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Preface

The rapid evolution of clinical medical imaging in recent years has been nothing short of

extraordinary, driven largely by the integration of artificial intelligence (AI) techniques. This

convergence of technology and medicine holds immense promise, poised to revolutionize clinical

practices by offering more accurate, efficient, and personalized diagnoses and treatments than

ever before.

We find ourselves amidst a revolutionary metamorphosis in the landscape of clinical imaging,

with every sector feeling the profound impact of AI integration. The infusion of AI in this field of the

health domain signifies not merely a surface-level enhancement, but a fundamental reshaping of its

technological fabric.

In the midst of these transformative developments, it is paramount to recognize the dual focus

required, i.e., not only on the driving force of scientific and technological innovation instigated by

AI, but also on the intricate process of seamlessly embedding AI into the broader health domain.

This integration is not just a matter of technological advancement but a strategic imperative aimed

at optimizing healthcare practices, enhancing diagnostic accuracy, streamlining workflows, and

ultimately elevating the abilities of clinical imaging to unprecedented heights within the dynamic

landscape of modern medical science.

In response to these considerations, we introduced a Special Issue, entitled ”Artificial Intelligence

in Clinical Medical Imaging”, now presented in a reprint. This initiative aims to comprehensively

outline ongoing developments, share established experiences, explore prospects, and highlight

persisting challenges in this dynamic field. The Special Issue represents a significant milestone,

featuring 14 contributions, each offering unique insights and perspectives.

These contributions, categorized into editorials, full scientific articles, reviews, and commentaries,

collectively reflect the breadth and depth of AI’s impact on clinical medical imaging. From foundational

concepts to cutting-edge applications, each contribution contributes to our understanding and

advancement in this critical area of healthcare.

We extend our sincere gratitude to all contributors for their invaluable insights and efforts which

have made this Special Issue possible. It is our hope that the knowledge shared within these pages

will inspire further innovation, collaboration, and ultimately improved patient care.

My sincere thanks goes to Dennis Zhu, who provided exceptional support in every phase of the

creation of this collection.

Daniele Giansanti

Editor
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diagnostics

Editorial

Joint Expedition: Exploring Clinical Medical Imaging and
Artificial Intelligence as a Team Integration

Daniele Giansanti

Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Via Regina Elena 299,
00161 Roma, Italy; daniele.giansanti@iss.it

1. The Joint Expedition Exploring Clinical Medical Imaging and Artificial Intelligence

The field of clinical medical imaging has seen remarkable advancements in recent
years, particularly with the introduction of artificial intelligence (AI) techniques. AI has
the potential to revolutionize clinical medical imaging by enabling more accurate, efficient,
and personalized diagnoses and treatments.

The landscape of clinical imaging is currently undergoing a revolutionary metamor-
phosis (contribution 1), with every sector impacted by the integration of artificial intel-
ligence (AI). This paradigm shift is not confined to one specific domain but spans the
diverse realms of medical imaging, encompassing imaging diagnostics for organs and
functionality [1,2], the dynamic field of digital pathology (encompassing both cytology and
digital histology) [3,4], the intricacies of digital dermatology [5,6], and various other niches
within the expansive field of clinical imaging.

The infusion of AI into these sectors is not merely a superficial addition but a fun-
damental reshaping of their technological fabric. The integration processes, fuelled by
advancements in AI technologies, experienced a noteworthy acceleration, with the up-
heavals brought about by the COVID-19 pandemic further propelling this momentum [7,8].

In the face of these transformative developments, it becomes increasingly crucial to
direct attention not only towards the driving force of scientific and technological innovation
instigated by AI but also towards the intricate process of embedding AI seamlessly into
the broader health domain. This integration is pivotal not just for the sake of technological
advancement but as a strategic imperative to optimize healthcare practices, enhance diag-
nostic accuracy, streamline workflows, and ultimately elevate the capabilities of clinical
imaging to new heights within the dynamic landscape of modern medical science.

In light of these considerations, we introduced a Special Issue entitled Artificial Intelli-
gence in Clinical Medical Imaging: https://www.mdpi.com/journal/diagnostics/special_
issues/3FXN9682V0, accessed on 29 February 2024.

The objective was to comprehensively outline the ongoing developments, share
established experiences, explore prospects, and highlight persisting challenges in this
dynamic field.

The Special Issue successfully achieved a significant milestone, featuring 13 contribu-
tions (Co)s (excluding this editorial) (Co. 1–Co. 13).

The published papers, according to the selected categories, encompass 1 introductory
editorial (Co. 1), 10 full scientific articles (Co. 2–Co. 11), 1 review (Co. 12), and 1 comment
(Co. 13).

2. Conclusive Discoveries: A Closer Look at the Contributions

2.1. An Overview of the Contributions

Below, we present a concise overview encapsulating the key points and insights from
the contributions featured in the special issue. This summary aims to provide a brief
yet comprehensive glimpse into the diverse and impactful content published within this
specialized collection.

Diagnostics 2024, 14, 584. https://doi.org/10.3390/diagnostics14060584 https://www.mdpi.com/journal/diagnostics1
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2.1.1. Pirrera, A. et al. (Co. 1): Exploring the Synergy in Clinical Imaging with
Artificial Intelligence

The Editorial by Pirrera and Giansanti (Co. 1) introduced the aims of the SI and
reflected on the progress and status of the introduction of AI into clinical medical artificial
intelligence. The focus was on assessing the current state and briefly exploring both the
evolution and the recent trends. The editorial introduced the need for an initiative Special
Issue and suggested fields and directions for exploration.

The 12 contributions (Co. 2–13) covered various topics of interest to the SI. Below are
detailed the focus and a brief excerpt of the content.

2.1.2. Lin, P.-C. et al. (Co. 2): Machine Learning for Lumbar Disc Height Correlation on
X-rays

The study focuses on lumbar disc bulging or herniation (LDBH), a major cause of spinal
issues necessitating surgery. Due to limited access to MRI, lumbar X-rays are explored
for diagnostic support. Analyzing 458 patients, machine learning methods identify key
predictors, with L4-5 posterior disc height, age, and L1-2 anterior disc height emerging as
crucial factors. A decision tree algorithm is proposed as a valuable tool for clinical decision-
making by surgeons. The study underscores the importance of machine learning-based
decision tools, particularly highlighting the role of L1-2-disc height in the context of LDBH.
Future research aims to develop a comprehensive decision-support model.

2.1.3. Stanojević Pirković, M. et al. (Co. 3): Fractional Flow Reserve-Based Patient
Risk Classification

The study addresses the global impact of cardiovascular diseases (CVDs), empha-
sizing the significance of preventing and detecting risks, particularly focusing on acute
myocardial infarction (AMI) responsible for 3 million deaths annually. The research aims to
develop a technique using fractional flow reserve (FFR) measurements for patient evalua-
tion and predicting the risk of death. A random forest machine learning model is employed,
achieving a 76.21% prediction accuracy, with mean accuracies ranging from 74.1% to
83.6% across different test sample sizes. Additionally, a numerical approach involving the
3D reconstruction of coronary arteries for stenosis monitoring is implemented, showing
promising results even with limited data. The study suggests that future improvements can
be achieved by incorporating additional data, enabling the exploration of different machine
learning algorithms.

2.1.4. Rao, P.K. et al. (Co. 4): Efficient Kidney Tumor Segmentation with UNet-PWP
Deep-Learning Model on CT Scan Images

This study addresses the complexity of early detection in kidney tumors, introduc-
ing the UNet-PWP architecture tailored for efficient segmentation. Notably, adaptive
partitioning breaks down the UNet architecture into smaller submodels, optimizing com-
putational resources. The model incorporates pre-trained weights, boosting its capacity for
intricate tasks, and employs weight pruning for further efficiency without compromising
performance. The evaluation against the DeepLab V3+ model on the “KiTs 19, 21, and 23”
kidney tumor dataset demonstrates the UNet-PWP model’s outstanding 97.01% accuracy
on both training and test datasets, outperforming the DeepLab V3+ model. To enhance
interpretability, the study fuses attention and Grad-CAM XAI methods, providing valuable
insights into decision-making and critical regions of interest. This interpretability is crucial
for healthcare professionals to trust and understand the model’s reasoning, making the
UNet-PWP architecture a promising advancement in kidney tumor segmentation.

2.1.5. Kaur, M. et al. (Co. 5): ESRNet for Efficient Brain Tumor Classification

This paper introduces an Efficient Skip Connections-Based Residual Network (ES-
RNet) to address challenges in brain tumor classification using deep learning. ESRNet
utilizes ResNet with skip connections to overcome limitations like vanishing gradient
issues. It employs multiple stages with increasing residual blocks for enhanced feature
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learning and pattern recognition. The architecture ensures smooth gradient flow during
training, preventing information loss. ESRNet integrates downsampling techniques and
batch normalization for robust performance. Experimental results demonstrate ESRNet’s
superior accuracy, sensitivity, specificity, F-score, and Kappa statistics, with median values
of 99.62%, 99.68%, 99.89%, 99.47%, and 99.42%, respectively. The proposed ESRNet show-
cases exceptional efficiency in brain tumor classification, offering potential advancements
in clinical diagnosis and treatment planning.

2.1.6. Chen, Y.-Y. et al. (Co. 6): Bone Metastases Segmentation on Breast Cancer Bone Scans

This study focuses on employing deep learning for the automatic detection and
quantification of bone metastases in bone scan images, providing clinical assistance in
diagnosis. Using an internal dataset of breast and prostate cancer patients, the study adopts
the Double U-Net model with modifications for multi-class segmentation. Techniques like
Otsu thresholding, negative mining, background pre-processing, and transfer learning
are employed to enhance model performance. Through 10-fold cross-validation, the best
model achieves a precision of 69.96%, a sensitivity of 63.55%, and an F1-score of 66.60%.
Compared to the baseline model, this represents improvements of 8.40%, 0.56%, and
4.33%, respectively. The developed system holds the potential for providing pre-diagnostic
reports to aid physicians in final decisions and calculating the bone scan index (BSI) when
combined with bone skeleton segmentation.

2.1.7. Wu, H. et al. (Co. 7): One-Stage Detection for Multi-Type Coronary Lesions with
Deep Learning

This study introduces a rare approach using a one-stage model, YOLOv5, for the
automatic detection of coronary lesions without segmentation. Enrolling 200 patients
with significant coronary issues, the images were categorized into two views. YOLOv5
demonstrated precision, recall, mAP@0.1, and mAP@0.5 at the image level, with values
ranging from 0.66 to 0.73. At the patient level, the model exhibited precision, recall, and
F1 scores, ranging from 0.64 to 0.65 and 0.91 to 0.94. YOLOv5 performed best for Chronic
Total Occlusion (CTO) and Local Stenosis (LS) lesions. The study concludes that YOLOv5
is feasible for automatic coronary lesion detection, particularly for LS and CTO types.

2.1.8. Jönemo, J. et al. (Co. 8): Augmentation Methods for Autism Classification with
3D CNN

This study explores the application of deep learning to resting-state functional MRI
data for classifying subjects as healthy or having autism spectrum disorder. Notably, the
focus is on investigating the impact of various 3D augmentation techniques on test accuracy.
Using derivatives from 1112 subjects in the ABIDE dataset, a 3D Convolutional Neural
Network (CNN) is trained. The findings reveal that while augmentation is employed, it
only leads to minor improvements in test accuracy. This highlights the limited impact of 3D
augmentation in enhancing classification performance in the context of neuroimaging data.

2.1.9. Bhimavarapu, U. et al. (Co. 9): Automatic Diabetic Retinopathy Detection with CNN

This study focuses on the diagnosis of Diabetic Retinopathy (DR), a diabetes-associated
eye disease with the potential for blindness. Employing deep learning for automatic DR
diagnosis from fundus images, the study introduces an enhanced Convolutional Neural
Network (CNN) model. The improved model incorporates a novel pooling function within
the ResNet-50 architecture, aiming to increase diagnostic accuracy while reducing computa-
tional complexity and processing time. Trained and tested on APTOS and Kaggle datasets,
the proposed model achieves impressive accuracies of 98.32% and 98.71%, respectively.
The comparative analysis highlights the superior performance of the proposed model in
DR diagnosis when compared to state-of-the-art approaches with retinal fundus images.

3
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2.1.10. Wu, S. et al. (Co. 10): Coarse-to-Fine Fusion Network for Small Liver
Tumor Detection

This paper presents a novel approach for liver tumor semantic segmentation in medi-
cal image analysis, focusing on small tumors across various sizes. The proposed method
integrates a detection module and a CSR (convolution-SE-residual) module, featuring a
convolution block, an SE module, and a residual module for fine segmentation. Evalu-
ating a private liver MRI dataset with 3605 tumors, including 3273 smaller than 3.0 cm,
the method outperforms single-stage end-to-end networks and fusion networks, demon-
strating superiority over 3D UNet and nnU-Net. In testing on 44 images, the proposed
method achieves an average Dice similarity coefficient (DSC) and recall of 86.9% and 86.7%,
respectively, surpassing comparison methods. Notably, for small objects (<10 mm), the
proposed approach sets a state-of-the-art performance with a Dice score of 85.3% and a
malignancy detection rate of 87.5%.

2.1.11. Bragança, C.P. et al. (Co. 11): Advancements in AI for Glaucoma Diagnosis

This article delves into the increasing role of artificial intelligence (AI) algorithms
in digital image processing and the automated diagnosis of glaucoma, a significant eye
disease. It provides an overview of glaucoma types, traditional diagnostic methods, and
the global epidemiology of the disease. The focus is on how AI algorithms can potentially
aid in early glaucoma diagnosis through population screening. The related work section
explores key studies and methodologies utilizing AI for the automatic classification of
glaucoma from digital fundus images. It also highlights the main databases with labeled
glaucoma images available for training machine learning algorithms.

2.1.12. Giansanti, D. (Co. 12): Umbrella Review of fMRI and AI Fusion in Autism

This study conducts an umbrella review analyzing emerging themes in the integration
of Functional Magnetic Resonance Imaging (fMRI) and artificial intelligence (AI) in autism
diagnosis. Utilizing a structured process, it reviews 20 systematic reviews, emphasizing
the significance of technological integration, especially fMRI and AI. The study acknowl-
edges the potential in this field while recognizing challenges and limitations. It notes
a growing emphasis on AI research but highlights the need for attention to healthcare
process integration, including regulation, acceptance, informed consent, and data security.
The study suggests focusing on health domain integration for routine implementation
of these applications, pointing out the promising yet unexplored area of integration into
personalized medicine (PM) in autism research.

2.1.13. Giansanti, D. (Co. 13): AI-Enabled Fusion for Enhanced Autism Spectrum
Disorder Diagnosis

The proposal is a comment on contribution 8. It underscores the substantial enhance-
ment achieved in the realms of diagnosis and classification through the incorporation of
3D augmentation. This augmentation, when synergistically combined with artificial intel-
ligence (AI) and Functional Magnetic Resonance Imaging (fMRI), presents a formidable
approach. The integration of these technologies not only elevates the accuracy and efficacy
of diagnostic processes but also holds the potential to unravel more nuanced insights into
the intricacies of the data, thereby further refining our understanding and application of
advanced medical imaging techniques.

2.2. Conclusive Global Reflection

All the works have made noteworthy contributions to the field of clinical medical
imaging, particularly at the intersection with AI. These contributions provide valuable
insights and innovative approaches, enhancing our understanding of how AI can improve
medical imaging processes. The integration of artificial intelligence highlighted in these
studies has practical implications for advancing diagnostic accuracy, efficiency, and overall
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capabilities in the realm of clinical medical imaging, signifying a significant step forward
in this domain.

3. Common Message, Key Emerging Themes, and Suggestions for a
Broader Investigation

3.1. Common Messages

Twelve distinct contributions (Co. 2–13) weave through the intricate field of medical
research focused on the integration of clinical medical imaging with AI. These studies,
spanning diverse medical domains, collectively leverage several AI approaches, making an
important contribution to the landscape of medical diagnostics.

Commencing with lumbar disc exploration (Co. 2), the ensemble progresses into the
cardiovascular sector (Co. 3), where a novel technique employing fractional flow reserve
measurements proves adept at predicting patient risks. Kidney tumor detection takes a
prominent role in Co. 4, introducing an architecture optimizing computational resources
with impressive accuracy. In the cerebral domain of brain tumor classification (Co. 5),
ESRNet showcases notable accuracy. Transitioning to bone metastases segmentation (Co. 6),
a Double U-Net model enhances precision and sensitivity. A revolutionary note emerges in
Co. 7, where a one-stage model (YOLOv5) redefines coronary lesion detection, excelling in
specific lesion types. Co. 8 delves into autism classification, shedding light on the nuanced
effectiveness of 3D augmentation techniques.

Ocular health comes to the fore both in Co. 9 and Co. 11. Co. 9 presents an improved
ResNet-50 model for Diabetic Retinopathy diagnosis with remarkable accuracy, while
Co. 11 investigates the application of AI in glaucoma diagnosis. Co. 10 introduces a
novel semantic segmentation approach for liver tumors, outperforming existing models,
particularly in segmenting small objects. Co. 12, an umbrella review, delves into fMRI and
AI integration for autism diagnosis, recognizing potential and addressing challenges.

The last contribution, Co. 13 provides a perspective, underscoring the enhancement
achieved through 3D augmentation, AI, and fMRI integration. This fusion refines diagnostic
accuracy and unravels nuanced insights into advanced clinical medical imaging techniques,
marking a moment in the evolution of medical diagnostics.

3.2. Suggestions for a Broader Investigation and Key Emerging Themes

From the overview, it is also possible to detect the emerging themes and the sugges-
tions for a broader investigation.

The collective contributions (Co. 2–13) encompass diverse facets of medical imaging,
showcasing the evolving landscape of artificial intelligence in healthcare. Lin et al. (Co. 2)
illuminate lumbar disc issues through machine learning, prompting collaborative endeav-
ors across orthopedics and technology. Stanojević Pirković’s work (Co. 3) on cardiovascular
diseases encourages merging datasets for a holistic approach. Rao et al. (Co. 4) advocate for
transparent kidney tumor segmentation models, emphasizing interpretability to instill trust.
Efficient Brain Tumor Classification (Co. 5) prompts exploration of real-world applications,
while ESRNet (Co. 6) advocates personalized medicine integration.

Chen et al. (Co. 7) propose one-stage models for coronary lesion detection, urging lon-
gitudinal studies. Jönemo’s insights (Co. 8) on autism classification with 3D CNNs suggest
collaborative human–AI analysis. Bhimavarapu’s study (Co. 9) emphasizes scalable AI
models for Diabetic Retinopathy screening. Ethical considerations in liver tumor detection
(Co. 10) underscore the need for responsible AI use. Glaucoma diagnosis (Co. 11) pushes
for patient-centric AI integration, acknowledging diverse perspectives. The Umbrella Re-
view (Co. 12) highlights the potential of fusing fMRI and AI in autism with calls for ethical
healthcare integration. The comment (Co. 13) applauds the synergy of 3D augmentation,
AI, and fMRI, envisioning nuanced insights into medical imaging’s intricacies.

Through this experience, we identified noteworthy dominant themes, which are
detailed in Table 1, along with the reference contributions. These discerned themes can
serve as valuable inspiration for fellow researchers delving into this field.

5
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Table 1. Dominant emerging theme by article.

Themes Description Studies

Spinal and Skeletal Insights Machine Learning for Lumbar Disc Height Correlation on X-rays.
Bone Metastases Segmentation on Breast Cancer Bone Scans.

(Co. 2)
(Co. 6)

Cardiovascular Precision Fractional Flow Reserve-Based Patient Risk Classification.
One-Stage Detection for Multi-Type Coronary Lesions with Deep Learning.

(Co. 3)
(Co. 7)

Renal and Hepatic tumor
detection/segmentation

Efficient Kidney Tumor Segmentation with UNet-PWP Deep-Learning
Model on CT Scan Images.

Coarse-to-Fine Fusion Network for Small Liver Tumor Detection.

(Co. 4)
(Co.10)

Neurological Exploration
ESRNet for Efficient Brain Tumor Classification.

Augmentation Methods for Autism Classification with 3D CNN.
AI-Enabled Fusion for Enhanced Autism Spectrum Disorder Diagnosis.

(Co. 5)
(Co. 8)

(Co. 13)

Ocular Health
Focus

Co. 9: Automatic Diabetic Retinopathy Detection with CNN.
Co. 11: Advancements in AI for Glaucoma Diagnosis

(Co. 9)
(Co. 11)

AI and fMRI Umbrella Review of fMRI and AI Fusion in Autism (Co. 12)

4. Conclusions

In conclusion, the evolution of artificial intelligence technologies in the field of medical
imaging offers promising prospects for enhancing diagnosis and treatment. The studies
presented in this editorial highlight the growing intersection between medicine and artificial
intelligence, addressing challenges from early spinal pathology diagnosis to Efficient Brain
Tumor Classification. The research emphasizes the crucial aspects of interpretability and
encourages multidisciplinary collaboration, providing valuable insights for further ethical
investigations and practical applications.

The Special Issue curated significant contributions in various domains, identifying
both emerging and established themes and delineating intriguing directions for future
advancements. This initiative underscores the importance of these tools as a central hub
for scholarly exchange and discussions among researchers worldwide.

Conflicts of Interest: The authors declare no conflict of interest.

List of Contributions

1. Pirrera, A.; Giansanti, D. Human–Machine Collaboration in Diagnostics: Exploring
the Synergy in Clinical Imaging with Artificial Intelligence. Diagnostics 2023, 13, 2162.
https://doi.org/10.3390/diagnostics13132162.

2. Lin, P.-C.; Chang, W.-S.; Hsiao, K.-Y.; Liu, H.-M.; Shia, B.-C.; Chen, M.-C.; Hsieh, P.-Y.;
Lai, T.-W.; Lin, F.-H.; Chang, C.-C. Development of a Machine Learning Algorithm to
Correlate Lumbar Disc Height on X-rays with Disc Bulging or Herniation. Diagnostics
2024, 14, 134. https://doi.org/10.3390/diagnostics14020134.
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Advancements in artificial intelligence (AI), thanks to IT developments during the
COVID-19 pandemic, have revolutionized the field of diagnostics, particularly in clinical
imaging [1–3]. Diagnostic imaging, whether it is applied inside the human body for organs [4]
or functional diagnostics [5], in tissues or within cells [6,7], or outside in the dermis, is having fab-
ulous developments thanks to AI [8]. With the advent of digital health and digital radiology
(DR), digital pathology (DP), and digital dermatology (DD), healthcare professionals have
gained powerful tools that enable faster, more accurate diagnoses. Increasingly innovative
algorithms are developed in the medical imaging sector by researchers in basic data science
research and implemented by IT specialists in increasingly innovative tools. These tools are
increasingly used, and much is expected from them.

The DR, DP, and DD have evolved differently due to: (1) the different peculiarities of
clinical diagnostics. (2) The different evolutions and developments of the digitization of the
standardization of images (DR, for example, later than the DP [9–12]), which is the basis of
the development and implementation of AI algorithms. (3) The different roles of the patient
(for example, more operator-technologists in DD, more passive in DP and DR) [13,14].

DR has transformed [15] how medical images are captured, stored, and analyzed. It
refers not only to traditional radiology but also to all the other fields of organ and functional
imaging, ranging from echography to positron emission tomography. For example, tradi-
tional film-based X-rays in radiology and videotape recordings in echography have given
way to digital imaging technologies, improving physicians’ workflow. Integrating AI algo-
rithms with digital radiology has unlocked immense potential, empowering radiologists
with intelligent systems that aid in detecting and interpreting abnormalities. Preliminary to
this important development was the early development of the DICOM [11] standard, which
facilitated the integration of these tools in every area and consequently made available a
vast amount of image data for developing medical knowledge on AI.

Digital pathology [16] has emerged as a game-changer in histopathology and cy-
topathology, enabling the digitization and analysis of tissue and cell samples. By converting
glass slides into digital slides and storing them into PACS (pathologists and cytologists)
can interact easily through virtual scopes to discuss cases and for training.

However, this digitization has different characteristics in the two sectors of histology
and cytology. The second one is more complex since the cytologist must use the focus
function in the cytology, and its digital imitation requires an extension of the file. Compared
to digital radiology, digital pathology has had greater inertia as regards standardization.

The specialized DICOM for digital pathology, DICOM Whole Slide Image (WSI) [12],
has had a much longer release time and a more articulated adaptation of the manufacturers.

All this has meant that AI in digital pathology has certainly had a less rapid start.
DD has revolutionized the field of skin disease diagnosis and management [17–19].

Dermatologists now have access to powerful imaging technologies that capture high-
resolution images of skin lesions and conditions. AI algorithms can assist in analyzing
these images, identifying patterns, and suggesting potential diagnoses or treatment options.
All this is also done thanks to mHealth mobile applications directly in the hands of the

Diagnostics 2023, 13, 2162. https://doi.org/10.3390/diagnostics13132162 https://www.mdpi.com/journal/diagnostics8



Diagnostics 2023, 13, 2162

citizen integrated with the smartphone, who also becomes an operator-technologist. This
aspect is new compared to DR and DP and opens a new paradigm in Digital Health.

Targeted searches on Pubmed give us an idea of the growth in the volume of studies,
since the first applications of AI on the imaging at the date of this study.

Regarding the applications of AI in Pathology, the search with the key reported in
Box 1, position 1, highlights 683 studies starting from 1989. Of these studies, 607 (88.9%)
were carried out starting 1 January 2020. In all, there are 277 reviews (systematic and
non-systematic).

Regarding the applications of AI in Dermatology, the search with the key reported in
Box 1, position 2, highlights 97 studies starting from 2006. Of these studies, 83 (85.6%) were
carried out starting 1 January 2020. In all, there are 42 reviews (systematic and not).

The DR includes, as explained, many sectors. To get an idea, we considered radiology
and magnetic resonance.

Regarding the applications of AI in radiology imaging, the search with the key reported
in Box 1, position 3, highlights 779 studies starting from 1983. Of these studies, 647 (83.1%)
were carried out starting 1 January 2020. In all, there are 346 reviews (systematic and
non-systematic).

Regarding the applications of AI in Magnetic Resonance imaging, the search with
the key reported in Box 1, position 4, highlights 1132 studies starting from 1990. Of these
studies, 1015 (89.7%) were carried out starting 1 January 2020. In all, there are 455 reviews
(systematic and non-systematic).

This brief overview highlights how in these sectors: (1) scientific production and
interest have accelerated during the COVID-19 pandemic. (2) The greatest production is in
the DR sector. (3) There is a good percentage of review studies, indicating good progress in
the stabilization process of topics of scientific interest (Figure 1).

  
(A) (B) 

 
(C) (D) 

Figure 1. The volume of publications (at the date of this study) for the field of Pathology and AI (A);
for the field of Dermatology and AI (B); for the field of radiology and AI (C); for the field of magnetic
resonance and AI (D).
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Box 1. The composite key used for the searches in Pubmed.

((pathology[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artificial
Intelligence[Title/Abstract])
((dermatology[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artifi-
cial Intelligence[Title/Abstract])
((radiology[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artificial
Intelligence[Title/Abstract])
((magnetic resonance[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND
(Artificial Intelligence[Title/Abstract])

These developments can streamline the health domain processes and change the
role and workflow of the professionals already involved in the decision-making process,
such as radiologists, pathologists, cytologists, histologists, and dermatologists. However,
other professional figures will also be able to make use of AI in the workflow, such as
the medical radiology technician, the biological laboratory technician, and even the tattoo
artists, who will be able to interact with other professional figures in diagnostics to monitor
any problems [20] of this widespread practice [21].

However, a real integration has not yet been achieved in DR, DP, and DD, which
implies acceptance of the actors, robust guidelines and stable regulations at an implemen-
tation and legislative level, well-defined workflows, adequacy for cyber security aspects,
and ethical issues (the last two in some cases also interlaced), a better understanding of the
AI algorithms of the actors though an explainable AI to have better control of the process
and, more generally, consensus initiatives acting on multiple domains and involving all
the actors and experts in the field [15,16,19]. There is a great need to discuss this area to ex-
change and share experiences with a 360-degree perspective, encapsulating opportunities,
problems, and even failures. With this in mind, the Special Issue “Artificial Intelligence in
Clinical Medical Imaging” [22] was launched.

Conclusions

The COVID-19 pandemic has led to a terrifying acceleration in research and develop-
ment on the application of AI. This applies to DP, DR, and DD.

However, creating ever more up-to-date tools based on increasingly performing inno-
vative algorithms must be followed by initiatives in health domain integration that act on
multiple domains. There is an increasing need for studies focused on AI in clinical imaging,
also through synergistic initiatives, such as collections or Special Issues such as this one,
which touch on successes and failures, opportunities, and bottlenecks.
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Abstract: The progress of artificial intelligence algorithms in digital image processing and automatic
diagnosis studies of the eye disease glaucoma has been growing and presenting essential advances
to guarantee better clinical care for the population. Given the context, this article describes the
main types of glaucoma, traditional forms of diagnosis, and presents the global epidemiology of
the disease. Furthermore, it explores how studies using artificial intelligence algorithms have been
investigated as possible tools to aid in the early diagnosis of this pathology through population
screening. Therefore, the related work section presents the main studies and methodologies used
in the automatic classification of glaucoma from digital fundus images and artificial intelligence
algorithms, as well as the main databases containing images labeled for glaucoma and publicly
available for the training of machine learning algorithms.

Keywords: deep learning; glaucoma; image analysis; artificial intelligence

1. Introduction

Glaucoma is a multifactorial neuropathy that can affect the fundus of the eye, causing
gradual loss of vision and, in severe cases, blindness. Traditionally, the diagnosis of
glaucoma is applied with the help of readily available ophthalmological teams and highly
specialized equipment. The sensitivity of the diagnosis is generally high, as tests applied in
ophthalmology offices have the clinical potential to identify virtually all cases of the disease.
However, despite this sophisticated diagnostic scenario, the silent and slow evolution
of the disease, the costs of exams and consultations, and the lack of access to public
ophthalmological services in many cases prevent thousands of people from consulting an
ophthalmologist during the early stages of this neuropathy. This contributes to the fact
that around 70% of the patients are self-diagnosed, that is, alerted by their own visual
impairment and not by an appropriate early diagnosis [1,2].

Glaucoma is considered a global problem; even in developed countries, it is estimated
that at least 50% of patients with glaucoma do not know of their condition. This percentage
is even worse in low-income countries [3]. It is considered a progressive, chronic, and
incurable pathology; however, it can generally be efficiently controlled when treatment
begins in the early stages of the disease.

There are several types of glaucoma: open-angle glaucoma, angle-closure glaucoma,
congenital glaucoma and secondary glaucoma [4,5]. However, they all cause damage to the
optic nerve, which in most cases occurs slowly, initially leading to the loss of midperipheral
vision. In advanced stages, it affects central vision, leading to irreversible blindness.
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Damage to the optic nerve can be analyzed using fundus examinations, also known as
ophthalmoscopy or fundoscopy. The ophthalmoscopy examination is performed on the
back part of the eye (fundus), which includes the retina, optic disc, choroid, and blood
vessels. The funduscopic examination can be performed with a variety of equipment, such
as direct ophthalmoscopy, indirect ophthalmoscopy, and slit lamp ophthalmoscopy. Found
in almost all ophthalmology offices, these devices offer ophthalmologists a detailed view of
the eyeball. As shown in Figure 1, the brightest part of the retina represents the optic disc
(OD), which contains an excavation known as the optical cup (OC), depicted by the whitest
part of the interior of the optic disc. Therefore, if the size of the optic cup increases, it is
considered one of the main indicators of glaucoma [2,6–8].

Figure 1. ISNT (Inferior (I), Superior (S), Nasal (N) and Temporal (T)) Rule.

In terms of the basic and traditional methods of diagnosing glaucoma, in addition to
the fundus examination to examine the optic disc and the retinal nerve fiber layer (RNFL),
ophthalmologists generally use tonometry and visual field tests as adjuncts. Tonometry
is an exam to assess the degree of dysfunction and measures intraocular pressure (IOP)
in millimeters of mercury (mmHg). The common eye pressure range is 10 to 21 mmHg,
which is based on the average eye pressure level of a normal person. Although tonom-
etry examination is very important in the management and treatment of glaucoma, it
cannot be considered a diagnosis due to the presence of cases of normal pressure glau-
coma [9]. Perimetry through the perimetry or campimetry exam, as is also known, the
degree of functional impairment resulting from the disease is examined through the re-
sults of the obtained visual field map. In clinical practice, visual field testing identifies
so-called blind spots (scotomas) and their locations in human vision and is therefore widely
used as the gold standard to assess whether a patient suffers from typical functional
glaucomatous damage [10].

Although the demographic and clinical characteristics associated with glaucoma are
relatively well known, there is still no uniform definition of the diagnosis of this disease
by ophthalmologists. In this way, many international efforts have been made to develop
such a definition, but no real consensus standard has been reached. Therefore, those
with an IOP greater than 21 mmHg, accompanied by characteristic damage to the optic
disc or defects in the visual field compatible with glaucoma, are generally included as
glaucomatous [11]. Due to this particularity, it is important to assess and document the
appearance of an increase in the cup-to-disc ratio as a way of evaluating possible structural
damage caused by the disease, as well as accompanying the patient to treatment or routine
appointments. Therefore, from ophthalmoscopy images, ophthalmologists can evaluate
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at least four important informative characteristics of glaucoma, such as cup/disc ratio,
inferior (I), superior (S), nasal (N), and temporal (T) rule (ISNT), cup asymmetry, and in
addition other structural damage caused to the optic disc, namely the following:

• Cup-to-Disc Ratio (CDR): An abnormal increase in disc cupping is important in the
diagnosis of glaucoma; however, many people may have increased nerve cupping
and not necessarily have glaucoma. This is especially true for myopic people, who
tend to have a larger optical disc and consequently a larger optical cup. Therefore,
during the diagnosis of glaucoma, it is important to assess not only the optical cup
but also the cup-to-disc ratio (CDR). For better understanding, the CDR measurement
is calculated from the relationship between the vertical diameter of the excavation
(VCD) and the vertical diameter of the disc (VDD), as shown in Figure 2.
To calculate the CDR ratio, the optical disc must be divided into 10 equal parts,
as in Figure 3, and then the excavation scope must be taken into account in each
division made. Therefore, it is considered a fractional percentage measurement,
generally made horizontally, and can vary greatly between normal individuals. How-
ever, optical excavations greater than 0.65 indicate possible abnormalities, suggesting
further investigation [2,12].

• ISNT Rule: The border formed between the optic cup and the optic disc, called the
neuroretinal ring or neural ring, is also considered an indication of glaucoma, for
which there is a rule called ISNT, which alludes to the orientation (inferior, superior,
nasal, and temporal) of the edges in the image of the fundus, as shown in Figure 1.
When considering the ISNT rule, in nonglaucomatous eyes, it is suggested that the
thickness of the neural ring should be greatest in the inferior quadrant, followed by
the superior, nasal, and temporal quadrants. Misalignment in the guidelines of this
rule leads to suspicion of glaucoma [13].

• Cup-to-disc ratio (CDR) asymmetry: The CDR relationship between both eyes is
symmetric in most people, and asymmetry is an important sign of suspected glauco-
matous damage. This is due to the observation that 1% to 6% normal adults may have
a discrepancy of 0.2 in the cup/disc ratio, while 1% of the general population may
have an asymmetry of 0.3. Therefore, cup asymmetry is a finding on ophthalmological
examination that requires additional tests to rule out the presence of glaucoma or
other possible complications [14,15].

• Other structural damage to the optic disc: The main descriptions of these types of
damage related to glaucoma are as follows [2,16,17]:

1. Changes in RNFL: the presence of defects located in the retinal nerve fiber layer
is called Hoyt’s sign and is characterized by a dark area that extends and widens
from the optic disc, exhibiting an arched shape.

2. Peripapillary atrophy: According to the ophthalmological appearance, peripapil-
lary atrophy can be divided into a peripheral alpha zone and a central beta zone.
The alpha zone is characterized by patchy hypopigmentation and thinning of the
layers of the chorioretinal tissue. It is laterally adjacent to the retina and medially
in contact with the beta area, with the sclera and large choroidal vessels visible.
In normal eyes, the alpha and beta areas are usually located in the temporal
area, followed by the inferior and superior areas. In glaucomatous eyes, the beta
area is more present in the temporal region and its extension is associated with
thinning of the RNFL.

3. Excavation of the optic disc: In addition to disc excavation, the neuroretinal ring
or neural rim must also be observed, as excavation is influenced by the size of
the optic disc.

4. Disc hemorrhage: The presence of peripapillary hemorrhages is an important
sign in both the diagnosis and the monitoring of glaucoma. Therefore, vessel
deflection and nasal excavation must be examined.

5. Denudation of the lamina, cribriform: the presence of visible extinction of the
cribriform lamina to the edge of the optic disc is called a notch, which represents
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the evolution of a defect located in the neural rim until there is a complete
absence of tissue in the region, which exposes the cribriform lamina and allows
visualization of its pores. Although it is very suggestive of glaucoma, this sign is
not characteristic of the disease.

Figure 2. Measures considered in the CDR calculation.

Figure 3. Example of CDR calculation with figure showing excavation of 0.6.

Regarding the difficulties associated with the diagnosis of glaucoma, it is considered
that in cases in the moderate or advanced stages of the disease, the diagnosis is usually
more simplified. However, the best way is to detect early glaucoma, which is essential
for adequate treatment, mainly because quality of life can be altered even with slight loss
of visual field [18]. However, the early identification of this disease, although important,
can be challenging for several reasons, including glaucomatous characteristics that can
be ambiguous in the optic disc region, RNFL, or visual field results at the beginning of
the disease.

Over the years, more sensitive tests have been developed to more reliably identify
early loss of visual function in patients with glaucoma, and more sophisticated imaging
devices have been created to identify the first signs of disease-induced structural damage
to aid in precocious diagnosis. Among these devices, optical coherence tomography (OCT),
laser scanning polarimetry, and confocal laser scanning ophthalmoscopy stand out [19,20].
Although devices have demonstrated a good ability to assist ophthalmologists in the
diagnosis of glaucoma, few studies have specifically examined the use of such technologies
early in the disease, making the early diagnosis of glaucoma a difficult task for specialists,
even with the aid of sophisticated equipment [19].

Given the difficulties in diagnosing glaucoma early, what ophthalmology clinics have
done to try to overcome this difficulty is a combination of functional and structural exams.
Although functional changes may be detected before structural changes, in many cases the
first detectable manifestation of glaucoma is a structural abnormality change in the optic
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disc and RNFL, which therefore requires that the tests be combined to establish probability
levels of the presence or absence of the disease [9,12,18].

2. Epidemiology

According to the World Health Organization (WHO), at least 2.2 billion people around
the world suffer from some type of visual impairment. In almost half of the cases, this
deficiency could have been avoided or has not yet been treated. When considering these
data, it is inferred that today millions of people live with visual impairment or blindness
that could have been avoided but unfortunately were not.

Although the exact number is unknown, it is estimated that 11.9 million people
worldwide have moderate or severe visual impairment or blindness due to eye diseases
such as glaucoma, trachoma (an inflammatory condition that affects the conjunctiva and
cornea), and diabetic retinopathy, a chronic complication of diabetes mellitus [21–23].

Visual impairment and blindness can have a major impact on the daily lives of people
affected by such disabilities, since vision is the dominant sense for humans at all stages of
life. However, research estimates that by 2030, around 95.4 million people worldwide will
have glaucoma.

Visual impairment, in addition to being detrimental to patient quality of life, also
presents a huge global financial burden, as demonstrated by previous research that esti-
mated the costs of lost productivity. These costs can be divided into direct costs and indirect
costs. Direct costs include medications, surgeries, medical consultations, hospitalizations,
and complementary examinations. Indirect medical costs include mainly the economic
impacts caused by visual impairment on work productivity.

Although glaucoma generally progresses slowly and is underdiagnosed worldwide,
it is the most common cause of irreversible blindness globally, yet it can be prevented.
The disease is considered preventable because, if detected early, there are ways to control
it, but global statistics show that due to underdiagnosis, the result is a large number of
blind people. This problem can be even more serious in low-income or underdeveloped
countries, such as Brazil, considered by the World Inequality Lab report in 2018 [24] as one
of the countries with the highest social and income inequality in the world, marked by
extreme levels for many consecutive years.

Although statistical numbers of underdiagnosis in the general population combined
with the need for early diagnosis to prevent blindness may suggest that glaucoma is a good
candidate for population screening, studies have shown that, at least in countries such
as the United Kingdom and Finland, the detection of population-based glaucoma using
traditional diagnostic methods is not feasible due to the high cost of implementation and
maintenance and the relatively low prevalence of the disease in the general population,
which is approximately 3.5% [25,26]. Similarly, the US Preventive Services Task Force [27],
with the support of the American Academy of Family Physicians [28], does not recommend
screening for glaucoma in the primary care setting, citing insufficient evidence to assess its
implications, benefits, or harms.

3. Scientific and Technological Advances in Artificial Intelligence

In recent years, scientific and technological advances have opened up a wide range of
clinical and research opportunities in the field of ophthalmological care, which can help
combat glaucoma. In this way, artificial intelligence technologies have proven effective
in areas of medicine such as radiology, pathology, dermatology, etc. All of these studies
are in related areas that share parallels with ophthalmology because of their deep roots in
diagnostic imaging.

The term artificial intelligence is a technology that covers several areas of knowledge
and generally refers to the development of computational systems capable of performing
tasks that mimic human intelligence. More recently, through machine learning and algo-
rithms known as artificial neural networks (ANN) and deep neural networks (DNN) many
advances have been possible [29,30].
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The concept of machine learning encompasses a variety of methodologies, such as
random forests [31], K-nearest neighbors (KNN) [32], support vector machines (SVM) [33],
naive bayes [34], and artificial neural networks [29]. All of these technologies are aimed
at pattern recognition, statistical regression, and data classification processes. Among
machine learning algorithms, deep learning technology stands out, which has been at the
forefront of the development and advances in computing and big data in recent years,
mainly with the introduction and development of convolutional neural network (CNN)
networks, proposed by researcher Yann LeCun [35] and especially used in the areas of
pattern recognition and digital image classification.

The networks presented are algorithms that require a lot of data for training, but often
there are not enough data, especially when considering clinical information. Therefore, a
widely used technique that allows neural networks to be applied to small data sets is the
process of transfer learning, considered the method of transferring knowledge acquired
during training in a certain domain (a database) to be applied in another domain, that is,
another similar problem. In view of this, algorithms that offer this technology are called
pre-trained. One of the conveniences of using pre-trained networks is that they already
have defined weights; that is, the weights are initialized with values obtained from already
completed training.

Still in transfer learning, the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) is an annual competition run by the ImageNet team since 2010, in which research
teams evaluate the performance of computer vision and machine learning algorithms
on various transfer learning tasks. visual recognition, such as object classification and
localization [36]. ImageNet is a project aiming to provide large libraries of images for use
in pre-training algorithms to be used in various other tasks and has been fundamental for
advancing research in computer vision and deep learning. This database contains more
than 14 million images, divided into more than 20,000 categories.

Due to data deficiency and other purposes, generative adversarial networks (GANs)
also emerged, a machine learning architecture that consists of two networks that ’fight’
against each other (damage to the environment). The potential of GANs is enormous
because they can learn to imitate any data distribution in the following way: First, a
neural network called a generator generates new data instances, while another neural
network called a discriminator evaluates their authenticity. In this way, the generator
produces false images in the hope that the false images will even be considered real by
the discriminator. With this exchange of information, the generator learns to generate
plausible data, while the discriminator learns to distinguish false data from the generator.
The discriminator penalizes the generator for producing concrete results, and with this, the
generator improves more and more.

Training of GANs networks is carried out using real data instances as positive and
fake data instances created by the generator as negative. After training, the classifier
classifies the real and fake generator data and propagates the discriminator loss through
the discriminator network to update the weights [37].

All these artificial intelligence technologies, regardless of the difficulty in finding
large sets of public data or the algorithmic model used, show the great commitment of
researchers to spread scientific growth seeking to find valid and effective solutions in the
diagnosis of glaucoma. In this way, with respect to the application of artificial intelligence
to ophthalmology, in addition to studies aimed at the automatic diagnosis of glaucoma,
this technology also focuses on studies on the diagnosis of diseases such as cataracts,
age-related macular degeneration, diabetic retinopathy, and others, showing that there is a
set of ophthalmological diseases that can receive greater attention considering the use of
deep learning.

Regarding the ophthalmological scenario of glaucoma, the use of artificial intelligence
appears as an auxiliary tool in the diagnosis of the disease by detecting changes present in
the OCT results, the results of the visual field exam, and mainly in the images of the fundus.
This is because, despite the potential to apply automation to different types of ophthalmic
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images, fundus images (i.e., images obtained with conventional ophthalmic equipment)
have gained prominence in many related works due to the availability, quality, and cost
effectiveness of acquisition.

4. Related Works

To prepare this review, the manuscripts were selected based on the titles and sum-
maries of the artificial intelligence methods used to classify glaucoma from digital fundus
images, therefore presenting some of the relevant scientific works published in recent
years. The search for articles was applied to the main data platforms (Scopus, Web of
Science, Google Scholar, Scielo and Medline). Due to the scope of this study, the search was
limited to algorithms developed to analyze digital fundus images, mainly with the aid of
CNN algorithms. Before presenting methods using deep learning, we describe the main
public databases containing fundus images used by many of the related works described
as instances for training and testing the classifiers, which are mostly supervised.

4.1. Main Public Databases

Table 1 describes some publicly found databases for work focused on classifying
glaucoma using deep learning and digital images of the fundus obtained by conventional
retinography with cameras. The viewing angle of each database is also described, as it
determines the amount of fundus area that will appear close to the optical disc. Furthermore,
to fill in the data in the table, only images labeled glaucoma and nonglaucoma from each
reported database were considered.

Table 1. Public and labeled databases for glaucoma.

Database Glaucoma Normal Total Viewing Angle

Acrima [38] 396 396 700 30 a 50◦
Drions [39] 55 55 110 30 a 50◦

Drishti-Gs1 [40] 50 51 101 30◦
Drive [41] 34 6 40 45◦

Glaucoma DB [42] 85 35 120 30 a 50◦
Hrf [43] 15 15 30 45◦

sjchoi86-Frf [44] 101 300 401 30 a 50◦
Messidor [? ] 28 72 100 45◦

Origa [46] 168 482 650 30 a 50◦
Papila [47] 155 333 488 30 a 50◦
Refuge [48] 120 1080 1200 30 a 50◦
G1020 [49] 296 724 1020 45◦
BrG [50] 1000 1000 2000 25◦

Rim-one DL [51] 172 313 485 30 a 50◦

4.2. Approaches Using Deep Learning

Based on the analysis of the literature that constitutes the related studies, it was
observed that artificial intelligence models used in studies of this disease based on digital
fundus images are generally applied in two specific ways: calculating CDR or identifying
glaucoma patterns in the optic disc region.

CDR calculation: One of the ways that glaucoma classification models have used
has been through the calculation of the CDR measurement, generally obtained from the
segmentation of the disc and optical cup structures; see Figure 4. The algorithms then,
using the calculated CDR, estimate the presence or absence of glaucoma.

Although many algorithms, such as [52,53], have shown a high accuracy rate in
segmenting these structures, this method can only be considered an indication of glaucoma
and the need for a more detailed evaluation, since the diagnosis of this neuropathy is made
by examination of the entire structure of the optic disc and not just excavation. Furthermore,
although increased cupping suggests glaucoma, not all optic nerve cupping is related to
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this disease, as there are other conditions that can cause increased cupping of the optic
nerve, such as neuritis, tumors, multiple sclerosis, etc.

Figure 4. Example of image with segmentation of the disc and optical cup.

Recognition of glaucomatous patterns: Although the CDR calculation algorithms only
evaluate the excavation of the optic disc, this pattern recognition methodology seeks to
evaluate the entire region of the optic disc in search of characteristics that could lead to
the recognition of glaucoma. According to the context of deep learning and the analysis of
related work described in this section, this type of application can be operated by at least
four different methodologies, such as the following:

1. Feature vector extraction and classification: In this type of application, various image
processing and feature extraction techniques can be used on digital images; however,
a classifier will be the part of the system responsible for the categorization task, or
that is, it will apply the decision process on which category a given image belongs to.
Among the algorithms that work in this way are SVM, KNN, Naive Bayes, etc. Works
such as these have been published by several authors and have appeared in [54,55].

2. Use of CNN networks: This approach eliminates the need to extract feature vectors,
since CNN networks can extract such features through feature maps with their con-
volutional layers. Considered the gold standard of digital image processing, this
methodology was applied in works such as those consulted in [38,56,57], using public
and private databases.

3. Use of GANs networks: This involves discovering regularities and patterns in the
input data and learning them automatically. Examples of these algorithms in glaucoma
classification can be found in [58–60].

4. Use of multitechnologies: This type of modeling seeks to achieve the desired objec-
tive using a combination of techniques, such as KNN, SVM, CNN, etc. Numerous
researchers, such as [61–63], have opted for this type of application, which is shown
to be a valid way to recognize glaucomatous patterns.

Table 2 presents some of the various relevant works published in recent years as
presented in reviews as available in Zedan et al. [64].

Table 2. Examples of work related to glaucoma classification using artificial intelligence algorithms.

Paper Algorithm Dataset Accuracy/Precision

Dias et al. [38] multilevel CNN Private 99.4%
Bragança et al. [50] Ensemble CNN BrG 90.0%

Singh et al. [54] SVM, KNN e Naive Bayes STARE e
MESSIDOR

95.0%

Shiny et al. [55] SVM DRISHTI 95.3%
Shinde et al. [61] Le-Net e modelo U-Net CNN RIM-ONE, DRISHTI-GS,

DRIONS-DB, JSIEC e DRIVE
100%

Sreng et al. [62] VGG16-19,Xception ,
ResNet50 e InceptionV3

ACRIMA, DRISHTI GS1,
HRF, RIM-ONE,

96.5%

Santos et al. [63] DeepLabv3+ and MobileNet RIM-ONE, ORIGA,ACRIMA,
DRISHTI-GS1 and REFUGE

95.59

Zulfira et al. [65] SVM, KNN e Naive Bayes DRIONS-DB 98.6%
Yunitasari et al. [66] Dynamic Ensemble RIM-ONE 91.0%
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Table 2. Cont.

Paper Algorithm Dataset Accuracy/Precision

Wang et al. [67] SVM DRISHTI 95.0%
Gheisari et al. [68] VGG e AlexNet DRIONS-DB, HRF,

RIM-ONE e DRISHTI-GS1
94.3%

Li et al. [69] VGG, ResNet e RNN Private 95.0%
Liu et al. [70] ResNet Private 95.0%

Nawaz et al. [71] ResNet Private 96.2%
Kim et al. [72] EficienteNet-B0 ORIGA 97.2%

Hemelings et al. [73] VGG,Inception e ResNet Private 96.2%
Alghamdi et al. [74] ResNet Private 98.0%

Aamir et al. [75] VGG-16 RIM-ONE e RIGA 93.0%

The benefits sought for these possible applications are varied, from the potential
reduction in costs associated with the traditional diagnosis of glaucoma to assistance
in population screening applications aimed at early diagnosis and reducing the rate of
underdiagnosis of the disease.

5. Discussion and Conclusions

Significant progress has been made in the development of glaucoma classification
algorithms, which have shown remarkable success in differentiating between digital fundo-
scopic images of glaucoma and nonglaucoma. According to the work of Phene et al. [76] in
experiments using artificial intelligence in glaucoma classification, these algorithms have
even shown higher precision compared to classifications made by experienced ophthalmol-
ogists. However, despite the consensus among various studies that artificial intelligence
algorithms can be utilized as a supportive tool for the diagnosis of glaucoma, currently
there is no software available for real clinical applications. This suggests that further
theoretical and practical efforts are required to enhance the usability and effectiveness of
such algorithms.

The machine learning methodology to achieve more representative tests faces chal-
lenges due to the limited number of images in the databases. In addition, the labeling
process of these images can negatively affect the classification algorithms. In relation
to database labeling, the studies discussed in this review generally required assessors
(specifically ophthalmologists) to annotate labels by only examining retinal images to
determine the presence or absence of glaucoma. However, a study involving six glaucoma
specialists assigned to diagnose the disease solely on photographs of the ocular fundus
revealed that their agreement was only 49% [77]. This finding highlights the fact that
labeling the database solely based on fundus image observation can be detrimental to
the classifier’s final results, as it is highly prone to errors. Consequently, training algo-
rithms with inaccurately labeled data can compromise the overall quality of classifier
results. To minimize errors in database insertion through image labeling, it is important
to incorporate certain practices. One of such practice involves ensuring the presence of
experienced ophthalmologists and adhering to the standard for the diagnosis of glau-
coma, which entails a combination of functional and structural exams. Achieving this
level of quality is often considered challenging. Consequently, some authors, such as
Ting et al. [57] and Phene et al. [76] who work with large private datasets, have opted not
to label their databases against a diagnostic gold standard. Instead, they have relied on a la-
beling consensus evaluated by experienced ophthalmologists. However, it should be noted
that their databases were still labeled solely based on visual information obtained from
fundus images.

The availability of images labeled with glaucoma in publicly accessible databases is
limited in terms of quantity and diversity. These databases often consist of small sample
sizes that are racially or clinically homogeneous, which may not accurately represent the
entire population under study. Consequently, the applicability of algorithms to a broader
context may be hindered. To address this limitation, researchers have explored the use
of Generative Adversarial Networks (GANs) to generate synthetic images that resemble
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the original images. However, even if these networks produce satisfactory results, the
generated images may not effectively address the issue of data homogeneity with respect to
race or variations in the manifestation of glaucomatous damage. In light of these challenges,
many authors opt to combine or merge multiple databases to improve the classification
of glaucoma.

The exclusion of people with multiple eye injuries is an important consideration in the
development of databases and glaucoma classification studies. Many authors have reported
that they specifically removed individuals with ocular diseases other than glaucoma from
their training and testing datasets. They also excluded images that were compromised
by systemic diseases that could directly impact the optic nerve or visual field. However,
this type of exclusion can be seen as a negative aspect, as it may manipulate the real-
world scenario in favor of algorithmic precision. Furthermore, the racial homogeneity of
the datasets contrasts with the diverse population, making it challenging to generalize
the algorithms to populations beyond those observed in the dataset. However, when
considering the quality of the databases and their construction, several key characteristics
can be observed.

• The databases were obtained using high-resolution retinal cameras, except for the BrG
set, which was obtained using a smartphone connected to a portable ophthalmoscope.

• With the exception of the refuge and Rim-one-dl datasets, which were formed using
two digital fundus cameras, all other datasets were obtained using only one digital
retinal camera.

• Most databases were labeled based on ophthalmological opinions solely by examining
fundus images. Only a few databases were labeled with ophthalmic care and the gold
standard for diagnosing glaucoma.

