symbols refer to the statistical
significance compared to the combined treatment with FK866 and the NAPRT inhibitors.

2.2.2. Biochemical Activity on Recombinant Human NAPRT

Given these results in cancer cells, we evaluated the activity of our candidates on
the recombinant human NAPRT protein. If the NAPRT enzyme is efficiently inhibited by
our compounds, it is postulated to consume less NA compared to what is observed in the
absence of NAPRT inhibitors. As expected, the chromatographic analysis revealed higher
NA and lower NAMN amounts when compounds 1, 2, 8, and 19 were added to the reaction
mixture, in line with their on-target inhibitory activity (data not shown). We performed
enzyme kinetic studies to determine the inhibition constant (Ki) of our putative inhibitors
and decipher the fine mechanism underlying their binding to the NAPRT enzyme (Table 3
and Figure 7). Analysis of the kinetic data (Vmax and Km in the presence of the different
inhibitors) suggests that compounds 1, 2, and 19 are un-competitive NAPRT inhibitors,
with Ki of 2281, 89, and 295 µM, respectively. Compound 8 shows similar potency as
compound 19 (Ki approximately equals 300 µM) and acts as a competitive NAPRT inhibitor,
i.e., it competes with NA for the NAPRT catalytic site, as inferred by the fact that Vmax was
not affected and that Km was increased, in the presence of compound 8 (Figure 7, Table 3).
In addition, the fact that compound 8 is one of the structurally closest analogs of 2-HNA
and NA also lends support to the proposed mechanism of action of this compound. Due
to the low potency of compound 1 on the human NAPRT enzyme (Ki equals 2.3 mM), in
addition to its limited anti-cancer activity in our cancer cell models, we decided to exclude
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this compound from further experiments. Despite the promising activity of compound 2 on
the purified NAPRT protein and in OVCAR-5 cells at 100 µM concentration when coupled
to FK866, a 200 µM concentration of the same compound showed remarkable activity in
the absence of FK866 in the same cell line (Figure 5D). Similar activity without FK866 was
also seen in OVCAR-8 and HCT116 cells at 100 µM (Figure 6D,E). Thus, in view of this
intrinsic toxicity, compound 2 was also excluded from further testing. Nonetheless, the core
structures of compound 1 and compound 2 could be a starting point for future compound
optimization steps. Ultimately, we decided to focus on compound 8 and compound 19 for
our subsequent analyses.

Table 3. Proposed mechanism of action for putative NAPRT inhibitors.

Compound ID Vendor ID Ki (µM) Vmax/Km Proposed Mechanism

1 F0020-0171 2281 Vmax ↓/Km ↓ Un-competetive
2 F0173-0133 88.99 Vmax ↓/Km ↓ Un-competetive
8 F1371-0219 307.5 Vmax =/Km ↑ Competitive

19 F2169-0490 295.1 Vmax ↓/Km ↓ Un-competitive
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Graphs represent Michaelis–Menten regression curves of NAPRT reactions performed in the presence
of different concentrations of compounds 1, 2, 8, and 19. The concentration-dependent inhibiting
effect on the NAPRT reaction is represented with different colors.

2.3. In Silico Solubility Prediction and Pharmacokinetic Characterization

In a previous study involving animal experiments, we were unable to dissolve 2-HNA
in saline at the desired concentration for intraperitoneal injections, and, thus, we used
its sodium salt as an alternative [23]. Poor water solubility is a major hurdle during the
drug development process, especially when a drug is meant to be administered orally or
parenterally [37]. It was estimated that approximately 40% of the new chemical entities
demonstrate modest solubility in water [37]. Given the promising pharmacological results
of our drug candidates compound 8 and compound 19, we addressed their physicochemi-
cal and pharmacokinetic parameters. In order to predict their solubility, we made use of
the SwissADME website, a publicly available online computational tool that characterizes
physicochemical parameters, ADME properties, and the drug-likeliness of a molecule [38].
Compound 8 and compound 19 possess favorable drug-like properties since they don’t
violate Lipinski’s rule of five. Based on 2 out of the 3 predictive models employed by the
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software to calculate water solubility, we found a 1.64- and a 2.25-fold improvement in
the predicted molar solubility of compound 8 compared to 2-HNA (reported as Log(S) in
Table 4). Likewise, the molar solubility of compound 19 was higher than that of 2-HNA
according to all 3 estimating methods (Table 4). Moreover, compound 8 and compound
19 had high predicted GI absorption. Compound 8 had the same bioavailability score
as 2-HNA and a higher bioavailability score than compound 19 (Table 4). Neither of the
two chemical entities seemed to be able to cross the blood–brain barrier (BBB). Finally,
neither compound 8 nor compound 19 was predicted to be a substrate of the efflux trans-
porter P-glycoprotein (Pgp), which is frequently associated with cancer resistance against
chemotherapeutics [39]. Collectively, these results indicate promising pharmacokinetic
features for compound 8 and compound 19.

Table 4. Predicted water solubility and additional pharmacokinetic properties of the two most
promising putative NAPRT inhibitors.

Compound
ID

Log S
(ESOL)

Log S
(Ali)

Log S
(SILICOS-IT)

GI
Absorption

Pgp
Substrate

BBB
Permeant

Bioavailability
Score

2-HNA −1.65 −1.97 −0.8 High No No 0.85
8 −1.44 −1.62 −0.8 High No No 0.85
19 −1.18 −1.77 −0.26 High No No 0.56

3. Discussion

We previously demonstrated that the prototypical NAPRT inhibitor, 2-HNA, syner-
gizes with FK866 in the killing of NAPRT-expressing cancer cells [23]. Herein, we report
on the identification of two additional chemical entities that function as NAPRT inhibitors
with antineoplastic activity comparable to 2-HNA and with desirable drug-like features.

From a biological standpoint, our studies of cell growth, cellular NAD content, and
the enzymatic activity of purified NAPRT unequivocally confirm that compound 8 and
compound 19 indeed inhibit this enzyme. Cell-based assays clearly demonstrated that
our best NAPRT inhibitor, compound 8 (4-hydroxynicotinic acid), but not 5-hydroxy
or 6-hydroxynicotinic acid, exhibited marked anti-cancer activity when combined with
FK866 while showing no significant growth inhibition when used alone. These results are
consistent with our previous work, showing that per se NAPRT silencing or inhibition do
strongly sensitize NAPRT-expressing cancer cells (such as OVCAR-5, OVCAR-8, as well
as other cell lines) to NAMPT inhibitors but by themselves have minor anti-proliferative
activity [23]. On the other hand, Chowdhry and colleagues showed that the inducible
depletion of NAPRT caused the regression of OV4 xenografts (PH-amplified ovarian cancer),
implying that NAPRT inhibitors might be effective as single agents in similar cancer models
that highly depend on the PH pathway to survive [24]. These differences between our
studies and the work by Chowdhry and coworkers could be explained by the different cell
lines that were utilized.

Our enzyme kinetics analyses indicate that compound 8, similar to 2-HNA, acts as
a competitive NAPRT inhibitor that competes with NA for its enzymatic binding pocket,
whereas compound 19 un-competitively inhibits NAPRT. Furthermore, the specificity
of our inhibitors was testified by experiments demonstrating that the chemo-sensitizing
activity of our inhibitors was abolished upon supplementing cancer cells with sufficient
amounts of the substrate (NA) or the downstream product (NAMN) of the NAPRT enzyme.
However, similar to the analyses conducted in the case of NAMPT inhibitors [40,41],
additional crystallographic studies of the NAPRT enzyme in complex with one or more
of our identified inhibitors are warranted to precisely disclose the binding mode of these
compounds and describe their interactions within the enzymatic pocket.

Very recently, we demonstrated that gut microbiota caused leukemia cells to display
resistance to FK866-induced cell death in vivo when mice were fed with NAM-rich diets
through gut-microbiota-derived NA and the consequent activation of the PH pathway in
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cancer cells (since bacteria use their enzyme nicotinamidase to convert NAM to NA and
thereby interconnect the salvage and the PH pathways) [42,43]. Accordingly, coupling
FK866 therapy to our NAPRT inhibitors would presumably reverse the protective effect of
the intestinal bacteria and restore the anti-tumor effect of NAMPT inhibitors in vivo. Since
the in vitro anti-cancer activity observed upon combining NAMPT and NAPRT inhibitors
was abrogated when NA was exogenously added in excess to the culture media, it could be
argued that the in vivo activity of this combination therapy might be compromised when
NA levels rise considerably in the body, as could happen in response to NA- or NAM-rich
diets or to NA supplements (e.g., NA is used in gram doses in cases of dyslipidemia due to
its lipid-modifying effects) [44]. Future studies should address whether the compounds
we identified as NAPRT inhibitors actually show antitumor activity in vivo and whether
conditions characterized by high circulating NA levels actually hamper their efficacy. Fur-
ther improvements in the affinity of these NAPRT inhibitors will increase their therapeutic
potential and also reduce the risk of reduced activity in the presence of high NA availability.

4. Materials and Methods
4.1. Reagents and Cell Lines

OVCAR-5 and OVCAR-8 cell lines were obtained from the NCI-60 panel. The
HCT116 cell line was purchased from ATCC (LGC Standards S.r.l., Milan, Italy). The
cells were maintained in RPMI-1640 cell culture medium supplemented with 10% heat-
inactivated fetal bovine serum (FBS; Gibco, Waltham, MA, USA) and 1% antibiotics [peni-
cillin (50 units/mL)/streptomycin (50 µg/mL) (Life Technologies Italia, Monza, Italy)].
Cells were incubated at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air. FK866
was bought from the NIMH Chemical Synthesis and Drug Supply Program. All chemical
compounds listed in Table 2 were obtained from Life Chemicals. 5-hydroxynicotinic acid
and 6-hydroxynicotinic acid were purchased from Thermo Fisher Scientific. Stock solutions
of all the putative NAPRT inhibitors were prepared by dissolving the compounds in DMSO
at 100 mM. NA, 2-HNA, and NAMN were obtained from Sigma Aldrich S.r.l.

4.2. Sulforhodamine B (SRB)Assay

To evaluate the anti-proliferative activity of the putative NAPRT inhibitors in the
presence or absence of FK866, the sulforhodamine B colorimetric assay was employed [45].
OVCAR-5, OVCAR-8, or HCT116 cells were seeded in 96-well plates (2 × 103 cells/well)
and incubated overnight at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air to
allow cells to adhere. The day after, the old medium was removed from each well and
replaced with a fresh culture medium containing the desired compounds at the indicated
final concentrations in triplicate, and the plates were subsequently incubated at 37 ◦C in
a humidified atmosphere of 5% CO2 and 95% air for 72 h. Afterwards, cold 50% (w/v)
trichloroacetic acid (TCA) was gently added to each well to fix the cells (final concentration,
10% TCA). The plates were incubated at 4 ◦C for 20 min, then washed four times with tap
water and left to air-dry. Thereafter, a SRB solution (0.057% w/v in 1% acetic acid) was
added to stain the fixed cells, and the plates were shaken for 10 min at room temperature.
After staining, the SRB solution was removed, and the plates were washed four times
with 1% (v/v) acetic acid and left to air-dry. To solubilize the protein-bound dye, 100 µL
of 10 mM trizma base was next added, and the plates were shaken for 10 min at room
temperature. Finally, the absorbance was measured at a wavelength of 515 nM by an
automated plate reader (Tecan Infinite® 200 PRO instrument).

4.3. Intracellular NAD Levels Measurements

To assess whether the antitumor activity of the newly identified putative NAPRT
inhibitors, when combined with FK866, was due to their ability to decrease intracellular
NAD levels, we performed NAD measurement as follows: 1 × 105 OVCAR-5 cells were
plated in each well of a 12-well plate and left to adhere overnight. The day after, cells were
treated with combinations of NAPRT inhibitors and FK866 and incubated at 37 ◦C in a
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humidified atmosphere of 5% CO2 and 95% air for 24 h. The NAPRT inhibitors were used
at 100 µM, except for 2-HNA, which was used at 1 mM, and FK866 at 100 nM. After 24 h,
cells were lysed with 0.6 M perchloric acid (PCA) at 4 ◦C and manually detached by a
scrapper. The cell lysates were subsequently collected, transferred to new tubes, and diluted
in 100 mM Na2HPO4 at pH 8. To determine the amount of NAD+, we utilized a sensitive
cyclic assay that takes advantage of the enzymatic activity of alcohol dehydrogenase [46].
Briefly, 100 µL of the diluted samples were pipetted into a white 96-well plate, followed
by the addition of 100 µL of the cycling reaction mixture (100 mM Na2HPO4, 90 U/mL
alcohol dehydrogenase, 10 µM flavinmononucleotide, 2% ethanol, 130 mU/mL diaphorase,
2.5 µg/mL resazurin, and 10 mM nicotinamide). Fluorescence increase was measured every
60 s over 30 min using a fluorescence plate reader (544 nm excitation, 590 nm emission).
The NAD content was calculated from a standard curve and normalized against the total
protein content that was previously quantified for every test sample using the standard
Bradford colorimetric assay (Bio-Rad).

4.4. Recombinant Human NAPRT Production and Purification

The coding sequence for human NAPRT was cloned in a pET23a vector to insert an
N-terminal His-Tag. The recombinant protein was produced in BL-21 (DE3) E. coli cells as
follows: a starting culture of 5 mL was grown overnight at 37 ◦C in Luria–Bertani medium
supplemented with 100 µg/mL ampicillin. The day after, the culture was diluted at 1:100 in
a fresh medium and incubated at 25 ◦C with the addition of 1 mM NA. When 0.3-0.4 OD600
was reached, protein expression was induced with 1 mM IPTG, and bacteria growth was
continued overnight at 20 ◦C. The day after, bacteria were harvested by mild centrifugation
(5000 rpm, 10 min) in a Beckman Coulter J6-HC centrifuge and resuspended in 1/50 of
the original volume with an equilibration buffer composed of 100 mM K2HPO4, pH 7.4,
300 mM KCl, and 5 mM imidazole. The cell suspension was sonicated for 10 min at 10 s
intervals to disrupt the bacteria cells, and the crude extract was clarified by centrifugation
(6000 rpm, 15 min). The recombinant human NAPRT was purified by His-tag affinity
chromatography as follows: the supernatant was batch-mixed for 1 h at 4 ◦C with a HisPur
Cobalt resin (Thermo Fisher Scientific, Pittsburg, PA, USA) on a rotating mixer, then the
resin was packed into a chromatographic column. The flow-through and the subsequent
10 mM imidazole wash buffer were discarded. The recombinant protein was finally eluted
three times with 1 mL of an equilibration buffer containing 150 mM imidazole. The three
elutions were merged, and the protein was concentrated with a Protein Concentrator
10K (Pierce-Thermo Fisher Scientific, Pittsburg, PA, USA). The concentrated protein was
dialyzed in a SnakeSkin™ dialysis tubing 10K (Thermo Fisher Scientific) overnight at
4 ◦C against 50 mM Tris/HCl, pH 7.4, 10 mM KCl, and 1 mM DTT to remove the imi-
dazole of the elution buffer. The dialyzed protein was quantified by spectrophotometer
absorbance at 280 nm and stored at 4 ◦C after the addition of 500 µM PRPP to stabilize the
protein structure.

4.5. Enzymatic Activity Assays and Ki Calculation

To determine if the effects of the putative NAPRT inhibitors on cell viability and
NAD content were indeed caused by an inhibition of NAPRT enzymatic activity, we set
enzymatic reactions with the recombinant human NAPRT, analyzed NAMN formation
by HPLC, and the Ki was calculated. For each NAPRT inhibitor, reactions with variable
NA concentration (between 10 and 640 µM) and variable inhibitor concentration (between
0 and 1000 µM) were performed at 37 ◦C for a time in which the amount of the product
NAMN did not exceed the 10% of the total NA amount. The reactions were blocked by
heating samples at 85 ◦C for 3 min, and the protein was removed by centrifugation. The
clarified reactions were analyzed by HPLC with an XTerra MS C18 Column, 125Å, 5 µm,
4.6 mm × 150 mm (Waters) in 100 mM phosphate buffer pH 5 with a gradient of methanol
from 0 to 30%. The initial velocities (V0) were calculated and inserted in the Michaelis–
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Menten equation, and subsequently, the Ki of each NAPRT inhibitor was calculated with
GraphPad Prism 8.

4.6. In Silico Screening of the Life Chemicals HTS Compound Collection

In order to identify new drug-like small molecules with inhibitory properties towards
human NAPRT, we performed a high-throughput docking virtual screening of the Life
Chemicals HTS Compound Collection into the crystal structure of human NAPRT (PDB
code: 4YUB). The protein structure was processed with the Protein Preparation Wizard
(Schrodinger Maestro v. 2017-4), and 18 Å grids encompassing the catalytic pocket of human
NAPRT were generated for the functional human NAPRT dimer and its monomer. Ligands
were standardly prepared with Gypsum-DL and docked into the two generated models
of human NAPRT with AutoDock Vina [47,48]. The top-500 ranked binding poses from
each virtual screening were rigorously evaluated to prioritize compounds that displayed
favorable interactions with key catalytic residues and suitable fitting in the NAPRT active
site. Selected docking hit compounds were purchased from commercial sources and tested
in vitro as putative NAPRT inhibitors.

4.7. Statistics

Statistical analyses were carried out with GraphPad Prism software v. 8 (GraphPad
Software). All two-group comparisons were performed using an unpaired t-test. p-values
less than 0.05 were considered statistically significant.

5. Conclusions

In summary, we took advantage of in silico drug design techniques to identify two
small molecules that selectively inhibit NAPRT. The hit rate observed with our virtual
screening procedure is essentially consistent with the hit rate obtained in our previous in sil-
ico screenings, including work that led us to discover the first selective SIRT6 inhibitors [49].
These studies further underscore the advantage of virtual screening approaches for drug
discovery when compared to the traditional high-throughput screening procedures that
are time- and resource-intensive and that typically achieve lower hit rates [50]. Our best
candidates, compound 8 and compound 19, were able to restore the sensitivity of NAPRT-
expressing cancer cells to NAMPT inhibitors through NAPRT inhibition. Similar to 2-HNA,
they showed anti-cancer activity in the micromolar range. Although a substantial im-
provement in the potency of NAPRT inhibitors has not been achieved yet, the structural
backbones of these two inhibitors lend themselves to future optimization efforts. Lastly,
computational analysis supported desirable drug-like and pharmacokinetic features of
these agents. Altogether, our study lays the background for further studies of these new
NAPRT inhibitors, including in vivo testing in mouse tumor models and further drug
optimization steps.
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Abstract: Introduction: Epidermal growth factor receptor (EGFR) mutated NSCLC is best treated
using an EGFR tyrosine kinase inhibitor (TKI). The presence and accessibility of EGFR overexpression
and mutation in NSCLC can be determined using radiolabeled EGFR TKI PET/CT. However, recent
research has shown a significant difference between image qualities (i.e., tumor-to-lung contrast)
in three generation EGFR TKIs: 11C-erlotinib, 18F-afatinib and 11C-osimertinib. In this research we
aim to develop a physiological pharmacokinetic (PBPK)-model to predict tumor-to-lung contrast
and as a secondary outcome the uptake of healthy tissue of the three tracers. Methods: Relevant
physicochemical and drug specific properties (e.g., pKa, lipophilicity, target binding) for each TKI
were collected and applied in established base PBPK models. Key hallmarks of NSCLC include:
immune tumor deprivation, unaltered tumor perfusion and an acidic tumor environment. Model
accuracy was demonstrated by calculating the prediction error (PE) between predicted tissue-to-blood
ratios (TBR) and measured PET-image-derived TBR. Sensitivity analysis was performed by excluding
each key component and comparing the PE with the final mechanistical PBPK model predictions.
Results: The developed PBPK models were able to predict tumor-to-lung contrast for all EGFR-TKIs
within threefold of observed PET image ratios (PE tumor-to-lung ratio of −90%, +44% and −6.3%
for erlotinib, afatinib and osimertinib, respectively). Furthermore, the models depicted agreeable
whole-body distribution, showing high tissue distribution for osimertinib and afatinib and low tissue
distribution at high blood concentrations for erlotinib (mean PE, of −10.5%, range −158%–+190%,
for all tissues). Conclusion: The developed PBPK models adequately predicted the image quality of
afatinib and osimertinib and erlotinib. Some deviations in predicted whole-body TBR lead to new
hypotheses, such as increased affinity for mutated EGFR and active influx transport (erlotinib into
excreting tissues) or active efflux (afatinib from brain), which is currently unaccounted for. In the
future, PBPK models may be used to predict the image quality of new tracers.

Keywords: NSCLC; EGFR TKI; PBPK modeling; PET/CT
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1. Introduction

Lung cancer is one of the most prevalent cancer types with over 2 million new cases
each year worldwide [1–3]. Chemotherapy has long been the sole treatment of metastatic
nonsmall cell lung cancer (NSCLC), but over the past decade, targeted therapies against
specific oncogenic driver pathways have been developed [4]. One of these oncogenic driver
pathways is the epidermal growth factor receptor (EGFR) pathway [5]. An activating
mutation in the kinase domain of the EGF receptor can lead to activation of the receptor.
EGFR tyrosine kinase inhibitors (TKIs) block this activating pathway [5,6]. In recent years,
three generations of EGFR-TKIs have been developed. First-generation EGFR inhibitors
such as erlotinib bind reversibly to EGFR harboring mutations and to a lesser extent to
wild-type EGFR [5–7]. To overcome resistance, second-generation TKIs such as afatinib
were developed, which bind irreversibly to EGFR [6]. To achieve more selective binding to
T790M mutant EGFR, third-generation TKIs such as osimertinib were developed [8]. These
three generations of TKIs vary in potency and binding characteristics [9–13]. Treatment using
EGFR-TKIs has shown better response rates and longer durations of response and has become
the standard of care in patients where an activating EGFR mutation is present [1,3,14].

In recent years, research has been conducted using positron emission tomography
(PET) to assess EGFR mutational status and to explore PET drug uptake as a predictive
biomarker for response to EGFR-TKI treatment. Three generations of EGFR-directed
PET tracers were developed by our group and the tracer uptake was studied in patients
exposed to 11C-erlotinib, 18F-afatinib and 11C-osimertinib [15–20]. Such PET tracers can
be used to predict whole-body and tumor drug uptake and thereby guide EGFR-TKI
drug treatment. In a recent study, we compared published data from NSCLC patient
scans of the three generations radiolabeled EGFR TKIs [21]. Three tracers were analyzed:
11C-erlotinib, 18F-afatinib and 11C-osimertinib. Tracer uptake was quantified using tumor-
to-blood ratio (TBR). Previous research has shown that TBR is an adequate measure for
quantification of tracer uptake in 11C-erlotinib and 18F-afatinib, and could also be applied
for 11C-osimertinib [15,20,21]. Furthermore, tumor-to-lung contrast was used to assess PET
image quality of each tracer. 11C-osimertinib showed a negative contrast: tumor-tissue
uptake was 20% lower than surrounding lung tissue. In contrast, 18F-afatinib showed a
better contrast, 96% higher in tumor tissue than in surrounding tissue. 11C-erlotinib image
quality was deemed superior, with a tumor-to-lung contrast value of 178% [21].

Based on our analyses [21], we hypothesized that the physicochemical drug proper-
ties may explain some of the variability in penetration of the tracers in different tissues.
Important physicochemical properties are lipophilicity (log P) and basicity, defined by
the pKa (negative log of the acid dissociation constant or Ka value). Lipophilicity affects
protein binding (e.g., albumin (ALB)) and transport and binding to neutral lipids and
phospholipids (NL/NP) in the cell membranes. A strong basic drug (a compound with a
high pKa), is highly protonated at physiological (plasma) pH levels, whereas weak bases
(pKa < 7) are mostly unprotonated at physiological pH levels (Figure 1A). Protonation,
whether an H+ atom is added to a base, affects transport over negatively charged acidic
phospholipid membranes (Figure 1C). Unprotonated lipophilic drugs will bind to albumin
(Figure 1D) and membrane NL/PL (Figure 1E,F).
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osimertinib and dashed lines represent afatinib. (A) pH versus protonation (Equation (A)). (B) pH
of the intracellular water versus predicted TBR, tumor-to-blood ratio (Equation (B)). (C) AP-, acidic
phospholipids versus predicted TBR (Equation (C)). (D) Albumin tissue-to-plasma ratio versus pre-
dicted TBR (Equation (D)). (E, F) fraction of neutral lipids and phospholipids versus predicted TBR
(Equation (E)). (G) EGFR tissue concentration versus predicted TBR. pTBR: predicted tumor to blood
ratio, BH: protonated base, AP-: acidic phospholipids, EGFR: epidermal growth factor receptor, Fiw:
fraction intracellular water, B:P: blood to plasma partition coefficient of compound, Fu: fraction
unbound drug of compound, pHiw: pH of intracellular water, pHp: pH of plasma, Fnp: fraction of
neutral phospholipids, Fnl: fraction of neutral lipids, pKa: basicity, Ka: association constant.

Equations:

Fraction BH+ =
1

1 + 10pKa−pH (1)

pTBRpHiw or contribution pH =

(
1 + 10pKa−pHiw

1 + 10pKa−pHp ∗ f iw
)
∗ Fu

B : P
(2)

pTBRAP− or AP−binding =

(
Ka ∗ [AP−] ∗ 10pKa−pHiw

1 + 10pKa−pHp

)
∗ Fu

B : P
(3)

pTBRALB or Albumin binding =

(
Ka, ALB ∗ [ALB, tissue]

[ALB, plasma]

)
∗ Fu

B : P
(4)

pTBRLipids or Lipid binding =

(
P ∗ Fnl + (0.3P + 0.7) ∗ Fnp

1 + 10pKa−pHp

)
∗ Fu

B : P
(5)

pTBREGFR or EGFR binding =

(
[EGFR]

Kd ∗
(
1 + 10pKa−pHiw)

1 + 10pKa−pHp ∗ f iw

)
∗ Fu

B : P
(6)

Because of the differences in basicity, we hypothesize that lysosomal sequestration,
or the trapping of the tracer in the lysosome, plays a role in the differences in tracer up-
take. Lysosomes are acidic membrane-bound organelles which are capable of digesting
biomolecules [22]. Since the pH level of the lysosome is lower (i.e., the lysosome is more
acidic) than the cytosol, protonation will occur here to a greater extent than in the neutral
environment of the cytosol (Figure 1A). When protonated transport through the lysosomal
membrane decreases, it leads to “trapping” of the protonated base in the lysosome. Lyso-
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somal sequestration is a well-known cellular distribution pattern and may cause intrinsic
resistance to strong basic EGFR-TKIs due to decreased cytosolic concentrations and thereby
less availability for EGFR binding [23,24].

In addition to EGFR abundance, other factors in the microenvironment of the tumor
may predict the tumor-to-lung contrast. These compound- and tissue-specific properties
may influence the whole-body distribution resulting in different tumor-to-lung contrast of
the three compounds.

Biodistribution of small molecules, such as EGFR-TKIs, related to compound- and
tissue-specific properties can be described using physiologically based pharmacokinetic
models (PBPK). A physiologically based pharmacokinetic model (PBPK model) is a mathe-
matical, mechanistical description of a physiological system where compartments are used
to represent various tissues in the NSCLC population. Each compartment corresponds with
physiological volumes of each tissue/organ [25]. Although PBPK models are frequently
used in pharmacology research, no prior research has been done using PBPK models in
relationship to PET tracers. An advantage of such mechanistic models is its predictive
potential. In this study, we developed a PBPK model reflecting the essential features of
tissue distribution of EGFR-TKIs with the primary aim to predict the image quality by
predicting the right tumor-to-lung contrast. As a secondary aim, the model was used to
predict the whole-body distribution. When fully validated, mechanistic PBPK models can
be applied to predict tumor drug uptake in a wide array of diseases and structurally diverse
compounds, and can be used to predict the image quality of new tracers—drugs with large
tumor/tissue contrast.

2. Results
2.1. Components of the Mechanistical PBPK Model

The mechanistical PBPK model consists of the base model for each TKI, lysosomal
sequestration for the strong bases (afatinib and osimertinib), tumor immune deprivation,
unaltered tumor perfusion, EGFR target binding and a more acidic extracellular water
(i.e., water located just outside the tumor cells in the tumor microenvironment) in tumor
tissue. Each component added to the literature based on physicochemical base models
was analyzed during the sensitivity analyses (below). The model, including unaltered
perfusion but without a tumor vascularization coefficient, optimally predicted the tumor-
to-lung contrast of all three EGFRs. See Supplemental Materials S-IV for full analysis
of the mechanistical model including vascularization versus the final model excluding
this component.

2.2. PBPK Model Validation Using PET Data

The tumor-to-lung contrast was predicted using the mechanistic PBPK model to
visualize differences in image quality observed in PET imaging, as shown in Figure 2A. The
predicted TBR by using the final PBPK model are also shown in Figure 2B. Both observed
and predicted TBR values showed high uptake of osimertinib and afatinib in lung and
tumor tissue (TBR > 1) and high blood concentrations compared to tissue concentrations
for erlotinib (TBR < 1, Figure 2A,B). The tumor-to-lung contrast for each EGFR TKI was
predicted within the established boundaries, i.e., within threefold of the observed value.
Furthermore, the model correctly predicts a tumor-to-lung contrast of >1 for erlotinib and
afatinib, and <1 for osimertinib (Table 1).
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black line represents the mean and the dashed lines a factor 3 of both sides of zero. Percentage of 
predictions falling within 3-fold: erlotinib 16.6%, afatinib 33.3% and osimertinib 100%. 
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EGFR binding 0.21% 16.73% 0.14% 
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NL/NP 1.12% 0.01% 0.00% 
Albumin 73.01% n.a. n.a. 

