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Preface

Precision medicine is revolutionizing healthcare, reshaping traditional approaches to align

with individual patient attributes. This shift is powered by the convergence of digital health

technologies and artificial intelligence (AI), offering an unparalleled opportunity to refine and

amplify personalized healthcare. Digital health tools, such as electronic health records and wearable

devices, provide comprehensive patient data, encompassing genetic profiles, lifestyle choices, and

real-time physiological metrics. These data empower healthcare practitioners to craft finely tuned

treatment strategies tailored to each patient’s unique health profile.

AI plays a crucial role in this evolution, with machine learning algorithms discerning intricate

patterns within vast datasets to identify biomarkers and personalized treatment responses. This

analytical prowess enhances diagnosis, prognosis, and facilitates a proactive approach to patient care.

Together, digital health and AI mark a new era of unprecedented healthcare advancements, extending

personalized treatments globally.

The Special Issue ”Transforming Precision Medicine: The Intersection of Digital Health and AI”

encapsulates these advancements, featuring 21 contributions across various categories, including

editorials, scientific articles, reviews, systematic reviews, perspectives, and opinion articles. This

collaborative endeavor aims to foster scientific exchange and editorial collaboration, providing a

comprehensive environment for scholarly pursuits.

We extend our sincere gratitude to all contributors for their invaluable insights and efforts, which

have made this Special Issue possible. It is our hope that the knowledge shared within these pages

will inspire further innovation and collaboration, ultimately leading to improved patient care.

Special thanks to Iris Qiao for exceptional support throughout the creation of this collection.

Daniele Giansanti

Editor
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00161 Roma, Italy; daniele.giansanti@iss.it

1. The Joint Expedition Exploring the Intersection of Digital Health and AI in
Precision Medicine

Precision medicine stands as a transformative force in the orbit of healthcare, funda-
mentally reshaping traditional approaches by customizing therapeutic interventions to
align with the distinctive attributes of individual patients [1,2]. This revolutionary paradig-
matic shift has been propelled forward by the convergence of two pivotal technological
frontiers: digital health technologies and the remarkable progress made in artificial intel-
ligence (AI). Together, they forge an unparalleled opportunity to not only refine but also
amplify the precision, efficiency, and widespread availability of personalized healthcare.
The integration of digital health technologies has played a pivotal role in augmenting the
landscape of precision medicine [2,3]. Through the utilization of electronic health records,
wearable devices, and other interconnected health monitoring tools, a wealth of patient
data has become readily accessible [4]. This important collection of information encom-
passes genetic profiles, lifestyle choices, environmental factors, and real-time physiological
metrics, thereby providing a comprehensive understanding of an individual’s health status.
The synthesis of these multifaceted, polyhedric, and complex datasets empowers healthcare
practitioners with an all-inclusive perspective, enabling them to craft treatment strategies
that are finely tuned to the intricate gradations of each patient’s unique health profile [5,6].
In tandem with the rise of digital health, AI has emerged as a linchpin in the evolution
of precision medicine [7,8]. Machine learning algorithms, powered by vast datasets, can
discern intricate patterns and correlations within a diverse range of health information. This
analytical prowess facilitates the identification of subtle biomarkers, predictive indicators,
and personalized treatment responses that might elude traditional diagnostic methods. By
harnessing the predictive capabilities of AI, healthcare professionals can not only refine
diagnosis and prognosis but also anticipate potential therapeutic outcomes, fostering a
more proactive and preemptive approach to patient care.

The integration of digital health and AI technologies in healthcare enhances efficiency
by automating routine tasks, streamlining diagnostics, and allowing more time for nuanced
patient care [4,7,8]. The rapid assimilation of vast datasets facilitates quicker, more accurate
decision-making, reducing the risk of adverse outcomes. This synergy also democratizes
personalized healthcare, extending precision medicine beyond specialized centers through the
accessibility of digital tools and scalable AI solutions. Remote patient monitoring, telemedicine,
and AI diagnostics overcome geographical barriers, improving healthcare inclusivity and
addressing disparities. This convergence marks an era of unprecedented healthcare advance-
ments, refining personalized treatments and extending their global reach, with a vision of plac-
ing everyone’s unique health profile at the forefront of therapeutic strategies. The initiative to
establish a dual opportunity for scientific and editorial collaboration has been initiated with this
project’s Special Issue (SI), “Transforming Precision Medicine: The Intersection of Digital Health
and AI”. (available at https://www.mdpi.com/journal/jpm/special_issues/4FMFQUN50A,
access on 10 March 2024).

J. Pers. Med. 2024, 14, 388. https://doi.org/10.3390/jpm14040388 https://www.mdpi.com/journal/jpm1
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This endeavor aimed to create a platform that not only facilitates scientific exchange
but also provides a space for editorial collaboration, fostering a comprehensive environment
for both scholarly and publishing pursuits.

This Special Issue has successfully achieved a significant milestone, featuring 20 con-
tributions (Co)s (excluding this editorial) [9–28].

The published papers (see Figure 1), according to the selected categories, encompass 1
introductory editorial [9], 7 full scientific articles [10–16], 5 reviews [17–21], 2 systematic
reviews [22,23], 4 perspectives [24–27], and 1 opinion article [28].

Figure 1. Categories of papers published in this Special Issue.

2. Conclusive Discoveries: A Closer Look at the Contributions

2.1. An Overview of the Contributions

Below, we present a concise overview encapsulating the key points and insights from
the contributions featured in this Special Issue. This conclusive list aims to provide a brief
yet comprehensive glimpse into the diverse and impactful content published within this
specialized collection.

The Editorial by Giansanti [9] introduces the aims of the SI and reflects on the progress
and status of the introduction of AI into precision medicine. The focus is on assessing
the current state and briefly exploring both its evolution and recent trends. The editorial
introduces the need for this initiative as a Special Issue that suggests fields and directions
for exploration.

Leung et al. [10] explore the use of planning computed tomography (pCT)-based
radiomics for the long-term prognostication of high-risk localized prostate cancer patients
who underwent whole pelvic radiotherapy (WPRT). Given the high mortality rate of
high-risk prostate cancer and challenges with traditional prognostic markers, the research
employed rigorous radiomics methodologies on a cohort of 64 patients. The pCT-based
radiomics model demonstrated a consistent and comparable performance to MRI-based
studies, predicting six-year progression-free survival with a mean AUC of 0.76 (training)
and 0.71 (testing). The radiomics signature, incorporating two texture features, exhibited
promising accuracy, sensitivity, and specificity in both training and testing cohorts. This
study suggests that pCT-based radiomics could serve as a routine, non-invasive approach
for prognostic prediction in high-risk localized prostate cancer cases undergoing WPRT,
leveraging the accessibility of CT in standard clinical practices.

The retrospective study proposed by Morena et al. [11] utilizing artificial intelligence
aimed to assess the impact of the COVID-19 pandemic on pulmonary tuberculosis (TB).
Analyzing electronic health records from Spain’s Castilla-La Mancha region, this study
compared data from 2015 to 2020. In 2020, pulmonary TB diagnoses decreased by 28%
compared to 2019, with 14.2% of patients diagnosed with both TB and COVID-19. Despite

2



J. Pers. Med. 2024, 14, 388

a higher risk for coinfection among women, symptoms were no more severe than those
with isolated TB. The findings suggest a notable decline in pulmonary TB incidence during
the initial year of the COVID-19 pandemic.

Issa et al. [12] investigate the impact of cone-beam computed tomography (CBCT)
viewing parameters on the identification of the inferior alveolar nerve (IAC). The study
assessed 25 CBCT scans, testing different slice thicknesses, sharpness, and contrast settings.
A three-score system evaluated IAC visibility. Optimal parameters were determined, and
validation was conducted through semi-automated segmentation and structure overlap-
ping, assessing the mean distance. Inter-rater and intra-rater reliability were significant
(69–83%). A 0.25 mm slice thickness, zero sharpness, and contrast of 1200 consistently
improved the visibility and accuracy. The consideration of individual patient characteristics
is recommended when applying these parameters, including anatomical variations and
bone density.

Griewing et al. [13] recall how the rising accessibility of large language models (LLMs)
has sparked interest in utilizing generative AI applications for medical purposes. Their
observational study addresses the use of LLM ChatGPT 3.5 for treatment recommendations
in breast cancer, comparing outcomes with a multidisciplinary tumor board (MTB). Incor-
porating patient profiles that reflected diverse breast cancer stages, including precancerous
lesions and metastasis, the study found an overall concordance of 50%, rising to 58.8% for
invasive breast cancer profiles. However, due to occasional fraudulent decisions by the
LLM, the study concludes that publicly available LLMs are currently insufficient as support
tools for tumor boards. Gynecological oncologists are encouraged to familiarize themselves
with LLM capabilities, considering potential risks and limitations while exploring their
potential utility.

Aiumtrakul et al. [14] explore the use of AI tools such as ChatGPT, Bing Chat, and
Bard AI in the literature through searches on nephrology, specifically evaluating their
citation accuracy. The researchers generated prompts to obtain references in Vancouver
style for 12 nephrology topics from each AI tool and assessed their validity using PubMed,
Google Scholar, and Web of Science. The results reveal varying levels of citation accuracy,
with ChatGPT providing 38% accurate references, Bing Chat 30%, and Bard AI only 3%.
Common errors included incorrect DOIs. This study underscores the importance of research
integrity in medicine and emphasizes the need for refined AI tools before their widespread
adoption in medical literature searches.

The work by Elvas et al. [15] addresses the significant global burden of cardiovascular
diseases (CVDs), specifically focusing on myocardial infarction, pulmonary thromboem-
bolism, and aortic stenosis. Utilizing data from Hospital Santa Maria, their research
employs a comprehensive approach integrating exploratory data analysis (EDA) and pre-
dictive machine learning (ML) models. Following the Cross-Industry Standard Process for
Data Mining (CRISP-DM) methodology, EDA uncovers intricate patterns and relationships
specific to cardiovascular diseases. ML models exhibit accuracies exceeding 80%, providing
a 13 min window for predicting myocardial ischemia incidents and enabling proactive
interventions. This paper establishes a proof of concept for real-time data and predictive
capabilities, offering valuable tools for informed decision making and timely interventions
in managing cardiovascular diseases.

Pereira et al. [16] recall how chronic obstructive pulmonary disease (COPD) stands as
the third leading cause of global mortality, necessitating effective management strategies.
Their study highlights the pivotal role of Health Remote Monitoring Systems (HRMSs)
in COPD patient care, employing artificial intelligence (AI) models to predict health de-
terioration risks by analyzing biometric signs and environmental factors. The research
not only reviews recent works in this domain but also introduces an Intelligent Clinical
Decision Support System (CIDSS). Comprising vital signs of prediction and early warn-
ing score calculation modules, the CIDSS generates early information on patient health
evolution and risk analysis. It issues alerts for anomalies in biometric measurements or
significant basal value changes, enabling proactive intervention. This system was imple-
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mented, assessed in a real case, and validated through an evaluation survey by healthcare
professionals, affirming its utility and value in facilitating adjustments to COPD patient
treatment. The CIDSS emerges as a valuable tool for medical professionals, supporting
proactive healthcare interventions.

The review proposed by Iannone and Giansanti [17] explores the integration of artificial
intelligence (AI) with assistive technologies (ATs) in the context of autism, recognizing the
need for a multidisciplinary approach to diagnosis and therapy. A systematic review of
22 studies revealed promising interest in AI integration, particularly in AI robotics and
wearable automated devices like smart glasses. These innovations hold substantial potential
for enhancing communication and social engagement among individuals with autism.
However, the emphasis on innovation over establishing a solid presence in healthcare
raises concerns about regulatory and acceptance issues. As the field evolves, it becomes
evident that integrated ATs with AI play a pivotal role in connecting various domains and
addressing the complexities of autism.

Miao et al.’s review [18] discusses the significant impact of artificial intelligence (AI),
particularly machine learning, on nephrology and the management of kidney diseases. It
specifically focuses on ChatGPT, an innovative language model developed by OpenAI. The
article highlights ChatGPT’s versatility in engaging in informative conversations and its
demonstrated proficiency in medical knowledge assessments. While acknowledging its
varying performance across medical subfields, this review provides an overview of Chat-
GPT’s integration in nephrology, exploring its potential benefits in dataset management,
diagnostics, treatment planning, patient communication, and medical research. Ethical
and legal concerns are discussed, emphasizing the importance of thorough evaluation
before implementing AI in real-world medical scenarios. This review aims to be a valu-
able resource for nephrologists and healthcare professionals interested in utilizing AI for
personalized nephrology care.

Ittarat et al. [19] highlight in their review how the integration of ophthalmology
chatbots in modern eye care represents a significant technological advancement, offer-
ing benefits such as improved access to information, enhanced patient interaction, and
streamlined triaging. Evaluations have demonstrated their effectiveness in ophthalmology
condition triage and knowledge assessment, highlighting both their potential and areas for
improvement. Challenges in integrating these chatbots into healthcare systems include eth-
ical, legal, and integration issues. Future developments, including the synergy of artificial
intelligence and machine learning, promise to enhance their diagnostic capabilities globally.
This review explores the utilization of ophthalmology chatbots, assessing their accuracy,
reliability, data protection, security, transparency, potential biases, and ethical considera-
tions. It provides a comprehensive review of their roles in ophthalmology, emphasizing
their significance and future potential in the field.

Fawaz et al. [20] propose a review that recalls how cancer is a leading cause of
global disease-related death, emphasizing the importance of accurate early diagnosis
and intervention. Traditional diagnostic methods include clinical examination, biomarker
blood tests, biopsy histopathology, and imaging. The review highlights that the integration
of diverse omics data, such as genomic, metabolomic, and microbiomic traits, is challenging
and carries a risk of interpretation errors. Systems biology, combining artificial intelligence
(AI) with omics technologies, is presented as a solution to analyze and integrate vast patient
data, aiding physicians in diagnosis and treatment decisions rapidly and accurately. The
article acknowledges the potential of AI in cancer research but highlights the associated
risks, including diagnostic and prognostic errors in data interpretation.

Meijer et al.’s review [21] recalls that digital twin technology stands out as a promising
advancement in healthcare, offering applications in monitoring, diagnosis, and personal-
ized treatment strategies. It explores digital twins as virtual counterparts of real human
patients, aiming to provide an in-depth understanding of the data sources and method-
ologies contributing to their construction across various healthcare domains. The review
covers diverse data sources, such as blood glucose levels, heart MRI and CT scans, cardiac
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electrophysiology, written reports, and multi-omics data. Each source presents challenges
related to standardization, integration, and interpretation, but the review showcases how
various datasets and methods are used to overcome these obstacles and generate a digital
twin. Despite significant progress, challenges remain in achieving a fully comprehensive
patient digital twin. The article discusses critical developments in non-invasive data collec-
tion, high-throughput technologies, modeling, and computational power. Overall, while
facing challenges, digital twin research holds great promise for personalized patient care
and has the potential to shape the future of healthcare innovation.

Allen [22] proposes a systematic review, providing a synthesis of the literature on
explaining machine-learning models for digital health data in precision medicine. As
healthcare increasingly customizes treatments to individual characteristics, the integration
of artificial intelligence with digital health data becomes crucial. Utilizing a topic-modeling
approach, this paper distills key themes from 27 journal articles. Topics identified include
optimizing patient healthcare through data-driven medicine, predictive modeling with
data and algorithms, predicting diseases with the deep learning of biomedical data, and
machine learning in medicine. The review explores specific applications of explainable
artificial intelligence, emphasizing its role in fostering transparency, accountability, and
trust within the healthcare domain. It underscores the need for the further development
and validation of explanation methods to advance precision healthcare delivery.

Michelutti et al.’s systematic review [23] aims to analyze the primary reports on
the utilization of artificial intelligence algorithms in the medical field, with a specific
focus on oncology, particularly in the context of prognostic evaluations for patients with
head and neck malignancies. The objective is to comprehensively examine the existing
literature pertaining to the application of artificial intelligence in head and neck oncology,
specifically for prognostic assessments. The review provides an encompassing overview
of how artificial intelligence is employed to derive prognostic information, particularly in
predicting survival and recurrence. These findings underscore the potential impact of these
prognostic data on tailoring therapeutic strategies to become increasingly personalized.

Lone et al. [24] proposed a perspective focusing on anterior open-bite malocclusion,
a dental condition characterized by a lack of contact between the upper and lower front
teeth, leading to functional difficulties. Etiology involves genetic, environmental, and
developmental factors. Genetic studies have identified genes and pathways related to
jaw growth, tooth eruption, and dental occlusion contributing to open-bite development.
Orthodontic treatment, including braces and clear aligners, is a primary approach, with
adjuvant therapies and, in severe cases, surgical interventions. Technological advancements
like 3D printing enhance treatment precision. Genetic research, especially using animal
models like the collaborative cross-mouse population, provides insights into the genetic
basis of open bite and potential therapeutic targets. Proposing human research using
mouse models, including GWAS, EWAS, RNA-seq analysis, and integration of genetic and
expression studies, aims to uncover novel genes and factors influencing open bite, paving
the way for more precise treatments and preventive strategies.

Fuchs et al.’s perspective article [25] provides an in-depth exploration of the trans-
formative era unfolding in sarcoma care, propelled by the intersection of digital health
and artificial intelligence (AI). It examines the multifaceted opportunities and challenges
associated with harnessing these technologies for precision and value-based sarcoma care.
The article outlines the current state-of-the-art methodologies and technologies in sarcoma
care, offering practical insights for healthcare providers, administrators, and policymakers.
Emphasis is placed on the limitations of AI and digital health platforms, underscoring the
crucial need for high-quality data and ethical considerations.

Watted et al. [26] present a perspective that delves into the malocclusion phenotype
known as deep bite, characterized by the excessive overlap of the upper front teeth over
the lower front teeth. It discusses current clinical treatment strategies, explores genetic
analyses related to the phenotype, and proposes a roadmap for future genetic investiga-
tions. The research underscores the potential of understanding genetic and epigenetic
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factors for developing new preventive and treatment methods, incorporating technological
advancements like 3D printing and CAD/CAM. The study suggests conducting compre-
hensive genomic analyses, including GWAS and RNAseq, in human tissues associated with
deep-bite malocclusion. The collaborative cross-mouse model is highlighted as a valuable
tool for identifying genetic factors, paving the way for personalized medicine and early
prevention strategies.

The study by Lone et al. [27] explores malocclusion, a prevalent condition influenced by
genetic, environmental, and oral behavioral factors, impacting oral functionality, aesthetics,
and quality of life. Recognizing the significance of managing malocclusion in primary
dentition, this review highlights its global prevalence and the use of Angle’s classification
system. Genetic factors, including variants in genes like MSX1, PAX9, and AXIN2, are
associated with an increased risk of Class I occlusion. The review aims to provide insights
into clinical strategies, genetic influences from human and murine populations, and RNA
alterations in skeletal Class I occlusion. Mouse models are crucial for investigating genetic
associations and mandible development.

Wiedermann et al. [28] present an opinion delving into the role of artificial intelligence-
driven symptom checkers in addressing the challenges faced by modern healthcare, particu-
larly in the context of an aging population and a decreasing general practitioner workforce.
Drawing insights from a study in Italian general practices, the article explores the per-
spectives of both physicians and patients regarding the efficiency, utility, and challenges
of symptom checkers. While these tools are seen as potential solutions, concerns about
accuracy and misdiagnosis persist. The article proposes that AI-based symptom checkers
can optimize medical history-taking, emphasizing the need for the careful integration of
digital innovations while preserving the essential human touch in healthcare. Collaboration
among technologists, clinicians, and patients is crucial for the successful evolution of digital
tools in healthcare.

2.2. Common Message

All these works have made notable contributions to the field of personalized medicine,
particularly at the intersection between AI and digital health. These contributions provide
valuable insights and innovative approaches, contributing to our understanding of how AI
and digital health can enhance personalized medicine. The integration of the technologies
showcased in these studies offers practical implications for patient care, treatment strategies,
and medical decision making, contributing to the ongoing progress in this field.

Twenty distinct contributions [9–28] weave through the intricate fields of the health
domain focused on the integration of digital health and AI with precision medicine. These
studies, spanning diverse medical domains, collectively leverage several AI and digital
health approaches to precision medicine.

The scientific articles [10–16] offer a glimpse into the current priorities of scholars,
with a distinct focus on the integration of digital health and AI within the realm of precision
medicine. These articles illuminate the ongoing efforts of researchers, underscoring the
increasing importance of incorporating advanced technologies into healthcare practices.

Transitioning to review studies [17–21], they play a critical role in providing essential
scientific insights into the consolidation of themes. Importantly, these reviews highlight
the pivotal role of AI in shaping the landscape of precision medicine, emphasizing its
significance in guiding the current trajectory of research and knowledge consolidation.

Furthermore, homing in on systematic reviews [22,23], these works systematically
identify patterns and scientific questions, offering a focused examination of specific areas
where scholars are directing their attention. The thematic emphasis on digital health
and AI becomes even more apparent, illustrating their integral role in addressing precise
scientific inquiries.

Shifting to perspectives [24–27] and opinions [28], these contributions offer forward-
looking insights from various angles, accentuating the dynamic landscape of digital health
and AI in precision medicine. By opening up future possibilities, they significantly con-
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tribute to our understanding of potential directions and opportunities in this rapidly
evolving field.

In essence, this collection not only paints a comprehensive picture of the current
scholarly focus [10–28] but also underscores the central role of digital health and AI in
advancing precision medicine. The thematic emphasis on these key elements reflects both
the present intellectual climate [10–23] and the anticipated trajectories of research in this
dynamic domain [24–28].

In this comprehensive exploration of AI in precision medicine, each contribution [9–28]
unfolds a distinct facet of the evolving landscape. The focus extends from specialized areas
such as radiomics [10] and the TB impact assessment [11] to the meticulous consideration of
CBCT parameters [12] and the potential but cautious integration of large language models
(LLMs) in breast cancer treatment decisions [13].

The significance of AI tools surfaces in nephrology searches in the literature [14],
while the real-time predictive capabilities for cardiovascular diseases (CVDs) [15] promise
proactive interventions. Chronic obstructive pulmonary disease (COPD) management [16]
and AI’s role in autism treatment [17] underscore the transformative impact of healthcare.

The panorama broadens as nephrology’s interaction with AI [18] and the integration
of ophthalmology chatbots [19] reveal a dynamic diagnostic landscape. AI’s potential in
cancer research [20] and the promising applications of digital twins in healthcare [21] reflect
ongoing advancements and the need for careful ethical considerations.

The narrative unfolds further as we delve into AI’s explainable role [22] and the
prognostic applications in oncology [23], highlighting transparency and personalized
patient care. Dental perspectives offer insights into malocclusions [24,26,27], while sarcoma
care’s transformation [25] and the role of AI-driven symptom checkers [28] provide a
conclusive glance at the future.

This Special Issue not only encapsulates the current state of AI in precision medicine
but also lays the foundation for an exciting and dynamic future, emphasizing collaborative
efforts between technology, healthcare professionals, and patients.

2.3. Key Emerging Themes and Suggestions for a Broader Investigation

From the overview, it is also possible to detect the emerging themes (Table 1) and the
suggestions for a broader investigation.

Table 1. Dominant emerging themes by study.

Themes Description Studies

Cancer Research Leung et al. [10], Griewing et al. [13], Fuchs et al. [25], [10,13] [25]

Pandemic Impact and Disease Dynamics Morena et al. [11], Issa et al. [12] [11,12]

Cardiovascular and Pulmonary Insights Elvas et al. [15], Pereira et al. [16] [15,16]

Neurological Disorders and Autism Iannone and Giansanti [17] [17]

Nephrology and Healthcare Literature Miao et al. [18], Aiumtrakul et al. [14] [14,18]

Ophthalmology Chatbots Ittarat et al. [19] [19]

Cancer Diagnosis and AI Integration Fawaz et al. [20] [20]

Digital Twin Technology in Healthcare Meijer et al. [21] [21]

Dental Research Lone et al. [24], Watted et al. [26], Lone et al. [27] [24,26,27]

Automatic Symptom Checking Wiedermann et al. [28] [28]

Explainable AI in Precision Medicine Allen [22] [22]

Oncology and Prognostic Evaluations Michelutti et al. [23] [23]

The studies also reveal intriguing scientific insights for future research initiatives
and expansions. In the exploration of the transformative landscape of precision medicine,
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interdisciplinary collaborations emerge as a pivotal theme [10–28]. Opportunities abound
for AI experts, healthcare professionals, geneticists, and data scientists to forge synergies,
fostering a holistic approach to personalized healthcare.

Ethical considerations take a central role in this evolving paradigm [22]. Delving
into issues of patient privacy, data security, and equitable access, a thorough examination
ensures the responsible integration of AI and digital health in precision medicine. Patient-
centricity takes the spotlight [24,27], urging exploration into tailoring precision medicine
to individual needs. Active patient involvement in decision making becomes a crucial
aspect, aligning treatments with personal preferences and values. A global perspective
unfolds [23,26], revealing diverse adoption patterns of precision medicine practices world-
wide. Comparative analyses shed light on the challenges and successes within varying
healthcare systems driven by AI approaches to personalized care. The long-term impact
of AI and digital health reverberates through the discourse [16,28]. Factors such as cost-
effectiveness, scalability, and sustainability are scrutinized, offering insights into strategies
to overcome barriers and pave the way for widespread adoption. Integration with pub-
lic health initiatives is a theme of paramount importance [15,21], outlining the potential
role of AI-fueled precision medicine in the early detection, prevention, and management
of diseases at the population level. Education and training for healthcare professionals
come into focus [17,18], prompting an assessment of the current landscape. Strategies
for incorporating relevant skills into medical and allied health curricula are proposed,
envisioning a workforce that is prepared for the future of healthcare. Unraveling health
disparities is a key exploration [11,20], scrutinizing AI-driven precision medicine’s impact
on existing inequalities. Strategies to ensure equitable access and benefits across diverse
populations become integral to the evolving narrative. Regulatory frameworks and policies
take center stage [13,19], highlighting the governance needed for the ethical and responsible
use of AI in precision medicine. Collaborations on an international scale are investigated to
establish common guidelines. The dynamic theme of continuous monitoring and feedback
emerges [12,14], advocating real-time data integration into precision medicine models.
The adaptation and improvement of treatment strategies over time become integral to the
ongoing narrative.

3. Conclusions

In conclusion, the evolution of artificial intelligence technologies and digital health in
the field of precision medicine offers promising prospects for enhancing patient outcomes
and revolutionizing healthcare practices. The studies presented in this editorial highlight
the growing intersection between cutting-edge technologies and personalized medicine.
The research emphasizes the transformative potential of AI and digital health in driving
precision medicine toward unprecedented levels of accuracy and efficiency.

This Special Issue significantly contributes to various domains, identifying both emerg-
ing and established themes and delineating intriguing directions for future advancements
in digital health and AI in personalized medicine. This initiative underscores the impor-
tance of these editorial collections as a central hub for scholarly exchange and discussions
among researchers worldwide, fostering collaboration and innovation in the ever-evolving
landscape of precision medicine.
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In the era of rapid IT developments, the health domain is undergoing a considerable
transformation [1]. The integration of Digital Health (DH) with Artificial Intelligence (AI)
has paved the way for Precision Medicine 2.0, a groundbreaking approach that holds the
promise of revolutionizing patient care [2–4]. The potential implications of this transforma-
tion are widespread, as it empowers healthcare professionals to deliver tailored treatments
and improve patient outcomes. It is possible to identify the key contributions of this
transformation for both AI and DH.

It can generally be stated that the medico-biological elements of information are treated by
AI and DH with different roles and approaches. The first, AI, mainly deals with the intelligent
processing of this information, transforming it into decisions and therapeutic activations with the
patient at the center [5–10]; the second, DH, takes care of its transmission, the taking it (also from
the patient through sensors), and transporting/delivering information to the decision-making and
activation nodes of the healthcare system, and also by developing innovative devices [11–18].

AI makes a significant contribution, enabling the processing of large volumes of
complex data and producing tailored information about a patient with a predictive capacity
for the improvement and fine-tuning of therapeutic path in all phases.

AI enables [5–10]:
-Data analysis: Thanks to AI, it is possible to analyze large datasets (e.g.; BIG-DATA)

and to extract calibrated intervention models that would otherwise be impossible, through,
for example, the identification of more accurate prognostic, diagnostic, and predictive
markers for specific diseases.

-AI-assisted diagnosis: AI has the potential to provide important support to instrumental
diagnosis with specific algorithms, such as in the case of medical diagnostics, in digital
pathology, digital radiology, digital dermatology.

-Personalization of the treatment, monitoring, and management of disease: AI, through
the analysis of clinical and molecular data combined with information obtained from
large external electronic data archives, can enable tuning and personalized treatment
optimization; the elaboration of physiological parameters derived from wearable devices
enables monitoring, and if necessary, adaptation of a patient’s care.

-Predictive medicine: AI can develop an interoperable data connection from the patient
to the healthcare system and vice versa, by applying continuously updated algorithms,
which provide and uses distributed medical knowledge, and can be used for predictive
purposes of pathologies based on risk analysis.

-Production of medical knowledge: In all the activities described, AI contributes to the
research and development of clinical and medical practice on various scales.

DH plays a fundamental role in precision medicine, enabling the interconnection
of medico-biological data and the creation of technological solutions that support the
personalization of care that may use AI and/or other decisional approaches based on
algorithms [11–18].

DH, for example, enables:
-Personalized data collection: DH enables the collection of detailed patient data. Wearable

devices allow, by means of specific sensors, the monitoring of physiological parameters,
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lifestyles, diets, and other useful information. These data can be integrated with further
information from other databases.

-Remote Monitoring: Digital technologies, such as wearable devices, also enable contin-
uous monitoring of the patient to modify the therapy and/or activate emergency actions
when needed.

-Data Sharing: DH enables data sharing while respecting cybersecurity. The secure
integration of data from many sources, including electronic patient records, diagnostic
images, laboratory data, and genomic data, is therefore possible.

-Clinical Decision Support: DH can provide the HW/SW base for clinical decision
support systems using AI or tools for data analytics.

-Telemedicine: Telemedicine enables the remote delivery of healthcare services. Thanks
to advanced DH solutions (also using AI), telemedicine can be increasingly tailored to an
individual patient.

Targeted searches on PubMed suggest the scale of growth in the volume of studies in
this area.