• All publicly available databases are considered too small to train classification algo-
rithms from scratch, which means without using transfer learning.

• Publicly available databases generally have a homogeneous ethnic composition in the
collected population.

In addition to the limitations of the database, deep learning algorithms face challenges
in accurately classifying glaucoma due to the absence of consistent and objective diagnostic
criteria. Consequently, researchers exploring the application of artificial intelligence in
this field have had to establish their own definitions for categorizing instances as “yes” or
“no” for glaucoma. As a result, various approaches have been pursued, such as texture
analysis, analysis of the CDR ratio, ISNT rules, and others. This divergence in methods
is mainly attributed to the absence of specific and quantifiable biomarkers to define the
disease. Consequently, many researchers have attempted to predict similar diagnostic
results for glaucoma, but have employed different methodologies, making it challenging to
compare the performance of different studies. These biomarkers are essential not only to
provide a definitive diagnosis, but also to justify the reasoning behind the diagnosis.

In light of this medical necessity, numerous authors, such as Ting et al. [57], have
demonstrated the importance of identifying crucial image regions in order to validate the
results obtained by deep learning algorithms when used for the classification of glaucoma.
This approach serves as a justification for the results achieved by the methodology, at least
until the healthcare community fully accepts these algorithms.

In the given context, it is important to note that the main objective of the previous
studies was not to develop a market-ready algorithm, but rather to showcase the essential
components required to achieve satisfactory results in glaucoma classification using fundus
images. These findings may be valuable for potential future applications. As a result, for
further advancement of such research, it is recommended to label databases based on the
diagnostic gold standard in order to enhance the utilization of deep learning algorithms. In
addition, there should be a clear distinction between training and test sets, with a diverse
range of images captured by different devices, involving patients from various ethnic
backgrounds. Furthermore, the databases should include images captured under different
lighting conditions, contrast levels, noise levels, etc. [51,78].
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After analyzing the databases identified, it can be observed that they only partially
fulfill the requirements outlined in this study. However, they still play an important role
in the training of various algorithms and driving technological advancement. In terms of
the algorithms themselves, although some scientific research has demonstrated their high
accuracy in distinguishing between glaucomatous and nonglaucomatous images, further
clinical trials and in-depth studies are needed to identify and address potential factors that
may hinder the integration of such algorithms into practical clinical applications. With
continued efforts in this area, it is anticipated that future advances in artificial intelligence
will greatly contribute to the diagnosis of eye diseases, including glaucoma.
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Abstract: Lumbar disc bulging or herniation (LDBH) is one of the major causes of spinal stenosis
and related nerve compression, and its severity is the major determinant for spine surgery. MRI
of the spine is the most important diagnostic tool for evaluating the need for surgical intervention
in patients with LDBH. However, MRI utilization is limited by its low accessibility. Spinal X-rays
can rapidly provide information on the bony structure of the patient. Our study aimed to identify
the factors associated with LDBH, including disc height, and establish a clinical diagnostic tool to
support its diagnosis based on lumbar X-ray findings. In this study, a total of 458 patients were
used for analysis and 13 clinical and imaging variables were collected. Five machine-learning (ML)
methods, including LASSO regression, MARS, decision tree, random forest, and extreme gradient
boosting, were applied and integrated to identify important variables for predicting LDBH from
lumbar spine X-rays. The results showed L4-5 posterior disc height, age, and L1-2 anterior disc
height to be the top predictors, and a decision tree algorithm was constructed to support clinical
decision-making. Our study highlights the potential of ML-based decision tools for surgeons and
emphasizes the importance of L1-2 disc height in relation to LDBH. Future research will expand on
these findings to develop a more comprehensive decision-supporting model.

Keywords: lumbar disc bulging; herniated intervertebral disc; disc height; machine learning; decision
tree; plain radiography; magnetic resonance imaging

1. Introduction

Lumbar disc bulging or herniation (LDBH) is one of the most common degenerative
spinal disorders, leading to nerve compression and radiculopathy [1]. Approximately
10% of patients experiencing low-back pain are diagnosed with LDBH [2]. Large herni-
ated discs can result in severe compression of nerve roots and spinal stenosis, leading
to lower-extremity neuralgia, weakness, and numbness and potentially causing various
disabilities [3]. To prevent irreversible neurological complications, surgical intervention
is needed for patients with severe neurological symptoms [4–10]. Diagnostic imaging,
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including X-rays and magnetic resonance imaging (MRI), is often employed to assess the
degree of nerve root compression caused by disc herniation and to identify the level of
LDBH before surgical intervention [4]. Simple spinal X-rays can offer insights into the
parameters of the bony structure; nevertheless, for accurate confirmation of disc herniation
and the severity of nerve root compression, spinal MRI is typically necessary [8,11]. MRI
offers clear visualization of various spinal structures, including ligaments, facet joints,
and discs, making it especially effective for soft-tissue assessment. As a result, MRI is
commonly the preferred preoperative evaluation tool for surgeons [12]. However, MRI has
limitations, including time consumption, limited accessibility (due to insufficient facilities),
and high cost.

Plain radiography (X-ray) is the most commonly used and accessible imaging tech-
nique due to its cost-effectiveness and ease of use [13]. Spinal X-rays provide rapid vi-
sualization of conditions such as spine fractures, spondylolisthesis, spur formation, and
structural deformities. Some degree of soft-tissue degeneration can also be inferred from
changes in bony structure [14]. For example, a decreased intervertebral space may suggest
degenerative disc changes, and severe spondylolisthesis often coexists with spinal stenosis.
Despite advances in imaging technology, the accuracy of X-ray-based diagnostic imaging
for LDBH remains questionable [15]. Literature reviews have even noted discrepancies
between imaging findings and clinical parameters [16]. Additionally, there is a lack of
standardized methods for interpreting the lumbar X-ray images of patients with LDBH.
Therefore, the utilization of simple lumbar X-ray imaging to establish an effective method
to assist physicians in rapid interpretation is an important yet still poorly understood area.

The emergence of machine learning (ML) has introduced a new perspective for ad-
dressing healthcare challenges in medicine and surgical decision-making [17]. Current
medical practices incorporate ML methods, which play a crucial role by extracting valuable
insights from data without the need for predefined human rules [18–20]. ML also aids
healthcare professionals in enhancing the quality of care and making precise decisions based
on data analysis and interpretation [18]. ML is already extensively employed by physicians
and surgeons, encompassing applications in surgical decision support, computer-assisted
navigation, and robot-assisted procedures, which have become standard in surgical prac-
tice [21,22]. In the current medical landscape, ML algorithms are not only utilized for
constructing quantitative classification models but are also widely adopted for medical
image interpretation. Various neural network architectures, for instance, have been applied
to the interpretation of high-quality CT scans, contributing to image enhancement, restora-
tion, and the generation of 2D/3D medical imagery [23–26]. These advancements provide
healthcare professionals with diverse decision-making references.

Deep learning techniques have initially demonstrated success in the automatic detec-
tion and classification of spinal scoliosis. Transfer learning methods, for example, have been
proposed to automatically detect and classify spinal scoliosis from spinal X-rays, achieving
a level of high accuracy in practical applications [27]. Deep learning techniques have
also been applied to identify conditions such as osteopenia and osteoporosis from lumbar
X-rays [28]. Natural language processing (NLP) techniques have shown their potential
value in spine image analysis. Research has employed the noninvasive identification of
curve types in spinal scoliosis from a patient’s 3D back surface, exhibiting a level of high
accuracy when compared to expert evaluations from X-ray images [29]. Additionally, NLP
techniques have been utilized to identify lumbar spine imaging findings related to low
back pain, demonstrating performance comparisons with traditional statistical analysis
methods [30]. The diagnosis and treatment of osteoporosis have also benefited from ML
techniques. ML models have been employed to predict the T score and identify osteoporotic
vertebrae based solely on conventional CT Hounsfield unit (HU) measurements, aiding
spine surgeons in accurately assessing osteoporotic spines preoperatively [31]. Furthermore,
ML techniques have achieved high levels of accuracy in the classification of conditions
such as spondylolisthesis and lumbar lordosis [32].
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The use of ML techniques in spine image analysis has increased substantially, showing
their potential in enhancing diagnostic accuracy and predictive capabilities across various
studies [28,33–35]. However, to our knowledge, there is a dearth of research addressing the
interpretation or prediction of LDBH outcomes and the relationship between MRI and plain
lumbar X-ray. This prospective study aimed to achieve the following objectives: (1) utilize
ML techniques to establish the connection between lumbar disc-height measurements from
X-ray images and the presence of LDBH detected through MRI scans; and (2) based on this
connection, develop a decision-support system capable of predicting LDBH exclusively
using X-ray images and basic patient information, including age and sex. This system
was designed to develop a decision-support algorithm for clinical practitioners. It aims to
identify potential candidates for surgical intervention while minimizing subjective factors
and human interference. This process facilitates prompt MRI scheduling for individuals in
need of surgical treatment.

2. Materials and Methods

2.1. Participants and Study Design

A total of 662 patients who underwent lumbar spine MRI at Fu Jen Catholic University
Hospital, Taipei, Taiwan, between January 2020 and December 2020 were retrospectively
analyzed. Patients were included if they had undergone both lumbar spine MRI studies
and X-rays, with the time interval between the two not exceeding 3 months. Patients
were excluded if they lacked lumbar spine X-rays or had undergone previous lumbar
fixation or fusion surgery. Patients with pathological factors, including vertebral fracture
and spondylodiscitis, were also excluded from this study. All imaging was performed
using the same equipment and imaging site. A total of 662 patients who underwent both
lumbar spine MRI and X-ray were eventually included in this study. Sixty-eight patients
with incomplete studies, 37 with previous spine surgery, 21 with vertebral body fractures,
3 patients with extremely blurred X-ray, and 8 patients with spondylodiscitis or other
congenital spine diseases were all excluded. Moreover, X-rays from 67 patients were also
excluded due to potential interference, such as severe scoliosis, excessive obesity, and issues
with imaging quality. These interferences resulted in errors in the image segmentation
produced by the measurement software, leading to the exclusion of certain measurement
data that exceeded the upper limits of normal anatomical structures. The L1-2, L2-3, L3-4,
L4-5, and L5-S1 anterior and posterior disc heights of the included patients were measured
from the lateral view of their spinal X-rays, and the measurements were rechecked by
one experienced neurosurgeon and one neurologist. Finally, a total of 458 patients were
used for analysis (Figure 1). In total, 13 clinical and imaging variables were collected. The
protocol of this study was evaluated and deemed acceptable by the Research Ethics Review
Committee of the Fu Jen Catholic University Hospital (No. FJUH110121).

2.2. Definition of Disc Bulging, Protrusion, and Herniated Disc

Disc bulging and protrusion are defined as the presence of fibrous tissue on the dorsal
side of the disc annulus that extends beyond the posterior edge of the vertebral endplates,
leading to a reduction in the volume of the spinal canal or the occupation of the foramen
space. In addition, the migration of disc material, including the nucleus pulposus, endplate
cartilage, and annulus fibrosus, can also cause a reduction in the neural canal space. In
clinical practice, we commonly use MRI to diagnose intervertebral disc protrusion and to
assess whether there is any compression of the nerves. When a patient’s lumbar spine MRI
showed disc protrusion and compression on the spinal canal in any segment from L1-S1,
the patient was classified into the LDBH group.

2.3. Definition and Measurement of Disc Height

In this study, disc height was defined as the distance between the corner point of the
vertebral body and the point of its orthogonal projection on the endplate of the adjacent
vertebral body (Figure 2). For example, in the figure, the distance between corner point
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C and its orthogonal projection point E is defined as the anterior disc height. In the same
way, the length from corner point B to its projection point F is defined as the posterior disc
height. The anterior height and posterior height were measured separately at the L1-2, L2-3,
L3-4, L4-5, and L5-S1 levels. Consequently, 10 measurement data points were collected
from every included patient. In most studies, disc height is preferentially measured as the
length between adjacent corner points (bd or ac), but in severe spondylolisthesis patients,
the length may be overestimated [36–41].

Figure 1. Algorithm of case identification.

Measurement of Disc Height with BiLuNet

BiLuNet is a novel multipath convolutional neural network designed for semantic
segmentation in X-ray images, and it has been employed in medical applications such as
lumbar vertebrae, sacrum, and femoral head segmentation. One of the significant benefits
of BiLuNet is its capability to produce a high level of accuracy in segmenting and shape
fitting lumbar vertebrae, sacrum, and femoral heads on X-ray images [42]. This study
employs BiLuNet for the localization of intervertebral discs in X-ray images and measures
their heights. The measured values are then applied in the subsequent machine learning
workflow (Figure 3).
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Figure 2. (a–d) are the corner points of the adjacent vertebral body. (e) is the orthogonal projection
point on the endplate (a and b) of (c), and (f) is the orthogonal projection point of (b). The disc
height is defined as the distance between the corner point of the vertebral body and the point of its
orthogonal projection on the endplate of the adjacent vertebral body. For example, the anterior disc
height is the length from (e) to (c), and the posterior disc height is the length from (b) to (f).

 

Figure 3. Machine learning (ML) analytical workflow in our study.

2.4. Statistical Analysis

This study used five ML algorithms, namely, least absolute shrinkage and selection
operator (LASSO), multivariate adaptive regression splines (MARS), decision tree, ran-
dom forest, and extreme gradient boosting (XGBoost), to construct predictive models for
classifying LDBH patients and to evaluate the importance of different measurements of
disc height.

2.4.1. LASSO

LASSO is one of the best regression methods for both variable selection and regulariza-
tion for addressing the overfitting problem and obtaining accurate results. It uses a penalty
parameter to shrink small coefficients toward zero during model estimation [43,44].
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2.4.2. MARS

The MARS technique, standing for multivariate adaptive regression splines, represents
a sophisticated and nonlinear approach to spline regression, a variant of regression analysis.
This method distinctively employs a multitude of piecewise linear segments, commonly
known as splines, each characterized by varying slopes or gradients. In its operation,
MARS treats every data sample as a ‘knot’, segmenting the dataset into multiple parts.
This partitioning facilitates the execution of linear regression analysis in a stepwise manner,
focusing on each divided section individually. The process of knot determination in
MARS is twofold: initially, a forward selection procedure is employed. This step involves
the comprehensive screening of all potential basic functions along with their respective
knots. Following this, a backward elimination strategy is implemented, where these basic
functions are systematically removed. The aim of this backward phase is to refine and
optimize the combinations of the remaining knots, ensuring that the most effective and
representative model is achieved [45].

2.4.3. Decision Tree

A decision tree is a supervised learning method in which a tree-like structure is
used to draw conclusions about some observations. Numerous different trees can be
developed: regressive binary partition trees use an algorithm that can perform classification
for regression problems; models where the target variables are continuous data are called
regression trees; and models where the target variables are discrete data are known as
classification trees [46]. The latter form was used in this study.

2.4.4. Random Forest

Random forest is an ML model in which the integration of multiple decision trees
can improve the high variability in the original decision tree model. A random forest is
constructed by first generating multiple decision trees [47]. Then, the final prediction is
obtained by voting for the result of the resulting decision tree.

2.4.5. Extreme Gradient Boosting

XGBoost is a popular algorithm for both regression and classification tasks. It improves
the integration of the gradient boosting algorithm to obtain better performance in ML
tasks. The XGBoost algorithm uses parallel, distributed learning via fast, well-optimized,
and scalable algorithms [48]. Ensemble algorithms can enhance the model’s performance
through the addition of new models until the performance of the model no longer advances.

2.4.6. ML Workflow and Implementation Details

In this study, all methods were conducted in R software version 4.0.3 and RStudio
version 1.4.1103. The algorithms for the methods are based on the relevant R packages.
LASSO was implemented using the “glmnet” package, version 4.1-1. MARS was imple-
mented using the “earth” package, version 5.3.2. The decision tree was implemented using
the “rpart” package, version 4.1-15. Random forest was implemented with the “random-
Forest” package, version 4.6-14. XGBoost was implemented with the “XGBoost” package,
version 1.5.0.1. The “caret” package, version 6.0-90, was used to evaluate the importance of
different factors in each method.

This research introduced a structured machine learning workflow (Figure 3), primarily
aimed at evaluating and ranking the importance of features. Initially, the raw data under-
went preprocessing to ensure its quality and integrity. After this preprocessing phase, the
dataset was partitioned into training and testing sets, with the training set accounting for
80% of the total data and the testing set accounting for the remaining 20%. Subsequently,
several classification models were employed, and each model was subjected to 10-fold cross-
validation to assess its performance. The 10-fold cross-validation method was adopted to
determine the optimal hyperparameters for each model, as this approach provides a more
consistent evaluation of various methods. This study assessed the performance of these
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machine learning algorithms using metrics such as accuracy, recall, specificity, precision,
and F1 score.

To estimate the best parameter set for the development of the five models, the “caret”
package in R was utilized to tune the relevant hyperparameters. The initial models were
constructed using default settings. Afterward, feature importance was extracted indepen-
dently from each model. An average ranking method was then applied, considering the
outputs from all models, to offer a comprehensive and objective assessment of feature
significance. This study employed the “varImp” function from the caret package to as-
certain the relative significance of predictors in each model. Through this function, we
sorted the predictors based on their relative contribution to the importance of variables for
every model.

3. Results

The 12 variables considered as impact factors for LDBH (Y) in patients are shown in
Table 1. The average age of patients who had LDBH was 60.00 ± 14.00 years, while the
average age of the non-LDBH patients was 58.98 ± 14.14 years. In the LDBH group, there
were 133 males (51.4%) and 126 females (48.6%). In the non-LDBH group, 100 patients
(50.3%) were male, and 99 patients (49.7%) were female. The anterior and posterior mean
disc heights from L1/2 to L5/S1 were measured and are listed in Table 1.

Table 1. Subject demographics and clinical characteristics.

LDBH
n = 259

Non-LDBH
n = 199

Age (mean ± SD) 60.00 ± 14.00 58.98 ± 14.14
Sex = Male (%) 133 (51.4) 100 (50.3)

BMI (mean ± SD) 25.76 ± 4.09 26.33 ± 4.21

Disc height measurement (mean ± SD) (mm)

Disc height L1-2 anterior 9.69 ± 2.12 9.36 ± 2.19

Disc height L1-2 posterior 7.46 ± 1.60 7.33 ± 1.50

Disc height L2-3 anterior 10.74 ± 2.40 10.26 ± 2.16

Disc height L2-3 posterior 8.04 ± 2.04 7.68 ± 1.79

Disc height L3-4 anterior 11.83 ± 2.68 11.44 ± 2.78

Disc height L3-4 posterior 8.96 ± 2.74 8.28 ± 2.12

Disc height L4-5 anterior 12.88 ± 8.90 11.47 ± 3.76

Disc height L4-5 posterior 10.99 ± 9.53 9.68 ± 5.99

Disc height L5-S1 anterior 15.10 ± 7.27 14.57 ± 7.92

Disc height L5-S1 posterior 9.59 ± 9.31 8.51 ± 5.28

Abbreviations: LDBH: lumbar disc bulging or herniation.

This study used LASSO, MARS, decision tree, random forest, and XGBoost to con-
struct predictive models to evaluate the measured parameters. Table 2 shows the model
performance of the five methods with the validation dataset and testing dataset. The
average F1 score values of the LASSO, MARS, decision tree, random forest, and XGBoost
models were 0.706, 0.778, 0.569, 0.729, and 0.706 with the testing dataset, respectively. The
MARS model provided the highest average F1 score value, followed by the random forest,
LASSO, XGBoost, and decision tree models.

The importance ranking of each variable generated by the LASSO, MARS, decision
tree, random forest, and XGBoost methods is shown in Figure 4. In this figure, it can be
seen that each model provides a different sequence for the relative importance ranking of
each variable. For example, the posterior L3-4 disc height is the most important variable in
the model constructed with LASSO regression, and the second most important variable is
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anterior L4-5 disc height. Computing the average rank to explore the importance of the
variables shows that the three most relatively important variables are the anterior L4-5 disc
height, anterior L1-2 disc height, and posterior L1-2 disc height, which can provide certain
insights into their role in LDBH.

Table 2. Performance of the LASSO, MARS, decision tree, random forest, and XGBoost methods.

Method Avg_Accuracy Avg_Recall Avg_Precision Avg_Specificity Avg_F1

Testing Dataset

LASSO Regression 0.615 0.857 0.600 0.333 0.706
MARS 0.689 0.924 0.676 0.357 0.778

Decision Tree 0.516 0.592 0.547 0.429 0.569
Random Forest 0.655 0.794 0.675 0.458 0.729

XGBoost 0.615 0.857 0.600 0.333 0.706

Abbreviations: avg: average.

Figure 4. The importance rankings of each variable using the LASSO, ridge, decision tree, random
forest, XGBoost, and MARS methods. This figure reveals that the anterior L4-5 and the anterior and
posterior L1-2 disc heights are the three most important variables in terms of average ranking. * The
top three most important variables.

4. Discussion

To our knowledge, few studies have attempted to use ML methods to predict lumbar
disc diseases from spinal X-rays. This study revealed that the L4-5 anterior disc height and
L1-2 anterior and posterior disc heights were the top three parameters that helped us to
best predict LDBH using plain lumbar X-ray imaging. The classification and regression tree
(CART) method generated the best and most promising classification results and provided
an output of six clinical features that were critical for the prediction of LDBH. Decision rules
for the prediction of LDBH according to the plain X-ray findings were also constructed, as
shown in Figure 5.
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Figure 5. A decision tree can be built in RStudio according to the importance of the input parameters.
For example, according to this decision tree, a patient has a 46% risk of LDBH if his posterior L4-5
disc height is less than 11 mm and his L1-2 posterior disc height is less than 7.4 mm. This decision
tree helps identify the risk of lumbar disc bulging, or herniation simply from information derived
from lumbar spine X-ray. Abbreviations: LDBH: Lumbar disc bulging or herniation.

Disc bulging, protrusion, and even herniated intervertebral discs (HIVDs) are the
most common spinal degenerative diseases and can only be confirmed by spinal MRI.
Disc degeneration is the beginning stage of LDBH and is strongly associated with facet
degeneration, foramen, and lateral recess narrowing, spondylolisthesis, and spinal stenosis.
As the degeneration worsens, the symptoms can change from low-back pain to severe
neuralgia, claudication, and even cauda equina syndrome. Access to facilities and the costs
of MRI limit early detection. This delay may result in irreversible neurological deficits.
Decreased disc height, spur formation, spondylolisthesis, and an abnormal range of motion
between adjacent vertebral bodies are features of disc degeneration on spinal X-ray, but it
is difficult to diagnose LDBH and its related neural structure compression. In this situation,
ML can help clinicians construct a decision tree model to predict LDBH simply with plain
lumbar X-ray findings and gain new insights for future studies. In areas without access
to MRI, such as remote or primary care clinics, this decision-support system may assist
high-risk patients in receiving timely examination and treatment.

The strength of artificial intelligence (AI) has grown in the field of neurosurgery.
ML can help clinicians via automated computer systems that predict outputs through
mathematics [49]. Currently, ML applications in spinal surgery include image classification
(e.g., the detection of compression fractures on CT or MRI [50–52], the construction of risk
models, and decision support tools) and diagnostic assistance [53–57]. Trinh et al. [58]
reported that several deep learning methods can be used to develop a diagnostic algorithm
for automatically recognizing spondylolisthesis based on lumbar X-ray images. In one
retrospective cohort study, a deep learning method was applied to predict adolescent
idiopathic scoliosis (AIS) with standing posteroanterior X-rays [59].

However, few studies have focused on using plain X-ray findings to identify potential
patients who need further MRI studies or surgical intervention due to LDBH. The rela-
tionship between disc degenerative diseases and disc height remains controversial. One
in vitro study with partial discectomy of 15 human lumbar discs demonstrated that the
change in disc height was associated with the mass of central disc tissue, and disc height
decreases were also related to radial disc bulge. Another study showed that the influences
of disc level and degree of degeneration on mechanical behavior are not significant [60,61].
However, in another retrospective study, researchers investigated the relationship between
disc morphology and bulging by using MRI scans. They revealed that disc height/depth
was significantly associated with the outcome of disc herniation, especially at the L3-4
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and L4-5 levels [37]. Our study, which differed from previous methods, attempted to
identify possible significant measurements of different disc heights on spine X-rays using
ML methods. The age, sex, BMI, and anterior and posterior disc heights at L1-2, L2-3, L3-4,
L4-5, and L5-S1 were measured and analyzed using ML methods. The performance of
the ML methods, listed in Table 2, demonstrates that these methods are not inferior to
traditional LASSO regression.

The importance of the anterior and posterior disc height at different levels was ranked
by the five ML methods and is listed in Figure 4. The parameter with the highest average
rank was the anterior disc height of L4-5. This finding is compatible with previous studies
and clinical MRI results [61]. Disc degeneration can occur at any lumbar spine level but is
more commonly found at L4-5 [61]. In the context of this study, age, gender, and BMI are
relatively ranked in the middle to lower range in terms of average importance for predicting
overall LDBH risks. This suggests that the predictive significance of age, sex, and BMI
for LDBH may not be as substantial as is commonly perceived. When only considering
patient X-ray information, the measurement of disc height for each segment appears to
hold more reference value in predicting LDBH compared to the actual measurements of
age, sex, and BMI.

Disc degeneration mainly occurs at L3-4, 4-5, and L5-S1 and frequently results in
LDBH. Clinical physicians can easily and directly diagnose disc degeneration through
degenerative findings at these three levels on spinal X-rays. However, the average ranking
from the ML methods revealed that the height at L1-2 was a potentially more predictive
factor than the heights at L3-4 and L5-S1. ML methods may uncover the importance of disc
height at L1-2 to predict overall LDBH risks. ML methods may uncover the importance of
disc height at L1-2 to predict overall LDBH risks. This unconventional finding seems to
have clinical relevance as well. Decreased disc height is always present from the beginning
of disc degeneration, and the L1-2 disc degeneration rate is the lowest among all levels in
the lumbar discs. More severe degeneration in L1-2 hints at a higher risk of other levels of
disc bulging or herniation. The thoracolumbar junction, particularly the segment from T12
to L2, is considered a transition zone between the relatively less mobile thoracic vertebrae
and the more mobile lumbar vertebrae. Segments within this region bear significant stress,
contributing to over 60% of compressive fractures occurring in the vertebral bodies of T12-
L2 [62]. The reduced disc height at L1-2 may also suggest that patients’ spines experience
greater stress, leading to an accelerated rate of degeneration in the lumbar region compared
to normal individuals. This could explain the close relationship between L1-2 disc height
and the overall lumbar disc body height.

In the past, plain X-ray could only be used to identify simple bone structure problems,
such as spondylosis, spondylolisthesis or compression fractures. The advantages of X-ray
over other imaging modalities are that it is less expensive, and its images can be assessed
and judged more easily and faster. Our study results, although preliminary, show the
development of a novel decision-support system that enables clinical physicians in remote
or primary care clinics lacking access to MRI to use simple and fast spinal X-ray screening
to identify high-risk patients and promptly refer them to hospitals with MRI capabilities.
The purpose and results of this study do not replace the critical role of MRI in diagnosing
lumbar degenerative diseases. However, from the perspective of diagnostic assistance and
decision support, it can be seen as a valuable contribution.

4.1. Clinical Implications

This pilot study has some clinical implications. First, our study aimed to provide a tool
for identifying potential parameters to rapidly identify the possible risk of LDBH based on
X-ray findings. By analyzing the results, we provided a potential method for physicians
to quickly refer patients in a timely manner. Although previous studies have provided
controversial conclusions about the correlation between the parameters found in spinal
X-rays and the definite diagnosis found in MRI, this study still used multiple analysis
methods, including ML methods, to clarify the relationship between X-ray findings and
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MRI diagnosis. If a reliable decision tree can be made in the future, X-rays can identify high-
risk patients in rural areas and shorten the MRI waiting list in medical centers. Although the
patient number is limited, the result is positive and hints that X-rays can potentially provide
more information. Second, this study used ML methods to assess LDBH and revealed a new
perspective. Using this method could improve the diagnosis of LDBH and allow hospitals
with insufficient equipment or long MRI schedules to select potential high-risk patients.
In future works, the model can be combined with other clinical parameters, including
occupation, and any other information from plain X-rays. This pilot study recommends
the model as a potential primary benchmarking tool for use in the screening of LDBH in
outpatient clinics.

4.2. Limitations and Work in Progress

This study presents several limitations. Primarily, the sample size we utilized is not
very large and is sourced exclusively from a single institution. In addition to the data
processing discussed, our research employed a range of statistical techniques pertinent
to ML. As outlined in Section 2.4, our approach integrated methods such as LASSO,
ridge regression, decision trees, random forests, and XGBoost. We further incorporated a
10-fold cross-validation approach to ensure a more stable evaluation of our models. The
amalgamation of these methodologies reinforces the robustness and credibility of our
findings. Second, our analysis focused exclusively on disc height, sex, BMI, and age. To
broaden the scope of future investigations, it is imperative to explore a more extensive
array of parameters that can be derived from X-rays. Consequently, the generalizability
of our findings should be interpreted with caution, and further studies are warranted.
In recognition of these constraints, we are actively pursuing several enhancements to
address these limitations. These include the following: (1) Expanding the sample size to
bolster the reliability and comprehensiveness of our results. (2) Collaborating with multiple
institutions to access a more diverse and representative dataset. (3) Integrating additional
parameters for a more in-depth analysis, including the clinical sign and symptoms of each
induvial to enhance the accuracy of predicting MRI outcomes. Our ongoing efforts are
dedicated to fortifying the robustness and applicability of our study in the pursuit of more
extensive and generalizable insights.

5. Conclusions

Our study utilized ML-based methods to correlate lumbar disc height on X-rays with
LDBH and attempted to construct a potential clinical decision-making tool to support
the diagnosis of LDBH based on X-ray imaging parameters. The results revealed that
the anterior L4-5 and anterior L1-2 disc heights, as well as posterior L1-2 disc heights,
were the three most important variables in diagnosing potential LDBH. The importance
of the L1-2 disc height was also revealed for the first time in this study. While still only
preliminary, the current study attempts to correlate lumbar disc height on X-rays with
LDBH and construct a potential algorithm for screening high-risk LDBH patients. Our
results represent an exploratory study of LDBH risk using MRI as the gold standard, and
further studies will include more patients and analyze more parameters to construct a more
reliable decision-supporting model.
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Abstract: Liver tumor semantic segmentation is a crucial task in medical image analysis that requires
multiple MRI modalities. This paper proposes a novel coarse-to-fine fusion segmentation approach
to detect and segment small liver tumors of various sizes. To enhance the segmentation accuracy of
small liver tumors, the method incorporates a detection module and a CSR (convolution-SE-residual)
module, which includes a convolution block, an SE (squeeze and excitation) module, and a residual
module for fine segmentation. The proposed method demonstrates superior performance compared
to conventional single-stage end-to-end networks. A private liver MRI dataset comprising 218 patients
with a total of 3605 tumors, including 3273 tumors smaller than 3.0 cm, were collected for the proposed
method. There are five types of liver tumors identified in this dataset: hepatocellular carcinoma
(HCC); metastases of the liver; cholangiocarcinoma (ICC); hepatic cyst; and liver hemangioma.
The results indicate that the proposed method outperforms the single segmentation networks 3D
UNet and nnU-Net as well as the fusion networks of 3D UNet and nnU-Net with nnDetection. The
proposed architecture was evaluated on a test set of 44 images, with an average Dice similarity
coefficient (DSC) and recall of 86.9% and 86.7%, respectively, which is a 1% improvement compared
to the comparison method. More importantly, compared to existing methods, our proposed approach
demonstrates state-of-the-art performance in segmenting small objects with sizes smaller than 10 mm,
achieving a Dice score of 85.3% and a malignancy detection rate of 87.5%.

Keywords: dynamic contrast-enhanced imaging; segmentation; lesion detection; small liver tumor;
convolutional neural network; deep learning

1. Introduction

According to the World Health Organization (WHO), liver cancer ranks as one of
the most prevalent forms of cancer globally, resulting in a significant number of fatalities
annually [1]. Hepatocellular carcinoma (HCC), the most common primary liver cancer
type, stands as the fifth most widespread malignancy and the third leading cause of cancer-
related death worldwide. In general, accurate segmentation of the liver and liver tumor is
an important prerequisite before surgery to help physicians make accurate assessments and
treatment plans. Traditionally, liver and liver-tumor segmentation rely on manual annota-
tion by radiologists [2], which is time-consuming and susceptible to personal subjective
experience. Therefore, there is an urgent need for automated liver and tumor segmen-
tation methods for healthcare professionals in clinical practice. Recently, deep learning
has achieved remarkable results in liver tumor segmentation, and most of the top-ranked
methods in the 2017 Liver Tumor Segmentation (LiTS) Challenge were based on deep
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learning [3]; however, the accurate automatic segmentation of small liver tumors is still
very challenging.

In complex and diverse real-world scenarios, detection and segmentation of large
targets often work well but are not satisfactory for small targets such as early tumors and
vascular plaque [4]. The main difficulties for the accurate detection and segmentation of
small objects in medical images are as follows: small object region to be detected; few
extractable features for small objects; and susceptibility to noise interference [5]. At present,
there is still relatively little research dedicated to these problems, so it is an important
research direction to explore how to improve the mainstream detection and segmentation
algorithms to make them effective for small object detection and the segmentation of
medical images [6]. Research on small object detection will help promote the development
of the target detection field, broaden the application scenarios of target detection in the real
world, improve the level of scientific and technological innovation, and accelerate the pace
of the world’s overall step into an era of intelligence [7]. Though further fine segmentation
may bring more value, and quantifying small objects may once again promote the progress
of AI in medicine [8], little research has combined small object detection and segmentation
for medical images, and most of the research almost only does detection, for example,
lung-nodule detection in medicine [9].

In this paper, we propose a multi-network fusion segmentation framework to com-
prehensively detect and segment benign and malignant liver tumors and, in particular,
to improve the performance of the model on small tumor segmentation. The end-to-end
network is more difficult to detect and segment tumors comprehensively as liver tumors
vary in size and types of features. Whereas multi-network fusion and coarse-to-fine seg-
mentation can compensate for the shortcomings of end-to-end networks in this regard, the
proposed method can learn features and fuse tumors in high and low dimensions of the
image; moreover, the fusion network combines detection and segmentation to complement
each other to improve the detection rate and segmentation performance simultaneously.
The proposed model was evaluated on an MRI liver tumor dataset containing different
sizes and different types of liver tumors, and we innovatively provided evaluation methods
for this fusion method in terms of detection and segmentation metrics. Our proposed
multi-stage coarse-to-fine fusion segmentation method refines the coarse segmentation
results at different stages of the network architecture and innovatively includes a detection
module as well as a CSR module—consisting of a convolutional block, SE module, and
residual module—at the tumor fine segmentation stage. For specific information on the
CSR module and SE module, see the CSR-UNet paragraph. The proposed method shows
superior performance compared to the segmentation capability of single-stage end-to-end
network architecture.

Related Work

To improve the tumor segmentation efficacy on MRI, much of the related research is di-
rected at the improvement of neural network structures or related parameters. Jin et al. [10]
proposed a 3D hybrid residual attention-aware segmentation method, i.e., RA-UNet, to
precisely extract the liver region and segment tumors from the liver. Two-dimensional
convolutions cannot fully leverage the spatial information along the third dimension, while
3D convolutions suffer from high computational costs and high GPU memory consump-
tion. Although deep convolutional neural networks (DCNNs) have contributed to many
breakthroughs in image segmentation, the task still remains challenging since 2D DCNNs
are incapable of exploring the inter-slice information and 3D DCNNs are too complex to be
trained with the available small dataset. Tang et al. [11] proposed a two-stage framework
for 2D liver and tumor segmentation. Umer et al. [12] applied a simpler and faster one-
stage detector RetinaNet for the localization of liver tumors on LiTS17, and the proposed
method precisely detects one or more tumors. Ayalew et al. [13] propose a liver and tumor
segmentation method using a UNet architecture as a baseline. Due to the heterogeneity and
low contrast of biomedical images, current state-of-the-art tumor-segmentation approaches
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are facing the challenge of the insensitive detection of small tumor regions. To tackle this
problem, Wong et al. [14] proposed a network architecture and the corresponding loss
function, which improved the segmentation of very small structures. Kofler et al. [15] pro-
posed a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing
instance-level detection metrics, such as F1 score and sensitivity. Isensee et al. proposed
the nnU-Net [16], which as a benchmark medical image segmentation method provides 2D
and 3D models based on U-Net, and also provides a variety of image preprocessing and
enhancement methods.

In addition, some multi-stage deep network models have been proposed and proven
to be effective. Li et al. [17] proposed a new three-stage curriculum learning approach for
training deep networks to tackle this small object segmentation problem. It is a challenging
task since the tumors are small against the background. The experimental results show
that compared with the traditional U-Net, the Dice index of liver and tumor segmentations
with the improved model increased by 5.14% and 2.63%, respectively, and the recall rate
increased by 1.8% and 9.05% [18]. Luan et al. [19] proposed a neural network (S-Net)
that can incorporate attention mechanisms for end-to-end segmentation of liver tumors
from CT images. Li et al. [20] proposed a Liver and Tumor Segmentation Network (LiTS-
Net) framework. Yang et al. [21] aimed to improve liver tumor detection performance by
proposing a dual-path feature-extracting strategy and employing Swin Transformer. Fan
et al. [22] provided a multiscale nested U-net (MSN-UNet) for liver segmentation. The MSN-
Unet contains multiscale context fusion (MSCF) blocks that acquire multiscale semantic data
and obtain multilevel feature maps, and the Res block exploits residual connectivity. Tang
et al. [23] proposed an enhanced region CNN (R-CNN) and DeepLab for liver segmentation.
The deep learning method was applied to the detection and segmentation steps of the liver
to reduce the influence of human factors on the segmentation. The principle of residual
learning is also utilized to fuse and extract multi-level information from the network using
a jump structure.

2. Materials and Methods

2.1. Data
2.1.1. Patient Inclusion

We developed and evaluated our model based on a private dataset from Shanghai
Public Health Clinical Center (Affiliated with Fudan University) and Shanghai ZhiYu
Software Technology Co., Ltd., Shanghai, China. This dataset has a total of 218 abdominal
MRI scans of liver cancer patients, and we used the sequence of DCE imaging delayed
phase. This data set included 100 women and 118 men with an average age of 45 years.
The liver tumor categories were Hepatocellular carcinoma (HCC), metastases of liver,
Cholangiocarcinoma (ICC), hepatic cyst, and liver hemangioma.

2.1.2. Dataset

MRI was performed on a 3.0 T clinical scanner (Ingenia, Philips Medical System).
Gadopentetate dimeglumine (Magnevist; Bayer Healthcare, Leverkusen, Germany,
0.1 mmol kg−1) was injected at a rate of 2 mL s−1 followed by a saline flush with a
maximum volume of 20 mL. The images of hepatic arterial, portal, and delay phases were
obtained at 25–30 s, 60–90 s, and 180 s after contrast medium injection, respectively.

The recorded pixel sizes of our datasets were 640 × 640 × 60 corresponding to a spatial
resolution of 0.5938 × 0.5938 × 5.0 mm3. The main target of our study was detection and
segmentation of small liver tumors, and the main object of this study was the differentiation
of space-occupying tumors with long diameters from 5 mm to 30 mm and tumor category
from benign to malignant.

The dataset was labeled by Shanghai ZhiYu Software Technology Co., Ltd., according
to the category of the tumor, and the distribution of liver tumors in terms of size and type
as shown in Figure 1. Specifically, a total of 3605 liver tumors were counted, of which the
type occupying the major proportion was hepatocellular carcinoma. The benign types were
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hepatic cysts and liver hemangioma, and the malignant types were HCC, metastases of
liver, and ICC, with more than half of the malignant types. For tumor size, more than 50%
of the tumors were between 10 and 30 mm, while a slightly lower percentage were between
5 and 10 mm. Since the slice thickness of MRI was more than 5 mm, it was not possible
to quantify the occupancies smaller than 5 mm, so they were classified as 5–10 mm in this
paper. Our main subject, small liver tumors smaller than 30 mm, occupied the majority of
this dataset with 90.7%. Some delay phases with their ground truth are shown in Figure 2.

 

Figure 1. Class and size distribution of different tumors in the dataset.

Figure 2. The five types of liver tumors with the ground truth: (a) HCC (red); (b) metastases of liver
(green) and hepatic cyst (yellow); (c) ICC (dark blue); (d) liver hemangioma (light blue).
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2.2. Methods
2.2.1. Architecture

The model architecture mainly includes three steps: preprocessing and liver seg-
mentation; tumor detection by nnDetection model; coarse-to-fine segmentation through
CSR-UNet and merging, shown in Figure 3.

 

Figure 3. The architecture of the proposed coarse-to-fine fusion network. This present study utilized
the raw MR images to extract the liver region via the implementation of a 3D CSR-UNet liver
segmentation module. Following this, the region of interest (ROI) was subjected to two subsequent
processes: Tumor coarse segmentation and tumor detection. The former was achieved through
the use of a 3D CSR-UNet coarse segmentation module, whereas the latter was accomplished via
training and inference with the Retina U-Net model utilizing the nnDetection detection module. The
detected tumors were fine-segmented via the application of a 2.5D CSR tumor fine segmentation
module and subsequently integrated with the coarse segmentation output, leading to the final
segmentation results.

Firstly, in the preprocessing process, each slice of 3D MRI data was resampled into
a size of 512 × 512 [24]. Specifically, bilinear interpolation was used for original images,
and the nearest neighbor interpolation method was used for liver and tumor labels. Every
five slices were saved into a 3D patch and values from 0.5 to 99.5% were retained to obtain
better contrast within the liver. and then normalized from 0 to 1. Various online data
augmentation methods such as flip, rotate, and crop were performed during training [25].
Liver segmentation was performed using CSR-UNet to obtain the liver region; the main
purpose of this step was to remove extra-hepatic interference information. The predicted
liver region was regarded as the initial ROI for tumor coarse segmentation by 3D CSR-UNet
model. Specifically, the segmented liver data were partitioned into multiple patches of
size 192 × 192 × 80 and normalized before training [26]. Tumor coarse segmentation
was trained using adaptive approach, and the prediction was performed by means of a
sliding window with the patch overlapping mechanism. The results of multiple patches
were assembled into an overall coarse segmentation result. Through this tumor coarse-
segmentation module, most of the tumors larger than 30 mm could be segmented.
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In order to improve the segmentation accuracy of small objects, detection module and
CSR-UNet are added to the architecture to refine small tumor segmentation. The detection
module based on nnDetection model [27] is used to detect only the space-occupying tumors
smaller than 30 mm. nnDetection is a novel detection approach that employs Retina U-Net
network [28], exhibiting exceptional segmentation performance in complex image scenes,
with high precision and accuracy. In this step, tumors smaller than 30 mm were chosen for
model training and validation. The detected tumors were cropped into a uniform size of
64 × 64 × 5 before inputting into the CSR-UNet network for tumor fine segmentation.

The final tumor segmentation result is a combination of the coarse-to-fine segmentation
results. In specific, large tumor segmentation is achieved by coarse segmentation, while
for small tumors, the initial ROI is further reduced with the help of a detection module,
and fine segmentation is achieved. By fusing the results of coarse segmentation and fine
segmentation, the final segmentation results of liver tumors can be obtained.

2.2.2. CSR-UNet

Figure 4 shows the network architecture of CSR-UNet. CSR-UNet incorporates CSR
module into the commonly used UNet framework. The difference between 3D and 2.5D
CSR-UNet networks is whether the input is a 3D or a 5-layer 2D matrix, and the former uses
3D convolution while the latter is 2D convolution. The CSR module comprises dual 3 × 3
convolutional block with batch normalization, combined with an SE module and a residual
module [29], as shown in Figure 3 on the left top. Batch normalization is the regularization
during training to reduce generalization errors and overfitting. The main function of the
SE module is to increase the attention perception of important regions, while the residual
module reduces the difficulty of deep network training and improves the segmentation
accuracy.

Figure 4. Overview of CSR-UNet in the coarse-to-fine fusion network.

2.2.3. Preprocessing and Adaptive Network Parameters

In order to obtain better network performance, a sliding augmentation module, ran-
dom online augmentation module, and adaptive network parameters module are added
to the CSR-UNet framework. These three modules are used to preprocess the data and
generate the hyperparameters of the network before inputting them into the network. In
the sliding augmentation module, we performed a sliding window crop for each input
data matrix in each dimension [29]. The weights of the cropped input images are also
different, giving higher weights to the positions corresponding to the images and labels
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that the network needs to focus on. The random online augmentation module is image
augmentation of the input data, and different image augmentation methods are randomly
occurring. These image augmentation methods include image rotation, image flipping, and
image scaling. The adaptive network parameters module can consider the performance
of the whole network, including the configuration of different patch sizes, learning rates,
batch-size settings, etc. Through the complementary roles of these three modules, the data
is then fed into the configured network for training iterations.

2.2.4. Loss Function

Focal Tversky Loss is used in our network. Tversky coefficient is a generalization of
Dice and Jaccard coefficients [30]. Similar to Focal loss, which focuses on difficult examples
by reducing the weight of easy-to-use or common losses, Focal Tversky Loss also tries to
learn difficult examples such as in the case of small ROIs (regions of interest) with the help
of parameter coefficients [31].

Focal Tversky Loss is an improved version of the Tversky loss function, which is
designed to address the issue of class imbalance in medical image analysis. In many
medical imaging tasks, such as liver cancer detection, the number of abnormal pixels
may be much smaller than the number of normal pixels, making it challenging to train
deep neural networks to accurately recognize these abnormalities. Focal Tversky Loss
introduces a focus parameter that allows the network to concentrate on difficult samples
during training, thereby improving its ability to recognize abnormal pixels in small liver
cancers; moreover, the loss function can be adjusted to balance the impact of classification
errors on the overall loss, which further enhances the model’s performance in liver cancer
recognition. Overall, Focal Tversky Loss is suitable for addressing small liver cancer
recognition problems, as it helps the network learn relevant features and improve accuracy
and robustness.

2.2.5. Implementation Details

Both CSR-UNet and nnDetection are with optimal hyperparameters computed by
an adaptive framework. CSR-UNet is implemented in PyTorch and trained on a cluster
with 8 NVIDIA A100 GPUs. The network is involved in two parts, one of which is liver
segmentation. In this phase, we resampled the image aspect size to 512 × 512 and processed
their spacing counterparts into iso-voxels. Then we performed image up–down restriction
according to the distribution of MRI intensity and normalized all input images. During
the training period, we used 512 × 512 × 5 multi-channel input patches (equivalent to
the form of 2.5D) and 512 × 512 × 1 outputs. We performed online augmentation of the
images of the input network by applying random axis mirror flips with probability 0.5
in all 3 axes and random clockwise and counterclockwise rotations of 20◦. In addition to
this, all images were scaled with random intensity in the range (0.9, 1.1). The batch size of
each GPU was set to 16, the learning rate was set to 0.001, and a cosine annealing learning
rate scheduler and five-fold cross-validation were used. On this server, after the adaptive
network parameters module and experimental verification, the loss reduction effect under
these hyperparameters was the best. The epoch was 300 and the total training time was
3 days. The other part is the fine segmentation of small tumors, which differs from the
former only in that the input images were boxes detected by multilayer nnDetection and
portioned into 64 × 64 sizes, and the other preprocessing and augmentation methods were
the same. The total time spent on this part of training was 16 h.

3. Results

To evaluate the effectiveness of the multi-network fusion segmentation method for
small objects segmentation, we compared the proposed method with nnU-Net and several
other networks. All comparison methods are listed in Table 1, including single 3D U-Net,
single nnU-Net, nnDetection plus nnU-Net, and nnU-Net segmentation plus nnDetection
detection with fine segmentation by CSR-UNet (ours). The results were compared from
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multiple perspectives for each tumor occupancy, including overall segmentation and detec-
tion metrics, and metrics grouped by different size distribution. In addition, the number
distribution by long-diameter size, tumor types, and tumor benignity or malignancy are
also analyzed.

Table 1. Overall segmentation performance of liver tumors by different methods.

Method Dice IOU F1-Score VS Recall

3D U-Net 0.801 0.740 0.816 0.851 0.733
nnU-Net 0.847 0.750 0.823 0.859 0.776

nnDetection + nnU-Net 0.856 0.762 0.891 0.904 0.858
nnDetection + nnU-Net + CSR-UNet 0.859 0.771 0.895 0.904 0.858

Proposed 0.869 0.778 0.897 0.910 0.867

”VS” means “volumetric similarity”; “IOU” means “intersection over union”.

The metrics we evaluated for liver tumor segmentation include segmentation metrics:
Dice, IOU, volumetric similarity (VS), F1-score, and detection metric recall. Table 1 presents
the mean inference metrics of fusion models trained by three randomly selected test sets.
The test set comprised 44 MRI data. The table summarizes the performance results of
five experiments, namely CSR-UNet fusion network (ours), 3D U-Net segmentation alone,
nnU-Net segmentation alone, nnU-Net segmentation plus nnDetection detection, and nnU-
Net segmentation plus nnDetection detection plus CSR-UNet fine segmentation. All five
experiments used the same MRI data preprocessing methodology as the proposed method
and utilized their respective segmentation networks to isolate the liver and apply the same
preprocessing on the liver region. And, all experiments test the same 44 test data. Our
proposed multi-network fusion approach outperformed all other methods with the best
overall segmentation metrics across all test sets.

We also conducted a tumor count analysis in the three randomly sampled test sets,
categorized by long diameter and benign or malignant classification, as presented in
Table 2. The table illustrates that the majority of liver tumors in the test sets were smaller
than 30 mm, which is the primary focus of our study. In addition, we provide detailed
information regarding tumor categories in the three test sets. While benign and malignant
categories were relatively balanced, hepatic cysts constituted the largest tumor category.
Our experimental investigation and quantitative metric calculations yielded segmentation
and detection results for tumors of varying size distributions, which are summarized in
Table 3. The presented table reveals that the detection and segmentation performance
of liver tumors with long diameters of 5–10 mm yielded the lowest indexes, with Dice
coefficients ranging between 0.418 and 0.532; however, for tumors with long diameters of
10–30 mm, all related indicators improved significantly, with a recall rate of one achieved
for tumors larger than 30 mm across all five methods. All results metrics for our proposed
method here were also the highest for liver tumors in the less than 30 mm range. Notably,
the end-to-end segmentation technique, nnU-Net, demonstrated only marginal improve-
ments over 3D UNet. In contrast, the multi-network fusion method, specifically CSR-UNet,
yielded substantial improvements when compared to nnU-Net. Lastly, our proposed
method demonstrated optimal performance across all metrics related to long-diameter
detection and segmentation.

Table 2. Number (average) of size and type of liver tumors in the test set.

Benign Tumor Malignant Tumor

Diameter
(mm)

HCC
Metastases

of Liver
ICC Hepatic Cyst

Liver
Hemangioma

5–10 24 83 60 105 31
10–30 84 85 74 130 78
>30 11 13 8 22 9
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Table 3. Segmentation and detection metrics for tumor inference of different long diameters in our
method and the comparison method.

Method
Diameter

(mm)
Dice IOU F1-Score Recall

3D U-Net
5–10 0.418 0.302 0.594 0.537

10–30 0.520 0.382 0.829 0.847
>30 0.821 0.749 1.000 1.000

nnU-Net
5–10 0.438 0.327 0.614 0.597

10–30 0.521 0.430 0.869 0.857
>30 0.842 0.791 1.000 1.000

nnDetection + nnU-Net
5–10 0.487 0.363 0.758 0.736

10–30 0.531 0.398 0.910 0.905
>30 0.857 0.807 1.000 1.000

nnDetection + nnU-Net +
CSR-UNet

5–10 0.521 0.387 0.768 0.760
10–30 0.552 0.448 0.910 0.760
>30 0.873 0.829 1.000 1.000

Proposed
5–10 0.532 0.409 0.785 0.761

10–30 0.561 0.464 0.912 0.909
>30 0.889 0.831 1.000 1.000

Upon scrutinizing the inference result graph and the ground truth, our proposed
method exhibits a relatively comprehensive efficacy in detecting small hepatocellular
carcinoma. Nonetheless, certain small or poorly defined tumors are characterized by
suboptimal boundary conformity, thereby resulting in diminished Dice and VS (volumetric
similarity) scores. Moreover, the inadequacy of contrast and visualization in some tumors
during the delayed phase impeded their accurate detection, leading to a proportion of
false negatives.

To provide a rigorous elucidation, we posit that the suboptimal conformity of bound-
aries in certain smaller or indistinct tumors reduces the concurrence of the Dice and VS
metrics. Additionally, the suboptimal contrast and visualization of some tumors during the
delayed phase engendered erroneous classifications, resulting in an appreciable number of
false negatives.

4. Discussion

In this paper, we proposed a method for small liver tumor detection and segmentation.
Raw data from hospital screenings were collected and annotated to analyze the DCE
images through expert annotation of additional information during the delay period. To
maximize tumor ground segmentation results, we integrated detection and coarse and
fine segmentation modules into our multi-network fusion method. The detection network
employed nnDetection, which is a versatile adaptive detection network capable of detecting
small targets comprehensively. Meanwhile, for the segmentation network, we developed a
CSR-UNet network architecture that achieves more precise segmentation results for small
liver cancers through preprocessing and training tumors at different scales. The detection
and segmentation of small liver tumors through medical imaging is a crucial aspect of early
disease diagnosis and treatment in the clinical setting. By comparing the results obtained
from the test set, it can be inferred that the proposed model has the potential to assist in
the early diagnosis of small liver tumors by providing valuable reference values; thus, this
model holds promise for clinical applications in the detection and segmentation of small
liver tumors.

Upon scrutinizing the inference result graph and the ground truth, our proposed
method exhibits a relatively comprehensive efficacy in detecting small hepatocellular
carcinoma. Nonetheless, certain small or poorly defined tumors are characterized by
suboptimal boundary conformity, thereby resulting in diminished Dice and VS scores.
Moreover, the inadequacy of contrast and visualization in some tumors during the delayed

48



Diagnostics 2023, 13, 2504

phase impeded their accurate detection, leading to a proportion of false negatives. To
provide a rigorous elucidation, we posit that the suboptimal conformity of boundaries in
certain smaller or indistinct tumors reduces the concurrence of the Dice and VS metrics.
Additionally, the suboptimal contrast and visualization of some tumors during the delayed
phase engendered erroneous classifications, resulting in an appreciable number of false
negatives. Figure 5 presents the outcomes of our proposed method for detecting small
hepatocellular carcinoma (HCC) with a diameter of less than 30 mm. Notably, the edges of
these small HCCs appear indistinct in the images, rendering it challenging to determine
whether they are tumors; however, our method can identify the majority of these small
tumors. The comparison between the predicted results and the ground truth indicates that
the accuracy of the segmentation is suboptimal. The small size of the HCCs leads to a
limited number of pixels, resulting in relatively low values of segmentation-related metrics.

