
mdpi.com/journal/toxics

Special Issue Reprint

Advances in Water, Air and 
Soil Pollution Monitoring, 
Modeling and Restoration

Edited by 
Alina Barbulescu and Lucica Barbes



Advances in Water, Air and
Soil Pollution Monitoring,
Modeling and Restoration





Advances in Water, Air and
Soil Pollution Monitoring,
Modeling and Restoration

Editors

Alina Barbulescu
Lucica Barbes

Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Novi Sad ‚ Cluj ‚ Manchester



Editors

Alina Barbulescu

Civil Engineering

Transilvania University

of Bras, ov

Bras, ov

Romania

Lucica Barbes

Applied Sciences

Ovidius University

of Constant, a

Constant, a

Romania

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Toxics

(ISSN 2305-6304) (available at: www.mdpi.com/journal/toxics/special issues/0I5O0Y56F0).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0906-6 (Hbk)

ISBN 978-3-7258-0905-9 (PDF)

doi.org/10.3390/books978-3-7258-0905-9

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

www.mdpi.com/journal/toxics/special_issues/0I5O0Y56F0
https://doi.org/10.3390/books978-3-7258-0905-9


Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
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Preface

The pollution of air, water and soil is constantly increasing, becoming a global issue.

Biodegradation modifies pollutants’ structure to the molecular level, generating more waste that must

be monitored, reduced and controlled.

The purpose of this Special Issue was to assess air, water and soil pollution employing advanced

methods, and apply the findings to possible mitigation measures. The published articles provide an

overview of the actual research stage in the field, aiming to emphasize the pollution risks and impact

on people’s health and environment.

Alongside the solutions to the practical problems of cleaning the water, air and soil, the

study topics directly answer questions relating to selecting different tools that best emphasize the

environmental quality changes and their impact on society’s future.

Alina Barbulescu and Lucica Barbes

Editors
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Advances in Water, Air and Soil Pollution Monitoring,
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Global pollution demands continuous attention and concerted efforts to reduce its
effects. Every day, our planet faces increasing pressure from various sources, including
industrial activities, urbanization, agriculture, and waste generation. In this context, the
articles featured in this Special Issue shed light on the multifaceted nature of environmental
pollution and provide innovative approaches for its monitoring and modeling, proposing
solutions for restoration. Several articles delve into the complexity of pollution assessment,
providing insights into the impact of pollutants on environmental health and human
wellbeing. Studies focusing on degradation processes emphasize the importance of
understanding pollution’s ecological consequences. Therefore, a key theme of these
investigations is the urgent need for effective mitigation measures to address environmental
restoration. Moreover, the articles provide valuable guidance for policy makers, practitioners,
and researchers.

As academic editors, we are particularly excited to see this collection’s diverse topics.
We hope that the presented discoveries will inspire further interdisciplinary collaboration
and innovative solutions to the challenges posed by environmental pollution. Eleven
papers were selected for inclusion in this issue after the peer review process of the
twenty-three submitted manuscripts. The complexity of this Special Issue lies in interpreting
the multifaceted interactions between various environmental parameters and developing
effective pollution monitoring and management strategies.

In the article “Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase,
Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution,
Risk Assessment, and Sources”, Montuori et al. present the findings on the concentrations
and composition of PAHs in the Sele River, Italy. Low-molecular-weight (LMW) PAH
levels were notably elevated in water samples, while high-molecular-weight (HMW) PAHs
were predominant in sediment samples. Analysis of the PAHs’ diagnostic ratio indicates
that the primary sources were pyrolytic, suggesting a significant contribution from vehicle
emissions and combustion processes. The concentrations of numerous individual PAHs
at various sites surpassed environmental risk limits (ERLs) and threshold effect levels
(TELs) [1], occasionally resulting in adverse environmental impacts. However, the toxic
equivalent concentration (TEQ) of carcinogenic PAHs shows a definite carcinogenic risk in
the Sele River basin. Hence, continuous monitoring of Sele River waters is imperative as
PAH contamination could affect aquatic ecosystems.

The article “Occurrence and Distribution of Persistent Organic Pollutants (POPs) from
Sele River, Southern Italy: Analysis of Polychlorinated Biphenyls and Organochlorine Pesticides
in a Water–Sediment System” investigates the pollution characteristics, spatiotemporal
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variation, source, and potential ecological risk of PCBs and OCPs in the Sele River,
including their contribution to the Tyrrhenian Sea. Sediment samples exhibited higher
levels of these contaminants compared to those in the water bodies, DP, and SPM,
indicating that suspension processes and sedimentation are the primary mechanisms
at work in the Sele River. The data showed that industrial processes were the primary
source of PCBs. Risk assessment revealed elevated PCB risk factors at the mouth of the
Sele River and 500 m south, while levels were lower at other sites. In contrast, OCP
ratios were generally lower, with most analytes showing a risk quotient (RQ) below 1.
Consequently, regular monitoring of pollution in the Sele River and its estuary is necessary
to evaluate ecological risks over time. These findings enhance our understanding of Sele
River water quality and inform environmental monitoring, applications of sediment
quality guidelines, and ecological risk assessments [2]. It is expected that establishing
a comprehensive database for various pollution factors and including more emerging
contaminants in river ecosystem risk assessments will be crucial. Moreover, this study’s
results will aid in preventing future contamination of the Sele River’s water system
by PCBs and OCPs, thereby strengthening prevention and pollution control measures
against future risks. The results will help policy makers identify high-risk pollutant
areas, improve environmental protection regulations, and raise public awareness of
their importance.

The research study “Health Risk Assessment of PAHs from Estuarine Sediments
in the South of Italy” introduces, for the first time, an evaluation of the carcinogenic
risk posed to human health by dermal and ingestion exposure to polycyclic aromatic
hydrocarbons (PAHs) present in sediments within the primary surface water streams of
the Campania Region, located in southern Italy. It offers insights into the concentrations,
spatial distribution, and composition profiles of PAHs found in sediments collected near
the estuaries of the Sele, Sarno, and Volturno Rivers. The findings suggest that the risk
of cancer resulting from oral exposure to PAHs in estuarine sediments [3]—quantified
as incremental lifetime cancer risk (ILCR ingestion)—is low, unlike the risk associated
with accidental skin exposure, which is moderate. The results underscore the need to
continuously evaluate the carcinogenic risk to human health arising from dermal and
oral exposure to PAHs and ongoing monitoring of PAH concentrations in surface water
sediments within the Campania Region. Therefore, this study is a foundation for future
investigations to comprehensively assess the carcinogenic risk to human health due to PAH
exposure to inform pollution prevention measures, ecological restoration strategies for
rivers, and the preservation of our overall wellbeing.

In their work titled “Modeling the Chlorine Series from the Treatment Plant of
Drinking Water in Constanta, Romania”, Bărbulescu and Barbeş introduced four alternative
approaches for modeling monthly free chlorine residual concentration series from PCTP
using decomposition, Holt–Winters, and SARIMA models. A key novelty lies in employing
econometric models in engineering, thereby expanding upon previous studies on the
water quality, which had primarily used statistical modeling [4,5]. Research in Romania
has been limited in this field, with it being primarily experimental or presenting basic
statistics without correlations. This article fills this gap in research, which is particularly
crucial given the importance of monitoring chlorine concentration to avoid exceeding
regulatory limits and potential public discontent due to changes in drinking water taste
and smell. However, these models are recommended for short-term predictions without
continuous updating. Automating chlorine concentration monitoring can improve dosage
and forecasting accuracy. Additionally, future studies should consider incorporating risk
factors and addressing water quality deterioration to ensure constant monitoring and
intervention in the water treatment process.

The article “Assessing the Efficiency of a Drinking Water Treatment Plant Using
Statistical Methods and Quality Indices” by Bărbulescu and Barbes, introduces various
indicators utilized in a case study to assess the effectiveness of a water treatment plant.
While individual indicators highlight efficiency concerning specific water parameters and
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underscore issues that may arise during particular periods or regarding specific parameters,
cumulative indicators evaluate overall efficiency over time, considering all parameters.
This study revealed that individual efficiencies are sensitive to fluctuations in effluent
values compared to influent values, even if they fall within maximum allowable variation
(MAV) limits. Consequently, cumulative indices can be significantly influenced when very
low values contribute to their calculation. Weighted cumulative indices consistently differ
from the average ones. However, given the significance of each water parameter and the
imperative of maintaining high water quality standards, they must be considered.

The study paves the way for aligning evaluations of environmental pollution with
sustainability objectives based on objective criteria [6–8]. Future research will explore
opportunities to enhance the presented indices and establish a system that promptly
implements necessary corrective measures upon issue detection. Additionally, a procedural
framework must be devised to address the outliers’ existence because these values introduce
considerable biases in the indices computation.

The paper “Determinants Analysis Regarding Household Chemical Indoor Pollution”
highlights the need for more comprehensive research on indoor household pollution among
the general population. Despite being aware of the harmful effects of certain habits, it
remains difficult for people to adopt behaviors that help reduce indoor pollution. Therefore,
there is an urgent need for training programs that can target individuals with poor indoor
habits, such as singles, smokers, and those with lower education, to help them improve
their practices and minimize exposure to indoor pollutants [9]. Additionally, educational
initiatives are needed to reinforce the importance of good practices among individuals who
already exhibit positive attitudes and behaviors, such as those in committed relationships
and non-smokers. Although there are behavior and attitude correction programs for highly
educated youth, there is still a gap in translating this knowledge into practical measures to
effectively address indoor chemical pollution.

The article “A New Method for Ecological Risk Assessment of Combined Contaminated
Soil” indicates that the ecological risk assessment of combined polluted soil has traditionally
relied on the risk screening value (RSV) of individual pollutants, but this approach has
notable limitations. It overlooks the influence of soil properties and fails to consider
interactions among different pollutants. This study evaluated the ecological risks associated
with 22 soils from 4 smelting sites using toxicity tests involving soil invertebrates. In
addition to the RSV-based assessment, a novel method was developed.

This new approach introduced a toxicity effect index (EI) to standardize the toxicity
effects of various endpoints, enabling comparisons across different toxicity measures.
Furthermore, an ecological risk probability assessment method (RP) was devised based
on the cumulative probability distribution of EI. A significant correlation was observed
between the RP based on EI and the Nemerow ecological risk index (NRI) [10] based
on RSVs (p < 0.05). Additionally, the new method facilitates the visual representation of
probability distributions for various toxicity endpoints, aiding risk managers in devising
more effective risk management strategies to safeguard critical species. This innovative
method is poised to integrate with a sophisticated dose–effect relationship prediction model
constructed using machine learning algorithms, offering a fresh approach to the ecological
risk assessment of combined contaminated soil.

The article “Evaluating the Contamination by Indoor Dust in Dubai” presents an analysis
of metal enrichment levels in indoor dust collected from various locations in Dubai,
utilizing multivariate statistics and pollution indices. The research addresses a significant
gap in understanding indoor pollution caused by dust in a region prone to frequent dust
storms. Results indicated that the highest enrichment factors (for Ca, Cu, Mg, and Fe)
were attributed to soil lithology and industrial activities, particularly mining, with dust
transportation over long distances during dust storms. Two novel pollution indices, CPI
and AWI, were introduced and applied to assess contamination levels at observation sites.
Classification of sites based on PLI, CPI, AWI, and the Nemerow index [11] differed from
classifications based on raw data series, with two sites falling into distinct clusters in each

3
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classification. This study also suggests a promising research direction using different
classification data sets. Notably, eliminating elements with concentrations significantly
below warning limits from the data set resulted in more realistic classifications. The
future of this research aims to develop a methodology for cross-validating clustering
findings using supplementary selection criteria and decision trees. Employing various
clustering algorithms on raw data series, pollution index series, and stability criteria
will be crucial for identifying consistently similar series within the data set. Overall,
this study provides valuable insights into indoor dust pollution in Dubai and lays the
groundwork for further research, with potential implications for pollution management
and public health.

The paper “Toxicity Risk Assessment Due to Particulate Matter Pollution from Regional
Health Data: Case Study from Central Romania” presents the health implications of
elevated levels of PM10 and PM2.5 above the average limits recommended by Romanian
legislation and the World Health Organization (WHO) in the Central Region of Romania.
The findings underscore the significant risk of prolonged exposure to airborne fine particulate
matter, commonly found in urban areas, on cardiovascular health. According to the
health impact assessment conducted in this study, adhering to the new WHO limits could
yield substantial benefits in reducing mortality rates in the Central Region of Romania.
Specifically, adopting these limits could reduce approximately 196 deaths on average and
an increase in life expectancy by approximately 5.3 months due to lower PM2.5 levels.
Furthermore, there could be a decrease of roughly 190 deaths on average, corresponding to
a 3.5-month increase in life expectancy related to cardiovascular mortality.

These results highlight the urgent need to mitigate the health risks associated with
pollutants’ exposure [12,13] by implementing the new WHO-recommended limits in
Romanian regulations. However, it is essential to acknowledge the limitations of this
study, such as data gaps, especially regarding PM2.5, which may affect the accuracy of the
PM2.5/PM10 ratio estimation. As a future direction, expanding the scope of this study to
include other pollutants is crucial.

The paper “Prediction for Cyanobacterial Blooms Using Environmental Variable
Selection and Data Resampling” introduce a series of processes to enhance the prediction
accuracy of algal alert levels in the BJR by using observed data, feature selection techniques,
and resampling methods to construct two machine learning models [14,15]. The primary
objective of this study was to develop a prediction model for algal alert levels in reservoirs
using readily available data from national monitoring stations. The proposed model, which
incorporates feature selection and resampling methods, is anticipated to benefit engineers
and decision makers in managing algal blooms in watershed areas, including inland
weirs. This model will facilitate the development of effective strategies and regulations for
constructing and operating these reservoirs.

The article titled “Application of Machine Learning in Modeling the Relationship
between Catchment Attributes and Instream Water Quality in Data-Scarce Regions”,
highlights the efficacy of machine learning methods [16] in predicting and evaluating
water quality parameters within a catchment area. Among these methods, the random
forest (RF) model is the most effective, providing a robust tool for accurate and efficient
water quality assessment. While certain models may exhibit shortcomings in specific
criteria, a nuanced assessment using relative criteria such as accuracy (R2) and mean
absolute percentage error (MAPE) underscores the overall robustness of predictive models.
Evaluation of R2 values indicates satisfactory performance across all models except
pH prediction. Despite slightly elevated MAPE values in five models (SAR, Na+, SO4,
Cl−, TDS), the primary research objective—understanding the significance of individual
input variables within data constraints—was achieved. This accomplishment lays the
groundwork for selecting and implementing optimal models from a broader spectrum of
machine-learning techniques.

4
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Integrating these research findings into decision-making processes offers transform-
ative opportunities for strategic resource allocation and environmental impact mitigation.
Furthermore, this integration empowers decision makers to adopt targeted strategies for
promoting environmental sustainability, contributing to the broader objective of nurturing
resilient water ecosystems. This approach signifies a practical pathway towards achieving
a delicate balance between human activities and ecological preservation, actively promoting
sustainable water ecosystems.

Finally, we sincerely thank the authors, reviewers, and editorial team for their invaluable
contributions to this Special Issue. The research presented here will catalyze continued
progress in environmental science and contribute to our ongoing efforts to safeguard our
precious natural resources. Working together, we can strive towards a cleaner, healthier,
and more sustainable planet for future generations.
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11. Kovačević, M.; Jabbarian Amiri, B.; Lozančić, S.; Hadzima-Nyarko, M.; Radu, D.; Nyarko, E.K.
Application of Machine Learning in Modeling the Relationship between Catchment Attributes
and Instream Water Quality in Data-Scarce Regions. Toxics 2023, 11, 996. https://doi.org/10.3390/
toxics11120996.

5



Toxics 2024, 12, 244

References
1. Liu, Y.; Zarfl, C.; Basu, N.B.; Cirpka, O.A. Turnover and legacy of sediment-associated PAH in a baseflow-dominated river. Sci.

Total Environ. 2019, 671, 754–764. [CrossRef] [PubMed]
2. Sun, C.; Zhang, J.; Ma, Q.; Chen, Y.; Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin:

Sediment-water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 2016, 39,
63–74. [CrossRef]

3. Du, J.; Jing, C. Anthropogenic PAHs in lake sediments: A literature review (2002–2018). Environ. Sci. Process. Impacts 2018, 20,
1649–1666. [CrossRef] [PubMed]

4. Bucurica, I.A.; Dulama, I.D.; Radulescu, C.; Banica, A.L. Surface water quality assessment using electro-analytical methods and
inductively coupled plasma mass spectrometry (ICP-MS). Rom. J. Phys. 2022, 67, 802.

5. Voinea, S.; Nichita, C.; Burchiu, E.; Diac, C.; Armeanu, I. Study case of potable water from wells in the metropolitan Bucharest
area. Influences on human health–interdisciplinary lab. Rom. Rep. Phys. 2022, 74, 902.

6. Calotă, R.; Girip, A.; Savaniu, M.; Anica, I.; Glavă, G. Study on the heat transfer with regard to an off-grid vending machine
having a low impact on the environment. IOP Conf. Ser. Earth Environ. Sci. 2023, 1185, 012004. [CrossRef]

7. Antonescu, N.N.; Stănescu, D.-P.; Calotă, R. CO2 Emissions Reduction through Increasing H2 Participation in Gaseous
Combustible—Condensing Boilers Functional Response. Appl. Sci. 2022, 12, 3831. [CrossRef]
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Abstract: Air pollution poses one of the greatest dangers to public well-being. This article outlines a
study conducted in the Central Romania Region regarding the health risks associated with particulate
matter (PM) of two sizes, viz., PM10 and PM2.5. The methodology used consists of the following: (i) an
analysis of the effects of PM pollutants, (ii) an analysis of total mortality and cardiovascular-related
mortality, and (iii) a general health risk assessment. The Central Region of Romania is situated in
the Carpathian Mountains’ inner arch (consisting of six counties). The total population of the region
under investigation is about 2.6 million inhabitants. Health risk assessment is calculated based on
the relative risk (RR) formula. During the study period, our simulations show that reducing these
pollutants’ concentrations below the new WHO guidelines (2021) will prevent over 172 total fatalities
in Brasov alone, as an example. Furthermore, the potential benefit of reducing annual PM2.5 levels on
total cardiovascular mortality is around 188 persons in Brasov. Although health benefits may also
depend upon other physiological parameters, all general health indicators point towards a significant
improvement in overall health by a general reduction in particulate matter, as is shown by the toxicity
assessment of the particulate matter in the region of interest. The modality can be applied to other
locations for similar studies.

Keywords: PM; risk assessment; central Romania; cardiovascular; health; indicators

1. Introduction

Particulate matter (PM) is classified according to its diameters, viz., that with a di-
ameter of 10 microns or less (PM10), while fine particulate matter is defined as particles
that are 2.5 microns or less in diameter (PM2.5); thus, PM2.5 comprises a portion of PM10.
The common sources of PM10 include manufacturing industries, construction, and fossil
fuel combustion, such as diesel exhaust particles (DEP) and emissions from coal-burning
stoves [1]. PM10 is inhalable into the lungs and can induce adverse health effects, while
exposure to fine PM2.5 aggravates cardiovascular disease (CVD), among other physio-
logical effects. A recent study conducted by the authors [2] demonstrates that the key
sectors responsible for polluting the air in Brasov with PM10 and PM2.5 are commercial,
institutional, and households (61.2% and 48.2%, respectively), manufacturing industries
and construction (14.2% and 11.1%, respectively), transportation (11.8% and 10.6%, re-
spectively), mineral products (12.3% and 29.6%, respectively), and energy production and
distribution (~0.3%). In general, airborne PM varies widely in size, shape, and chemical
composition. Particles are defined by their diameter for air quality regulatory purposes
since a wide range of adverse health effects have been linked to air pollution exposure. A
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publication by the World Health Organization (WHO) [3] asserts that many health effects
are associated with air pollution, such as mortality caused by chronic cardiovascular and
respiratory diseases, chronic obstructive pulmonary disease (COPD), etc. A study reported
by the Global Burden of Diseases (GBD) reveals that the global level of total death for
the 1990–2019 period represented by cardiovascular disease (CVD) (GBD Compare, 2022)
was at 32.84%, while, for the same period, at the Romanian level, the percent was 57.26%.
Further studies conducted around the globe [4–6] show that air pollution, and especially
exposure to PM2.5, exacerbates CVD, resulting in a high mortality rate.

Several factors that generally contribute to CVD are certain lifestyles, such as obe-
sity, alcohol consumption, and the use of tobacco [7], but several recent epidemiological
studies show that air pollution could also contribute to an increased risk of CVD. In 2006,
Pope et al. [8] showed that short-term exposure to PM2.5 could be associated with acute
ischemic heart disease (IHD) events. The research literature also suggests that increased
PM concentrations are linked to higher rates of morbidity and mortality among EU coun-
tries. According to Orru [9], in Estonia, PM represents a public health concern, leading to
an annual increase in estimated premature deaths, a decrease in life expectancy, and an
increase in the number of hospitalizations. Exposure to PM2.5 is a major cause of premature
deaths worldwide, as compared to previous estimations of mortality due to this pollu-
tant and is significantly higher (~50%) according to studies by Anenberg et al. [10]. The
Aphekom project concludes that EU citizens are continuously exposed to air pollution of
PM2.5 exceeding the WHO limits, and it was concluded that life expectancy at age 30 could
be reduced by 22 months [11].

Airborne particulate matter consists of a mixture of many chemical species, viz., solids,
aerosols of small droplets of liquid, dry solid fragments, and solid cores with liquid coatings,
particles of varying sizes, shapes, and chemical compositions, and may contain inorganic
ions, metallic compounds, elemental carbon, organic compounds, and compounds from the
earth’s crust. The relative risk (RR) is a widely used function to estimate the health impact
of different pollutants. Different studies suggest the logarithmic model recommended by
WHO [8,10,12–16]. Concerning the relative risk (RR) for the long-term impact of PM2.5,
Pope [15] recommends a value of 1.06 (95% CI—confidence interval, which represents
a range of estimates for an unknown parameter in frequentist statistics—1.02–1.11) per
10 µg/m3 (total non-external causes mortality) and a value of 1.12 (95% CI 1.08–1.15) per
10 µg/m3 (cardiovascular mortality) [16]. Related to the RR for the short impact of PM10,
WHO [17] recommends a value of 1.006 (95% CI 1.004–1.008) for all causes of mortality
and all ages and a value of 1.009 (1.005–1.013) for cardiovascular disease. The Aphekom
project [18] used for cardiovascular disease indicates a value of 1.006 (95% CI 1.004–1.008).
The objective of this paper is to investigate the health risk assessment of PM10 and PM2.5
for the Central Region of Romania.

The suspended aerosol mass, in addition to PM10 and PM2.5, also contains new and
emergent contaminants, such as nanoparticles and micro/nanoplastics. The nature and
toxicity of suspended PMs, coupled with the presence of new and emergent contami-
nants, pose health impacts that can be very severe, especially for the very young, elderly,
and people with immuno-compromised conditions. These health impacts include PM2.5-
and PM10-induced airway inflammation, oxidative stress induced by polyaromatic hy-
drocarbons, covalent modifications of intracellular proteins/enzymes, the innate immune
response, and inflammation by biologic compounds, adjuvant effects, suppression of nor-
mal defense mechanisms, suppression of oxygen transfer, and adverse impacts on the
cardiovascular system and neurobehavior. Although a major source of PM is attributed to
fossil fuel combustion and coal-burning stoves, the actual life cycle of suspended particu-
late matter, including new and emergent contaminants such as micro/nanoparticles [19]
and micro/nanoplastics, is not well understood. The regional study conducted here can
lead to mapping the health effects on a larger scale, and an integrated database may serve
as the basis for expanded investigations into global health impacts due to PM and other
suspended pollutants. Hence, this investigation lays the groundwork for developing some
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policies and guidelines regarding emission, exposure, and the use of associated personal
protection equipment.

2. Study Area and Data Sets

The Central Region of Romania covers an area of 34,100 km2 and is located in the
Carpathian Mountains’ inner arch (Figure 1). Parts of the three branches of the Carpathian
Mountains, along with the hilly and depressed areas of the Transilvania Plateau form the
relief, as shown in Figure 1. The hydrographic network is based on the Mures and Olt
Rivers’ tributaries. Natural and anthropic lakes, such as Balea (glacier), St. Ana (volcanic),
and hypersaline lakes, complete the hydrography of the Central Region. The climate is tem-
perate continental and varies according to altitude. From an administrative point of view,
the Central Region consists of Brasov, Sibiu, Alba, Mures, Harghita, and Covasna counties
(Figure 1). On average, the population is estimated at approx. 2.6 million inhabitants. The
region’s natural resources include natural gas, materials for construction (basalt, travertine
marble), nonferrous metal, and numerous mineral springs. The vegetation consists of
steppe; forests occupy about one-third of the territory (1185.1 thousand ha.). The economy
has developed according to the resources of this area, such as industry (~32%), with the
rest being allocated to agriculture, services, and tourism.
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In this study, we use two types of datasets, grouped by independent and depen-
dent variables. The independent variables include PM10 and PM2.5 as pollutants; the
concentrations of these pollutants are obtained through the national air quality monitoring
network [20] and correspond to daily data recorded between January 2012 and December
2021. The dependent variables include populations (ranging from age 30 to 85 years or
more) and health data. Total mortality/morbidity and cardiovascular mortality data were
collected from the National Institute of Statistics (NIS) over the same period (2012–2021)
and within the same population age ranges. All data sets are available in the public do-
main without any attribution, and they do not contain any patient contact information
and/or IDs.

The analysis of the status of principal air quality data and its correlation with the
most affected area is based on the Romanian Network for Air Quality Monitoring, called
Reţeaua Nat,ională de Monitorizare automata a Calităţii Aerului (RNMCA), comprising
148 stations that survey air quality by measuring the concentration of principal pollutants.
In the Central Region, there exist 22 stations distributed as follows: Brasov (BV)-seven,
Sibiu (SB)-four, Alba Iulia (AB)-three, Mures (MS)-four, Harghita (HR)-two, Covasna
(CV)-two, as presented in Figure 1 and Table 1. Unfortunately, the PM2.5 pollutant is not
measured at every station. In Table 1, we introduced “yes” (Y) or “no” (N) to indicate
whether the monitoring station measures this specific pollutant or not. It should be noted
that at the HR2 station, PM10 is not measured. The reference method for sampling and
measuring PM fractions is the one provided in the standard SR EN 12341 (available at https:
//magazin.asro.ro/ro/standard/229855, accessed on 12 September 2023), viz., ambient
air. This standardized method involves gravimetric measurement for the determination of
the mass fraction of PM10 or PM2.5 in suspended particles (in Romanian). All values are
provided in µg/m3.

Table 1. Measurements of PM2.5 and PM10, along with monitoring station details such as type,
location, and elevation.

No. County/Station
Indicative Village Type Elevation (m) PM2.5

(Y/N)

Alba

1 AB1 Alba Iulia urban 246 N

2 AB2 Sebes urban 256 N

3 AB3 Zlatna urban 450 N

Sibiu

4 SB1 Sibiu urban 430 Y

5 SB2 Sibiu industrial 402 N

6 SB3 Copsa Mica industrial 285 N

7 SB4 Medias industrial 320 N

Brasov

8 BV1 Brasov urban 593 N

9 BV2 Brasov urban 593 Y

10 BV3 Brasov urban 593 N

11 BV4 Sanpetru suburban 560 N

12 BV5 Brasov industrial 593 N

13 BV6 Codlea urban 567 Y
(Since 2022)

14 EMI Fundata suburban 1350 Y
(Since 2022)
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Table 1. Cont.

No. County/Station
Indicative Village Type Elevation (m) PM2.5

(Y/N)

Mures

15 MS1 Targu Mures urban 329 Y

16 MS2 Targu Mures suburban 304 N

17 MS3 Ludus suburban 270 N

18 MS4 Tarnaveni suburban 284 N

Covasna

19 CV1 Sf Gheorghe rural 522 N

20 CV2 Sf. Gheorghe urban 563 N

Harghita

21 HR1 Miercurea Ciuc industrial 710 Y
(Since 2017)

22 HR2 Miercurea Ciuc urban 689 Y
(Since 2019)

It is important to mention the accepted limits according to Romanian legislation
(Law #104, which translates to national legislation Directive 2000/60/EC, Water Frame-
work Directive [21] and 2004/107/CE [22] provisions): the standard daily limit for PM10
is 50 µg/m3, and 40 µg/m3 is the annual limit; the standard annual limit for PM2.5 is
25 µg/m3, and the target until (and after) 2020 is 20 µg/m3. The standard daily limit for
PM2.5 is not regulated. The World Health Organization (WHO) has established guidelines
on outdoor (ambient) air pollution levels. These guidelines, initially established in 2005 and
updated in 2021, offer the recommended limits for airborne particulate matter, as shown
in Table 2.

Table 2. Safety limits for PM according to different air quality standards.

PM2.5 µg/m3 PM10 µg/m3

Romanian legislation and
EU standards

annual average 25 (20 until (and after) 2020) 40

24 h average not regulated 50

WHO limits [3]
2005

annual average 10 20

24 h average 25 50

WHO limits [23]
2021

annual average 5 15

24 h average 15 45

3. Methods and Methodologies

Based on the data sets, the methodologies proposed for this study include the follow-
ing: (i) analysis of the status of PM2.5 and PM10 pollutants, (ii) analysis of total mortality
and cardiovascular mortality, and (iii) health risk assessment. The analysis of PM10 and
PM2.5 data consists of the following: (i) evaluating yearly and monthly PM10 and PM2.5
concentrations based on daily measurements; (ii) assessing descriptive statistics; (iii) as-
sessing the number of days/year that exceed the limit value, as established by Romanian
legislation and WHO requirements; and (iv) assessing the correlation between PM10 and
PM2.5. Descriptive statistics are conducted using a data analysis package available with
MS Excel 365.

To analyze total mortality and cardiovascular mortality, two indicators are used: (i) the
mortality rate and (ii) cardiovascular mortality. The two rates are calculated as the number
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of deaths by 100,000 inhabitants. Health risk assessment consists of two stages: (i) health
risk assessment based on the Ostro methodology [14] for the short-term effect of PM10 or
PM2.5, (ii) health impact assessment based on the Pascal methodology [11] implemented in
the “Aphekom” project and available on their website [24] for the long-term effect of PM2.5.
Detailed equations are available in the guidelines presented on the aforementioned website.
According to Ostro et al. [14], the calculation of the number of deaths associated with
exposure to PM10 (total non-external causes mortality) or/and to PM2.5 (total mortality) is
carried out based on the following equation:

Nassigned = AF·Ntotal =
(RR − 1)

RR
Ntotal (1)

where Nassigned represents the number of deaths assigned to PM10 or PM2.5 pollutants, AF
the attributable fraction, Ntotal is the number total of deaths, and RR is the relative risk. The
relative risk (RR) is calculated with the following formula:

RR = exp[β(X − X0)] (2)

where X and X0 represent the annual average of pollutant concentration and background
concentration as baseline values, respectively (e.g., 10 µg/m3), and β represents the
concentration–response coefficient or the CFR coefficient. For short-term exposure of
PM10, Ostro et al. [14] proposed a value of 0.0008 for the CFR coefficient values. Ander-
son [17] estimated a β value of 0.00059 (+/−0.00019) for all ages and all-cause mortality,
as recommended by WHO [3]. According to Pascal et al. (2013) [11], an impacted lifetime
table is calculated using the following equation:

nD impacted
m = nDm·e−β·∆x (3)

where nD impacted
m and nDm are the total number of deaths in the age group starting at age n

and covering m years for the impacted and baseline life tables, respectively; for the present
study, m = 10 is considered to cover a ten-year interval. ∆x is the decrease in the pollutant
concentration in such a given scenario. In this study, a β value of 0.00059 (+/−0.00019)
for PM10 and 0.000598 (+/−0.000299–0.000895) for PM2.5 is used. Two scenarios are used:
(1) where PM2.5 yearly average is decreased to 5 µg/m3, and (2) where the PM2.5 yearly
average is decreased to 10 µg/m3. Concerning long-term exposure to PM2.5, the coefficient
used for total mortality is 0.005826, and for CVD, it is 0.011.

To obtain the spatial distribution of a parameter, a geographic information system
(GIS) method was used. The Voronoi method (or Thiessen polygon) was used to assign a
surface for each station. Following this, an individual weight was calculated and used to
assign the number of total deaths to a polygon. The Thiessen polygon method assumes that
the parameter of each point is the same as that of the adjacent station measurement. The
investigation was conducted for the period 2011–2022. Concerning data series representing
mortality by age group, the National Institute of Statistics (NIS) did not calculate those
parameters for 2011.

4. Results and Discussion

In Table 2, we have presented some statistical information about the pollutants mea-
sured at the 22 stations and the number of days/years that are over the limits recommended
by Romanian legislation and the World Health Organization [21–23]. As can be seen, ad-
ditional data are needed for the time series data sets in Tables 1 and 3. During the study
period, the multi-annual average concentration of PM10 varied between 9.41 µg/m3 (at
Fundata station) and 30.95 µg/m3 (at Alba Iulia AB2). Generally, annual values of PM10
are not over the limit of 40 µg/m3, as required by Romanian legislation and the European
Directive (with two exceptions for Brasov, viz., BV3 and BV5). These findings are in line
with the results obtained by other authors for Romania [25,26]. Both the daily limit value
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and annual limit value recommended by WHO were also used as benchmarks in this study
(Tables 2 and 3a). Annual values of PM10 exceeded the annual safety limits required by
WHO. The number of days over the daily limit (50 µg/m3) varied between 24% (AB2) and
0.5% (EMI–Fundata–Brasov). The number of days over the daily limit required by WHO in
2021 (45 µg/m3) varied between 18% (AB2) and 1% at the Fundata station. Concerning
PM2.5, the average value for the Central Region is 17.48 µg/m3, continuing to surpass
the thresholds recommended by the World Health Organization (WHO), which are set at
10 µg/m3 and 5 µg/m3, respectively [3,23]. The annual value of this pollutant is not over
the limit of 25 µg/m3 for Sibiu (SB1) but exceeds the limit for all the other stations. The
annual limit of PM2.5 concentrations exceeded for all stations, and the excess percentages
were in the range of 11–100% (Table 3b).

Investigating the multi-annual monthly values of PM10 and PM2.5, it was established
that during the last spring period (May) and summer periods (June–August), the values of
the two pollutants were lower than those observed in the rest of the year (Figure 2). These
results are in agreement with the results obtained for Brasov by Maftei et al. [2] and for
Cluj by Levei et al. [25]. In the autumn, winter, and earlier spring periods, the multi-annual
monthly values are higher than the annual limits recommended by WHO in 2006 and
2021 [3,23]. Several studies indicate that variations in PM concentration throughout the
seasons directly and adversely affect human health [27]. Only one exception exists in
these datasets: the EMI station located in Fundata (Brasov County), where the variation
of the PM10 pollutants shows a reverse trend. In January, February, November, and
December, the multi-annual mean values are lower than the values registered during the
rest of the year, when the multi-annual mean values are comparable with those in the rest
of the monitoring stations. The influence of precipitation on PM10 was highlighted by
Popescu LL et al. (2022) [28] through the daily measurements, while daily average PM2.5
concentrations were less influenced.

To estimate the relationship between PM2.5 (as a dependent variable) and PM10,
regression analysis using the Excel data analysis package is employed. Considering the
values of the R-squared determination coefficient, the results show that between 63% (MS1
and SB1) and 91% (BV2), the PM2.5 values fit the regression analysis model. The correlation
coefficient of the linear relationship between the two variables is situated in the 0.79 and
0.95 range, which demonstrates a strong positive relationship. The F-significance value
for all stations investigated is less than 0.05 (5%), which means that the null hypothesis is
accepted, and the linear regression model fits the data well. Investigating the PM2.5/PM10
ratio, it is observed that this parameter varies within a narrow range (0.61 at SB1 station
to 0.88 at MS1 station). The average ratio for the Central Region is 0.71, which is slightly
over the value obtained by Bodor [12] for the same region (0.67) and in accordance with the
value proposed by Pascal et al. (2013) in the Aphekom project [24].

The estimated population in the Central Region of Romania is approximately 2635 thou-
sand inhabitants. The average population by county (Table 4) varies between 204,688 inhab-
itants (Covasna) and 551,685 inhabitants (Brasov). Generally, the population is decreasing
(between −2.13% and −4.19%), with two exceptions: Brasov and Sibiu, where increases of
1.7 and 1.5%, respectively, were observed.
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Investigating the multi-annual monthly values of PM10 and PM2.5, it was established 

that during the last spring period (May) and summer periods (June–August), the values 

of the two pollutants were lower than those observed in the rest of the year (Figure 2). 

These results are in agreement with the results obtained for Brasov by Maftei et al. [2] and 

for Cluj by Levei et al. [25]. In the autumn, winter, and earlier spring periods, the multi-

annual monthly values are higher than the annual limits recommended by WHO in 2006 

and 2021 [3,23]. Several studies indicate that variations in PM concentration throughout 

the seasons directly and adversely affect human health [27]. Only one exception exists in 

these datasets: the EMI station located in Fundata (Brasov County), where the variation 

of the PM10 pollutants shows a reverse trend. In January, February, November, and De-

cember, the multi-annual mean values are lower than the values registered during the rest 

of the year, when the multi-annual mean values are comparable with those in the rest of 

the  monitoring  stations.  The  influence  of  precipitation  on  PM10  was  highlighted  by 

Popescu LL et al. (2022) through the daily measurements, while daily average PM2.5 con-

centrations were less influenced. 

 
(a)  (b) 

   
(c)  (d) 

   

(e)  (f) 

Figure 2. Evaluation of month-of-year mean concentrations of PM10 and PM2.5 over multiple years 

for (a) Alba, (b) Sibiu, (c) Brasov, (d) Mures, (e) Covasna, and (f) Harghita. 
Figure 2. Evaluation of month-of-year mean concentrations of PM10 and PM2.5 over multiple years
for (a) Alba, (b) Sibiu, (c) Brasov, (d) Mures, (e) Covasna, and (f) Harghita.

Table 4. Average population for Central Region counties (2011–2021).

Central
Region Alba Brasov Covasna Harghita Mures Sibiu

average 2,635,986 380,571 632,764 228,459 333,280 595,829 465,083

The adult population by age group is presented in Figure 3. On average, more than
3% of the population around the Central Region was over the age of 80. The population
aged 65 and above is between 13% (Sibiu) and 17% (Alba Iulia). Brasov has the highest
population in the age group of 60–64 (6%). Moreover, the aging coefficient (its definition
and explanation are beyond the scope of this article), physiologically, at the cellular level, is
affected by the loss of specific regenerative and bioprotective mechanisms that occur over
time in an organism due to exposure to PM. This coefficient varies between 19% (Sibiu)
and 23% (Alba). Even while these percentages may seem negligible, the proportion of

16
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the elderly has increased significantly since 1960 (6.7%). The population aged under 30 is
around 40%, with two exceptions: Covasna (20%) and Sibiu (24%). Moreover, Covasna has
the lowest percentage in the age groups of 30–34, 35–39, and 40–45, which are ~7% each,
respectively (Figure 3).
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To estimate the relationship between PM2.5 (as a dependent variable) and PM10, re-

gression analysis using the Excel data analysis package is employed. Considering the val-

ues of the R-squared determination coefficient, the results show that between 63% (MS1 

and SB1) and 91% (BV2), the PM2.5 values fit the regression analysis model. The correlation 

coefficient of the linear relationship between the two variables is situated in the 0.79 and 

0.95 range, which demonstrates a strong positive relationship. The F-significance value for 

all stations  investigated  is  less  than 0.05  (5%), which means  that  the null hypothesis  is 

accepted, and the linear regression model fits the data well. Investigating the PM2.5/PM10 

ratio, it is observed that this parameter varies within a narrow range (0.61 at SB1 station 

to 0.88 at MS1 station). The average ratio for the Central Region is 0.71, which is slightly 

over the value obtained by Bodor [12] for the same region (0.67) and in accordance with 

the value proposed by Pascal et al. (2013) in the Aphekom project [24]. 

The estimated population in the Central Region of Romania is approximately 2635 

thousand inhabitants. The average population by county (Table 4) varies between 204,688 

inhabitants (Covasna) and 551,685 inhabitants (Brasov). Generally, the population is de-

creasing (between −2.13% and −4.19%), with two exceptions: Brasov and Sibiu, where in-

creases of 1.7 and 1.5%, respectively, were observed. 

Table 4. Average population for Central Region counties (2011–2021). 

  Central Region  Alba    Brasov  Covasna  Harghita  Mures  Sibiu 

average  2,635,986  380,571  632,764  228,459  333,280  595,829  465,083 

The adult population by age group is presented in Figure 3. On average, more than 

3% of the population around the Central Region was over the age of 80. The population 

aged 65 and above is between 13% (Sibiu) and 17% (Alba Iulia). Brasov has the highest 

population in the age group of 60–64 (6%). Moreover, the aging coefficient (its definition 

and explanation are beyond the scope of this article), physiologically, at the cellular level, 

is affected by the loss of specific regenerative and bioprotective mechanisms that occur 

over time in an organism due to exposure to PM. This coefficient varies between 19% (Si-

biu) and 23% (Alba). Even while these percentages may seem negligible, the proportion 

of the elderly has increased significantly since 1960 (6.7%). The population aged under 30 

is around 40%, with two exceptions: Covasna (20%) and Sibiu (24%). Moreover, Covasna 

has the lowest percentage in the age groups of 30–34, 35–39, and 40–45, which are ~7% 

each, respectively (Figure 3). 

   
(a)  (b) 

Toxics 2024, 12, x FOR PEER REVIEW  11  of  21 
 

 

   
(c)  (d) 

   
(e)  (f) 

Figure 3. The population  reported by age group  for counties  (a): Alba,  (b) Sibiu,  (c) Brasov,  (d) 

Mures, (e) Covasna, and (f) Harghita. 

The national mortality rate is presented in Figure 4. For the study period (2011–2021), 

53% of the total mortality was caused by cardiovascular diseases (CVD) [28]. A positive 

trend  is observed  in the total mortality rate (Figure 4) caused by fatalities registered  in 

2020 and 2021 (note: the time series data were reviewed by NIS—but are not final). The 

same behavior is seen for the mortality rate due to CVD (Figure 5). The pandemic’s indi-

rect impact on the management of cardiovascular disease could partially be responsible 

for the higher-than-expected mortality toll associated with COVID-19 [29]. The total mor-

tality rate by county is presented in Figure 5a. As can be seen, Mures County has the high-

est  rate of  total mortality  (1925 per 100,000  inhabitants),  followed by Brasov  (1723 per 

100,000 inhabitants). The lowest rate is registered in Covasna County. The mortality rate 

caused by CVD is presented  in Figure 5b. As can be noticed, the highest mortality rate 

caused by CVD is registered in Mures County, while the lowest is in Covasna. 

Figure 3. The population reported by age group for counties (a): Alba, (b) Sibiu, (c) Brasov, (d) Mures,
(e) Covasna, and (f) Harghita.
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The national mortality rate is presented in Figure 4. For the study period (2011–2021),
53% of the total mortality was caused by cardiovascular diseases (CVD) [29]. A positive
trend is observed in the total mortality rate (Figure 4) caused by fatalities registered in
2020 and 2021 (note: the time series data were reviewed by NIS—but are not final). The
same behavior is seen for the mortality rate due to CVD (Figure 5). The pandemic’s
indirect impact on the management of cardiovascular disease could partially be responsible
for the higher-than-expected mortality toll associated with COVID-19 [30]. The total
mortality rate by county is presented in Figure 5a. As can be seen, Mures County has the
highest rate of total mortality (1925 per 100,000 inhabitants), followed by Brasov (1723 per
100,000 inhabitants). The lowest rate is registered in Covasna County. The mortality rate
caused by CVD is presented in Figure 5b. As can be noticed, the highest mortality rate
caused by CVD is registered in Mures County, while the lowest is in Covasna.
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Figure 4. National mortality rate (2011–2021) (total mortality rate and rate due to CVDs). 
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Figure 5. The total mortality rate (a) and mortality rate caused by CVD (b). 

The relative risk (RR) for PM10 and PM2.5 was estimated for all-cause mortality, and 

the results are presented in Figures 6 and 7. Related to PM10, RR for HR2 is not calculated 

due to missing data. 

Summary statistics related to PM10 RR values are presented in the following table (Ta-

ble 5). The average value of RR is 1.006 (+/−0.0014), which is in agreement with the research 

literature, as mentioned in the introduction section. The minimum value is obtained for 
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The relative risk (RR) for PM10 and PM2.5 was estimated for all-cause mortality, and
the results are presented in Figures 6 and 7. Related to PM10, RR for HR2 is not calculated
due to missing data.
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Summary statistics related to PM10 RR values are presented in the following table
(Table 5). The average value of RR is 1.006 (+/−0.0014), which is in agreement with the
research literature, as mentioned in the Section 1. The minimum value is obtained for CV2
(1.001), which is situated in an urban (residential) area near Elisabeta Park. Research on the
effect of urban greenery on air pollution conducted by Cohen P. (2014) demonstrates that
the urban park could influence the PM10 and NOx concentrations [31].

Table 5. Summary statistics of RR values related to PM10 for all monitoring stations.

Average 1.006 Maximum 1.0125
Standard Error 0.0007 Count 21
Median 1.006 CI (95.0%) 0.0014
Standard Deviation 0.00317 Upper Limit 1.0074
Minimum 1.00052 Lower Limit 1.0042

In Brasov’s urban region, an average relative risk of 1.009 was observed in connection
with PM10 and all-cause mortality. The highest recorded value was at BV3, situated near
the train station—an area characterized by heavy road and rail traffic (1.013). The values
obtained for urban areas in major cities (Sibiu, Târgu Mures, ) are similar to those obtained
in Brasov. Concerning PM2.5, there are only five stations that do not cover all the region.
For a short-term analysis, the values of RR are similar due to β coefficient, which is very
close to the coefficient used for PM10. For long-term exposure to PM2.5, the values of RR
are shown in Table 6.

Table 6. RR values for the five stations investigated.

Station
RR

Nassigned Nassigned CVD
All Causes CVD

BV2 1.044 1.088 272 259

HR1 and HR2 1.054 1.127 312 100

MS1 1.072 1.148 616 568

SB1 1.084 1.171 138 130

The spatial distribution of the number of deaths attributed to air pollution with
PM10 (total non-external causes mortality)—Nassigned is presented in the following figure
(Figure 7). The number of total deaths attributed to air pollution with PM10 varied from 53
(MS-Mures) to 10 (CV-Covasna) and the same parameter related to CVD varied from 26 to
(MS-Mures) to 6 (CV-Covasna).

The number of deaths associated with exposure to PM2.5 (all causes of mortality) and
PM2.5 (CVD mortality) for long-term analysis are presented in Table 7. The values represent
the average for the period of study. As we mentioned in the methodology, to calculate the
health impact assessment of PM2.5 for the long term, the methodology proposed in the
“Aphekom” project was used. Within this method, PM2.5 is computed from PM10 using a
correction factor of 0.7. In this case, we could use the incomplete time series data for the
BV6 and HR2 stations. An example of such results, by this proposed method, is presented
in Table 7.

Using the ratio PM2.5/PM10 of 0.7, the annual number of deaths avoided (for both all
causes and CVD mortality) for the first scenario (viz., decrease by 5 µg/m3) remains the
same for the period of this study. For the second scenario, it has been found that there is
a decrease of 6 to 97.6%. The annual number of fatalities avoided due to the reduction of
PM2.5 by 5 µg/m3 and to 10 µg/m3 (for both all causes and CVD mortality) is presented in
Figure 8 for the study period. Decreasing air pollution levels (due to the reduction in PM2.5
by 5 µg/m3) to the updated WHO limits can save 161.5 lives (on average) in the case of
total mortality (viz., 132.4—HR1 and 186.7—MS1) and an average of 147.5 (viz. 0.0—HR2
to 188.9—BV6) in the case of cardiovascular mortality.
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Table 7. Potential benefits of reducing annual PM2.5 levels on total non-external mortality and total
cardiovascular mortality for Brasov.

Station Scenarios

Total Non-External Mortality Total Cardiovascular Mortality

Annual Number of
Deaths Avoided

Annual Number of
Deaths Avoided per

Gain in Life
Expectancy
(Months)

Annual Number of
Deaths Avoided

Annual Number of
Deaths Avoided per

100,000 100,000

BV2
Decrease by

5 µg/m3 172.4 50.6 4.74 188.9 55.4

Decrease to
10 µg/m3 173.4 50.9 4.77 190.0 55.7

  
(BV2) (BV2) 

  
(BV6) (BV6) 

  
(HR1) (HR1) 

Figure 8. Cont.
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(HR2) (HR2) 

  
(MS1) (MS1) 

  
(SB1) (SB1) 

 
Figure 8. Potential benefits of reducing annual PM2.5 levels on total non-external mortality (left) and
on total cardiovascular mortality (right).

For the second scenario (with a decrease to 10 µg/m3), a total of 196.1 deaths are
avoided in the case of total mortality, and approximately 191 deaths are avoided for
cardiovascular mortality. The gain in life expectancy is on average 4.3 months for the Central
Region in the first scenario, both for all causes and CVD mortality. In the second scenario,
the gain in life expectancy is 5.3 for total mortality and 3.5 for cardiovascular mortality.

Health benefits that are related to an improvement of ambient air quality in the Central
Region of Romania are similar to previous estimates obtained from different other studies
conducted worldwide [25,28,32–37]. According to our study, a reduction in short-term
exposure to PM2.5 by 5 µg/m3 results in an annual avoidance of non-external deaths
ranging from 50.6 to 65.7 per 100,000 inhabitants. If cities situated in the Central Region
of Romania could lower the mean of PM2.5 levels to 10 µg/m3, approximately 196 annual
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deaths (total non-external mortality) would be delayed, and the population would gain
more than 5 months in life expectancy. Those values are in concordance with the results
published on the ISGlobal Ranking of Cities website (https://isglobalranking.org/, accessed
on 12 September 2023). Based on our investigations, if the cities in the Central Region of
Romania managed to meet the WHO limits for PM2.5, approximately 198 deaths due to
cardiovascular diseases could be avoided annually.

5. Conclusions, Limitations, and Future Directions

This article presents the health impact of an average of PM10 and PM2.5 levels above
the average limits recommended by Romanian legislation and WHO in the Central Region
of Romania. During this study period, the average of PM10 was observed to be 1.09 times
higher than the annual acceptable limit of 20 µg/m3, which is 1.46 times higher than
the annual acceptable limit of 15 µg/m3 (limits recommended by WHO 2006 and 2021,
respectively). The maximum values of PM10, reaching 30.95 µg/m3, were registered in Alba
Iulia County at the AB2 station, which is situated in Sebes town. This town is located near
the intersection of two major highways (A0 and A1) and has a well-developed industrial
complex nearby (especially in the wood industry). The second place is the BV3 station
located in an urban city area (Brasov County) in proximity to the central railway station,
with a significant amount of traffic nearby. The minimum value was registered at EMI-
Brasov at 9.2 µg/m3; however, this station is a reference point for air quality assessment,
being positioned at ~1350m elevation in a mountainous region of Brasov County. The multi-
annual value of 10.21 µg/m3 is registered in Mures County at MS4. The location of this
station is Tarnaveni town. The industry developed here is based on methane gas resources,
albeit significantly diminished after the 1989 Romanian revolution. The 10 µg/m3 yearly
limit of PM2.5 recommended by WHO (2006) [3] was exceeded by ~1.1 times at the SB1
station, located in a residential area in Sibiu city. The limit of 5 µg/m3 (WHO 2021) was
exceeded by ~2.2 times at the same station and at the BV2 station, which is situated in
a residential area in Brasov City. The monthly variation of PM10 and PM2.5 shows a
strong seasonality in all six counties. The maximum level was registered in winter and
autumn due to commercial and institutional activities, as well as household heating and
transportation. It is instructive to note here that the Brasov area is a tourist destination
due to the predominance of mountains. Several ski resorts have been developed here,
which, along with the historical monuments, have led to the development of cultural
tourism [25]. Despite tourism-related traffic, the minimum level was registered during the
summer period.

Related to the calculated risk, two analyses were conducted. One refers to the short-
term exposure of PM10/PM2.5, and the second to the long-term exposure effect of PM2.5.
The higher calculated risk for PM10 risk was found in Brasov at three stations (BV3, BV1,
BV5, and BV6). The first five stations mentioned here are located in Brasov city, while
BV6 is located in Codlea town. Also, it is important to note that DN1—a national road—is
an important source of pollution. This analysis provides the short-term calculated risk
for PM2.5 (cardiovascular disease), and it is not significantly different from the PM10 risk,
especially due to the CFR coefficient, which is practically the same. The higher calculated
risk for PM2.5 for total mortality is obtained for MS1 and the two stations situated in
Harghita County. The results show that exposure to these pollutants could cause an increase
in both total mortality and cardiovascular mortality in the Central Region of Romania.
The higher number of deaths assigned to PM2.5 is obtained in Mures—49 (on average), of
which 25 are due to cardiovascular disease. As a result of long-term exposure to PM2.5, a
higher number of deaths assigned to PM2.5 pollutants is obtained in Mures, ~616, of which
568 are due to cardiovascular disease. To conclude, Mures County is the most exposed
county to PM2.5, followed by Brasov and Alba Iulia. The number of deaths assigned to
PM10 pollutants varies from 10 in Covasna County to 56 in Mures County in terms of total
mortality, from which 6 and 26, respectively, are assigned to cardiovascular mortality.
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The results of this study offer the strongest argument currently available that pro-
longed exposure to airborne fine particulates that are typical of many urban areas is a
significant risk factor for cardiovascular death. Related to health impact assessment, the
present study shows that, by adopting the new WHO [3] limits, the potential benefits of
reducing annual PM2.5 levels on total mortality are 196 (an average) in the Central Region
of Romania. This would increase life expectancy by approximately 5.3 months. Related to
cardiovascular mortality, the average number of deaths reduced is 190, which means an
approximate 3.5-month increase in life expectancy. Hence, the results of this investigation
indicate that there is a need to reduce the risk of various health concerns that could arise
from exposure to particulate matter by introducing the new limits recommended by WHO
in Romanian regulation.

