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Preface

The aim of this Special Issue is to explore and support the evolution of emerging digital
technology applications in agriculture and biology, including but not limited to agriculture, data
collection, data mining, bioinformatics, genomics, and phenomics, as well as applications of machine
learning and artificial intelligence. The development of a community to support this goal requires
the cross-linking and integration of multiple sources of agricultural research across 3S technologies
(remote sensing—RS; geographic information systems—GIS; global positioning systems—GPS).
This provides a basis for the detection of crop pathogens, weeds, and pests (insects) using
multi-spectrum techniques and the exploitation of remote sensing technology to create and analyze
multiple heterogeneous-structured data sets, which enables effective cross-linking and phenomic
classification. It is essential to study growth models of plants and crops and utilize expert support
to develop production and smart management decision systems to achieve real-time, quantified,
and precise decisions. Topics of high interest include the capture and curation of biological “big
data” research on multi-spectrum analysis, the assembly of complex genetic sequencing fragments,
and structural gene predictions coupled with intermediate structures to predict phenotypes. In this
context, novel data structures are required to capture predictive structures in the path from genome
type to phenotype, together with new techniques to identify the regularity of biological data. Finally,
multiple-sources-based monitoring and decision-making for plants, water, and nutrients are required,
with a research focus on the utilization of remote sensing and drone sensing to compute and predict
plant water usage. This will lead to the development of precision models of crop water/nutrient
management systems and form the foundation for the digitalization of agricultural water/nutrient

applications.
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Editors
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1. Introduction

Digital technology applications in agriculture and biology are a dynamic area of
research interest, with topics including, but not limited to, agriculture, data collection,
data mining, bioinformatics, genomics and phenomics, as well as applications of machine
learning and artificial intelligence.

The development of a community to support this goal requires the cross linking and
integration of multiple sources of agricultural research, including 3S technologies (remote
sensing—RS, geographic information systems—GIS, global positioning systems—GPS).
This broad framework provides a basis for the detection of crop pathogens, weeds and pests
(insects) using multi-spectrum techniques and the exploitation of remote sensing technology
to create and analyze multiple heterogeneous structured data sets, which subsequently
enables effective cross linking and phenomics classification. It is essential to study the
growth models of plants/crops and exploit expert support to develop smart production
and management decision systems to achieve real-time, quantified and precise decisions.

This SI's topics of high interest included the capture and curation of biological “big
data” research on multi-spectral data analysis, the assembly of complex genetic sequencing
fragments, and structural gene predictions coupled with intermediate structures to predict
phenotypes. In this context, novel data structures are required to capture predictive
structures in the path from genotype to phenotype, concurrently with new techniques to
capture and identify the regularity of biological data.

Finally, multiple-sources-based monitoring and decision making for plants, water
and nutrients are required, with a research focus on the utilization of remote sensing and
drone sensing to compute and predict plant water usage. This framework will lead to the
development of precision models of crop water/nutrient management systems and form
the foundation for the digitalization of agricultural water/nutrient applications.

The topic is expending rapidly and has a potential high impact. Detection, sensing
and decision making in the context of modern agriculture practice is benefiting from
smart/digital agriculture research and will contribute to the improvement of sustainable
development. Many colleagues have contributed this Special Issue by submitting their
research and studies.

2. Results

A total of 31 manuscripts were submitted to this Special Issue, with 20 manuscripts
accepted and published. The content of these manuscripts includes artificial intelligence
and decision making, sensor and sensing, imaging, and geographic information tech-
nology (https:/ /www.mdpi.com/journal/agronomy/special_issues/Smart_Agriculture_
Technology (accessed on 26 August 2023)). Using imaging and decision-making technolo-
gies, Bi et al. reported a novel method of corn seed identification [1]. Cai et al. determined
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the varying maturity levels of strawberries by utilizing image segmentation methods from
the improved DeepLabV3+ [1]. Crop seed vigor monitoring is revolutionized by optical
sensor technology, which enhances performance and ensures consistent production. This
technology supports reliable and non-destructive calibration techniques that allow for
accurate seed use through agronomic evaluation [2]. A combination of deep learning
with machine vision and Swin transformer-based models is capable of achieving a high
assortment accuracy through attention to specific characteristics and multi-scale feature
fusion networks [3]. To facilitate automated weed management systems, a faster R-CNN
network model for weed detection in cropping regions has been introduced, increasing
recognition accuracy to over 95%. Additionally, a Swin-DeepLabv3+ model has been
utilized for weed recognition in soybean fields, incorporating a Swin transformer and a
convolution block attention module. It resolves border contour identification concerns,
ameliorates accuracy by 2.94% and achieves an average intersection ratio of 91.53% [4,5].
A deep learning grading approach has been used to identify ginseng, a crucial compo-
nent of Chinese medicine, with an accuracy of 97.39% and a loss value of 0.035, making
it a valuable tool for ginseng appearance quality identification. Using an ATmega 328
microcontroller and an SIM900A GSM modem, an automated system is being developed to
mass produce panchagavya, a traditional organic fertilizer used in India. This system will
benefit farmers and society [6,7]. A smartphone-based machine vision system is able to
accurately simulate the quantities of sand, clay and silt in soil, featured in this Special Issue.
This system is using learning models to determine soil texture [8]. In order to remotely
monitor atmospheric CO,, CH4 and N,O above rice paddy fields, two high-resolution
laser heterodyne radiometers (LHRs) were set up in Hefei. The emissions from rice fields
increased the amount of CO,. Due to the negative correlations between CH4 and N,O
emissions, rice fields play a part in carbon sequestration during the rice growth season. The
LHRs are promising for monitoring emissions from agricultural fields due to their accuracy
in observing air concentrations [9]. The network-based automatic algorithm for classify-
ing and detecting rice pests has a recognition accuracy of 98.28%. The model illustrates
how deep learning-based classification methods perform better at detection, while insect
images are segmented effectively. With a CA attention module and STR detection head,
the YOLOv5n model, CTR YOLOv5n, will detect maize disease in mobile applications. It
decreases memory to 5.1 MB with an average recognition accuracy of 95.2%. With detec-
tion errors of less than 2.0% for both large- and small-diameter soybeans, a photoelectric
sensor-based real-time monitoring system assesses the efficiency of soybean seed metering
devices. The technique benefits from the system’s assistance for device evaluation and
seeding monitoring. An Efficient-Net-B5 network has been employed to describe citrus leaf
diseases and foster the sustainability of the citrus industry. The network can handle small,
unevenly distributed samples [10-13] and is able to obtain high accuracy rates, precision,
recall and F1 scores. Hyperspectral data are used to determine plant diseases like Septoria
tritici and Stagonospora nodorum blotch in cereal crops. A trained neural network can classify
between healthy and damaged plants with high accuracy. This technique might help with
crop estimation before harvest [14]. The development of ICT has had a huge impact on
the world, especially on India’s sugarcane harvest. The goal is to anticipate soil moisture
and categorize sugarcane production using two-level ensemble classifiers and an ensemble
model that combines support vector machines, convolutional neural networks and the
Gaussian probabilistic technique. The suggested approach outperforms existing classifiers
by 89.53%, enabling farmers and agricultural authorities to enhance sugarcane farming
productivity, thus increasing production. The phenotype monitoring technology uses an
internal gradient algorithm to accurately measure the target region and diameter of maize
stems. The technology uses color images captured during the small bell stage, extracting
color information and applying a morphological gradient algorithm [15,16]. A simple
detection system is created for automated yield estimation and picking in small-target
apple orchards using the public MinneApple dataset. The program employs 829 photos
with difficult weather circumstances and reduces the size by 15.81%, while attaining an
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mAP of 80.4%. A single-leaf labelling technique and a seedling detection network based
on YOLOV5 and a transformer mechanism are presented to identify agricultural seedlings
in challenging field situations [17]. The transformer mechanism module increased the
detection capability by 1.5%, while the single-leaf labelling approach increased the model’s
mAPO0.5 by 1.2%. By the 23 ms/frame, the optimized model increased computing speed. In
recognizing early fruit body diseases in edible fungus, the study introduces a ShuffleNetV2
+ SE model. This model improves disease classification performance, accuracy, precision,
recall and Macro-F1 value, making it acceptable for devices with low resources [18,19]. A
unique algorithm for void detection in yield maps is presented. The algorithm exhibits
100% sensitivity, 91% specificity and 82% accuracy. The method allows for smooth incorpo-
ration into real-time big data quality assessment systems based on different dimensions by
mapping geographical mistakes to two common data quality dimensions [20].

3. Future Perspectives

This Special Issue, entitled ““Smart Agriculture” Information Technology and Agri-
culture Cross-Discipline Research and Development”, has come to a close. We are very
grateful for the efforts of the journal editors, peer reviewers and hard-working authors. We
also would like to thank all colleagues who contributed to this section; without their efforts,
this research topic would not have extended to Agronomy readers. This Special Issue has
initiated much attention from research communities towards this topic and, we believe,
has been completed during a remarkable time of development. We believe there will be
more presentations that could be shared in the future.

Author Contributions: ].Z. and R.G.G. conception and draft. Z.W. review. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Jilin Agricultural University high level researcher grant
(JLAUHLRG20102006).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Smart agriculture relies on accurate yield maps as a crucial tool for decision-making. Many
yield maps, however, suffer from spatial errors that can compromise the quality of their data, while
several approaches have been proposed to address some of these errors, detecting voids or holes in
the maps remains challenging. Additionally, the quality of yield datasets is typically evaluated based
on root mean squared errors after interpolation. This evaluation method relies on weighbridge data,
which can occasionally be inaccurate, impacting the quality of decisions made using the datasets.
This paper introduces a novel algorithm designed to identify voids in yield maps. Furthermore, it
maps three types of spatial errors (GPS errors, yield surges, and voids) to two standard data quality
dimensions (accuracy and completeness). Doing so provides a quality score that can be utilized to
assess the quality of yield datasets, eliminating the need for weighbridge data. The paper carries
out three types of evaluations: (1) evaluating the algorithm’s efficacy by applying it to a dataset
containing fields with and without voids; (2) assessing the benefits of integrating void detection and
other spatial error identification techniques into the yield data processing chain; and (3) examining the
correlation between root mean squared error and the proposed quality score before and after filtering
out spatial errors. The results of the evaluations demonstrate that the proposed algorithm achieves a
100% sensitivity, 91% specificity, and 82% accuracy in identifying yield maps with voids. Additionally,
there is a decrease in the root mean squared error when various spatial errors, including voids after
applying the proposed data pre-processing chain. The inverse correlation observed between the root
mean squared error and the proposed quality score (—0.577 and —0.793, before and after filtering
spatial errors, respectively) indicates that the quality score can effectively assess the quality of yield
datasets. This assessment enables seamless integration into real-time big data quality assessment
solutions based on various data quality dimensions.