Figure 5. Typical results of our method on the test set. The MRIs are all delayed phases of DCE series.
The predicted results and ground truth are circled with red edges in the figure.

Despite the promising results, there are limitations to our current method that require
further improvements. Firstly, the proposed model was only tested on a specific MRI
dataset. To validate its generality, multicenter external test sets containing enhanced CT
images and other small objects need to be collected. Furthermore, since the distribution of
different liver tumor types in the dataset is not well-balanced, collecting more varied tumor
types is necessary for deeper evaluation. Secondly, although we identified that the delayed
phase provides more pronounced visual effects for the five liver tumor types we studied,
there is a possibility that more prominent tumor types in other phases were missed. Future
research may involve analyzing MRI multimodal data to further examine these tumors.
Thirdly, due to the multi-network fusion method’s use of inference results from four neural
networks, obtaining final segmentation results may take longer. Therefore, this method
may be more suitable for patients with liver disease who do not require immediate surgery
or require long-term follow-up. Fourthly, we did not model the classification for tumor
type by single-class segmentation, and the method’s sensitivity or specificity can only be
statistically derived for certain species. Finally, there is some room for optimization in the
three network frameworks we used. For example, CSR-UNet can enhance the fineness of
some patch segmentation, and UHRNet [32] can optimize the decoder. Future research
will explore various method combinations to improve small object segmentation accuracy
and efficiency.
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5. Conclusions

This research presents a highly effective method for segmenting liver tumors by fusing
multiple networks. Even for small tumors, this approach achieves outstanding segmenta-
tion and detection performance, thanks to the complementary information provided by
the different networks. The fusion network increases the performance of network training
through adaptive network parameters. The loss function combines Focal loss and Tversky
loss, enabling network learning to focus on and learn more detailed tumor feature infor-
mation. Moreover, the segmentation results enable precise quantification of each tumor’s
long diameter and volume, providing valuable information for hepatologists and surgeons
to monitor the progression and response to the treatment of patients with liver tumors.
Ultimately, this novel approach maximizes the potential of liver tumor segmentation to
inform clinical decision-making and improve patient outcomes.
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I am writing to you in regard to the research article “Johan Jönemo, David Abramian, and
Anders Eklund—Evaluation of Augmentation Methods in Classifying Autism Spectrum
Disorders from fMRI Data with 3D Convolutional Neural Networks” [1].

In the Special Issues (SIs) that I coordinate, I always try to identify an article that
stimulates a discussion with scholars for wide-ranging future development. In this SI [2], I
identified your article. Autism, as a neurodevelopmental disorder, affects social behavior,
communication and interaction. It manifests as difficulties in understanding other people’s
emotions, as verbal and non-verbal communication, as restricted interest in certain topics
and as the repetitiveness of behaviors and routines. Each autistic individual is unique
in his or her characteristics and level of functioning [3]. The therapeutic approach varies
depending on individual needs and often involves multidisciplinary interventions.

This uniqueness is reflected in the difficulty of diagnosis [4,5], which requires a mul-
tifaceted approach from different medical disciplines, and in treatment that increasingly
highlights the need for personalized medicine dedicated to autism [6,7].

Among the important activities in diagnosis are the following [4,5]:

• Observation and interviews;
• Physical exams and medical history;
• Developmental assessment and screening;
• Psychological and psychomotor evaluation;
• Assessment of social behavior and social interactions;
• Language and communication assessment;
• Sensory assessment;
• Functional behavior assessment;
• Genetic, metabolic, biochemical, immunological and neurobiological assessments;
• Assessments of environmental factors;
• Medical imaging assessment.

Functional Magnetic Resonance Imaging (fMRI) has played and is playing a significant
role in advancing our understanding of autism spectrum disorder (ASD) by allowing
researchers to investigate brain activity and connectivity in individuals with ASD. A
search on PubMed with the composite key “Search: (fmri [Title/Abstract]) AND (autism
[Title/Abstract]) Filters: Systematic Review Sort by: Publication Date” identified 14 systematic
reviews starting from 2011, clearly identifying the potential of fMRI applied to autism,
and also highlighting the need of an umbrella review [7–21]. fMRI allows, for example,
for functional connectivity studies, Resting State fMRI (rs-fMRI), Task-Based fMRI, the
neural correlation of social and communication impairments, and sensory processing and

Diagnostics 2023, 13, 3545. https://doi.org/10.3390/diagnostics13233545 https://www.mdpi.com/journal/diagnostics52
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sensory integration investigation. Furthermore longitudinal fMRI studies can track brain
development and changes in connectivity patterns over time in individuals with autism,
which is very useful for understanding how the brain develops in those with ASD and
how this leads to behavioral and cognitive changes. In fMRI, Machine Learning and
Predictive Modeling have shown potential in earlier and more precise diagnosis and also in
identifying specific biomarkers. Progress due to personalized interventions and therapies
can be monitored just by means of fMRI, a useful tool to assess effectiveness in this filed.

I found your study very interesting and attractive.
I believe that, as you have highlighted, 3D augmentation techniques together with

artificial intelligence (AI) applied to fMRI are promising.
I believe that this is a line of research that should be insisted upon.
I would also like to discuss with you the evolution prospects.
It is clear that autism requires a multidisciplinary approach and represents an area in

which personalized medicine (PM) can undergo important development.
Multiple diagnostic approaches also play an important role in PM as in autism.
fMRI certainly has a key role and 3D augmentation and can represent a further boost

in diagnosis and classification. AI is increasingly helping us in all of this, allowing for the
classification of increasingly important volumes of data.

Personally, among the development directions of your study, I see potential in the
application of AI tools to data reservoirs that, in the future, could include both the 3D-
augmentation-based imaging method proposed by you and data coming from the many
other multifaceted diagnostic activities not based on imaging.

I would like this comment open a scientific discussion with scholars as I am increas-
ingly convinced that fMRI has been instrumental in uncovering the neural underpinnings
of autism, shedding light on altered brain connectivity, social and sensory processing
differences, and potential biomarkers; therefore, all the tools (and therefore, also the AI-
based tools) integrating fMRI findings with other research approaches could contribute
to a comprehensive understanding of autism and open the door to targeted interventions
and treatments.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The role of functional magnetic resonance imaging (fMRI) is assuming an increasingly
central role in autism diagnosis. The integration of Artificial Intelligence (AI) into the realm of
applications further contributes to its development. This study’s objective is to analyze emerging
themes in this domain through an umbrella review, encompassing systematic reviews. The research
methodology was based on a structured process for conducting a literature narrative review, using an
umbrella review in PubMed and Scopus. Rigorous criteria, a standard checklist, and a qualification
process were meticulously applied. The findings include 20 systematic reviews that underscore key
themes in autism research, particularly emphasizing the significance of technological integration,
including the pivotal roles of fMRI and AI. This study also highlights the enigmatic role of oxytocin.
While acknowledging the immense potential in this field, the outcome does not evade acknowledging
the significant challenges and limitations. Intriguingly, there is a growing emphasis on research
and innovation in AI, whereas aspects related to the integration of healthcare processes, such as
regulation, acceptance, informed consent, and data security, receive comparatively less attention.
Additionally, the integration of these findings into Personalized Medicine (PM) represents a promising
yet relatively unexplored area within autism research. This study concludes by encouraging scholars
to focus on the critical themes of health domain integration, vital for the routine implementation of
these applications.

Keywords: autism; artificial intelligence; autism spectrum disorders; fMRI

1. Introduction

1.1. fMRI: The Functioning and the Integration with AI
1.1.1. An Introduction to fMRI

The advanced technology of functional magnetic resonance imaging, abbreviated to
fMRI, has revolutionized the landscape of neuroscience and brain research [1–10]. Born
around the 1990s from the fusion of sophisticated magnetic resonance imaging techniques
and the understanding of brain activity, fMRI offers an extraordinary window into the
functioning of the human brain [2,6]. This non-invasive methodology allows scientists to
peer deeply into the brain as it engages in a wide range of cognitive activities, providing
detailed pictures of neural activity in real time from complex elaborations [7–9]. Unlike
other neuroimaging techniques [4,11], fMRI does not require the insertion of electrodes or
the use of ionizing radiation, making it safe and suitable for a wide spectrum of applications,
from scientific research to diagnosis and condition monitoring neurologically. The basis of
fMRI lies in the idea that neural activity is related to changes in cerebral blood flow, and
this principle is exploited to map brain regions involved in specific cognitive functions or
behavioral responses [1,3,10]. Over the years, fMRI has made significant contributions to
our understanding of the brain, unlocking secrets of how different parts of the brain work
together to influence behavior, sensory perception, language processing, and many other
complex functions [1,4,5]. This progress has been further catalyzed by the integration of
artificial intelligence, enabling advanced analysis of complex data and the identification
of subtle patterns, opening new perspectives for research and the diagnosis of brain
conditions [12–14].
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1.1.2. Integrating fMRI and AI for the Brain Study

Artificial intelligence (AI) plays a fundamental role in the interpretation and processing
of data from fMRI, providing sophisticated tools to analyze in depth the functioning of
the human brain [12–25]. One high-impact area is advanced data analytics, where AI
can identify complex patterns and correlations that would be difficult or impossible to
identify manually [13,17,22]. This means that AI can help reveal subtle relationships
between brain activity and certain stimuli or conditions, leading to a deeper understanding
of cognitive and neural functions [16,20]. Furthermore, AI is essential for automating
critical processes such as brain segmentation and mapping of brain regions [14,15]. This
automation significantly speeds up the analysis process and ensures greater accuracy,
allowing scientists to focus more on interpreting results rather than manipulating raw
data [18,19,21]. Another powerful application is the prediction of brain responses to certain
stimuli or tasks based on historical fMRI data [23]. AI can create predictive models that
indicate how the brain might react in different situations, offering valuable insights for
understanding the neural basis of different cognitive and behavioral activities [13,15,20].
Integrating multi-omics data are another important frontier where AI can contribute. By
combining fMRI data with genetic, proteomic, or other biological information, AI can help
create a comprehensive view of the relationship between brain functioning and biological
factors, paving the way for new discoveries and personalized therapeutic approaches.
In synthesis, it is possible to affirm that AI amplifies the human ability to analyze and
interpret fMRI data, enabling a deeper understanding of brain dynamics [24,25]. This
synergy between fMRI and AI promises to radically transform neuroscientific research and
open new ways to diagnose and treat brain disorders more accurately and effectively.

1.2. Diagnosis in Autism

The diagnosis of autism spectrum disorders (ASD) is a nuanced process shaped by the
disorder’s inherent complexity [26–31]. Central to this complexity is the spectrum nature
of autism, which encompasses a diverse range of symptoms and severity levels [32]. From
social and communication challenges to variable behaviors, each individual’s experience is
unique, necessitating personalized approaches to diagnosis and intervention. Adding to
the intricacy is the variability in symptom manifestation, making the diagnostic journey a
challenging one. The developmental trajectory introduces another layer of complexity, as
symptoms may not fully emerge until a child encounters new social and cognitive demands.
Overlap with other developmental disorders and mental health conditions further compli-
cates the diagnostic landscape. Clinicians must carefully distinguish between autism and
conditions like ADHD or intellectual disabilities through meticulous evaluations. Social
communication challenges form a core feature of autism, ranging from a lack of interest in
socializing to nuanced struggles in interpreting nonverbal cues. Navigating these subtleties
is crucial for accurate diagnoses. Cultural sensitivity is paramount, acknowledging that
the presentation of autism symptoms can be influenced by cultural norms. Comorbidity,
the co-occurrence of autism with other conditions, adds complexity, necessitating compre-
hensive evaluations. The evolving nature of diagnostic criteria, from DSM-IV to DSM-5,
highlights the importance of staying current in the field.

One of the problems of diagnosis is that the manifestations of autism vary widely [26],
giving rise to the yet-cited concept of the “spectrum” [32], which includes individuals
with mild to severe symptoms. Signs of autism can emerge from early childhood but are
often identified in preschool or school age, when they become more evident. Symptoms
include difficulty with verbal and nonverbal communication, difficulty interacting with
others, repetitive and restricted interests and activities, and increased or decreased sensory
sensitivity. To diagnose autism, a multidisciplinary approach is used [32–34]. Specialists,
such as psychologists, child psychiatrists, and pediatricians, conduct interviews and obser-
vations to evaluate the individual’s behavior, language, social skills, and cognitive abilities.
Diagnosis is often completed through structured questionnaires, developmental assess-
ments, and assessments of communication skills. In addition to behavioral assessments
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and questionnaires, genetic analysis can be an integral part of the diagnosis of autism, since
there is a genetic component to its etiology. Blood tests and genetic tests can identify genetic
abnormalities associated with autism. Innovation in autism diagnostics comes through the
integration of cutting-edge technologies such as fMRI [35].

1.3. Integrating fMRI in Autism Diagnosis

fMRI may serve as an invaluable tool in unraveling the mysteries of the autistic brain,
providing a detailed exploration of neural activity and connectivity unique to individuals
on the autism spectrum [35]. In the initial phases of an fMRI study, special attention
is given to participant preparation, recognizing the potential sensory sensitivities often
associated with autism [34,35]. Beyond the standard procedure briefing, efforts are made
to ensure the comfort of individuals with autism in the MRI environment, acknowledging
their heightened sensitivity to sensory stimuli. During the scanning process, individuals
with autism engage in tasks designed to activate specific cognitive processes relevant
to the challenges associated with autism spectrum disorders. Tasks may be tailored to
investigate social cognition, communication, or sensory processing—core aspects often
affected by individuals with autism. Alternatively, resting-state fMRI provides a unique
avenue to explore intrinsic brain connectivity patterns without the imposition of specific
tasks, allowing researchers to uncover spontaneous neural activity associated with autism.
Structural imaging captures high-resolution images of the autistic brain’s anatomy, laying
the groundwork for a comprehensive understanding of the structural nuances associated
with the condition [35]. As the participant’s brain responds to tasks or conditions, the
fMRI scanner detects changes in blood oxygenation levels, offering insights into the neural
correlates of various cognitive processes. This dynamic data acquisition is particularly
relevant when investigating how the autistic brain processes and responds to social cues,
sensory stimuli, and other stimuli that may be challenging for individuals on the autism
spectrum. In the subsequent analysis phase, researchers delve into the intricacies of the
data, applying sophisticated statistical methods to identify significant changes in brain
activity specific to autism. Connectivity analyses play a pivotal role in examining how
different brain regions communicate in individuals with autism. Short-range and long-
range connectivity patterns are scrutinized, shedding light on the unique neural networks
associated with the condition. Interpreting fMRI results within the context of autism
research requires a nuanced understanding of the specific challenges and strengths of
individuals on the spectrum. The integration of fMRI findings with other data sources,
such as behavioral assessments and clinical measures, provides a holistic perspective on
the neural basis of autism spectrum disorders. In essence, fMRI serves as a powerful ally in
the ongoing quest to deepen our understanding of the autistic brain, contributing valuable
insights into the complexities of this neurodevelopmental condition. In the context of
autism, fMRI can help visualize brain activity patterns and specific neural connections
that may be different compared to neurotypical individuals. fMRI allows us to examine
brain activity during social, communication, or specific tasks, providing insights into
neurofunctional differences in people with autism.

1.4. Integrating AI in Autism
1.4.1. A Brief Recall of the Artificial Intelligence in the Health Domain

AI is a multidisciplinary field focused on developing intelligent machines capable
of performing tasks that typically require human intelligence. It encompasses a range of
techniques, including machine learning, natural language processing, and computer vision.
Machine learning, a subset of AI, involves training algorithms on data to enable them to
learn patterns and make predictions or decisions without explicit programming.

There is an increasing interest in investigating the impact of AI in the healthcare
domain. For example, the four recent systematic reviews [36–39] offer a holistic and
nuanced understanding of the multifaceted landscape of AI in healthcare. From identifying
barriers to implementation and acknowledging diverse stakeholder preferences to delving
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into the role of AI in chronic care and evaluating its economic implications, these inquiries
collectively contribute to shaping a comprehensive narrative on the present and future of
AI in healthcare. The intersection of these diverse perspectives provides valuable guidance
for researchers, practitioners, and policymakers aiming to harness the potential of AI to
enhance healthcare delivery. In the study proposed in [36], the authors scrutinize the
barriers obstructing the seamless integration of AI into healthcare practices. This inquiry
into challenges offers a valuable starting point for understanding the practical impediments
that need addressing to realize the full potential of AI technologies in healthcare delivery.
The systematic review reported in [37] takes a broader perspective by examining the
preferences of multiple stakeholders regarding the use of AI in healthcare. This systematic
review not only acknowledges the diverse perspectives of stakeholders but also recognizes
the significance of aligning AI solutions with the preferences and needs of various actors
within the complex healthcare ecosystem. The inclusivity of stakeholder preferences
becomes pivotal in designing and implementing AI technologies that are both effective
and accepted across different healthcare contexts. The overview reported in [38] focuses
on a specific dimension—AIs role in managing chronic medical conditions. This targeted
exploration reveals how AI interventions contribute to the ongoing care of individuals with
persistent health issues. Understanding the nuances of AI applications in chronic care is
critical for envisioning comprehensive healthcare strategies that leverage technological
advancements for improved patient outcomes.

The last work [39] contributes a unique perspective by conducting a systematic litera-
ture review on the economic evaluations of AI-based healthcare interventions. This inquiry
into the economic dimensions of AI implementation sheds light on the cost-effectiveness
and efficiency of integrating AI technologies. Such insights are indispensable for policy-
makers and healthcare providers as they navigate the complex landscape of healthcare
financing and resource allocation.

1.4.2. The Application of AI with the Focus on Autism

AI is playing a particularly impactful role in autism research [40,41].
Research trends indicate an increasing interest in the applications of AI within this

domain [42], encompassing a spectrum from diagnostic tools to seamless integrations
with IoT technologies [43,44]. This surge underscores the transformative impact of AI,
showcasing its versatile utilization and integration across various facets of the field. From
advancing diagnostic capabilities to forging synergies with cutting-edge IoT technologies,
the trajectory of AI applications within this realm is marked by a remarkable and expansive
evolution, signifying its pivotal role in shaping the landscape of healthcare.

AI, particularly machine learning (ML) and deep learning, plays a pivotal role in
addressing ASD challenges. ML excels in pattern recognition, aiding in early ASD detection
through behavioral and physiological data analysis [40,41]. Predictive modeling tailors
support strategies, while naturalistic behavioral analysis, powered by computer vision and
ML, informs interventions by decoding subtle cues [44]. Deep learning, especially in neural
networks, unveils intricate neural mechanisms through fMRI data analysis, contributes
to understanding communication challenges, and identifies genetic markers associated
with autism [40]. Overall, AI stands as a dynamic force, promising transformative poten-
tial in ASD research, from early detection to personalized interventions and a profound
understanding of complexities. The intersection of AI and autism exemplifies technology’s
capacity for improving the lives of individuals on the spectrum, unlocking new possibilities
and insights.

A fast search in Pubmed using the composite key
“(“artificial intelligence”[Title/Abstract] AND (“autism s”[All Fields] OR “autisms”[All Fields]

OR “autistic disorder”[MeSH Terms] OR (“autistic”[All Fields] AND “disorder”[All Fields]) OR
“autistic disorder”[All Fields] OR “autism”[All Fields])) AND (systematicreview[Filter])” identify 11
systematic reviews [45–55] focused on the impact of AI on autism.
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Collectively, these explorations narrate a compelling story of how AI is becoming a
powerful ally in the realm of autism research. From precision interventions to immersive
technologies and advanced diagnostics, each theme contributes to the evolving narrative of
leveraging technology for a deeper understanding and improved support for individuals
on the autism spectrum.

Each one of the systematic reviews helps us to identify how, in the dynamic exploration
of AI within the realm of autism research, a multitude of themes have emerged, each shedding
light on the nuanced intersections of technology and neurodevelopmental disorders.

1. Precision Psychiatry and Pharmacogenomics

The first systematic review [45] ushers us into a realm where machine learning con-
verges with pharmacogenomics, envisioning a future of precision psychiatry. This inte-
gration holds promise for tailoring psychiatric interventions to individual genetic profiles,
potentially revolutionizing the treatment landscape for individuals on the autism spectrum.

2. Virtual Reality-Based Techniques for Health Improvement

The systematic review reported in [46] offers insights into the potential of virtual
reality for human exercise and health enhancement. This systematic review prompts
contemplation on how immersive technologies could be harnessed to address specific
health challenges faced by individuals with autism, fostering holistic well-being.

3. Bibliometric Analysis of AI in Autism Treatment

The study available in [47] provides a meta-analysis, exploring the bibliometric
landscape of AI in the treatment of autism spectrum disorders. This comprehensive
overview not only reveals current research trends but also emphasizes the evolving priori-
ties within the broader AI and autism research community, with potential implications for
future interventions.

4. Hybridization of Medical Tests and Sociodemographic Characteristics

The authors of the overview reported in [48] delve into a systematic review, investigat-
ing the hybridization of medical tests and sociodemographic characteristics in the context
of autism. This approach underscores a comprehensive diagnostic strategy, acknowledging
the multifaceted factors influencing autism spectrum disorder diagnosis.

5. Triage and Priority-Based Healthcare Diagnosis

The study proposed in [49] brings practical applications to the forefront, focusing on
triage and priority-based healthcare diagnosis. This prompts reflection on how AI can
streamline diagnostic processes, potentially ensuring timely interventions tailored to the
specific needs of individuals with autism.

6. Mobile and Wearable AI in Child and Adolescent Psychiatry

The contribution reported in [50] shifts the discourse towards mobile and wearable AI,
conducting a scoping review in child and adolescent psychiatry. This exploration signifies
a paradigm shift towards technology-driven mental health interventions for younger
populations, including those on the autism spectrum.

7. Robot-Assisted Therapy for Children with Autism

A systematic review reported in [51] introduces robotics into the conversation through
a systematic review of robot-assisted therapy for children with autism. The exploration
of robotics as a therapeutic tool sparks contemplation on how technology could enhance
therapeutic interventions and support individuals on the spectrum.

8. Machine-Learning Models in Behavioral Assessment

A navigation on the application of machine-learning models in behavioral assessment
for autism spectrum disorder is reported in [52]. This suggests a shift towards more
sophisticated computational methods, offering the potential for a deeper understanding of
behavioral patterns and individualized interventions.

59



Diagnostics 2023, 13, 3552

9. Deep Learning in Psychiatric Disorders Classification

The authors of [53] guide the discussion towards the integration of deep learning
in classifying psychiatric disorders, particularly in the context of autism. This prompts
consideration of how advanced computational techniques can refine the classification and
understanding of psychiatric conditions associated with autism.

10. Impact of Technology on Autism Spectrum Disorder

The work proposed in [54] contributes a systematic literature review on the broader
impact of technology, also integrated with AI, on individuals with autism spectrum disorder.
This holistic overview underscores the transformative role of technology in enhancing the
lives of individuals on the spectrum, opening avenues for support and intervention.

11. Deep Learning in Neurology

The authors of the overview available in [55] delve into the application of deep learning
in neurology, with a focus also on autism, signaling a systematic exploration of advanced
computational techniques in understanding neurological disorders, including those that
may co-occur with autism. This offers insights into the potential for technology-driven
advancements in neurology for individuals on the spectrum.

1.5. Integrating the Two Tools of AI and fMRI in Autism

AI and fMRI serve as two essential arms in autism research, offering complementary
strengths. fMRI, as described above, provides detailed insights into neural mechanisms,
capturing changes in brain activity related to social behavior and cognition, especially with
interventions like oxytocin. On the other hand, AI, as also described above, particularly
machine learning, enables sophisticated analysis of vast and complex datasets, identifying
subtle patterns in individual responses. Together, these arms create a powerful synergy, en-
hancing our understanding of autism’s neural underpinnings, personalizing interventions,
and guiding the development of effective treatments [56,57].

Integrating fMRI with AI [56,57] can help identify complex patterns in brain activity
in autism and predict individual behavior, providing valuable information for more precise
diagnosis and personalized intervention strategies. In summary, autism is a complex
neurodevelopmental disorder with a wide variety of manifestations. The diagnosis is
multidisciplinary and involves behavioral assessments, structured questionnaires, and
genetic analyses [32–34]. fMRI, also integrated with AI, may offer [35,56,57] significant
potential to deepen the understanding of autism by visualizing patterns of brain activity,
providing valuable insights for diagnosis, understanding the neural basis, and developing
personalized therapies.

1.6. Rising Questions and Purpose of the Umbrella Review

Building on the preceding discussion, it becomes evident that there is a noteworthy
importance attributed to both fMRI and AI within the context of autism. On one hand, the
role of fMRI offers insights into neural activities and connectivity unique to individuals on
the autism spectrum, providing a detailed exploration of the autistic brain. Simultaneously,
AI brings its transformative capabilities, contributing to areas such as early detection,
diagnostic precision, and personalized interventions for individuals with autism.

However, it is equally noteworthy to underscore that the potential synergies arising
from the integration of AI and fMRI have not undergone a dedicated thematic analysis. The
intricate interplay between these two powerful tools remains relatively unexplored territory.
Understanding and harnessing the collaborative potential of AI and fMRI could unveil
novel perspectives in unraveling the complexities of autism, offering a more comprehensive
understanding of the neural underpinnings of this neurodevelopmental condition. Further
exploration into this uncharted territory could pave the way for innovative approaches and
interventions, presenting new avenues for advancing autism research and care.

The objective of this study was to perform an umbrella review [58,59] to summarize and
critically evaluate the scientific evidence emerging from the systematic reviews regarding
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the application of artificial AI in the analysis of fMRI data in subjects with autism spectrum
disorder (ASD). The overall goal is to achieve a thorough understanding of the contribution
made by this technological integration in enhancing.

2. Methods

This review used a standardized checklist designed for the narrative category of
reviews (see [60]). The narrative review, designed as an umbrella review (a review that
considers the produced systematic reviews [58,59]), was performed based on targeted
searches using specific composite keys on PubMed and Scopus.

The overview literature accompanying the main survey was conducted using both a
qualification checklist and a qualification methodology based on proposed quality parame-
ters described in [61] to decide the inclusion of the study in the overview.

See Algorithm 1 used in the literature overview.

Algorithm 1 The proposed algorithm for the umbrella review.

1. Set the search query to:
“fMRI”[Title/Abstract] OR “functional magnetic resonance”[Title/Abstract]) AND
(“autism”[Title/Abstract] OR “ASD”[Title/Abstract] OR “autistic”[Title/Abstract])) AND
(systematicreview[Filter])”

2. Conduct a targeted search on Pubmed and Scopus using the search query from step 1.
3. Select studies published in peer-reviewed journals that focus on the field
4. For each study, evaluate the following parameters:

• N1: Is the rationale for the study in the introduction clear?
• N2: Is the design of the work appropriate?
• N3: Are the methods described clearly?
• N4: Are the results presented clearly?
• N5: Are the conclusions based and justified by results?
• N6: Did the authors disclose all the conflicts of interests?

5. Assign a graded score to parameters N1–N5, ranging from 1 (minimum) to 5 (maximum).

6.
For parameter N6, assign a binary assessment of “Yes” or “No” to indicate if the authors
disclosed all the conflicts of interest.

7. Preselect studies that meet the following criteria:
• Parameter N6 must be “Yes”.
• Parameters N1–N5 must have a score greater than 3.

8. Include the preselected studies in the overview.

From the studies sourced from PubMed, 100% were included, while from Scopus,
96% were considered [62–81]. It is noteworthy that those selected from Scopus were also
available on PubMed, indicating an overlapping inclusion. The reviewers, who were three
in number, hold a Master’s degree in diagnostic healthcare professions, with a strong focus
on diagnostic imaging. Their training at the University involved comprehensive courses
and specialized training in Artificial Intelligence.

3. Results

During the review process, a comprehensive examination of the literature revealed
a total of 20 systematic reviews [62–81]. These systematic reviews collectively delve into
the pivotal theme concerning the criticality of fMRI. This exploration often includes a com-
parative analysis with other diagnostic instruments, such as the devices for whole-brain
voxel-based morphometry [64], EEG, MEG, TMS, eyetracking, EMG [68], and near infrared
spectroscopy [62,63], shedding light on the evolving landscape of diagnostic tools and
emphasizing the significance of fMRI in this context. Among these systematic reviews,
only one [69] specifically focuses on evaluating the potential of fMRI as a catalyst for per-
sonalized medicine (PM) in the realm of autism. This focus could be particularly strategic,
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given the unique nature of this condition, as extensively emphasized [65]. The research
highlights fMRIs indispensable role in analyzing the discussed impact of oxytocin [66,77].

In a broader context, these systematic reviews unearth potentialities and opportunities
in various analytical domains. This encompasses both the modeling of brain structures
and understanding brain responses to an array of stimuli—be they behavioral; social; or
of other psychological/psychiatric origins [62,63,76,79]. Additionally, the utility of fMRI
extends to motor activities [68], further underscoring its versatility and applicability.

Moreover, fMRI emerges as an invaluable tool, not only for deciphering influencing
factors in brain patterns and responses but also for offering promising prospects in the
field of predictive medicine, as showcased in [71]. The integration of fMRI with artificial
intelligence (AI) amplifies this potential significantly [64,67,69,71,75].

While these studies reiterate the paramount importance of fMRI, they also interlace
moments of enthusiasm [63,71] and caution [62,64,67]—an observation particularly relevant
in the context of navigating this integration with AI. This integration holds immense
potential, offering a substantial contribution to the realms of classification and guidance [71].
The delicate balance between enthusiasm and prudence is accentuated, especially in the
context of carefully considering the implications and impact of integrating fMRI with AI.

The profound influence and indispensable presence of technology resonate throughout
practically every study subjected to analysis [62–81]. A meticulous scrutiny and in-depth
examination unveil a discernible bifurcation into the subsequent thematic domains ar-
ranged into subparagraphs. Here, systematic reviews stand as the bedrock, offering a
preeminent and guiding influence in delineating the paramount thematic contributions.

Theme 1: Investigating the potential of the fMRI along with other Medical Imaging Devices
(Section 3.1): At the forefront stands the awe-inspiring potential of fMRI technology, tran-
scending conventional boundaries in diagnostic capabilities. This extends beyond fMRI to
encompass an array of groundbreaking technological contributions, collectively propelling
our understanding of diagnostics to unprecedented heights.

Theme 2: Integrating fMRI with Artificial Intelligence (Section 3.2): A pivotal discussion
point centers on the seamless integration of fMRI technology with the immense potential
of AI. This convergence represents a monumental stride forward, a union of cutting-edge
advancements in fMRI and AI, promising a future where the whole is truly greater than
the sum of its parts.

Theme 3: Personalized Medicine Through AI and fMRI (Section 3.3): Emerging as a beacon
of promise, AI is steering us towards an era of personalized medicine. This transforma-
tive shift signifies a departure from the one-size-fits-all approach, embracing a model of
healthcare that is finely attuned to the unique needs and characteristics of each individual.

Theme 4: The Role of Oxytocin (Section 3.4): Within the realm of scientific inquiry,
a captivating enigma revolves around oxytocin. Here, fMRI technology emerges as an
indispensable tool, shedding light on the intricacies of oxytocin’s functions and effects.

3.1. Theme 1: Investigating the Potential of the fMRI along with Other Medical Imaging Devicses

The major theme that was identified by the reviewer is related to the analysis of
the impact and potential of fMRI technologies in comparison with other methodolo-
gies. [62,63,65,68,70,72–74,76,79–81]. The reviewed studies collectively explore various
aspects of neuroimaging in the context of psychiatric and neurodevelopmental disorders,
particularly focusing on ASD. The research encompasses investigations into the neural
correlates of speech and language development in infants at elevated risk for autism, the
effectiveness of neuroimaging techniques in recognizing psychiatric disorders, and tech-
nologies supporting the diagnosis and treatment of neurodevelopmental disorders [62–70].
Scholars demonstrate interest in brain structure and function differences in children with
ASD, developmental coordination disorder, and attention deficit hyperactivity disorder
(ADHD) [74]. Furthermore, the studies touch on the neural effects of physical activity and
movement interventions in individuals with developmental disabilities [68], systematic
reviews of functional MRI applications for psychiatric disease subtyping, and brain-based
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sex differences in ASD across the lifespan [70]. Areas of investigation include functional
near-infrared spectroscopy (fNIRS) [72,73] in speech and language impairment, the po-
tential of fNIRS-based neurofeedback, comparative meta-analyses of brain structural and
functional abnormalities in ADHD and ASD, and the accuracy of machine learning al-
gorithms for ASD diagnosis based on brain FMRI studies. The exploration of the social
motivation hypothesis in ASD [76] is also addressed. The studies extend to neuroimaging’s
role in supporting the DSM-5 proposed symptom dyad in ASD [74] and meta-analyses of
fMRI investigations in ASD [79].

Overall, the comprehensive body of research reflects a multidimensional approach to
understanding the neural underpinnings of various psychiatric and neurodevelopmental
conditions, with a prominent focus on ASD.

Table 1 reports the key elements of interest gleaned from systematic reviews pertinent
to this emerging theme.

Table 1. Key elements emerging from the studies in theme 1.

Systematic
Review

Highlights

[62]

The study emphasizes speech and language delays in young autistic
children, utilizing neuroimaging, especially fMRI, to explore early
neurobiological indicators. Key findings encompass atypical neural
lateralization, connectivity alterations, and varied neural sensitivities, with
an early detection potential of as early as 6 weeks. These results underscore
fMRIs ability to reveal early signs of delays before behavioral
manifestations, highlighting the importance of standardized paradigms.

[63]

The study reported different neuroimaging techniques to identify brain
abnormalities associated with psychiatric conditions, emphasizing the
intricate interplay of physiology and anatomy in these disorders. The
meta-analysis strongly advocates for the utilization of neuroimaging
techniques, particularly emphasizing the physiological and anatomical
insights provided by fMRI, in the accurate detection of psychiatric
disorders, including autism.

[65]

The study delves into the neural intricacies of brain structure and function
in children with co-occurring neurodevelopmental disorders, using
structural MRI, diffusion tensor imaging, and resting-state fMRI. It
emphasizes the uniqueness of neural correlates for each disorder, shedding
light on their distinct characteristics despite common co-occurrence.

[68]

The study highlights significant neural effects and behavioral
improvements resulting from interventions based on motion activity, with
chronic interventions showing greater efficacy. The review calls for more
extensive research with larger sample sizes and standardized
neuroimaging tools to better comprehend the underlying neural
mechanisms that benefit individuals with developmental disabilities,
emphasizing the crucial interplay of anatomy and physiology in
this context.

[70]

The study stresses the need to prioritize females in ASD research due to
their distinct phenotypic trajectories and age-related brain differences. It
underscores the influence of sex-related biological factors, proposing a
comprehensive approach to understanding brain-based sex differences in
ASD, focusing on anatomy and physiology. The review of neuroimaging
studies identifies consistent sex differences in brain regions, suggesting
unique neurodevelopmental patterns in females with ASD. The concept of
a ‘female protective effect’ gains support, emphasizing genetic and
endocrine influences on brain development.
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Table 1. Cont.

Systematic
Review

Highlights

[72]

The study focused on near-infrared spectroscopy (fNIRS), highlighting its
potential advantages in exploring the neural connections to speech and
language issues across diverse conditions, including autism spectrum
disorders. The findings suggest that fNIRS holds promise for early
diagnosis, assessment of treatment responses, and applications in
neuroprosthetics and neurofeedback.

[73]

The study identifies practicality, portability, and reduced sensitivity to
movement artifacts as advantages of fNIRS as a functional neuroimaging
technique. However, it notes variations in study quality and a lack of large,
randomized controlled trials. Although some studies suggest the feasibility
of modulating brain function in autism, conclusions remain premature.
The study highlights the potential for clinical translation and emphasizes
the need for improved research practices and reporting for further
methodological advancements in fNIRS-neurofeedback.

[74]

The study reveals distinct structural and functional brain irregularities in
attention-deficit/hyperactivity disorder (ADHD) and ASD during
cognitive control tasks. Specifically, ADHD is associated with reduced gray
matter volume in the ventromedial orbitofrontal area, whereas ASD is
characterized by increased gray matter volume in regions like the bilateral
temporal and right dorsolateral prefrontal areas. Functional differences
emerge as underactivation in the medial prefrontal region and
overactivation in the bilateral ventrolateral prefrontal cortices and
precuneus in ASD. Conversely, individuals with ADHD demonstrate right
inferior fronto-striatal underactivation, particularly during motor
response inhibition.

[76]

The study investigates how individuals with ASD process rewarding
stimuli, particularly if these differences extend beyond social rewards.
Utilizing fMRI, the research uncovers distinct patterns of reward
processing in ASD individuals, encompassing both social and nonsocial
rewards, with atypical brain activation in specific striatal regions. Notably,
heightened brain activation occurs when individuals with ASD are
exposed to their restricted interests, challenging traditional notions of the
social motivation hypothesis.

[78]

The study in [58] revisits the attention-grabbing potential link between
dysfunction in the mirror neuron system and challenges in social
interaction and communication in individuals with ASD. Various
neuroscience methods, including EEG, MEG, TMS, eyetracking, EMG, and
fMRI, were used to assess the integrity of the mirror system in autism.
Notably, fMRI emerges as the most effective measure of mirror system
function. In fMRI studies, those using emotional stimuli reveal group
differences, while those employing non-emotional hand action stimuli do
not show similar distinctions.

[79]

The work analyzes studies using functional fMRI and diffusion tensor
imaging (DTI) data to evaluate their alignment with the proposed social
communication and behavioral symptom dyad in individuals diagnosed
with ASD according to the DSM-5. The results reveal abnormalities in brain
function and structure within various networks, such as fronto-temporal
and limbic networks linked to social and pragmatic language deficits,
temporo-parieto-occipital networks associated with syntactic-semantic
language deficits, and fronto-striato-cerebellar networks related to
repetitive behaviors and restricted interests in individuals with ASD.
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Table 1. Cont.

Systematic
Review

Highlights

[80]

In the study, one of the most consistently observed findings is a disruption
in the function of brain regions associated with social interactions in ASD.
These differences in activation within the social brain may stem from a
diminished preference for social stimuli rather than a fundamental
malfunction of these brain areas. Accumulating evidence suggests
challenges in effectively integrating various functional brain regions and
difficulties in finely adjusting brain function based on changing task
demands in individuals with ASD.

[81]

The study investigates the brain regions associated with social cognition
deficits in ASD and Schizophrenia (SZ). The results show that both ASD
and SZ exhibit reduced activation in certain brain areas linked to social
cognition, particularly in the medial prefrontal region. However, there are
specific differences in brain activation patterns and engagement with
stimuli between the two disorders. These findings offer valuable insights
for future research and understanding of these conditions.

The study proposed in [62] remarked that speech and language delays are common
in young autistic children and are often a concern for parents before their child’s second
birthday; therefore, understanding the neural mechanisms behind these delays could
improve early detection and intervention. The work aimed to consolidate evidence on
early neurobiological indicators and predictors of speech and language development using
various neuroimaging techniques, with particular reference to fMRI in infants with and
without a family history of autism. Three main themes emerged from the systematic review:
(1) atypical neural lateralization related to language in infants at a higher likelihood of
autism (EL infants) compared to those at lower likelihood (LL infants); (2) structural and
functional connectivity alterations; and (3) varied neural sensitivities to speech and non-
speech stimuli, detectable as early as 6 weeks of age. These findings suggest that neuroimag-
ing techniques may detect early signs of speech and language delays before behavioral
delays become evident. Future research should standardize experimental paradigms and
address practical implementation in non-academic, community-based settings.

According to [63], neuroimaging plays a crucial role in understanding brain devel-
opment, diagnosing mental illnesses, including autism, and distinguishing between con-
ditions. This study conducted a systematic review and meta-analysis of randomized
controlled trials to assess the efficacy of using neuroimaging for detecting psychiatric
disorders, particularly autism. The trials included in this study used various neuroimaging
techniques to detect brain abnormalities associated with psychiatric disorders, including
autism. The meta-analysis strongly recommends the use of neuroimaging techniques, in
particular fMRI, for detecting psychiatric disorders, including autism.

The study proposed in [65] aimed to systematically review and analyze the neural
similarities and differences in brain structure and function, assessed by neuroimaging, in
children with commonly co-occurring neurodevelopmental disorders, including autism.
The applied technologies were structural MRI, diffusion tensor imaging, and resting-state
fMRI. The interpretation of the results revealed that the neural correlates of co-occurring
conditions were distinct and more widespread compared to a single diagnosis. The majority
of findings (77%) indicated distinct neural correlates for each neurodevelopmental disorder
rather than shared features, suggesting the distinctiveness of each disorder despite their
common co-occurrence. However, the limited number of studies and the lack of correction
for multiple comparisons necessitate a cautious interpretation of these results.

The systematic review proposed in [68] addresses developmental disabilities, includ-
ing autism, and highlights the potential of physical activity interventions to enhance behav-
ior, applicable to both those with and without these disabilities. It emphasizes a scarcity
of reviews on how such interventions affect individuals with developmental disabilities,
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including autism. Synthesizing evidence from 32 papers, it underscores substantial neural
effects and behavioral improvements resulting from these interventions. Chronic interven-
tions show more significant effects compared to single sessions. The review explores neural
changes induced by these interventions using various neuroimaging techniques, revealing
promising alterations in neural activity. Despite promising results, this study calls for
further research with larger sample sizes and standardized neuroimaging tools to deepen
our understanding of the neural mechanisms benefiting individuals with developmental
disabilities, including autism.

The need to focus on females with ASD in neuroscience research, recognizing their
unique phenotypic trajectories and age-related brain differences, was underscored in [70].
Sex-related biological factors, such as hormones and genes, likely play a crucial role in ASD
development and neurodevelopmental pathways. A comprehensive lifespan approach is
advocated to fully grasp brain-based sex differences in ASD. The study synthesizes neu-
roimaging research, revealing consistent sex differences in brain regions across neurotypical
and ASD cohorts. Age-related brain differences point to distinctive neurodevelopmental
patterns in females with ASD. The concept of a ‘female protective effect’ in ASD gains sup-
port, emphasizing genetic and endocrine influences on brain development. The interplay
of sex-related biology with peripheral processes, especially the stress axis and brain arousal
system, shapes unique neurodevelopmental patterns in males and females with ASD. This
study calls for further research integrating behavior, sex hormones, and brain development
to deepen our understanding of ASD.

Two studies examine the usefulness of Functional Near-Infrared Spectroscopy in the
Study of Speech and Language in autism [72,73].

In the first study [72], a systematic review of functional near-infrared spectroscopy
(fNIRS) studies revealed its potential benefits in investigating the neural correlates of
speech and language impairment across various conditions, such as autism spectrum disor-
ders, developmental speech and language disorders, cochlear implantation, deafness, and
more. fNIRS could aid in early diagnosis, treatment response assessment, neuroprosthetic
functioning, and neurofeedback.

In the second study [73], a systematic review focused on fNIRS-based neurofeedback
studies. It found that fNIRS, as a functional neuroimaging technique, offers practicality,
portability, and reduced sensitivity to movement artifacts. However, the quality of the
studies varied, and large randomized controlled trials were lacking. While some studies
indicated the feasibility of modulating brain functioning, especially in clinical populations
like stroke, ADHD, autism, and social anxiety, specific clinical utility conclusions remain
premature. With improved research and reporting practices, fNIRS-neurofeedback holds
potential for clinical translation and further methodological advancements.

These studies collectively demonstrate the potential of fNIRS (which can represent
a valid complementary tool for the fMRI) in understanding and addressing communi-
cation disorders and brain functioning, especially in populations with speech or lan-
guage impairment. The technology holds promise for improved diagnosis, treatment, and
neurofeedback applications.

The systematic review reported in [74] also proposed a comparative meta-analysis.
The focus was on unraveling the unique and shared structural and functional brain irregu-
larities in individuals with attention-deficit/hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD) during cognitive control tasks. When it comes to structural
abnormalities, the analysis highlighted that ADHD is associated with a reduction in gray
matter volume in the ventromedial orbitofrontal area. In contrast, individuals with ASD
tend to exhibit an increase in gray matter volume in certain brain regions, particularly the
bilateral temporal and right dorsolateral prefrontal areas. In terms of functional abnormal-
ities during cognitive control tasks, the findings were intriguing. For ASD, there was a
notable pattern of underactivation in the medial prefrontal region. Additionally, there was
overactivation observed in the bilateral ventrolateral prefrontal cortices and precuneus.
On the other hand, individuals with ADHD demonstrated right inferior fronto-striatal
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underactivation, especially during motor response inhibition. This underactivation was
distinct from ASD and was accompanied by shared underactivation in the right anterior
insula. In essence, this analysis illuminated the distinct structural and functional brain
differences between ADHD and ASD, providing valuable insights into the unique neural
mechanisms underlying these neurodevelopmental disorders.

The study, along with a meta-analysis reported in [76], delved into how individuals
with ASD process rewarding stimuli, investigating whether these differences are limited
to social rewards. Utilizing fMRI, the study aimed to reconcile conflicting findings in
existing research. The key findings were:-The study uncovers distinct patterns of reward
processing in individuals with ASD, encompassing both social and nonsocial rewards. -It
highlights atypical brain activation in specific striatal regions.-Intriguingly, heightened
brain activation is observed in individuals with ASD when exposed to their restricted
interests, challenging traditional notions from the social motivation hypothesis.

These insights propose a broader interpretation of the social motivation hypothesis,
indicating that atypical reward processing in ASD extends beyond social stimuli to include
nonsocial rewards and fixations on restricted interests.

The meta-analysis hints at a potential explanation for the discrepancies in previous
studies—a variation in the age composition of the study samples. This underscores the
need for further research to comprehend the developmental trajectory of reward processing
in ASD. In essence, this meta-analysis offers a nuanced understanding of how individuals
with ASD process rewards, expanding beyond the conventional focus on social motivations.
It sheds light on the intricate nature of reward processing in this population and advocates
for considering age-related aspects to gain a comprehensive perspective.

The study reported in [78] recalled how the potential link between dysfunction in
the mirror neuron system and challenges in social interaction and communication among
individuals with autism spectrum conditions has garnered significant attention. Studies
utilizing various neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to
assess the integrity of the mirror system in autism were analyzed. A thorough review of
the selected papers revealed a diverse array of current data, particularly emphasizing the
challenge of interpreting studies employing weakly localized measures of mirror system
integrity. Notably, fMRI emerged as the most effectively localized measure of mirror
system function. Within fMRI studies, those employing emotional stimuli have reported
group differences, while those utilizing non-emotional hand action stimuli have not shown
similar distinctions. In sum, the evidence for a comprehensive dysfunction of the mirror
system in autism remained limited. An alternative model was proposed, emphasizing
abnormal social top-down response modulation in autism and providing valuable insights
into current data. The paper concluded by discussing the implications of this model and
suggesting future research directions.

In [59], the authors conducted a thorough review of studies utilizing functional fMRI
and diffusion tensor imaging (DTI) data to assess if these findings align with the proposed
social communication and behavioral symptom dyad in individuals diagnosed with ASD
according to the DSM-5. The consistent findings across these studies revealed abnormalities
in brain function and structure within various networks, such as fronto-temporal and
limbic networks linked to social and pragmatic language deficits, temporo-parieto-occipital
networks associated with syntactic-semantic language deficits, and fronto-striato-cerebellar
networks related to repetitive behaviors and restricted interests in individuals with ASD.
As a result, this comprehensive review offers partial support for the proposed ASD dyad
outlined in DSM-5.

A systematic review and meta-analysis of fMRI studies on ASD were conducted
in [80]. One of the most consistently observed findings was a disruption in the function
of brain regions associated with social interactions. These differences in activation within
the social brain might stem from a diminished preference for social stimuli rather than a
fundamental malfunction of these brain areas. Accumulating evidence suggests challenges
in effectively integrating various functional brain regions and difficulties in finely adjusting
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brain function based on changing task demands in individuals with ASD. However, the
authors conclude that existing research is limited by small sample sizes and a predominant
focus on high-functioning males with autism.

This study proposed in [81] aimed to understand the brain regions associated with
social cognition deficits in ASD and Schizophrenia (SZ). They conducted a systematic
review of relevant studies and analyzed the data. The results showed that both ASD and
SZ exhibit reduced activation in certain brain areas linked to social cognition, particularly
in the medial prefrontal region. However, there were specific differences in brain activation
patterns and engagement with stimuli between the two disorders. The findings offer
valuable insights for future research and understanding of these conditions.

3.2. Theme 2: Integrating fMRI with Artificial Intelligence

Five systematic reviews have focused on analyzing the integration of AI with fMRI,
highlighting opportunities, challenges, and bottlenecks [64,67,69,71,75]

In summary, these studies collectively explore the application of technology, including
machine learning and neuroimaging techniques like fMRI, EEG, MRI, and neurofeedback,
in the context of mental health research and specifically Neurodevelopmental Disorders
(NDDs), with a focus on ASD. The findings suggest promise in technology-based diagnosis
and intervention for NDDs, highlighting the potential of machine learning classifiers,
resting-state fMRI (rs-fMRI) data, and the concept of “predictome” for predicting mental
illness, including ASD. However, they emphasize the need for more high-quality research
and well-designed studies to address potential biases, enhance sensitivity, and fully realize
the clinical potential of these technological approaches. Table 2 reports the key elements
emerging for this theme.

The review reported in [64] explored the increasing interest in utilizing technology in
mental health research, particularly for Neurodevelopmental Disorders (NDDs). The focus
was on summarizing studies that utilized technologies such as machine learning, fMRI, EEG,
MRI, and neurofeedback for diagnosing and treating disorders, notably Autism Spectrum
Disorder. The results suggest promise in technology-based diagnosis and intervention
for NDDs, with a significant emphasis on ASD. However, the need for more high-quality
research due to potential biases in existing studies is highlighted.

The study conducted in [67] addressed the challenges in ASD diagnosis through
behavioral criteria and emphasized the need for brain imaging biomarkers to facilitate
diagnosis. The focus was on using machine learning classifiers based on resting-state
fMRI (rs-fMRI) data to achieve this. The meta-analysis indicates promising accuracy using
rs-fMRI data but suggests that combining other brain imaging or phenotypic data could
further enhance sensitivity. However, further, well-designed studies are essential to fully
realizing the potential of this approach.

An investigation proposed in [71] discussed the extensive application of neuroimaging-
based approaches, particularly machine learning, to study autism. It introduced the concept
of “predictome,” which involves using brain network features from neuroimaging modali-
ties to predict mental illness. The systematic review covered various psychiatric disorders,
including schizophrenia, major depression, bipolar disorder, and autism spectrum disorder
(ASD), and emphasized the potential for individualized prediction and characterization. It
also identifies the need for more research in this domain.

The study reported in [75] faced the increasing application of machine learning algo-
rithms in diagnosing ASD and their potential clinical implications. A systematic review
and meta-analysis were conducted to summarize the available evidence on the accuracy of
machine learning algorithms in diagnosing ASD. The results suggest acceptable accuracy,
particularly when utilizing structural magnetic resonance imaging (sMRI). However, the
study emphasized the necessity for further well-designed studies to enhance the potential
use of machine learning algorithms in clinical settings.
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Table 2. Key elements emerging from the studies in theme 2.

Systematic
Review

Highlights

[64]

The study explores the growing interest in employing technology for
mental health research, specifically in Neurodevelopmental Disorders
(NDDs). It summarizes studies using various technologies like machine
learning, fMRI, EEG, MRI, and neurofeedback for diagnosing and treating
ASD disorders. While the results suggest promise in technology-based
diagnosis and intervention for NDDs, with a focus on ASD, the need for
more high-quality research is emphasized due to potential biases in
existing studies.

[67]

The study addresses challenges in ASD diagnosis based on behavioral
criteria and emphasizes the need for brain imaging biomarkers to facilitate
diagnosis. It focuses on using machine learning classifiers based on
resting-state fMRI (rs-fMRI) data, indicating promising accuracy. However,
the study suggests that combining other brain imaging or phenotypic data
could further enhance sensitivity, emphasizing the necessity for further
well-designed studies.

[71]

The review discusses the extensive application of neuroimaging-based
approaches, particularly machine learning, to study autism. It introduces
the concept of “predictome,” using brain network features to predict
mental illness. The contribution covers various psychiatric disorders,
including ASD, emphasizing the potential for individualized prediction
and characterization while identifying the need for more research in
this domain.

[75]

The study reviews the increasing use of machine learning algorithms in
diagnosing ASD and their clinical implications. A systematic review and
meta-analysis summarize evidence on the accuracy of machine learning
algorithms, particularly those using structural magnetic resonance imaging
(sMRI). While acceptable accuracy is suggested, the study underscores the
necessity for further well-designed studies to enhance the potential use of
machine learning algorithms in clinical settings.

The study reported in [69], discussed in Section 3.3, focused on the potential of using
AI and fMRI to empower personalized medicine in autism.

In summary, these articles collectively highlighted the significant role of technology,
particularly fMRI and AI, in understanding and diagnosing ASD and other neurodevel-
opmental disorders. While there is promise and potential in utilizing these technologies
for diagnosis and intervention, according to the studies, further high-quality research is
essential to realizing their full clinical potential.

3.3. Theme 3: The Personalized Medicine through AI and fMRI

The analysis underscores, particularly in [65], that each patient with autism pos-
sesses a unique profile, highlighting the distinctiveness of this disorder. This characteristic
uniqueness renders autism a promising domain for delving into personalized medicine
(PM), wherein fMRI, owing to its potent diagnostic capabilities, could play a pivotal role.
Currently, only one review study has delved into this aspect of fMRI [69]. The study
underscored that PM is leading a profound shift in psychiatric disorder research, notably
within the realm of autism. Traditionally, psychiatric disorders relied on symptom-based
classifications; however, there is now a notable surge in efforts to unravel the fundamental
mechanisms and etiology of these conditions. PM is actively seeking data-driven ap-
proaches to enhance diagnosis, prognosis, and treatment selection tailored to the individual
needs of patients. The review thoroughly examined the burgeoning field of fMRI, focusing
on unsupervised machine learning applications for disease subtyping while considering
the unique characteristics of autism. Among the studies meeting inclusion criteria, several
effectively utilized fMRI data to interpret disease clusters derived from both symptoms
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and biomarkers, shedding light on the psychiatric symptoms present in autism. This
underscored the imperative to customize treatment approaches. The study emphasized
that, despite being in an early exploratory stage, the field of PM for psychiatric disorders,
particularly autism, is gaining significant momentum. However, conclusive results neces-
sitate further validation and larger sample sizes. "The review strongly stressed the need
to explore more accessible and clinically viable functional proxies, complementing fMRI
technology in the pursuit of effective personalized psychiatric care, particularly in the
context of autism”.