AP- n.a. 32.63% 39.74% 

Figure 2. The association between PET-image-derived TBR and model-predicted TBR. (A) PET-image-
derived TBR (left) vs. (B) model-predicted TBR of lung and tumor. (C) PET-image-derived TBR (left)
vs. (D) model-predicted TBR of all tissues of interest. For patient data, standard deviations are given.
(E) Bland–Altman plot showing accuracy of the model to predict tissue uptake. The solid black line
represents the mean and the dashed lines a factor 3 of both sides of zero. Percentage of predictions
falling within 3-fold: erlotinib 16.6%, afatinib 33.3% and osimertinib 100%.
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Table 1. Contribution of the different components in the final mechanistic PBPK models to the
predicted TBR in the lung and the tumor.

Erlotinib Afatinib Osimertinib
Lung

EGFR binding 0.21% 16.73% 0.14%
Lysosomal trapping n.a. 49.19% 59.16%

NL/NP 1.12% 0.01% 0.00%
Albumin 73.01% n.a. n.a.

AP- n.a. 32.63% 39.74%
IW 14.54% 1.08% 0.72%
EW 0.36% 0.36% 0.23%

Tumor
EGFR binding 1.89% 72.17% 1.85%

Lysosomal trapping n.a. 11.99% 42.79%
NL/NP 1.05% 0.00% 0.00%
Albumin 72.32% n.a. n.a.

AP- n.a. 14.63% 52.91%
IW 13.71% 0.48% 0.96%
EW 11.02% 0.73% 1.49%

NL/NP neutral (phospho)lipids AP- acidic phospholipids IW intracellular water EW extracellular water.

Table 1 describes the contribution of different components in the mechanistic PBPK
model. Erlotinib binds extensively to albumin in tissue, whereas osimertinib and afatinib
predominantly bind to AP- in the cellular membranes and are sequestered in the lysosome.
Substantial decrease in lysosomal sequestration was predicted for both strong basic EGFR-
TKIs in the less lysosome-rich tumor in comparison with lung tissue. Tumor EGFR binding
of afatinib was predicted to be extensive for and comprised 72.17% of all tissue binding,
whereas for erlotinib and osimertinib the model showed that only a minor fraction of the
tissue fraction bound to EGFR (1.89 and 1.85%, respectively). The whole-body distribution
of the three EGFR-TKIs was described by the mechanistic PBPK models. The predicted TBR
values by the mechanistic PBPK models are shown in Figure 2D compared to the measured
TBR (obtained during PET imaging, Figure 2C).

As secondary outcome, the mechanistical PBPK model is able to predict the overall
body distribution of the TKIs, with extensive distribution to most tissues for osimertinib
and afatinib and limited tissue penetration for erlotinib. The observed and predicted TBR
values of osimertinib and afatinib in most tissues were >1 and for erlotinib <1 (Figure 2C,D).
The TBR predicted by the mechanistic PBPK model correlated strongly with the PET
imaging data (r2: 0.593 with p < 0.0003; α = 0.01) with a mean PE of −10.5% (CI95% of
the data: −126.0 to 104.9, Figure 2E). For afatinib, 33.3% of tissues were predicted within
a factor of 3 of the observed value. The data point falling outside this range represented
brain uptake of afatinib, and was predicted to be 189.7% times higher than observed, and
tumor predictions above the 3-fold limit of the observed mean value (Table 2). However,
for osimertinib, 100% of tissues were predicted to be within 3-fold of the observed tissue
uptake of PET imaging. For erlotinib, the PBPK model predicted the TBR compared to
the observed ratio less accurately: only 16.6% of TBR was predicted within 3-fold of the
observed values. The lung was predicted accurately with a PE of −58.8%. However, the
predicted TBR of spleen, kidney, bone and tumor were underestimated (Table 2).

147



Pharmaceuticals 2022, 15, 796

Table 2. PET-image-derived tissue-to-blood ratios compared to predicted TBR in all tissues of interest.
SD is given in brackets.

Erlotinib Afatinib Osimertinib

Predicted Observed Prediction
Error (%) Predicted Observed Prediction

Error (%) Predicted Observed Prediction
Error (%)

Brain 0.13 n.a. n.a. 2.85 0.08 (0.03) 189.7 1.52 0.79 (0.5) 62.7
Lung 0.28 0.51 (0.2) −58.8 6.89 2.54 (1.2) 92.4 3.11 7.01 (1.6) −77.1

Spleen 0.17 1.46 (0.4) −157.8 48.72 13.23 (2.3) 114.6 25.33 18.09 (7.7) 33.3
Kidney 0.21 1.69 (0.6) −155.6 26.20 6.93 (1.8) 116.3 10.48 5.61 (2.0) 60.6

Bone 0.14 1.23 (0.2) −158.3 2.72 4.81 (2.0) −55.3 1.48 4.24 (0.7) −96.6
Tumor 0.30 1.42 (0.5) −131.1 15.36 3.60 (2.4) 124.1 2.33 5.60 (2.0) −82.4

2.3. Sensitivity Analysis

The influence of including only a pH-driven approach for lysosomal sequestration
(excluding lysosomal membrane-binding distribution [26] (Supplemental Materials S-III,
Equation (S7)) in the PBPK model was simulated. The correct tumor-to-lung contrast was
not simulated by using this simplified approach for lysosomal sequestration, indicated by
the increase in PE for both afatinib and osimertinib (Afatinib PE 45% to 93%, Osimertinib:
−6.3% to +27%; see Supplemental Materials S-IV, Table S1). Although the PE decreased for
lung TBR in afatinib, tumor TBR remained relatively similar, leading to a worse outcome
when tumor-to-lung contrast was simulated.

The influence of EGFR on the mechanistic PBPK model was researched by simulation
of the PBPK model without EGFR binding. This PBPK model without EGFR was not able
to capture the right tumor-to-lung contrast for mainly afatinib (PE 44% to −62%). Contrary
to the observed contrast, without EGFR target binding a higher uptake in lung than in
tumor was predicted for afatinib. (Supplemental Materials S-IV, Table S1) The PBPK model
including EGFR was able to capture the image quality by predicting the right predictive
values in 33.3% of tissues for afatinib, 100% (osimertinib) and 16.6% (erlotinib), within
3-fold of the observed values (Supplemental Materials S-IV, Table S1).

Immune deprivation in the tumor tissue may lead to less macrophages and type II
cells in the tumor core, influencing distribution to the tumor. In the final model, this
is corrected by adding the fraction Fcell to healthy lung tissue, but not to tumor tissue,
simulating immune deprivation in tumor tissue. To analyze whether this difference in
immune cell presence plays a role in determining drug distribution, we added the same
fraction of immune cells to the tumor tissue as well. This model showed a worse outcome
when compared to the mechanistic model as described above (Supplemental Materials
S-IV), leading to a decrease in accuracy predicting afatinib tumor tissue (PE 124% to 130%)
and a decrease in accuracy predicting tumor-to-lung contrast for both afatinib (PE 45% to
53%)) and osimertinib (PE −6.3% to 24%, Supplemental Materials S-IV, Table S1). Since
erlotinib is a weak base, immune deprivation was not simulated.

Using the mechanistic PBPK model, we hypothesized that not just perfusion but also
vascularization of the tumor determines tumor drug penetration. Histological analysis
of the healthy lung tissue samples and adenocarcinoma samples yielded a vasculature
coefficient of 0.36, indicating that tumor tissue shows approximately 2.8 times less vessels
per mm2 tissue than lung tissue. We assumed that all three EGFR TKIs were perfusion
independent [15,20]. The influence of the variability in vascularization between tumor and
nontumorous lung tissue was tested by including this vasculature reflection coefficient.
The prediction of lung uptake decreased by including this parameter for all TKI, compared
to the final model, presuming unaltered tumor perfusion (Supplemental Materials S-IV,
Table S1, PE −90 to −152%, 45% to −56% and −6.3 to −99% for erlotinib, afatinib and
osimertinib, respectively). Therefore, only the perfusion coefficient and not the vasculature
coefficient was retained in the final mechanistic PBPK model.

The extracellular water of the tumor microenvironment might become more acidic,
leading to a pH shift from 7.4 to 6.7. To determine the influence of this pH change, a
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simulation was used. Therefore, the model was simulated including the pH change and
without. The results showed that taking into account the more acidic extracellular water
resulted in more precise prediction. Excluding the more acidic tumor microenvironment
mainly affected erlotinib (PE −90 to −93%). The effect on afatinib and osimertinib was
minimal (PE 44 to 44% and PE −6.3 to −7.5%, respectively).

3. Discussion

The PBPK model in this study was developed to capture essential features of tissue
distribution by extending previously published physicochemical base models with EGFR
binding and lysosomal sequestration and tumor immune deprivation at unrestricted tumor
perfusion [8,9,19]. The developed mechanistical PBPK model was able to capture the right
whole-body distribution with a high tissue distribution for osimertinib and afatinib and
low tissue distribution and high whole blood concentrations for erlotinib. Furthermore, the
model captured the right tumor-to-lung contrast for all EGFR-TKIs and therefore was able
to predict image quality.

11C-erlotinib reached relatively high concentrations in the blood compared to tissues
(TBR < 1), compared to 18F-afatinib and 11C-osimertinib. This relates to a small whole-body
volume of drug distribution, which is similar to the volume of distribution estimated at
therapeutic dose levels (erlotinib 232 L, afatinib 2370 L and osimertinib 918 L) [12,27,28].
We have shown that our PBPK model based on physicochemical drug properties of the
TKIs predicted these differences in distribution profiles. Furthermore, the negative tumor-
to-lung contrast as seen by 11C-osimertinib is also predicted by the PBPK model including
these parameters.

For osimertinib, we hypothesized that a lower lysosomal volume in tumors, assuming
an immune suppressive microenvironment, would lead to a decreased cellular concentra-
tion of osimertinib compared to lung tissue. Indeed, this resulted in a correctly predicted
tumor-to-lung contrast for osimertinib. Since the decrease in lysosomal sequestration
mainly impacts the tumor uptake (Table 2), we showed that the low tumor-to-lung contrast
for osimertinib may be explained by immune deprivation and subsequent decrease in lyso-
somal volume in tumor tissue. The same phenomenon was observed for other TKIs such as
nintedanib where increased lysosomal number and lysosomal size decreases sensitivity
toward these drugs [29]. This hypothesis is further strengthened by the sensitivity analysis
where immune deprivation is excluded from the model. This model was less accurate in
predicting uptake, indicating that immune cells play a significant role in tissue uptake.

For afatinib, the predicted decrease in lysosomal sequestration in tumor compared to
lung was accompanied by a relative high percentage of EGFR binding (Table 2). For all
three compounds, the tumor-to-lung contrast was predicted adequately after accounting
for EGFR binding in the model. For afatinib, EGFR binding had the highest influence on
tumor distribution in the mechanistical PBPK model due to its low dissociation constant
(KD) [9,10]: EGFR binding showed the highest contribution to the overall tissue uptake. As
shown in the sensitivity analyses, when EGFR binding is removed, tumor-to-lung contrast
was highly underpredicted. However, tumor-tracer uptake of erlotinib and osimertinib
was underpredicted by our model and for most tissues, erlotinib predictions fell outside
of the 3-fold range. We hypothesize that the variation in EGFR abundance and target
affinity among patients’ tumors relates to results in high variability in tumor-tracer uptake.
Erlotinib and osimertinib EGFR binding may be underpredicted as affinity for wild-type
EGFR was applied. Previous research from our group provided the framework for EGFR
binding in tissue by demonstrating the ability of PET/CT to distinguish between wild-type
and mutated EGFR [17,18,20]. Therefore, future studies should include EGFR-binding
affinities for mutated and wild-type receptors, specifically for drugs with differences in
affinity between wild-type and mutation.

The distribution of drugs into tissues with high drug transporter abundancy, e.g.,
brain, kidney and spleen, was less accurate. For erlotinib, only lung was predicted correctly.
The underpredictions of the other tissues of interest are best explained by the effect of influx
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transporters. Erlotinib is a substrate for the influx transporters OAT3 and OCT2 [23]. The
influence of the influx transporter OAT on tissue distribution of erlotinib was investigated
in a 11C-erlotinib PET imaging study in rats. The OAT influx transporter was inhibited
by rifampicin and decreasing erlotinib exposure was measured in the kidneys and liver,
but the exposure in lung was unaffected [30]. In contrast, the overprediction of the TBR
for the brain of afatinib may be caused by drug efflux by MDR1 and the BCRP [31]. These
drug efflux transporters are highly abundant in the blood–brain barrier (BBB). Similar to
the observations in our PET study, a preclinical permeability study showed a low brain-to-
blood ratio of 0.31 for afatinib [31]. Further studies of brain uptake can be performed after
extension of the PBPK model to include the central nervous system (CNS) physiologically
and brain tumor compartments, as described by Hirasawa et al. [32]. In future studies CNS
physiology and both influx and efflux transport processes should be studied and research
into how to optimally implement these processes is needed.

Another possible explanation for underprediction of erlotinib is that albumin binding
may not be the only process affecting tissue distribution of weak bases to be accounted
for. Multiple lipophilic-basic drugs bind with a high affinity to the immune-activated
protein alpha-1-acid glycoprotein (AAG) [33]. Prior studies show that in NSCLC patients’
plasma, AAG levels are increased, but little is known of AAG in the extracellular water
of tissues in cancer. In lysosomal-rich tissues such as lung, AAG levels may potentially
be higher compared to the immune-suppressive microenvironment of the tumor, leading
to differences in tissue distribution. As the role of AAG in plasma binding and drug
transport of weak bases has been established, further research on the role of AAG for tissue
distribution is needed [34]. Finally, the binding of TKIs to the lysosomal membrane had
an important influence on the TBR (Assmus vs. Schmitt). The degree of binding to the
membrane was based on the compound logP. However, Pearce et al. (2018) showed in their
research that the usage of the actual membrane affinity (instead of logP) is more accurate to
predict the KPU [35]. They also presented a critical analysis on how to predict a membrane
affinity, in case it is not available.

Sensitivity analysis demonstrates the need for inclusion of the lysosomal membrane,
since the correct tumor-to-lung contrast was not captured for all compounds when only
a pH-driven approach was included in the PBPK model (Schmitt vs. Assmus, [26,36]).
The high impact of lysosomal sequestration (Table 1) after microdosed PET may be due
to the unsaturated lysosomes. Fluoxetine, a basic lipophilic compound with comparable
physicochemical properties (log P = 3.2, pKa = 9.8) to afatinib and osimertinib, shows that
at prolonged exposure of therapeutic doses, lysosomal saturation curve occurs [37]. When
extrapolating the results to therapeutic PK, potential saturation of lysosomes needs to be
accounted for. Additionally, further research into nonlinear processes of drug binding and
sequestration may improve the model predictions [24,38], when comparing microdose and
therapeutic dose PK.

In the sensitivity analysis, vascularization-driven drug penetration was studied as
a hallmark of NSCLC tumors [39,40]. Our results show that vascularization does not
drive drug penetration since the model performs worse when this component was added.
Previous results have shown that tracer uptake is perfusion-independent. As our research
shows that vasculature is reduced in NSCLC, this may result in hypoxia in some regions
with reduced O2 perfusion within cancers and a decreased capacity to deliver nutrients
or remove metabolic waste from rapidly proliferating cells and increased utilization of
glucose and the production of lactate [41]. Prior studies show that while the intracellular
water pH is highly balanced, extracellular pH in the cells in the tumor microenvironment
decreases, resulting in increased uptake of strong basic compounds [41]. The sensitivity
analysis showed that the more acidic extracellular water in tumor tissue has only a minor
influence on the tumor drug uptake. However, adding this change resulted in a more
precise prediction for all three TKIs.

In this study, we extended previously published physicochemical base models with
EGFR binding, lysosomal sequestration and more acidic extracellular tumor water. These
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base models were validated with in vivo data obtained at steady state therapeutic drug
concentrations. The effect of each component was studied using sensitivity analyses, but
uncertainty of the parameter was not included. Uncertainty evaluation could help predict
variability in drug penetration between individuals and is a topic for further research.
The PET imaging data used in this study was obtained 1–2 h after a single microdose.
Therefore, it should be noted that discrepancies between predicted and observed TBR
may occur due to lower drug exposure and nonsteady state. Another study limitation is
that drug metabolism and elimination were not taken into account. The half-life of the
three researched EGFR-TKIs was comparable and greatly exceeded the 1–2 h scan period
(erlotinib = 36 h; afatinib = 45 h; osimertinib = 49 h) [12,27,28], making the assumption of
absence of elimination reasonable. Prior research of midazolam, a compound with similar
metabolic profile to erlotinib, suggests that metabolism at microdose level is not different
from metabolism at therapeutic dose level [42]. However, when these models are applied
for predicting the whole-body distribution and target uptake of new tracers with shorter
half-lives, inclusion of metabolism and elimination might be needed.

To our knowledge, this is the first PBPK study that addresses these environmental
differences. Prior studies either did not account for variability in tumor vs. normal tissue
or used an in vitro based partitioning coefficient (e.g., 0.73 in colon cancer [43]). However,
other hallmarks of cancer such as the collagen matrix and its effect on the penetration of
drugs should be studied.

Future Perspective

If drug properties can be used to predict differences in image quality, it may be possible
to predict tracers with an optimal image quality: drugs with large tumor/tissue contrast.
Before applying these predictions in drug development, prospective validation of the
predictive value of the PBKP model using new tracers is needed. Furthermore, to predict
TBR in future studies more precisely, both active and passive influx and efflux transport
needs to be included in the mechanistic PBPK model. Therefore, further in vitro research
into binding affinities for transporters and transporter tissue concentrations is needed.

In order to study differences in tumor-to-lung contrast and whole-body distribution be-
tween microdose and therapeutic dose, the mechanistic PBPK model needs to be extended
in a concentration-dependent manner. The injected dose of 11C-erlotinib corresponded
with 2.2 µg (±0.46) erlotinib. When compared to the regular therapeutic dose of 150 mg,
this is a >10,000-fold difference [20]. With this difference in dosing, lysosomal sequestra-
tion, albumin, lipoprotein, AP− and EGFR binding and EGFR target binding will become
saturated, and by including these nonlinear processes, the influence of different doses on
TBR can be assessed.

The impact of mutational status on tumor-to-lung contrast and whole-body distribu-
tion can be investigated by the use of affinity constants for EGFR wild-type and mutated
EGFR. First, the activating EGFR mutation needs to be identified in order to use the right
affinity value, thereby increasing accuracy of the prediction of tumor uptake. When such
models are fully validated, and combined with optimized individual imaging-based uptake
measurements, they may predict individualized dosing regimens intended to optimize
drug exposure at the site of disease, thereby improving drug efficacy.

4. Materials and Methods
4.1. Overview

Our goal was to develop a PBPK model that captures essential features of tissue dis-
tribution of the three EGFR TKI. First, the base model that best describes the researched
drugs was identified based on physicochemical properties. Key components (identified
in prior research [21]) were added to the base model: EGFR target binding, lysosomal
sequestration of strong bases (osimertinib and afatinib), tumor immune deprivation and
unaltered perfusion. Last, we validated our mechanistical PBPK model using data from
prior PET research by our group and evaluated whether reduced tumor vascularity could
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influence drug penetration. All equations and detailed explanation can be found in Supple-
mental Materials S-I, and an overview of included parameters can be found in Table 3 and
schematic overview in Figure 3.
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receptor (EGFR), green ovals over the cell membranes are neutral (phospho)lipids (NL/NP) and
acidic phospholipids (AP-). Light blue ALB is a representation of albumin. Black arrows depict
processes that are included in both models, red/purple arrows depict processes specific for each
model. pH values for each compartment are given. Equations for model 1 and 2 below and the
model structure are further explained in the Supplemental Materials S-II,III. B = basic unprotonated
drug, BH+ = protonated drug, AP- = acidic phospholipids, NL = neutral lipids PL = phospholipids,
ALB = albumin, EGFR = epidermal growth factor receptor.
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Table 3. Tissue- and compound-specific input parameters. Tissue-specific parameters were adapted
from Table 1 in Rodgers et al., 2005, Table 1 in Rodgers et al., 2006 and Table 1 in Schmitt et al., 2021,
EGFR concentrations from Table 3 in Glassman et al., 2016, and lung-specific parameters from Table 1
in Assmuss et al., 2017.

Tissue-Specific Input Parameters

Fnl Fnp Few Fiw Flys
2 Tissue Concentration

of AP- (mg/g) 2

Albumin
Tissue to
Plasma Ratio 3

EGFR
(nM)

Blood cells 1.7 × 10−3 0.0029 n.a. 0.60 n.a. 0.50 n.a. n.a.
Bone 0.017 0.0017 0.1 0.35 n.d. 0.67 0.10 n.a.
Brain 0.039 0.0015 0.16 0.61 0.014 0.40 0.048 n.a.
Kidney 0.039 1 0.012 1 0.27 0.47 0.017 2.44 1 0.13 177
Lung 3

0.0088 1 0.0030 1 0.34 0.43
0.015

0.57 1 0.21
31.1

Tumor 0.01 299
Spleen 0.021 1 0.017 1 0.21 0.53 0.053 3.18 0.097 54.6
Plasma 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Lung-specific parameters 2

Fnl Fnp Few Fiw pHew Flys pH lysosome Fcell type
-Alveolar macrophages

0.0088 1 0.0030 1 0.34 0.45 7.4
0.078 4.75 0.041

-Type II cells 0.03 5.1 0.083
-Residual cells 0.01 5.1 0.88
Tumor-specific input parameters
Residual cells 0.008 0.0030 0.34 0.45 6.7 0.01 5.1 1
Compound-specific parameters

Erlotinib Afatinib Osimertinib References
Log P 3.3 3.6 3.2 Colclough et al. (2021) [31]
pKa 5.5 8.2 9.0 Colclough et al. (2021) [31]
B:P ratio 5 0.95 1.27 0.79 Van de Stadt et al. (2021) [21]
Kd EGFR
(nM) 2164 2 155 Joly-Tonetti et al. (2021) [44]

Funbound
6 0.088 0.095 0.017 Colclough et al. (2021) [31]

1 Translation factor from rats to human [45,46]. 2 Input parameter only used in model 1. 3 Input parameter
only used in model 2; Lung pHew: 7.22; pHp 7.4; pHiw 7.0; pHlys: 5.3. 4 Hematocrit (H): 0.45. 5 Blood-to-
plasma concentration ratio. 6 Unprotonated fraction [31]. Fiw, Few, Fnl and Fnp reflect tissue-specific fractional
tissue volumes of the cellular components intracellular water, extracellular water, neutral lipids and neutral
phospholipids. Flys, pHlys and Fcell reflect lysosomal volume fraction, lysosomal pH and the fraction of various
cell types in tissue. Fvasc: 0.36, Supplemental Materials S-V, and Fperf: 1 reflect the vascular and perfusion
coefficient in the tumor compared to the surrounding lung tissue.

4.2. Scan Data

All PET scans were performed in advanced stage, EGFR mutated NSCLC patients.
No patients were treated with the treatment analog of the PET tracer prior to scanning
(e.g., a patient undergoing 11C-erlotinib scanning was treatment-naïve for erlotinib). The
PET data used in this research are derived from static, 40–60 min post-tracer dose whole-
body PET/CT scans. All regions of interest were delineated by the same experienced
researcher in a standardized manner using in-house-developed software. For all tracers,
spleen, kidney, tumor, lung (contralateral from tumor site) and vertebra were included.
For afatinib and osimertinib, brain was additionally delineated, but erlotinib scans did
not include brain tissue in field of view. The full-scan protocol and evaluation of the
biodistribution is currently under submission.

4.3. PBPK Model: Base Model Selection

The biodistribution of basic lipophilic drugs such as the three researched EGFR-TKIs has
been described extensively by well-established PBPK models [45,46]. The PBPK models from
Rodgers et al. provide the most accurate tissue distribution predictions [45–47]. Choice of
model is dependent on compound properties, most importantly basicity. Relevant physic-
ochemical properties used in PBPK modeling of the three EGFR TKIs, erlotinib, afatinib
and osimertinib, can be found in Table 3. Since erlotinib is a weak base and osimertinib
and afatinib are strong basic drugs, two base models are used. Model 1 is applicable for
predicting tissue uptake of the weak basic drugs and was used for erlotinib [45]. Model 2
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can be used for afatinib and osimertinib predictions since this model applies to strong basic
compounds [46].

The following assumptions were made in all models, as validated by Rogers et al.:
drug transport into tissues only occurs passively; conditions are nonsaturating; the drug
is at steady state and well-stirred in all tissues of interest; metabolism and drug clearance
are negligible at the time of scanning (at <0.05 of the biological half-life); the tissue PET
scans did not contain a significant number of blood vessels (in the PBPK model, only the
concentration outside of the blood perfusing the tissue was calculated).

In the PBPK model, we focused on tissues in the PET field of view that are large
enough to allow adequate PET data analysis (regions of interest > 1.5 cm). The liver was
excluded since all EGFR TKI included in this study are metabolized in the liver, leading to
unreliable uptake assessments.

4.4. Base Models: Physicochemical Drug Distribution

In the physicochemical model, tissue-to-blood ratios (predicted TBR, pTBR) are pre-
dicted based on distribution to albumin (ALB), neutral lipids and phospholipids (NL/NP),
acidic phospholipids (AP-) and to cellular spaces such as the extra- and intracellular water
(EW/IW). The described physicochemical base models predict pTBR at steady state by
inclusion of drug-specific physicochemical properties and tissue composition (Table 3). If
available, drug-specific properties were adapted from the PET imaging data, such as the
blood-to-plasma ratio. Physicochemical properties including pKa values were retrieved
from the same in vitro research publication to prevent insecurities and enable comparison
of the outcomes [31], and can be found in Table 3. All formulas used in the base models
and subsequent additions can be found in Supplemental Materials S-II,III.

Base model 1, the model reflecting weak bases, predicts the pTBR by calculation of
the pH-driven distribution to cellular components (Figure 3B). Tissue-specific fractional
tissue volumes of cellular components, including intracellular water, extracellular water,
neutral lipids and neutral phospholipids are reflected by, respectively, Fiw, Few, Fnl and
Fnp. By use of the pH values of the cellular components intracellular water, neutral lipids
and neutral phospholipids pHiw, pHnl, pHnp relative to the pH of plasma (pHp), the fraction
of unprotonated drug available for diffusion to these cellular parts is predicted. The pH
values of the cellular components are shown in Figure 3. The octanol/water partition
coefficient (P) is included for binding affinity of the unprotonated drug to neutral lipids
and phospholipids in the cell membrane. Since a weak base such as erlotinib is highly
(99%) unprotonated in plasma, albumin binding in the extracellular water is a predominant
process of tissue distribution. The albumin binding was predicted based on the multi-
plication of the association constant (Ka) for albumin (Figure 1D) with the tissue specific
albumin tissue-to-blood ratio [46]. The formula for calculation of Ka and the base model
equations can be found in Supplemental Materials S-II (base model 1, Equations (S1)–(S4)).
A schematic overview of base model 1 is depicted in Figure 3A.

In model 2, the model reflecting strong bases, the pTBR contains the same elements
for the distribution to neutral (phospho) lipids, intracellular and extracellular water. In
contrast to weak bases, afatinib and osimertinib are strong basic drugs (pKa > 7) and
are mostly protonated (respectively, 98% and 86%) at physiological pH levels [31], as
shown in Figure 3A. This protonation leads to binding to acidic phospholipids (AP-)
(Figure 1C). Distribution to acidic phospholipids was predicted using association con-
stant Ka, Supplemental Materials S-II Equation (S4) and tissue-specific concentration
[AP-]. Model 2 equations can be found in Supplemental Materials S-III (base model 2,
Equations (S5)–(S10)). A schematic overview of model 2 is depicted in Figure 3B.

4.5. Extension of the Physicochemical Base Models with EGFR Target Binding

Only nonspecific binding is described by the physicochemical base models. Intracellu-
larly, TKIs bind with high affinity to EGFR [6,9,44]. Differences in affinity of EGFR-TKIs
for their target may influence tissue binding and is therefore an essential feature for tissue
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distribution of TKIs. By adding EGFR binding to base models 1 and 2, target binding
was included in the PBPK model. Tissue-specific EGFR concentrations ([EGFR]) and drug-
specific dissociation constants (Kd) for wild-type EGFR are shown in Table 3. For two
tissues of interest, bone and brain, which lacked relevant literature data, we assumed EGFR
was not present.

4.6. Extension of the Physicochemical-EGFR Models with Lysosomal Sequestration (Mechanistical
PBPK Model)

Because of the protonated status in an environment with physiological pH, the lyso-
somal trapping was added to the physicochemical base model for strong bases (model 2)
only [26,36]. To estimate the binding, the same composition was assumed for the lysosomal
membrane as for the outer membrane of the cell. Since immune cells, mostly consist of a
higher lysosomal volume and a lower lysosomal pH than normal tissue cells, tissue-specific
cell types were included to predict the TBR [48].