Keywords: spatial data quality; smart agriculture; data quality assessment; data quality dimensions;
interpolation; classification

1. Introduction

Technological advancements have revolutionized the agricultural industry and have
significantly improved agricultural practices. The use of information and communication
technologies in agriculture is collectively referred to as smart or precision agriculture [1].
Technology has been integrated into various domains of the agricultural ecosystem, and
examples include automated irrigation systems that use sensors to monitor soil moisture
levels and weather patterns [2] and the use of robotics to perform tasks such as harvest-
ing crops, planting seeds, and weeding fields [3]. These technological innovations have
increased efficiency, reduced labour costs, and minimized the impact of farming on the
environment [3].
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Yield mapping is the other such example that has gained widespread adoption due
to advancements in harvesting equipment. The combine harvester is equipped with a
data acquisition system that enables the collection of crop yield data during the harvest-
ing process, including location, grain flow, and area [4]. Data from yield maps usually
contain thousands of data points which have to be interpolated to create continuous yield
maps that can be used for decision-making, diagnosing production issues, and optimizing
management practices, as well as in research applications [4].

Data from combines, however, often contain errors arising from systematic and oper-
ator actions. Previous research [5,6] has identified several of such errors, including yield
map smoothing errors, unknown crop width entering the header during harvest, time lag
of grain through the threshing mechanism, positional errors, surging grain through the
combine transport system, and voids/holes. As yield is important for decision-making, it
is important to devise a means to mitigate the negative effects of such errors. To this end,
several approaches have been defined.

Numerous solutions have been proposed to address the spatial errors [4,7,8], with
some focused on a single error while others aimed to tackle multiple issues. Nonetheless, a
solution for identifying and filtering voids/holes in yield maps remains yet to be defined.
Voids typically result from topographical features such as waterlogging, rendering it
impossible to till and consequently leaving no data points for such areas. Currently,
interpolation is utilized to fill voids by incorporating neighbouring data points. However,
this method is prone to errors as voids increase in size. Identifying voids in yield maps could
significantly enhance the performance of downstream processes, such as interpolation.

The other limitation is that, currently, data quality of yield datasets in based the
calculation of root mean square error after interpolation. This requires weighbridge data
which can sometimes be unavailable, and in some cases unreliable [9]. This can affect the
quality of decisions made from such unreliable data. This paper proposes a mapping of
spatial errors to form data quality dimensions (DQDs), which can be used to assess the
quality of yield data without the need for a gold standard (weighbridge data). DQDs
provide an acceptable way to measure data quality [10]. DQDs have been used in many
fields to standardise the description of quality errors so that quality improvements processes
can be evaluated on a comparative basis [11]. As data from multiple sources is increasingly
being integrated for decision-making, mapping spatial errors to DQDs would allow for a
unified data quality assessment framework that is based on similar metrics across multiple
data sources.

This paper, therefore, implements a solution to achieve two main objectives, namely:
(1) To develop a novel algorithm to identify voids in yield maps. This uses yield data
(location and yield) and field boundary data. (2) Create a mapping of three spatial errors,
including GPS errors, yield surges, and voids, to two common DQDs of accuracy and
completeness. This allows the use of DQDs as a means to assess the quality of yield
datasets without the need of a gold standard and also enable seamless integration with
other IoT applications that are based on DQDs. Inverse distance weighting was used as an
example, as it is one of the most common downstream process for yield map data.

The rest of the paper is structured as follows; Section 2 provides an in-depth analysis of
spatial errors commonly observed in yield datasets, including GPS errors, yield surges, and
voids. Section 3 outlines the approach to map data quality dimensions, specifically accuracy
and completeness, to the spatial errors discussed in the preceding section. Section 4 offers a
detailed discussion of the novel void detection and correction algorithm. It also elucidates
the mathematical implementation of the evaluation and data quality scoring strategies.
Section 5 presents the results obtained and extensively discusses their practical implications
and potential applications. Finally, in Section 6, a comprehensive summary and conclusion
are presented.
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2. Spatial Error Processing

Yield map datasets are a vital tool for site-specific and paddock management-based
decision-making systems [5,6,12]. These datasets, however, usually contain many errors
arising from different sources. Previous research [8] has identified several of these errors,
including unknown crop width, the time lag of the grain, inappropriate GPS recording,
yield surges, and voids. For the purposes of this research, only GPS errors, yield surges,
and voids were considered. These are highlighted in the next section.

2.1. GPS Errors

This paper discusses two types of GPS errors: those occurring while the combine is
stationary but still recording data because the header has not been lifted, and those arising
from recording data outside the field boundary. To identify the first type of GPS error,
the research employs an approach proposed by [8], which uses Pythagoras’ theorem to
calculate the distance between consecutive points. Any points with zero travel distance
are deemed erroneous. For the second type of GPS error, field boundary data is used. Any
points on the yield map that lie outside the field boundary are considered erroneous.

2.2. Yield Surges

Yield surges refers to the difference between the actual yield measurement and the
measurements obtained from the combine. According to Beck et al. [4], yield surges are
rapid changes in indicated yield over a short distance, typically resulting from operator
actions such as a sudden decrease in forward speed during a period of high grain flow [4].
In contrast, Robinson et al. [8] suggest a statistical method that utilizes a moving average
mean and standard deviation to detect erroneous yield surges. However, this paper
employs a distinct approach that uses absolute median deviation, as significant outliers
can adversely affect the mean.

2.3. Voids Errors

Fields typically have areas or sections that cannot be planted due to their topographical
features, such as waterlogging or hills, making them unsuitable for tilling. Therefore,
farmers usually plant around such areas, resulting in the combine harvester not producing
any data for those sections during harvesting, resulting in voids or holes in the yield map.
Without GPS or yield data, these voids can be challenging to identify.

To generate contour maps and high-resolution yield maps, interpolation techniques
are employed to fill the voids with nearby data points. However, the accuracy of the
interpolation is impacted as the size of the void increases. Therefore, voids must be
identified and treated as unique cases. Figure 1 shows a yield map with a void, with the
white portion in the centre representing the void. This paper introduces a novel approach
for identifying and addressing voids, which is highlighted in Section 4.1.
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3. Data Quality Mapping

Data quality control for yield data is currently based on spatial errors. After spatial
interpolation, the RMSE score is calculated as a quality indicator. If the score is small, this
indicates good quality yield data. If the score is big, however, this means that the yield data
is of poor quality. To calculate the RMSE score, interpolated values have to be compared to
values from the weighbridge.

The data from the weighbridge, however, can suffer inaccuracies. This can be caused
by several factors, including noise as the machine vibrates and errors from other foreign
bodies that enter the system [9]. Weighbridge data is not available for the vast majority
of the fields. This leaves most fields without a reference point from which to evaluate
yield quality and mapping, and, therefore, it is difficult to determine the trustworthiness
of data used to make decisions. Establishing a quality score which can be determined
independently from weighbridge data is imperative.

Moreover, as precision agriculture expands, different data sources and data types are
being integrated and used simultaneously. Data are from weather stations, soil sensors,
and many other IoT-based data collection methods. Data quality control for this kind of
data is based on data quality dimensions, and indeed this is the standard for data quality
assurance in IoT [10]. Integrating quality assurance for yield datasets with other existing
IoT sources to support organizational level decision-making that is based on quality data
requires streamlining all quality assurance processes into a single pipeline that uses the
same standard metrics.

Data quality dimensions offer a way to assess data quality using associated metrics
likes accuracy and completeness. Previous research [13] has built and tested an end-to-end
data quality assessment framework that uses DQDs to assess data quality in real-time with
no need for a gold standard (weighbridge data). This is ideal for cases where weighbridge
data is not present, or has inaccuracies. This quality assurance process can also integrate
with other IoT data sources for a holistic end-to-end data quality assessment.

To achieve this, this paper creates a mapping between spatial errors and DQDs. The
definitions of spatial errors and relationships between them are informed by previous
research [14]. The presence, or lack, of spatial errors leads to a deterministic change in
quality evaluation metrics and RMSE. This relationship can be used to determine a quality
score for the data, which can be used to assess the trustworthiness of the yield datasets
and how much credence the data should be used for decision-making. Figure 2 shows the
mapping flow between spatial errors and DQDs.
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B ¥
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Figure 2. Mapping spatial errors to data quality dimensions.
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3.1. Geospatial Data Quality Dimensions

The measure of quality is subjective and largely depends on the context in which it is
applied. In manufacturing, for example, quality is often evaluated based on the product’s
physical attributes [14]. However, when it comes to data quality, it can be challenging to
define as data lacks physical attributes. Instead, data quality is determined by intangible
properties such as accuracy and completeness, which are collectively referred to as data
quality dimensions (DQDs). Using DQDs provides an effective way to measure data quality,
and several authors have proposed different DQDs and associated metrics to assess it [10].

Unlike other datasets, geospatial data describe phenomena in multiple dimensions,
including spatial, temporal, and thematic components [14]. Therefore, DQDs for geospatial
datasets have to be defined similarly. The paper defines spatial and thematic components
for accuracy, while only the thematic component was used for completeness. This is due to
the unavailability of time data for many farms. The mathematical definitions used here are
informed by previous research in [5,8,14].

3.1.1. Accuracy

1.  Spatial accuracy (positional accuracy) is applied to the spatial component of a geospa-
tial dataset. Metrics are well defined for point entities, but widely accepted metrics for
lines and area are yet to be developed [14]. We define area errors as the points (spatial
coordinates that are outside a defined field of interest. These are inappropriate GPS
recordings. There are two distinctions, which are points outside the field boundary
and outlier points recorded while the machine is stationary.

Spatial accuracy(As) = )

- \/27 (spatial errors)?
n
where n is the number of points outside the defined boundary, and spatial error is
the distance a given point is from the defined boundary. To define spatial errors, this
paper used the same approach defined in [8];

2. Thematic accuracy (or attribute accuracy) varies with a measurement scale. The
attribute, in this case, is the yield. Beck et al. [4] define this as yield surges. There
have been other techniques that have been used to eliminate this kind of error. For
example, ref. [8] used a statistical identifier based on moving average mean and
standard deviation. This paper uses median absolute deviation to filter out yield
surges as the mean can be affected by outliers, Therefore:

Thematic accuarcy(As) =1 — — 2)
where G, is the number of outlier points in a given field, and n is the total number of
points in the field.

To calculate G, a statistical method that employs median absolute deviations (MAD)
is utilized. Absolute deviation from the median has long been utilized to filter outliers [15].
The median is a measure of central tendency, and is preferable to the mean as it is less
susceptible to the presence of outliers, which can have a disproportionate impact. MAD
was calculated using the formula defined by Huber et al. [16].

MAD = aM;(|x; — M;(x;)|) ®)

where x; is the original observations, M; is the median of the series, and « is data normaliza-

tion constant defined by [17]. It is defined as &« = m, where Q(0.75) is the 0.75 quantile

of that underlying distribution. The normalisation step is important because otherwise
MAD would estimate the scale up to a multiplicative constant [16] only.
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3.1.2. Completeness

1.

Thematic completeness is based on voids/holes in the yield maps. Voids are a well-
known problem that affects the quality of yield maps and, subsequently, the accuracy
of any interpolation technique [18,19]. Currently, there is no defined method to
identify and mitigate the effects of voids. Current approaches aim to fill voids. This
affects not only the accuracy of the interpolation methods, but also downstream
processes like yield prediction that might be based on such erroneous data. This paper
implements a novel approach to identifying voids. This is discussed in Section 4.1.
Thematic completeness is therefore given by

B GridCount
n

Q)

Thematic completeness(A;) =1

where GridCount is the number of grids that form the void and # is total number of
grids for a given yield map.