Notwithstanding these observations in Central Romania, the study has several limita-
tions, which include gaps in the data series, especially in the one related to PM2.5, which
can lead to the establishment of an imprecise PM2.5/PM10 ratio. However, the results
related to this ratio are slightly over the value established by Bodor et al. 2022 [12]; for
this reason, we used 0.7 as the PM2.5/PM10 ratio. The small set of observations and/or
lack of a complete dataset of PM2.5 measurement stations prevented the establishment of
a realistic spatial distribution of this pollutant. In addition, there is a lack of studies on
new-generation heating systems and initiatives due to green and economic policies, and
several studies are incomplete. This is due to the inherent fact that the speed of technology
far outpaces policies and regulations. Another limitation of the study is that since the data
were analyzed as received from the stations, parametric confounding among variables
could not be addressed due to the availability of limited data. To conduct a systematic
statistical analysis, more datasets would be required. Thus, we believe that having a larger
sensor density is crucial. Concerning the influence of climate parameters (precipitation,
wind, temperature, etc.) on PM, we consider that modeling the dispersion of pollutants is
one aspect that can add value to the studies.

As a future expansion of the scope of this study, it is important to consider that
suspended aerosols now contain micro/nanoparticle and micro/nanoplastics, since such
materials are used due to their unique properties, enabling a broad range of possible
applications, including cosmetic, pharmaceutical, and medical utilization. Although a
discussion concerning their emission mechanisms is beyond the scope of this article, these
materials are emitted into the aquatic environment and air. The toxicological impacts
of these new and emerging contaminants are largely unknown in terms of their health
effects. Some preliminary studies, especially in aquatic environments [38–40], may serve
as references to airborne contamination and its adverse health impacts. However, the
overall study of the health impacts of PM2.5 and PM10, especially in the context of new and
emerging contaminants, needs careful and extensive investigation. Furthermore, it will be
very beneficial to quantify these data in terms of disability-adjusted life year (DALY)—as a
measure of overall disease burden due to PM and new and emergent contaminants. For
the aquatic environment, DALY indicators are estimated for such contaminants through
the Universal Water Quality Index (UWQI) [41] for new and emergent contaminants.
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Abstract: This research delves into the efficacy of machine learning models in predicting water
quality parameters within a catchment area, focusing on unraveling the significance of individual
input variables. In order to manage water quality, it is necessary to determine the relationship
between the physical attributes of the catchment, such as geological permeability and hydrologic
soil groups, and in-stream water quality parameters. Water quality data were acquired from the Iran
Water Resource Management Company (WRMC) through monthly sampling. For statistical analysis,
the study utilized 5-year means (1998–2002) of water quality data. A total of 88 final stations were
included in the analysis. Using machine learning methods, the paper gives relations for 11 in-stream
water quality parameters: Sodium Adsorption Ratio (SAR), Na+, Mg2+, Ca2+, SO4

2−, Cl−, HCO3−,
K+, pH, conductivity (EC), and Total Dissolved Solids (TDS). To comprehensively evaluate model
performance, the study employs diverse metrics, including Pearson’s Linear Correlation Coefficient
(R) and the mean absolute percentage error (MAPE). Notably, the Random Forest (RF) model emerges
as the standout model across various water parameters. Integrating research outcomes enables
targeted strategies for fostering environmental sustainability, contributing to the broader goal of
cultivating resilient water ecosystems. As a practical pathway toward achieving a delicate balance
between human activities and environmental preservation, this research actively contributes to
sustainable water ecosystems.

Keywords: machine learning; water quality; land use; land cover; hydrologic soil groups; geological
permeability

1. Introduction

River water quality plays a crucial role in ensuring the sustainability and health of
freshwater ecosystems. Traditional monitoring methods often have spatial and temporal
coverage limitations, leading to difficulties in effectively assessing and managing water
quality [1]. However, recent developments in machine learning techniques have indicated
the potential to predict water quality accurately based on catchment characteristics [1,2].
One of the underlying reasons for the growing interest in applying machine learning tech-
niques to predict river water quality is the ability to simultaneously consider a wide range
of catchment characteristics. These characteristics include various features that affect water
quality, including land use, soil properties, climate data, topography, and hydrological
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characteristics [3]. These variables interact in complex ways, and their associations may not
easily be distinguished using prevalent analytical methods. In practice, for the modeling of
water quality parameters, different mathematical models can be used that show satisfactory
accuracy, as in papers [4,5]. A more comprehensive understanding of the factors influencing
water quality can be achieved by applying machine learning algorithms, which can disclose
hidden patterns and capture nonlinear relationships in large and diverse datasets [6].

The performance of supervised machine learning algorithms has been proved by recent
studies in predicting river water quality [7]. These algorithms are trained on historical
water quality data, in line with associating catchment characteristics, to explore the patterns
and relationships between them [8]. Researchers have been able to develop accurate
predictive models by applying algorithms such as decision trees, random forests, support
vector machines, and neural networks [9–11]. Water quality parameters, such as nutrient
concentrations, pollutant levels, and biological indicators, can then be applied by these
models to make predictions using catchment characteristics [12]. Such predictions can
help determine potential pollution points, prioritize management actions, and support
decision-making processes for water resource management.

In addition to catchment characteristics, integrating remote sensing data has emerged
as a valuable tool by which the accuracy of water quality predictions can be significantly
enhanced [13,14], because the spatially explicit information about land cover/land use,
vegetation, and surface characteristics can be provided by remote sensing techniques,
which include satellite imagery and aerial photographs. Researchers can improve the
predictive performance of machine learning models by combining remote sensing data
with catchment characteristics [15]. For example, satellite data can provide insight into
vegetation dynamics, land use/land cover changes, and the extent of impervious surfaces,
which encompass urban and semi-urban areas, all of which can influence water quality.
Integrating these additional spatial data sources into the machine learning models can
result in more accurate and spatially explicit predictions, allowing a more comprehensive
assessment of water quality dynamics across large river basins.

Furthermore, applying machine learning techniques to predict river water quality
has led to collaborative efforts between researchers and stakeholders [16,17], which can be
crucial to facilitate achieving the objectives of water resources management. These efforts
aim to develop standardized frameworks and models that can be applied across different
catchments and regions. Data sharing, methodologies, and the best practices can collec-
tively improve the accuracy and reliability of predictive models that researchers develop.
Collaborative initiatives also facilitate the identification of common challenges, such as
data availability and quality issues, and foster the development of innovative solutions.

Advances in machine learning applications to predict river water quality underscore
the growing importance of this field. Researchers are moving toward a more sustainable
and informed water resource management by integrating advanced machine learning
algorithms with catchment characteristics and remote sensing data. These predictive
models can support policymakers, water resource managers, and environmental authorities
in making evidence-based decisions, implementing targeted pollution control measures,
and maintaining the ecological integrity of river ecosystems.

Integrating machine learning techniques with catchment characteristics gives re-
searchers, water resource engineers, planners, and managers immense potential to predict
river water quality. These models can provide accurate and timely information to support
water resource management, pollution mitigation efforts, and the preservation of freshwa-
ter ecosystems by leveraging the power of advanced algorithms and incorporating diverse
environmental data sources [18]. The advancements made in this field highlight the grow-
ing significance of machine learning in addressing the challenges associated with water
quality prediction and paving the way for a more sustainable and informed management
of our precious water resources.

Although machine learning applications in predicting river water quality based on
catchment characteristics have shown promising findings, several gaps in this research
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field warrant further investigation. They include but are not limited to (1) data availabil-
ity and quality, (2) the incorporation of temporal dynamics, (3) uncertainty estimation,
(4) across-catchments transferability, (5) the integration of socio-economic factors, and
(6) interpretability and transparency, which are briefly addressed as follows:

Data availability and quality, particularly historical water quality data and comprehen-
sive catchment characteristics data remain challenges in many regions. Limited data may
lead to biased or incomplete models, limiting the accuracy and the generality of predictions.
Efforts should be made to improve data collection methods, establish standardized data
protocols, and improve data sharing among researchers and stakeholders.

Current machine learning models often ignore the temporal dimension and assume
static relationships between catchment characteristics and water quality parameters [19].
While integrating temporal dynamics into machine learning models could increase their
predictive capacity and allow for more accurate short-term and long-term water qual-
ity forecasts, various temporal factors, such as seasonal variations, climate change, and
short-term events such as precipitation events or pollution incidents, affect river water
quality [20].

Machine learning models typically provide point predictions, but quantifying and
communicating the uncertainties associated with these predictions is crucial for decision-
making and risk assessment [21]. Developing methods to quantify and propagate uncer-
tainties through the modeling process, considering the sources of uncertainty such as data
quality, model structure, and parameter estimation, would enhance the reliability and
applicability of predictive models.

The use of deep learning models is considered for modeling changes in water reser-
voirs. The methodology of Long Short-Term Memory (LSTM) networks was applied in the
work, and a number of criteria including the Coefficient of Determination (R2), Root Mean
Square Error (RMSE), mean absolute percentage error (MAPE), Mean Absolute Deviation
(MAD), and Nash–Sutcliffe Efficiency (NSE) were used to assess the accuracy. Satisfactory
accuracy of the model was achieved on a series of samples that covered the period from
2003 to 2025 for five basins in Saudi Arabia [22].

Research regarding the application of artificial intelligence techniques—artificial neu-
ral networks (ANN), a group method of data handling (GMDH), and support vector
machines (SVM)—for predicting water quality components in Tireh River, southwest Iran
showed that the application of ANN and SVM models, using tansig and RBF functions,
respectively, showed satisfactory performance. The database included samples collected
over a period of 55 years [23].

In addition, models developed for a particular catchment cannot be applied directly
to another due to variations in catchment characteristics, land use/cover, soil, geology,
and climatic conditions. The development of transferable models that can account for
specific variations in catchment while taking general patterns would be valuable for the
management of water resources on a larger scale [24]. On the other hand, capturing the
characteristics related to human activities, such as agricultural practices, urbanization, and
industrial activities, has a significant impact on water quality. Incorporating socio-economic
factors into machine learning models can improve their predictive power and enable more
comprehensive water quality assessments. However, the integration of socio-economic data
and understanding the complex interactions between human activity and water quality
present challenges that must be addressed.

It should be noted that the need for greater ambiguity and transparency in machine
learning models can limit the adoption and acceptance of these models by policymakers and
stakeholders [25]. The development of logical machine learning techniques that provide
insights into the model decision-making process and highlight the most influential catch
characteristics would improve the reliability and usability of predictive models.

Addressing these gaps requires interdisciplinary collaborations among hydrologists,
ecologists, data scientists, policymakers, and other relevant stakeholders. Furthermore, fo-
cusing on data-driven approaches, data-sharing initiatives, and advances in computational
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methods will be critical to advancing the field and harnessing the full potential of machine
learning in predicting river water quality based on catchment characteristics. In the study,
we intend to investigate how we can address spatial variations in the characteristics of the
catchment to explain river water quality using machine learning techniques.

This paper explores the relationship between catchment attributes and in-stream water
quality parameters using machine learning methods. It evaluates model accuracy with
RMSE, MAE, R, and MAPE, identifies optimal models for 11 parameters, and determines
significant influencing variables.

The predictive models developed for each water parameter demonstrate strong per-
formance in most cases. The significant variables identified provide insights into the key
factors influencing water quality in the studied catchment. This research, therefore, serves
as a catalyst for fostering a nuanced and effective approach to water resource management,
underpinned by the empirical foundation laid by the predictive models and the discerned
influential variables. As a result, the integration of these findings into decision-making pro-
cesses holds the potential to optimize resource allocation, mitigate environmental impacts,
and ultimately contribute to the overarching goal of achieving sustainable and resilient
water ecosystems. The study highlights the potential of artificial intelligence for quick and
accurate water quality assessment, tailored to watershed attributes.

2. Materials and Methods

To establish relationships between the catchment attributes and water quality parame-
ters, machine learning methods were employed. Multiple algorithms, such as regression
trees, TreeBagger, Random Forests, and Gaussian process regression (GPR) models, were
applied to construct predictive models for each water quality parameter.

2.1. Regression Tree Models

The fundamental concept behind regression trees is to partition the input space into
distinct regions and assign predictive values to these regions. This segmentation enables
the model to make predictions based on the most relevant conditions and characteristics of
the data. A regression tree (RT) is a simple and comprehensible machine learning model
applicable to both regression and classification problems. It follows a tree-like structure
composed of nodes and branches (Figure 1).

Toxics 2023, 11, x FOR PEER REVIEW 4 of 40 
 

 

and stakeholders [25]. The development of logical machine learning techniques that pro-
vide insights into the model decision-making process and highlight the most influential 
catch characteristics would improve the reliability and usability of predictive models. 

Addressing these gaps requires interdisciplinary collaborations among hydrologists, 
ecologists, data scientists, policymakers, and other relevant stakeholders. Furthermore, 
focusing on data-driven approaches, data-sharing initiatives, and advances in computa-
tional methods will be critical to advancing the field and harnessing the full potential of 
machine learning in predicting river water quality based on catchment characteristics. In 
the study, we intend to investigate how we can address spatial variations in the charac-
teristics of the catchment to explain river water quality using machine learning techniques. 

This paper explores the relationship between catchment attributes and in-stream wa-
ter quality parameters using machine learning methods. It evaluates model accuracy with 
RMSE, MAE, R, and MAPE, identifies optimal models for 11 parameters, and determines 
significant influencing variables. 

The predictive models developed for each water parameter demonstrate strong per-
formance in most cases. The significant variables identified provide insights into the key 
factors influencing water quality in the studied catchment. This research, therefore, serves 
as a catalyst for fostering a nuanced and effective approach to water resource manage-
ment, underpinned by the empirical foundation laid by the predictive models and the 
discerned influential variables. As a result, the integration of these findings into decision-
making processes holds the potential to optimize resource allocation, mitigate environ-
mental impacts, and ultimately contribute to the overarching goal of achieving sustainable 
and resilient water ecosystems. The study highlights the potential of artificial intelligence 
for quick and accurate water quality assessment, tailored to watershed attributes. 

2. Materials and Methods 
To establish relationships between the catchment attributes and water quality param-

eters, machine learning methods were employed. Multiple algorithms, such as regression 
trees, TreeBagger, Random Forests, and Gaussian process regression (GPR) models, were 
applied to construct predictive models for each water quality parameter. 

2.1. Regression Tree Models 
The fundamental concept behind regression trees is to partition the input space into 

distinct regions and assign predictive values to these regions. This segmentation enables 
the model to make predictions based on the most relevant conditions and characteristics 
of the data. A regression tree (RT) is a simple and comprehensible machine learning model 
applicable to both regression and classification problems. It follows a tree-like structure 
composed of nodes and branches (Figure 1). 

 
Figure 1. The partitioning of an input space into distinct regions and the representation of a 3D 
regression surface within a regression tree [26]. 
Figure 1. The partitioning of an input space into distinct regions and the representation of a 3D
regression surface within a regression tree [26].

Each node corresponds to a specific condition related to the input data, and this
condition is evaluated at each node as the data progresses through the tree.

To predict an outcome for a given input, the starting point is the root node of the tree
(Figure 1). Here, the initial condition associated with the input feature(s) is considered.
Depending on whether this condition is deemed true or false, the branches are followed to
reach the next node. This process is repeated recursively until a leaf node is arrived at. At
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the leaf node, a value is found, which serves as the predicted result for the input instance.
For regression tasks, this value is typically a numeric prediction.

As the tree is traversed, the input space undergoes changes. Initially, all instances are
part of a single set represented by the root node. However, as the algorithm progresses,
the input space is gradually divided into smaller subsets. These divisions are based on
conditions that help in tailoring predictions to different regions within the input space.

The process of constructing regression trees involves determining the optimal split
variable (“j”) and split point (“s”) to partition the input space effectively. These variables
are chosen by minimizing a specific expression (Equation (1)) that considers all input
features. The goal is to minimize the sum of squared differences between observed values
and predicted values in resulting regions [27–29].

min
j,s


min

c1
∑

xi∈R1(j,s)
(yi − c1)

2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)
2


 (1)

Once “j” and “s” are identified, the tree-building process continues by iteratively
dividing regions. This process is referred to as a “greedy approach” because it prioritizes
local optimality at each step. The binary recursive segmentation approach divides the input
space into non-overlapping regions characterized by their mean values.

The depth of a regression tree serves as a critical factor in preventing overfitting (too
much detail) or underfitting (too simplistic).

2.2. Ensembles of Regression Trees: Bagging, Random Forest, and Boosted Trees

Bagging is another ensemble method that involves creating multiple subsets of the
training dataset through random sampling with replacement (bootstrap samples).

The process begins with the creation of multiple bootstrap samples from the original
dataset. Bootstrap sampling involves randomly selecting data points from the dataset with
replacement. This means that the same data point can be selected multiple times, while
others may not be selected at all. In this way, subsets of the same size as the original data
set are formed and are used to train the model.

Each subset is used to train a separate regression tree model, and their predictions
are aggregated to make the final prediction (Figure 2). Bagging helps reduce variance by
averaging predictions from multiple models, making it particularly effective when the base
models are unstable or prone to overfitting [27–29].

In bagging, multiple training sets are generated by repeatedly selecting samples from
the original dataset, and this process involves sampling with replacement. This technique
is utilized to create diverse subsets of data. The primary goal is to reduce the variance in the
model’s predictions by aggregating the results from these different subsets. Consequently,
each subset contributes to the final prediction, and the averaging of multiple models
enhances the model’s robustness and predictive accuracy.

Random forests, a variant of bagging, stand out by introducing diversity among the
constituent models within the ensemble. This diversity is achieved through the creation
of multiple regression trees, each trained on a distinct bootstrap sample from the data.
Moreover, before making decisions at each split within these trees, only a randomly se-
lected subset of available features is considered. This approach helps in decorrelating the
individual trees within the ensemble, thereby further reducing variance. The ensemble’s
final prediction is generated by aggregating the predictions from these decorrelated trees,
resulting in a robust and high-performing model [26–29].
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The boosting tree method is a sequential training method, and within this paradigm,
gradient boosting stands out as a widely employed technique for enhancing overall model
performance (Figure 3). In gradient boosting, submodels are introduced iteratively, with
each new model selected based on its capacity to effectively estimate the residuals or errors
of the preceding model in the sequence. The distinctive feature of gradient boosting lies in
its commitment to minimizing these residuals during the iterative process.
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By focusing on minimizing residuals, gradient boosting ensures that each new sub-
model added to the ensemble is adept at correcting the errors left by its predecessors.
This emphasis on addressing the shortcomings of prior models leads to the creation of a
robust and adaptive ensemble model. The iterative nature of gradient boosting allows it
to systematically refine its predictions, making the final ensemble proficient in capturing
intricate patterns and nuances within the data. The result is a powerful model capable
of delivering highly accurate predictions by continuously learning and adapting to the
complexities present in the dataset.

The fundamental concept is rooted in gradient-based optimization techniques, which
involve refining the current solution to an optimization problem by incorporating a vector
that is directly linked to the negative gradient of the function under minimization, as
referenced in previous works [31–33]. This approach is logical because a negative gradient
signifies the direction in which the function decreases. When it is applied a quadratic error
function, each subsequent model aims to correct the discrepancies left by its predecessors,
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essentially reinforcing and improving the model with a focus on the residual errors from
earlier stages.

In the context of gradient-boosting trees, the learning rate is a crucial hyperparameter
that controls the contribution of each tree in the ensemble to the final prediction. It is often
denoted as “lambda” (λ). The learning rate determines how quickly or slowly the model
adapts to the errors from the previous trees during the boosting process. A lower learning
rate means that the model adjusts more gradually and may require a larger number of trees
to achieve the same level of accuracy, while a larger learning rate leads to faster adaptation
but may risk overfitting with too few trees.

BT models are significantly more complex regarding computational complexity be-
cause they are trained sequentially compared to TR and RF models that can be trained
in parallel.

2.3. Gaussian Process Regression (GPR)

Gaussian processes provide a probabilistic framework for modeling functions, cap-
turing uncertainties, and making predictions in regression tasks. The choice of covariance
functions and hyperparameters allows for flexibility in modeling relationships among
variables [34].

Gaussian process modeling involves estimating an unknown function f(·) in nonlinear
regression problems. It assumes that this function follows a Gaussian distribution charac-
terized by a mean function µ(·) and a covariance function k(·,·). The covariance matrix K is
a fundamental component of GPR and is determined by the kernel function (k).

The kernel function (k) plays a pivotal role in capturing the relationships between
input data points (x and x′). This function is essential for quantifying the covariance or
similarity between random values f(x) and f(x′). One of the most widely used kernels is
defined by the following expression:

k
(
xx′
)
= σ2exp

(
− (x− x′)2

2l2

)
(2)

In this expression, several elements are critical:
σ2 represents the signal variance, a model parameter that quantifies the overall vari-

ability or magnitude of the function values.
The exponential function “exp” is used to model the similarity between x and x′. It

decreases as the difference between x and x′ increases, capturing the idea that values close
to each other are more strongly correlated.

The parameter l, known as the length scale, is another model parameter. It controls the
smoothness and spatial extent of the correlation. A smaller l results in more rapid changes
in the function, while a larger l leads to smoother variations.

The observations in a dataset y = {y1, . . . , yn} can be viewed as a sample from a
multivariate Gaussian distribution.

(y1, . . . , yn)
T ∼ N(µ, K), (3)

Gaussian processes are employed to model the relationship between input variables x
and target variables y, considering the presence of additive noise ε ∼ N

(
0, σ2). The goal

is to estimate the unknown function f(·). The observations y are treated as a sample from
a multivariate Gaussian distribution with mean vector µ and covariance matrix K. This
distribution captures the relationships among the data points. The conditional distribution
of a test point’s response value y*, given the observed data y = (y1, . . . , yn)

T , is represented

as
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a multivariate Gaussian distribution with mean vector µ and covariance matrix Κ. This 
distribution captures the relationships among the data points. The conditional distribu-
tion of a test point’s response value 𝑦∗, given the observed data 𝐲 = (𝑦ଵ, . . . , 𝑦௡)், is rep-
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ŷ* = µ(x∗) + K∗T K−1(y− µ), (4)
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In traditional GPR, a single length-scale parameter (l) and signal variance (σ2) are
used for all input dimensions. In contrast, the Automatic Relevance Determination (ARD)
approach employs a separate length-scale parameter (li) for each input dimension, where ‘i’
represents a specific dimension. This means that for a dataset with ‘m’ input dimensions,
you have ‘m’ individual length-scale parameters [34].

The key advantage of ARD is that it automatically determines the relevance of each
input dimension in the modeling process. By allowing each dimension to have its own
length scale parameter, the model can assign different degrees of importance to each
dimension. This means that the model can adapt and focus more on dimensions that are
more relevant to the target variable and be less influenced by less relevant dimensions.

GPR involves matrix operations, and the computational complexity can become an
issue for large datasets. Techniques such as sparse approximations or using specialized
kernels can be employed to address these computational challenges. GPR is frequently used
in Bayesian optimization problems where the goal is to optimize an unknown objective
function that is expensive to evaluate.

3. Case Study of the Caspian Sea Basin

This study took place in the Caspian Sea catchment area (Figure 4) in Northern Iran,
covering approximately 618 m2 with coordinates ranging from 49◦48′ to 54◦41′ longitude
and from 35◦36′ to 37◦19′ latitude (Figure 4).
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The majority of this area, approximately 65.10%, is forested, while the rest consists of
rangelands (24.41%), agricultural land (9.41%), urban areas (0.88%), water bodies (0.0126%),
and bare land (0.186%) [35].

Initially, 108 water quality monitoring stations scattered across the southern basin of
the Caspian Sea were selected for analysis (Figure 4). To define the upstream catchment
boundaries, digital elevation models (DEMs) with a resolution of 30 m by 30 m from the
USGS database were used, with boundary refinement achieved through a user digitizing
technique. Macro-sized catchments, those exceeding 1000 square kilometers, totaling
18 catchments, were excluded from the modeling process due to their significant impact on
hydrological dynamics.

Water quality data, including parameters like SAR, Na+, Mg2+, Ca2+, SO4
2−, Cl−,

HCO3−, K+, pH, EC, and TDS, were obtained from the Iran Water Resource Management
Company (WRMC) through monthly sampling. Collection adhered to the WRMC Guide-
lines for Surface Water Quality Monitoring (2009) and EPA-841-B-97-003 standards [36].
For statistical analysis, the 5-year means (1998–2002) of water quality data were calculated.
After scrutinizing for normality and identifying outliers, 88 final stations were used in the
study. The geographic scope of the study area is illustrated in Figure 4.

A land cover dataset was created using a 2002 digital land cover map (Scale 1:250,000)
from the Forest, Ranges, and Watershed Management Organization of Iran. The original
land cover categories were consolidated into six classes: bare land, water bodies, urban
areas, agriculture, rangeland, and forests, following [37] land use and land cover classifica-
tion systems. Furthermore, digital geological and soil feature maps (1:250,000 scale) were
obtained from the Geological Survey of Iran (www.gsi.ir, accessed on 24 April 2021). De-
tailed information about the characteristics of the catchments and their statistical attributes
can be found in Tables 1 and 2.

In this study, hydrologic soil groups and geological permeability classes were devel-
oped and applied in conjunction with land use/land cover types within the modeling
process. Hydrologic soil groups are influenced by runoff potential and can be used to de-
termine runoff curve numbers. They consist of four classes (A, B, C, and D), with A having
the highest runoff potential and D the lowest. Notably, soil profiles can undergo significant
alterations due to changes in land use/land cover. In such cases, the soil textures of the
new surface soil can be employed to determine the hydrologic soil groups as described in
Table 1 [38]. Furthermore, the study incorporates the application of geological permeability
attributes related to catchments, with the development of three geological permeability
classes: Low, Medium, and High. These classes are associated with various characteristics
of geological formations, such as effective porosity, cavity type and size, their connectivity,
rock density, pressure gradient, and fluid properties like viscosity.

The range and statistical properties of training and test data play a fundamental role
in the development and evaluation of machine learning models. They impact the model’s
generalization, robustness, fairness, and ability to perform effectively in diverse real-world
scenarios. Statistical properties of input and output data are given in Tables 1 and 2.

The machine learning methods used in this paper were assessed using five-fold
cross-validation. In this approach, the dataset was randomly divided into five subsets,
with four of them dedicated to training the model and the remaining subset utilized for
model validation (testing). This five-fold cross-validation process was repeated five times,
ensuring that each subset was used exactly once for validation. Subsequently, the results
from these five repetitions were averaged to produce a single estimation.

All models were trained and tested under identical conditions, ensuring a fair and
consistent evaluation of their performance. This practice is essential in machine learning to
provide a level playing field for comparing different algorithms and models.

When machine learning models are trained and tested under equal conditions, it means
that they are exposed to the same datasets, preprocessing steps, and evaluation metrics.
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Table 1. Statistical properties of the input variables used for modeling.

Input Parameter (Acronym) Min Max Average Std

Hydrometric Station Elevation (HSE) −23.0000 2360.0000 163.3333 363.3326

Catchment Area (CA) 22.0300 6328.2800 422.7320 1085.4846

Stream Order (SO) 1.0000 4.0000 2.6275 1.3261

Percentage of Land Use or Land Cover Types:

Barren Land (BL) 0.0000 3.1825 0.1246 0.6083

Forest (F) 1.1805 100.0000 70.0401 29.5955

Rangeland (RL) 0.0000 90.3170 17.0144 23.9666

Urban Area (UA) 0.0000 20.2095 1.1367 3.5475

Water Body (WB) 0.0000 0.3567 0.0074 0.0499

Agricultural Area (AA) 0.0000 84.3857 11.6768 20.3896

Hydrological Soil Group:

A—Sand, loamy sand, or sandy loam (HSGA) 0.0000 79.3654 8.0039 16.2217

B—Silt loam or loam (HSGB) 0.0000 48.4653 3.0354 8.4226

C—Sandy clay loam (HSGC) 12.9196 100.0000 80.4068 27.0174

D—Clay loam, silty clay loam, sandy clay, silty clay, or clay
(HSGD) 0.0000 56.4129 8.5539 15.9743

Geological Permeability:

Low (Geological hydrological group M—GHGM) 0.0143 100.0000 69.2656 28.0000

Average (Geological hydrological group N—GHGN) 0.0000 96.9436 23.4102 24.3102

High (Geological hydrological group T—GHGT) 0.0000 90.9015 7.3243 15.3979

Table 2. Statistical properties of the output variables used for modeling.

Parameter Min Max Average Std

SAR 7.1500 9.0900 7.5318 0.3976

Na+ 0.1200 15.8400 0.9978 2.3957

Mg2+ 0.4100 4.4100 1.0331 0.6790

Ca2+ 1.0600 5.8800 2.3584 0.9521

SO4
2− 0.2100 4.4500 0.6643 0.8449

Cl− 0.1900 18.2000 1.1861 2.7131

HCO3− 1.3500 4.0900 2.5978 0.7729

pH 172.0500 2879.9700 453.7716 428.3365

EC 108.8900 3892.8200 375.2543 579.1442

TDS 0.1000 3.4400 0.4750 0.5971

K+ 0.0200 0.1400 0.0447 0.0316
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The quality of the model was assessed using several evaluation and performance mea-
sures, which include RMSE, MAE, Pearson’s Linear Correlation Coefficient (R), and MAPE.

The RMSE criterion, expressed in the same units as the target values, serves as a
measure of the model’s general accuracy. It is calculated as the square root of the average
squared differences between the actual values (dk) and the model’s predictions (ok) across
the training samples (N).

RMSE =

√√√√ 1
N

N

∑
k=1

(dk − ok )
2, (6)

The MAE criterion represents the mean absolute error of the model, emphasizing the
absolute accuracy. It calculates the average absolute differences between the actual values
and the model’s predictions.

MAE =
1
N

N

∑
k=1
|dk − ok |. (7)

Pearson’s Linear Correlation Coefficient (R) provides a relative measure of accuracy
assessment. It considers the correlation between the actual values (dk) and the model’s
predictions (ok) relative to their respective means (d and o). Values of R greater than 0.75
indicate a strong correlation between the variables.

R =
∑N

k=1(dk − d
)
(ok − o)

√[
∑N

k=1

(
dk − d

)2
(ok − o)2

] . (8)

The MAPE is a relative criterion that evaluates accuracy by calculating the average
percentage differences between the actual values and the model’s predictions.

MAPE =
100
N

N

∑
k=1

∣∣∣∣
dk − ok

dk

∣∣∣∣. (9)

This research deals with a limited dataset, and in this case, there is a higher risk of
overfitting, where a model performs well on the training data but needs to generalize to
new, unseen data. Five-fold cross-validation helps mitigate overfitting by partitioning the
dataset into five subsets, using four for training and one for testing in each iteration. This
process allows for a more robust evaluation of the model’s performance.

Five-fold cross-validation efficiently utilizes the available data by rotating through
different subsets for training and testing, ensuring that each data point contributes to
training and evaluation.

Moreover, cross-validation provides a more robust estimate of the model’s perfor-
mance by averaging the evaluation metrics across multiple folds. This helps ensure that our
results are not overly dependent on the particular random split of the data. Additionally,
cross-validation allows us to iteratively train and evaluate the model on different subsets,
aiding in the fine-tuning of hyperparameters and ensuring the model’s performance is
consistently reliable (Figure 5).
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4. Results

The paper analyzes the application of regression trees, bagging, RF, gradient boosting,
and Gaussian process regression models using a systemic approach (Figure 5). For each
of the models, the hyperparameters of the model were varied in the appropriate range,
and optimal values were determined using a grid-search method. The following values
were analyzed:

• Regression trees (RT) model

The depth of a regression tree is a crucial factor in preventing overfitting, which
occurs when the tree becomes too detailed and fits the training data too closely, as well
as underfitting, which happens when the tree is too simplistic and fails to capture the
underlying patterns. Table 3 illustrates the impact of the minimum leaf size on the accuracy
of the regression tree (RT) model. It shows how changing the minimum leaf size affects
key performance metrics such as RMSE, MAE, MAPE, and R. Accordingly, the leaf size is
almost positively associated with the RMSE but inversely correlated with the R values.
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Table 3. Influence of the minimum leaf size on regression tree (RT) model accuracy.

Min Leaf Size RMSE MAE MAPE R

1 0.5646 0.2753 0.5948 0.4363
2 0.6077 0.2923 0.6322 0.3226
3 0.6096 0.2875 0.6311 0.2909
4 0.5984 0.2914 0.6188 0.3186
5 0.5894 0.2931 0.6728 0.3621
6 0.5833 0.2925 0.6616 0.3593
7 0.5813 0.2949 0.6968 0.3542
8 0.5841 0.3095 0.7603 0.3226
9 0.5821 0.2990 0.7078 0.3432
10 0.5969 0.3083 0.7369 0.2906

• TreeBagger (TB) model

1. Number of generated trees (B): Investigated values up to a maximum of 500 trees,
with 100 as the standard setting in Matlab. The bootstrap aggregation method
was employed, generating a specific number of samples in each iteration. The
study considered an upper limit of 500 trees.

2. Minimum amount of data/samples per tree leaf: Analyzed values ranging from 2
to 15 samples per leaf, with a step size of 1 sample. The standard setting in Matlab
is 5 samples per leaf for regression, but here, a broader range was examined to
assess its impact on model generalization.

• Random Forest (RF) model:

1. Number of generated trees (B): Analyzed within a range of 100–500 trees, with
100 as the standard setting in Matlab. Cumulative MSE values for all base models
in the ensemble were presented. Bootstrap aggregation was used to create
trees, generating 181 samples per iteration. The study explored an extended
ensemble of up to 500 regression trees, aligning with recommended Random
Forest practices.

2. Number of variables used for tree splitting: Based on guidance, the study selected
a subset of approximately

√
p predictors for branching, where p is the number

of input variables. With 16 predictors, this translated to a subset of 4 variables,
but in those research, a wider number of variables, ranging from 1 to 16, is
investigated.

3. Minimum number of samples per leaf: the study considered values from 2 to
10 samples per tree leaf, with a 1-sample increment.

• Boosted tree model:

1. Number of generated trees (B): analyzed within a range of 1–100 trees.
2. Learning rate (λ): explored a range, including 0.001, 0.01, 0.1, 0.5, 0.75, and 1.0.
3. Tree splitting levels (d): analyzed from 1 (a decision stump) to 27 = 128 in an

exponential manner.

• Gaussian process regression (GPR) model With the GPR method, the application of
different kernel functions were explored:

1. Exponential, quadratic exponential, Mattern 3/2, Mattern 5/2, rational quadratic.
2. ARD Exponential, ARD quadratic exponential, ARD Mattern 3/2, ARD Mattern

5/2, ARD rational quadratic.

All models were evaluated in terms of optimality in terms of the mean square error,
and then the optimal model obtained from all the analyzed ones was evaluated on the test
data using the RMSE, MAE, MAPE, and R criteria.

In the paper, a detailed procedure is illustrated for determining the optimal model for
the prediction of the SAR parameter. In contrast, for all other models for the prediction, it
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is given in a more concise form. Accompanying results for other models, except the SAR
parameter, can be found in the Appendix A (Tables A1–A10) of the paper.

4.1. Prediction of SAR Parameter Values

• Regression tree models

Table 3 illustrates the impact of the minimum leaf size on the accuracy of the regression
tree (RT) model. It shows how changing the minimum leaf size affects key performance
metrics such as RMSE, MAE, MAPE, and R.

In this particular case, it was found that models with less complexity, i.e., the amount
of data per terminal sheet is 10, have higher accuracy (Figure 6).
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Figure 6. An optimal individual model for SAR parameter prediction based on a regression tree.

• TreeBagger models and Random Forest models

The application of TB and RF models was analyzed simultaneously (Figure 7). The
figure shows the dependence of the achieved accuracy of the model on the hyperparameter
value. The TB model represents the borderline case of the RF model when all variables are
taken into account for potential calculations.

Among the optimal models in this group, the RF model with 500 generated trees
proved to be the best. In contrast, the model that uses a subset of eight variables and has a
minimum amount of data per terminal leaf equal to one has a higher accuracy according
to the RMSE and R criteria, while the model that uses a subset with six variables and has
a minimum amount of data per terminal sheet equal to one and has a higher accuracy
according to MAE and MAPE criteria (Table 4). Optimal values according to different
accuracy criteria are marked with bold numbers in Table 4.

With the BT model (Figure 8), it was shown that the highest accuracy is obtained by
applying complex models with a large number of branches.

The optimal obtained model had a structure of 32 branches and a Learning Rate value
equal to 0.01.

• GPR models

The optimal values for the parameters of the applied models with different kernel
functions were obtained using marine probability (Tables 5 and 6).
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Table 5. Values of optimal parameters in GPR models with different covariance functions.

GP Model Covariance Function Covariance Function Parameters
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Table 6. Values of optimal parameters in GPR ARD models with different covariance functions.
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Table 6. Cont.

Covariance Function Parameters
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The marginal likelihood is a function influenced by the observed data (y(X)) and model
parameters {l, σ2, η2}. The determination of the model parameters is achieved through the
maximization of this function.

Importantly, when the marginal likelihood is transformed by taking the logarithm,
identical results are achieved as when optimizing the original likelihood. Therefore, model
parameter optimization is typically carried out by employing gradient-based procedures
on the log marginal probability expression, simplifying the optimization process without
altering the final outcomes. The comparative results of the implemented ML models are
presented in Table 7. Optimal values according to different accuracy criteria are marked
with bold numbers in Table 7.

The values of all accuracy criteria according to the adopted accuracy criteria on the test
data set are shown in Table 7. According to the RMSE and R criteria, the RF model had the
highest accuracy (it uses a subset of eight variables for calculation, and the amount of data
per terminal sheet is equal to one), while according to the MAE and MAPE criteria, the GP
model with an exponential kernel function stood out as the most accurate. On the optimal
RF model, the significance of each of the input variables was determined such that the
values of the considered variable are permuted within the training data, and the out-of-bag
error for such permuted data is recalculated. The significance of the variable (Figure 9)
is then determined by calculating the mean value of the difference before and after a
permutation. This value is then divided by the standard deviation of these differences. The
variable for which a higher value was obtained in relation to the others is ranked as more
significant in relation to the variables for which smaller values were obtained.

43



Toxics 2023, 11, 996

Table 7. Comparative analysis of the results of different machine learning models for the SAR prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.5646 0.2753 0.5948 0.4363

TreeBagger 0.4021 0.2513 0.6413 0.7652

RF 1 (var 8, leaf 1) 0.3668 0.2328 0.5679 0.8236

RF 2 (var 6, leaf 1) 0.3696 0.2244 0.5379 0.8012

Boosted Trees 0.5592 0.3348 0.6047 0.5867

GP exponential 0.4625 0.2104 0.4998 0.6317

GP Sq. exponential 0.4868 0.2393 0.5810 0.5733

GP matern 3/2 0.4757 0.2293 0.5406 0.5992

GP matern 5/2 0.4779 0.2307 0.5520 0.5941

GP Rat. quadratic 0.4868 0.2393 0.5810 0.5733

GP ARD exponential 0.5917 0.2873 0.6991 0.3302

GP ARD Sq. exponential 0.5669 0.2788 0.7736 0.3568

GP ARD matern 3/2 0.5276 0.2707 0.7206 0.4702

GP ARD matern 5/2 0.5464 0.2875 0.8794 0.4223

GP ARD Rat. quadratic 0.6573 0.3285 0.9059 0.2349
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4.2. Prediction of Na+ Parameter Values

RF models proved to be the optimal models for predicting sodium ion (Na+) con-
centrations, while the analysis of all models in terms of accuracy is given in Appendix A
(Table A1). The dependence of the adopted accuracy criteria on the model parameters is
shown in Figure 10. Based on the defined accuracy criteria, four models with the following
criteria values were selected (Table 8).

44



Toxics 2023, 11, 996Toxics 2023, 11, x FOR PEER REVIEW 19 of 40 
 

 

(a) (b) 

  
(c) (d) 

 

Figure 10. Comparison of different accuracy criteria for the RF model for the Na+ parameter as a 
function of the number of randomly selected splitting variables and minimum leaf size: (a) RMSE, 
(b) MAE, (c) MAPE, (d) R. 

The “Weighted Sum Model” or “Simple Multi-Criteria Ranking” method was used 
to select the optimal model. For the minimization objectives (RMSE, MAE, MAPE), Min-
Max normalization is applied, and for the maximization objective (R), Max-Min normali-
zation is applied to ensure that all metrics are on the same scale. Equal weights are as-
signed to the normalized evaluation metrics to indicate their relative importance in the 
decision-making process. The weighted sum method calculated an aggregated value for 
each model, which considers all four normalized metrics. All models are ranked based on 
their aggregated values, with the lower aggregated value indicating better overall perfor-
mance (Table 9). 

Table 9. Determining the optimal prediction model for the Na+ parameter using Simple Multi-Cri-
teria Ranking. 

Weighted Criteria w.RMSE w.MAE w.MAPE w.R Agg. Value 
RF 1 (var 13, leaf 10) 0.2500 0.1328 0.1351 0.0000 0.5180 
RF 2 (var 11, leaf 5) 0.0000 0.2500 0.2488 0.0265 0.5253 
RF 3 (var 11, leaf 6) 0.0587 0.2432 0.2500 0.0275 0.5794 
RF 4 (var 6, leaf 2) 0.1356 0.0000 0.0000 0.2500 0.3856 

As the optimal model, the RF model with 500 trees was obtained, which uses a subset 
of 11 variables, where the minimum amount of data per sheet is six. The assessment of the 
significance of individual input variables for the accuracy of the prediction was performed 
precisely on the obtained model with the highest accuracy (Figure 11). 

Figure 10. Comparison of different accuracy criteria for the RF model for the Na+ parameter as a
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(b) MAE, (c) MAPE, (d) R.

Table 8. Accuracy of obtained models for Na+ parameter prediction according to defined criteria.

Criteria RMSE MAE MAPE R

RF 1 (var 13, leaf 10) 1.6073 0.8086 1.1651 0.5817

RF 2 (var 11, leaf 5) 1.6755 0.7481 0.9734 0.5919

RF 3 (var 11, leaf 6) 1.6595 0.7516 0.9714 0.5923

RF 4 (var 6, leaf 2) 1.6385 0.8772 1.3929 0.6780

The “Weighted Sum Model” or “Simple Multi-Criteria Ranking” method was used to
select the optimal model. For the minimization objectives (RMSE, MAE, MAPE), Min-Max
normalization is applied, and for the maximization objective (R), Max-Min normalization is
applied to ensure that all metrics are on the same scale. Equal weights are assigned to the
normalized evaluation metrics to indicate their relative importance in the decision-making
process. The weighted sum method calculated an aggregated value for each model, which
considers all four normalized metrics. All models are ranked based on their aggregated
values, with the lower aggregated value indicating better overall performance (Table 9).
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Table 9. Determining the optimal prediction model for the Na+ parameter using Simple Multi-Criteria
Ranking.

Weighted Criteria w.RMSE w.MAE w.MAPE w.R Agg. Value

RF 1 (var 13, leaf 10) 0.2500 0.1328 0.1351 0.0000 0.5180

RF 2 (var 11, leaf 5) 0.0000 0.2500 0.2488 0.0265 0.5253

RF 3 (var 11, leaf 6) 0.0587 0.2432 0.2500 0.0275 0.5794

RF 4 (var 6, leaf 2) 0.1356 0.0000 0.0000 0.2500 0.3856

As the optimal model, the RF model with 500 trees was obtained, which uses a subset
of 11 variables, where the minimum amount of data per sheet is six. The assessment of the
significance of individual input variables for the accuracy of the prediction was performed
precisely on the obtained model with the highest accuracy (Figure 11).
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4.3. Prediction of Magnesium (Mg2+) Parameter Values

RF models proved to be the optimal models for predicting sodium ion (Mg2+) concen-
trations. An analysis of all models in terms of accuracy is given in Appendix A (Table A2).
The dependence of the adopted accuracy criteria on the model parameters is shown in
Figure 12. Based on the defined accuracy criteria, three models with the following values
were selected (Table 10). Optimal values according to different accuracy criteria are marked
with bold numbers in Table 10.

Table 10. The accuracy of the obtained models for Mg2+ prediction according to defined criteria.

Criteria RMSE MAE MAPE R

RF 1 (var 13, leaf 1) 0.3988 0.2640 0.2662 0.7377

RF 2 (var 12, leaf 1) 0.4014 0.2608 0.2706 0.7516

RF 3 (var 10, leaf 1) 0.4020 0.2631 0.2717 0.7567
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“Simple Multi-Criteria Ranking” was applied again when extracting the optimal
model (Table 11).

Table 11. Determining the optimal prediction model for the Mg2+ parameter using Simple Multi-
Criteria Ranking.

Weighted Criteria w.RMSE w.MAE w.MAPE w.R Agg. Value

RF 1 (var 13, leaf 1) 0.2500 0.0000 0.2500 0.0000 0.5000

RF 2 (var 12, leaf 1) 0.0469 0.2500 0.0500 0.1829 0.5298

RF 3 (var 10, leaf 1) 0.0000 0.0703 0.0000 0.2500 0.3203

As the optimal model, the RF model with 500 trees was obtained, which uses a subset
of 12 variables, where the minimum amount of data per sheet is one. The assessment of the
importance of individual input variables on the accuracy of the prediction was performed
precisely on the obtained model with the highest accuracy (Figure 13).

4.4. Prediction of Ca2+ Parameter Values

RF models proved to be the optimal models for Ca2+ (calcium ion concentration).
An analysis of all models in terms of accuracy is given in Appendix A (Table A3). The
dependence of the adopted accuracy criteria on the model parameters is shown in Figure 14.
According to all the defined accuracy criteria, only one model stood out with values for
RMSE, MAE, MAPE, and R of 0.5847, 0.4500, 0.2007, and 0.7496, respectively.
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The assessment of the significance of individual input variables on the accuracy of
the prediction was performed precisely on the obtained model with the highest accuracy
(Figure 15).
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4.5. Prediction of SO4
2− Parameter Values

The RF models proved to be the optimal models for predicting SO4
2− levels. An anal-

ysis of all models in terms of accuracy is given in Appendix A (Table A4). The dependence
of the adopted accuracy criteria on the model parameters is shown in Figure 16.
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Figure 16. Comparison of different accuracy criteria for the RF model for the SO4
2− parameter as a

function of the number of randomly selected splitting variables and minimum leaf size: (a) RMSE,
(b) MAE, (c) MAPE, (d) R.

According to all defined accuracy criteria, only one model was singled out with values
for RMSE, MAE, MAPE, and R of 0.5526, 0.3122, 0.5050, and 0.7381, respectively.
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The assessment of the significance of the individual input variables for the accuracy of
the prediction was performed directly on the obtained model with the highest accuracy
(Figure 17).
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4.6. Prediction of Cl− Parameter Values

RF models proved to be the optimal models for predicting Cl− concentrations. An
analysis of all models in terms of accuracy is given in Appendix A (Table A5). The de-
pendence of the adopted accuracy criteria on the model parameters is shown in Figure 18.
Based on the defined accuracy criteria, three models were selected (Table 12). Optimal
values according to different accuracy criteria are marked with bold numbers in Table 12.

Table 12. Accuracy of the obtained models for Cl− prediction according to defined criteria.

RF Model RMSE MAE MAPE R

RF 1 (var 13, leaf 10) 1.7999 0.9111 1.1120 0.5691

RF 2 (var 11, leaf 5) 1.8831 0.8316 0.8589 0.5964

RF 3 (var 11, leaf 4) 1.8904 0.8323 0.8557 0.5933

RF 4 (var 6, leaf 2) 1.8473 0.9370 1.0288 0.6940

As the optimal model, the RF model with 500 trees was obtained, which uses a subset
of 11 variables, where the minimum amount of data per leaf is five (Table 13).

Table 13. Determining the optimal prediction model for the Cl− parameter using Simple Multi-
Criteria Ranking.

RF Model w.RMSE w.MAE w.MAPE w.R Agg. Value

RF 1 (var 13, leaf 10) 0.2500 0.0614 0.0000 0.0000 0.3114

RF 2 (var 11, leaf 5) 0.0202 0.2500 0.2469 0.0546 0.5717

RF 3 (var 11, leaf 4) 0.0000 0.2483 0.2500 0.0484 0.5468

RF 4 (var 6, leaf 2) 0.1191 0.0000 0.0812 0.2500 0.4502
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The assessment of the importance of individual input variables on the accuracy of
the prediction was performed precisely on the obtained model with the highest accuracy
(Figure 19).
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4.7. Prediction of HCO3− Parameter Values

GPR models proved to be the optimal models for predicting HCO3− concentrations.
Very similar values in terms of accuracy were also given by the RF models. However, since
the difference between the GPR model and the RF model is practically negligible, and
since it is not possible to obtain the significance value for individual input variables on the
obtained GPR model because it has the same length scale parameter for all variables, RF
models were used for the analysis. An analysis of all models in terms of accuracy is given
in Appendix A (Table A6).

The dependence of the adopted accuracy criteria on the parameters of the RF model is
shown in Figure 20.
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In the specific case of applying the RF model, two models were distinguished, namely
the RF model that uses ten variables as a subset for analysis and where the amount of data
per terminal sheet is equal to one, which is optimal according to the RMSE, MAE, and
MAPE criteria and the model that uses 13 variables as a subset for analysis and where
the amount of data per terminal sheet is equal to two, which is optimal according to the
R criterion. Since the first-mentioned model is optimal according to the three adopted
accuracy criteria, RMSE, MAE, and MAPE, and the difference compared to the R criterion
is practically negligible, the first model can be considered optimal.

The optimal model has the following criterion values for RMSE, MAE, MAPE, and R
of 0.5174, 0.4252, 0.1822, and 0.7721, respectively.

The assessment of the importance of the individual input variables on the accuracy of
the prediction was performed precisely on the obtained model with the highest accuracy
(Figure 21).
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4.8. Prediction of K+ Parameter Values

The RF models proved to be the optimal models for predicting K+ levels. An analysis
of all models in terms of accuracy is given in Appendix A (Table A7). The dependence of
the adopted accuracy criteria on the model parameters is shown in Figure 22.
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In terms of accuracy, three models were singled out, and the optimal model was ob-
tained by applying the Simple Multi-Criteria Ranking method (Tables 14 and 15). Optimal
values according to different accuracy criteria are marked with bold numbers in Table 14.
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Table 14. Accuracy of obtained models for K+ parameter prediction according to defined criteria.

Criteria RMSE MAE MAPE R

Var 13, leaf 8 0.0231 0.0172 0.3755 0.5689

Var 3, leaf 1 0.0236 0.0174 0.3700 0.6397

Var 12, leaf 4 0.0241 0.0166 0.3476 0.6024

Table 15. Determining the optimal prediction model for the K+ parameter using Simple Multi-
Criteria Ranking.

Weighted Criteria w.RMSE w.MAE w.MAPE w.R Agg. Value

Var 13, leaf 8 0.2500 0.0625 0.0000 0.0000 0.3125

Var 3, leaf 1 0.1250 0.0000 0.0493 0.2500 0.4243

Var 12, leaf 4 0.0000 0.2500 0.2500 0.1183 0.6183

The analysis of the significance of the individual input variables of the model was
performed on the optimal RF model with hyperparameter values for the value of the
number of trees, a subset of variables for splitting, and the amount of data per terminal
leaf, which are 500, 12, and 4, respectively (Table 15). The assessment of the importance of
the individual input variables was performed precisely on the obtained model with the
highest accuracy (Figure 23).
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4.9. Prediction of pH Parameter Values

The RF models proved to be the optimal models for predicting SO4 levels. An analysis
of all models in terms of accuracy is given in Appendix A (Table A8). The dependence of
the adopted accuracy criteria on the model parameters is shown in Figure 24.
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Table 16. Accuracy of the obtained models for pH parameter prediction according to defined criteria.

Criteria RMSE MAE MAPE R

RF 1 (var 7, leaf 1) 0.3469 0.2383 0.0306 0.3331

RF 2 (var 15, leaf 3) 0.3554 0.2326 0.0296 0.3476

RF 3 (var 6, leaf 5) 0.3531 0.2338 0.0298 0.3906

Table 17. Determining the optimal prediction model for the PH parameter using Simple Multi-
Criteria Ranking.

Weighted Criteria w.RMSE w.MAE w.MAPE w.R Agg. Value

RF 1 (var 7, leaf 1) 0.2500 0.0000 0.0000 0.0000 0.2500

RF 2 (var 15, leaf 3) 0.0000 0.2500 0.2500 0.0630 0.5630

RF 3 (var 6, leaf 5) 0.0676 0.1974 0.2000 0.2500 0.7150

Using the weighted sum method, an aggregated value for each model is calculated,
which takes into account all four normalized metrics.

The analysis of the significance of the individual input variables of the model was
performed on the optimal RF model and shown in Figure 25.
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Figure 25. Significance of the individual variables for PH parameter prediction in an optimal
RF model.

4.10. Prediction of EC Parameter Values

RF models proved to be optimal models for EC parameter prediction. An analysis of
all models in terms of accuracy is given in Appendix A (Table A9). The dependence of the
adopted accuracy criteria on the model parameters is shown in Figure 26.
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Figure 26. Comparison of different accuracy criteria for the RF model for the EC parameter as a
function of the number of randomly selected splitting variables and minimum leaf size: (a) RMSE,
(b) MAE, (c) MAPE, (d) R.
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According to all defined accuracy criteria, only one model was singled out with values
for RMSE, MAE, MAPE, and R of 271.5346, 149.3192, 0.2779, and 0.7665, respectively.

The obtained hyperparameter values for the number of trees, the subset of splitting
variables, and the minimum amount of data per leaf are 500, 6, and 1, respectively. The
analysis of the significance of the individual input variables of the model was performed
on the optimal RF model and shown in Figure 27.
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4.11. Prediction of TDS Parameter Values

The RF models proved to be the optimal models for predicting SO4
2− levels. An

analysis of all models in terms of accuracy is given in Appendix A (Table A10). The
dependence of the adopted accuracy criteria on the model parameters is shown in Figure 28.

In terms of accuracy, three models were singled out, and the optimal model was ob-
tained by applying the Simple Multi-Criteria Ranking method (Tables 18 and 19). Optimal
values according to different accuracy criteria are marked with bold numbers in Table 18.

Table 18. Accuracy of the obtained models for TDS parameter prediction according to defined criteria.

Criteria RMSE MAE MAPE R

RF 1 (Var 9, leaf 10) 417.2155 201.8572 0.4863 0.5467

RF 1 (Var 12, leaf 7) 422.6822 196.7117 0.4578 0.5521

RF 1 (Var 12, leaf 5) 435.3533 198.3639 0.4562 0.5502

Table 19. Determining the optimal prediction model for the TDS parameter using Simple Multi-
Criteria Ranking.