4.7. Including Hallmarks of NSCLC

Four of the hallmarks of NSCLC tumors are a potential immune-suppressive microen-
vironment and erratic (and potential inadequate) neovascularization and perfusion caused
by changes in the microenvironment [39,40,49] resulting in decrease in pH of the tumor
microenvironment [41]. We hypothesized that either of these hallmarks could predict a
decreased cellular concentration of the TKIs, even at a high affinity and higher expression
of EGFR in the tumor.

The impact of the acidic tumor environment was added. Based on prior research, the pH
extracellular water in tumor cells was set at 6.7, while intracellular pH was not altered com-
pared to surrounding lung tissue (Table 3, Supplemental Materials S-III Equation (S12)) [41].

The impact of the lysosomal volume of different cell types on tissue uptake in tumor
compared to normal lung was researched. Lung-tissue uptake was simulated by use of a
physiological composition including the different immune cells: 4.1% alveolar macrophages,
8.3% type II cells and 87.6% residual cells (Table 3) [36]. To reflect an immune-suppressive
microenvironment, tumor-tissue uptake with input parameters concerning only residual
lung cells was applied (Table 3, Supplemental Materials S-III Equations (S6) and (S10)).

As a final step in the modeling, we hypothesized that the number of vessels drives
drug penetration. The vascular coefficient was calculated by dividing the microvessel
density (MVD) of normal lung tissue (4 samples), obtained from the Human Protein Atlas,
by the MVD of 8 samples of adenocarcinoma NSCLC patients. MVD was calculated per
surface area of CD31+ vessels and tissues. A full description of this analysis can be found
in Supplemental Materials S-V. Since tumor uptake of 11C-erlotinib and 18F-afatinib has
previously been shown to be independent of tumor perfusion, we assumed that all three
EGFR TKIs were perfusion independent (50).

4.8. Simulation of Tumor-to-Lung Contrast and Tissue Distribution

For all EGFR-TKIs, the tumor-to-lung contrast was estimated by dividing the uptake
in tumor by the uptake in lung (contrast = pTBR tumor/pTBR lung). This contrast was
subsequently validated with the PET imaging data. Furthermore, tissue distribution was
assessed by predicting the TBR of the lung, tumor, spleen, kidney, brain and bone, and
compared to PET imaging tissue uptake data. The functions of the systemic level are as
described in the Supplemental Materials S-II,III.

4.9. Software and Statistics

R software (version 4.0.3; R Foundation for Statistical Computing, Vienna, Austria) was
used for simulations of the PBPK models and graphical visualization of the predictions and
PET observations. PET-TBR data were used to validate the developed PBPK models [21].

The accuracy of mechanistic PBPK model predicted tumor-to-lung contrast and the
TBR was assessed by determination of the percentage of tissues falling within 3-fold of
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the observed data, as is done in the referenced research by Rodger et al. [45,46]. This was
researched by calculating prediction errors (PE) and mean prediction error of the mecha-
nistical PBPK model and of subsequent sensitivity analyses. The strength of correlation
between the predicted and the PET image-observed TBR was assessed by the Pearson
correlation coefficient and with a two-sample t-test significance of the correlation:

PE =

(
PRED − OBS

mean (PRED + OBS)

)
∗ 100% Pearson R =

1
n − 1 ∑ (

x − x
s

)

(
y − y

s

)

Sensitivity analyses were performed by researching the impact of extension with EGFR
binding, use of a different lysosomal extension models on tissue-to-blood ratios and the
effect of tumor immune deprivation on all tissues of interest. The effect of the aberrant
tumor vasculature was determined by comparing the results after inclusion of a vascular
versus the (unaltered) perfusion coefficient. When in sensitivity analyses the removal of
the extension of the base model showed a significant decrease in predictivity (the mean PE
decrease of more than 10% in tumor-to-lung contrast of all three models), the component
was retained in the final mechanistic PBPK model.

5. Conclusions

Our mechanistic PBPK model consisting of a base model—EGFR binding, lysoso-
mal sequestration, tumor immune deprivation, a changed tumor microenvironment, un-
altered tumor perfusion and dependent on physicochemical properties of the relevant
drug—was able to accurately predict tumor-to-lung contrast. We therefore conclude that
our mechanistical PBPK model accurately predicts image quality for EGFR expressing
NSCLC tumors, while further study of distribution for drugs into tissues with high drug
transporter abundancy and the effect of EGFR mutation on drug penetration is needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15070796/s1, S-I: Physiologic equations used to describe the physicochemical parameters,
S-II: Components of the mechanistical PBPK-model for weak bases (model 1), S-III: Components of
the mechanistical PBPK-model for strong bases (model 2), S-IV: Sensitivity analyses, S-V: Extension
Rodgers’ base model, S-VI: PET scan data.
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Abstract: Anti-cancer drug design has been acknowledged as a complicated, expensive, time-
consuming, and challenging task. How to reduce the research costs and speed up the development
process of anti-cancer drug designs has become a challenging and urgent question for the pharmaceu-
tical industry. Computer-aided drug design methods have played a major role in the development of
cancer treatments for over three decades. Recently, artificial intelligence has emerged as a powerful
and promising technology for faster, cheaper, and more effective anti-cancer drug designs. This study
is a narrative review that reviews a wide range of applications of artificial intelligence-based methods
in anti-cancer drug design. We further clarify the fundamental principles of these methods, along
with their advantages and disadvantages. Furthermore, we collate a large number of databases,
including the omics database, the epigenomics database, the chemical compound database, and drug
databases. Other researchers can consider them and adapt them to their own requirements.

Keywords: artificial intelligence; machine learning; neoplasms; drug design; databases

1. Introduction

In recent years, many companies have ramped up their R&D (research and develop-
ment) efforts for anti-cancer drugs [1]. There is a growing number of large and long-term
clinical trials providing a possible therapeutic opportunity for more cancer patients [2,3].
Recently, the American Cancer Society announced that the three-year survival rate for lung
cancer from 2014 to 2021 was raised from 21% to almost 31% [4]. The efficacy of targeted
therapies and immunotherapeutics has been investigated in a variety of solid tumors [5].
Thus, a greater investment in targeted therapies and immunotherapeutics to realize the
benefits of precision medicine will benefit the long-term survival of cancer patients [6–8].

The anti-cancer drug design and discovery workflow comprises target recognition,
hit exploration, hit-to-lead development, lead optimization, preclinical drug candidate
identification, and preclinical and clinical research [9–11]. Despite the improvements in
tumor biotechnology and the advances in cancer mechanism research, the development
of novel and effective anti-cancer drugs from scratch remains an arduous, expensive, and
time-consuming process [12] that will require close multidisciplinary collaborations, in-
cluding medicinal chemistry, computational chemistry, biology, pharmacology, and clinical
research [13]. Statistically, it can take more than 10–17 years and almost 2.8 billion dollars
to bring a new drug into clinical practice [14,15]. Apart from that, only 10% of the tested
compounds in clinical trials reach the market [16].

It is especially difficult to design anti-cancer drugs due to challenges such as un-
druggable targets [17], chemoresistance in oncology [18], tumor heterogeneity [19], and
metastasis [20]. The conventional drug design approaches may seem poorly effective. With
so many challenges still to be faced, the treatment effects among cancer patients are actually
suboptimal. Thus, more effective anti-cancer drug design strategies are urgently needed.
They will reduce the cost of drug development and the time required for clinical trials.
They can also help increase the global life expectancy and improve human health [4].
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Computer-aided drug design (CADD) is a method that began in the early 1980s [21].
The use of computer-aided methods to guide drug screening is emerging as an important
component in the practice of drug design [22–25]. This approach enabled medicinal
chemists to calculate the interactions between a ligand and receptors and to design and
optimize lead compounds by computer simulation [26]. The typical role of CADD in drug
design is to screen out large compound libraries into smaller clusters of predicted active
compounds based on computational chemistry. It can greatly speed up the process of
anti-drug design and save a huge amount of time and money [27].

In the context of the rapid development of computer hardware and artificial intelli-
gence techniques, researchers in academia and the pharmaceutical industry are turning to
artificial intelligence to improve drug design processes [28]. Artificial intelligence (AI) refers
to the simulation of human intelligence in machines that are programmed to think and act
like humans [15]. A common presumption about artificial intelligence is that its goal is to
build machines with a similar capacity for “understanding” [29]. Artificial intelligence is
now used in many applications for cancer research, such as image classification of abnormal
cancer cells [30], prediction of target protein structures [31], and prediction of drug–protein
interactions [32]. These studies demonstrate that artificial intelligence techniques have the
power to revolutionize anti-cancer drug design processes. Some applications using artificial
intelligence in anti-cancer drug design processes are illustrated in Figure 1. This paper
reviewed some of the advances in anti-cancer drug design based on artificial intelligence,
presented some of the most classic examples, and clarified the fundamental principles of
these methods.
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Figure 1. Some applications of artificial intelligence in anti-cancer drug design. The bottom (de novo
drug design) is usually implemented using the deep learning-based models listed above. Recently,
reinforcement learning has been used often. The above workflow example of a graphical chemical
structure with an O–C–O connection is an iterative chemical graph generation process [33].

2. Method

The present study is a narrative review of the literature. We performed searches in the
US National Library of Medicine (PubMed) to find original articles. The search strategy
used in PubMed is shown in Table 1. We mainly focused on the articles and reviews

160



Pharmaceuticals 2023, 16, 253

published in the past decade. The last search of the present narrative review was performed
on 10 December 2022.

Table 1. Search strategies used in the US National Library of Medicine (PubMed), according to
selected descriptors.

Strategy Descriptors Used

#1
(“cancer” [Title/Abstract] AND “artificial
intelligence” [Title/Abstract] AND “drug”

[Title/Abstract]) AND (y_10[Filter])

#2
(“cancer” [Title/Abstract] AND “drug
discovery” [Title/Abstract] AND “AI”
[Title/Abstract]) AND (y_10[Filter])

#3
(“cancer” [Title/Abstract] AND “drug design”

[Title/Abstract] AND “machine learning”
[Title/Abstract]) AND (y_10[Filter])

#4
(“database” [Title/Abstract] AND “drug”

[Title/Abstract] AND “artificial intelligence”
[Title/Abstract]) AND (y_10[Filter])

3. Artificial Intelligence in Anti-Cancer Drug Target Identification

The identification of drug–target interactions (DTIs) is the initial step in anti-cancer
drug design. The strength of drug–target binding is often described by binding affinity
constants, including indicators such as a dissociation constant (Kd), an inhibition constant
(Ki), and a half-maximal inhibitory concentration (IC50) [34]. Since the experimental
determination of DTIs is a time-consuming and expensive process, its computational
prediction is of great interest. Accurate and effective DTI predictions can greatly aid drug
development and accelerate lead or hit compound discovery.

3.1. Artificial Intelligence Efficiently Elevates the Prediction Accuracy of DTI

Traditionally, the computational methods for DTI predictions have included molecular
docking simulation and machine learning-based methods. However, these studies would
be expensive, time-consuming, and difficult to conduct without knowing the 3D structures
of the drug targets. Peng et al. developed a novel end-to-end learning framework based
on heterogeneous graph convolutional networks (EEG)-DTI for DTI predictions. A graph
convolutional network-based model was used to learn the low-dimensional feature rep-
resentations of drugs and targets and predict the DTI based on the learned features. It
achieved a promising DTI prediction performance even when the 3D structures of the drug
targets were not used [35]. To further improve the prediction performance, Shao et al. con-
sidered the DTI prediction as a link prediction problem and proposed an end-to-end model
based on the heterogeneous graph with attention mechanism (DTI-HETA), which outper-
formed the state-of-the-art models [36]. Meanwhile, to address the explanation problem of
deep learning, Yang et al. proposed a drug–target interaction prediction method based on
mutual learning mechanisms without 3D structural information and with explanation [37].

3.2. Artificial Intelligence Could Integrate Data from Multiple Sources to Help with Anti-Drug
Target Identification

Drug target identification is a key step in drug development. However, most previous
studies were confined to a single data type and did not integrate multiple data types.
Thus, they were vulnerable to data-specific noise and needed to be improved in terms
of practicality and accuracy [38]. Recently, there has been a growing number of methods
within similarity-based or data-driven frameworks that attempt to use artificial intelligence
to improve the predictive power by integrating multiple different data types. Madhukar
et al. developed a Bayesian-based machine learning method (BANDIT), which achieved
approximately 90% target prediction accuracy on more than 2000 small molecules by inte-
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grating six types of data, including growth inhibition data, gene expression data, adverse
reaction data, chemical structure data, and drug data [39]. Olayan et al. proposed a method
named DDR to investigate how to predict drug–target interactions more efficiently by using
data from different sources, which included eight drug similarity networks and eight target
similarity networks. The drug similarity networks included the following: gene expression
similarity, disease-based similarity, drug side effect-based similarity, chemical structure
fingerprint-based similarity, etc. The target similarity networks included the following:
gene ontology-based similarity, protein sequence-based similarity, etc. [40]. The above
studies illustrated that integrating data from multiple sources through artificial intelligence
could increase the biological explanation of drug target prediction and prediction accuracy.

3.3. Artificial Intelligence Could Help Predict the Druggability of Anti-Cancer Drug Targets

The selection of drug targets is also a very critical step in the cancer drug design
process, and it has a great impact on the success rate of later clinical trials. Therefore, many
related methods were developed. Raies et al. proposed a prediction model called Drug-
nomeAI to address the problem of targeted drug synthesis. The stochastic semi-supervised
machine learning framework was used to develop DrugnomeAI for predicting the drug-
gability of drug targets in the human exome. It also demonstrated how the application
of DrugnomeAI can predict the druggability of drug targets in oncology diseases [41].
In recent years, an increasing number of studies have identified synthetic lethality (SL)
as a promising approach for the discovery of anticancer drug targets [42]. However, the
wet experimental screening for SL has problems, including high costs, batch effects, and
off-target results. Wang et al. designed a new model based on a graph neural network
(GNN) called KG4SL. It incorporates knowledge graph (KG) messaging into a graph neural
network prediction. The experimental results demonstrated a significant beneficial effect of
incorporating KG into the GNN for SL predictions [43]. The Table 2 below lists some of the
methods for anti-cancer drug target identification based on artificial intelligence that have
been developed in recent years.

Table 2. Methods for anti-cancer drug target identification based on artificial intelligence.

Model Data Source Code References

EEG-DTI Luo dataset [44], Yamanishi dataset [45] https://github.com/MedicineBiology-AI/EEG-DTI
(5 July 2022) [35]

DTI-HETA Yamanishi dataset https://github.com/ZhangyuXM/DTI-HETA
(13 October 2022) [36]

ML-DTI Metz dataset, KIBA dataset, Davis dataset,
[46–48], Drugbank

https://github.com/guaguabujianle/ML-DTI.git
(19 June 2021) [37]

DDR Yamanishi dataset, KEGG BRITE, BRENDA,
SuperTarget, DrugBank

https://bitbucket.org/RSO24/ddr/
(22 November 2017) [40]

DrugnomeAI TCRD, StringDB, CTDbase,
InterPro, OMIM

https://github.com/astrazeneca-cgr-publications/
DrugnomeAI-release
(4 November 2022)

[41]

KG4SL SynLethDB https://github.com/JieZheng-ShanghaiTech/KG4SL
(12 September 2021) [43]

4. Artificial Intelligence in the Screening of Anti-Cancer Drug Hit Compounds

After the identification of therapeutic targets for anti-cancer drugs, we need to screen
for anti-cancer drug hit compounds, which are molecules with initial activities against a
specific target or linkage of action [49]. The discovery of computer-aided hit compounds is
mainly through high-throughput screening. High-throughput screening can be performed
in the following two ways: structure-based screening and ligand-based screening [50].
Fragment-based screening methods are also effective for the discovery of hit compounds,
as shown in recent studies [51]. High-throughput screening techniques have been highly
successful in many R&D projects, but the efficiency of screening compounds by the millions
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has reached a bottleneck, and the cost is also significant [52]. With the proliferation of
GPUs, increased computer power, and the rapid development of artificial intelligence
technologies, more virtual hit compound screening tools have been developed to enrich
the drug design toolkit.

4.1. Structure-Based Screening of Hit Compounds Using Artificial Intelligence

Structure-based virtual screening uses docking and scoring to select molecules that
have good binding affinity with a target protein [53]. This strategy is an important tool for
anti-cancer drug design, but many of the current docking procedures are time-consuming
and pose challenges for large-scale virtual screening. Lu et al. accelerated the evaluation
process through structure screening with the help of deep learning models. They con-
structed a deep learning model to predict molecular docking scoring [54]. Yasuo et al. used
artificial intelligence to propose a new structure-based virtual screening method for hit
compounds, called SIEVE-Score, which provided substantial improvements over other
state-of-the-art virtual screening methods [55].

4.2. Ligand-Based Screening of Hit Compounds Using Artificial Intelligence

Ligand-based screening is based on taking small molecules with known activities and
searching for structures with similar physical or chemical characteristics in a compound
library as candidates. Krasoulis et al. proposed an end-to-end method called DENVIS,
a scalable and novel algorithm for high-throughput screening using graphical neural
networks with atomic and surface protein pocket features. By conducting experiments on
two benchmark databases, DENVIS was much faster than other models [56]. This method
was not only advantageous in terms of speed and had an impressive success rate, but it was
also easy to use. Generally, most of these methods could only receive one representative
molecular structure as a search template [57], which may result in data waste. To address
this problem, Hutter developed a cumulative molecular fingerprinting algorithm that can
take all structure data into account in the calculation, effectively improving the utilization
of experimental data and achieving an organic combination of molecular fingerprinting
and experimental data. It inherited the speed advantage of the former method with higher
information utilization [58].

4.3. Fragment-Based Screening of Hit Compounds Using Artificial Intelligence

In recent years, the rise of emerging technologies such as high-throughput screen-
ing (HTS) and combinatorial chemistry (CC) has led to the gradual systematization of
drug discovery from the randomized screening of known drugs [59]. These methods can
significantly increase the speed of drug discovery and shorten the process of new drug
development, but the high cost of screening has also increased the research burden on
small drug development companies and research institutions. Therefore, many researchers
are focusing on fragment-based drug design (FBDD) [60]. Compared with the traditional
screening methods, FBDD starts with small molecular fragments, which greatly reduces
the size of the required screening compound library, circumvents the undesirable ADMET
properties of molecules, and enhances the diversity of the designed structures [61]. In
addition, FBDD has potential advantages for the drug design of difficult targets and has
gradually developed into a mainstream drug design method in small drug development
companies and research units [62]. To ligate fragments rationally, it is necessary to know
where the fragments bind in a pocket. Currently, the main computational prediction meth-
ods are molecular docking, functional group mapping, and molecular structure splitting
and reconstruction. These methods are more or less limited by computational costs and
manual judgement and cannot fully utilize the structural data of protein–ligand complexes.
To solve this problem, Didier Rognan’s group proposed the method POEM, which is based
on the recognition and matching of the pocket environment in which the fragments are
located [63]. Another challenge of FBDD is linking fragments to generate interest libraries
of compounds for specific drug targets. To address this issue, Yang et al. proposed a model
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based on automatic fragment linking with deep conditional transformer neural networks
called SyntaLinker [64]. Caburet et al. screened the activity of NDM-1 β-lactamase in-
hibitors using the FBDD method. They finally found 37 fragments for pharmacophore
establishment, which was proven to be accurate and efficient. Table 3 lists all of these
methods [65].

Table 3. Artificial intelligence-based screening methods of anti-cancer drug hit compounds.

Model Data Source Code References

SECSE PDB http://github.com/KeenThera/SECSE (15 July 2022) [54]

SIEVE-Score ChEMBL, ZINC https://github.com/sekijima-lab/SIEVE-Score
(15 November 2019) [55]

DENVIS PDB, DUD-E, LIT-PCBA https://github.com/deeplab-ai/denvis
(3 October 2022) [56]

DMMFP ChEMBL, DUD-E, ZINC https://github.com/michahutter/multimolecule_
fingerprints (28 April 2022) [58]

POEM ChEMBL, ZINC, PDB https://github.com/kimeguida/POEM
(30 December 2022) [63]

SyntaLinker ChEMBL https://github.com/YuYaoYang2333/SyntaLinker
(18 June 2021) [64]

5. Artificial Intelligence in De Novo Anti-Cancer Drug Design

The chemical space of drug-like molecules is extremely vast; the number is estimated
to be 1023~1060 [66]. Therefore, it is nearly impossible to completely mine the entire chemi-
cal space using computational methods. In this context, finding specific lead compounds in
the vast chemical space is a major challenge. With the rapid development of computational
power and experimental techniques, high-throughput screening (HTS) and virtual screen-
ing (VS) methods can effectively evaluate molecules in large compound libraries with a
wide variety of filters [67,68].

However, both traditional HTS and vs. methods that are based on molecular dock-
ing can only screen the known compound library to find molecules that satisfy specific
properties [69]. De novo drug design and virtual screening are very similar in the sense
that they both search for molecules that meet specific requirements in the chemical space.
However, their processes are very different. Instead, de novo drug design is a molecule
generation method that generates and optimizes a molecule by ultimately using artificial
intelligence [70]. Molecular generation methods include variational auto-encoders (VAEs),
the recurrent neural network (RNN), the generative adversarial network (GAN), and deep
reinforcement learning (DRL) [71].

5.1. Application of Variational Auto-Encoder to De Novo Design of Anticancer Drugs

The variational auto-encoder (VAE) is an important type of generative model that was
proposed by Diederik P. Kingma and Max Welling in 2013 [72]. Born et al. constructed
a hybrid VAE model to generate candidate molecules with anti-cancer drug properties.
The model was able to generate molecules with strong inhibitory effects against specific
diseases. The generated molecules were similar to existing drugs in terms of structure,
synthesizability, and solubility [73]. Hong et al. proposed a molecular structure tree genera-
tion model in which the molecules were generated by gradually adding substructures [74].
The proposed model was based on a VAE architecture, which used an encoder to map
molecules into the latent vector space and then built an autoregressive generative model
as a decoder to generate new molecules from a Gaussian distribution. It showed that
the model can generate efficient and new molecules and that the optimized model can
effectively improve the properties of the molecules. Samanta et al. proposed the NEVAE
method, which solved the problems of current methods. For instance, existing models can
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only generate molecules with the same number of atoms but fail to utilize a large number
of macromolecules in the training process, limiting the diversity of the generated molecules.
In addition, they cannot provide the spatial coordinates of the generated atoms [75].

5.2. Application of the Recurrent Neural Network to De Novo Design of Anti-Cancer Drugs

The recurrent neural network (RNN) model uses basic units, such as atoms or frag-
ments of molecules, as the basic vocabulary and generates molecules in a temporal order.
The output probability of the next atom character generated by the RNN model depends
on the previous generated atom. The RNN-based model has been widely used to process
time-series-related data, such as language, text, video, etc. [76]. Grisoni et al. proposed
a new bidirectional RNN molecular generation model, or BIMODAL, that can be used
for SMILES generation and data enhancement [77]. The model performed bidirectional
molecular design by alternate learning, and the model was compared with other bidirec-
tional RNNs. BIMODAL was promising in terms of molecular novelty, backbone diversity,
and chemical and biological relevance of the generated molecules and was superior to
the state-of-the-art methods [78,79]. To address problems such as the poor performance
of DL on small training datasets, Krishnan et al. designed a de novo drug design method
based on RNN generative models and migration learning to generate molecules with not
only the desired drug-like properties but also target specificity [80]. In addition, Moret
et al. combined the RNN generation model with three optimization methods, namely data
augmentation, temperature sampling, and transfer learning. This method can generate
new molecules with the desired properties with a small amount of data [81].

5.3. Application of Generative Adversarial Network to De Novo Design of Anti-Cancer Drugs

The generative adversarial network (GAN) is an unsupervised learning method pro-
posed by Goodfellow in 2014. It consists of the following two networks: the generative
network G, which is used to fit the data distribution, and the discriminative network D,
which is used to determine whether the input is “real” or not. In the training process,
the generative network G tries to “cheat” D by accepting random noise to imitate the real
images in the training set, while D tries to distinguish the real data from the output of
the generative network as much as possible, thus forming a game process between the
two networks. Ideally, the game results in a generative model that can be “faked” [82].
Maziarka et al. proposed the Mol-Cycle GAN method. Mol-Cycle GAN is a conditional
generative adversarial network-based method for de novo drug design and synthesis
optimization of molecules through a generative model. It can solve the problem of difficult-
to-synthesize compounds given a starting molecule. It can also generate molecules with
similar structures and desired properties [83]. ABbbasi et al. proposed a feedback-based
GAN framework that implemented an optimization strategy by connecting an encoder–
decoder, a GAN, and a predictor depth model with a feedback loop. The results showed
that molecules with high binding affinity can be generated by the GAN optimization
model [84].

5.4. Application of Deep Reinforcement Learning to De Novo Design of Anti-Cancer Drugs

Even though a variety of drug generation models have been developed, they all focus
on the following two points: molecular representation and optimization strategies [71].
Deep reinforcement learning (DRL) is an artificial intelligence technique that combines
the perceptual capabilities of deep learning with the decision-making capabilities of re-
inforcement learning to solve decision-making problems in high dimensional and state
spaces [85]. A novel computational strategy, called ReLeaSE, was proposed by Tropsha
for designing molecules with desired properties from scratch. ReLeaSE was built on deep
learning (DL) and reinforcement learning (RL) methods by integrating two deep neural
networks (generative and predictive), which were trained to generate novel libraries of
molecules with specified properties [86]. Goel et al. combined RNN and reinforcement
learning to propose a molecule generation model named MoleGuLAR that can perform
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multi-objective optimization of molecules in terms of drug-like properties and binding
affinity. In particular, they proposed a new alternating reward strategy where the reward
function changes dynamically as different molecules are generated, allowing the model to
alternately explore different chemical intervals and sample more reasonable molecules [87].
Table 4 shows some of these methods.

Table 4. Methods for de novo anti-cancer drug design through artificial intelligence.

Model Data Source Code References

PaccMannRL TCGA, ChEMBL, GDSC, CCLE https://github.com/PaccMann/
(10 February 2022) [73]

ACGT QM9, ZINC https://github.com/gicsaw/ARAE_SMILES
(14 October 2022) [74]

NEVAE QM9, ZINC https://github.com/Networks-Learning/nevae
(22 November 2019) [75]

BIMODAL ChEMBL https://github.com/ETHmodlab/BIMODAL
(3 June 2020) [77]

Mol-CycleGAN ChEMBL, ZINC https://github.com/ardigen/mol-cycle-gan
(6 February 2019) [83]

GAN-Drug-Generator ChEMBL, ZINC
https:

//github.com/larngroup/GAN-Drug-Generator
(13 April 2022)

[84]

ReLeaSE ChEMBL, ZINC https://github.com/isayev/ReLeaSE
(9 December 2021) [86]

MoleGuLAR ChEMBL, ZINC https://github.com/devalab/MoleGuLAR
(21 October 2021) [87]

6. Artificial Intelligence in Anti-Cancer Drug Repurposing

Effective identification of new indications from approved or established clinical drugs
plays a critical role in drug discovery. Such a process is also known as drug reposition-
ing. Despite tremendous efforts in academic and pharmacological research worldwide,
current anti-cancer therapies have achieved success in only a few tumor types. The ap-
plication of drug repositioning in tumor therapies is a hot topic in current research. In
theory, repurposing is faster, safer, easier, and less expensive than the known barriers to
developing new molecular entities. Opportunities for drug repurposing are often based
on incidental observations or time-consuming preclinical drug screens that are not usually
hypothesis-driven. Indeed, the widespread use of histology technologies, improved elec-
tronic medical record systems, improved data storage, data meaning, machine learning
algorithms, and computational modeling have provided unprecedented knowledge of the
biological mechanisms of cancer and drug modes of action, providing broad availability of
both disease-related and drug-related data. Drug repositioning strategies are often catego-
rized as “target-center” and “disease-center” methods for predicting unknown drug–target
and drug–disease interactions.

6.1. Artificial Intelligence in Anti-Drug Repositioning Based on the Interaction between a Drug
and a Target

Many artificial intelligence-based methods have been used to predict drug–target
relationships, as described above. At present, predicting drug–target relationships is one
of the main approaches for drug repurposing. To achieve personalized drug repurposing
using genomic information, Cheng et al. developed a genome-wide localization system
network algorithm (GPSnet) [88]. This method uses patient-specific DNA and RNA se-
quencing profiles of specific targets to obtain disease modules for repurposing drugs. They
validated that the approved arrhythmia and heart failure drug Ouabain specifically targets
the HIF1α/LEO1-mediated cellular metabolic pathways in lung adenocarcinomas, showing
potential anti-tumor activities. Wang et al. proposed a deep learning framework through
kernel-based data integration, known as DeepDRK [89]. The model was trained on over
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20,000 pairs of pan-cancer cell line anti-cancer drug pairs. These pairs were characterized
by using kernel-based similarity matrices that integrate multi-source and multi-omics data,
including genomics, transcriptomics, epigenomics, chemical properties of compounds,
and known drug–target interactions. They provided a computational approach to predict
cancer cell responses to drugs by integrating pharmacogenomic data, offering an alternative
approach to repurposing drugs in cancer precision therapy.