Regarding the studies in precision medicine, searches for the keywords reported in
Box 1 position 1 highlighted 20,160 studies starting from 1979. Of these studies, 11,646
(57.7%) had been carried out starting from 1 January 2020. In all, there were 8142 reviews
(systematic and non-systematic).

Regarding the studies on precision medicine focused on DH, searches for the keywords
reported in Box 1 position 2 highlighted 94 studies starting from 2013. Of these studies, 65
(69.9%) had been carried out from 1 January 2020. In all, there were 37 reviews (systematic
and not).

Regarding the studies on precision medicine focused on AI, searches for the keywords
reported in Box 1 position 3 highlighted 796 studies starting from 2015. Of these studies, 670
(84, 2%) had been carried out from 1 January 2020. In all, there were 438 reviews (systematic
and non-systematic).

This brief overview highlights how, in these sectors, there has been an acceleration
of scientific production and interest during the COVID-19 pandemic period; interest in
studies on AI and DH is more recent (the 2000s); the comparison between AI and DH
indicates greater interest in AI, i.e., a stronger interest in an intelligent IT approach than
for the architecture of the information flow; and there is a good proportion of reviews for
both AI and DH, indicating good progress in the stabilization of topics of scientific interest
(Figure 1).

Box 1. Composite key used for the searches in PubMed.

(precision medicine[Title/Abstract])
(precision medicine[Title/Abstract]) AND (digital health[Title/Abstract])

(precision medicine[Title/Abstract]) AND (artificial intelligence[Title/Abstract])

Precision medicine has an older history than expected; the first studies date back to
1979. Its meaning has evolved [1,19] together with the expectations that scholars have
gradually placed on it. Today, it could change healthcare both as we know it and how we
evaluate it [20,21].

Emerging technologies, such as AI and DH (both individually and as a whole) are
making an important contribution to the developments of this discipline. A real integration
with the health domain will have to respect all the domains of action, from regulatory to
ethical spheres.

There is an urgent need for discussion in this area to exchange and share universal
experiences, both on opportunities and on problems and even failures. With this in mind,
the Special Issue, entitled “Transforming Precision Medicine: The Intersection of Digital
Health and AI” [22] was launched.
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Figure 1. Volume of publications for the field of precision medicine (A); for the field of precision
medicine and DH (B); and for the field of precision medicine and AI (C).

Conclusions

The COVID-19 pandemic has led to a considerable acceleration in research and devel-
opment on the applications of AI and DH in the precision medicine.

Scholars, experts, professionals, and stakeholders in the health domain are working
both on the developments and integration on multiple domains. There is an increasing
need for studies focused on AI and DH in clinical imaging, as well as synergistic initiatives
such as collections or Special Issues which touch on both successes and failures, as well as
opportunities and bottlenecks.
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Abstract: This review synthesizes the literature on explaining machine-learning models for digital
health data in precision medicine. As healthcare increasingly tailors treatments to individual charac-
teristics, the integration of artificial intelligence with digital health data becomes crucial. Leveraging
a topic-modeling approach, this paper distills the key themes of 27 journal articles. We included peer-
reviewed journal articles written in English, with no time constraints on the search. A Google Scholar
search, conducted up to 19 September 2023, yielded 27 journal articles. Through a topic-modeling
approach, the identified topics encompassed optimizing patient healthcare through data-driven
medicine, predictive modeling with data and algorithms, predicting diseases with deep learning of
biomedical data, and machine learning in medicine. This review delves into specific applications of
explainable artificial intelligence, emphasizing its role in fostering transparency, accountability, and
trust within the healthcare domain. Our review highlights the necessity for further development and
validation of explanation methods to advance precision healthcare delivery.

Keywords: digital health; explainable artificial intelligence; precision medicine; machine learning

1. Introduction

Precision medicine is a way of personalizing treatments and interventions to the
patient’s characteristics, such as genetics, environment, and lifestyle [1]. This personalized
medicine is a shift in healthcare to the use of information unique to the patient as a guide
for diagnosis and prognosis [2]. Precision medicine has the allure of increasing the reach
of medical treatment beyond the one-size-fits-all approach, especially when leveraging
advanced bioinformatic strategies to interpret and apply clinical data and provide patients
with customized medical care [3]. Precision medicine has the potential to make healthcare
more efficient and effective [4].

A major catalyst toward the success of personalized medicine is the integration of
different forms of digital healthcare data with artificial intelligence to make more accurate
interpretations of diagnostic information, reduce medical errors, and improve health system
workflow and promote health [5]. A noteworthy example comes from a study of an artificial-
intelligence system trained to suggest different chemotherapy treatments based on the
predicted treatment response given the patient gene-expression data [6]. The prediction
models showed accuracy near 80% and might eventually help cancer patients avoid failing
therapies. There are similar studies of artificial-intelligence systems trained to suggest
different antidepressant treatments based on digital health records [7]. Overall, these
studies suggest that clinical support systems could help personalize healthcare delivery
when given the right reservoir of digital health data [8].

Digital health technologies are a rich reservoir of big health data for personalizing
medicine. For example, wearable biosensors can measure valuable health-related physio-
logical data for patient monitoring and management [9]. Telemedicine also has the potential
to make healthcare more cost-effective while meeting the increasing demand for and insuf-
ficient supply of healthcare providers [10]. Overall, artificial-intelligence applications can
leverage digital health data to implement personalized treatment strategies [1,5].
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One of the key challenges in implementing precision medicine is integrating diverse
and comprehensive data sources that encompass genetic, environmental, and lifestyle
factors to ensure healthcare systems improve patient outcomes and effectively manage
diseases [1,4]. The integration of complex datasets can be an overwhelming task for even
a team of humans, but is relatively trivial for artificial-intelligence systems. Evidence of
such integration is demonstrated in machine-learning models trained to make breast cancer
diagnoses using digital health records along with analysis of mammography images [11].
Notably the prediction model showed a specificity of 77% and sensitivity of 87%, suggesting
potential for reducing false-negatives. As artificial-intelligence systems become more
prevalent in healthcare, such systems will be able to leverage genetic, environmental, and
lifestyle data to help advance a personalized medicine approach [12].

Integrating important health data requires responsible handling and safeguards to
prevent misuse of protected health information [13]. More recently, integrating and in-
terpreting complex health data for personalized medicine is becoming the job of artificial
intelligence [5]. Yet, developing countries may have limited access to these artificial-
intelligence applications, highlighting the importance of open-source code [14]. Moreover,
there can be misuse of health information embedded in prediction models used by artificial-
intelligence systems to extract patterns from data to inform medical decisions [15]. As
artificial-intelligence applications become more prevalent in healthcare, there is a great
need to ensure ethical issues are considered along the way [16].

Integrating artificial intelligence into healthcare offers several potential benefits, includ-
ing more accurate diagnostic/prognostic tools, more efficient personalization of treatment
strategies using big data, and overall better optimization of healthcare workflows [5,17].
The sheer volume of patient health data available also makes integration via artificial
intelligence into healthcare a necessity. Artificial-intelligence systems can quickly extract
meaningful patterns and insights from multiple data sources, enabling better-informed
decisions about how to personalize healthcare [15].

But the desire for accurate artificial-intelligence systems must be balanced with the
goal of transparency and interpretability to build trust among healthcare practitioners and
patients and ensure the responsible integration of insights into clinical decision-making [18].
It is important to foster a collaborative approach between human expertise and machine
intelligence by understanding an artificial-intelligence-system’s rationale when making
medical decisions [5]. The rising field of explainable artificial intelligence centers around
the ability to comprehend and interpret artificial-intelligence systems [19]. Explainable
artificial intelligence promotes trust through transparency and accountability in artificial-
intelligence applications for healthcare [17]. For precision medicine, healthcare practitioners
are more likely to trust in the outcome of complex algorithms they can understand, giving
explainable methods a position to ensure transparent models for personalized treatment
strategies [19,20].

This review is a critical evaluation of the literature on how explainable artificial
intelligence can facilitate the pursuit of precision medicine using digital health data. A
secondary objective was to offer key strategies and knowledge gaps in addressing the
challenges in interpretability and transparency of artificial-intelligence systems for precision
medicine using digital health data. The primary inquiry addressed in this review was
discerning the core themes and the status of research at the confluence of digital health,
precision medicine, and explainable artificial-intelligence methodologies. This systematic
review serves to pinpoint the benefits and challenges of applying explainable artificial-
intelligence methods with digital health data for precision medicine.

This paper consolidates recent literature and offers a comprehensive synthesis of how
to apply explainable artificial-intelligence methods to the utilization of digital health data
in precision medicine. Machine learning is an effective approach to identifying treatment
targets and accurately predicting treatment outcomes [21]. For example, there is evidence
for using an artificial-intelligence-based system to select patients for intervention using the
electrocardiograph signal to predict atrial fibrillation [22]. Employing a topic-modeling
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approach, this study extracted key themes and emerging trends from the literature on
using explainable artificial intelligence and digital health data for precision medicine. Topic
modeling is an unsupervised learning method for uncovering prevalent themes within a
body of text [23,24]. Therefore, this paper provides a compilation for precision medicine of
explainable artificial intelligence approaches to digital health.

2. Materials and Methods

2.1. Topic-Modeling-Procedure Overview

Insights derived from a topic-modeling analysis of the relevant literature directed
this review. Specifically, the latent Dirichlet allocation (LDA) algorithm helped uncover
prevalent themes in a final corpus of journal articles by analyzing the probability patterns
of words and word pairs across the documents. The methods outlined in the subsequent
sections followed the PRISMA 2020 checklist and were pre-registered on the Open Science
Foundation (https://osf.io/tpxh6, registered on 19 September 2023) [25]. The Supple-
mentary Materials include the checklist and code for the data analysis is available at
https://zenodo.org/records/10398384, accessed on 19 September 2023.

2.2. Journal Article Search Strategy

A google scholar search (accessed on 19 September 2023) identified 434 journal articles
relevant to this review. The search terms included: (“precision medicine” AND “digital
health” AND “interpretable machine learning” OR “explainable artificial intelligence”).
Inclusion criteria were that the article be written in English and was a peer-reviewed journal
article, and full text was available, and included the search terms in the body of the text.
The search was not restricted by date, though the earliest article matching our search terms
was published in 2018. Citations and full-text articles were imported to the Zotero reference
management software (https://www.zotero.org/). Zotero automatically classifies articles
by type (i.e., journal article, pre-print, thesis, etc.). Each article’s classification was verified
by the author. To screen for keywords in the text body, the reference sections were removed
from each article, and spelling and grammar were checked through Google Docs. From each
journal article, we extracted bigrams (consecutive word pairs). Articles only containing
search terms in the reference section were excluded. Figure 1 shows the PRISMA 2020
flowchart which illustrates how the final set of articles was determined [26]. Table 1 shows
the resulting 27 articles that directly connected explainable artificial intelligence to digital
health and precision medicine.

2.3. Topic Modeling R

All text analysis and pre-processing occurred through the R programming language
(version 4.3.1, 16 June 2023). We used the full text of each journal article, with the reference
sections deleted; articles were segmented into paragraphs (n = 1733). The paragraphs were
pre-processed by deleting punctuation, numbers, stop words, and symbols using the tm
R package (version 0.7-8). Finally, we lemmatized each word and tokenized the text into
unigrams, bigrams, and trigrams. This process helped combine counts of similar words with
slightly different spellings. We removed 1 paragraph with fewer than 5 terms and removed
all terms that occurred in only 1 paragraph (n = 241,027), resulting in 1732 paragraphs and
262 unique terms.

Using the ldatuning R package (version 1.0.2), we calculated coherence metrics for
topic models of various sizes to estimate the optimal number of topics inherent to the
collection of paragraphs. Next, we randomly split paragraphs into ten subsets, computed
coherence metrics for topic models ranging from 2 to 20 topics, and repeated the process
ten times to prevent bias. The median coherence scores across iterations suggested that
a 5-topic model was optimal based on coherence. Subsequently, we employed the Gibbs
algorithm to estimate a 5-topic latent Dirichlet allocation model for the entire corpus.
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Figure 1. PRISMA 2020 flowchart. https://estech.shinyapps.io/prisma_flowdiagram/ (accessed on
1 January 2024.
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Table 1. List of selected journal articles.

Author Year Title Publication Title

Evans et al. 2018 The Challenge of Regulating Clinical Decision Support
Software After 21st Century Cures

American Journal of Law &
Medicine

Adadi et al. 2019 Gastroenterology Meets Machine Learning: Status Quo and
Quo Vadis Advances in bioinformatics

Shin et al. 2019 Current Status and Future Direction of Digital Health in
Korea

The Korean Journal of
Physiology& Pharmacology

Ahirwar et al. 2020 Interpretable Machine Learning in Health Care: Survey and
Discussions

International Journal of
Innovative Research in

Technology and Management

Coppola et al. 2021 Human, All Too Human? An All-Around Appraisal of The
“Artificial Intelligence Revolution” in Medical Imaging Frontiers in Psychology

Wickramasinghe et al. 2021 A Vision for Leveraging the Concept of Digital Twins to
Support the Provision of Personalized Cancer Care IEEE Internet Computing

Bhatt et al. 2022 Emerging Artificial Intelligence–Empowered mHealth:
Scoping Review JMIR mHealth and uHealth

Chun et al. 2022
Prediction of Conversion to Dementia Using Interpretable

Machine Learning in Patients with Amnestic Mild Cognitive
Impairment

Frontiers in Aging Neuroscience

Gerussi et al. 2022 Artificial Intelligence for Precision Medicine in Autoimmune
Liver Disease Frontiers in Immunology

Iqbal et al. 2022 The Use and Ethics of Digital Twins in Medicine Journal of Law, Medicine & Ethics

Ishengoma et al. 2022 Artificial Intelligence in Digital Health: Issues and
Dimensions of Ethical Concerns Innovación y Software

Khanna et al. 2022 Economics of Artificial Intelligence in Healthcare: Diagnosis
vs. Treatment Healthcare

Kline et al. 2022 Multimodal Machine Learning in Precision Health: A
Scoping Review npj Digital Medicine

Laccourreye et al. 2022 Explainable Machine Learning for Longitudinal Multi-Omic
Microbiome Mathematics

Roy et al. 2022 Demystifying Supervised Learning in Healthcare 4.0: A New
Reality of Transforming Diagnostic Medicine Diagnostics

Shazly et al. 2022 Introduction to Machine Learning in Obstetrics and
Gynecology Obstetrics & Gynecology

Wellnhofer et al. 2022 Real-World and Regulatory Perspectives of Artificial
Intelligence in Cardiovascular Imaging

Frontiers in Cardiovascular
Medicine

Wesołowski et al. 2022
An Explainable Artificial Intelligence Approach for

Predicting Cardiovascular Outcomes Using Electronic Health
Records

PLOS digital health

Albahri et al. 2023
A Systematic Review of Trustworthy and Explainable

Artificial Intelligence in Healthcare: Assessment of Quality,
Bias Risk, and Data Fusion

Information Fusion

Baumgartner et al. 2023 Fair and Equitable AI in Biomedical Research and Healthcare:
Social Science Perspectives Artificial Intelligence in Medicine

Bharati et al. 2023 A Review on Explainable Artificial Intelligence for
Healthcare: Why, How, and When?

IEEE Transactions on Artificial
Intelligence

Hong et al. 2023

Overcoming the Challenges in the Development and
Implementation of Artificial Intelligence in Radiology: A
Comprehensive Review of Solutions Beyond Supervised

Learning

Korean Journal of Radiology

King et al. 2023
What Works Where and How for Uptake and Impact of

Artificial Intelligence in Pathology: Review of Theories for a
Realist Evaluation

Journal of Medical Internet
Research

Kuwaiti et al. 2023 A Review of the Role of Artificial Intelligence in Healthcare Journal of Personalized Medicine

Narayan et al. 2023 A Strategic Research Framework for Defeating Diabetes in
India: A 21st-Century Agenda

Journal of the Indian Institute of
Science

Vorisek et al. 2023 Artificial Intelligence Bias in Health Care: Web-Based Survey Journal of Medical Internet
Research

Zafar et al. 2023 Reviewing Methods of Deep Learning for Intelligent
Healthcare Systems in Genomics and Biomedicine

Biomedical Signal Processing and
Control

3. Results

Using a latent Dirichlet allocation model, we built a five-topic model based on the
corpus of 27 journal articles that matched search terms. As topic modeling is unsupervised
machine learning, one of the identified topics did not directly relate to the keywords. It
identified a segment of paragraphs that described methods used to conduct literature re-
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views. That topic is omitted from the results below. The remaining four topics are discussed
below based on an evaluation of each topic’s most probable n-grams, 100 most probable
paragraphs, and their parent paper’s findings on precision medicine, digital health, and ex-
plainable artificial intelligence. The last two topics are merged under one heading because
they are both related to deep learning and explainable artificial-intelligence research.

3.1. AI Explainability Addresses Ethical Challenges in Healthcare

Artificial intelligence (AI) is integral to offering solutions to various challenges in
healthcare, including the standardization of digital health applications and ethical concerns
related to patient data use [27,28]. Precision medicine, a common application of AI in digital
health, involves tailoring healthcare interventions to subgroups of patients by using predic-
tion models trained on patient characteristics and contextual factors [29–31]. However, the
reliance on AI in healthcare raises issues regarding transparency and accountability with
black-box AI systems whose decision-making processes are opaque [32,33]. Explainable
artificial intelligence emerges as a solution to enhance transparency, ensuring that AI-driven
decisions are comprehensible to healthcare providers and patients alike [29,34].

Explainable artificial intelligence provides explanations that increase the trustworthi-
ness in the diagnoses and treatments suggested by machine-learning models [32,34–36].
While accuracy is necessary in AI systems, healthcare is a critical domain and requires
transparent AI systems that offer reliable explanations [28,37]. When combined with rigor-
ous internal and external validation, explainable artificial intelligence can improve model
troubleshooting and system auditing, aligning the AI system with potential regulatory
requirements, such as those outlined in the regulations on automated artificial-intelligence
systems put forth by the European Union [37–39].

AI is well-suited to help precision medicine by computing mathematical mappings of
the connections between patient characteristics and personalized treatment strategies [40–43].
However, challenges persist in the validation of machine-learning models for clinical applica-
tions [29,44]. Public and private collaborative efforts involving clinicians, computer scientists,
and statisticians are essential to effectively map a machine-learning model onto an explanation
that can be understood in the service of precision medicine [40,45].

There are going to be ever-present ethical and social concerns, including issues of
accountability, data privacy, and bias [32,46]. Explainable artificial intelligence offers a
pathway to addressing these concerns by providing transparent explanations for AI-driven
decisions, fostering trust and acceptance among stakeholders [47,48]. Differences between
machine-learning models trained on data from practical application vs. proxies make it
challenging to have a unitary assessment of interpretability or explainability [49]. As AI
continues to grow, there is an ongoing ethical need for the development of explainable
artificial-intelligence methods in healthcare [17,50].

3.2. Integrating Explainable AI in Healthcare for Trustworthy Precision Medicine

Integrating explainable artificial intelligence with digital health data is gaining momen-
tum in precision medicine, addressing the need for transparent and understandable models
essential for clinical applicability [19,51,52]. As machine-learning models become more
complex, interpretability is crucial in clinical contexts such as microbiome research [51,53].
Explainable artificial-intelligence applications can help predict an Alzheimer’s disease
diagnosis in a pool of patients with mild impairments, showcasing how interpretable
machine-learning algorithms can help explain complex patterns that inform individual
patient predictions [54,55]. Such models offer patient-level interpretations, aiding clinicians
and patients in understanding the patterns of features that predict conversion to demen-
tia, thus enhancing trust in using explainable artificial intelligence as an aid to medical
decisions [54,56].

Methods of extracting explanations from complex models can aid in the discovery of
new personalized approaches to therapy and new biomarkers [57]. For example, Bayesian
networks may serve as a framework for visualizing interactions between biological entities
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(taxa, genes, metabolites) within a specific environment (human gut) over time [51]. A
model agnostic approach to explainability is offered by Shapley additive explanations,
which enhance understanding at both global and local levels, improve predictive accuracy,
and facilitate informed medical decisions [56,58]. Shapley values can enable visual expla-
nations of how a model makes patient-level predictions and also the impact of changes in
training data on model explanations [59]. Yet, a key barrier to advances of AI in healthcare
in integrating data across platforms and institutions for precision medicine is the lack of
clear governance frameworks for the privacy and security of data [60].

Development of AI systems for disease identification, such as in COVID-19 diagnosis,
are underway, highlighting the importance of visual explanations in optimizing diagnos-
tic accuracy [58,61]. For example, a recent study used explainable artificial-intelligence
methods to create a multi-modal (visual, text) explanation as an aid in understanding
and trusting a melanoma diagnosis [62]. More broadly, explainable artificial intelligence
has potential to aid in communicating transparent decision support for healthcare sys-
tems that helps healthcare professionals make informed and reliable decisions [58,63].
Moreover, many legal and technological challenges associated with diagnostic models of
electronic health records are solved by sharing prediction models and Bayesian networks of
comorbidities on health outcomes, rather than the protected health information itself [64].
Overall, explainable artificial-intelligence methods are important for building trustwor-
thiness for AI healthcare systems, supporting advancements in precision medicine and
clinical decision-making [49,58,65].

3.3. Advancing Precision Medicine through Deep Learning and Explainable Artificial Intelligence

The great potential of deep learning is as a transformative force in the analysis of
health information for precision medicine because of its ability to find patterns in un-
structured data, such as images from medical scans, that are important for diagnosis and
treatment decisions [66,67]. This ability has advanced the field, enabling the differenti-
ation of medical conditions with high accuracy, as shown in studies comparing benign
nevus and melanoma through skin-lesion images [66,68]. Explainable artificial-intelligence
approaches to understanding clinical systems using deep learning offer explanatory met-
rics that can be used in validation studies, and help address ethical considerations and
regulatory compliance [56,66].

Deep-learning models combined with explainable artificial intelligence have potential
for broad applications in precision medicine, from enhancing disease diagnosis to facilitat-
ing drug discovery [69–71]. Deep-learning models offer more exact and efficient diagnosis
for diseases requiring analysis of medical images (i.e., cancer, dementia), compared with
human experts [72]. Explainable artificial-intelligence approaches to deep-learning models
of medical images often include some form of visual explanation highlighting the image
segments the model used to make the diagnosis [73,74]. Deep learning can also reduce drug
discovery costs by efficiently screening for potential candidates, reducing time compared
with traditional methods [29].

Deep-learning models for detecting, segmenting, and classifying biomedical images
have accuracy that sometimes meets or exceeds human experts [75,76]. Multimodal data-
fusion techniques that combine medical imaging data with other data sources show further
improved diagnostic accuracy [77]. Explainable artificial intelligence makes AI algorithms
more transparent and controllable, building trust among medical professionals in AI-
assisted decisions [78]. Overall, explainable artificial intelligence integration into the
healthcare systems can build trust and reliance in deep-learning approaches to diagnosis
and drug discovery [56,69,79].

4. Discussion

This review paper gives an overview of key themes in research into digital health
using explainable artificial intelligence for precision medicine. We used a topic-modeling
approach to extract common themes across 27 full-text journal articles matching search
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criteria (“precision medicine” AND “digital health” AND “interpretable machine learn-
ing” OR “explainable artificial intelligence”). Thus, this review offers a glimpse at the
current landscape in explainable artificial-intelligence-driven precision medicine using
digital health. Through applying a latent Dirichlet allocation model, the topic model
highlights core thematic areas that underscore an emerging focus on explainable artifi-
cial intelligence as a key to addressing ethical challenges [27,29,34,58,66,80–82]. These
challenges include transparency, trust, and interdisciplinary collaboration in advancing
healthcare innovations. Explainable artificial intelligence has many qualities that bridge
the gap between complex AI algorithms, such as deep learning, and their practical appli-
cations in healthcare, enhancing the acceptability and effectiveness of AI interventions in
clinical settings [19,51,52]. By facilitating a better understanding of AI-driven predictions,
explainable artificial intelligence enables healthcare professionals to make informed deci-
sions, thus fostering a collaborative environment where AI serves as a supportive tool for
opaque decision-making [40,45]. The high-stakes clinical context makes it crucial to inte-
grate explainable artificial intelligence into healthcare systems for advancing personalized
treatment strategies that are grounded in an understanding of AI-generated insights.

The alliance between deep learning and explainable artificial intelligence is also critical
for advancing precision medicine [66,67]. Deep learning can analyze medical imaging data
with electronic health records. Coupled with the explanatory power of explainable artificial
intelligence, it offers unprecedented opportunities for diagnosing and treating diseases with
greater precision [83]. Explainable artificial intelligence increases accessibility and trust
by medical professionals by enhancing the credibility and applicability of deep-learning
models in healthcare [56,69,79]. This synergy between deep learning and explainable
artificial intelligence can accelerate the pace of medical discoveries and ensure that such
advancements are in accordance with the ethical needs of both practitioners and patients.

In sum, this review highlights the ethical importance of explainability when deploying
AI systems in healthcare. Precision medicine and patient-centric approaches to healthcare
that are driven by AI must be transparent to be trusted. In the future, AI and human
expertise will be working in tandem to deliver personalized and ethical healthcare solu-
tions. The implementation of AI systems by physicians is limited by the transparency
of the systems and their ability to be understood [68]. However, explainable artificial
intelligence can help forge the path towards building trust in precision medicine based
on digital health data [84]. The widespread adoption of machine-learning models using
digital health data for precision medicine is hindered by the slow progress in developing
explainable methods [85]. Thus, integrating explainable artificial-intelligence approaches
into healthcare systems is one key to realizing the full potential of AI in precision medicine.

4.1. Limitations

The keywords used to find journal articles limited the topics to interpretable machine
learning and/or explainable artificial intelligence. The discovered topics will not necessarily
reflect all possible themes in the burgeoning field of artificial intelligence more broadly.
The interested reader can see reviews with a broader focus on artificial intelligence and
digital health or precision medicine [86,87]. Moreover, five articles in the initial search were
published in journals behind a paywall, and not accessible despite contacting authors. The
Supplementary Materials include a list of the articles not available, as well as the code for
text processing and topic modeling.

As this systematic review was not aimed at quantifying the evidence for a specific
effect, traditional risk assessment of bias in individual studies did not directly apply to our
topic-modeling synthesis of text from journal articles for a systematic review. The goal of
our systematic review was to identify patterns and themes across a body of literature rather
than evaluate the methodological quality of individual studies. Nonetheless, our study
meets benchmark questions used to assess the overall quality of systematic reviews [88].
There were clear inclusion and exclusion criteria relevant for tapping the appropriate
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scientific literature, and a comprehensive literature search, unrestricted by time; our topic
modeling of journal articles ensured all selected papers were adequately encoded.

4.2. Future Directions

Researchers at the crossroads of digital health and precision medicine should strive
to understand their artificial-intelligence applications. For example, explainable artificial-
intelligence approaches could help advance biophysical models and understanding of
biological processes, as well as improve trust in using artificial-intelligence applications
with digital health data to make medical decisions [82]. A barrier to progress is that
machine-learning models need big data, yet repositories of publicly available digital health
data are limited. Future studies using artificial intelligence should collect a multi-site,
nationally representative sample that provides publicly available data from different digital
health domains [89]. Ultimately, these endeavors could result in a transparent artificial-
intelligence system utilizing digital health data for precision medicine.

The future of personalized medicine appears to be increasing the trustworthiness of
AI systems by making them explainable. There are policy implications for how explainable
methods can help meet regulations and policies regarding transparency. Future research
could include multi-site studies that validate local explaining methods that make reliable
predictions at the patient level. The end product of these studies should include some
applications for healthcare workers that visualize explanations for diagnostic or treatment
planning. Such multi-site studies could also help encourage collaboration across different
areas of expertise as the use of artificial intelligence in healthcare grows.

5. Conclusions

This paper provides an up-to-date assessment of themes in research related to explain-
able artificial intelligence, digital health, and precision medicine. The potential contribu-
tions of explainable artificial intelligence to precision medicine span both theoretical and
translational aspects. For example, explainable artificial intelligence holds promise for both
enhancing our comprehension of disease mechanisms and visualizing regions of medical
images important for making a diagnosis. In general, the convergence with digital health
is in its early stages, yet precision medicine stands to benefit in many ways by embracing
explainable artificial intelligence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//osf.io/tpxh6. Code can be downloaded at https://zenodo.org/records/10398384.
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Abstract: (Background) Autism increasingly requires a multidisciplinary approach that can effectively
harmonize the realms of diagnosis and therapy, tailoring both to the individual. Assistive technologies
(ATs) play an important role in this context and hold significant potential when integrated with
artificial intelligence (AI). (Objective) The objective of this study is to analyze the state of integration
of AI with ATs in autism through a review. (Methods) A review was conducted on PubMed and
Scopus, applying a standard checklist and a qualification process. The outcome reported 22 studies,
including 7 reviews. (Key Content and Findings) The results reveal an early yet promising interest in
integrating AI into autism assistive technologies. Exciting developments are currently underway at
the intersection of AI and robotics, as well as in the creation of wearable automated devices like smart
glasses. These innovations offer substantial potential for enhancing communication, interaction, and
social engagement for individuals with autism. Presently, researchers are prioritizing innovation
over establishing a solid presence within the healthcare domain, where issues such as regulation and
acceptance demand increased attention. (Conclusions) As the field continues to evolve, it becomes
increasingly clear that AI will play a pivotal role in bridging various domains, and integrated ATs
with AI are positioned to act as crucial connectors.