Weighted Criteria w.RMSE w.MAE w.MAPE w.R Agg. Value

RF 1 (Var 9, leaf 10) 0.2500 0.0000 0.0000 0.0000 0.2500

RF 1 (Var 12, leaf 7) 0.1747 0.2500 0.2367 0.2500 0.9114

RF 1 (Var 12, leaf 5) 0.0000 0.1697 0.2500 0.1620 0.5818
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The analysis of the significance of the individual input variables of the model was
performed on the optimal RF model and shown in Figure 29.
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RF model.

5. Discussion

In our research, most models demonstrated satisfactory accuracy, meeting the prede-
fined criteria. However, a subset of models exhibited shortcomings in specific criteria. To
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gauge accuracy effectively, we leaned on relative metrics, notably accuracy (R) and mean
absolute percentage error (MAPE), as they offer more insightful perspectives compared to
absolute criteria such as RMSE and MAE (Table 20).

Table 20. Accuracy of the ML model in predicting individual water parameters.

Output Parameter Best Model RMSE MAE MAPE R

SAR RF 0.3668 0.2328 0.5679 0.8236

Na+ RF 16.385 0.8772 13.929 0.678

Mg2+ RF 0.402 0.2631 0.2717 0.7567

Ca2+ RF 0.5847 0.45 0.2007 0.7496

SO4
2− RF 0.5526 0.3122 0.505 0.6148

Cl− RF 18.831 0.8316 0.8589 0.5964

HCO3− GP 0.5056 0.4144 0.1782 0.7668

K+ RF 0.0241 0.0166 0.3476 0.6024

pH RF 0.3531 0.2338 0.0298 0.3906

EC RF 271.5346 149.3192 0.3013 0.7665

TDS RF 422.6822 196.7117 0.4578 0.5521

Table 20 highlights the accuracy of the machine learning models in predicting individ-
ual water parameters. Notably, the RF model emerged as the best performer across various
parameters, underscoring its efficacy.

Analyzing the R values reveals the overall satisfactory performance of most models,
except for the pH prediction model. Examining MAPE values identified five models—SAR,
Na+, SO4, Cl, and TDS—where this metric is relatively higher than other ones. Despite
these nuances, our primary research focus was unraveling the significance of individual
input variables within the constraints of limited data.

When we delve into the significance of the individual input variables, our conclusions
(Table 21) unveil the following crucial insights:

Table 21. The most influential input variables for predicting water parameters.

Input Variable

Output H
SE C
A

SO B
L F R
L

U
A

W
B

A
A

H
SG

A

H
SG

B

H
SG

C

H
SG

D

G
PG

M

G
PG

N

G
PG

T

SAR 3 5 1 4 2

Na+ 3 1 4 2 5

Mg2+ 1 2 3 5 4

Ca2+ 4 1 5 3 2

SO4
2− 4 2 1 5 3

Cl− 5 1 3 2 4

HCO3
− 5 3 2 4 1

K+ 5 3 1 4 2

pH 1 2 4 5 3

EC 1 2 5 4 3

TDS 2 1 3 4 5
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Forest Cover (‘F’): Forest areas significantly influence diverse water quality parameters.
Trees and vegetation in forests contribute organic matter to water bodies, influencing ion
concentrations. The root systems of trees can affect the uptake of certain ions. Forests
strongly impact the concentrations of sodium, magnesium, calcium, chloride, sulfate,
bicarbonate, and potassium ions. Also, forests act as natural filters, reducing the transport
of sediments and pollutants into water bodies. Cleaner water, with fewer suspended solids,
tends to have lower TDS and EC. Additionally, forest areas often have minimal human
activities compared to urban or agricultural areas.

Rangeland (RL) is essential for predicting water sulfate ion concentrations. This
suggests that the characteristics associated with the rangeland, such as land cover and
land use patterns, significantly influence sulfate levels. Additionally, rangeland strongly
affects SAR by influencing sodium concentrations, vital for evaluating water’s suitability
for irrigation and soil health. Also, the notable impact on magnesium levels showcases
rangeland’s role in shaping water quality. Rangeland’s influence on pH highlights its role
in determining water acidity or alkalinity, which is crucial for aquatic ecosystems and
nutrient availability. Additionally, rangeland significantly influences electrical conductivity,
providing insights into water quality and dissolved ion content, essential for understanding
overall water composition. While having a somewhat lesser impact, rangeland still plays
a discernible role in shaping sodium concentrations, contributing to insights into water
salinity and its ecological implications.

Urban Area (‘UA’): Urban areas have a moderate impact on ion levels, magnesium,
chloride, bicarbonate, and SAR parameters, owing to urbanization and land use changes, in-
troducing contaminants and altering water chemistry. Calcium, sulfate, and EC parameters
have less impact.

The Agricultural Area (AA) substantially impacts potassium, SAR, and sodium, with
a moderate impact on calcium, TDS, and magnesium. The influence of AA on these pa-
rameters can be explained by the agricultural areas’ use of potassium-containing fertilizers,
leading to elevated potassium concentrations in water. Cultivation practices and nutrient
management contribute to increased potassium levels. Additionally, agricultural activities
often involve irrigation, and water with high sodium content can increase SAR. Sodium in
the soil can be introduced through irrigation water, affecting sodium levels in the water.
Moreover, agricultural runoff can introduce calcium, magnesium, and other dissolved
solids into water sources.

Catchment Area (‘CA’): The size of catchment areas plays a moderate role in ion
transport, particularly affecting SAR, sodium, bicarbonate, calcium, and sulfate levels. The
size of the catchment area could moderately impact SAR, as larger areas may interact with
more diverse geological and soil features, affecting sodium adsorption ratios.

Considering different soil types (HSGA, HSGB, HSGC, HSGD) and geological per-
meability (GHGM, GHGN, GHGT) underscores their impact on ion retention and release.
Sandy soils facilitate easier ion movement, while clayey soils retain ions. Geological perme-
ability influences potassium, magnesium, calcium, and bicarbonate levels, showcasing the
interconnectedness of soil and geological characteristics with water parameters.

6. Conclusions

Our study demonstrates the effectiveness of machine learning methods in predicting
and assessing water quality parameters within a catchment area. With the Random Forest
(RF) model as the standout performer, the model provides a robust tool for efficient and
accurate water quality evaluation.

While certain models may fall short on specific criteria, a nuanced evaluation leverag-
ing relative criteria like accuracy (R) and mean absolute percentage error (MAPE) under-
scores the overall robustness of the predictive models. Table 20 encapsulates the detailed
results, highlighting the efficacy of the RF model across various water parameters.

Evaluation of R values showcases all models’ satisfactory performance except for pH
prediction. Despite marginally elevated MAPE values in five models (SAR, Na+, SO4, Cl,
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TDS), the core research objective—unraveling the importance of individual input variables
within data constraints—was largely achieved.

This accomplishment paves the way for selecting and implementing optimal models
from a broader ML spectrum. To further elevate model accuracy, future research will
focus on dataset expansion, a strategic initiative to address current limitations and achieve
heightened accuracy, particularly in parameters exhibiting slight deviations.

The significance of individual input variables, as outlined in Table 21, provides crucial
insights for understanding their roles in influencing water parameters. Forest cover, catch-
ment area characteristics, stream order, barren land, and urban areas are pivotal factors
shaping water quality.

Incorporating these research insights into decision-making processes presents transfor-
mative opportunities for strategic resource allocation and environmental impact mitigation.
Furthermore, integrating these outcomes empowers decision-makers to adopt targeted
strategies for fostering environmental sustainability, contributing to the broader goal of
cultivating resilient water ecosystems. This integration signifies a practical pathway toward
achieving a delicate balance between human activities and environmental preservation,
actively contributing to sustainable water ecosystems.
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Appendix A

• Na parameter

Table A1. Comparative analysis of results of different machine learning models for Na parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 2.1568 0.7220 0.8754 0.4381

TreeBagger 1.6809 0.7675 1.0412 0.5813
Random Forest 1.6385 0.8772 1.3929 0.6780
Boosted Trees 1.8603 0.9529 1.5436 0.5024

GP exponential 2.5655 1.0096 1.8659 0.0642
GP Sq.exponential 2.8037 1.1203 2.1615 0.0133

GP matern 3/2 2.7865 1.0860 2.0261 0.0314
GP matern 5/2 2.8302 1.1018 2.0680 0.0240

GP Rat. quadratic 2.8037 1.1203 2.1615 0.0133

GP ARD exponential 3.3385 1.3350 2.8318 −0.0282
GP ARD Sq. exponential 3.6399 1.4212 2.5305 −0.0099

GP ARD matern 3/2 4.2629 1.5668 2.8746 0.0350
GP ARD matern 5/2 4.4450 1.6865 3.0962 0.0170

GP ARD Rat. quadratic 4.2855 1.5028 2.6716 0.0366
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• Mg parameter

Table A2. Comparative analysis of results of different machine learning models for Mg parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.6043 0.3313 0.3001 0.4911

TreeBagger 0.4048 0.2641 0.2735 0.7472
Random Forest 0.4020 0.2631 0.2717 0.7567

GP exponential 0.6173 0.3524 0.3443 0.4355
GP Sq.exponential 0.6711 0.4076 0.4150 0.3733

GP matern 3/2 0.6532 0.3786 0.3731 0.3915
GP matern 5/2 0.6633 0.3907 0.3875 0.3802

GP Rat. quadratic 0.6711 0.4076 0.4150 0.3733

GP ARD exponential 0.6925 0.4114 0.3927 0.3953
GP ARD Sq. exponential 0.7831 0.4364 0.4129 0.3459

GP ARD matern 3/2 0.6877 0.4295 0.4213 0.4068
GP ARD matern 5/2 0.7180 0.4323 0.4207 0.3371

GP ARD Rat. quadratic 0.7291 0.4207 0.4208 0.3987

• Ca parameter

Table A3. Comparative analysis of results of different machine learning models for Ca parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.7057 0.5504 0.2511 0.6804

TreeBagger 0.5949 0.4642 0.2054 0.7496
Random Forest 0.5847 0.4500 0.2007 0.7496
Boosted Trees 0.7730 0.6435 0.2808 0.5093

GP exponential 0.9379 0.5540 0.2225 0.3910
GP Sq.exponential 0.8241 0.5888 0.2566 0.5166

GP matern 3/2 0.7853 0.5538 0.2374 0.5662
GP matern 5/2 0.7989 0.5687 0.2447 0.5505

GP Rat. quadratic 0.8093 0.5755 0.2498 0.5364

GP ARD exponential 0.8347 0.6113 0.2617 0.5626
GP ARD Sq. exponential 0.8156 0.5878 0.2515 0.5497

GP ARD matern 3/2 0.7873 0.5772 0.2391 0.5873
GP ARD matern 5/2 0.7825 0.5809 0.2409 0.5948

GP ARD Rat. quadratic 0.9471 0.6581 0.2822 0.4985

• SO4 parameter

Table A4. Comparative analysis of results of different machine learning models for SO4 parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.6585 0.3319 0.4713 0.6249

TreeBagger 0.5997 0.3228 0.5064 0.5535
Random Forest 0.5526 0.3122 0.5050 0.6148
Boosted Trees 0.6421 0.4283 0.8503 0.5900

GP exponential 0.8183 0.4002 0.6450 0.3296
GP Sq.exponential 0.9090 0.4751 0.8683 0.1869

GP matern 3/2 0.8811 0.4453 0.7749 0.2489
GP matern 5/2 0.8930 0.4592 0.8144 0.2260

GP Rat. quadratic 0.9060 0.4713 0.8580 0.1918
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Table A4. Cont.

Model RMSE MAE MAPE/100 R

GP ARD exponential 0.8579 0.4061 0.5984 0.2182
GP ARD Sq. exponential 1.0228 0.5025 0.8036 0.1891

GP ARD matern 3/2 0.9006 0.4476 0.8242 0.3506
GP ARD matern 5/2 0.8340 0.4127 0.7664 0.3954

GP ARD Rat. quadratic 0.8370 0.4631 0.8300 0.3486

• Cl parameter

Table A5. Comparative analysis of results of different machine learning models for Cl parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 2.4687 0.8348 0.9213 0.4090

TreeBagger 1.9022 0.8556 0.6413 0.5878
Random Forest 1.8831 0.8316 0.8589 0.5964

Bosted Trees 2.2544 1.0919 1.3900 0.4431

GP exponential 2.9457 1.1626 1.8895 0.0196
GP Sq.exponential 3.2492 1.2872 2.1291 −0.0253

GP matern 3/2 3.2183 1.2545 2.0769 −0.0135
GP matern 5/2 3.2735 1.2793 2.1214 −0.0177

GP Rat. quadratic 3.2492 1.2871 2.1291 −0.0253

GP ARD exponential 3.8178 1.5359 2.7443 −0.0370
GP ARD Sq. exponential 4.1299 1.5817 2.4557 −0.0557

GP ARD matern 3/2 4.9069 1.8010 2.7176 −0.0523
GP ARD matern 5/2 5.3636 2.0316 3.6072 −0.0620

GP ARD Rat. quadratic 4.1299 1.5817 2.4557 −0.0557

• HCO3 parameter

Table A6. Comparative analysis of results of different machine learning models for HCO3 parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.6782 0.5473 0.2228 0.5477

TreeBagger 0.5231 0.4400 0.1875 0.7386
Random Forest 0.5174 0.4252 0.1822 0.7280

GP exponential 0.5056 0.4144 0.1782 0.7668
GP Sq.exponential 0.5803 0.4791 0.2006 0.6541

GP matern 3/2 0.5312 0.4309 0.1827 0.7287
GP matern 5/2 0.5437 0.4404 0.1859 0.7109

GP Rat. quadratic 0.5516 0.4473 0.1872 0.6994

GP ARD exponential 0.6389 0.5309 0.2225 0.5902
GP ARD Sq. exponential 0.5596 0.4529 0.1860 0.6829

GP ARD matern 3/2 0.5692 0.4750 0.2001 0.6773
GP ARD matern 5/2 0.5986 0.4949 0.2026 0.6417

GP ARD Rat. quadratic 0.5951 0.4967 0.2070 0.6340
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• K parameter

Table A7. Comparative analysis of results of different machine learning models for K parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.0308 0.0201 0.4365 0.3385

TreeBagger 0.0238 0.0172 0.3722 0.5919
Random Forest 0.0241 0.0166 0.3476 0.6024

GP exponential 0.0275 0.0181 0.4008 0.4880
GP Sq.exponential 0.0306 0.0205 0.4568 0.3393

GP matern 3/2 0.0292 0.0196 0.4344 0.4168
GP matern 5/2 0.0297 0.0199 0.4434 0.3924

GP Rat. quadratic 0.0299 0.0201 0.4486 0.3769

GP ARD exponential 0.0293 0.0192 0.4225 0.4182
GP ARD Sq. exponential 0.0301 0.0189 0.3988 0.3328

GP ARD matern 3/2 0.0311 0.0207 0.4621 0.3086
GP ARD matern 5/2 0.0307 0.0206 0.4682 0.3449

GP ARD Rat. quadratic 0.0315 0.0209 0.4728 0.3148

• Ph parameter

Table A8. Comparative analysis of results of different machine learning models for Ph parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 0.3719 0.2457 0.0316 0.4241

TreeBagger 0.3558 0.2376 0.0303 0.3380
Random Forest 0.3531 0.2338 0.0298 0.3906
Boosted Trees 0.3817 0.2576 0.0330 0.3187

GP exponential 0.4155 0.2586 0.0330 −0.0197
GP Sq.exponential 0.4201 0.2622 0.0335 0.0009

GP matern 3/2 0.4183 0.2573 0.0328 −0.0002
GP matern 5/2 0.4172 0.2560 0.0326 0.0114

GP Rat. quadratic 0.4192 0.2613 0.0334 −0.0247

GP ARD exponential 0.4972 0.2970 0.0381 −0.0636
GP ARD Sq. exponential 0.5655 0.3499 0.0453 −0.0511

GP ARD matern 3/2 0.5025 0.3098 0.0400 0.0272
GP ARD matern 5/2 0.5096 0.3127 0.0403 −0.0118

GP ARD Rat. quadratic 0.4154 0.2497 0.0318 0.1367

• EC parameter

Table A9. Comparative analysis of results of different machine learning models for EC parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 352.6501 168.7962 0.3289 0.5627

TreeBagger 286.5049 151.5407 0.2797 0.7664
Random Forest 271.5346 149.3192 0.3013 0.7665

Bosted Trees 297.9335 170.2860 0.3620 0.6393
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Table A9. Cont.

Model RMSE MAE MAPE/100 R

GP exponential 432.0779 200.1383 0.4037 0.2465
GP Sq.exponential 474.4095 227.5836 0.4762 0.1730

GP matern 3/2 467.6136 217.1865 0.4402 0.1915
GP matern 5/2 472.1707 221.6132 0.4518 0.1856

GP Rat. quadratic 474.4095 227.5836 0.4762 0.1730

GP ARD exponential 461.6100 216.0258 0.4514 0.2684
GP ARD Sq. exponential 674.4802 269.8017 0.5526 0.1942

GP ARD matern 3/2 631.0788 275.7947 0.5870 0.1756
GP ARD matern 5/2 674.8450 287.7216 0.5782 0.1310

GP ARD Rat. quadratic 470.4831 237.1822 0.4714 0.2560

• TDS parameter

Table A10. Comparative analysis of results of different machine learning models for TDS parameter
prediction.

Model RMSE MAE MAPE/100 R

Decision Tree 509.6578 212.4422 0.5367 0.4610

TreeBagger 422.7209 199.4986 0.4718 0.5535
Random Forest 422.6822 196.7117 0.4578 0.5521
Boosted Trees 457.8293 235.2232 0.6106 0.5367

GP exponential 617.8458 274.5861 0.7459 0.0383
GP Sq.exponential 663.3802 302.3803 0.8247 0.0276

GP matern 3/2 662.2055 297.1371 0.8050 0.0191
GP matern 5/2 666.2775 299.6533 0.8082 0.0207

GP Rat. quadratic 663.3802 302.3803 0.8247 0.0276

GP ARD exponential 765.3184 377.8162 1.1147 −0.0131
GP ARD Sq. exponential 818.4166 408.9820 1.1664 −0.0367

GP ARD matern 3/2 881.9864 460.2564 1.4128 −0.0318
GP ARD matern 5/2 828.6321 416.7358 1.3426 0.0524

GP ARD Rat. quadratic 785.2499 392.9596 1.2369 0.0238
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Abstract: This study presents the efficiency of a drinking water treatment plant from Constant,a,
Romania. Individual and aggregated indices are proposed and built using nine water parameters for
this aim. The analysis of individual indices permits the detection of the period of malfunctioning of
the water treatment plant with respect to various parameters at various sampling points. In contrast,
the cumulated indices indicate the overall performance of the treatment plant during the study
period, considering all water parameters. It was shown that the outliers significantly impact the
values of some indices. Comparisons between the simple average and weighted average indices
(built taking into account the importance of each parameter) better reflect the impact on the water
quality of some chemical elements that might harm people’s health when improperly removed.

Keywords: water quality; treatment plant; water parameters; efficiency indices

1. Introduction

Water is an essential resource for life. Human history shows that the primary freshwa-
ter sources have been rivers. They still play a significant role in socio-economic develop-
ment [1]. In the last decades, water quality has been affected by environmental pollution
produced by anthropic activities, becoming inappropriate for drinking, irrigation, and
other uses [2]. Therefore, its consumption can harm organisms, especially humans, given
that more than two-thirds of organisms are formed of water [3].

Unfortunately, people in some regions or countries lack sufficient access to clean water
or use water from contaminated sources with disease-carrying organisms, pathogens, or
unacceptable levels of toxic substances and suspended solids [4–6]. Olukanni et al. [7] show
that over 2.2 million people in developing countries die annually from diseases provoked
by contaminated water. Inefficient water treatment and the distribution of drinking water,
as well as the consumption of contaminated water, can lead to the apparition of many
diseases [8]. To avoid such effects, drinking water must be tasteless, odorless, and colorless,
and free from physical, chemical, and biological contaminants.

An extended analysis of the factors affecting the spatial variation in stream water
composition is presented in [9], emphasizing natural causes. The surface water quality and
the pollutants’ transport can be assessed utilizing statistical methods [10–14] and water
quality indicators [15–17]. Modeling and forecasting water quality and the parameters
that influence it has been performed recently by Artificial Intelligence methods (Fuzzy
techniques, ANFIS, C&RT) and hybrid method [14,18–20]. Water quality simulation and
forecast utilizing exponential models, differential equations, deep learning neural networks,
and fuzzy clustering have been developed by some scientists [21–24].

67



Toxics 2023, 11, 988

Romania has abundant sources of drinking water. However, the demand for water
resources is constantly rising due to population growth, intensified agricultural and indus-
trial activities, and the recent years of low rainfall and adverse conditions, which impact
the quality of drinking water sources [10]. The quality of drinking water is essential for EU
residents [25]. The necessary treatments for producing drinking water, depending on the
quality of water sources, are presented in Directive EC 2184/2020 [26]. Researchers’ studies
reflect the interest in the topic [27–32]. Romania is also tasked with finding cost-effective
and innovative approaches that address environmental, regulatory, and public concerns for
maintaining a clean environment [33,34].

Since ensuring good water quality is essential for the population’s health, research
has been developed to propose advanced technologies for drinking water treatment. Some
of the most recent technologies are presented in the books and articles of Thomas and
Burgess [35], Brar et al. [36], Vara Prasad [37], Caratar et al. [38], Brusseau et al. [39], and
Farhaoui and Derraz [40].

Most studies written by Romanian scientists present wastewater analysis, proposing
solutions for cleaning them [41–45]. Chirilă et al. [31] studied the water supply sources
in Constanta town (Romania), the applied treatments based on their quality, and the
performances of the water purification process. Some authors [46–48] addressed the
disinfection by-products in drinking water, modeling the chlorine decay or proposing the
analysis of the chlorine concentration in the distribution system.

This study aims to fill a gap in the knowledge related to the efficiency evaluation of
a drinking water treatment plant utilizing a series of individual and aggregated indices
introduced by the authors. The originality of this work consists of (1) proposing individual
and composite efficiency indices for assessing the plant’s efficiency, (2) building indices
that are not restricted to a certain number of parameters or a determined period, and
(3) introducing an objective evaluation method of the treatment plant’s efficiency.

2. Materials and Methods
2.1. Studied Region and Data Series

Constant,a city is situated in the Dobrogea region, in the southeastern part of Romania
(Europe), with one of the biggest metropolitan areas in Romania. It has a circular drink-
ing water distribution system with a length of about 575 km. The hydrographic region
of Dobrogea contains two river basins: the Littoral basin and a portion of the Danube
basin (341.5 km along the Danube River), covering an area of 11,809 km2 (excluding the
Danube Delta), with a network length of 1624 km and an average density of 0.13 km/km2.
Approximately 73% of this hydrographic network is affected by drying phenomena.

To ensure the best quality and circulation of drinking water, four treatment–storage
and pumping stations operate—Constant,a Nord, Constant,a Sud, Călăraşi, and Palas com-
plex. Groundwater and surface water sources are used for the city’s water supply. The
groundwater sources include Caragea Dermen, Cis, mea I A, B, C, Cis, mea II, Constant,a
Nord, and Medgidia. The surface water is extracted from the Priza Gales, u (44◦15′0′′ N and
28◦25′60′′ E) located on the Danube–Poarta Albă–Midia Năvodari channel. The Caragea
Dermen source, situated between Constant,a and Ovidiu, is the oldest groundwater source,
consisting of 18 wells with depths from 35 to 90 m. It provides water to Ovidiu, Mihail
Kogălniceanu, as well as the Palazu Mare neighborhood and the Călăras, i storage–pumping
complex, with a flow rate of 3549 m3/h. Cis, mea I A, B, and C consist of three groups of
36 wells located in the northern part of Constant,a, with a total captured flow rate of about
8500 m3/h. The Cis, mea I sources provide water to neighborhoods in the northern part of
Constant,a (also pumped to the Palas storage–pumping complex and the Călăras, i complex).
Cis, mea II is situated between the Caragea Dermen and Cis, mea I sources and contains ten
wells with a captured flow rate of approximately 1700 m3/h. The water from this source is
transported to the Palas storage–pumping complex. The Constant,a Nord source, situated
in the northern part of Constant,a, south of the Siutghiol Lake, consists of 5 wells with a
captured flow rate of about 2200 m3/h. The water is pumped from here to the Constant,a
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Nord complex. The Medgidia source is located along the Danube–Black Sea Canal and
comprises 11 wells with a captured flow rate of approximately 1500 m3/h. The extracted
water is pumped to the Constant,a Sud complex. The surface source Gales, u captures water
from the Poarta Albă–Midia Năvodari Channel at km 6 + 398 and pumps it to the Palas
Constant,a storage–treatment and pumping complex at 17.4 km. It provides a water supply
of 13,050 m3/h. This surface source was created to meet the high summer water demand
and to supplement the water supply for Constant,a city if necessary. The intake system uses
five sorbs with a diameter of 1200 mm, equipped with metallic screens to retain suspended
solids [48,49]. The Palas–Constant,a water treatment plant (PCTP) provides drinking water
to the city’s 350,000 inhabitants through nine large-diameter pipelines. Details on the PCTP
can be found in [48].

The geographical locations of the Constanta county and city in Romania are shown in
Figure 1.
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This study proposes the evaluation of the treatment efficiency of surface water from
the Gales, u source and groundwater for the purification and distribution of drinking water
to consumers. The experimental results were obtained from the analyses of the surface
water and groundwater quality from four sampling points of the treatment plant, denoted
by S1–S4 in Figure 2 and representing (1)—raw surface water, (2)—raw pre-chlorinated
groundwater, (3)—treated surface water, and (4)—drinking water distributed to consumers
from the treatment plant.

The monitored parameters include temperature—T (◦C), pH [SR ISO 10523:2012] [50],
electrical conductivity—EC (µS/cm) [SR EN 27888:1997] [51], turbidity—TUR (NTU) [SR
EN ISO 7027-1:2016] [52], total hardness—TH (0dH) [SR ISO 6059:2008] [53], perman-
ganate index—PMI (mg O2/L) [SR EN ISO 8467:2001] [54], free residual chlorine (mg/L)
[SR EN ISO 7393-2:2018] [55], Cl− (chlorides, mg/L) [SR ISO 9297:2001] [56], SO2−

4 (sul-
phates, mg/L) [Romanian standard: STAS 3069-87] [57], and nutrients—NH+

4 (ammo-
nium, mg/L) [SR ISO 7150-1:2001] [58], NO−2 (nitrites, mg/L) [SR EN 26777:2006] [59], and
NO−3 (nitrates, mg/L) [SR ISO 7890-3:2000] [60]. PMI provides information on the quantity
of oxidizable inorganic and organic substances in water. This index is utilized to assess the
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quality of the freshwater and treated potable waters in the European Union (EU), according
to [52].

Toxics 2023, 11, x  4 of 16 
 

 

monium, mg/L) [SR ISO 7150-1:2001] [58], NOଶି  (nitrites, mg/L) [SR EN 26777:2006] [59], 
and NOଷି  (nitrates, mg/L) [SR ISO 7890-3:2000] [60]. PMI provides information on the 
quantity of oxidizable inorganic and organic substances in water. This index is utilized to 
assess the quality of the freshwater and treated potable waters in the European Union 
(EU), according to [52]. 

The data series consists of the monthly average values of the mentioned parameters 
for 2016–2019. The obtained values were compared with the maximum allowable values 
(MAVs) from the Romanian legislation [61]. Given that the water temperature may sig-
nificantly influence the efficiency indexes because there is a high variation between its 
value at the treatment plant’s entrance and the distribution system’s entrance, we shall 
not consider it when building the indices. 

 
Figure 2. Palas–Constanţa water treatment plant (PCTP) process flow diagram. 

2.2. Statistical Analysis and Efficiency Indicators 
The basic statistics of the recorded data series have been calculated, and the histo-

grams and boxplots have been drawn to show the series characteristics and determine 
the outliers’ existences. 

  

Figure 2. Palas–Constanţa water treatment plant (PCTP) process flow diagram.

The data series consists of the monthly average values of the mentioned parameters
for 2016–2019. The obtained values were compared with the maximum allowable values
(MAVs) from the Romanian legislation [61]. Given that the water temperature may signifi-
cantly influence the efficiency indexes because there is a high variation between its value at
the treatment plant’s entrance and the distribution system’s entrance, we shall not consider
it when building the indices.

2.2. Statistical Analysis and Efficiency Indicators

The basic statistics of the recorded data series have been calculated, and the histograms
and boxplots have been drawn to show the series characteristics and determine the outliers’
existences.
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2.3. Efficiency Indices
2.3.1. Efficiency Indices of the Treatment Process at a Given Moment t

1. The individual efficiency at the moment t with respect to the k-th water parameter, e f kt, is
defined by:

e f kt =
[
1− (Co,t)k/(Cin,t)k

]
× 100 (1)

where (Cin,t)k and (Co,t)k are the concentrations of the water parameter k, in the input and
output at a certain point (2, 3, or 4), at the moment t.

2. The mean cumulated efficiency with respect to n water parameters at the moment t, MCEt
is defined by:

MCEt =
1
n

n

∑
j=1

e f jt (2)

3. The weighted cumulated efficiency with respect to n water parameters at the moment t,
WCEt is defined by:

WCEt =

(
n

∑
j=1

e f jt×wj

)
/

(
n

∑
j=1

wj

)
(3)

where wj is the j-th water parameter weight.

2.3.2. Efficiency Indices of the Treatment Process during the Study Period (T moments)

1. The individual average efficiency with respect to the k-th water parameter, AEk, is defined
by the Formula (4):

AEk =
1
T

T

∑
t=1

e f kt =
(

1− (Co/Cin)k

)
× 100. (4)

or by JAEk, whose formula is [62]:

JAEk =
(
1− Co,k/Cin,k

)
× 100 (5)

where

(Co/Cin)k =
1
T

T

∑
t=1

(C0,t)k/(Cin,t)k (6)

and Cin,k and Co,k are the averages of the k-th parameter concentrations as input and output
of a treatment stage during the study period.

2. The cumulated average efficiency with respect to n water parameter is defined by one of
the formulas:

CAE =
1
T

T

∑
t=1

MCEt =
1
n

n

∑
k=1

AEk (7)

JAE =
1
n

n

∑
k=1

JAEk (8)

3. The weighted cumulated efficiency with respect to n water parameters is defined by one of
the formulas:

WCE =
1
T

T

∑
t=1

WCEt =

(
n

∑
k=1

AEk×wk

)
/

(
n

∑
k=1

wk

)
(9)

W JAE =

(
n

∑
k=1

JAEk × wk

)
/

(
n

∑
k=1

wk

)
(10)

The values assigned to the weights are from 1 to 5, considering the harmful potential
of some chemicals to human health. The higher the harm potential, the higher the index is.
In the present article, we took advantage of the scientific literature findings related to the
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water quality indices (WQIs) for drinking water. In the manuscript, we used the indices
provided in [63] (that gives the most-used weights attached to different water parameters).
The weights utilized here are 1 for pH, EC, free residual chlorine, and chlorides, 2 for
permanganate index, sulfates, nitrates, and nitrites, and 3 for ammonia.

The highest value of all indices but pH is 100%, corresponding to a perfect working of
the treatment plant. Any positive value indicates a certain degree of efficiency. The closer
the value is to 100%, the better the station performance. Negative indices indicate the water
treatment plant’s incapability to remove certain elements from the water. The lower the
indices are, the worse the treatment plant’s performance is. In the case of pH, efficiency
around zero means keeping the pH within almost constant limits (6.5–8.5 recommended).

3. Results
3.1. Results of the Statistical Analysis

Table 1 contains the basic statistics computed for the water parameters analyzed at the
sampling points S1–S4.

Table 1. Basic statistics of the water parameters at the sampling points and MAVs [61].

T (◦C) pH TUR
(NTU)

EC
(µS/cm)

Cl−

(mg/L)
SO2−

4
(mg/L)

PMI
(mg O2/L)

NH+
4

(mg/L)
NO−2

(mg/L)
NO−3

(mg/L)

Admissible Limit 6.5–8.5 5 2500 250 250 5 0.5 0.10 50

Sampling point S1

min 2.40 7.60 0.00 366.00 20.50 29.60 1.07 0.00 0.00 1.70
mean 14.71 8.11 2.10 479.27 43.37 69.55 1.91 0.05 0.04 7.76
median 15.00 8.03 1.49 450.50 44.45 65.05 1.83 0.023 0.029 8.07
max 26.00 9.07 14.40 696.00 66.40 111.00 3.55 0.80 0.11 14.80
st.dev 7.64 0.29 2.32 86.84 11.35 20.17 0.54 0.12 0.02 3.78
skewness −0.01 1.31 3.90 0.96 0.01 0.15 0.88 6.11 0.84 0.13
kurtosis −1.51 2.46 18.16 −0.10 −0.59 −0.78 0.82 39.97 0.33 −1.06

Sampling point S2

min 2.80 7.50 0.00 371.00 22.00 30.40 0.54 0.00 0.00 1.12
mean 15.08 7.95 1.11 486.92 44.94 70.81 1.47 0.01 0.00 7.58
median 14.90 7.96 0.85 466.00 45.65 63.30 1.39 0.008 0.003 7.58
max 26.00 8.69 3.94 712.00 67.40 143.60 2.98 0.04 0.02 14.40
st.dev 7.41 0.26 0.97 85.23 10.73 23.70 0.48 0.01 0.00 3.52
skewness 0.03 0.11 1.50 0.97 −0.03 0.76 0.98 1.56 2.24 0.18
kurtosis −1.48 0.64 1.83 0.07 −0.46 0.66 1.64 2.60 6.19 −0.73

Sampling point S3

min 3.20 7.43 0.00 371.00 19.80 36.20 0.02 0.00 0.00 3.32
mean 16.61 7.70 0.56 719.46 71.23 92.93 0.71 0.01 0.00 9.37
median 17.15 7.64 0.24 868.50 89.78 96.44 0.45 0.004 0.002 9.52
max 25.60 8.58 4.00 897.00 96.07 189.80 3.14 0.02 0.02 15.30
st.dev 4.87 0.22 0.83 187.54 24.53 26.27 0.68 0.01 0.00 2.96
skewness −0.68 1.93 2.68 −0.61 −0.53 1.05 1.34 0.99 2.23 −0.05
kurtosis 0.61 4.93 7.64 −1.29 −1.40 3.97 2.05 −0.28 5.62 −0.77

Sampling point S4

min 3.20 7.22 0.00 486.00 44.22 50.60 0.08 0.00 0.00 3.22
mean 16.48 7.65 0.47 718.10 72.30 92.21 0.52 0.00 0.00 8.07
median 17.00 7.68 0.32 670.50 76.43 98.35 0.43 0.003 0.001 7.83
max 24.40 8.12 2.19 915.00 93.50 150.30 1.42 0.02 0.01 17.60
st.dev 4.87 0.22 0.59 151.70 18.52 25.07 0.31 0.00 0.00 2.60
skewness −0.62 0.21 1.42 0.07 −0.16 0.05 0.77 1.42 0.63 0.94
kurtosis 0.37 −0.67 1.69 −1.82 −1.85 −0.96 0.00 2.38 −0.42 2.62

Most values are inside the admissible limits. Exceptions are some turbidity, ammo-
nium, and nitrite values, whose maxima are in bold in Table 1. The median was also
computed, since the range (difference between maximum and minimum) of some series
values or their standard deviations are high, indicating a significant dispersion of the values
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around the mean. Significant differences between mean and median were found for the
highly skewed series (TUR at S1 and S3, and NO−2 at S3, for example).

The free residual chlorine had values of 0 throughout the study for the influent—
site 1—because it did not undergo pre-treatment before entering the treatment plant. For
the groundwater, which is pre-treated, the chlorine values ranged from 0.43 to 1.28 mg/L,
with an average value of 0.85 mg/L. For the treated surface water, the chlorine values
ranged from 0.25 to 0.90 mg/L, with an average of 0.50 mg/L, while the concentration of
chlorine in the drinking water in the effluent obtained values between 0.40 and 0.64 mg/L,
with an average of 0.56 mg/L. Although the allowed values for potable water are between
0.1 and 0.5 mg/L, they must be achieved throughout the entire distribution network.
Therefore, even if the values obtained at the treatment plant exceed the MAV, they are
accepted to ensure proper water disinfection in the storage tanks and a minimum required
chlorine level in the supply pipes.

The histograms and boxplots of some water parameters are shown in Figures 3 and 4.
The histograms of the free residual chlorine series recorded at the first two sampling
points are symmetric, whereas those for the last sampling points are slightly skewed. A
positive skewness is noticed for the concentration series of nitrate at the last sampling point.
Various skewness values are determined, indicating that most series are not symmetrically
distributed. Kurtosis shows platykurtic distributions for different series, as, for example,
pH, EC, Cl−, SO2−

4 , and NO−2 series at S4. The boxplots of pH, turbidity, EC, and ammonia
indicate the outliers’ presence (represented by stars).
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By comparison, the other series are more homogenous, with only a few outliers.
Figure 4c,d,f point out that there are significant variations in the values of the series
recorded at different sampling points, especially for Cl−, PMI, and EC. The existence
of high outliers, especially for the TUR series, will significantly decrease the computed
performance indices.

3.2. Results on the Efficiency Indices
3.2.1. Results on the Efficiency Indices at a Given Moment t

The efficiency indices computation was based on the same output—S4—with respect
to the input from S1, S2, and S3, respectively denoted by the corresponding indicator
followed by S1, S2, and S3. For example, the MCEt_S1 means that the input series is
from S1. The water temperature and free residual chlorine are not considered in this study
because the free residual chlorine is absent in the surface water and groundwater (being
added during the purification process), and the temperature does not impact the drinking
water quality. Models of free residual concentration series are presented in [48].

The variations in the individual efficiency computed by (1) are represented in Figure 5.
Their minimum and maximum values are listed in Table 2.
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Table 2. The minimum and maximum individual efficiencies.

pH TUR EC Cl− SO2−
4 PMI NH+

4 NO−2 NO−3

e f kt_S1 min −0.51 −73.91 −143.17 −335.61 −202.25 5.41 −450.00 0.00 −173.53
max 17.42 100.00 0.00 3.90 22.45 51.43 100.00 100.00 62.91

e f kt_S2 min 0.00 −250.00 −139.89 −305.91 −189.23 −82.35 −1600.00 −200.00 −429.46
max 12.77 100.00 0.72 6.77 49.86 95.86 100.00 100.00 51.80

e f kt_S3 min −6.73 −2871.43 −139.89 −351.01 −201.10 −2118.75 −1100.00 −500.00 −106.93
max 11.66 100.00 39.59 50.59 56.76 95.94 100.00 100.00 72.24

Some aspects related to individual efficiencies e f kt_S1, are presented below:

• The values of e f kt_S1 varied in very large intervals, from negative values for all but
PMI and NO−2 to the maximum (100%).

• TUR’s efficiency values are all positive, half being 100, except for two negative values
(−73.91 and −61.67 in May and June 2017).

• The maximum individual efficiency of EC is zero, and more than 80% of chloride
efficiencies are negative, meaning that the values recorded in the effluent are lower
than those in the influent.

• PMI is the only index whose efficiency values are positive. This means there is good
performance in removing the humic materials and organics that could result from the
birds and fish exhausts or decomposition.

• The value of−450 for ammonia is due to a jump from 0.01 (mg/L) in the input to 0.120
(mg/L) in the effluent in August 2019. Another negative value (−200 in November
2019) is noticed in the ammonia efficiency e f kt_S1, due to a concentration change from
0.01 to 0.03 mg/L.

• Negative efficiencies were recorded in June 2017 (−173.53), July, August, October, and
November 2021 for NO−3 and June–October 2019 (less than −137.2) and May–August
2017 (less than −81.79) for SO2−

4 .

The analysis of e f kt_S2 and e f kt_S3 shows that, generally, the maximum efficiencies
increased and the minimums decreased. Specific remarks for e f kt_S2 are as follows:

• All values computed based on the pH are positive.
• The only negative value of efficiency in the TUR series is −250, recorded in March

2016, with half of the values being 100 (excellent efficiency).
• The lowest negative individual values of efficiencies for EC, Cl−, and SO2−

4 (under
−79.90, −128.46, and −60.32, respectively) are computed for May–December 2017.
Moreover, Cl− efficiency is mainly negative.

• Only nine values of the individual efficiency for ammonia are noticed, the lowest
being −900, −1200, and −600 (recorded in May–September 2019, May and August
2018).

• All NO−2 efficiency indices are positive except six, recorded, for example, in November
2018, and January and December 2019 (with values of −200 and −100).

• In total, 22 values of NO−3 ’s efficiencies are negative, most of the positive ones being
under 30.

The lowest individual efficiencies are e f kt_S3, as explained in the following:

• All values corresponding to pH are in the interval [−6.72, 11.66], with most being
negative, so an increase in the water’s pH appears when the influent is considered the
series at S3 and the effluent is the series at S4.

• The efficiency of TUR recorded unexpected low values (marked with bold letters) in
Table 2, as −2871.43 followed by −1918.20, in June and September 2019, respectively.
Most values around −500 were also recorded in February, April, June–November 2018.
Some explanation of these values are presented in the next section.
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• The lowest chloride efficiencies were in the range [−155.84, −113.64] and between
(−352.01) and (−117.27) in July, August, October, and November 2016, and in June–
August and October–December 2017.

• The lowest values (negative) of the sulfates’ efficiencies were recorded during the
same period as those of Cl−.

• PMI recorded extremely low efficiencies in the same months as TUR. The value marked
in bold was registered in February 2018.

Comparing the period where some values of the individual efficiencies were extremely
low, we think that this situation is the consequence of the malfunctioning of the PCTP
during May–December 2017.

The series of mean (and weighted) cumulated efficiencies with respect to all water
parameters MCEt (WCEt) are represented in Figure 6.
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Given that the values −2871.43 and −2118.75 are outliers, we removed them from
the computation. Due to the weights assigned to the water parameters as a function of
their contribution to the water quality, when most values of the individual indices were
positive, WCEt > MCEt. In the case of the negative values, the inequality is the opposite.
Comparisons of the extreme values value of both indices are given in Table 3.

Table 3. Extreme values of MCEt and WCEt.

MCEt_S1 MCEt_S2 MCEt_S3 WCEt_S1 WCEt_S2 WCEt_S3

min −74.27 −215.32 −762.81 −97.33 −336.86 −875.15
max 30.95 31.24 31.97 43.38 47.86 47.82

The charts from Figure 6 indicate mainly negative cumulated efficiencies computed
when the input data series were S3, compared to the case when the input was from S2 or S1,
respectively. The best cumulated efficiencies were recorded in the last case—columns 2 and
5 in Table 3. Still, even when using the weighted indices, the cumulated efficiency remains
under 50.

3.2.2. Efficiency Indices of the Treatment Process during the Study Period

The individual average efficiencies permit determining the water parameters whose
efficiency should be improved considering the recorded values during the entire study
period. The efficiencies of the PCTP with respect to each water parameter—(4) and (5)—are
presented in Table 4.
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Table 4. Values of (a) AEk and (b) JAEk.

pH TUR EC Cl− SO2−
4 PMI NH+

4 NO−2 NO−3
AEk_S1 5.54 66.19 −51.90 −81.21 −42.27 23.56 62.32 91.05 −27.27
AEk_S2 3.62 55.43 −49.48 −72.51 −41.73 58.63 −37.86 41.09 −33.08
AEk_S3 0.40 −739.52 −12.24 −29.92 −9.21 −381.64 −42.53 17.01 5.97

JAEk_S1 5.63 77.69 −49.83 −66.69 −32.59 23.03 91.51 95.73 −3.97
JAEk_S2 3.69 57.69 −47.48 −60.87 −30.23 64.86 53.26 62.19 −6.42
JAEk_S3 0.64 16.81 0.19 −1.50 0.78 27.66 20.91 54.49 13.86

Based on AEk and JAEk, the best performances are those of nitrites, turbidity, and
ammonia removal with respect to S1. The same parameters remain positive for PMI and
TUR (with respect to S1 and S2).

The values of JAEk are generally higher than those of AEk because the average of
input and output series are computed, diminishing the difference between the computed
values. Therefore, JAEk_S3 has all values but that for chloride greater than zero. Removing
the abovementioned, AETUR_S3 = −739.52 and AEPMI_S3 =−381.64 will become 131.62
and −182.46, respectively.

The cumulated average efficiency with respect to the considered water parameters are
as follows:

• CAE_S1 = 5.11, CAE_S2 = −8.43, and CAE_S3 = −130.1. When eliminating the
highest outlier, CAE_S3 = −39.84.

• JAE_S1 = 15.61, JAE_S2 = 10.74, and JAE_S3 = 15.61.

The weighted cumulated efficiency with respect to all parameters are as follows:

• WCE_S1 = 17.61, WCE_S2 = −4.69, and WCE_S3 = −46.24. When eliminating the
highest outlier, WCE_S3= −73.10.

• WJAE_S1 = 30.21, WJAE_S2 = 21.96, and WJAE_S3 = 17.55.

Considering the cumulated indices that reflect the global efficiency in time and consid-
ering all water parameters, we remark a very low performance of the PCTP in time with
respect to each input source. The highest one is with respect to the influent from S1.

4. Discussion

This article proposes different categories of indices for evaluating the efficiency of
water purification of a drinking water treatment plant. These provide a synthetic modality
for achieving the goal, given that when working with hundreds of values over a long
period it is difficult to look at the charts or the individual values for each day, and it is
time consuming. Moreover, determining a model that can be used for forecasting is also
difficult in the presence of extreme values or outliers. Computing the indices’ values can
be easily accomplished (in an Excel file, for example), and the obtained values (positive or
negative, close to 100, for example) will provide a quick answer related to the efficiency of
the cleaning process.

The necessity of obtaining individual indices as high as possible for all water parame-
ters but pH comes from the importance of each water parameter, which will be discussed
shortly here.

Maintaining the pH for the drinking water between 6.5 and 8.5 is essential given
that increased alkalinity of acidity can lead to pipe damage (favoring the detachment of
tiny particles from the pipes’ materials) and the impurities’ circulation in the distribution
system. Therefore, the water becomes unhealthy for the organism [64,65]. Therefore,
negative efficiencies with respect to pH during a long period raise an alarm signal that
the pH would be above 8.5, whereas an increasing trend of the individual efficiency with
respect to pH will indicate possible pH’s decay under 6.5.

Turbidity indicates that the water is clean from the viewpoint of its aspect (transpar-
ent, without suspensions). It is known that water characteristics can undergo significant
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changes in a short period; for example, turbidity can be strongly affected by heavy rainfall.
Increased water turbidity can result from runoff or soil erosion, especially following heavy
rains. Therefore, additional operations should be applied at the water treatment plant
to prevent hazards and manage associated risks: (a) rainwater storage and management;
(b) construction of retention basins to minimize the effects of heavy rains on water quality;
(c) advanced water filtration through the use of activated carbon or membranes; (d) addition
of coagulants and flocculants; and (e) adjustment of operational parameters [66].

The values of e f TURt_S1 indicate that the water was clean from the aspect viewpoint.
As for the recorded increased values for water turbidity in May and June 2017, or February,
April, June, and November 2018, it is considered that they were mainly determined by abun-
dant precipitation leading to massive water runoff that could accumulate high quantities of
soil particles, sand, and other impurities at the treatment plant through the alluvial deposits
from flood periods in the area where the treatment plant is located. Other secondary
contributions could include construction works, intensive agriculture, or soil erosion.

The individual efficiency indices with respect to EC have mostly negative values,
showing an increase in the conductivity values in the output with respect to those in the
input. Even if high values of EC do not directly impact health, the large amount of dissolved
ionizable solids leads to water hardness and consumer dissatisfaction [67].

PMI is the only water quality indicator with respect to which the PCTC’s individual
efficiency values are positive, indicating the correct removal of dead organic material
form water.

The very low e f kt_S3 (k represents the chloride) be explained by the overlap of the sta-
tion modernization’s works and the seasonal variations in the summer months when higher
temperatures and exposure to solar radiation can lead to changes in water composition,
including more intense biological activity of organisms (e.g., algae). Additionally, drought
episodes leading to decreased water levels through evaporation, altered water composition,
or the intensified use of fertilizers in agriculture during the late autumn campaign could
contribute to these variations. Another possible explanation at the drinking water treatment
plant is the potential infiltration from other nearby sources during maintenance works at
the station.

The idea of introducing cumulated efficiency indices was issued from the authors’
previous studies in the water quality indicators field. These indices reflect the water
treatment plant’s efficiency with respect to all the considered water parameters. The
outliers’ existence in any data series impacts the individual efficiencies and the cumulated
ones to a certain extent. A high weight assigned to a parameter with a low (high) individual
efficiency will lead to a decrease (increase) in the weighted cumulated efficiency with
respect to the average cumulated efficiency. Still, the weighted indices better reflect the
impact of each water parameter on the water quality and, consequently, on people’s health.

Given that there are slight variations in the weights assigned by different authors to
the same water parameters, the introduced indicators may incorporate some percentage of
subjectivity that might be eliminated by averaging the values of the weights found in the
literature. Future studies should be performed in this direction.

5. Conclusions

This article introduces some indicators used in a case study for assessing the efficiency
of a water treatment plant. Whereas the individual indicators show the efficiency with
respect to a specific water parameter, emphasizing the issues that may appear on a particular
period or with respect to a parameter, the cumulated ones evaluate the overall efficiency
over time considering all parameters.

It was shown that the individual efficiencies are sensitive to jumps in values in the
effluent with respect to those in the influent (even if they are within the MAV limits).
Therefore, the cumulated indices will be drastically affected when very small values
participate in their computation. Weighted cumulated indices always differ from the
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average ones. However, given the importance of each water parameter and the necessity of
maintaining good water quality, they must also be observed.

The data analysis indicates that there were periods of malfunctioning of the PCTP,
leading to very low negative individual efficiencies with respect to some input sampling
points (especially S3) and, consequently, a significant decrement in the cumulated effi-
ciencies concerning each water parameter and the influent. It has been expected that
the efficiencies with respect to S3 will be higher given that the water passed through the
sedimentation and separation processes. The question that arose was if the maintenance of
the water storage tank was correctly performed. To answer this question, sampling should
also be performed after exiting the storage tank of 6000 m3. A similar sampling should be
performed after the storage in the tank of 10,000 m3. Unfortunately, at this moment, we do
not have such information.

The present study opens the direction for aligning the drinking water quality evalua-
tions with the sustainability objectives (based on objective criteria). Future work will also
evaluate the possibility of improving the presented indices and creating a system that will
permit the implementation of the necessary corrective measures shortly after they are ob-
served. Moreover, a working methodology must also be determined for the case of outlier
existence, given that such values introduce significant biases in the indices’ computation.
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Abstract: Many countries have attempted to mitigate and manage issues related to harmful algal
blooms (HABs) by monitoring and predicting their occurrence. The infrequency and duration of HABs
occurrence pose the challenge of data imbalance when constructing machine learning models for their
prediction. Furthermore, the appropriate selection of input variables is a significant issue because
of the complexities between the input and output variables. Therefore, the objective of this study
was to improve the predictive performance of HABs using feature selection and data resampling.
Data resampling was used to address the imbalance in the minority class data. Two machine learning
models were constructed to predict algal alert levels using 10 years of meteorological, hydrodynamic,
and water quality data. The improvement in model accuracy due to changes in resampling methods
was more noticeable than the improvement in model accuracy due to changes in feature selection
methods. Models constructed using combinations of original and synthetic data across all resampling
methods demonstrated higher prediction performance for the caution level (L-1) and warning level
(L-2) than models constructed using the original data. In particular, the optimal artificial neural
network and random forest models constructed using combinations of original and synthetic data
showed significantly improved prediction accuracy for L-1 and L-2, representing the transition from
normal to bloom formation states in the training and testing steps. The test results of the optimal RF
model using the original data indicated prediction accuracies of 98.8% for L0, 50.0% for L1, and 50.0%
for L2. In contrast, the optimal random forest model using the Synthetic Minority Oversampling
Technique–Edited Nearest Neighbor (ENN) sampling method achieved accuracies of 85.0% for L0,
85.7% for L1, and 100% for L2. Therefore, applying synthetic data can address the imbalance in
the observed data and improve the detection performance of machine learning models. Reliable
predictions using improved models can support the design of management practices to mitigate
HABs in reservoirs and ultimately ensure safe and clean water resources.

Keywords: harmful algal blooms; alert level; feature selection; data resampling; machine learning;
early warning
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1. Introduction

Toxic harmful algal blooms (HABs) cause various environmental problems in aquatic
ecosystems, including public health threats, massive fish deaths, drinking water safety
problems, increased wildlife mortality, and the destruction of aquatic habitats [1,2]. The
recent rise in water temperature owing to climate change and the increase in nutrient
discharge caused by human activity have promoted the growth of HABs in aquatic ecosys-
tems [3–5]. In 2007, excessive algal blooms in Lake Taihu, China, affected the supply of
drinking water for approximately two million people in nearby cities [6]. Furthermore,
European countries, such as France, the United Kingdom, and Italy, suffer from social,
economic, and environmental problems caused by HABs in coastal and inland areas [7–9].
These events suggest that toxic HABs can threaten public health and regional economies by
contaminating drinking water, fish, and shellfish.

Therefore, the excessive growth of HABs across all regions is a significant global
concern related to water quality management [10]. Therefore, many countries around
the world, including South Korea, have conducted research and introduced policies and
activities to solve the algal bloom problem to protect aquatic ecosystems, reduce public
health threats, and secure safer water resources. As part of this, algal alert warning systems
have been introduced and used in many countries to respond quickly to high-level algal
blooms with HABs [11–13]. Recently, the Food and Agriculture Organization of the United
Nations (FAO), in collaboration with the Intergovernmental Oceanographic Commission
(IOC) and the International Atomic Energy Agency (IAEA), developed technical guidelines
for implementing early warning systems for HABs that affect food safety or security [14].
Furthermore, algal alert warning systems serve as an important indicator for monitoring
and managing algal blooms in terms of water quality management. They provide monitor-
ing and management sequences to government officials, drinking water treatment plant
operators, and water quality managers to help them make decisions [15].

In South Korea, a large-scale national project was implemented to dredge rivers and
install eco-friendly weirs to increase the water storage capacity and restore the ecosystems
of the country’s four major rivers. However, since 2012, the flow velocity of rivers between
weirs has decreased, leading to an increase in the frequency and intensity of algal blooms
with HABs and risk of drinking water pollution [16,17]. In South Korea, an algal alert
warning system is currently in place at 29 stations along four major rivers and reservoirs.
The algal alert level of the system is determined based on the concentration of harmful algal
cells. Therefore, the system focuses on the postblooming response rather than predicting
the algal alert level. If the algal alert level can be predicted, it would be possible to respond
before the occurrence of HABs with proactive water quality management.