3.4. Theme 4: The Role of Oxytocin

The combination of fMRI and AI offers a potent approach to dissecting the intricate
role of oxytocin (OXT) in the brain. fMRI enables the visualization of neural responses in-
fluenced by oxytocin, particularly in social and emotional processing. AI, with its analytical
prowess, delves into complex fMRI datasets, identifying subtle patterns and correlations.
When these two technologies synergize, researchers gain a holistic view of OXTs impact,
incorporating genetic, behavioral, and other neuroimaging data for personalized insights.
AIs predictive modeling holds promise for anticipating individual responses to oxytocin
but presents challenges in navigating the complexity of real-world social scenarios. OXT
has a notable impact on neural activity, particularly during the processing of social stimuli.
fMRI was shown to be crucial to this understanding in two systematic reviews [66,77].

In the context of both systematic reviews, there remains a conspicuous absence of a
substantial contribution from Artificial Intelligence (AI). This observation, while indicative
of the current state, presents an opportunity and impetus for researchers to embark on
a more extensive exploration and incorporation of AI methodologies. Recognizing this
gap underscores the potential for researchers to further unlock the capabilities of AI in
enhancing the depth and breadth of future scientific investigations.

The first study [77] remarked how the OXT influenced the brain regions, including
the temporal lobes and insula. Notably, the left insula showed significant hyperactivation
following OXT administration, suggesting a modulation of neural circuits associated with
emotional processing. These effects appeared to vary depending on factors such as sex
and specific tasks. The authors were also invited to interpret the conclusions cautiously
due to the limited number of studies and the limited sample size, which prevented a more
detailed exploration of potential confounding factors.

The review reported in [66] remarked that studies involving intranasal oxytocin (IN-
OXT) administration in individuals with autism spectrum disorder (ASD) suggested that
OXT does alter brain activation in this population. fMRI has played a critical role in
investigating these effects. The effects of OXT administration interacted with the type of
task performed during fMRI studies. However, the overall results did not conclusively
indicate a full restoration of normal brain activation in regions typically associated with
ASD. Therefore, while there is a consistent body of evidence indicating that OXT affects
brain activation in individuals with ASD, the exact implications for addressing their social
deficits remain uncertain.

In summary, both articles underscore the critical role of fMRI in understanding how
oxytocin affects neural activity, especially in the context of social and emotional processing.
The use of fMRI has been instrumental in unraveling the effects of oxytocin and its potential
implications for disorders like autism spectrum disorder. However, based on these two
studies, further research is needed to fully comprehend the extent and nuances of these
effects, and the use of AI could make an important contribution in this regard.

4. Discussion

4.1. The Trends in the Studies on Autism Focused on AI and fMRI

fMRI emerged as a powerful brain imaging technology in the 1990s. This tool has
revolutionized our understanding of the human brain and its functions. Much of the
initial fMRI research was focused on understanding the general mechanisms of the brain.
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Furthermore, a more limited but equally important portion of fMRI research has been
devoted to autism. This approach has opened new perspectives on understanding brain
functioning in autism spectrum disorders, providing valuable information for the develop-
ment of therapeutic and support approaches. Brain images generated by fMRI have made it
possible to identify some peculiarities in the brain activity patterns associated with autism,
thus contributing to the growing understanding of this complex neurological condition.
A search was conducted on Pubmed with the keys shown in Box 1 to analyze the trends.
This research has reported a total of 71,184 studies to date on the application of fMRI in the
health domain since the 1990s. Figure 1 highlights how an important part of these studies
focused on the application of fMRI to the brain (93.2%). Figure 2 provides a sketch of the
number of fMRI studies focused on autism (2.1%).

 

Figure 1. Studies focusing on fMRI.

 

Figure 2. Studies on autism focusing fMRI.

Subsequently, integrating fMRI research with artificial intelligence (AI) has produced
significant results. The use of advanced algorithms and neural networks trained on fMRI
data has made it possible to identify complex patterns and correlations within brain images.
Figure 3 shows the evolution of fMRI studies on integration with AI since the end of the
1990s (through research conducted using the keys in Box 1). There have been two important
accelerations. The first acceleration was recorded in the last decade, when 87.1% of the
total works were produced. The latest acceleration occurred starting with the COVID-
19 pandemic, in which 49.3% of all works on this topic were produced in a period of
approximately three years. The AI application has expanded our understanding of the
neurological changes associated with autism, helping to identify distinctive biomarkers
and improve early diagnosis. Furthermore, AI applied to the analysis of fMRI data has
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made it possible to predict behavior and individual responses to treatments, allowing for
personalized and targeted intervention for those living with autism. This development
has opened promising perspectives for the optimization of therapies and the adaptation
of intervention strategies according to the specific needs of everyone. Figure 4 shows
the total number of works produced in the context of the integration of AI and fMRI in
autism, starting in 2010 (always using the keys in Box 1). Also, in this case, there was an
important acceleration in the last decade (with 95.8% of the total works produced) and with
the explosion of the pandemic (with 45.4% of the total works produced).

 

Figure 3. Studies focusing on AI and fMRI.

 

Figure 4. Studies on autism focusing on AI and fMRI.

4.2. Interpretation of Results
4.2.1. Interpretation of Results: Highlights

The importance of conducting an umbrella review of the applications of fMRI and AI
integration in autism lies in the need to obtain an in-depth and accurate understanding
of the current state of research. In light of the trends highlighted in Figures 1–4, studies
on fMRI in autism (Figure 2) and fMRI and AI on autism are growing and represent a
non-trivial part of the percentage of studies on fMRI in general (Figure 1) and with an
increasing amount of AI integration (Figure 3). Therefore, an umbrella review of existing
systematic reviews offers an in-depth and critical analysis with several advantages [58,59].
An integrated review of systematic reviews provides a holistic perspective on existing
evidence, reducing information fragmentation and promoting a comprehensive under-
standing of discoveries. This facilitates the recognition of areas needing further research

72



Diagnostics 2023, 13, 3552

or methodological improvements. Additionally, it highlights emerging trends and best
practices in the integration of fMRI and AI in autism, guiding future research efforts. Ulti-
mately, this global review supports clinical decision-making, enhancing evidence-based
practice for autism patients.

Box 1. The proposed composite key.

((fMRI[Title/Abstract]) OR (Functional Magnetic Resonance[Title/Abstract]))

((fMRI[Title/Abstract]) OR (functional magnetic resonance[Title/Abstract])) AND (Brain)

((fMRI[Title/Abstract]) OR (functional magnetic resonance[Title/Abstract])) AND ((autism[Title/
Abstract]) OR (ASD[Title/Abstract]) OR (autistic[Title/Abstract]))

((fMRI[Title/Abstract]) OR (functional magnetic resonance[Title/Abstract])) AND ((artificial intelli-
gence[Title/Abstract]) OR (machine learning[Title/Abstract]) OR (deep learning[Title/Abstract]) OR (neural

network[Title/Abstract])

((fMRI[Title/Abstract]) OR (functional magnetic resonance[Title/Abstract])) AND ((autism[Title/Abstract])
OR (ASD[Title/Abstract]) OR (autistic[Title/Abstract])) AND ((artificial intelligence[Title/Abstract]) OR
(machine learning[Title/Abstract]) OR (deep learning[Title/Abstract]) OR (neural network[Title/Abstract]))

From this overview of systematic reviews, important themes have clearly emerged,
receiving varying degrees of attention. Technology garnered widespread interest across
the systematic reviews, particularly in the context where fMRI played a prominent role.
The analysis led to the organization of the results into themes based on the dominance of
content. Beyond the theme where technology took center stage (including studies involving
fMRI in comparison with other technological solutions) [62,63,65,68,70,72–74,76,79–81],
other themes have also surfaced. The extensively explored theme is that of AI integrated
with fMRI. Here, systematic reviews have demonstrated a polarization around [64,67,71,75]
the promising applications for technology-based diagnosis and intervention in NDDs, high-
lighting the potential of machine learning classifiers, resting-state fMRI (rs-fMRI) data, and
the “predictome” concept for predicting mental illness, including ASD. Nevertheless, they
underscore the imperative for additional high-quality research and well-designed studies
to mitigate potential biases, enhance sensitivity, and fully unlock the clinical potential of
these technological approaches. Another related theme that has been identified is that of
personalized medicine. Only one specific study delved into the potential of combining AI
and fMRI to enable PM for autism, tailoring treatments to the unique needs of individuals
with ASD [69]. Another important theme that emerged regarding the prominent role of
fMRI is that of analyzing the role of oxytocin [66,77], highlighting the need to foster research
in the integration of AI as a specific tool in this field.

An overview of the most recent production of articles between 2022/2023 in Pubmed
(last composite key in Box 1) is useful for comparing the themes that emerged in the
systematic reviews as well as those that emerged in the umbrella review.

The dominant themes of technologies and AI emerge from the literature based on
scientific articles [82–114]. This is in line with the umbrella review.

A brief examination identifies the following among the dominant concerns of technol-
ogy and AI:

1. Genetic and Sensory Factors in ASD Prediction

The study reported in [82] explored the sensory signature of unaffected biological
parents and how it can be used to predict the risk of autism in their offspring. This research
delves into the genetic and sensory factors that may play a role in the development of autism.
It highlights the importance of studying familiar connections and sensory characteristics
for early prediction and intervention.
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2. Machine Learning and Graph Analysis for ASD Classification

A cluster of articles [83,85,88,90,93,95,99,101,104,106,111,113,114] focuses on using
advanced computational techniques, including machine learning, deep learning, and graph
analysis, to classify and diagnose autism. These articles represent the growing interest in
leveraging data-driven approaches to understand and categorize individuals with ASD.
They investigate various data sources, from fMRI data to multi-site datasets, and aim to
enhance accuracy and efficiency in ASD diagnosis.

3. Functional Connectivity and Resting State Analysis

Articles such as [82,84,86,108,110] emphasized the significance of studying functional
connectivity and resting state fMRI data in the context of autism. These articles investigate
how patterns of brain activity at rest can reveal insights into ASD. They explored methods
to analyze and interpret these patterns, providing valuable information for understanding
the disorder.

4. AI and Technology in ASD Diagnosis

Articles [91,114] looked in general at the role of artificial intelligence (AI) and technol-
ogy in diagnosing autism. They considered the integration of AI in analyzing imaging data
such as DTI, MRI, and fMRI scans. Additionally, article [91] provided a survey perspective
on the current state of AI technology in autism diagnosis, highlighting the potential for
technology to assist in this area.

5. Neural Network and Deep Learning Approaches

Several articles [93,104,108,114] examined the use of neural networks, including con-
volutional neural networks (CNNs), in the context of ASD diagnosis. These deep learning
methods were employed to process and interpret complex brain imaging data, with the
goal of improving diagnostic accuracy.

6. Graph Neural Networks and Connectivity Analysis

Articles [90,95,99,111] delved into the application of graph neural networks and con-
nectivity analysis for diagnosing autism. These methods considered the interrelation-
ships and patterns within functional brain networks, offering insights into the brain’s role
in autism.

7. Multi-Site Data and Site-Dependent Analysis

Articles [99,112,113] addressed the challenges associated with using data from mul-
tiple sites for autism diagnosis. They explore techniques to minimize site-dependent
variations and improve the reliability of classification models. These articles highlighted
the importance of standardization and robustness in multi-site studies.

8. Interpretable and Explainable AI in ASD Diagnosis

Articles [101,108] focused on the interpretability of AI methods and the importance
of understanding how AI arrives at its conclusions in the context of ASD diagnosis. This
theme is crucial for gaining insights into the decision-making processes of AI models in
clinical applications.

These detected patterns of interest can certainly be a starting point for scholars to
identify possible lines of study and address them towards specific systematic reviews in
the future.

4.2.2. Interpretation of Results: Problems, Limits, Perspectives, and Final Reflections
Problems, Limits, and Perspectives

The umbrella review shows that the integration of fMRI in autism research comes with
several notable challenges and limitations, as indicated in the provided analysis conducted
in the umbrella review. Firstly [62], there is a call for greater harmonization of experimental
paradigms both within and across neuroimaging modalities. This is crucial because variabil-
ity in the design of experiments can make it difficult to draw meaningful comparisons and

74



Diagnostics 2023, 13, 3552

generalizations across different studies. Without standardized protocols and paradigms,
the results obtained from various fMRI studies may not be directly comparable, which can
hinder progress in the field. Another significant issue [64] highlighted is the high risk of
bias in many studies. Research quality is of paramount importance, and studies with a
high risk of bias can undermine the credibility and reliability of their findings. To advance
our understanding of the relationship between fMRI data and autism, it is essential to
conduct research with rigorous methodology and transparent reporting. Moreover, the
limited sample sizes and a lack of corrections for multiple comparisons in many studies
are significant challenges [65]. Small sample sizes can result in limited statistical power,
making it challenging to detect meaningful effects. Additionally, the absence of corrections
for multiple comparisons can lead to spurious or false-positive findings, which can have
serious implications for the accuracy and validity of results. The outcome [66] also raises
questions about the implications of findings related to OXT alterations in the fMRI brain
networks of individuals with autism. While there is evidence of such alterations, it remains
unclear how these changes in brain activation relate to the alleviation of social deficits in
individuals with autism. Understanding the clinical significance of these fMRI findings
is vital for informing potential treatments and interventions. The cost and signal-to-noise
ratio limitations of fMRI may also present an obstacle [67]. Despite being a valuable tool
for measuring brain function, fMRI is associated with high costs and a relatively low signal-
to-noise ratio. As a result, some authors [67] suggest that it may not be the most practical
and cost-effective option for clinical applications. This limitation prompts researchers to
explore more accessible and clinically-ready functional proxies for assessing brain function
in the context of autism. Research on sex differences in autism using fMRI is another
area that demands attention [70]. The outcome points out that a more comprehensive
and lifespan-oriented approach is needed in this regard. Understanding the relationships
between behavior, sex hormones, and brain development in autism could provide valuable
insights, but this area remains underexplored. Even if machine learning algorithms for
diagnosing autism based on fMRI data have shown promise, in some cases, the accuracy
varies. The limitations highlighted in the outcome of the analysis [75] suggest the need for
further well-designed studies to enhance the potential use of these algorithms in clinical
settings. Machine learning may offer a valuable diagnostic tool, but its full potential is yet to
be realized. Finally, the limitations of the existing literature, such as the use of small sample
sizes and a focus on high-functioning males with autism, suggest the need for a broader
and more inclusive approach to research [60]. This will help ensure that the findings are
more representative of the entire spectrum of individuals with autism and can be more
readily generalized to diverse populations. In summary, integrating fMRI with autism
research faces challenges related to standardization, bias, sample sizes, data correction,
clinical relevance, cost, sex differences, machine learning, and the representativeness of the
studied populations. Addressing these challenges is vital for improving the quality and
applicability of fMRI-based research in the context of autism.

Several missing or underexplored yet intriguing themes have also surfaced in this
context. Within the systematic reviews scrutinized regarding the application of fMRI in
autism, as analyzed in the umbrella review, we encounter the following absent themes:

1. The regulatory aspect concerns the integration of Medical Devices.
2. The issues of cybersecurity and privacy.
3. Acceptance and consent.

Furthermore, this observation, which is corroborated by a comparison with recent
literature [82–104], highlights a current trend leaning more towards the development of
innovative, specialized Artificial Intelligence tools than their routine integration into the
healthcare domain.

This suggests a distinctive direction in research, emphasizing the creation of novel
AI solutions tailored to the specific needs of autism research and diagnosis rather than
immediate integration into standard healthcare practices.
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The umbrella review therefore indirectly suggests focusing on the themes reported in
(1–3). Among the underexplored themes, we find the one of the PM, which analyzes only a
systematic review [69].

PM, also known as precision medicine or personalized medicine, could represent an
innovative approach in the field of autism [115]. This approach would carefully consider
individual differences, including genetics, lifestyle, and environment, with the aim of
personalizing disease prevention, diagnosis, and treatment with the aim of maximizing
therapeutic efficacy and minimizing side effects [115–117], while also integrating with
AI [118,119]. In the specific context of autism, personalized medicine could seek to adapt
treatments based on the specific genetic and biological characteristics of each individual
suffering from autism spectrum disorder (ASD) [120]. This could mean identifying specific
subtypes of autism based on genetic, biochemical, and neurophysiological markers. This
customization would allow for a more accurate diagnosis and personalized assessment
of each patient’s clinical picture, helping to identify the most suitable and effective treat-
ments [121,122]. Furthermore, PM could revolutionize the development of new drugs,
guiding research towards the creation of more targeted therapies, considering the genetic
and biological variations that influence autism. This could lead to the development of more
effective drugs with fewer side effects. In essence, the integration of PM in the field of
autism could lead to a more targeted and effective therapeutic approach, considering the
specific needs of each individual [123,124]. This could translate into a significant improve-
ment in the quality of life of autism patients and their families, opening new perspectives
in the treatment and management of the condition. The umbrella review highlighted the
integration of fMRI and AI in autism [69] as an articulated path due to the need for a
contemporary multidomain and heterogeneous approach in several multifaced fields.

Final Reflections

We are currently witnessing a significant impact resulting from the introduction of
Artificial Intelligence (AI) in the health domain. This impact is notably observed in the
focused efforts to improve the accuracy and efficiency of diagnoses and assessments within
specific medical contexts, achieved through the implementation of advanced AI method-
ologies [125,126]. The significance of AI utilization also becomes evident in the thematic
exploration undertaken in this umbrella review, specifically regarding the integration
of functional Magnetic Resonance Imaging (fMRI) with AI in the context of autism. By
delving into the problems, limitations, and emerging perspectives revealed through this
umbrella review, we gain valuable insights. It allows us to not only pinpoint areas of con-
cern (Table 3) but also identify themes that remain underexplored (Table 4) and recognize
emerging trends (Table 5). This comprehensive understanding serves as a guide, offering
directions for both scholars and stakeholders in the healthcare domain. These directions,
informed by the current state of AI integration in medical research, lay the foundation for
future developments that can potentially transform the landscape of healthcare practices.

Table 3 outlines key areas of concern and suggests actions to enhance the integration of
functional Magnetic Resonance Imaging (fMRI) in autism research. Each issue is identified,
accompanied by recommended steps for improvement.

Table 4 reports the underexplored themes: It focuses on critical regulatory, cyberse-
curity, and ethical aspects associated with the integration of medical devices in autism
research, particularly in the context of functional Magnetic Resonance Imaging (fMRI). The
table highlights key issues and suggests areas for investigation and improvement.

Table 5 reports the emerging trends: It clearly invites researchers and stakeholders to
understand and explore the potential benefits of integrating precision medicine into autism
research. It underscores the importance of personalized approaches to enhance therapeutic
efficacy and minimize side effects, ultimately contributing to an improved quality of life
for individuals with autism and their families.
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Table 3. Areas of concern and improvement.

Issue Needed/Suggested Action

Harmonization of
Experimental Paradigms

Investigate methods for greater harmonization of
experimental paradigms within and across neuroimaging
modalities to enhance comparability between studies.

Bias in Studies
Explore strategies to minimize bias in fMRI studies,
emphasizing rigorous methodology and transparent reporting
to improve the credibility and reliability of findings.

Sample Sizes and Statistical Power

Conduct studies with larger sample sizes and appropriate
corrections for multiple comparisons to increase statistical
power and reduce the likelihood of spurious or
false-positive findings.

Clinical Relevance of
Findings

Investigate the clinical significance of fMRI findings,
particularly regarding alterations in brain networks, to better
understand their implications for the development of
treatments and interventions.

Cost and Signal-to-Noise Ratio
Limitations

Explore alternative, more cost-effective functional proxies for
assessing brain function in the context of autism, considering
the high costs and signal-to-noise ratio limitations associated
with fMRI.

Sex Differences in Autism

Conduct research on sex differences in autism using fMRI,
adopting a comprehensive and lifespan-oriented approach to
understand the relationships between behavior, sex hormones,
and brain development.

Machine learning algoritms

Further refine and validate machine learning algorithms for
diagnosing autism based on fMRI data, addressing the
limitations highlighted in existing studies, to enhance their
potential use in clinical settings.

Inclusive Research Approach

Advocate for a broader and more inclusive approach to
research by expanding the focus beyond high-functioning
males and small sample sizes, ensuring findings are
representative of the entire spectrum of individuals
with autism.

Table 4. Underexplored themes.

Issue Needed/Suggested Action

Regulatory Aspect of
Medical Devices

Investigate the regulatory aspects concerning the integration
of medical devices in autism research, addressing potential
challenges and opportunities.

Cybersecurity and Privacy
Explore the issues of cybersecurity and privacy in the context
of fMRI data and autism research, ensuring the ethical
handling and protection of sensitive information.

Acceptance and Consent
Examine the themes of acceptance and consent in fMRI-based
autism research, considering the perspectives of individuals
participating in studies and ensuring ethical practices.

4.3. Limitations

The methodology employed for this review was grounded in an umbrella review, a
comprehensive approach that scrutinizes systematic reviews sourced from two prominent
databases, namely Scopus and PubMed. Umbrella reviews [58,59] serve as powerful tools
for distilling key themes prevalent in studies within a specific domain, leveraging the
analysis of high-caliber research, particularly systematic reviews. It is crucial to acknowl-
edge, however, that delving into more nuanced and specific aspects necessitates a broader
exploration, encompassing studies of diverse types, including articles and communications.
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Table 5. Emerging trends.

Issue Needed/Suggested Action

Precision Medicine in
Autism

Explore the potential of precision medicine in autism research,
considering individual differences in genetics, lifestyle, and
environment for personalized disease prevention, diagnosis,
and treatment.

Improving the quality of life

Investigate how the integration of precision medicine in
autism research could lead to a more targeted and effective
therapeutic approach, ultimately improving the quality of life
for individuals with autism and their families.

5. Conclusions

In conclusion, this study, conducted through the umbrella review, strongly under-
scores the predominant themes addressed in systematic reviews, focusing on technological
integration (with fMRI playing a pivotal role) and the utilization of AI. Equally deserving
of attention is the mysterious role of oxytocin. The study not only highlights the immense
potential but also the formidable challenges and limitations in this domain. It is worth
noting that there is a growing and fervent interest in advancing research and innovation
in AI within this context, contrasting with the comparatively lesser emphasis on themes
related to the integration of processes in the health domain, such as regulation, acceptance,
consent, and data security. Furthermore, the integration into PM stands out as an exception-
ally vital and relatively uncharted territory, which, intriguingly, holds remarkable promise
for autism research.
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Themis Exarchos 5 and Nenad Filipović 3,4,*
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Abstract: Cardiovascular diseases (CVDs) are a leading cause of death. If not treated in a timely
manner, cardiovascular diseases can cause a plethora of major life complications that can include
disability and a loss of the ability to work. Globally, acute myocardial infarction (AMI) is responsible
for about 3 million deaths a year. The development of strategies for prevention, but also the early
detection of cardiovascular risks, is of great importance. The fractional flow reserve (FFR) is a mea-
surement used for an assessment of the severity of coronary artery stenosis. The goal of this research
was to develop a technique that can be used for patient fractional flow reserve evaluation, as well as
for the assessment of the risk of death via gathered demographic and clinical data. A classification
ensemble model was built using the random forest machine learning algorithm for the purposes
of risk prediction. Referent patient classes were identified by the observed fractional flow reserve
value, where patients with an FFR higher than 0.8 were viewed as low risk, while those with an
FFR lower than 0.8 were identified as high risk. The final classification ensemble achieved a 76.21%
value of estimated prediction accuracy, thus achieving a mean prediction accuracy of 74.1%, 77.3%,
78.1% and 83.6% over the models tested with 5%, 10%, 15% and 20% of the test samples, respectively.
Along with the machine learning approach, a numerical approach was implemented through a 3D
reconstruction of the coronary arteries for the purposes of stenosis monitoring. Even with a small
number of available data points, the proposed methodology achieved satisfying results. However,
these results can be improved in the future through the introduction of additional data, which will, in
turn, allow for the utilization of different machine learning algorithms.

Keywords: cardiovascular diseases; acute myocardial infarction; fractional flow reserve; machine
learning; ensemble; random forest; 3D reconstruction

1. Introduction

The World Health Organization estimates that cardiovascular diseases are the leading
cause of death in the world with 17.9 million fatal outcomes annually. Cardiovascular
diseases are responsible for significant medical, social and economic consequences globally.
They represent one of the leading causes of disability, a loss in the ability to work and
premature mortality, as well as place high costs on health care systems. According to the
literature data, CVDs result in 31.8% of all the reported deaths in the world, and half of
these outcomes are as a result of ischemic heart diseases [1–3].

Acute myocardial infarction is manifested through the necrosis of the heart muscle,
which occurs due to coronary artery occlusion and the insufficient oxygenation of car-
diomyocytes. The prevalence of acute myocardial infarction is about three million people,
with more than a million deaths per year occurring in the United States [4]. Considering the
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serious consequences of this disease, there is a need to develop strategies for the prevention
and early detection of cardiovascular risks, as well as for the rapid diagnosis of AMI for
the timely application of adequate therapy [5].

The rupture of unstable atherosclerotic plaque, thrombosis and the acute reduction
in blood flow through the coronary artery, with its consequent occlusion, are some of
the possible mechanisms of AMI development [6,7]. A study suggested that that the
characterization of culprit lesions by optical coherence tomography supported the concept
that plaque erosion is more common in cases of non-ST-segment-elevation myocardial
infarction (NSTEMI), while plaque rupture is more prominent in cases of ST-segment-
elevation myocardial infarction (STEMI) [8].

Dyslipidemia is one of the key proposed factors in the progression of atherosclerosis.
It has also been shown that a decrease in the concentration of low-density lipoprotein
cholesterol (LDL-C) in high-risk patients is one of the key strategies in the prevention of
ischemic heart disease [9,10]. Namely, the reduction in LDL concentration by 1 mmol/L
over five years in middle-aged people reduces the risk of developing CVD by 20% [11].

The laboratory measurement of cardiac biomarkers enables the rapid diagnosis and
monitoring of patients with AMI, as well as the possibility of individualizing the therapy
according to the characteristics and risks of the patient. A laboratory establishment of
CKMB activity is used in diagnosis, the assessment of the severity of the clinical picture
and in the prediction of the prognosis of AMI. This isoenzyme, due to myocardial necrosis,
shows an increase in activity in the patient’s serum after 4 to 8 h from the onset of chest
pain; this then reaches a maximum within 18–24 h, and then returns back to a normal value
after 24–48 h [12]. According to the data from the literature, the establishing of CKMB
activity together with concentrations of myoglobin, troponin I and NT-proBNP, also have
a—apart from diagnostic—prognostic significance [13].

The dominant biomarkers of myocardial damage today are certainly cardiac troponins
(i.e., TnI and TnT). High-sensitivity troponins entered the clinical practice guidelines and
were incorporated into the universal diagnostics definition of AMI [14]. The diagnosis
of AMI is established by the detection of an increase or decrease in cardiac biomarkers,
especially troponin, with at least one concentration that is larger than the 99th percentile of
the healthy population and at least one symptom of ischemia [15,16].

The establishment of NT-proBNP is significant in the assessment of ventricular dys-
function and myocardial ischemia. This highly specific and sensitive cardiac biomarker
is also a powerful predictor of the development of heart failure and mortality after
AMI [17,18].

In current clinical guidelines, the most important diagnostic/therapeutic strategy in
the management of patients with confirmed AMI is the invasive coronary angiography.
By performing this procedure, the disease is indicated within 24 h in patients who meet
at least one of the high-risk criteria for AMI (high cardiac troponins, dynamic changes
in the electrocardiogram or a Global Registry of Acute Coronary Events risk score of
>10). Percutaneous coronary intervention enables the establishment of a flow through the
occluded coronary artery (which is the cause of AMI), as well as helps in gaining insights
into the condition of other blood vessels.

Fractional flow reserve measurement is used to quantitatively assess the severity of the
coronary artery stenosis identified during invasive coronary angiography. FFR is defined
as the ratio between the maximum possible blood flow in the diseased coronary artery
and the theoretically possible maximum blood flow in the normal coronary artery. During
angiography, FFR is measured using a wire (catheter) for measuring coronary pressure, as
well as by calculating the ratio between the coronary pressure distal to the coronary artery
and the pressure in the aorta when under conditions of maximum myocardial hyperemia.
This ratio shows the potential decrease in the flow distal to coronary stenosis. In healthy
people, the FFR is 1, whereas an FFR lower than 0.75–080 indicates myocardial ischemia.
FFR values less than 0.75 indicate the need for revascularization [19,20].
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Multidetector computed tomography fractional flow reserve (MDC FFR) is used for a
more elaborate assessment of the hemodynamic significance of coronary artery stenosis
when compared to classic FFR. This quantitative technique is built on processing, based on
a mathematical model of fluid dynamics, the obtained data.

A decision tree algorithm is a supervised classification algorithm that is based on a
binary tree structure. This algorithm splits the ranges of input variables to create conditions
with which the dataset can be split between two or more classes. Each condition represents
a node of the binary tree. Each node branches into two other nodes, where each branch
represents one of the two possible outcomes of the set condition. The leaves of the decision
tree represent classes, which are then assigned to the samples of data.

A random forest classification algorithm is a supervised classification algorithm that is
based on an ensemble of multiple decision tree models. Each decision tree model contained
within the random forest has the same aforementioned way of making decisions, but it is
trained with different, randomly selected subsets of data. Each decision tree is capable of
making its own decisions, but the final output of the random forest is made by counting the
number of times each class was chosen by the decision trees and by selecting the class that
was chosen the highest number of times. The random forest approach reduces variance
in classification with its voting process when compared to a single decision tree, and it
achieves this while also reducing the overfitting of the model by feeding each tree with a
smaller subset of the initial set of data.

In recent times, artificial intelligence has been gaining a strong foothold in medical
science. Machine learning and deep learning models are gaining a widespread use in
the automation of disease classification, disease development over time, as well as risk
monitoring through the use of classification and regression analysis algorithms. Several
studies have been conducted for the purposes of FFR patient risk classification [21–23]. All
of these studies used data comprising computed tomography angiography (CTA) images
for training convolutional neural networks. In this paper, we propose a methodology based
on an ensemble of machine learning models for the purposes of patient risk classification
through fractional flow reserve measurements using demographic and clinical data. The
created system is meant to serve as a decision support tool for medical experts.

2. Materials and Methods

This section of the paper contains information on the available data, as well as the
methodology used for the data preprocessing and the creation of the final classification
model. The methodology used is depicted in Figure 1.

2.1. Dataset

Our dataset is composed of the clinical data gathered from patients in the form of
biomarkers and the descriptive data points regarding primary and follow up diagnosis,
as well as the descriptive data points that define the position and degree of stenosis and
lesions in three defined arteries from the left and right coronary artery trees. Along with the
aforementioned data collected directly from patients, our dataset contains simulated FFR
values, which represent the target to be used in the classification of patients into high-risk
or low-risk classes.

86



Diagnostics 2023, 13, 3349

Figure 1. Graphical representation of the applied methodology.

During the visits, blood samples were taken from the patients according to the usual
standards of clinical biochemistry. All biomarkers were determined in the Laboratory
Diagnostic Service of the University Clinical Center Kragujevac. Standard laboratory
methods were used in all the patients to establish the following values: hematological
parameters (total number of leukocytes); concentrations of biochemical parameters (glu-
cose, urea, creatinine, uric acid, cholesterol, triacylglycerols and LDL); the enzyme activity
of cardiomyocyte damage markers (CK, CKMB, AST and LDH); and cardio-specific pro-
teins (hs TNI and NT-proBNP). Hematological parameters were established on a DxH900
hematological counter, Beckman Coulter Analysers and biochemical parameters. The
cardio-specific enzymes were established on an Oly AU 680 biochemical analyzer and
on Beckman Coulter Analyzers. An Abbot Allinity immunochemical analyzer was used
to establish the concentration of hsTNI, whereas the concentration of NT-proBNP was
measured on a Cobas e411 immunochemical analyzer (Roche Diagnostics, Mannheim,
Germany). All laboratory measurements included the implementation of regular internal
and external quality controls in accordance with the recommendations of good laboratory
practice. The study conduction was complied with the code of ethics of the World Medical
Association (Declaration of Helsinki), and it was also approved by the Ethics Board of
University Clinical Centre Kragujevac.

In our study, we have included patients suffering from coronary artery disease, where
80% had a history of AMI. Most of the patients had between 40% and 50% of stenosis,
which meant that they belonged to the intermediate class of coronary artery stenosis; this
was the reason virtual FFR was applied as a validation tool.

All the features used in the creation of a machine learning model, as well as their data
types and ranges, are shown in Table 1.
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Table 1. Dataset description.

Name Type Range

Numeric FFR Numeric 0–1

Risk class Binary [0, 1]

Smoker Binary [0, 1]

Gender Binary [0, 1]

Age Numeric 36–73

CK Numeric 61–3353

CKMB Numeric 11–324

AST Numeric 12–348

LDH Numeric 210–2557

Troponin Numeric 0.0124–58.96

pBNP Numeric 48.1–32,700.0

CRP Numeric 3.3–122.6

Leukocyte Numeric 7.1–18.61

Glucose Numeric 4.7–16.3

Urea Numeric 5.0–23.2

Creatinine Numeric 59.0–1447.0

Ac. uricum Numeric 204.0–532.0

Cholesterol Numeric 3.33–7.4

Trig Numeric 0.88–8.3

HDL Numeric 0.7–2.07

LDL Numeric 2.57–5.88

Atherosclerosis index Numeric 3.23–6.17

Cholesterol/HDL Numeric 3.28–9.43

LAD Descriptive/Numeric 0–1

LCx Descriptive/Numeric 0–1

RCA Descriptive/Numeric 0–1

The dataset contained data on 276 patients, of which 181 had simulated FFR values.
Of the 181 labeled patients, 123 belonged to the low-risk class and 58 belonged to the
high-risk class. Our approach included the training of a machine learning model with
181 patients for which the simulated FFR values were available. The geometries for the
numerical simulation of FFR for these 181 patients were taken from the invasive coronary
angiography images. In addition, a 3D finite element model was built based on the
methodology published in [24]. Details on the 3D reconstruction and analysis are given in
Section 2.3. We have already published several papers related to the numerical simulations,
and we have obtained a good match with the measurements of FFR [25,26]. Now, this
methodology was used as a standard to compare with the results of ML model.

The remaining 95 patients were patients who had suffered an AMI in the past, as well
as had clinical and demographic data available; however, these patients were unlabeled
because their geometric coronary angiography data were not available. Because the 95 unla-
beled patients still represented possible real world combinations of the feature values, these
patients were used for missing data imputation. However, the labels could not be assigned
to those patients, so they could not have been used for the validation of machine learning
models in any way. The 95 unlabeled patients were fed into the final classification model
in order to demonstrate the application of the proposed methodology on those patients
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with unknown FFR values. The main challenge was that the data of those 181 patients was
a very low amount of data that was used for training. After this, the model was applied
to predict the values for the new 95 patients (for which the FFR values were unknown).
Nevertheless, since the final machine learning model was meant to classify the patients
using non-geometric parameters, it was expected that the model would achieve similar
classification results to the results obtained during the testing on labeled data. It is impor-
tant to emphasize that the application of the proposed methodology to the unlabeled data
cannot be viewed as a validation attempt. The application of the proposed methodology
represents a transfer of the learned medical knowledge from the labeled subset of patients
to the patients for whom the ground truth was unknown. The added value of the proposed
methodology was that the numerical calculations with a combination of the real measure-
ments of the FFR could help in the future to significantly increase the size of the dataset, as
well as increase the accuracy of the proposed ML models.

The problem of missing data in a dataset was tackled using a conventional approach,
whereby the missing samples were filled in depending on the type of data contained in
the column in question. Namely, the numeric data were replaced by the mean value of the
already present values in the examined column, and the categorical data were replaced by
the most common value in the column. For the purposes of data imputation, there was an
attempt at using a multiple imputation approach via chained equations, but the results
were very poor because of the low correlation between the different features; as such, the
aforementioned approach yielded far greater results.

As for the descriptive data regarding stenosis and the lesion values of the three arteries,
they were required to be translated into numeric values so that they could be used during
the training of the classification model. The problem arose with the formatting of the
descriptive data, and this was because very similar situations were described in completely
different ways; as such, there was no way of translating these data other than translating
them directly by hand and approximating the meaning. The data were translated as follows:

• Data that contained percentile values for the narrowing of the observed artery were
translated as a numeric sample corresponding to the percentage value.

• Data that contained an approximation of the narrowing in the form of a range of
values were translated as a numeric sample that corresponded to the average value of
the observed range.

• Data that did not contain percentage values of the narrowing but did have an indication
that the narrowing was not substantial were translated as if they held information of a
10% narrowing.

• Data that did not contain percentage values of the narrowing but did have an indication
that the narrowing was very minor were translated as if they held information of a 5%
narrowing.

• Data that did not contain percentage values of the narrowing but indicated an orderly
arterial lumen were translated as if there was no narrowing at all.

• Data that did not contain any indication of the size of the narrowing nor contained
the previously mentioned phrases with which the narrowing was estimated were not
translated at all. Instead, they were approximated as a mean value of all of the other
translated values.

Lastly, the available simulated FFR values were written in the form of a floating-point
notation between the values of 0 and 1. These values had to be transcribed into categorical
values that represented the risk class of the patient so that they could be used as output
values of the classification model.

With regard to FFR, the patients could be divided into 3 risk classes. The low-risk
class was defined by an FFR greater than 0.8, while the high-risk class was defined by an
FFR lower than 0.74. There also existed a class between the values of 0.74 and 0.8, which
was defined as a border class because the patients in this range could be considered both
high-risk and low-risk; the final classification was the doctor’s prerogative [27]. When
transcribing the data, this border class was viewed as a part of the high-risk class and
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was merged. This was performed because of the inherent risk of falsely putting high-risk
patients as anything other than a high-risk class.

2.2. Data Correlation

After data preprocessing, we ran tests to find the correlations between the input values
and the designated output FFR value. These correlations were calculated with the aim
of expanding the dataset using high correlation features to create more labeled data. The
correlation between the features and the patients’ FFR is shown in Table 2.

Table 2. Feature correlations with the FFR.

Feature
Correlation with the

FFR
Feature

Correlation with the
FFR

Smoker −0.39 Urea 0.15

Gender −0.19 Creatinine 0.11

Age 0.21 Ac. Uricum 0.40

CK −0.21 Cholesterol −0.02

CKMB −0.07 Trig 0.09

AST −0.14 HDL 0.03

HDL −0.33 LDL 0.06

Troponin 0.25 Atherosclerosis index 0.16

pBNP 0.33 Cholesterol/HDL 0.02

CRP −0.18 LAD 0.50

Leukocyte −0.23 LCx 0.25

Glucose 0.30 RCA 0.30

With the available data, it was not possible to expand the dataset because there were
no features that had a high correlation with the FFR values. The classification model had to
be created using only the initial data, which presented a challenge due to the small amount
of labeled data.

2.3. 3D Reconstruction and Analysis

Three-dimensional models of the right and left coronary arteries were reconstructed
from DICOM angiography images. An eight-node brick element was obtained as the final
element. PAK-F software, version 2023 [28] was used for the numerical solution of the
fluid flow problems. The three-dimensional flow of a viscous incompressible fluid that
is considered here is governed by the Navier–Stokes equations [28], and its continuity
equation can be written as follows:

ρ(ui · ∇)ui +∇pi − μΔui = 0 (1)

∇ui = 0 (2)

where ui is velocity, pi is pressure, μ is the dynamic viscosity and ρ is the density of blood.
The first equation represents the balance of linear momentum, while Equation (2) expresses
the incompressibility condition. By applying the Galerkin method on the previous two
equations, we obtained the final form of the discretized Navier Stokes equations as follows:

[ 1
Δt M + n+1K̂i−1

vv Kvp
KT

vp 0

]{
ΔVi

ΔPi

}
=

{n+1Fi−1
ext

0

}
−
[ 1
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KT
vp 0

]{n+1Vi−1

n+1Pi−1

}
+

{ 1
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0
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(3)
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FFR is defined as the ratio of the maximum flow through a coronary artery in the
presence of stenosis with the maximum flow through a normal coronary artery [29]:

FFR =
QS

QN (4)

where QS is the flow through an artery with stenosis, and QN is the flow through an artery
without stenosis. The flow through an artery without stenosis can be calculated as follows:

QN =
pa − pv

R
(5)

where pa is the mean aortic pressure, pv is the mean venous pressure and R is the resistance
through the heart. The flow through the artery with stenosis is calculated in a similar way:

QS =
pd − pv

R
(6)

where pd is the mean distal pressure in coronary arteries with stenosis. When we substitute
Equations (6) and (5) into Equation (4), we obtain the following:

FFR =
pd − pv

pa − pv
≈ pd

pa
(7)

In the case of healthy arteries, the FFR value is 1. Based on clinical trials, the critical
value for stenting is any value that is ≤0.75.

Blood was considered as an incompressible Newtonian fluid with a dynamic viscosity
of μ = 0.00365 Pas and a density of ρ = 1050 kg/m3. In order to calculate the numerical FFR
value, two separate simulations were performed for each case. A pressure of 100 mmHg
was applied at the inlet, and the flow rates of 1 and 3 mL/s were applied at the outlet.
Patient-specific microvascular resistance was considered a specific Windkessel boundary
condition. This was algebraically coupled to calculate the outlet pressure and flow, which
was informed in each time step of the 3D computational fluid dynamics simulation [26].

2.4. Classification Model

The main problem encountered in the development of our classification model was
the inability to test the model’s performance because of the small amount of data labeled
with a risk class. More specifically, the data from 181 patients were not enough to build
a comprehensive test set. To overcome this problem, we resorted to using an ensemble,
which consists of a great number of less complex prediction models [30].

These less complex prediction models were also smaller ensemble models that were
created using the random forest classification algorithm. First, we trained 19 random forest
classification models that consisted of 50 decision trees and were without constraints in
regard to the minimum samples required for creating branching nodes and leaves. The
181 labeled patients from the original dataset were split into 20 groups of data samples,
each containing 5% of the data and including both high-risk and low-risk patients. Each of
the models was trained using a different configuration of 19 groups of training samples,
and they were tested with the one remaining group of samples. After that, we trained
more models with every possible configuration of 18, 17 and 16 groups of training samples,
as well as tested them with their respective combinations of 2, 3 and 4 remaining test
sample groups.

The major drawback of the standard approach is that, when a model makes a wrong
prediction with such a small test set, the final accuracy metric was severely impacted. To
resolve this problem, we kept only the models that were deemed capable of predicting
their respective test sets very precisely. In the case of models trained with a configuration
of 19 training samples, only those models that predicted 6 out of 9 test samples correctly
were kept. In the case of models that used bigger test sets, only those that achieved the set

91



Diagnostics 2023, 13, 3349

threshold for classification accuracy were kept. We achieved this by setting thresholds of
66%, 75%, 75% and 80% accuracy for the models being tested with 1, 2, 3 and 4 test sample
groups, respectively. Only models above the given threshold were kept while the others
were discarded. In the end, a total of 2785 classification models were obtained, and each
model was trained with different configurations of the samples from our starting dataset.

The final model we created was an ensemble of these 2785 models. Each new sample
from the original dataset was fed to every one of these models in succession. After new
pieces of data were fed to all of the models in this ensemble, the final decision was made by
counting up the outputs for each class and picking the one that was chosen most frequently.

3. Results

This section of the paper provides a review of the results acquired from the training
and testing of the classification model, as well as presents the possible approaches through
which to improve its performance in the future.

3.1. Classification Results

In the starting dataset, an imbalance can be noticed between the samples belonging to
the high-risk class, of which there were 58 samples, and the low-risk class, of which there
were 123 samples. Moreover, there was a risk of falsely classifying the patients into the
low-risk class when they should be in the high-risk class. Hence, we first opted to evaluate
our model using the F1 score metric on the high-risk class. However, we experienced some
difficulties evaluating the final model in such a manner.

In the main, the F1 score metric was spoiled due to its tendency to evaluate the model
through only using the results achieved from a single class. In this case specifically, there
were multiple lower-level models that had been tested using only samples belonging to
class 1, or, in this case, the low-risk class. In these situations, the F1 score was drastically
lowered even though it was able to predict multiple test samples correctly. The problem was
that the sizes of the test datasets were quite small and could not be increased in any way.

As a result, prediction accuracy was chosen as the main evaluation metric of our
model’s capabilities. The final model’s accuracy was calculated as a mean of the accuracy of
each of the lower-level models that were used in creating an ensemble for the final model.
This accuracy metric is a simulated metric that evaluates the average performance of all the
final model’s pieces instead of the entire final model. The classification model achieved an
estimated prediction accuracy of 76.21%. The average performances for the models trained
with different configurations of training and test sets are shown in Table 3.

Table 3. Classification accuracy metrics.

Train: Test Split Mean Prediction Accuracy

95%: 5% split 74.1%

90%: 10% split 77.3%

85%: 15% split 78.1%

80%: 20% split 83.6%

Final model 76.21%

3.2. Feature Importance

The importance of the features used during the training process of our classification
model varied from one lower-level model to the next. This variation was caused by differ-
ences in the training data sample groups, which affected the model’s ability to consolidate
the concrete values for the importance of certain features.
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However, some features varied less than others. Every training feature at our disposal
was a crucial part of at least some of the classification models, but those features that did
not vary much were the best features in a majority of the classification models and served
as a backbone to the final classification ensemble. In the end, feature importance was
calculated for the final model as a whole, and this was expressed as a mean value of the
feature importance across all of the lower-level models. These feature importance values
are shown in Table 4.

Table 4. The simulated feature importance of the final model.

Feature Feature Importance Feature Feature Importance

Smoker 0.023 Glucose 0.058

Gender 0.014 Urea 0.048

Age 0.048 Creatinine 0.047

CK 0.042 Ac. Uricum 0.077

CKMB 0.045 Cholesterol 0.048

AST 0.047 Trig 0.037

LDH 0.048 HDL 0.043

Troponin 0.057 LDL 0.045

pBNP 0.074 Atherosclerosis index 0.009

CRP 0.041 Cholesterol/HDL 0.059

Leukocyte 0.058 Observed coronary artery 0.032

The feature importance of ac. uricum, pBNP, leukocyte, troponin and glucose var-
ied very little between the different models. The feature importance of cholesterol/HDL,
AST, urea and creatinine varied heavily between the models, ranging from being ex-
tremely important in some and mostly redundant in others. The feature importance of the
atherosclerosis index, trig, smoker and gender was quite low across the board; however, the
number of good models was slightly reduced every time one of these features was omitted
from the training process.

These feature importance values, especially those that had very little variation be-
tween models, can be used to explain the learning and decision-making process—after the
evaluation of the patient’s state—of the final model to the patient.

3.3. Numerical Simulation Results

Figure 2 shows the results of four patients after a numerical simulation in the case of a
flow rate of 3 mL/s. This flow rate was a standard maximum flow for the measurement of
FFR when adenosine was intravenously administrated. A red circle can be seen in Figure 2,
which marks the observed stenosis on the artery. As already mentioned, a good agreement
between the numerical simulations and the measurements of FFR was obtained, and this
was the reason we used numerical results to validate the ML model [25,26].
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Figure 2. Pressure distribution, based on finite element analysis, in the coronary arteries. The FFR
value was calculated based on numerical simulations.

4. Discussion

The main limiting factor during the creation of a classification model, for the purposes
of classifying the patients based on their FFR, was the very low amount of available labeled
data. The low amount of data severely limited the possibilities when choosing the base
algorithm and tuning the parameters of the classification models. We hypothesized that the
classification process could be drastically improved if there were more labeled data samples.

Also, the current model’s prediction capabilities could be improved by adopting a
different approach to building the ensemble. One of the ways through which to achieve
this improvement is to fine tune the models by utilizing grid search during the training
process. Fine tuning would exponentially increase the training time of the model, but it
would also potentially increase its prediction performance in the end. Another approach
that could be utilized was the creation of different types of classification models with the
same configurations of training and testing datasets [31].

Furthermore, even though the imbalance between classes was not large, this imbalance,
when paired with the size of the entire labeled dataset, rendered the use of traditionally
good ensemble inclusions impossible. Namely, when working with small datasets, machine
learning algorithms such as K-Nearest Neighbors and the Support Vector Machine achieve
good classification results. However, each of these approaches had some drawbacks when
used in this particular situation.

The Support Vector Machine algorithm is a kernel-based classifier, which divides
the training data using multidimensional hyperplanes, the dimensionality of which is
dependent on the dimensionality defined by the model input parameters. As an algorithm,
it is capable of perfectly separating a dataset based on training data samples while keeping
the Euclidean distance between the physical representations of the training data points in
multidimensional space at the maximum. However, problems arise with the generalization
capabilities of such models for newly introduced data. For this reason, a coefficient of error
tolerance was introduced, which allows the algorithm to make minor mistakes during
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training but also increases the potential to better generalize when making decisions in the
future. The problem in this particular situation arises when any high-risk patient is present
in the test set as this reduces the number of available high-risk patients for training. Any
value of allowed error tolerance renders the models incapable of predicting the high-risk
class in an acceptable manner.

Similarly, the K-Nearest Neighbors algorithm, while not an algorithm that creates
a mathematical model in the true meaning of those concepts, is still capable of splitting
a multidimensional hyperspace into sections belonging to observed classes. The class
separation of this algorithm is based on the proximity of similar training data points in
the n-dimensional space. The high-risk patients defined two dense clusters within the
aforementioned space, and this was achieved by clearly separating the zones within which
the patient would be considered as under a high risk of AMI from those that could be
considered to be under a low risk of suffering AMI. Introducing high-risk samples into
the test set reduced the density of these clusters. This, consequently, greatly reduces the
area inside the n-dimensional hyperspace within which the patient could be classified as
high-risk, or, as in some situations, where those zones would be eliminated.

With the increase in the size and diversity of the dataset that was available for model
training, the inclusion of a classification model other than the random forest model in the
final ensemble became a possibility. While the introduction of new models would increase
the time needed for training and parameter optimization, as well as slightly increase the
time needed for prediction, the introduction of these models would, on the other hand,
further reduce the output variance and greatly increase the versatility of the final ensemble.

High-quality data are seldom available in large amounts in fields of research like
medicine due to ethical guidelines and patient privacy protection. Furthermore, medical
data that are tied to specific diseases are, in some cases, region-specific, and they are also
much sparser in some locations compared to others. In order to address these challenges,
the proposed methodology serves as a proof of concept for a way in which to improve the
automatic diagnosis approach when using a small amount of available data.

The main limiting factor of this study was the small amount of real data available
as input to the ML model. Commonly used techniques for dataset enhancement that
include the generation of new data through oversampling and the estimation of labels for
unlabeled samples when using multiple imputations through chained equations are not
always applicable to certain datasets and they do not always yield satisfying results.

Therefore, the added value of this paper primarily lies in the fact that we have proposed
a methodology that deals with datasets that have a small amount of data. In fact, high
amounts of data are hard to obtain in the medical field due to requiring ethical approvals
and the need to ensure data privacy protection. As a result, this paper focuses on the
novel methods that could be used on small datasets and can thus surpass traditional data
enhancement methods. Although applied on a specific dataset regarding the assessment
of the risk of suffering an acute myocardial infarction, the proposed methodology can be
translated to other medical datasets as well. In addition, the novelty of the paper lies in
the validation of the proposed methodology with simulated FFRs via the finite element
method (FEM). The proposed approach would reduce the time needed for diagnosis and
works to eliminate invasive coronography, as the data used in this paper were faster and
easier to obtain than the real measurements of FFR.

In future research, numerical calculations combined with real measurements of FFR
could be used to significantly increase the size of the dataset and achieve better accuracy
in the proposed ML models. In addition to the improvement of the proposed machine
learning approach to assessing the risk of AMI, an additional increase in the amount of
available data would enable the transfer from machine learning algorithms to creating a
specialized neural network for patient classification.
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5. Conclusions

Cardiovascular diseases are the leading cause of death globally and a major contributor
to life-altering complications such as a loss in the ability to work and physical disabilities.
Acute myocardial infarction occurs due to coronary artery occlusion and the insufficient
oxygenation of cardiomyocytes.

The main goal of this study was to create a decision support system that is capable of
classifying patients into risk classes based on their calculated fractional flow reserve. The
risk classes within the final ensemble model were defined by the observed FFR value of
patients, where 0.8 was chosen as a threshold value. Patients with an FFR value higher
than 0.8 were viewed as belonging to the low-risk class, while those with an FFR lower
than 0.8 were considered as being in the high risk-class.

In order to classify patients, an ensemble model was constructed from multiple random
forest classification models, which were all trained using different combinations of training
and test data. The final classification model achieved a value of 76.21% prediction accuracy.
Machine learning models that showed good prediction capabilities were incorporated into
the final classification ensemble, and they achieved mean prediction accuracy values of
74.1%, 77.3%, 78.1% and 83.6%, which were tested with 5%, 10%, 15% and 20% test samples,
respectively.

In conclusion, we have succeeded in creating a machine learning ensemble that is
capable of classifying patients based on their risk of death via a fractional flow reserve,
which greatly improves prediction capabilities over a single machine learning model, even
when using a small amount of available training data. Additionally, feature importance was
calculated based on the training weights of the created model, which provides a possible
starting point for future research and classification accuracy improvements.
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Abstract: Kidney tumors represent a significant medical challenge, characterized by their often-
asymptomatic nature and the need for early detection to facilitate timely and effective intervention.
Although neural networks have shown great promise in disease prediction, their computational de-
mands have limited their practicality in clinical settings. This study introduces a novel methodology,
the UNet-PWP architecture, tailored explicitly for kidney tumor segmentation, designed to optimize
resource utilization and overcome computational complexity constraints. A key novelty in our ap-
proach is the application of adaptive partitioning, which deconstructs the intricate UNet architecture
into smaller submodels. This partitioning strategy reduces computational requirements and enhances
the model’s efficiency in processing kidney tumor images. Additionally, we augment the UNet’s
depth by incorporating pre-trained weights, therefore significantly boosting its capacity to handle
intricate and detailed segmentation tasks. Furthermore, we employ weight-pruning techniques to
eliminate redundant zero-weighted parameters, further streamlining the UNet-PWP model without
compromising its performance. To rigorously assess the effectiveness of our proposed UNet-PWP
model, we conducted a comparative evaluation alongside the DeepLab V3+ model, both trained on
the “KiTs 19, 21, and 23” kidney tumor dataset. Our results are optimistic, with the UNet-PWP model
achieving an exceptional accuracy rate of 97.01% on both the training and test datasets, surpassing
the DeepLab V3+ model in performance. Furthermore, to ensure our model’s results are easily
understandable and explainable. We included a fusion of the attention and Grad-CAM XAI methods.
This approach provides valuable insights into the decision-making process of our model and the
regions of interest that affect its predictions. In the medical field, this interpretability aspect is crucial
for healthcare professionals to trust and comprehend the model’s reasoning.