Keywords: assistive technology; accessibility; AAC; autism; AI; artificial intelligence

1. Introduction

1.1. Autism Diagnosis and Therapy

Autism, scientifically known as autism spectrum disorder (ASD), is a neurodevelop-
mental condition characterized by a wide range of challenges in social communication,
language, behavior, and social interaction [1–5]. The manifestations of autism vary widely,
giving rise to the concept of the “spectrum”, which includes individuals with mild to severe
symptoms. Signs of autism can emerge from early childhood but are often identified in
preschool or school age, when they become more evident. Symptoms include difficulty
with verbal and nonverbal communication, difficulty interacting with others, repetitive and
restricted interests and activities, and increased or decreased sensory sensitivity. To diag-
nose autism, a multidisciplinary approach is used [6–8]. Specialists, such as psychologists,
child psychiatrists, and pediatricians, conduct interviews and observations to evaluate the
individual’s behavior, language, social skills, and cognitive abilities. Diagnosis is often com-
pleted through structured questionnaires, developmental assessments, and assessments
of communication skills [1–3]. In addition to behavioral assessments and questionnaires,
genetic analysis can be an integral part of the diagnosis of autism since there is a genetic
component to its etiology [2–5]. Blood tests and genetic tests can identify genetic abnor-
malities associated with autism [4]. Also, imaging can have a strategic role, as in the case
of functional magnetic resonance [9], which is also integrated with AI [10,11]. Therapy is
crucial in autism, providing specialized support to address the cognitive, communication,
and behavioral challenges associated with the disorder. Through targeted therapeutic
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interventions, individuals with autism can develop social, communication, and adaptation
skills, improving their quality of life and promoting greater inclusion in society [12–16].
Therapy represents an essential foundation for promoting the progress and well-being of
people with autism. Multidisciplinary approaches in autism involve different professionals,
such as psychologists, occupational therapists, speech therapists, and pediatricians, who
collaborate to provide holistic treatment targeted to the specific needs of each individual
with autism [12,14,15]. This synergy between experts contributes to a more complete, per-
sonalized, and effective intervention, addressing cognitive, communicative, and behavioral
challenges in an integrated way and optimizing the progress and well-being of patients.
Assistive technology (AT) tools provide personalized technological solutions for people
with autism, helping them overcome communication barriers and adapt to their specific
needs [16]. These tools amplify skills and improve independence, significantly contributing
to the quality of life of people with autism.

1.2. Beyond Communication: The Versatility of Assistive Technology in Autism Care

Assistive technologies [17–21], ranging from robots [17] to sensors [18], particularly
Augmentative and Alternative Communications (AAC) [19], play a fundamental role in
improving the lives of people with autism by addressing the communication challenges
that often accompany this disorder. For many people with autism, verbal communica-
tion can be a significant barrier. AAC [19] offers an alternative avenue, allowing these
people to express themselves in ways that reflect their individual needs. This customiza-
tion is critically important, as autism is an extremely heterogeneous disorder, and what
works for one individual may not be as effective for another. One of the main benefits
of AAC [19,20] is the reduction of frustration. The inability to communicate effectively
can lead to high levels of anxiety and stress. AAC reduces this frustration by providing a
means to express needs and desires, helping to improve mental health and interpersonal
relationships. These technologies also have a significant impact on education. AAC can be
used to support learning, helping students with autism develop language and cognitive
skills [19]. Furthermore, they improve school inclusion, allowing students with autism to
actively participate in educational activities. Another area in which AAC proves essential
is improving social interactions. AAC facilitates communication and the establishment of
meaningful relationships, which is often challenging for people with autism. These tools
help people with autism participate more actively in conversations and social activities,
improving the quality of their interactions. Independence is an important goal for many
people with autism. AAC contributes to this goal by allowing people to communicate their
needs and make autonomous decisions, promoting a greater level of autonomy in daily life.
Overall, assistive technologies, such as AAC, are a valuable resource for people with autism.
They enable them to overcome communication challenges, improve the quality of social
interactions, support learning, and promote independence. These tools are fundamental
in the field of autism, contributing significantly to the well-being and inclusion of these
people in society.

1.3. AI’s Potential in Autism Assistive Technologies

Artificial intelligence (AI) could play a significant role in helping to personalize assis-
tive technologies for individuals with autism [22,23]. From a future perspective, it could
be capable of conducting a precise assessment of individual needs. AI, at least potentially,
could analyze complex data, such as an individual’s behaviors and responses, to deter-
mine which tools and supports would be most suitable. This would mean that AI could
contribute to designing solutions tailored to each individual, taking specific needs into
account. Another potential of AI would be to adapt assistive technologies in real-time. This
would mean that devices could automatically adjust settings based on user interactions
and behaviors. For instance, if a person with autism were displaying signs of stress or
frustration, AI could intervene to offer targeted support. Another important potential
aspect of AI is machine learning. AI could learn from the user’s progress and challenges
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over time. This would mean that assistive technologies could continually improve their
effectiveness, adapting to the evolving needs of individuals with autism. AI could also
be capable of customizing the interfaces of assistive technologies to meet user preferences.
This could make the tools more accessible and user-friendly, facilitating interaction and
usage by the individual. Finally, AI could contribute to creating personalized learning and
communication programs. These programs could take into account the individual’s skill
level and specific progress, offering targeted support to help them develop their abilities.
In summary, AI could play a key role in tailoring and optimizing assistive technologies
for individuals with autism, contributing to improving their quality of life and fostering
greater engagement and well-being.

1.4. Potential Emerging Questions

Key questions in personalizing assistive technologies with AI in ASD are emerging
from the above:

• How can AI precisely assess individual needs for individuals with autism?
• In what ways can AI enable the real-time adaptation of assistive technologies?
• How does machine learning enhance the adaptability of assistive technologies

over time?
• To what extent can AI customize interfaces for user preferences in assistive technologies?
• How can AI create personalized learning and communication programs for individuals

with autism? What evidence exists regarding the impact of AI-driven personalization
on the quality of life for individuals with autism?

• What ethical considerations are crucial when implementing AI in assistive technologies
for individuals with autism?

• How can AI contribute to a more user-centered design approach in developing
assistive technologies?

These questions suggest the need for a review.

1.5. Purpose of the Study

The purpose of this study is to explore the potential benefits and challenges associated
with the integration of AI into assistive technologies for individuals with autism. By
overviewing the ways in which AI can personalize and adapt these technologies to meet
the specific needs of individuals on the autism spectrum, this article aims to shed light
on the opportunities for improved support, communication, and quality of life for this
community. Additionally, it seeks to highlight the importance of ongoing research and
innovation in this field to ensure that individuals with autism receive the most effective
and personalized assistance possible.

2. Methods

This review used the ANDJ standardized checklist designed for the narrative category
of reviews [24]. The narrative review was performed based on targeted searches using
specific composite keys on PubMed and Scopus.

The overview literature accompanying the main survey was conducted using both a
qualification checklist and a qualification methodology based on proposed quality parame-
ters described in [25] to decide the inclusion of the study in the overview.

Algorithm Used in the Literature Overview

1. Set the search query to “defined search query”.
2. Conduct a targeted search on PubMed and Scopus using the search query from step 1.
3. Select studies published in peer-reviewed journals that focus on the field.
4. For each study, evaluate the following parameters:

• N1: Is the rationale for the study in the introduction clear?
• N2: Is the design of the work appropriate?
• N3: Are the methods described clearly?
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• N4: Are the results presented clearly?
• N5: Are the conclusions based on and justified by the results?
• N6: Did the authors disclose all the conflicts of interest?

5. Assign a graded score to parameters N1–N5, ranging from 1 (minimum) to 5 (maximum).
6. For parameter N6, assign a binary assessment of “Yes” or “No” to indicate if the

authors disclosed all the conflicts of interest.
7. Preselect studies that meet the following criteria:

• Parameter N6 must be “Yes”.
• Parameters N1–N5 must have a score greater than 3.

8. Include the preselected studies in the overview.

Defined search query 1. “self help devices”[MeSH Terms] OR (“self help”[All Fields] AND
“devices”[All Fields]) OR “self help devices”[All Fields] OR (“assistive”[All Fields] AND “tech-
nology”[All Fields]) OR “assistive technology”[All Fields] OR (“augmentative”[All Fields] AND
(“communicate”[All Fields] OR “communicated”[All Fields] OR “communicates”[All Fields]
OR “communicating”[All Fields] OR “communication”[MeSH Terms] OR “communication”[All
Fields] OR “communications”[All Fields] OR “communicative”[All Fields] OR “communica-
tional”[All Fields] OR “communicatively”[All Fields] OR “communicativeness”[All Fields] OR

“communicator”[All Fields] OR “communicator s”[All Fields] OR “communicators”[All Fields]))
AND “autism”[Title/Abstract] AND (“artificial intelligence”[MeSH Terms] OR (“artificial”[All
Fields] AND “intelligence”[All Fields]) OR “artificial intelligence”[All Fields] OR (“machine
learning”[MeSH Terms] OR (“machine”[All Fields] AND “learning”[All Fields]) OR “machine
learning”[All Fields]) OR (“deep learning”[MeSH Terms] OR (“deep”[All Fields] AND “learn-
ing”[All Fields]) OR “deep learning”[All Fields]) OR ((“neural”[All Fields] OR “neuralization”[All
Fields] OR “neuralize”[All Fields] OR “neuralized”[All Fields] OR “neuralizes”[All Fields] OR
“neuralizing”[All Fields] OR “neurally”[All Fields]) AND “nework”[All Fields]))

We applied the defined algorithm for the selection of the articles. In particular, after
applying points 3 and 7, we’ve pinpointed a total of 22 studies [26–47]. It’s interesting to
highlight that this list precisely matches the number of studies detected in PubMed after
excluding one retraction. Scopus, it’s important to mention, contained a few conference
papers that our algorithm chose to exclude for specific reasons. Out of these 22 studies,
seven are comprehensive reviews, encompassing both systematic and non-systematic ones.

The remaining 15 studies are a mix of scientific articles and various other papers.

3. Results

The results have been organized into two parts and presented editorially through two
main paragraphs.

In the first part (Section 3.1), a thorough examination is dedicated to the findings
extracted from reviews and systematic reviews. Researchers can delve into distilled and
structured insights at the crossroads of AI and assistive technologies (ATs) in the context
of autism. Reviews and systematic reviews are distinguished from other articles as they
offer a broader perspective, functioning as filters that distill the wealth of existing research.
This aids researchers in identifying common themes, emerging patterns, and gaps in
current knowledge.

The second part (Section 3.2) broadens the research’s scope by delving into the out-
comes of the remaining studies. This approach captures a more diverse array of perspectives
concerning the intersection of AI and ATs in autism. Through a critical examination of
these remaining studies, researchers can incorporate various viewpoints and alternative
methodologies and potentially discover novel or previously overlooked insights. This
holistic understanding of the research landscape promotes a more balanced and nuanced
interpretation of the subject, reducing the risk of overlooking valuable contributions to
the field.
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In essence, this dual approach enhances both the depth and breadth of the research,
resulting in a more robust and holistic analysis.

3.1. In-Depth Analysis of the Detected Reviews: A Comprehensive Overview
3.1.1. Analysis in Details

Seven review studies have been detected facing the intersection of AI and ATs
in autism.

The review proposed by Muthu et al. [26] emphasizes the significant impact of assistive
technology for differently-abled individuals and older adults, covering rehabilitative,
adaptive, and assistive devices. It discusses the applications, challenges, and potential for
enhancing daily life, with a special focus on AI-powered technologies with reference to
autism. The study sheds light on the pros and cons of these technologies, offering valuable
insights for rehabilitation engineering.

Focusing on mental disorders with childhood onset, the review by Datta Barua
et al. [27] explores the co-morbidity of neurodevelopmental and mental health disorders.
It highlights the role of AI-assisted tools in addressing learning challenges in individuals
with neurodevelopmental disorders. The review points to the potential of AI tools for
improving social interaction and personalized education.

Alabdulkareem et al. [28] delve into the use of interactive robots in autism therapy,
utilizing AI technologies. The study analyzes trends in research, showing a significant
increase in journal publications in the field, driven by advances in artificial intelligence
techniques and machine learning. This highlights the growing role of AI in robot-assisted
autism therapy.

Ur Rehman et al. [29] explore in their study the impact of mobile applications, partic-
ularly those utilizing AI technologies, on the lives of individuals with autism spectrum
disorder (ASD). The study identifies features of highly-rated apps, offering recommenda-
tions for enhancing existing applications with AI. Results suggest the potential for progress
tracking, personalized content delivery, automated reasoning, image recognition, and
natural language processing (NLP) in these AI-powered apps.

Di Pietro et al. [30] focused on computer-assisted and robot-assisted therapies for
children with autism spectrum disorder. It aims to identify the types of information
technology platforms being used, the professions involved, the outcomes being evaluated,
and the benefits to children with autism, with a keen eye on AI-enhanced interventions.
The review highlights the promise of these AI-powered interventions while also stressing
the need for further research.

Den Brok et al., in their systematic review [31], investigate the use of self-controlled
technologies for persons with autism spectrum disorder and intellectual disabilities, some
of which leverage AI. The results show that these technologies facilitate the learning of daily
living skills and cognitive concepts, with a particular emphasis on AI-powered features.
Advanced technologies, such as virtual reality, are effective for learning cognitive concepts.
However, more research is needed to assess generalization and the role of AI in effectiveness.
Billard et al. [32] dealt with the outcome of a project focused on robotics, the Robota project.
This project employs humanoid robots in behavioral studies with low-functioning children
with autism, with a focus on the technological aspects, including AI. The review discusses
the technological developments and outcomes of these studies, emphasizing the potential
for using imitator robots to assess and teach coordinated behaviors and the role of AI in
enhancing these interventions. This work informs the future development of robots for
children with complex developmental disabilities, incorporating AI-driven innovations.

We have also detected in Table 1 the key elements/points highlighting the intersection
of AI with ATs across the studies, showcasing AI’s contribution to enhancing assistive
technologies for various applications in healthcare, education, and therapy.
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Table 1. Key elements/points emerging from the overview of reviews on the intersection of AI and ATs.

Review Study Key Points on the Intersection of AI and ATs in Autism

Muthu et al. [26] Integration of AI in ATs for enhanced rehabilitation and independence.
Muthu et al. [26] AI-driven solutions addressing physical impairments, mobility, education, and more.
Muthu et al. [26] Insights into AI’s role in expanding research areas related to assistive technology.

Datta Barua et al. [27] AI-assisted tools for improving learning and social interaction in neurodevelopmental disorders.
Datta Barua et al. [27] Evidence supporting the effectiveness of AI tools in providing personalized education.

Alabdulkareem et al. [28] Utilization of interactive robots with AI for autism therapy.
Alabdulkareem et al. [28] Growth in research due to advancements in AI techniques and machine learning.

Ur Rehman et al. [29] Identification of highly-rated mobile apps for individuals with ASD utilizing AI technologies.
Ur Rehman et al. [29] Recommendations for enhancing existing applications with AI for personalized support.

Di Pietro et al. [30] Exploration of AI-driven computer-assisted and robot-assisted therapies for children with autism.
Di Pietro et al. [30] Focus on identifying AI platforms, professions involved, and outcomes in social skills teaching.

Den Brok et al. [31] AI-powered self-controlled technologies aiding individuals with autism and
intellectual disability.

Den Brok et al. [31] Use of AI to facilitate the learning of daily living skills and cognitive concepts.
Billard et al. [32] Application of AI in humanoid robots for assisting low-functioning children with autism.
Billard et al. [32] AI’s role in assessing imitation ability and teaching coordinated behaviors.

It appears that the studies do not extensively cover the limitations and bottlenecks
of AI within assistive technologies. The emphasis in these reviews is primarily on the
benefits and potential of AI in various applications, while limitations and challenges are
not explicitly addressed.

3.1.2. Key Findings

Collectively, the body of research from various studies [26–32] underscores the pro-
found impact and diverse applications of AI within ATs, especially for individuals with
neurodevelopmental disorders like autism. The studies collectively reveal a promising
landscape where AI-driven solutions are actively contributing to the enhancement of re-
habilitation, independence, and overall well-being. These solutions address a spectrum
of challenges, ranging from physical impairments and mobility issues to personalized
education for individuals with neurodevelopmental disorders. In the realm of autism
therapy, the use of interactive robots equipped with AI is a notable trend, reflecting a
growing recognition of AI’s potential in improving social interaction and engagement.
The observed expansion of research in this area attests to the increasing importance and
applicability of AI techniques and machine learning within autism therapy.

Additionally, the collective effort in identifying highly-rated mobile apps for individu-
als with ASD using AI technologies and the subsequent recommendations for enhancing
existing applications exemplify a practical approach to leveraging AI for personalized
support. This emphasizes the ongoing commitment to tailoring AI-driven tools to the
specific needs of individuals with ASD. The exploration of AI-driven computer-assisted
and robot-assisted therapies further extends the application of AI into educational contexts
for children with autism. The studies shed light on the identification of AI platforms, the
involvement of various professions, and the outcomes of social skills teaching, collectively
enriching our understanding of how AI can be effectively integrated into educational
interventions. Moreover, the use of AI-powered self-controlled technologies for individ-
uals with autism and intellectual disabilities emphasizes the potential of AI to facilitate
learning in various domains, including daily living skills and cognitive concepts. The
collective findings highlight the adaptability of AI in catering to diverse learning needs
within the neurodevelopmental disorder spectrum. In the context of humanoid robots
assisting low-functioning children with autism, the studies collectively delve into the
intricacies of using AI to assess imitation ability and teach coordinated behaviors. This
offers insights into both the challenges and possibilities associated with optimizing the
role of AI within humanoid robots for targeted support. Common methodologies across
these studies include an interdisciplinary approach, demonstrating collaboration across
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various professions to integrate AI effectively into ATs. The shared emphasis on developing
AI-driven tools for personalized education and support reflects a collective commitment
to tailoring interventions to individual needs. However, the challenges identified collec-
tively, such as the ethical considerations associated with privacy, responsible AI use, and
the need for interdisciplinary collaboration, underscore the complexities of integrating
AI into ATs. These challenges collectively call for a nuanced and thoughtful approach
to ensure the responsible and effective use of AI in enhancing the lives of individuals
with neurodevelopmental disorders. In summary, the collective view across these studies
paints a comprehensive picture of AI’s transformative potential in the realm of assistive
technologies, showcasing its versatility and adaptability in addressing diverse challenges
and providing personalized support for individuals with neurodevelopmental disorders.

3.2. In-Depth Analysis of the Detected Articles: A Comprehensive Overview
3.2.1. Analysis in Details

Fifteen studies have been detected [33–47] in this part of the overview. In some articles,
the intersection of AI and ATs is directly faced [33–43,45–47], while in others, it is faced
more with an in-perspective overview [44].

Silvera Tawill et al. [33] explore the use of socially-assistive robots, incorporating
AI, to support children with autism. The study identifies barriers to implementation and
teachers’ and therapists’ expectations, highlighting the potential of AI-driven robots for
teaching support.

Deng et al. [34] introduce a sensory management recommendation system that relies
on AI techniques to assist children with ASD in dealing with sensory issues. The system
uses sensor fusion and machine learning to identify distractions, anxious situations, and
their causes, enabling more effective interventions.

Wan et al. [35] propose an AI-based system for improving emotion recognition in Chinese
children with ASD. The system incorporates deep learning algorithms for facial expression
recognition and attention analysis, demonstrating its potential in AI-assisted therapies.

Kumar et al. [36] examine the automation of ASD diagnosis using machine learning
techniques. The study leverages AI to analyze a dataset of 701 samples, aiming to develop
models that can assist in diagnosing ASD automatically.

Jain et al. [37] utilize supervised machine-learning algorithms to model user engage-
ment in long-term, AI-driven, socially-assistive robot interventions for children with ASD.
AI models achieve high accuracy in recognizing and responding to user engagement,
enhancing human-robot interactions.

Keshav et al. [38] correlate student performance on the Empowered Brain platform
with clinical measures of ADHD, demonstrating that AI-driven technologies can aid in
monitoring and managing symptoms of co-occurring conditions in students with ASD.

Vahabzadeh et al. [39] explore the feasibility and efficacy of Empowered Brain, an AI-
driven smartglasses intervention for students with ASD. It demonstrates the potential of AI in
improving socio-emotional behaviors, highlighting its impact in a school-based intervention.

Cooper et al. [40] introduce an AAC software program with an embedded artificial
conversational agent, named Alex. The software is designed to assist children with autism
who use augmentative and alternative communication (AAC) aids. Alex utilizes symbols
and images, can be personalized by therapists, and does not require specialized computer
skills. The software emphasizes customization, interoperability, personalization, and
considerations for motor skills.

Huijnen et al. [41] focus on the roles, strengths, and challenges of robot KASPAR in
interventions for children with ASD, including its use of AI components such as personal-
ization and consistent application of actions.

Keshav et al. [42] assess the tolerability and usability of the Brain Power Autism
System (BPAS), which integrates AI and smartglasses. The outcome shows that AI-driven
wearable technology is well tolerated and usable by individuals with ASD, emphasizing its
role as an assistive technology.
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Linstead et al. [43] investigate the influence of treatment intensity and duration on
learning in children with autism who are receiving Applied Behavior Analysis (ABA)
services. The study assesses the impact of these treatment variables on various domains,
such as academic, adaptive, cognitive, executive function, language, motor, play, and social
skills. The findings highlight the importance of treatment dosage and provide insights into
its varied effects across different domains and the usefulness of AI in perspective.

Desideri et al. [44] explore the potential of a humanoid robot to enhance educational in-
terventions for children with autism spectrum disorders (ASD). Preliminary results indicate
that interacting with a humanoid robot can facilitate engagement and goal achievement in
educational activities. This highlights the role of advanced technology and AI in improving
the effectiveness of educational interventions for children with ASD.

Huijnen et al. [45] aim to practically implement robots, specifically robot KASPAR,
into current education and therapy interventions for children with ASD. The study involves
focus groups and co-creation sessions with professionals and adults with ASD. It results in
requirements for robot-assisted interventions, a template for describing robot interventions,
and the generation of new intervention ideas, emphasizing the practical application of
robots with AI capabilities in autism therapy and education.

Bekele et al. [46] investigate an AI-driven robot-mediated system to administer joint
attention prompts to children with ASD, demonstrating the potential of AI to enhance
engagement and learning in educational activities for these children.

Williams et al., in a multicenter study [47], use a computer program with speech
synthesizer software and a “virtual” head to investigate audio-visual integration in children
with ASD. AI-like systems facilitate speech recognition and training, showcasing the role
of AI in improving speech-related skills in individuals with ASD.

For these scientific articles, we have also detected in Table 2 the key points/elements
highlighting the intersection of AI with ATs across the studies, showcasing AI’s contribu-
tion to enhancing assistive technologies for various applications in healthcare, education,
and therapy.

Table 2. Key elements/points emerging from the overview of articles on the intersection of AI and ATs.

Article Study Key Points on the Intersection of AI and ATs in Autism

Silvera Tawill et al. [33] AI-driven socially-assistive robots for teaching support
Deng et al. [34] AI-powered sensory management recommendation system for children with ASD.
Wan et al. [35] AI-based system for improving emotion recognition in children with ASD.

Kumar et al. [36] Automation of ASD diagnosis using machine learning techniques.
Jain et al. [37] AI-driven models for recognizing and responding to user engagement in robot interventions.

Keshav et al. [38] AI-driven models for recognizing and responding to user engagement in robot interventions.
Vahabzadeh et al. [39] AI-driven smartglasses intervention for improving socio-emotional behaviors in students with ASD.

Cooper et al. [40] AAC software program with an embedded artificial conversational agent for children with autism.
Huijnen et al. [41] Roles, strengths, and challenges of AI-equipped robots in interventions for children with ASD.
Keshav et al. [42] Tolerability and usability of AI-driven smartglasses for individuals with ASD.

Linstead et al. [43] Usefulness in perspective of AI in the treatment dosage and in providing insights into its varied effects
across different domains.

Desideri et al. [44] Exploration of humanoid robots’ potential to enhance educational interventions for children with ASD.

Huijnen et al. [45] Practical implementation of robots (implementing AI based algorithms), particularly robot KASPAR, in
education and therapy interventions for children with ASD.

Bekele et al. [46]
Pilot study on an AI-driven robot-mediated system administering joint attention prompts to children
with ASD with a demonstration of AI’s potential to enhance engagement and learning in educational

activities for children with ASD.

Williams et al. [47] Highlighting AI-like systems’ (with speech synthesizer) role in improving speech recognition and
training for individuals with ASD.

3.2.2. Key Findings

The collection of studies [33–47] collectively sheds light on the promising intersection
of artificial intelligence (AI) and autism assistive technologies [33–47]. The research land-
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scape reflects a concerted effort to harness AI’s capabilities for diverse applications catering
to the unique needs of individuals on the autism spectrum.

A recurring theme in these studies is the exploration of AI-driven devices, such as
socially-assistive robots, smartglasses, and recommendation systems, to enhance various
facets of support for individuals with ASD. This includes teaching support, sensory manage-
ment, emotion recognition, and even the automation of ASD diagnosis. The integration of
AI into AAC software, featuring artificial conversational agents, stands out as a noteworthy
endeavor to enhance communication for children with autism.

Common methodologies across these studies include the prevalent use of AI and
machine learning techniques. Researchers are leveraging these advanced technologies
to develop recommendation systems, models for recognizing and responding to user
engagement, and diagnostic tools. Additionally, the implementation of AI-driven devices,
particularly in educational interventions, emerges as a consistent approach to improving
engagement and learning outcomes for individuals with ASD.

However, amidst the optimism, several challenges are evident. The diversity within
the autism spectrum poses a substantial hurdle, requiring nuanced approaches that account
for individualized needs. Ethical considerations, ranging from the tolerability and usability
of AI-driven devices to broader privacy concerns, are inherent in the integration of AI into
assistive technologies. The regulatory landscape and societal acceptance of these innovations
within the healthcare domain represent additional challenges that demand careful navigation.

The practical implementation of humanoid robots in education and therapy interven-
tions introduces complexities, with studies highlighting both the strengths and challenges
associated with these AI-equipped robots. Moreover, the studies collectively underscore
the imperative to strike a balance between pushing the boundaries of technological inno-
vation and addressing the practical and ethical considerations essential for the successful
integration of AI into autism assistive technologies.

In essence, this body of research paints a dynamic picture of the evolving relationship
between AI and autism assistive technologies. The studies not only showcase the potential of
AI to revolutionize support for individuals with ASD but also illuminate the path forward,
emphasizing the need for a holistic and ethically grounded approach as these technologies
continue to play an increasingly significant role in the lives of those on the autism spectrum.

4. Discussion

The discussion is structured into two parts, which are editorially translated into
five paragraphs.

The initial part reported in Section 4.1, sets the stage, delving into the dissemination
trends within this field. We examine these trends in contrast to the broader, overarching
categories of ATs, which include AAC, both in a general context and, more specifically,
within the realm of autism. The second part (Sections 4.2–4.5) delves into: (a) a detailed
discussion of the key findings that have emerged in the study results, paying careful
attention to the distinctive characteristics of autism. (b) Analyze the limitations and
bottlenecks that have come to light within the reviewed studies.

4.1. Numerical Trends in Assistive Technologies for Autism

It is valuable to delve into the analysis of scientific publication trends within this
specific field. The key insights encapsulated in Box 1 have been utilized in research
conducted on the PubMed platform. Scientific publications pertaining to AAC, as well as
other assistive technologies, trace their origins back to the year 1946. In a broader context,
as depicted in Figure 1, a cumulative total of 17,607 studies have been brought forth to the
scientific community. Notably, a substantial 8500 of these have emerged within the last
decade, with a further 3911 publications emerging since the onset of the global COVID-19
pandemic. A significant proportion of these studies, roughly 39%, have seen the light of
day in the most recent decade, and particularly noteworthy is the surge in publications
following the emergence of the COVID-19 pandemic, accounting for approximately 19% of
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the total.. The graphical representation in Figure 2 provides a visual insight into the fact that
a mere 2% of these studies are centered around the subject of autism. Zooming in on the
domain of autism, the data depicted in Figures 3 and 4 reveal that, since 1992, a remarkable
391 studies have been produced on this subject. A considerable majority of these studies,
(73%), have been published within the last decade. Furthermore, a significant 129 studies
have been generated in the wake of the COVID-19 pandemic, constituting 33% of the total
in this time frame. However, when we narrow our focus even further and zero in on those
studies that specifically explore the intersection of autism and artificial intelligence (AI),
the number is substantially reduced. In its entirety, only 23 studies have been published in
this area. Out of these, 10 have emerged in the aftermath of the COVID-19 pandemic, while
21 have surfaced within the last ten years (as presented in Figure 5).

Box 1. The proposed composite keys.

“self help devices”[MeSH Terms] OR (“self help”[All Fields] AND “devices”[All Fields]) OR “self help de-
vices”[All Fields] OR (“assistive”[All Fields] AND “technology”[All Fields]) OR “assistive technology”[All
Fields] OR (“augmentative”[All Fields] AND (“communicate”[All Fields] OR “communicated”[All Fields]
OR “communicates”[All Fields] OR “communicating”[All Fields] OR “communication”[MeSH Terms]
OR “communication”[All Fields] OR “communications”[All Fields] OR “communicative”[All Fields] OR
“communicational”[All Fields] OR “communicatively”[All Fields] OR “communicativeness”[All Fields] OR
“communicator”[All Fields] OR “communicator s”[All Fields] OR “communicators”[All Fields]))
(“self help devices”[MeSH Terms] OR (“self help”[All Fields] AND “devices”[All Fields]) OR “self help de-
vices”[All Fields] OR (“assistive”[All Fields] AND “technology”[All Fields]) OR “assistive technology”[All
Fields] OR (“augmentative”[All Fields] AND (“communicate”[All Fields] OR “communicated”[All Fields]
OR “communicates”[All Fields] OR “communicating”[All Fields] OR “communication”[MeSH Terms]
OR “communication”[All Fields] OR “communications”[All Fields] OR “communicative”[All Fields] OR
“communicational”[All Fields] OR “communicatively”[All Fields] OR “communicativeness”[All Fields] OR
“communicator”[All Fields] OR “communicator s”[All Fields] OR “communicators”[All Fields]))) AND
“autism”[Title/Abstract]
(“self help devices”[MeSH Terms] OR (“self help”[All Fields] AND “devices”[All Fields]) OR “self help de-
vices”[All Fields] OR (“assistive”[All Fields] AND “technology”[All Fields]) OR “assistive technology”[All
Fields] OR (“augmentative”[All Fields] AND (“communicate”[All Fields] OR “communicated”[All Fields]
OR “communicates”[All Fields] OR “communicating”[All Fields] OR “communication”[MeSH Terms]
OR “communication”[All Fields] OR “communications”[All Fields] OR “communicative”[All Fields] OR
“communicational”[All Fields] OR “communicatively”[All Fields] OR “communicativeness”[All Fields] OR
“communicator”[All Fields] OR “communicator s”[All Fields] OR “communicators”[All Fields]))) AND
“autism”[Title/Abstract] AND (“artificial intelligence”[MeSH Terms] OR (“artificial”[All Fields] AND
“intelligence”[All Fields]) OR “artificial intelligence”[All Fields] OR (“machine learning”[MeSH Terms]
OR (“machine”[All Fields] AND “learning”[All Fields]) OR “machine learning”[All Fields]) OR (“deep
learning”[MeSH Terms] OR (“deep”[All Fields] AND “learning”[All Fields]) OR “deep learning”[All
Fields]) OR ((“neural”[All Fields] OR “neuralization”[All Fields] OR “neuralize”[All Fields] OR “neu-
ralized”[All Fields] OR “neuralizes”[All Fields] OR “neuralizing”[All Fields] OR “neurally”[All Fields])
AND “nework”[All Fields]))

Figure 1. Trends in the studies on ATs (including AAC) over time.
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Figure 2. Percentage of studies on AT (including AAC) on autism compared to the total.