6.2. Artificial Intelligence in Anti-Drug Repositioning Based on the Interaction between Drugs
and Diseases

Predicting drug–disease interactions is essential for disease-centric drug repurpos-
ing. The current identification of drug–disease interactions is mainly based on similarity
and network, respectively. For the similarity-based methods, Zhang et al. proposed a
multiscale drug–disease topology learning framework (MTRD). By learning the representa-
tive properties of drug–disease, this method explored a new therapeutic effect of existing
drugs based on the relevant similarity and association information of drug–disease node
pairs. [90]. Jarada et al. proposed a novel framework based on deep learning, known
as SNF-NN, to predict new drug–disease interactions using drug-related similarity infor-
mation, disease-related similarity information, and known drug–disease interactions [91].
Luo et al. proposed a new computational method named MBiRW [92], which uses com-
bined similarity measurements and a birandom walk (BiRW) algorithm to identify potential
new indications for known drugs. This method was based on the assumption that similar
drugs are usually associated with similar diseases. Moreover, Sadeghi et al. proposed a new
model named DR-HGNN for drug repositioning using multiple labeling of heterogeneous
graph neural networks [93]. Doshi et al. proposed a graph neural network-based drug
repositioning model called GDRnet [94], which was able to efficiently screen the database
for existing drugs and predict their unknown therapeutic effects. Table 5 shows some of
the methods mentioned above.

Table 5. Methods for anti-cancer drug repurposing based on artificial intelligence.

Model Data Source Code References

GPSnet DrugBank, TTD, PharmGKB, ChEMBL,
BindingDB, UniProt, TCGA

https://github.com/ChengF-Lab/GPSnet
(16 December 2018) [88]

DeepDRK CTRP, GDSC, TCGA, DrugBank, KEGG https://github.com/wangyc82/DeepDRK
(16 January 2021) [89]

MBiRW Drugbank, OMIM http://github.com//bioinfomaticsCSU/MBiRW
(19 December 2016) [92]

DR-HGNN Drugbank, CTD, SIDER https://github.com/sshaghayeghs/DR_HGNN
(26 April 2022) [93]

GDRnet Drugbank, Hetionet, GNBR, STRING,
IntAct, DGIdb

https://github.com/siddhant-doshi/GDRnet
(27 December 2021) [94]

7. Artificial Intelligence-Assisted Accurate Prediction of Anti-Cancer Drug Reactions

Drug reactions are related to their ADMET properties, which may influence drug
sensitivity, drug toxicity, and drug–drug interactions [95,96]. The accurate prediction
of drug reactions can effectively increase the success rate of clinical trials and improve
patient outcomes. With the rapid development of artificial intelligence technologies, more
and more related studies are being proposed at the drug design stage using artificial
intelligence techniques.

7.1. Artificial Intelligence Aids in Predicting the ADMET Properties of Anti-Cancer Drugs

To explore drug reactions, the ADMET properties should be accurately predicted first.
Several ADMET properties, including Caco-2 permeability, carcinogenicity, blood–brain
barrier permeability, and plasma protein binding, are included in previous studies. For
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instance, Selvaraj et al. reviewed the applications of various machine learning models,
such as SVM regression and partial least squares (PLSs), for the prediction of the Caco-2
permeability coefficient [97]. Li et al. proposed a DeepCarc model to predict the carcino-
genicity of small molecules using deep learning-based model-level representations [98].
Vatansever et al. reviewed the current state-of-the-art methods in AI-guided central nervous
system (CNS) drug discovery, focusing on the blood–brain barrier permeability predic-
tion [99]. To predict the plasma protein binding of a drug, Mulpuru et al. built a prediction
model of a fraction of unbound drug in human plasma using a chemical fingerprint and a
freely available AutoML framework [100].

7.2. Artificial Intelligence Aids in Predicting Anti-Cancer Drug Sensitivity

Anti-cancer drug sensitivity predictions are important in guiding the enrollment of
those patients who may benefit from specific treatments. Chawla et al. developed a
deep neural network named Precily, which uses gene expression data to predict drug
sensitivity for cancer therapy. The model combines the structural properties of drugs with
the pathway specificity of gene expression as features to train the model [101]. Eliseo Papa
et al. built a recommendation system based on the BIKG knowledge graph to predict drug
sensitivity and identified effective patient subgroups early in clinical trials [102]. Gerdes
et al. proposed a model called DRUML, which uses omics data to rank over 400 drugs
based on their anti-tumor cell proliferation efficacy. The results showed that DRUML can
accurately rank anti-cancer drugs based on their efficacy [103].

7.3. Artificial Intelligence Aids in Predicting Toxicity of Anti-Cancer Drugs

Drug toxicity is a central issue to be considered in the drug development process.
Recently, Wang et al. proposed a machine learning classifier that combines chemical
structure (CS) and gene expression (GE) features. In addition, they prioritized the adverse
effects of approved drugs and preclinical small-molecule compounds. The results showed
that integrating GE data with drug CSs can significantly improve the predictability of
adverse effects [104]. However, most of the current studies only predict the occurrence of
adverse drug reactions, not their intensity or frequency. To address this issue, Zhao et al.
designed a novel graphical attention model for predicting drug side effect frequency from
multi-view data. The computational results showed the best performance on the benchmark
dataset, illustrating effectiveness in predicting the frequency of drug side effects [105].

7.4. Artificial Intelligence Can Predict Drug–Drug Interactions

Zhu et al. proposed a unified multi-attribute discriminative representation learning
(MADRL) model for DDI predictions. MADRL uses a generative adversarial network
(GAN) to capture intra-attribute specificity information of DDI attributes and uses them for
DDI predictions. The effectiveness of the MADRL algorithm was validated on a publicly
available dataset [106]. Most methods for predicting drug–drug interactions only predict
whether there is an interaction between two drugs, but it is more relevant to investigate
the hidden mechanisms behind DDIs. Therefore, Zhang et al. proposed a deep learning
method (DDIMDL) that used multiple drug features to predict the types of drug–drug
interaction events and explored their hidden mechanisms [107]. To further increase the
model’s accuracy and biological explanation, Chen et al. developed 3DGT-DDI, which
consists of a 3D graph neural network and a pre-trained textual attention module. The
innovation of the method is that it utilizes a 3D molecular graph structure and location
information to enhance the prediction ability of DDIs. The experiments showed that the
prediction performance of 3DGT-DDI outperformed other baseline models [108]. Table 6
table shows some of the methods mentioned above.
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Table 6. Methods for prediction of cancer drug reactions based on artificial intelligence.

Model Data Source Code References

DeepCarc CPDB, Pubchem, Drugbank https://github.com/TingLi2016/DeepCarc
(6 July 2022) [98]

Precily CCLE, MSigDB, GDSC, Pubchem https://github.com/SmritiChawla/Precily
(26 August 2022) [101]

DRUML PharmacoDB, DepMap portal, PRIDE
dataset, DrugBank, ChEMBL

https://github.com/CutillasLab/DRUMLR
(24 March 2022) [103]

MGPred SIDER, STITCH, DrugBank, PubChem https://github.com/zhc940702/MGPred
(6 May 2018) [105]

DLADE cTAKES, EHR and PubMed article https://github.com/qinxiao (7 October 2022) [109]

MADRL KEEG, SIDER, CTD, DrugBank https://github.com/AdverseDDI/MADRL
(18 January 2022) [106]

DDIMDL DrugBank, KEGG https://github.com/YifanDengWHU/DDIMDL
(1 May 2021) [107]

3DGT-DDI DrugBank, DDI extraction 2013 https://github.com/hehh77/3DGT-DDI
(21 February 2022) [108]

8. Data Sources of Artificial Intelligence to Anti-Cancer Drug Designs

A large number of artificial intelligence-based algorithms, including deep learning,
have become powerful tools in AI-assisted anti-cancer drug design [110,111]. Scientists
are developing algorithms that can learn and analyze large amounts of data with superhu-
man efficiency to speed up the anti-cancer drug design process [112]. However, artificial
intelligence is not universal and requires large amounts of reliable data or training experi-
ences [113]. Nowadays, there are some specific databases for artificial intelligence-based
anti-cancer drug design. They are listed in Table 7.

Table 7. Different data sources for anti-cancer drug design.

Database Website

BindingDB https://www.bindingdb.org/bind (24 December 2022)
BRENDA https://www.brenda-enzymes.org/ (1 February 2023)

CCLE https://sites.broadinstitute.org/ccle/ (23 December 2019)
chEMBL https://www.ebi.ac.uk/chembldb (12 July 2022)

CPDB https://www.nlm.nih.gov/databases/download/cpdb.html (12 October 2022)
CPTAC https://proteomics.cancer.gov/programs/cptac (7 February 2023)

CTDbase http://ctdbase.org (1 February 2023)
CTRP https://portals.broadinstitute.org/ctrp.v2.1/ (7 February 2023)

DepMap https://depmap.org/portal/ (14 December 2022)
DGIdb www.dgidb.org. (21 October 2020)

Drugbank https://www.drugbank.com/ (7 February 2023)
DUD-E http://dude.docking.org/ (14 July 2012)
GDSC https://www.cancerrxgene.org/ (July 2022)
GEO https://www.ncbi.nlm.nih.gov/geo/ (7 February 2023)
HCA https://data.humancellatlas.org/ (7 February 2023)

Hetionet https://het.io/ (7 February 2023)
IntAct https://www.ebi.ac.uk/intact/ (December 2021)

InterPro https://www.ebi.ac.uk/interpro (November 2022)
JingleBells http://jinglebells.bgu.ac.il/ (7 February 2023)

KEGG https://www.genome.jp/kegg/ (1 January 2023)
LIT-PCBA https://drugdesign.unistra.fr/LIT-PCBA/ (7 February 2023)
MSigDB https://www.gsea-msigdb.org/gsea/msigdb/ (August 2022)
OMIM https://www.omim.org. (5 February 2023)
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Table 7. Cont.

Database Website

Open Targets https://www.opentargets.org/ (19 January 2023)

PDB https://www.rcsb.org/docs/general-help/organization-of-3d-structures-in-the-protein-data-bank
(31 August 2022)

PharmacoDB https://pharmacodb.ca/ (7 February 2023)
PharmGKB https://www.pharmgkb.org/ (7 February 2023)

portal https://help.hcltechsw.com/digital-experience/9.5/plan/db_domains.html (7 February 2023)
PubChem https://pubchem.ncbi.nlm.nih.gov/ (7 February 2023)

QM9 https://paperswithcode.com/dataset/qm9 (7 February 2023)
reactome https://reactome.org/ (7 December 2022)
repoDB https://repodb.net/ (7 February 2023)

scRNASeqDB https://bioinfo.uth.edu/scrnaseqdb/ (7 February 2023)
SEER https://seer.cancer.gov/ (27 October 2022)
SIDER http://sideeffects.embl.de (7 February 2023)

STITCH http://stitch.embl.de/ (7 February 2023)
STRING https://string-db.org/ (7 February 2023)

SuperTarget http://insilico.charite.de/supertarget/ (7 February 2023)
SynLethDB http://synlethdb.sist.shanghaitech.edu.cn/v2/#/ (14 October 2022)

TCGA https://portal.gdc.cancer.gov/ (10 January 2023)
TCRD http://juniper.health.unm.edu/tcrd (7 February 2023)
TTD https://db.idrblab.net/ttd/ (29 September 2021)

UniProt https://www.uniprot.org/ (7 February 2023)
ZINC http://zinc15.docking.org/ (7 February 2023)

9. Successful Cases Applying AI in Anti-Cancer Drug Design

To depict how AI facilitates the development of anticancer drugs, we list some of the
anticancer drugs that have successfully entered human phase 2/3 clinical trials in the last
5 years in Table 8. For instance, Recursion identified REC-2282 as a potential candidate for
the treatment of diseases caused by mutations in the NF2 gene through its proprietary AI-
driven drug discovery platform, Recursion OS. REC-2282 is a permeable, orally bioavailable,
small-molecule HDAC inhibitor that is being developed for the treatment of meningiomas
with mutations in the NF2 gene. This molecule appears to be well tolerated, including in
patients that have been administering it over several years, and different from other HDAC
inhibitors in that it may reduce cardiotoxicity. It was granted both orphan drug status
and fast-track status by the U.S. FDA [114]. Relay Therapeutics developed the FGFR2-
specific inhibitor RLY-4008 by analyzing the dynamic balance of protein conformations
through an artificial intelligence platform. Preclinical studies have shown that RLY-4008
exhibits high selectivity for FGFR2 targets in cancer cell lines, shrinking tumors with
minimal impact on other targets [115]. Breg developed a new drug, BPM 31510, through
an artificial intelligence platform that is currently in clinical testing. The drug restructures
the metabolism of cancer cells so that patients do not have to undergo chemotherapy,
allowing cancer cells to die naturally [116]. EXS-21546 is an AI-designed A2A receptor
antagonist. Some tumors produce high levels of adenosine, which binds to and activates the
A2A receptors on immune cells, thereby inhibiting the anti-tumor activity of the immune
system [117]. PHI-101 is an orally available, selective checkpoint kinase 2 (Chk2) inhibitor
designed by an AI-driven drug discovery platform [118].
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Table 8. Some of the AI-designed anti-cancer drugs that have successfully entered human phase 2/3
clinical trials in the last 5 years.

Name Chemical Structure Company Therapeutic Area Target/Function Phase

REC-2282
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10. Conclusions and Prospects of Future Challenges

This review focuses on work that has been performed in the past decade on anti-cancer
drug design based on artificial intelligence. Compared to other reviews, our study collated
a large number of databases and source codes. It will offer some guidelines for other
researchers to apply to their own research. This means our review has great practicality.

Artificial intelligence (AI) has strong logical reasoning and independent learning abil-
ities that can simulate the thinking process of a human brain. AI technologies, such as
machine learning, can profoundly optimize the existing anti-cancer drug research paradigm.
In recent years, AI has already made unique contributions to the development and treat-
ment of anti-cancer drugs. Artificial intelligence can accelerate the discovery of new drug
molecules and the synthesis of more desirable drug molecules. This process may greatly
accelerate the development of anti-cancer drugs. It is believed that artificial intelligence
will be a powerful driving force for human cancer research and treatment in the future.
However, AI also has several limitations, including a high dependence on data and a
limited explanation. The “black box” behind traditional AI models prevents scientists from
using algorithms for hypothesis validation and mining the logic behind the data. Moreover,
in the drug development process, predicting the underlying logic behind a model is critical
to designing the right drug molecules. In the future, interpretable AI models will be the
new development direction, and the close combination of data and computation will be a
feature of AI-assisted cancer drug development. We believe that AI will bring profound
changes to anti-cancer drug designs.

Our study is also subject to certain limitations. For instance, we only focused on
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Abstract: AKT (also known as PKB) is a serine/threonine kinase that plays a pivotal regulatory
role in the PI3K/AKT/mTOR signaling pathway. Dysregulation of AKT activity, especially its hy-
peractivation, is closely associated with the development of various human cancers and resistance
to chemotherapy. Over the years, a wide array of AKT inhibitors has been discovered through
experimental and computational approaches. In this regard, herein we present a comprehensive
overview of AKT inhibitors identified using computer-assisted drug design methodologies (includ-
ing docking-based and pharmacophore-based virtual screening, machine learning, and quantitative
structure–activity relationships) and successfully validated small molecules endowed with anti-
cancer activity. Thus, this review provides valuable insights to support scientists focused on AKT
inhibition for cancer treatment and suggests untapped directions for future computer-aided drug
discovery efforts.

Keywords: cancer; AKT; computer-aided drug discovery; virtual screening; docking; pharmacophore;
kinase inhibitors; machine learning; QSAR

1. Introduction

AKTs are a group of serine/threonine kinases, also known as protein kinase B or
PKBs, which play an important role in the regulation of a wide range of cellular functions,
such as cell growth and proliferation, glucose metabolism, genome stability, transcription
and protein synthesis, and neovascularization [1,2]. Specifically, this enzyme is a key
component of the PI3K/AKTs/mTOR signaling pathway, whose overactivation contributes
to the development of many human cancers and resistance to chemotherapeutic drugs [3,4].

Three different isoforms are composing the AKT family. The first isoform to be
discovered and characterized was AKT1 (also known as PKBα) [5], followed by AKT2
and AKT3 (also named PKBβ and PKBγ, respectively) [6,7]. A differential tissue-specific
expression and cellular localization is observed for the three isoforms. AKT1 is expressed
ubiquitously in the cytosol, as well as at the plasma membrane, whereas AKT2 and AKT3
can be especially found in muscle tissue and in neurons, respectively [8]. Interestingly, the
three isoforms play non-overlapping or opposing functions in pathological conditions. As
an example, AKT1 has been shown to suppress breast cancer cell migration and invasion
in in vitro studies, while AKT2 promotes these processes, potentially facilitating cancer
metastasis [9,10]. These opposing roles of AKT1 and AKT2 in cell migration and invasion
have also been validated in mouse models in vivo [11].

Structurally, the three isoforms share a generally conserved sequence (overall identity
higher than 75%; Figure 1) and common structural organizations characterized by the
presence of an N-terminal pleckstrin homology (PH) domain, an interdomain linker, a
kinase catalytic domain, and a C-terminal hydrophobic motif.
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Figure  1.  Sequence  alignment  of  the  three  isoforms  of AKT,  i.e., AKT1, AKT2  and AKT3. The 

residues composing a ligand binding pocket are represented in bold and underlined. The specific 

pockets  are differentiated  by using different  symbols. The PH domain  and  the  kinase  catalytic 

domain are  color‐coded  in purple and blue,  respectively.  In  the  consensus  sequence,  conserved 

residues are indicated as capital letters, while non‐conserved residues are represented as follows: c, 

charged; h, hydrophobic; l, aliphatic; o, alcohol; p, polar; s, small; t: turnlike; u, tiny; +, positive; ‐, 
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Figure 1. Sequence alignment of the three isoforms of AKT, i.e., AKT1, AKT2 and AKT3. The residues
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l, aliphatic; o, alcohol; p, polar; s, small; t: turnlike; u, tiny; +, positive; -, negative. The alignment
was performed by using the Cluster Omega server (https://www.ebi.ac.uk/Tools/msa/clustalo/
accessed on 1 June 2023).

As expected, in the three isoforms the most conserved domain is the catalytic domain
(90% of sequence identity), while significative lower conservation is observed in the in-
terdomain linker (25% of sequence identity) [12]. AKT activation occurs following the
conversion in the plasma membrane of phosphatidylinositol (4,5)-bisphosphate (PI2P) into
phosphatidylinositol (3,4,5)-trisphosphate (PI3P) by phosphatidylinositol 3-kinase (PI3K)
(Figure 2A). The PH domain recognizes the charged head of the PI3P thanks to the presence
on its structure of a proper site called the PI3P-binding site, allowing the translocation of
AKT from the cytosol to the plasma membrane and subsequently activating the phosphory-
lation of Thr308 and Ser473. These double phosphorylations lead to increased accessibility
of the ATP-binding site in the catalytic domain, thus resulting in an improvement of the
kinase activity [13,14].

The PH domain can also negatively regulate the function of AKT1. Indeed, the
interaction of the PH domain with the catalytic domain generates an autoinhibited AKT
form that prevents accessibility of the ATP-binding site to the ATP molecules.
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Figure 2. (A) Mechanisms of AKT regulation. The stimulation of receptor tyrosine kinases (RTKs)
leads to activation of phosphatidylinositol 3-kinase (PI3K) and the subsequent conversion of the
phosphatidylinositol (4,5)-bisphosphate (PI2P) into the phosphatidylinositol (3,4,5)-trisphosphate
(PI3P). The inactive form of AKT (PH-in) is then recruited from the cytosol and translocated to the
membrane thanks to the interaction between the AKT PH domain and PI3P. At this point, the double
phosphorylation of AKT fully activates the protein (PH-out) that in turn modulates the downstream
signaling proteins such as mammalian target of rapamycin (mTOR), IkappaB kinase (IKK), cAMP
response element-binding protein (CREB) and Forkhead box O (FoxO). (B) AKT closed “PH-in” and
opened “PH-out” conformations, with highlighted the three known ligand binding sites.

This inactive closed conformation is generally called “PH-in” which is distinguished
from the opened active conformation “PH-out” (Figure 2). Several types of AKT inhibitors
have been developed as a result of the presence of three well-known ligand-binding pockets
in the AKT1-3 structures: the ATP-binding site, the allosteric site, and the PI3P-binding
site. Detailed structural information on these pockets has been reported in the literature for
isoform AKT1 and is summarized herein.

Regarding the ATP-binding site, no structures have been released of ATP bound
to this pocket in the RCSB protein data bank (PDB) [15], but important clues can be
gathered from the complex between AKT1 and adenylyl-imidodiphosphate (AMP-PNP;
PDB ID: 4EKK [16]). Specifically, the ATP-binding pocket is composed of different structural
elements that surround the central cavity, in which is accommodated the ATP substrate [16].
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The hinge region (residues 227–230) connects the C-terminal and N-terminal domains and
stabilizes the ATP adenine ring by two hydrogen bonds. Additionally, the glycine-rich
loop (residues 157–162), the DFG motif (residues 292–294), and the αC-helix (residues
191–104) supply some amino acids which contribute to the constitution of the catalytic site.
Compounds able to interact with this pocket prevent the binding of the ATP molecules,
acting as competitive inhibitors.

The PI3P-binding site is mainly composed of positively charged residues, in accor-
dance with the specificity of the site for the PI3P head (i.e., inositol-1,3,4,5-tetraphosphate;
4IP). One of the crystal structures of the AKT1 PH-domain in complex with 4IP is available
under the PDB ID 1UNQ [17]. The phosphate groups of 4IP established a complex network
of hydrogen bonds and salt bridges with Lys14, Glu17, Tyr18, Ile19, Arg23, Arg25, Asn53,
and Arg86. Also in this case, small molecules able to interfere with this site can prevent the
binding event between AKT1 and PI3P, acting as competitive inhibitors and blocking the
protein translocation.

Finally, a third druggable site is formed in the surface involved in the protein-protein
interaction between the kinase catalytic and PH domains. This pocket is only accessible in
the “PH-in” conformation and can be targeted by AKT allosteric inhibitors. The binding of
proper small molecules to this site allows for the (i) stabilization of the inactive conformation
of AKT in which the accessibility of the ATP-binding site is reduced and (ii) stabilization
of the PH-in conformation in which the PI3P cavity is shielded from the solvent and
unavailable for PI3P recognition.

Following our interest in the kinase inhibitors’ field [18,19], we recently investigated
the AKT1, reporting the identification of a novel ATP-site-directed AKT1 inhibitor with
anticancer activity [20]. Even though, to date, no FDA-approved drugs against this protein
are on the market, many efforts have been made in the discovery of molecules capable of
targeting AKT by binding to one of its three pockets [4,13,21], with particular emphasis on
small molecules for cancer treatment [3,4,14]. In this context, we herein provide a compre-
hensive literature survey of published papers reporting the use of in silico approaches to
identify AKT-targeted small molecules with experimentally validated anticancer activity.

The collected works were classified based on the targeted site (i.e., ATP-binding site,
allosteric site, or PI3P-binding site) and the main applied methodology, namely docking-
based, pharmacophore-based, machine learning (ML), or quantitative structure-activity
relationship (QSAR) as reported in Table 1. For instance, most of the examined manuscripts
employed molecular docking experiments either alone or in combination. In particular,
docking simulations were performed with three different aims: (a) to carry out virtual
screening of compound libraries; (b) to refine the results obtained in pharmacophore-based,
ML, or QSAR studies, and (c) to predict the binding mode of specific compounds. In light
of this consideration, we classified the docking-based approach only to those works in
which this computational technique was applied as the main methodology. Furthermore,
three-dimensional (3D) pharmacophore models were also developed by applying two well-
known strategies: (i) ligand-based pharmacophore modeling, which uses small ligands
with different binding affinities to build predictive models in the absence of drug-target
structural data, and (ii) structure-based pharmacophore modeling, which uses structure-
based data and the bioactive conformations of known ligands to build models. Finally, for
the best-characterized compound(s) reported in each work, we report the 2D structures and
the available biological activities in terms of half-maximal inhibitory concentration (IC50),
half-maximal effective concentration (EC50), half-maximal growth inhibition concentration
(GI50), dissociation constant (Kd), inhibition constant (Ki) and percentage of inhibition
(%inh). The reported activities can be referred to as assays performed on the isolated
enzyme (i.e., AKT1, AKT2 or AKT3) or cellular system. In the latter case, the cellular line
employed in the biological test is also indicated.
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Table 1. Overview of collected AKT-targeted in silico studies according to the ligand binding site and
the main computational methodology.

Site Computational Methodology Refs

ATP-binding site docking-based [20,22–27]
pharmacophore-based [28–31]

ML [32]
QSAR [33]

Allosteric site docking-based [34,35]
pharmacophore-based [36]

PI3P-binding site pharmacophore-based [37,38]

2. ATP-Binding Site
2.1. Docking-Based Approaches

From a historical point of view, the first published works were oriented towards
targeting the AKT2 isoform.

In 2007, Donald et al. [22] started their work looking for a fragment that could act
as a hinge-binder at the AKT2 ATP-binding site. Virtual screening of a fragment library
composed of about 300,000 low molecular weight compounds (≤250 Da) allowed the selec-
tion of the 7-azaindole molecule 1 (Figure 3) as a possible hinge binder. Co-crystallization
experiments performed with the PKA-AKT2 chimeras validated the docking predictions,
and in its experimental binding mode, compound 1 established a double hydrogen bond
interaction with the hinge residues (Glu121 and Ala123 in the PKA-AKT2 chimera, PDB ID:
2UVX [39]). Notably, the PKA-AKT2 chimera was previously validated as a valuable AKT2
surrogate for ATP-binder discovery [40]. Using 1 as the starting point, the authors coupled
structure-based design and protein-ligand crystallography to rapidly identify novel potent
AKT2 inhibitors (Figure 3). Specifically, to improve the synthetic accessibility of the scaffold
and maintain the ability to form hydrogen bonds in the hinge region, the 7-azaindole core
was replaced with a purine system. The fragment was suitably decorated and focused
analogs were designed. Based on the crystallographic data provided by AKT2 bound to the
known isoquinoline-5-sulfonamide inhibitor 2 (PDB ID: 2JDO [41]), the authors designed a
series of derivatives (3–5, Figure 3) to mimic the interactions described as crucial between
compound 2 and AKT2. The introduction of the basic amine in 3 enabled favorable polar
contacts with the acidic residue Glu127 and the backbone carbonyl of Glu170. Furthermore,
the addition of a terminal hydrophobic group (i.e., a benzyl moiety in compound 4) resulted
in a greater than 15-fold increase in AKT2 enzyme inhibition (IC50 0.40 µM) compared to
analog 3 (IC50 6.9 µM). The final activity boost was obtained with the halogenation of the
terminal aromatic ring (compound 5 with IC50 of 0.009 µM). The authors explained that the
superior activity of 5 with respect to 2 was due to (i) the two hydrogen bonds interacting
with the hinge region and (ii) the presence of a more rigid molecular structure bearing the
same key pharmacophoric elements. Indeed, given the high number of rotatable bonds,
the binding of compound 2 was associated with a higher entropic penalty. Unfortunately,
despite the increased inhibitory potency, compound 5 showed low anticancer activity when
tested in the PC3 cell lines. The authors hypothesized that the purine derivatives might
have had a cellular permeability issue due to the low ratio of lipophilicity (CLogP) to
topological polar surface area (TPSA). To overcome this limitation, they designed analog 6
which was predicted to have a more pronounced lipophilic character (ClogP: 4.81). The
newly designed compound maintained a nanomolar IC50 and an optimal ligand efficiency
(0.38 kcal mol−1 per non-H atom) against AKT2. Additionally, derivative 6 induced growth
inhibition on different cancer cell lines in the low micromolar range (4.5, 5.7, and 8.7 µM in
PC3, HCT116, and U87MG cell lines, respectively) and decreased the levels of pGSK3, pS6,
and pFKHR proteins, that are downstream targets of the AKT2 pathway.
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Figure 3. Targeting ATP-binding site. Rational identification of derivative 6 starting from fragment 1.
The AKT2-ligand interactions emerged from co-crystallization experiments are highlighted.

In 2009, Medina-Franco et al. [23] described the use of a consensus docking strategy in
the structure-based VS, focusing on the selection of novel AKT2 inhibitors. Generally speak-
ing, the consensus approach entails the use of more than one docking software/scoring
function in the same VS pipeline to improve the overall docking performance [12,13].
Specifically, two docking software (i.e., FRED [42] and GOLD [43]) were used to explore
AKT2 by using the two protein conformations co-crystallized with the known ATP-binding
site inhibitors AT7867 (PDB ID: 2UW9 [44]) and A443654 (PDB ID: 2JDR [41]; Figure 4A).
These structure-based strategies enabled the virtual screening of 105,937 lead-like com-
pounds and the selection of nineteen putative AKT2 inhibitors that matched at least one
of the following two criteria: top-ranked position based on the computed docking scores
and/or the ability to make hydrogen bonds with the two key hinge residues Glu230 and
Ala232. Notably, the co-crystallized inhibitors AT7867 and A443654 performed this double
interaction (Figure 4A). Compound 7 (Figure 4B) was selected as the top-ranked molecule
in the docking experiments against the 2UW9 protein model and was validated as a real hit
in biological assays (IC50 = 1.1 µM). Interestingly, no interaction with the hinge residues
was observed between this small molecule and the kinase domain. Conversely, the ben-
zoxazolinone system performed two hydrogen bonds with the side chain atoms of Thr213
and Thr292, the 4H-1,4-benzoxazin-3-one moiety and Asp293 established a third hydrogen
bond, and a π-π interaction emerged between the phenyl ring of 7 and Phe443. In the
biological assays, compound 7 showed a pan-AKT inhibition activity with IC50 values of
2.6 µM, 1.1 µM, and 4.0 µM for AKT1, AKT2, and AKT3, respectively. Furthermore, this
molecule exhibited interesting inhibition activities on the growth of MDA-MB-468 (EC50:
3.8 µM) and MDA-MB-453 (EC50: 10 µM) cancer cell lines.