4. Implementation

The system implementation was divided into two stages. The initial stage involves

identifying and classifying spatial errors. Three spatial errors were used in this implemen-
tation. The other stage involves mapping the defined spatial error to DQDs and assessing
the impact of DQDs on the spatial interpolation. Spatial interpolation was used as an
assessment example because its one of the most common pre-processing techniques used
to construct usable yield maps [20,21]. Each of these stages is highlighted in detail in the
following sections. Figure 3 shows the end-to-end system flow of the implementation,
showing void identification and correction in stage one and data quality mapping in stage

two.

Data quality control

Complete maps ' .

Accuracy ' IDW
Completeness : Krigging

Interpolation stage

=

Maps with voids

Figure 3. End-to-end process flow of the void identification, correction, and data quality mapping

framework.
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4.1. Void Error Correction

Yield map errors can be attributed to several causes. Prior research has identified some
of these errors [8]. This paper focuses on three types of errors, namely GPS errors, yield
surges, and voids. Unlike GPS errors and yield surges, no established methods exist to
identify yield maps with voids. Thus, this section presents a novel approach to detecting
voids in yield maps.

Two inputs are required to interpolate yield maps spatially: yield map data consisting
of GPS points with corresponding yield measurements, and field boundaries defined by a
set of GPS points delineating the field’s limits. The latter is used to restrict the interpolation
process to within the field.

Figure 4 illustrates the importance of restricting yield map interpolation to the limits
of the field, as shown by the green boundary line. Without such restriction, interpolation
would continue indefinitely beyond the field boundary. When dealing with yield maps
that contain voids, however, an additional inner boundary exists (artefact A) that is not
accounted for in the original boundary file. As a result, interpolation will continue until
the void is filled. This can significantly impact the accuracy of interpolation methods and
downstream processes, such as yield prediction, that rely on such data. Therefore, it is
crucial to identify yield maps with voids and reconstruct the boundary files to reflect these
physical features.

Field boundary overlaid
onto the yield map
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Figure 4. (i) Field boundary map; artefact A represents the outline of the void that is missing in the
boundary map. (ii) Corresponding yield map with field boundary overlaid in green and the void
highlighted in red.

Various approaches can help identify voids in yield maps, such as computer vision,
image processing, and artificial-intelligence-based solutions, while these methods can
achieve positive results, they face challenges such as the need for a considerable amount of
data to train and test and high computational costs.

To identify and correct voids, the proposed approach performs the following steps.
(1) The boundary map is used to generate a fixed-size grid structure encompassing the
entire area of the boundary map. This is illustrated in Figures 5i and 6i. (2) For each set of
grid coordinates, search the yield map data to determine if such coordinates overlap with
the yield map data. (3) Determine any grids whose coordinates do not overlap with the
corresponding yield map to constitute a void. The concept is that if a yield map is complete,
each small grid in the field boundary map should be contained in the yield map. Otherwise,
the grids within the field boundary map, but not within the yield map, constitute part of
the void. (4) Finally, a new boundary map is constructed that includes the void.

11
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An example of the process is shown in Figures 5 and 6. When a yield map has no
void, the coordinates of each grid in the boundary map have a one-to-one mapping to the
yield map. For example, for each grid highlighted in green in the boundary map (artefact
A in Figure 5i), there is a corresponding one in the yield map (artefact A in Figure 5ii).
For yield maps with a void, however, grids exist in the boundary map without mapping
to the yield map. For example, in Figure 6, the green highlights (artefact A in Figure 6i)
have corresponding ones to the yield map (artefact A in Figure 6ii). Grids in (artefact
B in Figure 6i), however, have no mapping to the yield map because the void has no
corresponding GPS data.

The initial size of the each grid was set to 10 m. This was chosen as the lower limit
because the harvest line in the field have the same size. Lowering this value could increase
false positives. Different size were tested to determine the optimal grid size that maximises
true positive rate. The proposed method is highly computationally efficient and ideal for
real-time applications. Unlike computer vision-based techniques that require converting
spatial data to images (pixels), which can lead to loss of information, the proposed approach
works directly with GPS coordinates, ensuring no information is lost.
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Figure 5. Field boundary map converted into grid with the corresponding yield map for a case with
no void.

4.2. Data Quality Scoring

The data quality scoring technique used in this paper is based on previous research [13]
that uses trust and DQDs to evaluate the quality of heterogeneous IoT data streams in
real-time. Trust is a well-established metric that has been used to validate the reliability of

unknown sources [22]. To this end, therefore, given a yield map dataset, the quality score
will be given by

Qualityscore = w1 - Accuracy + wy - Completeness + e 6)

12
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Figure 6. Field boundary map converted into grid with the corresponding yield map for a case with
a void.

The weights w; and w, are determined by each use case. The goal is for each use
case to be able to customise its own quality score. The metric e is the experience metric. It
ensures that a past quality score and current quality score of the same dataset contribute to
the overall score of the dataset. Detailed description and implementation of these can be
found in our previous research [11,13,22].

4.3. Evaluation Strategy Using Spatial Interpolation

Using yield maps for decision-making requires high-resolution maps [23]. To this end,
several spatial interpolation techniques exist, for example, linear interpolation, inverse
distance weighting (IDW), and Kriging [24]. These work by taking known values (yield) and
predicting unknown values in the neighbourhood. This process results in improved maps
with clear boundaries showing the variation in yield output of the different field sections.

To evaluate the effectiveness of using DQDs for real-time quality assessment of yield
maps, this paper uses IDW as an application example. Any interpolation technique,
however, can be used without any changes to the downstream processes.

Inverse Distance Weighting (IDW)

IDW interpolation is a deterministic spatial interpolation method that uses known val-
ues with corresponding weights to estimate an unknown value at a particular location [25].
One IDW method, sometimes referred to as Shepard’s method [26], is given by the
following equation

2(x) = EL )

n .
i=1 Wi

where z is the estimate at point x, n is the number of surrounding points, and w is given by:

w = |x — x| P ®)

where B > 0 and |-| correspond to the Euclidean distance. Typically values p = 1 are g = 2
usually used; however, in this paper, grid search was used to obtain the optimal values.

To evaluate the performance of IDW, the root mean squared error (RMSE) was used.
This is given by the following equation:

Y e —Bi |2

n

RMSE = )
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where n is the number of data points and «;, B; are actual and predicated values, respec-
tively.

5. Evaluation

The system implementation is divided into two stages. In the first stage, spatial
errors are classified, and in the second stage, the impact of data quality issues (DQDs) on
spatial interpolation is assessed. To evaluate the system’s performance, two experiments
were conducted.

The first experiment aims to evaluate the benefits of adding void detection to the
spatial error processing data pipeline using a grid approach. The effectiveness of the
proposed algorithm is evaluated using a dataset containing fields with and without voids.
The algorithm creates a grid of cells from the field boundary map and compares each cell
to the yield map. As the grid size affects the algorithm’s performance, a range of grid sizes
are compared using accuracy, sensitivity, and specificity as performance metrics.

The second experiment aims to evaluate the efficacy of using a quality score calculated
using DQDs that are mapped from spatial errors as a means to assess the quality of yield
map datasets. The dataset described in the next section was used. The advantage of using
the proposed quality score is that it is not based on a gold standard (weighbridge data).
The RMSE of the yield dataset and quality score are calculated before and after filtering
spatial errors. The mean of scores of RMSE and quality score for each year are compared.

5.1. Dataset Description

The dataset consists of 524 yield maps collected from 267 fields across 20 farms in the
United Kingdom. The biggest field spans over 56.0 hectares; the smallest is approximately
0.1 hectares. The data was collected from 2013 to 2019 and consists of three crops: winter
barley, spring barley, and winter wheat. The dataset also includes weighbridge data
corresponding to each field. This is used as the true measure of yield per year. A total
of 21% of all the yield maps used had voids, and of these, 50% had a high (greater than
two tones/per hectare) discrepancy between the measured yield output from the combine
and the actual output from the weighbridge. Figure 7 summarises the dataset with the
distribution of crops across fields for each year and the void distribution across fields.
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Figure 7. Crop distribution across fields for each year and void distribution across fields per year.

5.2. Results and Discussion

This section is structured into three main parts. The first two sections detail results
related to a novel void detection and correction algorithm. Furthermore, they examine the
influence of these enhancements on downstream processes, particularly interpolation. The
third part evaluates the effectiveness of the data quality dimensions (DQDs) in filtering
spatial errors, utilizing spatial interpolation as the evaluation method.
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5.2.1. Void Identification

Figure 8 shows the results of the classification algorithm. This is a binary classification
problem with yield maps with voids given as positive examples and those without voids
considered as negative examples. Yield maps usually contain other kinds of gaps, for
example harvest lines (gap between two harvest line) and other anomalies which are not
voids, and should not be misclassified as such. Choosing an optimal grid size is important
to avoid false positives. Typically the gap between two harvest lines is usually about 10 m.
For this reason grid size values below 10 m were not used to avoid this miss identification.
Grid sizes above 25 m had the highest score of 100%, 91%, and 82% for sensitivity, specificity,
and accuracy, respectively. The main objective of the experiment was to minimise false
positives, as this would affect downstream processes. These are defined as below:

(TP+TN)
A = 1

Y = (TP + TN+ FP + EN) (10)

TN
ificity = =~ 11
Specificity (TN + FP) (11)

s TP
Sensitivity = (TP +EN) (12)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
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Figure 8. Performance (accuracy, specificity, and sensitivity) of the classification algorithm for
different grid size values.

5.2.2. Effects of Void Correction and Other Spatial Errors on RMSE

Figure 9 shows the effects of the presence of voids and other spatial errors on the
interpolation process. To assess this effect, the RMSE score after interpolation is used.
The RMSE was computed by comparing the interpolated values with the actual yield
values from the weighbridge. The lower the RMSE value, the better the interpolation
performance, and vice versa. The study compared different search radii values, which also
affect interpolation performance. Obtaining an optimal value is critical. Values ranging
from 5 to 10 m were used, although there was no significant difference. As shown in
Figure 9, after filtering spatial errors, there was a very significant improvement in the
overall RMSE score.
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Figure 9. Performance of IDW and the effects of correction of void and other spatial errors under
different values of search radius.

the effects of not considering and considering spatial errors on the interpolation process,
respectively. Figure 10ii (artefact A) demonstrates that conventional approaches that do not
account for voids and other spatial errors can result in inaccuracies. This can compromise
downstream processes such as yield prediction that rely on this data. Additionally, the
interpolation process can also impact regions outside of the void, leading to incorrect yield
representations and potentially erroneous decision-making, such as in the case of automated
fertilizer applications. On the other hand, Figure 10iii takes into account the presence of
voids and other spatial errors, and, therefore, effectively addresses these shortcomings.
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Figure 10. (i) Original yield map before interpolation, (ii) yield map interpolated without consid-
ering spatial DQDs, and (iii) yield map interpolated after considering the proposed mapping of
spatial DQDs.