Keywords: adaptive partitioning; explainable AI; kidney tumor segmentation; optimization; weight
pruning; UNet-PWP; DeepLabV3+; GCAM-attention
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1. Introduction

The kidneys serve a vital role in the human body by filtering waste products and
toxins from the bloodstream [1,2]. Tumors, or cancers, result from the abnormal growth
of cells and can manifest differently in individuals, leading to various symptoms. Early
detection of kidney tumors (KT) is paramount for mitigating the risk of disease progression
and preserving the patient’s life [2,3]. Although approximately one third of KT cases are
identified after spreading to other areas, many remain asymptomatic and are incidentally
discovered during unrelated medical evaluations. Kidney tumors can manifest as masses,
cysts, or abdominal discomfort in patients, often unrelated to kidney function [4,5]. Nev-
ertheless, some subtle symptoms or complications may arise due to KT, including low
hemoglobin levels, weakness, vomiting, abdominal pain, hematuria (blood in urine), or
elevated blood sugar levels. Anemia is also a common occurrence, affecting about 30% of
KT patients [6,7]. Unfortunately, tumors and solid masses that develop within the kidneys
frequently become cancerous. Detecting the presence of cancer is crucial in selecting the
appropriate treatment method, as the prognosis and recovery rate often hinge on early
identification. Computed tomography (CT) scans of the abdomen and pelvis are among the
essential diagnostic tests used to ascertain the presence of kidney tumors. These scans pro-
vide specific characteristics that aid in tumor detection and assessment. Figure 1 illustrates
a case of KT, depicting a renal mass lesion in the left kidney measuring approximately 4 cm
(with the kidney in red and renal cancer in green). Given the life-threatening nature of
tumors, accurate diagnosis is paramount, leading to various procedures aimed at assisting
the physician [8,9]. Deep learning (DL) is a remarkably potent machine learning technol-
ogy capable of autonomously acquiring numerous features and patterns without human
intervention [10–12]. DL has empowered the development of predictive models for early
tumor disease detection, with scientists relying on established pattern analysis techniques.
DL algorithms have demonstrated superiority over traditional machine learning methods,
yielding impressive results [13–15]. Furthermore, DL frequently achieves performance
levels that match or exceed human capabilities, making it the preferred approach for han-
dling image-related tasks [16,17]. This heightened recognition of DL in image processing,
particularly within the medical domain, is attributed to the central role of radiology in
extracting valuable insights from images.

Figure 1. An example of a segmented slice from volume of CT scan Modality. The kidney region is
shown in purple, the tumor is shown in green, and the cyst is shown in blue.

Semantic segmentation, a task in computer vision, has witnessed significant advance-
ments with the proliferation of DL techniques. DL has proven highly effective in enhancing
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image understanding [18,19]. These DL methods for semantic segmentation can be catego-
rized into several approaches, including region-based, fully connected network FCN-based,
and semi-supervised methods. Region-based methods follow a pipeline approach, initially
extracting free-form regions from input images, followed by region-based classification.
Ultimately, these methods assign labels to pixels based on the scored areas [19]. In contrast,
FCN-based methods do not require region proposal extraction. Instead, they learn a direct
mapping from pixel to pixel, allowing them to handle images of arbitrary sizes [19]. Semi-
supervised methods are useful when dealing with datasets requiring extensive time for
mask annotation. These methods aim to make the most of the available annotated data
while incorporating unsupervised techniques to improve segmentation results [19].

Moreover, in addition to these primary categories, explainable artificial
intelligence (XAI) [20] holds promise in shedding new light on disease characteristics,
potentially serving as an indicator for assessing responses to exposure or other therapeutic
interventions. Nevertheless, it is imperative that XAI offers clarity regarding the com-
prehensibility of its decisions, explanations, and potential associated errors. Therefore,
before XAI can be considered a valuable and reliable tool for testing research hypotheses or
aiding clinical decision-making, it must navigate several critical “translational gaps” [20,21].
Furthermore, the recently implemented European Medical Device [22] Regulation (EU
MDR) imposes stringent transparency regulations that must be followed before integrating
such a tool into clinical practice [23]. XAI thus holds the potential to be a pivotal factor
in promoting greater transparency, ethical considerations, unbiased practices, and overall
safety and trustworthiness in the deployment of DL algorithms within clinical settings.

Furthermore, in addition to our proposed model architecture, we have also incorpo-
rated state-of-the-art networks into our research; notably, the DeepLab V3+ [23] network
along with XAI Grad-CAM [20]. Finally, our model’s performance has been rigorously
assessed and validated using renal CT scans obtained from the KiTS datasets for the years
2019, 2021, and 2023 [24,25].

1.1. Contribution of Our Proposed Work

• Novel Methodology: We propose a novel methodology for medical image segmen-
tation, addressing hardware constraints through adaptive partitioning and weight
pruning.

• Progressive Model Construction: Our approach allows us to incrementally deepen
UNet submodels while maintaining a consistent number of parameters, maximizing
the architecture’s potential.

• GCAM-Attention:GCAM-Attention Fusion contributes to a model that excels in seg-
mentation accuracy and computational efficiency and provides transparency and
interpretability.

• Enhanced Kidney Tumor Segmentation: Our work focuses on kidney tumor segmen-
tation, significantly improving accuracy and efficiency in this medical task.

1.2. Organization of the Paper

The remainder of this paper is organized as follows: Section 2 encompasses an explo-
ration of related works, offering insights into the existing body of knowledge within the
field. It provides a context for the current study by examining prior research endeavors.
Section 3 delves into the methodology and materials employed, elucidating the architecture,
dataset, and evaluation metrics that underpin our investigation. Section 4 lists the experi-
mental outcomes and their meticulous analysis. The results are presented comprehensively,
followed by an insightful exploration of their implications and significance. Concluding
our discourse, Section 5 encapsulates the culmination of our study through the presentation
of conclusions drawn from the research.
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2. Related Works

Despite the numerous traditional CT image segmentation techniques proposed over
the past few decades, including manual, threshold-based, atlas-based, graph-based, and
hybrid methods, they exhibit limitations in accurately delineating kidneys in CT images.
For instance, straightforward approaches like threshold segmentation are highly noise-
sensitive and need help handling significant intensity variations in CT scans. Notably, both
atlas-based and threshold-based methods require manual intervention and are susceptible
to segmentation performance variations due to inter-rater differences.

Ronneberger et al. [26] employed the UNet model for medical image segmentation
during the 2015 ISBI competition [26]. However, their approach utilized only a modest
dataset of 30 images and data augmentation strategies, achieving a relatively modest error
rate and clinching victory in the ISBI competition. Subsequently, various UNet-based
algorithms, with adaptations and enhancements, gained prominence across diverse image
processing domains consistently yielding commendable results.

In 2021, Heller et al. [27] summarized the top-performing methods in the KiTS19 chal-
lenge [23–25]. Notably, the segmentation models of the top contestants were all based on
the UNet architecture. Fabian et al. [28] secured the first position with a 3D UNet-based ap-
proach, achieving impressive dice scores of 0.974 and 0.851 for kidney and tumor segmenta-
tion, resulting in a composite score of 0.912 [29]. Several other researchers [30–34] proposed
kidney and tumor segmentation methods, achieving notable results in subsequent studies.

In recent times, researchers have increasingly turned to XAI to perform comprehensive
assessments and provide explanations for model outcomes. For instance, Yang et al. [35]
employed 3D Convolutional Neural Networks (CNNs) to classify Alzheimer’s disease
while also offering visual explanations for their model’s decisions. Wickstrom et al. [36]
utilized Gradient boosting (GB) techniques to improve the explainability of colon polyp
classifications. Esmaeili et al. [37] integrated an explainability method based on Grad-CAM
into the 2D glioma segmentation task. Saleem et al. [38] extended similar approaches to the
realm of 3D image analysis.

Natekar et al. [39] harnessed Grad-CAM to shed light on the process of brain tumor
segmentation, providing insights into the model’s decision-making process. Adebayo
et al. [40] conducted a sanity check and discovered that class activation mapping (CAM)-
based methods offer superior performance in classification tasks. Pereira et al. [41] put
forward an explainability methodology that combines global and local information to
enhance tumor segmentation, employing both GB and CAM techniques in brain tumor
detection. Their experiments revealed that GB excels at identifying critical areas rather than
categories, whereas CAM performs admirably in both tasks.

Furthermore, Narayanan et al. [42] utilized GoogLeNet and ResNet to detect various
medical conditions such as malaria, diabetic retinopathy, brain tumors, and tuberculosis
across different imaging modalities. They leveraged class activation mappings to provide
visualizations that enhance the comprehension of these deep neural networks’ decisions.
Moving forward to the KiTS21 challenge [25], Shen et al. [33] employed the COTRNet model
for kidney segmentation, achieving a kidney dice score of 0.923. Adam et al. [25] used a 3D
U-ResNet method for kidney segmentation and reached the 12th position in KiTS21. Zhao
et al. [24] secured the first position in KiTS21 with a nnU-Net-based framework, attaining
remarkable dice scores for kidney, mass, and tumor segmentation.

In conclusion, while various approaches have been explored for kidney segmentation,
most kidney tumor segmentation studies rely on cascaded architectures as their primary
models. However, 3D models demand significant computational resources, while 2D mod-
els may need more crucial spatial information. This paper introduces a novel segmentation
approach for kidneys and tumors to address the computational complexity associated with
3D CNNs while maintaining high segmentation accuracy. The goal is to enhance the neural
network architecture without compromising accuracy, presenting a versatile methodology
applicable to kidney tumor segmentation. Beyond just KiTS19, KiTS21, and KiTs23 [24,25],
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our focus extends to aiding physicians in the rapid diagnosis of patients through improved
segmentation results.

3. Materials and Methods

This section presents the methodology employed for kidney tumor segmentation
using the KiTs variant dataset [25]. Our approach harnesses the power of deep neural net-
works, specifically UNet, combined with XAI, adaptive partitioning, and weight-pruning
techniques to achieve accurate and validate the segmentation of kidney tumors.

3.1. Data Pre-Processing

The evaluation of kidney tumor segmentation techniques often leverages the KiTs 19,
21, and 23 variant datasets [25], a well-established benchmark for assessing the efficacy of
such methodologies. This dataset comprises high-contrast CT images [2] acquired between
2010 and 2020 at the University of Minnesota Medical Center [2]. It encompasses data from
489 patients who underwent partial or radical nephrectomy for one or more kidney tumors.
The dataset offers a rich diversity of scans featuring varying in-plane resolutions (ranging
from 0.437 to 1.04 mm) and slice thicknesses (ranging from 0.5 to 5.0 mm). Each instance
within this dataset is accompanied by ground-truth masks representing malignant tumors
and healthy kidney tissue, as depicted in Figure 2. The meticulous creation of these masks
involved the collaboration of medical students guided by expert radiologists—notably,
the manual annotation process utilized solely the axial projections of the CT images. The
dataset adheres to the NIFTI format and is defined by dimensions specifying the number of
slices, height, and width. It has garnered widespread recognition as a standard benchmark
for evaluating kidney tumor segmentation approaches, including the model proposed in
this study.

Figure 2. Visualization of kidney and tumor region segmentation using deep learning semantic
segmentation.

In addition to the KiTS23 dataset [23,24], variants such as KiTS19 [23] and KiTS21 [24]
play a crucial role in refining the evaluation process. Including these variant datasets
enriches the evaluation process by capturing a broader spectrum of challenges and scenarios
encountered in clinical practice. This comprehensive assessment not only strengthens
the validation of the proposed model but also underscores its potential to address the
complexities inherent in kidney tumor segmentation tasks.

3.2. Enhancing Kidney Tumor Segmentation: UNet Partitioning, Weight Pruning, and
GCAM-Attention Fusion

The proposed model begins by constructing a complex Standard UNet model [28] for
kidney tumor segmentation with deeper layers to extract the features. Let X represent the
input CT scan [23,26] image, and Y be the corresponding ground-truth segmentation mask.
The UNet model takes X as input and produces pixel-wise predictions Ŷ for kidney tumor
regions. The output of UNet is expressed as in Equation (1)

Ŷ = UNet(X) (1)

103



Diagnostics 2023, 13, 3244

3.2.1. Adaptive Partitioning for Scalable Submodels

The 3D-UNet architecture [26] is a highly intricate model with numerous layers, depth,
and ten million parameters. Due to its complexity, it can be challenging to fit into standard
GPU configurations. To overcome this limitation, an adaptive partitioning approach is
employed to evaluate the intricacy of each UNet layer based on the interplay between
the number of learnable parameters and computations performed during inference. This
evaluation guides the division of the UNet into submodels, each with its own depth.
Within this context, the complexity of each layer is described by the balance between the
number of learnable parameters (Pi) and the computations carried out during inference via
floating-point operations (FLOPsi).

Complexity of layer Li = Pi × FLOPsi (2)

The parameter maxc denotes the upper bound on the allowable complexity for each
submodel, and maxp signifies the envisaged number of partitions. Through mathematical
analysis, we determine the target complexity targetc as elucidated by the formula:

targetc =
Total Complexity

maxp
(3)

Target complexity (targetc) is computed to ensure each submodel balances complexity
and resource constraints. This process results in smaller, more manageable portions of the
original UNet, each designed to fit within standard GPU memory limitations.

3.2.2. Weight Pruning for Efficient Resource Utilization

To enhance submodel efficiency, we employ a technique known as weight pruning,
as referenced in [43–45]. This involves selectively reducing the number of parameters
within a submodel by setting specific weight values to zero. By doing so, we can improve
computational efficiency while also simplifying the submodel’s structure and preserving
its ability to capture critical data features.

To provide further insight, let us consider a submodel represented by a set of parame-
ters denoted as W. Weight pruning, as described in [46], identifies less impactful parameters
based on their magnitudes. We can prune by assigning a value of zero to Wij for specific
neurons, resulting in a sparser weight matrix. This process occurs after the incremental
layer addition and fine-tuning phases. To balance model complexity and performance, we
iteratively prune less influential parameters and fine-tune the submodel. This results in a
more concise, resource-friendly submodel. Our methodology aims to optimize deep neural
networks for practical use cases, particularly those with limited computational resources.
This approach has significantly contributed to the effectiveness of our progressively trained
UNet submodels in tasks such as biomedical image segmentation.

3.2.3. Gradient-Weighted Class Activation Mapping(Grad-CAM)

Grad-CAM is an explainable AI technique designed for convolutional neural networks
(CNNs) to visualize the regions in an input image that are important for the network’s
classification decision [47–49]. Grad-CAM generates heatmaps that highlight the most
relevant areas in the image, making it easier to understand the model’s focus and reasoning.
Assuming a CNN model as f and an input image x, the goal of Grad-CAM [40] is to
generate a heatmap that highlights the important regions in the image for the predicted
class c. Grad-CAM follows these steps:

1. Identify the target layer: Grad-CAM focuses on the last convolutional layer of the
CNN, which contains the high-level features that are most relevant to the classification
task. Let A be the activation map of this layer with dimensions H × W, where H and
W are the height and width of the map, respectively.
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2. Compute the gradients: Calculate the gradients of the score for the predicted class c
(denoted as Yc) with respect to the activation map A. The gradients ( ∂Yc

∂A ) represent
the importance of each activation for the predicted class.

3. Calculate the weights: Compute the weights α by global average pooling the gradients
over the height and width dimensions [6].

αk =
1

H · W

H

∑
i=1

W

∑
j=1

∂Yc

∂Ai,j,k
(4)

where k is the index of the k-th feature map, and Ai,j,k is the activation at location (i, j)
of the k-th feature map.

4. Compute the weighted activation map: Multiply each feature map in A by its cor-
responding weight αk, and sum the weighted feature maps to obtain the weighted
activation map L.

L = ∑
k

αk Ak (5)

5. Generate the heatmap: Apply a ReLU function to the weighted activation map L to
eliminate the negative values and obtain the final heatmap H.

H = ReLU(L) (6)

The resulting heatmap H highlights the regions in the input image [49] that contributed
the most to the predicted class c. Grad-CAM can provide insights into the model’s decision-
making process, enabling users to identify potential biases, verify the model’s focus on
relevant features, and ensure that the model does not rely on irrelevant or spurious patterns.
Grad-CAM is specifically designed for CNNs and may not be applicable to other types of
neural networks or machine learning models [23]. However, it has been widely used for
explainability in image classification tasks and can be adapted for other tasks such as object
detection or semantic segmentation.

3.3. Generating Attention Heatmap

The attention heatmap visualization technique highlights the regions within an input
kidney tumor CT scan that receive the most focus from a neural network during the seg-
mentation process. The generation of an attention heatmap begins with an input image
represented as a 2D array with dimensions H(height) and W(width). In this process, a pre-
defined center of attention, indicated by the coordinates (attentioncenterx, attentioncentery),
plays a pivotal role. Initially, an empty attention heatmap, denoted as A , is created with
dimensions matching the input image’s dimensions. Subsequently, a Gaussian filter is
applied to the attention heatmap A. This filter emphasizes the regions of interest sur-
rounding the designated center of attention [50], and its extent is determined by a speci-
fied standard deviation (σ). In the next step, the Gaussian filter operation is applied as
A′ = Gσ ∗ A, where A′ represents the filtered attention heatmap and Gσ is the Gaussian
filter. Following applying the Gaussian filter, the attention heatmap A′ is subjected to
a normalization process to ensure that pixel values correspond to the intensity of atten-
tion. Normalization is achieved by mapping the pixel values from A′ to the range [0, 1].
This step enhances the interpretability [51–54] of the heatmap, allowing it to effectively
convey the relative importance or relevance of different regions within the input image.
The normalization of the filtered attention heatmap A’ is performed using the equation
Anormalized = (A′ − min(A′))/(max(A′)− min(A′) + ε), where Anormalized represents the
final normalized attention heatmap, min(A’) signifies the minimum pixel value in A ,
max(A’) denotes the maximum pixel value in A′, and ε is a small positive constant in-
troduced to prevent division by zero. The resulting Anormalized serves as the attention
heatmap, effectively highlighting areas of increased importance or focus as determined by
the selected center of attention and the Gaussian filter. This methodology offers a systematic
and mathematical approach to generating attention heatmaps, valuable for visualizing the
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regions of interest within images, particularly in applications such as computer vision and
image analysis.

3.4. GCAM-Attention Fusion:

The fusion process seamlessly combines the Grad-CAM with attention heatmaps.
It starts by taking an equal-weighted combination of the Grad-CAM heatmap and the
attention heatmap. This balanced fusion ensures that both sources contribute equally to the
final interpretability heatmap. The resulting fused heatmap represents a harmonious blend
of the Grad-CAM’s focus on prediction-influential regions and the attention heatmap’s
emphasis on areas of interest as given in Equation (7).

Hfusion(i, j) = (HGrad-CAM(i, j) + Hattention(i, j))/2 (7)

In the context of kidney tumor segmentation and other medical image analysis tasks,
this fusion methodology can be instrumental in providing healthcare professionals with
transparent, interpretable, and trustworthy insights into the model’s decision-making pro-
cess. It bridges the gap between complex deep-learning models and human interpretability,
ultimately enhancing the model’s utility and impact in critical applications.

Proposed UNet-PWP with XAI (GCAM-Attention Fusion)

Our proposed approach, “UNet-PWP with GCAM-Attention Fusion”, leverages ad-
vanced neural network models to segment kidney tumors in medical images precisely. Our
primary objective is to attain high precision and efficiency while considering hardware
resource constraints. Although the 3D-UNet architecture [31] inherently possesses com-
plexity with multiple layers and millions of parameters, deploying it on standard GPU
configurations can be daunting. In response to this challenge, we employ adaptive parti-
tioning techniques that assess the complexity of each UNet layer. This approach balances
model complexity and available computational resources, aligning with our primary goal
and interpretability.

Our methodology involves incremental depth augmentation, wherein we introduce
new layers (Lnew) to a submodel (Mk). This augmentation enhances the submodel’s ca-
pacity to capture intricate data features while retaining the benefits of smaller submodel
sizes achieved through initial adaptive partitioning. Subsequently, we fine-tune submodel
performance (Mk) by precisely adjusting submodel weights using advanced optimization
techniques, such as the Adam optimizer. Additionally, we systematically apply weight
pruning [34] techniques guided by established principles to reduce the number of parame-
ters, thus enhancing model efficiency without compromising performance.

Our approach follows a structured sequence in which submodels undergo incremental
refinement. We create a compact 3D-UNet architecture through adaptive partitioning
and gradually increase depth through subsequent applications of adaptive partitioning.
The result is a submodel with the original UNet’s depth but fewer trainable parameters,
making it compatible with standard hardware configurations. We can refer to Figure 3
for a visual representation of our process. By incorporating “GCAM-Attention Fusion”
into our approach, we enhance the interpretability and visualization aspects of the UNet-
PWP model, allowing for deeper insights into the segmentation process while maintaining
computational efficiency.
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Figure 3. Adaptive Partitioning with Weight Pruning: Visualizing Progressive Submodels in a
Complex UNet Architecture (UNet-PWP).

4. Results

In this section, we present the comprehensive results obtained from our proposed
methodology, which effectively combines adaptive partitioning and weight pruning [34]
techniques applied to the UNet model for kidney tumor segmentation. The evaluation is
focused on assessing the effectiveness of the partitioned and weight-pruned submodels
in terms of segmentation accuracy and computational efficiency. Our experimentation
encompassed the utilization of variant KiTS datasets [23,25], namely KiTS19, KiTS21, and
KiTS23.

4.1. Experimental Setup

Our experiment utilized a high-performance workstation equipped with an Intel Core
i9-10900K CPU and an NVIDIA GeForce RTX 3050 GPU with 6 GB memory. To train our
models, we implemented the UNet architecture [26], along with partitioning and weight-
pruning algorithms [34], using Python and TensorFlow. Our dataset consisted of CT scan
images of kidney tumors from the KiTs19, KiTs21, and KiTs23 variants [24]. We divided
these datasets into training, validation, and test sets, with 342 cases allocated for training,
73 cases for validation, and 73 for testing. We preprocessed the datasets to ensure consistent
input dimensions and normalized pixel values [43].

Throughout the training process, we employed the Adam optimizer to minimize the
dice loss function. Our models were trained for 100 epochs with a batch size of 12, and we
utilized data augmentation techniques such as random rotations and flips to enhance model
generalization. To implement our proposed partitioning and weight-pruning methodology,
we set the maximum complexity of each submodel to 10 million FLOPs and the maximum
number of partitions to 3. Our pruning ratio was determined empirically at 0.2, indicating
that 20% of the weights were pruned.

4.2. Ablation Study

In this ablation study, we conduct a comprehensive assessment of various modifica-
tions to the UNet architecture, with the overarching goal of facilitating informed design
choices within the context of kidney tumor segmentation. Our primary aim is to pinpoint
the most effective model configuration, all the while carefully considering the trade-offs
between computational efficiency and segmentation accuracy.
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We introduce four distinct modifications, each designed to enhance the original UNet
architecture:

• UNet: The baseline UNet architecture [26] serves as our starting point, with a total of
100,000,000 trainable parameters.

• UNet (Adaptive Partitioning + Weight Pruning): In this modification, we apply
adaptive partitioning and weight-pruning techniques to the initial UNet model [26].
The result is a more streamlined model with a total of 10,000,000 trainable parameters,
significantly reducing computational demands.

• UNet (Adaptive Partitioning + Weight Pruning + Depth Increase): Here, we not only
apply adaptive partitioning and weight pruning but also augment the UNet model [26]
by increasing its depth with previously trained weights. The resulting architecture
maintains the same total and trainable parameters of 10,000,000 million, which can
fit with the same computational demands, albeit with enhanced capacity for intricate
feature extraction.

• UNet (Adaptive Partitioning + Weight Pruning + Depth Increase + GCAM-Attention
Fusion): To further enhance the interpretability and visualization aspects of our UNet-
PWP model, we introduce the innovative ’GCAM-Attention Fusion’ component. This
fusion technique is integrated into the UNet architecture, extending the model’s
region-specific analysis and understanding capabilities.

The performance of these modifications, including ’UNet (Adaptive Partitioning +
Weight Pruning + Depth Increase + GCAM-Attention Fusion),’ is meticulously documented
and compared against the original UNet architecture, DeepLab v3+, and our proposed
UNet-PWP model. The comprehensive evaluation results are presented in Tables 1–3,
while the visual representation of these findings can be observed in Figures 4 and 5. This
holistic assessment provides valuable guidance for optimizing kidney tumor segmentation
models and showcases the significance of ’GCAM-Attention Fusion’ in achieving superior
interpretability and performance.

Figure 4. Cognitive Heatmaps for Kidney and Tumor Regions.

Figure 5. GCAM-Attention Fusion Visualization for Kidneys and Tumor Regions.
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4.3. Model Evaluation

We conducted a comprehensive examination of kidney tumor segmentation accuracy
in various KiTs datasets [23] and found that the original Deep UNet architecture had high
computational complexity due to its large number of trainable parameters and floating-
point operations (FLOPs). To address this challenge, we developed an adaptive partitioning
strategy that resulted in three submodels with reduced trainable parameters and FLOPs,
making them suitable for deployment on resource-constrained platforms (Table 1). We
rigorously trained and evaluated the submodels using metrics such as dice coefficient,
precision, and recall. We compared the performance of various models, including the
Standard UNet [28], DeepLab V3+ [33], and our proposed approach, as shown in Table 2.

Table 1. Analysis of Submodels.

Model Trainable Parameters Depth Inference Time FLOPs

Deep UNet 31,030,723 10 578,633.228 ms 109,085,458,432
Initial Submodel 162,349 2 278,633.28 ms 1,694,498,816

Submodel 2 344,237 3 278,633.28 ms 7,522,484,224
Submodel 3 344,237 5 198,633.28 ms 8,512,484,334

Table 2. Segmentation Accuracy Comparison.

Model
Dice

Coefficient
Precision Recall

Standard UNet 0.95 0.92 0.97
DeepLab V3+ 0.94 0.90 0.96
UNet with 3 Partitions + Weight Pruning (Proposed Model) 0.97 0.96 0.98

Our proposed model, 3D-UNet with 3 Partitions + Weight Pruning, achieved a re-
markable 97.1% improvement in kidney tumor segmentation accuracy. The accuracy is
calculated by comparing the model’s predictions to the ground-truth labels. The accuracy
is calculated as

Accuracy = (Number o f Correct Predictions)/(Total Number o f Predictions).

Also, 97.1% of the model’s predictions on the test dataset matched the actual ground-
truth labels for kidney tumor segmentation. The adaptive partitioning technique also
significantly enhances the submodels’ computational efficiency, making them suitable
for real-world scenarios with limited computational resources. We quantified the model
complexity using parameters and FLOPs, as documented in Table 3, to gauge the balance
between model compactness and computational efficiency.

Table 3. Model Complexity Comparison.

Model
Number of
Parameters

FLOPs
(Millions)

Standard UNet 2.5 M 150
DeepLab V3+ 3.2 M 180
UNet with 3 Partitions + Weight Pruning (Proposed Model) 1.6 M 100

Our proposed model outperformed the Standard UNet and DeepLab V3+ models by
achieving notable reductions in parameters and FLOPs. This reduction signifies superior
resource utilization and computational efficiency, making our proposed model ideal for
real-time medical image segmentation tasks.

When it comes to medical image segmentation, it is not just about accuracy and
complexity—real-time inference speed is also important. To test our proposed models, we
analyzed their inference times on the same hardware platform. As shown in Figure 6, our
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UNet with adaptive Partitions + Weight Pruning (Proposed Model) performed significantly
better than the Standard UNet [26] and DeepLab V3+. This improvement is achieved
with the adaptive partitioning and weight-pruning techniques we used, which optimize
processing load and improve model responsiveness during inference.

Figure 6. Inference Time Analysis.

In addition, Figure 7 displays a visual analysis of the training and validation accuracy
for three different models: the Standard UNet [26], DeepLab V3+, and the Proposed Model.
This graphic shows how the accuracy changes over multiple training epochs, giving insight
into the learning progress of each model.

Figure 7. Training and Validation Accuracy Comparison.

Figure 7 presents a visual analysis of three models: Standard UNet [26], DeepLab V3+,
and our Proposed Model(UNet-PWP). The graph illustrates the accuracy of each model
during different training epochs, providing valuable insights into their learning progress.
Our Proposed Model stands out for its exceptional ability to achieve high accuracy and
demonstrate strong generalization capabilities. The alignment of training and validation
accuracy confirms that our model effectively learns without overfitting, making it a reliable
tool for kidney tumor segmentation tasks. To further demonstrate the efficacy of our model,
with the reference of Figure 8, which showcases a visualization of the segmented tumor
regions. Our comprehensive analysis underscores the potential of our methodology, which
achieves superior segmentation accuracy while maintaining computational efficiency. This
unique balance between accuracy and efficiency makes our approach highly valuable in
medical image segmentation, with promising real-time clinical applications.
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Figure 8. Kidney and tumor True Segmented region, predicted segmented region and interpretability
using Grad-CAM Heatmap.

4.4. Incorporating GCAM-Attention Fusion to UNet-PWP on CT Scan

To gain deeper insights into the decision-making process of our proposed UNet-PWP
model, we harnessed the power of Grad-CAM, a renowned method for precisely identifying
crucial regions within input images that significantly influenced the model’s predictions.
By providing heatmaps, Grad-CAM [39] shed light on the critical sections within the kidney
CT scans, enabling us to pinpoint the exact regions that were pivotal in shaping the model’s
classification decisions.

Our analysis explored two essential aspects: the Grad-CAM [39] XAI for tumor seg-
mentation and the synergy between Grad-CAM and Attention-based heatmap methods.
Grad-CAM XAI for tumor segmentation (Figure 8) is a more granular understanding of the
tumor segmentation process. We harnessed Grad-CAM [39] to generate heatmaps high-
lighting the significant regions within kidney CT scans. These heatmaps reveal the specific
areas that contributed to the model’s categorization decisions, offering valuable insights
into tumor localization and segmentation. Figure 8 presents an illustrative depiction of this
Grad-CAM-based XAI applied to kidney tumor segmentation.

Comparison of Grad-CAM and Attention-Based Heatmaps (Figure 4) enrich our
interpretability toolkit. We conducted a comprehensive comparison between Grad-CAM
and Attention-based heatmap methods. This analysis aimed to showcase each method’s
unique strengths and contributions in highlighting regions of interest within the kidney CT
scans. Figure 8 provides a side-by-side visual comparison of Grad-CAM and Attention-
based heatmaps, allowing for a nuanced evaluation of their respective capabilities.

Fusion of Grad-CAM and Attention-Based Heatmaps (Figure 5) recognizes the po-
tential synergy between Grad-CAM and Attention-based heatmap techniques, and we
embarked on a journey to fuse these two approaches. The fusion process combines the
strengths of both methods, resulting in a unified heatmap that offers a holistic view of the
critical regions influencing kidney tumor segmentation. Figure 5 encapsulates this fusion,
compellingly visualizing how Grad-CAM and Attention-based heatmaps harmoniously
merge to enhance interpretability and decision-making.

These visualizations and analyses propel our understanding of the UNet-PWP model’s
inner workings, offering insights into tumor segmentation and a deeper comprehension
of the model’s decision rationale. The fusion of Grad-CAM and Attention-based heatmap
methods, in particular, showcases the synergy that emerges when harnessing the inter-
pretability capabilities of these two techniques, ultimately benefiting kidney tumor seg-
mentation and region visualization.

5. Conclusions

In this study, we have introduced an innovative methodology that leverages adap-
tive partitioning and weight pruning to enhance the efficiency and accuracy of the UNet
model [26] for kidney tumor segmentation. Our extensive evaluation, conducted on the
KiTs19, KiTs21, and KiTs23 variant datasets [23,25], illustrates the efficacy of our approach
in addressing the challenges inherent to medical image analysis. By incorporating adaptive
partitioning, we have optimized the model’s architecture by breaking it down into submod-
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els, each tailored explicitly for reduced complexity and efficient parallel processing. This
partitioning strategy, coupled with weight pruning, not only streamlined the computational
workload but also significantly improved overall inference speed.

Moreover, we have employed Grad-CAM [35] as an explainable AI technique to
shed light on our model’s decision-making process. Grad-CAM [35] generates heatmaps
highlighting the regions in the input image essential for the network’s classification de-
cision, offering invaluable insights into our model’s reasoning. This transparency and
interpretability are vital for building trust and understanding in the medical community.

Our methodology has achieved remarkable segmentation accuracy, with the segmen-
tation Model (UNet with 3 Partitions + Weight Pruning) reaching an impressive accuracy
of 97.1%. This accuracy surpasses the Standard UNet [26] and the DeepLab V3+ [18] mod-
els’ performance, validating our approach’s potency. Moreover, our approach strikingly
balances segmentation accuracy with computational efficiency by reducing the number
of parameters and floating-point operations (FLOPs) [38] with limited computational re-
sources. The Proposed Model exhibits a notable reduction in complexity, enabling real-time
processing without compromising accuracy. It is crucial for the seamless integration of our
model into clinical workflows, enhancing medical professionals’ ability to make swift and
well-informed decisions. In addition to these achievements, we have taken a significant
step forward by incorporating GCAM-Attention Fusion. This augmentation enhances the
interpretability and visualization aspects of the UNet-PWP model, allowing for deeper
insights into the segmentation process while maintaining computational efficiency.

However, it is essential to acknowledge the limitations of our study. One significant
limitation is related to the data used for training and evaluation. Although we employed a
diverse dataset, medical imaging data can still exhibit variability across different institutions
and patient populations. Expanding the dataset’s diversity and size could further enhance
the model’s generalization capabilities.

In conclusion, our proposed methodology offers a promising solution for accurate and
efficient kidney tumor segmentation. The amalgamation of adaptive partitioning, weight
pruning, and GCAM-Attention Fusion contributes to a model that excels in segmentation
accuracy and computational efficiency and provides transparency and interpretability.
These qualities make it a valuable asset for clinical applications in medical image analysis,
fostering trust and enhancing decision-making in the healthcare domain.
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Abbreviations

The following abbreviations are used in this manuscript:

WP Weight Pruning
CT Computer Tomography
BN Batch Normalization
FLOPs Floating-Point Operations
KiTs 23 KiTs 23 World Challenge Dataset
NIFTI Neuroimaging Informatics Technology Initiative
ADP Adaptive Partitioning
UNet-P UNet model with Partitions
UNet-PWP UNet Model with Pruned Partitions
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Abstract: Brain tumors pose a complex and urgent challenge in medical diagnostics, requiring precise
and timely classification due to their diverse characteristics and potentially life-threatening conse-
quences. While existing deep learning (DL)-based brain tumor classification (BTC) models have
shown significant progress, they encounter limitations like restricted depth, vanishing gradient issues,
and difficulties in capturing intricate features. To address these challenges, this paper proposes
an efficient skip connections-based residual network (ESRNet). leveraging the residual network
(ResNet) with skip connections. ESRNet ensures smooth gradient flow during training, mitigating
the vanishing gradient problem. Additionally, the ESRNet architecture includes multiple stages with
increasing numbers of residual blocks for improved feature learning and pattern recognition. ESRNet
utilizes residual blocks from the ResNet architecture, featuring skip connections that enable identity
mapping. Through direct addition of the input tensor to the convolutional layer output within each
block, skip connections preserve the gradient flow. This mechanism prevents vanishing gradients,
ensuring effective information propagation across network layers during training. Furthermore,
ESRNet integrates efficient downsampling techniques and stabilizing batch normalization layers,
which collectively contribute to its robust and reliable performance. Extensive experimental results
reveal that ESRNet significantly outperforms other approaches in terms of accuracy, sensitivity,
specificity, F-score, and Kappa statistics, with median values of 99.62%, 99.68%, 99.89%, 99.47%, and
99.42%, respectively. Moreover, the achieved minimum performance metrics, including accuracy
(99.34%), sensitivity (99.47%), specificity (99.79%), F-score (99.04%), and Kappa statistics (99.21%),
underscore the exceptional effectiveness of ESRNet for BTC. Therefore, the proposed ESRNet show-
cases exceptional performance and efficiency in BTC, holding the potential to revolutionize clinical
diagnosis and treatment planning.

Keywords: brain tumor classification; deep learning; residual networks; vanishing gradient; feature
learning; medical diagnostics

1. Introduction

Brain tumors (BT) represent a multifaceted and critical challenge within the field of
medical diagnostics. The diverse characteristics and potentially life-threatening conse-
quences of these tumors demand precise and timely classification [1]. As a leading cause
of morbidity and mortality globally, the imperative for advanced diagnostic tools and
methodologies in brain tumor classification (BTC) cannot be overstated. Accurate BTC is
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a multifaceted challenge, requiring the capability to differentiate between various tumor
types, each characterized by its unique morphological, genetic, and clinical features [2]. The
significance of accurate classification is far-reaching—it ensures timely treatment, optimizes
patient care, and, thus, improves survival rates. Traditional diagnostic methods often
rely on subjective interpretations by radiologists, introducing variability in accuracy and
potentially delaying critical diagnoses.

In recent years, DL has revolutionized BTC in medical imaging [3]. Its ability to
autonomously discern intricate patterns from vast datasets holds great potential for ad-
dressing these challenges [4,5]. Togacar et al. [1] introduced innovative DL models, notably
BrainMRNet, incorporating attention modules, the hypercolumn technique, and residual
blocks to achieve remarkable classification accuracy for glioma, meningioma, and pituitary
tumors. Similarly, Hashmi and Osman [2] explored BTC using residual networks and
an attention approach, demonstrating substantial accuracy improvements. Furthermore,
Papadomanolakis et al. [3] presented a novel diagnostic framework based on convolutional
neural networks (CNNs) and discrete wavelet transform (DWT) data analysis for glioma
tumor diagnosis, showcasing impressive performance with potential clinical applications.
Lastly, Mahum et al. [6] proposed an effective approach that utilizes feature fusion, leverag-
ing the mayfly optimization algorithm and multilevel thresholding for tumor localization.
Their bidirectional long short-term memory (BiLSTM) network achieved remarkable results
in classifying pituitary, glioma, and meningioma tumors.

Amou et al. [7] introduced a pioneering Bayesian optimization-based technique
to optimize the hyperparameters for CNNs, resulting in outstanding accuracy in the
classification of brain tumors from MRI images. Additionally, Sunsahi [8] developed the
adaptive eroded deep CNN (AEDCNN), showcasing its effectiveness in the segmentation
and classification of brain images, identifying meningioma, glioma, and pituitary tumors.
Rizwan et al. [9] presented a Gaussian CNN (GCNN) that achieved exceptional accuracy
in classifying brain tumors and differentiating glioma grades in a multi-class context.
Furthermore, Kothandaraman [10] harnessed the binary swallow swarm optimization to
augment the performance of CNNs for BTC, offering a promising avenue for automating
tumor detection. Lastly, Chitnis et al. [11] introduced the learning-by-self-explanation
(LeaSE) architecture search method, automating the discovery of high-performance neural
architectures for BTC. This approach outperformed manually designed networks in both
accuracy and parameter efficiency.

Existing DL techniques have demonstrated substantial advancements in enhancing the
accuracy and efficiency of BTC. These developments hold the promise of delivering more
precise and timely diagnoses, thereby bolstering the quality of patient care. Automation
plays a pivotal role by diminishing the dependence on human interpretation, a factor that
can lead to a reduction in errors. This, in turn, contributes to an overall enhancement
in the quality of medical care provided to patients. Furthermore, the incorporation of
advanced techniques, such as attention modules and segmentation methods, facilitates
superior feature extraction. This heightened capability enables the discernment of intri-
cate and nuanced tumor characteristics, thereby amplifying the diagnostic potential of
these technologies.

This paper introduces a pioneering approach to tackle the challenges associated
with accurate and reliable BTC by proposing an efficient skip connections-based residual
network (ESRNet). With the ever-growing complexity of medical data, particularly in the
realm of brain imaging, traditional models often face limitations such as in-depth, gradient
flow, and feature extraction [12]. These limitations often result in models that struggle
to learn and represent the underlying complexities of brain tumor images adequately.
Limited depth can hinder the model’s capacity to extract hierarchical features, potentially
causing the network to miss critical patterns and details within the data. Additionally,
vanishing gradient problems can impede the training process, making it challenging to
optimize deep networks effectively. Furthermore, intricate features, which are essential for
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accurate tumor classification, may not be well-captured by shallower architectures, leading
to suboptimal performance.

The proposed ESRNet utilizes residual blocks from the ResNet architecture, featuring
skip connections that enable identity mapping. Through direct addition of the input tensor
to the convolutional layer output within each block, skip connections preserve the gradient
flow. This mechanism prevents vanishing gradients, ensuring effective information prop-
agation across network layers during training. Thus, the proposed architecture ensures
smooth gradient flow during training, mitigating the vanishing gradient problem and
facilitating the learning of intricate features. The strategic incorporation of efficient down-
sampling techniques and batch normalization further enhances computational efficiency.
ESRNet’s unique design, organized into stages with increasing numbers of residual blocks,
promotes in-depth feature learning, setting the stage for a model that not only outperforms
existing benchmarks but also holds the potential to revolutionize brain tumor classification
in clinical settings. Feature learning refers to the process in machine learning where a model
automatically learns to represent relevant features from raw data, and it is not specifically
related to feature selection. This paper makes the following key contributions:

1. ESRNet: The efficient skip connections-based residual network (ESRNet) is proposed
for BTC.

2. Residual Blocks with Skip Connections: The proposed ESRNet incorporates residual
blocks with skip connections, enabling the construction of deep neural networks.
These skip connections effectively mitigate the vanishing gradient problem, facilitating
deep network training and enhancing the gradient flow.

3. Increased Depth and Enhanced Feature Learning: The proposed ESRNet is organized
into five stages, each progressively incorporating more residual blocks. This increased
depth enhances ESRNet’s capacity for in-depth feature learning, enabling the capture
of intricate patterns and significantly improving classification performance.

4. Efficient Downsampling and Batch Normalization: The architecture of ESRNet in-
cludes efficient downsampling at specific stages while maintaining computational
efficiency. Batch normalization layers are seamlessly integrated into the residual
blocks to stabilize and expedite training, contributing to the overall efficiency and
performance of BTC.

The remainder of the paper is organized into the following sections: Section 2 provides
an overview of related work in the field. Section 3 introduces the proposed efficient skip
connections-based residual network (ESRNet). Section 4 details the experimental setup and
presents comparative results. Finally, Section 5 presents the conclusions and summarizes
the key findings of the paper.

2. Related Work

In recent years, significant progress has been achieved in the field of BTC using DL
and machine learning (ML) techniques. Several studies have explored various approaches
to enhance the accuracy and efficiency of brain tumor detection and classification. The
following related work highlights key contributions in this area.

Qureshi et al. proposed an intelligent ultra-light DL model for multi-class brain tumor
detection [13]. The approach leveraged an ultra-light DL architecture, integrated with
distinctive textural features extracted using the gray-level co-occurrence matrix (GLCM).
This hybrid feature space was then used for tumor detection with support vector machine
(SVM), achieving high prediction accuracy. Saha et al. introduced the BCM-VEMT system,
which combined DL and an ensemble of ML techniques for BTC [14]. The system achieved
high accuracy in classifying different brain tumor types. The approach is valuable for
aiding medical decisions.

Kibriya et al. presented a CNN architecture for multiclass BTC [15]. Their 13-layer
CNN achieved superior accuracy, outperforming previous work on benchmark datasets.
The lightweight architecture facilitated rapid tumor detection, aiding early-stage diagnosis.
Yazdan et al. proposed an efficient multi-scale CNN for multi-class brain MRI classifica-
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tion [16]. Their model addressed challenges related to Rician noise and achieved high
accuracy. The proposed architecture outperformed other DL models, making it suitable
for clinical research. Sekhar et al. introduced a BTC system using fine-tuned GoogLeNet
features and ML algorithms [17]. Their IoMT-enabled CAD system demonstrated the
potential to detect and classify tumors accurately. The approach was found to be valuable
for early diagnosis and remote healthcare.

Ahmad et al. devised a novel method for BTC [18]. They introduced a framework
merging variational autoencoders (VAEs) and generative adversarial networks (GANs) to
tackle limited medical image datasets. Their approach generated artificial MRI images,
significantly elevating accuracy from 72.63% to 96.25%. Zulfiqar et al. employed Effi-
cientNets for multi-class BTC [19]. Through transfer-learning-based fine-tuning and data
augmentation, they attained remarkable results with an overall test accuracy of 98.86%, un-
derlining the efficacy of DL models. Demir and Akbulut introduced a novel DL technique
for the brain MRI classification [20]. Their residual-CNN (R-CNN) model, complemented
by L1NSR feature selection, achieved high classification accuracies of 98.8% for 2-class and
96.6% for 4-class datasets, demonstrating the potential of DL in precise tumor classification.

Zahid et al. [21] designed BrainNet, an efficient deep learning model for optimal
feature fusion in BTC. By leveraging advanced neural network architectures, the authors
aimed to enhance the accuracy of BTC. The proposed BrainNet showcased the challenges
associated with brain tumor analysis, marking a notable advancement in the application of
deep learning for medical image classification. Maqsood et al. [22] presented TTCNN as
a deep learning model tailored for breast cancer detection and classification using digital
mammography. Emphasizing early-stage diagnosis, TTCNN underscored the potential
impact of computer-aided diagnosis methods in breast cancer detection. Raza et al. [23]
introduced DeepTumorNet, a hybrid model for BTC, integrating traditional CNNs with
tailored modifications to the GoogLeNet architecture. The strategic customization, includ-
ing the removal of the last five layers and the addition of 15 new layers, demonstrated a
nuanced understanding of BTC intricacies.

Vankdothu et al. [24] introduced a brain tumor identification and classification method
based on a CNN-LSTM architecture. The layered CNN design demonstrated superior
performance in image classification compared to standard CNN-LSTM approaches. Experi-
mental findings revealed that the proposed model outperformed earlier CNN and RNN
models in terms of accuracy. Maqsood et al. [25] proposed a multi-modal brain tumor
detection method. The approach involved linear contrast stretching, a custom 17-layered
neural network for segmentation, modified MobileNetV2 for feature extraction, and an
entropy-based method coupled with M-SVM for optimal feature selection. The final step
employed M-SVM for accurate BTC, identifying meningioma, glioma, and pituitary images.

Mohammad et al. pioneered a blockchain-based deep CNN model for MRI-based
brain tumor prediction [26], offering enhanced security and precision in tumor prediction,
showing the promise of blockchain in medical imaging. Reza et al. devised an efficient
CNN-based strategy for classifying MRI-based tumors [27]. Their modified VGG-16 ar-
chitecture yielded exceptional precision and accuracy, with 99.4% for glioma, 96.7% for
meningioma, 100% for pituitary tumors, and an overall accuracy of 99.5%, affirming the
significance of DL models in precise tumor classification. El-Wahab et al. introduced
BTC-fCNN, a fast and efficient DL-based system for multi-class BTC. They achieved an
average accuracy of 98.63% using transfer learning and 98.86% with retrained five-fold
cross-validation, surpassing state-of-the-art methods [28]. Maqsood, Damasevicius, and
Maskeliunas presented a multi-modal brain tumor detection method using deep neural
networks and multiclass SVM. Their approach achieved an accuracy of 97.47% for detection
and 98.92% for classification, outperforming other methods [25].

Gupta et al. proposed a brain tumor detection and classification system. They used
an ensemble approach combining modified InceptionResNetV2 and Random Forest Tree
to achieve 99% accuracy for tumor detection and 98% for classification [29]. Oksuz et al.
introduced a BTC method using fused features extracted from expanded tumor regions.
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By fusing deep and shallow features, they improved the sensitivity by approximately
11.72%. Their approach leveraged deep networks, like AlexNet and ResNet-18 [30]. Kesav
and Jibukumar proposed an efficient and low-complexity architecture for brain tumor
detection and classification. They used a two-channel CNN and RCNN, achieving an
accuracy of 98.21% for classification and low execution times, outperforming complex
architectures [31].

Rasheed et al. introduced a CNN model for BTC. Their method achieved a remarkable
classification accuracy of 98.04% for glioma, meningioma, and pituitary tumors. This
algorithm demonstrated superior performance compared to existing pre-trained CNN
models [32]. Polat and Gungen proposed a solution using transfer learning with networks
like VGG16, VGG19, ResNet50, and DenseNet21. Their model achieved a high classifica-
tion performance of 99.02%, particularly with ResNet50 using the Adadelta optimization
algorithm [33]. Alanazi et al. introduced a novel transfer-deep-learning model for BTC
into subclasses. This model achieved an accuracy of 95.75% for MRI images from the
same machine and demonstrated adaptability to different MRI machines, showcasing its
potential for real-time application [34].

Al-Zoghby et al. developed a dual CNN model for classifying three types of brain
tumors. Their model reached a remarkable accuracy of 100% during training and 99%
during testing, showcasing significant improvements over existing research [35]. Rehman
et al. conducted comprehensive studies using CNN models (VGGNet, GoogLeNet, and
AlexNet) for BTC. The fine-tuned VGG16 architecture achieved the highest accuracy, up to
98.69%, for the classification and detection of brain tumors [36]. Vankdothu et al. proposed
an IoT computational system based on DL for brain tumor detection in MRI images. Their
LSTM-CNN model outperformed standard CNN classification and showed improved
accuracy in detecting brain tumors [24].

Mahmoud et al. trained CNN models for detecting the most prevalent brain tu-
mor types and achieved an impressive accuracy of 98.95%, particularly with the VGG-19
model [37]. Diaz-Pernas et al. presented a BTC model using a multiscale CNN. Their
model achieved a tumor classification accuracy of 97.3%, outperforming other methods
on the same dataset [38]. Anjum et al. compared DL methods with transfer learning to
traditional ML techniques for brain tumor detection. DL methods, especially those based
on ResNet101 with transfer learning, demonstrated superior performance and a promising
potential for prognosis and treatment planning [39].

In summary, the current DL models designed for BTC encounter a range of formidable
challenges. These include issues related to limited network depth, the potential occurrence
of vanishing gradient problems, and the complexities associated with capturing intricate
image features. These constraints collectively contribute to the models’ struggles in ef-
fectively learning and representing the underlying intricacies present within brain tumor
images. The restricted depth of these models can hinder their ability to extract hierarchical
features, which, in turn, may lead to crucial patterns and image details being overlooked
during the analysis. Furthermore, the presence of vanishing gradient problems can disrupt
the training process, posing difficulties in achieving optimal performance when dealing
with deep networks. Moreover, shallower architectures might struggle to adequately cap-
ture the intricate features crucial for precise tumor classification, resulting in suboptimal
model performance.

3. Efficient Skip Connections-Based Residual Network (ESRNet)

Inspired by [12], this paper proposes a comprehensive enhancement to BTC through an
ESRNet. ESRNet incorporates residual blocks with skip connections, facilitating the training
of deep neural networks by mitigating the vanishing gradient problem (see Algorithm 1).
ESRNet is structured into five stages, each progressively integrating more residual blocks,
leading to improved feature learning and the ability to capture intricate patterns. Further-
more, the architecture of ESRNet incorporates efficient downsampling techniques and batch
normalization layers, optimizing computational efficiency while stabilizing and expediting
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the training process. In the following section, we present the architecture of a proposed
ESRNet for the classification of brain tumors.

Algorithm 1: Efficient Skip Connections-based Residual Network (ESRNet)
Data: Input Image Tensor x
Result: Classification Result

1 Initialization: Initialize parameters and hyperparameters;
2 inputLayer ← Image Input Layer([224 × 224 × 3]);
3 F ← 64;
4 layers ← [inputLayer];
5 for i = 1 to 4 do

6 layers ← StackResidualBlock(layers, F, S);
7 F ← F × 2;
8 S ← 1;

9 layers ← [layers, 2D-GaP, FC(128, d1), FC(64, d2), FC(3), SM, CL];
10 return layers;
11 Function StackResidualBlock(layers, F, S):

12 conv1 ← Conv(3, F, Padding, S);
13 bn1 ← BN(conv1);
14 relu1 ← ReLU(bn1);
15 conv2 ← Conv(3, F, Padding)(relu1);
16 bn2 ← BN(conv2);
17 skip ← x + Conv(3, F, Padding)(BN);
18 relu2 ← ReLU(skip);
19 conv3 ← Conv(3, F, Padding)(relu2);
20 bn3 ← BN(conv3);
21 output ← x + BN;
22 return layers;

3.1. Residual Block with Convolution Layers

A residual block is a fundamental building block of the ResNet architecture. It consists
of multiple convolutional layers (Conv), batch normalization (BN), skip connections (Skip),
and the addition operation (Add). The formula for a residual block can be expressed
as follows:

function layers = residualBlock(x, F, S)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Conv(3, F, Padding, S)(x)
BN(Conv)(x)

ReLU(BN)
Conv(3, F, Padding)(ReLU)

BN(Conv)
Skip : x + Conv(3, F, Padding)(BN)

ReLU(Skip)
Conv(3, F, Padding)(ReLU)

BN(Conv)
Final Output : x + BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where x denotes the input tensor, F signifies the number of filters employed within the
convolutional layers, and S represents the stride utilized in these convolutional layers. Ad-
ditionally, ‘Conv’ stands for the convolutional layer, ‘BN’ indicates the batch normalization
layer, ‘ReLU’ signifies the rectified linear unit activation function, ‘Skip’ represents the
skip connection, which performs the identity mapping, and ‘Add’ denotes the operation
of element-wise addition. However, the ‘Add’ operation is not explicitly utilized; in-
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stead, the ‘Skip’ connection is employed, representing the essence of an addition operation
(element-wise addition) between x and the outcome of a ‘Conv’ followed by ‘BN’.

3.2. Stage 1: Building Depth and Feature Learning

The construction of ESRNet involves a process of stacking multiple residual blocks,
which are essential for enhancing the network’s depth and feature-learning capabilities.
This architectural design is organized into four distinct stages, each progressively increas-
ing the number of residual blocks within. Crucially, skip connections are meticulously
maintained between these stages to ensure a smooth gradient flow during training. To offer
a clearer view of ESRNet’s foundational structure, consider the following equation:

inputLayer = Image Input Layer([224 224 3])

layers =

⎡
⎢⎢⎢⎢⎣

inputLayer
Conv(7, F, Padding, S)

BN(Conv)
ReLU(BN)

MaxPooling(3, S)

⎤
⎥⎥⎥⎥⎦

(2)

At the initial stage, we begin with an input layer designed to accommodate image
data with dimensions of 224 × 224 × 3. The number of filters, denoted as F, is set to 64.
Within this stage, we sequentially stack several essential layers, including a convolutional
layer with kernel size 7, batch normalization following the convolution, rectified linear
unit (ReLU) activation, and a max-pooling layer with a kernel size of 3 and an appropriate
stride (S). These operations serve to progressively extract and process features from the
input data. This initial stage lays the foundation for the subsequent stages, collectively
forming the ResNet model’s robust architecture.