It is well known that competitive kinase inhibitors mimic the interaction of the ATP
adenine group with the hinge region, generally through a heteroaromatic system that can
ensure an effective binding to the ATP-binding site [45–47].

Starting from this knowledge, in 2015 Chuang et al. [24] filtered the SPECS commercial
library to keep only compounds that (i) included in their structure heteroaromatic ring
systems able to form hydrogen bonds with the protein and (ii) were commercially available.
The retained subset (35,367 compounds) was docked against the AKT1 ATP-binding site
(PDB ID: 3MVH [48]) using the DOCK program [49], and the results were filtered consid-
ering energy score values, visual inspection, and chemical diversity. Finally, forty-eight
compounds were selected as virtual hits for biological validation. The in silico procedure
led to the identification of compound 8 (Figure 5), which was able to inhibit about 75% of
AKT1 activity at a concentration of 100 µM.
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Figure 4. Targeting ATP-binding site. Co-crystallized AKT2 inhibitors AT7867 and A443654 (A)
and validated hit 7 (B). The atoms involved in the hydrogen bond interactions with the AKT2
hinge residues Glu230 and Ala232 are highlighted in blue and red, respectively. Predicted polar
intermolecular interactions are illustrated as follows: magenta arrow, hydrogen bond; green dotted
line, π-π interaction.
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Figure 5. Targeting ATP-binding site. Validated hits 8–11 with the predicted polar intermolecular
interactions illustrated as follows: magenta arrow, hydrogen bond; purple dotted lines: π-cation in-
teraction.

The compound was further characterized by cytotoxicity evaluation on HCT-116
human colon cancer cells and HEK-293 normal cells, in which the inhibitor showed IC50
values of 9.5 and 152.6 µM, respectively, resulting in a selectivity index (IC50-HEK-293/IC50-
HCT-116) of 16.1. In the proposed binding mode, 8 established two hydrogen bonds with
the AKT1 hinge residues, Thr211 and Ala230. This small molecule also showed multiple
hydrophobic interactions with surrounding residues, including Leu156, Val164, Met227,
Tyr229, Phe237, Met281, Phe438, and Phe442.

In 2022, three computer-aided drug discovery (CADD) approaches described the
identification of new competitive AKT1 small molecule inhibitors endowed with anti-
cancer activities [20,25,26].

In the first work, Zhong et al. [26] queried the ZINC collection to rationally identify
novel AKT1 inhibitors from compounds of natural origin. The original database (ZINC15
natural collection) consisted of 17,931 commercially available molecules. LibDock module
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from Discovery Studio [50] was used to perform docking experiments (PDB ID: 4EKL [16])
and the twenty top-ranked hits were chosen for further in silico studies, e.g., absorption,
distribution, metabolism, excretion (ADME), and toxicity predictions. Particular attention
was paid to the aqueous solubility, the human intestinal absorption, and the cytochrome
P450 2D6 inhibition. Additionally, the stability of the predicted ligand binding mode
was assessed using molecular dynamics (MD) simulations. The two final candidates,
andropanoside (9) and neoandrographonide (10) (Figure 5) were subjected to biological
characterization by using the human osteosarcoma MG63 cell line and showed an effective
ability in inhibiting the cell growth, although no explicit data values (e.g., IC50 or EC50)
were provided. Additionally, both compounds inhibited the AKT1 expression in MG63
cells at a concentration in the submicromolar range. However, the authors did not provide
direct evidence of AKT1 inhibition and/or binding for the two molecules.

In the second work performed by Noser et. al., docking studies were applied for the
identification of a PI3K/AKT1 dual inhibitor [25]. The advantage of developing dual in-
hibitors of AKT1 and PI3K is that both proteins are involved in the same signaling pathway
and play critical roles in the proliferation and survival of cancer cells. Therefore, targeting
these two proteins simultaneously can lead to a more potent and efficient anticancer effect
compared to targeting either protein alone. The authors used the PyRx platform [51] to
virtually screen a small set of twenty-one in-house compounds for the ability to interact
with both AKT1 and PI3K. The results highlighted that compound 11 (Figure 5) had favor-
able binding energy against both PI3K and AKT1 targets and promising in silico drug-like
properties. In the predicted binding mode, the compound interacted with the AKT1 hinge
region by hydrogen bonding Ala230, Glu228, and Thr195, while a π-cation interaction was
predicted with the basic side chain of Lys179. Unfortunately, no information about the
ability of 11 in inhibiting the isolated enzymes was provided, but the molecule was able to
reduce the phosphorylation levels of both AKT1 and PI3K in a dose-dependent manner in
the Caco colon cancer cell line. This small molecule also inhibited tumor growth in A549,
MDA-231, Caco, PCL, and MCF-7 cancer cell lines with IC50 values of 40.91, 38.45, 23.34,
56.33, and 50.15 µM, respectively, and was characterized by low cytotoxic effects on WISH
normal cells (IC50 = 124.4 µM).

Finally, we have recently reported the identification of novel competitive AKT1 in-
hibitors as possible agents against acute myeloid leukemia (AML) [20]. The serendipitous
discovery of compound 12 (Figure 6) as an AKT1 inhibitor prompted us to carry out model-
ing studies to aid the selection of 12-like compounds for biological testing. As the first step,
12 was used as a query molecule in the BioSolveIT Feature Trees (FTrees) [52] software,
a fast 2D-similarity screening tool used to mine a library of in-house compounds. The
resulting compounds were then docked with Glide [53,54] using the AKT1 conformation co-
crystallized with the clinical trial inhibitor capivasertib (PDB ID: 4GV1 [55]). This protocol
led to the identification of the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-
one derivative 13 (Figure 6, T126 in the original paper) as the most interesting compound.
Based on the predicted binding pose generated by the docking protocol and subsequent
MD simulations, 13 interacted with the hinge region by using the para-hydroxyl group of
the catechol moiety, while the second hydroxyl group was in contact with Thr291. Inter-
estingly, the endocyclic amide established well-conserved, water-mediated interactions
with residues Thr291 and Asp292. The compound inhibited the AKT1 activity with IC50
and Ki values of 1.99 and 0.41 µM, respectively. Accordingly, a clear effect on the growth
inhibition and induction of apoptosis in AML cells at low micromolar concentrations was
observed. Indeed, 13 showed IC50 values 4.2, 4.3, 2.4, 9.2, and 6.9 µM for OCI-AML3,
IMS-M2, OCI-AML2, MOLM-13, and SKM-1 cell lines, respectively. Additionally, given
the presence of a catechol moiety that is counted as one of the pan-assay interference
compounds’ (PAINS) motifs, we performed specific experiments to rule out the possibility
that the compound interfered with the biochemical and cellular assays by the mechanism
of intrinsic fluorescence effect, metal chelation, and chemical aggregation. Because of
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these encouraging data, the biologically validated hit 13 is now the subject of additional
biological investigations and hit-to-lead efforts.
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Still, in 2022 Zhu et al. [27] reported a new potent and selective AKT1 proteolysis
targeting chimera (PROTAC). PROTAC is a heterobifunctional molecule made up of two
heads and a linker that can be used to degrade undesirable proteins. Indeed, while one
PROTAC head binds to the target protein intended for degradation, the second head
interacts with the E3 ubiquitin ligase, leading to ubiquitination and proteasome-mediated
degradation of the former protein [56]. In this context, structure-based approaches are
especially useful in the rational design of the PROTAC linker, where they may support
the choice of the preferred chain length and/or composition. In particular, computational
protocols, such as the “protein-protein docking & double clustering” method [57] can be
applied in the prediction of PROTAC-mediated ternary complex model (i.e., PROTAC + E3
ligase + target protein). Using this strategy, the authors aimed to create a PROTAC molecule
by linking the known AKT1 inhibitor 14 and the E3 ubiquitin ligase binder pomalidomide
(Figure 7). Among the designed and tested compounds, derivative 15 (Figure 7) rapidly
and completely removed AKT1 protein, also exhibiting efficacious antiproliferative effects
on haematological cancer cells. From a chemistry point of view, this PROTAC molecule
was characterized by a phenyl ring in the linker that was able to establish a favorable π-π
interaction with the Phe236 of AKT1. The authors suggested that 15 and its analogues
could be valuable for studying AKT1 biological functions and developing drugs to treat
AKT-associated human cancers. Further evaluation of 15‘s safety benefits and therapeutic
potential in mantle cell lymphoma (MCL) treatment is ongoing.
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2.2. Pharmacophore-Based Approaches

In 2011, Dong et al. [28] reported the first successful example of AKT1-targeting
molecules for cancer that was identified by ligand-based pharmacophore modeling. The
authors collected, from the literature, seventy-four competitive AKT1 inhibitors with IC50s
spanning over six orders of magnitude (from 0.00016 to 32.25 µM). This library was then
split into twenty-four and fifty compounds constituting the training- and the test set, re-
spectively. The former set was used to generate a HypoGen [58] model composed of four
pharmacophoric features, including one hydrophobic group, one hydrogen bond acceptor,
and two hydrogen bond donors (Figure 8; compound 16 is reported as a representative of
the training set). The model showed an area under the ROC curve (AUC) of 0.957, and a
correlation coefficient of 0.803 between the experimental and predicted AKT1 IC50s of the
compounds in the test set. Encouraged by these results, the authors used the developed
pharmacophore to screen 1024 and about 60,000 compounds from an in-house and the
Maybridge databases, respectively. Among them, eighty candidates showed a good fit
with the pharmacophoric features, and their selection was refined by using molecular
docking experiments. To select both the proper docking algorithm and protein conforma-
tion, the authors performed self-docking studies on six different AKT1 protein structures
(i.e., PDB IDs: 3CQU [59], 3CQW [59], 3MV5 [48], 3MVH [48], 3OCB [60], and 3OW4 [61])
employing five molecular docking software (i.e., Libdock [50], LigandFit [62], FlexX [63],
CDOCKER [64], and flexiDOCK [65]). The best result was obtained by combining the
3OCB conformation with the flexiDOCK software (average RMSD in self-docking studies
of 0.11 Å). Nine compounds were finally selected after docking studies and subsequently
subjected to biochemical assays (HTScan PKB/Akt1 Kinase Assay Kit) and cytotoxicity
studies on PC3, OVCAR-8, and HL-60 cell lines. The best inhibitory activities against AKT1
were shown by the flavonoid compound 17 with an IC50 value on the isolated AKT1 of
5.4 µM (Figure 8). The cellular assays also disclosed promising antiproliferative activity
concerning all tested cell lines (PC3M, OVCAR-8 human ovarian carcinoma cells, and
HL60 human leukemia cell line), with an IC50 ranging from 2.5 to 23.8 µM. Additionally,
the apoptotic ability of 17 toward the OVCAR-8 cell line was tested as well. After 72 h
of exposure, induction of apoptosis was observed in 40.19% of the treated cells. As pro-
posed by the authors, computational studies suggested two main interactions between the
flavonoid compound and AKT1: (i) the catechol moiety formed two hydrogen bonds with
the residues Ala230 and Glu228, and (ii) the 5-hydroxyl group of the carboxylic oxygen
of the chromanone ring interacted with the Lys179 residue. In an effort to enhance the
inhibition activity of this chemical family, 17 was submitted to chemical optimization [31].
Based on docking and MD simulations, only derivative 18 was selected for further studies,
as this compound was predicted to establish an additional hydrogen bond involving the
7-hydroxyl group and a π-π stacking interaction between one phenyl functionality and the
Phe161 residue (Figure 8). Unfortunately, derivative 18 did not show any improvement
compared to the parent compound 17 when submitted for biological experiments.

In a sequent study published in 2013 [30], the same research group applied the in
silico workflow developed to identify compound 17 to investigate analogues of the pre-
vious published compound 5 (Figure 3). Specifically, a series of diphenyl methylamine
derivatives were rationally designed in a stepwise manner by first decorating the primary
amine with substituents of a different nature, and then replacing the purine system with
a pyrazole ring. The generated molecules were submitted to pharmacophore screening
and molecular docking studies. The best analog produced by this work was compound
19 (Figure 8), endowed with an IC50 of 0.038 µM on isolated AKT1 and low micromolar
anti-proliferative activity on OVCAR-8, HL60, and HCT-116 cancer cell lines (8.1, 5.3, and
8.9 µM, respectively). Additionally, kinase selectivity studies underlined the excellent
selectivity of this derivative against Aurora A, Drak, IKKb, GSK3b, SYK and JAK2 kinases.
Finally, the information gathered by the produced biological results was used to refine the
original pharmacophore model, shown in Figure 8 for the AKT1 inhibitor.
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Figure 8. Targeting ATP-binding site. Known AKT1 inhibitor 16 and validated hits 17–19. The
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Unlike the previous ligand-based approach, in 2020 Fratev et al. [29] proposed a
structure-based pharmacophore model which was developed by combining the application
of the e-Pharmacophore tool [66] from Schrödinger (https://www.schrodinger.com/), with
fragment-based virtual screening. Specifically, the 3D model was generated based on
docking results obtained for several hundred fragments oriented into the ATP-binding
site of AKT1 (PDB ID: 3QKK [67]). The position of the well-scored fragments was used
to define a specific pharmacophore feature (i.e., hydrogen bond acceptor, hydrogen bond
donor, hydrophobic, negative ionizable, positive ionizable, or aromatic ring) according
to the chemical nature of the fragment. The best-obtained model included four aromatic
rings, three hydrogen-bond acceptors, and two hydrogen bond donors, and was integrated
into a virtual screening protocol to query 3.5 million “lead-like” ZINC compounds. The
top 1% of retrieved compounds (i.e., 35,000 ligands) were then docked and rescored by
using Glide-SP. Finally, nine candidates emerged as virtual hits and were subjected to
biochemical and cellular assays. Despite the efforts, the most interesting compound (20;
Figure 9) was endowed with only a low ability to inhibit AKT1 activity and cancer cell
growth. No information was provided about the fitting of derivative 20 on the developed
pharmacophoric model.
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2.3. Machine Learning Approaches

In 2021, Wang et al. applied a deep learning strategy called SyntaLinker to design
novel AKT1 inhibitors [32]. SyntaLinker connects molecular fragments using syntactic
pattern recognition and deep conditional transformer neural networks to design compound
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libraries by learning from the vast knowledge contained in chemogenomic repositories,
such as ChEMBL [68]. This process enables a “scaffold hopping” approach for the iden-
tification of novel molecules with a potentially high binding affinity against the selected
target. The authors started by decomposing the structure of the known AKT1 inhibitor
capivasertib into three parts: a central piperidine scaffold, the pyrrolopyrimidine ring, and
the chlorophenyl substituted propanol as terminal fragments (TFs) (Figure 10). They then
applied the SyntaLinker strategy and generated new scaffolds able to link the two TFs as
well as to satisfy some structural filters (e.g., maximal bond distance ranging from three
to seven atoms and only one aromatic ring). The retrieved compounds were submitted to
docking experiments leading to the selection of twenty-four molecules with ligand binding
that have similar poses to capivasertib. Among these molecules, the authors selected the
aminobenzamide derivative 21 (Figure 10) for synthesis and kinase activity validation, ob-
taining a moderate IC50 value of 7.2 µM. Subsequent chemical optimization strategies were
carried out by (i) replacing the hydroxyethyl group with a basic methylamine moiety and
(ii) removing the amine between the benzene ring and the pyrrolopyrimidine to shorten
the length of the molecule. These modifications (compound 22; Figure 11) significantly
improved the inhibitory activities of AKT1, AKT2, and AKT3 (i.e., IC50s of 0.088, 0.7, and
0.092 µM, respectively). The predicted pose of 22 in the ATP binding site of AKT1 showed
that this inhibitor performed the conserved hydrogen bond interactions with the hinge
residues Glu228 and Ala230, and an additional hydrogen bond with Asn279. Furthermore,
hydrophobic interactions with Val164, Phe161, and Leu181, were present. Of note, 22 exhib-
ited selective anticancer activity against U937 (IC50 value of 0.39 µM) cancer cells, while
displaying less potent activities against other cancer cell lines (activities against HEPG-2,
HEK293 and HCT116 with IC50 values of >10 µM, 1.96 µM, and 2.25 µM, respectively).
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2.4. QSAR Modelling

In 2015, Zhan et al. [33] described the development of a molecular docking-based
QSAR model for AKT1 inhibitors. The model was trained with forty-seven molecules
collected from the literature data by applying the support vector regression (SVR) method.
The collected set was subjected to docking simulations using the LigandFit program [62]
and several scoring functions were employed to calculate the ligand binding scores. Addi-
tionally, key interaction profiles referred to the distances between the docked compounds
and specific amino acid residues in the AKT1 were derived for each compound pose. Exam-
ples of these key amino acid residues included Glu228, Ala230, Glu234, Glu292, and Phe163.
The combination of docking scores, key interaction profiles, and molecular descriptors
(e.g., clogP and tPSA) allowed the generation of a QSAR model for bioactivity estimation
with a very interesting predictability (R2 = 0.934) that encompassed the predictability of
the single LigandFit scoring function (R2 < 0.417). The generated model was then used to
select the most promising AKT1 inhibitors within a virtual library of 4-aminopyrimidine
derivatives. Compound 25 (Figure 11) emerged as the most promising virtual hit (predicted
pIC50: 7.9), and its experimental activity on the isolated enzyme (IC50: 7.7 nM; pIC50: 8.1)
confirmed the in silico prediction. Additionally, this small molecule showed promising
antiproliferative effects against the HCT116 and OVCAR-8 cancer cell lines (IC50 of 5.15
and 22.67 µM, respectively). According to the docking studies reported by the authors,
the molecular interactions between 25 and AKT1 involved two hydrogen bonds between
the compound 4-aminopyrimidine group and Glu228 and Ala230 residues. Moreover, a
hydrophobic interaction was hypothesized between the 4-chlorophenyl ring and the amino
acid Phe161. Finally, an ionic interaction was predicted between the primary amino group
of 25 and the Glu292 residue.

3. Allosteric Site
3.1. Docking-Based Approaches

Two papers published in 2022 described the application of docking-based virtual
screening to discover potential allosteric AKT1 inhibitors. The SiBioLead web-tool (https:
//sibiolead.com/) was used in both works to identify a single lead molecule able to act as
a dual inhibitor.

The first study, published by Al Shahrani et al. [35], was aimed at finding new
molecules that could overcome resistance to vemurafenib in the treatment of melanoma.
Vemurafenib is an approved kinase inhibitor that specifically inhibits the activity of the
mutated form of the BRAF protein, known as BRAF-V600E [69]. As resistance to this drug is
often due to reactivation of the MAPK and PI3K/AKT signaling pathways, the researchers
planned to identify a dual inhibitor that could target both BRAF-V600E and AKT1 pro-
teins. KINAcore and KINA-set libraries from ChemBridge were selected as the compound
source and merged to create a collection of 23,365 compounds sharing 3D pharmacophore
fingerprints with well-validated and published kinase inhibitors. The virtual screening of
the two libraries against the BRAF-V600E (PDB ID: 1UWH [70]) led to the selection of the
top 15 compounds for which more stringent docking calculations were produced, among
which the evaluation of the potential affinity for the AKT1 target (PDB ID: 6HHG [71]).
Compound 244 (Figure 12) was found to potentially bind both BRAF-V600E and AKT1
with high binding energy and affinity.

Specifically, docking experiments predicted a conserved π–π stacking interaction with
Trp80, and three hydrogen bonds with Ser205, Asn54 and Gln79. Biological validation
showed that this small molecule dose-dependently inhibited BRAF-V600E and AKT1 with
IC50 values of 635 and 154.3 nM, respectively, and also controlled the proliferation of
normal (A375-N cell line) and vemurafenib-resistant (A375-R cell line) melanoma cells.
Indeed, while the effect of vemurafenib was reduced by about 3-fold in resistant cells
(GI50 of 13.73 and 34.60 µM for A375-N and A375-R, respectively), no activity decrease
was observed in the case of treatment with 24 (GI50 of 222.3 and 230.5 nM for A375-N and
A375-R, respectively). Additionally, the compound was able to induce cell cycle arrest
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and apoptosis and to reduce the number of cells with high levels of pERK and pAKT, a
condition generally associated with insurgency of resistance mechanisms.
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In the second study, Abohassan et al. [34] reported their efforts in identifying a single
lead molecule able to inhibit both PI3K and AKT1 for the treatment of AML. Because the
majority of potent kinase inhibitors have molecular weights between 350 and 750 Da, the au-
thors built a chemical library for virtual screening composed of about 800,000 ChemBridge
compounds respecting this range. To accelerate the screening process, diversity-based high-
throughput virtual screening (D-HTVS) was applied. In the first step, structurally diverse
compounds selected from the original library were docked against the target protein, with
each compound taken as a representative of a given scaffold. In the second step, each
scaffold of the top 10 compounds was used to collect a focused library for further docking
simulations. First, the D-HTVS workflow was applied to explore the PI3Kγ protein. Indeed,
PI3K is expressed in several isoforms, and previous studies indicated that the molecules
targeting both PI3Kγ and PI3Kδ subunits showed maximum efficacy in various cancers
where PI3K is implicated [72]. Then, the obtained virtual hits were subjected to a funnel-like
process in which docking experiments were used to evaluate the affinity of the queried
library again PI3Kα, PI3Kβ, PI3Kδ, and AKT1, each time discarding the molecules that
did not meet the required criteria. Specifically, the authors selected only compounds with
high affinity against PI3Kγ, PI3Kδ, and AKT1 and low affinity against PI3Kα and PI3Kβ.
Four molecules matched these criteria, with compound 27 (Figure 12) chosen as the most
promising hit based on the binding energies and docking poses calculated against all the
protein targets considered in this study. Regarding the predicted interactions with AKT1,
the benzo[de]isoquinoine system of 25 formed a π–π stacking interaction with Trp80 as well
as additional hydrophobic contacts with Leu264, Ile84, Val270, and Arg270 residues. No
intermolecular hydrogen bonds were predicted, while one intramolecular hydrogen bond
was hypothesized between the nitrogen atom of the aminic linker and one of the oxygens of
the barbituric ring. The in vitro kinase assays corroborated with computational predictions,
showing that 25 inhibited PI3Kγ, PI3Kδ, and AKT1 kinases in the nanomolar range. Of
note, this small molecule also showed potent anticancer activity when tested against THP-1
and HL-60 AML cell lines, validating the hypothesis that dual inhibitors targeting PI3K
and AKT can efficiently inhibit AML cell proliferation.

3.2. Pharmacophore-Based Approaches

In 2017, Lakshmi et al. [36] gathered thirty-six known AKT1 pyridopyrimidine biphenyl
derivative inhibitors (exemplified by compound 26, Figure 13) to create a 3D pharma-
cophore model with Phase [73] composed of three hydrogen-bond acceptors, two positive
groups and two aromatic rings. This model was then used to screen a library of about
5000 natural compounds and the 708 retained molecules were docked into the allosteric
site of AKT1 (PDB ID: 3O96 [74]). Specifically, the authors employed a funnel-like pipeline,
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including Glide [54] HTVS, SP, XP, and Prime [75] MMGBSA steps. This process resulted in
the retrieval of forty-five compounds, which were visually inspected leading to the final
selection of twenty-three molecules able to potentially interact with the residues Ser205 and
Trp80. Further MD computational analysis, based on the ligand hydrogen bond occupancy
with key kinase residues, persistent polar contacts, and favorable binding free energy,
suggested quercetin-7-O-d-glucopyranoside (27, Figure 13) as the most promising virtual
hit. Biological validation of 27 revealed that this small molecule induced dose-dependent
inhibition of breast cancer cells (MDA MB-231) and down-regulated the expression of
p-AKT1 (Ser473). The authors further confirmed the ability of 29 to bind protein kinase
AKT1 by measuring a Kd of 0.246 µM.
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4. PI3P-Binding Site
Pharmacophore-Based Approaches

In 2008, Mahadevan et al. described an in silico strategy for the development of
PI3P site binders starting from the crystal structure of the AKT1 PH domain (PDB ID:
1H10 [76]) in complex with the head of PI3P (i.e., 4IP) [37]. The intermolecular interactions
performed by the ligand with the protein allowed the generation of a pharmacophore query
generated with UNITY (Tripos, L.P.) [77], although the authors did not explicitly describe
the selected pharmacophore features. The generated pharmacophore query was used to
screen the National Cancer Institute (NCI) database, and the retrieved compounds were
submitted to docking simulations. Based on the predicted binding mode, molecule 28
(Figure 14) emerged as the most promising AKT1 potential binder as it was able to mimic
the natural substrate. Indeed, the ligand sulfonamido and the diazopyrazolyl moieties
formed hydrogen bond interactions with Arg86 and Arg23, respectively, which are two
residues already known to establish strong contacts with the phosphate groups of PI3P.
Additionally, other hydrogen bonds were hypothesized between the backbone of Ile19 and
Asn53 with the sulfonamide function of molecule 31. By using surface plasmon resonance
(SPR) experiments, the authors validated the molecule as a true binder of the AKT1 PH
domain with a Kd value of 0.37 µM. Additionally, this PH-domain binder inhibited the
interaction of PI3P to the PH domain of AKT1 with an IC50 of 0.08 µM. In cellular assays,
compound 31 inhibited both the AKT1 phosphorylation with IC50 values of 4 and 13 µM
in NIH3T3 and HT-29 cell lines, respectively, and the growth of HT-29 cells with an IC50
of 24 µM. Unfortunately, no appreciable effects were observed in in vivo experiments,
probably due to the rapid metabolism/elimination of this compound.
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In 2009, the same research group (Moses et al. in 2009) [38] applied the pharmacophore-
based approach described above to query a library of about 300,000 compounds derived
from different compound collections (NCI Chemical and Natural Products Library, the
Maybridge Available Chemicals Directory, and the Lead-Quest Chemical Library). The
best 20 compounds of each collection were kept, clustered based on the 2D structure, and
reduced to 4 virtual hits submitted for biological evaluation. All the selected compounds
showed a binding affinity for the PH domain of AKT1 in the low micromolar range, with
Kd values ranging from 0.39 to 6.27 µM. Even though the four compounds belonged to
different chemical families, they shared the presence of at least one sulphone containing
a linker that connected two aromatic rings. With the aim to expand the structure-activity
relationship of each chemical family, commercially available analogues of each one of the
four validated hits were selected for further testing, but only the N-(1,3,4-thiadiazol-2-yl)
benzenesulfonamide derivatives emerged as promising scaffolds in the development of
PI3P-site binders. In particular, compound 29 (Figure 14) showed a Kd value of 0.45 µM,
but no evident effects of inhibiting the recognition of PI3P (Ki > 50.0 µM) and preventing
tumoral cell survival were observed (Table 2). The authors hypothesized that the inactivity
of 29 in cellular assays could be imputed to the low predicted LogP and Caco-2 permeability
of the compound, and thus they rationally designed some analogues to overcome this issue.

Table 2. Summary of calculated and experimental parameters for compounds 29–31.

Compound LogP a Caco-2 a Kd
(µM)

Ki
(µM)

pAKT1
Inhibition
(IC50, µM)

Cellular
Growth

Inhibition
(IC50, µM)

Pharmaceuticals 2023, 16, x FOR PEER REVIEW  17 of 26 
 

 

 

Figure 14. Targeting PI3P‐binding site. Validated hits 28 and 29 with the predicted polar intermo‐

lecular interactions illustrated as follows: magenta arrow, hydrogen bond; blue dotted line, cation‐

π interaction. 

In 2009, the same research group (Moses et al. in 2009) [38] applied the pharmaco‐

phore‐based approach described above  to query a  library of about 300,000 compounds 

derived  from different compound collections  (NCI Chemical and Natural Products Li‐

brary, the Maybridge Available Chemicals Directory, and the Lead‐Quest Chemical Li‐

brary). The best 20 compounds of each collection were kept, clustered based on the 2D 

structure, and reduced to 4 virtual hits submitted for biological evaluation. All the selected 

compounds showed a binding affinity for the PH domain of AKT1 in the low micromolar 

range, with Kd values ranging from 0.39 to 6.27 μM. Even though the four compounds 

belonged to different chemical families, they shared the presence of at least one sulphone 

containing a linker that connected two aromatic rings. With the aim to expand the struc‐

ture‐activity  relationship of each chemical  family, commercially available analogues of 

each one of the four validated hits were selected for further testing, but only the N‐(1,3,4‐

thiadiazol‐2‐yl) benzenesulfonamide derivatives emerged as promising scaffolds  in  the 

development of PI3P‐site binders. In particular, compound 29  (Figure 14) showed a Kd 

value of 0.45 μM, but no evident effects of inhibiting the recognition of PI3P (Ki > 50.0 μM) 

and preventing tumoral cell survival were observed (Table 2). The authors hypothesized 

that the inactivity of 29 in cellular assays could be imputed to the low predicted LogP and 

Caco‐2 permeability of the compound, and thus they rationally designed some analogues 

to overcome this issue. 