Figure 3. Scientific production of studies dedicated to AT (including AAC) on autism.

Figure 4. Percentage of studies dedicated to AT (including AAC) on autism over time.

37



J. Pers. Med. 2024, 14, 41

Figure 5. Studies on AI applied to ATs (including AACs) dedicated to autism.

4.2. Interpretation of Results: Findings, Problems

Autism, as a neurodevelopmental disorder, affects social behavior, communication,
and interaction. It manifests itself with difficulties in understanding other people’s emo-
tions, in verbal and non-verbal communication, in restricted interest in certain topics, and
in the repetitiveness of behaviors and routines. Each autistic individual is unique in his or
her characteristics and level of functioning [48]. This uniqueness is reflected in the difficulty
of diagnosis and therapy [49,50], which requires a multi-faceted approach from different
medical disciplines, and in treatment that increasingly highlights the need for personalized
medicine dedicated to autism [51,52].

It can unequivocally be asserted that a sound approach to addressing autism hinges
upon the seamless interplay between the domains of diagnosis and therapy, encompassing
a multitude of key players, ranging from parental associations and diverse professionals to
scientific organizations (Figure 6):

• If we focus on the autism diagnosis we can affirm that among the important activi-
ties in diagnosis we find [49,50]: -Observation and Interviews: -Physical Exam and
Medical History: -Developmental Assessment and Screening: -Psychological and
Psychomotor Evaluation: -Assessment of Social Behavior and Social Interactions:
-Language and Communication Assessment: -Sensory Assessment-Functional Be-
havior Assessment. -Genetic, metabolic, biochemical, immunological, neurobiologal
assessments-Environmental factors. -Medical Imaging assessment. There are various
therapies and interventions used in the treatment of ASD. These therapies aim to
address the unique challenges and needs of individuals with autism. Therapies may
include medications.

• If we focus on the autism therapy we can affirm that some of the most commonly
used non medication therapies include [51]: -Behavioral Therapies: -Communication
and Speech Therapies. -Speech-Language Therapy-Occupational Therapy. -Social
Skills Training-Sensory Integration Therapy. -Educational Interventions-Medication.
-Alternative and Complementary Therapies. It’s important to note that the choice of
therapy or intervention depends on the individual’s specific needs, strengths, and
challenges [52,53]. A comprehensive and individualized treatment plan is often the
most effective approach, and it should be developed in consultation with healthcare
professionals, including speech therapists, occupational therapists, and behavioral
specialists, to provide the best possible support for individuals with autism. There are
also available programs that provide training and support for parents and caregivers
to help them better understand and manage the challenges associated with autism.
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Figure 6. Autism: interoperability between the therapy and the diagnosis domains.

ATs (including AAC) devices occupy a central and strategic position in a multitude
of non-medical therapies, as highlighted. However, adhering to the expansive framework
established by the WHO [54], which encompasses AT processes and related services, in-
cluding telemedicine, it becomes evident that ATs possess considerable untapped potential,
even within the realm of diagnostic activities.

Our review, through two perspectives (one focused on reviews and the other on
scientific articles), has addressed the introduction of AI in assistive technologies for autism.

The initial perspective, cantered on comprehensive reviews, underscores a steadily
escalating integration of artificial intelligence (AI) within assistive technologies (ATs) for
autism, spanning across fields like robotics [27,30,32], applications [29], and, in a broader
context, automated machines such as computers and ICT devices [26–32]. This integration
is specifically geared towards the enhancement of communication, interaction, and, most
importantly, the overall social development of autistic children. Notably, in the case of
mobile applications, a set of valuable recommendations has been proposed as well [29].

The second perspective consistently underscores a fascinating and rapidly growing
integration of AI with robotics in the context of autism [33,38,41,44–46]. This integration
serves as vital support for enhancing communication, interaction, and social engagement.
Furthermore, the strategic aspect of therapy dosage in the realm of autism has been explored
across various domains [36]. There’s a burgeoning interest in the deployment of customized
wearable devices, such as smart glasses [39,42], designed to improve socio-emotional
behaviors in students with autism spectrum disorder (ASD), with their tolerability also
undergoing assessment.

Across all of these research works, as seen in the perspective on reviews, AI is con-
sistently addressed within the domain of automated machines, including computers and
ICT devices [33–47]. In a particular study [36], as we had hoped for, the use of assistive
technologies (ATs) in the field of diagnosis is highlighted, specifically the automation of
ASD diagnosis through the application of machine learning techniques.

What emerges from the review is undoubtedly an early-phase landscape, particularly
highlighted by the modest numbers evident at this stage in the field. Consequently, as
expected, researchers are currently dedicating relatively little attention to aspects related to
integration with the health domain, such as regulatory and consent issues.

Furthermore, it doesn’t seem that there is a strong focus on personalized medicine
within the realm of AI in assistive technologies. Personalized medicine, also known as
precision medicine or personalized medicine, could represent an innovative approach in
the field of autism [55]. This approach would carefully consider individual differences,
including genetics, lifestyle, and environment, with the aim of personalizing disease
prevention, diagnosis, and treatment with the aim of maximizing therapeutic efficacy
and minimizing side effects [56–58], while also integrating with AI [59,60]. In the specific
context of autism, personalized medicine could seek to adapt treatments based on the
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specific genetic and biological characteristics of each individual suffering from ASD [61].
This could mean identifying specific subtypes of autism based on genetic, biochemical, and
neurophysiological markers. This customization would allow for a more accurate diagnosis
and personalized assessment of each patient’s clinical picture, helping to identify the most
suitable and effective treatments [62–64].

It will unquestionably be imperative to exert additional efforts in these directions.
Undoubtedly, AI is poised to play an ever more pivotal role in interconnecting diverse
realms, and the integration of ATs with AI stands to assume an increasingly vital role as a
connector of paramount importance (Figure 7).

Figure 7. Autism: the potential mediator role of the AI and of the ATs.

4.3. Contextualizing Our Study: A Comparative Analysis with Diverse AI Applications in
Autism Interventions

AI’s impact on autism research is substantial, with a growing interest in its applica-
tions [65–67]. From diagnostics to IoT integrations, AI’s transformative influence spans
various healthcare facets, marking a remarkable evolution [68,69]. Machine learning (ML)
and deep learning, especially in neural networks, play pivotal roles in addressing autism
spectrum disorder (ASD) challenges [65]. ML excels in early ASD detection via behav-
ioral and physiological data analysis, while predictive modeling tailors support strate-
gies [66]. Naturalistic behavioral analysis, powered by computer vision and ML, informs
interventions by decoding subtle cues [69]. Deep learning contributes to understanding
communication challenges and identifying genetic markers associated with autism [65]. AI
promises transformative potential in ASD research, from early detection to personalized
interventions, exemplifying technology’s capacity to improve lives [65–69].

In [70], 11 systematic reviews [28,71–80] focused on the impact of AI on autism. Col-
lectively, these reviews tell a compelling story of AI emerging as a powerful ally in autism
research. Themes explored include precision psychiatry [71], virtual reality-based tech-
niques for health improvement [72], bibliometric analysis of AI in autism treatment [73],
hybridization of medical tests [74], triage and priority-based healthcare diagnosis [75],
mobile and wearable AI in child and adolescent psychiatry [76], robot-assisted therapy [28],
machine-learning models in behavioral assessment [77], deep learning in psychiatric dis-
orders classification [78], the impact of technology on ASD [79], and deep learning in
neurology [80]. Each systematic review contributes to a nuanced exploration of AI within
the realm of autism research, shedding light on technology’s intersections with neurodevel-
opmental disorders. These reviews collectively underscore how AI is becoming integral
in understanding and supporting individuals on the autism spectrum, offering diverse
insights into tailored interventions, holistic well-being, diagnostic strategies, and advance-
ments in neurology. Some of these themes have connections with assistive technologies
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(ATs). The proposed overview can serve as both a valuable contribution and a mediator
and connector between some of these fields.

4.4. Reflections on the Limitations

The review indirectly highlights that integration of AI with assistive technologies in the
context of autism presents several challenges that merit careful consideration. Firstly, the
inherent diversity within the autism spectrum poses a significant limitation. The spectrum
encompasses a broad range of characteristics, making it difficult to develop AI solutions
that adequately address the unique needs of each individual. A one-size-fits-all approach
may fall short in providing meaningful support. Moreover, the highly individualized
nature of autism complicates the effectiveness of AI interventions. Each person with autism
has distinct preferences, strengths, and challenges that evolve over time. AI technologies
may struggle to keep pace with these individualized requirements, potentially limiting
their utility. Ethical considerations also loom large in the integration of AI. The collection
and analysis of personal information to tailor interventions raises concerns about privacy,
consent, and the potential for data misuse. Striking a balance between leveraging data for
customization and respecting ethical boundaries is crucial. A fundamental aspect of autism
support is human connection and empathetic understanding. AI, by its very nature, lacks
the ability to establish genuine emotional connections. This deficit in emotional support
may impede the effectiveness of AI-based interventions, particularly for individuals who
require a more empathetic touch. Additionally, user acceptance and comfort pose significant
challenges. Individuals with autism may face difficulties adapting to or feeling comfortable
with AI technologies. Overcoming resistance and ensuring user comfort are paramount to
the successful integration of AI with assistive technologies. Overall, while the integration
of AI with AT holds promise, navigating the limitations requires a nuanced approach.
Addressing the diversity within the spectrum, recognizing the individualized nature of
autism, and upholding ethical standards are essential for the meaningful and ethical use of
AI in supporting individuals with autism.

4.5. Reflection on the Broader Implications

The review also shows that the integration of AI with ATs for individuals with autism
introduces broader implications that encompass issues of bias, ethics, and cybersecurity.
Concerns related to bias arise from the potential replication of societal biases within the AI
algorithms. If the training data used is not representative or contains inherent biases, the AI
systems may inadvertently perpetuate stereotypes and fail to address the diverse needs of
individuals on the autism spectrum. Ethical considerations become paramount, particularly
concerning privacy and informed consent. The customization of interventions based on
personal data necessitates a clear understanding and explicit consent from individuals
with autism and their caregivers. Ensuring transparency in decision-making processes and
providing individuals with the ability to comprehend and challenge those decisions are
ethical imperatives. Equity and accessibility issues emerge as the integration of AI may not
guarantee equal access to interventions. This raises ethical concerns about the potential
exacerbation of existing disparities, emphasizing the need for ethical considerations that
ensure the inclusivity and accessibility of AI benefits for all individuals with autism. Turn-
ing to cybersecurity, the sensitive nature of the data involved in autism support systems
becomes a focal point. The risk of cyberattacks targeting personal information, communi-
cation patterns, and behavioral data underscores the importance of robust data security
measures to safeguard the privacy and well-being of individuals with autism. Moreover,
vulnerabilities to malicious exploitation of AI systems need careful attention. Tampering
with interventions, manipulating data, or using AI tools to harm individuals with autism
are potential risks that demand proactive measures to secure AI technologies and prevent
exploitation. The interconnected nature of AI and AT systems introduces cybersecurity
challenges. A breach in one system could have cascading effects on others, potentially
compromising the well-being and privacy of individuals with autism. Establishing a
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secure and resilient infrastructure becomes imperative to mitigate these interconnected
cybersecurity risks. Overall, while the integration of AI with assistive technologies holds
promise for individuals with autism, addressing biases, upholding ethical standards, and
ensuring robust cybersecurity measures are critical for the responsible and beneficial use
of AI in enhancing the lives of those on the autism spectrum. Striking a delicate bal-
ance between innovation and ethical considerations is paramount to navigating these
complex implications.

5. Brief Summary and Conclusions

5.1. Brief Summary

The amalgamation of findings from 22 studies, encompassing 7 reviews, underscores a
burgeoning interest in the integration of AI into autism assistive technologies. The current
landscape is marked by promising developments at the intersection of AI and robotics, as
well as the creation of wearable automated devices like smart glasses. These technological
innovations are poised to significantly improve communication, interaction, and social
engagement for individuals with autism, offering a glimpse into a future where AI plays a
pivotal role in supporting neurodiversity.

However, as the field progresses, it becomes evident that the emphasis on innovation
currently outweighs the establishment of a solid presence within the healthcare domain.
Critical issues such as regulation and societal acceptance are demanding increased attention.
This underscores the need for a delicate balance between pushing the boundaries of techno-
logical advancement and addressing the practicalities of integrating these innovations into
mainstream healthcare practices. Despite the exciting prospects, limitations exist on this
path towards integrating AI into autism assistive technologies. The diversity within the
autism spectrum poses a challenge, as individualized needs vary widely. Ethical concerns,
including those related to privacy and data security, emerge as critical considerations that
must be carefully navigated. Furthermore, the potential absence of a human touch in AI
interventions raises questions about user acceptance, particularly among individuals with
autism who may require a more empathetic and personalized approach.

Looking at the broader implications, the innovative fusion of AI with autism assistive
technologies opens doors to transformative possibilities. It holds the potential to bridge
various domains and act as a crucial connector, facilitating communication and support for
individuals with autism. However, as this field evolves, it is imperative to address ethical
considerations, establish robust regulatory frameworks, and ensure that these technological
advancements are accessible and inclusive for all individuals on the autism spectrum. In
navigating this complex landscape, the role of AI in fostering connectivity and support for
neurodiverse communities becomes increasingly evident.

5.2. Conclusions

In conclusion, our review highlights an early but promising interest in the integration
of artificial intelligence into autism assistive technologies although not without significant
problems to face. Particularly fascinating developments are unfolding in the fusion of AI
with robotics and the creation of wearable automated devices, such as smart glasses. These
advancements hold exciting potential for enhancing communication, interaction, and social
activities for individuals with autism. Currently, researchers are dedicating more effort
to development than to the establishment of a solid foothold in the health domain, where
issues like regulation and acceptance demand increased attention. As the field continues
to evolve, it is evident that AI will play an increasingly pivotal role in bridging various
domains, and integrated ATs with AI are poised to assume a key role as a vital connector.
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Abstract: The rapid advancement of artificial intelligence (AI) technologies, particularly machine
learning, has brought substantial progress to the field of nephrology, enabling significant improve-
ments in the management of kidney diseases. ChatGPT, a revolutionary language model developed
by OpenAI, is a versatile AI model designed to engage in meaningful and informative conversations.
Its applications in healthcare have been notable, with demonstrated proficiency in various medical
knowledge assessments. However, ChatGPT’s performance varies across different medical subfields,
posing challenges in nephrology-related queries. At present, comprehensive reviews regarding
ChatGPT’s potential applications in nephrology remain lacking despite the surge of interest in its role
in various domains. This article seeks to fill this gap by presenting an overview of the integration of
ChatGPT in nephrology. It discusses the potential benefits of ChatGPT in nephrology, encompassing
dataset management, diagnostics, treatment planning, and patient communication and education,
as well as medical research and education. It also explores ethical and legal concerns regarding
the utilization of AI in medical practice. The continuous development of AI models like ChatGPT
holds promise for the healthcare realm but also underscores the necessity of thorough evaluation and
validation before implementing AI in real-world medical scenarios. This review serves as a valuable
resource for nephrologists and healthcare professionals interested in fully utilizing the potential of AI
in innovating personalized nephrology care.

Keywords: artificial intelligence; chatbot; ChatGPT; nephrology; kidney disease; application

1. Introduction

Advancements in artificial intelligence (AI) technologies have notably influenced the
landscape of various fields, including finance, transportation, and healthcare [1], leading to
remarkable improvements in efficiency and productivity. AI is characterized by its capabil-
ity to handle diverse tasks that traditionally need human intelligence. As AI applications
become more integrated across different fields, the technology has grown to include major
subsets like machine learning and deep learning. In medical research, machine learning has
become particularly valuable for its ability to analyze and draw meaningful conclusions
from the extensive data generated in healthcare. Specifically, in nephrology, a medical
specialty focused on kidney diseases, machine learning has proven effective in classify-
ing different patient subgroups across various kidney conditions, such as acute kidney
injury (AKI), chronic kidney disease (CKD), end-stage kidney disease (ESKD), and kidney
transplants [2–5]. Additionally, since 2018, there has been a surge in the utilization of
machine learning-powered medical devices in healthcare. A thorough study revealed that
a significant majority (77%) of these FDA-approved devices are predominantly used in ra-
diology, with cardiovascular applications coming in second at 10% [6]. The most commonly
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approved types of these devices are radiological image processing and computer-assisted
triage and notification systems [6]. However, it is noteworthy that in nephrology, the use of
FDA-approved AI-enhanced medical devices is still an unexplored area.

ChatGPT, a significant language model introduced by OpenAI on 30 November 2022,
is noted for generating human-like responses in a conversational style to user input [7,8].
Currently, ChatGPT has two primary versions: the broadly available GPT-3.5 and the more
sophisticated, subscription-based GPT-4 [9]. ChatGPT exhibits its potential in various
healthcare areas, including medical practices, research, and education [10,11]. Particularly
notable is its remarkable proficiency in medical knowledge, which has been demonstrated
to approach or even exceed the passing threshold (approximately 60%) for the United
States Medical Licensing Examination (USMLE) [12,13]. In another study, ChatGPT nearly
passed a radiology board-style examination with an accuracy of 69% [14]. In a third study,
ChatGPT achieved an accuracy of approximately 80% in answering the questions from
the competency-based medical education curriculum of microbiology [15]. However, it
is important to consider the outcomes of an observational study that utilized the General
Practitioners Applied Knowledge Test (GPAKT). The study revealed that ChatGPT’s overall
performance was 60%, falling below the average passing threshold of 70% [16].

In our initial investigation, we observed that GPT-3.5’s performance was very limited
when it came to responding to 150 questions related to glomerular disease from the Nephrol-
ogy Self-Assessment Program (NephSAP) and Kidney Self-Assessment Program (KSAP).
On the first and second runs, GPT-3.5 achieved an overall accuracy of only 44% and 41%,
respectively. These results fell significantly below the required passing threshold of 75% set
by the American Society of Nephrology (ASN) for nephrologists [17]. Subsequently, we
conducted a comprehensive assessment using a larger set of 975 nephrology test questions,
consisting of 508 questions from NephSAP and 467 from KSAP (Figure 1) [18]. GPT-3.5
obtained a total accuracy rate of 51% and a total concordance rate of 78%. Although GPT-4
showed improvement with a total accuracy rate of 74% and a total concordance rate of 83%,
it still fell short of both the passing threshold and the average score of 77% achieved by
nephrology examinees [18].

Figure 1. The performance of GPT-3.5, GPT-4, and nephrology examinees on NephSAP and KSAP
test questions.

This comprehensive assessment also highlighted that ChatGPT’s performance varied
notably across different subfields (Figure 2). As we observed, accuracy rates were relatively
lower in areas such as electrolyte and acid–base disorders, glomerular diseases, and renal-
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related bone and stone disorders [18]. These subjects were more likely to require higher-
level cognitive engagement, which ChatGPT is documented to be weaker at performing.
For instance, clinical questions related to electrolyte and acid–base disorders require more
complex calculations. This was also evident in glomerular diseases, where questions
often require a detailed understanding of kidney pathology, physiology, and various
treatment options, spanning a broad range of topics including immunology, genetics, and
pharmacology. These results indicate that the AI model struggles more with tasks requiring
in-depth understanding, analytical skills, and precise calculations.

Figure 2. The performance of GPT-3.5 on test questions related to different nephrology subfields:
GD: glomerular disease; HTN: gypertension; AKI: acute kidney injury; CKD: chronic kidney disease;
KT: kidney transplant; KBSD: kidney-related bone and stone disorders; TICD: tubulointerstitial and
cystic disorders; EABD: electrolytes and acid–base disorders; PHAR: pharmacology.

There has been a surge of interest in examining and discussing the potential practical
uses of ChatGPT in various domains, which has mostly focused on its impact on medical ed-
ucation, scientific research, medical writing, ethical considerations, diagnostic or treatment
decision making, automated data analysis, and criticisms [10,19–24], with over 1000 papers
in PubMed dedicated to this subject. Yet, as far as our understanding goes, there is still a
noticeable lack of a review consolidating the potential applications of ChatGPT, specifically
within the field of nephrology, aiming to innovate personalized nephrology care.

2. Potential Applications of ChatGPT in Nephrology

In nephrology, mastering the core principles and having access to appropriate datasets
are vital elements for optimizing personalized patient outcomes and facilitating substantial
research contributions. The following discussion will focus on the practical implications
of integrating ChatGPT into nephrological clinical settings, as shown in (Figure 3). It is
important to note that the GPT Builder represents a key feature of ChatGPT models [25].
One of the most significant advantages of the GPT Builder is its user-friendly interface,
which does not require extensive programming knowledge. This accessibility means that
nephrologists, researchers, and healthcare providers can directly involve themselves in
the development and adaptation of AI models to suit their specific clinical and research
requirements. The GPT Builder not only simplifies the creation and configuration of
GPT models but also ensures that these models are more aligned with the specific needs
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of nephrology, thereby maximizing their effectiveness and utility in both clinical and
research settings.

Figure 3. Potential applications of ChatGPT in the field of nephrology.

2.1. Integration of ChatGPT with Nephrology Datasets
2.1.1. Current Datasets in Nephrology

Electronic health records (EHRs) have revolutionized healthcare by providing a com-
prehensive digital repository of patient information [26]. In nephrology, EHRs capture clin-
ical data related to kidney health, including laboratory results, imaging studies, medication
history, and progress notes. EHRs offer several advantages, such as real-time availability of
patient data, facilitating clinical decision making, and supporting research endeavors. By
harnessing the wealth of information stored within EHRs, researchers and clinicians can
conduct retrospective analyses, identify patterns, and generate evidence-based guidelines
for optimal management of kidney diseases.

Besides EHRs, several datasets specifically curated for nephrology research also pro-
vide valuable information on patient characteristics, disease profiles, treatment modalities,
and outcomes [27]. Examples of widely used nephrology datasets (Figure 4) include the
United States Renal Data System (USRDS), the United Network for Organ Sharing (UNOS),
the Organ Procurement and Transplantation Network (OPTN), and the Nephrotic Syn-
drome Study Network (NEPTUNE). In addition to these databases in the United States,
other countries worldwide also have big datasets within nephrology for researchers, such
as the European Renal Association-European Dialysis and Transplant Association (ERA-
EDTA) Registry, the National Kidney Disease Surveillance Program in Ireland, the surveil-
lance project on CKD management in Canada, and the China Kidney Disease Network
(CK-NET). These datasets offer valuable insights into diverse aspects of kidney disease,
such as CKD progression, dialysis outcomes, and kidney transplantation.
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Figure 4. Overview of the datasets available for nephrology research.

2.1.2. Implications for ChatGPT Integration

While nephrology data sources offer immense potential, they are not without chal-
lenges and limitations. First and foremost is how to manage, handle, and process such a
great amount of data that increased rapidly over time. Data quality and completeness can
also be a significant concern. Inaccurate or missing data elements may limit the validity
and generalizability of research findings. Furthermore, data interoperability and standard-
ization issues across different healthcare systems can pose challenges in data integration
and analysis.

Machine learning and other AI techniques possess the ability to handle intricate
datasets and vast numbers of variables, surpassing the capabilities of classical statistical
methods [28]. By leveraging AI tools like ChatGPT, the management of databases becomes
significantly more feasible [29]. ChatGPT can be specifically fine-tuned to operate with
a particular dataset and generate commands capable of executing various operations on
that database. When incorporating ChatGPT or any other AI tool into nephrology data,
it is essential to acknowledge and tackle potential biases and limitations associated with
the model. Language models heavily rely on their training data, which can introduce
inherent biases.

However, when applied appropriately, using ChatGPT for database management
offers several advantages. Firstly, it saves valuable time and effort by automatically gener-
ating complex queries and commands, eliminating the need for manual and error-prone
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writing. Additionally, the fine-tuned model can be seamlessly integrated into larger applica-
tions, such as chatbots, enabling users to interact with the database using natural language.
To ensure the accuracy and reliability of results, it is crucial to thoroughly evaluate and
validate ChatGPT-generated outputs against expert knowledge and diverse patient popula-
tions. This evaluation helps mitigate potential biases. By addressing these challenges and
leveraging available data effectively, researchers and healthcare professionals can lead to
significant advancements in nephrology practice.

2.2. Applying ChatGPT in Nephrology Diagnostics

Accurate diagnosis is crucial for effective treatment and patient well-being. Human
error can impede precise diagnostics due to the complexity and cognitive challenges of
interpreting medical information. The advent of AI and natural language processing (NLP)
technologies offers promising opportunities to revolutionize diagnostics [30].

2.2.1. Integration of CDSS with ChatGPT in Nephrology

Clinical decision support systems (CDSSs) are computer-based tools designed to assist
healthcare professionals in making clinical decisions and providing patient care [31,32].
These systems utilize patient-specific data, medical knowledge, and algorithms to pro-
vide recommendations, alerts, and reminders at the point of care. Although CDSSs offer
numerous advantages, they also come with some drawbacks [31]. For instance, CDSSs
can disrupt clinician workflows, especially in the case of stand-alone systems. Excessive
and inappropriate alerts can burden clinicians with additional verification tasks and result
in alert fatigue. Limited technological proficiency can hinder the effective utilization of
CDSSs. A study indicated that ChatGPT-generated suggestions have the potential to serve
as a valuable complement in the optimization of CDSS alerts [22,33]. They could play a
significant role in assisting experts in developing their own suggestions for enhancing
CDSS effectiveness.

Additionally, many CDSSs lack transportability and interoperability, limiting their
seamless integration into existing systems. While ChatGPT has limited ability to directly
execute specific algorithms, it plays a valuable role in facilitating algorithm design for
intelligent CDSS at the textual level [34]. One key aspect of integrating ChatGPT with CDSS
is the seamless integration of the language model into the existing CDSS infrastructure.
To optimize integration, ChatGPT should undergo fine-tuning specifically for nephrology-
related tasks and queries. Real-time data integration from EHRs is also essential in the
CDSS-ChatGPT system. By accessing up-to-date patient information such as laboratory
results, medication history, and clinical notes, ChatGPT can generate more precise recom-
mendations and assist clinicians in making informed decisions. Moreover, the integration
can enhance clinical education and knowledge sharing by providing access to relevant
literature, clinical guidelines, and case studies.

2.2.2. Development of ChatGPT Diagnostic Model for Kidney Disease

Building a ChatGPT diagnostic model specifically for kidney disease classification
involves several crucial steps and considerations. Nephrology experts and data scientists
need to collaborate to gather and curate diverse data from various sources like EHRs. These
data include a wide range of kidney diseases, their associated symptoms, and relevant
diagnostic criteria, as well as individual patient information (e.g., demographics, medical
histories, laboratory results, imaging findings, and diagnostic outcomes). The dataset can
be used to train ChatGPT to learn the relationships between input features and the corre-
sponding kidney disease classifications, thus recognizing patterns and making accurate
predictions. During the training process, the model’s performance is evaluated and ad-
justed by partitioning the dataset into training and validation subsets and further enhanced
through techniques like transfer learning and fine-tuning. This ChatGPT diagnostic tool
has the potential to assist healthcare providers in accurately identifying and classifying
various kidney diseases, contributing to timely and effective treatment decisions [35].
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2.2.3. Assessing Performance of ChatGPT in Nephrology Diagnostics

Evaluating the performance, including the accuracy and repeatability, of ChatGPT
in nephrology diagnostics is crucial for assessing its reliability for clinical use. During
an assessment involving a typical clinical scenario of acute organophosphate poisoning,
ChatGPT-3 demonstrated commendable performance in addressing all inquiries, including
making a diagnosis [36]. In a research study, the diagnostic accuracy of ChatGPT-3 was
evaluated for ten common clinical cases with typical symptoms. The study showed that
ChatGPT generated differential diagnosis lists with a high accuracy of 93%, although this
accuracy rate was slightly lower compared to the physicians’ rate of 98% [37]. In another
examination focused on evaluating the diagnostic capabilities of ChatGPT-3.5 in relation to
kidney disease, the system exhibited an impressive accuracy rate of 91%, outperforming
human physicians in both accuracy and speed [38]. ChatGPT, particularly GPT-4, showed
the potential to provide faster responses to routine clinical laboratory questions. The study
reported a correct rate of 76% (completely correct 51% and partially correct 23%), but the
correct answers were most frequently seen in questions related to basic medical or technical
knowledge [39].

Several important considerations should be taken into account during these evalu-
ations to ensure robust and valid results. Firstly, a benchmark must be established for
comparison. This can be achieved by using existing diagnostic methods or expert opinions
as a reference standard. By comparing ChatGPT’s diagnostic performance against estab-
lished standards, we can evaluate its accuracy, sensitivity, specificity, and overall diagnostic
usefulness. To ensure generalizability and minimize bias, a comprehensive evaluation
should involve a diverse range of patient cases covering various nephrological conditions
and different patient demographics. Secondly, to quantitatively evaluate and compare the
diagnostic accuracy of ChatGPT, it is recommended to employ performance metrics such as
precision, recall, F1 score (combination of the precision and recall scores), and receiver op-
erating characteristic (ROC) curves. These metrics offer objective measures of the model’s
performance, enabling a comprehensive assessment of its strengths and limitations [40,41].
Prospective studies can be conducted to compare the diagnostic accuracy and treatment
decisions made with and without the assistance of ChatGPT.