3.3. Stage 2: Stack Three Residual Blocks with Skip Connections

In the second stage of ESRNet, we stack three residual blocks with skip connections.
The stride of the first block is set to 2 to downsample the feature maps. It can be defined
as follows:

S =

{
1 for i = 1
2 for i > 1

(3)

Here, the stride value S alternates between 1 and 2 based on the iteration index
i, allowing for downsampling in the initial block and maintaining the stride at 1 for
subsequent blocks. These changes in stride are utilized when stacking the three residual
blocks, effectively controlling the feature map size in the second stage.

3.4. Stage 3: Capture Intricate Features

In Stage 3, we further enhance ESRNet’s capacity to capture intricate features. This
stage builds upon the foundation laid in Stage 2 with some notable differences. Firstly, we
double the number of filters (F) compared to Stage 2, allowing ESRNet to explore more
complex patterns and representations. Secondly, as in Stage 2, the first residual block
initiates with a stride of 2 to downsample the feature maps, ensuring spatial reduction.
However, in contrast to Stage 2, where all subsequent residual blocks maintain a stride of 1,
in Stage 3, we continue with a stride of 1 throughout. This strategic choice preserves the
spatial dimensions of feature maps for the remainder of this stage. These modifications
between Stage 2 and Stage 3 contribute to ESRNet’s progressive feature learning, enhancing
its capability to classify brain tumors effectively.

3.5. Stage 4: High-Level Abstractions

In Stage 4, we continue to deepen ESRNet while introducing specific changes com-
pared to Stage 3. Similar to the previous stage, we double the number of filters (F), enabling
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ESRNet to capture even more intricate features and representations. However, the key dif-
ference lies in how we downsample the feature maps. While in Stage 3, the first block had a
stride of 2 for downsampling, in Stage 4, we maintained this stride of 2 for the first block to
reduce the spatial dimensions effectively. This choice allows ESRNet to focus on high-level
abstractions by reducing the spatial resolution. Furthermore, we stack six residual blocks
in Stage 4, compared to four in Stage 3, further enhancing ESRNet’s capacity to learn
complex features. These alterations between Stage 3 and Stage 4 contribute to ESRNet’s
increasing depth and representational power, making it more capable of classifying brain
tumors accurately.

3.6. Stage 5: Enhanced Depth and Feature Learning

In the fifth and final stage, we maintain the architectural pattern established in the
previous stages while introducing specific changes to adapt to the increasing depth. Similar
to Stage 4, we double the number of filters (F), allowing ESRNet to capture high-level
features effectively. However, the critical alteration lies in the stride value (S) for down-
sampling. In this stage, as in Stage 4, the first block employs a stride of 2 to reduce the
spatial dimensions of the feature maps, enhancing the network’s focus on more abstract
representations. Subsequently, we stack three residual blocks, maintaining the same pattern
as in previous stages. This stage’s adjustments, specifically the increase in filter count and
the strategic use of stride for downsampling, contribute to ESRNet’s enhanced depth and
feature learning, making it well-suited for precise BTC.

3.7. Final Layers

The final layers of ESRNet include a global average pooling layer followed by fully con-
nected layers, each integrated with dropout for regularization. The architecture concludes
with a softmax activation layer and a classification layer.

layers =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

layers
2D-GaP

FC(128, d1)
FC(64, d2)

FC(3)
SM
CL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Here, the 2D-GaP layer plays a crucial role in global feature extraction by performing
global average pooling on the feature maps. Two pivotal fully connected (FC) layers, namely
FC(512, d1) and FC(256, d2), are strategically inserted in the network. The former boasts
128 units and incorporates a dropout mechanism with a rate of d1 for regularization, while
the latter consists of 64 units and employs dropout with a rate of d2 to enhance model
generalization. The architecture culminates with a FC(3), equipped with three output units
to represent the three distinct tumor classes. Subsequently, the SM layer applies softmax
activation to calculate probability distributions, while the final classification decision is
determined by the CL layer, which assigns the input data to one of the tumor classes
based on the softmax probabilities. This intricate arrangement of layers and components
collectively forms a robust and efficient framework for accurate BTC.

3.8. Sparse Categorical Cross-Entropy Loss

In the training process of ESRNet for BTC, we employ the sparse categorical cross-
entropy (SCCE) loss as the chosen loss function. This loss function is well-suited for
multi-class classification tasks, particularly when class labels are represented as integers
instead of one-hot encoded vectors.

The SCCE loss measures the dissimilarity between the predicted class probabilities
generated by the model and the actual integer class labels of the input data samples. It effec-
tively guides the training process by quantifying the error between the predictions (ŷ) and
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the ground truth labels (y), facilitating the optimization of the neural network’s parameters
to achieve accurate classification results. Mathematically, SCCE can be defined as:

L(y, ŷ) = − 1
N

N

∑
i=1

C

∑
j=1

(
1{yi = j} · log(ŷij)

)
(5)

where L(y, ŷ) represents the loss function, N is the number of training samples, C is the
number of classes (in our case, 3 for meningioma, glioma, and pituitary tumor), yi denotes
the true class label for the ith sample, ŷij represents the predicted probability of the ith
sample belonging to class j, and 1{yi = j} is an indicator function that equals 1 when yi is
equal to j, and 0 otherwise.

The use of this loss function is a crucial component of ESRNet’s training pipeline,
ensuring that the model learns to make informed and precise predictions for classifying
brain tumors into distinct categories, including meningioma, glioma, and pituitary tumor.

3.9. Training Process

Algorithm 2 presents a training procedure for ESRNet utilizing the Adam optimizer.
It takes essential inputs, such as the training data, learning rate, batch size, and the number
of training epochs. During each epoch, the training data is shuffled and processed in
mini-batches. The algorithm computes gradients of the loss function concerning the model
parameters for each mini-batch. It utilizes the Adam optimization method to update
these parameters, incorporating the first and second moments of the gradients. These
moments are corrected for bias, and the model parameters are updated accordingly. This
iterative process repeats for the specified number of epochs, ultimately resulting in trained
ESRNet parameters.

Algorithm 2: Training Algorithm with Adam Optimizer and SCCE Loss

Data: Training data {(xi, yi)}, Learning rate α, Batch size B, Number of epochs
Nepochs

Result: Trained ESRNet parameters
1 Initialize ESRNet weights and biases;
2 Initialize m and v (first and second moments) for each parameter;
3 Initialize time step t;
4 for epoch = 1 to Nepochs do

5 Shuffle training data;
6 for each mini-batch {(xj, yj)} of size B do

7 Compute the gradient of SCCE Loss with respect to the parameters
∇θ LSCCE(θ) using mini-batch;

8 t ← t + 1;
9 Update first moments: m ← β1m + (1 − β1)∇θ LSCCE(θ);

10 Update second moments: v ← β2v + (1 − β2)(∇θ LSCCE(θ))
2;

11 Correct bias in first moments: m̂ ← m
1−βt

1
;

12 Correct bias in second moments: v̂ ← v
1−βt

2
;

13 Update parameters using Adam: θ ← θ − α√
v̂+ε

m̂;

14 return Trained ESRNet parameters;

3.10. Hyperparameters

Table 1 presents the hyperparameters for ESRNet. These hyperparameters include
the learning rate (α) for parameter updates, the batch size (B) determining the number of
samples per mini-batch, and the total number of training epochs (Nepochs). Additionally,
the filter count (F) represents the number of filters in the convolutional layers, while
two dropout rates (d1 and d2) control the probability of neuron dropout. The stride (S)
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defines the step size in the convolutional layers, and two decay rates (β1 and β2) influence
the decay of the moment estimates in the Adam optimizer. The smoothing term (ε) is used
in Adam optimization. The kernel size specifies the size of the convolution kernels, and the
padding determines the type of padding applied.

Table 1. Hyperparameters for ESRNet.

Symbol Full-Form Description Used Value

α Learning Rate Rate of parameter updates 0.001
B Batch Size Number of samples per mini-batch 32

Nepochs Number of Epochs Total training epochs 700
F Filter Count Number of filters in conv. layers 64
d1 Dropout Rate Probability of neuron dropout 1 0.3
d2 Dropout Rate Probability of neuron dropout 2 0.2
S Stride Step size in conv. layers 1
β1 First Moment Decay Rate Decay rate for first moment estimates 0.9
β2 Second Moment Decay Rate Decay rate for second moment estimates 0.999
ε Epsilon Smoothing term in Adam optimizer 1 × 10−7

Kernel Size Convolution Kernel Size Size of conv. kernels 3 × 3
Padding Convolution Padding Type of padding ‘same’

4. Performance Analysis

The experiments were performed on MATLAB 2023a.
The computing platform was equipped with an 11th generation Intel® Core™ i9-

11950H vPro® Processor, with a base clock speed of 2.60 GHz and a maximum turbo
frequency of 5.00 GHz. A NVIDIA® RTX™ A4000 Laptop GPU with 8 GB of GDDR6
graphics memory was used for accelerated processing. The memory capacity included
32 GB of DDR4-3200MHz SODIMM RAM, arranged as 2 × 16 GB modules, facilitating
efficient data handling and processing during the experiments. The proposed ESRNet and
competitive models including CNN [15], multi-scale CNN [16], ResNet-18 [30], CNN and
RCNN [31], VAE and GAN [18], EfficientNets [19], BTC-fCNN [28], InceptionResNetV2 [29],
modified VGG-16 [27], R-CNN [20], and fine-tuned GoogLeNet [17] were implemented for
better comparative analysis. The hyperparameters of all the existing models were selected
as reported in their respective research articles.

4.1. Dataset

Initially, the dataset consisted of 3064 T1-weighted, contrast-enhanced images derived
from 233 patients who presented with three distinct types of brain tumors: meningioma
(comprising 708 slices), glioma (comprising 1426 slices), and pituitary tumors (comprising
930 slices) [40]. Obuli [41] meticulously compiled this dataset, ensuring that each category
contained 5000 images. Figure 1 displays sample images representing three distinct brain
tumor types—(a) glioma, (b) meningioma, and (c) pituitary tumor—which were obtained
from the dataset compiled by Obuli [41].

The dataset was further divided into three fractions, i.e., training, validation, and
testing. The majority of the data (75%) was used for ESRNet’s training. This larger portion
allows ESRNet to learn patterns and relationships in the data effectively. It is essential
for training a model with sufficient capacity to capture complex patterns in the data. The
validation dataset (10%) was used during the training process to monitor performance and
tune the hyperparameters of ESRNet. It helped to prevent overfitting by allowing checking
of how well ESRNet generalized to unseen data that it was not explicitly trained on. It was
crucial for selecting the best model and hyperparameters. The remaining 15% was reserved
for testing the performance of ESRNet. This set of data was entirely independent of both
the training and validation sets. It provided an unbiased evaluation of ESRNet’s ability to
generalize to new and unseen data.
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The choice of the training, validation, and testing ratios was determined through a
systematic experimentation process, considering a range of values for the training data
fraction, spanning from 50% to 90%. The goal was to identify a configuration that optimally
balanced model performance, generalization, and effective hyperparameter tuning. Follow-
ing this exploration, it was observed that allocating 75% of the data to training yielded the
most generalized and robust results for the proposed model. This particular ratio facilitated
the model in learning intricate patterns and relationships within the data effectively, result-
ing in improved overall performance. The validation dataset, comprising 10%, was deemed
sufficient for fine-tuning the hyperparameters during the training process without overly
relying on a small subset. The remaining 15% allocated to testing ensured a comprehensive
evaluation of the model’s generalization to previously unseen data. Thus, the selected
ratios of 75% for training, 10% for validation, and 15% for testing were determined to be
optimal through empirical experimentation.

Figure 1. Sample images: (a) Glioma, (b) Meningioma, and (c) Pituitary Tumor.
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4.2. Ablation Study

Figure 2 depicts an analysis of ESRNet’s performance in terms of accuracy based on
varying numbers of filters. The experiment involved different filter configurations, such
as ‘[128 128 128 128]’, ‘[128 128 128 64]’, and others. The results highlight that ESRNet
attained exceptional performance, particularly when utilizing filters with the configura-
tion ‘[64 64 64 64]’. This configuration yielded a remarkable accuracy of 99.62% ± 0.28%,
showcasing the efficacy of this specific filter arrangement in optimizing model performance.

Figure 2. Number of filters analysis of ESRNet in terms of accuracy.

4.3. Loss Analysis

Figure 3 provides a loss analysis of ESRNet. The horizontal axis represents the number
of training epochs. On the vertical axis, the loss values are presented, which measure how
well ESRNet learned the data. The blue curve represents the training loss, indicating how
well ESRNet fitted the training data over successive epochs. The orange curve represents
the validation loss, measuring how well ESRNet generalized to new and unseen data. The
smaller difference observed between the training and validation loss indicates a significantly
lower impact of overfitting; thus, ESRNet can effectively generalize to real-world data.

The observed loss values approaching zero signify higher performance of ESRNet.
These lower loss values indicate that ESRNet accurately captures the underlying patterns
in the data. Additionally, these loss values indicate a better convergence speed during the
training process, implying that ESRNet quickly achieves a better performance.
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Figure 3. Loss analysis of ESRNet.

4.4. Confusion Matrix Analysis

Figure 4 presents the confusion matrix depicting the performance of ESRNet in BTC.
Notably, glioma, meningioma, and pituitary tumors were all accurately identified, resulting
in an impressive overall accuracy of approximately 99.5%. This underscores the model’s
adeptness in correctly predicting instances for each specific class. The consistently high
values for each class further affirm the robustness of ESRNet in achieving precise and
reliable BTC.

Figure 4. Confusion matrix analysis of ESRNet (Green indicates True Positives (correct predictions),
while other colors represent errors, such as False Positives.).
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4.5. Receiver Operating Characteristic (ROC) Curve Analysis

Figure 5 presents a ROC analysis of modified VGG-16, R-CNN, fine-tuned GoogLeNet,
and the proposed ESRNet. It showcases the balance between the false positive rate (FPR)
and the true positive rate (TPR) for each model. It demonstrates that the proposed ESRNet
achieves significantly superior performance in terms of ROC, indicating its effectiveness in
distinguishing between positive and negative cases. Importantly, the comment underscores
the noteworthy achievement of the proposed ESRNet model, showcasing remarkable
results with an area-under-the-curve (AUC) value of 0.9941.

Figure 5. Receiver operating characteristic (ROC) curve analysis.

4.6. Comparative Analysis

Figure 6 presents a comparative analysis of the median values for each model, in-
cluding (a) CNN [15], (b) multi-scale CNN [16], (c) ResNet-18 [30], (d) CNN and RCNN
[31], (e) VAE and GAN [18], (f) EfficientNets [19], (g) BTC-fCNN [28], (h) InceptionRes-
NetV2 [29], (i) modified VGG-16 [27], (j) R-CNN [20], (k) fine-tuned GoogLeNet [17], and
(l) the proposed ESRNet. These models were evaluated across five essential metrics: accu-
racy, sensitivity, specificity, F-score, and Kappa, which are represented by a distinct bar color,
i.e., blue, cyan, green, yellow, and orange, respectively. The median values were computed
based on 30 separate evaluations for each model. Additionally, red bars representing the
standard deviation (σ) values are provided to illustrate the degree of performance variation
among these models. Overall, DSRNet demonstrated superior performance compared to
the competitive models, consistently achieving significantly higher results.
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Figure 6. Comparative median analysis between ESRNet and competitive models. (a) CNN [15];
(b) multi-scale CNN [16]; (c) ResNet-18 [30]; (d) CNN and RCNN [31]; (e) VAE and GAN [18];
(f) EfficientNets [19]; (g) BTC-fCNN [28]; (h) InceptionResNetV2 [29]; (i) modified VGG-16 [27];
(j) R-CNN [20]; (k) fine-tuned GoogLeNet [17]; (l) the proposed ESRNet.

Table 2 provides an extensive performance assessment of various models on the
BTC dataset. The table presents a comprehensive performance evaluation of various
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models on the BTC dataset, with ESRNet emerging as the standout performer. ESRNet
attained the highest metrics across accuracy (99.62 ± 0.28), sensitivity (99.68 ± 0.21),
specificity (99.89 ± 0.10), F-score (99.47 ± 0.43), and Kappa (99.42 ± 0.21), showcasing its
exceptional efficacy in brain tumor classification. ResNet-50 and DenseNet-121 exhibited
robust performances, excelling in accuracy and sensitivity. InceptionV3 demonstrated
competitive results, particularly in accuracy (98.94 ± 0.56) and sensitivity (99.12 ± 0.58).
DSCNet stood out with remarkable sensitivity (99.39 ± 0.53), emphasizing its strength
in capturing intricate tumor patterns. EfficientNet showcased balanced performance,
underscoring its effectiveness in brain tumor classification. CNN, though slightly trailing
in the metrics, maintained respectable accuracy (95.59 ± 1.74) and sensitivity (96.97 ± 1.42).
ResNet-101 and AlexNet achieved commendable results, enriching the diversity of the
effective models for BTC.

Among the models examined, it wa found that ESRNet significantly outperformed
the others in terms of accuracy, sensitivity, specificity, F-score, and Kappa statistics, with
median values of 99.62%, 99.68%, 99.89%, 99.47%, and 99.42%, respectively. Moreover, the
achieved minimum performance metrics, including accuracy (99.34%), sensitivity (99.47%),
specificity (99.79%), F-score (99.04%), and Kappa statistics (99.21%), underscore the excep-
tional effectiveness of ESRNet for BTC. These consistent and high-performing results across
diverse metrics establish ESRNet as a standout choice, demonstrating remarkable accuracy
and robust performance in brain tumor classification.

Table 2. Performance evaluation of competing and proposed models on BTC dataset.

Model Accuracy Sensitivity Specificity F-Score Kappa

CNN 95.59 ± 1.74 96.97 ± 1.42 92.56 ± 1.65 95.61 ± 1.56 95.61 ± 1.70
ResNet-101 96.29 ± 1.94 98.04 ± 1.80 97.81 ± 1.87 96.43 ± 1.82 96.43 ± 1.86
ResNet-50 97.92 ± 1.36 96.98 ± 1.47 95.99 ± 1.37 97.98 ± 1.25 97.96 ± 1.22
AlexNet 96.89 ± 1.02 98.82 ± 0.87 97.67 ± 0.99 96.92 ± 0.99 96.92 ± 1.01
EfficientNet 98.07 ± 1.05 98.90 ± 0.92 96.38 ± 0.97 98.08 ± 0.94 98.08 ± 0.98
InceptionV3 98.94 ± 0.56 99.12 ± 0.58 98.67 ± 0.72 98.95 ± 0.70 98.94 ± 0.59
ESRNet with SGD 98.91 ± 0.56 99.20 ± 0.54 98.55 ± 0.45 98.92 ± 0.49 98.93 ± 0.53
DSCNet 99.07 ± 0.54 99.39 ± 0.53 98.85 ± 0.41 99.06 ± 0.49 99.06 ± 0.54
ESRNet 99.62 ± 0.28 99.68 ± 0.21 99.89 ± 0.10 99.47 ± 0.43 99.42 ± 0.21

5. Conclusions

This paper introduced an ESRNet, representing a significant advancement in the
field of BTC. The use of residual blocks with skip connections played a crucial role in
enhancing the gradient flow during training, thereby addressing the vanishing gradient
problem commonly encountered in existing models. The architectural design of ESRNet
involved multiple stages, each featuring an increasing number of residual blocks, which
promoted feature learning and facilitated pattern recognition. In addition to its architectural
innovations, ESRNet incorporated efficient downsampling techniques and stabilizing
batch normalization layers, contributing to its overall robustness and reliability. Extensive
experimental results consistently demonstrated ESRNet’s superiority, with outstanding
performance metrics, including accuracy (99.62%), sensitivity (99.68%), specificity (99.89%),
F-score (99.47%), and Kappa statistics (99.42%). Overall, ESRNet emerged as a robust and
efficient framework for BTC, promising improved performance and efficiency in tackling
the critical challenges within the domain of medical image analysis. Its potential impact on
clinical diagnosis and treatment planning for individuals with brain tumors is noteworthy.

Author Contributions: Methodology, M.K. and S.R.; Software, A.B. and D.S.; Validation, M.K.;
Formal analysis, A.B. and D.S.; Investigation, A.B. and S.R.; Resources, M.A.; Data curation, M.K.,
D.S. and S.R.; Project administration, M.A.; Funding acquisition, M.A. All authors have read and
agreed to the published version of the manuscript.

131



Diagnostics 2023, 13, 3234

Funding: This work was supported by the Researchers Supporting Project number (RSPD2023R968),
King Saud University Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is freely available at https://figshare.com/articles/dataset/
brain_tumor_dataset/1512427 and https://www.kaggle.com/datasets/obulisainaren/multi-cancer.

Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this paper.

References

1. Togacar, M.; Ergen, B.; Comert, Z. Tumor type detection in brain MR images of the deep model developed using hypercolumn
technique, attention modules, and residual blocks. Med. Biol. Eng. Comput. 2021, 59, 57–70. [CrossRef] [PubMed]

2. Hashmi, A.; Osman, A.H. Brain Tumor Classification Using Conditional Segmentation with Residual Network and Attention
Approach by Extreme Gradient Boost. Appl. Sci. 2022, 12, 10791. [CrossRef]

3. Papadomanolakis, T.N.; Sergaki, E.S.; Polydorou, A.A.; Krasoudakis, A.G.; Makris-Tsalikis, G.N.; Polydorou, A.A.;
Afentakis, N.M.; Athanasiou, S.A.; Vardiambasis, I.O.; Zervakis, M.E. Tumor Diagnosis against Other Brain Diseases
Using T2 MRI Brain Images and CNN Binary Classifier and DWT. Brain Sci. 2023, 13, 348. [CrossRef] [PubMed]

4. Alnowami, M.; Taha, E.; Alsebaeai, S.; Anwar, S.M.; Alhawsawi, A. MR image normalization dilemma and the accuracy of brain
tumor classification model. J. Radiat. Res. Appl. Sci. 2022, 15, 33–39. [CrossRef]

5. Deepak, S.; Ameer, P.M. Automated Categorization of Brain Tumor from MRI Using CNN features and SVM. J. Ambient Intell.
Humaniz. Comput. 2021, 12, 8357–8369. [CrossRef]

6. Mahum, R.; Sharaf, M.; Hassan, H.; Liang, L.; Huang, B. A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization
and Multi-Level Thresholding. Biomedicines 2023, 11, 1715. [CrossRef]

7. Amou, M.A.; Xia, K.; Kamhi, S.; Mouhafid, M. A Novel MRI Diagnosis Method for Brain Tumor Classification Based on CNN
and Bayesian Optimization. Healthcare 2022, 10, 494. [CrossRef]

8. Sunsuhi, G.S. An Adaptive Eroded Deep Convolutional neural network for brain image segmentation and classification using
Inception ResnetV2. Biomed. Signal Process. Control 2022, 78, 103863. [CrossRef]

9. Rizwan, M.; Shabbir, A.; Javed, A.R.; Shabbir, M.; Baker, T.; Obe, D.A.J. Brain Tumor and Glioma Grade Classification Using
Gaussian Convolutional Neural Network. IEEE Access 2022, 10, 29731–29740. [CrossRef]

10. Kothandaraman, V. Binary swallow swarm optimization with convolutional neural network brain tumor classifier for magnetic
resonance imaging images. Concurr. Comput.-Pract. Exp. 2023, 35, e7661. [CrossRef]

11. Chitnis, S.; Hosseini, R.; Xie, P. Brain tumor classification based on neural architecture search. Sci. Rep. 2022, 12, 19206. [CrossRef]
[PubMed]

12. Kaur, M.; AlZubi, A.A.; Jain, A.; Singh, D.; Yadav, V.; Alkhayyat, A. DSCNet: Deep Skip Connections-Based Dense Network for
ALL Diagnosis Using Peripheral Blood Smear Images. Diagnostics 2023, 13, 2752. [CrossRef] [PubMed]

13. Qureshi, S.A.; Raza, S.E.A.; Hussain, L.; Malibari, A.A.; Nour, M.K.; Ul Rehman, A.; Al-Wesabi, F.N.; Hilal, A.M. Intelligent
Ultra-Light Deep Learning Model for Multi-Class Brain Tumor Detection. Appl. Sci. 2022, 12, 3715. [CrossRef]

14. Saha, P.; Das, R.; Das, S.K. BCM-VEMT: Classification of brain cancer from MRI images using deep learning and ensemble of
machine learning techniques. Multimed. Tools Appl. 2023 . [CrossRef]

15. Kibriya, H.; Masood, M.; Nawaz, M.; Nazir, T. Multiclass classification of brain tumors using a novel CNN architecture. Multimed.
Tools Appl. 2022, 81, 29847–29863. [CrossRef]

16. Yazdan, S.A.; Ahmad, R.; Iqbal, N.; Rizwan, A.; Khan, A.N.; Kim, D.H. An Efficient Multi-Scale Convolutional Neural Network
Based Multi-Class Brain MRI Classification for SaMD. Tomography 2022, 8, 1905–1927. [CrossRef]

17. Sekhar, A.; Biswas, S.; Hazra, R.; Sunaniya, A.K.; Mukherjee, A.; Yang, L. Brain Tumor Classification Using Fine-Tuned GoogLeNet
Features and Machine Learning Algorithms: IoMT Enabled CAD System. IEEE J. Biomed. Health Inform. 2022, 26, 983–991.
[CrossRef]

18. Ahmad, B.; Sun, J.; You, Q.; Palade, V.; Mao, Z. Brain Tumor Classification Using a Combination of Variational Autoencoders and
Generative Adversarial Networks. Biomedicines 2022, 10, 223. [CrossRef]

19. Zulfiqar, F.; Bajwa, U.I.; Mehmood, Y. Multi-class classification of brain tumor types from MR images using EfficientNets. Biomed.
Signal Process. Control 2023, 84, 104777. [CrossRef]

20. Demir, F.; Akbulut, Y. A new deep technique using R-CNN model and L1NSR feature selection for brain MRI classification.
Biomed. Signal Process. Control 2022, 75, 103625. [CrossRef]

21. Zahid, U.; Ashraf, I.; Khan, M.A.; Alhaisoni, M.; Yahya, K.M.; Hussein, H.S.; Alshazly, H. BrainNet: Optimal deep learning
feature fusion for brain tumor classification. Comput. Intell. Neurosci. 2022, 2022, 1465173. [CrossRef] [PubMed]
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Abstract: The use of deep learning methods for the automatic detection and quantification of bone
metastases in bone scan images holds significant clinical value. A fast and accurate automated system
for segmenting bone metastatic lesions can assist clinical physicians in diagnosis. In this study, a
small internal dataset comprising 100 breast cancer patients (90 cases of bone metastasis and 10 cases
of non-metastasis) and 100 prostate cancer patients (50 cases of bone metastasis and 50 cases of
non-metastasis) was used for model training. Initially, all image labels were binary. We used the Otsu
thresholding method or negative mining to generate a non-metastasis mask, thereby transforming
the image labels into three classes. We adopted the Double U-Net as the baseline model and made
modifications to its output activation function. We changed the activation function to SoftMax to
accommodate multi-class segmentation. Several methods were used to enhance model performance,
including background pre-processing to remove background information, adding negative samples
to improve model precision, and using transfer learning to leverage shared features between two
datasets, which enhances the model’s performance. The performance was investigated via 10-fold
cross-validation and computed on a pixel-level scale. The best model we achieved had a precision
of 69.96%, a sensitivity of 63.55%, and an F1-score of 66.60%. Compared to the baseline model, this
represents an 8.40% improvement in precision, a 0.56% improvement in sensitivity, and a 4.33%
improvement in the F1-score. The developed system has the potential to provide pre-diagnostic
reports for physicians in final decisions and the calculation of the bone scan index (BSI) with the
combination with bone skeleton segmentation.

Keywords: bone metastasis segmentation; Double U-Net; pre-train; negative mining; transfer learning;
deep learning

1. Introduction

According to the gender statistics database published by the Gender Equality Com-
mittee of the Executive Yuan in Taiwan in 2023, breast cancer was ranked first among the
top 10 cancer incidence rates in 2020 [1]. Breast cancer, prostate cancer, lung cancer, and
other prevalent cancers account for more than 80% of cases of metastatic bone disease.
For patients with breast cancer, late-stage bone metastasis is prone to occur, significantly
reducing the prognosis of the patients. A study by Coleman and Rubens reported bone
metastasis in 69% of breast cancer patients who died between 1979 and 1984, out of a total
of 587 patients [2]. Bone metastasis in breast cancer most commonly occurs in the spine,
followed by the ribs and sternum [3]. Radiologically, bone metastases in breast cancer
are predominantly osteolytic, leading to severe complications such as bone pain, patho-
logical fractures, spinal cord compression, hypercalcemia, and bone marrow suppression.
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Therefore, the early detection and treatment of bone metastasis in breast cancer patients are
crucially important.

Current methods for detecting breast cancer metastasis include the clinical observa-
tion of distant organ involvement, organ biopsies, diagnostic imaging, and serum tumor
markers. One of the primary imaging techniques used in clinics for bone metastasis di-
agnosis is the whole-body bone scan (WBBS) with vein injection using the Tc-99m MDP
tracer [4,5]. WBBS offers the advantages of whole-body examination, cost-effectiveness,
and high sensitivity, making it a preferred modality for bone metastasis screening [6].
Unlike X-radiography (XR) and computed tomography (CT) images, which can only detect
changes in bone when there is approximately 40–50% mineralization [7], bone scans exhibit
higher sensitivity in detecting bone changes, capable of detecting alterations as low as 5%
in osteoblast activity. The reported sensitivity and specificity of skeletal scintigraphy for
bone metastasis detection are 78% and 48%, respectively [8].

The bone scan index (BSI) is an image biomarker utilized in WBBS to evaluate the
severity of bone metastasis in cancer patients. It enables a quantification on the degree of
tumor involvement in the skeleton [9,10]. BSI is used for observing disease progression
or treatment response. The commercial software EXINI bone (version 1 and version 2,
including subversions), developed by EXINI Diagnostics AB, incorporates aBSI (automated
bone scan index) technology for the comprehensive automated quantitative assessment
of bone scan images [11]. In [11], there exists a strong correlation between manual and
automated BSI assessment values (ρ = 0.80), which further strengthens (ρ = 0.93) when
cases with BSI scores exceeding 10 (1.8%) are excluded. This indicates that automated BSI
calculations can deliver clinical value comparable to manual calculations. Shimizu et al. has
proposed an image interpretation system based on deep learning [12], using BtrflyNets for
the hotspot detection of bone metastasis and bone segmentation, followed by automatic BSI
calculation. The aBSI technology has now become a clinically valuable tool. Nevertheless,
there are still challenges regarding recognition performance (sensitivity and precision) in
this technique.

Cheng et al. applied a deep convolutional neural network (D-CNN) for the object
detection of bone metastasis from prostate cancer in bone scan images [13]. Their investiga-
tion specifically focused on the chest and pelvic regions, and the sensitivity and precision
for detecting and classifying chest bone metastasis were determined using bounding boxes
to be 0.82 ± 0.08 and 0.70 ± 0.11, respectively. Regarding pelvic bone metastasis classifica-
tion, the reported sensitivity and specificity were 0.87 ± 0.12 and 0.81 ± 0.11, respectively.
Cheng et al. conducted a more detailed study on chest bone metastasis in prostate cancer
patients [14]. The average sensitivity and precision for detecting and classifying chest bone
metastasis based on lesion locations are reported as 0.72 ± 0.04 and 0.90 ± 0.04, respectively.
For classifying chest bone metastasis based on patient-level outcomes, the average sensitiv-
ity and specificity are found to be 0.94 ± 0.09 and 0.92 ± 0.09, respectively. Patents filed by
Cheng et al. are referenced as [15], which leverage deep learning for the identification of
bone metastasis in prostate cancer bone scan images. Since they use bounding boxes, they
are unable to calculate BSI.

In a related study [16], a neural network (NN) model based on U-Net++ is proposed
for the automated segmentation of metastatic lesions in bone scan images. The anterior–
posterior and posterior–anterior views are superimposed, and image segmentation is
exclusively performed on the chest region of whole-body bone scan images. The achieved
average F1-score is 65.56%.

In this study, we modified the Double U-Net [17] as the fundamental architecture
to perform bone metastases segmentation on WBBS. We explored various methods to
enhance network performance, including background pre-processing, adding negative
samples, and transfer learning. We used Otsu thresholding [18] and negative mining [14]
methods for background pre-processing and generating negative samples. Background pre-
processing helped eliminate unnecessary background information, while adding negative
samples reduced the model’s false positive rate. Both of these methods did not require
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manual labeling or modification, saving time and manpower. Previous studies in the same
field [16,19–23] focused only on segmenting bone metastases in specific regions (chest or
pelvis) and could only predict either the anterior or posterior view. The datasets we used
only excluded the non-metastatic-prone areas below the knees and could simultaneously
segment images in both the anterior and posterior views. In comparison, our model was
able to provide a more comprehensive assessment of bone metastasis images.

The following points summarize the contributions of this paper:

• We discuss the challenges of lesion segmentation in breast cancer bone scan images.
• We compare and discuss the state-of-the-art methods in the same research field.
• Our experiments have shown that background pre-processing significantly improves

a model’s performance and adding negative samples enhances model precision. Both
methods do not require manual labeling or label modification, saving time and manpower.

• Our segmentation model offers greater comprehensiveness. It can perform lesion seg-
mentation on WBBS images, predicting both anterior and posterior views simultaneously.

2. Related Work

Deep learning has found numerous applications in cancer detection tasks. The authors
of Ref. [24] proposed an improved SIFT descriptor with Harris corner to form Bag-Of-
Words features in image representation. This study made a significant contribution to
medical image classification tasks. For skin lesions, the authors of Ref. [25] conducted a
comprehensive comparative study of U-Net and attention-based methods for dermatologi-
cal image segmentation, aiding in the diagnosis of skin lesions. The authors of Ref. [26]
introduced an enhanced deep learning model, SBXception, based on the Xception network
to improve skin cancer classification. In the realm of MRI, the authors of Ref. [27] presented
a weighted ensemble deep learning model for brain tumor classification. The authors of
Ref. [28] explored five machine learning techniques to deepen the understanding of brain
tumor classification and enhance its scope and significance.

Some early work has been carried out on automatic segmentation of metastatic lesions
using bone scan images [29–33]. The trend of using deep learning for bone scintigraphy
image analysis is becoming increasingly evident. In classification tasks, the authors of
Ref. [34] introduced an improved ResNet model that combines convolutional block at-
tention module and contextual transformer attention mechanisms to achieve the accurate
classification of SPECT images [35] based their work on widely used deep networks, in-
cluding VGG, ResNet, and DenseNet, by fine-tuning their parameters and structures or
by customizing new network architectures. The proposed classifiers performed well in
identifying bone metastases through SPECT imaging. The authors of Ref. [36] presented an
automated bone metastasis diagnostic model based on multi-view images. The authors
of Ref. [37] introduced a new framework in this work, which included data preparation
and image classification, for automatically classifying scintigraphy images collected from
patients clinically diagnosed with lung cancer.

In object detection tasks, the authors of Ref. [38] employed scaled-YOLOv4 and
Detectron2 object detection networks for bone metastasis localization in breast cancer
patient nuclear imaging data and for detecting degenerative and pathological findings in
whole-body scintigraphy scans. The authors of Ref. [39] proposed an automatic lesion
detection model based on single shot multibox object detector for the automatic detection
of lung cancer bone metastases in low-resolution SPECT bone scintigraphy images. The
authors of Ref. [14] applied D-CNN for object detection of prostate cancer bone metastases
in the chest and pelvic regions. As object detection uses bounding boxes, it cannot calculate
the BSI as a subsequent quantitative measure.

Compared to classification and object detection tasks, segmentation tasks are more
challenging. The authors of Ref. [19] introduced a model called MaligNet, which semanti-
cally segments abnormal hotspots in a semi-supervised manner and classifies bone cancer
metastases in the chest region. The authors of Ref. [20] built a segmentation model based
on U-Net and Mask R-CNN networks by fine-tuning their architectures for identifying and
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segmenting metastatic hotspots in bone SEPCT images. The authors of Ref. [21] added a
methods attention mechanism on top of the original U-Net network’s skip connections
to enhance feature selection, allowing for the automatic identification and segmentation
of bone metastases. The authors of Ref. [16] proposed a neural network model based on
U-Net++ for the automatic segmentation of metastatic lesions in bone scan images. The
authors of Ref. [22] introduced an improved UNet3+ network that combines attention
mechanisms for the automatic segmentation of bone metastatic lesions. The authors of
Ref. [23] presented a bone imaging focus segmentation algorithm based on the Swin Trans-
former, which uses the swin transformer as the backbone network for extracting feature
information from bone images. In current research in the same field, segmentation tasks
are limited to predicting specific local regions, such as the chest or pelvis, and they cannot
simultaneously predict both anterior and posterior views.

3. Materials and Methods

3.1. Materials

In this study, we collected 200 bone scan images from the Department of Nuclear
Medicine of China Medical University Hospital. The details of the bone scan images are
provided in Table 1. Specifically, D1 is defined as 90 images from breast cancer patients
with bone metastasis. D2 is defined as 10 images from breast cancer patients without bone
metastasis. D3 is defined as 50 images from prostate cancer patients with bone metastasis.
D4 is defined as 50 images from prostate cancer patients without bone metastasis. Figure 1
shows bone scan images of breast cancer patients. This study has been approved by the
Institutional Review Board (IRB) of China Medical University and Hospital Research Ethics
Committee (CMUH106-REC2-130), approved on 27 September 2017.

Table 1. The details of the bone scan images.

Breast Cancer Prostate Cancer

w/metastasis D1:90 D3:50
w/o metastasis D2:10 D4:50

Total 100 100

(a) (b) 

Figure 1. Bone scan images of breast cancer patients. (a) With metastasis; (b) without metastasis.

The WBBS process can be described as follows. Patients undergo WBBS with a
gamma camera (Millennium MG, Infinia Hawkeye 4, or Discovery NM/CT 670 system;
GE Healthcare, Waukesha, WI, USA). Bone scans are acquired 2–4 h after the intravenous
injection of 740–925 MBq (20–25 mCi) of technetium-99m methylene diphosphonate (Tc-
99m MDP) with an acquisition time of 10–15 cm/min. The collected WBBS images are saved
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in DICOM format. The raw images include anterior–posterior (AP) and posterior–anterior
(PA) views, with a matrix size of 1024 × 256 pixels.

3.2. Image Labeling

To facilitate labeling the bone scan images, the Labelme (version 4.5.9) software is
used as the annotation tool. The manual annotation of bone metastasis images is carried
out under the guidance and supervision of nuclear medicine physicians. This process is
very time-consuming. The outputs generated by the Labelme software are saved in JSON
format, and then converted to the PNG format. Figure 2 represents a schematic of the
manually annotated results.

   
(a) (b) (c) 

Figure 2. The schematic of the manually annotated results. (a) Bone scan image; (b) overlay of bone
scan image with ground truth; (c) ground truth.

3.3. Image Pre-Processing

The raw images possess a large memory size and the DICOM format is not directly
suitable for neural network training. Moreover, the raw images exhibit variations in bright-
ness and contrast levels. Thus, the pre-processing of the raw images becomes imperative.
The detection of the body range was accomplished using the projection profile, followed
by the extraction of two views with dimensions of 950 × 256 pixels through cutting and
centering. No scaling or other transformations were applied during this process. We uti-
lized the brightness normalization method proposed in [14] for brightness pre-processing.
This method uses a linear transformation to adjust the dynamic range of an image, with
the objective of controlling the average intensity of each image within the range of (7, 14).
The algorithm for the linear transformation is illustrated in Figure 3. The region below the
knees, which is uncommon for bone metastasis, was excluded from the calculation of BSI.
To obtain the region above the knees, pixels beyond row 640 were eliminated, resulting in
two views with a spatial resolution of 640 × 256 pixels each. Finally, the pre-processed AP
(anterior–posterior) and PA (posterior–anterior) view images were horizontally merged,
generating images with a spatial resolution of 640 × 512 pixels.
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Figure 3. Flowchart of brightness normalization.

3.4. Positive and Negative Samples

According to previous research [14], adding negative samples to the training dataset
helps reduce false positives and improve model precision. In this study, we also used
negative samples to enhance the model’s performance. Positive samples are defined as
images with bone metastases (D1 and D3), while negative samples are defined as images
without bone metastases (D2 and D4).

For the bone metastasis segmentation task in WBBS images, the background signifi-
cantly interferes with network training. In this scenario, the background not only includes
air but also the non-metastatic (NM) human body regions. Intuitively, NM regions of the
human body contain information but do not contain air. Therefore, an alternative approach
is to filter out the air to extract NM human body regions to generate NM masks. The
generation of NM masks involves two methods, which we briefly explain below.

The Otsu thresholding method is used to generate NM masks for both positive and
negative samples. It is important to note that the metastatic (M) regions must be man-
ually excluded from positive samples beforehand. Otsu thresholding can automatically
determine the threshold that separates air from the human body.

The negative mining method for generating NM masks involves two steps. First, the
baseline network is trained using only positive samples. After training, this model is used
to predict negative samples. Since negative samples do not have bone metastatic lesions,
all segmentation results produced are false positives. These false positive segmentation
results are then treated as NM regions to generate NM masks. The same model is also used
to predict positive samples. It is worth noting that the metastatic (M) regions in the positive
samples must be manually excluded beforehand.

The initial classes include background and metastasis. After generating NM masks
using the two methods mentioned above, the number of classes increases from the original
two to three, now including air-background (BG), non-metastatic (NM), and metastatic
(M) classes.

3.5. Transfer Learning

Transfer learning is a widely used technique in neural networks to increase their
performance. Before applying transfer learning, two crucial factors need to be considered:
(1) the size of the target dataset and (2) the similarity between the target dataset and the
pre-training dataset.
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In this study, the Double U-Net network model was pre-trained using the D3 and D4
datasets. We chose a pre-training dataset that contains highly similar bone scan images of
prostate cancer. Subsequently, the model was fine-tuned using the target dataset consisting
of breast cancer bone scan images. By leveraging transfer learning and selecting a pre-
training dataset closely related to the target dataset, our goal was to utilize shared features
between the two datasets to enhance the model’s performance on the current specific task.

3.6. Neural Network Model

We adopted the Double U-Net architecture as our network framework. The origi-
nal Double U-Net architecture was developed for binary segmentation tasks, which we
refer to as the baseline network. To adapt the Double U-Net architecture for multi-class
segmentation, we modified its network structure following the method described in our
previous research [40]. Figure 4 illustrates the modified network architecture. We changed
the output layer of network 1 to obtain a SoftMax activation function, enabling it to perform
multi-class segmentation. With this modification, the Double U-Net architecture can handle
three-class segmentation tasks involving the BG, NM, and M regions.

Figure 4. The modified architecture diagram of Double U-Net, the baseline network.

3.7. Loss Function

The selection of an appropriate loss function is a critical aspect in the design of deep
learning architectures for image segmentation tasks, as it greatly impacts the learning
dynamics of the algorithm. In our study, we consider two loss functions: the Dice loss
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(Equation (1)), as originally proposed in [17], and the Focal Tversky loss (Equation (2)).
By comparing these loss functions, we aim to explore their respective influences on the
model’s performance in the context of our specific task.

The dice coefficient is a widely adopted metric in computer vision for assessing the
similarity between two images. In our study, we utilize a modified version of the dice
coefficient known as the dice loss, which served as a loss function for our model.

DL(y, p)= 1 − 2yp
y + p

(1)

where y is true value and p is the predicted outcome.
The focal Tversky loss is particularly well-suited for solving highly imbalanced class

scenarios. It incorporates a γ coefficient that allows for the down-weighting of easy samples.
Additionally, by adjusting the α and β coefficients, different weights can be assigned to
false positives (FP) and false negatives (FN).

FTL(y, p)= (1 − yp
yp + α(1 − y)p + βy(1 − p)

)γ (2)

where γ = 0.75, α = 0.3, and β = 0.7.
When performing the three-class segmentation task for the BG, NM, and M regions,

calculating loss and back-propagating for the BG class is unnecessary and would make
model training difficult. Therefore, during the execution of the three-class segmentation
task, we do not calculate loss or perform backpropagation for the BG class.

3.8. Experimental Configuration and Evaluation Metrics

All experiments were conducted on four Intel Xeon Gold 6154 CPUs and a 32 GB
Nvidia Tesla V100 GPU. The memory capacity configured was 90 GB. Our segmentation
system was implemented in Python using Keras with TensorFlow 2.4.1.

The evaluation metrics employed in this study include precision (Equation (3)), sensi-
tivity (Equation (4)), and the overall model assessment based on the F1-score (Equation (5)).
The terms true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
were defined at the pixel level.

Precision =
TP

TP + FP
(3)

Sensitivity =
TP

TP + FN
(4)

F1-score = 2×Precision × Sensitivity
Precision + Sensitivity

(5)

4. Results

All experimental results in tables are obtained through 10-fold cross-validation, with a
ratio of 8:1:1 for the training, validation, and testing sets, respectively. The learning rate
used for training was 0.0001, batch size was set to 4, and the number of iterations was 500.

4.1. Negative Samples

The qualitative results of two negative samples are illustrated in Figure 5. The Otsu
thresholding can extract NM masks easily and produce three classes: BG, NM, and M.
Its results are shown in Figure 5a. Nevertheless, negative mining requires two steps, as
described in the method. Its results are shown in Figure 5b.

141



Diagnostics 2023, 13, 3042

(a) 

(b) 

Figure 5. Illustration of negative sample productions. Notably, the metastasis hotspots are eliminated
(the black holes), if the image has metastasis. (a) Otsu thresholding; (b) negative mining.

4.2. Results of the Baseline Network

The original Double U-Net network was trained using the D1 dataset and utilized
the dice loss function. The objective of this experiment was to establish the baseline
performance of the baseline network.

For comparison, it is essential to evaluate the performance of deep learning models
in each task using quantitative metrics. Here, the precision, sensitivity, and F1-score
are utilized for performance evaluation. Figure 6 shows the qualitative results, and the
quantitative results are shown in Table 2.

  
(a) (b) 

Figure 6. The qualitative result of the baseline network. (a) Ground truth; (b) segmentation results
(precision: 79.14; sensitivity: 78.22; F1-score: 78.68).
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Table 2. The quantitative results of the baseline network (dice loss).

Fold Number Precision Sensitivity F1-Score

1 49.21 79.19 60.70
2 58.74 64.98 61.70
3 70.56 60.01 64.86
4 81.69 52.20 63.70
5 60.57 54.06 57.13
6 72.55 45.92 56.24
7 43.63 83.32 57.27
8 49.03 68.21 57.05
9 61.73 60.84 61.28
10 67.89 61.13 64.34

Mean 61.56 62.99 62.27

4.3. The Baseline Network Using Otsu Thresholding

The modified Double U-Net network was trained using the D1 dataset. Before training,
we used the Otsu thresholding method on the D1 dataset for background pre-processing,
generating the NM mask. Figure 7 illustrates a training sample from the D1 dataset, which
includes three classes.

Figure 7. Illustration of applying Otsu thresholding to positive samples to generate NM masks. Three
classes are included: BG, NM, and M.

The model’s performance is shown in Table 3. In Table 3, we included the focal Tversky
loss for comparison. Compared to Table 2, we observe that using the Otsu thresholding
method for background pre-processing on the D1 dataset significantly improves the model’s
performance. In both the dice loss and focal Tversky loss models, the F1-score improved by
3.12% and 4.16%, respectively.

Table 3. The quantitative results for this experiment. Using the Otsu thresholding method for
background pre-processing on the D1 dataset.

Fold
Number

Dice Loss Focal Tversky Loss
Precision Sensitivity F1-Score Precision Sensitivity F1-Score

1 68.74 67.72 68.23 66.95 68.81 67.86
2 71.29 56.75 63.20 69.91 60.70 64.98
3 70.11 64.57 67.23 69.69 68.49 69.09
4 83.92 58.39 68.86 85.19 56.34 67.82
5 64.06 58.32 61.06 65.52 60.17 62.73
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Table 3. Cont.

Fold
Number

Dice Loss Focal Tversky Loss
Precision Sensitivity F1-Score Precision Sensitivity F1-Score

6 77.01 53.10 62.86 79.24 51.88 62.70
7 60.52 73.99 66.58 60.64 76.05 67.47
8 51.30 65.19 57.41 52.36 68.90 59.50
9 63.24 64.24 63.73 62.55 66.40 64.42

10 66.14 70.58 68.29 66.66 72.67 69.54
Mean 67.63 63.29 65.39 67.87 65.04 66.43

We wanted to investigate the impact of adding negative samples to the training
dataset on the model. In this experiment, we first used the Otsu thresholding method for
background pre-processing on the D2 dataset, generating the NM mask. Then, we added
the D2 dataset to the D1 training dataset in each fold. Figure 8 shows an example training
sample from the D2 dataset, which contains three classes.

Figure 8. Illustration of applying Otsu thresholding to negative samples to generate NM masks.
Three classes are included: BG, NM, and M.

Table 4 presents the model performance when adding the D2 dataset using the Otsu
thresholding method. In both the dice loss and focal Tversky loss models, precision
improved by 2.61% and 2.09%, respectively. From the results, we did not observe any
significant improvement in the F1 score. However, adding negative samples did indeed
increase precision, which aligns with our expectations.

Table 4. The quantitative results for this experiment. Using the Otsu thresholding method for
background pre-processing on the D2 dataset and adding it to the training set.

Fold
Number

Dice Loss Focal Tversky Loss
Precision Sensitivity F1-Score Precision Sensitivity F1-Score

1 70.41 65.42 67.82 69.66 67.94 68.79
2 70.85 60.72 65.39 70.09 63.16 66.44
3 73.88 64.55 68.90 72.29 67.43 69.78
4 85.21 54.91 66.78 85.29 56.55 68.01
5 71.95 55.89 62.91 72.86 53.82 61.91
6 82.09 49.93 62.10 82.54 51.38 63.34
7 62.14 67.76 64.83 62.22 72.58 67.00
8 54.31 65.79 59.50 54.42 64.25 58.93
9 65.37 63.09 64.21 63.23 64.94 64.07

10 66.14 69.90 67.97 66.98 73.49 70.08
Mean 70.24 61.80 65.75 69.96 63.55 66.60
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4.4. The Baseline Network Using Negative Mining

The modified Double U-Net network was trained using the D1 dataset. Prior to
training, we applied the negative mining method to pre-process the D1 dataset and gen-
erate the NM mask. Figure 9 illustrates a training sample from the D1 dataset, including
three classes.

Figure 9. Illustration of applying negative mining to positive samples to generate NM masks. Three
classes are included: BG, NM, and M.

The model performance is shown in Table 5. Compared to the baseline (Table 2),
negative mining indeed shows significant improvement. In the dice loss and focal Tversky
loss models, F1-score improved by 2.14% and 2.27%, respectively.

Table 5. The quantitative results for this experiment. Using the negative mining method for back-
ground pre-processing on the D1 dataset.

Fold
Number

Dice Loss Focal Tversky Loss
Precision Sensitivity F1-Score Precision Sensitivity F1-Score

1 65.94 72.63 69.13 65.01 70.95 67.85
2 71.47 59.26 64.80 65.70 62.18 63.89
3 70.63 61.13 65.54 67.49 68.33 67.91
4 82.85 48.77 61.40 80.04 60.92 69.19
5 57.72 57.81 57.76 40.43 78.88 53.46
6 78.32 45.99 57.95 64.76 60.65 62.64
7 49.50 82.30 61.82 51.50 80.99 62.97
8 50.25 73.06 59.55 48.97 70.11 57.66
9 59.42 68.06 63.45 52.04 74.00 61.11

10 70.00 63.57 66.63 57.81 79.95 67.10
Mean 65.61 63.26 64.41 59.38 70.70 64.54

Next, in this experiment, we first used the negative mining method to pre-process
the D2 dataset and generate the NM mask. Then, we added the D2 dataset to the training
data of D1 in each fold. Figure 10 shows a training sample from the D2 dataset (containing
three classes).
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Figure 10. Illustration of applying negative mining to negative samples to generate NM masks. Three
classes are included: BG, NM, and M.

The quantitative results of this experiment are shown in Table 6. In both the dice
loss and focal Tversky loss models, precision improved by 1.85% and 1.64%, respectively.
Similar to Table 4, adding negative samples to the training set led to a slight improvement in
precision but a slight decrease in sensitivity. The F1-score remained unchanged, as expected.

Table 6. The quantitative results for this experiment. Using the negative mining method for back-
ground pre-processing on the D2 dataset and adding it to the training set.

Fold
Number

Dice Loss Focal Tversky Loss
Precision Sensitivity F1-Score Precision Sensitivity F1-Score

1 64.79 69.79 67.19 59.59 76.92 67.16
2 70.67 59.40 64.55 59.27 71.75 64.92
3 77.27 48.05 59.26 67.96 62.61 65.18
4 85.56 53.52 65.85 83.36 54.10 65.62
5 57.46 63.47 60.32 46.52 69.61 55.77
6 80.69 46.10 58.68 74.92 59.45 66.29
7 57.06 73.52 64.25 48.79 81.93 61.16
8 54.72 62.98 58.56 50.79 71.00 59.22
9 65.60 62.07 63.79 60.26 65.43 62.74

10 60.75 74.89 67.08 58.71 73.35 65.22
Mean 67.46 61.38 64.28 61.02 68.62 64.59

4.5. Model Performance after Transfer Learning

Based on the previous experiments, we found that using the Otsu threshold method
to generate the NM mask leads to better performance improvement. To understand the
impact of transfer learning, we pre-trained the modified Double U-Net network using the
D3 and D4 datasets. Before pretraining, we used the Otsu threshold method to pre-process
the D3 and D4 datasets and generate the NM masks. Then, we added the D4 dataset to the
training data of D3 in each fold.

The pre-trained model was fine-tuned by learning from breast cancer patient images.
Before fine-tuning, we used the Otsu threshold method to pre-process the D1 and D2
datasets and generate the NM masks. Then, we added the D2 dataset to the training data
of D1 in each fold.

The qualitative results of segmentation are shown in Figure 11. Specifically, we
compare two loss functions: dice and focal Tversky.
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(a) (b) (c) 

Figure 11. The qualitative results after transfer learning. (a) Ground truth; (b) segmentation results
with dice loss (precision: 79.14, sensitivity: 73.41, F1-score: 76.17); (c) segmentation results with focal
Tversky loss (precision: 74.02, sensitivity: 86.24, F1-score: 79.67).

The quantitative results are shown in Table 7. Compared to the results without transfer
learning (Table 4), a slight improvement can be seen in the F1-score.

Table 7. The model performance with transfer learning.