5.2.3. Using DQDs as a Score for Yield Data Quality

Figure 11a,b illustrates the yield data’s average RMSE and quality score for different
years, both before and after filtering out spatial errors. Pearson’s correlation coefficient was
used to analyse the relationship between the RMSE and the quality score. The comparison
was made between the RMSE values before and after filtering and their respective quality
scores. An inverse relationship was observed between the RMSE and the proposed quality
score. This behaviour is expected since, as the yield data quality improves, the RMSE is
anticipated to decrease while the quality score would increase, and vice versa.
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RMSE

The correlation coefficient before filtering out spatial errors was lower than the corre-
lation coefficient after the filtering process. This discrepancy can be attributed to outliers,
affecting most interpolation methods and consequently impacting the resulting RMSE
score. The stronger correlation observed after filtering out spatial errors suggests that
the proposed quality score can be employed as an effective means of assessing yield data
quality without requiring a gold standard. The correlation results are summarized in
Tables 1and 2. These are based on the RMSE score presented in Figure 11.
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Figure 11. Comparing the RMSE and quality score before and after interpolation of yield data for
various years. (a) RMSE before and after filter spatial errors. (b) Quality score before and after filter
spatial errors.

Table 1. Pearson correlation between quality score and RMSE before filtering spatial errors

QualityScoreBefore RMSEBefore
QualityScoreBefore 1 —0.577
RMSEBefore —0.577 1

Table 2. Pearson correlation between quality score and RMSE after filtering spatial errors

QualityScoreAfter RMSEAfter
QualityScoreAfter 1 —0.793
RMSEA fter —0.793 1

6. Conclusions

Technological advancements in agriculture have revolutionized farming practices by
implementing precision agriculture. This approach leverages data from various processes
to make informed decisions and optimize agricultural practices. However, it is essential
to acknowledge that data collected from combines can often contain errors resulting from
systematic and operator actions, significantly impacting the decision-making process. To
address this challenge, several approaches, such as filtering and interpolation methods,
have been proposed to mitigate these errors. Nevertheless, finding a comprehensive
solution to identify and filter voids or holes in yield maps remains a persistent challenge.

This paper introduces a novel algorithm specifically designed to identify voids in
yield maps. The algorithm effectively maps three types of spatial errors, namely GPS errors,
yield surges, and voids, to two commonly used data quality dimensions (DQDs): accuracy
and completeness. To the best of our knowledge, no existing solution currently employs
this approach. The effectiveness of DQDs in filtering spatial errors was evaluated using
spatial interpolation techniques. This work has the potential to significantly enhance the
performance of downstream processes for yield map data and establish a unified data
quality assessment framework based on consistent metrics across multiple data sources.
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While this study focused on addressing three specific spatial errors, namely GPS errors,
yield surges, and voids, and two common DQDs of accuracy and completeness, our future
work will involve the integration of additional spatial errors and DQDs. We will explore the
overall impact on the root mean square error (RMSE). Additionally, future research efforts
will aim to incorporate larger zones within farms, different crops, and various harvest
combines, as these factors can influence the quality of yield maps. Furthermore, most yield
maps contain a single void, but there are instances where this number can increase to two
or even three and, as the number of voids increases, the algorithm’s accuracy is impacted.
Future work will also aim to address this challenge.
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Abstract: Early recognition of fruit body diseases in edible fungi can effectively improve the quality
and yield of edible fungi. This study proposes a method based on improved ShuffleNetV2 for edible
fungi fruit body disease recognition. First, the ShuffleNetV2+SE model is constructed by deeply
integrating the SE module with the ShuffleNetV2 network to make the network pay more attention
to the target area and improve the model’s disease classification performance. Second, the network
model is optimized and improved. To simplify the convolution operation, the 1 x 1 convolution
layer after the 3 x 3 depth convolution layer is removed, and the ShuffleNetV2-Lite+SE model is
established. The experimental results indicate that the accuracy, precision, recall, and Macro-F1 value
of the ShuffleNetV2-Lite+SE model on the test set are, respectively, 96.19%, 96.43%, 96.07%, and
96.25%, which are 4.85, 4.89, 3.86, and 5.37 percent higher than those before improvement. Meanwhile,
the number of model parameters and the average iteration time are 1.6 MB and 41 s, which is 0.2 MB
higher and 4 s lower than that before the improvement, respectively. Compared with the common
lightweight convolutional neural networks MobileNetV2, MobileNetV3, DenseNet, and EfficientNet,
the proposed model achieves higher recognition accuracy, and its number of model parameters is
significantly reduced. In addition, the average iteration time is reduced by 37.88%, 31.67%, 33.87%,
and 42.25%, respectively. The ShuffleNetV2-Lite+SE model proposed in this paper has a good balance
among performance, number of parameters, and real-time performance. It is suitable for deploying
on resource-limited devices such as mobile terminals and helps in realization of real-time and accurate
recognition of fruit body diseases of edible fungi.

Keywords: edible fungi fruit body; disease recognition; ShuffleNetV2; attention mechanism

1. Introduction

China’s edible fungi industry is the fifth largest industry after grain, oil, vegetables,
and fruits [1,2], which contributes much to the country’s economic construction. The devel-
opment of edible fungi industry provides an important future food source for humans [3,4].
Edible fungi have high protein content, high nutritional value and high medicinal value,
and they have significant value as functional foods and for medicinal purposes [5]. With
the increasing demand for edible fungi, it is urgent to ensure the production and quality of
edible fungi and maintain the healthy development of the edible fungi industry [6-8]. In
recent years, the planting scale and types of edible fungi have gradually increased, followed
by an increasing number of disease types [9]. There are many edible fungi diseases in
the frustum stage, such as brown rot, soft rot, pilum spot disease, brown spot disease,
straw mushroom pellet sclerotium disease, etc., which cause serious economic losses [10].
At present, the problems in the prevention and control of edible fungi diseases are the
following: there are many types of edible fungi diseases, and mushroom farmers cannot
accurately diagnose edible fungi diseases, failing to achieve effective prevention and control
in the initial stage of the disease. As a result, disease control is seriously affected, resulting
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in a decline in the quality and yield of edible fungi. The fruit body period of edible fungi is
a key period for disease prevention and control. Realizing accurate diagnosis of disease
types in the fruit body period of edible fungi can provide theoretical guidance for farmers to
accurately spray drugs, which is significant for improving the yield of edible fungi [11,12]
and ensuring the healthy and sustainable development of the edible fungi industry [13-15].

Traditional machine learning methods, such as naive Bayes [16-18], logistic regres-
sion [19], and support vector machine [20-22], are not suitable for recognizing edible fungi
diseases in the fruit body period due to their shortcomings in high computational com-
plexity, slow convergence rate, and difficulty in processing a large number of complex
samples [23,24]. In recent years, deep learning methods have been widely studied in crop
disease recognition [25-30]. For instance, Nurul Nabilah et al. [31] took 974 pepper disease
images collected by themselves and used traditional methods and deep learning methods
for experimental comparison. It was found that the recognition accuracy of deep learning
was 92.10%, and the deep learning method was significantly better than the traditional
feature extraction method. Chen ]. et al. [32] proposed an INC-VGGNet model for rice
disease recognition based on the VGGNet framework by introducing the Inception module
and using the transfer learning method. The accuracy of the model on the public dataset
was 91.83%, and the experimental results indicated that the method can be used for disease
classification. With the rapid development of deep learning technology, more and more
researchers apply lightweight convolutional neural networks to classify and identify crop
diseases [33-37]. Chen Junde et al. [38] proposed a Mobile-DANet model that retains the
transition layer structure based on DenseNet, replaces the traditional convolutional layer
with a depth-wise separable convolutional layer, and introduces an attention mechanism
to learn the relationship between channels and the importance of spatial points to input
features. Mobile-DANet achieved an average recognition accuracy of 95.86% on locally
collected data. Wang et al. [39] proposed an attention-based deep separable Bayesian
optimization neural network for recognizing and classifying rice diseases. The model was
improved from MobileNet and trained and tested on four categories of rice disease datasets.
Atila et al. [40] used the EfficientNet model to identify plant diseases, and after adjusting
the hyperparameters, the recognition accuracy was 99.91%. Kang et al. [41] developed
an automatic mushroom recognition system using a convolutional neural network. To
better investigate the characteristics of mushroom image data, AlexNet, VGGNet, and
GoogLeNet were used for comparative experiments, and the class number expansion and
fine-adjustment technology were exploited to realize transfer learning. The final top-five
accuracy (the probability that the top five categories contain the actual results) was 96.84%.
To sum up, although the research on crop disease recognition based on deep learning meth-
ods has achieved good results, it still requires much manual intervention in the recognition
process, the number of model parameters is large, and the training time is long, which is
not conducive to realizing rapid real-time detection of diseases. Therefore, it is necessary to
use lightweight convolutional neural networks to design an efficient and non-destructive
method for recognizing edible fungi fruit body diseases.

Aiming at the problems mentioned above, this study proposes a lightweight neural-
network-based method for recognizing edible fungi diseases in the fruit body period. This
paper improves the ShuffleNetV2 network based on the fusion of an attention mechanism
and obtains the ShufflenetV2-Lite+SE model [42—47], which is used to recognize edible
fungi diseases in the fruit body period. This method provides certain technical guidance
for the recognition of edible fungi diseases.

2. Materials and Methods
2.1. Construction of the Dataset

This study used an image dataset of edible fungi fruit bodies. Part of the data comes
from Fusong County, Tonghua County, and other places in Baishan City, Jilin Province.
It was filmed by researchers on site, and some of the data comes from the internet and
reference books. In order to avoid the problem of misplacing disease categories, we
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specifically invited domain experts to screen the data and obtained a dataset containing
649 images of four types (three types of diseases and one type of health), including
224 images of physical disease, 139 images of bacterial disease, 131 images of fungal
disease, and 155 images of healthy condition. The images were saved in the jpg format.
Some edible fungi fruit body images are shown in Figure 1.

(¢) Fungal diseases (d) Healthy edible mushrooms

Figure 1. The image types of fruit bodies of edible fungi.

2.2. Data Preprocessing
2.2.1. Data Augmentation

The edible fungi fruit body images of three types of diseases and one type of healthy
condition in the dataset were enhanced in the same way to increase the difference of training
data and improve the generalization ability of the model. The processing operations include
adding Gaussian noise, increasing light intensity, decreasing light intensity, vertical flip, and
horizontal flip [48,49]. These operations adjust the angle, brightness, and blur of the original
image, and the total number of images in the dataset is 3439 after data augmentation. The
balance of the test data is ensured by data augmentation [50], the quality and quantity
of data samples are improved, and sufficient data samples are provided for training the
convolutional neural network [51]. Some examples of data augmentation results are shown
in Figure 2.
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(d) Reduce lighting (e) Increase lighting (f) Add Gaussian noise

Figure 2. Data enhancement results.

2.2.2. Dataset Partitioning

The label of the edible fungi fruit body disease dataset was set with the Python
code [52], including four categories: physiological disease, bacterial disease, fungal disease,
and healthy condition after data enhancement, which are represented as Physiological,
Bacterial, Fungoid, and Health, respectively. Figure 3 shows the statistical chart of the
quantity of each type of condition.

1200
Before Enhancement

After Enhancement
1000

Number of dataset images

Physiological Bacteria Fungoid Health

Disease type

Figure 3. The quantity distribution of each type of image.

In this test, the dataset was divided into a training set and a test set at a ratio of 8:2,
with 2752 and 687 samples, respectively. The dataset division is shown in Table 1.

23



Agronomy 2023, 13, 1530

Table 1. Dataset division.