2.3. Applying ChatGPT in Treatment Planning
2.3.1. ChatGPT-Powered Treatment Recommendations and Personalized Care

A significant benefit of incorporating ChatGPT into treatment strategies lies in its capac-
ity for crafting individualized medical guidance [42–44]. Research shows that ChatGPT-4
has demonstrated proficiency in pinpointing medications adhering to established guide-
lines for treating advanced solid tumors [45]. By processing diverse patient data, including
medical histories, lab test results, and coexisting health issues, ChatGPT can formulate
personalized treatment options. These may involve specific drug dosages, recommended
dietary changes, alterations in daily habits, and tailored monitoring protocols [46]. Right
now, there exist two main types of leading chatbot models. One type revolves around
OpenAI’s versions like ChatGPT-3.5, ChatGPT-4, and Bing Chat. Microsoft introduced
Bing Chat in February 2023 as part of its search engine, utilizing OpenAI’s GPT-4 model for
conversational AI features [47]. The other notable model is Bard AI from Google, which is
based on the Pathways Language Model 2 (PaLM2), a transformer language model [48].
In a recent study evaluating the capability of ChatGPT-3.5, ChatGPT-4, Bard AI, and Bing
Chat in discerning potassium and phosphorus content in foods for CKD patients, distinct
levels of accuracy were observed (Figure 5). Using 240 food items from the Mayo Clinic
Renal Diet Handbook, each model categorized foods as high or low in potassium and
phosphorus, and their results were compared to the handbook’s guidelines. ChatGPT-4
led in potassium identification with 81% accuracy, excelling notably over ChatGPT-3.5,
which had a 66% accuracy rate. In phosphorus identification, Bard AI achieved perfect
accuracy, while ChatGPT-4 lagged with 77%. These findings highlight the burgeoning role
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of AI in facilitating renal dietary planning, though improvements are needed for maximum
effectiveness.

Figure 5. The performance of the four AI models in classifying food items based on their potassium
and phosphorus content.

2.3.2. ChatGPT-Powered Decision Support for Medication Management

Medication management is a critical aspect of nephrology care, considering the com-
plexity of drug regimens and the potential for medication-related complications. By integrat-
ing with EHRs and leveraging its vast knowledge base, ChatGPT can assist in drug–drug
interaction checks, dosage adjustments based on renal function, and adherence monitoring.
Furthermore, ChatGPT can facilitate communication between healthcare professionals and
patients regarding medication-related queries, side effects, and treatment goals. The utiliza-
tion of ChatGPT in a case report regarding a delayed diagnosis for a 27-year-old woman
who reported chest pain and shortness of breath to the emergency department suggests
its potential for clinical decision making, including improved diagnostic accuracy and ad-
dressing human factors contributing to medical errors [49]. Another study was conducted
to see how well ChatGPT can answer medical questions [50]. The authors tested it with
a case of a 22-year-old man who has a condition called treatment-resistant schizophrenia
(TRS) and compared ChatGPT’s recommendations for assessment and treatment with the
current standards used by doctors. The results showed that ChatGPT correctly identified
the patient’s condition as TRS. It also suggested a thorough examination to find out the
possible medical and psychiatric causes of the symptoms. Additionally, ChatGPT provided
a comprehensive treatment plan, including medication and non-medication options, which
matched the usual care provided by healthcare professionals for TRS.

2.4. Integrating Patient Education and Counseling with ChatGPT

Patient education and counseling are critical components of healthcare, aimed at
empowering patients to actively participate in their treatment and manage their condition
effectively. ChatGPT can serve as a valuable tool for integrating patient education and
counseling into the nephrological treatment planning process [51], such as enhancing
kidney transplant care [52].

Firstly, ChatGPT can provide accessible and personalized educational materials to
patients. With its vast knowledge base, ChatGPT can offer comprehensive information
on kidney diseases, treatment options, lifestyle modifications, and self-care practices [53].
Patients can engage in interactive conversations with ChatGPT, asking questions and
seeking clarification on complex medical concepts. By delivering information in a con-
versational and user-friendly manner, ChatGPT can enhance patient comprehension and
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engagement with educational content. A study indicated that ChatGPT answered all
queries well and offered good explanations of the underlying reasons regarding a typi-
cal clinical toxicology case of acute organophosphate poisoning retrieved from an online
presentation [36]. The accuracy and reproducibility of ChatGPT were also examined in an-
swering questions regarding knowledge, management, and emotional support for cirrhosis
and hepatocellular carcinoma. While approximately 75% of the questions were answered
with reliable information, the information regarding treatment recommendations such as
decision-making cut-offs and treatment durations did not always align with the United
States guidelines [54,55].

Secondly, ChatGPT can support counseling sessions by providing empathetic and
supportive interactions. Patients living with kidney disease often face emotional and
psychosocial challenges, including anxiety, depression, and uncertainty about the future.
ChatGPT can act as a virtual companion, offering emotional support and guidance during
counseling sessions. Patients can express their concerns, fears, and frustrations to ChatGPT,
which can respond with empathy, validation, and practical advice. By facilitating open
and non-judgmental conversations, ChatGPT can help patients navigate their emotional
well-being and improve their overall quality of life. A cross-sectional study showed that
ChatGPT generated quality and empathetic responses to patient questions posed in an
online forum [56]. Moreover, ChatGPT can also help patients set realistic goals, develop
personalized action plans, and track their progress. By providing reminders, motivational
messages, and accountability, ChatGPT can support patients in making sustainable lifestyle
changes and adhering to their prescribed treatment regimens [46]. The interactive nature
of ChatGPT allows for ongoing communication, enabling patients to seek guidance and
discuss challenges they encounter in their self-management journey.

2.5. Streamlining Diagnosis, Treatment Coding, and Billing with ChatGPT

ChatGPT presents the opportunity to enhance productivity and reduce expenses,
thereby streamlining overall operations in healthcare services [57]. Proper coding and
billing are essential for documenting diagnoses, procedures, and services provided to
patients accurately. They enable healthcare providers to communicate essential information
to payers, government agencies, and other stakeholders involved in reimbursement pro-
cesses. Moreover, accurate coding and billing contribute to transparent and ethical financial
practices in healthcare settings.

2.5.1. Enhancing ICD-10 Diagnosis Coding with ChatGPT

ICD-10 coding is a complex process that requires adherence to specific guidelines and
conventions for accurate diagnosis coding. The extensive range of kidney diseases, their
variations, and associated comorbidities pose challenges in selecting the appropriate diag-
nosis codes. A study was conducted to develop an automated ICD-10 coding system using
a deep neural network based on supervised learning. The researchers’ model demonstrated
a notable improvement in the F1 score; however, it did not result in a reduction in the
time required for disease coders to perform coding tasks [58]. ChatGPT’s NLP capabilities
enable it to analyze patient information, laboratory results, imaging reports, and clini-
cal notes in real-time, and provide immediate suggestions for diagnosis codes. Through
continuous feedback and suggestions, ChatGPT can enhance coding accuracy, reduce the
need for retrospective code correction, and minimize the potential for claim denials or
payment delays. ChatGPT’s real-time coding assistance can also save time for healthcare
providers, allowing them to focus more on patient care and reducing the administrative
burden associated with coding tasks [59].
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2.5.2. Enhancing Treatment Coding with ChatGPT

Current procedural terminology (CPT) codes provide a standardized system for iden-
tifying and reporting medical procedures and services. Nephrologists encounter various
procedures in their practice, such as dialysis, kidney transplantation, vascular access place-
ment, and kidney biopsies. Each procedure has a specific CPT code associated with it,
reflecting the nature and complexity of the intervention. ChatGPT can provide coding
support for these procedures by offering guidance on the appropriate CPT codes, docu-
mentation requirements, and coding modifiers that may be necessary [10]. For example, in
the case of dialysis, ChatGPT can assist nephrologists in selecting the correct CPT codes
for various dialysis modalities (e.g., hemodialysis, peritoneal dialysis, etc.) and associated
services (e.g., vascular access management, dialysis catheter insertion, etc.). Similarly, in
kidney transplantation, ChatGPT can aid in coding the transplant procedure, immuno-
suppressive therapy, and post-transplant follow-up care. Moreover, ChatGPT can offer
real-time coding suggestions, ensuring that the appropriate CPT codes are assigned for the
procedures performed. This can reduce the potential for coding errors and minimize the
need for retrospective code corrections.

2.5.3. Improving Billing Efficiency with ChatGPT

ChatGPT can analyze the clinical data within the EHR and assist in generating accurate
billing codes, such as diagnosis-related group (DRG) codes, CPT codes, and evaluation
and management (E/M) codes. This integration eliminates the need for manual code
selection and reduces the potential for coding errors, leading to improved billing accuracy
and efficiency [60]. In addition, this integration can offer the potential for enhanced
communication between healthcare providers and insurance companies [60]. Through the
generation of precise and standardized codes, the AI model enables smoother information
exchange, leading to expedited claim processing and reimbursements. Furthermore, the
integration of ChatGPT into billing processes can maximize revenue cycle efficiency by
automating repetitive billing tasks, such as code generation, charge capture, and claims
submission and identifying potential coding and billing discrepancies. This not only
saves time but also reduces the risk of errors and improves overall billing accuracy [60].
Consequently, this can alleviate the administrative workload on healthcare providers,
enabling them to dedicate more attention to patient care.

Utilizing ChatGPT and similar AI tools built on extensive large language models
(LLMs) provides remarkable assistance in programming tasks, although their application
necessitates careful consideration [61]. It is crucial to assess the influence of ChatGPT
on coding accuracy, billing efficiency, and reimbursement to effectively determine its
effectiveness in the field of nephrology practice.

2.6. Enhancing Effective Communication with ChatGPT

Effective communication is a cornerstone of quality healthcare delivery. Written
communication plays a crucial role in conveying important information, facilitating collab-
oration, and advocating for patients. By utilizing ChatGPT, the field of medical writing has
the potential to undergo a revolutionary transformation [62]. A systematic review indicated
that the benefits of ChatGPT were most frequently cited in the context of academic and/or
scientific writing, such as efficiency and versatility in writing with text of high quality,
improved language, and good readability [10].

2.6.1. Significance of Written Communication in Nephrology

Written communication serves as a vital means of transmitting crucial information
in nephrology practice [63]. It enables nephrologists to deliver comprehensive and well-
organized messages, ensuring clarity and minimizing misinterpretation [64]. Letters are
particularly valuable in conveying complex medical information to patients, referring
providers, and payers, promoting understanding, collaboration, and continuity of care.
Well-documented letters serve as a permanent record of patient assessments, treatment
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plans, and progress updates. These records not only support clinical decision making but
also provide a legal and professional framework for healthcare providers to justify their
actions and decisions.

2.6.2. Utilizing ChatGPT for Crafting Patient Correspondence

When writing letters to patients, it is crucial to use language that is easily understand-
able and free of medical jargon. In the United States, it is recommended that patient-facing
health literature be written at or below a sixth-grade level [65]. In addition, patient letters
should provide educational resources (i.e., websites, brochures, or educational videos) to
empower patients in self-management and address common questions and concerns that
patients may have regarding their condition or treatment. ChatGPT can help craft patient-
friendly letters to explain the diagnosis, treatment plans, and lifestyle recommendations
using plain language and visual aids whenever possible. A pilot study showed that it is
possible to generate clinic letters with a high overall correctness and humanness score with
ChatGPT in a series of different clinical communication scenarios that covered the remit of
a clinician’s skin cancer practice. Furthermore, these letters were written at a reading level
that is broadly similar to current real-world human-generated letters [66,67].

2.6.3. Leveraging ChatGPT for Communicating with Referring Providers

When communicating with referring providers, referral letters play a vital role in
ensuring a seamless transition of care. Referral letters should provide a concise sum-
mary of the patient’s medical history, current condition, and the reason for referral and
include relevant test results, imaging findings, and any specific questions or concerns that
require attention.

In the context of referring letters, integrating ChatGPT can offer several benefits in
updating referring providers on patient progress and recommendations. Firstly, ChatGPT
can be utilized to automatically generate concise summaries of patient progress, extracting
key information from EHRs and clinical notes. Secondly, ChatGPT can seamlessly integrate
with CDSS to provide evidence-based treatment suggestions and recommendations. This
integration ensures that referring providers receive accurate and up-to-date information
regarding the patient’s progress. The suggestions can be included in the follow-up and
consultation letters, ensuring that referring providers are informed about the most appro-
priate management strategies based on the latest medical knowledge. Thirdly, ChatGPT
can assist in enhancing the language and clarity of the follow-up and consultation letters.
By refining the language, ChatGPT can help nephrologists convey complex medical infor-
mation in a more understandable and concise manner, facilitating better communication
and comprehension for referring providers. In addition, ChatGPT can provide real-time
assistance and feedback to nephrologists as they draft follow-up and consultation letters.
By analyzing the content being written, ChatGPT can suggest additional details to include,
prompt for clarification, or identify potential gaps in information. This interactive feedback
helps nephrologists ensure that the letters are comprehensive and accurate before finalizing
and sending them to referring providers. Furthermore, ChatGPT can support the imple-
mentation of shared decision making between nephrologists and referring providers. It can
provide educational resources and relevant literature to facilitate discussions about treat-
ment options, potential risks and benefits, and patient preferences. Ultimately, ChatGPT
promotes a patient-centered approach and strengthens the therapeutic alliance between
nephrologists and referring providers.

2.6.4. Utilizing ChatGPT for Medication Approval Appeals

Medication approval appeals are essential when patients require specific medications
that may not be initially approved by insurance providers or healthcare organizations.
Writing medication approval appeal letters is a critical aspect of nephrology practice,
as it involves advocating for patients’ therapeutic needs and ensuring that patients re-
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ceive timely access to the medications required for managing their kidney disease and
related conditions.

ChatGPT can provide valuable assistance in writing medication approval appeal
letters. It can offer healthcare providers access to a vast array of medical literature, research
articles, and clinical guidelines, enabling them to incorporate the most up-to-date and
relevant information into their appeals. Additionally, ChatGPT can help refine the language,
suggest alternative phrases, and ensure that the appeal letter adheres to the conventions of
academic writing. By leveraging ChatGPT’s capabilities, healthcare providers can enhance
the persuasiveness and effectiveness of their medication approval appeals, ultimately
advocating for patients’ therapeutic needs.

2.7. Enhancing Nephrology Research with ChatGPT
2.7.1. Leveraging ChatGPT for Data Analysis

ChatGPT, as a powerful language model, can be used to gather data from large
numbers of patients and extract valuable insights from unstructured textual data sources
such as EHRs, clinical trial reports, and the scientific literature, streamlining the process of
data collection and analysis [19,68]. This can be particularly useful in longitudinal studies,
where ChatGPT can be used to track patient outcomes over time. One specific application
of ChatGPT in nephrology research is the analysis of EHRs. By training ChatGPT on
large-scale EHR datasets, researchers can develop models that can extract and analyze
specific data elements relevant to nephrology, such as kidney function indicators, disease
progression markers, and treatment outcomes. This enables researchers to gain deeper
insights into the factors influencing kidney diseases, develop predictive models, and
identify potential interventions for improved patient outcomes.

In addition, ChatGPT can generate commands and syntax for various statistical soft-
ware packages, enabling researchers, even those with limited programming experience, to
explore and analyze their data efficiently.

2.7.2. Enhancing Articles Writing with ChatGPT

ChatGPT excels in accelerating the writing process, generating outlines, incorporating
additional details, and enhancing the overall writing style [69–75]. The assistance of
ChatGPT can be instrumental in identifying discussion points and clarifying language for
the readers of medical literature reports [76,77]. However, it is important to acknowledge
its limitations. As a precautionary measure, it is crucial to carefully review and edit the
generated text to ensure that it adheres to ethical standards, avoiding issues like plagiarism
and fabrication.

2.7.3. Assisting Nephrology Literature Analysis with ChatGPT

The vast amount of publications makes it challenging for researchers to keep up with
the latest findings and integrate the existing knowledge effectively. Traditional literature re-
view methods are time consuming and prone to human error. ChatGPT can aid in literature
mining and analysis by automatically extracting relevant information from scientific arti-
cles, summarizing key findings and evidence, and identifying potential biases of relevant
studies and relationships between different concepts. By leveraging ChatGPT’s capabilities,
researchers can streamline the literature review process, identify knowledge gaps, and
accelerate the discovery of new insights [78]. Its ability to handle large volumes of data
and extract meaningful insights makes it a valuable tool for conducting rigorous systematic
reviews and meta-analyses.

We conducted an initial evaluation of ChatGPT’s performance in recognizing refer-
ences related to literature reviews in the field of nephrology [79]. Our results showed that
out of a total of 610 references, only 62% were accurately sourced by ChatGPT, while 31%
were fabricated references, and 7% were incomplete citations (Figure 6).

Furthermore, approximately 70% of the provided links and half of the Digital Object
Identifiers (DOIs) were found to be inaccurate (Figure 7). Notably, when we examined
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specific topics such as electrolyte balance, hemodialysis, and kidney stones, we found that
over 60% of the references were either incorrect or misleading, often containing unreliable
authorship and links.

Figure 6. Overall Reference Reliability by ChatGPT 3.5.

Figure 7. Inaccurate Components in References by ChatGPT 3.5.
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Moreover, we recently evaluated the citation accuracy of AI tools, specifically ChatGPT,
Bing Chat, and Bard AI, in the field of nephrology [80]. The evaluation involved generating
prompts for each tool to provide 20 references in Vancouver style across 12 topics, followed
by validation through PubMed, Google Scholar, and Web of Science. The findings reveal
that Bard AI was the least accurate, providing only 3% accurate references along with a
high percentage of fabricated (63%) and incomplete (11%) citations (Figure 8). Bing Chat
performed marginally better but was still inadequate, with 30% accurate, 49% inaccurate,
13% fabricated, and 8% incomplete references. The most frequent error across platforms
was incorrect DOIs.

Figure 8. The radar plot provides a visual comparison of the citation accuracy of ChatGPT 3.5,
BingChat, and Bard AI as of 1 August 2023.

In light of our findings, it is advisable not to solely rely on ChatGPT for identifying
references to literature reviews in the nephrology field at this time. Therefore, as with any
automated tool, evaluating the reliability and accuracy of ChatGPT for literature review is
of utmost importance. Researchers and developers need to assess its performance against
established benchmarks and human reviewers. This involves conducting comparative
studies to evaluate its ability to identify relevant articles, extract key information accurately,
and provide reliable summaries. Additionally, assessing the robustness of ChatGPT in
handling different study designs, languages, and data sources is crucial for determining its
generalizability and applicability in the field of nephrology.
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2.8. Enhancing Nephrology Education with ChatGPT

The successful completion of examinations like the USMLE by ChatGPT brings at-
tention to certain shortcomings within medical education, particularly its heavy reliance
on memorization rather than the analysis of intricate health and disease models. This
accomplishment serves as a crucial reminder to re-evaluate the methods used to train and
evaluate our medical students [81]. It is important to acknowledge that ChatGPT lacks
the nuanced reasoning abilities possessed by humans. Consequently, it is imperative to
recognize that AI can never replace the invaluable role played by nurses, doctors, and other
healthcare professionals on the frontlines. However, there is no denying that AI and LLMs
will revolutionize all aspects of our work, spanning from research and writing to medical
diagnosis, treatment, and education across various fields [81–84].

2.8.1. ChatGPT as an Educational Tool: Facilitating Learning and Knowledge
Dissemination

With its ability to generate human-like responses and engage in interactive conver-
sations, ChatGPT can simulate real-time interactions between students and virtual tutors
or instructors. This enables learners to ask questions, seek explanations, and receive in-
stant feedback, thereby enhancing their understanding of complex nephrological concepts.
Moreover, ChatGPT can adapt its responses based on the learner’s level of knowledge,
providing personalized and tailored explanations to address individual learning needs.

Traditional educational materials, such as textbooks and lectures, may have limitations
in terms of availability and accessibility. However, ChatGPT can be deployed as a web-
based or mobile application, allowing learners to access educational content anytime and
anywhere. Learners can engage in interactive discussions, explore case studies, and receive
guidance on nephrology topics, ultimately fostering a self-directed and flexible learning
experience. Furthermore, ChatGPT can also assist in knowledge dissemination within the
nephrology community. It can be used to develop virtual educational platforms where
nephrology experts can share their expertise, engage in discussions, and disseminate the
latest research findings. By leveraging ChatGPT’s natural language generation capabilities,
educational content such as question banks, tutorials, case studies, and guidelines can be
generated and shared with a wider audience [85]. This not only promotes collaboration
and knowledge exchange among healthcare professionals but also ensures that the most
up-to-date information is readily available to support evidence-based practice.

2.8.2. Integration of ChatGPT into Continuing Medical Education (CME) Programs

By incorporating ChatGPT into CME platforms, clinicians can access up-to-date re-
search findings, summaries, and interactive discussions on relevant nephrology topics.
This integration allows for personalized and on-demand learning experiences, enabling
clinicians to stay informed about the latest advancements in the field. Moreover, ChatGPT
can serve as a virtual assistant during CME activities, answering questions, providing
clarification, and facilitating case-based discussions. The ability of ChatGPT to optimize
and summarize the medical conference panel recommendations was assessed in the first
Pan-Arab Pediatric Palliative Critical Care Hybrid Conference [86]. The results suggest
that ChatGPT-4 effectively facilitated complex do-not-resuscitate (DNR) conflict resolu-
tion by summarizing key themes such as effective communication, collaboration, patient-
and family-centered care, trust, and ethical considerations and demonstrated its potential
benefits for enhancing critical thinking among medical professionals [86].

3. Ethical and Legal Implications of ChatGPT Integration in Nephrology

Adherence to secure data exchange protocols and privacy regulations is crucial for
ensuring patient confidentiality during clinical practices [87,88]. It is important to identify
and address any potential ethical or regulatory concerns regarding the use of ChatGPT. At
present, the norms and protocols governing the clinical implementation of AI are inade-
quately defined or non-existent [89]. Even so, the integration of ChatGPT in nephrology
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firstly requires compliance with existing regulatory frameworks and ethical guidelines,
such as the Health Insurance Portability and Accountability Act (HIPAA) in the United
States. Secondly, obtaining informed consent is imperative to ensuring that patients will-
ingly consent to the utilization of AI-assisted healthcare (i.e., diagnostics or treatment
planning) and have the autonomy to decline participation if they choose [90] (Figure 9).

Figure 9. Ethical and legal implications of ChatGPT integration in nephrology.

Additionally, integrating ChatGPT in nephrology raises questions about accountability
and liability in decision-making processes [91,92]. While ChatGPT can provide valuable in-
sights and recommendations, the ultimate responsibility for patient care lies with healthcare
providers. Clear guidelines should be established to outline the roles and responsibilities
of healthcare providers when using ChatGPT in clinical practice. It is crucial to define
the extent to which healthcare providers rely on ChatGPT recommendations and how
they integrate these recommendations with their own clinical expertise and judgment.
Mechanisms for tracking and documenting ChatGPT’s contributions to clinical decision
making should be established to ensure transparency and accountability.

Moreover, the integration of ChatGPT should aim to enhance, rather than replace,
the expertise of nephrologists. Healthcare providers must maintain an active role in inter-
preting ChatGPT outputs, critically evaluating recommendations, and making informed
decisions based on the patient’s unique clinical context. Nephrologists should continuously
update their knowledge and skills to effectively utilize ChatGPT as a supportive tool. The
ethical integration of ChatGPT requires striking a balance between AI support and human
expertise [24,93], ensuring that patients receive the highest quality of care that combines
the benefits of AI technology and the human touch.
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4. Future Directions and Challenges in Nephrology with ChatGPT

ChatGPT explores the latest developments in NLP, machine learning, and AI algorithms
that have the potential to revolutionize nephrology practice in various ways [10,24,94]. In the
future, collaboration between nephrologists and AI specialists is essential for optimizing the
performance and impact of ChatGPT in nephrology practice, where nephrologists provide
domain expertise and clinical insights while AI specialists contribute technical expertise in
machine learning and NLP. By working together, these professionals can refine ChatGPT’s
algorithms, develop specialized models tailored to nephrology-specific tasks, and integrate
feedback mechanisms for continuous improvement. Collaboration also enables the cus-
tomization of ChatGPT to address the unique challenges and complexities of nephrology,
ultimately enhancing its clinical utility and effectiveness to provide personalized patient
care. Additionally, we emphasize the importance of developing strong protocols for data
collection, storage, and sharing to protect privacy and guarantee the security of data [95,96].
Furthermore, regulatory bodies, such as medical boards and professional associations,
should start to establish the guidelines and ensure that ChatGPT applications meet the
required standards for safety, accuracy, and reliability.

5. Conclusions

ChatGPT holds immense potential to revolutionize nephrology practice by facilitating
clinical decision making, enhancing patient communication, streamlining research, and
improving operational efficiency. By embracing a multidisciplinary approach, fostering
collaboration between nephrologists and AI specialists, and prioritizing ethical consid-
erations, the future of ChatGPT in nephrology appears promising. Continued research,
development, and evaluation will shape the evolution of ChatGPT, leading to its wider
adoption and integration into routine nephrology care and ultimately improving patient
outcomes and advancing personalized patient care in the field. However, it is essential
to acknowledge that with the ongoing evolution of AI, it becomes particularly vital for
the upcoming generation of physicians to adeptly navigate these challenges. They must
weigh the potential benefits and risks to effectively determine how extensively AI should
be integrated into medical practice.
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Abstract: In modern eye care, the adoption of ophthalmology chatbots stands out as a pivotal tech-
nological progression. These digital assistants present numerous benefits, such as better access
to vital information, heightened patient interaction, and streamlined triaging. Recent evaluations
have highlighted their performance in both the triage of ophthalmology conditions and ophthal-
mology knowledge assessment, underscoring their potential and areas for improvement. However,
assimilating these chatbots into the prevailing healthcare infrastructures brings challenges. These
encompass ethical dilemmas, legal compliance, seamless integration with electronic health records
(EHR), and fostering effective dialogue with medical professionals. Addressing these challenges
necessitates the creation of bespoke standards and protocols for ophthalmology chatbots. The horizon
for these chatbots is illuminated by advancements and anticipated innovations, poised to redefine
the delivery of eye care. The synergy of artificial intelligence (AI) and machine learning (ML) with
chatbots amplifies their diagnostic prowess. Additionally, their capability to adapt linguistically and
culturally ensures they can cater to a global patient demographic. In this article, we explore in detail
the utilization of chatbots in ophthalmology, examining their accuracy, reliability, data protection,
security, transparency, potential algorithmic biases, and ethical considerations. We provide a compre-
hensive review of their roles in the triage of ophthalmology conditions and knowledge assessment,
emphasizing their significance and future potential in the field.

Keywords: ophthalmology; artificial intelligence; machine learning; language processing; large
language models; chatbot; ChatGPT

1. Introduction to the Utilization of Chatbots for Ophthalmology

1.1. Overview of Chatbot Technology

The rise of chatbot technology, as showcased by industry leaders like ChatGPT by
OpenAI, Google’s Bard AI, Microsoft’s BingChat, and Anthropic’s Claude AI, has been a focal
point of interest across myriad sectors, notably within the healthcare domain [1–6]. These
chatbots are applications powered by artificial intelligence, meticulously designed to simulate
human conversation through either text or voice interactions [4,7–10]. Utilizing cutting-edge
natural language processing algorithms, these advanced systems can discern and address
user inquiries with precision, delivering bespoke and pertinent information [1,2,11].

In the context of ophthalmology, chatbots introduce a fresh and innovative approach to
delivering healthcare services, engaging with patients, and providing support to healthcare
professionals [12–14]. Through harnessing the potential of chatbot technology, ophthalmol-
ogy practices have the opportunity to augment accessibility, operational efficiency, and
overall patient experience. For instance, integrating chatbots into their systems enables
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ophthalmology practices to deliver round-the-clock support, address common inquiries re-
garding eye health, facilitate appointment scheduling, and even offer preliminary guidance
concerning eye conditions.

In the expansive landscape of ophthalmology, ChatGPT and chatbots of its ilk have
heralded an era of uninterrupted communication, instantaneous information retrieval, and
tailor-made interactions. These tools equip patients with the means to secure immediate
help, while empowering healthcare practitioners to dispense proficient support. In stream-
lining the triage of patient queries, providing educational materials, and shepherding
patients through both pre- and post-operative care directions, these chatbots have carved
an indispensable niche for themselves. A clear demonstration of the influence of ChatGPT,
which was developed by OpenAI, is found in the domain of medical pedagogy. Within this
scope, it functions as an enhancer of search efficiency and a rectifier of manuscript inconsis-
tencies. ChatGPT has emerged as an invaluable asset, especially in accessing specialized
literature germane to renal transplant care. Equally impactful are other AI-driven conversa-
tional platforms, such as Microsoft’s BingChat and Google’s Bard AI. These technologically
adept interfaces excel in enhancing search capabilities, remedying typographical and gram-
matical oversights, and enhancing the scrutiny of academic content [15]. Bard AI, with its
rich foundational training in a myriad of texts and coding paradigms, is poised to craft
context-sensitive textual interpretations [16]. This prowess positions it as an invaluable
asset in healthcare, ranging from buttressing decisions anchored in evidence to honing the
quality of communication (Figure 1).

Figure 1. Examples of notable AI chatbots.
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The incorporation of chatbot technology in ophthalmology represents a promising
advancement, capable of reshaping the provision of eye care by improving accessibility,
operational efficiency, and patient satisfaction. Utilizing the capabilities of chatbots enables
ophthalmology practices to provide a higher standard of care, improve patient outcomes,
and furnish individuals with essential information and support.

The scoping review methodology used in our study has provided a detailed panorama
of the current and potential applications of chatbot technology in ophthalmology, un-
derscoring its role in enhancing patient engagement and improving care delivery. This
comprehensive understanding is vital for formulating strategies that effectively incorporate
chatbots into ophthalmological practices, thereby meeting the dynamic needs of patients
and healthcare professionals in this field.

1.2. The Growing Need for Innovative Solutions in Ophthalmology

As the incidence of eye conditions increases, so does the demand for eye care ser-
vices. This upswing highlights the urgent need for innovative solutions that can enhance
healthcare delivery in the field of ophthalmology. The traditional methods, while effective,
may not be sufficient to cater for the increasing number of patients requiring attention,
especially in a timely manner. This is where technology, particularly chatbots, can make a
significant difference [17,18], Figure 2.

Figure 2. The growing need for innovative solutions in ophthalmology.
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Chatbots have the potential to play a pivotal role in ophthalmology by providing
instantaneous access to information. One of their primary uses lies in patient triage
and initial consultation. By asking a series of targeted questions, chatbots can assist
in determining the urgency of a patient’s condition, thereby helping to prioritize those
who need immediate attention. Additionally, these intelligent systems can automate the
process of scheduling appointments, send timely reminders, and provide pre-appointment
instructions. This ensures that patients are well-prepared for their visit, reducing wait times
and enhancing the overall efficiency of the healthcare system.