In recent years, various studies have been conducted on data-driven models, which
are easier to construct than numerical models [18]. However, the frequency of water quality
monitoring for HABs is typically weekly or monthly [19,20], which makes it challenging to
acquire sufficient data to train machine learning models. In addition, the occurrence of algal
blooms typically has a seasonal pattern; algal blooms rarely occur in cold winters when
the temperature is low and usually occur from spring to autumn when the temperature
rises [21]. The magnitude of algal blooms has an uneven distribution and is characterized
by sporadic occurrences [11]. For this reason, the distribution of data is imbalanced when
classified based on the concentration or alert level of harmful algae. Shin et al. [22] collected
and analyzed the distribution of algal alert levels at 13 monitoring stations in a reservoir
and reported that the distribution was imbalanced at nine of the stations. Training machine
learning models using imbalanced data can lead to accurate predictions at the majority
alert level and inaccurate predictions at the minority level. However, accurate predictions
for algal blooms with high concentrations that occur infrequently can be utilized as more
important information than predictions for low concentration blooms in terms of water
quality [23]. Furthermore, the results of supervised machine learning models are dominated
by the quality and quantity of the data used in the training step. Therefore, class imbalance
data in classification models reduce the ability to predict minority classes, and basic machine
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learning algorithms designed to improve overall prediction performance more accurately
predict instances of the majority class than the minority class [24,25].

Recently, several studies have been conducted to solve the problem of data imbalance
in statistical models. Choi et al. [26] solved the data imbalance problem using the synthetic
minority oversampling technique (SMOTE), an oversampling method, and predicted the
chlorophyll-a concentration in the Daechung reservoir in South Korea using a convolutional
neural network model. Jeong et al. [27] considered SMOTE to solve data imbalance and
predicted cyanobacterial cell density in eight water supply reservoirs in South Korea using
machine learning models such as random forest (RF) and extreme Gradient Boosting.
Bourel et al. [28] considered three under- and oversampling methods, including SMOTE,
and predicted fecal coliforms on 21 beaches in Uruguay using various machine learning
models. Despite the existence of such studies, studies specifically addressing imbalanced
data related to harmful algal blooms, chlorophyll-a, nutrients, and specific environmental
problems in the field of aquatic ecosystems are limited. In addition, few comprehensive
studies have simultaneously addressed imbalanced data related to harmful algal blooms
and feature selection for input variables.

Therefore, the impact of feature selection and data imbalance on machine learning
models must be evaluated. The specific objectives of this study were to (1) acquire en-
vironmental variables, including water quality, hydrologic, and meteorological data, as
input variables and apply feature selection methods to identify appropriate environmental
variables, (2) solve data imbalance by generating synthetic data for minority classes using
various resampling methods based on measurement data, (3) develop the algal alert warn-
ing system that can predict the algal alert levels in advance using artificial neural network
(ANN) and RF models, and (4) evaluate differences in feature selection and resampling
methods for improving prediction accuracy in minority classes.

2. Materials and Methods
2.1. Site Description

The Geum River is a major river in South Korea with agricultural and industrial
functions. The shape and flow system of the river has changed since the construction of a
multifunctional weir in 2012 [11], increasing the retention time of the flow rate [29]. As a
result, blooms have expanded to the middle and upper reaches of rivers [30]. In addition,
algal blooms, including HABs, have been continuously reported in the BJR [31]. The study
area was the Baekje reservoir (BJR), located at the mid-stream of Geum River between
126◦56′20′′ E and 127◦05′55′′ E longitude and 36◦19′07′′ N and 36◦27′45′′ N latitude. The
river width between the BJR and Gongju Reservoir (GJR) is 290–570 m, which is relatively
large in South Korea (Figure 1). The BJR weir, which is a prediction point for algal alert
levels, is located downstream of the study area and the GJR, which collects the cell density
of cyanobacteria as an input variable, is located upstream of the study area. The main
land-use type in the environs of the BJR is agricultural.

2.2. Data Acquisition

Seven water quality variables such as cyanobacteria cell density, total dissolved nitrogen
concentration (TDN), nitrate concentration (NO3-N), ammonium concentration (NH4-N), total
dissolved phosphorus concentration (TDP), phosphate concentration (PO4-P), and conductiv-
ity (Cond) in the BJR were collected by the Korea Ministry of Environment from a monitoring
station which was located 500 m upstream of the weir (Table 1). The average monitoring inter-
val was 8 days and ranged from 4 to 62 days owing to irregular sampling caused by weather
conditions, sampling management officers, and reservoir conditions. The algal alert levels of
the BJR as an output variable were classified into three levels according to the classification
criteria of the algal alert warning system implemented in South Korea based on cyanobacte-
ria cell density [32]: normal level (<1000 cells/mL, L-0), caution level (≥1000 cells/mL and
<10,000 cells/mL, L-1), warning level (≥10,000 cells/mL and <1,000,000 cells/mL, L-2), and
blooming level (≥1,000,000 cells/mL, L-3). Four hydrological and three meteorological vari-
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ables were monitored by the Korea Water Resource Corporation and the Korea Meteorological
Administration. Daily hydrological and meteorological data, including air temperature, wind
speed, water level, total inflow, total discharge, and total hydropower plant discharge, were
used as average values between water quality monitoring events, and precipitation was used
as the cumulative precipitation. In addition, cyanobacterial cell density measured at the GJR
water quality monitoring station upstream of the BJR was used as an input variable to consider
the connectivity between the two reservoirs for predicting algal alert levels. In this study, a
total of 429 datasets were collected over 9 years from 2013 to 2021 (Figure 2A), but 345 datasets
were chosen to develop a machine learning model. Datasets were excluded from the winter
season (January, February, and December) in South Korea because of the impossibility of mon-
itoring frozen rivers and the lack of cyanobacterial growth at low temperatures. During this
period, the algal alert levels corresponding to L-1 and L-2 were zero. Therefore, we developed
a machine learning model using 345 monitoring data points from March to November. All
data were collected over 9 years (2013–2021) (Figure 2A). Table 1 lists the 14 environmental
variables considered as input variables.
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Table 1. Statistical analysis and variable selection results of 14 input variables collected for the
prediction of alert level from 2013 to 2021 at the BJR.

Variables Description Unit

Descriptive Analysis Variable Selection Method

Range Mean Dependence Test
(p-Value)

MI
Score

Water quality

TDN Total dissolved nitrogen
concentration mg/L 1.17 to 6.92 2.79 <0.001 0.128

NO3-N Nitrate concentration mg/L 0.72 to 3.91 2.13 <0.001 0.118
NH4-N Ammonium concentration mg/L 0.01 to 2.24 0.19 0.005 0.015

TDP Total dissolved phosphorus
concentration mg/L 0.01 to 0.16 0.04 0.001 0.085

PO4-P Phosphate concentration mg/L 0 to 0.15 0.02 <0.001 0
Cond Conductivity µmhos/cm 125 to 639 348.23 0.001 0.012
GJ-cell Cyanobacteria cell density in GJR cells/mL 0 to 50970 1077 <0.001 0.161

86



Toxics 2023, 11, 955

Table 1. Cont.

Variables Description Unit

Descriptive Analysis Variable Selection Method

Range Mean Dependence Test
(p-Value)

MI
Score

Hydro-
dynamic

Wlevel Average water level of the BJR m 1.21 to 5.01 3.71 0.396 0.026
Inflow Average inflow rate of the BJR m3/s 20.25 to 2536.23 145.59 0.011 0.044

Discharge Average total discharge rate of the BJR m3/s 20.10 to 2555.66 145.70 0.011 0.049

Dhydro Average discharge rate by the
hydropower plant of the BJR m3/s 0 to 124.60 43.85 0.050 0.043

Meteorological
Atemp Average air temperature ◦C −1.30 to 30.46 16.85 <0.001 0.207
Precip Accumulated precipitation mm 0 to 352.80 28.38 0.934 0.016

Wspeed Average wind speed m/s 0.56 to 2.39 1.30 0.587 0
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2.3. Feature Selection for Algal Alert Levels

We statistically identified the relationship between cyanobacteria cell density, which
determines algal alert levels, and input variables, including water quality, hydrodynam-
ics, and meteorological variables, using linear and non-linear variable selection methods
(Figure 2B). For the linear variable selection method, a simple linear regression analysis
was used to analyze the input and output variables one-to-one. Simple linear regression
was used to statistically test the dependence between variables [33] and the dependent
input variables were selected based on statistical significance (p < 0.05). For the non-linear
variable selection method, mutual information (MI) was used to measure the degree of
relatedness between the output and input variables. MI is interpreted as the amount of
information shared between variables, regardless of the average value and variance, and is
based on information theory on a methodologically established basis [34]. The larger the
MI, the higher the dependence on the probability distribution between variables. At an
MI of 0, the relationship between variables is independent. Table 1 shows the statistical
significance and MI scores for each of the 14 input variables.

2.4. Resampling Methods for Imbalanced Datasets

In data-driven models, including machine learning, deep learning, and linear statistical
models, the imbalanced distribution of the output variable to be predicted results in the
biased learning of the model because the accuracy is dominated by the amount and quality
of the original dataset [35]. A total of 345 cyanobacteria cell density data collected from the
BJR with algal alert level criteria were classified into L-0 (269; 78.0%), L-1 (47; 13.6%), and
L-2 (29; 8.4%), respectively. The distribution of algal alert levels was sufficiently unbalanced
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to affect the model training. In a previous study [36], we used adaptive synthetic sampling
(ADASYN) to generate synthetic data for algal alert levels corresponding to L-1 and L-2
based on observational data, addressing the imbalance of the data and improving the
accuracy of the machine learning model. In the previous study, the amount of data was
increased using synthetic data to resolve the data imbalance. In the present study, the
amount of data increased and a method of reducing the majority class to the minority class
was considered.

Oversampling involves creating copies of existing samples or adding more samples
with values similar to those of a minority class [37]. However, oversampling can increase
the size of the training dataset, resulting in additional computation time and potential
overfitting of the model [38]. Undersampling involves the removal of samples from the ma-
jority class until a balance is achieved between the minority and majority classes. Therefore,
during the training step, the reduced amount of data can improve the computation time
for weight calculation and address storage-related issues, making the overall model imple-
mentation more efficient, which may improve the predictive accuracy of the model [39].
However, using undersampling, it may be challenging to improve the imbalance in predict-
ing algal alert levels for relatively small datasets, such as that used in this study. To address
these issues, hybrid sampling methods, such as ENN, which combine oversampling and
undersampling have been proposed [40]. The resampling methods used were as follows:
(1) random oversampling (ROS), SMOTE, and ADASYN as oversampling methods; (2) clus-
ter centroid undersampling (CC) and random undersampling (RUS) as undersampling
methods; and (3) synthetic minority oversampling technique–edited nearest neighbor
(ENN) and synthetic minority oversampling technique–Tomek link (Tomek) as hybrid
sampling methods. The detailed resampling methods are described in Appendix A of the
Supplementary Materials.

2.5. Construction of Machine Learning Models and Evaluation of Model Accuracy

Figure 2 shows a flowchart of the study process in the order of data preparation,
synthetic data generation and application, two machine learning model constructions,
and model comparison. During the data acquisition and preprocessing stages, data on
algal alert levels were collected as output variables, and water quality and hydrodynamic
and meteorological data were collected as potential environmental variables affecting
algal blooming (Figure 2A). We determined the input variables using the linear and non-
linear variable selection method between each input variable and output (Figure 2B). We
modified the selected input and output variables to focus on predicting future algal alert
levels (Figure 2C). In other words, the measured value of the output variable for a specific
algal alert level was matched with the values of previously measured input variables in
the monitoring conducted at an average interval of eight days. For example, the algal
alert level measured on 23 April 2013, was considered the output variable of the input
variables measured on 15 April 2013. These variables comprised a single dataset. In this
preprocessing, the prediction of future algal alert levels using the current input variables
was reflected in the training steps of the two machine learning models.

In the dataset reconstruction stage, all datasets were randomly extracted into training
(70%) and test (30%) datasets (Figure 2D). For each resampling method, synthetic data
generated based on the training dataset were added to the dataset used in the training
step (Figure 2E). The dataset at the test step for all of the prediction models was used as
the original dataset without adding synthetic data. Therefore, a total of 24 cases, each
possessing different sets of data, were generated considering variable selection methods
and resampling methods for training and testing of the models: (1) eight cases consisted of
the original dataset without variable selection and seven datasets with generated synthetic
data based on the original data for each resampling method, (2) eight consisted of the
original dataset with the linear variable selection method and seven datasets with seven
resampling methods, and (3) eight consisted of the original dataset with the non-linear
variable selection method and seven datasets with seven resampling methods (Figure 2F).
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In the construction and evaluation stages of the algal alert level prediction model, the
datasets, excluding the respective test datasets from the 24 generated cases, were randomly
extracted into training (75%) and validation (25%) datasets. The training datasets were
used to train the model and optimize the hyperparameters (Figure 2G). Test datasets were
used to evaluate the performance of each model constructed using the resampling methods.
In this study, two prominent machine learning models, ANN and RF, were utilized to
predict the alert levels for harmful algal blooms. Machine learning models, known for
their powerful computational techniques, are useful for predicting specific phenomena
and interpreting complex relationships in the environment [41,42]. In addition, ANN and
RF models are representative machine learning models which assess the impact of imbal-
anced data on predictive performance, making it more convenient for other researchers
to utilize the approach presented in this study. ANN and RF were optimized based on
the hyperparameters of each model (Figure 2G). For ANN hyperparameters, such as the
number of hidden neurons and the activation function in the hidden layer, the number
of hidden neurons was optimized using a pattern search algorithm and the activation
functions in the hidden layer were experimentally optimized. The activation function in
the output layer was ‘softmax.’ For RF hyperparameters, such as the ensemble aggregation
method, the number of ensemble learning cycles, learning rate for shrinkage, minimum
leaf size, the maximum number of decision splits, and the number of predictors to select
at random for each split, a random search optimization algorithm was used to optimize
these hyperparameters. The ANN model structure is described in the Supplementary
Materials in our previous study [36], whereas the structure of the RF model is described in
Appendix B of the Supplementary Materials.

Finally, the classification performances of the two models on each dataset were com-
pared using a confusion matrix (Figure 2H). The confusion matrix is described in the
Supplementary Materials in our previous study [36]. We selected the optimized model
from 100 repeated executions for each model using variable selection and resampling
methods. We calculated the average accuracy of the models for each method to evaluate the
overall classification performance of the two machine learning models. All processes, in-
cluding statistical analysis, machine learning model configuration, and model optimization,
were performed in a MATLAB (MathWorks Inc., Natick, MA, USA) environment.

3. Results and Discussion
3.1. Descriptive Analysis of Cyanobacteria and Nutrients in the BJR

Table 2 shows the results of monthly descriptive analysis for weekly cyanobacteria
cell density, Chl-a concentration, and nutrient concentration in the BJR from March to
November. Out of 345 events issued by the early warning system, caution (43 events) and
warning (29) levels were mostly announced between July and October. The formation
of algal blooms in reservoirs in East Asia, including South Korea, with monsoon climate
characteristics, occurs most actively in summer [11], and these climate characteristics were
reflected in the BJR. As a result of calculating the N:P ratio to identify nutrients that af-
fect the algal growth in the BJR, the range and average value for the entire period were
5.26–240.79 and 42.5, respectively (Table 2). The N:P ratios in about 85% of samples were
higher than 17, which, according to Forsberg and Ryding [43], means that primary pro-
ductivity in the BJR is limited by phosphorus. Nitrogen and phosphorus are essential and
influential in regulating the structure, function, and processes of ecosystems [44]. However,
imbalances in the N:P ratio resulting from excessive nutrient inputs can exacerbate eutroph-
ication in reservoirs, altering ecological structure and function and deteriorating aquatic
ecosystems [45]. Therefore, the management and control of phosphorus loadings into the
BJR can help suppress the occurrence of harmful algal blooms. Chl-a and phosphate con-
centrations from July to October, which were predominantly associated with algal bloom
events corresponding to the caution and warning levels, ranged from 5.3–177.7 (an average
of 50.5 µg/L) and 1–153 (an average of 31.9 µg/L), respectively. Based on Carlson [46], the
nutritional status of the BJR from July to October was classified as eutrophic (Table S1).
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A detailed description of the N:P ratio, Chl-a, and phosphate concentrations is given in
Appendix C of the Supplementary Materials.

Table 2. Results of descriptive analysis for monthly cyanobacteria cell density and nutrient concen-
tration measured in the BJR.

Month
Algal Alert Level

(Number of Events)
Cyanobacteria Cell

(Cells/mL) N:P Ratio Chl-a (µg/L) Phosphate (µg/L)

L-0 L-1 L-2 Range Average Range Average Range Average Range Average

March 40 0 0 0 to 140 4 29.1 to 240.8 74.8 7.6 to 105.3 42.3 1 to 29 6.7
April 39 0 0 0 to 625 34 16.4 to 139.2 55.3 16.3 to 162.8 56.6 0 to 43 7.5
May 36 2 0 0 to 1950 117 8.7 to 123.4 39.9 20.2 to 176.1 64.5 1 to 113 10.9
June 38 1 0 0 to 2920 131 12.2 to 50.6 30.0 11.9 to 185.1 70.8 0 to 33 9.0
July 25 5 7 0 to 95,500 7684 6.5 to 46.8 23.8 7.4 to 165.1 46.2 2 to 140 32.2

August 12 10 17 0 to 398,820 27,391 5.3 to 42.9 19.6 5.3 to 144.3 51.1 2 to 135 40.4
September 16 15 5 0 to 95,355 7206 6.8 to 84.5 27.9 6.4 to 177.7 55.1 2 to 153 34.1

October 25 13 0 0 to 6565 1071 7.4 to 84.1 43.6 9.3 to 123.0 49.8 1 to 141 20.8
November 38 1 0 0 to 1160 51 14.9 to 135.8 65.2 5.1 to 128.4 35.7 1 to 97 15.5

Total 269 47 29 0 to 398,820 4828 5.26 to 240.8 42.5 5.1 to 185.1 52.4 0 to 153 19.5

3.2. Selection of Input Variables and Generation of Synthetic Data

Table 1 shows the p-values and MI results for the 14 input variables according to the
variable selection method. In the case of the dependence test, 11 variables, excluding aver-
age water level of the BJR (Wlevel), accumulated precipitation (Precip), and average wind
speed (Wspeed), had a statistically significant linear dependence (p < 0.05) on cyanobacteria
cell density; total dissolved nitrogen concentration (TDN), nitrate concentration (NO3-N),
ammonium concentration (NH4-N), and conductivity (Cond) were negatively correlated,
and total dissolved phosphorus concentration (TDP), phosphate concentration (PO4-P),
average inflow rate of the BJR (Inflow), average total discharge rate of the BJR (Discharge),
average discharge rate by the hydropower plant of the BJR (Dhydro), average air tempera-
ture (Atemp), and cyanobacteria cell density in the GJR (GJ-cell) were positively correlated
(Figure S1). The dependence test results for phosphorus as a limiting factor for eutrophica-
tion in the BJR showed that phosphorus-related variables were positively correlated with
cyanobacterial cell density, whereas nitrogen-related variables were negatively correlated.
This implies that nitrogen is more abundant in the BJR than phosphorus and that a favorable
N:P ratio for harmful algal blooms is formed by the inflow of phosphorus or a decrease in
nitrogen in the water body. For the MI score, 12 variables were selected as input variables
with statistical correlation considering nonlinearity for cyanobacteria cell density; TDN,
NO3-N, NH4-N, TDP, Cond, GJ-cell, Wlevel, Inflow, Discharge, Dhydro, Atemp, and Precip
had MI scores above 0 and PO4-P and Wspeed had scores of 0. In both variable selection
methods, Wspeed, without a statistical correlation, was excluded from the input variables
for predicting algal alert levels. Wong et al. [47,48] reported that wind speed affects the
growth, transport, and diffusion of algal blooms. However, these studies were conducted
in oceans over a wider area than the present study. Zhang et al. [49] reported that the
annual average wind speed has a statistically significant correlation with the occurrence of
algal blooms via regression analysis using 25 years of long-term observational data from
Lake Taihu (2338 km2) in China. However, the yearly average wind speed was higher than
that of this study area and the regression coefficient was low (−0.023~−0.027).

Considering these results, it is necessary to evaluate whether wind speed should be
included as an input variable when constructing statistical models for small-scale reservoirs
with characteristics similar to those in the study area. Various variable selection methods
based on linear and non-linear methods can determine appropriate input variables, and the
selected input variables can assist in constructing statistical models with high prediction
accuracy [50]. Finally, from a total of 14 water quality, meteorological, and hydrological
variables, 11 variables for the linear method and 12 variables for the non-linear method
were selected as input variables to predict algal alert levels using machine learning models.
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3.3. Improvement in Data Imbalance Using Synthetic Data

The distribution of the monitored algal alert levels used in the training step of the
model from the original data was 189 (77.8%) for L-0, 33 (13.6%) for L-1, and 21 (8.6%) for
L-2 (Figure 3). The overall distribution of algal alert levels was imbalanced and skewed
toward the L-0. Traditionally, classification algorithms in machine learning have been
used to increase the overall accuracy of the classifiers. While maximizing the overall
accuracy, the model tended to focus on the majority class because of its higher weight in
the distribution of the entire class [51]. For this reason, classification models can achieve
high accuracy for the majority class or entire dataset, whereas they can predict poorly
for minority classes. Therefore, when a dataset is imbalanced, maximizing the overall
accuracy without considering the accuracy of the minority classes may not be optimal.
We applied seven resampling methods of different types to improve the data imbalance:
oversampling methods—ROS, SMOTE, and ADASYN; undersampling methods—CC and
RUS; and hybrid sampling methods—ENN and Tomek.
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Figure 3. Comparison of algal alert level distribution between the original data and the new dataset
with resampled data via each sampling method.

Figure 3 shows the distribution of the datasets obtained using each resampling method.
The datasets newly constructed using ROS, SMOTE, ADASYN, and Tomek achieved a
balance between the majority class (L-0) and its data, whereas the datasets constructed
using CC and RUS balanced the minority class (L-2) with the fewest samples. For ENN,
oversampling was performed for L-1 and L-2 to match the data with the majority class and
undersampling was performed for all classes, resulting in balanced data with 114 for L-0,
114 for L-1, and 107 for L-2. Therefore, all of the new datasets, excluding the original, were
generated using a balanced distribution of algal alert levels. In the case of rare occurrence
problems, identifying the minority class is often more significant than identifying the
majority class and an imbalance in the dataset can lead to the generation of misleading
information regarding the minority class in classification algorithms [52]. Problems such as
harmful algal blooms, droughts, floods, and chemical accidents in the environment typically
have a low occurrence frequency but a significant socioeconomic impact. Therefore, when
analyzing these problems, it is necessary to adequately consider minority classes.

3.4. Comparison of Model Performance According to the Feature Selection and
Resampling Methods

To assess the impact of the feature selection method on the prediction of algal alert
levels, the predictive performances of the original data, original data with a linear approach,
and original data with a non-linear approach were compared. Table 3 presents the per-
formances of the ANN and RF models obtained via 100 iterations using three different
datasets: the original dataset considering 14 input variables, the original dataset consider-
ing 11 input variables extracted from dependency tests, and the original dataset considering
12 input variables derived from MI scores. The key results showed that there was no clear
distinction in predictive performance among the models, regardless of whether feature
selection methods were applied. A detailed comparison of their performance values is
provided in Appendix B of the Supplementary Materials.
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The ANN and RF models, using data generated by different resampling methods, were
compared to evaluate the impact of data imbalance. All data used in the comparison were
subjected to resampling methods without applying feature selection methods. Figure 4 shows
the overall performance of each model, which was performed 100 times independently. In the
training step, the overall accuracies of ANN and RF on the original dataset were relatively high.
However, the overall recall for each algal alert level was unbalanced. From these results, it can
be observed that the predictions for each algal alert level were unbalanced, and the accuracy was
primarily influenced by L-0, indicating that it had a dominant impact on the overall performance.
Furthermore, imbalanced predictions between classes in models that utilize imbalanced data
can diminish the statistical reliability of the overall model accuracy [53]. Therefore, to evaluate
classifiers for imbalanced data, it is essential to appropriately reflect the predictive ability of
minority classes [54]. In the ANN and RF models, the predictive performance for L-1 and
L-2 in the models with applied resampling methods in the training and test steps exhibited
improvements compared with models utilizing the original dataset. Figure 5 shows the results
of the optimal model among the models that were iteratively performed 100 times. For the ANN
model, the accuracy for L-1 and L-2 improved in the training step; however, in the test step, the
accuracy for L-1 improved significantly, whereas that for L-2 improved but not significantly.
In the RF model, there was an enhancement in the accuracy of L-1 and L-2, with a notable
improvement in accuracy, particularly for L-2. A detailed comparison of their performance
values is provided in Appendix E of the Supplementary Materials.

3.5. Comparison of Model Performance According to Both Feature Selection and
Resampling Methods

A total of 28 case datasets were applied to the ANN and RF models to evaluate the
combined effects of the feature selection and resampling methods. Tables S2 and S3 show
the overall performances of the ANN and RF models, respectively, which were iteratively
performed 100 times for each data type.

The overall accuracy of the two machine learning models in the training step was similar
to that of the models using the original data, and the accuracy for each algal alert level was
improved compared to the models using the original data. The overall recall for the model using
original data was, in ANN, 66.6% for L-1 and 82.8% for L-2 and, in RF, 67.9% for L-1 and 80.6%
for L-2. The range of variation in recall for L-1 and L-2 based on feature selection methods was, in
ANN, 3.9–6.8% for L-1 and 3.5–4.3% for L-2 and, in RF, 0.4–4.2% for L-1 and 0.1–2.5% for L-2. The
range of variation in recall based on resampling methods was, in ANN, on average, 23.3–27.4%
for L-1 and 14.5–17.4% for L-2 and, in RF, on average, 19.9–24.9% for L-1 and 13.7–16.3% for L-2.

Based on the preceding results, it is evident that, for predicting algal alert levels, the
improvement in predictive accuracy via resampling methods surpassed that achieved by feature
selection methods. Balanced predictions are made for each class. Despite the results of this study,
feature selection methods can efficiently describe the input data while reducing the influence
of noise or irrelevant variables, thereby providing better predictive results [55]. Moreover, in
classification problems, using variables with a low statistical correlation to classes as pure noise
can introduce bias in the prediction of classes and degrade the classification performance [56].
However, feature selection methods can be effective in improving the predictive performance of
datasets with numerous features. In the present study, the number of features was 14, which
is relatively small compared to the number of features used in previous studies. For example,
Bolón-Canedo et al. [57] compared the predictive performance of various feature selection
methods for 64 different datasets, with the number of features ranging from 918 to 41,151,
and Wei et al. [58] studied 14 different datasets, with the number of features ranging from
72 to 400. Xue et al. [59] demonstrated that applying feature selection methods improved
predictive performance with a reduced number of features. However, they also reported
that the application of feature selection methods did not significantly enhance the predictive
performance of models that already exhibited high accuracy. Therefore, in terms of data with
imbalances and fewer features, the application of resampling methods may be more effective
than feature selection methods in improving model predictive performance.
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Tables S4 and S5 present the results of the optimal models selected from the models
that were iteratively performed for ANN and RF, respectively. The comparison of the
performance of the optimal models exhibited results similar to the overall performance
comparison. Based on these results, the best model was identified for predicting algal alert
levels among the ANN and RF models. Figure 6 compares the confusion matrix between
the selected optimal ANN model and the model using the original data. Non-linear feature
selection and ENN sampling were applied to data from the selected ANN model. In the
training step, accuracy was similar and the recall for L-1 increased from 63.6 to 86.2%,
while the recall for L-2 increased from 81.0 to 90.5%. In the test step, despite a decrease
in accuracy by 9.8%, the recall for L-1 increased from 64.3 to 71.4%, achieving balanced
predictions at each algal alert level. Figure 7 shows the results of the confusion matrix
comparison of the optimal RF model selected from the RF models with various data types.

The selected optimal RF model was constructed from data obtained using the ENN
sampling method without feature selection. In the training step, the optimal model showed
an increase of 11.3% in accuracy compared with the model using original data. During the
test step, although the accuracy decreased by 1.9%, the recall for L-1 and L-2 increased by
35.7% and 50.0%, respectively. The recall of each algal alert level was as follows: 85.0%
for L-0, 85.7% for L-1, and 100% for L-2. The hyperparameters of the optimal ANN and
RF models are listed in Table S6 in Supplementary Materials. In this study, the model
with ENN sampling was selected as the optimal model for predicting algal alert levels.
A comparison of the optimal models revealed that the models using non-linear feature
selection and the CC sampling method exhibited balanced predictions compared with the
models using the original data (Figure S2). All performance indices for both the training
and test steps were higher for the optimal RF model than for the optimal ANN model
(Figures 6 and 7). Therefore, the RF model was deemed more suitable for predicting the
algal alert levels.
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4. Conclusions

This study presented a series of processes for improving the prediction of algal alert
levels in the BJR. Based on the observed data, feature selection and resampling methods
were applied and two machine learning models were constructed. The following major
conclusions were drawn from this study:

• Applying resampling methods to the imbalanced classes observed in the original
data allowed the collection of data with balanced distributions for all classes, thereby
preventing biased learning of the model and improving its accuracy.

• Resolving the class imbalance via resampling methods proved to be more effective in
improving the accuracy of the model than adjusting the input variables via feature
selection methods.

• In the RF model, the accuracy of the model with the resampling method demonstrated
the highest performance, whereas in the ANN model, the predictive performance of
the model incorporating both feature selection and resampling methods appeared to
be superior.

• When considering non-linear models such as machine learning for prediction, it is
important to evaluate the availability of feature selection and resampling methods
according to the model type.

• The characteristics and quantity of the original data can serve as important factors
when selecting the feature selection and resampling methods. In addition, appro-
priate feature selection and resampling methods can be applied as useful tools for
constructing machine learning models.

This study aimed to construct a prediction model for algal alert levels in reservoirs
using readily available data from national monitoring stations and to provide a machine
learning model that improves accuracy via feature selection and resampling methods. The
proposed model is expected to be useful to engineers and decision makers involved in the
management of algal blooms in watershed areas, including inland weirs, facilitating the
establishment of effective strategies and regulations for their construction and operation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics11120955/s1, Appendix A: Description of structure for each resampling
method; Appendix B: Description of the RF model structure; Appendix C: Descriptive statistics for
cyanobacteria and nutrients in the BJR; Appendix D: Comparison of model performance according to
the feature selection; Appendix E: Comparison of model performance according to resampling methods;
Figure S1: Results of the dependence test between each input variable and cyanobacteria cell density;
Figure S2: Comparison of confusion matrices between the RF model using original data and the optimal
RF model with non-linear feature selection and CC sampling method; Table S1: Eutrophication standards
for single parameter index in Trophic state index (Carlson, 1997); Table S2(A): Overall performance of the
ANN model according to applied feature selection and resampling methods in training step; Table S2(B):
Overall performance of the ANN model according to applied feature selection and resampling methods
in test step; Table S3(A): Overall performance of the RF model according to applied feature selection
and resampling methods in training step; Table S3(B): Overall performance of the RF model according
to applied feature selection and resampling methods in test step; Table S4: Optimal performance of
the ANN model according to applied feature selection and resampling methods; Table S5: Optimal
performance of the RF model according to applied feature selection and resampling methods; Table S6:
Descriptive statistics for optimized hyperparameters obtained from the optimal model in ANN and RF
using randomly chosen training data.
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Abstract: Nowadays, people spend most of their time indoors. Despite constantly cleaning these
spaces, dust apparition cannot be avoided. Since dust can contain chemical elements that negatively
impact people’s health, we propose the analysis of the metals from the indoor dust component
collected in different locations in Dubai, UAE. Multivariate statistics (correlation matrix, clustering)
and quality indicators (QI)—Igeo, PI, EF, PLI, Nemerow—were used to assess the contamination
level with different metals in the dust. We proposed two new QIs (CPI and AQI) and compared
the results with those provided by the most used indices—PLI and Nemerow. It is shown that high
concentrations of some elements (Ca in this case) can significantly increase the values of the Nemerow
index, CPI, and AQI. In contrast, the existence of low concentrations leads to the decrement of the PLI.

Keywords: contamination; dust; clustering; pollution index

1. Introduction

Indoor dust is the settled particulate matter (PM) found on carpets, floors, surfaces,
and other objects in an indoor space. Among other pollutants from indoor dust, heavy
metals require extensive research due to their non-degradable properties, high toxicity,
and adverse effects on humans [1,2]. The United States Environmental Protection Agency
(USEPA) has raised the alarm about indoor air quality, considering it a significant concern
because it tends to be more polluted than outdoor air. This concern has grown because
people spend a significant portion of their time indoors, encompassing homes, workplaces,
schools, public spaces like shops, restaurants, and vehicles, amounting to up to 90% of
their daily activities [3]. Children, who spend most of their day at home, are particularly
vulnerable to environmental stressors because their breathing zone is close to the floor,
where residential dust tends to collect, exposing them to potential health risks [4–6].

Carbon dioxide, volatile organic compounds, biocontaminants, fungi, bacteria, and
particulate matters are among the indoor air pollutants with damaging potential to human
health listed by the European Federation of Allergy and Airway Diseases Patient Associ-
ations in their document [7]. Dust intake rates for children are estimated to be between
30 and 140 mg/day, whereas adults consume 2–30 mg/day [8,9].

According to [10,11], indoor dust can be described as tiny particles (≤100 µm) that
settle in indoor spaces. These particles can come from various sources situated inside
and outside the building. Particles with diameters smaller than 10 µm (PM10) can be
inhaled, the coarse fractions being retained in the upper airways, and those particles with
diameters less than 2.5 µm can reach the pulmonary system or enter the blood [12]. Particles
with diameters from 1 µm to 20 µm are responsible for the apparition of asthma [13].
Tsubata et al. [14] indicate that dust particles with diameters less than 11 µm contain up to
90% of allergens.

Research has indicated that indoor dust is a transporter for inorganic and organic
contaminants, including heavy metals, pesticides, polychlorobiphenyls, and polycyclic
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aromatic hydrocarbons [5,6,15–17]. Indoor dust is a heterogeneous combination of particles
that includes synthetic and natural fibers, hair, deposited atmospheric PM, biologically
derived material (pollen, molds, bacteria, germs, animal fur, and dander), ash, skin particles,
soot, and building and consumer product components [18]. Indoor dust typically contains
about 35% outdoor soil, but this can vary widely based on factors like pets, shoe-wearing
habits, and specific indoor settings. Indoor dust varies in organic content, typically ranging
from 5% to 40%. Finer particles contain more organics, which are vital for absorbing
pollutants. The fibrous particle content ranges from 9% to 89%, influenced by room type,
furniture, and pet presence [19,20].

Pollutants enter the human body by inhalation, ingestion, and dermal contact [6,21–24].
According to [25], when inhaled, these toxic metals in dust can inflame, sensitize, and even
scar the lungs and tissues because they are ubiquitous in the environment. Additionally, ex-
posure to these metals may result in gastrointestinal issues, reproductive system problems,
and nervous system disorders. Excessive exposure to Pb, Cd, Zn, and Cu is associated with
the risk of cancer [26,27]. In this article, we analyze only the toxic metal found in indoor
dust, whereas the dust microbiomes and metatranscriptomes have been studied in [28].

Bio-accessibility of heavy metals in indoor dust has been observed by physiologically
based extraction tests or simplified bio-accessibility extraction tests based on the rationale
that incidental oral ingestion is the main exposure pathway by which humans take in
contaminants in indoor dust, especially for children [29–31].

Indoor air pollution poses a significant global health threat, contributing to around
4.5 million annual deaths worldwide. This pollution is responsible for a range of health
issues, including pneumonia (12%), strokes (34%), ischemic heart diseases (26%), chronic
obstructive pulmonary diseases (22%), and lung cancer (6%) [32,33]. Therefore, research
on indoor air quality concluded that correct ventilation and proper cleaning [34,35] are
necessary to avoid such health damage.

The International Agency for Research on Cancer (IARC) has classified Al, Co, Fe, Ni,
and Zn as non-carcinogenic elements, whereas arsenic As, Cu, Cd, Cr, and Pb are classified
as both carcinogenic and non-carcinogenic elements. The U.S. Environmental Protection
Agency classified Cu, Cr, Ni, Zn, Cd, Mn, and Pb as environmental priority pollutants [36].
Moreover, it was shown that Cr, Cu, Ni, Zn, and Fe promote the exchange of electrons [34]
and help the apparition of reactive oxygen species in the lungs [37].

On one hand, Cu is a micronutrient, a catalyzer of redox reactions, essential for the
organism functioning. On the other hand, released in the atmosphere from anthropic (burn-
ing fossil fuel, solid waste management) and natural sources, it can attach to particulate
matter and is transported long distances from its source [38].

Heavy metals like As, Cd, Cr, and Pb, which are widespread environmental pollutants,
can cause health issues, including cancers, respiratory problems, cardiovascular diseases,
nerve damage, and slow growth development [39–42].

Different particulate matter can also contain other elements like Ca, Li, and K trans-
ported by the wind, issued from the lithology of the place being studied.

This article presents the analysis of indoor settled dust in Dubai, UAE, which holds
significant importance since Dubai’s rapid urban development and construction activities
are closely linked to indoor dust accumulation. Although studies on dust transportation
and outdoor pollution (particularly with heavy metals) in different emirates from the UAE
have been carried out [43–47], indoor pollution was less analyzed [28,48–50], with the
emphasis on gaseous pollutants. Therefore, in this study, the composition of indoor settled
dust from 20 important locations across Dubai is investigated using a complex approach
involving a multivariate statistical analysis combined with different indices, two newly
proposed here. It is shown that a correct conclusion on contamination cannot be drawn
from a single index computation but from a combination of such indices, given that some
elements present in high concentrations in the samples can have a significant influence
on the classification. Moreover, comparisons of the clustering based on the row data and
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the quality indicators may highlight the differences between the sites where the samples
were collected.

2. Materials and Methods
2.1. Data Series

Dubai, located in the United Arab Emirates (UAE) is a remarkable city known for its
unique blend of modernity and tradition. Situated on the Southeastern coast of the Arabian
Peninsula (Figure 1), Dubai is one of the most prominent global cities, attracting tourists
and business professionals from all over the world. It is bordered by the emirate of Sharjah
to its north, while Abu Dhabi, the UAE’s capital, lies to the south. The climate of the study
area is characteristic of the Arabian Peninsula, with hot and arid conditions prevailing
throughout the year. Summers are exceedingly hot, with temperatures often exceeding
40 ◦C (104 ◦F). The city receives limited rainfall, and as a result, Dubai’s terrain is primarily
desert, characterized by rolling dunes and sparse vegetation.
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Figure 1. Study area location and sampling map. The red points and the numbers represent the
sampling points and their IDs.

2.2. Sampling

Indoor-settled dust samples were collected using Dyson filters from twenty differ-
ent locations in Dubai Emirates (Figure 1) including residential areas (Al Simmak Street,
Bijada Blvd Street, Tulip Street), near heavy traffic junctions (Sheikh Zayed Highway),
sports facilities (Sports City, Victory Heights), touristic areas (bars, restaurants), near water
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bodies (Dubai Marina) and commercial areas (markets, beauty lounges, butchers’ shops).
Additionally, samples were also taken from specific buildings from Al Mustaqbal Street,
Sheikh Mohammed Bin Rashid Blvd, a roundabout in Motor City, and near metro stations,
offering a diverse range of environmental sources for analysis. The buildings’ character-
istics differed, varying from the location, building materials, purpose, and maintenance.
The dust samples were collected from undisturbed surfaces. Before sampling, the sites’
environmental conditions—temperature and humidity—were measured using a Graywolf
Indoor Air Quality Meter (GrayWolf Sensing Solutions, LLC, Shelton, CT, USA) [51]. The
measurements were performed when the atmospheric conditions were stable. The tem-
perature inside was between 19 and 20 ◦C, and the relative humidity (RH%) was in the
range of 40–45%. The coordinates of the observation sites were recorded using a South
S750 Handheld GPS meter (Guangzhou, China) [52].

A Dyson V15 Detect vacuum machine with two heads (Gurugram, India) (separately
collecting dust particles from rugs/carpets with a fluffy brush-bar and filter, and hard
floors with a built-in laser light to observe the incoming material from the cleaning surface)
was utilized. The Dyson vacuum has a HEPA post-motor filter that can trap particles with
dimensions at least of 0.1 microns. Moreover, the dust particles are continuously counted
and sized by a piezo-sensor [53].

A representative sampling strategy was adopted to collect the samples, which were
transferred into re-sealable plastic bags by gently sweeping with fingers wearing powder-
free nitrile gloves. They were safely packed and moved to the laboratory, where they were
screened to remove any visible hair, soil, and grit. The samples were then air-dried for
48 h to avoid moisture in a well-protected area. All the results were reported based on
dry weight.

2.3. Reagents, Standards and Laboratory Ware

In this research, all experiments were conducted using high-quality analytical reagent
(AR) grade chemicals. We sourced the reference standard, check standard, and reagents
from Sigma Aldrich (St. Louis, MO, USA). To create a 1:1 acid mixture, concentrated nitric
acid (69% v/v) and hydrochloric acid (37% v/v) were combined. The water purity was
ensured by using ultra-pure water with a chemical resistivity of 18.2 MΩ·cm from the
Merck Millipore( Burlington, MA, USA) water purification system. For sample oxidation,
30% hydrogen peroxide was utilized. The equipment quality was maintained by using
Class-A grade glassware for all the analyses. To eliminate potential contaminants, all items
of glassware and plasticware were cleaned by washing them 5–6 times with ultra-pure
water, and rinsing with 10% nitric acid, then drying them with an air drier. Later, sample
digestion was carried out using the Mars-6 system from CEM in Matthews, NC, USA.
Finally, ICP-OES analysis was conducted using OH, USA’s Perkin Elmer Avio 200 system.

The sample digestion process followed the USEPA 3050B procedure (Washington,
DC, USA) [54]. Initially, 0.2 g of each sample was weighed and placed into Teflon vessels
for microwave-assisted digestion. Subsequently, 10 mL of a 1:1 HCl: HNO3 solution was
added into the digestion vessel, thoroughly mixed with the sample slurry, and subjected to
microwave digestion at 95 ◦C for 5 min. After digestion, the slurry was allowed to cool,
and 5 mL of concentrated HNO3 was added. This mixture was then heated and refluxed
at 95 ◦C for 5 min, followed by cooling and carefully adding 10% H2O2 for oxidation.
The resulting solutions were transferred into 100 mL volumetric flasks, adjusted to the
markup with water, and subsequently filtered using Whatman 41 filters (Maidstone, UK).
The filtered solutions were subsequently subjected to analysis for heavy metals using an
ICP-OES system, with eight replicate analyses conducted for each sample.

Quality control and assurance protocols were carefully observed throughout the sam-
ple preparation and analysis processes, encompassing laboratory blanks, check standards,
and standard spiked samples. Laboratory blanks were prepared utilizing the same reagents
employed for digestion but excluding the addition of dust samples. For all metals, the
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laboratory blank values were under the concentrations of metals in the target samples. The
method detection limit (MDL) was calculated using the equation:

MDL = X + 2.896 × SD (1)

where X is the mean, SD is the standard deviation of blanks, and 2.896 is the value of
the Student statistics at the significance level of 99%, and eight degrees of freedom. This
equation has been used according to [55,56] because all the method blanks give either
positive or negative numerical results. The MDL values ranged between 0.02 µg/kg (Cd)
and 25.2 µg/kg (K). The metals recovery percentage (spiked and standard) was between
95% and 105%. The analytical precision for every metal of repeated analysis was determined
by using the coefficient of variation, which was less than 3%.

2.4. Statistical Analysis

The first step in the analysis was the computation of the basic statistics—minimum
(min), maximum (max), mean, median, standard deviation (std.dev.), coefficient of variation
(CV), skewness coefficient, and kurtosis. The correlation matrix was determined to assess
the correlation between the chemical elements in the dust.

After normalizing the data series, the set was submitted to clustering to group the
20 series recorded at different sites according to their common properties. For a better
classification, the k-means algorithm [57] and hierarchical clustering [58] were used to cross-
validate the results. Before performing the algorithms, the elbow [59] and silhouette [60]
methods were utilized to choose the optimum number of clusters, k.

Groups of series formed the output of the first technique, while that of the second one
was a dendrogram that shows the series hierarchy and can be constructed by employing
a certain distance, like the Euclidean one (utilized in this study). The degree of similarity
between the elements in each group was estimated using different methods like “complete”,
“average”, “ward.D2”, and “median”. The better-performing method was selected based on
the highest value of the cophenetic correlation coefficient [61]. After clustering, bootstrap-
ping was conducted to compute the average Jaccard measures, to ensure that the algorithm
provided a good representation of the groups. A value of the Jaccard coefficient greater
than 0.85 indicates a highly stable clustering, whereas one between 0.60 and 0.85 shows a
stable grouping [62].

The next stage was to perform the Principal Component Analysis [63]. PCA is a
multivariate statistical technique utilized for reducing the number of the observed parame-
ters by replacing them with a smaller number of components, artificially created, called
Principal Components (PC). The extracted PCs incorporate the highest part of the variance
of raw parameters (usually above 80%) and are obtained as a linear combination of those
parameters [64]. They can be considered independent factors that govern the development
of a given process [65]. Among the criteria employed for the PC selection—Explained
Variance Criterion [64,65], Catell Scree Plot [66], and Kaiser criterion [67]—the first two
were utilized in this research.

The R 4.3.1 software (https://cran.r-project.org/, accessed on 15 October 2023) was
the tool for performing the analysis.

2.5. Pollution Indices

To assess the pollution level or enrichment with the metals in the dust, the following
indices were computed. They are:

For the metal i, Igeo is calculated using the formula [68–70]:

Igeo = log2(Ci/(1.5CBi)), (2)

where Ci is the concentration of the i-th element in the dust and CBi is the value of the i-th
element in the background.
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The pollution index of the j-th element is given by [68]:

PIj = Cj/CBj. (3)

Values of PI in the intervals less than 1, 1–2, 2–3, 3–5, and greater than 5, respectively, indi-
cate the contamination absence, low, moderate, strong, and very strong pollution, respectively.

The enrichment factor with the j-th element, EFj, is defined by [68–70]:

EFj = [Cj/LVs]/[CBj/LVb] (4)

where Cj is the concentration of the element j in the sample, LVs is the concentration of the
reference element (generally Al, Ca, or Fe) in the sample, CBj is the reference concentration
of j-th element in the background, and LVb is the concentration of the reference element in
the background.

The background values utilized here are those from [71]. Same information can be
found in [72] for different regions of the world.

Based on the value of the EF factor—less than 2, between 2 and 5, in the interval 5–20,
between 20 and 40, or greater than 40—different classes of pollution are defined as deficient
to minimal, moderate, significant, very high, and extremely high, respectively.

Aggregated indices can be computed from the individual ones to assess the contami-
nation with multiple elements at a specific location. Two known indices were computed.
The first one is PLI, defined by [73]:

PLI =
(
∏n

j=1 PIj

)1/n
. (5)

PIs of some elements (As, Ba, Co, Pb, in this case) are very low (of order 10−2), so
they will artificially decrease the PLI value. Therefore, to have a correct evaluation of the
contamination degree, the PIs corresponding to these elements were removed from the
computation of the PLI, the resulting index, denoted by PLI_d, being also computed and
compared with PLI.

The second one is the Nemerow index, calculated by [74]:

PINem =

√[
PI2

+ PI2
max

]
/2 (6)

with
PImax = max(PI1, . . . , PIn) and PI =

(
∑n

j=1 PIj

)
/n. (7)

Values less than 0.7, in the intervals 0.7–1, 1–2, 2–3, and higher than 3 are indicative
of the absence of pollution, warning level, slight contamination, moderate pollution, and
heavy contamination, respectively.

Two new indices are proposed, analogous to those used in water pollution assess-
ment [75,76]. The first one, called in the following Combined Pollution Index (CPI), is
defined by the formula:

CPI =
1
n ∑n

j=1

(
Cj/CBj

)
. (8)

We propose to keep as reference values those for PINem.
The arithmetic weighted index is defined by:

AQI = (∑n
j=1 wjQj)/

(
∑n

j=1 wj

)
, (9)

with wj the weight associated with the quality index Qj of ith parameter,

Qj = 100 × Cj/CBj, (10)
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wj =
1

CBj

/(
∑n

j=1
1

CBj

)
. (11)

The following classes are associated with the ranges (0–25)—unpolluted, (26–50)—warning
level, (51–75)—slight pollution, (76–100)—moderate pollution, and (above 100)—heavy
pollution.

3. Results and Discussion

Table 1 contains the basic statistics of the chemical elements series from the samples.
The highest concentrations are those of Ca, K, Mg, Al, and Fe, and the lowest are those
of Co, As, and Pb. Standard deviations (std.dev.) of most series of elements are high,
indicating a high variation around the mean, but the variation coefficients are moderate.
Only a few series present an accentuated skewness (Cr, Ba, Na, Mg), indicating a large
variation range of the corresponding values.

Table 1. Basic statistics of the series of elements from the dust samples [mg/kg].

Cu Ni Pb Zn Co Cr Ba Fe Mn

min 3.04 29.85 0.05 25.81 0.16 19.14 28.96 568.36 66.38
mean 94.30 52.14 4.62 247.08 1.85 56.96 85.17 997.28 126.58
max 309.58 93.50 28.82 397.11 3.62 298.47 309.94 1572.14 186.24
median 53.54 47.10 2.37 255.84 1.91 33.27 74.36 979.05 133.08
Std.dev. 97.74 18.80 6.72 92.52 0.95 63.60 55.28 263.67 43.47
CV 1.04 0.36 1.46 0.37 0.52 1.12 0.65 0.26 0.34
Skewness
coef. 1.53 0.72 2.86 −0.57 0.04 3.06 3.54 0.40 −0.04

Kurtosis 0.65 −0.57 8.47 0.10 −0.76 10.31 14.39 −0.03 −1.71

Mg Sr Na Al Ca K As Cd

min 834.32 11.44 188.15 349.33 8033.17 3918.61 0.64 6.26
mean 1876.22 47.50 561.39 1033.78 14,170.02 9159.12 3.89 6.73
max 4972.55 120.35 1606.82 1883.38 20,421.29 17,984.38 5.61 7.45
median 1843.27 44.64 493.99 965.54 14,436.28 8661.69 4.26 6.68
Std.dev. 928.09 23.21 295.98 391.79 3085.02 2873.00 1.41 0.32
CV 0.49 0.49 0.53 0.38 0.22 0.31 0.36 0.05
Skewness
coef 1.86 1.43 2.43 0.70 −0.36 1.28 −0.85 0.46

Kurtosis 5.10 3.52 7.29 0.60 0.04 3.52 −0.01 −0.43

The high concentrations of Cu, Mg, Fe, and Al in the dust might be explained by their
existence in the natural rocks and anthropic activity. For example, there are 120 known
occurrences of copper mineralization in the United Arab Emirates, situated in the moun-
tainous region between Kalba and Dibba, or Wadi Hamm [77]. UAE is the seventh exporter
of Mg in the world [78] and exported USD 53.6 M in iron ore in 2021 [79]. Moreover, it is
the fifth aluminum-producing country in the world [80].

Studies indicate that indoor air quality is significantly affected by the outdoor air [81–85].
Kuo and Shen [83] found a similar increase in the concentrations of PM2.5 and PM10 in
both indoor and outdoor air during a dust-storm event and interpreted the cause to be
the extraction of outdoor air from their building’s ventilation system. The research of
Ai and Mak [86] and Meier et al. [87] has shown that natural ventilation contributes to
the deterioration of indoor air quality. Fisk [13] has found that the air in mechanically
ventilated buildings enters from a small number of intakes so that the indoor air quality is
significantly affected by the intakes’ neighboring sources situated outdoors. An extended
review of the research on the correlation between indoor and outdoor air quality was
performed in [88]. Therefore, in the case study, the high concentration of Mg, Fe, and Al
from the indoor dust (highly correlated to that from outdoors), originates from the soil
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dust composition of a desert area, but one cannot ignore the contribution from industrial
activities. The above-mentioned mining operations can introduce additional concentrations
of minerals like Mg, Fe, and Al into the environment, and dust storms, frequent in the
region, can transport these minerals over broader areas. To assess the minerals’ origin in
the indoor dust, samples should be analyzed in future studies.

Figure 2 presents the correlation matrix. The colors closer to red indicate a higher positive
correlation between elements, and those closer to dark blue show a higher negative correlation.

Toxics 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

composition of a desert area, but one cannot ignore the contribution from industrial activ-
ities. The above-mentioned mining operations can introduce additional concentrations of 
minerals like Mg, Fe, and Al into the environment, and dust storms, frequent in the region, 
can transport these minerals over broader areas. To assess the minerals’ origin in the in-
door dust, samples should be analyzed in future studies. 

Figure 2 presents the correlation matrix. The colors closer to red indicate a higher 
positive correlation between elements, and those closer to dark blue show a higher nega-
tive correlation. 

 
Figure 2. The correlation matrix. The higher the positive correlation, the more intense the nuance of 
red. The higher the negative correlation, the more intense the nuance of blue is. The nuances of light 
yellow, light orange, and indigo indicate a low or inexistent correlation. 

Table 2 contains the p-values associated with the correlations between the chemical 
elements in the dust samples. The p-values less than 0.05 indicate a correlation between 
the elements. The lower the p-value, the higher the correlation is. Significant correlations 
are between the pairs Co–Ni, Fe–Ni, Mn–Ni, Mn–Mg, Mn–Sr, Mn–Al, Mn–Cd, Zn–Mg, 
Zn–Ca, Co–Fe, Co–Mn, Co–Sr, Co–Al, Co–Cd, Fe–Mn, Fe–Mg, Fe–Sr, Fe–Al, Fe–Cd, etc. 
This means that significant correlations are found between the metals in the dust resulting 
mainly from industrial activities and transported for long distances by the wind. 

Table 2. p-values related to the correlation coefficients of the elements found in the dust. The shaded 
cells, containing p-values less than 0.05 (the level of significance), indicate the existence of a signifi-
cant correlation between the elements from the line and columns that intersect at that cell. 