Condition Training Set Test Set
Physiological 895 224
Bacterial 576 145
Fungoid 594 149
Health 684 172

3. Recognition Model of Fruit Body Diseases of Edible Fungi
3.1. ShuffleNetV2 Model

ShuffleNetV2 is a lightweight network model proposed by Zhang et al. [53] which aims
to greatly reduce the model size and speed up the operation of the model without sacrificing
performance efficiency. The biggest innovation of this model is that it fully utilizes the
two operations of channel shuffle and group convolution to reduce the calculation amount
and the number of parameters of the model. Specifically, channel shuffle is an operation
that disrupts the channels of feature maps in order and reconstructs a new feature map to
solve the problem of poor information flow caused by group convolution. Excessive group
convolution can lead to a large Memory Access Cost (MAC) overhead. In the structure of
the ShuffleNetV2 network, the number of output channels of Stage2, Stage3, Stage4, and
Convb5 increases successively, while the number of output channels of the stage structure
increases successively. As the network depth increases, the feature extraction ability of the
model is gradually enhanced, and the detection accuracy is continuously improved. The
structure of the ShuffleNetV2 network is shown In Figure 4.

r L}
1 1
H ShuffleNetV2 :
i Stride=block2 i Stage3
_>: l ! 14 X 14 X 96/232/352
: ! (stride=block2, repeat=1
: ShuffleNetV2 : stride=blockl, repeat=7)
. H Stride=block1 H
Input image i i
Output=3 x 224 x 224 -
i —
1 ShuffleNetV2 |
Convl i Stride=block2 i Stage4
24x112%112 3%3 Conv (ReLU) i i 7% 7 X 192/464/704
(stride=2, repeat=1) ! l ! (stride=block2, repeat=1
l - ShuffleNetV2 : stride=block1, repeat=3)
MaxPool H Stride=block1 i
24X 56 X 56 MaxPool. H - :
(stride=2, repeat=1)
¥ Conv5
it . At == 1x1Conv5 (ReLU) 7% 7% 1024/2048
H ShuffleNetV2 : (stride=1, repeat=1)
Stage? E Stride=block2 E l
28 X 28 X 48/116/176 - l ! GlobalPool
(stride=block2, repeat=1 i ! 7% 7 GlobalPool I1x1
stride=blockl, repeat=3) H ShuffleNetV2 H
i Stride=block1 i l
b i
FC Input channels

Figure 4. The structure of the ShuffleNetV2 network.

The basic structure of the ShuffleNetV2 network consists of two types of blocks.
Blockl randomly divides the input channel into two parts: one part retains its mapping
and directly transmits downward; the other part performs separable convolution to extract
image features. The output channel of the two parts is combined at the bottom of the
module. Then, a random mixing operation is performed on the final output feature graph
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channel, and the structure is shown in Figure 5a. Block2 sends all feature diagrams into
two network branches, and the output feature diagrams of the two branches are combined
at the bottom of the module to double the number of final output channels.

v

— Channel Split
1X1 Conv 3x3 DWConv(stride=2) 1X1 Conv
/BN ReLu ¥ BNReLu
3x3 DWConv BN 3x3 DWConv(stride=2)
J BN v BN
1x1 Conv 1X1 Conv 1x1 Conv

BN ReLu \Kﬂe“’ / BN ReLu
> Concat Concat

v

Channel Shuffle Channel Shuffle

v v

(a) (b)
Figure 5. (a) Basic unit. (b) Spatial down sampling unit (2x).

The structure is shown in Figure 5b.

In ShuffleNetV2, all feature channels have the same weight, and the number of chan-
nels doubles every time Block2 passes through. With the doubling of the number of
channels, much attention is paid to the feature channels that have a great impact on the
classification results. Meanwhile, the depth-separable convolution used in Block? is sensi-
tive to the location of sensitive features, and too much background information is retained,
which easily affects the classification effect.

3.2. Model Improvement

There are some problems with the disease dataset of edible fungi fruit body con-
structed in this study, such as complex disease image background, high similarity between
some diseases and background, large difference in disease size, etc. As a result, the overall
recognition is difficult, and the existing model has poor recognition performance. Consider-
ing the recognition accuracy and speed of the model, the ShuffleNetV2 model is improved
in this study.

3.2.1. Attention Mechanism

The attention mechanism aims to focus on areas of interest and try to suppress the
role of areas of interest in image segmentation as much as possible. In deep learning
CNN, attention mechanisms can be divided into two types: channel attention and spatial
attention. The channel attention refers to determining the weight relationship between
different channels, enhancing the weight of key channels, and suppressing channels with
little inhibitory effect. The spatial attention is the determination of the weight relationship
between different pixels in the spatial neighborhood, enhancing the weight of key area
pixels, allowing the algorithm to pay more attention to the research area we need, and
reducing the weight of unnecessary areas.

The SE (Squeeze-and-Excitation) attention mechanism is a method of determining
weights in channel attention mode, which achieves priority by assigning weights between
different channels. The SE attention module can adjust the weight according to different
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Cy

feature channels, automatically enhance the feature channels with rich contrast information
in the image, and effectively suppress the feature channels unrelated to the target. The
model structure is shown in Figure 6a.

Squeeze Excitation

1 I
N7/

> —_—

h Fscale

g 1x1xC,

(a)

Adaptive Selection
of Kernel Size:
K=¥(C)

o

H
W
(b)
/ Convolutional Block Attention Module \
: ha"’.‘e' Spatial .
Input Feature ttention Attention Refined Feature
_Module Module
s

(c)

Figure 6. (a) The structure of the SE module. (b) The structure of the ECA module. (c) The structure
of the CBAM module.

The ECA (Efficient Channel Attention) attention mechanism is a method of channel at-
tention. To avoid damaging the direct correspondence between channels and their weights,
a one-dimensional convolution method is proposed to avoid the impact of dimensionality
reduction on data. The model structure is shown in Figure 6b.
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The CBAM (Convolutional Block Attention Module) attention mechanism is an algo-
rithm model that combines channel and spatial attention mechanisms. The input feature
map is first subjected to channel attention mechanism, followed by spatial attention mech-
anism operation, and, finally, output, achieving the goal of strengthening the region of
interest from both channel and spatial aspects. The model structure is shown in Figure 6c.

3.2.2. Simplify Model Structure

Among the basic components of ShuffleNetV2, three convolution layer operations go
through on the right branch, which are the normal 1 x 1 convolution layer (performing
Batch Normalization, BN, and ReLU), the 3 x 3 deep convolution layer (performing BN),
and the normal 1 x 1 convolution layer (performing BN ReLU). Two 1 x 1 convolution
layer operations are used here, but there are actually some superfluous layers. Because
the dimensionality-up and dimensionality-down operation is not necessary here, only the
fusion of the inter-channel information of the DW convolution using a 1 x 1 convolution
layer operation is sufficient. Therefore, in this study, deletion of a 1 x 1 convolution layer
after a 3 x 3 deep convolution layer is considered to achieve the goal of model lightweight.
The improved ShuffleNetV2-Lite network structure is shown in Figure 7.

!

— Channel Split
3x3 DWConv(stride=2) 1X1 Conv
1X1 Conv BN RelLu
BN
l BN ReLu
3x3 DWConv 1X1 Conv 3x3 DWConv(stride=2)
BN BN RelLu BN
—> Concat Concat

v !

Channel Shuffle
Channel Shuffle

v !

(a) (b)
Figure 7. (a) The improved basic unit. (b) The improved Spatial down from the unit (2x).

In this study, the redesigned ShuffleNetV2-Lite network structure can effectively re-
duce computational complexity and optimize model performance while ensuring
model accuracy.

3.3. Experimental Environment and Hyperparameters

Python3.8 and CUDA11.3 are configured under the Windows 10 operating system to
build a convolutional neural network structure with the Pytorch framework as the core.
The parameters of the experimental environment are shown in Table 2.
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Table 2. The parameters of the experimental environment.

Environment Parameters
oS Windows 10
CPU Intel Xeon Gold 6246R @ 3.40 GHz 32 cores
Memory 128 GB
Deep learning framework Pytorch-GPU 1.12.1
GPU NVIDIA Quadro RTX 8000
CUDA version CUDA Toolkit 11.3
Pytorch version Pytorch 0.9.1

The parameters for model training are shown in Table 3: the input image size is
224 x 224 pixels, the number of training iterations is 200, the batch size is 64, the learning
rate is 0.01, the optimizer is Adam, and the cross-entropy loss function is adopted. To
prevent overfitting and under fitting, L2 regularization method and the Class_Weighting
loss function weighting method are added to the cross-entropy loss function of the model.
We increased the weight of the loss function for the small class sample data of the classifier
and reduce the weight of the loss function for the large class sample to solve the problem
of data imbalance.

Table 3. Parameters for model training.

Parameters Values
Epoch 200
Batch size 64
Learning rate 0.01

Optimizer Adam

3.4. Evaluation Index

This study uses four indicators, accuracy, precision, recall, and Macro-F1, to measure
the model performance.

(1)  Accuracy represents the proportion of correct results predicted by the model in the
total samples. The calculation formula is

Accuracy = TP+ TN
Y= TP IN+ FP + EN'

@

(2) Precision represents the proportion of positive samples predicted correctly by the
model in the predicted positive samples. The calculation formula is

TP
TP + FP’

(3) Recall represents the proportion of positive samples predicted by the model to the
actual positive samples. The calculation formula is

Precision =

2

TP
TP + EN’

(4) Macro-F1 represents the harmonic mean of precision and recall, and it reflects the
comprehensive performance of the model. The calculation formula is

Recall = 3)

Macro-Fl — 2 x Preqs%on X Recall’ )
precision + Recall

where TP indicates that the predicted positive sample is also the actual positive sample;
FP indicates that the predicted positive sample is actually negative; FN indicates that the
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predicted negative sample is actually positive; TN indicates that the predicted negative
sample is also actually negative.

4. Experimental Results and Analysis
4.1. Model Performance Evaluation with Different Attention Mechanisms

In this experiment, the Convolutional Block Attention Module (CBAM) module, the
Efficient Channel Attention (ECA) module, and the Squeeze-and-Excitation (SE) module
were embedded into ShuffleNetV2, respectively, and the experiments were conducted on
the edible fungi fruit body disease image dataset. The performance comparison of different
attention mechanisms is shown in Table 4.

Table 4. Performance comparison of different attention mechanisms.

Model Accuracy (%) Params (MB) Time/Epoch (s)
ShuffleNetV2 91.34 1.4 45
ShuffleNetV2+CBAM 9291 1.9 57
ShuffleNetV2+ECA 93.15 2.3 61
ShuffleNetV2+SE 93.77 1.8 47

The recognition accuracy of the ShuffleNetV2+SE model was 93.77%, which was
2.43%, 0.14%, and 0.62% higher than that of ShuffleNetV2, ShuffleNetV2+CBAM, and
ShuffleNetV2+ECA models, respectively. It can be seen that by adding the attention
mechanism, the information interaction between channels can be better realized, and
the performance of the model can be improved. Especially after adding the SE module,
the model pays more attention to the channel features with the most information, and
unimportant channel features are suppressed. In this experiment, more attention was paid
to the disease area of the edible fungi fruit body, higher disease recognition accuracy was
obtained, and the model achieved the best performance.