Post-operative care is crucial in ophthalmology, especially after procedures like cataract
surgery or LASIK. Chatbots can step in to provide patients with detailed post-operative
care instructions, significantly reducing the risk of complications. Beyond this, they serve
as an invaluable educational tool. Patients can receive information on common eye con-
ditions, preventive measures, and general eye health tips directly from chatbots. This
not only improves awareness but also empowers patients to take proactive steps in their
healthcare journey. Furthermore, for chronic conditions where medication adherence is
crucial, chatbots can send reminders, ensuring consistent medication use.

The integration of chatbots extends beyond basic patient interactions and doctor–
patient consultations. They can be seamlessly integrated with various telemedicine plat-
forms, facilitating a range of services such as medical video consultations for patient benefit,
tele-reporting, administrative medical-health tele-consultancy, and tele-assistance for data
transmission from ambulances to hospitals. This versatility enhances the efficiency and
accessibility of healthcare services, making telemedicine more responsive to patient needs
and healthcare dynamics. This is particularly beneficial in remote areas where immediate
physical consultation might not be feasible. Additionally, chatbots can inform patients
about ongoing research and clinical trials, aiding in participant recruitment and prelimi-
nary data gathering. They can also play a role in gathering feedback post-consultation or
post-surgery, offering ophthalmologists insights into areas for improvement. Lastly, with
multilingual support, chatbots ensure that language barriers do not impede the provision
of quality care, making healthcare more inclusive and accessible.

2. Design and Development of Ophthalmology Chatbots

2.1. Understanding User Needs and Requirements

When designing and developing chatbots for ophthalmology, it is critical to have an
extensive understanding of the unique needs and requirements of users specific to the
ophthalmology practice [19]. This includes considering the particular challenges faced
in ophthalmology and adhering to user-centered design principles to ensure the creation
of effective chatbots. The development process should also incorporate the collection
and analysis of user feedback, to confirm that the chatbot meets the expectations and
requirements of both patients and professionals in the discipline. Importantly, this entails
creating two distinct paths in chatbot development: one tailored for doctors, using scientific
and medical terminologies, and another for patients, employing non-medical, layperson-
friendly language. This bifurcation ensures that the chatbot effectively communicates and
engages with each group according to their specific knowledge levels and communication
preferences (Figure 3).
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Figure 3. Understanding user needs and requirements.

2.1.1. Identifying Key Challenges in Ophthalmology Practice

The practice of ophthalmology is confronted with a variety of unique challenges
that can be effectively addressed through the integration of chatbot technology. One
notable challenge lies in the increasing patient load stemming from the escalating preva-
lence of eye conditions, [17] resulting in longer wait times and limited availability of
consultations [20–22]. Chatbots offer a potential solution to this challenge by providing
automated symptom assessment and triage capabilities, enabling patients to promptly
receive initial guidance concerning their conditions. However, it is crucial to underline that
automatic triage systems have limitations and should not replace professional medical eval-
uation, especially in complex cases. For instance, distinguishing between initial herpetic
keratitis, where cortisone is contraindicated, and conjunctivitis, where cortisone may be
prescribed, requires precise symptom assessment and medical expertise that a chatbot may
not reliably provide. Therefore, while chatbots can assist in preliminary guidance, they
should be used in conjunction with, and not as a substitute for, professional medical advice.

Another significant challenge pertains to patient education. Many eye conditions
necessitate ongoing management and patient compliance, which can be improved through
the provision of effective education and information [23–26]. Ophthalmology chatbots
have the ability to dispense general eye health information, elucidate common ophthalmic
procedures and treatments, and offer guidance regarding pre- and post-operative care. This
empowers patients to take an active role in their eye health, leading to improved adherence
and better treatment outcomes.

2.1.2. User-Centered Design Principles for Chatbot Development

The development of chatbots for ophthalmology necessitates adherence to user-
centered design principles. This approach entails gaining a deep understanding of the
specific needs, preferences, and behaviors of both patients and healthcare professionals
operating within the field of ophthalmology.

Regarding patients, it is essential for the chatbot interface to be intuitive and user-
friendly, featuring clear instructions and prompts, and avoiding complex medical terminol-
ogy. Moreover, visual design elements should be optimized with ophthalmology in mind,
taking into consideration factors such as color contrast, font size, and readability, to ensure
inclusivity and accessibility for users with visual impairments [27].

As for healthcare professionals, the chatbot should be seamlessly integrated into
their workflow. It should provide relevant and concise information, assist in the process
of decision-making, and grant access to reference materials. Additionally, the chatbot
should facilitate tasks such as appointment scheduling and reminders, streamlining the
administrative responsibilities of healthcare professionals.
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2.1.3. Gathering and Analyzing User Feedback

The collection of user feedback plays a critical role in refining and enhancing the
design and functionality of ophthalmology chatbots. User feedback can be obtained
through various channels, such as surveys, interviews, and user testing sessions. This
valuable input provides insights into UX, challenges encountered, and areas in need of
improvement.

The analysis of user feedback enables iterative enhancements of the chatbot’s perfor-
mance. It aids in the identification of common issues, understanding user preferences, and
more importantly, uncovering any gaps in the chatbot’s capabilities. This is achieved by
systematically analyzing feedback for patterns of misunderstandings, incorrect responses,
or inadequate information provided by the chatbot. For instance, if multiple users report
confusion over a particular set of symptoms or express dissatisfaction with the guidance
provided, this indicates a gap in the chatbot’s knowledge or in its ability to interpret user
inputs accurately. Additionally, feedback can highlight areas where the chatbot’s communi-
cation style is not effective or user-friendly. This iterative process ensures that the chatbot
aligns with user needs, ultimately enhancing its effectiveness and overall user satisfaction.

2.2. Chatbot Architecture and Functionality

In the context of ophthalmology chatbots, it is of importance to have a well-designed
and functional architecture that specifically caters to the unique requirements of the field.
This section thoroughly examines three pivotal aspects: natural language processing (NLP)
tailored for ophthalmology, the integration of the knowledge base and medical databases,
and conversational flow and dialogue management (Figure 4).

Figure 4. Chatbot architecture and functionality.

2.2.1. Natural Language Processing for Ophthalmology

Within the ophthalmology domain, NLP technology must be tailored to the specific
language and terminology used. Accurate recognition and comprehension of ophthalmic
terms, medical abbreviations, and anatomical references by the chatbot are essential. More-
over, NLP algorithms must be equipped to handle the complexity of ophthalmic queries,
which often involve specific symptoms, laterality, and ophthalmic investigations. The
chatbot should possess the capability to extract pertinent information from user inputs and
generate appropriate responses. Additionally, it should demonstrate an understanding of
the context of the conversation, thereby facilitating more meaningful interactions.

To attain these capabilities, the development of ophthalmology chatbots necessitates
an in-depth understanding of domain-specific knowledge and language. Incorporating
domain-specific ontologies, medical literature, and expert knowledge can significantly
enhance the accuracy and effectiveness of the employed NLP algorithms. With the devel-
opment of AI and ML, NLP in ophthalmology has evolved significantly in recent years,
encompassing text data extraction, part-of-speech tagging, indexing, tokenization, classifica-
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tion, entity recognition, and word embeddings [28]. This has enabled Chatbot development
to achieve desirable features.

2.2.2. Integration of Knowledge Base and Ophthalmology Databases

The integration of the knowledge base and ophthalmology databases is pivotal for
ophthalmology chatbots to provide accurate and up-to-date information. It is imperative
that this information be readily accessible to the chatbot, facilitating the delivery of reliable
responses and recommendations.

The knowledge base can encompass structured information such as clinical guidelines,
best practices, and standardized treatment protocols. These protocols are typically derived
from clinical trials and the consensus among medical experts. However, it is important
to acknowledge that clinical trials can sometimes yield conflicting results. In such cases,
the role of comprehensive databases like PubMed becomes crucial. PubMed serves as
a repository of diverse medical literature, allowing chatbots to access a wide range of
research articles, case studies, and meta-analyses. This enables the chatbot to incorporate
the most current and widely accepted medical knowledge, while also considering differing
viewpoints and emerging research. Additionally, the integration of medical databases
enables the chatbot to access patient-specific data, empowering it to provide personalized
recommendations based on individual patient characteristics and specific eye conditions.

To ensure the accuracy and reliability of the information, regular updates and quality
control measures should be implemented. Collaboration with ophthalmology experts,
clinicians, and researchers is essential to validate and maintain the data sources.

2.2.3. Conversational Flow and Dialogue Management

An effective ophthalmology chatbot should possess the ability to manage conversa-
tional flow and dialogue in a seamless and natural manner. The dialogue management
system orchestrates the interaction between the chatbot and the user, ensuring smooth
transitions and relevant responses.

A chatbot is designed to engage in comprehensive conversations with patients, ef-
fectively addressing a wide range of concerns and queries. This includes guiding users
through structured dialogues to gather necessary medical information; handling vari-
ous dialogue scenarios, such as clarifying ambiguous queries; asking pertinent follow-up
questions; and providing clear, detailed explanations. Importantly, the chatbot should be
equipped to discuss treatment options and medical advice, tailoring its responses to the
individual’s medical history and current health status.

In addition to general inquiries, the chatbot must be adept at managing interruptions,
context switches, and multi-turn conversations, thereby enabling a more natural and user-
friendly interaction. It should exhibit empathy and sensitivity in its responses, considering
the emotional aspects of patients’ discussions, which is crucial in conversations about
treatment and health concerns. The utilization of advanced language generation techniques
aids in creating responses that are not only informative and compassionate, but also
easily comprehensible to patients from diverse backgrounds. Continuous testing and
analysis of user feedback are essential for optimizing conversational flow and dialogue
management, ensuring that the chatbot remains effective in both general and treatment-
specific discussions.

2.3. Chatbot User Interface and User Experience Design

The creation of an effective user interface (UI) and the provision of a positive user
experience (UX) are imperative for achieving optimal engagement and usability. This
section emphasizes three fundamental aspects: visual design elements tailored specifically
for ophthalmology chatbots, interactive and intuitive UI design, and the optimization of
UX with regard to accessibility and inclusivity (Figure 5).
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Figure 5. Chatbot user interface.

2.3.1. Visual Design Elements for Ophthalmology Chatbots

Visual design elements play a pivotal role in the development of an engaging and
user-friendly UI for ophthalmology chatbots. To ensure these elements are effectively
customized, it is imperative that the chatbot first gathers and understands the distinctive
characteristics and requirements of each patient in the ophthalmology practice.

Color schemes and contrast are key aspects of this customization. Selecting appropriate
color schemes and ensuring suitable contrast levels are vital for enhancing readability and
visual comfort, especially for users with visual impairments. The chatbot must be capable
of adapting its interface based on the specific visual needs of the patient. For example,
utilizing high-contrast colors for text and background elements can significantly improve
readability for individuals with low vision. This adaptive approach ensures that the
chatbot’s UI is not only visually appealing but also tailored to meet the unique needs of
each patient, thereby providing a more personalized and effective user experience [27].

Font selection and readability: Employing clear and easily readable fonts facilitates
effortless navigation for users of the chatbot interface. Additionally, incorporating font
sizes that can be easily adjusted enables users to customize the display according to their
specific needs.

Visual cues and icons: The integration of visual cues and icons contributes to an
enhanced UX overall. Utilizing intuitive icons and symbols that are specific to ophthal-
mology, such as eye-related illustrations or medical symbols, assists in quickly conveying
information and guiding users through the chatbot interface.

2.3.2. Interactive and Intuitive User Interface Design

Creating an interactive and intuitive UI is pivotal for ophthalmology chatbots to
effectively engage and assist users. The UI design should enable seamless navigation and
provide a user-friendly experience [29].

Clear instructions and prompts: Chatbots should employ explicit instructions and
prompts to guide users throughout their interactions. Offering step-by-step guidance
and clear instructions on how to interact with the chatbot facilitates a smooth flow of
conversation.

Conversational design: Emulating natural conversation in a chatbot interface is cru-
cial for enhancing user engagement. The chatbot should provide a conversational tone,
mimicking human-like interactions, and appropriate responses to user inputs, including
variations in language, phrasing, and sentence structure.
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Error handling and recovery: To maintain a positive user UX, the chatbot should
adeptly handle user errors or misunderstandings, provide suggestions for correcting or
rephrasing queries, and offer help options for users to recover from errors or confusion.

Personalization and context-awareness: Personalization and context-awareness in
UI design can enhance the UX by allowing chatbot to remember user preferences, past
interactions, and relevant information. This facilitates a more personalized and tailored
conversation, providing users with a sense of continuity and familiarity.

2.3.3. Optimizing User Experience for Accessibility and Inclusivity

Ensuring accessibility and inclusivity in the design of ophthalmology chatbots is of
importance. The UI must be designed to accommodate the diverse needs of users, including
those with visual impairments or disabilities.

Ensuring the compatibility of the chatbot interface with screen readers and other
assistive technologies is a critical aspect of our design, particularly for users with visual
impairments. To achieve this, a chatbot should be regularly evaluated and updated by a
dedicated accessibility team, which includes experts in assistive technology, user experience
designers, and representatives from the visually impaired community. This team is re-
sponsible for providing text alternatives for visual elements and incorporating appropriate
semantic markup, enabling screen readers to effectively interpret and convey information.

Another key feature of chatbot accessibility is enabling keyboard navigation, which is
essential for users who rely solely on keyboard interactions. The chatbot interface should be
designed to allow users to navigate through the conversation and access all functionalities
using keyboard commands. Modifications to keyboard navigation are also overseen by
an accessibility team, which bases changes on user feedback, technological advancements,
and best practices in digital accessibility.

Text-to-speech and speech recognition: Integration of text-to-speech and speech recog-
nition capabilities enhances accessibility for users with visual or motor impairments. This
feature enables users to interact with the chatbot through voice commands and receive
audio responses.

Inclusive language and cultural sensitivity: The language used by the chatbot should
be inclusive and culturally sensitive. It should avoid biased language and be designed to
cater to users from diverse cultural and linguistic backgrounds. The utilization of natural
language generation techniques assists in generating inclusive and respectful responses.

To optimize UX for accessibility and inclusivity, it is crucial to conduct usability tests
with a diverse group of users, including individuals with disabilities. Gathering feedback
and incorporating suggested improvements ensures that the chatbot interface meets the
needs of a wide range of users.

By adhering to these design principles and focusing on visual elements, interactive UI,
and accessibility, ophthalmology chatbots can provide a seamless and inclusive UX.

3. Applications and Benefits of Chatbots in Ophthalmology

3.1. Remote Patient Monitoring and Triage

In the field of ophthalmology, chatbots have emerged as valuable tools for remote
patient monitoring and triage, providing numerous advantages for both patients and
healthcare providers. This section explores three primary applications of chatbots in
ophthalmology, namely automated symptom assessment and triage, remote monitoring
of eye conditions and treatment adherence, and facilitating telemedicine consultations
(Figure 6).

75



J. Pers. Med. 2023, 13, 1679

Figure 6. Remote patient monitoring and triage in ophthalmology.

3.1.1. Automated Symptom Assessment and Triage

Chatbots equipped with advanced NLP capabilities can assess and triage ophthalmic
symptoms. Patients can interact with the chatbot, describing their symptoms and providing
relevant information. The chatbot then analyzes this input and generates preliminary
assessments based on established medical guidelines and protocols.

An ophthalmology chatbot is designed to perform automated symptom assessment
and triage, enabling the timely identification of urgent cases, such as acute vision loss or
severe eye pain. This system utilizes a sophisticated algorithm, developed in collaboration
with ophthalmology experts, which assesses the severity and nature of symptoms reported
by the patient. Urgent cases are identified based on predefined criteria, such as the sudden
onset of symptoms, intensity of pain, or risk factors for serious eye conditions.

For non-urgent cases, the chatbot provides appropriate care recommendations. These
may include self-care advice for minor symptoms or guidance to schedule a routine ap-
pointment with an ophthalmologist. These recommendations are based on established
clinical guidelines and tailored to the individual’s reported symptoms. This prioritization
not only helps in preventing irreversible vision impairment or complications in urgent
cases but also ensures that patients with less severe symptoms receive the most suitable
care advice. This approach optimizes healthcare resources and reduces unnecessary visits
to ophthalmology clinics or emergency departments.

Furthermore, the automated symptom assessment and triage conducted through
chatbots contribute to patient education. The chatbot can provide information about
common ophthalmic conditions, preventive measures, and self-management strategies.
This empowers patients to make informed decisions about their eye health and promotes
active participation in their own care.

3.1.2. Remote Monitoring of Eye Conditions and Treatment Adherence

Ophthalmology chatbots can assist in the remote monitoring of eye conditions and
ensuring treatment adherence in patients with chronic eye conditions. Through regular
interactions with patients, chatbots can gather information about visual symptoms, med-
ication usage, and lifestyle factors that may impact eye health. Chatbots can improve
medication adherence for patients with complex eye medication regimens. By sending
reminders, educational messages, and addressing common concerns, chatbots can improve
understanding and compliance, ensuring better treatment outcomes.

The remote monitoring capabilities of ophthalmology chatbots are crucial for timely
intervention in cases of disease progression or non-adherence to treatment. In this context,
“high-risk situations” refer to scenarios where there is a significant risk of rapid disease
progression, potential vision loss, or other serious complications. These situations may
include, but are not limited to, sudden changes in vision, symptoms indicating potential
retinal detachment, or signs of acute glaucoma.
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Healthcare providers, including ophthalmologists, can be alerted by the chatbot to
these high-risk situations, allowing for proactive management and prevention of complica-
tions. This feature is particularly beneficial for patients in remote areas or those with limited
access to healthcare, as it reduces the need for travel and associated costs. Furthermore,
remote monitoring facilitates the accumulation of longitudinal data on patients’ eye health,
which can be invaluable for research purposes, population health management, and the
improvement of treatment protocols.

3.1.3. Facilitating Telemedicine Consultations

The integration of chatbots in ophthalmology facilitates telemedicine consultations,
enabling remote access to specialized eye care. While telemedicine has gained prominence,
especially in situations where physical visits are challenging, it is important to recognize
the current limitations of chatbots in this context. Chatbots may serve as virtual assistants
during telemedicine consultations, providing support to ophthalmologists and enhancing
the patient experience. Patients can engage with the chatbot for tasks like providing medical
history and addressing preliminary concerns. However, we acknowledge that in the current
implementation, chatbots do not support the sharing of images, which is a significant aspect
of telemedicine in ophthalmology. For instance, a patient describing symptoms of a red eye
could provide much more diagnostic value through an image, which a chatbot currently
cannot process.

Prior to the telemedicine consultation, the chatbot can guide patients through a struc-
tured questionnaire to collect essential information. However, the integration of image-
sharing capabilities in future iterations could greatly enhance the diagnostic process. After
the consultation, the chatbot provides post-visit instructions and resources, but the addition
of image analysis could further personalize and improve post-visit care. We recognize the
importance of image exchange in ophthalmology and anticipate future advancements in
chatbot technology that will enable this functionality, thereby significantly enhancing the
effectiveness of telemedicine consultations in this field.

3.2. Patient Education and Information Provision

Within the field of ophthalmology, chatbots have emerged as effective tools for provid-
ing patient education and information (Table 1). This section examines three key aspects of
patient education and information provision facilitated by ophthalmology chatbots, namely
the dispensing of general eye health information, the explanation of common ophthalmic
procedures and treatments, and the provision of guidance on pre- and post-operative care.

Table 1. Ophthalmology chatbots for patient education and information provision.

Case Scenario Description Advantages

1. Glaucoma Diagnosis

The chatbot assists patients in
comprehending the diagnostic process
for glaucoma, elucidating various tests
such as tonometry and visual field tests.
It imparts knowledge to patients
regarding the condition, its symptoms,
and available treatment options.

– Enhances patient awareness
regarding glaucoma.

– Provides precise and consistent
information.

– Empowers patients to make
informed decisions regarding their
treatment.

2. Prevention of Diabetic Retinopathy

The chatbot educates diabetic patients
about the significance of regular eye
examinations, early indicators of diabetic
retinopathy, and risk factors. It offers
recommendations on maintaining
optimal blood sugar levels and lifestyle
adjustments to minimize the risk.

– Encourages proactive eye care
among individuals with diabetes.

– Raises awareness regarding the
connection between diabetes and
ocular health.

– Promotes preventive measures to
mitigate complications.
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Table 1. Cont.

Case Scenario Description Advantages

3. Preparation for Cataract Surgery

The chatbot guides patients through the
pre-operative process of cataract surgery,
elucidating the procedure, potential
intraocular lens options, and
post-operative care. It addresses common
concerns such as anesthesia, recovery
time, and potential risks.

– Reduces anxiety and uncertainty
associated with surgery.

– Provides comprehensive guidance
for pre and post-operative care.

– Ensures patients possess realistic
expectations and are well-prepared.

4. Management of Age-related Macular
Degeneration (AMD)

The chatbot furnishes information about
AMD, encompassing risk factors,
symptoms, and treatment options. It
assists patients in understanding the
significance of regular monitoring,
lifestyle modifications, and available
support resources.

– Empowers patients to actively
manage their AMD.

– Offers resources for emotional
support and coping strategies.

– Promotes adherence to treatment
plans.

5. Pediatric Eye Conditions

The chatbot educates parents about
prevalent pediatric eye conditions such as
amblyopia (lazy eye) and strabismus
(crossed eyes). It elucidates the
importance of early intervention,
available treatment options, and the role
of regular eye examinations for children.

– Enhances parental awareness
regarding pediatric eye health.

– Encourages timely diagnosis and
intervention.

– Addresses common concerns and
dispels misconceptions.

3.2.1. Dispensing General Eye Health Information

Ophthalmology chatbots can serve as interactive platforms that grant patients access to
accurate and up-to-date information [30]. Through engagement with the chatbot, patients
can obtain tailored information based on their individual needs and concerns. Moreover, it
can educate patients on the significance of regular eye examinations and lifestyle factors
such as protection from ultraviolet (UV) radiation.

Chatbots can address frequently asked questions, debunk myths and misconceptions,
and clarify doubts related to eye health. They can offer guidance on topics such as proper
eye hygiene, contact lens care, and vision correction options (Figure 7). The chatbot is
capable of adapting its responses to accommodate the patient’s level of understanding and
of delivering information in a concise and comprehensible manner.

Dispensing general eye health information through chatbots fosters patient engage-
ment and active participation in eye care. They encourage proactive measures and reduce
reliance on traditional sources such as pamphlets or websites. Patients can receive per-
sonalized information and engage in interactive conversations with the chatbot, thereby
enhancing their overall learning experience.
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Figure 7. This figure illustrates a two-way conversation between a patient and ChatGPT, a language
model designed to offer guidance on eye care topics. The patient seeks advice regarding discomfort
in their eyes and ways to improve eye hygiene. ChatGPT responds by providing concise and
comprehensible information, including tips on proper eye hygiene and steps for the care of contact
lenses. The chatbot adapts its responses to accommodate the patient’s level of understanding, making
the conversation informative and helpful for the patient’s eye health.

3.2.2. Explanation of Common Ophthalmic Procedures and Treatments

Ophthalmology chatbots serve as valuable tools for elucidating common ophthalmic
procedures and treatments to patients. They provide detailed information about diagnostic
tests, surgical interventions, and medical treatments in a user-friendly and accessible
manner.

Patients can interact with the chatbot to acquire knowledge about the purpose, process,
and potential outcomes of various ophthalmic procedures. The chatbot can guide them
through the steps involved in diagnostic tests such as visual acuity assessments, tonometry,
and fundoscopy. Moreover, it can guide them in understanding surgical procedures like
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cataract surgery, LASIK, or corneal transplant, including the associated benefits, risks, and
recovery process.

Chatbots help bridge the communication gap between patients and healthcare provider,
allowing patients to review and reinforce their understanding of procedures and treatments
at their own pace. They can educate patients about different treatment modalities for
specific eye conditions. They can also elucidate the mechanisms of action and potential side
effects of medications used in ophthalmology. Additionally, the explanation of common
ophthalmic procedures and treatments enhances patient comprehension and reduces anxi-
ety, by offering clear and accurate information. Patients gain a better understanding of the
procedures or treatments they may undergo, thereby promoting informed decision-making
and alleviating fears or uncertainties.

3.2.3. Guidance on Pre- and Post-Operative Care

Adequate preparation of patients for the surgical experience and the provision of
appropriate post-operative care are essential for optimizing outcomes and minimizing
complications.

Prior to surgery, chatbots can recommend to patients the necessary preparations,
which may include fasting requirements and medication adjustments. They can provide
advice on what to expect during the procedure, address common concerns, and offer
reassurance and support. It is important to note that while chatbots can provide these
recommendations based on standard pre-surgical protocols, the final preparation plan may
be modified by the surgeon as necessary, tailored to the individual patient’s condition. This
ensures that patients receive personalized care, while also benefiting from the convenience
and support offered by the chatbot.

Following the surgery, chatbots can offer comprehensive guidance on post-operative
care, medication regimens, proper wound care, and the use of protective measures such as
eye shields or patches. They can educate patients about common post-operative symptoms,
signs of complications, and the need for follow-up appointments.

Gathering guidance on pre- and post-operative care through chatbots ensures that
patients are well-informed, leading to improved compliance and better surgical outcomes.
Clear instructions and guidance make patients more likely to adhere to the recommended
care plans, thereby reducing the risk of complications and promoting successful recoveries.
Additionally, chatbots can offer ongoing support and accessibility to patients during the
post-operative period, reducing the need for unnecessary emergency visits and fostering
continuity of care.

3.3. Support for Ophthalmology Professionals

Ophthalmology chatbots provide assistance in diagnosis and decision-making, de-
livery of clinical guidelines and reference materials, as well as in managing appointment
scheduling and reminders. This section offers a detailed examination of these key areas,
emphasizing the benefits and enhancements they bring to healthcare professionals in
ophthalmology (Figure 8).
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Figure 8. Support for ophthalmology professionals.

3.3.1. Assisting with Diagnosis and Decision-Making

Ophthalmology chatbots can assume a pivotal role in assisting healthcare professionals
with diagnosis and decision-making processes. By utilizing their conversational and data
processing capabilities, these chatbots interact with healthcare professionals, assisting in
the collection of pertinent information related to patients’ ocular conditions.

Chatbots can be programmed to pose targeted questions regarding patients’ symp-
toms, medical history, ocular examinations, and other factors that may relate to certain
diseases. By assimilating this information, chatbots assist healthcare professionals in de-
veloping a comprehensive understanding of the patient’s condition, which can facilitate
accurate diagnoses and informed treatment decisions. Additionally, chatbots can analyze
the collected data and furnish healthcare professionals with potential diagnoses or differen-
tial diagnoses based on established clinical guidelines and algorithms, as well as integrating
preexisting risk calculation tools, such as the age-related macular degeneration (AMD) risk
calculator and the ocular hypertension treatment study (OHTS) risk calculator [31–35].

This serves as a valuable reference point for healthcare professionals, enabling them
to make well-grounded and timely decisions. Ophthalmology chatbots can save healthcare
professionals time by streamlining patient assessments and gathering relevant information.
They also serve as valuable educational tools, providing up-to-date information on research
findings, treatment options, and emerging trends, contributing to professional growth and
enhancing expertise in the field.

3.3.2. Providing Clinical Guidelines and Reference Materials

Ophthalmology chatbots possess the capability to furnish healthcare professionals
with clinical guidelines and reference materials. These chatbots can be programmed to
access and retrieve information from reputable sources, such as medical databases, clinical
practice guidelines, and research articles.
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By having access to an extensive array of information, healthcare professionals can em-
ploy chatbots as swift references during patient consultations. Chatbots provide evidence-
based recommendations for the diagnosis, treatment, and management of various ocular
conditions. They also offer guidelines for monitoring and follow-up care, ensuring that
healthcare professionals remain abreast of best practices in ophthalmology. Moreover,
chatbots assist healthcare professionals in interpreting test results and imaging studies.
They provide explanations for various ophthalmic tests, such as visual field testing, optical
coherence tomography (OCT), or fundus photography. This aids healthcare professionals in
accurately interpreting results and making well-informed decisions regarding patient care.

The provision of clinical guidelines and reference materials by ophthalmology chatbots
confers numerous benefits. First, it ensures that healthcare professionals have immediate
access to reliable and evidence-based information. This supports the decision-making
process and facilitates the delivery of high-quality care to patients.

Second, chatbots aid in standardizing practice and fostering consistency in care deliv-
ery. By providing guidelines and recommendations, chatbots assist healthcare professionals
in adhering to established protocols and best practices. This fosters improved patient
outcomes and enhances the quality of care across various healthcare settings.

3.3.3. Preparing Discharge Summaries and Operative Notes

Discharge summaries and operative notes are of importance in ophthalmology for
maintaining continuity of care, facilitating effective communication among healthcare
providers, serving as legal documentation, supporting research and education, and pro-
moting patient safety and quality improvement. While the significance of these factors
is recognized, variations in content and the time-consuming process pose the greatest
challenges in achieving excellence [36–38].

Using a chatbot for writing discharge summaries and operative notes can offer several
advantages in terms of standardization, efficiency, accuracy, and convenience [39]. With
proper training and the improvement of AI libraries, chatbots can be seen as tools to assist
ophthalmology healthcare in generating comprehensive and efficient discharge summary
and operative notes. It is important to note that human review and validation are crucial
to ensure accuracy, especially in complex cases and for handling situations that require
clinical judgement and empathy.

3.3.4. Facilitating Appointment Scheduling and Reminders

Ophthalmology chatbots possess the capability to facilitate appointment scheduling
and reminders for healthcare professionals. They can seamlessly integrate with existing
scheduling systems and electronic health records, enabling patients to conveniently book
appointments and receive timely reminders about their upcoming visits.

Chatbots provide patients with options for available appointment slots, assisting them
in finding suitable times that align with their schedules. They also automatically send
reminders to patients, reducing the likelihood of missed appointments and enhancing
overall clinic efficiency. Patients can access the chatbot at their convenience, obviating the
need for phone calls or waiting on hold to schedule appointments, thus enhancing patient
satisfaction and engagement.