Table 2. Summary of calculated and experimental parameters for compounds 29–31. 

Compound  LogP a  Caco‐2 a 
Kd 

(μM) 

Ki 

(μM) 

pAKT1 Inhibition 

(IC50, μM) 

Cellular Growth  

Inhibition 

(IC50, μM) 

 

0.13  0.3  0.45 ± 0.1  >50.0  20 b/25 c  NI b/NI c 

 

4.93  10.1  19.6 ± 4.9  21.8 ± 1.8  10 b/15 c  127 b/90 c 

 

7.54  0.1  40.8 ± 2.5  2.4 ± 0.6  6 b/10 c  65 b/30 c 

a Predicted value; b Panc‐1 (human pancreatic cancer cells); c MiaPaCa‐2 (human pancreatic cancer 

cells). 

0.13 0.3 0.45 ± 0.1 >50.0 20 b/25 c NI b/NI c

Pharmaceuticals 2023, 16, x FOR PEER REVIEW  17 of 26 

Figure 14. Targeting PI3P‐binding site. Validated hits 28 and 29 with the predicted polar intermo‐

lecular interactions illustrated as follows: magenta arrow, hydrogen bond; blue dotted line, cation‐

π interaction. 

In 2009, the same research group (Moses et al. in 2009) [38] applied the pharmaco‐

phore‐based approach described above  to query a  library of about 300,000 compounds 

derived  from different compound collections  (NCI Chemical and Natural Products Li‐

brary, the Maybridge Available Chemicals Directory, and the Lead‐Quest Chemical Li‐

brary). The best 20 compounds of each collection were kept, clustered based on the 2D 

structure, and reduced to 4 virtual hits submitted for biological evaluation. All the selected 

compounds showed a binding affinity for the PH domain of AKT1 in the low micromolar 

range, with Kd values ranging from 0.39 to 6.27 μM. Even though the four compounds 

belonged to different chemical families, they shared the presence of at least one sulphone 

containing a linker that connected two aromatic rings. With the aim to expand the struc‐

ture‐activity  relationship of each chemical  family, commercially available analogues of 

each one of the four validated hits were selected for further testing, but only the N‐(1,3,4‐

thiadiazol‐2‐yl) benzenesulfonamide derivatives emerged as promising scaffolds  in  the 

development of PI3P‐site binders. In particular, compound 29  (Figure 14) showed a Kd 

value of 0.45 μM, but no evident effects of inhibiting the recognition of PI3P (Ki > 50.0 μM) 

and preventing tumoral cell survival were observed (Table 2). The authors hypothesized 

that the inactivity of 29 in cellular assays could be imputed to the low predicted LogP and 

Caco‐2 permeability of the compound, and thus they rationally designed some analogues 

to overcome this issue. 

Table 2. Summary of calculated and experimental parameters for compounds 29–31. 

Compound  LogP a  Caco‐2 a 
Kd 

(μM) 

Ki

(μM) 

pAKT1 Inhibition 

(IC50, μM) 

Cellular Growth  

Inhibition 

(IC50, μM) 

0.13  0.3  0.45 ± 0.1  >50.0 20 b/25 c  NI b/NI c 

4.93  10.1  19.6 ± 4.9  21.8 ± 1.8  10 b/15 c  127 b/90 c 

7.54  0.1  40.8 ± 2.5  2.4 ± 0.6  6 b/10 c  65 b/30 c 

a Predicted value; b Panc‐1 (human pancreatic cancer cells); c MiaPaCa‐2 (human pancreatic cancer 

cells). 

4.93 10.1 19.6 ± 4.9 21.8 ± 1.8 10 b/15 c 127 b/90 c

Pharmaceuticals 2023, 16, x FOR PEER REVIEW  17 of 26 

Figure 14. Targeting PI3P‐binding site. Validated hits 28 and 29 with the predicted polar intermo‐

lecular interactions illustrated as follows: magenta arrow, hydrogen bond; blue dotted line, cation‐

π interaction. 

In 2009, the same research group (Moses et al. in 2009) [38] applied the pharmaco‐

phore‐based approach described above  to query a  library of about 300,000 compounds 

derived  from different compound collections  (NCI Chemical and Natural Products Li‐

brary, the Maybridge Available Chemicals Directory, and the Lead‐Quest Chemical Li‐

brary). The best 20 compounds of each collection were kept, clustered based on the 2D 

structure, and reduced to 4 virtual hits submitted for biological evaluation. All the selected 

compounds showed a binding affinity for the PH domain of AKT1 in the low micromolar 

range, with Kd values ranging from 0.39 to 6.27 μM. Even though the four compounds 

belonged to different chemical families, they shared the presence of at least one sulphone 

containing a linker that connected two aromatic rings. With the aim to expand the struc‐

ture‐activity  relationship of each chemical  family, commercially available analogues of 

each one of the four validated hits were selected for further testing, but only the N‐(1,3,4‐

thiadiazol‐2‐yl) benzenesulfonamide derivatives emerged as promising scaffolds  in  the 

development of PI3P‐site binders. In particular, compound 29  (Figure 14) showed a Kd 

value of 0.45 μM, but no evident effects of inhibiting the recognition of PI3P (Ki > 50.0 μM) 

and preventing tumoral cell survival were observed (Table 2). The authors hypothesized 

that the inactivity of 29 in cellular assays could be imputed to the low predicted LogP and 

Caco‐2 permeability of the compound, and thus they rationally designed some analogues 

to overcome this issue. 

Table 2. Summary of calculated and experimental parameters for compounds 29–31. 

Compound  LogP a  Caco‐2 a 
Kd 

(μM) 

Ki

(μM) 

pAKT1 Inhibition 

(IC50, μM) 

Cellular Growth  

Inhibition 

(IC50, μM) 

0.13  0.3  0.45 ± 0.1  >50.0 20 b/25 c  NI b/NI c 

4.93  10.1  19.6 ± 4.9  21.8 ± 1.8  10 b/15 c  127 b/90 c 

7.54  0.1  40.8 ± 2.5  2.4 ± 0.6  6 b/10 c  65 b/30 c 

a Predicted value; b Panc‐1 (human pancreatic cancer cells); c MiaPaCa‐2 (human pancreatic cancer 

cells). 

7.54 0.1 40.8 ± 2.5 2.4 ± 0.6 6 b/10 c 65 b/30 c

a Predicted value; b Panc-1 (human pancreatic cancer cells); c MiaPaCa-2 (human pancreatic cancer cells).

192



Pharmaceuticals 2023, 16, 993

Docking studies of the hit binder performed with GOLD [43] suggested a complex
network of polar interactions established with Lys14, Glu17, Arg23, and Arg25 (Figure 15).
Interestingly, the phenyl moiety protruded the para-amino substituent towards the sol-
vent and this position was explored by introducing modifications aimed to increase the
calculated LogP and Caco-2 permeability. The best results were obtained for derivative 30
(Table 2) by adding a hydrophobic moiety, obtaining an improved Ki and cellular activity.
To rule out the hypothesis that analogue 30 could be embedded into the cellular membrane
and, subsequently to the cleavage of the amide bond, released into the cytoplasm, the
non-cleavable compound 31 (Table 2) was synthesized.
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Figure 15. Chemical structure of the AKT clinical candidate inhibitors Ipatasertib, Uprosertib,
MK-2206, and TAS-117.

Despite the predicted high LogP and low Caco-2 permeability properties, this deriva-
tive exhibited the most effective reduction of cell phospho-Ser473-AKT and cellular growth.
Additionally, by using a fluorescent analog of 30, the authors demonstrated that in the cel-
lular environment, the compound was mainly located in the cytosol and/or lipid vesicles,
potentially trapping AKT in the former matrix. Finally, this PI3P-site binder was also tested
for antitumor activity against BxPC-3 pancreatic cancer xenografts at a dose of 125 mg/kg
i.p., twice a day for 5 days, and demonstrated significant antitumor activity, with complete
cessation of tumor growth and even regression during treatment.

5. Conclusions

In the era of precision oncology, AKT represents an attractive therapeutic target for the
discovery of pathway-based targeted therapies selectively hitting cancer cells characterized
by aberrant activation of PI3K/AKTs/mTOR signaling pathway.

Against this backdrop, we have conducted a literature survey focused on computer-
aided approaches applied to the rational identification of AKT-targeting small molecules
endowed with anticancer activity. Several considerations can be drawn from the analysis
of the collected works and are listed below.

First, molecular docking and pharmacophore modeling emerged as the most com-
monly employed methods, whereas other approaches such as the development of QSAR
models were less prevalent. Additionally, although ML algorithms, such as support vector
machines (SVM) and deep learning models, have shown promise in predicting the activity
and the properties of potential inhibitors [78,79], in the context of AKT for cancer, these
approaches have been relatively underexplored. In this regard, accessing and analyzing
the vast amount of data available in databases, such as PubChem and ChEMBL, becomes
crucial. For instance, our research group recently released a KNIME workflow that can
effectively aggregate information on the biological activities of compounds from different
public/proprietary depositories. As a case study, we reported the application of such a
tool for the generation of a curated dataset of over 358,000 compounds associated with
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experimental activity against AKT1 [80]. Access to such a wealth of data can support the
construction of ML models and, more broadly, the use of ligand-based approaches to aid
the development of novel AKT1 inhibitors.

Second, most of the reviewed studies focused on hit identification rather than hit-to-
lead optimization. Specifically, the newly described hit compounds showed IC50 values
ranging from 0.54 to 7.2 µM. Although these activities fall significantly short of the low
nanomolar range exhibited by AKT1 inhibitors in clinical trials (Table 3; Figures 10 and 15),
it is important to acknowledge that the latter are the results of extensive optimization
efforts. Nevertheless, computer-aided drug design methods can strongly support lead
identification as shown by Wang et al. [32] in the successful optimization of compound 22
(IC50: 7.2 µM) to obtain derivative 23 (IC50: 88 nM).

Table 3. Active clinical trial studies on AKT inhibitors for cancer therapy.

Compound Figure IC50 Ligand Binding Site Clinical Phase NCT Number

Capivasertib
(AZD5363)

Figure 10 6 nM (AKT1) ATP-binding site

Phase I NCT01226316, NCT04556773

Phase I/II NCT01992952, NCT02208375,
NCT03742102

Phase II
NCT02117167, NCT02299999,
NCT02465060, NCT02664935,

NCT04439123

Phase III NCT03997123, NCT04305496

Ipatasertib
(GDC-0068)

Figure 15 5 nM
(AKT1)

ATP-binding site

Phase I NCT03959891

Phase I/II NCT03280563, NCT03424005,
NCT03853707

Phase II

NCT02465060, NCT03395899,
NCT03498521, NCT04464174,
NCT04591431, NCT04632992,

NCT05498896

Phase III NCT03072238, NCT04060862

Uprosertib
(GSK2141795) Figure 15 9.6 nM

(AKT1) ATP-binding site Phase I/II NCT01902173

MK-2206 Figure 15 8 nM
(AKT1)

Allosteric site
Phase I NCT01480154

Phase II NCT01251861, NCT01306045

TAS-117 Figure 15 0.55 nM
(AKT1) Allosteric site Phase II NCT04770246

Third, we assessed whether the described studies had evaluated, in silico and/or
in vitro, the propensity of the newly identified hit compounds to form aggregates or exhibit
promiscuous activity as PAINS. In this context, in the last years, several computational
tools have been developed to mitigate the selection of false positives resulting from the
interference of the small molecule with the biological assay rather than the specific ligand
interaction with the target protein. For instance, the aggregator advisor [81] and Swis-
sADME [82] servers represent two valuable freely accessible web interfaces that allow the
recognition of potential aggregators or PAINS, respectively. Regrettably, the majority of the
analyzed studies failed to address this critical aspect. Therefore, we attempted to scrutinize
the compounds featured in this review with the two previously mentioned servers, noting
that several molecules were flagged as potential aggregators (cLogP ≥ 5 and Tanimoto
similarity with known aggregators ≥ 0.5: compounds 11 and 24) or PAINS (presence in the
chemical structure of (i) azo group: compounds 11 and 28; (ii) catechol moiety: compounds
13, 17, 18, and 27; (iii) barbiturate ring: compound 25). Against this backdrop, we would
like to remind researchers that it should be standard practice to first carefully predict these
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compound’s characteristics and then conduct specific orthogonal tests to rule out artifacts
that may arise during biological evaluations.

Fourth, of particular interest, is the absence of publications reporting on the computer-
assisted design of covalent inhibitors. It is worth noting that two specific cysteine residues,
well conserved among the three AKT isoforms (corresponding to Cys296 and Cys310 in
AKT1), are located in the proximity of the allosteric site and have been already exploited
in the identification of covalent inhibitors [8,71,83–85]. These small molecules possess
both the selectivity resulting from targeting the allosteric pocket and the prolonged target
residence time ensured by the covalent modification of the two non-catalytic cysteines in
the AKT activation loop. As a result, this class of inhibitors is more effective at inhibiting
AKT activity than non-covalent binders [86,87].

Fifth, it has been demonstrated that inhibiting both AKT1 and AKT2 is essential for
obtaining a greater sensitization of tumor cells to apoptotic stimuli and reduceing AKT
phosphorylation in vivo [88,89]. Despite this evidence, most of the papers reviewed here
have tested their molecules only on one of the two isoforms, thus not considering the
validated aspect of the dual AKT1/2 inhibition.

Sixth, our examination reveals that there are considerably more publications focused
on the rational identification of competitive inhibitors as compared to allosteric inhibitors.
While the abundance of research on competitive inhibitors is not surprising, given their
historical prominence, it is important to recognize the potential advantages offered by
allosteric modulation.

Finally, protein degraders have emerged as a promising class of therapeutics in drug
discovery [56,90–92]. Even though some attempts have been made to discover AKT-
targeted degraders [93–96], there is still ample room for further research and development
that can be accelerated by the support of CADD approaches.

In conclusion, while several computational strategies have supported multidisci-
plinary efforts aimed at the rational identification of AKT inhibitors as anticancer agents,
there remain intriguing avenues for future in silico research, particularly in the design of
covalent inhibitors or small molecule degraders. These strategies offer promising possibil-
ities for overcoming drug resistance and expanding the scope of personalized medicine
in cancer treatment. In support of these objectives, the RCSB PDB is a valuable source of
3D data for structure-based CADD investigations. To provide additional support to the
scientific community interested in the AKT target, we report here a comprehensive table
(Table 4) summarizing the available crystal structures of AKT, either unbound or bound to
a ligand, organized according to the isoform and the binding pocket.

Table 4. List of available PDB structures for AKT1, AKT2 and AKT3.

Pocket Domain PDB ID Release Date Resolution
(Å)

Exp.
IC50 (nM) Notes

AKT1

no ligands

PH 1UNP 2004 1.65
PH 1UNR 2004 1.25
PH 2UZR 2007 1.94

Kinase 6BUU 2018 2.4
Kinase 6NPZ 2019 2.12

Full-length 7APJ 2021 2.05 Complexed with antibody
PH 7MYX 2022 1.39

ATP-binding site

Kinase 3CQU 2008 2.2 151
Kinase 3CQW 2008 2 318
Kinase 3MV5 2010 2.47 180
Kinase 3MVH 2010 2.01 0.5
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Table 4. Cont.

Pocket Domain PDB ID Release Date Resolution
(Å)

Exp.
IC50 (nM) Notes

Kinase 3OCB 2010 2.7 5
Kinase 3OW4 2010 2.6 22
Kinase 3QKK 2011 2.3 300
Kinase 3QKL 2011 1.9 9
Kinase 3QKM 2011 2.2 38
Kinase 4EKK 2012 2.8 NR a AMP-PNP

Kinase 4EKL 2012 2 36.9 Clinical candidate for cancer
(Ipatasertib)

Kinase 4GV1 2013 1.49 4 Clinical candidate for cancer
(Capivasertib)

Kinase 6CCY 2018 2.18 3

Allosteric site

Full-length 3O96 2010 2.7 58
Full-length 4EJN 2012 2.19 5

Full-length 5KCV 2016 2.7 8 Clinical candidate Proteus
syndrome (Miransertib)

Full-length 6HHF 2019 2.9 0.5 Covalent binder
Full-length 6HHG 2019 2.3 9.1 Covalent binder
Full-length 6HHH 2019 2.7 126 Covalent binder
Full-length 6HHI 2019 2.7 3.6 Covalent binder
Full-length 6HHJ 2019 2.3 3 Covalent binder
Full-length 6S9W 2019 2.3 39 Covalent binder
Full-length 6S9X 2019 2.6 381 Covalent binder
Full-length 7NH4 2021 2.3 44 Covalent binder
Full-length 7NH5 2021 1.9 112 Covalent binder

PI3P-binding site

PH 1H10 2003 1.4 NR a 4IP
PH 1UNQ 2004 0.98 NR a 4IP
PH 2UVM 2007 1.94 Ki = 80 nM
PH 2UZS 2007 2.46 NR a 4IP, E17K mutation

AKT2

no ligands

Kinase 1GZK 2003 2.3
Kinase 1GZN 2003 2.5
Kinase 1GZO 2003 2.75
Kinase 1MRV 2003 2.8
Kinase 1MRY 2003 2.8

PH 1P6S 2004 NMR

ATP-binding site

Kinase 1O6K 2002 1.7 NR a ANP
Kinase 1O6L 2002 1.6 NR a ANP
Kinase 2JDO 2007 1.8 230
Kinase 2JDR 2007 2.3 0.5
Kinase 2UW9 2007 2.1 18
Kinase 2X39 2010 1.93 6
Kinase 2XH5 2010 2.72 27
Kinase 3D0E 2008 2 Ki: 4 nM
Kinase 3E87 2008 2.3 NR a

Kinase 3E88 2008 2.5 0.6
Kinase 3E8D 2008 2.7 2

AKT3
no ligands PH 2X18 2010 1.46

a NR: not reported.
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Abstract: Immunotherapy has marked a revolution in cancer therapy. The most extensively studied
target in this field is represented by the protein–protein interaction between PD-1 and its ligand, PD-
L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed
against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of
disrupting the protein–protein contact and overcoming the limitations presented by mAbs. The
disclosure of the first X-ray complexes of PD-L1 with BMS ligands showed the protein in dimeric
form, with the ligand in a symmetrical hydrophobic tunnel. These findings paved the way for the
discovery of new ligands. To this end, and to understand the binding mechanism of small molecules
to PD-L1 along with the dimerization process, many structure-based computational studies have
been applied. In the present review, we examined the most relevant articles presenting computational
analyses aimed at elucidating the binding mechanism of PD-L1 with PD-1 and small molecule ligands.
Additionally, virtual screening studies that identified validated PD-L1 ligands were included. The
relevance of the reported studies highlights the increasingly prominent role that these techniques can
play in chemical biology and drug discovery.

Keywords: cancer immunotherapy; PD-1; PD-L1; computational studies; docking; molecular dynamics;
virtual screening

1. Introduction

The connection between cancer and the immune system was suggested for the first
time in 1863 when Virchow noticed the infiltration of leukocytes in cancer tissue [1]. Some
years later, Coley administered a mix of bacteria, the “Coley’s toxin”, to treat inoperable
tumors, obtaining, with a variable clinical response, a substantial reduction of tumor
dimensions [2]. In 1971, Burnet and Thomas hypothesized that the immune system is able
to control cancer development, recognizing and eliminating tumor cells [3]. Nowadays, the
role of the immune system in cancer progression control is widely recognized. In particular,
the interplay between the immune system and cancer cells has been better defined with the
so defined immunoediting process: elimination, equilibrium, and escape [4].

1.1. Immune Checkpoints, PD-1, and Its Binders

The immune response, in particular T-cell activity, is regulated by a complex network
of events and involves several actors [5], but a key role is played by immune checkpoints
(ICs) that can have a co-inhibitory or co-stimulatory action. In physiological conditions, ICs
are responsible for immune tolerance, avoiding autoimmune reactions and tissue damage
due to prolonged inflammation [6]. Cancer tissue exploits this mechanism to prevent
the immune system from eliminating cancer cells by silencing T-cells. Ipilimumab was
approved by the FDA in 2011 as the first example of mAbs used in cancer therapy targeting
an immune checkpoint (CTLA-4) and represents a revolution in cancer treatment. The
disclosure of the first immunotherapeutic drug paved the way for the research of other tools
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targeting different ICs, also to overcome the severe immune-related side effects presented
by ipilimumab [7]. Since then, the number of clinical trials in the immuno–oncology field
has increased almost exponentially [8]. In this context, the most explored targets are PD-1
and its ligands PD-L1.

The programmed death protein PD-1 was identified for the first time by Ishida and
coworkers in 1992 [9], even if its effective role was clarified later [10]. PD-1 belongs to
the CD28 family and is encoded by the Pdcd1 gene on chromosome 2 (2q37) [11]. It is a
glycoprotein expressed mainly on the surface of T- and B-cells, but also on myeloid cells,
thymocytes, natural killer (NK) cells, dendritic cells, and monocytes, and its expression is
promoted by T-cell activation.

PD-1 binds two endogenous ligands, PD-L1 and PD-L2, identified in 1999 and 2001,
respectively, and encoded on the same chromosome 9p24.2 [12,13].

PD-L1 (B7-H1, CD274) is constitutively expressed on antigen-presenting cells (APC)
but can be widely located on hematopoietic cells (B-cells, T-cells, monocytes, and dendritic
cells), and peripheral non-hematopoietic tissues such as the heart, kidney, lung, placenta,
and liver. PD-L1 expression is induced by several pro-inflammatory cytokines (e.g., INF-g,
TNF-a, VEGF, and others). PD-1 is not the unique binder of PD-L1 that can interact also
with CD-80 [14].

PD-L2 (B7-DC, CD273), the second identified PD-1 binder, has a similar profile to
PD-L1 in terms of expression and function, even though it shares a limited identity with
PD-L1 (almost 40%). Moreover, PD-L1 and PD-L2 present a sequence identity of 20% with
B7-1 and B7-2 that bind CD28 and CTLA-4, respectively.

PD-L2 binds PD-1 differently and with stronger affinity than PD-L1 [15,16] thanks to
the PD-1 adaptability and flexibility [17]. However, it is a less-explored target with respect
to PD-L1 because of its limited expression [15]. Both ligands, along with PD-1, can be
released in soluble form and represent negative prognostic markers in several tumors [18].

1.2. The PD-1/PD-L1 Pathway

In physiological conditions, PD-1 expression on the T-cell surface is promoted by
T-cell activation. Its expression is accompanied by the release of interferon that fosters the
expression of PD-L1 on APC or surrounding tissues. The PD-1 binding to endogenous
ligands, PD-L1 and PD-L2, at the immunological synapse strongly inhibits TCR signal
transduction and CD28/CD80 co-stimulation (Figure 1). In particular, PD-1/PD-L1(2)
contact causes the phosphorylation of the Immunoreceptor Tyrosine-Based Inhibitory Motif
(ITIM) and the Immunoreceptor Inhibitory Tyrosine-Based Switch Motif (ITSM) located at
the intracellular PD-1 tail. Src homology 2 domain-containing protein tyrosine phosphatase
1 and 2 (SHP-1 and SHP-2) are then recruited by ITIM and ITSM and block the TCR signal
transduction [19]. Another effect of the PD-1 binding to its ligands is the PTEN-mediated
blocking of T-cell proliferation [20].
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The PD-1/PD-L1 interaction results in the reduction of the synthesis of cytokines, the
blocking of the activation, proliferation, and acquisition of the effector capacities of the
T-cells. In addition, activated PD-1 leads to a suppression of the consumption of oxygen.
The oxidation of fatty acids, and no longer aerobic glycolysis, is used as the dominant
energy source. Consequently, T-cells with activated PD-1 increase the production of reactive
oxygen species helping to create an oxidative environment [21].

As already mentioned, cancer tissue can exploit this physiological mechanism to
create an immunosuppressive environment favorable to tumor growth and progression
by overexpressing PD-L1 in the escape phase. There are two main mechanisms of PD-L1
up-regulation: the innate immune resistance produced by oncogene suppression, and the
adaptive immune resistance that exploits the INF-γ to induce the PD-L1 expression [22]. In
both cases, the final result is the immune system silencing [23].

This evidence prompted the search for agents able to interfere with the PD-1/PD-L1
contact to be exploited in cancer treatment. The emergence of mAbs interacting with ICs
allowed treating chemo-resistant tumors with surprising efficacy.

1.3. Current Drugs

As already mentioned, Ipilimumab was the first example of an immune checkpoint
inhibitor (ICI) in clinical use and represented a breakthrough in cancer treatment, despite its
severe side effects. Nowadays, the largely most exploited drugs in the immuno-oncology
field are human or humanized mAbs targeting PD-1 or PD-L1. A panel of currently
approved mAbs by the FDA is reported in Table 1. Apart from those that are available, the
investigation of these compounds is still ongoing, with the number of enrolling clinical
studies constantly increasing since 2014 [24].

Table 1. The FDA approved anti-PD1 or PD-L1 mAbs reported in the Drug Bank (https://go.
drugbank.com/, accession date 22 January 2024).

DrugBank ID Name Year of Approval Target Commercializing
Company

DB09035 Nivolumab 2014 PD-1 BMS
DB09037 Pembrolizumab 2014 PD-1 Merk
DB14707 Cemiplimab 2019 PD-1 Sanofi
DB15627 Dostarlimab 2021 PD-1 GSK
DB15766 Retifanlimab 2023 PD-1 Incyte Biosciences
DB11595 Atezolizumab 2016 PD-L1 Genentech
DB11945 Avelumab 2017 PD-L1 Merk
DB11714 Durvalumab 2017 PD-L1 Astra Zeneca

MAbs, in fact, represented a revolution in cancer treatment, and a tool providing a
long-lasting resolution for drug-resistant and metastatic tumors. Nevertheless, ICIs have
a series of limitations. Targeting PD-1 and PD-L1 can produce immune-related adverse
events that can hamper the patient’s treatment. Moreover, depending on the tumor type,
just a limited percentage of patients (10–60%) is respondent to the therapy [25]. In this
respect, combination therapies could help to reduce side effects and increase the number of
patients with beneficial effects [26].

Apart from these aspects, mAbs present several limitations in terms of high production
costs, side effects, missing oral bioavailability that forces intravenous administration, pro-
longed tissue retention, and low membrane permeability. To overcome these shortcomings,
research has switched to the development of small molecule inhibitors.

A recent report analyzing clinical trials in the immuno–oncology field highlights
a slight but substantial inversion of the previous trends where the number of Phase II
trials involving the axis PD-1/PD-L1 is diminishing. The authors highlight the increased
interest in other targets involved in cancer immunotherapy, the orientation toward different
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technologies, and the increased number of combination therapies under study to overcome
ICI limits [8,27].

1.4. Small Molecule Binders of PD-L1

The identification of small molecules interfering with the PD-1/PD-L1 protein–protein
interaction has lagged behind the discovery of the role played by these two important
immune checkpoints. The reason for the difficult identification of effective PD-1/PD-L1
small molecule inhibitors can be attributed to the characteristics of the interacting surfaces
of the partner proteins that are very flexible and flat, and so hardly druggable.

The first small molecules binding PD-L1 were disclosed in 2015 in two patents from the
Bristol Mayer Squibb [28,29], and represent the paradigm compounds as PD-L1 inhibitors
until today. Since then, the number of published PD-L1 ligands has increased constantly.

The most important contribution to the discovery of small molecule binders of PD-
L1 field has been provided by Holak and coworkers, who investigated the BMS ligands
binding mode on PD-L1. The Polish research group resolved the X-ray complexes of the
PD-L1 extracellular domain with several BMS compounds. The crystallographic data
revealed a ligand/protein ratio of 1:2, with PD-L1 binding the small molecule in dimeric
form [30].

The availability of PD-L1 X-ray complexes with small molecules paved the way for the
discovery of many other small molecules able to produce the same dimerization process.

Thus, the design strategy shifted from the search for a protein–protein interaction
(PD-1/PD-L1) inhibitor to the identification of protein–protein (PD-L1 dimer) structure
stabilizers, a new and fascinating field of research [31].

All ligands producing PD-L1 dimerization share a common structural feature con-
sisting in a biphenyl/biaryl portion linked to another aromatic system. Skalniak et al.
demonstrated, by NMR studies, that starting from BMS-1166, the minimum fragment-
conserving activity is the biphenyl group (Figure 2) [32].

Pharmaceuticals 2024, 17, x FOR PEER REVIEW  4  of  28 
 

 

Apart from these aspects, mAbs present several limitations in terms of high produc-

tion costs, side effects, missing oral bioavailability that forces intravenous administration, 

prolonged  tissue retention, and  low membrane permeability. To overcome  these short-

comings, research has switched to the development of small molecule inhibitors. 

A recent report analyzing clinical trials in the immuno–oncology field highlights a 

slight but substantial inversion of the previous trends where the number of Phase II trials 

involving the axis PD-1/PD-L1 is diminishing. The authors highlight the increased interest 

in other targets involved in cancer immunotherapy, the orientation toward different tech-

nologies, and the  increased number of combination therapies under study to overcome 

ICI limits [8,27]. 

1.4. Small Molecule Binders of PD-L1 

The identification of small molecules interfering with the PD-1/PD-L1 protein–pro-

tein interaction has lagged behind the discovery of the role played by these two important 

immune checkpoints. The reason  for  the difficult  identification of effective PD-1/PD-L1 

small molecule inhibitors can be attributed to the characteristics of the interacting surfaces 

of the partner proteins that are very flexible and flat, and so hardly druggable. 