The parameter of the ShuffleNetV2+SE model was 1.8 MB, which is 0.4 MB more
than that of the original model. The parameters of the ShuffleNetV2+CBAM model and
the ShuffleNetV2+ECA model were reduced by 0.1 MB and 0.5 MB, respectively. The
average iteration time of the ShuffleNetV2+SE model was 47 s, showing an increase of 2 s
compared with the original model. Compared with the ShuffleNetV2+CBAM model and
the ShuffleNetV2+ECA model, the average iteration time was reduced by 10 s and 14 s,
respectively. In terms of model parameters, the SE module has the best performance among
the three attention mechanisms. In terms of training time, adding the attention mechanism
can effectively reduce the average iteration time. Considering model recognition accuracy,
the number of model parameters, as well as the average iteration time, the SE module was
chosen to be embedded in ShuffleNetV2 to construct the model in this study.

4.2. Ablation Experiments for the ShuffleNetV2-Lite+SE Model

The attention SE module is introduced into the ShuffleNetV2 model, and the structure
of the model is optimized to obtain the ShuffleNetV2+SE model, the optimized ShuffleNet-
Lite model, and the ShufflenetV2-Lite+SE model, respectively. To investigate the perfor-
mance improvement effect of the ShuffleNetV2 model brought by the attention mechanism
and the structural optimization, ablation experiments were conducted. The performance of
the model was evaluated in terms of accuracy, precision, recall, and Macro-F1 value on the
test set, and the number of model parameters and the average iteration time were used to
evaluate the complexity of the model. The performance comparison of different models is
shown in Table 5.
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Table 5. Performance comparison of different models.

Model Accuracy Precision  Recall Macro-F1  Params Time/Epoch
(%) (%) (%) (%) (MB) (s)
ShuffleNetV2 91.34 91.54 92.21 90.88 14 45
ShuffleNetV2+SE 93.77 93.84 93.59 93.71 1.8 47
ShuffleNetV2-Lite 93.88 93.17 94.70 93.93 12 40
ShuffleNetV2- 96.19 96.43 96.07 96.25 1.6 4
Lite+SE

As shown in Table 5, the accuracy, precision, recall, and the Macro-F1 value of the
ShuffleNetV2-Lite+SE model reach 96.19%, 96.43%, 96.07%, and 96.24%, respectively. The
accuracy, precision, recall, and the Macro-F1 value are improved by 2.42, 2.59, 2.48, and
2.54 percent, respectively. Compared with other models, the proposed model achieves
higher accuracy and better performance.

The parameters and the average iteration time of the ShufflenetV2-Lite+SE model
are 1.6 MB and 41 s, respectively. Compared with the ShuffleNetV2+SE model with the
highest accuracy, the model parameters are reduced by 11.11 percent, and the iteration time
is reduced by 12.77 percent. Thus, the proposed model has lower model complexity than
other models.

The improved model proposed in this study shows a better balance between the per-
formance, complexity, and real-time performance of the model. It is suitable for deploying
on embedded resource-constrained devices such as mobile terminals and helps to realize
real-time and accurate recognition of edible fungi fruit body diseases.

4.3. Performance Comparison of ShuffleNetV2-Lite+SE with Other Models

To further evaluate the recognition effect of the improved network model on edible
fungi disease images, the ShuffleNetV2-Lite+SE model was compared with the represen-
tative lightweight convolutional neural networks including MobileNetV2, MobileNetV3,
DenseNet, and EfficientNet on the same dataset under the same experimental environment
and network parameter configuration. The accuracy, precision, recall, and Macro-F1 value
of these models on the test set were used to evaluate the model performance, and the
number of model parameters and the average iteration time were used to evaluate the
complexity of the model. The performance comparison of ShuffleNetV2-Lite+SE with other
models is shown in Table 6, and the accuracy of the model on the test set, the change in loss
value, and the confusion matrix during iterations are shown in Figures 8-10.

Table 6. The performance comparison of ShuffleNetV2-Lite+SE with other models.

Model Accuracy Precision  Recall Macro-F1  Params Time/Epoch
(%) (%) (%) (%) (MB) (s)
MobileNetV2 85.72 85.33 85.93 85.63 3.5 66
MobileNetV3 91.72 91.38 91.40 91.39 5.1 60
DenseNet 88.50 88.58 87.04 87.80 7.8 62
EfficientNet 89.29 89.46 89.98 89.84 5.3 71
ShuffleNetV2- 96.19 96.43 96.07 96.25 16 41

Lite+SE
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Figure 9. The loss values of different models.
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It can be seen from Table 6 that the ShuffleNetV2-Lite+SE model achieves an accu-
racy of 96.19%, a precision of 96.43%, a recall of 96.07%, and a Macro-F1 value of 96.24%,
respectively. Compared with the best-performing MobileNetV3 model, the accuracy, pre-
cision, recall, and Macro-F1 value are improved by 4.47, 5.05, 4.67, and 4.86 percent,
respectively. Compared with other models, the proposed model has higher accuracy and
better performance.

The parameters and the average iteration time of the ShuffleNetV2-Lite+SE model are
1.6 MB and 41 s, respectively. Compared with the best-performing MobileNetV3 model,
the parameters of the ShufflenetV2-Lite+SE model are reduced by 68.63%, and the average
iteration time is reduced by 31.67%, indicating that the ShufflenetV2-Lite+SE model has
lower model complexity than other models.

It can be seen from Figure 8 that the accuracy of the five models gradually flattens out
as the number of iteration rounds increases. After the 20th iteration round, the accuracy
curve of the ShuffleNetV2-Lite+SE model is relatively smooth, there is no over-fitting
phenomenon, and the accuracy becomes stable at more than 90%, while the accuracy of the
other models only reaches about 80%. After the 70th iteration round, the accuracy of all
models tends to be stable, and the accuracy of the ShuffleNetV2-Lite+SE model reaches
96.19%, which is the highest among all models. The results indicate that the network has
good recognition accuracy.

Figure 9 shows that in the initial training stage, the loss values of all networks
continuously decrease and eventually tend to be stable without large fluctuations. The
ShuffleNetV2-Lite+SE model has a significantly better convergence speed than other mod-
els. After the 29th iteration round, the loss value of the ShuffleNetV2-Lite+SE model
remains below 0.2, and after the 55th iteration round, the overall loss value curve change
becomes stable, and the loss value of the five models is lower than 0.5. In addition, the
loss value of the ShuffleNetV2-Lite+SE model is significantly lower than that of the other
models, showing a higher classification ability of this model.

Figure 10 shows the classification confusion matrix of the ShuffleNetV2-Lite+SE model
for images of the three types of diseases and one type of health. It can be seen that
the prediction accuracy of the images of the physiological disease is 96%, the prediction
accuracy of the images of the bacterial disease is 93%, and the prediction accuracy of the
images of the fungoid disease is 94%. The prediction accuracy of the images of the healthy
condition is 97%. Among them, the accuracy of disease image prediction is relatively
low for the bactrial and fungoid groups. The reason is that there are problems in the
dataset of edible fungi fruit body diseases, such as complex disease image backgrounds,
high similarity between some diseases and the background, and significant differences
in disease sizes, which cause the model to misjudge. Overall, the ShuffleNetV2-Lite+SE
model has a good recognition effect on the four types of images.

5. Conclusions

In this study, the recognition of fruit body diseases of edible fungi was taken as the
research object, and the problems of low recognition accuracy, complex model structure, and
slow recognition speed of the existing model were addressed based on the improvements
of ShuffleNetV2.

(1) The constructed edible fungi fruit body disease dataset contains images of three types
of diseases and one type of health condition, with a total of 649 images. After data
augmentation, the total number of images in the dataset is 3439.

(2) The CBAM module, ECA module, and SE module are embedded into ShuffleNetV2,
respectively, to enhance the information interaction between channels and improve
the model’s performance. Experimental results indicate that the recognition accu-
racy of the ShuffleNetV2+SE model on the test set is 2.43 percent higher than that
of the original model. Compared with the ShuffleNetV2+CBAM model and the
ShuffleNetV2+ECA model, the recognition accuracy of the Shufflenetv2+SE model is
improved by 2.43 percent; the number of model parameters of the ShuffleNetV2+SE
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model is reduced by 0.1 MB and 0.5 MB, and the average iteration time is reduced by
10 s and 14 s, respectively.

(3) The attention SE module is introduced into the ShuffleNetV2 model, and the struc-
ture of the model is optimized to obtain the ShuffleNetV2+SE model, the optimized
ShuffleNet-Lite model, and the ShufflenetV2-Lite+SE model, respectively. Experimen-
tal results indicate that the accuracy, precision, recall, and the Macro-F1 value of the
ShuffleNetV2-Lite+SE model reach 96.19%, 96.43%, 96.07%, and 96.24%, respectively,
which is higher than those of other models. Compared with the ShuffleNetV2+SE
model with the highest accuracy, our model reduces the number of model parameters
by 11.11%, and the average iteration time by 12.77%, so it has lower model complexity
than other models.

(4) The ShuffleNetV2-Lite+SE model is compared with representative lightweight con-
volutional neural networks, including MobileNetV2, MobileNetV3, DenseNet, and
EfficientNet. Compared with the best-performing MobileNetV3 model, the param-
eters of the ShufflenetV2-Lite+SE model are reduced by 68.63%, and the average
iteration time is reduced by 31.67%. The experimental results show that the Shuf-
fleNetV2 Lite+SE model has higher accuracy and lower model complexity, and has
certain advantages compared to the existing relevant research. It can be deployed on
mobile terminal devices to promote real-time and accurate recognition of diseases in
edible fungi fruit bodies.

The ShuffleNetV2-Lite+SE model proposed in this study reduces the model complexity
and considers the recognition accuracy and speed of edible fungi fruit body diseases, which
lays the foundation for the recognition of edible fungi fruit body diseases. The next step
will be to integrate the outdoor environment and factory planting image data and attempt
to transplant the model to mobile platforms to test its real-time recognition effect on edible
fungi fruit body diseases, providing assistance for the prevention and control of edible
fungi fruit body diseases.

Author Contributions: The contributors are X.X. and Y.Z. for conceptualization; H.C. for methodol-
ogy; investigation, D.Y. and L.Z.; H.Y. for formal analysis; X.X. and Y.Z. for investigation/writing—
original draft/supervision; X.X. and H.Y. for visualization; H.Y. for writing—review /editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Jilin Province
(YDZ]J20220172YTS544) and the Technology Development Plan Project of Jilin Province (20200403176SF).

Data Availability Statement: Data supporting the findings of this study are available from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Arman, H.; Shreya, G.; Devarai, S.K. Current trends in health-promoting potential and biomaterial applications of edible
mushrooms for human wellness. Food Biosci. 2023, 51, 102290.

2. Rachele, D.C,; Liam, P; Teresina, M. A systematic review on drivers influencing consumption of edible mushrooms and innovative
mushroom-containing products. Appetite 2023, 182, 106454.