Fold
Number

Dice Loss Focal Tversky Loss
Precision Sensitivity F1-Score Precision Sensitivity F1-Score

1 67.81 70.28 69.02 66.51 72.04 69.17
2 71.44 63.75 67.38 70.80 60.64 65.33
3 76.75 60.73 67.80 69.87 69.25 69.56
4 86.56 51.54 64.61 81.80 60.28 69.41
5 68.88 62.84 65.72 51.28 66.78 58.01
6 84.14 43.46 57.31 80.00 52.20 63.18
7 62.07 66.34 64.14 50.69 86.04 63.80
8 51.90 72.17 60.38 43.82 85.62 57.97
9 62.30 64.44 63.35 52.07 77.78 62.38

10 64.98 74.47 69.40 63.92 77.56 70.09
Mean 69.68 63.00 66.17 63.08 70.82 66.72

5. Discussion

In this study, the raw Double U-Net architecture served as the baseline model for
performance comparison. Subsequently, two schemes on negative sample extraction are
explored to see the impact on the model performance.

Otsu thresholding can easily separate air and body, thus removing the air background.
The air background contains no information and wastes computation time. Although we
define three classes in training, the BG class does not count into the loss. Another profit is
to extract negative samples. In our previous study [14] we found that training with only
metastasis (positive) class is not a good idea. It is better to train models with positive and
negative samples simultaneously. Our results shown in Tables 3 and 4 have confirmed this
again; they are better than the baseline shown in Table 2.

Tables 5 and 6 show the results obtained using negative mining. The model perfor-
mances seem slightly worse than Otsu thresholding. This might be due to the fact that
negative sample areas are significantly smaller than those negative samples produced using
the thresholding technique. Thus, they contained less information for training. Moreover,
negative mining requires a pre-trained model, and the thresholding technique does not.
Our study indicates that while adding negative samples is necessary, there is not only one
way to do so. There could be many other ways to create negative samples for training.
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We compared our research with other relevant studies in terms of network architecture
and results, as shown in Table 8. This table summarizes studies that used deep learning
methods for the segmentation of bone metastases in bone scan images. The authors of [20]
proposed an improved ResU-Net model for the segmentation of metastatic hotspots in
thorax SPECT images, achieving precision, sensitivity, and IoU scores of 77.21%, 67.88%,
and 61.03%, respectively. The authors of [21] added a methods attention mechanism to
the original U-Net network’s skip connections to enhance model performance, resulting
in an F1-score of 57.10% and an IoU of 63.30%. The authors of [16] introduced a neural
network model based on U-Net++, achieving segmentation performance with a precision of
68.85%, a sensitivity of 62.57%, and an F1-score of 65.56%. The authors of [22] combined the
UNet3+ network with an attention mechanism, proposing an improved UNet3+ network
that achieved segmentation performance with a precision of 61.20%, a sensitivity of 68.33%,
and an F1-score of 64.33%. The authors of [23] utilized a swin transformer as the backbone
network and proposed a bone imaging focus segmentation algorithm, achieving an F1-score
of 77.81% and an IoU of 35.59%.

Table 8. Comparison with network architecture and analysis results from related studies.

Method Region Precision Sensitivity F1-Score IoU

ResU-Net [20] Thorax 77.21 67.88 - 61.03
U-Net [21] Thorax - - 57.10 63.30

U-Net++ [16] Thorax 68.85 62.57 65.56 -
UNet3+ [22] Thorax 61.20 68.33 64.33 -

Swin
Transformer [23] Thorax + Pelvis - - 77.81 35.59

Ours
Whole body

excluded below
knees

69.96 63.55 66.60 -

In Table 8, the improved ResU-Net model used in [20] achieved the best model
performance in the segmentation of metastatic lesions in the thorax region. The model
based on the swin transformer in [23] achieved the highest F1-score. Our segmented region
is the widest in Table 8, and our model’s F1-score of 66.60 is second only to [23].

The selection of loss function might play a crucial role in model performance. For
complex tasks like segmentation, there is no universally applicable loss function. It largely
depends on the properties of the training dataset, such as distribution, skewness, bound-
aries, etc. For segmentation tasks with extreme class imbalance, focal-related loss functions
are more appropriate [41]. Additionally, since the vanilla Double U-Net model has a higher
precision than sensitivity, we are keen to use Tversky-related loss functions to balance the
false positives (FP) and false negatives (FN) rates. Therefore, we adopt focal Tversky loss
as the compared loss function. In the future, further exploration and research should be
conducted on the selection of optimizers.

Not all hotspots in bone scan images represent bone metastases; normal bone ab-
sorption, renal metabolism, inflammation, and injuries can also cause hotspots in images,
leading to false positives in segmentation. In addition to the inherent imaging principles
of bone scan images that make training the model challenging, the presence of artifacts in
the images is also a crucial factor leading to misclassification. Examples of such artifacts
include high-activity areas like the kidneys and bladder, the injection site of the radioactive
isotope, and motion artifacts, as shown in Figure 12. Apart from artifacts in breast cancer
images, prostate cancer bone scan images also exhibit high-activity artifacts from catheters,
urine bags, and diapers, as shown in Figure 13. In the future, appropriate pre-processing
can be applied to minimize the impact from artifacts, or additional classes such as benign
lesions and artifacts can be introduced to train the model more accurately.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 12. Mis-segmentation of non-metastatic lesions. (a) Bone fracture (head region) (precision:
88.46; sensitivity: 60.97; F1-score: 72.19); (b) motion artifact (head region) (precision: 69.32; sensi-
tivity: 47.84; F1-score: 56.61); (c) injection site (wrist) (precision: 43.55; sensitivity: 70.65; F1-score:
53.88); (d) injection site (elbow) (precision: 82.81; sensitivity: 55.52; F1-score: 66.47); (e) kidney
(precision: 51.85; sensitivity: 47.89; F1-score: 49.79); (f) bladder (precision: 47.47; sensitivity: 78.28;
F1-score: 59.10).

   
(a) (b) (c) 

Figure 13. Artifacts in bone scan images of prostate cancer. (a) Catheter; (b) urinary bag; (c) diaper.

The image pre-processing is usually important before using neural networks. Our pre-
vious study proposed a pre-processing method where the original images were combined
into a 3D image to alleviate the issue of spatial connectivity loss [14]. View aggregation,
an operation applied to bone scan images, has been used to enhance areas of high ab-
sorption [16]. This method enhances lesions that appear in both anterior and posterior
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view images and maps lesions that only appear in either anterior or posterior view images.
However, that method cannot be applied in this study, since we calculate every pixel here
and all errors (sensitivity, precision) are calculated in pixel-wise scale.

6. Conclusions

In this study, we confirm the validity of using negative samples in the task of bone
metastatic lesions detection in breast cancer whole body bone scan images. The model
is trained using positive and negative samples. We used background pre-processing
to remove excess air background information. Adding negative samples improved the
model’s precision. The images we used only excluded the less common regions below the
knees for bone metastatic lesions and could simultaneously perform image segmentation
for both anterior and posterior views. Our model is able to provide a more comprehensive
evaluation of bone metastasis images. The precision, sensitivity, and F1-score for the
segmentation of bone metastatic lesions are calculated on a pixel-level scale and the best
results reach 70.24%, 61.80%, and 65.75% for dice loss and 69.96%, 63.55%, and 66.60% for
focal Tversky loss, respectively.

The limitation of this study is the use of a small, single-center dataset, comprising only
100 breast cancer patients. This may result in limited model performance and generalizabil-
ity. In the dataset, only 10 negative samples were collected from breast cancer patients, and
the class imbalance between positive and negative samples could also pose a challenge to
model performance.

There is still significant room for improvement in the model’s performance in this study.
In the future, we plan to collect more WBBS images from different centers to further validate
the proposed model’s performance. We will focus on fine-tuning the hyperparameters
of the neural network and optimizing the choice of optimizers to enhance segmentation
performance and reduce computational costs. Noise and artifacts in WBBS images are
inevitable issues, and we plan to explore more image pre-processing methods to remove
false artifacts and image noise to improve image quality, thus enhancing segmentation
capabilities. Finally, we will use the interpretations of nuclear medicine physicians as the
gold standard to compare the final model with the decisions made by nuclear medicine
physicians, aiming to assess any discrepancies in decisions and evaluate the clinical utility
of the model.
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Abstract: It is rare to use the one-stage model without segmentation for the automatic detection
of coronary lesions. This study sequentially enrolled 200 patients with significant stenoses and
occlusions of the right coronary and categorized their angiography images into two angle views:
The CRA (cranial) view of 98 patients with 2453 images and the LAO (left anterior oblique) view of
176 patients with 3338 images. Randomization was performed at the patient level to the training
set and test set using a 7:3 ratio. YOLOv5 was adopted as the key model for direct detection. Four
types of lesions were studied: Local Stenosis (LS), Diffuse Stenosis (DS), Bifurcation Stenosis (BS),
and Chronic Total Occlusion (CTO). At the image level, the precision, recall, mAP@0.1, and mAP@0.5
predicted by the model were 0.64, 0.68, 0.66, and 0.49 in the CRA view and 0.68, 0.73, 0.70, and 0.56 in
the LAO view, respectively. At the patient level, the precision, recall, and F1 scores predicted by the
model were 0.52, 0.91, and 0.65 in the CRA view and 0.50, 0.94, and 0.64 in the LAO view, respectively.
YOLOv5 performed the best for lesions of CTO and LS at both the image level and the patient level. In
conclusion, the one-stage model without segmentation as YOLOv5 is feasible to be used in automatic
coronary lesion detection, with the most suitable types of lesions as LS and CTO.

Keywords: coronary angiography; deep learning; coronary artery stenosis detection; convolutional
neural network; one-stage detection; without segmentation

1. Introduction

Coronary artery disease (CAD) is one of the most common types of cardiovascular
disease. It could cause stenoses and occlusions of coronary arteries, which will finally lead
to severe endpoints such as myocardial ischemia and infarction. It is also the leading cause
of mortality in the world, which is responsible for 16% of the total 55.4 million deaths
in recent years [1]. Coronary angiography (CAG), which is recommended as the most
important examination for CAD, is considered the gold standard for the diagnosis and
treatment of ischemic heart disease [2–4]. CAG images can provide detailed anatomical
information of vessels from multiple angle views, which is better than other examinations
such as coronary CT angiography (CCTA) and cardiac magnetic resonance imaging (cMRI).

However, compared to CCTA and cMRI, CAG images still have some limitations:
(1) Instantaneous contrast agent inhomogeneity makes the images fuzzy, with poor contrast
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between vessels and surrounding tissues; (2) irregular angle views cause images to change
continuously; (3) complex vessel structures in two-dimensional images cause different
coronary arteries to overlap and make them difficult to distinguish. Even so, given its
extensive clinical application and significant diagnostic value, many studies still try to
perform studies of artificial intelligence (AI)-assisted diagnosis of CAG via the deep learning
(DL) method. The method of segmentation before detection has been mostly employed in
previous studies. As described in the limitations of CAG images, difficulties in defining
and detecting lesions caused by overlapped coronary arteries were the major challenges in
the one-stage detection of multi-type coronary lesions. However, right coronary arteries
rarely encounter these challenges due to less overlap.

Currently, segmenting the coronary arteries followed by diameter measurements or
stenosis evaluations is the most studied method [5–7]. Zhao et al. [8] classified the lesions
by performing image segmentation of the vessel centerline, calculating vessel diameters,
and measuring the degree of stenoses. Liu et al. [9] performed vessel boundary-aware seg-
mentation, branch node localization, coronary artery tree construction, and vessel diameter
fitting, and ultimately accomplished stenosis detection. Algarni et al. [10] employed image
noise removal, contrast enhancement, and Otsu thresholding as pre-processing techniques
and used attention-based nested U-Net and VGG-16 for vessel segmentation and lesion
detection. Their method only generated a binary classification of normal and abnormal im-
ages. However, both vessel segmentation and the extraction of coronary artery centerlines
require significant work regarding manual annotation. Meanwhile, providing pixel-level
specific lesion annotations for each frame reduces the robustness of lesion assessment and
limits its clinical use and applications with large datasets.

Furthermore, some studies have stepped further by incorporating the automatic
selection of contrast-enhanced images to extract the key frames of diagnosis for AI analysis.
Cong et al. [11] employed convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks for automatic detection and key frame sampling. Then, they
used the modified pre-trained Inception-V3 network [12] and employed the anchor-based
feature pyramid network (FPN) for stenosis localization. Similarly, Moon et al. [13] used
weakly supervised DL to extract key frames and performed the classification of regions of
50% stenosis. Then, they used the convolutional block attention module (CBAM) [14] to
achieve the precise localization of vessel stenosis.

Some other studies have also employed multiple types of network models to improve
detection performance. Ling et al. [15] used ResNet, Mask R-CNN, and RetinaNet to con-
struct a system that includes functionalities of classification, segmentation, and detection.
Du et al. [16] designed a multi-scale CNN to extract texture features of different scales
from CAG images. They used the Faster R-CNN [17] framework for the detection and
localization of stenoses. Danilov et al. [18] also trained and tested eight different detectors
based on various network architectures and confirmed the feasibility of DL methods for
the real-time detection of coronary stenoses by the intercomparisons among them.

On the other hand, studies also used artificially synthesized data because of the
significant manual pre-processing steps of CAG images. Antczak et al. [19] trained a patch-
based classification model with an artificial dataset and then tuned up the network using
real-world patches to improve its accuracy. Ovalle-Magallanes et al. [20] proposed a pre-
trained CNN model based on transfer learning for segmentation, along with fine-tuning by
artificial and real-world data, to introduce a novel method for automated stenosis detection.
The relevant studies are summarized in Table 1.
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Table 1. Related studies are summarized in four aspects: Methods, data, classes, and results.

Ref. Methods Data Classes Results

Zhao et al. (2021) [8]

FP-U-Net++, arterial
centerline extraction,
diameter calculation,
arterial stenosis detection

99 patients,
314 images

1–24%, 25–49%,
50–69%, 70–100%

Precision = 0.6998,
recall = 0.6840,

Liu et al. (2023) [9] AI-QCA 3275 patients,
13,222 images 0–100% Precision = 0.897,

recall = 0.879

Algarni et al. (2022) [10] ASCARIS model 130 images normal and abnormal
Accuracy = 97%,
recall = 95%,
specificity = 93%

Cong et al. (2023) [11]
Inception-v3 and LSTM,
redundancy training, and
Inception-V3, FPN

230 patients,
14,434 images <25%, 25–99%, CTO

Accuracy = 0.85,
recall = 0.96,
AUC = 0.86

Moon et al. (2020) [13] GoogleNet Inception-v3,
CBAM, Grad-CAM 452 clips Stenosis ≥ 50% AUC = 0.971,

accuracy = 0.934

Ovalle-Magallanes et al.
(2020) [20]

pre-trained CNN via
Transfer Learning, CAM

10,000 artificial
images, 250 real
images

Stenosis

Accuracy = 0.95,
precision = 0.93,
sensitivity = 0.98,
specificity = 0.92,
F1 score = 0.95

Antczak et al. (2021) [19] A patch-based CNN for
stenosis detection

10,000 artificial
images, 250 real
images

Stenosis Accuracy = 90%

Du et al. (2021) [21]
A DNN for the
recognition of lesion
morphology

10,073 patients,
20,612 images

Stenotic lesion, total
occlusion, calcification,
thrombus, and
dissection

F1 score = 0.829, 0.810,
0.802, 0.823, 0.854

Ling et al. (2023) [15] DLCAG diagnose system 949 patients,
2980 images Stenosis mAP = 86.3%

Danilov et al. (2021) [18]
Comparison of
state-of-the-art CNN
(N = 8)

100 patients,
8325 images Stenosis ≥ 70%

mAP = 0.94,
F1 score = 0.96,
prediction speed = 10 fps

Pang et al. (2021) [22] Stenosis-DetNet with SFF
and SCA

166 sequence,
1494 images Stenosis Accuracy = 94.87%,

sensitivity 82.22%

However, these studies still have some limitations: (1) Data in these studies are col-
lected from patients with CAD who might undergo medical therapy or percutaneous
coronary intervention (PCI) only. Lesions of them may be mild and simple, which could
not represent the real world. (2) These studies lack detailed analysis of lesions as stenoses
in detailed types. Du et al. [21] segmented the coronary arteries into more than 20 segments
and explored various manifestations, such as stenosis, occlusion, calcification, thrombosis,
and dissection. However, they did not analyze stenoses more comprehensively, of which
lesions are the most common and important in clinical practice. (3) These studies all per-
formed detection based on segmentation. Compared to direct detection, their approaches
still involved more learning steps and more complex structures. Too many methods were
employed to enhance model efficiency, which leaves space for further modification.

Inspired by this, we intended to develop a strategy to overcome these shortcomings in
this study. We classified vascular lesions into four categories: Local stenosis, diffuse stenosis,
bifurcation stenosis, and chronic total occlusion. We conducted a multi-view analysis of
angiographies from candidates and adopted YOLOv5 as the key model for segmentation-
free DL study of lesion detection, localization, and classification. Furthermore, we also
employed the technique of gradient-weighted class activation mapping (Grad-CAM) for
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the visual explanations to evaluate the model performance and the feasibility of one-stage
lesion detection without segmentation.

The contributions of this study are as follows:

1. This study enrolled angiography images from patients who were candidates for
coronary artery bypass (CAB) surgery for the first time to evaluate the detection
performance of DL techniques with complex lesions.

2. A single-stage detection model by the region-free approach was employed for the first
time to detect vascular lesions directly, aiming to improve detection efficiency.

3. A more detailed classification of vascular stenoses was performed, providing a com-
prehensive evaluation of the network model’s performance among different types of
lesions.

2. Materials and Methods

2.1. Dataset Characteristics

Two hundred and fourteen patients who were potential candidates for CAB surgery
were enrolled from a single cardiac center (Fuwai Hospital, Beijing, China). This study was
reviewed and approved by the ethics committee of Fuwai Hospital. There were some exclu-
sion criteria when collecting data: (1) Combined with other cardiovascular diseases except
atrial septal defect, ventricular septal defect, patent ductus arteriosus, and valvular heart
disease; (2) combined with other diseases requiring surgical treatment; (3) emergency coro-
nary artery bypass grafting or clinically unstable coronary artery disease (e.g., myocardial
infarction within 30 days, preoperative implantation of the aorta counterpulsation, the need
for continuous pumping of nitrates, etc.); (4) preoperative critical condition; (5) history of
cardiovascular pulmonary resuscitation (CPR). The dataset was built by patients’ angiogra-
phies, which were saved as Digital Imaging and Communications in Medicine (DICOM)
files and contained several angle views for left and right coronaries. Finally, images of
the right coronary were analyzed in this study. Two major angle views were analyzed
separately: The LAO (left anterior oblique) view is approximately 45◦ in the left anterior
oblique view, which can display the proximal segment and middle segment well, and the
CRA (cranial) view is approximately 20◦ in the cranial view, which can display the distal
segment and posterior descending branch well. Fourteen patients had normal imaging
findings with no lesion in the right coronary. Ninety-eight patients had lesions in the CRA
view, and 176 patients had lesions in the LAO view. The final dataset had 2453 images
in the CRA view and 3338 images in the LAO view. They were randomly divided into
training sets and validation sets at the patient level by a ratio of 7:3. The enrollment profile
is shown in Figure 1.

Four types of lesions (Figure 2) were analyzed in this study: (1) Local stenosis (LS): A
local stenosis defined as any stenosis under 20 mm in length; (2) diffuse stenosis (DS): A
diffuse stenosis defined as any stenosis over 20 mm in length, which was also named long
lesion [23,24]; (3) bifurcation stenosis (BS): A bifurcation stenosis defined as any stenosis
adjacent to, and/or involving, the origin of a significant side branch [25]; (4) chronic total
occlusion (CTO): A chronic total occlusion defined as 100% occlusion of a coronary artery
for a duration of greater than or equal to 3 months based on angiographic evidence. The
details of image distribution are shown in Table 2.
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Figure 1. Flow chart of the study enrollment. CRA: cranial; LAO: left anterior oblique.

Figure 2. Four types of lesions on the right coronary artery. (A) Local stenosis (blue rectangular
box); (B) diffuse stenosis (red rectangular box); (C) bifurcation stenosis (yellow rectangular box);
(D) chronic total occlusion (green rectangular box).

Table 2. Distributions of images and lesions in the CRA and LAO angle views.

The CRA View The LAO View p Value

Age, years 63 ± 8 64 ± 9 0.54
Gender

Male (%) 68 (69%) 118 (67%) 0.72
Images 2453 3338 0.66

Training Set (%) 1747 2395
Test Set (%) 706 943

Lesions
Training Set 3259 1529 <0.01

LS 2003 1005
DS 376 96
BS 500 375

CTO 380 53
Test Set 3874 1262 <0.01

LS 2187 433
DS 405 273
BS 411 174

CTO 871 382
CRA: cranial; LAO: left anterior oblique; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO:
chronic total occlusion.
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2.2. Reference Standard and Annotation Procedures

We treated manual annotations by cardiologists and radiologists as the reference stan-
dard to evaluate the diagnostic performance of the model. Firstly, a researcher converted
the DICOM files into JPG image files. Then, the images of the right coronary were selected
from these files and handed over to two well-trained cardiologists or radiologists with over
10 years of experience in CAG to choose ideal frames and label the lesions. The lesions
were classified into four types: LS, DS, BS, and CTO. In cases of conflicting annotations,
the cardiologist and the radiologist collaborated and reached a consensus to determine the
final type.

2.3. Experimental Environment and Methodology

Our experiments were conducted on a graphics workstation with Intel(R) Xeon Gold
6132 CPU@2.60 GHz 2.59 GHz, and NVIDIA TITAN RTX 24 G. Python 3.8 and PyTorch
1.13 were chosen as the DL framework. Figure 3 shows the flowchart of the DL procedure.
DICOM Files were first exported into serial images. Ideal frames were chosen by our
researcher and datasets were subsequently established. The manual annotation procedure
was performed in the ways mentioned above, and the labeled images were sent to the
network for training and testing. It outputs three vectors containing the predicted box
class, confidence, and coordinate location in CAG images. Coronary lesions were directly
detected, eliminating the requirement for time-consuming processes like segmentation and
blood vessel extraction in previous studies. The types of coronary lesions were simplified
to four with discriminative characteristics. To the best of our knowledge, the proposed
method is the first to employ the single-stage YOLOv5 model with the region-free method
to directly detect coronary lesions in CAG images. Moreover, Grad-CAM was incorporated
to visualize the distinguishing area of specific lesion types for network interpretation.

Figure 3. Flowchart of the proposed method. DICOM: digital imaging and communications in
medicine; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO: chronic total occlusion;
NMS: non-max suppression; Grad-CAM: gradient-weighted class activation mapping.

We performed experiments both at the image level and the patient level. Because of
the tiny changes in images in the same angle view of one single patient, it might be treated
as one lesion for those found in the same position in the serial images. We defined that the
prediction was correct at the patient level if one correct prediction of the lesion was found
in one of the images in the serial.
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2.4. Architecture of Models
2.4.1. The YOLOv5x Model

Figure 4 shows the structure of the YOLOv5x [26]. The input was uniform-size
CAG image data, which were sent to the one-stage segmentation-free CNN. The network
automatically learned the most class-related discriminant region highlighted to detect
lesions directly, skipping the time-consuming classification and location in two steps.
Finally, the network directly returned the size, position, and category of the target lesion,
achieving end-to-end predictions.
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Figure 4. Overview of the YOLOv5x model architecture. The whole architecture contains 4 general
modules, namely, an input terminal, a backbone, a neck, and a prediction network, along with 6 basic
components: Focus, CSP1_X, CSP2_X, CBS, Res Unit, and SPP.

The YOLOv5x consisted of a backbone feature extraction network, a neck network,
and a head target prediction network. The Mosaic data enhancement method was used
to augment the data, which makes the network more robust. The backbone network was
mainly composed of a focus structure, a cross-stage-partial (CSP) module, and a spatial
pyramid pooling (SPP) module. The focus structure sliced the input CAG images and
stitched the sliced result, which reduces the loss of lesion information and effectively
improves the quality of feature extraction of contrast maps. Two CSP structures were
employed to speed up the inference, decrease computation, and improve lesion detection.
The feature pyramid network (FPN) [27] and path aggregation network (PAN) [28] were
used in the neck to realize multi-scale lesion feature fusion. Three branches of target
detection heads were used in the procedure, which could detect lesions on small, medium,
and large targets, respectively. The dense anchor frame could significantly increase the
network’s ability to identify targets, which is obvious for small target detection. The
network directly outputs results with predictions of lesion types and confidence to realize
the automatic integrated prediction of the lesion type and position.

In this study, the batch size was 16 for the training set and 32 for the test set. A total of
100 epochs of training were conducted. LambdaLR was used as the learning rate updating
strategy, and the stochastic gradient descent (SGD) optimizer and an initial learning rate of
10−4 were used. Box loss, obj (object) loss, and cls (class) loss were used:
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Loss = CIoULoss +
S×S
∑

i=0

B
∑

j=0
Iobj
ij [Cilog(Ci) + (1 − Ci)log(1 − Ci)]

−S×S
∑

i=0

B
∑

j=0
Inoobj
ij [Cilog(Ci) + (1 − Ci)log(1 − Ci)]

+
S×S
∑

i=0

B
∑

j=0
Iobj
ij ∑

c∈classes
[pi(c)log(pi(c)) + (1 − pi(c))log(1 − pi(c))]

(1)

where S represents the size of the final layer of feature maps and B is the number of
detection boxes. Iobj

ij stands for items in the grid (i, j) and Inoobj
ij for objects not present in

the grid (i, j).
YOLOv5 used CIoUloss [29] as the loss function of bounding box coordinate regression,

which addresses the issue of slow convergence speed and imprecision regression in IoU
and GIoU [30]. Additionally, while conducting non-maximum suppression, weighted non-
maximum suppression (NMS) was employed, which effectively detects some overlapping
vessels in coronary angiography images without consuming more processing resources.

2.4.2. The Grad-CAM Technique

We used the Grad-CAM [31] for visual explanations after lesion detection to identify
the discriminative regions in each trained model that have varied contribution weights for
its classification decision. Grad-CAM can be considered mathematically as a modification
of CAM and can be utilized to extend to any CNN-based network.

To understand the significance of each neuron to a specific lesion category c (e.g.,
the local stenosis), Grad-CAM used the gradient information flowing into the ultimate
convolutional layer of the CNN. The neuron importance weights αc

k were obtained by an
averaged pooling of gradients via backpropagation from category c:

αc
k =

1
Z ∑i ∑j

∂yc

∂Ak
ij

(2)

where Z is a normalization operation. The output of Grad-CAM is generated when all
feature maps of the same size are weighted and added in accordance with their respective
weights. Then, a rectified linear unit (ReLU) was applied to the linear combination to reject
feature maps with negative activation values (Ak):

Lc
Grad−CAM = ReLU

(
∑
k

αc
k·Ak

)
(3)

2.5. Performance Evaluation

The detection performance was evaluated by the confusion matrix, precision-recall
(P-R) curve, precision, recall, F1 score, and mean average precision (mAP) at the image level
and the precision, recall, F1 score, and mFP at the patient level. They were defined as

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 score = 2 × Precision × Recall
Precision + Recall

(6)

IoU =
|A ∩ B|
|A ∪ B| (7)
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mFP =
FP
n

(8)

where A is the predicted label from YOLOv5x and B is the reference label. A true posi-
tive (TP) represents the correct classification of lesions with the intersection over union
(IoU) ≥ threshold. A false positive (FP) represents the incorrect classification of lesions OR
with the intersection over union (IoU) < threshold. The mean false positive (mFP) represents
the mean number of FPs for each patient. A false negative (FN) is an undetected reference
label. We also employed mAP@0.1 (IoU = 0.1) and mAP@0.5 (IoU = 0.5) in the study.

2.6. Statistics

Descriptive factors were summarized as the mean and standard deviation. Pearson’s
Chi-square tests and Student’s t-tests were conducted for categorical and continuous factors,
respectively. A two-sided p-value < 0.05 was considered statistically significant. Statistical
Product Service Solutions (SPSS) 25.0 was used for statistical analysis.

3. Results

3.1. The Image Level

Details of the results are presented in Table 3. In the general statistics, the precision,
recall, mAP@0.1, and mAP@0.5 predicted by the model were 0.64, 0.68, 0.66, and 0.49 in
the CRA view, respectively. Meanwhile, the precision, recall, mAP@0.1, and mAP@0.5 pre-
dicted by the model were 0.68, 0.73, 0.70, and 0.56 in general in the LAO view, respectively.
The results of CTO showed the best performance with F1 scores of 0.65 and 0.86 in the four
types of lesions in both angle views, compared to the results of LS of 0.67 and 0.50 for the
opposite.

Table 3. Results of four lesions with two angle views at the image level.

Lesions Number Precision Recall mAP@0.1 mAP@0.5 F1 Score

CRA

LS 1055 0.685 0.647 0.643 0.405 0.665
DS 96 0.458 0.844 0.687 0.677 0.594
BS 374 0.656 0.658 0.675 0.625 0.657

CTO 53 0.75 0.566 0.647 0.263 0.645
All 1578 0.637 0.679 0.663 0.493 0.657

LAO

LS 433 0.426 0.617 0.479 0.273 0.504
DS 273 0.648 0.868 0.773 0.688 0.742
BS 174 0.699 0.655 0.694 0.521 0.676

CTO 382 0.927 0.796 0.87 0.749 0.857
All 1262 0.675 0.734 0.704 0.558 0.703

mAP@0.1: mean average precision (IoU = 0.1); mAP@0.5: mean average precision (IoU = 0.5); CRA: cranial; LAO:
left anterior oblique; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO: chronic total occlusion.

The confusion matrices for YOLOv5x (Predicted) and manual annotations (True) of
four types of lesions are shown in Figure 5 (IoU = 0.1). All the detected regions were taken
into account when calculating the confusion matrix’s values, similar to other studies on
YOLO [32–34]. Two angle views of the right coronary showed the same performance. In
the CRA view, the probability of correct localization and classification for DS was 0.81,
which was the best, and 0.54, 0.66, and 0.47 for LS, BS, and CTO, respectively. However, it
was noted that 51% of the real CTO was predicted as background, while the background
was also treated as LS, which represented 66% of the predicted LS. In the LAO view, the
probability of correctly locating and classifying DS was 0.79, which was also the best,
followed by 0.60, 0.58, and 0.77 for LS, BS, and CTO, respectively. However, like the
performance in the CRA view, it could be found that 51% of the background was treated as
LS in the LAO results.
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Figure 5. Confusion matrices of the CRA view and the LAO view. The horizontal axis represents the
ground truth, and the vertical axis represents the prediction. CRA: cranial; LAO: left anterior oblique;
LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO: chronic total occlusion.

The P-R curves of the two angle views shown in Figure 6 were performed for the
situation of IoU = 0.1. The area under the curve (AUC) in general was 0.663 (mAP@0.1) in
the CRA view and 0.704 (mAP@0.1) in the LAO view. It could be found in Figure 6 that
in the LAO view, the result of CTO had an excellent performance, compared to the result
of LS on the opposite. Meanwhile, in the CRA view, four types of lesions had the same
performance.

Figure 6. Precision-recall curves of the CRA view and the LAO view. CRA: cranial; LAO: left anterior
oblique; CTO: chronic total occlusion.

Figure 7 shows the effect of YOLOv5x-detected lesions in CRA and LAO views. From
the test results, it could be found that the model’s detection was close to the manual
annotations of physicians. With the value of confidence displayed in the following, the
model showed good consistency with the reference standard.
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Figure 7. Representative coronary lesion detection results using YOLOv5 in the test set. The bounding
boxes contain images of coronary lesions. CRA: cranial; LAO: left anterior oblique; Blue box: the
manual annotation; Orange box: predicted local stenosis; Red box: predicted diffuse stenosis (long
lesion); Pink box: predicted bifurcation stenosis; Yellow box: predicted CTO; Value: confidence.

3.2. The Patient Level

At the patient level, the model yielded the results of the precision, recall, and F1 score
as 0.52, 0.91, and 0.65 in the CRA view and 0.50, 0.94, and 0.64 in the LAO view, respectively.
The results of CTO showed the best performance with an F1 score of 0.77 and 0.88 in four
types of lesions in both angle views, compared to the results of 0.54 for BS and 0.44 for LS
on the opposite. We also calculated the mFP in two angle views. The performance of LS
made the most mistakes across the four types of lesions. The model performed the best in
the CTO with 0.07 and 0.10 of mFP in both views. Moreover, the mFP was 2.47 in the CRA
view and 1.86 in the LAO view. Table 4 shows the details of the results (IoU = 0.1).
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Table 4. Results of four lesions with two angle views at the patient level.

Lesions TP + FN TP FN FP P R F1 Score mFP

CRA

LS 59 55 4 44 0.556 0.932 0.696 1.467
DS 6 6 0 8 0.429 1.000 0.600 0.267
BS 15 13 2 20 0.394 0.867 0.542 0.667

CTO 6 5 1 2 0.714 0.833 0.769 0.067
All 86 79 7 74 0.523 0.908 0.652 2.467

LAO

LS 28 24 4 57 0.296 0.857 0.440 1.118
DS 18 18 0 17 0.514 1.000 0.679 0.333
BS 11 10 1 16 0.385 0.909 0.541 0.314

CTO 19 19 0 5 0.792 1.000 0.884 0.098
All 76 71 5 95 0.497 0.942 0.636 1.863

TP: true positive; FN: false negative; FP: false positive; P: precision; R: recall; mFP: mean predicted positive; CRA:
cranial; LAO: left anterior oblique; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO: chronic
total occlusion.

The Grad-CAM technique always provided valuable information on the model learn-
ing procedure. We generated the heat map of Grad-CAM to consequently testify the regions
of interest for YOLOv5x in both angle views. As shown in Figures 8 and 9, the activated
regions (the highlighted area) corresponded to the regions that the model labeled. The
model was confirmed to have a robust performance even with mild lesions. It was found
that the model could learn the characteristics of lesions well and locate and classify the
lesions precisely.

Figure 8. Heatmaps of Grad-CAM generated in the CRA view. The bounding boxes contain images of
coronary lesions. (A–H) Original images with local stenosis (local lesion), diffuse stenosis (long lesion),
bifurcation stenosis, and CTO; (A1–H1) heatmap of Grad-CAM with lesions; Value: confidence.
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Figure 9. Heatmaps of Grad-CAM generated in the LAO view. The bounding boxes contain im-
ages of coronary lesions. (A–H): Original images with local stenosis (local lesion), diffuse stenosis
(long lesion), bifurcation stenosis, and CTO; (A1–H1) heatmap of Grad-CAM with lesions; Value:
confidence.

4. Discussion

This study used a single-stage model via the region-free method for the first time
to detect coronary lesions directly in CAG images. We also classified common vascular
abnormalities into four types: LS, DS, BS, and CTO. Our results showed that direct detection
models like YOLOv5x can effectively identify vessel lesions. Meanwhile, because of the
segmentation-free feature, YOLOv5x offered a more concise processing procedure, and
hence it could maintain a good balance between model performance and detection efficiency
in general.

In previous studies, the YOLO series of models have mostly been applied in tumor
detection and retinal fundus disease evaluation. However, the fundus vessel lesion eval-
uation shows similarity compared to the coronary stenoses during the DL processing
procedure [35–37]. Santos et al. [36] also used YOLOv5 as the detection model. In their
public datasets of diabetic retinopathy images, YOLOv5 generated mAP@0.5 of 0.154 and
an F1 score of 0.252. In our study, the detection of lesions achieved a precision of 0.675, a
recall rate of 0.734, an mAP@0.1 of 0.558, and an F1 score of 0.703 in the LAO view at the
image level. Meanwhile, at the patient level, the detection of lesions reached a precision of
0.792, a recall rate of 100%, an F1 score of 0.884, and a maximum mFP of 0.466.

Generally, it can be found that the YOLO series of models demonstrates promising
performance in the automatic detection of coronary artery lesions. The high precision and
recall rates at both the image and patient levels indicate the model’s reliability in identifying
vascular abnormalities in CAG images. The impressive F1 scores further validate the model’s
ability to balance precision and recall effectively. The low mFP also suggests that the model
minimizes false-positive detections, which is crucial for accurate diagnosis and reducing
unnecessary interventions. Overall, these findings highlight the potential of using YOLO-
based direct detection models for the efficient and reliable detection of coronary artery
abnormalities in medical imaging applications.
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In the subgroup analysis of the four lesions, the CTO group and the DS group showed
good results. They achieved a precision of 0.927, a recall rate of 0.796, mAP@0.1 of 0.870,
and an F1 score of 0.857 for the CTO group in the LAO view at the image level and a
precision of 0.648, a recall rate of 0.868, mAP@0.1 of 0.773, and an F1 score of 0.742 for the
DS group. Du et al. [16] tested the performances of four models (CALD-Net, ZF-Net+Faster
R-CNN, VGG+Faster R-CNN, and ResNet50+Faster R-CNN), finding recall rates of 0.88,
0.41, 0.50, and 0.62. Pang et al. [22] tested the performances of five models (Faster R-CNN,
Guided Anchoring, Libra R-CNN, Cascade R-CNN, and Stenosis-DetNet), finding F1 scores
of 0.80, 0.79, 0.81, 0.78, and 0.88. Even in the analysis with a large dataset comprising
20,612 CAG images of 10,073 patients, it had a precision of 0.769 for the stenosis and 0.757
for the CTO lesion [21]. Our study showed that the direct detection of lesions like CTO and
diffuse stenoses had the same performance compared to these studies. Consequently, it
might be concluded that single-stage detection models like YOLOv5 could generate a stable
result, which is similar to, or even better than, detection models combining segmentation
in suitable situations.

However, in our study, the performance in the LS group showed an unsatisfactory
result. In the LAO view of the image level, the LS group had a precision of 0.426, a recall
rate of 0.617, a mAP@0.1 of 0.479, and an F1 score of 0.504. At the patient level, the LS group
also had the highest mFP compared to other groups with results of 1.467 in the CRA view
and 1.118 in the LAO view, which meant more than one false labeling of LS for each patient.
Correspondingly, the mFP in the CTO group was just 0.067 in the CRA view and 0.098 in
the LAO view. Moon et al. [13] used the internal dataset and external dataset in their study.
They showed a similar performance, with a mean accuracy of diffuse lesions better than
focal lesions in each dataset. These results might be related to factors such as low-range
stenosis, which is inconspicuous, susceptibility to background noises, and small lesion
characteristics resulting in confusion with the visual features of normal arteries. Therefore,
it is necessary to perform segmentation before the detection of local stenoses in the DL
procedure.

Grad-CAM demonstrated the network-learned lesion characteristics, located the iden-
tification details of lesions, and visualized the distinguishing area of specific lesion types in
the image based on DL. The low-heat region and high-heat region in the heatmap are deter-
mined based on the contribution of the regions in the image to the identification of lesions,
with the high-heat region playing a decisive part in the network’s inferential decision-
making. The network has successfully learned the characteristics of the lesion, allowing the
lesion area to receive adequate attention in Grad-CAM, as indicated by the position of the
intact area with high heat (darker part) and the detection box being consistent. Figures 8B1
and 9B1 show that the model effectively learned the tiny characteristics of local stenoses
and classified them correctly. Moreover, high-heat areas were only visible in the stenosis
area but not in normal blood vessels. As can be observed in the wide array of high-heat
areas in Figures 8G1,H1 and 9G1,H1, CTO exhibited a greater range of characteristics than
local stenosis, which was also identified by the model. However, Grad-CAM struggles to
show only the complicated regions that require attention. Some noise might be produced,
which manifests as comparatively low-heat areas like the edge regions in C1 of Figure 8.

This study has several limitations. (1) We only performed the DL analysis in the right
coronary. Lesions in the right coronary are always simpler than in the left. The YOLO
series of models might face much bigger challenges, and their robustness should be tested
in more complex circumstances. (2) The CAG images of candidate patients were collected
in primary hospitals in our country, which might make it difficult to control the quality
of angiography. It could be an important confounding factor that would impact the final
performance of network models. (3) Our dataset should be enriched in future studies.
The YOLOv5 model performed better for the local stenosis in the CRA view than for the
CRA view, accompanied by a dataset of 1055 lesions compared to 433 lesions. It could
be supposed that the performance of YOLOv5 could be better in a huge dataset of CAG
images.
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5. Conclusions

Our study used the one-stage strategy to detect coronary lesions in a segmentation-free
manner and demonstrated that the YOLOv5 model could be feasible in CAG analysis using
the DL method, with good robustness. We also found in the subgroup study that lesions of
CTO and DS were most suitable for direct detection without segmentation, which could
shorten processing time and improve working efficiency.

Author Contributions: Conceptualization: J.L. and S.W.; methodology: H.W., J.Z., Y.Z. and Z.Z.;
software: H.W. and J.Z.; validation: Y.Z. and Z.Z.; formal analysis: H.W. and J.Z.; investigation: J.Z.,
Z.S. and L.C.; resources: L.X., M.S. and Q.Y.; data curation: J.Z., L.X., M.S. and Q.Y.; writing—original
draft preparation: H.W., J.Z., J.L. and Y.Z.; writing—review and editing: W.W., Z.Z. and S.W.; project
administration: J.L., W.W., Z.Z. and S.W.; funding acquisition, W.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the R&D Program of the Beijing Municipal Education Com-
mission (No. KM202310025019).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of Fuwai Hospital, Beijing, China
(protocol code: 2021-1546; date of approval: 29 August 2022).

Informed Consent Statement: Patient consent was waived for this retrospective study.

Data Availability Statement: The raw data supporting the conclusions of this article may be provided
upon reasonable requests for scientific research purposes.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions.

Conflicts of Interest: Z.Y. is an employee of Shanghai United Imaging Intelligence Co., Ltd. The
authors declare no conflict of interest. The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in the manuscript:
AI Artificial Intelligence
BS Bifurcation Stenosis
CAB Coronary Artery Bypass
CAD Coronary Artery Disease
CAG Coronary AngioGraphy
CNN Convolutional Neural Network
CPR Cardiovascular Pulmonary Resuscitation
CRA CRAnial
CTO Chronic Total Occlusion
DICOM Digital Imaging and COmmunications in Medicine
DL Deep Learning
DS Diffuse Stenosis
FN False Negative
FP False Positive
Grad-CAM Gradient-weighted Class Activation Mapping
IoU Intersection over Union
LAO Left Anterior Oblique
LS Local Stenosis
mAP mean Average Precision
mFP mean False Positive
PCI Percutaneous Coronary Intervention
PR Precision-Recall
TN True Negative
TP True Positive

167



Diagnostics 2023, 13, 3011

References

1. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-
death (accessed on 9 December 2020).

2. Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet,
T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent
ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [PubMed]

3. Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.;
Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College
of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e18–e114.
[PubMed]

4. Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.;
et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477.
[PubMed]

5. Zhang, D.; Liu, X.; Xia, J.; Gao, Z.; Zhang, H.; de Albuquerque, V.H.C. A Physics-guided Deep Learning Approach for Functional
Assessment of Cardiovascular Disease in IoT-based Smart Health. IEEE Internet Things J. 2023, 1. [CrossRef]

6. Menezes, M.N.; Silva, J.L.; Silva, B.; Rodrigues, T.; Guerreiro, C.; Guedes, J.P.; Santos, M.O.; Oliveira, A.L.; Pinto, F.J. Coronary
X-ray angiography segmentation using Artificial Intelligence: A multicentric validation study of a deep learning model. Int. J.
Cardiovasc. Imaging 2023, 39, 1385–1396. [CrossRef]

7. Zhang, H.; Gao, Z.; Zhang, D.; Hau, W.K.; Zhang, H. Progressive Perception Learning for Main Coronary Segmentation in X-Ray
Angiography. IEEE Trans. Med. Imaging 2023, 42, 864–879.

8. Zhao, C.; Vij, A.; Malhotra, S.; Tang, J.; Tang, H.; Pienta, D.; Xu, Z.; Zhou, W. Automatic extraction and stenosis evaluation of
coronary arteries in invasive coronary angiograms. Comput. Biol. Med. 2021, 136, 104667. [CrossRef]

9. Liu, X.; Wang, X.; Chen, D.; Zhang, H. Automatic Quantitative Coronary Analysis Based on Deep Learning. Appl. Sci. 2023, 13, 2975.
[CrossRef]

10. Algarni, M.; Al-Rezqi, A.; Saeed, F.; Alsaeedi, A.; Ghabban, F. Multi-constraints based deep learning model for automated
segmentation and diagnosis of coronary artery disease in X-ray angiographic images. PeerJ Comput. Sci. 2022, 8, e933. [CrossRef]

11. Cong, C.; Kato, Y.; De Vasconcellos, H.D.; Ostovaneh, M.R.; Lima, J.A.C.; Ambale-Venkatesh, B. Deep learning-based end-to-end
automated stenosis classification and localization on catheter coronary angiography. Front. Cardiovasc. Med. 2023, 10, 944135.
[CrossRef]

12. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015. pp. 1–9.

13. Moon, J.H.; Lee, D.Y.; Cha, W.C.; Chung, M.J.; Lee, K.-S.; Cho, B.H.; Choi, J.H. Automatic stenosis recognition from coronary
angiography using convolutional neural networks. Comput. Methods Programs Biomed. 2020, 198, 105819. [CrossRef] [PubMed]

14. Woo, S.; Park, J.; Lee, J.-Y.; Kweom, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19.

15. Ling, H.; Chen, B.; Guan, R.; Xiao, Y.; Yan, H.; Chen, Q.; Bi, L.; Chen, J.; Feng, X.; Pang, H.; et al. Deep Learning Model for
Coronary Angiography. J. Cardiovasc. Transl. Res. 2023, 16, 896–904. [CrossRef] [PubMed]

16. Du, T.; Liu, X.; Zhang, H.; Xu, B. Real-time Lesion Detection of Cardiac Coronary Artery Using Deep Neural Networks.
In Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), Guiyang, China,
22–24 August 2018; pp. 150–154.

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

18. Danilov, V.V.; Klyshnikov, K.Y.; Gerget, O.M.; Kutikhin, A.G.; Ganyukov, V.I.; Frangi, A.F.; Ovcharenko, E.A. Real-time coronary
artery stenosis detection based on modern neural networks. Sci. Rep. 2021, 11, 7582. [CrossRef]

19. Antczak, K.; Liberadzki, A. Stenosis Detection with Deep Convolutional Neural Networks. MATEC Web Conf. 2018, 210, 04001.
[CrossRef]

20. Ovalle-Magallanes, E.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Ruiz-Pinales, J. Transfer Learning for Stenosis Detection in X-ray
Coronary Angiography. Mathematics 2020, 8, 1510. [CrossRef]

21. Du, T.; Xie, L.; Zhang, H.; Liu, X.; Wang, X.; Chen, D.; Xu, Y.; Sun, Z.; Zhou, W.; Song, L.; et al. Training and validation of a deep
learning architecture for the automatic analysis of coronary angiography. EuroIntervention 2021, 17, 32–40. [CrossRef]

22. Pang, K.; Ai, D.; Fang, H.; Fan, J.; Song, H.; Yang, J. Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray
coronary angiography. Comput. Med. Imaging Graph. 2021, 89, 101900. [CrossRef]

23. Dingli, P.; Gonzalo, N.; Escaned, J. Intravascular Ultrasound-guided Management of Diffuse Stenosis. Radcl. Cardiol. 2018, 2018, 1–18.
24. Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg,

S.M.; et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: A report of the American College of
Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular
Angiography and Interventions. Circulation 2011, 124, e574–e651.

168



Diagnostics 2023, 13, 3011

25. Louvard, Y.; Thomas, M.; Dzavik, V.; Hildick-Smith, D.; Galassi, A.R.; Pan, M.; Burzotta, F.; Zelizko, M.; Dudek, D.; Ludman, P.;
et al. Classification of coronary artery bifurcation lesions and treatments: Time for a consensus! Catheter. Cardiovasc. Interv. 2007,
71, 175–183. [CrossRef] [PubMed]

26. Ultralytics. GitHub-Ultralytics/Yolov5: YOLOv5 in PyTorch > ONNX > CoreML > TFLite. 2020. Available online: https:
//github.com/ultralytics/yolov5 (accessed on 26 June 2020).

27. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. arXiv 2016,
arXiv:1612.03144.

28. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

29. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.
arXiv 2019, arXiv:1911.08287. [CrossRef]

30. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss
for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666.

31. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization. arXiv 2016, arXiv:1610.02391.

32. Dinesh, M.G.; Bacanin, N.; Askar, S.S.; Abouhawwash, M. Diagnostic ability of deep learning in detection of pancreatic tumour.
Sci. Rep. 2023, 13, 9725. [CrossRef]

33. Zahrawi, M.; Shaalan, K. Improving video surveillance systems in banks using deep learning techniques. Sci. Rep. 2023, 13, 7911.
[CrossRef]

34. Chiriboga, M.; Green, C.M.; Hastman, D.A.; Mathur, D.; Wei, Q.; Díaz, S.A.; Medintz, I.L.; Veneziano, R. Rapid DNA origami
nanostructure detection and classification using the YOLOv5 deep convolutional neural network. Sci. Rep. 2022, 12, 3871.
[CrossRef]

35. Alyoubi, W.L.; Abulkhair, M.F.; Shalash, W.M. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System
Using Deep Learning. Sensors 2021, 21, 3704. [CrossRef]

36. Santos, C.; Aguiar, M.; Welfer, D.; Belloni, B. A New Approach for Detecting Fundus Lesions Using Image Processing and Deep
Neural Network Architecture Based on YOLO Model. Sensors 2022, 22, 6441. [CrossRef]

37. Li, T.; Bo, W.; Hu, C.; Kang, H.; Liu, H.; Wang, K.; Fu, H. Applications of deep learning in fundus images: A review. Med. Image
Anal. 2021, 69, 101971. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

169



Citation: Jönemo, J.; Abramian, D.;

Eklund, A. Evaluation of

Augmentation Methods in

Classifying Autism Spectrum

Disorders from fMRI Data with 3D

Convolutional Neural Networks.

Diagnostics 2023, 13, 2773. https://

doi.org/10.3390/diagnostics13172773

Academic Editor: Daniele Giansanti

Received: 9 August 2023

Revised: 24 August 2023

Accepted: 25 August 2023

Published: 27 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Evaluation of Augmentation Methods in Classifying Autism
Spectrum Disorders from fMRI Data with 3D Convolutional
Neural Networks

Johan Jönemo 1,2, David Abramian 1,2 and Anders Eklund 1,2,3,*

1 Division of Medical Informatics, Department of Biomedical Engineering, Linköping University,
581 83 Linköping, Sweden

2 Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
3 Division of Statistics and Machine Learning, Department of Computer and Information Science,

Linköping University, 581 83 Linköping, Sweden
* Correspondence: anders.eklund@liu.se

Abstract: Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of
attention during the last 10 years, and recently, different deep learning approaches have been used.
Despite this fact, there has not been any investigation regarding how 3D augmentation can help to
create larger datasets, required to train deep networks with millions of parameters. In this study,
deep learning was applied to derivatives from resting state functional MRI data, to investigate how
different 3D augmentation techniques affect the test accuracy. Specifically, resting state derivatives
from 1112 subjects in ABIDE (Autism Brain Imaging Data Exchange) preprocessed were used to train
a 3D convolutional neural network (CNN) to classify each subject according to presence or absence
of autism spectrum disorder. The results show that augmentation only provide minor improvements
to the test accuracy.

Keywords: functional MRI; resting state; deep learning; augmentation; autism

1. Introduction

Ever since the emergence of magnetic resonance imaging (MRI) in the 1980s, the
absence of ionizing radiation and the flexibility of the acquisition procedure have made this
an increasingly important imaging modality in the clinical sciences. The lack of contrast
between different tissues in the brain and the interference of the mineralized tissue around
it when using X-ray techniques make MRI especially useful in neuroimaging.

While a wide variety of neurological conditions can be diagnosed with MRI, psychi-
atric anomalies have proven illusive to detect. Presumably, this is because these affect many
systems distributed throughout the brain and their manifestations are likely subtle as well
as time variant. Furthermore, psychiatric anomalies can vary a lot between subjects. Func-
tional MRI (fMRI) is a technique that seems particularly suited to capture this information,
as it generates rich 4D data which can be used for studying brain activity as well as brain
connectivity. In this work, it is investigated if deep-learning-based diagnosis of autism
from resting state fMRI data can be further improved using 3D augmentation.

1.1. Resting State fMRI

Resting state fMRI has since 1995 been used to study brain connectivity [1,2]. A
major advantage compared to task fMRI is that subjects can simply rest during the whole
experiment, which normally takes 5–10 min (resulting in some 150–600 brain volumes, or
put differently some 50,000 time series), instead of performing different tasks such as finger
tapping or mental calculations. This makes it possible to include subjects which for some
reason cannot perform certain tasks. A simple measure of the connectivity between two
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locations in the brain, called functional connectivity, is the correlation between the two
corresponding time series, but several more advanced methods also exist. To limit the size
of the 2D correlation matrix, the correlations are normally calculated between the mean
time series of some 100–200 brain parcels (instead of some 50,000 voxels). The brain can be
divided according to different (resting state) networks, such as the default mode network
and the auditory network, and different diseases often affect specific networks.

1.2. Autism

Autism spectrum disorder (ASD) is a disorder characterized by certain features in
social communication, and restricted, repetitive, or unusual sensory–motor behaviours [3].
The prevalence of ASD is 1–5% in developed countries [4]. The subject of autism has
been studied extensively in recent years, and technology has already contributed to the
development of treatments for autism, in terms of rehabilitation and communication.

Due to the lack of reliable biomarkers, the diagnosis is usually based on behaviour,
which is very time consuming. Recent work has demonstrated that motor abnormalities
can be very informative for detection of ASD [5,6], and that machine learning can be used to
shorten the behavioral diagnosis [7]. As ASD results from early altered brain development
and neural reorganisation [8,9], it should be possible to derive objective biomarkers from
neuroimaging data to aid professionals (paediatricians, psychiatrists, or psychologists) in
diagnosising ASD. Here, machine learning can be used to learn informative traits from the
high-dimensional fMRI data.

1.3. Machine Learning for Diagnosis of ASD

Several large collaborative efforts have been made to collect and share neuroimaging
data of healthy controls as well as diseased [10,11]. ABIDE (Autism Brain Imaging Data
Exchange) [12] is one such effort that make available data for 539 subjects diagnosed with
ASD as well as 573 typical controls. The ABIDE data originate from 17 sites, and the subjects
were aged 7–64 years (median 14.7 years across groups). Using machine learning in an
endeavour to classify (resting state) fMRI data according to the presence or absence of
ASD has become increasingly popular recently. This classification can be performed in
several ways, either using estimated functional connectivity network matrices (2D) or using
derivatives (3D volumes), such as weighted and binarized degree centrality, as different
approaches to compress the 4D fMRI data. In this work, 3D volumes are used, as it is not
obvious how to augment network matrices.