The first small molecules binding PD-L1 were disclosed in 2015 in two patents from 

the Bristol Mayer Squibb [28,29], and represent the paradigm compounds as PD-L1 inhib-

itors until today. Since then, the number of published PD-L1 ligands has increased con-

stantly. 

The most important contribution to the discovery of small molecule binders of PD-

L1 field has been provided by Holak and coworkers, who investigated the BMS ligands 

binding mode on PD-L1. The Polish research group resolved the X-ray complexes of the 

PD-L1 extracellular domain with several BMS compounds. The crystallographic data re-

vealed a  ligand/protein ratio of 1:2, with PD-L1 binding  the small molecule  in dimeric 

form [30]. 

The availability of PD-L1 X-ray complexes with small molecules paved the way for 

the discovery of many other small molecules able to produce the same dimerization pro-

cess. 

Thus,  the design strategy shifted  from  the search  for a protein–protein  interaction 

(PD-1/PD-L1)  inhibitor  to  the  identification of protein–protein  (PD-L1 dimer) structure 

stabilizers, a new and fascinating field of research [31]. 

All ligands producing PD-L1 dimerization share a common structural feature con-

sisting  in  a biphenyl/biaryl portion  linked  to  another  aromatic  system.  Skalniak  et  al. 

demonstrated, by NMR studies,  that  starting  from BMS-1166,  the minimum  fragment-

conserving activity is the biphenyl group (Figure 2) [32]. 

 

Figure 2. BMS-1166-derived fragment maintaining activity toward PD-L1 in 1H-15N HMQC NMR 

assay [32]. 

Many reviews published so far have focused on PD-L1 ligands [33–39]. A very recent 

review revised the application of computational methods to the discovery of PD-1/PD-L1 

inhibitors [40]. 

The present work explores the computational approaches used to improve the un-

derstanding of the binding processes involving PD-L1. In particular, we focused on com-

putational studies aimed at mapping the binding mechanism of PD-L1 with  its natural 

binder PD-1 and small molecules. In addition, the application of in silico methods to the 

identification  of  new  compounds  through  virtual  screening  campaigns was  explored. 

Figure 2. BMS-1166-derived fragment maintaining activity toward PD-L1 in 1H-15N HMQC NMR
assay [32].

Many reviews published so far have focused on PD-L1 ligands [33–39]. A very recent
review revised the application of computational methods to the discovery of PD-1/PD-L1
inhibitors [40].

The present work explores the computational approaches used to improve the under-
standing of the binding processes involving PD-L1. In particular, we focused on computa-
tional studies aimed at mapping the binding mechanism of PD-L1 with its natural binder
PD-1 and small molecules. In addition, the application of in silico methods to the identi-
fication of new compounds through virtual screening campaigns was explored. Articles
reporting computational studies, in particular docking, as ancillary to other investigations
were not considered.

Computational approaches are now an integral part of drug discovery and chemical
biology studies. Recent technological and scientific advances have promoted the role of
computational methods as leading tools in the prediction of protein structure and func-
tion [41] and in the overall drug discovery process, also because of the application of
machine learning approaches along with physics-based methods that can exploit increas-
ingly powerful computing systems [42].
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2. Structural Depiction of PD-L1 and Its Binders

Most of the computational methods presented are based on structure-based ap-
proaches. The availability of X-ray data of PD-L1 bound to its endogenous ligand and to
small molecules, indeed, fed a plethora of studies exploiting docking, molecular dynamics
(MD) and other target-based in silico analyses to understand PD-L1 interaction mechanism
with its binders. Here, we review the structural features of the studied proteins, focusing
on the available experimental data.

PD-L1 is a 290 amino acids (aa) protein belonging to the type I transmembrane protein
family. It is composed of extracellular Ig-V- and Ig-C-like domains, a transmembrane
portion, and a short intracellular tail of 30-aa (Figure 3B). The distal Ig-type V-like domain
is responsible for the interaction with PD-1 and small molecules.
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Figure 3. Structural representation of PD-1 (panel (A), orange cartoon), and PD-L1 (panel (B), green
cartoon).

PD-1 is a 55 kDa type I transmembrane protein of the immune globulin superfamily,
composed of an N-terminal Immunoglobulin Variable (Ig-V) extracellular domain, a trans-
membrane domain, and a cytoplasmic tail (Figure 3A). It is composed of 288 aa and shares
the 21–33% sequence identity with CTLA-4, ICOS, and CD28.

The extracellular domain is responsible for the interactions with its ligands, while the
intracellular tail has two phosphorylation sites, ITIM and ITSM, essential for its activity.

2.1. PD-L1 Structure in the Apo Form and in Complex with PD-1

The first crystallographic data of the hPD-1/mPD-L1 complex (PDB ID 3BIK) were
published in 2008 [43], while the fully human complex (PDB ID 4ZQK) was published in
2015 [44]. A list of the PDB data of apo PD-L1 or PD-1/PD-L1 is provided in Table 2.

The contact surfaces between the Ig-V-like domains of hPD-1 and hPD-L1 are arranged
orthogonally as a 1:1 complex. The proteins undergo a conformational change during
complex formation. This is more evident for PD-1, where the loop CC’ adopts a closed
conformation. The interaction area is large (1870 Å2) and flat, and hydrophobic and polar
interactions take place between PD-1 and PD-L1. (Figure 4).
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An insightful analysis of PD-1/PD-L1 structures, complexed with several binders, has
been recently published by Boisgerault and Bertrand [45].

Table 2. Available X-ray structures of apo PD-L1 and PD-1/PD-L1 complex.

PDB ID Protein Resolution (Å) Release Reference

3BIS Apo PD-L1 2.64 2008 [43]

4Z18 Apo PD-L1 1.95 2015 Fedorov, A.A., To be
published

5C3T PD-L1 binding
domain 1.80 2015 [44]

5JDR Apo PD-L1 2.70 2017 [46]

6NP9 Apo mutant
PD-L1 (V76T) 1.27 2019 [47]

3FN3
Dimeric

structure of
PD-L1

2.70 2009 [48]

6L8R

Membrane-
bound

cytoplasmatic
domain PD-L1

NMR 2020 [49]

7DCV Transmembrane
domain PD-L1 NMR 2022 [50]

3BIK Complex
mPD-1/hPD-L1 2.65 2008 [43]

3SBW Complex
mPD-1/hPD-L1 2.28 2011 Lazar-Molnar, To be

published

4ZQK Complex
hPD-1/hPD-L1 2.45 2015 [44]

5IUS
Complex with
high affinity

mutated PD-1
2.89 2016 [51]
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2.2. PD-L1 in Complex with Small Molecule Binders

In 2016, Holak and coworkers deposited the first X-ray data of complexes between
PD-L1 and the small molecules BMS-202 and BMS-8 disclosed in the BMS patents (PDB IDs
5J89 and 5J8O, respectively) [30]. The stoichiometry of the complex is 2:1, with the ligand
bound at the dimer interface (Figure 5A). The central part of the PD-1 interacting surface
represents the small molecule binding site, and the displacement of Tyr56, Met115, and
Tyr123 creates a cylindrical hydrophobic cavity that can accommodate the biphenyl group
of BMS molecules. In Figure 5B, the superposition of the structures of PD-L1 bound to PD-1
and BMS-202 is shown, while in Figure 5C, the interacting residues of each PD-L1 protein
and the contact surface with the ligands are shown.
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Figure 5. (A) Complex of BMS-202 (cyan stick) and PD-L1 dimer (chain A hot pink, chain B orange
mixed carton/surface representation); (B) Superimposition of the crystal structure of PD-L1 bound to
PD-1 (green carton, PDB ID 4ZQK) with PD-L1 bound to BMS-202 (hot-pink carton, PDB ID 5J89);
(C) Zoom on the interaction residues of PD-L1/PD-1 (green) and of PD-L1/BMS-202 (hot pink). The
interaction surface of PD-L1/BMS-202 is represented in grey.

A complete list of available experimental structures of PD-L1 in the complex, with
small molecules reported in Table 3 and X-ray ligand structures represented in Figure 6.

Table 3. PDB data of crystal of the complex small molecule/PD-L1.

PDB ID Resolution (Å) Ligand IC50 Value (nM) Reference

5J89 2.20 6GX (BMS-202) 18 [30]
5J8O 2.30 6GZ (BMS-8) 146 [30]
5N2D 2.35 8J8 (BMS-37) 6–100 [52]
5N2F 1.70 8HW (BMS-200) 80.00 [52]
5NIU 2.01 8YZ (BMS-1001) 2.25 [32]
6NM7 2.43 22L n.d. [47]
6NM8 2.79 KSD 53.00 [47]
6NOJ 2.33 KW7 Kd = 1.9 mM [47]
6NOS 2.70 KWA Kd = 1.9 mM [47]
6R3K 2.20 JQT (BMS-1166) 1.85 [53]
6RPG 2.70 KDW 3.00 [54]
6VQN 2.49 R81 0.4 [55]
7BEA 2.45 TK2 16.80 [56]
7DY7 2.42 HOU 27.80 [57]
7NLD 2.30 UGZ 2.07 [53]
7VUN 2.00 8H7 8.90 [58]
8OR1 3.50 VYC 2.4 [59]
8K5N 2.20 I7M 1.8 [60]
8R6Q 2.17 WEW <0.5 [61]
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3. Computational Studies Contributing to the Binding Mechanism Comprehension

Molecular dynamics (MD) is a powerful computational approach that allows for the
exploration of the conformational space of large biological systems.

More specifically, in a classical MD protocol, it is possible to calculate the force applied
to each atom in the system and then use Newton’s laws of motion to predict the spatial
position of each atom as a function of time [62]. The resulting trajectory describes the
conformational change of the 3D structure during the simulation time. The length of a
trajectory is, therefore, a critical point of the simulation.

Forces in an MD simulation are calculated using a molecular mechanics force field
(FF), which contains structural parameters (for example, the length of each covalent bond),
as well as a set of equations to define electrostatic interactions between atoms and other
types of interatomic non-covalent interactions [62]. The type of FF adopted for MD sim-
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ulation can significantly influence the computational results and, therefore, should be
selected carefully.

MD is widely applied in structural biology and ligand–receptor interaction studies
because it can provide important insight into protein flexibility and inter-domain interac-
tions that can be difficult to study by experimental approaches [63]. MD simulations are
often performed starting from X-ray and NMR data to refine the experimental structure
and sample its configuration space in order to evaluate the energy changes induced by
several stimuli such as mutations, pH, binding with small molecules, etc.

This important computational method was, therefore, extensively applied also to study
PD-1, PD-L1, and their complex. Indeed, classical and accelerated MD calculations using
the AMBERff14SB force field (FF) were performed [64] to investigate the conformational
space of the 19–127 domain of the apo-PD-L1, which is the region involved in the binding
with other proteins. The extended MD trajectories (1 µs) and principal component analysis
(PCA) provided detailed information on structural displacements in apo-PD-L1, mainly
associated with the movement of a specific region (C”D loop), suggesting that the PD-L1
binding process occurs basically by a conformational selection mechanism.

In the next paragraph, we reported some of the most relevant MD studies, often
coupled with other computational methods, aimed to characterize the binding mechanism
of hPD-L1 to PD-1, an essential step for the design of small molecules able to inhibit this
immune checkpoint.

3.1. PD-1 Binding

To design effective small molecules able to disrupt the PD-1/PD-L1 pathway, it is
crucial to know the 3D structure of the corresponding protein–protein complex. As already
mentioned, the X-ray structure of the human PD-1/PD-L1 adduct (PDB ID 4ZQK) was
reported for the first time by Holak and coworkers along with the apo-PD-1 binding domain
from hPD-L1 (PDB ID 5C3T) [44].

Analysis of the crystal structure of the PD-1/PD-L1 complex (Figure 7A) revealed
that the two subunits establish both hydrophobic and polar interactions, with a central
hydrophobic core formed by non-polar residues of both PD-1 (Val64, Ile126, Leu128, Ala132,
Ile134) and PD-L1 (Ile54, Tyr56, Met115, Ala121, Tyr123) units. The protein–protein interface
is also characterized by a buried π–π stacking interaction between the aromatic moieties
of Tyr68 (PD-1) and Tyr123 (PD-L1). The interaction region exposed to the solvent is
instead characterized by hydrogen bonds and ionic interactions such as Ala132-Gln66 (PD-
L1), Ile134-Tyr56 (PD-L1) and Glu136-Arg113 (PD-L1). Other important contacts include
Thr76-Tyr123 (PD-L1), Gln75-Arg125 (PD-L1), Thr76-Lys124 (PD-L1), Lys78-Phe19 (PD-L1).
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occurs moving from the apo to the bound state, is marked by a black arrow.
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Three main hot regions have been identified on hPD-L1. The first region is a hydropho-
bic pocket composed of the side chains of Tyr56, Glu58, Arg113, Met115, and Tyr123, which
can fit Ile134 of PD-1. The second hot region, located near the previous hydrophobic pocket,
is determined by Met115, Ala121, and Tyr123, and accommodates Ile126 of PD-1. The third
hot region is formed by the charged side chains of Asp122-Arg125 and Asp26, representing
a polar groove that can fit Tyr68, Gln75, and Thr76 of PD-1 (Table 4).

Table 4. The three main hot regions and the corresponding hot spots on the PD-L1 surface detected
by Holak and co-workers [44] analyzing the X-ray structure of the hPD-1/PD-L1 complex (PDB ID:
4ZQK).

Hot Region Hot Spots Note

1 Tyr56, Glu58, Arg113, Tyr123,
Met115

Deepest cleft with predominantly
hydrophobic character

2 Met115, Ala121, and Tyr123 Located near the previous hot region

3 Asp122, Tyr123, Lys124,
Arg125

Extended groove with multiple H-bond
donor and acceptor groups

The X-ray data revealed additional structural details. Specifically, the formation of
the PD-1/PD-L1 complex requires significant structural flexibility of the hPD-1 unit. Upon
superimposing the apo-hPD-1 with the hPD-1 structure extracted from the previously
described PD-1/PDL1 (PDB ID: 4ZQK), a high conformational similarity was observed,
except for the Met70-Asp77 loop (CC’ loop), which shows an open conformation in the
apo-PD-1 structure (Figure 7B). Conversely, the Met70-Asp77 loop undergoes a closed
conformation around hPD-L1 in the complex formation (Figure 7A,B), promoting the
formation of multiple hydrogen bonds between the two partner proteins. This indicates
that the rearrangement of the CC’ loop stabilizes the initial transient interaction between
hPD-1 and hPD-L1.

The role of the CC’ loop in the PD-1/PD-L1 complex formation was further investi-
gated by performing MD simulations of apo-PD-1 and the PD-1/PD-L1 complex using
the CHARMM36 FF by Liu et al. [65]. The MD results and cluster analysis suggest that
the open and closed conformations coexist within a dynamic ensemble in apo-PD-1. The
energy barrier is represented by the H-bond pattern that must be broken to allow for
conformational repositioning. The PD-1 receptor, in its open conformation, binds to PD-L1
to form the initial encounter complex. This complex undergoes structural rearrangements,
resulting in the final closed complex, as observed in the PD-1/PD-L1 crystal structure (PDB
ID: 4ZQK). These findings suggest a complex binding process between PD-1 and PD-L1,
involving both conformational selection and induced-fit mechanisms.

The PD-1/PD-L1 adduct was also investigated by Kenn et al. [66] performing MD
simulations (three replicas of 600 ns) using the Amber99sb-ildn FF coupling with an
unsupervised clustering method. They identified specific regions of the PD-1/PD-L1
complex forming stable clusters over time, which are hence named “semi-rigid domains”.

Further insight into interactions between PD-L1 and PD-1 (and different monoclonal
antibodies) was provided by Shi et al. [67], adopting an elaborated multi-layered compu-
tational approach based on MD simulations (Amber FF14SB FF, simulation time 200 ns),
per-residue free energy decomposition, virtual alanine scanning mutagenesis and residue-
residue contact analysis. In agreement with other studies previously mentioned, the virtual
alanine scanning mutagenesis suggested that Tyr56, Gln66, Met115, Asp122, Tyr123, and
Arg125 are the most important residues on the PD-L1 surface for PPI (hot spots). The
residue–residue contact analysis further shows that PD-1 interacts with PD-L1 mainly by F
and G strands.

The potential hot spots of PD-1/PD-L1 were characterized by using another alanine
scanning approach based on single-trajectory MD calculations (MD-based computational
alanine scanning) coupled with MM/GBSA/IE method [68]. The results reveal eight hot
spot residues for both PD-1 (Gln75, Ile134, Ile126, Glu84, Lys78, Tyr68, Leu128, and Asn66)
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and PD-L1 (LTyr123, LTyr56, LArg125, LMet115, LArg113, LGln66, LIle54 and LLys124).
Among them, LTyr123 (PD-L1) was demonstrated to be one of the most significant residues
in the PD-1/PD-L1 interaction since it establishes favorable contacts with Ile134, Tyr68, and
Glu136 of the PD-1 receptor.

The apo-PD-1 and its complex with PD-L1 were also studied by Du et al. using the MD
protocol (OPLS/AA FF, production run 50 ns) combined with computational mutagenesis
studies providing crucial information for designing engineered PD-1 mutants to modulate
the PD-1/PD-L1 pathway [69]. The MD simulation revealed that not all of the key residues
identified in the crystal structure analysis contribute to the protein–protein interaction
(PPI) throughout the entire trajectory, indicating their limited involvement in the binding
process. Additionally, the solvent-accessible surface area (SASA) calculations showed
that the binding surface expands from 220 Å in the X-ray structure to 440 Å after the
MD simulations.

The decomposition analysis of the total binding energy computed with MM/PBSA
revealed that Arg104, Lys131, and Lys135 are the most important residues on the hPD-1
surface for PPI. Several hPD-1 mutants, including Met70Ile, Ser87Trp, Ala132Leu, and
Lys135Met, showed improved hPD-L1 binding ability compared to wild-type hPD-1. These
mutants provide important details for modulating the interaction between hPD-1 and hPD-L1.

Another PD-1 mutant with ultra-high affinity for PD-L1 has been obtained and charac-
terized, named high-affinity consensus (HAC) PD-1, showing superior therapeutic efficacy
in mice compared with antibodies. The resolution of its X-Ray structure in the complex
with PD-L1 (PDB ID 5IUS) showed that HAC PD-1 binds PD-L1, establishing polar inter-
actions [51]. MD simulations (Amber ff14SB FF, 20 ns) revealed that the wild-type PD-1
is affected by a greater conformational variability compared with HAC PD-1 and that the
mutations Tyr68His, Met70Glu, Lys78Thr allow the formation of favorable contacts with
PD-L1, stabilizing the HAC PD-1/PD-L1 complex.

As previously described, tumor cells overexpress PD-L1 on their surface to elude
the immune system. Notably, the tumor microenvironment is generally characterized by
acidic pH which affects the protonation states of the residue side chains with consequent
effects on PD-1/PD-L1 interactions. Interestingly, Pascolutti et al. found that the HAC PD-1
exhibits pH-dependent affinity, with strong binding at low pH conditions [51]. Indeed,
the Tyr68His mutation allows for the formation of salt bridges with the Asp122 of PD-L1
due to protonation of His68 occurring at low pH, greatly improving the stability of the
protein–protein adduct.

The effect of acidic pH on the mechanism and kinetics of the HAC PD-1/PD-L1 forma-
tion was also investigated by Klyukin et al. [70]. They used the infrequent metadynamics
technique (Amber03 FF, production run 100 ns) considering two pH levels, 7.4 and 5.5,
corresponding to physiological conditions and acidic tumor microenvironments, respec-
tively [70]. In agreement with Pascolutti et al., their results showed that the PPIs of HAC
PD-1/PD-L1 are significantly affected by pH changes, and also that small variations can
induce a relevant increase in binding strength. In particular, His68 (PD-1) undergoing
protonation at pH 5.5, greatly stabilizes the complex interacting with PD-L1 Asp122.

All the computational outcomes so far described have shed light on the binding
mechanism of the PD-1/PD-L1 formation and confirmed the role of hot spot residues
identified by Holak. As discussed in the next paragraphs, this crucial information is used
for structure-based drug design studies aimed at identifying small molecule inhibitors of
the PD-1/PD-L1 pattern.

Table 5 summarizes the main computational methods discussed in the present paragraph.
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Table 5. Principal computational methods applied for the investigation of the hPD-1/PD-L1
binding mechanism.

Methods Force Field Thermodynamic Ensemble Ref.

Classical and accelerated MD AMBER FF14SB NVT/NPT [64]
Classical MD AMBER03 NVT/NPT [70]
Classical MD CHARMM36 NPT [65]
Classical MD AMBER99SB-ILDN NVT/NPT [66]

Classical MD, MM/GBSA AMBER FF14SB NVT/NPT [67]
Classical MD, MM/PBSA OPLS/AA NVT/NPT [69]
Classical MD, infrequent

MTD AMBER03 NVT/NPT [71]

Classical MD, MM/GBSA/IE AMBER FF14SB NVT/NPT [68]
MD: molecular dynamics; MTD: metadynamics.

3.2. Small Molecule Binding

As previously stated, the discovery of the initial X-ray complexes of BMS ligands
with PD-L1 revealed the dimerization effect caused by small molecules and prompted
researchers to use structure-based computational methods to explain the binding and
dimerization processes of biphenyl-based inhibitors.

In 2019, Almahmoud and Zhong conducted a study on the binding mode of 29
biphenyl derivatives extracted from the BMS patents through molecular docking studies.
The docking calculations aimed to identify the most relevant residues interacting with
ligands to design optimized binders. To ensure the consistency of the docking results,
calculations were performed on two PD-L1 X-ray structures (PDB ID 5N2F and 5NIU).
The computational analysis was conducted using the software packages MOE (Molecular
Operating Environment (MOE), Chemical Computing Group ULC, 910-1010 Sherbrooke
St. W., Montreal, QC H3A 2R7, Canada) and the Schrödinger Suite (Schrödinger Suite,
Schrödinger, LLC, New York, NY, USA). The final results indicate the asymmetric binding
of small molecule ligands to the two PD-L1 monomers, which is consistent with the findings
of Zak et al. [30]. The most relevant residues are Tyr56 of both chains, which is retrieved in
100% of predicted complexes, followed by BAsp122, BLys124, and BArg125 [71].

Sasmal et al. obtained a similar result when investigating the binding site of PD-L1
dimers in the complex with small molecules using more tools. At first, they exploited
DoGSiteScorer and Pankweb to quantify the dimensions and properties of the large hy-
drophobic tunnel formed between the two PD-L1 monomers. Thus, BIOVIA Discovery
Studio (BIOVIA, Dassault Systèmes, San Diego: Dassault Systèmes) was used to prepare
and dock a comprehensive series of biphenyl derivatives from the literature and patents
into the PD-L1 crystal structure (PDB ID 5N2F) to assess their binding mode in the PD-L1
tunnel. The main conclusions are that hydrophobicity is essential for PD-L1 inhibition,
the biphenyl system is required to interact with ATyr56, while another aromatic portion is
essential for contact with BTyr56 and BAsp122. The third aromatic ring must be derivatized
by flexible polar chains interacting with the PD-L1 groove [72].

The Alanine-Scanning-Interaction-Entropy (AS-IE) approach was applied to quantify
the contribution of single residues to the global binding ∆G of BMS derivatives into the PD-
L1 dimer. AS-IE is a computational method developed by Liu et al. [73] that determines the
entropic contribution to binding free energy from fluctuations in individual residue–ligand
interaction energies in a single MD trajectory. The relative values of ligand binding to the
wild type compared to the mutated protein provide the calculated residue-specific binding
free energies for each residue. A total of 35 BMS derivatives were divided into five groups
based on their inhibition potency and subjected to MD simulation and subsequent AS-IE
analysis using AMBER16 with the ff14SB and GAFF force fields.

The residues that contributed the most to the global binding ∆G were ATyr123 and
BTyr56, followed by BMet155, AMet115, BGln66, and AAsp122. The analysis suggests that
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modifications to the third aromatic ring (C) are important for designing new ligands, while
substitutions on the A ring of the biphenyl system do not result in better inhibitors [74].

Partial Least Squares Discriminant Analysis and flexible docking studies were carried
out by Kuang at al. to elicit features distinguishing between active and inactive inhibitors.
The authors collected 2558 PD-L1 inhibitors from the literature and submitted them to
the generation of a classification model adding 7674 non-inhibitors randomly selected
from PubChem. The classification model, which presented good sensitivity and specificity,
reports the most relevant contribution of intramolecular H-bonds, amphotericity, radius
of gyration, non-bonded electrostatic energy, octanol−water partition coefficient, and
fractional van der Waals surface area of H-bond donors in the discrimination between
active and inactive compounds [75].

Shi and coworkers conducted a comprehensive computational study of PD-L1 to gain
insight into the dimerization process and to identify the most relevant part of the BMS
derivatives that bind to the target protein. They generated an R-group QSAR model that
suggested the most relevant substituent position and the residues that mainly contribute
to the ligand potency. The results indicate that substituents in the para position of both
external aromatic rings have more influence on the ligand potency [76].

In 2019, Mejias and Guirola applied a co-solvent MD simulation to represent a phar-
macophore model. The NAMD software with the CHARMM27 force field was used to
perform 100 ns MD simulations with three different solvent mixtures (isopropanol/water,
acetamide/water, and isopropylamine/acetate) on the PD-L1 monomeric structure (PDB
ID 5C3T). The Volmap tool was used to define the occupancy of each probe. Finally, after
an energy-based filtering procedure, a final pharmacophore of ten sites was defined, taking
into account the properties of probes that interact more strongly with the protein. The
obtained pharmacophore was superimposed with known ligands to assess its validity [77].

Similarly, a study from our group used a newly established FMO/GRID-DRY approach
for the characterization of polar and hydrophobic interactions between PD-L1 and both
PD-1 and BMS ligands. Fragment Molecular Orbital (FMO) is a powerful ab initio method
particularly suited for determining the interaction energy between partner proteins or
proteins and ligands. It is particularly sensitive to polar contacts, while it is less good at
estimating hydrophobic interactions. The coupling with the GRID approach aims to fill
this gap by calculating the PD-L1 molecular interaction fields for the DRY probe [78]. The
obtained results indicate that the most important residues for hydrophobic contacts are
ATyr56, AMet115, AAla121, ATyr123, and BIle54, BTyr56, BMet115, and BAla121 [79]. In
addition, interaction with these residues appears to be responsible for dimerization. On the
other hand, polar contacts also play an important role. In particular, those with the so-called
G region, are delimited by Asp26, Asp122, Tyr123, Lys124, and Arg125. The results obtained
in this work are in good agreement with those presented by Lim et al., who applied FMO
calculations and calculated three-dimensional scattered pair interaction energies (3D-SPIEs)
between PD-L1 and a series of binders. In particular, the authors examined binding to
PD-1, monoclonal antibodies, macrocyclic peptides, and small molecules. After calculating
all pair interaction energies (PIEs), only those at a distance of less than 5.4 Å were selected
for further analysis and reported in a 3D scatter plot. The results highlighted the presence
of a hot spot shared by all types of ligands and formed by Tyr56, Glu58, and Gln66. A
second hot spot is characterized by Asp122 and Arg125, which are involved in interactions
with PD-1 and mAbs, while small molecules interact mainly with Asp122. A special role is
played by Met115, which is centrally located between the two hot spots and interacts with
most ligands [80].

Sun et al. investigated the binding of the BMS compound to PD-L1, comparing the
100 ns MD trajectories of the PD-L1/PD-L1 dimer and the same dimer in the complex
with BMS-8. The authors demonstrated that the presence of the ligand stabilizes the
complex, increasing the number of interacting residues from eleven to thirteen, and the
number of salt bridges from four to six. The molecular dynamics simulations confirm the
role of key residues identified in the X-ray and in previously mentioned articles. It also
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highlights the conformational rearrangement of several residues at the dimer interface to
host the ligand and improve the interaction network. Additionally, the binding energies of
different systems, including PD-1/PD-L1, PD-L1/BMS-8, PD-L1/PD-L1, and PD-L1/PD-L1
in the complex with BMS-8, were calculated to better depict the small molecule binding
mechanism. The resulting ∆G values suggest that PD-L1 prefers to bind with BMS-8 over
PD-1. Additionally, the initial binding with the small molecule triggers dimerization [81].

Riccio and colleagues investigated the effect of the tumor microenvironment pH on the
binding of ligands to PD-L1 in their paper. The tumor microenvironment is known to have
a lower extracellular pH compared to normal tissue, which can affect processes influenced
by electrostatic interactions such as protein folding and molecular recognition. The authors
investigated the effect of lower pH on the binding of PD-L1 with four ligands: a macro-
cyclic peptide (peptide-57) and three biphenyl derivatives (BMS-202, S7911, and VIS1059).
Docking and MD simulations were conducted to determine the most stable electrostatic
and hydrogen bond interactions between the ligands and the protein. The pKa values
of the ligands were evaluated using both Marvin and Epik. Microscale thermophoresis
was used to experimentally assess pH-dependent variations in binding affinity following
computational analysis. The results suggest that ligands containing a basic function that
interacts with a negatively charged residue (Asp122) can increase their binding affinity
at lower pH. These findings provide insight into the design of high-affinity ligands that
account for pH-dependent binding [82].