 Cu Ni Pb Zn  Co Cr  Ba  Fe  Mn  Mg  Sr  Na  Al  Ca K  As  
Ni 0.465     

Pb 0.118 0.104     

Zn  0.105 0.484 0.945     

Co 0.386 0.000 0.153 0.537     

Cr  0.280 0.546 0.101 0.930 0.825    

Ba  0.936 0.446 0.869 0.966 0.300 0.705    

Fe  0.961 0.000 0.605 0.267 0.000 0.955 0.400    

Mn  0.817 0.000 0.226 0.011 0.000 0.862 0.881 0.000   

Mg  0.391 0.035 0.867 0.093 0.146 0.495 0.833 0.012 0.000   

Sr  0.882 0.007 0.763 0.106 0.009 0.924 0.637 0.027 0.011 0.272   

Na  0.285 0.734 0.314 0.109 0.822 0.676 0.590 0.433 0.164 0.469 0.401  

Figure 2. The correlation matrix. The higher the positive correlation, the more intense the nuance of
red. The higher the negative correlation, the more intense the nuance of blue is. The nuances of light
yellow, light orange, and indigo indicate a low or inexistent correlation.

Table 2 contains the p-values associated with the correlations between the chemical
elements in the dust samples. The p-values less than 0.05 indicate a correlation between the
elements. The lower the p-value, the higher the correlation is. Significant correlations are
between the pairs Co–Ni, Fe–Ni, Mn–Ni, Mn–Mg, Mn–Sr, Mn–Al, Mn–Cd, Zn–Mg, Zn–Ca,
Co–Fe, Co–Mn, Co–Sr, Co–Al, Co–Cd, Fe–Mn, Fe–Mg, Fe–Sr, Fe–Al, Fe–Cd, etc. This means
that significant correlations are found between the metals in the dust resulting mainly from
industrial activities and transported for long distances by the wind.

The optimal number of clusters, k, determined by the elbow and silhouette (Figure 3)
was two (Figure 3).

After bootstrapping, the calculated average Jaccard values were 0.983 and 0.980, and
the corresponding instabilities were 0.005 and 0.014. So, the groups found are highly stable.
The first cluster contains the samples collected mainly from Dubai downtown, Burj Khalifa,
near crowded zones, and in the vicinity of sandy zones. The second one is formed mainly
by locations situated near the seafront, in green zones, and residential areas. The sampling
series from the first cluster mainly contains the highest Pb, Zn, and Co concentrations and
the lowest concentrations of Ni, Mn, and Mg.
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Table 2. p-values related to the correlation coefficients of the elements found in the dust. The shaded
cells, containing p-values less than 0.05 (the level of significance), indicate the existence of a significant
correlation between the elements from the line and columns that intersect at that cell.

Cu Ni Pb Zn Co Cr Ba Fe Mn Mg Sr Na Al Ca K As

Ni 0.465
Pb 0.118 0.104
Zn 0.105 0.484 0.945
Co 0.386 0.000 0.153 0.537
Cr 0.280 0.546 0.101 0.930 0.825
Ba 0.936 0.446 0.869 0.966 0.300 0.705
Fe 0.961 0.000 0.605 0.267 0.000 0.955 0.400

Mn 0.817 0.000 0.226 0.011 0.000 0.862 0.881 0.000
Mg 0.391 0.035 0.867 0.093 0.146 0.495 0.833 0.012 0.000
Sr 0.882 0.007 0.763 0.106 0.009 0.924 0.637 0.027 0.011 0.272
Na 0.285 0.734 0.314 0.109 0.822 0.676 0.590 0.433 0.164 0.469 0.401
Al 0.937 0.001 0.949 0.302 0.002 0.351 0.387 0.000 0.001 0.011 0.168 0.838
Ca 0.963 0.159 0.587 0.002 0.202 0.824 0.783 0.068 0.000 0.066 0.030 0.005 0.100
K 0.880 0.596 0.924 0.257 0.276 0.923 0.957 0.396 0.847 0.717 0.978 0.336 0.372 0.108
As 0.784 0.816 0.200 0.671 0.705 0.739 0.909 0.416 0.700 0.265 0.516 0.116 0.188 0.804 0.389
Cd 0.816 0.000 0.461 0.076 0.002 0.493 0.890 0.000 0.000 0.016 0.003 0.125 0.001 0.004 0.493 0.829
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Figure 3. (a) Elbow and (b) silhouette methods for selecting the number of clusters.

The clusters obtained by the k-means algorithm (k = 2) are presented in Figure 4a.
The dissimilarities between the elements in two clusters, in the hierarchical clustering,
were assessed by different methods, among which “average” best performed in terms of
cophenetic correlation coefficient (which was the highest compared to those of “complete”,
“average”, “ward.D2”, and “median” procedures). In this method, all pairwise dissimi-
larities between the elements in two clusters were computed, and the distance between
clusters was calculated by averaging these dissimilarities.

After bootstrapping, the obtained average Jaccard values (instabilities) were 0.828 (0.146)
and 0.826 (0.172), showing that the clusters are stable. The dendrogram resulting from the
hierarchical clustering is displayed in Figure 4b. Comparing Figure 4a,b, one may observe
that both methods provided the same clusters.

PCA found 17 PCs, corresponding to the same number of chemical elements. However,
Table 3 provides the computation results of only five PCs, including the proportion of the
variance explained by each component, the cumulative proportion, and the standard
deviation. The first two (three) PCs explain 80.90% (89.5%) of the variance. So, PC1 explains
more than two-thirds of the information provided by the 17 variables, whereas PC2 and
PC3 explain, respectively, 11.53% and 8.58% of the total variance.
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Table 3. PCA.

PC1 PC2 PC3 PC4 PC5

Standard deviation 1.314 0.536 0.463 0.271 0.249
Proportion of Variance 0.6935 0.1152 0.0858 0.0294 0.0249
Cumulative Proportion 0.6935 0.8087 0.8946 0.9241 0.9489

The cumulative proportion of PC1–PC3 is about 89.46% of the total variance. So,
PC1–PC3 (or even only PC1 and PC2) can accurately represent the data set. The screen plot
that reflects this information is shown in Figure 5a.
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The PC score (factor loading) of each variable in a PC indicates the processes con-
trolling the variability of the data [89]. The loading table (Figure 5b) shows that the first
principal component has high positive values for Co and Na. The values for Mg, Cd, Ca,
and Ni are negative. This suggests that sites with a component of Co and Na in the dust
are in excess. In PC2, Ca, Cr, and Pb are in excess, while the negative contributions come
from Na, As, K, and Al. The highest contributions on PC3 are of Pb, Cu, Zn, Cr, and Ni.
Therefore, the main contributions are those of Cr, Cu, Zn, Pb, Ni, and As, resulting mainly
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from human activities (transportation and industry). The variables’ quality representation
on the factors map (cos2 representation) is shown in Figure 6. The better the representation,
the higher the cos2 is. So, the groups (Mn, Cd, Fe, and Ca), (Pb, Na, K, and Cr), and (Mn,
Cd, Fe, and Ni) are, respectively, the best represented on the first three PCs. The variables’
contributions in different dimensions are also represented in Figure 7.
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The highest absolute values on PC1 are represented in nuances of blue. They are Mn,
Cd, Fe, and Ca. Note that Mn, Cd, and Sr are grouped, indicating their correlation. The

113



Toxics 2023, 11, 933

same remark stands for Mg, Ni, and Fe. Co is negatively correlated with Fe and Al; the
same remark for Na and Pb, etc.

The contamination levels with respect to the Igeo values from the literature and the
degree of contamination at the studied sites are presented in Table 4. The elements with
significant impacts at all sites are Fe, Mg, Ca, and K.

Table 4. Igeo values, corresponding contamination levels, and the sites included in each class [90].

Igeo Class Igeo Value Contamination Level Contamination Level at the Study Sites

0 Igeo ≤ 0 Uncontaminated
Cu, Ni, Pb, Co, Cr, Ba, Sr, Mn, Sa Cd—all
sitesZn: 1–6, 12–14, 16–19; Na: 1–6, 8–19; Al:
9–19, As, Cd

1 0 < Igeo < 1 Uncontaminated/Moderately
contaminated

Zn: 7–11, 15, 20; Na: 7, 20; Fe: 7, 9, 17; Mg: 17;
Al: 1, 3, 7, 8, 10–18, 20

2 1 ≤ Igeo < 2 Moderately contaminated Fe: 1, 3–5, 8, 10–16, 18–20; Mg: 1, 7–9, 11,
18–20; Al: 2, 4–6; K: 17

3 2 ≤ Igeo < 3 Moderately/Strongly
contaminated

Fe: 2, 6; Mg: 2, 4–6, 10, 12–16; K: 1, 3, 4, 8, 9,
11–13, 15, 20

4 3 ≤ Igeo < 4 Strongly contaminated Mg: 3; K: 2, 5, 7, 9, 15, 18, 19;

5 4 ≤ Igeo < 5 Strongly/Extremely
contaminated Ca: 1, 6–11, 14, 15, 17–20

6 Igeo ≥ 5 Extremely contaminated Ca: 2–5, 12, 13, 16

With respect to PI, no pollution with Cu, Ni, Pb, Co, Cr, Ba, Mn, Sr, As, or Cd was
found. Low pollution with Zn was found at the sites 1, 4, 5, 7–12, 15, 18–20, Al—9, 17, and
20. Moderate pollution was that with Fe (at 7, 9, 17), Mg (at 17), and Al (at 1, 3, 7, 8, 10–16,
18). Strong pollution was noticed with Fe (at 1, 3, 5, 8, 10–16, 18–20), Mg (at 7–9, 11, 19, and
20), and Al (at 2 and 4–6). Very strong pollution was registered with Fe (at 2 and 4) and
Mg (1–6, 10, 12–16, and 17). The PI for Na falls between 1 and 2, at sites 1, 5–7, and 18, and
between 2 and 3 at 20. PIs for Ca and K are greater than 5 at all sites.

Based on the EF computed with respect to Al, moderate enrichment was seen for Fe
(at sites 8, 9, and 19), with Mg (at 1, 2, 4, 6, 8–10, 12–16, and 18–20), and K (at 1–6 and
12–17), whereas significant enrichment was determined only with Mg at site 3, and K (at
7–11, and 18–20).

The EF calculated with respect to Ca shows that all the sites are in the same category
of deficient to minimum enrichment. EF computed with respect to Ca indicates a moderate
enrichment in K (at all sites but 6, 7, and 18) and Mg (at site 3). Significant enrichment in K
was determined at sites 7 and 18 and in Ca at all sites.

PLI values are between 0.26 and 0.58, so less than 1, proving a variation between
perfection (indicated by a value of 0) and baseline (shown by a value of 1). Since the PIs
corresponding to Co, As, Cd, and Pb are under 0.03, they contribute to the decrease in PLI
values. Removing these elements from computation, denoted by PLI_d, produced values
from 0.60 to 1.61 (Figure 8). PLI_d is more than two times higher than PLI.

PLI_d indicates a variation between perfection and baseline (0 < PLI < 1) for sites 1, 8,
9, 16, 17, and 19, and there is a progressive deterioration of the air quality (1 < PLI < 1.61)
for all sites but those already mentioned. Locations 2, 4, 6, 12, and 20 have the highest PLI
and PLI_d, and so the biggest contamination, as shown in Figure 8. All but site 20 belong to
the second cluster in Figure 4a.
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Figure 8. CPI and CPI-Ca.

Taking into account all PIs, the Nemerow pollution index obtained values between
18.02 and 45.56, indicating high contamination at all locations. Removing the PI for Ca,
the values of the index, denoted PINem−Ca, varied in the interval 3.67–16.89. Notice the
essential influence of the very high PIs on the values of the Nemerow index.

All values of the CPI index (Figure 8) were between 3.09 and 5.43, indicating heavy pollution.
Since Ca is an element that has mainly a natural origin, and we did not find essential

evidence of another origin in the region, removing it from the CPI computation (and
denoting the new index by CPI-Ca), the variation in CPI-Ca was in the interval 0.92–2.46.
Therefore, the pollution level from site 17 is graded warning, locations 2, 3, 5, 6, 10, and 18
are moderately polluted, and the rest are slightly contaminated.

The PINem and CPI are influenced by the highest values of the ratio Cj/CBj, in contrast
with the PLI, whose values are more related to the elements’ lowest concentrations.

Computation of the AQI (Figure 9) taking into account all elements (case a) or without
calcium (case b—AQI-Ca) resulted in (a) heavy pollution at all sites, respectively, and
(b) slight pollution at site 17 and moderate contamination at sites 9, 16, 19. Three of these
locations are situated in the same cluster from Figure 4a. The shapes of the CPI and AQI
indices charts are similar. A significant decrement in their values is noticed when Ca is
removed from computation.
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As mentioned above, the PIs computed for four elements were under 0.01, and they
were removed from the computation of the PLI, leading to obtaining PLI_d. For consistency,
we removed these elements from the initial data set (let us denote it Set1), obtaining set S2
that contained only 13 series of elements. The same analysis as that presented above has
been performed for Set2. We only summarize the findings:

â The k-means algorithm and hierarchical clustering provided the same clusters and
dendrogram as in Figure 4, indicating that the removed series does not have a signifi-
cant importance to lead to a difference between the sites.

â The Nemerow indices computed with Set2 are the same (up to the third decimal) as
those computed using Set1, while the CPI and AQI have higher values for Set2.

â The k-means algorithm performed on the series of indices obtained from Set2 provided
the same clusters as in Figure 4a—see Figure 10a.

â The hierarchical clustering performed on the series of indices obtained from Set2
provided a cluster containing the series 1, 7–9, 11, 17, 19, and 20 which are also in the
left-hand-side cluster from Figure 4b.
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Dubai Marina, Burj Khalifa, and Dubai Sport City. Site 16 is situated on Dubai Marina 
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Figure 10. (a). The clusters found by k-means with k = 2; (b) Dendrogram from the hierarchical
clustering for Set2.

Figure 11, the biplot obtained performing the PCA for Set2 indicates the positions
of the sites in the first cluster from the dendrogram—all grouped at the left-hand side
of the biplot, with negative components on PC2. A clear separation line (the red one)
can be drawn between the two clusters. The locations from the first cluster are in tourist
areas—Dubai Marina, Burj Khalifa, and Dubai Sport City. Site 16 is situated on Dubai
Marina Promenade, near the water, in a restricted area for cars, a zone with the lowest
recorded concentrations of the study metals. This particular situation is emphasized by its
position on the biplot.

We should remember that, generally, the perfect superposition of the clusters deter-
mined by both methods is a particular situation given the various mathematical back-
grounds on which the algorithms rely. In the case of homogenous sets, it is expected (which
is not the case in this study).

Performing the algorithm to determine the clustering by elements, two clusters were
obtained, one with only two elements As and Cd (when working with Set1), and Ca and
K (when working with Set2). This situation pointed out the elements with the lowest and
highest concentrations, respectively, the last ones requiring attention.
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4. Conclusions

This article analyzed the degree of enrichment with metals of the dust collected indoors
at different locations in Dubai, using multivariate statistics and pollution indices. The study
fills a gap in the knowledge concerning indoor pollution due to dust in a region where
frequent dust storms appear.

It was shown that the highest enrichment factors (for Ca, Cu, Mg, and Fe) are the
consequence of the soil lithology and industrial activities (especially mining), dust being
transported for long distances from the emission places during dust storms.

We proposed two new pollution indices—CPI and AWI—and used them for assessing
the contamination at the observation places. We classified the sites based on the set
formed by the PLI, CPI, AWI, and the Nemerow index and compared it with that built
by row data series. It was found that two sites fall into different clusters resulting from
these classifications.

Another finding that opens a research direction is using different groups of data sets
for classifications in practical applications. It was shown that for the clusters built when
eliminating the elements with the lowest concentrations (much under the warning limits)
from the data set, the obtained classifications are more realistic.

Employing different clustering algorithms on the raw data series and the pollution
indices series, and the use of stability criteria, are important for finding the most similar
series in the data set (those that are found all the time together in the same cluster).

In a future study, we intend to present a methodology that will come to cross-validate
the clustering findings, using supplementary selection criteria and decision trees.
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Citation: Bărbulescu, A.; Barbes, , L.

Modeling the Chlorine Series from

the Treatment Plant of Drinking

Water in Constanta, Romania. Toxics

2023, 11, 699. https://doi.org/

10.3390/toxics11080699

Academic Editor: Daniel Drage

Received: 1 July 2023

Revised: 10 August 2023

Accepted: 11 August 2023

Published: 13 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Modeling the Chlorine Series from the Treatment Plant of
Drinking Water in Constanta, Romania
Alina Bărbulescu 1 and Lucica Barbes, 2,3,*

1 Department of Civil Engineering, Transilvania University of Bras, ov, 5 Turnului Str., 500152 Brasov, Romania;
alina.barbulescu@unitbv.ro

2 Department of Chemistry and Chemical Engineering, Ovidius University of Constant,a, 124 Mamaia Bd.,
900152 Constanta, Romania

3 Doctoral School of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313, Splaiul
Independentei, 060042 Bucharest, Romania

* Correspondence: lucille.barbes2020@gmail.com

Abstract: Ensuring good drinking water quality, which does not damage the population’s health,
should be a priority of decision factors. Therefore, water treatment must be carried out to remove
the contaminants. Chlorination is one of the most used treatment procedures. Modeling the free
chlorine residual concentration series in the water distribution network provides the water supply
managers with a tool for predicting residual chlorine concentration in the networks. With regard to
this idea, this article proposes alternative models for the monthly free chlorine residual concentration
series collected at the Palas Constanta Water Treatment Plant, in Romania, from January 2013 to
December 2018. The forecasts based on the determined models are provided, and the best results
are highlighted.

Keywords: free chlorine residual concentration series; modeling; forecast; water treatment plant

1. Introduction

Drinking water quality is essential, given its impact on the population’s health [1].
Therefore, ensuring a sufficient quantity and adequate quality must be a priority of each
state/community to improve the health indicators and the population’s well-being [2].
The urban population’s primary drinking water supply sources are surface water and
groundwater, whereas wells are used in rural areas [3]. In an ideal scenario, a water
supply system would operate continuously, without changes in flow rate or other special
conditions for individual treatment processes, when the raw water quality and quantity
are constant. In reality, ideal conditions are not always met [4,5]. Given that various
contaminants can affect the drinking water quality, it is crucial to treat the water before its
distribution for consumption [6,7].

Due to its effectiveness (in killing viruses, bacteria, etc.), environmental feasibility,
and long-lasting effects, chlorine is the primary disinfectant used for drinking water
treatment [8,9]. Hypochlorous and hydrochloric acids are produced by adding chlorine
or its derivatives to the raw water [10]. The active element in the disinfection process (the
hypochlorite ion) results from the dissociation of the hypochlorous acid. During the water
treatment, chlorine oxidizes the mineral substances and then produces chloramines by
reacting with ammonia. Supplementing the chlorine dose leads to chloramine oxidation,
increasing the free chlorine residual level [11,12], which is crucial for effective disinfection.
The laboratory analyses performed on water samples taken at the outlet of the water treat-
ment station and the distribution network indicate the disinfection stages and the necessary
chlorine doses for ensuring water quality [13,14]. A balance in the chlorine dosing must
be kept to protect the population against contamination, on the one hand, and avoid the
by-products’ formation and pipes’ corrosion, on the other hand [14,15]. In these conditions,
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models that accurately predict the free chlorine residual in the distribution system have
been proposed as a first step for optimizing the water treatment plant functioning.

Ghang et al. [16] introduced a chlorine decay model based on potential chlorine decay
mechanisms and evaluated its performances on four raw surface and alum-treated wa-
ters. The results prove that the proposed model accurately predicts free chlorine residuals
(R2 = 0.98). Gómez-Coronel et al. [17] reported satisfactory results in the chlorine concen-
tration at the input of a water distribution system simulated in EPANET, with a genetic
algorithm implemented in MATLAB. The EPANET MSX software was used to model
chlorine decay in Algarve’s drinking water supply systems [18]. García-Ávila et al. [19]
employed the same tool with a built-in first-order equation for modeling chlorine decay
for a case study from Ecuador. Nejjari et al. [20] proposed a methodology for efficiently
calibrating the free chlorine decay models tested on the Barcelona water transport network.
Zhang et al. [21] elaborated a model for integrating water quality and operation for fore-
casting water production (using a genetic algorithm-enhanced artificial neural network). In
contrast, other authors focused on optimizing the chlorine dosing [22,23].

Quantifying chlorine residual, turbidity, standard plate count (SPC), coliforms, etc.,
was performed using statistical methods in a water distribution system from Pakistan [24].
The correlations between the coliforms’ presence in the water and the free chlorine content
in the Parisian distribution system were also analyzed based on statistics and econometrics
approaches [25]. For Romania, only a few studies provide results on drinking water
treatment [13,26,27].

To summarize, most results on the chlorine concentration series in water distribution
systems use differential equations and a few other methods, such as artificial intelligence.
Despite the last period, econometrics and hybrid methods proved their efficiency for
modeling and forecast time series in different research fields, like economics [28–30], signal
analysis [31], hydro-meteorology, environmental pollution [32–35], and pharmaceutics [36],
they were less utilized in modeling the chlorine series at the outlet of the water treatment
plants and in the water distribution systems.

In the above context, this article proposes alternative models (econometrics not based
on differential equations) for the free chlorine residual concentrations series collected in the
water treatment plant Palas (Constanta, Romania) from January 2013 to December 2018. It
also emphasizes the possibility of using them for the forecast. The proposed approaches are
univariate, not multivariate, as in most of the above-cited literature. They do not require
deep specific knowledge in the modeling field (as in the case of differential equations
and artificial intelligence) and are easily understood and utilized. Another advantage
is extending the research to an area less explored in Romania, for which only a limited
number of studies were performed. The models are compared, and their weaknesses and
advantages are highlighted.

2. Materials and Methods
2.1. Data Series and Statistical Analysis

The Palas Constanţa treatment, storage, and pumping complex (PCTC) is located in
the industrial area of Constanţa city on the Black Sea Littoral in Romania (Figure 1) and
provides water to about 350,000 inhabitants.

The groundwater sources that feed the treatment plant are Cis, mea I A, Cis, mea I B,
Cis, mea I C, and Cis, mea II. Cis, mea I A + B+C are formed of 36 wells with depths from
50 to 120 m, except P35, with a depth of 300 m. They have a total supply capacity of
7657 m3/h. Cis, mea II has 12 wells with depths between 90 and 150 m and a pumping
capacity of 1940 m3/h. The Gales, u surface water source, with 13,050 m3/h catching
capacity, is situated along the banks of Poarta Alba–Midia (on the Channel Danube–Black
Sea). It has five intakes equipped with metal sieves for retaining the suspended particles.
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Figure 1. (a) Map of Romania; (b) the Palas Constanța water treatment complex (PCTC). 

This source was created to cope with the high water consumption during the sum-
mer and supplement Constanța city’s water supply when necessary. The water quality is 
good even before its treatment, according to [35,37]. After the treatment, the water must
satisfy the Directives of the Council of the European Communities [38,39] and the Water
Framework Directive [40]. The PCTC stores the water, which is distributed to Constanța 
and the Littoral water supply system. According to [41], in 2020, the total amount of 
water supplied to the inhabitants of Constanta was 42,150 m3 per day. 

Generally, for the drinking water distribution networks, there is a risk of insufficient 
drinking water distributed to consumers caused by phenomena such as the clogging of 
water sources or the lowering of the surface water level due to drought and lack of pre-
cipitation [42,43]. To avoid such situations, there are four water storage stations in Con-
stanța, each of 20,000 m3, one of 6.000 m3, and another of 10,000 m3. The Caragea Dermen 
groundwater source can also be accessed. It is formed by 18 wells with depths between 35 
and 90 m and has a supply capacity of 3.549 m3/h. The water from different sources un-
dergoes different chlorination processes. Only after chlorination are the streams of water 
mixed and introduced into the distribution network. The studied data series (Figure 2) is 
formed of the monthly free chlorine residual concentration collected at the outlet of PCTP 
during January 2013–December 2018. 

Figure 2. The monthly series of free chlorine residuals from January 2013 to December 2018 
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Figure 1. (a) Map of Romania; (b) the Palas Constant,a water treatment complex (PCTC).

This source was created to cope with the high water consumption during the summer
and supplement Constant,a city’s water supply when necessary. The water quality is
good even before its treatment, according to [35,37]. After the treatment, the water must
satisfy the Directives of the Council of the European Communities [38,39] and the Water
Framework Directive [40]. The PCTC stores the water, which is distributed to Constant,a
and the Littoral water supply system. According to [41], in 2020, the total amount of water
supplied to the inhabitants of Constanta was 42,150 m3 per day.

Generally, for the drinking water distribution networks, there is a risk of insufficient
drinking water distributed to consumers caused by phenomena such as the clogging
of water sources or the lowering of the surface water level due to drought and lack of
precipitation [42,43]. To avoid such situations, there are four water storage stations in
Constant,a, each of 20,000 m3, one of 6.000 m3, and another of 10,000 m3. The Caragea
Dermen groundwater source can also be accessed. It is formed by 18 wells with depths
between 35 and 90 m and has a supply capacity of 3.549 m3/h. The water from different
sources undergoes different chlorination processes. Only after chlorination are the streams
of water mixed and introduced into the distribution network. The studied data series
(Figure 2) is formed of the monthly free chlorine residual concentration collected at the
outlet of PCTP during January 2013–December 2018.
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2.2. Statistical Analysis

Basic statistics (mean, median, standard deviation—SD, variation coefficient—CV)
were first computed for the monthly series. Then, the following hypotheses were tested:
normality against the non-normality (by the Jarque-Bera [44], Shapiro–Wilk [45], and
Anderson–Darling [46] tests), homoscedasticity against heteroskedasticity (by the Levene
test) [47], the series stationarity vs. its nonstationarity in mean and variance (by the
KPSS test) [48]. The null hypothesis that there is no time series trend was tested against
the alternative that a monotonic trend exists via the Mann–Kendall and seasonal Mann–
Kendall test [49–51]. When the null hypothesis is rejected, Sen’s procedure [52] can be used
to determine the monotonic trend.

2.3. Mathematical Modeling

Since the preliminary statistical analysis revealed the series seasonality, different
approaches have been adopted to model the data series.

In the first approach, the series (yt) was decomposed using an additive model, of
which its components are the trend, the seasonal component, and the random variable. In
this case, the steps were the following [53]:

• Determine the trend using the linear trend computed via Sen’s method;
• Calculate the detrended series by subtracting the trend from the data series;
• Determine the seasonal component;
• Determine the remainder (random or residual component) as the difference between

the detrended series and the seasonal component.

In the multiplicative decomposition, the steps are similar, but the addition is replaced
by multiplication and the subtraction by division in the second and fourth steps from the
previous method.

In the second approach, the decomposition was conducted following a similar proce-
dure, but the trend was determined using a moving average method of the 12th order.

The third approach was to use the Holt–Winters method, where the series was de-
composed using Equations (1)–(4) in the additive model, with a seasonal period p = 12
as follows:

ŷt+h = at + hbt + st−11+(h−1)mod 12, (1)

with
at = α(yt − st−12) + (1 − α)(at−1 + bt−1), (2)

bt = β(at − at−1) + (1 − β)bt−1, (3)

st = γ(yt − at) + (1 − γ)st−12, (4)

In the multiplicative model, the equations are (5)–(8), which are expressed as follows:

ŷt+h = (a t + hbt)st−11+(h−1)mod 12, (5)

where
at = αyt/st−12 + (1 − α)(at−1 + bt−1), (6)

bt = β(at − at−1) + (1 − β)bt−1, (7)

st = γyt/at + (1 − γ)st−12, (8)

in the hypothesis that at and st−12 are not zero.
In (1)–(8), α, β, γ are smoothing parameters that must be determined for the level, at,

trend, bt, and seasonal component, st, respectively [54].
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The fourth proposed model is a Seasonal Autoregressive Integrated Moving Average
model, SARIMA. An ARIMA (p,d,q) process (xt) with a constant is defined by the following:

φ(L)(1 − L)dyt = c + θ(L)εt, (9)

where L is the backward operator and

φ(L)yt =

(
1 −

p

∑
i=1

φiLi

)
yt, (10)

θ(L)εt =

(
1 +

q

∑
i=1

θiLi

)
εt, (11)

where
yt = xt − xt−d. (12)

p and q are the numbers of autoregressive and moving average terms, respectively, d is the
differentiation degree, and (ε t) is white noise.

A SARIMA (p,d,q) × (P, D, Q)m (seasonal ARIMA model) is expressed as the
following equation:

φ(L)Φ(Lm)(1 − L)d(1 − Lm)Dyt = θ(L)Θ(Lm)εt, (13)

where

Φ(L)yt =

(
1 −

P

∑
i=1

ΦiLi

)
yt, (14)

Θ(L)εt =
(

1 + ∑Q
i=1 ΘiLi

)
εt, (15)

m, D, P, and Q represent the number of seasonal periods, the seasonal differencing, autore-
gressive, and seasonal moving average terms, respectively [55].

The residual independence was tested using the Box–Ljung test [56].
In all cases, apart from the residuals‘ analysis (normality, homoscedasticity, and

randomness), the mean absolute deviation (MAD), mean standard deviation (MSD), and
mean absolute percentage error (MAPE) were also computed to assess the models’ quality.
Comparisons of the models, their advantages, and drawbacks are finally discussed.

The MINITAB 17, trial version (https://www.minitab.com/en-us/products/minitab/,
accessed on 15 June 2023) and the R software, v.4.3.1 (https://www.r-project.org/, accessed
on 15 June 2023) were utilized for testing the statistical hypotheses and
mathematical modeling.

3. Results and Discussion
3.1. Results of the Statistical Analysis

The basic statistics of the data series are as follows: minimum = 0.200, maximum = 0.7400,
mean = 0.4835, median =0.5000, standard deviation (SD) = 0.1181, coefficient of variance
(CV%) = 24.42, skewness = −0.22, and kurtosis = −0.07. Thus, there is a small variation in
the series values, and the distribution is left skewed.

Based on the above results, the computed value of the Jarque–Bera statistics was 0.4384,
indicating that the normality hypothesis cannot be rejected at a significance level of 0.05. A
similar result was obtained by applying the Shapiro–Wilk test. The p-value computed in
the Levene test is 0.582 > 0.05, so the homoscedasticity hypothesis cannot be rejected. The
statistics of the KPSS test for level (trend) stationarity is 0.59209 (0.03532), and the p-value
is 0.02336 (0.1). So, the hypothesis of the level stationary is rejected, and that of the trend
stationarity cannot be rejected at the significance level of 0.05. The Mann–Kendall test and
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its seasonal version rejected the null hypothesis. Therefore, based on Sen’s procedure, a
linear trend, with the following Equation (16) can be fitted:

Yt = −0.001429(t − 1) + 0.542143, (16)

where Yt is the concentration in the month t.

3.2. Models

When using the first approach, the series decomposition via the additive model
(denoted as DECA) is presented in Figure 3a. The recorded (Actual) and the computed
(Fitted) values are represented in blue and brown, respectively, and the trend is in green.
The violet curve represents the series forecast for the next 48 months. The residuals are
normally distributed, according to the Q-Q plot (Figure 3b) and the results of the Shapiro–
Wilk test. They are homoscedastic (the p-value of the Levene test is 0.582 > 0.05) and
autocorrelated (the first-order correlation coefficient is −0.3195).
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Figure 3. (a) Time series decomposition plot for the studied series. DECA; (b) the Q-Q plot of the
random component. Mean is the average of the residual component’s values, StDev is the standard
deviation of the residual component’s values, N is the number of the values, AD is the value of the
Anderson–Darling statistics from the Anderson–Darling applied to the residual component, and
P-value is the p-value computed in the Anderson–Darling test on the residual component.

The highest seasonal index corresponds to November, and the lowest to June (Figure 4a).
The highest variations of the detrended series (Figure 4b) are those from November and
March and the lowest from October.

The highest percentage variations per season (Figure 4c) were in March and November.
The highest variation in the residual component (therefore, the worst fitted value) was in
March, and the lowest one was in October (Figure 4d).

A similar behavior is noticed in the case of the multiplicative decomposition model
(denoted in the following as DECM). Figure 5 shows the original series, the detrended one,
the seasonally adjusted series, and the residual one.

Removing the trend from the initial series increases the series range. The seasonally
adjusted series presents a lower variance than the original one, indicating that seasonality is
a significant component of the series. The multiplicative decomposition model with a linear
trend is slightly worse than the additive one since the mean absolute deviation (MAD)
of 0.0773, mean standard deviation (MSD) of 0.0114, and mean absolute percentage error
(MAPE) of 18.642 are higher than those in the additive model (0.0767, 0.0098, and 18.4257,
respectively). Still, the models do not provide significant differences between the seasonal
components, percent variation per season, or residuals per season. The hypotheses of the
residuals series normality and homoscedasticity could not be rejected, but the randomness
could. Therefore, one should look for a model with uncorrelated residuals to avoid the
errors’ propagation.
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In the second approach (decomposition with a 12th-order moving average trend), the
best model was the additive one (denoted as MAA12). Figure 6 shows the initial series
(observed), its trend, the seasonal, and the random component (residual). Due to the
moving average computation, the trend is not linear or monotonically decreasing.
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Figure 6. MAA12: (a) The initial series. (Observed is the default name given to it by the software);
(b) Trend; (c) Seasonal component; (d) Random component.

The seasonal indices are, respectively, Jan = 0.04668, Feb = 0.03876, Mar = −0.01790,
Apr = 0.00360, May = −0.01940, June = −0.08790, July = −0.05149, Aug = −0.078569,
Sept = −0.05648, Oct = 0.10001, Nov = 0.08059, and Dec = 0.04210. In this case, the highest
values of the seasonal component are recorded in October, followed by November, and
the lowest in June. The highest seasonal values are correlated to the higher chlorination
necessity (in November and December) after the high season and the precipitation absence
in summer (to maintain the quality of the drinking water), respectively, to the lowest
chlorination necessity in June after the spring season and the high precipitation period.

The random component’s analysis provides a p-value of 0.9195 in the Shapiro–Wilk
test, so the normality hypothesis cannot be rejected. The correlogram (Figure 7) shows
again a first-order autocorrelation of the random component’s values.

The hypothesis of the random component’s homoscedasticity could not be rejected.
For all statistical tests, the significance level was kept at 0.05. In MAA12, which is better than
the multiplicative model with a 12th-order moving average trend (denoted as MAM12),
MAD = 0.07601, MSD = 0.00870, and MAPE = 18.6546. In terms of MSD and MAD, the
MAA12 is the best, while with respect to MAPE, the best is DECA. In both situations, a first-
order autocorrelation of the residual series is present, so a third approach, the Holt–Winters
method, was proposed to describe the series evolution.

Figure 8a provides the series decomposition using the multiplicative Holt–Winters
method (denoted as MHW). The smoothing parameters are α = 0.04697, β = 0.07233, and
γ = 0.43818, and the initial parameters and seasonality indices are a = 0.38112, b = −0.00191,
s1 = 0.10025, s2 = 0.03342, s3 = 0.06512, s4 = 0.03010, s5 = 0.01835, s6 = −0.0806, s7 = 0.00810,
s8 = −0.09001, s9 = −0.04201, s10 =0.11143, s11 = 0.12542, and s12 = 0.11005.
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Figure 8. (a) Holt–Winters multiplicative model; (b) Residuals’ histogram; (c) Residuals correlogram.

In MHW, the level decreases in time, the trend increases (but not monotonically), and
the seasonal component is not constant, according to the regression Equation (4) (or (8) in
the multiplicative model).

Adding up the values of the level with the corresponding ones of the trend will result
in a decreasing series of values (a decreasing trend in the first approach). Similar results
were obtained using the multiplicative Holt–Winters method.

The level compound’s shape in MHW is concordant with the time series non-stationarity
in level. Among the seasonal components, the highest values are recorded in November and
October, followed by December. The seasonal values of the chlorine introduced in water in
the treatment station after the high season are higher than in other periods (do not forget
that the treatment plant is situated on the Black Sea Littoral in a tourist area, and during
summer, the pollution is higher than in the rest of the year) and depends as well on the
precipitation record during summer (that can carry the pollutants affecting the source
water quality). In the additive Holt–Winters model (denoted as AHW), MAD = 0.0803,
MSD = 0.0130, and MAPE = 18.8673, whereas in MHW, the corresponding values are MAD
= 0.0772, MSD = 0.0118, and MAPE = 18.2619.
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The tests on residuals did not reject their normality (see the histogram in Figure 8b)
and homoscedasticity, but the randomness (see the correlogram in Figure 8c).

Figure 9 illustrates the MHW model’s forecast for the next 48 months.
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Figure 9. Forecast with the MHW model. The black curve is the series, the blue one is the forecast
and the grey backgrounds are the confidence intervals at 95% and 99%, respectively.

The series values are represented in blue, and the confidence intervals at 99% and 95%
confidence levels are represented in two nuances of grey. The shape of the forecast curves
is similar to that of the data series, confirming the modeling quality.

The advantage of this approach is that the level is considered, and the seasonal indices
are updated at each step of the algorithm. The first two models incorporate the level and
trend into a single component (trend), which does not reflect the series variation from
the base.

The last model is of SARIMA(0,1,1)(0,1,1)12 type. For its validation, the residuals’
series analysis was performed. The Shapiro–Wilk test indicates that the hypothesis that the
series in Gaussian cannot be rejected (p-value > 0.100 > 0.05; Figure 10a), the correlogram
(Figure 10b) indicates the correlation absence, and the Levene test (Figure 10c) rejected
the heteroskedasticity hypothesis. The p-value associated with the Box–Ljung test is
p = 0.1137, indicating that the hypothesis of residuals’ series independence cannot be
rejected. Moreover, MAD = 0.0695, MSD = 0.00868, and MAPE = 16.5426, showing that the
SARIMA performs best among all the proposed models.

Figure 11 presents the series forecast based on the built SARIMA model in the blue
curve and the confidence intervals at 99% and 95% confidence levels.
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Figure 10. SARIMA model. Residual series analysis (a) Results of the Shapiro–Wilk test; (b) Correlo-
gram; (c) Results of the Levene test.
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As mentioned, the chlorine quantity decreases during the disinfection processes due 
to the reactions with different substances. Keeping its concentration within optimal limits 
can be done if this parameter is monitored over time. Traditionally, process-based mod-
els to forecast chlorine decay use generally first-order equations [18,23,57]. To build such 
models, advanced knowledge of the phenomena that appear in the pipes, and accurate 
and sufficient data on some water parameters in the distribution system are necessary 
(the last must be experimentally obtained). Often, the coefficients in such models depend 

Figure 11. Forecast based on the SARIMA model. The black curve is the series, the blue one is the
forecast and the grey backgrounds are the confidence intervals at 95% and 99%, respectively.

To emphasize the performances of the forecast obtained using the MHW and SARIMA,
their output was compared with the series values in recorded 2019 (that were not used for
modeling). Figure 12 shows that the predicted values obtained using SARIMA are closer to
the recorded values via comparison to MHW. The worst forecast was obtained for July and
the best one for December.

The goodness of fit indicators for SARIMA (MHW) are MAD = 0.01039 (0.02118),
MSD = 0.00016 (0.00068), and MAPE = 2.8181 (5.5738), showing that the SARIMA model is
better than MHW.

All the approaches gave good results in modeling the free residual chlorine series, but
the best (and more complex one) is the SARIMA(0,1,1)(0,1,1)12.
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As mentioned, the chlorine quantity decreases during the disinfection processes due
to the reactions with different substances. Keeping its concentration within optimal limits
can be done if this parameter is monitored over time. Traditionally, process-based models
to forecast chlorine decay use generally first-order equations [18,23,57]. To build such
models, advanced knowledge of the phenomena that appear in the pipes, and accurate
and sufficient data on some water parameters in the distribution system are necessary (the
last must be experimentally obtained). Often, the coefficients in such models depend on
the loading conditions and are not practical for modeling purposes [57]. Therefore, other
approaches are required [17,21].

The second approach involves utilizing data-driven statistical models; this means
that the forecast of residual chlorine utilizes relationships between the response variable
and some regressors. If the experimental data on some variables are difficult to obtain,
imprecise, or unavailable, the data-driven models are excellent alternatives to the process-
based models [58]. In such models, the knowledge of the processes from the system is
less important [14]. Their main advantage is that a deep knowledge of the mathematics
and chemistry laws governing chlorine behavior is not necessary [59]. Among the data-
driven statistical methods, we mention the linear autoregressive models to predict chlorine
concentration and its decay in distribution systems and storage [14,60,61]. This present
study falls into this category. Based on our best knowledge, it proposed four models that
were first employed for modeling free chlorine monthly series. Therefore, comparisons
with the results of similar studies conducted on different series cannot be performed.

4. Conclusions

This article proposed four alternative approaches for modeling monthly free chlo-
rine residual concentration series from PCTP using decomposition, Holt–Winters, and
SARIMA models. The novelty of this approach is the use of univariate econometric
models in engineering and extending the results of other studies on the water treatment
plant in Romania (that previously presented only basic statistical analysis or models of
chlorine decay).

In the first approach, the trend was built using a nonparametric Sen’s method, which
has the advantage that no other restrictions are to be satisfied by the parameters of the
linear trend. Another advantage of this method is its simplicity. The second method has the
advantage that it can be applied even in a situation when the hypothesis that a monotonic
trend exists is rejected. Nevertheless, the twelve values of the series cannot be estimated.
In the Holt–Winters method, the seasonality factors and the trend are updated at each
step, which gives a more realistic picture of the evolution of each component compared
to the classical decomposition. While the first two approaches are simpler, the third one

133



Toxics 2023, 11, 699

includes a fourth component, the level, as a base from which the series vary. The Holt–
Winters model is in concordance with the stationary test results. The SARIMA(0,1,1)(0,1,1)12
model is more complex since it involves the first-order differentiation of the series and its
seasonal components (to reach its stationarity), and considering the innovation process (by
the presence of the moving average, one for both series and seasonality). While the last
methodology provides the most accurate results, all the others may be used for modeling
and forecast given the easiness and availability of their implementation in MINITAB and R.

In Romania, the studies in the above field are either experimental, present basic
statistics of some water parameters series (without correlations to each other) or use the
first-order chlorine decay model. Therefore, this article completes the very sparse research
in the field. Since the chlorine concentration is regularly monitored, and exceeding the
limits imposed by regulation may give birth to protests from the residents that acknowledge
the smell and taste of the drinking water, the amount of chlorine must be dosed taking into
account the input water quality, resulting from the analyses of chlorine concentrations and
the necessity to conform the Romanian regulations.

Despite their performances, the models presented here should be used only for short-
time prediction without updating the input given a decreasing trend from the level from
which the series’ values vary. Updating the input of the models is recommended for
improving the forecast. Automating the chlorine concentration monitoring will result in a
better dosage and forecast.

Another note is that the models do not include the risk factors and the solution for the
situation when the water quality decreases. Therefore, in a future study, these aspects will
be considered because there is a need to constantly monitor the water resources and the
quality in the water treatment process and to intervene to maintain it.
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Abstract: Ecological risk assessment of combined polluted soil has been conducted mostly on the
basis of the risk screening value (RSV) of a single pollutant. However, due to its defects, this method
is not accurate enough. Not only were the effects of soil properties neglected, but the interactions
among different pollutants were also overlooked. In this study, the ecological risks of 22 soils collected
from four smelting sites were assessed by toxicity tests using soil invertebrates (Eisenia fetida, Folsomia
candida, Caenorhabditis elegans) as subjects. Besides a risk assessment based on RSVs, a new method
was developed and applied. A toxicity effect index (EI) was introduced to normalize the toxicity
effects of different toxicity endpoints, rendering assessments comparable based on different toxicity
endpoints. Additionally, an assessment method of ecological risk probability (RP), based on the
cumulative probability distribution of EI, was established. Significant correlation was found between
EI−based RP and the RSV−based Nemerow ecological risk index (NRI) (p < 0.05). In addition, the
new method can visually present the probability distribution of different toxicity endpoints, which is
conducive to aiding risk managers in establishing more reasonable risk management plans to protect
key species. The new method is expected to be combined with a complex dose–effect relationship
prediction model constructed by machine learning algorithm, providing a new method and idea for
the ecological risk assessment of combined contaminated soil.

Keywords: combined contaminated soil; toxicity effect index (EI); ecological risk probability (RP);
soil invertebrates

1. Introduction

Studies on the ecological risk assessment of soil are relatively scarce, especially com-
pared with human health risk assessment [1]. The United States Environmental Protection
Agency (USEPA) has formulated guidelines for the derivation of ecological risk screen-
ing values (RSV) and derived the RSVs of some single pollutants. In China, the toxic
effects of cadmium, copper, nickel, zinc, lead, arsenic and antimony on crops, vegeta-
bles and invertebrates have been investigated and their thresholds in farmland soils have
been estimated [2–7]. However, China has yet to establish a system for managing soil
ecological risks.

RSVs can roughly screen out potential high−risk pollutants in soil. A single risk index
(RI) based on RSVs is commonly used to characterize the ecological risk of single pollutants,
and the Nemerow risk index (NRI), based on RI, is used to characterize the overall ecological
risk of combined pollutants [8–13]. However, the deduction process of RSVs neglects the
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influence of soil properties on toxicity effects, while NRI overlooks the complex interaction
among different pollutants. Therefore, there is a great deal of uncertainty in the ecological
risk assessment of combined contaminated soil by RI and NRI (Scheme 1a). In fact, most
actual sites were contaminated by various pollutants, especially metal smelting, coking
and other industries [11,14,15]. Under combined pollution states, complex interactions
among pollutants could affect their bioavailability and biotoxicity, making them different
from those under a single contamination state. Therefore, these differences should be fully
considered in the formulation of risk assessment methods. Although some studies have
established the relationship between toxic effects and soil physicochemical properties, and
the relationship between toxic effects and bioavailable concentration, such research data are
very limited [16–20]. The combined effects of different pollutants have been investigated
and concentration addition (CA) and independent action (IA) models were applied in the
risk assessment process [21–23]. Nevertheless, the actual contaminated soils were of infinite
composition, while the joint effect studies cannot be exhaustive.
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Scheme 1. Two methods to assess ecological risk.

The real toxicity of actual polluted soil can be evaluated by toxicity tests conducted in
the actual polluted soil (Scheme 1b) [24,25]. Normally, whether a soil is at risk to a testing
organism at a toxicity endpoint can be determined by comparison with background soil.
However, it is difficult to compare the risk of different toxicity endpoints due to the lack of
a uniform quantification method [26–28].

Given multiple toxicity endpoints, the question of how to comprehensively conduct
ecological risk assessment needs further exploration. In this study, toxicity tests using
typical invertebrates Eisenia fetida, Folsomia candida and Caenorhabditis elegans as subjects
were carried out in 22 actual complex contaminated soils. The purpose of the research
was to explore a set of ecological risk assessment methods that can fully consider each
of the toxicity endpoints, providing new ideas and schemes for future ecological risk
assessment research.
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2. Materials and Methods
2.1. Soils

Twenty−two heavy metal polluted topsoil samples (0–20 cm) were collected from
four contaminated sites in the metal smelting industry (BY, DQ, QL, ZS). Soil samples were
air−dried, screened (2 mm), and thoroughly mixed before use. The detection methods for
soil physicochemical properties and pollutant content are as follows.

2.1.1. Soil pH

Soil pH was measured by potentiometric method using an acidometer (FE28, Mettler
Toledo Technology (Shanghai, China) Co., Ltd.).

2.1.2. Organic Matter Content

An amount of 0.05–0.5 g soil was placed into a test tube and 10 mL of 0.4 mol/L
K2Cr2O7 sulfuric acid solution was added. After heating in an oil bath at 170–180 ◦C for
5 min, the solution was transferred to a conical flask and water was added to 50 mL. The
excess K2Cr2O7 was titrated with a 0.1 mol/L FeSO4 solution. The organic matter (OM)
content of soil was calculated based on the consumption of K2Cr2O7.

2.1.3. Clay Content

The determination method of soil clay (d < 0.002 mm) content refers to the pipette
method in the Chinese standard HJ 1068−2019 [29].

2.1.4. Cation Exchange Capacity

At (20 ± 2) ◦C, 3.5 g soil was extracted with a 50.0 mL 1.66 cmol/L Co(NH3)6Cl3
solution, and the cations in the soil were exchanged by Co(NH3)6Cl3 into the solution. The
absorbance of the solution was measured at 475 nm using ultraviolet−visible spectropho-
tometer (UV756, Shanghai Youke Instrument Co., Ltd. in Shanghai, China). The cation
exchange capacity (CEC) of the soil was calculated according to the absorbance difference
of the leaching solution before and after leaching.

2.1.5. Mn, Fe, and Al Content

An amount of 0.1–0.2 g soil was placed into a closed digestion tank of polytetrafluo-
roethylene, amounts of 6 mL hydrochloric acid (1.19 g/mL) and 2 mL nitric acid (1.42 g/mL)
were then added before being digested with a microwave at 120, 150 and 185 ◦C for 2, 5
and 40 min respectively, and the total content of Mn, Fe and Al was determined using an
inductively coupled plasma mass spectrometer (7900 ICP−MS, Agilent in Tokyo, Japan).

2.1.6. Hg, As and Sb Content

An amount of 0.1–0.5 g soil was placed into a closed digestion tank, amounts of
6 ML of hydrochloric acid (1.19 g/ML) and 2 ML of nitric acid (1.42 g/ML) were then
added before being digested with a microwave at 100, 150, and 180 ◦C for 2, 3 and 25
min respectively. The total content of Hg, As and Sb was determined using an atomic
fluorescence spectrophotometer (AFS−8510, Beijing Haiguang Instrument Co., Ltd. in
Beijing, China).

2.1.7. Cr, Pb, Cu, Zn and Cd Content

An amount of 0.25–0.5 g soil was placed into a closed digestion tank. Amounts of
6 mL nitric acid (1.42 g/mL), 3 mL hydrochloric acid (1.19 g/mL) and 2 mL hydrofluoric
acid (1.16 g/mL) were added in turn before being digested with a microwave at 120, 160
and 190 ◦C for 3, 3 and 25 min respectively. The total content of Cr, Pb, Cu and Zn was
determined with flame atomic absorption spectroscopy (280FS AA, Agilent in Selangor,
Malaysia), and determine the total content of Cd with graphite furnace atomic absorption
spectrometer (240Z AA, Agilent in Selangor, Malaysia).
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2.2. Test Organisms

Eisenia fetida, bought from Kunlong Farm (Beijing, China), was cultured indoors for
at least two weeks before tests and was regularly fed with oats. The temperature was
controlled at 20 ± 2 ◦C, with 16 h of light (light intensity 400–800 lx), 8 h of darkness, and
soil water content that was maintained at 50%. Active and similar mature earthworms
were selected during the experiment, and their mass was in the range of 300~500 mg.
A population of Folsomia candida, originally from the Institute of Soil Sciences, Chinese
Academy of Sciences, had been cultured in our laboratory for over six years using an
artificial climate box (Ningbo Saifu Experimental Instrument Co., Ltd., in Ningbo, China).
This population was reared in a moist mixture of gypsum and charcoal at 20 ± 1 ◦C
using a 16−h light/8−h dark light regime and fed small amounts of dry bread yeast
twice a week. Distilled water was added weekly to maintain the moisture content of the
medium. Caenorhabditis elegans (var. Bristol strain N2) and Escherichia coli (strain OP50) were
purchased from Fujian Shangyuan Biotechnology (Fuzhou, China). C. elegans was cultured
in Nematode−growth−medium (NGM) agar at 20 ± 1 ◦C in a constant temperature
incubator. E. coli OP50 strains were used as the food source of nematode. In order to reduce
the influence of individual differences of nematode on the experiment, it was necessary
to conduct synchronous culture of nematode before the experiment. See Supplementary
Materials for the preparation of NGM agar, E. coli culture and synchronous culture of
nematode.

2.3. Toxicity Tests
2.3.1. E. fetida Toxicity Tests

Before toxicity tests, the earthworms were placed in a beaker with wet filter paper
and treated with intestinal cleansing in an incubator at 20 ◦C for 24 h. An amount of
500 g of air−dried soil was placed in a beaker with 5 g of cow dung and an appropriate
amount of deionized water. During the entire exposure period, the soil moisture content
was maintained within 10% change by weighing and water replenishing. Three days later,
10 earthworms were added to the soil and cultured in an artificial climate box (Ningbo
Saifu Experimental Instrument Co., Ltd., Ningbo, China). Other culture conditions were
the same as feeding conditions. Three parallel groups were set up in each soil and observed
continuously for 56 days. The number of dead earthworms was recorded every day, and
the dead earthworms were promptly removed from the beaker [30,31].

2.3.2. F. candida Toxicity Tests

An amount of 30 g of air−dried soil and an appropriate amount of deionized water
were placed in a culture tank. During the whole exposure period, water was added by
weighing method to keep the soil moisture content within a 10% change. After three days,
10 synchronous cultured F. candida and a small amount of yeast were added to the soil.
Yeast was supplemented once a week, with 6 parallel groups set for each soil. On the 7th
and 28th days, 3 parallel groups were taken from each soil sample, and the whole system
in the culture tank was poured into a large 1 L beaker. An appropriate amount of deionized
water and a few drops of blue ink were then added. The soil suspension was stirred from
bottom to top with a glass rod and left to stand for 1–2 min after stirring. After all the
adults and larvae were floating on the water surface, photos were taken for preservation.
Image J software was used to count the number of surviving adults and newborn larvae.

2.3.3. C. elegans Toxicity Tests

An amount of 0.5 g of air−dried soil was placed in the test hole of culture plate, to
which was added 100 µL of E. coli culture (15 mg·mL−1). In order to meet the food and
water requirements of C. elegans during toxic exposure, the soil water content was adjusted
to 80% of the maximum field capacity. Ten first−instar nematode larvae were added to
the soil samples through capillary tubes, then the culture plates were sealed and exposed
at 20 ◦C for 96 h without light. Three parallel groups were set for each soil sample. After
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exposure, 500 µL 0.3 g·L−1 acid red 94 (C20H2Cl4I4Na2O5) solution was added to the culture
plate to dye the cuticle of nematodes. The culture plate was placed in an electric blast
drying oven, and the nematodes were killed at high temperature (80 ◦C) to terminate the
toxicity test. The nematodes in the culture plates were recovered by liquid silica suspension
and stored in a centrifuge tube at low temperature (4 ◦C). The recovered nematodes were
poured into the petri dish. Under the microscope, the lengths of the nematodes bodies
were checked as well as the fertility (if there was at least one egg in the nematode body, it
was considered fertile) and the number of larvae.

2.4. Ecological Risk Assessment Based on RSVs

The ecological risk of a single pollutant in soil can be reflected by the single ecological
risk index (RI). The calculation formula is as follows:

RI =
C

RSV
(1)

where RI is the single ecological risk index, C is the measured concentration of single
pollutants in soil (mg·kg−1), and RSV represents the risk screening values in soil (mg·kg−1).
All adopted RSVs are listed in Table 1.