3. Zhao, ].; Wang, T.; Zhang, C.; Han, X; Yan, J.; Gan, B. A comparative analysis of the umami taste of five fresh edible mushrooms
by simulating the chemical environment of oral digestion in vitro. LWT 2023, 176, 114522. [CrossRef]

4. Xy, J.; Xu, D,; Hu, Q.; Ma, N.; Pei, E; Su, A.; Ma, G. Immune regulatory functions of biologically active proteins from edible fungi.
Front. Immunol. 2023, 13, 1034545. [CrossRef] [PubMed]

5. Bhushan, A.; Kulshreshtha, M. The Medicinal Mushroom Agaricus bisporus: Review of Phytopharmacology and Potential Role
in the Treatment of Various Diseases. ]. Nat. Sci. Med. 2018, 1, 4-9.

6. Bok, Y.Y.; Ji, O.M.; Lee, O.Y.; Gyun, S.P; Yeul, ] K; Sik, K.W. Development trend of the mushroom industry. J. Mushroom 2016, 14,
142-154.

7. Yin, H.; Yi, W.; Hu, D. Computer vision and machine learning applied in the mushroom industry: A critical review. Comput.
Electron. Agric. 2022, 198, 107015. [CrossRef]

8. Zhou, L.; Guo, S,; Shu, M,; Liang, L,; Li, Y. Study on three major effects and guarantee system for quality management of edible

mushroom products. IOP Conf. Ser. Earth Environ. Sci. 2018, 185, 012019. [CrossRef]

33



Agronomy 2023, 13, 1530

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Changtian, L.; Shuai, X. Edible mushroom industry in China: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022,
106, 3949-3955.

Bellettini, M.B.; Bellettini, S.; Fiorda, FA.; Pedor, A.C.; Bach, F.; Fabela-Moron, M.F.; Hoffmann-Ribani, R. Diseases and pests
noxious to Pleurotus spp. mushroom crops. Rev. Argent. Microbiol. 2018, 50, 216-226. [CrossRef]

In, L.D.; Hwan, L.J.; Ho, J.S.; Jong, O.S.; Chui, D.I. Crop Disease Diagnosis with Deep Learning-Based Image Captioning and
Object Detection. Appl. Sci. 2023, 13, 3148.

Yasuhito, O. Sustainability perspectives for future continuity of mushroom production: The bright and dark sides. Front. Sustain.
Food Syst. 2022, 6, 447.

Li, E; Wang, L.; Xie, Q.; Gao, R.; Su, Z,; Li, Y. A novel deep learning method for maize disease identification based on small
sample-size and complex background datasets. Ecol. Inform. 2023, 75, 102011. [CrossRef]

Xu, L.; Cao, B,; Ning, S.; Zhang, W.; Zhao, F. Peanut leaf disease identification with deep learning algorithms. Mol. Breed. 2023,
43, 25. [CrossRef]

Xu, P; Fu, L.; Xu, K,; Sun, W,; Tan, Q.; Zhang, Y.; Zha, X.; Yang, R. Investigation into maize seed disease identification based on
deep learning and multi-source spectral information fusion techniques. J. Food Compos. Anal. 2023, 119, 105254. [CrossRef]
Edoardo, R.; Cinzia, V.; Alessio, F. Quantile-distribution functions and their use for classification, with application to naive Bayes
classifiers. Stat. Comput. 2023, 33, 55.

Moch, L.; Syaiful, R.H.; Mochammad, H.; Faishol, A.M.; Nikmatus, S.Z. Feature Extraction and Naive Bayes Algorithm for Defect
Classification of Manalagi Apples. J. Phys. Conf. Ser. 2022, 2394, 012014.

Ye, Z.; Zuo, T.; Chen, W,; Li, Y.; Lu, Z. Textual emotion recognition method based on ALBERT-BiLSTM model and SVM-NB
classification. Soft Comput. 2023, 27, 5063-5075. [CrossRef]

Lei, X.; Zhang, W. Logistic regression algorithm to identify candidate disease genes based on reliable protein-protein interaction
network. Sci. China Inf. Sci. 2021, 64, 179101. [CrossRef]

Archana, S.K.; Srinivasan, R.B.; Prabakar, N.T.; Francis, A.S. A novel method to improve computational and classification
performance of rice plant disease identification. J. Supercomput. 2022, 78, 8925-8945. [CrossRef]

Yogeswararao, G.; Malmathanraj, R.; Palanisamy, P. Fractional weighted nuclear norm based two dimensional linear discriminant
features for cucumber leaf disease recognition. Multimed. Tools Appl. 2022, 81, 38735-38755. [CrossRef]

Prabu, M.; Chelliah, B.J. An intelligent approach using boosted support vector machine based arithmetic optimization algorithm
for accurate detection of plant leaf disease. Pattern Anal. Appl. 2022, 26, 367-379. [CrossRef]

Jitendra, T.V,; Tausif, D.; Tarun, S. Identification of Plant Diseases Using Multi-Level Classification Deep Model. Int. J. Ambient.
Comput. Intell. (IJACI) 2022, 13, 21.

Singh, T.P; Pritee, K; Tanuja, S.; Apaiajita, O. Trends in vision-based machine learning techniques for plant disease identification:
A systematic review. Expert Syst. Appl. 2022, 208, 118117.

Amudha, M.; Brindha, K. Multi Techniques for Agricultural Image Disease Classification and Detection: A Review. Nat. Environ.
Pollut. Technol. 2022, 21, 2165-2175. [CrossRef]

Ganbayar, B.; Hyun, N.S.; Ryoung, PK. Deep learning-based plant classification and crop disease classification by thermal camera.
J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 10474-10486.

Islam, M.A; Sikder, M.H. A Deep Learning Approach to Classify the Potato Leaf Disease. |. Adv. Math. Comput. Sci. 2022, 37,
143-155. [CrossRef]

Karthik, R.; Dinesh, T.R.; Shivam, B.; Sreejan, C. A novel deep learning architecture for disease classification in Arabica coffee
plants. Concurr. Comput. Pract. Exp. 2023, 35, €7625.

Rehman, S.; Khan, M.A.; Alhaisoni, M.; Armghan, A.; Alenezi, F; Alqahtani, A.; Vesal, K.; Nam, Y. Fruit Leaf Diseases
Classification: A Hierarchical Deep Learning Framework. Comput. Mater. Contin. 2023, 75, 1179-1194. [CrossRef]

Wang, Y.; Chen, Y.; Wang, D. Convolution Network Enlightened Transformer for Regional Crop Disease Classification. Electronics
2022, 11, 3174. [CrossRef]

Loti, N.N.A.; Noor, M.R.M.; Chang, S.-W. Integrated analysis of machine learning and deep learning in chili pest and disease
identification. . Sci. Food Agric. 2021, 101, 3582-3594. [CrossRef]

Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using deep transfer learning for image-based plant disease identification.
Comput. Electron. Agric. 2020, 173, 105393. [CrossRef]

Bhuiyan, M.A.B.; Abdullah, H.M.; Arman, S.E.; Rahman, S.S.; Al Mahmud, K. BananaSqueezeNet: A very fast, lightweight
convolutional neural network for the diagnosis of three prominent banana leaf diseases. Smart Agric. Technol. 2023, 4, 100214.
[CrossRef]

Lin, J.; Chen, X,; Pan, R.; Cao, T.; Caj, J.; Chen, Y.; Peng, X; Cernava, T.; Zhang, X. GrapeNet: A Lightweight Convolutional Neural
Network Model for Identification of Grape Leaf Diseases. Agriculture 2022, 12, 887. [CrossRef]

Wang, T.; Xu, H.; Hai, Y.; Cui, Y.; Chen, Z. An Improved Crop Disease Identification Method Based on Lightweight Convolutional
Neural Network. J. Electr. Comput. Eng. 2022, 2022, 1-16. [CrossRef]

Bao, W,; Yang, X.; Liang, D.; Hu, G.; Yang, X. Lightweight convolutional neural network model for field wheat ear disease
identification. Comput. Electron. Agric. 2021, 189, 106367. [CrossRef]

Chen, Y.; Chen, X; Lin, J.; Pan, R.; Cao, T.; Cai, J.; Yu, D.; Cernava, T.; Zhang, X. DFCANet: A Novel Lightweight Convolutional
Neural Network Model for Corn Disease Identification. Agriculture 2022, 12, 2047. [CrossRef]

34



Agronomy 2023, 13, 1530

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Chen, J.; Wang, W.; Zhang, D.; Zeb, A.; Nanehkaran, Y.A. Attention embedded lightweight network for maize disease recognition.
Plant Pathol. 2020, 70, 630-642. [CrossRef]

Zeng, W.; Li, M. Crop leaf disease recognition based on Self-Attention convolutional neural network. Comput. Electron. Agric.
2020, 172, 105341. [CrossRef]

Atila, U.; Ucar, M.; Akyol, K. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 2021,
61,101182. [CrossRef]

Euncheol, K.; Yeongtae, H.; Seok, O.I. Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning.
KIISE Trans. Comput. Pract. 2018, 24, 53-57.

Zhang, S.; Yang, H.; Yang, C.; Yuan, W.; Li, X.; Wang, X.; Zhang, Y.; Cai, X.; Sheng, Y; Deng, X.; et al. Edge Device Detection of Tea
Leaves with One Bud and Two Leaves Based on ShuffleNetv2-YOLOv5-Lite-E. Agronomy 2023, 13, 577. [CrossRef]

Ttirkmen, S.; Heikkild, J. An efficient solution for semantic segmentation: ShuffleNet V2 with atrous separable convolutions. In
Proceedings of the Image Analysis: 21st Scandinavian Conference, SCIA 2019, Norrképing, Sweden, 11-13 June 2019.

Wei, J.; Yu, P; Bo, X.; Juncheng, W. A Real-Time Apple Targets Detection Method for Picking Robot Based on ShufflenetV2-YOLOX.
Agriculture 2022, 12, 856.

Li, X.; Wen, Z.; Hua, Q. Vehicle License Plate Recognition Using Shufflenetv2 Dilated Convolution for Intelligent Transportation
Applications in Urban Internet of Things. Wirel. Commun. Mob. Comput. 2022, 2022, 3627246. [CrossRef]

Chen, Z.; Yang, J.; Chen, L.; Jiao, H. Garbage classification system based on improved ShuffleNet v2. Resour. Conserv. Recycl. 2022,
178, 106090. [CrossRef]

Liu, Z; Jiang, J.; Du, Y.; Xu, Z. A Band Influence Algorithm for Hyperspectral Band Selection to Classify Moldy Peanuts. IEEE
Access 2021, 9, 147527-147536. [CrossRef]

Min, B.; Kim, T.; Shin, D.; Shin, D. Data Augmentation Method for Plant Leaf Disease Recognition. Appl. Sci. 2023, 13, 1465.
[CrossRef]

Wan, X.; Zhang, X.; Liu, L. An Improved VGG19 Transfer Learning Strip Steel Surface Defect Recognition Deep Neural Network
Based on Few Samples and Imbalanced Datasets. Appl. Sci. 2021, 11, 2606. [CrossRef]

Mateusz, B.; Atsuto, M.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.
Neural Netw. 2018, 106, 249-259.