Furthermore, chatbots can aid healthcare professionals in managing their schedules
by optimizing appointment bookings. Through analyzing patient demand and clinic
capacity, chatbots suggest optimal scheduling strategies that minimize wait times and max-
imize clinic utilization. This enables healthcare professionals to streamline their workflow,
for reduced administrative burden and increased productivity, to provide timely care to
their patients.

3.4. Ophthalmology Training

Chatbots hold immense potential as valuable educational tools in medical training,
offering accessible and interactive resources to learners [40]. In the context of ophthalmol-
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ogy training, chatbots can play a crucial role in various aspects, including providing the
fundamentals of ophthalmology, facilitating case studies and diagnostic support, offering
adaptive assessment, and even simulating surgical procedures. Furthermore, they can
assist with administrative tasks and personalized course organization, tailoring the learn-
ing experience to individual needs. One of the most significant advantages of chatbots in
this domain is their ability to provide comprehensive knowledge and reference materials
essential for ophthalmology training. By harnessing AI’s continuous updating capabilities,
these chatbots can ensure that learners access the most up-to-date information, thereby
enhancing the overall learning experience.

Through incorporating simulated patient interactions, chatbots enable learners to
practice and refine their clinical skills effectively. By presenting realistic case scenarios,
students can engage in diagnostic decision-making and treatment proposals. The chatbot
can then offer valuable feedback on their decisions, guiding them throughout the process.
This feedback mechanism not only helps learners identify areas for improvement but
also provides specific recommendations for additional study or practice, which can be
invaluable for their professional growth. However, it is essential to acknowledge that there
are still areas for improvement in the utilization of chatbots in ophthalmology training.
One such aspect is the need to focus on enhancing accuracy. Ensuring that the chatbot’s
responses are consistently reliable and aligned with established medical knowledge is
crucial for the success of such educational tools.

4. Availability and Performance of Current Ophthalmology Chatbots

Chatbots have emerged as innovative tools in the field of ophthalmology. Chatbots,
such as ChatGPT, can be integrated into various platforms such as web-based platforms,
mobile applications, messaging applications, and virtual reality platforms. The following
sections present examples of chatbot use in ophthalmology and summarize the current
performance of chatbots employed in various ophthalmology-related contexts.

4.1. Chatbot Performance in Triage Ophthalmology Conditions

In a study performed by Tsui, J.C. et al., ten prompts reflecting common patient
complaints related to common ophthalmology conditions were used to determine the
suitability of ChatGPT 3.0 responses. The study also evaluated the precision of the responses
by comparing the responses to the same questions from three individual chats. The study
found a majority of responses were precise and suitable; however, 20% of responses were
considered imprecise or unsuitable [41].

A more recent study by Lyons, R.J. and associates also evaluated the triage perfor-
mance of 44 vignettes representing common emergency room ophthalmologic diagnosis
using three publicly available AI chatbots, namely ChatGPT 4.0, Bing Chat (Microsoft
Corporation, Redmond, WA, USA), and WebMD Symptom Checker (WebMD Inc., New
York, NY, USA). The responses from the chatbots were compared with physician respon-
dents. The study found that ChatGPT using GPT-4 model yielded the highest diagnostic
(93%) and triage (98%) accuracy (Figure 9). Although Bing resulted in a high accuracy of
diagnosis, there were incorrect responses in 14% of cases, whereas none were discovered
for ChatGPT [42].
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Figure 9. Chatbot performance in triage ophthalmology conditions. On the left, “correct diagnosis
accuracy” bar chart; and on the right, “correct triage accuracy” bar chart.

4.2. ChatGPT Performance in Patient Education and Information Provision

A study from Potapenko et al. assessed the accuracy of patient information for five
common retinal diseases (i.e., age-related macular degeneration, diabetic retinopathy,
retinal vein occlusion, retinal artery occlusion, and central serous chorioretinopathy) using
ChatGPT 3.0. They evaluated accuracies in disease summary, prevention, treatment options,
and prognosis. Most responses showed high accuracy, with median ratings ranging from
“good/only minor non-harmful inaccuracies” to “very good/no inaccuracies.” However,
treatment options had “moderate/potentially misinterpretable inaccuracies”, with 12 of
100 treatment responses showing “potentially harmful inaccuracies” [7].

Similarly, another study focusing on patient information from ChatGPT 3.0 on vernal
keratoconjunctivitis (VKC) also found that current ChatGPT responses, while relevant to
typical questions, are still imperfect. The responses related to treatment and prevention
received considerably lower accuracy ratings from the experts than VKC general, prog-
nosis, and allergy-related questions. Inaccuracies such as missing essential information
regarding potentially serious steroid side effects and harmful suggestions such as removal
of conjunctiva were discovered [30].

4.3. Chatbots Examples in Supporting for Healthcare Professionals

A preliminary work utilizing ChatGPT 3.0 to generate discharge summaries across
subspecialties found that the AI-constructed documents were able to shorten the processes;
however, their quality was based on the completeness of the prompts given and required
training and adjustment [39]. Table 2 shows an example of a discharge summary generated
by ChatGPT.
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Table 2. Example of an ophthalmology discharge summary generated by ChatGPT 3.5.

Prompt

Please write discharge summary for Mr. Somchai Jade, who had a left eye superior retinal
detachment involving macular and underwent 25G pars plana vitrectomy with fluid air exchange
and endolaser and C3F8 injection, 3 days ago. On the day of discharge, the retina is attached, wound
is secure, ac cell is 2+, gas filled 100%, but the intraocular pressure is 25 mm of Hg. He is now
initiated on anti-glaucoma medication, Timolol twice a day, in the left eye, instructed to keep face
down position and need a follow-up after 5 days at the retina clinic, outpatient clinic with Dr. Ray.

ChatGPT’s response

Patient Name: Mr. Somchai Jade Date of Discharge: [Date] Admitting Physician: [Physician’s Name]
Discharging Physician: [Physician’s Name] Diagnosis: Left eye superior retinal detachment
involving macular
Procedure: Mr. Somchai Jade underwent a 25G pars plana vitrectomy with fluid air exchange and
endolaser, followed by C3F8 injection, three days ago.
Condition on Discharge: On the day of discharge, the following observations were made:

1. Retina: The retina is attached after the surgical procedure.
2. Wound: The wound is secure and healing well.
3. Anterior Chamber: Anterior chamber cell (ac cell) count is 2+.
4. Gas Fill: The eye is filled with 100% C3F8 gas.
5. Intraocular Pressure (IOP): The intraocular pressure is currently elevated at 25 mm of Hg.

Treatment and Medication: Mr. Jade has been initiated on anti-glaucoma medication, Timolol, to
manage the elevated intraocular pressure. He is instructed to administer Timolol twice a day in the
left eye, as prescribed. Detailed instructions on the proper administration technique and potential
side effects of the medication have been provided to the patient.
Additionally, Mr. Jade is instructed to maintain a face-down position as much as possible during his
recovery period. This position aids in the proper positioning of the gas bubble in the eye, ensuring
optimal healing and attachment of the retina. The patient is advised to follow the specific instructions
provided by the surgeon regarding the duration and frequency of the face-down position.
Follow-up: Mr. Somchai Jade is advised to follow up with Dr. Ray, a retina specialist, at the retina
clinic in the outpatient department after five days. The purpose of the follow-up visit is to assess the
progress of the retinal attachment, monitor the intraocular pressure, and evaluate the need for further
treatment or adjustment of the medication regimen.
Instructions:

1. The patient should continue with the prescribed anti-glaucoma medication, Timolol, as
instructed.

2. Mr. Jade should maintain a face-down position as directed by the surgeon. Specific instructions
regarding the duration and frequency of this position should be followed strictly.

3. It is important to protect the eye from any trauma or injury.
4. The patient should maintain good hygiene and avoid rubbing or touching the eye

unnecessarily.
5. In case of any sudden changes in vision, severe pain, or worsening symptoms, Mr. Jade should

seek immediate medical attention.

Summary: Mr. Somchai Jade underwent a successful 25G pars plana vitrectomy with fluid gas
exchange and endolaser, along with C3F8 injection, for a left eye superior retinal detachment
involving macular. On the day of discharge, the retina was found to be attached, the wound secure,
and the anterior chamber showing a moderate cell reaction. The intraocular pressure was elevated,
and the patient was initiated on Timolol eye drops for glaucoma management. In addition, Mr. Jade
has been instructed to maintain a face-down position during the recovery period to optimize retinal
healing. A follow-up appointment has been scheduled after five days with Dr. Ray at the retina clinic
to monitor the patient’s progress and adjust the treatment plan if necessary.

Note: This discharge summary is a simulated case created for demonstration purposes only and has not been
derived from an actual patient case. It is intended to showcase the capabilities of ChatGPT 3.5 in generating
medical content.

GlauCUTU is another example of a chatbot designed to aid with glaucoma diagnosis.
This chatbot utilizes a deep learning algorithm to provides real-time response to help in
screening glaucoma based on optic disc photo [43]. GlauCUTU operates on the mobile and
desktop social messaging service LINE (Figure 10). With the integration of a messaging
application, it provides a convenient and readily accessible mode of communication and
can be considered an example of an ophthalmologist virtual assistant [43].
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Figure 10. Example of responses generated by GlauCUTU illustrating glaucoma risk assessment
from an optic disc photo.

4.4. Chatbot Performance in Ophthalmology Knowledge Assessment

The performance of chatbots can vary across disciplines and different subspecialties
(Table 3). While ChatGPT answered a majority of general medicine licensing examina-
tion questions correctly [44], the present version of ChatGPT did not correctly answer
multiple-choice questions (MCQ) for the US board certification preparation (i.e., Oph-
thalmic Knowledge Assessment Program (OKAP) and Written Qualifying Exam (WQE)
from the OphthoQuestions) to a desirable level. A study indicated that ChatGPT 3.0 cor-
rectly answered only 46% of 125 multiple-choice questions intended to prepare for board
certification examinations [45] Figure 11.

Figure 11. Performance of an artificial intelligence chatbot in ophthalmic knowledge assessment.
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Table 3. Studies assessing chatbot performance in ophthalmology knowledge assessment.

Study Mihalache et al. [45] Raimondi et al. [46] Bernstein et al. [47]

Study Designs and Population

Cross-sectional study
assessing ChatGPT’s
performance on
ophthalmology board
certification practice
questions.

Comparative analysis of LLM
chatbots on the Fellowship of
Royal College of
Ophthalmologists
(FRCOphth) postgraduate
exams.

Cross-sectional study
evaluating the quality of
ophthalmology advice by
ChatGPT compared to
ophthalmologists.

Methods
125 text-based multiple-choice
questions from
OphthoQuestions were used.

Tested on 48 Part 1 and 43 Part
2 multiple choice questions
from the FRCOphth
curriculum.

200 online forum posts with
patient eye care questions and
responses were analyzed.

Key Results

– Correct answers: 58 of
125 questions (46%) in
January 2023.

– Correct answers: 73 of
125 multiple-choice
questions (58%) and 42
of 78 stand-alone
questions (54%) without
multiple-choice options
in February 2023.

– Accuracies for chatbots:
Part 1 ranged from
55.1–78.9% and Part 2
ranged from 49.6–82.9%.

– Bing Chat had the
highest scores of 78.9%
and 82.9% for Part 1 and
Part 2, respectively.

– Expert reviewers
identified chatbot vs.
human responses with
61% accuracy.

– Incorrect information:
chatbot 21% vs. human
19%.

– Likelihood of harm:
chatbot 13% vs. human
15%.

– Extent of harm: chatbot
3% vs. human 3%.

Conclusion

ChatGPT answered
approximately half of the
questions correctly. It may not
provide substantial assistance
in preparing for board
certification currently.

LLM chatbots can achieve
high accuracy on
ophthalmology specialty
exams without specific tuning.
They have potential to
advance ophthalmic
education and care but issues
like validation, transparency,
biases, and accessibility need
addressing.

Chatbot’s ophthalmology
advice was not significantly
different from
ophthalmologists’ advice.
LLMs may be capable of
providing appropriate
responses to patient eye care
questions. Further research is
needed.

Abbreviations: LLM—large language model; FRCOphth—Fellowship of Royal College of Ophthalmologists.

Another study compared more update versions of ChatGPT (ChatGPT 3.5 and 4.0)
with Bing Chat and Google Bard (Alphabet Inc., CA, US) in their accuracy in answering the
UK’s postgraduate MCQ exam for the Fellowship of Royal College of Ophthalmologists
(FRCOphth) [46]. The study found accuracy rates of 49.6%, 51.9%, 82.9%, and 79.1%
for ChatGPT 3.5, Google Bard, Bing Chat, and ChatGPT 4.0, respectively. However, the
accuracy of ChatGPT 4.0 increased to 88.4% with prompting or tuning strategies. It should
be noted that the accuracy varied widely across subspecialty topics with the lowest for
trauma (accuracy 38.5%) and the highest for cornea and external eye (accuracy 96.2%),
Figure 12.
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Figure 12. Comparative analysis of large language models in the Royal College of Ophthalmologists
fellowship exams.

Recently, Bernstein et al. [47] conducted a cross-sectional study evaluating the quality
of ophthalmology advice generated by ChatGPT, a large language model (LLM) chatbot,
compared to advice written by ophthalmologists (Figure 13). The authors analyzed 200
pairs of online forum posts with patient eye care questions and responses by American
Academy of Ophthalmology physicians. A panel of eight masked ophthalmologists were
asked to distinguish between chatbot and human answers. The expert reviewers correctly
identified chatbot vs. human responses with 61% accuracy on average (Figure 13A).
However, the ratings of chatbot and human answers were comparable regarding the
inclusion of incorrect information (21% vs. 19%), likelihood to cause harm (13% vs. 15%),
and extent of harm (3% vs. 3%), (Figure 13B). The quality of chatbot answers was not rated
as significantly inferior to human answers. The results suggest large language models may
be capable of providing appropriate responses to patient eye care questions across a range
of complexity. Further research is needed to evaluate the performance, ethics, and optimal
clinical integration of chatbots in ophthalmology.

Figure 13. (A) Accuracy of expert reviewers in distinguishing responses. (B) Comparison of chatbot
vs. human answers.
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In ophthalmology, chatbots have the potential to be useful tools. The currently avail-
able chatbots are restricted in their availability and performance. Generally, they are able
to provide acceptably broad knowledge and initial guidance. However, users must be
mindful of their limitations, particularly in complicated settings where the proportion of
incorrect chatbots’ responses is high. New versions tend to perform better than the older
ones. Future chatbot advancements may rectify these deficiencies.

5. Challenges and Future Directions in Ophthalmology Chatbots

5.1. Ethical and Legal Considerations
5.1.1. Privacy and Data Security

Privacy and data security are critical concerns in the context of ophthalmology chat-
bots, particularly when considering the diverse legal frameworks across different nations.
These chatbots gather and process sensitive patient information and personal identifiers,
necessitating robust security measures to safeguard these data from unauthorized access,
breaches, or misuse.

Ensuring adherence to industry standards and best practices for data encryption and
storage is fundamental. Employing encryption techniques, such as secure socket layer
(SSL) encryption, can protect the transmission of data. However, developers must also
navigate the complexities of varying national laws, which often include additional rules
in the field of transmissions, servers, administration, and telecommunication standards.
This necessitates a flexible approach to compliance, ensuring that chatbots meet the specific
legal requirements of each jurisdiction in which they operate.

Healthcare organizations and developers should establish explicit protocols for data
access and sharing, considering different legal landscapes. Transparency in data handling
practices is crucial to foster trust among patients, healthcare professionals, and chatbot
providers.

To mitigate potential privacy risks and comply with diverse legal standards, privacy-
by-design principles should be integrated into the development process. This involves
incorporating privacy features from the outset, such as anonymization and data minimiza-
tion techniques, which are essential in addressing the varied legal requirements across
nations (Table 4).

5.1.2. Informed Consent and Confidentiality

Obtaining informed consent and ensuring confidentiality are pivotal ethical considera-
tions when utilizing ophthalmology chatbots. Patients should be fully informed about the
purpose, capabilities, and limitations of the chatbot, as well as the type of data it collects
and how that data will be used. Informed consent should be sought before engaging
patients in chatbot interactions and data collection.

Furthermore, ophthalmology chatbots should provide patients with explicit options
to opt in or out of data collection and sharing. Patients should have the ability to withdraw
their consent and request the deletion of their data at any time. This empowers patients
to exercise control over their personal information, fostering transparency and respecting
patient autonomy.

Confidentiality is equally crucial in maintaining patient trust and complying with
ethical and legal standards. Ophthalmology chatbots must adhere to stringent confiden-
tiality protocols to ensure that patient data are accessible only to authorized individuals
involved in healthcare provision. Measures such as encryption, secure data transmission,
and restricted data access help preserve the confidentiality of patient information.
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Table 4. Privacy and data security: case scenarios and suggested solutions in ophthalmology chatbots.

Case Scenario: Unauthorized Access to Patient Data Suggested Solutions

Privacy and data security breach occurs when unauthorized
individuals access patient data in the ophthalmology
chatbot system.

– Implement strong authentication methods, such as
multi-factor authentication.

– Encrypt patient data both at rest and in transit using
strong encryption algorithms.

– Implement role-based access control mechanisms to
restrict access based on job roles.

– Conduct regular security audits and penetration testing to
identify vulnerabilities.

– Provide comprehensive training to personnel on privacy
and data security best practices.

Case Scenario: Data Breach during Data Transfer Suggested Solutions

Data breach occurs when patient data are compromised during
transmission in ophthalmology chatbots.

– Use secure protocols (e.g., HTTPS, SSL/TLS) for data
transmission.

– Implement data loss prevention mechanisms to monitor
and control data transfers.

– Keep software and systems up to date with the latest
security patches and updates.

– Use secure and well-tested APIs for data exchange with
external systems.

– Encrypt patient data during transmission for an additional
layer of protection.

Case Scenario: Inadequate Data Retention Policies Suggested Solutions

The ophthalmology chatbot system retains patient data for
longer than necessary.

– Implement data minimization practices to collect and store
only necessary patient data.

– Regularly review and delete outdated or unnecessary
patient data from the system.

– Consider anonymizing or de-identifying patient data to
protect privacy.

– Establish clear data retention policies and guidelines for
different types of data.

– Stay updated with privacy laws and regulations and
ensure compliance with data retention policies.

Additionally, chatbots should be programmed to provide appropriate disclaimers
and warnings regarding the limitations of their capabilities. Patients should be aware that
chatbots do not replace in-person consultations with healthcare professionals and that they
should seek medical advice when necessary. This ensures that patients understand the
boundaries of chatbot interactions and prompt them to seek appropriate care when needed.

5.1.3. Compliance with Regulatory Standards

Compliance with regulatory standards is essential for ophthalmology chatbots, to
ensure patient safety, quality of care, and legal compliance. These chatbots must adhere
to relevant regulations and guidelines, such as the Health Insurance Portability and Ac-
countability Act (HIPAA) in the United States and the General Data Protection Regulation
(GDPR) in the European Union.

Thorough assessments should be conducted by healthcare organizations and develop-
ers of ophthalmology chatbots to ensure compliance with these regulations. This involves
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reviewing and aligning data handling practices, security measures, and consent procedures
with the requirements stipulated in the regulations. Regular audits and assessments can
identify any gaps in compliance and facilitate necessary adjustments.

Moreover, collaboration among healthcare organizations, chatbot developers, and reg-
ulatory bodies is pivotal in establishing guidelines and standards specific to ophthalmology
chatbots. These guidelines should address concerns such as data privacy, informed consent,
and the ethical use of chatbots in ophthalmology. By working together, stakeholders can
ensure that chatbots meet the necessary ethical and legal standards, while maximizing their
potential benefits.

Looking to the future, the development of standardized frameworks and guidelines
for ophthalmology chatbots can provide a roadmap for ethical and legal compliance. These
frameworks should address the unique challenges and considerations associated with
ophthalmology, guaranteeing that chatbots align with the specific needs and requirements
of the field. Additionally, ongoing research and evaluation of ophthalmology chatbots can
help identify and address emerging ethical and legal issues. Regular monitoring of the
evolving regulatory landscape and continuous improvements in chatbot technology can
facilitate the development of adaptable and ethically sound solutions.

5.2. Integration with Existing Healthcare Systems
5.2.1. Interoperability and Integration Challenges

Ophthalmology chatbots require seamless interoperability and integration with di-
verse healthcare systems, including electronic medical records, diagnostic devices, and
telehealth systems, for efficient usage and effective usage.

One of the primary challenges lies in the diversity of existing healthcare systems,
each with its own compatibility level. In addition, diagnosis in the field of ophthalmol-
ogy frequently requires the integration of multimodality instruments, such as tonometry,
perimetry, fundus photography, and optical coherence tomography. Ophthalmology chat-
bots need to be designed in a way that enables communication and data exchange with
various software applications and databases. This necessitates adherence to standardized
data formats and protocols that facilitate smooth interoperability.

Ophthalmology chatbots should also be compatible with a variety of devices and
operating systems (e.g., desktops, mobile devices). Compatibility across a wide range of
devices ensures accessibility and usability for healthcare professionals in clinics, hospitals,
and remote sites.

To overcome these challenges, collaboration among healthcare organizations, chatbot
developers, and technology providers becomes imperative. The development of stan-
dardized application programming interfaces (APIs) and protocols specifically tailored to
ophthalmology can expedite the seamless integration of chatbots with existing healthcare
systems. The establishment of common standards helps minimize interoperability barriers,
thereby enabling efficient data exchange and communication between chatbots and other
healthcare tools.

5.2.2. Collaboration with Electronic Health Records

Collaboration with electronic health records (EHR) that contain comprehensive patient
information allows chatbots to access and update information in real time. This enhances
their capacity to provide personalized and accurate care. However, challenges arise when
it comes to EHR integration. Different healthcare organizations may utilize diverse EHR
systems, each characterized by a unique data structure and interface. This variability poses
a challenge in developing chatbots capable of seamlessly interacting with a wide range of
EHR systems.

One potential solution is the development of standardized data exchange formats
such as fast healthcare interoperability resources (FHIR), which promote interoperability
between EHRs and chatbots. FHIR facilitates the exchange of structured health data,
enabling chatbots to retrieve and update patient information from EHR systems in a
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standardized and consistent manner. Furthermore, collaboration between developers of
ophthalmology chatbots and EHR vendors plays a crucial role. Close cooperation can
lead to the development of specific interfaces and integration solutions tailored to the
field of ophthalmology, thereby ensuring smooth data exchange and seamless connectivity
between chatbots and EHR systems.

5.2.3. Seamless Communication with Healthcare Providers

Effective care requires seamless communication between ophthalmology chatbots and
healthcare providers. Chatbots should facilitate easy and efficient information exchange,
enabling healthcare professionals to review patient data, provide guidance, and make
well-informed decisions.

One challenge in achieving seamless communication lies in presenting information in
a format that is easily comprehensible and actionable for healthcare providers. Chatbots
should present patient data and clinical recommendations concisely and in an organized
manner, allowing healthcare providers to quickly grasp the relevant information. The incor-
poration of NLP capabilities can assist in understanding and presenting complex medical
information. Moreover, ophthalmology chatbots should enable bidirectional communica-
tion between healthcare providers and the chatbot system. This allows healthcare providers
to provide additional context, clarify patient information, and request specific actions from
the chatbot. The seamless integration of chatbots with the messaging platforms utilized
by healthcare professionals, such as secure messaging applications, can facilitate real-time
communication and collaboration.

Ensuring the security and privacy of communications is also of utmost importance.
Chatbot systems should employ secure communication channels and encryption techniques
to safeguard sensitive patient information during interactions with healthcare providers.
Compliance with relevant privacy regulations, such as HIPAA, is essential in upholding
patient confidentiality and meeting legal requirements.

To address these challenges, collaboration between chatbot developers and healthcare
providers is indispensable. Employing user-centered design methodologies can facilitate
the gathering of feedback and insights from healthcare professionals, ensuring that chatbots
are designed with their workflow and communication needs in mind. Regular feedback
loops and iterative improvements can enhance the usability and effectiveness of chatbot
communication with healthcare providers.

5.3. Advancements and Future Innovations
5.3.1. Artificial Intelligence and Machine Learning in Chatbots

AI and ML are driving advancements in ophthalmology chatbots, enabling them to
learn and improve from interactions with patients and healthcare providers. This leads to
more accurate and effective diagnostic capabilities (Figure 14).

Through the analysis of vast amounts of patient data, chatbots can provide valuable
insights and assist healthcare professionals in making informed decisions regarding patient
care. AI and ML also enhance the NLP capabilities of chatbots. This allows them to under-
stand and interpret patient queries and responses more effectively, facilitating improved
communication and interaction. As AI and ML algorithms continue to advance, chatbots
have the potential to provide increasingly accurate and personalized recommendations,
leading to improved patient outcomes.
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Figure 14. Future studies in the utilization of ophthalmology chatbots.

5.3.2. Multilingual and Cross-Cultural Adaptation

Multilingual and cross-cultural adaptation is a significant advancement in ophthal-
mology chatbots, particularly in the context of global healthcare, where language and
cultural diversity are prevalent. Chatbots that can effectively communicate and interact
with patients from different linguistic and cultural backgrounds improve access to care and
enhance patient satisfaction (Table 5).

Table 5. Gaps and Research Opportunities in Ophthalmology Chatbots.

Area of Advancement Current Gaps Research Opportunities

AI and Machine Learning in Chatbots.
Limited accuracy in diagnosing eye
diseases and conditions; challenges in
interpreting ophthalmic data.

Developing advanced AI algorithms for
precise diagnosis of eye conditions;
enhancing ML capabilities for
interpreting complex ophthalmic imaging
and data.

Multilingual and Cross-Cultural
Adaptation.

Difficulty in addressing language barriers
and cultural differences in patient
interactions, especially in diverse
ophthalmology practices.

Creating chatbots capable of
understanding and responding in
multiple languages; incorporating
cultural sensitivity in patient interactions
for global ophthalmology care.

Personalized Medicine and Tailored
Patient Care

Lack of personalized treatment
recommendations based on individual
eye health profiles; limited integration
with ophthalmology-specific electronic
health records.

Utilizing patient-specific data, to offer
personalized eye care recommendations;
improving chatbot integration with
ophthalmology EHR systems for tailored
patient management.

Abbreviations: AI—artificial intelligence; ML—machine learning; EHR—electronic health records.
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Developing chatbots capable of multilingual adaptation involves training them on
diverse language data and implementing robust language processing algorithms. This
enables chatbots to understand and respond to patient inquiries in multiple languages,
breaking down language barriers and enabling effective communication.

In addition to language diversity, cross-cultural adaptation is crucial to account for
variations in healthcare practices, beliefs, and cultural norms. Chatbots can be programmed
to adapt their responses and recommendations based on cultural considerations, ensuring
they align with patients’ cultural expectations and preferences. This promotes trust and
engagement, ultimately leading to better patient experiences.

Successful multilingual and cross-cultural adaptation requires collaboration with
language experts, cultural anthropologists, and healthcare professionals from diverse
backgrounds. Such collaboration helps identify specific linguistic and cultural nuances that
should be incorporated into chatbot design and development, ensuring cultural sensitivity
and effectiveness in different contexts.

5.3.3. Personalized Medicine and Tailored Patient Care

Personalized medicine and tailored patient care hold great promise in the field of
ophthalmology chatbots. By utilizing patient data and AI algorithms, chatbots can offer per-
sonalized recommendations and interventions tailored to individual patient characteristics,
preferences, and medical history.

Through continuous learning from patient interactions, chatbots can gather and ana-
lyze data to identify patterns, trends, and personalized treatment options. Chatbots can also
support treatment adherence by sending reminders and tailored educational materials, to
meet the needs individual of patients. Moreover, chatbots empower patients by providing
personalized information about eye health, treatment options, and lifestyle modifications,
promoting active participation in their care.

To realize effective personalized medicine and tailored patient care, it is essential
to possess robust data analytics capabilities, integrate with electronic health records, and
collaborate with healthcare professionals. Developing advanced algorithms that can process
and interpret large volumes of patient data, while simultaneously ensuring privacy and
security, is of critical importance. Collaborative efforts between chatbot developers and
ophthalmologists can refine algorithms and ensure that personalized recommendations
align with clinical guidelines and best practices. Looking ahead, advancements in AI, ML,
and data analytics will continue to shape the future of ophthalmology chatbots. Integration
of novel technologies like computer vision and deep learning holds potential for more
accurate and efficient diagnosis of eye conditions. Ongoing research and development
efforts are focused on improving chatbots’ ability to handle complex medical scenarios and
provide comprehensive and personalized patient care.

In conclusion, advancements and future innovations in ophthalmology chatbots offer
exciting opportunities for transforming eye care delivery. Integration of AI and ML can
enhance diagnostic capabilities, while multilingual and cross-cultural adaptation can enable
effective communication with diverse patient populations. Personalized medicine and
tailored patient care promote improved patient outcomes. Continuous research, collabora-
tion, and technological advancements will drive the evolution of ophthalmology chatbots,
ultimately benefiting both patients and healthcare providers in the field of ophthalmology.
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Abstract: Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the
reliability issues associated with traditional prognostic markers, the purpose of this study is to
investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication
of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a
retrospective study with methods based on best practice procedures for radiomics research. Sixty-
four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for
radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore
CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate)
on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection
for overfitting avoidance; and model development with three-fold cross-validation. The radiomics
model and signature performances were evaluated based on the area under the receiver operating
characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study’s results show
that our pCT-based radiomics model was able to predict the six-year progression-free survival of the
high-risk localized PCa patients who received the WPRT with highly consistent performances (mean
AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies
including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity
and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and
0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available
than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could
be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes
in high-risk localized PCa.

Keywords: artificial intelligence; biomarker; machine learning; malignancy; medical imaging;
prognosis; progression-free survival; radiation therapy; recurrence; tumor

J. Pers. Med. 2023, 13, 1643. https://doi.org/10.3390/jpm13121643 https://www.mdpi.com/journal/jpm98



J. Pers. Med. 2023, 13, 1643

1. Introduction

According to Global Cancer Statistics, prostate cancer (PCa) was the third most com-
mon cancer accounting for 7.3% of all cancer deaths in 2020 [1]. In 2023, the most common
male cancer in USA was PCa causing an estimated 34,700 deaths, which is the second
highest cancer death rate of 11% [2]. As per the European Society for Medical Oncology
(ESMO) [3] and American Cancer Society (ACS) [4] guidelines, patients with localized
prostate cancer can be classified into three main risk groups based on T category, Gleason
score (GS) and prostate-specific antigen (PSA) representing low, intermediate and high
risks, respectively: T1-T2a and GS ≤ 6 and PSA ≤ 10; T2b and/or GS 7 and/or PSA 10–20;
and T3a or GS 8–10 or PSA > 20. More than one third of PCa patients belong to the high-risk
group [5].