Table 1. Risk screening values of soil invertebrates (mg·kg−1) [32–38].

Zn Cu Cr Pb Cd As Sb Hg Mn

120 1 80 1 150 2 1700 1 140 1 25 2 78 1 1.3 2 450 1

1 Data referenced from the US Environmental Protection Agency. 2 Data referenced from China’s “Soil environ-
mental quality Risk control standard for soil contamination of agricultural land”.

The Nemerow ecological risk index (NRI) can reflect the ecological risk of complex
pollutants in soil and highlight the impact of high concentrations of pollutants on ecological
risk. The calculation formula is as follows:

NRI =

√
RI2

mean + RI2
max

2
(2)

where RImean is the average RI and RImax is the maximum RI. NRI can be divided into five
levels: safe (NRI ≤ 0.7); ecological warning line (0.7 < NRI ≤ 1.0); low risk (1 < NRI ≤ 2.0);
medium risk (2.0 < NRI ≤ 3.0); and high risk (NRI > 3.0).

2.5. Ecological Risk Assessment Based on Toxicity Tests
2.5.1. Toxicity Effect Index

Toxicity effect index (EI) was defined to represent the toxicity effect of soil on the
designated toxicity endpoint of organisms, and the formula is as follows:

EI =
E

NOE
(3)

where E is the effect of experimental groups and NOE is the observed effect of control
groups. Specific meanings and values vary by species and toxicity endpoints. In the survival
experiment of earthworms/springtails, E is the number of living earthworms/springtails
after the experiment and NOE is the total number of earthworms in the experimental group
(NOE = 10). In the springtails/nematode propagation test, E is the number of larvae in
the experimental group and NOE is the number of larvae in the control group (springtail
NOE = 204; nematode NOE = 600). In the nematode development experiment, E is the
number of nematodes with fertility, and NOE is the number of nematodes released in the
experiment (NOE = 10). In the nematode growth test, E is the average body length of the
experimental group and NOE is the average body length of the control group (NOE = 1200).
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In theory, 0 ≤ EI ≤ 1; when EI = 1, soil has no toxic effect on organisms at all, when EI = 0.8,
soil has 20% toxic effect on organisms, and so on.

2.5.2. Cumulative Probability Distribution Curve of EI and Risk Probability

The EI was ranked from smallest to largest to determine its rank R (the rank of the
lowest toxicity value is 1, the rank of the second is 2, and so on. If two or more EI are
the same, they were arranged into a consecutive rank arbitrarily). The cumulative risk
probability (RP) of EI is calculated by the following formula:

RP =
R

N + 1
(4)

where R is the rank of EI and N is the total number of toxicity endpoints. Using EI as the
independent variable X and the corresponding RP as the dependent variable Y, the logistic
model is used for fitting. The fitting formula is as follows:

Y =
1

1 + e
P1−X

P2

(5)

where e is a natural constant and P1 and P2 are parameters.
To illustrate the model, three groups of rational numbers were randomly generated in

the intervals (0, 0.25), (0, 1) and (0.85,1) to simulate the EI distribution of the samples of the
three soils (Figure 1). Twenty−one numbers in each group represent the EI of 21 toxicity
endpoints. Samples 1, 2 and 3 simulated the soils of very high, medium and very low risk
respectively. The size (range) of RP is determined by the position of the curve and the value
(range) of EI. When determining the risk probability, the risk decision−maker should first
set an acceptable safety effect index (SEI), and then calculate the RP corresponding to the
SEI according to the curve. If the risk decision maker believes that it is safe for organisms
when no toxic effects were observed at all, SEI can be set as 1. When the toxicity effect
index below 20% is considered to be biosafe, SEI = 0.8; If the toxicity effect index less than
50% is considered to be safe for organisms, SEI = 0.5, and so on. The soil at the sampling
point has a unique and definite risk probability at a definite SEI and a given soil sample has
a unique and definite risk probability at a definite SEI. For example, when SEI = 0.5, the
RP of Sample 2 is a. For soil sample of an extreme high risk (Sample 1) and very low risk
(Sample 3), the ecological risk probability can be directly judged without the cumulative
probability distribution curve of EI: if EImax < SEI, RP = 1; if EImin > SEI, RP = 0.

2.6. Data Processing and Statistical Analysis

Two−factor analysis of variance without duplication was performed in Excel 2019 to
analyze whether different soils and different toxicity endpoints had significant effects on EI.
The EEC−SSD software was used to fit the cumulative probability distribution curve, and
root mean square error (RMSE) and probability p value of Kolmogorov–Smirnov test (K−S
test) were used to evaluate the fitting effect. The closer the RMSE is to 0, the higher the
accuracy of model fitting is. If p > 0.05, this indicates that the fitting passes the K–S test and
the model conforms to the theoretical distribution. The Hmisc package of R 4.2.1 software
was used to calculate the Spearman correlation coefficient between soil components and
the EI of different toxicity endpoints, as well as the Pearson and Spearman correlation
coefficient between the EI of different toxicity endpoints. RStudio software and Origin 2017
software were applied to draw figures and Adobe Illustrator CC 2017 was used to merge
images and add annotations.
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3. Results and Discussion
3.1. Ecological Risk Assessment Based on RSVs

Based on the RSVs (Table 1) and the detected concentration of pollutants (Table S1),
the RI for each of the pollutants in the soil were calculated (Table S2). When RI ≥ 1, this
indicates that the pollutant had potential risk to soil invertebrates. When RI < 1, this shows
that the pollutant has no risk to soil invertebrates. Figure S1 illustrates the potential risk
pollutants in each sampling site for soil invertebrates. The potential risk pollutants in BY
were Zn, Cu, Hg, Pb, Cd, As and Mn. DQ has no potential risk pollutants. The potential
risk pollutants in QL were As, Sb, Cr, Zn and Cu. The high potential risk pollutants in ZS
are Cu, Zn and As.

Based on RI, NRI was calculated (Table S2, Figure 2). All soil samples collected from
site BY were at high risk (NRI > 3.0). Except QL−1 (low risk, 1.0 < NRI ≤ 2.0), all soils from
site QL were at high risk (NRI > 3.0). One soil sample (ZS−4) from site ZS was at high risk
(NRI > 3.0), one (ZS−1) was at the warning line (0.7 < NRI ≤ 1.0), while the others were at
low risk (1.0 < NRI ≤ 2.0). All soils samples collected from the site DQ were safe for soil
invertebrates.

3.2. Ecological Risk Assessment Based on Toxicity Tests

A total of 11 toxicity endpoints were selected (Table S3). The five toxicity endpoints
of earthworm were 7−day survival (ES.7D), 14−day survival (ES.14D), 21−day survival
(ES.21D), 28−day survival (ES.28D), and 56−day survival (ES.56D). The three toxicity end-
points of springtails were 7−day survival (TS.7D), 28−day survival (TS.28D), and 28−day
reproduction (TR.28D). The endpoints of 4−day pregnancy (NP.4D), 4−day reproduction
(NR.4D), 4−day body length (NL.4D) were chosen as toxicity endpoints of nematodes.
The unreplicated two−factor analysis of variance indicated that soil samples and toxicity
endpoints had significant influence on EI (p < 0.01).
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Figure 2. Nemerow risk index of soil samples.

The cumulative probability distribution curves of EI for all 21 soil samples were fitted
(Table 2). Except QL−3, all fitting curves passed the K–S test (p > 0.5), the values of RMSE
were small, indicating that the probabilistic cumulative distribution model can fit the EI
distribution of 11 toxicity endpoints at the tested 21 soils samples. EImax of QL−3 was
less than 0.5, meaning that the soil was extremely toxic to soil invertebrates. Additionally,
RP of QL−3 can be directly determined as 1. SEI was set as 0.5 and the RP of each soil
was calculated (Table 2). Figure 3 illustrates the EI cumulative probability distribution
curve of some soil samples, and those of the other soils are shown in supporting materials
(Figures S2–S5).

Table 2. EI cumulative probability distribution curve fitting data of soils.

Sample Point RMSE p (K−S) RP (EI = 0.5) Sample Point RMSE p (K−S) RP (EI = 0.5)

BY−1 0.098 >0.05 1.000 QL−1 0.061 >0.05 0.759
BY−2 0.060 >0.05 0.877 QL−2 0.154 >0.05 1.000
BY−3 0.075 >0.05 0.697 QL−3 0.230 <0.05 1.000
BY−4 0.079 >0.05 0.755 QL−4 0.061 >0.05 0.550
BY−5 0.051 >0.05 0.971 QL−5 0.053 >0.05 0.777
BY−6 0.057 >0.05 0.711 QL−6 0.058 >0.05 0.759
DQ−1 0.054 >0.05 0.668 ZS−1 0.090 >0.05 0.601
DQ−2 0.068 >0.05 0.696 ZS−2 0.048 >0.05 0.737
DQ−3 0.097 >0.05 0.675 ZS−3 0.086 >0.05 0.469
DQ−4 0.078 >0.05 0.735 ZS−4 0.080 >0.05 0.803
DQ−5 0.068 >0.05 0.940 ZS−5 0.068 >0.05 0.931

The curve can provide risk managers with three aspects of information:

1. What is the overall risk probability of the soil to the subject organism? For example,
RP = 0.877 for BY−2 in Figure 3;

2. For which toxicity endpoints was the risk of the soil acceptable or unacceptable? For
example, the risk of soil QL−6 for ES.7D, NL.4D and TS.7D was acceptable (EI > 0.5),
while the risk for other toxicity endpoints was unacceptable (EI < 0.5);

3. Relative sensitivity distribution among toxicity endpoints in the risk assessment of
soil. For different soil, the sensitivity order of the toxicity endpoints varies among
species (Figure 3). For instance, the sensitivity order of the toxicity endpoints in soil
BY−2 was NR.4D > ES.28D > TR.28D. While in soil ZS−3, the order was TR.28D >
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ES.28D > NR.4D. This indicates that if only one toxicity endpoint was used for soil
ecological risk assessment, the choice of toxicity endpoint would bring about a great
influence on the assessment results.
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The order of sensitivity among toxicity endpoints of the same species was related to the
mechanism of toxicity endpoints. It has been widely recognized that the longer earthworms
are exposed to contaminated soil, the more significant the toxic effect of contaminated soil
on the earthworms will be. Therefore, the sensitivity order of earthworm toxicity endpoints
at any sampling point is ES.56D > ES.28D > ES.21D ≥ ES.14D > ES.7D. The sensitivity
order of nematodes was also NR.4D ≥ NP.4D ≥ NL.4D for any soil. Because nematodes do
not begin to lay eggs until they undergo four molts and reach 1060 µm in length [39], if a
nematode cannot reach the required growth stage, fertility inhibition of the nematode will
be affected by both reproductive destruction and growth inhibition. Similarly, if nematode
fertility is inhibited, reproductive inhibition of nematodes will be affected by both egg
damage and fertility inhibition. There was no obvious regularity in the order of sensitivity
of the three toxicity endpoints (TS.7D, TS.28D and TR.28D), but the relative sensitivity of
TS.28D and TR.28D seemed to be related to RP (Figure 4). When RP of soil is low, the
sensitivity order of the toxicity endpoint is TR.28 > TS.28. Presumably, the springtails
would preferentially adapt to the harsh environment and maintain their own survival
after experiencing low toxic stress in soil, delaying life activities such as spawning, but the
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reproductive ability of springtails did not lose at this time. When the RP of the soil was
moderate, the sensitivity order of the toxicity endpoint was TR.28D < TS.28D. Possibly,
higher toxic soil threatened the survival of the springtails, triggering their emergency
reproductive strategy and producing more offspring per adult than in a no toxic stress
environment. When the RP of soil was very high, the sensitivity order of toxicity endpoints
was TR.28 > TS.28. Soil with extremely high toxicity could cause reproductive loss of the
springtails before death. Pearson correlation and Spearman correlation analyses showed
that there was a significant positive correlation between the toxicity endpoints of the same
species (p < 0.05) (Figure 5), which was consistent with those presented in the sensitivity
distribution curve.
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3.3. Comparative Analysis between NRI and RP

Spearman correlation analyses were conducted between NRI and RP (Figure 6). NRI
and RP were significantly positive correlated (p < 0.05). In general, the assessment results
of NRI and RP were basically consistent, and it is feasible to use the cumulative probability
distribution method based on EI to assess ecological risks.
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There is no correlation between NRI and EI for most single toxicity endpoints, which
may be attributed to the following reasons. First, the stress to invertebrates in the com-
bined contaminated soil was not only formed from the nine concerned pollutants, other
components and the soil physicochemical properties may also have made an impact [40].
Second, although pollutants are the main source of soil toxicity, NRI neglects the interaction
among pollutants and the bioavailability of pollutants, possessing great indeterminacy in
the risk assessment of soil [41–43]. Spearman correlation analysis suggests that the survival
of earthworms might be affected by soil CEC and pH (p < 0.05). The growth, pregnancy
and reproduction of nematodes may be affected by clay content (p < 0.05). The survival
of springtails may be affected by Fe content in soil (p < 0.05). In future toxicity studies
of earthworms, nematodes and springtails, more attention needs to be paid to these soil
indexes.

NRI and RP at four sites were further compared and analyzed (Figure 7). In site BY
with high NRI, RP increases with the increase of NRI, which is consistent with the result of
Spearman correlation analysis (Figure 6). However, the risk probability of BY−2 is higher
than expected. In site DQ with low NRI, RP decreased with the increase of NRI, which
was contrary to the result of Spearman correlation analysis (Figure 6). Possibly, lower
concentrations of pollutants could be beneficial to soil invertebrates, or other soil factors
may have exhibited greater effect on invertebrates than pollutants. In site QL with wide
span of NRI, there was no monotone correlation between NRI and RP. The toxicity of QL−3
was greater than that expected by NRI, while the toxicity of QL−4 and QL−5 was much
less than that expected by NRI. In site ZS, there is no monotone correlation between NRI
and RP, and the toxicity of ZS−5 is much higher than that expected by NRI. The above
results further indicate that the correlation between NRI and RP may be affected by soil
components and physicochemical properties [44].
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Several studies have demonstrated that soils with higher pH and soil OM content
exhibited less toxicity to earthworms and springtails [16,26,45–47]. Toxicity studies on
nematodes also found that higher CEC and soil OM content were related to low toxicity [39].
The pH, OM and CEC of each soil sample collected from the four sites were significantly
different (Table S4 and Figure 8), which was likely to have a great impact on the ecological
risk of soil. For example, the high risk of BY−2 may be influenced by the low CEC and OM.
The high risk of QL−2 and QL−3 may be affected by the lower pH. The lower risk of QL−4
and QL−5 may be related to the higher OM, pH, and CEC, and low CEC, OM and pH may
have had an impact on the high risk of ZS−5. Therefore, the risk assessment based on the
EI cumulative probability distribution method could essentially reflect the toxicity of soil to
invertebrates, especially the actual combined contaminated soil. The complex interactions
among soil pollutants and the effect of soil physicochemical properties were fully taken
into consideration. Besides pollutant content, extreme soil physicochemical properties may
also have a decisive influence on the life history of soil invertebrates. Taking these factors
into account, the risk assessment result could be more convincing in the characterization of
soil toxicity. Furthermore, accurate risk assessment could guide risk managers to formulate
effective and customized remediation strategies.

3.4. Prospects for Risk Assessment Methods

Although the ecological risk assessment based on toxicity test is reliable, the cost of
toxicity tests is high and the cycle is long. Therefore, in the long run, it is still the most
economical and effective method to predict the ecological risk from pollutant content while
taking the physicochemical properties of soil into account. However, it is very difficult to
use traditional statistical methods to study the correlation between soil composition and
toxic effects [48,49]. It has been shown that machine learning algorithms can make accept-
able predictions about the relationship between responses and multiple factors. In order
to reveal the superposition or confrontation of multiple factors, Yu et al. [50] established a
tree−structure−based random forest feature importance and feature interaction network
analysis framework (TBRFA), and successfully predicted the microbial composition of
global soils under 18 environmental factors [51]. Machine learning methods also show

148



Toxics 2023, 11, 411

great promise in the construction of prediction models of complex dose–effect relationships,
if enough toxicity data of combined contamination are available. Therefore, the use of
actual pollutant soil for future toxicity tests is recommended, as is the provision of original
tabular data, so as to build an open database of composite pollution and toxic effects and to
facilitate the prediction of dose–effect relationships by machine learning methods (earlier
stage in Scheme 2). The following soil parameters should be considered: the total content
of major pollutants, CEC, pH, and OM. In addition, accurate Latin names of species, trial
duration, toxicity endpoint and toxicity effect index (EI) should be provided. Once the
prediction model is established and validated, the toxicity effect index of a specific toxicity
endpoint of soil can be predicted without further toxicity tests (later stage in Scheme 2).
Finally, based on EI predicted by the model, the cumulative probability distribution method
can be used to assess the ecological risk of any combined contaminated soil.
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4. Conclusions

Toxicity effects risk index (EI) can normalize toxicity effects of different species at
different toxicity endpoints (0 ≤ EI ≤ 1). Compared with NRI, the cumulative probability
distribution curve of EI could present more information about toxicity endpoints, which
is more practical for risk managers and decision makers. The applicability of the method
was preliminarily validated using 11 toxicity endpoints of E. fetida, F. candida, and C. elegans
in actual combined contaminated soil. Whether this method can be applied to ecological
risk assessment of other species still needs to be verified by toxicity tests, including soil
animals, plants, microorganisms and soil enzymes. It might make more sense to use native
representative species. This new method is more practical for composite contaminated
soils with pollution levels close to RSVs. For pollution levels where all pollutants are
far above or far below RSVs, the risk of soil to organisms is foreseeable. Although this
method is applicable, considering the cost of risk assessment, it may not be necessary to
use this method.
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of soils collected at DQ; Figure S4: EI cumulative probability distribution of soils collected at QL;
Figure S5: EI cumulative probability distribution of soils collected at ZS.
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Abstract: Indoor household pollution is not yet sufficiently studied in the general population. Over
4 million people die prematurely every year due to air pollution in households. This study aimed to
propose quantitative data research through the administration of a KAP (Knowledge, Attitudes, and
Practices) Survey Questionnaire. This cross-sectional study administered questionnaires to adults
from the metropolitan city of Naples (Italy). Three Multiple Linear Regression Analyses (MLRA)
were developed, including Knowledge, Attitudes, and Behavior regarding household chemical air
pollution and the related risks. One thousand six hundred seventy subjects received a questionnaire
to be filled out and collected anonymously. The mean age of the sample was 44.68 years, ranging
from 21–78 years. Most of the people interviewed (76.13%) had good attitudes toward house cleaning,
and 56.69% stated paying attention to cleaning products. Results of the regression analysis indicated
that positive attitudes were significantly higher among subjects who graduated, with older age, male
and non-smokers, but they were correlated with lower knowledge. In conclusion, a behavioral and
attitudinal program targeted those with knowledge, such as younger subjects with high educational
levels, but do not engage in correct practices towards household indoor chemical pollution.

Keywords: indoor air quality; chemical contaminants; knowledge; attitude; practice; cross-sectional survey

1. Introduction

More than 4 million people die prematurely every year due to household air pollu-
tion [1,2]. Elevated concentrations of indoor pollutants are not only associated with in-
creased mortality but also with a range of harmful health effects, such as adverse pregnancy
outcomes [3], chronic obstructive pulmonary disease [4], severe pneumonia, especially in
childhood [5], lung cancer [6], cardiovascular diseases [7,8]. The greatest risk comes from
long-term exposure, as 80–90% of a lifetime is spent in confined spaces which may increase
due to cumulative lifetime exposures [9–11].

Indoor air pollution is a significant public health issue, caused by various substances
found in common household items and influenced by common indoor activities, such as
heating, cooking, and the use of cleaning products, as well as behavioral practices like
smoking, vaping, burning candles or incense [12–15]. Moreover, many of these pollu-
tants can cause secondary reactions producing additional highly reactive and harmful
substances [16].

Public policy is a crucial tool in reducing air pollution and improving air quality
and people’s health. Since 1990, measures designed to curb air pollution have prevented
approximately 600,000 premature deaths annually [17]. The Control Action Plan introduced
a decade ago has already prevented 15,822 associated morbidities in 2017 [18]. However,
these policies have mostly focused on outdoor environments, ignoring indoor spaces where
people spend most of their time [19].
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In fact, individuals can play a crucial role in reducing their exposure to indoor air
pollution, as their behavior significantly impacts the indoor environment [20]. By following
specific yet reasonable behaviors, individuals can reduce the risks associated with indoor air
pollution. Such practices include ensuring adequate ventilation, maintaining combustion
appliances, limiting exposure to volatile organic compounds, and reducing smoking [21].
Improving ventilation rates in households by opening windows or using ventilation fans
can lead to a reduction in emissions from human activities, thereby improving indoor air
quality [22,23]. Additionally, higher ventilation rates have been linked to improved health
outcomes [24].

A recent study assessed the dependence of community knowledge and attitude with
socio-demographic factors and the dependence of the behaviors with knowledge, attitude,
and socio-demographic factors using community KAB towards IAQ, revealing lower levels
of knowledge and behaviors towards IAQ and moderate levels of attitude within the
study population [25]. Daniel et al. described the perceptions, knowledge, and practices
of adults concerning indoor environmental pollution, evidencing that well-integrated
practices were not related to knowledge, level of education, or perceptions but rather to the
responsibility of having a child and that implementation of less well-followed practices
would be improved by better knowledge/information and a change in perceptions [26].
In 2018, Al-Khamees examined the knowledge, attitudes, and practices toward indoor
pollution at Kuwait University, demonstrating poor knowledge regarding indoor pollution
among university students and teachers [27]. Moreover, some papers focused their research
only on certain types of pollutants, such as Adeolu et al., that conducted a study on
knowledge and attitudes towards lead exposure in Nigeria [28], or over radon, a typical
yet specific pollutant for some households, in a KAP model conducted in 2018 in a rural
environment by Neri et al. [29].

For those reasons, the present study aims to propose quantitative research of data
through the administration of a KAP (Knowledge, Attitudes, and Practices) Survey Ques-
tionnaire and the statistical analysis of the information collected towards household chemi-
cal air pollution in a population of a large metropolitan area to understand this phenomenon
in order to collect data to develop specific and tailored educational programs.

2. Materials and Methods
2.1. Setting and Sample

This cross-sectional study was conducted by administering questionnaires to adults
from the metropolitan city of Naples (Italy), with a population of 909,048 [30]. The study
was conducted from the beginning of January 2022 to the end of September 2022. Subjects
were selected to participate in the study using a snowballing sampling method among
universities, working places, and community centers. The inclusion criteria in the study
required that participants were 18 and older and residing in the metropolitan area of Naples.
The required sample size was calculated using Slovin’s formula to obtain a representative
sample within a margin of error of 3%, and a confidence interval of 95%, determining a final
number of subjects to be recruited of 1523. Finally, after accounting for a 30% non-response
rate, the estimated total sample size was 1066.

2.2. Procedures

During the study period, experienced interviewers submitted to participants the
questionnaire from Monday to Friday between 10:00 a.m. and 8:00 p.m. to avoid over-
sampling non-working individuals. The interviewers, at the beginning of the submission,
stated that they were conducting a study on behalf of the University of the studies of
Naples “Federico II”, giving information to the participants about the nature and scope
of the research, the methodology, that their participation was on a voluntary basis, that
all the collected information would be processed anonymously and confidentially, and
that they could end their participation at any time without disclosing a reason. Verbal
informed consent was obtained prior to progressing with the interview. No incentive for
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participation or survey completion was provided. The present study conformed with the
Declaration of Helsinki, and ethical clearance was obtained according to local legislation.

2.3. Data Collection

The questionnaire was developed through the meeting of a large commission of
physicians, chemists, and biologists. Questions considered inappropriate or not useful
for the study objectives were either removed or replaced. Before the commencement of
the data collection, a pilot study was performed on 10 individuals in order to test the
participants’ understanding of the questionnaire items, the results of which were not taken
into consideration for the study. The first section of the questionnaire assessed participants’
socio-demographic characteristics and other health-related information, including gender,
age, marital status, level of education, occupation, partner’s occupation, and number of
children. The second section investigated knowledge, attitudes, and behaviors concerning
household chemical air pollution for a total of 36 questions. Knowledge and attitudes were
assessed on a three-point Likert scale with options for “agree”, “uncertain”, and “disagree”,
while inquiries regarding behaviors were in a four-answer format of “never”, “sometimes”,
“often”, and “yes/always”.

2.4. Statistical Analysis

Data reported by the study were analyzed using STATA MP v14.0 statistical software
program (College Station, TX, USA). The analysis was carried out in two steps. First,
a descriptive statistic was employed to sum up the basic information of the statistical
units; then, a Multiple Linear Regression Analysis (MLRA) was performed, as previously
extensively explained [31–33]. Briefly, three MLRA were developed, including the variables
potentially associated with the following outcomes of interest:

(1) Knowledge regarding household chemical air pollution and the related risks (Model 1);
(2) Attitudes toward household chemical air pollution (Model 2);
(3) Behavior related to household chemical air pollution (Model 3).

Knowledge, Attitudes, and Behaviors, as dependent variables, were acquired by
adding the results of the respective question scores (questions with inverse answers
have been coded inversely). The independent variables were included in all models:
sex (1 = male, 2 = female); age, in years; education level (1 = primary school, 2 = middle
school, 3 = high school, 4 = university degree); marital status (1 = Single; 2 = In a rela-
tionship); smoking habits (1 = smoker, 2 = non-smoker); having children (1 = Yes; 2 = No).
In Model 2, Knowledge was added to the independent variables, and in Model 3, both
Knowledge and Attitudes were included in the independent variables. Attitudes and
Knowledge were analyzed as indexes rather than scales; thus, each observed variable (A1,
. . . , A10 and K1, . . . , K11) is presumed to cause the latent variables associated (Attitude
and Knowledge). In other words, the relationship between observed and latent variables
is formative. Therefore, inter-observed variables correlations are not required. On the
contrary, the relationship between the observed variables (B1, . . . , B11) and latent variable
Behavior could be considered reflective (Cronbach’s alpha = 0.825). All statistical tests were
two-tailed, and results were statistically significant if the p-values were less than or equal
to 0.05.

3. Results and Discussion

During the administration period, 1670 subjects were recruited to participate in the
study and received a questionnaire to be filled out and collected anonymously. Among
those, 1332 questionnaires were filled and returned with a response rate of 79.76%, slightly
more than expected (70%) and calculated. Characteristics of the sample are described in
Table 1. Regarding gender, 677 were male (50.83%) and 655 females (49.17%). The mean
age of the study population was 44.68, ranging from 21–78 years. Educational levels were
distributed as 51 subjects (3.83%) declaring an elementary school license, 332 (24.92%)
middle school license, 506 (37.99%) responding to having a high school diploma, and
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443 (33.26%) graduated with a university degree. Responding about their marital status,
379 respondents (28.45%) declared themselves to be single, and 953 were in a relationship;
in addition, 675 of them stated to have at least a son, while 675 had none. Finally, more
than half of the population surveyed (59.68%) said they did not smoke. Therefore, this
sample can be considered representative of a standard European population in size and
frequency of main demographic characteristics [34].

Table 1. Study population characteristics.

Study Population N (1332) Percentage

Sex
Male 677 50.83

Female 655 49.17
Age
<30 327 24.55

31–35 209 15.69
36–40 91 6.83
41–45 93 6.98
46–50 105 7.88
>51 507 38.06

Education
Primary school 51 3.83
Middle school 332 24.92

High school 506 37.99
University Degree 443 33.26

Children
Yes 675 50.68
No 657 49.32

Smoking habits
Yes 537 40.32
No 795 59.68

Marital Status
Single 379 28.45

In a relationship 953 71.55

Respondent’s knowledge about household indoor pollution is presented in Table 2.
Most of the people interviewed knew that the chemical pollution of the air in the house-
hold environment is more than that of the outdoors (74.25%). The 0.23% of the sample
had not answered to K1 question. Only 38.29% of the population knew that gas stoves
contribute to household pollution, while 36.94% did not. Half of the sample (50.00%) be-
lieved that plants at night release substances dangerous to health. Regarding smoke, most
respondents (52.48%) knew where second-hand smoke comes from, while less than half
(40.24%) disagreed that thirdhand smoke is less toxic than secondhand smoke. In addition,
65.24% of the population agreed that inadequate ventilation causes more than 50% of the
chemical pollution of the air in a domestic environment. Moreover, a high percentage of
the respondents knew that carbon monoxide is the main household pollutant (68.17%), and
that formaldehyde is a household chemical pollutant (71.02%). However, only 46.16% of
the population knew that formaldehyde is classified as a carcinogen. Half of the sample,
50.83%, knew what Sick Building Syndrome is, and only 21.40% were aware that currently,
there are no laws governing the pollution of the domestic environment. Furthermore, with
a mean score of 69.19%, the population showed a good knowledge regarding household
chemical pollution. Similar results were evidenced in 2020 in France by Daniel et al., where
a population of 554 adults totalized a mean score of 68.19% [26]. However, other studies re-
vealed lower levels of knowledge, as evidenced in 2020 by Muro et al. in a study conducted
in Nairobi County over a sample of 393 subjects, which indicated a low knowledge level
on indoor air pollution with an average score of 38.5% and, previously, by Al-Khamees
in 2018, in Kuwait, which demonstrated that the respondents had a low knowledge level

156



Toxics 2023, 11, 264

on indoor air pollution at 41.47% [27,35]. These differences can be justified considering
the diversity of the populations sampled for the study and the significant difference in the
distribution of educational levels between them [36].

Table 2. Knowledge of respondents regarding household chemical indoor pollution.

N. Statement (Variables) Agree (%) Uncertain (%) Disagree (%)

K1 The chemical pollution of the air in the household environment is
less than that of outdoors * 6.53 18.99 74.25

K2 Gas stoves contribute to household pollution 38.29 24.77 36.94
K3 Plants at night release substances dangerous to health 50.00 35.36 14.64
K4 Secondhand smoke comes from the smoke exhaled by a smoker 52.48 24.55 22.97

K5 Thirdhand smoke derives from the toxic substances of the smoke
deposited in the environment 40.24 20.35 39.41

K6 Thirdhand smoke is less toxic than secondhand smoke 34.68 25.80 40.24

K7 Inadequate ventilation causes more than 50% of the chemical
pollution of the air in the domestic environment 65.24 29.13 5.63

K8 The main household pollutant is carbon monoxide 68.17 24.17 7.66
K9 Formaldehyde is one of the household chemical pollutants 71.02 25.38 7.06
K10 Formaldehyde is a certain carcinogen 46.62 42.79 10.59

K11
The Sick Building Syndrome is a condition in which the occupants
of a building show a series of symptoms and pathologies without
specific causes

50.83 30.93 18.24

K12 There are laws governing the pollution of domestic environments 47.90 30.71 21.40

* 0.23% of the sample did not respond to the K1 question.

Table 3 describes attitudes towards household chemical indoor pollution. The vast
majority of the respondents (90.90%) agreed with the good habit of opening the windows,
in agreement with Amegah et al. [3], who observed that even with the air conditioner
turned on (52.48%), spending time in home microenvironments may not offer sufficient
protection from fine ambient aerosol particles (PM2.5) [37] and that risk factors for fine
particles (PM2.5) are greater than for coarse particles (PM10) [38]. Thus, 45.95% of the
population deemed it necessary to ventilate the house in winter. The majority of the sample
(76.13%) had a good attitude toward house cleaning, and 56.76% of the respondents stated
that it was important to pay attention to the use of cleaning products. In addition, almost
half of the sample (48.87%) believe it is convenient to use spray deodorant, and 41.67%
think lighting candles at home is relaxing. Concerning the last two attitudes, an agreement
was noted with the results obtained by Al-Khamees, who evidenced similar results [27].
More than half (56.53%) believed having plants in the house is nice. Unfortunately, only
33.56% thought that induction stoves are more comfortable than gas ones, and 64.19%
believed that a fireplace improves the house. Roughly half of the sample (48.49%) deemed
smoking on the sofa as not relaxing.

Table 3. The attitude of respondents toward household chemical indoor pollution.

N. Statement (Variables) Agree (%) Uncertain (%) Disagree (%)

A1 Opening windows is a good habit 90.90 8.78 1.13
A2 It is necessary to open the windows even with the air conditioner on 52.48 22.52 25.00
A3 In winter, it is still necessary to ventilate the house several times a day 45.95 20.05 34.00
A4 House cleaning is a waste of time 13.96 9.91 76.13
A5 A cleaning product is as good as another 20.72 22.52 56.76
A6 It is convenient to use spray deodorant 48.87 28.15 22.97
A7 It is nice to have plants in the house 56.53 19.82 23.65
A8 Lightning candles at home is relaxing 41.67 22.75 35.59
A9 Induction stoves are no more comfortable than the gas ones 44.59 21.85 33.56

A10 A fireplace graces the house 64.19 18.02 17.79
A11 Smoking on the sofa is relaxing 38.29 13.29 48.49
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The behaviors of respondents are listed in Table 4. 55.18% of the sample replied that
they were attentive to the ventilation of their own house, but only 10.81% claimed to use
air purifiers. Regarding gas stoves, almost half of the population (43.47%) use them all the
time. Despite the extensive use of gas stoves, only 29.28% operate the hood in the kitchen
while cooking food. It has also been noted that there is still a large use of pellet or gas stoves
(54.50%), while there is more focus on the use of filters for heating/conditioning systems
(47.07%) and checking them (49.55%). Fortunately, the use of insecticides is not widespread,
as well as that of air fresheners (23.42%). Of all the behaviors, the most comforting fact
comes from smoking, which is never practiced at home, from 54.50% of the population
about traditional cigarettes and 61.49% for heated tobacco cigarettes. A high percentage of
incorrect behaviors were encountered in the sample, meanly 64.59% for men and 64.69%
for women. Those scores were slightly higher than Al-Khamees et al., which were 51.0%
for men and 53.5% for women [27]. Also, Daniel et al. found out that certain practices
were not well followed by less than 60% of participants [26]. The reason why the results
revealed high percentages of some incorrect behaviors rather than others is probably that
these are actions performed repeatedly in daily life, and many of them become incorrect
habits fueled by poor knowledge and understanding of household air pollution.

Table 4. Behaviors of respondents concerning household chemical indoor pollution.

N. Questions Yes/Always (%) Often (%) Sometimes (%) Never (%)

B1 Do you ventilate your home? 55.18 27.70 6.98 10.14
B2 Do you use air purifiers? 10.81 18.69 30.63 39.86
B3 Do you use gas stoves? 43.47 15.09 12.16 29.28
B4 Do you operate the hood in the kitchen? 29.28 15.99 18.47 36.26
B5 Do you use gas and/or a pellet heater? 54.50 12.61 18.92 13.96
B6 Do you use filters for heating/air conditioning systems? 47.07 7.43 17.34 28.15

B7 Do you periodically check the heating, air conditioning,
and ventilation systems? 49.55 10.36 12.84 27.25

B8 Do you use insecticides at home? 16.67 16.22 11.71 55.41
B9 Do you use air fresheners? 23.42 14.19 5.63 56.76

B10 Do you wash curtains and carpets? 18.24 10.81 10.59 60.36
B11 Do you decorate your home with plants? 45.95 18.47 18.24 17.34
B12 Do you smoke traditional cigarettes in your home? 22.75 9.46 13.29 54.50
B13 Do you smoke heated tobacco cigarettes in your home? 14.64 8.11 15.77 61.49

Table 5 illustrates the results of linear multiple regression in three models. Model I,
Knowledge, as a dependent variable, was correlated with age and education, evidenced as
younger subjects had a better overall consciousness of household chemical pollution. These
findings agreed with a previous study by Unni in Singapore in 2022, which evidenced a
decreasing level of knowledge within the elder population, and with another KAP study
carried out over 1604 subjects resident in Ningbo, China, that showed a similar trend of
declining levels of knowledge [25,39]. Furthermore, the findings of this investigation are
consistent with Jin et al., who analyzed knowledge regarding Secondhand Smoke Exposure
and assessed that about 60% of people aged between 15 and 34 had better knowledge of
the harmful effects of smoking than people aged 60 [40]. Therefore, since, to the best of
our knowledge in literature, no other paper has evidenced a higher knowledge regarding
indoor pollution in the elder population, this result may suggest a more pronounced
awareness of pollution in younger subjects, as clarified by Chin et al. in 2019 [41]. The
second evidence of this MLRA was the statistically significant relation between knowledge
regarding indoor air pollution and education. In particular, higher knowledge levels
were found in subjects with higher education levels. This evidence is widely expected
and confirmed by Kaur et al., who stated that, among a sample of urban homemakers in
Ludhiana (India), urban respondents with a higher education level were more conscious of
environmental concerns than their own rural counterparts [42]. In addition, Daniel et al. in
2020 found that a higher level of education was also associated with a higher knowledge
score in a population of adults between 18 and 45 years in Brittany (France) [26]. These
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results are not surprising since educational level is widely reported in the literature as
a predictor of pollution-related knowledge [43–45]. Moreover, in a cross-sectional study
conducted in Italy over 15 universities, the perception of environmental health risks was
positively associated with increasing years of attending classes, such as the interest in
searching for different sources of information [46].

Table 5. Results of the linear multiple regression analysis (MLRA).

Coefficients Not
Standardized

Coefficients
Standardized

b Standard
Error t 95% Conf. Interval p-Value

Model I—Dependent variable:
Knowledge

Prob > F = 0.000 R-squared = 0.0323 Root MSE = 3.929

Age −0.022 0.009 −2.33 −0.041 −0.003 0.020
Sex −0.175 0.216 −0.081 −0.599 0.025 0.416
Marital status −0.218 0.274 0.80 −0.319 0.755 0.425
Children 0.082 0.306 0.27 −0.517 0.681 0.681
Education 0.544 0.140 3.88 0.269 0.818 0.000
Smoking habits 0.004 0.220 0.02 −0.427 0.435 0.099

Model II—Dependent variable:
Attitudes

Prob > F = 0.000 R−squared = 0.0532 Root MSE = 3.386

Age 0.021 0.008 2.58 0.005 0.037 0.010
Sex −0.396 0.186 −2.13 −0.761 −0.032 0.033
Marital status −0.455 0.236 −1.93 −0.918 0.007 0.054
Children 0.238 0.263 −0.090 0.278 0.754 0.366
Education 0.597 0.121 4.92 0.359 0.835 0.000
Smoking habits 0.862 0.189 4.55 0.490 1.23 0.000
Knowledge −0.1199 0.024 −5.08 −0.166 −0.074 0.000

Model III—Dependent variable:
Behavior

Prob > F = 0.000 R−squared = 0.1617 Root MSE = 6.901

Age 0.004 0.017 0.22 −0.029 0.037 0.825
Sex −0.013 0.379 −0.03 −0.757 0.731 0.973
Marital status 1.05 0.482 2.19 0.109 1.99 0.029
Children −0.262 0.537 −0.49 −1.31 0.790 0.626
Education 1.39 0.249 5.59 0.905 1.88 0.000
Smoking habits 1.77 0.389 4.56 1.01 2.54 0.000
Knowledge −0.415 −0.048 −8.55 −0.510 −0.319 0.000
Attitude 0.516 0.056 9.24 0.406 0.625 0.000

Model II uses Attitudes as a dependent variable assessing a positive correlation,
statistically significant, with age, gender, education, smoking habits, and knowledge. In
particular, the regression analysis results indicated that positive attitudes were significantly
higher among subjects who graduated, with older age, male and non-smokers, but they
were correlated with lower knowledge. Regarding the correlation between age and attitude,
as found in the present study, the literature reports the study conducted by Unni et al., in
2022, on household residents in Singapore, which evidenced that older residents had a
higher attitude score than newer counterparts [25]. This result is widely expected as it has
been stated that younger persons have a significantly worse perception of air pollution [47]
and of activities that may reduce related health harnesses, whereas elder subjects are more
aware of the risks [48]. Also, with reference to the between attitudes and gender, the results
of the MLRA highlighted that females had a better overall score in attitude, according to
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the study by Al-Khamees et al., which, in a sample of students and teachers at Kuwait
University, found a significantly better attitude in females, stating that such correlation
can be explained as women are more often involved in polluting activities and tend to
be less on guard regarding the risks connected [27]. Moreover, the evidence related to
positive attitudes and respondents with higher education was confirmed in the study by
Unni et al., that assessed community levels of Knowledge, Attitude, and Behavior (KAB)
towards indoor air quality in randomly selected adults in Singapore: those who were
higher skilled had comparatively higher attitude scores [25]. This result also agreed with
Egondi et al., who in 2013 reported the association between attitude and educational levels,
and Liu et al., who stated that a lower consciousness of air pollution and health effects was
associated with a low educational level [49,50]. Furthermore, a recent cross-sectional study
carried out in Lebanon over 2623 participants assessed that attitude towards cumulative
effects of smoking, therefore also related to indoor air pollution, was significantly higher
in nonsmoker subjects [51]. In addition, Al-Haqwi reported that non-smokers among a
population of students had more willingness to act against polluting activities and therefore
had better attitudes [52]. Also, the surprising relationship between attitudes and lower
knowledge scores was confirmed in the aforementioned study by Unni et al., who assessed
the same correlation [25]. Since, as aforementioned, knowledge is negatively related to
behaviors, another educational program has to be implemented, in this case, designed to
improve knowledge targeted to categories of people who allegedly already have positive
attitudes and correct behaviors with the aim to reinforce their habits and improve their
already good practices such as subjects involved in a relationship, with high educational
levels and, non-smokers.

In conclusion, a behavioral program targeted those with knowledge, such as younger
subjects with high educational levels, but do not engage in the correct practice toward
indoor chemical pollution.

Model III displays that practices regarding household air pollution were statistically
significant and correlated to education, smoking habits, knowledge, and attitudes. It
has also been noted that there was a positive correlation between correct behaviors and
marital status. In relation to the latter, a cross-sectional study conducted in Nairobi (Africa)
on over 5317 individuals aged 35+ showed that marital status was not associated with
improved behavior leading to better air quality [49]. Moreover, Kim et al. indicated that
married subjects had better attitudes toward air pollution, but an explanation was not
provided [53]. Therefore, the literature suggests that people involved in a relationship are
usually more concerned about environmental pollution because their partner synergically
influences them [54]. The relation between positive practices and education level might
appear obvious; however, some doubts arise from the review by Maung et al. about indoor
air pollution, which highlighted how human activities, behaviors, and education level are
associated with personal exposure to air pollutants [55]. Again, as expected, teachers had a
higher level of knowledge than students, which was reflected in their use of less polluting
behaviors [27].

The results of the MLRA also evidenced the relationship between behavior and non-
smoking. However, although widely expected, the literature does not define this correla-
tion well. So far, only one previous study, conducted on householders in the USA during
2010–2011, evidenced that subjects without smoking habits also had other behaviors corre-
lated to reduced air pollution [56]. Therefore, indoor pollution-related behaviors and air
pollution, in general, may be affected by having or not smoking habits. Besides, in this
study, a relation between positive behavior and negative knowledge was found, also stated
by Unni et al. [25].

Inherently, a review carried out by Barnes, comprehending data from several studies,
defined the limited effectiveness of education in improving behaviors concerning indoor
air pollution [57]. On the other hand, the study by Daniel et al. indicated an association
between high knowledge levels and behavior scores [26]. This could explain the correlation
found in our study related to positive behaviors and negative knowledge, unlike many
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other studies on indoor air pollution, which used the KAB model and found that higher
knowledge levels for respondents towards IAQ were associated with significantly higher
behavior scores [25,26]. Another important correlation found in Model III was between
respondents with higher behavior scores and high attitude scores, in agreement with Unni
et al. [25] and also consistent with previous literature, as pointed out by Pampel et al. in
2010, which demonstrated that subjects with better attitude also had better behaviors [58].
This relationship pointed out the dominant role of attitude in forming correct behaviors
related to indoor pollution and led us to suggest that an educational program designed
to improve attitude is mandatory to improve behaviors in the population. Moreover, it is
necessary to organize a training program for those who demonstrate the worst behaviors,
such as singles, smokers, and less-educated subjects, to improve their practices and reduce
the quantity of indoor pollutants they are exposed to and, therefore, the risks associated
with it.

4. Conclusions

In summary, as shown in this study, indoor household pollution is a phenomenon not
yet sufficiently studied in the general population. Behaviors intended to reduce indoor
pollution are difficult to practice, although the sample has a good knowledge of the harms
resulting from some habits. Therefore, it is necessary to organize training programs for
people with the worst behavior, such as singles, smokers, and less-educated people, to
improve their practice and reduce the amount of pollutants they are exposed to within the
house and, therefore, the risks associated with it. Since knowledge is negatively related to
behavior and attitude, it is necessary to implement another educational program in this case
to improve knowledge of a category of people who allegedly already have positive attitudes
and correct behaviors in order to strengthen their habits and improve their good practices,
such as subjects involved in high-level relationships and non-smokers. In conclusion, a
behavior and attitude correction program is aimed at those with knowledge, such as young
people with high education levels, but does not put proper practices for household indoor
chemical pollution in practice.
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Abstract: Increased concerns about the toxicities of Polycyclic Aromatic Hydrocarbons (PAHs), ubiq-
uitous and persistent compounds, as well as the associated ecotoxicology issue in estuarine sediments,
have drawn attention worldwide in the last few years. The levels of PAHs in the Sele, Sarno, and
Volturno Rivers sediments were evaluated. Moreover, the cancerogenic risk resulting from dermal
and ingestion exposure to PAHs was estimated using the incremental lifetime cancer risk (ILCR)
assessment and the toxic equivalent concentration (TEQBaP). For Sele River, the results showed
that the total PAH concentration ranged from 632.42 to 844.93 ng g−1 dw, with an average value of
738.68 ng g−1 dw. ∑PAHs were in the range of 5.2–678.6 ng g−1 dw and 434.8–872.1 ng g−1 dw for the
Sarno and Volturno River sediments, respectively. The cancerogenic risk from the accidental ingestion
of PAHs in estuarine sediments was low at all sampling sites. However, based on the ILCRdermal

values obtained, the risk of cancer associated with exposure by dermal contact with the PAHs present
in the sediments was moderate, with a mean ILCRdermal value of 2.77 × 10−6. This study revealed the
pollution levels of PAHs across the South of Italy and provided a scientific basis for PAH pollution
control and environmental protection.

Keywords: polycyclic aromatic hydrocarbons (PAHs); river sediment; occurrence; incremental
lifetime cancer risk; carcinogenic risk

1. Introduction

Estuaries are the main deposits for the disposal of industrial and domestic effluents,
sewage sludge, and dredged material with a significant load of contaminants, including
PAHs, from pipeline discharges, vehicular emissions, atmospheric deposition, surface
runoff, as well as oil spills in aquatic environments [1]. Due to their low water solubility
and high lipophilicity, PAHs tend to accumulate in the sediments of aquatic systems for
long periods due to their high degradation resistance and high organic carbon content [2].
In soil and sediment compartments, PAHs can undergo biodegradation processes by mi-
croorganisms. However, due to their stable physic–chemical characteristics, hydrophobicity,
and a strong tendency to absorb into the soil matrix, their biodegradation rate is low. Con-
sequently, PAHs do not degrade easily, and they can accumulate in the solid phase of
the terrestrial and aquatic environment, where they persist for a long time [3,4]. Thus,
sediments constitute a natural reserve of PAHs in the aquatic system [5,6]. Moreover, they
can be released into the surrounding environment by means of resuspension phenomena,
thus giving rise to “secondary pollution”. Consequently, since high concentrations of PAHs
in sediments may reveal a potential pollution risk for the environment and human health,
it is essential to monitor these compounds in sediment to protect and preserve the aquatic
environment and human health [7].

PAHs, as persistent organic pollutants (POPs), are widely present in the ecosystem [8–10].
Their spread to the environment has raised many concerns for human health, as some of them
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have been identified as carcinogens, mutagens, and teratogens. Indeed, PAHs released into
the environment may enter the food chain, and exposure to them may result in a risk of cancer
or other adverse effects on human health [11–13]. The International Agency for Research on
Cancer (IARC) has classified PAHs according to their carcinogenicity as carcinogenic (Group
1), probable carcinogenic (Group 2A), possible carcinogenic (Group 2B), and non-carcinogenic
(Group 3) [14]. In general, high molecular weight PAHs (4–6 rings) are more toxic than low
molecular weight PAHs (2–3 rings) [15]. The greater toxicity of the former is due to the greater
number of aromatic rings from which dihydrodioloepoxides are formed [16]. In particular,
the fat solubility of PAHs makes them dangerous because they can cross cell membranes,
penetrate, and deposit in tissues. In tissues, PAHs can be oxidized to epoxide (where an oxygen
atom replaces one of the double bonds C=C) by a monooxygenase associated with cytochrome
P 450 present in the endoplasmic reticulum of cells. The epoxide thus formed can attack
macromolecules such as DNA, hence the mutagenic and carcinogenic action of the PAHs, or
be transformed into diol by enzymatic systems such as epoxide hydrolase (EH). This reaction
of detoxification allows the formed diol, with two hydrophilic alcohol groups, to be more
soluble than the starting compound and then to be expelled from the body more easily [17]. In
fact, Lee et al. reported that cytochrome P450 enzymes can metabolize BaP and activate it into
a carcinogenic reactive intermediate or metabolite. Consequently, these substances can bind
to DNA, resulting in DNA adducts that interfere with DNA replication, causing cytotoxicity,
teratogenicity, genotoxicity, immunotoxicity, mutagenesis, and carcinogenesis [18].

Mainly, Benzo[a]pyrene (BaP) has been classified as genotoxic using in vitro tests and
in vivo studies. In laboratory animals, oral administration of BaP induced tumors of the
stomach and mammary gland and skin cancer [19,20]. According to the WHO, BaP is
the compound with the greatest negative consequences for human health and has been
included in Group 1, which includes all those substances for which there is sufficient
evidence of carcinogenicity in humans [20]. BaP has been classified as genotoxic [10], and it
has been involved in tumor development in all test animal species tested, regardless of the
route of exposure (oral, cutaneous, subcutaneous, inhalator, intratracheal, intrabronchial,
intraperitoneal, or intravenous) [21]. Furthermore, dibenz[a,h]anthracene (DahA) has been
classified as a probable carcinogen and/or mutagen for humans, and it is included in Group
2A unlike Benzo[a]anthracene (BaA), Benzo[b]fluoranthrene (BbF), Benzo[k]fluoranthrene
(BkF), Chrysene (Chr), and Indeno [123-cd]pyrene (IcdP), which have been included in
Group 2B as possible carcinogens in humans [22].

The main routes of exposure to PAHs in the general population are inhalation from
breathing ambient and indoor air or smoking cigarettes, ingesting food containing PAHs,
and breathing smoke from open fireplaces [10,23,24]. According to Adeniji et al., exposure
via inhalation, ingestion, or skin contact may lead to human health problems resulting
from short- and long-term effects, including some serious respiratory and cardiovascular
diseases [13].

The acute effects of PAHs on human health mainly depend on the duration of exposure,
PAH concentration during exposure, and the toxicity of the compounds to which one is
exposed, as well as the route of exposure. Short-term exposure to PAHs has been reported to
cause impaired lung function such as asthma and thrombotic effects in people with coronary
heart disease [24]. However, there is currently no full understanding of the effects of short-
term exposure to PAHs, but it is well-known that occupational exposure to high levels of
PAH-containing mixtures causes symptoms such as eye irritation, nausea, and vomiting [25].
Moreover, PAHs mixtures are also known to cause skin irritation and inflammation, as
Anthracene (Ant), Benzo[a]Pyrene (BaP), and Naphthalene (NaP) are skin irritants [26]. In
addition, PAHs interfere with hormonal systems and, as a result, can have harmful effects
on reproduction and immune function [27]. The adverse effects of exposure to PAHs have
been extensively investigated, but the information currently available on human exposure
to individual PAHs is scattered and incomplete, except for some accidental contact with
NaP and BaP [28–30]. Srogi et al. stated that prolonged dermal contact with NaP may
cause redness and inflammation of the skin [31]. In addition, Diggs et al. reported that
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long-term exposure to low levels of Pyr and BaP has been identified as the cause of cancer
in laboratory animals [32]. Animal studies have also shown adverse effects on reproduction
and development due to exposure to PAHs, whereas these effects were not commonly
detected in humans [33,34]. Moreover, Anyahara stated that exposure to PAHs can induce
cataracts and cause kidney and liver damage and jaundice [35].

Estuaries are important aquatic systems largely affected by PAH pollution. In fact, due
to their chemical properties, PAHs can persist in water where they are readily adsorbed
onto particulate matter, settling in river sediments and soils. Thus, river sediments behave
as the primary sink and reservoir for PAHs in the aquatic environment [36,37]. Conse-
quently, sediments are important indicators since they can reflect the pollution status of the
environment [38].

To date, no previous studies have evaluated the carcinogenic risk to human health
associated with dermal and accidental ingestion exposure to PAHs from surface sediments
in the South of Italy. Therefore, the main aim of this study was to assess the risk to human
health from exposure to PAHs present in the sediments of surface waters in a large coastal
area of the Campania Region, in the South of Italy. Specifically, the purpose of this study
was to evaluate the distribution patterns of PAHs and to assess the carcinogenic risk to
human health from dermal and ingestion exposure to these contaminants from the estuarine
sediments of the Sarno, Volturno, and Sele Rivers, which are the main surface water streams
of the Campania Region, in the South of Italy.

2. Materials and Methods
2.1. Study Area

This assessment of the human health risk from exposure to PAHs was carried out
in a study area of approximately 3100 km2 and included the three largest plains in the
Campania Region, in the South of Italy. Particularly, the research area was close to the
estuaries of the Sele, Volturno, and Sarno Rivers, which traverse the same-named plains.
Figure 1 shows the three plains of interest and the respective estuaries of the rivers that
cross them.
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2.2. Sampling

A sampling campaign was carried out during the spring season (April 2021) at
10 sampling sites near the Sele River Estuary. In detail, sediment samples were taken
from the mouth of the river (Site 1) at different distances, 500 m, 1000 m, and 1500 m
from the mouth, and directions, to the north, west, and south of the estuary (Figure 2).
During sampling, a global positioning system (GPS) was used to locate all sampling sites.
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Information on the identification number (ID), characteristics, and coordinates of each
sampling location are shown in Table 1. The samples were collected at a depth of 0 to 5 cm
using a scraping sampler (Van Veen Grab) and placed in aluminum containers. Then, they
were transferred under refrigeration to the laboratory and stored at −20 ◦C until analysis.
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Table 1. Sampling sites with their identification number (ID), location name, and coordinates from
the Sele River.