Parab, M.; Bhanushali, A.; Ingle, P.; Kumar, B.N.P. Image Enhancement and Exposure Correction Using Convolutional Neural
Network. SN Comput. Sci. 2023, 4, 204. [CrossRef]

Valentina, M.A.; Mircea, T.R.; Serban, M.; Mihaeia, C. On Spectral-Spatial Classification of Hyperspectral Images Using Image
Denoising and Enhancement Techniques, Wavelet Transforms and Controlled Data Set Partitioning. Remote Sens. 2022, 14, 1475.
Zhang, X.; Zhou, X; Lin, M.; Sun, ]. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv
2017, arXiv:1707.01083v2.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

35



agronomy

Article

Real-Time Detection of Crops with Dense Planting Using Deep
Learning at Seedling Stage

Shuolin Kong, Jian Li, Yuting Zhai, Zhiyuan Gao, Yang Zhou and Yanlei Xu *

Citation: Kong, S.; Li, J.; Zhai, Y,;
Gao, Z.; Zhou, Y.; Xu, Y. Real-Time
Detection of Crops with Dense
Planting Using Deep Learning at
Seedling Stage. Agronomy 2023, 13,
1503. https://doi.org/10.3390/
agronomy13061503

Academic Editor: Roberto Marani

Received: 28 April 2023
Revised: 18 May 2023

Accepted: 23 May 2023
Published: 30 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

College of Information and Technology, Jilin Agricultural University, Changchun 130118, China;
20201277@mails.jlau.edu.cn (S.K.); lijian@jlau.edu.cn (J.L.); 20221850@mails.jlau.edu.cn (Y.Z.);
gzy@mails.jlau.edu.cn (Z.G.); zhouyang@jlau.edu.cn (Y.Z.)

* Correspondence: yanleixu@jlau.edu.cn

Abstract: Crop seedlings are similar in appearance to weeds, making crop detection extremely
difficult. To solve the problem of detecting crop seedlings in complex field environments, a seedling
dataset with four crops was constructed in this study. The single leaf labeling method was proposed
as an alternative to conventional labeling approaches to improve the detection accuracy for dense
planting crops. Second, a seedling detection network based on YOLOVS5 and a transformer mechanism
was proposed, and the effects of three features (query, key and value) in the transformer mechanism
on the detection accuracy were explored in detail. Finally, the seedling detection network was
optimized into a lightweight network. The experimental results show that application of the single
leaf labeling method could improve the mAPO0.5 of the model by 1.2% and effectively solve the
problem of missed detection. By adding the transformer mechanism module, the mAP0.5 was
improved by 1.5%, enhancing the detection capability of the model for dense and obscured targets.
In the end, this study found that query features had the least impact on the transformer mechanism,
and the optimized model improved the computation speed by 23 ms-frame ™! on the intelligent
computing platform Jetson TX2, providing a theoretical basis and technical support for real-time
seedling management.

Keywords: crop seedling detection; dense target detection; lightweight transformer; YOLOv5

1. Introduction

Precision agriculture, which is aimed at reducing the cost of agricultural produc-
tion, environmental pollution and the automation of crop management [1], is gaining
widespread attention and is being investigated by various agricultural researchers. In
precision agriculture, the accurate acquisition of crop status and position is crucial for
facilitating precise fertilization, weed control and full automation of crop management [2].
It serves as a key factor in reducing fertilizer waste, excessive herbicide use and controlling
costs [3,4]. Crop detection becomes more challenging during the seedling stage, as crop
seedlings bear a resemblance to weeds and are more susceptible to death from possible
environmental factors. Hence, the design of a model capable of accurately detecting crop
seedlings in complex environments becomes increasingly crucial.

In the past, crop detection often focused on individual crop species as targets and
utilized conventional visual algorithms for detection [5,6]. Gai et al. [7] used the 2D
connected components method, two-dimensional multiscale wavelet transformation and
marker-controlled watershed segmentation algorithm to segment broccoli and lettuce.
The accuracy for segmenting broccoli and lettuce achieved 92.4% and 96.6%, respectively.
Chen et al. [8] extracted Gabor features from corn images and built a support vector ma-
chine (SVM) model to learn the Gabor features of corn images for corn detection. In
addition, Hamuda et al. [9] used cauliflower HSV spatial images as input for cauliflower
detection based on the dilation algorithm and moment method, which obtained a detection
accuracy of 99.04%.
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With the development of deep learning, convolutional neural networks (CNN) were
developed, a vision algorithm with a stronger generalization ability and higher accuracy
compared to traditional vision algorithms. CNN neural networks are widely used in
precision agriculture and smart agriculture, such as automatic species identification [10],
disease identification [11,12] and fruit ripeness analysis [13-15]. Most of the research
on crop and weed localization is based on object detection networks, such as You Only
Look Once (YOLO) [16-19] series models and Region-CNN (RCNN) series models [20-22].
Zou et al. [23] combined images with and without weeds to generate new weed images,
and trained a semantic segmentation network called UNet, obtaining an accuracy of 92.21%.
Punithavathi et al. [24] proposed a detection model based on Faster RCNN for crop and
weed detection and used the extreme learning machine algorithm to optimize the hyperpa-
rameters of the deep learning model to obtain a higher detection accuracy. Chen et al. [25]
detected weeds in sesame fields based on the YOLOv4 detection network and used local
attention pooling to replace maximum pooling in spatial pyramid pooling and SEnet mod-
ules to replace logical modules in local attention pooling. The model obtained a 96.16%
detection accuracy. Although these studies have provided a solid theoretical and experi-
mental foundation for crop detection, the development of comprehensive automated crop
management is still challenging. One of these challenges is that current studies mainly focus
on crops that have grown to a degree where they can be easily distinguished from their
surroundings. Another challenge is the precise localization of crops with dense planting
(placing multiple seeds in a single planting hole), particularly during the seedling stage.

Additionally, we have identified several issues regarding the labeling process. In
previous detection studies, researchers typically labeled the entire crop as the target, as
shown in Figure 1a,b. However, this method presented three potential issues.

Figure 1. Schematic diagram of the whole crop labeling method. (a) Schematic of radish; (b) schematic
diagram of wheat; (c) radish with only one leaf; (d) covered radish leaves; (e) wheat with only one leaf;
(f) wheat with two leaves.

The first issue was that because of the dense nature of the crops, as shown in Figure 1d,
the worker needs to be meticulous to identify multiple leaves belonging to the same crop.
This process will produce errors in labeling. The second issue was that some crops can only
be labeled to a single leaf due to occlusion, as shown in Figure 1c. As a result, there was
a significant gap in the information about the same target features, making it difficult for
the deep learning model to learn the feature patterns and reducing identification accuracy.
Lastly, the third issue is that crops exhibit different growth rates, resulting in some crops
having only one leaf, while others may have multiple leaves, as shown in Figure le,f.
This inconsistency also reduced the detection accuracy. Although the whole crop labeling
method can aid in identifying each crop, these three scenarios can lead to labeling errors.
Additionally, in some cases, there may be a significant difference in the shape of the target,
which can result in reduced accuracy for detecting the crop. Therefore, it is important to
develop more effective labeling strategies to improve the accuracy of crop detection.

To address the issue of low accuracy in detecting crops from dense crop seedlings in
complex environments, we constructed a crop seedling dataset that included crops such as
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soybean, wheat, radish and cucumber, grown with different planting methods, sizes and
growing environments. In addition, two labeling strategies were proposed in a scientific
manner for dense planting crops. Furthermore, we proposed a deep learning structure
transformer mechanism applied to computer vision that has been investigated recently.
Since the transformer mechanism has been shown to be more resistant to interference and
to extract features more rationally [26,27], it improves both the detection and recognition
accuracy when combined with convolutional neural networks [28]. Therefore, we took
inspiration from these studies that incorporated the transformer mechanism into their CNN-
based model and expected to improve the detection accuracy of the model for various crop
seedlings in complex environments.
In summary, we carried out the following work:

1.  Animage dataset was constructed, comprising seedlings from four different crops,
all grown in environments with a substantial weed presence. Additionally, a dense
planting method was used for some crops.

2. In order to improve the accuracy of the model for the detection of densely grown
crops, two labeling strategies were proposed from the perspective of crop type.

3. Adetection model for dense targets based on YOLOvVS5 and the transformer mechanism
was proposed from the perspective of model structure.

4. Finally, in order to improve the detection efficiency, the model was lightened and
improved based on the impact of three different features in the transformer mechanism
on the accuracy.

The workflow diagram of the study is shown in Figure 2.

Image Acquisition

CNN Combine with Transformer
Data i =) Crop Seedlings Detection Network
Labeling YOLOV5 Detection Network rop Seedlings Detection Networ
Transformer Lightweight

single leaf labeling method

Figure 2. The research flowchart used in this study to detect crops at seedling stage.

2. Materials and Methods
2.1. Image Acquisition

The image capture device was a smartphone Oneplus8P (the manufacturer was BBK
Electronics, Shenzhen, China), with a main camera lens of 48 million pixels, and the
captured picture pixels were 3000 x 3000. The camera’s ISO was set to 400, the color
temperature was set to 5000 and the shutter speed was set to 1/50 s. The photographs were
taken at a height ranging from 20 to 40 cm. In total, we collected 2140 digital RGB images
in JPG format for use in this study.

In order to improve the model’s generalization capacity and validate its efficacy in
detecting a wide range of crops in complex environmental conditions, we meticulously
built a dataset of crop seedlings with our own shooting. These data would be used to train
and validate the model.

Four crops were targeted, namely soybeans, radishes, cucumbers and wheat. These
crops were specifically chosen for two reasons. Firstly, soybean, radish, cucumber and
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wheat are representative cash crops. Secondly, the seedling stages of various weed species,
such as setaria viridis, eleusine indica, wild pea and petunia, bear resemblance to the
seedling stages of the aforementioned crops.

The cultivation of these crops took place within a greenhouse located at Jilin Agri-
cultural University in China. The greenhouse measures 5 m in width and 40 m in length.
To create an environment rich in weed species, no weeding was conducted prior to crop
planting and throughout the crop cultivation process. Specifically, soybeans and wheat
were directly and randomly sown in the field, while cucumbers were planted at 20 cm
intervals with 1-3 seeds placed in each planting hole. Radishes were also planted at 20 cm
intervals, with more than 5 radish seeds placed in each planting hole. A total of 50 soybean
and wheat seeds were planted, 27 cucumber seeds were planted and 30 planting holes were
utilized for radishes.

During the seedling stage of the crops, the entire crop was photographed. Specifically,
for soybeans, the seedling stage refers to the period from the emergence of cotyledons to
the growth of the third true leaf. The same applies to cucumbers. For radishes, the seedling
stage specifically refers to the period from the emergence of cotyledons to the growth of
the first true leaf. As for wheat seedlings, the seedling stage refers to the period when the
entire crop is less than 15 cm in height. Thirty specimens of each crop were planted and
photographs were taken every three days starting from when the first pair of true leaves
fully unfolded.

The crop seedling data comprised soybean, which was of medium size and planted
sparsely, resulting in partial obscurity by weeds (Figure 3a), making detection slightly
difficult (the size represents the proportion of the target crop in the entire image). Similarly,
radish was small and densely planted, with seedlings not obscured by weeds but covered
by other radish seedlings (Figure 3b), making it more challenging to detect. In addition,
the cucumber was of medium size, planted sparsely and not shaded by other weeds,
resulting in the least difficult detection (Figure 3c). Although wheat was planted sparsely,
the seedlings were still be covered by other seedlings, which was the same for that of
densely planted radishes (Figure 3d), which greatly increased the difficulty of detection.
Detailed information 