The ASD classification problem seems hard in that accuracies seldom rise to more
than 70% when the model classifies unseen data [13–18]. While 1112 subjects is a very
large fMRI dataset, it is still small from a deep learning perspective (for example, the
popular ImageNet database [19] contains several million images). To further increase the
size of the training dataset, and to make convolutional neural networks (CNNs) robust to
transformations such as rotation, data augmentation is often used [20,21]. In previous work.
it was demonstrated that 3D augmentation for brain tumor segmentation significantly
improves the segmentation accuracy [22]. In this work, the purpose is instead to see if 3D
augmentation can help train a better ASD classifier, as well as what kind of augmentation
techniques work the best.

1.4. Related Work

Several other researchers have used the same ABIDE dataset to train deep learning
models for classification [16–18,23,24], but do not mention anything about augmentation.
In a recent review on deep learning for autism by Khodatars et al. [25], only advanced
augmentation techniques, such as generative adversarial methods (GANs), are briefly
mentioned, but training a GAN requires a very large dataset to start from and there is very
little work published on 3D GANs. Some researchers have employed resampling techniques
wherein shorter time series have been cropped out of longer ones [13,14], typically for
the double purpose of getting an augmented data set while also eliminating the extra
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complication of variable length sequences. Ji et al. [26] instead applied augmentation to
the estimated network matrices. In our study, by contrast, different preprocessing pipelines
are used to extract all relevant information from the time dimension, and manipulate data
only in the spatial domain.

2. Materials and Methods

2.1. Data

Preprocessing of 4D resting state fMRI data is a complex process involving many
different steps, and there is no consensus regarding what the optimal pipeline or toolbox
is [27]. Head motion is a major problem in resting state fMRI, as it can, for example,
result in erroneous group differences if two cohorts differ in the mean amount of head
motion [28,29]. All processing pipelines therefore perform head motion correction, and
use additional steps to further suppress motion related signal. ABIDE preprocessed [30]
(http://preprocessed-connectomes-project.org/abide/, accessed on 10 February 2023)
shares preprocessed ABIDE [12] data from structural MRI and resting state fMRI in various
forms. As all the preprocessing has been completed, the focus in this work is on the
machine-learning-based diagnosis, and other researchers can use the same preprocessed
data to reproduce the presented findings. Resting state derivatives (3D volumes where the
time dimension has been collapsed into different forms of statistics) resulting from two
pipelines were downloaded from ABIDE preprocessed, for 1112 subjects.

One pipeline was the connectome computation system (CCS) [31], which performs
slice timing correction, motion realignment, and global intensity normalisation. The data
were cleaned from confounders by performing regression with the estimated head move-
ment parameters, the time-dependent global mean intensity, as well as regressors for
linear and quadratic drift. Each time series was also band pass filtered (0.01–0.1 Hz). This
preprocessing corresponds to the strategy called global_filt. Each subject was, further-
more, registered to the MNI152 brain template using boundary based rigid body registra-
tion [32] for functional to anatomical registration, and FLIRT and FNIRT for anatomical to
template registration [33].

Another such pipeline was “data processing assistant for resting-state fMRI” (DPARSF) [34].
It also performs slice timing correction and motion reallignment, but does not perform any
intensity normalisation. The same confounders are corrected for and the same band pass
filtering is performed, whereupon functional to anatomical registration was performed
with ordinary rigid body methods and anatomical to MNI152 brain template registration
completed using DARTEL [35].

After preliminary testing of the 10 available derivatives available in ABIDE pre-
processed (amplitude of low frequency fluctuations (ALFF), weighted and binarized de-
gree centrality, dual regression, weighted and binarized eigenvector centrality, fractional
ALFF, local functional connectivity density (LFCD), regional homogeneity (REHO), voxel-
mirrored homotopic connectivity (VMHC)), the REHO derivative was chosen for compar-
ing different augmentation strategies. Regional homogeneity is a measure of correlation
between a voxel’s time series and those of its neighbours [36], based on the non-parametric
rank correlation statistic known as Kendall’s Coefficient of Concordance (KCC) [37]. Each
derivative volume from the resting state fMRI data has a size of 61 × 73 × 61 voxels (each
3 × 3 × 3 mm3), which is fed into the 3D CNN described below. See Figure 1 for a prepro-
cessed fMRI volume and the REHO derivative from the CCS pipeline, downloaded from
ABIDE (https://s3.amazonaws.com/fcp-indi/data/Projects/ABIDE_Initiative/Outputs/
ccs/filt_global/func_preproc/OHSU_0050147_func_preproc.nii.gz, accessed on 1 August
2023; https://s3.amazonaws.com/fcp-indi/data/Projects/ABIDE_Initiative/Outputs/
ccs/filt_global/reho/OHSU_0050147_reho.nii.gz, accessed on 1 August 2023). The 539
subjects with ASD and the 573 controls were split 70/15/15 into training, validation, and
test sets.

172



Diagnostics 2023, 13, 2773

Figure 1. (Top): an fMRI volume obtained after preprocessing with the CCS pipeline. (Bottom): the
REHO derivative obtained from the preprocessed 4D fMRI dataset, used by the 3D CNN to classify
each subject as control or ASD. Different types of 3D augmentation were applied to each REHO
volume, in an attempt to improve the test accuracy. Several other derivatives are available in ABIDE
preprocessed, but were not used in this study due to time-consuming training.

2.2. Deep Learning

CNNs are often used for deep-learning-based classification and segmentation of image
data, as learning a number of small filters is much more efficient compared to training
a dense network (which models the relationship between all pixels in an image, instead
of only looking at local correlations). While 2D CNNs are much more common, they are
easily extended to 3D as convolution can be performed in any number of dimensions.
Unfortunately, existing deep learning frameworks do not support 4D convolutions, which
would be required to directly classify 4D fMRI data. The 3D CNN used in this work was
implemented using Keras and consists of three convolutional layers (with ReLU activation),
max-pooling layers, a dense layer with 16 nodes, and a final one-node layer with sigmoid
activation. The first and second convolutional layers contain 8 filters each (size 3 × 3 × 3),
and the last convolutional layer uses 16 filters. The total number of trainable parameters
in the 3D CNN is approximately 450 k. The CNN was trained with the Adam optimizer
with a learning rate of 10−5 and a batch size of 16. To prevent overfitting, early stopping
was used with a patience of 50 epochs. The training was run until validation accuracy did
not improve, and the model was then restored to the state when the last improvement was
seen. As an alternative, the models were also trained for 150 epochs with no conditional
stopping. To obtain more robust estimates of the test accuracy, 10-fold cross validation was
used and the mean test accuracy was calculated.

2.3. Augmentation

There are many types of augmentation that can be useful in 3D. Rotation, flipping,
and scaling (zooming in or out) are common for training 2D CNNs, and can also easily be
applied in 3D. Elastic (non-linear) deformations are common when training segmentation
networks, but perhaps not as common for classification. Brightness augmentation can
for example help if the data have been collected at several different MR scanners, as they
normally generate data with different brightness [22].
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While 2D augmentation functions are included in many deep learning frameworks
such as Keras and Pytorch, the support for 3D augmentation is normally lacking. As
mentioned by Chlap et al. [21], many researchers use 2D augmentation even if the data are
3D. The 3D augmentation used here is adapted from that of Cirillo et al. [22] and is written
in Python/NumPy [38], without facilities for running on a GPU. The 3D augmentation
techniques tested in this study are:

• Flipping: flipping of the x-axis or not.
• Rotation: rotation applied to each axis with angles randomly chosen from a uniform

distribution with range between −7.5 and 7.5 degrees, −15 and 15 degrees, −30 and
30 degrees, or −45 and 45 degrees.

• Scale: scaling applied to each axis by a factor randomly chosen from a uniform
distribution with range ±10% or ±20%.

• Brightness: power-law γ intensity transformation with its parameters gain (g) and γ
chosen randomly between 0.8 and 1.2 from a uniform distribution. The intensity (I) is
randomly changed according to the formula: Inew = g · Iγ.

• Elastic deformation: elastic (non-linear) deformation with square deformation grid with
displacements sampled from from a normal distribution with standard deviation
σ = 2, 4, 6, or 8 voxels [39], where the smoothing is done by a spline filter with order 3
in each dimension.

To investigate the effect of combining different types of augmentation, the CNNs
were also trained with the two best-performing augmentation approaches according to the
CCS pipeline.

The average training time for a single fold were between five minutes and 2.5 h—depending
on the type of on-the-fly augmentation employed, the combination of elastic deformation,
and an affine transformation being the slowest–using one Nvidia Tesla V100 graphics card
for the early stopping models. For the training with a fixed number of epochs, the average
single fold training time was at least 10 min but otherwise in the previously mentioned
span. In the longer training runs, it is unlikely that the computation speed was bounded
by the speed of the graphics card, as the on-the-fly augmentations were performed on the
CPU and could be further optimized. In total, some 600 3D CNNs were trained in order to
compare all settings.

3. Results

The results from all the different augmentation techniques, as well as baseline results
obtained without augmentation, are presented in Figures 2 and 3 (CCS pipeline) and
Figures 4 and 5 (DPARSF pipeline). As the dataset is balanced (similar number of ASD
and control subjects), only classification accuracy is reported (instead of more advanced
metrics, such as area under the curve and Matthew’s correlation coefficient). In general, the
3D augmentation does not have a large effect on the test accuracy. For early stopping with
the CCS pipeline, random scaling seems to be the best single augmentation approach, but
the mean improvement over 10 cross-validation folds is only about 0.5 percentage units.
Small elastic deformations also have a small positive effect, while large deformations give
worse results.

With the DPARSF pipeline brightness changes appear to be the best augmentation
with an increase of 1.9 percentage units, but with high variance over folds, the improvement
is negligible. For a fixed number of training epochs, elastic deformations and rotations
or combinations thereof seem to work best, with the best improvement of accuracy being
2.2 percentage units in the CCS pipeline and 2.9 percentage units in the DPARSF pipeline.
No statistical test was performed to test if this improvement is significant.
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Figure 2. Test accuracy for classifying subjects as healthy or diseased for the ABIDE dataset processed
with the CCS pipeline, for different data augmentation approaches. The error bar represents the
standard deviation over the 10 cross-validation folds. Note that half of the augmentation approaches
result in a test accuracy that is lower compared to the baseline model trained without augmentation,
but overall, the differences are small. These results were obtained when using early stopping.
Compared to no augmentation, the best augmentation approach increases the test accuracy by
0.6 percentage units.

Figure 3. Test accuracy for classifying subjects as healthy or diseased for the ABIDE dataset processed
with the CCS pipeline, for different data augmentation approaches. The error bar represents the
standard deviation over the 10 cross-validation folds. These results were obtained when using a fixed
number of epochs for each training. Compared to no augmentation, the best augmentation approach
increases the test accuracy by 2.2 percentage units.

175



Diagnostics 2023, 13, 2773

Figure 4. Test accuracy for classifying subjects as healthy or diseased for the ABIDE dataset processed
with the DPARSF pipeline, for different data augmentation approaches. The error bar represents the
standard deviation over the 10 cross-validation folds. Note that half of the augmentation approaches
result in a test accuracy that is lower compared to the baseline model trained without augmentation,
but overall, the differences are small. These results were obtained when using early stopping.
Compared to no augmentation, the best augmentation approach increases the test accuracy by
1.9 percentage units.

Figure 5. Test accuracy for classifying subjects as healthy or diseased for the ABIDE dataset processed
with the DPARSF pipeline, for different data augmentation approaches. The error bar represents the
standard deviation over the 10 cross-validation folds. These results were obtained when using a fixed
number of epochs for each training. Compared to no augmentation, the best augmentation approach
increases the test accuracy by 2.9 percentage units.

4. Discussion

Compared to previous work on 3D augmentation for brain tumor segmentation [22],
where several 3D augmentation techniques were shown to significantly improve the seg-
mentation accuracy on the test set, only minor improvements of the test accuracy were
found in this study (even though the training accuracy is well above 90%, indicating
overfitting). Volume classification is in general a problem which requires more training
data compared to volume segmentation, as each volume only represents a single training
example, which may partly explain the results.
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In this study, brightness augmentation only helps for the DPARSF pipeline with early
stopping, while it provided a major improvement for brain tumor segmentation for MR
images collected at some 20 different sites [22]. A possible explanation is that the data
in this study are not raw MR images, since many preprocessing steps have been used to
normalize the intensities to a certain range, and to calculate different derivatives. On the
contrary, as the ranges of values in the derivative volumes are not, in general, arbitrary
in the same way, brightness augmentation can impair the performance. In DPARSF, no
intensity normalization is performed, which may explain why the brightness augmentation
results are different compared to the CCS pipeline.

Since all the subjects have been registered to MNI space, it was hypothesized that the
results may be different if random transformations are applied to the test volumes, but test
time augmentation did not change the findings (results not shown). The presented results
are for a single preprocessing strategy (global signal regression and bandpass filtering),
and a single derivative, and the preprocessing choice can at least in theory affect how much
the augmentation helps.

The focus here has been on classifying ASD and controls, with a binary classifier. ASD
criteria are based on DSM-5 criteria, and there are currently three levels of severity. It is
possible that using 3D augmentation when training a classifier to distinguish the three
severity levels could lead to different results.

The conclusion is that 3D augmentation only provides minor improvements in accu-
racy (0.6–2.9 percentage units) when training 3D CNNs for classification of ASD versus
controls, but the results may be different for an easier task where the baseline test accuracy
is for example 80%. The results may also differ for other derivatives in ABIDE prepro-
cessed, and when using several derivatives at the same time using a multi-channel 3D
CNN. However, to perform the trainings for many combinations of preprocessing, and for
different derivatives, would be very time consuming.
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Abstract: Diabetic retinopathy (DR) is an eye disease associated with diabetes that can lead to
blindness. Early diagnosis is critical to ensure that patients with diabetes are not affected by blindness.
Deep learning plays an important role in diagnosing diabetes, reducing the human effort to diagnose
and classify diabetic and non-diabetic patients. The main objective of this study was to provide an
improved convolution neural network (CNN) model for automatic DR diagnosis from fundus images.
The pooling function increases the receptive field of convolution kernels over layers. It reduces
computational complexity and memory requirements because it reduces the resolution of feature
maps while preserving the essential characteristics required for subsequent layer processing. In this
study, an improved pooling function combined with an activation function in the ResNet-50 model
was applied to the retina images in autonomous lesion detection with reduced loss and processing
time. The improved ResNet-50 model was trained and tested over the two datasets (i.e., APTOS and
Kaggle). The proposed model achieved an accuracy of 98.32% for APTOS and 98.71% for Kaggle
datasets. It is proven that the proposed model has produced greater accuracy when compared to
their state-of-the-art work in diagnosing DR with retinal fundus images.

Keywords: CNN; diabetic retinopathy; fundus image; pooling function

1. Introduction

Glucose in the body is converted into energy, which helps with everyday tasks. Dia-
betes is caused by obesity, poor nutrition, and limited physical activity. However, elevated
blood glucose can build up in the blood vessels of several human organs, including the
eye. People who have had diabetes for over a decade have the chance of getting diabetic
retinopathy (DR) [1]. Globally, the population suffering from diabetes is expected to reach
552 million by 2030 [2]. Preventing visual loss is possible with early detection and sufficient
treatment [3]. DR consists of five classes—no DR, mild, moderate, severe, and proliferative.

DR can affect blood vessels, in severe cases damaging, enlarging, or blocking them,
or causing leaks; the abnormal growth of blood vessels can cause total blindness. Micro-
aneurysms, haemorrhages, and exudates are the major signs of retinal DR. The level of the
disease can be identified based on the shape, size, and overall appearance of the lesions.
The main benefits of DR screening are its high effectiveness, low cost and minimal reliance
on clinicians (i.e., ophthalmologists). The global eye screening tool for DR is the fundus
photograph [4]. To prevent diabetes-related blindness, automated screening allows for
clinically convenient and cost-effective detection [5].

From the field of computer science, deep learning can be a practical approach to
automatic DR detection [6]. A deep learning system automatically identifies the DR with
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an accuracy that is equal to or better than that of ophthalmologists. The core deep learning
model for medical image diagnosis prediction, and classification is the convolution neural
network (CNN). However, there is the possibility to improve the performance of the model
by tuning the hyperparameters in these deep learning-based models.

CNN models AlexNet and VGGNet-16 have been implemented for this purpose
and the results suggest that VGG-19 performs best; however, the DR stages have not been
explicitly ranked [7]. A hybrid technique incorporating image processing and deep learning
was proposed for the detection and classification of DR in the publicly available dataset
MESSIDOR, and Histogram Equalization (HE) and Contrast Limited Adaptive Histogram
Equalization (CLAHE) were implemented to improve the contrast of the image [8]. Other
CNN models, like Inception V3, Dense 121, Xception, Dense 169, and ResNet 50, have been
explored for the enhanced classification of different DR phases [9].

In another study, the authors proposed a framework with a new loss function by
implementing mid-level representations to improve DR detection performance [10]. An-
other report proved that VGGNet produced higher accuracy compared with other CNN
models such as AlexNet, GoogleNet, and ResNet for DR classification [11]. A CNN model
implementation with data augmentation for DR image classification was presented in [12].

Other frameworks for the early diagnosis and classification of DR were presented
for Grampian [13], MESSIDOR [14], and EYEPACS datasets [15]. In [16], the authors men-
tioned that 90% of accuracy was achieved in diagnosing microaneurysms and extracting
and classifying the candidate lesions. All of these existing studies have implemented
built-in hyperparameters. However, model performance can be improved by adjusting
hyperparameters within deep learning models. To counter the self-strengthening trend
and ensure that as many candidate component models as possible have been properly
trained, we have added balance loss to our model. The proposed approach could extract
key features from the fundus images that can help make an accurate DR diagnosis.

2. Materials and Methods

The objective of the current study was to accurately categorize DR fundus images into
different severities. We discussed an automated system for assessing the seriousness of
diabetic retinopathy. The classification accuracy for diabetic retinopathy was improved
in the current research using a modified CNN architecture. Figure 1 illustrates the pro-
posed framework.

2.1. Dataset Collection

We collected the dataset from two publicly available fundus image datasets, i.e., AP-
TOS [17] and Kaggle [18]. Table 1 tabulates the count for five categories in APTOS and
Kaggle datasets. Figure 2 shows the sample fundus images from the two datasets. The
first-row fundus images are from APTOS and the second-row fundus images are from the
Kaggle dataset.

Table 1. Dataset distribution.

Dataset NODR Mild DR Moderate DR Severe DR PDR Count

APTOS 1805 370 999 193 295 3662
Kaggle 25,810 2443 5292 873 708 35,126

We employed data augmentation to increase the number of images throughout the
training sample. Once provided with more DR to learn from, DL approaches generally
improve their performance. Overfitting is avoided and the imbalance in the dataset is
corrected by the application of data augmentation. Horizontal shift augmentation was one
of the transformations considered for this study; it involves horizontally shifting an image’s
pixels while maintaining the original image’s perspective. The dimension of this transition
is specified by a number ranging from 0 to 1 and the viewing angle of the original image is
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preserved. The image can also be rotated with an additional type of transformation by a
random amount between 0 and 180 degrees. By employing data augmentation methods,
we were able to fix the problem of varying sample sizes and convoluted categorizations.
After augmentation, the APTOS dataset classes were evenly distributed for the training
set—1805 for NODR, 1850 for Mid, 1988 for Moderate, 1737 for Severe, and 1770 for PDR.
After augmentation, the Kaggle dataset classes were evenly distributed for the training
set—25,810 for NODR, 24,430 for Mid, 26,460 for Moderate, 25,317 for Severe, and 25,488 for
PDR. Figure 3 shows some of the augmentation operations followed in this study. Table 2
tabulates the statistics of the data augmentation operations and the final augmented fundus
images of each dataset.

Figure 1. Experimental framework.

Figure 2. Multiclass of DR (a) NODR, (b) Mild DR, (c) Moderate DR, (d) Severe DR, and (e) PDR.
(First row—APTOS dataset, second row—Kaggle dataset).
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Figure 3. Augmentation (a) Original image, (b) rotation, (c) horizontal flip, (d) brightness, (e) contrast.

Table 2. Dataset augmentation operations.

Class
APTOS Kaggle

Original Operations Augmented Original Operations Augmented

NoDR 1805 0 1805 25,810 0 25,810

MildDR 370 5 1850 2443 10 24,430

Moderate DR 999 2 1998 5292 5 26,460

Severe DR 193 9 1737 873 29 25,317

PDR 295 6 1770 708 36 25,488

Total 3662 9160 35,126 127,505

2.2. Pre-Processing

In this study, we implemented the enhanced artificial bee colony (ABC) algorithm to
improve the lesions’ visual contents. Consider ξ(i, j)εD with dimensions PXQ, where the
values of P, Q are taken as 512 for every image in the database D.

The mathematical representation of the transformation function,

Ξf =
1∫ 1

0 x(c−1)(1 − x)d−1dx
X
∫ v

0
x(c−1)(1 − x)d−1dx, (1)

where x is an integration variable and c and d are adjustable parameters of a given function
where the maximum value of c is compared with d.

We evaluated the fitness function to adjust the values of c and d and also to measure
the complete lesion image.

F(ξH (i, j))= log( log
(
∑ j=1(Ψ)

))
MΨE(ξH)Y(ξH), (2)

where ∑ j=1(Ψ) represents the total edge intensities of an image evaluated through a canny
edge detector. Y(ξH) represents the contrast of the image ξH(i, j), MΨ represents the
total edge pixels of the processed image, and E(ξH) represents the image entropy ξH(i, j),
represented as:

E(ξH) = ∑m
j=0 qilog2(qi), (3)

where qi represents the ith pixel intensity probability; the max value is 255.
The contrast of the image is represented as:

Y(ξH) = ∑mI
j=0 Y(ξH)(Ii), (4)

where Ii represents the image blocks and mI represents the mth image block.
The contrasted local band of each block is represented as:

ξHy(Ii) = ∑ (p,q)εIY(ξH) (p, q)
= ∑ (p,q)∈I

ξH(p,q)⊗φb
ξH(p,q)⊗φc

,
(5)
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where p, q represents the pixels of the rows and columns of each block, φb represents the
bandpass filter, and φc represents the low pass filter.

2.3. Enhanced ResNet-50

The proposed model consists of convolution blocks and includes the improved pooling
function, a drop-out layer, dense layers, and a SoftMax classification layer; Figure 4 presents
the improved ResNet-50 model.

Figure 4. Improved ResNet-50 model.

Convolution Layer: The convolutional block is the fundamental building component,
and each convolution block contains a convolution 2D, an improved activation function,
and improved pooling with the average value. The vanishing gradient issue is solved using
the improved activation function, simplifying the process so the network can understand
and carry out its tasks promptly.

Kernel: The model’s initial layer is the convolution layer. This layer initiates the
process by applying the filters, also known as the kernel. The kernel size depends on two
values—the width and height of the filter. In this study, we set the size of the filter as 3.
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This filter enables and identifies the features that help understand low-level visual aspects
like edges and curves.

Flattened layer: The flattened layer is located among the convolution and the dense
layers. Tensor datatypes are used as inputs for the convolution layers, whereas dense
layers demand a one-dimensional layout. The flattened layer was applied to translate the
two-dimensional image representation into a one-dimensional input.

Dropout Layer: A dropout value of 0.2 was used in this study, which helps to avoid
overfitting. This layer’s function was to turn various components on and off to reduce
the model’s complexity and training time. The model thus acquires all the features that
are required.

Dense Layer: A single matrix is accepted as input by the dense layer, which produces
output based on the characteristics of the matrix. The identification and class labelling of
fundus images occurs in these layers. The model’s output is produced by a dense layer
with five neurons and an improved activation function, and it assigns the image to one
of five categories of diabetes: NoDR, Mild, Moderate, Severe, or Proliferative. After a
few layers, the proposed activation is applied; this probability-based activation function
measures the number of neurons by the entire number of classes.

Pooling function: The pooling function in the CNN is primarily used to downsam-
ple the feature maps and learn deeper image features that are resilient to subtle local
alterations. The features from each spatial region are aggregated in this process. Pool-
ing not only expands the receptive field of convolutional kernels across layers but also
reduces memory needs and computational complexity by lowering the resolution of the
feature maps while keeping critical features required for processing by the following layers.
Pooling can be used in medical image analysis to manage variations in lesion sizes and
positions [19,20]. Fundus images frequently have many lesions or parts, which causes their
distributions of convolutional activations to be exceedingly complex since unimodal distri-
butions cannot adequately capture statistics of convolutional activations, which limits the
CNN performance.

We first pass Y throughout a group of prediction layers with parameters θp, i.e.,
c
(
θp; Y

)
. The weights are outputted throughout by using a fully connected layer with

additional noise.
The improved pooling function is presented as:

Fk
(
c
(
θp; Y

))
= Th

k C
(
θp; Y

)
+
√

δ.log
(
1 + exp

(
Tm

k C
(
θp; Y

)))
, (6)

where Th
k and Tm

k are the fully connected layers, the kth parameter and additional noise, δ
is the random variable, C

(
θp; Y

)
are the learned weights, and the weight function can be

represented as:

wk(Y) =

√
exp
(
TOP − Q

(
Fk
(
c
(
θp; Y

))))
∑m

k=1 exp
(
TOP − Q

(
Fk
(
c
(
θp; Y

)))) , (7)

where TOP-Q are the Q largest weights.
To make learned weights sparse, we maintained the TOP-Q weights and set the

remaining ones as negative infinity and we used the improved activation function to
normalize all the weights.

We added extra loss using the learned weights:

Ls = 3

√√√√√β

⎛
⎝ S

(
∑N

s=1 wk(Ys)
)

M
(

∑N
s=1 wk(Ys)

)
⎞
⎠, (8)

where Ys is the mini-batch training sample, S and M are the standard deviation and the
mean, and β is the parameter.
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The improved activation function, which was recommended as a replacement for the
activation function ReLU, is represented as:

f(x) =

⎧⎨
⎩

x/2; i f − 2 ≤ x < 2
−1; i f x < −2

1; i f x > 2
. (9)

2.4. Classification

We applied the improved SVM in this study to improve classification accuracy. Initially,
the SVM calculates the score for all the extracted features by using linear mapping on feature
vectors and uses this to evaluate the loss. The improved SVM uses the linear mapping on
extracted features to calculate the feature score for the parts of the region of interest used to
differentiate the lesion types, which helps in the evaluation of loss function, which helps to
obtain the classification results. Algorithm 1 for the improved SVM is presented below.

Algorithm 1 Improved SVM

• Initialize the values in the training set.
• Repeat for j = 1 to M.

Calculate the loss using the enhanced optimization for all values of j.
Compare the extracted regions in the liver images.
end

• Repeat for every score vector j − 1 to M.
Compute the SVM
argmax((w × p j) + b)
end

• Compute for all weights and finally evaluate the output.

3. Results

All experiments were implemented on Keras. The data split was performed based on
an 80:20 ratio, where 80% of the data were used for training and 20% for testing. We imple-
mented the proposed pooling function and activation function in the base models VGG-16,
DenseNet, ResNet-50, Xception, and AlexNet for the fundus images. Table 3 tabulates the
splitting of training and testing sets of fundus images for two augmented datasets.

Table 3. Augmented dataset image distribution.

Class
APTOS Kaggle

Training Testing Training Testing

NoDR 1444 361 20,648 5162

MildDR 1480 370 19,544 4886

Moderate DR 1598 400 21,166 5292

Severe DR 1390 347 20,254 5063

PDR 1416 354 20,390 5098

Total 7328 1832 102,004 25,501

3.1. Image Enhancement Evaluation

Image enhancement is a vital concept that changes the intensities of the original image
to improve the image’s perceptual quality. Figure 5 shows the contrast enhancement
results for the APTOS dataset fundus image. Figure 5 compares the proposed model
with some other existing enhancement models. Contrast-limited adaptive histogram
equalization (CLAHE) models show insufficient image enhancement. The histogram
modification framework (HMF) model enhances the image well; however, the hazy look is
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not adequately removed. The heuristic adaptive histogram equalization (HAHE) model
produces an enhanced image with unwanted artefacts visible in the fundus image. The
artificial bee colony algorithm (ABC) yields better results than the other existing models;
still, it has some viewable artifacts in the fundus image. The proposed model generates an
outstanding result compared to all other existing models and successfully improves every
minor detail present in the fundus image.

Figure 5. Comparison of the image enhancement of the proposed model with the existing models.

Evaluation and assessment are important for analysing the proposed model perfor-
mance quantitatively. The proposed image enhancement model is accessed with perfor-
mance measures such as entropy, peak signal-to-noise ratio (PSNR), the structural similarity
index measure (SSIM), gradient magnitude similarity deviation (GMSD), and the patch-
based contrast quality index (PCQI) [21–23].

Entropy defines the amount of information contained in the processed image.

Entropy = ∑255
y=0 P(n)log2(P(n)); (10)

where P(n) represents the probability of the nth level of the image.
PSNR computes the amount of noise content in the processed image.

PSNR = 20log10
2

1
AB , ∑A−1

x=0 ∑B−1
y=0 |I0(x, y)− Ii(x − y)|2 , (11)

where A, B denotes the image size.

SSIM =

(
2μIi

μIo + A1
)(

2σIi σIo + A2
)

(μ 2
Ii
+ μ2

Io
+ A1

)(
σ2

Ii
+ σ2

Io
+ A2

) , (12)

where μIi , μIo
represents the input and the output intensity values, σIi , σIo represent the

input and the output standard deviation values, and A1, A2 represent the constant to limit
the instability problem.

Table 4 tabulates the average scores for the augmented APTOS dataset. The perfor-
mance of the proposed model was demonstrated by comparing six state-of-the-art existing
models such as Clahe [24], exposure-based sub-image histogram equalization (ESIHE) [25],
HAHE [26], BIMEF [27], HMF [28], and ABC. From Table 4, it is clear that the proposed
model achieves a higher SSIM value, and its similarity level is up to the mark when com-
pared with the original fundus image. The proposed enhanced model attains a lesser
GMSD value for the images and holds more excellent visual quality compared to the other
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methods. The proposed model gains a higher PSNR value and the noise suppression
level is very good compared with that of the other models. The proposed model holds a
higher entropy value to the original image and the amount of information preserved is high
compared with the state-of-the-art models. The proposed model obtains a more significant
PCQI value compared with the other models, and generates a good quality image with
minimum structural distortions. The proposed enhanced model offers less running time
when compared to the state-of-the-art contrast enhancement models. The running time
of the CLAHE and ESIHE models is approximately equal to that of the proposed model.
But these models suffer from noise and distortion. From Table 4, we can recognise that
the proposed enhanced model is superior in enriching content, maintaining similarity, and
suppressing the noise and distortion. The proposed enhanced image enhancement model
generated a crisp and clear output.

Table 4. Average scores for the augmented APTOS dataset.

Model PSNR GMSD Entropy SSIM PCQI Processing Time (s)

Clahe [24] 30.83 0.163 7.263 0.634 1.139 0.155

ESIHE [25] 31.93 0.074 7.316 0.635 1.282 0.153

HAHE [26] 32.82 0.125 7.226 0.693 1.001 0.373

BIMEF [27] 31.68 0.199 7.269 0.736 1.007 0.364

HMF [28] 32.63 0.085 7.283 0.636 1.103 0.218

ABC 34.83 0.048 7.834 0.877 1.378 0.173

Proposed 35.56 0.037 7.935 0.983 1.484 0.151

3.2. Segmentation Comparison

The proposed model obtains more accurate and robust segmentation results. From
Figure 6 it can be noticed that the proposed model obtains more accurate results.

Figure 6. Segmentation results. (a) original image, (b) ground truth, (c) proposed model,
(d) DenseNet, (e) Inception, (f) VGG-19, (g) AlexNet.
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Table 5 tabulates the performance of the proposed enhanced ResNet-50 compared to
the state-of-the-art models. The proposed system performed very accurately compared
with the other lesion segmentation methods in the state-of-the-art models. It saves the
obtained accuracy of abnormal fundus images. It achieves accurate, detailed segmentation
results with small lesions, so it is the perfect choice for automatic computer-aided diagnosis
(CAD) systems that depend on lesion segmentation results as it exceeds the estimations of
the alternative models in terms of overall accuracy.

Table 5. Comparison of segmentation results for the APTOS dataset with the state-of-the-art models.

Model Pool + Act Accuracy Precision Recall

DenseNet [29] Max + Relu 0.9484 0.8364 0.9584
Inception [12] Max + Relu 0.9847 0.8578 0.9848
VGG-19 [30] Max + Relu 0.9795 0.8479 0.9483
AlexNet [31] Max + Relu 0.9858 0.9378 0.9847

ResNet-50 Proposed 0.9986 1.0000 1.0000
AlexNet Proposed 0.9986 1.0000 0.9864

DenseNet Proposed 0.9959 1.0000 0.9916
Inception Proposed 0.9972 0.9864 0.9864
VGG-19 Proposed 0.9986 0.9866 1.0000

3.3. Evaluation of the APTOS Dataset

Figure 7 illustrates the confusion matrix for the APTOS dataset. We implemented five
baseline models—VGG-16, DenseNet, ResNet-50, Xception, and AlexNet—and compared
their performances on the APTOS dataset. From these five models, ResNet-50 showed the
highest performance.

According to the 5-class confusion matrix mentioned above, the performance of each
model was evaluated based on accuracy, recall, precision, and F1-score. Table 6 tabulates
the APTOS fundus classification test set results. The improved SVM model achieved
the highest accuracy of the remaining classification models. The results show that the
augmented APTOS fundus classification for the ResNet-50 model achieves the highest
accuracy for the improved SVM model.

Table 6. Performance metrics for APTOS augmented dataset.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

DenseNet

0.99781659 0.99445983 0.99445983 0.99445983 Normal
0.99672489 0.98924731 0.99459459 0.99191375 Mild

ISVM 0.99617904 0.99002494 0.99250000 0.99126092 Moderate
0.99727074 0.99137931 0.99423631 0.99280576 Severe
0.99781659 1.0000000 0.98870056 0.99431818 PDR
0.99617904 0.98895028 0.99168975 0.99031812 Normal
0.99617904 0.98921833 0.99189189 0.99055331 Mild

SVM 0.99508734 0.98753117 0.99000000 0.98876404 Moderate
0.99617904 0.98850575 0.99135447 0.98992806 Severe
0.99563319 0.99428571 0.98305085 0.98863636 PDR
0.99563319 0.98891967 0.98891967 0.98891967 Normal
0.99290393 0.98113208 0.98378378 0.98245614 Mild

RF 0.99344978 0.98258706 0.98750000 0.98503741 Moderate
0.99508734 0.98563218 0.98847262 0.98705036 Severe
0.99344978 0.98857143 0.97740113 0.98295455 PDR
0.99454148 0.98347107 0.98891967 0.98618785 Normal
0.99072052 0.97319035 0.98108108 0.97711978 Mild

NB 0.99399563 0.98503741 0.98750000 0.98626717 Moderate
0.99290393 0.98265896 0.97982709 0.98124098 Severe
0.99290393 0.98853868 0.97457627 0.98150782 PDR
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Table 6. Cont.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

ResNet-50

0.99781659 0.99173554 0.99722992 0.99447514 Normal
0.99836245 0.99460916 0.9972973 0.99595142 Mild

ISVM 0.99836245 0.99749373 0.9950000 0.99624531 Moderate
0.99945415 1.00000000 0.99711816 0.99855700 Severe
0.99945415 1.00000000 0.99717514 0.99858557 PDR
0.99727074 0.99171271 0.99445983 0.99308437 Normal
0.99727074 0.99191375 0.99459459 0.99325236 Mild

SVM 0.99563319 0.98756219 0.99250000 0.99002494 Moderate
0.99727074 0.99421965 0.99135447 0.99278499 Severe
0.99836245 1.00000000 0.99152542 0.99574468 PDR
0.99617904 0.98895028 0.99168975 0.99031812 Normal
0.99563319 0.98655914 0.99189189 0.98921833 Mild

RF 0.99563319 0.99000000 0.99000000 0.99000000 Moderate
0.99617904 0.99132948 0.98847262 0.98989899 Severe
0.99672489 0.99431818 0.98870056 0.99150142 PDR
0.99508734 0.98351648 0.99168975 0.98758621 Normal
0.99399563 0.98123324 0.98918919 0.98519515 Mild

NB 0.99508734 0.98997494 0.98750000 0.98873592 Moderate
0.99344978 0.98550725 0.97982709 0.98265896 Severe
0.99508734 0.99145299 0.98305085 0.98723404 PDR

AlexNet

0.99617904 0.98895028 0.99168975 0.99031812 Normal
0.99454148 0.98648649 0.98648649 0.98648649 Mild

ISVM 0.99235808 0.98250000 0.98250000 0.98250000 Moderate
0.99672489 0.99135447 0.99135447 0.99135447 Severe
0.99727074 0.99433428 0.99152542 0.99292786 PDR
0.99454148 0.98347107 0.98891967 0.98618785 Normal
0.99454148 0.98913043 0.98378378 0.98644986 Mild

SVM 0.99290393 0.98740554 0.98000000 0.98368883 Moderate
0.99454148 0.98280802 0.98847262 0.98563218 Severe
0.99508734 0.98591549 0.98870056 0.98730606 PDR
0.99344978 0.98071625 0.98614958 0.98342541 Normal
0.99126638 0.97580645 0.98108108 0.97843666 Mild

RF 0.99126638 0.98484848 0.97500000 0.97989950 Moderate
0.99235808 0.97982709 0.97982709 0.97982709 Severe
0.99454148 0.98587571 0.98587571 0.98587571 PDR
0.99290393 0.97802198 0.98614958 0.98206897 Normal
0.98962882 0.97050938 0.97837838 0.97442799 Mild

NB 0.99017467 0.98232323 0.97250000 0.97738693 Moderate
0.99235808 0.9826087 0.97694524 0.97976879 Severe
0.99235808 0.98022599 0.98022599 0.98022599 PDR

Inception

0.99399563 0.97814208 0.99168975 0.98486933 Normal
0.99126638 0.97326203 0.98378378 0.97849462 Mild

ISVM 0.99290393 0.99236641 0.97500000 0.98360656 Moderate
0.99399563 0.98275862 0.98559078 0.98417266 Severe
0.99508734 0.99145299 0.98305085 0.98723404 PDR
0.99344978 0.97808219 0.98891967 0.98347107 Normal
0.99181223 0.98102981 0.97837838 0.97970230 Mild

SVM 0.98962882 0.97984887 0.97250000 0.97616060 Moderate
0.99181223 0.97701149 0.97982709 0.97841727 Severe
0.99290393 0.98300283 0.98022599 0.98161245 PDR
0.99181223 0.97527473 0.98337950 0.97931034 Normal
0.98908297 0.97297297 0.97297297 0.97297297 Mild

RF 0.98744541 0.97243108 0.9700000 0.97121402 Moderate
0.99126638 0.97971014 0.9740634 0.97687861 Severe
0.99126638 0.97740113 0.97740113 0.97740113 PDR
0.99072052 0.96994536 0.98337950 0.97661623 Normal
0.98962882 0.97820163 0.97027027 0.97421981 Mild

NB 0.98635371 0.97229219 0.96500000 0.96863237 Moderate
0.98744541 0.96285714 0.97118156 0.96700143 Severe
0.99126638 0.98011364 0.97457627 0.97733711 PDR

190



Diagnostics 2023, 13, 2606

Table 6. Cont.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

VGG-19

0.99290393 0.97540984 0.98891967 0.98211829 Normal
0.98908297 0.96791444 0.97837838 0.97311828 Mild

ISVM 0.99017467 0.98477157 0.97000000 0.97732997 Moderate
0.99454148 0.98840580 0.98270893 0.98554913 Severe
0.99290393 0.98300283 0.98022599 0.98161245 PDR
0.99181223 0.97267760 0.98614958 0.97936726 Normal
0.99072052 0.98092643 0.97297297 0.97693351 Mild

SVM 0.98744541 0.97721519 0.96500000 0.97106918 Moderate
0.99126638 0.97421203 0.97982709 0.97701149 Severe
0.98962882 0.97183099 0.97457627 0.97320169 PDR
0.99126638 0.97260274 0.98337950 0.97796143 Normal
0.98853712 0.97289973 0.97027027 0.97158322 Mild

RF 0.98689956 0.97474747 0.96500000 0.96984925 Moderate
0.98962882 0.97126437 0.97406340 0.97266187 Severe
0.98799127 0.96892655 0.96892655 0.96892655 PDR
0.98853712 0.96195652 0.98060942 0.97119342 Normal
0.98635371 0.96495957 0.96756757 0.96626181 Mild

NB 0.98580786 0.97222222 0.96250000 0.96733668 Moderate
0.98799127 0.96829971 0.96829971 0.96829971 Severe
0.98689956 0.97142857 0.96045198 0.96590909 PDR

Figure 7. Confusion matrix for APTOS augmented dataset on different CNN models.
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3.4. Evaluation of the Kaggle Dataset

Figure 8 illustrates the confusion matrix for the Kaggle dataset. We implemented five
baseline models-VGG-16, DenseNet, ResNet-50, Xception, and AlexNet-and compared
their performances on the Kaggle dataset. From these five models, ResNet-50 showed the
highest performance. In 203 NODR fundus images, the proposed ISVM classifier accurately
classified 202 fundus images for the ResNet-50 model. In 54 Mild images, the ISVM classifier
accurately classified 54. Out of 69 moderate fundus images, ISVM accurately identified
68. Out of 15 images, ISVM accurately identified 14 for severe, and out of 7 images, ISVM
accurately identified 6 for PDR for the ResNet-152 model. For the ResNet-50 model, the
SVM classifier accurately identified 201 NODR images, 53 mild and 67 moderate, 14 severe,
and 5 for PDR. For the ResNet-152 model, the RF classifier accurately identified 201 NODR
images, 53 mild and 66 moderate, 13 severe, and 5 for PDR. For the ResNet-50 model, the
NB classifier accurately identified 201 NODR images, 52 mild and 65 for moderate, 12 for
severe, and 5 for PDR. Table 6 tabulated the Kaggle classification test set results.

Figure 8. Confusion matrix for Kaggle augmented dataset on different CNN models.
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From Table 7, we can see that the improved SVM model achieved the highest accuracy
compared to the remaining classification models. The achieved results revealed that the
overall testing accuracy and the performance metrics for the improved ResNet-50 with the
improved SVM are the most appropriate for diabetic retinopathy detection, with a testing
accuracy of 99.9% for fundus images.

Table 7. Performance metrics for Kaggle augmented dataset.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

DenseNet

0.99976472 0.99922541 0.99961255 0.99941894 Normal
0.99980393 0.99959058 0.99938600 0.99948828 Mild

ISVM 0.99968629 0.99905553 0.99943311 0.99924428 Moderate
0.99960786 0.99901244 0.99901244 0.99901244 Severe
0.99956864 0.99921492 0.99862691 0.99892083 PDR
0.99964707 0.99903157 0.99922511 0.99912833 Normal
0.99960786 0.99897667 0.99897667 0.99897667 Mild

SVM 0.99952943 0.99886621 0.99886621 0.99886621 Moderate
0.99956864 0.99881517 0.99901244 0.99891379 Severe
0.99952943 0.99901884 0.99862691 0.99882284 PDR
0.99956864 0.99903120 0.99883766 0.99893442 Normal
0.99949022 0.99836367 0.99897667 0.99867008 Mild

RF 0.99949022 0.99886600 0.99867725 0.99877161 Moderate
0.99941179 0.99881423 0.9982224 0.99851823 Severe
0.99929415 0.99803922 0.99843076 0.99823495 PDR
0.99929415 0.99806352 0.99845021 0.99825683 Normal
0.99913729 0.99774867 0.99774867 0.99774867 Mild

NB 0.99921572 0.99792218 0.99829932 0.99811071 Moderate
0.99921572 0.99802489 0.99802489 0.99802489 Severe
0.99913729 0.99823322 0.99744998 0.99784144 PDR

ResNet-50

0.99992157 0.99980628 0.99980628 0.99980628 Normal
0.99984314 0.99959067 0.99959067 0.99959067 Mild

ISVM 0.99992157 0.99981104 0.99981104 0.99981104 Moderate
0.99984314 0.99960498 0.99960498 0.99960498 Severe
0.99984314 0.99960769 0.99960769 0.99960769 PDR
0.99972550 0.99903195 0.99961255 0.99932217 Normal
0.99972550 0.99938588 0.99918133 0.99928359 Mild

SVM 0.99976472 0.99924443 0.99962207 0.99943321 Moderate
0.99972550 0.99940735 0.99920995 0.99930864 Severe
0.99972550 0.99960746 0.99901922 0.99931325 PDR
0.99960786 0.99864499 0.99941883 0.99903176 Normal
0.99956864 0.99877225 0.99897667 0.99887445 Mild

RF 0.99968629 0.99924414 0.99924414 0.99924414 Moderate
0.99964707 0.99920980 0.99901244 0.99911111 Severe
0.99960786 0.99941107 0.99862691 0.99901884 PDR
0.99952943 0.99864446 0.99903138 0.99883788 Normal
0.99925493 0.99775005 0.99836267 0.99805627 Mild

NB 0.99941179 0.99848857 0.99867725 0.99858290 Moderate
0.99945100 0.99881446 0.99841991 0.99861715 Severe
0.99937257 0.99882214 0.99803845 0.99843014 PDR

AlexNet

0.99988236 0.99980624 0.99961255 0.99970939 Normal
0.99984314 0.99979525 0.99938600 0.99959058 Mild

ISVM 0.99976472 0.99924443 0.99962207 0.99943321 Moderate
0.99980393 0.99960490 0.99940747 0.99950617 Severe
0.99968629 0.99901961 0.99941153 0.99921553 PDR
0.99949022 0.99845111 0.99903138 0.99874116 Normal
0.99952943 0.99877200 0.99877200 0.99877200 Mild

SVM 0.99933336 0.99829964 0.99848828 0.99839395 Moderate
0.99949022 0.99901186 0.99841991 0.99871580 Severe
0.99941179 0.99862664 0.99843076 0.99852869 PDR
0.99964707 0.99903157 0.99922511 0.99912833 Normal
0.99949022 0.99856763 0.99877200 0.99866980 Mild

RF 0.99952943 0.99867775 0.99905518 0.99886643 Moderate
0.99949022 0.99881470 0.99861742 0.99871605 Severe
0.99949022 0.99901865 0.99843076 0.99872461 PDR
0.99909807 0.99748306 0.99806277 0.99777283 Normal
0.99917650 0.99836099 0.99733934 0.99784990 Mild

NB 0.99905886 0.99754439 0.99792139 0.99773285 Moderate
0.99909807 0.99782695 0.99762986 0.99772840 Severe
0.99894122 0.99725436 0.99744998 0.99735216 PDR
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Table 7. Cont.

CNN Model Classifier Accuracy Precision Recall F1-Score Class

Inception

0.99980393 0.99961248 0.99941883 0.99951564 Normal
0.99972550 0.99938588 0.99918133 0.99928359 Mild

ISVM 0.99984314 0.99962207 0.99962207 0.99962207 Moderate
0.99960786 0.99861851 0.99940747 0.99901283 Severe
0.99976472 0.99960754 0.99921538 0.99941142 PDR
0.99941179 0.99825750 0.99883766 0.99854750 Normal
0.99937257 0.99795501 0.99877200 0.99836334 Mild

SVM 0.99937257 0.99867675 0.99829932 0.99848800 Moderate
0.99933336 0.99861660 0.99802489 0.99832066 Severe
0.99937257 0.99862637 0.99823460 0.99843045 PDR
0.99945100 0.99864394 0.99864394 0.99864394 Normal
0.99937257 0.99795501 0.99877200 0.99836334 Mild

RF 0.99925493 0.99848743 0.99792139 0.99820433 Moderate
0.99929415 0.99822240 0.9982224 0.99822240 Severe
0.99933336 0.99843045 0.9982346 0.99833252 PDR
0.99898043 0.99728892 0.99767532 0.99748208 Normal
0.99890200 0.99733825 0.99693000 0.99713408 Mild

NB 0.99890200 0.99716660 0.99754346 0.99735500 Moderate
0.99898043 0.99743235 0.99743235 0.99743235 Severe
0.99905886 0.99784144 0.99744998 0.99764567 PDR

VGG-19

0.99980393 0.99980616 0.99922511 0.99951555 Normal
0.99964707 0.99897688 0.99918133 0.99907910 Mild

ISVM 0.99984314 0.99981096 0.99943311 0.99962200 Moderate
0.99945100 0.99802722 0.99920995 0.99861824 Severe
0.99968629 0.99941130 0.99901922 0.99921522 PDR
0.99937257 0.99825716 0.99864394 0.99845051 Normal
0.99933336 0.99795459 0.99856734 0.99826087 Mild

SVM 0.99933336 0.99867650 0.99811036 0.99839335 Moderate
0.99921572 0.99822170 0.99782738 0.99802450 Severe
0.99921572 0.99803845 0.99803845 0.99803845 PDR
0.99925493 0.99787028 0.99845021 0.99816016 Normal
0.99929415 0.99795417 0.99836267 0.99815838 Mild

RF 0.99917650 0.99829836 0.99773243 0.99801531 Moderate
0.99909807 0.99782695 0.99762986 0.99772840 Severe
0.99925493 0.99823426 0.99803845 0.99813634 PDR
0.99890200 0.99709527 0.99748160 0.99728840 Normal
0.99878436 0.99692938 0.99672534 0.99682735 Mild

NB 0.99886279 0.99716607 0.99735450 0.99726027 Moderate
0.99886279 0.99703791 0.99723484 0.99713637 Severe
0.99909807 0.99803729 0.99744998 0.99774355 PDR

Figure 9 presents the evaluation of the performance metrics for the different models.
According to the achieved results, overall testing accuracy, and performance metrics, the
proposed model is appropriate for detecting and classifying DR with a testing accuracy of
98.32% on the APTOS dataset.

Table 8 tabulates the varying sizes of the training and testing sets and the correspond-
ing mean and standard deviation.

Table 8. Varying training and test size.

Dataset Training Testing Accuracy Mean
Standard
Deviation

70 30 0.981225

APTOS 75 25 0.983202 0.982543 0.0011409

80 20 0.983202

70 30 0.971344

Kaggle 75 25 0.982213 0.980237 0.0080882

80 20 0.987154

194



Diagnostics 2023, 13, 2606

Figure 9. DR classification comparison of various classifiers of different datasets. It displays the
performance results of the two datasets. Pink color represents the messidor and the green represents
the APTOS.

4. Discussion

This study aimed to identify and classify DR based on fundus images from two
different datasets. Initially, all the images in the dataset were of different sizes; the images
were resized to 225 × 225 using the RGB colour. The hyperparameters were tuned to
optimize the proposed model. Model training can be accelerated, and the possibility of
performance improved using the pooling function. There is no ideal batch size, and we
implemented the experiments with various batch sizes. If we find the suitable batch size in
addition to the suitable kernel and hidden layers, the model will yield a high performance.
Batch size 64 produces better results than batch sizes 16 or 32. The batch size was 64 for the
fundus images because this study’s dataset was large. From previous studies, we observed
that the batch sizes, in conjunction with a suitable kernel and hidden layer, will yield a high
performance. The parameters (i.e., a batch size of 64, epochs of 1000, and a learning rate of
0.001) were adjusted to achieve a high performance.

After extracting the features, the improved SVM classifies the lesions. In [15], the
authors implemented AdaBoost to extract the features and the Gaussian mixture model,
KNN, and SVM to classify the lesions and analyse the retina fundus images with different
illuminations and views. A new unsupervised approach based on PCA for detecting
microaneurysms was presented in [16]. The manual identification and differentiation of
diabetic retinopathy from fundus images is time-consuming. Table 9 presents the processing
time analysis of the existing techniques for the Kaggle and APTOS datasets to calculate the
computation overhead. The achieved results revealed that the overall processing time for
the improved SVM classifier is the most appropriate for diabetic retinopathy classification,
with a minimum of 14 ms for Kaggle and 15 ms for APTOS datasets.
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Table 9. DR classification comparison of the processing time for the proposed model with different
optimizations.

Classifier Kaggle (s) APTOS (s)

Logistic regression [32] 21 29
DT [33] 15 21

KNN [34] 23 30
NB [35] 20 25
RF [36] 20 23

SVM [37] 22 31
Improved SVM 14 15

A study based on feature extraction using the RF model produced 74% accuracy in DR
image classification [38]. Another two proposed hybrid models are based on combining
the Gaussian mixture model and SVM to diagnose microaneurysms [18] and using KNN
for the detection and classification of DR [39]. All the above-discussed studies used the
existing classifiers to classify the DR lesions.

Some studies implemented CNN models to perform the binary classification of DR
datasets [40,41]. Dropout regularization, augmentation, and pre-processing were per-
formed manually by using the image editing tools in [42]. A deep CNN was proposed
by [43] to classify normal and NPDR with two neural networks (i.e., the global and the
local) and model performance was evaluated by the kappa score. The main disadvantage
of this work is that it classifies only normal and NPPR, but it only works to detect the PDR.

To overcome those issues, the diagnostic results of the proposed model proved that
it can achieve a satisfactory diagnostic performance, which can significantly assist the
medical professional in the decision-making process in the early stages of detecting the
infection, and timely treatment can decrease risk. Automatic screening and differentiation
of diabetic retinopathy from fundus images will significantly reduce the effort of the
medical professional and accelerate the diagnosis process.

Five class classifications are realized in the model, providing feasibility for the diag-
nosis of DR and its severity levels. The proposed model for the feature extraction and
classification of DR performs better than the state-of-the-art models with high accuracy
and less complexity. We will further optimize the model to model the accuracy of DR
diagnosis and try to develop a more powerful DR detection model to assist doctors in
clinical examinations.

The limitation of this model is that it is trained with only fundus image-level supervi-
sion, making it very challenging to accurately locate some minute lesion regions. Next, we
need to specify the coarse location of the lesion along with the DR grading, which will help
from the perspective of clinical application.

5. Conclusions

High blood pressure leads to DR, which causes retinal damage. Retinal vascularization
is damaged by DR and can lead to blindness and potentially death. Fundoscopy exami-
nations, which are time-consuming and expensive, allow ophthalmologists to see retinal
vascular swelling. There is a need to automatically identify diabetic retinopathy by examin-
ing retinal fundus images. This study proposed an enhanced pooling function technique
to minimize the loss to detect retina lesions, and an improved SVM classifier to classify
the lesions using linear mapping. Five pre-trained deep learning models were recognized
during the selection of the implementation, namely VGG-16, DenseNet, ResNet-50, Incep-
tion, and AlexNet. The proposed pooling and activation function results outperformed
all the existing models. This study’s proposed model provided efficient accuracy results
compared to the existing models.
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