ID Location Coordinates ID Location Coordinates

1 Sele River mouth 40◦28′55′ ′ N
14◦56′33′ ′ E 6 1000 m west 40◦28′55′ ′ N

14◦55′50′ ′ E

2 500 m north 40◦29′04′ ′ N
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The PAHs levels in sediment samples from the Sarno and Volturno Rivers were
evaluated previously [39,40]. Briefly, for the Sarno River, a sampling campaign was carried
out during the spring of 2008 at the source of the river (site 1), just before and after the
junction with Alveo Comune, at the river mouth (site 4), and in 9 sites located at different
distances from the estuary (Figure 3). More detailed information about the sediment
sampling in the Sarno River is given in Table 2.

Toxics 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Hydrographic network and sampling sites near the Sarno River. 

Table 2. Sampling sites with their identification number (ID), location name, and coordinates from 
the Sarno River. 

ID Location Coordinates ID Location Coordinates 

1 Source of Sarno River 40°48′54.03″ N 
14°36′45.36″‘E 

8 150 m south 40°43′35.68″ N 
14°28′02.94″ E 

2 
Before junction  

with Alveo Comune  
40°46′42.73″ N 
14°34′00.48″ E 9 150 m west 

40°43′42.25″ N 
14°27′59.97″ E 

3 
After junction  

with Alveo Comune 
40°46′00.34″ N 
14°33′10.68″ E 10 150 m north 

40°43′49.26″ N 
14°27′30.31″ E 

4 Sarno River mouth 40°46′10.68″ N 
14°28′07.89″ E 

11 500 m south 40°43′30.31″ N 
14°27′58.94″ E 

5 50 m south 
40°43′40.11″ N 
14°28′06.45″ E 12 500 m west 

40°43′42.29″ N 
14°27′46.41″ E 

6 50 m west 
40°43′42.46″ N 
14°28′05.03″ E 13 500 m north 

40°43′57.85″ N 
14°27′48.68″ E 

7 50 m north 40°43′45.09″ N 
14°28′05.17″ E 

   

For the Volturno River, the sampling campaign was carried out in April 2018 near 
the mouth of the Volturno River and in 9 sites located at different distances from it (Figure 
4). The specific details are provided in Table 3. 

 
Figure 4. Hydrographic network and sampling sites near the Volturno River. 

Figure 3. Hydrographic network and sampling sites near the Sarno River.

168



Toxics 2023, 11, 172

Table 2. Sampling sites with their identification number (ID), location name, and coordinates from
the Sarno River.

ID Location Coordinates ID Location Coordinates

1 Source of Sarno River 40◦48′54.03′ ′ N
14◦36′45.36′ ′ E 8 150 m south 40◦43′35.68′ ′ N

14◦28′02.94′ ′ E

2 Before junction
with Alveo Comune

40◦46′42.73′ ′ N
14◦34′00.48′ ′ E 9 150 m west 40◦43′42.25′ ′ N

14◦27′59.97′ ′ E

3 After junction
with Alveo Comune

40◦46′00.34′ ′ N
14◦33′10.68′ ′ E 10 150 m north 40◦43′49.26′ ′ N

14◦27′30.31′ ′ E

4 Sarno River mouth 40◦46′10.68′ ′ N
14◦28′07.89′ ′ E 11 500 m south 40◦43′30.31′ ′ N

14◦27′58.94′ ′ E

5 50 m south 40◦43′40.11′ ′ N
14◦28′06.45′ ′ E 12 500 m west 40◦43′42.29′ ′ N

14◦27′46.41′ ′ E

6 50 m west 40◦43′42.46′ ′ N
14◦28′05.03′ ′ E 13 500 m north 40◦43′57.85′ ′ N

14◦27′48.68′ ′ E

7 50 m north 40◦43′45.09′ ′ N
14◦28′05.17′ ′ E

For the Volturno River, the sampling campaign was carried out in April 2018 near the
mouth of the Volturno River and in 9 sites located at different distances from it (Figure 4).
The specific details are provided in Table 3.
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Table 3. Sampling sites with their identification number (ID), location name, and coordinates from
the Volturno River.

ID Location Coordinates ID Location Coordinates

1 Volturno River mouth 40◦48′54.03′ ′ N
14◦36′45.36′ ′ E 6 1000 m west 40◦43′42.46′ ′ N

14◦28′05.03′ ′ E

2 500 m north 40◦46′42.73′ ′ N
14◦34′00.48′ ′ E 7 1000 m south 40◦43′45.09′ ′ N

14◦28′05.17′ ′ E

3 500 m west 40◦46′00.34′ ′ N
14◦33′10.68′ ′ E 8 1500 m north 40◦43′35.68′ ′ N

14◦28′02.94′ ′ E

4 500 m south 40◦43′42.62′ ′ N
14◦28′07.89′ ′ E 9 1500 m west 40◦43′42.25′ ′ N

14◦27′59.97′ ′ E

5 1000 m north 40◦43′40.11′ ′ N
14◦28′06.45′ ′ E 10 1500 m south 40◦43′49.26′ ′ N

14◦27′59.82′ ′ E

2.3. Extraction Procedure and Clean-Up

The analyses were performed as described previously [41]. Briefly, for PAH extraction,
the sediment samples were air-dried, crushed, sieved in 250 µm particles, and then divided
into portions of 5 g. The PAH concentrations were indicated as dry weight (ng/g dw) [42,43].
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The PAH extraction was performed with a Soxhlet extractor using methylene chloride as
solvent. Subsequently, the extracts, first purified using a column composed of sodium
sulfate/silica gel and then eluted with 70 mL of a hexane:methylene chloride (7:3, v/v)
solution, were evaporated to dryness and reduced to a final volume (500 µL) with the aid of
a weak current of nitrogen. Finally, the extracts were analyzed using gas chromatography
coupled with mass spectrometry (GC-MS). A TOC analyzer was used to evaluate the total
organic carbon (TOC) content in the sediment samples (TOC-VCPH, Shimadzu Corp.,
Kyoto, Japan).

2.4. Instrumental Analysis, Quality Assurance, and Quality Control

A TRACETM1310 gas chromatograph coupled to an ISQTM7000 single quadrupole
mass spectrometer (GC-MS, Thermo Scientific, Waltham, MA, USA) was used, equipped
with a capillary column TG-5MS (length 30 mm, inner diameter 0.25 mm, film thickness
0.25 µm) and helium as a gas carrier (constant flow of 1 mL/min), operating in the electronic
ionization mode (EI) set to 70 eV. The injector operated at 280 ◦C, and the temperature
of the detector was set to 300 ◦C. The acquisition was performed with the Selected Ion
Monitoring (SIM) mode using two characteristic fragments for each selected analyte. A
splitless injection mode was adopted with an injection volume of 1 µL. The quantification
of PAHs was carried out using response factors related to the respective internal standards
based on a six-point calibration curve for individual PAHs (Dr. Ehrenstorfer GmbH,
Augsburg, Germany) (R2 > 0.97). Chrysene-d12 was used as an internal standard for
sample quantification. Before the analysis, all the glassware to be used was thoroughly
washed with methanol, acetone, and dichloromethane and placed in the oven at 200 ◦C
to minimize possible sources of contamination. The column temperature was set with
different gradients: from 60 ◦C to 200 ◦C with an increase of 25 ◦C/min (kept for 2 min), to
270 ◦C increasing at 10 ◦C min−1 (kept for 6 min), and to 310 ◦C with a rise of 25 ◦C min−1

(kept for 10 min). The single ion monitoring mode (SIM) was used for the acquisition using
characteristic ions for each target analyte. The 16 priority IPA, according to the WHO and
USEPA, were evaluated (Table 4) [20,44].

Six-point calibration curves (5–10–50–250–500–1000 ng/L), procedural blanks, and
sample triplicates were carried out for every set of samples. The PAH concentrations were
calculated as dry weight (ng/g dw). The limits of detection (LOD) and quantification (LOQ)
were evaluated as three and ten times the noise in blank samples, respectively. They were
in the range of 1.5–1.9 ng g−1 and 5.1–6.3 ng g−1, respectively. In the procedural blanks,
analyzed as the samples, the PAHs showed a concentration below the LOD. Moreover, for
individual PAHs, the recovery test values ranged from 80% to 97%, meeting the quality
control criteria (70–130%). For the effective and reproducible detection and quantification
of low concentrations of PAHs in sediments, the linear range, precision, limits of detection,
and limits of quantification were performed. The precision of the method was determined
using repeatability tests and was expressed as standard deviation (SD) (Tables S1–S3). The
average of the results was used to estimate the precision of the method.

2.5. Human Health Risk Assessment

The human health risk assessment is useful in determining whether exposure to a
chemical in a specific dose may cause an increase in the frequency of adverse effects on
human health [39,42,45–47]. For the population, PAH exposure represents a health and
hygiene risk, which is assessed as a carcinogenic risk. Therefore, the USEPA defined
carcinogenic risk as the probability that an individual may develop cancer over a lifetime
from exposure to a specific substance classified as mutagenic or carcinogenic. Thus, this
risk assessment consists of two phases, which are the estimation of the probability of an
event occurring and the study of the likely magnitude of its adverse effect over a specific
time frame [48].
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Table 4. The 16 Priority PAHs according to the United States Environmental Protection Agency (US
EPA) and the World Health Organization (WHO) [20,44].

Name Abbreviation Molecular Formula Number of Rings Chemical Structure Molecular Weight

Naphthalene Nap C10H8 2
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The incremental lifetime cancer risk (ILCR) due to exposure by direct ingestion and
skin contact to PAHs present in the sediment was evaluated [49]. First, the doses of
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contaminants taken up by human receptors through the two different exposure pathways
considered were calculated according to Equations (1) and (2) [50]:

Doseing =
Cs × IRs × RAForal ×Dhours ×Ddays ×Dweeks × EDyears

BW× LE
(1)

Dosederm =
Cs × SAh × SLh × RAFderm × EF ×Ddays ×Dweeks × EDyears

BW× LE
(2)

where:
Doseingestion (mg/kg-day) indicates the dose from accidental sediment ingestion;

Dosedermal (mg/kg-day) is the dose from skin contact with sediment; Cs (mg/kg) rep-
resents the concentration of the contaminant in the sediment; IRs (kg/day) is the rate
of accidental sediment ingestion; RAForal indicates the relative absorption factor for the
gastrointestinal tract; RAFderm (dimensionless) expresses the relative absorption factor for
the skin. Moreover, the dose was evaluated based on the hours per day with exposure:
0–16/16 h for accidental ingestion of sediment (Dhours); days in a week with exposure
[(0–7)/7 days] (Ddays); weeks in a year with exposure [(0–52)/52 weeks] (Dweeks); total
years with exposure (EDyears); surface of hands (assuming only hands are exposed) (SAh
(cm2); SLh (kg/cm2-event) = Sediment load rate on exposed skin; EF (event/day) = Number
of skin exposures per day; BW (kg) = receptor body weight; LE = life expectancy/average
life expectancy expressed in years; CF (conversion coefficient) = 1 × 10−6 kg/mg.

Additionally, since Benzo(a)pyrene (BaP) is the most carcinogenic compound among
the PAHs considered [10], all individual analyte concentrations were converted to the
corresponding toxic equivalent concentrations of BaP. These concentrations are referred to
as TEQBaP or BaPeq and were obtained using the concentration product for toxic equivalence
factor (TEF). The TEF factors for the 16 US EPA priority PAHs are shown in Table 5 [51].

Table 5. Equivalent toxicity factors (TEF) of the 16 PAHs [51].

Compound TEF

Acenaphthalene (Ace) 0.001
Acenaphthylene (Acy) 0.001

Anthracene (Ant) 0.01
Benzo[a]anthracene (BaA) 0.1

Benzo[a]pyrene (BaP) 1
Benzo[b]fluoranthene (BbF) 0.1
Benzo[g,h,i]perylene (BghiP) 0.01
Benzo[k]fluoranthene (BkF) 0.1

Crysene (Chr) 0.01
Dibenzo[a,h]anthracene (DahA) 1

Fluoranthene (Fla) 0.001
Fluorene (Flu) 0.001

Indeno [1,2,3-cd] pyrene (IcdP) 0.1
Naphtalene (Nap) 0.001
Fenanthrene (Phe) 0.001

Pyrene (Pyr) 0.001

The total concentrations of PAHs were obtained using the sum of the calculated toxic
equivalents for each compound in relation to BaP. BaPeq were calculated according to
Equation (3) [52]:

BaPeq = ΣCs × TEFi (3)

where Cs represents the average concentration of an individual PAH.
Humans can encounter the PAHs present in estuarine sediments by oral ingestion and

dermal contact. As a result, in addition to calculating the doses of contaminants taken up
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by human receptors, the incremental lifetime cancer risk by oral ingestion (ILCRingestion)
and dermal contact (ILCRdermal) was evaluated according to Equations (4) and (5) [49]:

ILCRingestion =
Cs × SFingestion × 3

√
BW
70 × IRingestion × EF × Dyears

BW ×AT × 106 (4)

ILCRdermal =
Cs × SFdermal × 3

√
BW
70 × AS × AF × ABS × EF × Dyears

BW × AT × 106 (5)

where:

SFingestion (Kg-day/mg) indicates the oral slope factor.
SFdermal (Kg-day/mg) is the dermal slope factor.
SA (cm2/kg) represents the area of dermal contact with the sediment.
AF (mg/cm2) is the skin absorption coefficient for the sediment.
ABS is the skin absorption coefficient for contaminants.
AT (years) is the average lifespan.

The parameters used for the calculation of the carcinogenic risk are shown in Table 6.

Table 6. Parameters used for the calculation of doses taken up by human receptors through different
routes of exposure.

Parameter Unit of Measure Value References

BW Kg 70.7 [53]
IRingestion Kg/days 2.00 × 10−5 [54,55]

AT Years 80 [56,57]
SAh cm2 890 [53]
SLh Kg/cm2-event 1.00 × 10−7 [58]

Dhours Hours 0–16/16 h [59]
Ddays Days 0–7/7 days [59]

Dweeks Weeks 0–52/52 weeks [59]
RAForal - 1 [60]
EDyears Years 60 [60]

RAFderm
a - 0.148 [61]

SFingestion
a Kg-day/mg 2.3 [60]

SFdermal
a Kg-day/mg 25 [62]

EF (event/day) 1 [63]
SA cm2/kg 5000 [64]
AF mg/cm2 0.04 [64]

ABS / 0.1 [64]
a expressed in relation to BaP.

3. Results
3.1. PAH Concentrations in Sediment from the Sele River

The concentrations of the 16 USEPA priority PAHs obtained from instrumental analyses
of sediment samples taken near the mouth of the Sele River are given in Table S1. In
particular, the total concentration of the PAHs ranged from 632.42 ng g−1 dw (site 10) to
844.93 ng g−1 dw (at site 1), with an average value of 738.68 ng g−1 dw. Specifically, the
concentrations ranged from 2.23 to 70.64 ng g−1 dw with an average value of 36.43 ng g−1

dw for PAHs with 2 rings (NaP), from 5.45 to 51.03 ng g−1 dw for 3-ring PAHs (Acy, Ace,
Flu, Phe, Ant), from 0.70 to 74.6 ng g−1 dw for 4-ring PAHs (Flu, Pyr, BaA, Chr), from 39.12
to 154.99 ng g−1 dw for 5-ring PAHs (BbF, BkF, BaP, DahA), and from 3.01 to 75.13 ng g−1

dw for 6-ring PAHs (BghiP, IcdP). Figure 5 shows the individual concentrations of PAHs
detected in sediment samples from different sampling sites. The figure reveals that the
highest concentrations of PAHs were found at the mouth of the Sele River (site 1) and 500 m
from the mouth in the southerly direction (site 8). The composition profile of PAHs in the
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sediment is shown in Figure 6. PAHs with 5 rings were found in most test sites at 57.4% of
the total PAHs in the sediment.
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3.2. PAH Concentrations in Sediment from the Sarno River

Data on PAH concentrations found in the Sarno River are indicated in Table S2 [39].
The total concentration of PAHs in the sediment ranged from 5.2 ng g−1 dw at the source
of the river (site 1) to 678.6 ng g−1 dw at the point 150 m to the west of the mouth (site 9),
with an average value of 266.9 ng g−1 dw. The measured PAH concentrations ranged from
0.2 to 31.6 ng g−1 dw with an average of 9.7 ng g−1 dw for 2-ring PAHs (Nap), from 0.2 to
46.3 ng g−1 dw for 3-ring PAHs (Acy, Ace, Flu, Phe, Ant), from 0.3 to 47.2 ng g−1 dw for
4-ring PAHs (Fla, Pyr, BaA, Chr), from 0.2 to 46.6 ng g−1 dw for 5-ring PAHs (BbF, BkF, BaP,
DahA), and from 0.5 to 46.7 ng g−1 dw for 6-ring PAHs (BghiP, IcdP). Figure 7 shows the
individual and total concentrations of PAHs found in the sediment samples taken from the
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different sampling sites located near the mouth of the Sarno River. The figure indicates an
increase in total PAH levels at the sampling point 150 m west of the river mouth (site 8).
The composition profile of PAHs in the sediment is shown in Figure 8. Three-ring PAHs
were found in most test sites, at a percentage of 47.3% of the total PAH amount in the
sediment, followed by 5-ring PAHs at a percentage of 20.6%.
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3.3. PAH Concentrations in Sediment from the Volturno River

Data on individual PAH concentrations found in the Volturno River are given in Table
S3, while total concentrations were previously reported [40]. In detail, total concentrations
were between 434.8 ng g−1 dw (site 8) and 872.1 ng g−1 dw (site 1), with an average value of
659.1 ng g−1 dw. For 2-ring PAHs (NaP), the levels ranged from 5.3 to 73.8 ng g−1 dw with
an average value of 24.1 ng g−1 dw; for 3-ring PAHs (Acy, Ace, Flu, Phe, Ant), from 42.9 to
186.3 ng g−1 dw; for 4-ring PAHs (Fla, Pyr, BaA, Chr), from 61.7 ng g−1 dw to 199.7 ng g−1

dw; for 5-ring PAHs (BbF, BkF, BaP, DahA), from 262.7 to 507.1 ng g−1 dw; and for 6-ring
PAHs (BghiP, IcdP), from 17.5 to 133.2 ng g−1 dw. Figure 9 shows the individual and total
concentrations of PAHs found in the sediment samples taken at the different sampling sites
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near the mouth of the Volturno River. The figure shows that the highest concentrations of
PAHs were found at the mouth of the river (site 1) and 500 m from the mouth in the southerly
direction (site 4). The composition profile of PAHs in sediment is shown in Figure 10. Five-ring
PAHs were found in most of the test sites at 57,4% of the total PAHs in the sediment.
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3.4. Evaluation of the Carcinogenic Risk for Human Health from Dermal and Accidental Ingestion
Exposure to the PAHs Present in the Sediments of the Surface Waters

To assess the Carcinogenic Risk from exposure to PAHs present in estuarine sediments
of the Sele, Volturno, and Sarno Rivers, doses of contaminants taken up by human receptors
through the different routes of exposure were evaluated, and the results obtained are reported
in Table 7. Particularly, for all three rivers, the doses of each individual PAH and the total doses
relating to the entire class of compounds taken up by human receptors through dermal and
oral exposure were calculated. The doses from accidental ingestion of PAHs from sediments
(Doseingestion) were 7.86 × 10−4 mg Kg−1/day for the Sele River, 8.13 × 10−4 mg Kg−1/day
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for the Volturno River, and 3.31 × 10−4 mg Kg−1/day for the Sarno River. On the other hand,
in relation to the doses of PAHs taken up by skin contact with sediment (Dosedermal), the
results were 3.23 × 10−5, 1.36 × 10−5, and 3.35 × 10−5 mg Kg−1/day for the Sele, Sarno, and
Volturno Rivers, respectively.

Table 7. Average total PAH concentrations (Cs), intakes by accidental ingestion (Doseingestion), and
dermal contact (Dosedermal) of PAH present in estuarine sediments of the Sele, Volturno, and Sarno
Rivers and equivalent toxic concentrations (BaPeq).

River Cs
(mg Kg−1 dw)

Doseingestion
(mg Kg−1/day)

Dosedermal
(mg Kg−1/day)

BaPeq
(mg Kg−1 dw)

Sele 0.6360 7.86 × 10−4 3.23 × 10−5 2.23 × 10−1

Sarno 0.2677 3.31 × 10−4 1.36 × 10−5 3.38 × 10−2

Volturno 0.6577 8.13 × 10−4 3.35 × 10−5 2.30 × 10−1

Moreover, to assess the carcinogenic and mutagenic potencies of PAHs in relation
to BaP, the most carcinogenic compound among the PAH considered [10], the average
concentrations of individual analytes were converted to the corresponding toxic equivalent
concentrations (BaPeq). The equivalent toxic concentrations (BaPeq) obtained for the Sele,
Volturno, and Sarno Rivers are given in Table 7.

Furthermore, the incremental risk of developing lifelong cancer expressed as ILCR
was assessed for the exposure to PAHs by ingestion (ILCRingestion) and dermal contact
(ILCRdermal) [65]. The ILCRingestion and ILCRdermal values obtained for Sele, Volturno, and
Sarno Rivers are shown in Table 8.

Table 8. Incremental lifetime cancer risk values (ILCRingestion and ILCRdermal) due to exposure by
ingestion and dermal contact from PAHs present in the estuarine sediments of the Sele, Volturno, and
Sarno Rivers.

River ILCRingestion
(mg Kg−1 dw)

ILCRdermal
(mg Kg−1 dw)

ILCRingestion/dermal [66]
Cancerogenic Risk

Sele 3.11 × 10−13 3.38 × 10−6 If ILCR < 1 × 10−6 Low or Zero Risk
Sarno 1.31 × 10−13 1.42 × 10−6 If 1 × 10−6 < ILCR < 1 × 10−4 Medium Risk

Volturno 3.22 × 10−13 3.50 × 10−6 If ILCR >1 × 10−4 High Risk

The values obtained for carcinogenic risk due to exposure to PAHs by ingestion
(ILCRingestion) and dermal contact (ILCRdermal) were found to be comparable for the three
rivers. According to the USEPA, the ILCR values were interpreted by reference to three
ranges, each of which is associated with a risk of carcinogenicity: an ILCR value < 1 × 10−6

is associated with a low or zero carcinogenic risk; ILCR values between 1 × 10−4 and
1 × 10−6 are indicators of a moderate carcinogenic risk; and an ILCR value higher than
1 × 10−4 corresponds to a high carcinogenic risk associated with exposure to PAHs in
sediment [66,67]. The ILCRingestion values obtained for the three rivers were found to be
much lower than the ILCRdermal, indicating that the risk of cancer associated with dermal
contact exposure to PAHs present in estuarine sediments may be higher than that associated
with accidental ingestion exposure. Specifically, the ILCRingestion and ILCRdermal values
obtained for all sediment samples taken near the mouth of the Sele River ranged between
6.69× 10−15 and 3.11× 10−13 and 7.27× 10−8 and 3.38× 10−6, respectively. The ILCRingestion

and ILCRdermal values obtained for the Sarno River ranged between 2.45 × 10−15 and
1.31 × 10−13 and 2.66 × 10−8 and 1.42 × 10−6, respectively. For the Volturno River, the
ILCRingestion values were between 8.23 × 10−15 and 3.22 × 10−13, while those of ILCRdermal

were between 8.95 × 10−8 and 3.50 × 10−6. Thus, the risk of cancer associated with exposure
to PAHs by ingestion of estuarine sediments of the Sele, Sarno, and Volturno Rivers was found
to be low at all sampling sites. However, based on the ILCRdermal values obtained, the risk of
cancer associated with exposure by dermal contact with the PAHs present in the sediments
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was found to be moderate (average ILCRdermal for the three rivers of 2.77× 10−6). In addition,
the values of the ILCRingestion and ILCRdermal indices for sediment samples taken at sites
with the highest concentrations of PAHs were evaluated. For the Sele and Volturno Rivers,
the assessment was carried out at the mouth (site 1), for which total PAH concentrations of
0.8449 and 0.8721 mg Kg−1 dw were found, respectively. For the Sarno River, the assessment
was carried out at the sampling site 150 m to the west of the estuary (site 9), where a total
concentration of PAHs of 0.6792 mg Kg−1 dw was found. The results obtained for the three
rivers are shown in Table 9.

Table 9. Incremental lifetime cancer risk values (ILCRingestion and ILCRdermal) due to exposure by
ingestion and dermal contact to the highest PAHs levels found in the sediment samples of the Sele,
Volturno, and Sarno Rivers.

River ILCRingestion
(mg Kg−1 dw)

ILCRdermal
(mg Kg−1 dw)

ILCRingestion/dermal [66]
Cancerogenic Risk

Sele 4.14 × 10−13 4.50 × 10−6 If ILCR < 1 × 10−6 Low or Zero Risk
Sarno 3.33 × 10−13 3.61 × 10−6 If 1 × 10−6 < ILCR < 1 × 10−4 Medium Risk

Volturno 4.27 × 10−13 4.64 × 10−6 If ILCR >1 × 10−4 High Risk

The ILCRingestion values obtained for the three rivers at the sampling sites with the
highest PAH concentrations were <1 × 10−6 (order of 10−13), suggesting that the risk of
cancer associated with exposure by ingestion of PAHs present in estuarine sediments was
low or zero. On the other hand, the ILCRdermal values obtained for the three rivers at the
sampling sites with the highest PAH concentrations were in the order of 10−6, suggesting
that the risk of cancer associated with dermal contact exposure to PAHs present in estuarine
sediments was moderate. In fact, as stated also by Cheng et al., ILCR values between
1 × 10−4 and 1 × 10−6 are associated with a moderate carcinogenic risk [66,67]. Thus, on
the basis of the ILCR values obtained by taking into account total PAH concentrations at all
sites or considering only the total concentrations recorded at the most polluted sites, the risk
of cancer associated with exposure by ingestion was found to be low or zero, but the risk
associated with dermal contact exposure of PAHs present in estuarine sediments of the Sele,
Volturno, and Sarno Rivers is moderate. Thus, since these areas were previously considered
potentially contaminated according to Italian environmental law (D. Lgs. 152/2006), and
as stated by Albanese et al., who assessed an incremental lifetime cancer risk higher than
1 × 10−5 for the city of Naples [9], a continuous monitoring of potentially hazardous
substances is necessary to ensure the protection of public health.

4. Conclusions

This paper presents for the first time an assessment of the carcinogenic risk to human
health from dermal and ingestion exposure to PAHs present in sediments of the main
surface water streams of the Campania Region, southern Italy. The paper also provides
information on the concentrations, spatial distribution, and composition profiles of the
PAHs detected in sediments collected near the Sele, Sarno, and Volturno River estuaries.
The results obtained indicate that the risk of cancer following oral exposure to PAHs in
estuarine sediments, expressed as incremental lifetime cancer risk (ILCRingestion), is low,
unlike the risk from accidental skin exposure, which was moderate with ILCRdermal values
between 1 × 10−4 and 1 × 10−6. This calls for ongoing assessment of the carcinogenic
risk to human health posed by cutaneous and oral exposure to PAHs, as well as constant
monitoring of PAH concentrations in surface water sediments in the Campania Region. In
conclusion, this study represents a starting point for future studies aimed at assessing the
risk of carcinogenicity to human health due to exposure to the PAHs in order to provide
support for pollution prevention measures and ecological restoration strategies for rivers,
as well as for the preservation of the general well-being.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11020172/s1, Table S1: PAH levels (ng g-1 dw) with SD
(Standard Deviation) detected in sediment samples from Sele River; Table S2. PAH concentrations
(ng g-1 dw) with SD (Standard Deviation) found in sediment samples from the Sarno River (April
2008). Table S3. PAH levels (ng g-1 dry weight) with SD (Standard Deviation) detected in sediment
samples from Volturno River.
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Abstract: The concentrations, possible sources, and ecological risk of polychlorinated biphenyls
(PCBs) and organochlorine pesticides (OCPs) were studied by analyzing water column (DP), sus-
pended particulate matter (SPM) and sediment samples from 10 sites on the Sele River. Total PCBs
concentration ranged from 2.94 to 54.4 ng/L and 5.01 to 79.3 ng/g in the seawater and sediment
samples, with OCPs concentration in the range of 0.51 to 8.76 ng/L and 0.50 to 10.2 ng/g, respec-
tively. Pollutants loads in the seaside were measured in approximately 89.7 kg/year (73.2 kg/year
of PCBs and 16.5 kg/year of OCPs), indicating that the watercourse could be an important cause of
contamination to the Tyrrhenian Sea. Statistical analysis indicates that all polychlorinated biphenyls
analytes are more probable to derive from surface runoff than an atmospheric deposition. The results
explain that higher concentrations of these pollutants were built in sediment samples rather than in
the other two phases, which are evidence of historical loads of PCBs and OCPs contaminants. The
Sediment Quality Guidelines (SQGs), the Ecological Risk Index (ERI) and the Risk Quotient (RQ)
show that the Sele river and its estuary would reputedly be a zone possibly at risk.

Keywords: persistent organic pollutants; Sele river; toxicity equivalent; risk assessment; Principal
Component Analysis

1. Introduction

The importance of riverine ecosystems for human living has attracted the interest of
authorities and researchers, especially after the development of cities and the increase in
industrial and agricultural activities, which have released significant amounts of contami-
nants into these ecosystems [1–3]. Among these, the persistent organic pollutants (POPs)
such as Polychlorinated biphenyls (PCBs) and Organochlorine pesticides (OCPs) [4], have
raised concern due to their physico-chemical properties and high toxicity [5].

POPs are a set of toxic chemicals that are persistent in the environment and able to last
for several years before breaking down. Several were concluded regionally and globally to
develop better risk management so as to reduce the impact of these toxic substances on
humans’ health and the environment [6]. Among these treaties, the Stockholm Convention
on POPs is the most important. Accordingly, it has been necessary to introduce a set of
rules for the forbidden and restricted worldwide use of POPs that are harmful to human
health and the environment, because these are very stable compounds that resist photolytic,
biological and chemical degradation and that thus persist in the environment with long
half-lives [7,8]. These compounds can be transferred from air to surface soil and water by
dry and wet deposition, from soil to aquatic bodies by rainfall runoff, and from soil and
aquatic bodies back to air by volatilization. Due to the long-range atmospheric transport,
they have been found in most areas of the world [9,10]. They greatly affect the quality of
environmental ecosystems and human health.
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PCBs are man-made organic compounds composed of a biphenyl with different num-
bers of chlorine atoms replaced with two six-carbon benzene rings [11]. They are composed
of more than 200 individual chemical compounds produced by industrial mixtures via
introducing elementary chlorine into biphenyl. Therefore, the primary source of PCBs is
industrial production, including industrial wastewaters and slag discharged into the receiv-
ing environment. PCBs could have 10 homologs and 209 distinct congeners counting on the
number and location of chlorine atoms. Given their property of low electrical conductivity
and high resistance to heat and thermal degradation, PCBs are applied as heat exchange
fluids in transformers and capacitors. Furthermore, PCBs were ideal additives in paints,
dyed paper and plastics [12].

OCPs have been extensively applied in agriculture worldwide for several decades and
they mainly originate from improperly treated industrial wastewaters originating from
pesticide manufacturing plants. Different species of OCPs, including hexachlorocyclohex-
anes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs), are still extensively present in
water, sediments, atmosphere, fish and even food, due to their persistence, even though
the production and application of these contaminants were banned in evolved countries in
the 1970s and 1980s [13,14]. Because of their high refractiveness and hydrophobicity, most
OCPs firmly adhere to the surface of suspended particles and eventually to sediments at the
bottom of water bodies when entering the water environment. They can be subsequently
released into the water column under certain conditions such as water turbulence, posing a
serious threat to aquatic organisms and human health [15–17].

Many studies have confirmed that the marine environment appears to be one of the
primary locations for the accumulation of PCBs and OCPs [18–20].

This study investigates the concentrations of PCBs and OCPs found from the Sele
river, one of the main rivers of the Campania plain. Campania is one of the most populated
regions of Italy, in which are developed numerous industrial activity and rich agricultural
practices such as livestock farming (buffalo farms); the large-scale production of vegetables
and fruits feeds the local food industry. These activities include a vast use of pesticides and
fertilizers, which can damage water quality [21,22].

Hence, this study is intended to evaluate the concentrations of PCBs and OCPs from
the Sele river estuary, southern Italy, and their environmental impact on the Mediterranean
Sea. In particular, this paper aims to (i) estimate the PCBs and OCPs levels from the
Sele river estuary; (ii) evaluate their distribution between the phases analyzed; (iii) define
their spatial distribution and temporal trends in the study area; (iv) assess the potential
environmental impact of PCBs and OCPs from the Sele river on the Mediterranean Sea. To
the best of our knowledge, there are no previous studies that have evaluated the loads of
PCBs and OCPs from the Sele river and the environmental impact on the Mediterranean Sea.

2. Materials and Methods
2.1. Study Area

The Sele river is the second river of the Campania region in the South of Italy, after the
Volturno river, and it is a tributary of the Tyrrhenian Sea. It is one of the most important
watercourses of the region with a drainage basin of 3235 km2, a length of 64 km and an
annual mean flow rate of 69 m3/s (Figure 1) [21,23]. The basin is located on the western
(i.e., Tyrrhenian) side of southern Italy and includes a large alluvial plain. The plain has
a triangular surface area of about 400 km2 and it is flanked versus the sea by a straight
sandy coast between the towns of Salerno and Agropoli. In the Campania region (CP),
the city of Salerno is amongst the most tourist-oriented areas around the Mediterranean
Sea; furthermore, it has one of the largest transportation networks in south Italy, including
railway, highway and various road connections into and around the region. The Sele plain
is characterized by agriculture and agro-industries that still provides the major economic
income and, from an environmental point of view, the stream network system in the Sele
plain is responsible for carrying fertilizers and related products into the Mediterranean
Sea. Instead, in the last decade, another source of pollution has been represented by a
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large number of illegal waste dumps, uncontrolled burning sites (especially in the north of
Campania) and industrial wastes from manufacturing enterprises operating in the textile
and leather goods sector, which contribute to an increase in the concentrations of the main
pollutants [24,25].
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Figure 1. Study area in the Mediterranean Central Sea: solid dots show sampling stations from the
Sele river and estuary, southern Italy.

The Sele river basin is characterized by a Mediterranean climate with a particularly dry
climate in summer and mild temperatures in winter. The sea contributes to determining the
climate, which is warm temperate, with modest daily and annual temperature ranges (less
than 21 ◦C); in fact, the sea maintains the summer heat, accumulating and then releasing it
during the winter. The dry summers and rainy winters are a typical characteristic of the
Mediterranean climate [26,27].

2.2. Sample Collection

To assess temporal trends of pollutants, between 2020 and 2021, four sampling cam-
paigns were conducted in the summer, autumn, winter and spring from 10 sampling points
along the Sele river: the first sampling point was the Sele mouth and the other nine were at
diverse distances from the mouth, i.e., 500 m, 1000 m and 1500 m to the north, south and
west (Table 1). Three aliquots were sampled at each chosen point and for each season. Once
collected, the samples were carried out to the laboratory and analyzed in triplicate, in order
to assess the repeatability of the method. For any locations 2.5 L of water (approximately
a depth of 0–50 cm from the sampling points) were collected from the surface layer with
amber bottles using a portable water collector. All water samples were sent to the laboratory
and placed in a 4 ◦C refrigerator. Sediment samples were obtained at a depth of 0–5 cm in a
0.04 m2 range area with a Van Veen Grab sampler, and the overall weight of the sediment
samples was not less than 500 g. The samples were quickly wrapped in polyethylene bags,
shipped to the laboratory and placed in a refrigerator at −20 ◦C.
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Table 1. Total PCBs concentrations in the three phases (DP, SPM, SED) analyzed from the samples
collected from the Sele river, southern Italy.

Sampling Location ΣPCBs

Site Number
Identificatin Site Sampling

Point
DP (ng L−1) SPM (ng L−1) (ng g−1 Dry wt)

SED
(ng g−1

Dry wt)

Apr Jul Nov Feb Apr Jul Nov Feb Apr

1
(river water)

Sele River
Source

40◦28′55′′ N
14◦56′33′′ E 6.80 12.1 7.01 4.20 14.0

(1758.6)
9.21

(1026.2)
26.0

(2622.7)
35.1

(1895.3) 79.3

2
(sea water)

River Mouth
at 500 mt North

40◦29′04′′ N
14◦56′14′′ E 5.71 6.70 6.56 4.68 2.11

(223.2)
2.85

(1236.0)
10.7

(402.2)
22.2

(179.0) 51.2

3
(sea water)

River Mouth
at 500 mt
Central

40◦29′12′′ N
14◦55′56′′ E 6.51 7.29 6.84 4.76 4.2

(1126.7)
5.04

(2514.3)
8.81

(2589.2)
6.85

(1674.7) 36.4

4
(sea water)

River Mouth
at 500 mt South

40◦29′20′′ N
14◦55′38′′ E 8.72 10.2 7.77 5.02 7.00

(952.1)
6.18

(2698.2)
24.9

(589.5)
30.6

(212.5) 62.1

5
(sea water)

River Mouth
at 1000 mt

North
40◦28′55′′ N
14◦56′12′′ E 6.21 6.66 6.32 3.94 1.52

(118.0)
1.17

(263.1)
6.50

(374.3)
8.08

(125.3) 34.2

6
(sea water)

River Mouth
at 1000 mt

Central
40◦28′55′′ N
14◦55′50′′ E 6.35 5.90 6.71 3.74 2.90

(1569.3)
2.52

(1524.0)
3.40

(1348.7)
2.66

(910.3) 12.3

7
(sea water)

River Mouth
at 1000 mt

South
40◦28′55′′ N
14◦55′28′′ E 6.90 8.20 6.74 4.73 4.10

(460.5)
3.10

(325.3)
15.3

(548.6)
11.5

(84.2) 35.4

8
(sea water)

River Mouth
at 1500 mt

North
40◦28′47′′ N
14◦56′16′′ E 4.90 5.55 4.84 2.41 1.10

(106.9)
0.35

(36.4)
2.18

(774.0)
3.76

(1048.6) 19.2

9
(sea water)

River Mouth
at 1500 mt

Central
40◦28′39′′ N
14◦55′56′′ E 5.30 5.89 5.00 1.98 3.22

(582.2)
1.00

(614.3)
1.50

(486.1)
1.78

(547.2) 5.0

10
(sea water)

River Mouth
at 1500 mt

South
40◦28′30′′ N
14◦55′38′′ E 7.00 7.22 4.32 3.16 4.21

(1986.5)
2.12

(156.1)
4.10

(120.3)
7.54

(1486.4) 10.1

2.3. Sample Processing and Chemical Analysis

The method used for extraction and analytical determination has been published
previously [28]. Briefly, water samples were filtered through a previously kiln-fired (400 ◦C
overnight) GF/F glass fiber filter (47 mm × 0.7 µm; Whatman, Maidstone, UK). Filters
(suspended particulate matter, SPM) were kept in the dark at −20 ◦C until analysis. Dis-
solved phases (fraction of contaminants passing through the filter) were kept in the dark at
4 ◦C and extracted within the same day of sampling (3–6 h from sampling). Filters were
fortified with 2 ng of PCB #65 and PCB #166 as a recovery standard, respectively. After, they
were extracted three times by sonication and concentrated to 0.5 mL [29]. The dissolved
phase (DP) was fortified with PCB #65 and PCB #166 as a recovery standard, in order to
obtain a final concentration of 5 ng L−1. Two liters of sample (DP) were preconcentrated
and analyzed using SPE for solid phase extraction; subsequently, they were eluted and
concentrated at 0.5 mL.

Sediments were oven desiccated at 60 ◦C and sifted at 250 µm. A samples rate was
fortified with the same surrogate standards used previously, extracted three times and
concentrated as the water samples [29]. In each sample analyzed of DP, SPM and sediment,
the amount of the following 32 chosen PCBs were quantified (PCBs 8, 28, 37, 44, 49, 52, 60,
66, 70, 74, 77, 82, 87, 99, 101, 105, 114, 118, 126, 128, 138, 153, 156, 158, 166, 169, 170, 179,
180, 183, 187 and 189) (C-SCA-06 PCB Congeners Mix #6; AccuStandard, Inc., New Haven,
CT 06513, USA). Instead, the mixed OCPs standard solution included: aldrin, α-BHC,
βBHC, δ-BHC, γ-BHC (lindane), p,p′-DDD, p,p′-DDE, p,p′-DDT, dieldrin, endosulfan I,
endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide
(isomer B) and methoxychlor (M-8080 Organochlorine Pesticides; AccuStandard, Inc., CT
06513, USA). Analysis of sample extracts and standards was performed using a GC17A
Shimadzu (Kyoto, Japan), equipped with an electron capture detector (ECD) and an AOC-
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20i Shimadzu (Kyoto, Japan) autosampler. Identification of the compounds was achieved
by comparing the retention times of the samples with those of the individual PCBs, while
quantitative analysis was based on multilevel calibration curves. To confirm the presence
of OCPs, GC–MS using a GC–MS 2010 Plus Shimadzu (Kyoto, Japan) was used, working in
the electron impact mode and operating at 70 eV.

The mass spectrometer was operated in Single-Ion Monitoring (SIM) mode with the
molecular ions of the studied pollutants. PCBs and OCPs are quantified using the response
factors of internal standards.

2.4. Quality Assurance and Quality Control

All results were subject to precise quality control process. For each set of 10 samples, a
procedural blank and a spiked sample consisting of all reagents were used to check inter-
ferences and cross-contaminations. Surrogate standards in DP, SPM and SED samples were
analyzed carefully. The mean recovery of a surrogate for the DP sample was 80.5 ± 8.2%,
for SPM samples was 79.3 ± 6.2%, and for sediment samples was 83.7 ± 3.1%. Spiked
samples in each set of 10 samples were analyzed with mean recoveries ranging from 78.8
to 102.7%. Each extract was evaluated in two copies, in addition, the errors involved in
sampling were assessed by carrying out triplicate sampling of water and sediment at the
same site and the analysis of sample extracts. Results showed good reproducibility of the
sampling process.

The Metod Detection Limit (MDL) was calculated as the average blank values plus
three times the standard deviation and it ranged from 0.006 to 0.100 ng L−1 in the dissolved
phase and in the particulate phase and ranged from 0.0005 to 0.0050 ng g−1 in the sediment.
IDL was calculated as three times the noise in a blank sample chromatogram. If the amount
of any compound in a sample was under its MDL/IDL, this analyte was reputed as not
detected in the sample (under the limit of detection, <LOD). Data obtained for PCBs and
OCPs were rectified for surrogate recoveries.

2.5. Analysis and Contaminants Load

All statistical analyses were performed with the SPSS 22.0 statistical package (IBM-
SPSS Inc., Chicago, IL, USA). The significance level was p < 0.05 unless otherwise stated.

According to the UNEP guidelines [30], the method to evaluate the annual pollutants
loads has been used (Fannual): The mean of the total concentrations was multiplied by the
annual average flow rate (m3/year) of the Sele river for each sampling event and corrected
by the total water load for the sampling period. The average flow considered is 69 m3/s
and this information was found in the database of the Autorità di Bacino Distrettuale
dell’Appennino Meridionale Sede Basilicata.

Principal Component Analysis (PCA) is a statistical process that purposes an orthogo-
nal transformation to change a group of observations of potentially associated variables
into a group of values of linearly uncorrelated variables called principal components. It
is one of the oldest and most widely technique used. It reduces the dimensionality of
a dataset, while preserving as much variability as possible [31]. In this study, PCA was
performed to determine the possible sources of PCBs.

2.6. Toxicity and Dioxin-like PCBs

Dioxin-like PCBs (dl-PCBs) are compounds containing four to eight chlorine atoms.
They are very toxic contaminants, bioaccumulative and pose a major health risk due to
certain molecular characteristics. In fact, dl-PCBs have a comparable chemical conformation
to dioxins and furans. For the combined risk assessment of these substances, the toxic
equivalent (TEQ) concentrations for dioxin-like PCBs were calculated according to toxic
equivalency factors (TEFs) adopted by the World Health Organization (WHO) in 2005 [32].
TEFs are a fundamental element of TEQ and have developed in the last few decades for
dioxins/dioxin-like compounds.
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TEF values used in this study are indicated by WHO 2005 for human and mam-
mals [32]: 0.0001 for PCB 77; 0.0003 for PCB 81; 0.00003 for PCB 105, 114, 118, 123, 156, 157,
167 and 189; 0.03 for PCB 169 and 0.1 for PCB 126.

The maximum tolerable value established by US EPA is 0.7 pg WHO-TEQ/kg body
weight, and the Equation (1) used to calculate the TEQ is the following:

ΣTEQ = ΣCi × TEFi (1)

Ci represents the amount of dl-PCBs (expressed in ng/g). In this study, the TEQ
values were calculated in sediment samples to evaluate the presence of humans and
environmental risks.

2.7. Risk Assessment

Sediment quality guidelines (SQGs) are generally employed as the effective tool for
the estimation of ecological pollution of PCBs in the sediments samples, and have been
used in many applications, including monitoring programs, ecological risk assessments
and preventing additional pollution.

There are two set of SQGs identified as: (ERL) effect range low and (ERM) effect
range median, which evaluate the probably negative effects on organisms concerning
individual PCBs as well as the cumulative toxic effects due to the sum of total PCBs [33];
(TEL) threshold effect level and (PEL) probable effect level, which constitute the chemical
amount under which the probability of toxicity and other effect are rare [28]. To evaluate
the ecological risk related to PCBs and OCPs in the water environment, two indices have
been estimated: The Ecological Risk Index (ERI) suggested by Hakanson [34], to evaluate
the level of PCBs contamination in the watercourse environment; and Risk Quotient (RQ)
method [35], for OCPs pollution. The ERI can be calculated using the following equations:

RI = ∑ Ei
r (2)

Ei
r = Ti

r Ci
f (3)

Ci
f = Ci

0/Ci (4)

where ERI is the sum of potential ecological risk for all trace PCBs in the sediments, ERI
was equal to Ei

r, Ei
r and Ti

r are the toxicity coefficient and individual potential ecological
risk for PCBs, which for these pollutants was equal to 40, in line with the standardiza-
tion elaborated by Hakanson [34]. Ci

f was the contamination factor, Ci
0 was the PCBs

amount in the sediment and Ci
n was an established value equal to 10 µg/kg. The interpre-

tation and significance of ERI is given as follows: low potential ecological risk, ERI < 40;
moderate potential ecological risk, ERI = 40–79; considerable potential ecological risk,
ERI = 80–159; high potential ecological risk, ERI =160–319; and very high potential eco-
logical risk, ERI > 320 [34]. Regarding OCPs, the risk quotient (RQ) was conducted via
calculation of RQ using Equation (5):

RQ = C/PNEC (5)

where C was the concentration and PNEC was the predicted no-effect concentrations for
particular OCPs. The PNEC results were procured from the ECOTOX database [36]. When
RQ < 0.01, the OCP has a very low risk to aquatic organisms, and when 0.01 ≤ RQ < 0.1,
the ecological risk level is low. When 0.1 ≤ RQ < 1, the OCP has a moderate risk to aquatic
organisms. When 1 ≤ RQ < 10, the OCP has a high risk to aquatic organisms, and when
RQ ≥ 10, the ecological risk level is very high [37,38].
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3. Results and Discussions
3.1. PCBs Distribution in DP, SPM and Sediment Samples

PCBs were identified in all sampling sites. This result shows that PCBs are extensively
spread in the study area. The sum of amounts of PCBs, as demonstrated in (Tables 1 and S8),
found in DP, extended from 1.98 ng L−1 (site 9) to 12.1 ng L−1 (site 1) with a mean value of
6.30 ± 2.10 ng L−1. In Tables S1–S3 (percentage values), the data show that, as reported in
(Figure 2a), the main PCBs detected in collected samples were tetra, penta and hexa-CBs,
suggesting an average over 82% of ΣPCBs. The abundant presence of this class of PCBs
is probably due to the fact that these compounds have stronger hydrophilicity than PCBs,
with more chlorine atom substitutions [39]; in fact, when the number of chlorine atoms
increases, the solubility decreases [40,41]. In DP samples, hepta-CB were present only for
9% of total PCBs.

In the SPM phase, the PCBs concentrations varied from 0.35 ng L−1 (36.4 ng g−1) in
site 8 to 35.1 ng L−1 (1895.3 ng g−1) in site 1 on dry weight (Tables 1 and S9).

The PCBs most present are those with more chlorine atoms; in fact, in this phase,
there is an increase in the percentage of hepta PCBs compared to the DP. This event can be
explained through the chemical properties of the higher chlorinated PCBs, which are low
hydrophilic and therefore, tend to bind more with the particulate (Figure 2a).

Regarding the sediment samples, the total PCBs values ranged from 5.0 ng g−1 (site 9)
to 79.3 ng g−1 (site 1) (Tables 1 and S10). Data show that the amount of hepta-PCBs
increased to 10%. Moreover, the amount of di- + tri-PCBs decreased in sediments samples
compared to SPM and DP samples. It can therefore be said that the percentage of highly
chlorinated PCBs in the sediments samples was higher than that in the DP and SPM
phases, and the percentage of less chlorinated PCBs was lower than that in the DP and
SPM phases; furthermore, in the sediment have been found the highest concentrations of
PCBs. The characteristic of PCBs depends on the degree of chlorination, i.e., the higher
the degree of chlorination, the lower the water solubility and vapor pressure [39]. In the
Sele river, sediments turn out to be a sink for these contaminants and are a measurement
of their amount during the years [42–44]. PCBs being hydrophobic organic compounds,
they are characterized by extraordinary stability, high toxicity, extremely high long-range
atmospheric transportability [45,46]. In the aquatic environment, PCBs are removed from
the water column and adsorbed onto suspended particulate matter; they can subsequently
bio-accumulate in sediment and thereby, transfer to higher trophic levels through the food
chain. Due to their persistent and hydrophobic nature, the fate and transport of PCBs in a
water environment are highly affected by their adsorption behavior on the sediment [47,48].
Many factors influence the adsorption behavior of PCBs. In this study, among them,
pH, temperature and salinity were considered. Salinity, for example, can alter the water
solubility of hydrophobic compounds and the physicochemical properties of sediment,
through which it influences the adsorption capacity of hydrophobic compounds on the
sediment. Table S4 shows the data of the factors that may have contributed to a higher
concentration of PCBs in the sediment and may have influenced the distribution of these
contaminants analysed in this study characterized by a predominantly mineral sediment.
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3.2. OCPs Distribution in DP, SPM and Sediment Samples

Data showed that samples raised from the Sele river included rests of HCH (sum of
a-HCH, b-HCH, g-HCH, and d-HCH), DDT (p,p’-DDE, p,p’-DDD, p,p’-DDT isomers and
methoxychlor) and cyclodienes (aldrin, dieldrin, endosulfan I, endosulfan II, endosulfan
sulphate, endrin, heptachlor and heptachlor epoxide). In Tables 2 and S11 were reported
the results of the DP, SPM and sediment sample analyses. In the DP phase, the total
concentrations varied from 0.36 ng L−1 (site 9) to 5.71 ng L−1 (site 1) (mean value of
1.22 ± 0.23 ng L−1). Particularly, as indicated in Figure 2b and in Tables S5–S7 (percentage
values), they varied from ND to 0.75 ng L−1 for HCH, from ND to 1.0 ng L−1 for DDT
and its degradates, and from ND to 3.20 ng L−1 for cyclodienes. In SPM, the amounts
acquired for total OCPs extended from 0.05 ng L−1 (65.3 ng g−1 dw) in site 9 to 4.82 ng L−1

(201.4 ng g−1 dw) in site 1 (Tables 2 and S12). The HCHs extended from ND to 0.89 ng L−1,
the DDTs from ND to 0.96 ng L−1, and the cyclodienes from ND to 2.62 ng L−1, as shown
in Figure 2b. In sediment samples, instead, the total OCPs concentration (Tables 2 and S13)
extended from 1.1 ng g−1 (site 9) to 15.0 ng g−1 (site 1). The HCHs ranged from 0.10
to 1.24 ng g−1, the DDTs from 0.10 to 6.12 and the cyclodienes from 0.15 to 3.10 ng g−1

(Figure 2b). The results show that in the Sele river, a higher percentage of cyclodienes
and DDT was found compared to HCH; in fact, the results of the ratio indicate that the
DDTs/cyclodienes ratio was <1 at most sites (mean, 0.70), such as the HCHs/DDTs and
HCHs/cyclodienes ratios (means, 0.40 and 0.20, respectively). The dominant HCH was
b-HCH (1.90± 1.00), followed by a-HCH (1.65± 0.80). This pesticide had a lower solubility
in water, and dissolved organic matter can assimilate on this compound, which may raise
the amount in water. The ratio of b-HCH in the HCHs was high and indicates that these
contaminants maybe represent a historical input rather than a fresh input [49]. A similar
trend for b-HCH has also been reported by Dong et al. [50] and Salem et al. [51].

In this study, it was also significant to assess the biodegradation of DDT in its metabo-
lites in the aquatic system. DDT not only controls crop pests and malaria but is also used
as an active ingredient in antifouling coatings on fishing boats in several developing coun-
tries [52]; in Italy this pesticide has been prohibited from rural application and limited
for public health [28]. DDT is composed of p,p′-DDT, p,p′-DDD, p,p′-DDE. DDT will
dechlorinate to DDD under anaerobic conditions and degrade to DDE under aerobic condi-
tions [52]. To determine the indicated levels of DDT in this study, the ratio of p,p′-DDT to
its metabolites was estimated. When the ratio < 0.5, the DDT input was recent while when
the ratio > 0.5 the DDT present in the environment is attributable to the historical input [53].
In the Sele river, the ratio in DP, SPM and sediment was 15.1, 16.6 and 18.7, respectively, so
these data indicate that most of the DDTs in the Sele river were obtained from historical
input (Figure 3).

Among the cyclodiene compounds and their metabolites, endosulfan sulfate was
in abundance with the highest grades in water (DP + SPM), justifying 9% of total OCPs.
Heptachlor epoxide is the metabolite of heptachlor and the ratio of heptachlor/heptachlor
epoxide in the water system of the Sele river was 0.17. According to Kuranchie Mensah
et al. [54], when the trend of metabolites was higher than the parent compound present,
there were no fresh inputs of this contaminant in the water stream.
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Table 2. Total OCPs concentrations in the three phases (DP, SPM, SED) analyzed for the samples
collected from the Sele river, southern Italy.