The following Table 6 reports the key PD-L1 residues in the interaction with small
molecules, as defined in the considered studies. The main ligand structural features
affecting PD-L1 binding are schematized in Figure 8.

Table 6. Key PD-L1 residues identified in different articles studying the binding with small molecules.

Studied Ligands Computational Approach PD-L1 Hot Spot Residues Reference

29 BMS derivatives
Docking

Binding free energy
calculation

ATyr56, BTyr56, BAsp122,
BLys124, BArg125 [72]

Several biphenyl
derivatives from

literature and patents
Docking ATyr56, BTyr56, BAsp122 [73]

35 BMS derivatives MD
AS-IE

ATyr123, BTyr56, BMet155,
AMet115, BGln66, AAsp122 [75]

6 BMS derivatives FMO/GRID-DRY
ATyr56, AMet115, AAla121,

ATyr123, and BIle54, BTyr56,
BMet115, BAla121

[80]

4 BMS derivatives FMO
3D-SPIE

Tyr56, Glu58, Gln66, Met115,
Asp122, Arg125 [81]
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3.3. Dimerization

Closely connected to the binding of biphenyl derivatives to PD-L1, the target dimer-
ization promoted by small molecules has been investigated by several researchers. The
dimerization process needs to be elucidated in view of the potential relationship between
the inhibitory activities of BMS small molecule inhibitors and the stability of the dimer-
ized complex systems. In this context, computational approaches can represent an almost
unique tool to understand this unpredicted event.

In 2019, Soremekun et al. carried out all-atom MD simulations to study the dimeriza-
tion process promoted by BMS-1001 and BMS-1166. Three different systems were built:
two unbound PD-L1 monomers and one PD-L1 bound to BMS-1001, and BMS-1166, in the
presence of the other PD-L1 monomer in the simulation box. MD simulations of 150 ns were
carried out using AMBER14 and the FF14SB force field. During the simulation, the ligand in
the bound systems transitioned from the starting monomer to the second one in an interme-
diate phase. The final simulated state of the bound systems was represented by the dimeric
form. In contrast, the unbound PD-L1 did not demonstrate any dimerization, indicating
that the studied process is promoted by the ligand. Additionally, ligand binding caused an
increase in residue fluctuation compared to the unbound protein. The per-residue energy
decomposition analysis for both ligands was estimated using MM/PBSA. The analysis
reported a high electrostatic contribution for AAsp122, ATyr123, ALys124, and AArg125
outside the hydrophobic tunnel and BAla121 and BAsp122 inside the tunnel, along with
both ATyr56 and BTyr56 hydrophobic contacts [83].

A similar study characterizing the binding and unbinding process of BMS-8 and
BMS-1166 to PD-L1 was presented by Shi et al. using MD simulations and metadynamic
studies. They used the X-ray complexes with PDB ID 5J8O and 5NIX and conducted
canonical MD simulations with the AMBER FF14SB force field, with a production phase
of 150 ns. The authors used MM/GBSA and MM/PBSA methods to calculate the global
binding free energies and the contribution of each residue through per-residue-based
decomposition analysis. Additionally, they conducted metadynamics to describe the
unbinding process, defining two collective variables that accounted for the ligand position
in the target protein. The authors confirmed the stabilizing effect of both ligands on PD-L1
and their preferential binding to one monomer over the other. BMS-8 induced greater
flexibility in the system compared to BMS-1166, which can be attributed to a larger enthalpic
contribution. Metadynamics simulations suggest that the dimerization process is caused by
the ligand binding to one monomer, which then recruits the second monomer, in agreement
with previous predictions. The most likely dissociation mechanism involves the ligand
disengaging from the dimer, which then oligomerizes after the ligand leaves [76].

In 2021, Guo et al. investigated the role of ligand chirality in PD-L1 binding. They
performed docking, MD simulation, and per-residue-based decomposition analysis to study
the binding of (R)- and (S)-BMS-200, along with a modified version of BMS-200, where
the chiral hydroxyl is substituted by a carbonyl function. The PDB complex with BMS-200
(PDB ID 5N2F) was used as the starting point for docking with AutoDock Vina and MD
simulation using GROMACS2106.4. The study confirms the dimerization mechanism
induced by ligand binding to one monomer, as previously ascertained. Additionally,
the authors highlight a slight difference in binding energy between the two enantiomers,
with the R enantiomer showing more interactions. The residues primarily involved in
ligand contacts are Ile54, Tyr56, Met115, Ala121, and Tyr123 [84]. The same research
group applied a similar computational approach to investigate the binding mechanism
of BMS-202 and its modified analogues where the terminal carbonyl group is substituted
by a hydroxyl function, generating both enantiomers. In addition to previous results, the
authors emphasized the role of the conformational rearrangement of ATyr56, ATyr123,
and BMet115 in the ligand association and dissociation process [85]. A comprehensive
computational study was carried out by Ahmed et al. that explored the binding properties
of four BMS ligands comprising the minimum fragment identified by Skalniak et al. [32]
The authors also studied the PD-L1/PD-1 complex, the PD-L1 dimer without ligands, and
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the naturally occurring ‘back-to-back’ PD-L1 dimer (PDB ID 5JDR) through MD simulations
and MM-GBSA analysis. Grid Inhomogeneous Solvation Theory (GIST) and Hydration
Site Analysis (HSA) were applied to understand the role of water displacement in ligand
binding and dimerization. In addition, the authors carried out a 2D-QSAR analysis using
403 ligands extracted from literature and designed a large virtual library of potential PD-L1
ligands. The MD simulations allowed for the clarification of the dimerization process,
which is in line with the proposed ligand-induced mechanism. The authors confirm the
biphenyl system as the minimum structural ligand requirement for PD-L1 dimerization.
The computational solvent mapping suggests that BMS ligand to PD-L1 monomer can be
favored by the displacement of unfavorable water molecules from their highly energetic
hydration site. This result suggests that substitution of the A ring can further contribute to
this effect [86].

4. Computational Studies Contributing to the Identification of New Compounds

As the final part of this review, we present computational approaches that have been
applied to identify new PD-L1 ligands. As previously mentioned, this paragraph focuses on
papers referring to virtual screening campaigns, while neglecting docking studies of newly
synthesized compounds, which are less attractive from a computational point of view.

Only papers that include a biological assay demonstrating activity towards PD-L1,
and confirming the validity of the computational results, were considered for this review.
The preferred method for determining the ability of a compound to inhibit PD1/PDL1
interaction is through biological assays, with the well-established HTFR assay being the
preferred option. In silico methods can also be used to virtually test a large number of
compounds quickly and inexpensively, reducing the number of compounds to be tested
in vitro or in vivo, speeding up the process and reducing costs.

Virtual screening (VS) techniques can be divided into two approaches: ligand- and
structure-based. The ligand-based approach is useful when the 3D structure of the target
is unknown and relies on the knowledge of the chemical properties of active compounds.
However, this method may limit the ability to identify compounds with different structures
and/or different types of interactions. On the other hand, the structure-based VS can be
used when the 3D structure of the target is known. Due to the availability of numerous
3D PD-L1 structures in the Protein Data Bank, structure-based VS has become a popular
method for identifying new ligands in recent years. This involves the screening of commer-
cial and/or in-house databases to find new compounds. Several research groups conducted
docking-based VS on diverse small molecule databases, including synthetic and natural
compounds, as well as approved drugs. They used various methods to filter the databases
and employed one or multiple 3D structures of proteins and ligands stored in the Protein
Data Bank.

The section below describes the most significant structure-based VS approaches, in-
cluding the most popular procedures and database filtering strategies.

Wang et al. screened the Specs database that contains more than 200,000 compounds
using the 3D structure of dimeric PD-L1 protein in the complex with BMS-202 (PDB ID 5J89).
They used Schrödinger programs such as Protein Preparation Wizard to refine protein
structure, and LigPrep to process compounds, exploiting Epik at pH = 7.0 to predict ionized
states, tautomers, and stereoisomers. The grid box was centered on the crystallographic
ligand and the XP protocol was used to perform docking. The top compounds were re-
docked using a flexible docking strategy (Induced Fit Docking), and the Canvas module
was used to cluster the best-docked compounds and analyze the binding mode. Compound
APBC (SPECS No. AG-690/11449006, Figure 9) binds, like BMS-202, to the hydrophobic
site of two PD-L1 monomers with similar anchoring residues Tyr56, Met115, and Ala121. A
π–π stacking interaction between the aniline group of APBC and Tyr56 was observed, and
a key H-bonding to D122 stabilized the complex. The activity of compounds was valued
by HTFR PD-1/PD-L1 interaction assay, with an IC50 of 27.82 µM [87].
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machine learning.

Lung et al. screened the natural product dataset of the ZINC12 database (ZBC, 180,131
chemical structures) using a docking-based VS with the 3D structure of PD-L1 (PDB ID: 5J89)
and the iDock program. To validate the screening protocol, four inhibitors (BMS-8, BMS-37,
BMS-200, and BMS-202) with known IC50 values were added to the database. An arbitrary
cutoff iDock score was set at the value of BMS-202 score (−9.95 kcal mol−1) for further
analysis. Contact fingerprint analysis was performed using the AuPosSOM web server,
which automatically analyzes poses using self-organizing maps. A total of 368 compounds
were clustered together with the four known BMS compounds and were filtered by drug-
like properties using Data Warrior with the following criteria: molecular weight between
55 and 500 Da, no more than 5 hydrogen bond donors, no more than 10 hydrogen bond
acceptors, a partition coefficient logP between −1 and 5, a net charge between −2 and 2, a
topological polar surface area less than 100, and no risk of mutagenicity, tumorigenicity,
irritation, or reproductive effects. The filtered 111 compounds were clustered using the
FragFP descriptor with a minimum similarity of 0.8. Finally, 22 compounds with iDock
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scores better than BMS-202, similar contact fingerprints, and preferable drug properties
were selected for in vitro evaluation. ZINC12529904 (Figure 9) inhibited approximately
40% of the PD-1/PD-L1 interaction at 100 nM in the AlphaLISA binding assay [88].

Barnwal et al. used the ParDOCK program to screen small-molecule drugs from the
ZINC database, and the best-scored 11 compounds (docking score < −8 Kcal mol−1) were
subjected to MD simulation using the AMBER suite to determine the dynamic stability of
the interaction. Among these compounds, Ponatinib (Figure 9), a tyrosine kinase inhibitor,
exhibited stable binding to the active site of PD-L1, mediated by hydrophobic contacts with
Glu54, Glu55, Asp56, Gln49, Val51, Tyr39, Ser100, Ile99, Met98, Ala104, and Asp105. A cell-
free fluorescence-quenching study confirmed the binding of ponatinib with recombinant
PD-L1 (IC50 1.91 µM) [89].

Acúrcio et al. conducted a docking-based VS on several synthetic compound libraries,
including NCI, Enamine, Specs, and in-house databases, comprising almost 900,000 small
molecules. The crystallographic complex of BMS-202 and PD-L1 (PDB ID 5J89) was pre-
pared and minimized using the MOE (Molecular Operating Environment (MOE), Chemical
Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada)
software package with Amber 10 EHT force field. The GOLD suite was used to analyze the
binding conformations, with ATyr56 set as the center of the binding pocket and a 10 Å ra-
dius. A preliminary screening was performed using the ChemPLP fitness scoring function
and 50 genetic algorithm (GA) runs, while the top 1000 highest-ranking compounds were
analyzed in a more detailed molecular docking study (GoldScore fitness scoring function
with 500 GA runs). 95 compounds, resulting from filtering the docking score, fitting the
active site, interacting with nearby residues, and Lipinski’s rule of five criteria with the
FAF-Drugs4 tool, characterized by variable chemical scaffolds, underwent testing for PD-L1
HTRF assay. Even if a total of 16 compounds, tested at 100 µM, were able to reduce the
HTFR signal to 50%, the most promising compound was the 69 (IC50 96 nM, Figure 9) [90].

Bianconi et al. performed a structure-based VS of 5801 small molecules (807 internal
subset molecules with MW≤ 500 Da and 4994 highly soluble Life Chemicals fragments with
MW ≤ 300 Da) to identify compounds with good activity at pH 6.2, useful for overcoming
drug resistance mechanisms due to an acidic tumor microenvironment. Asp122 and Lys124
residues, responsible for pH-dependent binding activity, were identified as hot spots on
PD-L1 (PDB ID 5J89) and were used as key features for selecting hit compounds. Docking
studies were conducted using the standard precision (SP) method of Glide and the G-score
scoring function. LigPrep was used to refine the ligands, Protein Preparation Wizard to
process and energetically refine the C/D PD-L1 chains, and the grid box was centered near
Asp122, and Lys124 of chain C. Microscale thermophoresis (MST) experiments were used
to confirm the binding to PD-L1 of the top 60 compounds based on their G-score value
and interaction with the hot spot residues. The most active compound, VIS310 (Figure 9),
showed a high-micromolar dissociation constant (Kd = 163.75 ± 33.61 µM), and better
binding efficiency index (BEI = 21.0) than BMS-202 (Kd = 8.13 ± 1.38 µM; BEI = 12.1).
Since VIS310 was the only substituted benzamidoxime of the analyzed database, the
analogue-based approach to screen the REAL database of Enamine, containing about
43.8 million drug-like compounds, was used to define the structure-activity relationships
of benzamidoxime compounds [91].

Wang T. et al. filtered the ChEMBL25 database (1.9 million compounds), based on
Lipinski’s rule of five and REOS rules. The selected compounds were submitted to structure-
based VS using the 3D structure of the PD-L1 dimer co-crystallized with BMS-202 (PDB
ID: 5J89) and Autodock 4.2 with a Lamarckian genetic algorithm (LGA). The first run of
screening consisted of 1 round of docking while the top 50,000 molecules were docked
five times for ranking purposes. From the top 100 molecules, clustered into 20 groups
using FCFP_4 fingerprints, nine compounds (one from each cluster) were selected based
on the drug-likeness and structural diversity of the PD-1/PD-L1 TR-FRET assay. The
compound with the highest activity (IC50 64.11 µM) was analyzed through a docking study
in PD-L1 (PDB ID 5J89), revealing a deep insertion into the hydrophobic cleft formed at
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the dimer interface of PD-L1. To improve hydrophobic contacts, π–π stacking, and alkyl–π
interactions with Tyr56 and Tyr123, a series of biphenyl analogues of BMS dimerizers were
synthesized and tested. Compound 17 demonstrated the highest activity with an IC50
of 27.8 nM. The complex 17/PD-L1 was crystallized with a resolution of 2.4 Å (PDB ID
7DY7) [57].

Another useful approach to finding new PD-L1 binders is the generation of a phar-
macophore model based on the structure of the crystal ligands and using it for database
screening. Wang F. et al. carried out cross-docking of four available crystal complexes (PDB
ID 5J8O, 5J89, 5N2D, and 5N2F) using Glide SP and XP to select the best performing PD-L1
structure (PDB ID 5J89) based on the best RMSD in Glide docking and the best AUC in
XP. Almost 200,000 compounds of the Specs database were pre-processed by PAINS filtra-
tion using the comprehensive application of the Molinspration Cheminformatics software,
OpenEye, ChemAxon, RDkit, and CERTARA. A total of 120,000 compounds were analyzed
by a pharmacophore model using Phase, a module of the Schrödinger Suite, on the co-
crystallized inhibitors BMS-8, BMS-37, BMS-200, and BMS-202 (PDB ID 5J8O, 5N2D, 5N2F,
and 5J89, respectively). The condition of mapping at least four of the six pharmacophore
features of the model (one positive charge, one H-bond acceptor, one hydrophobic, and
one aromatic ring feature) was satisfied by 10,125 compounds. SP and XP docking proto-
cols, using PDB ID 5J89, in Glide, based on the ROC curves and AUC values, were used.
The top 1100 molecules (XP G-scores ≤ −9.000 kcal mol−1) were ranked and clustered in
the Canvas module into 402 groups with Tanimoto coefficients of less than 0.5 to ensure
maximum structural diversity among compounds. Best-scored compounds of each cluster
were submitted to flexible docking (Induced Fit protocol) to refine the final selection. 91
compounds were purchased and tested by SPR and CBPA (SPECS No. AN-465/42833793,
Figure 9) exhibited bioactivity at the molecular (Kd 48.10 µM) and cellular levels [92].

Choorakottayil Pushkaran et al. developed a 3D pharmacophore model considering
the key interacting residues between BMS-202 and PD-L1 dimer (PDB ID 5J89) using the
“Structure-based pharmacophore” module of Ligand Scout 4.1. The pharmacophore was
characterized by seven chemical features: four hydrophobic (H), one positive ionizable (P),
one H-bond acceptor (A), and one H-bond donor (D). The obtained model was validated
by calculating the enrichment factor (EF) using a test dataset composed of 61 known
PD-L1 inhibitors and 1425 decoys. The validated 3D pharmacophore model was used to
screen all the FDA-approved drugs in the DrugBank database (1925 compounds) and small
molecules in the Specs database (540,807 compounds), with the VS module of Ligand Scout
software. Compounds passing the pharmacophore selection matching at list five chemical
features (12 in DrugBank and 15,276 in Specs) were submitted to High Throughput VS,
SP, and XP docking protocols in Glide. Ligands were prepared by LigPrep, and energy
minimization was performed using the OPLS2005 force field while retaining the input
structure chirality. The protein crystal structure was minimized by Protein Preparation
Wizard, and the grid box was centered on BMS-202. Hits were ranked using the XP docking
score, and molecular interactions between the hits and the protein were analyzed using
PyMol and Biovia Discovery Studio Visualizer. The cutoff of −9 kcal mol−1 allowed the
selection of three Drug Bank and eight Specs hits characterized by the key interactions with
Tyr56, Met115, and Ala121. ADME and drug-likeness prediction were calculated using the
QikProp module of Schrödinger. The in vitro toxicity and PD-1/PDL-1 inhibitory activity
established that the drugs Raltitrexed, Safinamide, and the natural AK-968/40642641
(Figure 9) could be used as PDL-1 inhibitors [93].

Fattakhova et al. conducted a combined ligand- and structure-based VS to identify
small molecules active on PD-L1. For the structure-based screening, ensemble docking
using 7 crystal structures (PDB IDs 5N2F, 5NIU, 6R3K, 5J89, 5J8O, 5N2D, 6NM8) with ap-
proximately 10,000 approved or investigational drugs, using the AutoDock Vina algorithm,
was performed. The docking protocol was validated by redocking cognate ligands and
evaluating the RMSD with the crystal ligand. After merging the data of the seven proteins,
the top 1000 molecules were visually inspected and twenty compounds mimicking the key
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ligand-PD-L1 interactions (strong hydrophobic interactions with several amino acids lining
the channel-like pocket of the dimer, π–π interactions with key amino acids like Tyr56, and
possible hydrogen and halogen bonds at the channel opening) were selected. ROCS 3.4.1.0
was used for ligand-based screening, which evaluates shape-similarity to the 7 crystallo-
graphic ligands. A multi-conformer database of approved and investigational drugs was
screened and ranked based on the ROCS_TanimotoCombo score. The top 1000 molecules
were docked in the high-resolution PD-L1 crystal structure (PDB ID 5N2F), and after
combining molecules obtained by the two screening, 25 compounds were subjected to
biological assays. Pyrvinium (Figure 9), an FDA-approved anthelmintic drug belonging
to the phenylpyrroles class, showed comparable potency in HTRF and AlphaLISA assays,
confirming its potential PD1/PD-L1 inhibitory activity (IC50 29.66 µM). A post-docking
optimization of the best docking pose, using the default relaxation protocol in the Desmond
Molecular Dynamics v3.6 package, demonstrated that the dimethyl-phenylpyrrole moi-
ety occupied the distal end of the PD-L1 dimer pocket similarly to the PD-L1 cognate
ligand [94].

A machine learning approach was used by Patil et al. to discover bioactive PD-L1
dimerizers. They developed models based on 2D chemical descriptors using a series of
small-molecule PD-L1 ligands patented by BMS. Multiple 2D fingerprint descriptors (FP1,
FP2, Layered, MACCS, Morgan, RDKit) implemented in the Open Drug Discovery Toolkit
(ODDT), were calculated. These descriptors were fitted by Random Forest models to
1581 “Active” molecules (BMS molecules), 50 “decoy” molecules per active compound
(obtained from the DUD-E database), and 417 known inactive molecules. According
to the good correlation coefficient (R) implemented in the ODDT, all fingerprints were
used to screen the commercial Cayman Chemical database (16,191 bioactive molecules)
and 361 compounds emerged as potentially “active” in at least 5 fingerprint models. A
structure-based docking study was then realized using the highest resolution X-ray PD-L1
structure (PDB ID 5N2F) with AutoDock Vina. The binding mode of the cognate ligand
(8HW) was correctly predicted (docking score −11.4 kcal mol−1). The top 20 compounds,
tested in the HTRF PD1-PDL1 binding assay, were selected based on the presence of typical
interactions between PD-L1 and its inhibitors and their orientation relative to 8HW. MD
simulations were used to predict the binding stability of the three most active compounds
using Desmond, with a simulation time of 5 ns. The compound CRT5 (IC50 22.35 µM,
Figure 9) is the most active and stable and binds similarly to the crystal ligand. Compound
P053 (IC50 33.65 µM) follows a similar trend [95].

In Table 7, the main characteristics of the virtual screening campaigns reported in this
paragraph are summarized.

Table 7. Principal features of the discussed virtual screening campaigns.

PDB ID Database
(# Compounds) Program Screening Protocol Emerging PD-L1

Inhibitor Activity (µM) Ref

5J89 Specs
(200,000)

Schrödinger
Canva

docking study
clustering APBC IC50 27.82 [87]

5J89

natural
compounds of

ZINC12
(180,131)

iDock
AuPosSOM

Data Warrior

docking study
filtering by iDock score

(−9.95 kcal mol−1)
Contact Fingerprint Analysis

filtering by drug-likeness
properties

clustering (FragFP descriptor)

ZINC12529904 IC50 0.1 [88]

* n.r. ZINC database ParDOCK
Amber suite

docking study
filtering by docking score

(−8 kcal mol−1)
MD simulations

Ponatinib IC50 1.91 [89]
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Table 7. Cont.

PDB ID Database
(# Compounds) Program Screening Protocol Emerging PD-L1

Inhibitor Activity (µM) Ref

5J89
NCI, Enamine,

Specs, or in-house
(900,000)

MOE
FAF-Drugs4

docking-based 50 GA for
rapid screening

filtering by docking score
re-docking 500 GA for top

scoring compounds
filtering by Lipinski’s rule of 5

69 IC50 0.096 [90]

5J89
In-house (807)
Life Chemicals

(4994)
Schrödinger

Docking study
(Asp122 &Lys124 hot spots)

filtering by docking score
VIS310 Kd 8.13 [91]

5J89 ChEMBL25
(1.9 M) AutoDock

filtering by Lipinski’s rule of 5
first docked once

top-scored docked 5 times
clustering by FCFP_4

fingerprints
druggability

17 IC50 0.0278 [57]

5J89 Specs
(200,000) Schrödinger

filtration by PAINS
Pharmacophore model

generation
Docking study

Clustering
Induced fit docking

CBPA Kd 48.10 [92]

5J89

Specs (540,807
s.m.) & DrugBank

(1925
FDA-approved

drug)

Schrödinger

3D pharmacophore model
Docking study

(3 steps: HTSV, SP, XP)
Filtering by ADME and

druggability

Raltitrexed
Safinamide

AK-968/40642641

Indirect in vitro
experiments

(↑ in immune
cell

proliferation)

[93]

5N2F,
5NIU,

6R3K, 5J89,
5J8O,
5N2D,
6NM8

10,000
approved or

investigational
drugs

AutoDock Vina
(SB-VS)

ROCS (LB-VS)

Ensemble docking
(7 crystal structure)
Visual inspection

Filtering by shape similarity
(7 crystal ligands)

Docking study
(top 1000 compounds)

Pyrvinium IC50 29.66 [94]

5N2F

bioactive
molecules of

Cayman
Chemical

database (16,191)

Open Drug
Discovery Toolkit

(ODDT)
AutoDock Vina

Desmond

Multiple 2D descriptors
(FP1, FP2, Layered, MACCS,

Morgan, RDKit)
Random Forest models

Docking study
Molecular Dynamics

CRT5 IC50 22.35
IC50 33.65 [95]

* n.r. = not reported.

5. Application of AI-Based Methods to the Study of Immune Checkpoint Inhibition

Artificial intelligence (AI) has had a major impact on technologies and all fields of
science, including structural biology and in silico drug discovery studies. Apart from
the already discussed VS campaign by Patil et al. [95], not many other studies report the
application of these approaches to the discovery of PD-L1 ligands. Most of the literature
mentioning PD-L1 and AI is based on the application of these methods to aid in the
diagnosis and prediction of responses to AI treatments [96].

AI is behind a breakthrough in structural biology represented by AlphaFold and
similar software (RosettaFold, OpenFold, and ESMFold), which is able to predict the 3D
structure of a protein from its amino acid sequence [41,97]. This specific computational
method was used to predict the anti-PD-L1 antibody and antigen structures of the hu-
manized 3D5 antibody, named h3D5-hIgG1, as well as the structure of the corresponding
h3D5/PD-L1 complex [98]. Experimental results showed that h3D5-hIgG1 is characterized
by an extraordinary binding affinity to the PD-L1 protein compared to the parental murine
3D5 antibody. Other Alphafold applications aimed at identifying PD-L1 inhibitors have
recently been reviewed by Sobral et al. [40].
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The power of AI in drug discovery has also been applied to other targets in the immune
checkpoint inhibitor space, as shown in a recent study using an AI algorithm based on
deep convolutional neural networks to identify small-molecule inhibitors of cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) that disrupt the CTLA-4/CD80 interaction [99].
This AI approach was used to virtually screen a library of 10 million compounds. The most
promising compounds were evaluated using biochemical, biophysical, immunological, and
animal assays to demonstrate their ability to inhibit the CTLA-4/CD80 pathway.

Although the application of AI-based methods to the identification of PD-L1 ligands
has not been widely exploited, the increasing number of available tools and technical
capabilities will certainly encourage the application of these methods to this target.

6. Conclusions

The interaction between PD-1 and PD-L1 represents a well-established and valuable
target for cancer immunotherapy. Several mAbs are currently in clinical use and represent
a new paradigm in cancer therapy.

This protein–protein contact has been extensively investigated using experimental and
computational approaches due to its significance. Our review focuses on the application
of computational methods to explore the binding mechanism of PD-L1 to PD-1 and small
molecule binders. The latter may represent an important goal in the field of immunotherapy,
as low molecular weight compounds can overcome limitations due to mAbs administration
and side effects. In this context, the resolution of the first X-ray complexes between PD-L1
and BMS derivatives has paved the way for the disclosure of a series of compounds capable
of promoting the same dimerization induced by biphenyl compounds.

Most investigations in this field use the available X-ray data to perform docking, MD
simulations, and other structure-based approaches. The studies presented here largely
confirm the involvement of PD-L1 residues in both the binding of BMS derivatives and
the dimerization process, as observed experimentally by Holak. The identification of hot
spot residues in the PD-L1 binding region for both PD-1 and small molecules converged
on hydrophobic contacts with Tyr56, Met115, Ala121, and Tyr123, as well as electrostatic
contacts with Asp122, Lys124, and Arg125. Most of the computational studies completed
the binding profile of the studied ligands; therefore, since they mostly overlap with ex-
perimental data, it is not trivial to elicit the effective contribution of these methods to the
identification of new small-molecule binders.

Several MD simulations, along with other approaches such as MM/GBSA, MM/PBSA,
per-residue energy decomposition, and ab initio FMO calculations, were used to gain
insight into the dimerization process. The results indicate that the small-molecule ligand
binds preferentially to one monomer. This binding is favored by the displacement of
“unhappy” water molecules and electrostatic interactions with polar residues in the groove
region. This initial contact then recruits the second PD-L1 monomer. It was found that
dimerization does not occur in the absence of a ligand and that the biphenyl group (or
a bi-aromatic moiety) is the minimum structural requirement for the ligand to promote
this process.

The availability of X-ray complexes and activity data for biphenyl ligands, which have
fed structure-based virtual screening campaigns, has a twofold implication: while it has
provided an essential starting point for the development of other ligands, it has also placed
a constraint on the identification of molecules with different scaffolds that can bind PD-L1
by a mechanism of action other than dimerization (assuming that compounds with this
activity can exist, given the properties of PD-L1, whose surface druggable sites are unlikely
to be identified). Thus, the question of the possible identification of other ligands with a
novel mechanism of action is still an open one.

In addition to the need to find a good ligand, one of the most challenging aspects of ICI
is the limited number of patients who respond to therapy. Better profiling of cancer protein
expression and the adoption of combination therapies may increase the number of patients
who can benefit from immunotherapy [100]. Recently, a series of in silico methods was
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applied to simulate the different intracellular signaling affecting the PD-1/PD-L1 pathway
in neuroblastoma (NBM) [101]. In particular, they developed a specific network of protein
kinase cascades where the corresponding Michaelis–Menten kinetics parameters were used
to create a system of ordinary differential equations. The resulting computational model
represents an interesting tool to predict the relation between NBM tumor phenotype and
the response of anti-PD-1/PD-L1 therapy, as well as to manage the immunotherapeutic
treatment of NBM patients. The latter represents an example of the even more relevant role
that computational studies can play in the valuable field of immune checkpoint modulation.
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