Sampling Location ΣOCPs

Site
Number

Identification
Site Sampling

Point
DP (ng L−1) SPM (ng L−1) (ng g−1 Dry wt)

SED
(ng g−1

Dry wt)

Apr Jul Nov Feb Apr Jul Nov Feb Apr

1
(river water)

Sele River
Source

40◦48′54.03′′ N
14◦36′45.36′′ E 4.01 5.71 3.75 1.95 2.08

(198.5)
1.56

(154.1)
3.98

(243.0)
4.82

(201.4) 15.2

2
(sea water)

River Mouth
at 500 mt

North
40◦46′42.73′′ N
14◦34′00.48′′ E 1.70 2.98 2.12 1.10 1.06

(70.2
0.55

(284.1)
1.22

(51.8)
1.80

(174.3) 1.39

3
(sea water)

River Mouth
at 500 mt
Central

40◦46′00.34′′ N
14◦33′10.68” E 2.03 2.01 1.98 0.80 1.20

(185.4)
0.50

(154.2)
1.26

(274.6)
1.86

(119.4) 1.54

4
(sea water)

River Mouth
at 500 mt South

40◦43′42.62′′ N
14◦28′07.89′′ E 3.24 4.38 2.18 1.82 1.48

(150.2)
0.68

(298.4)
1.54

(97.5)
2.20

(241.2) 3.85

5
(sea water)

River Mouth
at 1000 mt

North
40◦43′40.11′′ N
14◦28′06.45′′ E 1.00 2.00 1.78 0.75 1.00

(94.1)
0.48

(102.3)
0.98

(95.4)
1.03

(100.1) 1.20

6
(sea water)

River Mouth
at 1000 mt

Central
40◦43′42.46′′ N
14◦28′05.03′′ E 0.98 1.32 1.20 0.49 1.10

(254.3)
0.32

(36.8)
0.99

(198.4)
1.23

(155.2) 1.32

7
(sea water)

River Mouth
at 1000 mt

South
40◦43′45.09′′ N
14◦28′05.17′′ E 2.12 2.85 1.60 1.10 1.24

(110.4)
0.38

(89.2)
1.26

(114.7)
1.30

(10.2) 2.84

8
(sea water)

River Mouth
at 1500 mt

North
40◦43′35.68′′ N
14◦28′02.94′′ E 0.84 1.20 0.90 0.70 0.50

(71.4)
0.39

(96.8)
0.84

(195.7)
1.00

(180.3) 1.21

9
(sea water)

River Mouth
at 1500 mt

Central
40◦43′42.25′′ N
14◦27′59.97′′ E 0.84 0.90 0.81 0.36 0.47

(112.2)
0.05

(65.3)
0.91

(117.8)
0.89

(148.3) 1.10

10
(sea water)

River Mouth
at 1500 mt

South
40◦43′49.26′′ N
14◦27′59.82′′ E 1.45 1.85 0.73 0.79 0.60

(196.5)
0.10

(52.7)
0.74

(17.4)
0.89

(185.6) 1.02
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tively, so these data indicate that most of the DDTs in the Sele river were obtained from 
historical input (Figure 3). 
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3.3. Spatiotemporal Diffusion

The spatial diffusion designs of ∑ PCBs, ∑ OCPs and isomers concentrations in water
and sediments of the Sele river are illustrated in Figure 4a,b, respectively. The results shown
were obtained by studying and comparing the concentrations in the different sites in the
dry and rainy seasons. The data showed a similar trend for both classes of compounds.
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The Mouth of the Sele river is the most contaminated with a more elevated total
concentration of PCBs and OCPs. Concentrations decrease as you move away from the
mouth up to 1500 m from the coast, where the concentrations of PCBs and OCPs are
significantly lower. Figure 4a,b show that the highest concentrations have been obtained
around the Sele river mouth, as the contaminants present in the aqueous phase are diluted
as one moves away. In particular, the contaminants load from the Sele river mouth has
been shown to move southward into the Tyrrhenian Sea. In this study, the pollutant
load drained into the Tyrrhenian Sea by the Sele river was also calculated. The results
show that the total estimated value is equal to 89.7 kg year−1 (73.2 kg year−1 of PCBs and
16.5 kg year−1 of OCPs) In the water samples (DP phase), the total amount of pollutants
was considerably lower mainly during the wet season (February), due to the abundant
rains which caused water dilution effects. On the other hand, in SPM samples, the amounts
were lowest in all sampling sites during the dry season. The results showed that the
contaminants concentrations in DP decreased from July to February, in parallel with the
increase in rainfall, which could cause dilution ratio variations. Therefore, the decrease of
the pollutants amount moving from the Sele river mouth to the Mediterranean Sea is also
affected by the high flow in the rainfall season, which results in an even higher dilution
ratio. The lowest concentrations in SPM were recorded in the dry season (July), due to the
decrease in flow and a greater stagnation of SPM, which led to the shift of contaminants
from SPM to DP.

3.4. Potential Sources of PCBs

For the purpose of more accurately controlling the emission and release of PCBs,
it is deemed necessity to define their contamination sources as much as possible. Prin-
cipal Component Analysis (PCA) has been executed on the different sediment datasets.
Six groups of PCBs were identified in this study (Di- PCB, Tri-PCB, Tetra-PCB, Penta-PCB
and Hepta-PCB). The obtained results from PCA manifested that the first three principal
components show 57.1% (PC1), 15% (PC2) and 10% (PC3) of the total variance, respectively
(Figure 5). Considering the three PCA axes individually, PC1 was principally composed of
tetra-PCB, penta-PCB and hexa-PCB (high chlorinated congeners), PC2 was composed of
Di-PCB and Tri-PCB, and the third component PC3 was composed of Hepta-PCBs.
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The first component dominated by highly chlorinated PCBs could be unintentionally
formed by anthropogenic activities such as industrial processes, waste incineration and
vehicle exhaust [55,56]. Many studies [57,58] have demonstrated that PCB amount levels in
the lower atmosphere near the water are confirmed 4Cl PCBs evaporated from the surface
layer. In addition, the loss of a chlorine atom of highly chlorinated compounds with an
anaerobic microbe can manifest in the sediments [26], which provides a good availability
of molecules with few chlorine atoms. Therefore, PC1 represented PCBs originated from
unintentionally formed local sources directly discharged into coastal water. The second
component, dominated by 2Cl and 3Cl PCBs, suggests that these compounds could be
transferred to the watercourse by surface runoff after rain cases, and cumulate in the
estuary. The third component, composed of Hepta-PCB, suggests a point source deposition
industrial loads along the Sele river: for example, discharge pipes from factories, sewage
treatment plants and various organizations could be responsible for point source pollution
in the Sele river. The existence can be assumed of a single major source in the watercourse
related to the point source [59].

3.5. Dioxin Toxicity Equivalency

TEQs were calculated for eight PCBs (PCB 77, 105, 114, 118, 126, 156, 169 and 189)
having dioxin-like properties by TEF, described in detail by Van den Berg et al. (2006) for
all sediment samples. The TEQ concentrations of dioxin-like PCBs (DL-PCBs) detected at
all sampling sites ranged from 0.004 to 0.270 ng/g with an average level of 0.050 ng/g. The
highest ∑ TEQPCB concentrations were found at the Sele mouth (site 1). Despite PCB-114
indicating an amount higher than others PCB-DL, PCB-126 and PCB-169 contributed for
95.7% to TEQPCB, because of their higher TEF.

The data indicated that TEQPCB values of the Sele river and its estuary were in a
low level, suggesting that the toxicity of the PCBs in the watercourse could negatively
cause a great threat to organisms and ecosystem, and endanger human health through
bioconcentration and the food chain [38].

3.6. Risk Assessment of PCBs and OCPs

The SQGs guidelines can estimate the level of the possible negative effects and toxicity
thresholds of specific organic contaminants in sediment for the ecological environment
[60,61]. In this study, the total PCBs amount in sediment samples of the Sele river were
considerably lower than PEL and ERM (Table 3), while 40% and 40% of analyzed sam-
ples indicated concentrations above TEL and ERL values, respectively, in the Sele river.
and the risk factor of analyzed samples indicated concentrations above TEL and ERL
values, respectively.

Table 3. A comparison of the TEL, PEL, ERL and ERM guideline values (µg Kg−1) for PCBs and
OCPs and data from the Sele river and estuary, southern Italy.

TEL
Percentage
over the

TEL
PEL

Percentage
over the

PEL
ERL

Percentage
over the

ERL
ERM

Percentage
over the

ERM
PCBs

Total PCBs 21.6 40 189 0 22.7 40 180 0
OCPs

γ-HCH (lindane) 0.32 0 0.99 0 - -
Dieldrin 0.72 0 4.3 0 0.02 50 8 0
4,4-DDD 1.22 20 7.81 0 2 0 20 0
4,4-DDE 2.07 0 374 0 2.2 0 27 0
4,4-DDT 1.19 10 4.77 0 1 10 7 0

Total DDT 3.89 0 51.7 0 1.58 10 46.1 0

Regarding risk factors, the results showed that in the Sele river, the risk factor of PCBs
for the sampling site were elevated at the mouth and at 500 m south, although in other
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sites, the risk value ranged from appreciable to low. Consequentially, based on the data
obtained, the risk in the sediments of the Sele river was medium. Concerning the OCPs, in
all analyzed samples, the ratio indicated a RQ < 1 for most of the pesticides. These data
show that negative effects on the aquatic organism would rarely be observed [28,42,62,63].

4. Conclusions

This study analyzed the pollution characteristics, spatiotemporal variation, source
identification and potential ecological risk of PCBs and OCPs in the Sele river; the input was
also calculated of this watercourse into the Tyrrhenian Sea (Central Mediterranean Sea).

A higher amount of this contaminant was built in sediment samples than in their
correspondent water bodies, DP and SPM, which suggests that suspension processes and
sedimentation are principally in the Sele river. The data obtained showed that industrial
procedure was reputed to be the principal source of PCBs; regarding the risk assessment,
the risk factors of PCBs in sediment samples were elevated at the Sele river mouth and
at 500 mt south, while in other sites, they are low. OCPs ratio, instead, was lower and
showed an RQ <1 for most analytes. Thus, the pollution situation in the Sele river and its
estuary should be monitored regularly to assess the ecological risk in time. These data
improve our knowledge on the Sele river water quality and they would inform such things
as environmental monitoring, sediment quality guidelines application and ecological risk
assessments. Our expectation is that the important and significative activity of establishing
a rich database for different pollution factors can be developed, and more emerging contam-
inants should be included in ecological risk assessments of river ecosystems. Furthermore,
this study’s results will help prevent future environmental water system contamination
of the Sele river from PCBs and OCPs and strengthen prevention and pollution control
measures against future risks. It would further help policymakers identify high-risk pollu-
tants areas, improve environmental protection regulatory policy and sensitize the public
to its importance. This study presents a novel result on the current status of water and
sediment PCBs and OCPs levels in the area surrounding the Sele river. Therefore, the PCBs
and OCPs levels in water and sediment from the Sele river should be further analyzed to
ensure the contaminant levels reported in these areas are not being underestimated due to
the continued increase in environmental activities.
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Abstract: The Sele River, located in the Campania Region (southern Italy), is one of the most im-
portant rivers and the second in the region by average water volume, behind the Volturno River.
To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Sele
River, water sediment samples were collected from areas around the Sele plain at 10 sites in four
seasons. In addition, the ecosystem health risk and the seasonal and spatial distribution of PAHs
in samples of water and sediment were assessed. Contaminant discharges of PAHs into the sea
were calculated at about 1807.9 kg/year. The concentration ranges of 16 PAHs in surface water (DP),
suspended particulate matter (SPM), and sediment were 10.1–567.23 ng/L, 121.23–654.36 ng/L, and
331.75–871.96 ng/g, respectively. Isomeric ratio and principal component analyses indicated that
the PAH concentrations in the water and sediment near the Sele River were influenced by industrial
wastewater and vehicle emissions. The fugacity fraction approach was applied to determine the
trends for the water-sediment exchange of 16 priority PAHs; the results indicated that fluxes, for
the most part, were from the water into the sediment. The toxic equivalent concentration (TEQ)
of carcinogenic PAHs ranged from 137.3 to 292.6 ngTEQ g−1, suggesting that the Sele River basin
presents a definite carcinogenic risk.

Keywords: polycyclic aromatic hydrocarbons; Sele River; fugacity; source; TEQ

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous and persistent
pollutants that are highly dangerous for humans, as they are carcinogenic and mutagenic.
The extent of the potential risk and the distribution of PAHs in the environment is a pub-
lic health issue [1,2]. With population development and economic growth, the input of
PAHs intensified considerably in the 20th century; therefore, 16 PAHs have been identi-
fied as priority contaminants by the U.S. Environmental Protection Agency [3]. Seven of
them, namely benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene,
benzo[a]pyrene, indo[1,2,3-cd]pyrene, and dibenzo[a,h]anthracene, are potentially car-
cinogenic to humans according to the International Agency for Research on Cancer [4,5].
In addition, four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene and
chrysene) were recently defined as the main indicators of the presence of genotoxic and
mutagenic PAHs in the environment and, in particular, in food [6]. The majority of the
PAH load in the environment is from the combustion of organic matter (pyrolytic origin),
which is usually released from human activities, such as coal combustion, petrol and diesel
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oil combustion, industrial processes, and home heating. Other types of non-anthropogenic
sources, such as petrogenic and diagenetic origins, are relatively less abundant [7,8]. PAHs
introduced into the aquatic environment move from the water into the sediment due to
their chemical and physical properties; in particular, the high-molecular-weight PAHs,
consisting of several aromatic rings, have a greater tendency to bind to the sediment. In
contrast, low-molecular-weight (LMW) PAHs, consisting of few aromatic rings, degrade
faster, and their concentrations in surface water and sediments are relatively low [9]. The
partitioning of PAHs in water and sediment is one of the major processes controlling the
toxicity of PAHs in aquatic environments [10]. Over the years, numerous studies have been
conducted on important rivers in central and southern Italy to evaluate and estimate the
PAH levels in the water, suspended particulate matter, and sediment; toxicity was also
assessed to verify the harmful effects on the environment and the possible biological risks
for living organisms in the watercourses.

Beginning with central Italy, the Tiber River has concentration ranges of 10.3 to
951.6 ng/L (DP + SPM) and 36.2 to 545.6 ng/g for the sediment, with a relatively low
toxicity [11]. In southern Italy, we find the Volturno River, with concentration ranges from
256.0 to 1686.3 ng/L (DP + SPM) and 434.8 to 872.1 ng/g for the sediment, with a toxicity
value that highlights an area possibly at risk [12]. In the Sarno River, on the other hand,
ranges of 23.1 to 2670.4 ng/L (DP + SPM) and 5.3 to 678.6 ng/g for sediment are found, with
toxicity values that do not indicate an area experiencing immediate biological effects [13].
Qu et al. [14] studied the Gulfs of Salerno and Naples, reporting concentrations for the
sediment from 9.58 to 15.81 µg/kg for the Bagnoli area, 317 µg/kg for the Salerno area, and
768.0 µg/kg for the Gulf of Naples area, with significant toxicity and biological risk values.
Campania is one of the most populated regions of Italy, with over half of its population
concentrated in metropolitan areas such as Naples and Salerno. Currently, industrial ac-
tivity, agricultural practices, and illegal waste disposal represent difficult problems in the
effort to mitigate the high levels of contamination in the Campania plain [14,15]. The plain
is dominated by the presence of numerous industrial activities, including dairies, canning,
and chemical industries. In addition, there are many contaminated sites, both landfills and
illegal disposal areas. There are also well-developed agricultural activities in the region,
such as livestock farming (buffalo farms); the large-scale production of vegetables and fruits
feeds the local food industry. In areas where mainly agricultural and livestock products are
processed, the emission of waste with high amounts of organic and inorganic substances
can impact ecological and environmental integrity [13,16]. The Gulf of Salerno is one of
the main environments in which pollutants accumulate from the Campania Plain. The
Sele River is an important river in the Campania region; it has a length of 64 km and
is the second in the region and the south of Italy by average water volume, behind the
Volturno River.

The current paper reports the concentrations of PAHs in the water and sediment
of the Sele River in the Gulf of Salerno (central Mediterranean Sea), southern Italy. The
specific objectives of the present study are to: (I) investigate the contamination levels and
spatial distribution of PAHs, (II) identify their potential sources, and (III) estimate the
environmental risk in this area.

2. Materials and Methods
2.1. Study Area

The Sele River basin (3236 km2) is located on the western (i.e., Tyrrhenian) side of
southern Italy and includes a large alluvial plain. The plain has a triangular surface area of
about 400 km2. It is delimited offshore by a narrow sandy coastal strip between the towns
of Salerno (NW) and Agropoli (SE); landward, it is delimited to the north and northwest by
the Lattari and Picentini Mountains and to the southeast by the Alburni Mountains and the
Cilento Promontory (Figure 1) [17]. The climate in the Sele basin is of Mediterranean type,
with important spatial variations in both erosive rainfall and temperature according to the
elevation and the distance from the coast. The Mediterranean climate is characterized by
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mild temperatures. It is a particularly dry climate in summer and mild in winter. Rainfall is
concentrated from autumn to spring, and in the driest month of the year is less than 30 mm,
which is about a third of the wettest month. The lack of rainfall in the summer, with at least
two consecutive months of drought, is a peculiarity of the Mediterranean climate. In other
climate classifications, precipitation is concentrated in the hot season. In the Mediterranean
climate, the sea contributes to determining the climate, which is warm temperate, with
modest daily and annual temperature ranges (less than 21 ◦C); in fact, the sea retains the
summer heat, accumulating and then releasing it during the winter. The combination of
dry summers and rainy winters is a typical characteristic of the Mediterranean climate.

Figure 1. Map of the study area and sampling sites along the Sele River and estuary, southern Italy.

An increase in population density, high industrial pollution, the presence of road and
railway networks, and an increasing influx of tourists to the city of Salerno have caused an
increase in environmental pollution in this area [18].

2.2. Sampling

A total of 40 surface water samples and 10 sediment samples were collected in the
summer, autumn, winter, and spring of 2020–2021 from 10 sampling locations along the
Sele River (Table 1). For each season and at each sampling point, three sample aliquots
were taken. This process was repeated in duplicate. The aliquots were transported to the
laboratory and analyzed in triplicate to calculate the standard deviation and evaluate the
repeatability of the method.

The first sampling point was the river mouth, with the purpose of assessing down-
stream pollution; in addition, nine other points were sampled at 500, 1000, and 1500 mt
away from the river mouth to evaluate the impact of Sele River pollution on the Mediter-
ranean Sea environment (Figure 1). The samples were collected in 2.5 L amber bottles, using
6 M of hydrochloric acid, from the surface layer at a depth of 0–50 cm from the sampling
locations, while sediment samples were collected at 0–5 cm with a Van Veen Grab sampler
and preserved in aluminum boxes. All samples were temporarily stored in refrigerated
containers containing crushed ice until they were transported back to the laboratory and
preserved at −20 ◦C until analysis.
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Table 1. Description of the sampling sites and concentrations of PAHs in the water-dissolved phase
(DP), suspended particulate matter (SPM), and sediment of the Sele River, southern Italy. (The values
in brackets represent the values of PAH concentrations in SPM expressed in ng g−1 dry wt, after
drying the filters in an air-heated oven and weighing them).

Sampling Location ΣPAHs

Site Number
Identification

Site
Characteristics

Site
Location

Dissolved Phase (ng L−1) Particulate Phase (ng L−1) (ng g−1 Dry wt)
Sediment

(ng g−1

Dry wt)

Apr Jul Nov Feb Apr Jul Nov Feb Apr

1
(river water)

Sele
river source

40◦28′55′′ N
14◦56′33′′ E 419.3 567.2 487.3 309.9 520.1

(41,364.1)
276.1

(28,122.3)
234.8

(19,865.6)
654.3

(23,487.2) 871.1

2
(sea water)

River mouth
at 500 mt north

40◦29′04′′ N
14◦56′14′′ E 204.2 387.3 471.2 200.0 332.3

(30,542.6)
144.8

(18,657.1)
138.3

(6068.5)
381.0

(26,589.1) 712.4

3
(sea water)

River mouth
at 500 mt central

40◦29′12′′ N
14◦55′56′′ E 226.5 552.3 408.2 331.8 233.9

(74,510.7)
182.3

(26,789.8)
128.3

(58,745.8)
277.7

(16,895.9) 724.3

4
(sea water)

River mouth
at 500 mt south

40◦29′20′′ N
14◦55′38′′ E 487.3 560.2 509.1 334.1 504.2

(41,263.6)
261.2

(48,756.3)
181.2

(5986.8)
507.2

(47,596.2) 852.2

5
(sea water)

River mouth
at 1000 mt north

40◦28′55′′ N
14◦56′12′′ E 309.5 497.3 424.4 121.9 370.3

(29,865.2)
125.1

(11,587.3)
204.5

(13,501.6)
589.9

(2843.2) 649.5

6
(sea water)

River mouth
at 1000 mt central

40◦28′55′′ N
14◦55′50′′ E 227.3 498.3 529.3 249.7 328.7

(10,859.8)
214.7

(65,741.0)
190.2

(18,459.2)
461.1

(14,896.2) 708.1

7
(sea water)

River mouth
at 1000 mt south

40◦28′55′′ N
14◦55′28′′ E 302.1 499.2 502.6 262.3 467.6

(36,587.2)
294.9

(24,189.2)
188.2

(10,453.2)
369.1

(4875.2) 744.3

8
(sea water)

River mouth
at 1500 mt north

40◦28′47′′ N
14◦56′16′′ E 300.2 112.3 289.7 10.1 367.9

(19,845.5)
121.9

(10,354.3)
219.0

(16,181.1)
192.3

(5489.5) 331.7

9
(sea water)

River mouth
at 1500 mt central

40◦28′39′′ N
14◦55′56′′ E 361.7 331.2 424.8 175.9 482.1

(86,412.3)
240.2

(66,587.4)
185.7

(58,476.5)
277.9

(13,489.2) 602.1

10
(sea water)

River mouth
at 1500 mt south

40◦28′30′′ N
14◦55′38′′ E 471.0 489.3 509.1 207.1 545.8

(85,647.1)
387.3

(29,875.1)
173.2

(39,485.2)
451.7

(8746.2) 683.2

2.3. Extraction and Analysis

The samples collected were transported to the laboratory within 24 h, and they were
filtered through 47 mm × 0.7 µm glass fiber filters (Whatman, Maidstone, UK) that had
been heated at 400 ◦C overnight to separate the water from the suspended particulate
matter (SPM). The dissolved phase PAHs were extracted from water samples using a
solid-phase extraction (SPE) cartridge by Oasis HLB (6 mL, 500 mg; Waters, Milford, MA,
USA), according to the method proposed by Liu et al. [19]. C18 SPE cartridges (to elute
and concentrate) were pre-washed with dichloromethane (DCM) before conditioning with
methanol and ultrapure water; then, 10 µL of surrogate standard (benzo[a]pyrene-d12 and
indeno[1,2,3-cd]pyrene-d12) was added to 1 L of the water sample before mixing. Following
that, the water sample was passed through a column for concentration at a flow rate of
3 mL/min. Next, a vacuum pump was used to dry the column. The eluate was concentrated
to 0.5 mL using a nitrogen flow before 10 µL of internal standard (Chrysene-d12) was added,
followed by GC/MS analysis.

SPM content was determined by gravimetry. First, the filter was dried in an air-
heated oven (55 ◦C until constant weight) and equilibrated at room temperature in a
desiccator. Filters were then spiked with three surrogate standards (10 ng of chrysene-
d12, benzo[a]pyrene-d12, and indeno[1,2,3-cd]pyrene-d12) and extracted three times by
sonication with 10 mL of dichloromethane-methanol (1:1) for 15 min. After extraction,
the extracts were concentrated using a rotary evaporator. The volume of the extracts was
adjusted to 0.5 mL and solvent-exchanged into hexane. Cleanup and fraction procedures
were performed with open column chromatography (3 g of neutral alumina deactivated
with 3% (w/w) Milli-Q water). Three fractions were collected: fraction I with 5.5 mL of
hexane, fraction II with 6 mL of hexane:ethylacetate (9:1), and fraction III with 12 mL of
ethylacetate. PAHs were eluted in fraction II, while fractions I and III contained other
organic pollutants that were also detected in the samples. The sediment samples were
air-dried in the dark for 5 days, crushed, sieved (250 µm particles were used as the sample),
and divided into 5 g portions. The PAH concentrations in the sediment samples were
calculated according to dry weight (ng/g dw) [20,21]. PAHs were extracted from the filters
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and sediment samples using a Soxhlet extractor (Table S1). As in [22], the samples were
draped onto a filter paper, placed into the cellulose extraction thimble, and covered with
cotton wool. The thimble was located inside the main Soxhlet chamber and fitted to a
250 mL round-bottomed flask containing methylene chloride (150 mL). A condenser was
then attached. The samples were extracted for 24 h under reflux. The extracts were purified
through a column composed of 1 g of sodium sulfate and 2.5 g (10% deactivated) of silica
gel and eluted with 70 mL of a hexane:methylene chloride (7:3) solution. The extracts were
evaporated to dryness, reduced to a final volume (500 µL) using flushing nitrogen gas, and
chrysene-d12 was added as an internal standard. To evaluate the organic carbon normalized
partition coefficients (Koc’), which estimate PAH attraction to sediment and define the
sediment-water partitioning level, the total organic carbon (TOC) content of the sediments
was analyzed using a TOC analyzer (TOC-VCPH, Shimadzu Corp., Kyoto, Japan).

2.4. Instrumental Analysis

All samples were analyzed on a gas chromatograph with a mass spectrometer detector
(TRACETM 1310 Gas Chromatograph coupled to an ISQTM 7000 Single Quadrupole Mass
Spectrometer, Thermo Scientific, Waltham, MA, USA) to determine PAHs with selected ion
monitoring (SIM) (Table S2). A TG-5MS capillary column with 30 mm length × 0.25 mm in-
ner diameter× 0.25 µm film thickness was used. The column temperature was programmed
to rise from 60 ◦C to 200 ◦C for 2 min at 25 ◦C min−1, then to 270 ◦C at 10 ◦C min−1 (main-
tained for 6 min), and finally, to 310 ◦C at 25 ◦C min−1 (maintained for 10 min). The mass
spectrometer was operated in the electron ionization (EI) mode set at 70 eV, and the injector
and detector temperatures were 280 ◦C and 300 ◦C, respectively (Table S3). Acquisition
was carried out in the single ion monitoring mode (SIM) using two characteristic ions for
each target analyte. Target analytes were identified and verified by comparing the retention
times of the samples with standards and using the characteristic ions and their ratios for
each target analyte. Furthermore, for the more highly concentrated samples, the identifica-
tion of target analytes was confirmed in full-scan mode (m/z range from 60 to 350), and the
analytes were quantified using the characteristic ions and their ratios for each target ana-
lyte. The concentrations of 16 PAHs were determined: naphthalene (Nap), acenaphthene
(Ace), acenaphthylene (Acy), fluorine (Flu), phenanthrene (Phe), anthracene (Ant), fluoran-
thene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene
(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DahA),
indeno[1,2,3-cd]pyrene (IcdP), and benzo[g,h,i]perylene (BghiP). PAH quantification was
performed using a five-point calibration curve (5–25–100–500–1000 ng/L) for the 16 PAHs
(Dr. Ehrenstorfer GmbH, Augsburg, Germany) (r2 > 0.97), and chrysene-d12 was used
as an internal standard. The quantification of individual compounds was determined by
the comparison of peak areas with those of the recovery standards. The samples were
analyzed in triplicate. For the water-dissolved phase samples (final concentration in water
of 10 ng L−1), after passage through a column, the eluate was concentrated to 0.5 mL using
a nitrogen flow before 10 µL of internal standard (chrysened12) was added.

The PAH concentrations in the sediment samples were calculated according to dry
weight (ng/g dw). PAHs were extracted from the filters and sediment samples using a
Soxhlet extractor. The samples were extracted for 24 h under reflux. The extracts were
evaporated to dryness, reduced to a final volume (500 µL) using flushing nitrogen gas, and
chrysened12 was added as an internal standard.

The detection limit (LOD) was calculated as three times the noise in a blank sample
chromatogram. In the water and SPM, LODs ranged from 1.3 to 1.6 ng L−1; in sediment
samples, they ranged from 1.5 to 1.9 ng g−1. The quantification limits (LOQ) were in the
range of 4.8–5.4 ng L−1 in the water and SPM samples and 5.1–6.3 ng g−1 in the sediment
samples (Tables S4 and S5). A total of ten blanks were analyzed in the same manner as the
samples; the PAHs in the blanks showed a concentration below the LOD. The recovery of
PAHs in the standard checks and samples was between 70% and 130%, which met quality
control requirements. For the effective and reproducible detection and quantification of low
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concentrations of PAHs in water, several parameters were determined, such as linear range
(5–25–100–500–1000 ng/L), precision, limit of detection, and limit of quantification. The
precision of the method was determined through repeatability studies and was expressed
as relative standard deviation (RSD). The average of the results was used to estimate the
precision of the method. The RSD was determined by analyzing one sample on the same
day, with the same instrument, and by the same analyst under identical conditions.

2.5. Water-Sediment Partitioning

Water-sediment partitioning is an important environmental process that can be used
to evaluate the equilibrium partition behavior of PAHs in aquatic environments [10,19].
The Kow (octanol-water partition coefficient) is the coefficient expressing the lipophilicity
or carbon affinity of a chemical, and it is related to the distribution coefficient so as to
describe the fate of environmental pollutants such as PAHs [10]. Organic carbon normalized
partition coefficients (Koc) estimate PAH attraction to sediment and define the sediment-
water partitioning level [23–25]. In order to assess the behavior of PAHs in the Sele River
area, in situ organic carbon coefficients (Koc

′) were calculated by Equation (1) [26,27]:

Koc
′ = CS/(Caq × foc) (1)

where Cs and Caq are the PAH concentrations in the solid and liquid phases, respectively,
and foc is the percentage of organic carbon in the sediment.

The difference between log Koc
′ and the corresponding log Koc indicates the equilibrium

state of PAHs in an aquatic system [28].
If the average log Koc

′ is lower than the corresponding Koc and Kow, PAHs are more
absorbed into the sediment phase than exchanged into the water phase [27].

The movement of a chemical from one area to another is monitored by fugacity. For
this reason, the exchange processes of PAHs between water and sediment were estimated
by the fugacity fraction [2,29]. In Equation (2), ff is defined:

ff = Koc
′/(Koc

′ + Koc) (2)

A value of ff < 0.3 indicates that PAHs are adsorbed into the sediment from water
and that sediments act as a sink for PAHs. Values in the range 0.3 < ff < 0.7 describe
sediment-water equilibrium, and when ff > 0.7, a flux from sediment to water is predicted,
and sediments act as a secondary emission source of PAHs [19,28].

2.6. Risk Assessment and Determination of Toxicity
2.6.1. Biological Adverse Effects

In sediment, PAHs can be very dangerous to life in the aquatic ecosystem and a source
of pollutants that accumulate in the food chain [29].

In this study, the sediment quality guidelines (SQGs) were used to estimate the po-
tentially toxic effects of contaminants in the sediment samples on animals and marine
organisms [30].

The SQGs estimate the toxicity that these contaminants cause to the aquatic environ-
ment based on the following ranges: effects range low (ERL)/effects range median (ERM)
and threshold effects level (TEL)/probable effects level (PEL) [31,32].

ERL and TEL classifications correspond to chemical amounts below which the prob-
ability of toxicity and other effects are low. In contrast, the ERM and PEL classifications
represent a mid-range above which negative effects are likely to occur. ERL-ERM and
TEL-PEL classifications represent a possible effects range within which adverse effects
sometimes occur [13,33].

2.6.2. Toxicity Determination

Marine sediments are considered a contaminant pool of PAHs, and the potential
toxicity of PAHs, in particular carcinogenic PAHs (C-PAHs), in the aquatic environment
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may threaten human health [34]. This study evaluated the potential impact of C-PAHs
based on BaP toxic equivalency factors (TEFs). The toxic equivalent quantity (TEQ) of
ΣPAHs was determined through the following equation:

TEQPAHs = ∑i TEFi × CPAHi (3)

where TEFi (toxic equivalency factor) is the toxic factor of each carcinogenic PAH relative
to BaP and CPAHs and represents the concentration of an individual carcinogenic PAH.

The TEFs values determined by the U.S. EPA [22] for each carcinogenic PAH are as
follows: 0.1 for BaA, 0.001 for Chr, 0.1 for BbF, 0.01 for BkF, 1 for BaP, 0.1 for IcdP, and 1 for
DahA [35].

2.7. Identifying the Source of PAHs

PAHs mainly derive from industrial processes and incomplete combustion by various
industrial activities, such as waste incineration, iron and aluminum production, cement
manufacturing, dye manufacturing, and asphalt industries, as well as from vehicle emis-
sions and other anthropogenic activities [36,37].

Identifying the possible sources of PAH pollution is an important objective for the
institutions seeking to collect information on how to control the pollution caused by
these pollutants.

The sources of PAHs, whether from fuel combustion (pyrolytic) or from crude oil
(petrogenic) contamination, may be determined by the ratios of specific PAH compounds
based on peculiarities in PAH composition and distribution as a function of the emission
source. The diagnostic ratios of selected PAHs were utilized to distinguish PAHs from
pyrogenic and petrogenic sources. For example, HMW/LMW PAHs, Flu/(Flu + Pyr),
IcdP/(IcdP + BghiP), BaA/(BaA + Chr), Ant/(Ant + Phe), and BbF/BkF were applied for
PAH source identification [38,39].

LMW contaminants are more common in samples containing petrogenic PAHs, and
HMW contaminants are common in samples containing pyrogenic PAHs; this is because
most of the HMW molecules are formed at higher temperatures [40,41].

In this study, the principal component analysis (PCA) technique was used to quantita-
tively explore PAH origins. PCA was used as a multivariate analytical tool to reduce a set of
original variables (measured PAH content in the sediment samples) and to extract a small
number of latent factors (principal components, PCs) for analyzing relationships among
the observed variables. As a result of an effective ordination process, the first PC accounts
for the greatest proportion of the original variance, while the second and subsequent PCs
progressively explain smaller amounts of data variation [42,43].

3. Results and Discussion
3.1. PAH Distribution in Water, SPM, and Sediment

Analysis of samples collected from the Sele River showed the presence of various
PAHs in surface water, SPM, and sediment; the mean concentrations of ΣPAHs were
10.1–567.2 ng/L, 121.9–654.3 ng/L, and 331.7–871.1 ng/g, respectively (Table 1). The high
anthropogenic pressure of the city of Salerno is evident in the presence of large food facilities
and a vast industrial zone; in particular, the environment surrounding the Sele River is
characterized by industrial districts, urban areas, intensive cultivations, and agricultural
crops [44,45].

The concentrations of total PAHs in the water-dissolved phase (DP) detected at 10 lo-
cations along the Sele River and its estuary ranged from 3.4 to 98.5 ng L−1 for two-ring
PAHs (Nap), from 22.7 to 164.2 ng L−1 for three-ring PAHs (Acy, Ace, Flu, Phe, and Ant),
from 1.2 to 24.2 ng L−1 for four-ring PAHs (Fla, Pyr, BaA, and Chr), from 9.4 to 37.2 ng L−1

for five-ring PAHs (BbF, BkF, BaP, and DahA), and from 17.6 to 44.5 ng L−1 for six-ring
PAHs (BghiP and IcdP) (Table S6).The compositional pattern of PAHs in the dissolved
phase indicates that two- and three-ring PAHs were abundant at all sampling sites, rep-
resenting, on average, over 60% of all PAHs. The predominance of low-molecular-weight
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PAHs (two-three-ring) in the water may be explained by their high water solubility and
relatively high vapor pressures [46,47] (Figure S1).

The PAHs detected in SPM ranged from 3.2 to 62.3 ng L−1 for two-ring PAHs (Nap),
from 21.2 to 58.3 ng L−1 for three-ring PAHs (Acy, Ace, Flu, Phe, and Ant), from 38.7 to
190.9 ng L−1 for four-ring PAHs (Fla, Pyr, BaA, and Chr), from 26.5 to 105.0 ng L−1 for
five-ring PAHs (BbF, BkF, BaP, and DahA), and from 18.7 to 68.2 ng L−1 for six-ring PAHs
(BghiP and IcdP) (Table S7). The compositional profiles of PAHs in SPM show that four-,
five-, and six-ring PAHs were abundant at most sampling sites, accounting for 67% of
ΣPAHs in SPM. Therefore, the higher PAH concentrations found in SPM may derive from
PAH particles suspended in the air because the Sele River drainage basin passes through
large agricultural areas and large industrial areas in southern Italy; these areas contain
agri-food industries, chemical plants, and manufacturing industries. The emission of
atmospheric particles from intensive agricultural activities and factories also causes serious
air pollution, and the particulate-associated PAHs may be transported and deposited into
the river [48,49] (Figure S1).

In sediment samples, the results ranged from 2.2 to 35.1 ng g−1 for two-ring PAHs
(Nap), from 30.2 to 137.2 ng g−1 for three-ring PAHs (Acy, Ace, Flu, Phe, and Ant), from 59.2
to 241.2 ng g−1 for four-ring PAHs (Fla, Pyr, BaA, and Chr), from 191.3 to 490.3 ng g−1 for
five-ring PAHs (BbF, BkF, BaP, and DahA), and from 11.2 to 109.4 ng g−1 for six-ring PAHs
(BghiP and IcdP) (Table S8). In terms of individual PAHs in sediment, the composition
characteristics were different from those in SPM and water (Figure S1). In sediment
samples, the results showed the prevalence of four- and five-ring PAHs at most sites
sampled, accounting for 36% and 42% of ΣPAHs in sediments, respectively. Liu et al. [50]
reported a similar distribution of PAHs between water and sediment, confirming that HMW
PAHs were mainly absorbed by sediment. This difference in distribution between water
and sediment may be due not only to water solubility but also to bacterial degradation. In
fact, the water solubility of PAHs probably decreases as the number of attached benzene
rings increases, suggesting that HMW PAHs are less easily mobilized from solid substrates
and dissolved into aquatic media than LMW PAHs and, as a result, they are less receptive
to biodegradation. Instead, LMW PAHs have high solubility in water and greater benthic
recycling, and were, therefore, more concentrated in the dissolved phase [51–53].

Such differences in pollutant composition between individual PAHs may be caused
by different input methods and characteristics of PAHs. Firstly, river water receives direct
PAH inputs from various sources, including wastewater discharge, runoff, atmospheric
fallout, and so on. Secondly, low-molecular-mass PAHs gradually decrease as a result of
degradation and adsorption, and only those PAHs that have relatively high molecular mass
and are more resistant to degradation can resist such pressures to reach the sediment bed.
Thirdly, water conditions, which change with the seasons, change the state of the water
column process by mechanisms including dissolution, adsorption, desorption, degradation,
and deposition [2,54,55].

Spatial distribution data showed that concentrations reached their peak values at
sites near the river mouth, while the levels of PAHs at other sites decreased from location
one (river mouth) to four (1500 mt). In the Tyrrhenian Sea, PAH concentrations ranged in
general from high values near the river outflow to low values in offshore areas (Figure 2).
At 500 mt of river outflow, the PAH concentrations were close to those at the Sele mouth
(Figure 2). The concentrations at the sampling sites then decreased at 1000mt from the river
outflow and more still at 1500 mt. From the Sele mouth, the PAH load moved into the
Tyrrhenian Sea southward (Figure 2). As can be seen from the results obtained, the trend
in the concentrations indicated a decrease from the mouth towards 1500 mt at sea. This
may depend both on the flow of the river, which varies according to the season, and on
the diluting effect of the sea. The seasonal variation in PAH concentrations depends on the
hydrological conditions, which may cause dilution ratio variations [56,57]. Therefore, a
high river flow rate resulted in a higher dilution ratio during the wet season floods and
caused a decrease in the PAH concentrations in both the Sele River and its estuary. In the
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area of the sea where the sampling sites are located, the flow direction of the seawater
moves south. The marine flow influences the concentrations and the distribution of the
PAHs, which also change according to the seasons. This is influenced by the currents and
characteristic winds of the Mediterranean Sea [58]. When the flow of the sea changes,
several factors change that can contribute to altering the concentrations of the studied
compounds: temperature, salinity, and often also “color” (more or less cloudy) [59]. These
factors lead to changes in the density of the water. The occurrence of flow events implies
a high presence of suspended solid matter of terrestrial origin, as well the resuspension
of sediments caused by turbulence and the transport of the associated PAHs downstream.
In contrast, when low-flow conditions predominate and previous flood events are long
past, the settling of suspended matter and the associated storage of PAH particles in the
sediment are favored [60]. The PAH sources present in the study area that may contain
seawater are represented by the various industries present in the area and agricultural
activities as well. The results showed that the PAH concentrations in DP decreased from
July to February, in parallel with the increase in rainfall, which could cause dilution ratio
variations. Therefore, the decrease in PAH concentrations moving from the Sele River
mouth to the Mediterranean Sea was also affected by the high flow in the rainfall season,
which resulted in an even higher dilution ratio. The lowest concentrations in SPM were
recorded in the dry season (July) due to the decrease in flow and the greater stagnation of
SPM, which led PAHs with a greater polarity to shift from SPM to DP (Figure 3).

Figure 2. Spatial and temporal distributions of PAHs in the water-dissolved phase (DP, ng L−1),
suspended particulate matter (SPM, ng L−1), and sediment (ng g−1 dry wt) of the Sele River and
estuary, southern Italy.
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Figure 3. PAH distribution in water, suspended particulate matter, and sediment.

Based on these results, it can be concluded that the loads and migrations of PAHs
between different phases at each sampling site of the Sele River were related to variations
in the flow during rainy and dry seasons. Therefore, a high concentration of PAHs in
sediments indicated that the contamination of PAHs in the Sele River and its estuary might
be caused by the historical input of PAHs. The total load of PAHs that flowed into the
Tyrrhenian Sea was evaluated to estimate the input of PAHs drained from rainwater outflow,
tributary inflow, wastewater treatment plants, industrial effluent discharge, agricultural
runoff, atmospheric deposition, and dredged material disposal. The total PAH loads
contributed to the Tyrrhenian Sea from the Sele River were calculated considering the
concentration values of the individual PAHs at the river mouth in the four months of
sampling. The mean of the total concentrations was then multiplied by the annual average
flow rate (m3/year) of the Sele River. The load was calculated as about 1807.9 kg/year.

3.2. PAH Fugacity in the Aquatic System

Since water and sediment in aquatic ecosystems are subject to dynamic equilibration,
it would be useful to identify the transport processes and fate of PAHs so that an estimation
of the distribution between water and sediment could yield useful information. The values
obtained in this study for the sediment-water equilibrium partitioning coefficient (log Koc),
in situ sediment-water distribution coefficient (log Koc

′), and fugacity fraction (ff) of PAHs
at the 10 sampling sites are shown in Table 2.

Table 2. Comparison of log Koc and log K′oc for polycyclic aromatic hydrocarbons (PAHs) at the
water-sediment interface and the fugacity fraction (ff ) in the study area.

PAHs log Koc
a log K′oc (Mean) ff

Nap 3.11 3.25 0.05
Any 3.51 3.78 0.10
Ace 3.43 4.15 0.06
Flu 3.70 3.58 0.04
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Table 2. Cont.

PAHs log Koc
a log K′oc (Mean) ff

Phe 3.87 4.22 0.06
Ant 3.40 4.00 0.06
Fla 3.70 4.79 0.09
Pyr 4.66 3.88 0.08
BaA 5.30 4.29 0.12
Chr 5.43 4.05 0.18
Bbf 5.36 1.21 0.27
Bkf 5.57 1.18 0.23
BaP 5.61 2.22 0.12
IcdP 6.64 0.41 0.28

DahA 6.22 2.10 0.10
Bghip 6.90 0.83 0.05

a Guo et al. [61].

The mean values of log K′oc ranged from 0.41 to 5.99, but the average log K′oc values
for PAH compounds, except two-three-ring PAHs, were lower than their corresponding log
Koc. This indicates that these compounds were saturated in the water-dissolved phase, and
their net flux was from the water into sediment. Overall, the difference between in situ log
K′oc and the corresponding log Koc indicated non-steady-state conditions for the PAHs in
the water-sediment system, but the differences between the log K′oc and log Koc values of
HMW PAHs were relatively large, suggesting that the non-steady-state increased for HMW
PAHs. In fact, the difference between log Koc

′ and the corresponding log Koc indicates the
equilibrium state of PAHs in the aquatic system [28]. If the average log Koc

′ is lower than
the corresponding Koc and Kow, PAHs are more absorbed into the sediment phase than
exchanged into the water phase [27]. Therefore, LMW PAHs were usually dominant in
water, and they tend to be released from SPM to water; HMW PAHs were prevalent in
sediment, and they tend to be adsorbed onto SPM from water [28,62].

The fugacity fraction ff was used to evaluate the equilibrium status of the organic
pollutants and to better understand the interactions between the phases [27,63]. In the
sediment-water of the Sele River, the ff values of the 16 PAHs were 0.04–0.28, i.e., lower
than 0.3, causing a net flux of these PAHs from the water into the sediment.

3.3. Risk Assessment of PAHs

Several evaluation tools, such as sediment quality guidelines (SQGs) and the toxic
equivalent quotient (TEQ), are frequently used for preliminary analysis and evaluation
of the ecological risk faced by aquatic environments. These methods can rapidly and
effectively evaluate the potential risk level to aquatic organisms induced by contaminant
concentrations in the environmental medium.

In the Sele River, the obtained data showed concentrations of PAHs lower than the
PEL and ERM values; however, for TEL and ERL values, not all concentrations were lower
(Table 3). Moreover, the seasonal differences also influenced the risk assessment, which
was higher for the compounds analyzed (DP and SPM) in July and lower in February, in
relation to the concentrations found.

For individual compounds, TEL values were higher for Acy, Ace, and DahA for all
samples; for Nap and Flu in 20% of samples; and for Bap in 70% of samples, indicating that
adverse effects may occasionally exist. However, the mean concentrations of the detected
PAHs were lower than their respective PEL values.

The amounts of individual PAHs did not exceed their respective ERM values, but the
ERL values were exceeded for Ace in 50% of samples, for Flu in 20% of samples, and for
DahA in all samples. The data obtained confirmed the presence of PAHs at some sites,
showing that the environmental integrity of Sele River was at risk.
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Table 3. A comparison of the TEL, PEL, ERL, and ERM guideline values (µg Kg−1) for polycyclic
aromatic hydrocarbons and the data found for the Sele River, southern Italy.

PAHs

Nap Acy Ace Flu Phe Ant Fla Pyr BaA Chr BbF BkF BaP DahA BghiP IcdP ∑PAHs

TEL a 34.6 5.87 6.71 21.2 86.7 46.9 113 153 74.8 108 - - 88.8 6.22 - - 1684
Percentage of
samples over

the TEL
20 100 100 40 0 0 0 0 0 0 70 100 0

PEL a 391 128 88.9 144 544 245 1494 1398 693 846 - - 763 135 - - 16770
Percentage of
samples over

the PEL
0 0 0 0 0 0 0 0 0 0 0 10 0

ERL b 160 44 16 19 240 85 600 665 261 384 - - 430 63.4 - - 4022
Percentage of
samples over

the ERL
0 0 50 20 0 0 0 0 0 0 0 100 0

ERM b 2100 640 500 540 1500 1100 5100 2600 1600 2800 - - 1600 260 - - 44792
Percentage of
samples over

the ERM
0 0 0 0 0 0 0 0 0 0 0 0 0

a Long et al. [64]. b MacDonald et al. [65].

In this study, the total TEQPAHs ranged from 137.3 to 292.6 ngTEQ/g; the highest
values were measured at the river mouth and site eight, while all other sampling sites
presented TEQPAHs values under the safe level.

Qu et al. [14] evaluated the PAH levels in the sediment of the Gulfs of Naples and
Salerno, reporting TEQPAHs values ranging from 0.07 to 1425 ngTEQ/g; Arienzo et al. [16]
studied the PAH levels in the sediment of the Gulf of Pozzuoli, with values between 1580
and 501.70 ngTEQ/g.

3.4. Source Identification by PAH Diagnostic Ratios

Data from this study highlighted a prevailing pattern of pyrolytic inputs of PAHs in
the Sele River and its estuary. In effect, the results demonstrated that the Ant/(Ant + Phe)
ratio was >0.1 in DP, SPM, and sediment (means of 0.40, 0.41, and 0.43, respectively), which
assigned the origin of the PAHs to pyrogenic sources. Moreover, Flu/(Flu + Pyr) ratios
allowed us to differentiate petroleum origins from combustion processes and make the
distinction between such sources [66,67]. For Flu/(Flu + Pyr), low ratios (<0.40) indicate
petroleum, intermediate ratios (0.40–0.50) indicate liquid fossil fuel combustion, and ratios
>0.50 are characteristic of grass, wood, and coal combustion. In the Sele River and its
estuary, a ratio value of Flu/(Flu + Pyr) > 0.5 was found in the dissolved phase, particulate
matter, and sediment, indicating that combustion was the main source of pollution there
(Figure 4a).

Ratio values of BaA/(BaA + Chr) > 0.35 and InP/(InP + BghiP) > 0.35 were found
in the dissolved phase, particulate matter, and sediment, indicating a mixed source of
petroleum and combustion (Figure 4b). The ratio results from the samples indicated that
they were mainly contaminated by combustion. In general, atmospheric particles emitted
from factories may be transported and deposited into the river. Moreover, industrial
wastewater and vehicle emissions also suggest a pyrolytic origin for PAH pollution in the
area. Among the pollutants evaluated in this study, Per was probably the most important
diagenetic PAH found; therefore, the high concentration of this compound compared to the
others could indicate a natural origin [55,68–70].
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Figure 4. Cross plots of the values of (a) Flu/(Flu + Pyr) versus Ant/(Ant + Phe) and (b) BaA/(BaA +
Chr) versus IcdP/(IcdP + BghiP) for all sample data from the Sele River and its estuary.

In fact, it has been indicated that amounts of Per above 10% of the total penta-aromatic
isomers suggest a probable diagenetic input, whereas those samples in which Per accounts
for less than 10% suggest a probable pyrolytic origin of the compound. In this study, the
amount of Per detected in all sediment samples was very low (range 1.97–9.72 ng g−1) and
contributed less than 2% to the penta-aromatic isomers, indicating a pyrolytic origin of
these pollutants. Differences in PAH spatial distributions in different periods are expected
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to be due to different sources of PAH inputs, water conditions, and the characteristics of
individual PAHs. In the dry period, the river is stagnant, which weakens the transport
of the pollutants from upstream to downstream, and the higher values at some sites may
be the result of some highly local inputs. Special PAH ratios such as BaA/(BaA + Chr)
and IcdP/(IcdP + BhiP) indicated that, in July, in dry season weather conditions, the PAHs
found in the Sele River were primarily from petrogenic sources, while under wet weather
season conditions, they were from pyrolytic sources.

PCA was used to quantitatively assess PAH origins, and molecular ratios between
isomers were used: PAHs were represented by three PC factors (PC1, PC2, and PC3), and
the extracted eigenvectors showed 47% for PC1 (Figure 5). This factor was mostly loaded
by the four-ring PAHs Pyr, Flu, Chr, and BaA and the six-ring PAHs IcdP and BghiP. PAHs
such as Pyr and Chr are indicators for coal burning, while Flu may indicate combustion.
Similar behavior was observed for the ratio IcdP/(IcdP + BghiP, which indicates a mixed
source of petroleum and combustion [71]. PC2 (21%) represented HMWs belonging to the
five-ring PAHs BbF and BkF. High-molecular-weight PAHs such as these indicate pyrolysis
and incomplete biomass combustion [72]. PC3, in contrast, contributed only 13% of the
total load and represented the three-ring PAHs Phe and Ant (Figure 5). Therefore, the
LMW/HMW ratio was low (<1 for each site), which is an indication of a pyrolytic origin
of PAHs at these sites [73]. The PCA and diagnostic ratios indicate that the origins of
contamination by PAHs in the Sele River were due to pyrolytic sources and combustion
sources, such as gasoline burning and fuel and coal burning.

Figure 5. Principal component analysis (PCA) of PAH composition in samples from the Sele River
estuary, southern Italy.

4. Conclusions

This paper offers important data on PAH concentrations and composition in the Sele
River where it empties into the Tyrrhenian Sea (Central Mediterranean Sea), southern
Italy, and presents the first comprehensive study of PAHs in water, SPM, and sediment
in that area. The levels of LMW PAHs were particularly high in water samples, while the
levels of HMW PAHs were predominant in sediment samples. A determination of the
diagnostic ratio of PAHs revealed that the main PAH sources were pyrolytic and suggested
that the majority of this pollution derived from vehicle traffic and combustion processes.
The exchange of PAHs between water and sediment occurs in the direction of adsorption
into the sediment from water. Regarding the risk assessment, the concentrations of many
single PAHs at a number of sites were above ERL and/or TEL (and below ERM and/or
PEL), which would on occasion yield negative environmental consequences. However, the
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toxic equivalent concentration (TEQ) of carcinogenic PAHs suggests that the Sele River
basin presents a definite carcinogenic risk. Thus, the waters of the Sele River should be
continuously monitored, as PAHs could lead to negative consequences for its aquatic
ecosystems and organisms.
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.3390/toxics10070401/s1, Table S1: Characteristic Ions of the analyzed PAHs; Table S2: Individual
PAHs recovery values; Table S3: Description of concentration of PAHs in sediment samples of the Sele
River, southern Italy; Table S4: Description of concentration of PAHs in water dissolved phase (DP)
samples of the Sele River, southern Italy; Table S5: Description of concentration of PAHs in suspended
particulate matter (SPM) samples of the Sele River, southern Italy; Table S6: Parameter of GC-MS
system; Table S7: Validation parameter values of PAHs in water samples and SPM samples; Table S8:
Validation parameter values of PAHs in Sediment samples; Figure S1: Chromatograms obtained
in different phase of Sele River. (a) PAHs chromatogram identified in a water sample (Dissolved
phase) of Sele River. (b) PAHs chromatogram identified in a Suspended particulate matter (SPM)
sample of Sele River. (c) PAHs chromatogram identified in a water sample (Dissolved phase) of Sele
River. (d) PAHs chromatogram identified in a Suspended particulate matter (SPM) sample of Sele
River. (e) PAHs chromatogram identified in Sediment sample of Sele River. (f) PAHs chromatogram
identified in Sediment sample of Sele River.
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