Low- and intermediate-risk patients may only need active surveillance. However,
either long-term androgen deprivation therapy (ADT) plus radical radiotherapy (RT) or
radical prostatectomy (RP) and pelvic lymphadenectomy are required for treating high-risk
patients [3]. Whole pelvic RT (WPRT) and prostate-only RT (PORT) are the two typical
radical RT options used for treating high-risk prostate cancer patients [6–8]. Usually, the
Roach formula is used to estimate involvement of pelvic nodes based on GS and PSA, with
15% or greater nodal risk as an indicator for adopting WPRT despite its increased acute
and late gastrointestinal toxicity compared to PORT [6,7,9]. Nonetheless, a recent literature
review on the identification and prediction of prostate cancer indicated that PSA and GS
may not be reliable prognostic markers. This is because PSA can increase without PCa,
and intermediate- and high-risk patients may have low PSA levels. Also, the variation of
GS determined from pre- and post-RP specimens is common [10]. It is noted that more
than 40% of high-risk patients die from PCa, which is 10 times greater than for low-risk
patients [5]. Hence, better approaches to PCa risk stratification, treatment selection and
outcome assessment have been explored over the years, and radiomics is considered one of
the potential candidates [10,11].

Radiomics refers to quantitative feature extraction from medical images as imaging
biomarkers for clinical decision support with the aim of improving the accuracy of diag-
nosis, prognosis and outcome prediction, which are essential in personalized medicine
(also known as precision medicine) and include diagnosis and treatment [10,12]. Although
the concept of radiomics has only emerged over the last decade, numerous studies have
explored its potential in precision medicine including for the prognostication of prostate
cancer [10–38]. So far, the benefits of radiomics have not been translated into clinical
practice because of its limited reproducibility as a result of a lack of process standardiza-
tion [10,12]. Typically, five major steps are involved in the radiomics workflow including
medical image acquisition and segmentation, feature extraction and selection, and model
development [10–14]. However, the approaches involved in each step varied across stud-
ies in terms of different scanning protocols for image acquisition and the use of manual,
semi-automatic or fully automatic segmentation. These have subsequent impacts on the
reproducibility of results because features determined as clinically relevant to one set-
ting become irrelevant to another setting when images are acquired and segmentation
is performed in varying ways [10–12,17–38]. Commonly, magnetic resonance imaging
(MRI) [17–22], positron emission tomography (PET) [23–35] and computed tomography
(CT) [36–38] are used for PCa diagnosis and management [10]. However, CT is the standard-
of-care modality for PCa RT planning, while the other modalities may not be available
in some clinical settings [39]. Also, the use of MRI for radiomics appears problematic
due to its non-standardized voxel intensity values, which are greatly influenced by the
variation in scanning protocols [10,17–22]. Although planning CT (pCT)-based radiomics
allows seamless integration into existing RT workflow, there is a paucity of studies on
this for high-risk PCa. These include that published in 2019 on PCa risk stratification and
our latest study published in 2023 on pCT-based radiomics for the long-term prognos-
tication of high-risk localized PCa patients who received PORT [10–13,39]. To the best
of our knowledge, no study has explored the potential of pCT-based radiomics with its
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counterpart, WPRT. Given the high death rate of high-risk PCa (>40%) and the reliability
issues associated with traditional prognostic markers [5,10], the purpose of this study is to
investigate pCT-based radiomics for the long-term prognostication of high-risk localized
PCa patients who received WPRT. We hypothesized that pCT-based radiomics could be
used as a routine non-invasive approach for the prognostic prediction of WPRT treatment
outcomes in high-risk localized PCa.

2. Materials and Methods

This is a retrospective study with methods based on Lambin et al.’s [12] best practice
procedures for radiomics research derived from their radiomics quality score instrument.
The best practice procedures employed in our radiomics workflow included multiple
segmentations, feature reduction to avoid overfitting, cutoff analyses, use of discrimination
statistics such as receiver operating characteristic curve (ROC) and area under the ROC
curve (AUC), and a three-fold cross-validation resampling method [12,13]. This study
was conducted in accordance with the Declaration of Helsinki, and approved by the
Institutional Review Board of The Hong Kong Polytechnic University (approval number:
HSEARS20200902001 and date of approval: 20 September 2020), and Clinical & Research
Ethics Committee of New Territories East Cluster of Hospital Authority of Government of
Hong Kong Special Administrative Region (approval number: NTEC-2020-0633 and date
of approval: 9 December 2020).

2.1. Patient Selection

Eighty-four high-risk localized PCa patients, who received treatments between May 2009
and October 2014, and met the following inclusion criteria were identified through the
electronic health record system of Princess Margaret Hospital, Hong Kong Special Adminis-
trative Region. The inclusion criteria were as follows: those with risk of pelvic lymph node
involvement estimated by the Roach formula ≥15%; and whose WPRT were received [7,9].
The identified patients were excluded for the following reasons: second malignancies other
than PCa; previous PCa treatment; unavailability of pre-treatment biopsy results; or death
unrelated to PCa. Eventually, sixty-four patients were selected and randomly assigned to
training (n = 45) and testing (n = 19) cohorts for the radiomics model development. Their
clinical and WPRT treatment data such as age, pre-treatment TNM stage, GS, PSA, WPRT
technique, dose fractionation, ADT drug regimen, follow-up duration and clinical outcome
and Digital Imaging and Communications in Medicine (DICOM) datasets (pCT images
and structure sets) were collected accordingly [36–38]. Figure 1 summarizes the patient
selection procedures.

Figure 1. Patient selection procedures for radiomics model development. CT, computed tomography;
PCa, prostate cancer; WPRT, whole pelvic radiotherapy.
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2.2. ADT and WPRT Treatment

All selected patients were given neoadjuvant ADT (2 weeks of flutamide and 2 in-
jections of 3-month luteinising hormone-releasing hormone agonist (LHRHa)) prior to
WPRT. The WPRT’s clinical target volume (CTV) for the prostate (CTVprostate) was given
70–76 Gy in 2 Gy per fraction over 7–8 weeks with static field intensity-modulated radio-
therapy or volumetric modulated arc therapy (VMAT). CTV for whole pelvic lymph nodes
(CTVLN) was given 44 or 50 Gy with three-dimensional (3D) conformal radiotherapy or
VMAT. All treatment plans were computed to meet acceptance criteria and organs at risk
(OARs) constraints. Details on CTV, planning target volume (PTV), acceptance criteria and
OARs constraints are given in Tables S1 and S2. After completion of WPRT, patients were
prescribed adjuvant LHRHa for up to 3 years, and there were follow-ups at intervals of
3–6 months for disease monitoring. The PSA levels were determined and evaluated at each
visit. Imaging tests were performed when an increase of PSA was found [6,7,9,40].

2.3. Clinical Endpoint

This study’s clinical endpoint was the six-year progression-free survival (PFS) of
patients after WPRT. This referred to patients not having any distant metastasis, local
recurrence, regional recurrence and/or chemical recurrence for six years after completing
the WPRT course. Patient deaths unrelated to PCa were censored [9].

2.4. Radiomics Workflow
2.4.1. Medical Image Acquisition

Non-contrast pCT scans were performed on all selected patients using the Koninklijke
Philips N.V. Brilliance Big Bore CT simulator (Amsterdam, The Netherlands) as per in-house
protocol. Patients were required to empty their bladders and then drink 400 cc of water an
hour before the scans to achieve comparable bladder status. The images were taken with
the patients in the treatment position (both hands on the chest in the supine position and
the use of customized foam for immobilization) and the following scan parameters—tube
voltage: 120 kV; tube current: 350–450 mAs; slice thickness: 1.5 or 3 mm; field of view:
60 cm; matrix size: 512 × 512; pixel spacing: 1.18; and a standard convolution kernel for
image reconstruction [41].

2.4.2. Medical Image Segmentation

All the collected DICOM structure sets including OARs (bladder, bowel, femoral
head, penile bulb and rectum), CTV and PTV (prostate and lymph nodes) were manually
contoured by a radiation oncologist experienced in prostate cancer radiotherapy using
the ‘Draw Planar Contour’ function of the ‘Contouring’ interface on the Eclipse version
13 treatment planning system (Varian Medical Systems, Palo Alto, CA, USA). These were
subsequently reviewed and approved by another radiation oncologist with associate con-
sultant grade or above on the same system for original clinical use. To adhere to Lambin
et al.’s [12] best practice procedure for segmentation, an additional consultant radiation
oncologist was involved in reviewing and approving these DICOM structure sets, including
the CTVprostate as volume of interest (VOI), on the Eclipse version 13 treatment planning
system based on the European Society for Therapeutic Radiology and Oncology (ESTRO)
consensus guideline for this study [39,42]. The definitions of level of apex, lateral, anterior
and posterior borders and the base of the prostate as well as seminal vesicles stated in
the ESTRO consensus guideline were used to check the accuracy and consistency of the
CTVprostate manual segmentation to minimize intra- and inter-observer variabilities. For
example, the level of prostate apex was defined as about 1 cm above the upper border of
the penile bulb. Complete details on these definitions are available in the ESTRO consensus
guideline [42]. The average number of consecutive pCT slices segmented for the CTVprostate
was 21 (standard deviation [SD]: 3 and range: 15–28). Figure 2 shows pCT image examples
with the manually delineated CTVprostate contours included in the study.
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Figure 2. Axial planning computed tomography images with manually delineated CTVprostate

contours (green overlay). (a) CTVprostate covering the entire prostate gland. (b) CTVprostate including
the entire prostate gland with a proximal two-thirds of the seminal vesicles.

2.4.3. Feature Extraction

The pCT image pre-processing and feature extraction procedures used in this study
were based on those of the Image Biomarker Standardization Initiative (IBSI) [43], and
were performed using the open-source Python-based radiomics feature extraction package,
PyRadiomics version 2.2.0 [10,44]. Uniform volumetric spacing was achieved through
isotropic resampling by resizing the images to 1 × 1 × 1 mm3 based on linear interpolation.
Subsequently, a constant intensity resolution was attained by discretizing the images
to a fixed bin width of 10 Hounsfield units (HU) to extract texture features. Also, the
Laplacian of Gaussian (LoG) filter with 0.5, 2, 3, 4, 4.5 and 5 mm sigma values was used
to reconstruct the images for feature extraction from various scales of edge detection and
image smoothing. Shape features (n = 14), first-order features (n = 126) and texture features
(n = 511) of the CTVprostate were extracted after the pre-processing of images as per Figure
S1 and Table S3. The shape, first-order and texture features described the 3D size and shape
and voxel intensity distribution of the CTVprostate and voxel intensity relationship within
the CTVprostate sub-regions, respectively. For every pCT dataset, 651 radiomic features were
extracted in total [43].

2.4.4. Feature Selection

Statistical approaches were used to consecutively select a smaller set of features for
our model from the training data. The training cohort features were scaled and centered to
avoid under- or over-presentation of individual ones. Additionally, the mean and SD of
the scaled and centered training data were used to normalize the testing cohort features. A
Mann–Whitney U test was conducted to determine the clinical association of every radiomic
feature for its selection. Features having no statistically significant differences across the
outcome groups (p > 0.05) were removed. Also, redundant features were identified based
on the pair-wise correlation of the features using Spearman’s rank correlation coefficient.
When the absolute correlation coefficient of two features was greater than or equal to 0.4,
the feature with the greater mean absolute correlation was removed. The model was then
developed based on all remaining features [12,39,45–48]. A correlation coefficient of 0.4 was
selected as the threshold because previous radiomics studies used it to indicate moderate
correlation with promising outcomes for feature reduction [49,50].

2.4.5. Model Development

The model development was based on logistic regression with a least absolute shrink-
age and selection operator (LASSO) penalty as well as three-fold cross-validation. The
LASSO penalty was used for prediction error reduction and model simplification. It en-
abled the most predictive feature selection through the penalization of the sum of feature
coefficient absolute values. Features that had minor contributions to the model were forced
to undergo coefficient reduction to become zero and subsequently being removed. The
three-fold cross-validation involved randomly dividing the training data into three groups.
Two out of three groups were employed to train with the other reserved for validation.
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This process was repeated three times to involve each group once in the validation. In
addition to the model testing and bias minimization, the three-fold cross-validation was
also responsible for identifying the optimal regularization parameter for LASSO (lambda).
Finally, 1000 models were developed as a result of repeating the process of model training
a 1000 times [12,39,45–48].

2.4.6. Statistical Analysis

The statistical analysis was performed using R version 3.6.3 (The R Foundation,
Indianapolis, IN, USA). The R packages used include the following: base package for
randomization and normalization; stats package for chi-squared test, Fisher’s exact test,
Mann–Whitney U test and Spearman’s rank correlation coefficients; caret package for
pair-wise correlations; glmnet package for logistic regression with the three-fold cross-
validation and LASSO penalty; and ROCR and cvAUC packages for ROC analysis and AUC
calculation. A p-value of less than 0.05 represented statistical significance [12,39,45–48].

Models with the lowest number of selected features were used for radiomics signature
development. Every feature coefficient (β) and intercept within the radiomics signature
was determined by taking the average of those values of the included models. Equation (1)
illustrates the radiomics signature and was used to calculate the radiomics score (Rad-score)
for every patient [51,52].

Rad − score =
n

∑
i=1

βi × f eaturei + intercept (1)

The cutoff of the Rad-score was determined based on the evaluation of model accuracy,
sensitivity and specificity. The cutoff was used to classify whether a patient was more likely to
have six-year PFS based on their Rad-score. The performance of the derived radiomics signature
was evaluated in terms of accuracy, sensitivity and specificity. Additionally, the average AUC
values of the training and testing cohorts were calculated [12,39,45–48]. Figure 3 summarizes
the feature selection, model development and statistical analysis processes.

Figure 3. Feature selection, model development and statistical analysis workflow. AUC, area under
receiver operating characteristic curve; PFS, progression-free survival.
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3. Results

Table 1 shows the clinicopathological characteristics of the included patients. There
was no statistically significant difference found between the characteristics of the training
and testing cohorts. Regarding the clinical endpoint, 81.5 months was the median PFS
of all patients, and 80.0% and 78.9% of patients in the training and testing cohorts had
six-year PFS, respectively. There were 13 included patients (20.3%) with metastasis and/or
recurrence in six years after completing the WPRT course, constituting 20.0% of the training
and 21.1% of the testing cohorts.

Table 1. Patients’ clinicopathological characteristics.

Characteristic
All Included Patients

(n = 64)
Training Cohort

(n = 45)
Testing Cohort

(n = 19)
p-Value

Median age at start of radiotherapy (years) 70 71 70 0.691 1

Histology
Adenocarcinoma 49 (76.6%) 31 (68.9%) 17 (89.5%)

0.160 2Acinar adenocarcinoma 14 (21.9%) 13 (28.9%) 2 (10.5%)
Unknown 1 (1.6%) 1 (2.2%) 0 (0%)

Stage
T1 8 (12.5%) 6 (13.3%) 2 (10.5%)

0.189 2T2 20 (31.3%) 11 (24.4%) 9 (47.4%)
T3 33 (51.6%) 25 (55.6%) 8 (42.1%)

Unknown 3 (4.7%) 3 (6.7%) 0 (0%)

Pre-treatment PSA level (ng/mL)
<10 5 (7.8%) 2 (4.4%) 3 (15.8%)

0.052 210–20 18 (28.1%) 16 (35.6%) 2 (10.5%)
>20 41 (64.1%) 27 (60.0%) 14 (73.7%)

Pre-treatment GS
≤6 16 (25.0%) 10 (22.2%) 6 (31.6%)

0.476 27 17 (26.6%) 11 (24.4%) 6 (31.6%)
≥8 31 (48.4%) 24 (53.3%) 7 (36.8%)

Median pre-treatment Roach score 32.8 33.6 27.9 0.130 1

Median CTVprostate volume (mm3) 39951.5 41695.0 38943.0 0.797 1

CTVLN dose (Gy)
44 11 (17.2%) 7 (15.6%) 4 (21.1%)

0.719 3
50 53 (82.8%) 38 (84.4%) 15 (78.9%)

CTVprostate dose (Gy)
<76 12 (18.8%) 8 (17.8%) 4 (21.1%)

0.739 3≥76 52 (81.3%) 37 (82.2%) 15 (78.9%)

Treatment modality for PTVLN
3DCRT 10 (15.6%) 6 (13.3%) 4 (21.1%)

0.466 3
VMAT 54 (84.4%) 39 (86.7%) 15 (78.9%)

Treatment modality for PTVprostate
IMRT 9 (14.1%) 5 (11.1%) 4 (21.1%)

0.432 3
VMAT 55 (85.9%) 40 (88.9%) 15 (78.9%)

Patients received neoadjuvant ADT 62 (96.9%) 44 (97.8%) 18 (94.7%) 0.509 3

Patients received adjuvant ADT 52 (81.3%) 36 (80.0%) 16 (84.2%) 1.000 3

Median follow-up time (months) 88.0 91.0 88.0 0.872 1

Median progression-free survival (months) 81.5 81.0 85.0 0.659 1

Patients with six-year disease progression 13 (20.3%) 9 (20.0%) 4 (21.1%) 1.000 3

Events
Biochemical recurrence 12 10 2

-Local failure 3 2 1
Regional failure 1 0 1
Distant failure 5 5 0

1 Mann–Whitney U test; 2 Chi-squared test; 3 Fisher’s exact test. 3DCRT, three-dimensional conformal radio-
therapy; ADT, androgen deprivation therapy; CTVLN, clinical target volume for whole pelvic lymph nodes;
CTVprostate, clinical target volume for prostate; GS, Gleason score; IMRT, intensity-modulated radiotherapy;
PSA, prostate-specific antigen; PTVLN, planning target volume for whole pelvic lymph nodes; PTVprostate, plan-
ning target volume for prostate; VMAT, volumetric modulated arc therapy.

Among the 1000 developed models, 799 models with the fewest (two) selected features
were used for radiomics signature development. Both selected features were textural:
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run entropy of grey level run length matrix after LoG filtering with a sigma value of 2
mm (RE-GLRLMσ2mm); and small area emphasis of grey level size zone matrix after LoG
filtering with a sigma value of 4.5 mm (SAE-GLSZMσ4.5mm). Both RE-GLRLMσ2mm and
SAE-GLSZMσ4.5mm had statistically significant differences in the feature values between
patients with and without six-year PFS (p-values: 0.0208 and 0.0191), respectively. The
developed radiomics signature is illustrated in Equation (2).

Rad-score = 0.291 (RE-GLRLMσ2mm) + 0.358 (SAE-GLSZMσ4.5mm) − 1.47 (2)

The average AUC values of the developed model for the training and testing cohorts
were 0.756 (95% confidence interval (CI): 0.756–0.757) and 0.707 (95% CI: 0.706–0.707),
respectively (Figure 4). With the cutoff determined as a third-quartile value (i.e., −1.11),
patients were stratified into high- (Rad-score ≥ −1.11) and low- (Rad-score < −1.11) risk
groups, which refer to unlikely and more likely to have six-year PFS, respectively (Figure 5).
The respective accuracy, sensitivity and specificity of the radiomics signature were 0.778,
0.833 and 0.556 in the training cohort and 0.842, 0.867 and 0.750 in the testing cohort.

Figure 4. Receiver operating characteristic (ROC) curves of the developed model for training and
testing cohorts. Figures in parentheses are 95% confidence intervals. AUC_Train, area under ROC
curve (AUC) of training cohort; AUC_Test, AUC of testing cohort.
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Figure 5. Rad-score charts for (a) training and (b) testing cohorts. PFS, progression-free survival.

4. Discussion

In our study, the key radiomic features among the large arrays of data extracted from
the CTVprostate of the pre-treatment pCT images were selected to develop a two-feature
radiomics signature to predict the six-year PFS in high-risk localized PCa patients with
WPRT as the primary treatment. Highly consistent predictive performances were achieved
by our model with average AUC values of 0.76 and 0.71 in the training and testing cohorts,
respectively. The consistent performances could be attributed to the fact that the pCT for
the external beam RT is highly standardized and calibrated for dose calculation, hence
improving results reproducibility [10–12,17–38]. This potentially addresses one of the major
issues associated with radiomics, which is the inability to translate benefits into clinical
practice [10,12].

According to the review on the radiomics used for the identification and prediction
of PCa published in 2021, most studies have focused on PET radiomics because PET is
a functional imaging modality that provides detailed information on cell metabolism
and proliferation, morphology, perfusion, receptor density and tumor viability, which are
important for this identification and prediction task [10,23–35]. Although MRI might not be
available in some settings, it is suggested that MRI should be a standard-of-care modality
for PCa diagnosis [53,54]. Hence, there are more studies on MRI radiomics than CT for
PCa identification and prediction [10,17–22,36–38]. However, a review on MRI radiomics
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for PCa risk stratification published in 2023 showed that only three studies used MRI to
predict biochemical failure after receiving RT, with two reporting the AUC values of their
models [55–58]. In Dinis Fernandes et al.’s study, their model achieved an AUC value of
0.63 [57]. Although Zhong et al.’s model was able to attain a mean AUC value of 0.99
during training, it reduced to 0.73 in testing [58]. This highlights one main limitation
of the use of MRI in radiomics: its non-standardized voxel intensity values are greatly
affected by scanning protocol variations, resulting in less reproducible results [10,17–22]. In
contrast, our study’s model attained average training and testing AUC values of 0.76 and
0.71, demonstrating higher reproducibility despite the training AUC value of 0.71 being
a little lower than that of Zhong et al.’s model at 0.73 [58]. Similarly reproducible model
performance results were also shown in our previous study on CT radiomics for long-term
prognostication of high-risk localized PCa patients who received PORT (mean training and
testing AUC: 0.798 and 0.795, respectively) [39]. Additionally, CT is more readily available
than MRI and PET and the standard-of-care modality for PCa RT planning, which allows
for seamless integration into the existing RT workflow. These could be considered as other
merits of CT radiomics for long-term prognostication of high-risk localized PCa patients
who received RT [11,39,53].

Our developed radiomics signature with the determined cutoff of −1.11 again achieved
consistent accuracy, sensitivity and specificity between training (0.778, 0.833 and 0.556) and
testing (0.842, 0.867 and 0.750) cohorts to stratify patients into high- (Rad-score ≥ −1.11)
and low- (Rad-score < −1.11) risk groups. Our radiomics signature consists of two texture
features: GLRLM Run Entropy (RE-GLRLMσ2mm) and SAE-GLSZM Small Area Emphasis
(GLSZMσ4.5mm). RE-GLRLMσ2mm quantifies the heterogeneous texture pattern within the
CTVprostate by representing the variations in the allocations of run lengths and grey levels.
SAE-GLSZMσ4.5mm measures the quantities of smaller-sized zones and fine textures within
the CTVprostate by representing the distribution of consecutive voxels that share identical
intensity values. As these two features have positive weightings in our radiomic signature
with higher values of RE-GLRLMσ2mm and SAE-GLSZMσ4.5mm, the Rad-score becomes
greater and indicates the CTVprostate of patients showing more heterogeneous 3D patterns.
Also, a higher Rad-score represents a higher possibility of disease progression within six
years after completing WPRT, which is in line with a previous study’s findings that a more
heterogenous PCa tumor has greater resistance to therapies [59]. Similar investigations
have been conducted on other malignancies showing a variety of texture features correlat-
ing with angiogenesis and hypoxia, which could be used to indicate the aggressiveness of
breast cancer [60,61] and distant metastasis for nasopharyngeal carcinomas [62]. Hence,
these show that radiomics is a viable approach to extract the distinctive characteristics of a
malignant mass and quantify the respective heterogeneity to determine the prognosis and
therapeutic response to oncological diseases [63].

Clinical failure or biochemical failure after primary RT is common in PCa patients.
About 30–50% of patients are affected by biochemical failure within 10 years after RT [64].
Clinical failure occurs in approximately 25% of patients with biochemical failure within
eight years with symptoms because of disease recurrency [65–67]. Palliative approaches,
such as observation and ADT, are eventually employed to manage many of these pa-
tients [68–70]. However, curative intent salvage treatments—e.g., salvage prostatectomy,
brachytherapy, stereotactic body radiotherapy, etc.—can be applied to selected patients
with biochemical failure or isolated local recurrences without coexisting metastatic le-
sions [71–73]. Our radiomics model would be useful for the pretreatment identification of
patients with a higher likelihood of disease progression after treatment, resulting in better
clinical decision making and patient management, e.g., the use of state-of-the-art imaging
examination to follow-up with these patients, increasing opportunities to offer salvage
treatments to them when still applicable. In this way, personalized or precision medicine
could be realized [10,12,74].

Our study has several limitations. It is a retrospective study with a relatively small
sample size of 64 patients from one single center. According to Lambin et al.’s [12] radiomics
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quality score instrument, a prospective study with data collected from multiple sites would
be a better design as this allows for model external validation [12,75,76]. However, our
arrangement should be considered acceptable because some recent CT radiomics studies
on identification and prediction of PCa also retrospectively collected patient datasets
from one single site with comparable sample sizes of 69–80 patients [36–38]. Despite
multiple manual segmentations of the CTVprostate as per the ESTRO consensus guideline to
address the potential intra- and inter-observer variability issues and the selection of ≥ 0.4
Spearman’s rank correlation coefficient for feature reduction based on previous radiomics
studies, our model’s generalizability needs to be confirmed by assessing the intra- and
inter-observer variability and the effect of other correlation coefficient threshold settings
in future studies [12,42,49,50]. Nonetheless, this is the first study on pCT radiomics for
the long-term prognostication of high-risk localized PCa patients who received WPRT,
which could further justify our study design. Given the promising results of this study,
future studies with a larger number of datasets collected prospectively from multiple
centers with assessments on the intra- and inter-observer variability and the effect of
various correlation coefficient settings is warranted for our model’s external validation
and to confirm its generalizability. It is noted that deep learning (DL) has become popular
in medical imaging [75–80]. Hence, another direction for further study is to develop a
DL-based radiomics model for the long-term prognostication of high-risk localized PCa
patients after WPRT [10].

5. Conclusions

This study’s results show that our pCT-based radiomics model was able to predict six-
year PFS in high-risk localized PCa patients who received WPRT as the primary treatment
with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)) and
was comparable to other similar studies including those on MRI-based radiomics. The
accuracy, sensitivity and specificity of our radiomics signature that consists of two texture
features, namely GLRLM Run Entropy (RE-GLRLMσ2mm) and SAE-GLSZM Small Area
Emphasis (GLSZMσ4.5mm), were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750
(testing), respectively. Since CT is more readily available than MRI and PET and is the
standard-of-care modality for PCa RT planning, pCT-based radiomics can be used as a
routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes
in high-risk localized PCa. Nonetheless, further study on the external validation of our
model is warranted to ensure that its benefits can be realized in clinical settings to achieve
personalized or precision medicine.
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Abstract: Background: We aimed to analyze the impact of the COVID-19 pandemic on pulmonary
tuberculosis (TB) using artificial intelligence. To do so, we compared the real-life situation during the
pandemic with the pre-2020 situation. Methods: This non-interventional, retrospective, observational
study applied natural language processing to the electronic health records of the Castilla-La Mancha
region of Spain. The analysis was conducted from January 2015 to December 2020. Results: A total of
2592 patients were diagnosed with pulmonary tuberculosis; 64.6% were males, and the mean age was
53.5 years (95%CI 53.0–54.0). In 2020, pulmonary tuberculosis diagnoses dropped by 28% compared
to 2019. In total, 62 (14.2%) patients were diagnosed with COVID-19 and pulmonary tuberculosis
coinfection in 2020, with a mean age of 52.3 years (95%CI 48.3–56.2). The main symptoms in these
patients were dyspnea (27.4%) and cough (35.5%), although their comorbidities were no greater than
patients with isolated TB. The female sex was more frequently affected, representing 53.4% of this
patient subgroup. Conclusions: During the first year of the COVID-19 pandemic, a decrease was
observed in the incidence of pulmonary tuberculosis. Women presented a significantly higher risk for
pulmonary tuberculosis and COVID-19 coinfection, although the symptoms were not more severe
than patients diagnosed with pulmonary tuberculosis alone.

Keywords: pulmonary tuberculosis; COVID-19; artificial intelligence

1. Introduction

Infections that cause respiratory tract diseases continue to be the cause of the greatest
morbidity and mortality from infectious diseases in the world. In 2019, just three pathogens
featured on the WHO Blueprint priority list for research and development. These were
severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and Mycobacterium tuberculosis. In 2020, SARS-CoV2
was included [1].

Since then, COVID-19 has been the direct cause of hundreds of thousands of deaths
worldwide over the last 3 years. During the first months of the COVID-19 pandemic, almost
all countries in the world experienced a devastating impact. As the virus spread rapidly,
health systems faced unprecedented pressure. Confinement measures were implemented
in several countries to slow the spread, affecting the daily lives of the population. The
situation generated international collaboration in search of solutions, evidencing the need
for a coordinated global response to public health emergencies. The acute respiratory
syndrome associated with the SARSCoV-2 virus has caused serious distortions in healthcare
systems, surpassing the HIV situation of 40 years ago [1].
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The pandemic has had countless economic, social, and healthcare-related effects,
both direct and indirect. Spain was one of the first European countries to be affected
by COVID-19 and, along with Italy, also one of the first to implement confinement as a
control measure [1].

The impact of COVID-19 on hospital services was dramatic, causing personnel and
financial resources to be diverted. Thus, the ability to correctly diagnose and control other
pathologies was limited. In fact, the burden on health services caused by the COVID-19
emergency has led to several changes in the ordinary management of both communicable
and non-communicable diseases, following the reduction in or suspension of non-urgent
outpatient care [1,2].

The World Health Organization has reported that certain pathologies, such as pulmonary
tuberculosis (TB), may have suffered a delay in diagnosis and the start of treatment [2].

Pulmonary TB is one of the leading causes of death and disease in many countries
around the world. Mycobacterium tuberculosis is the second deadliest pathogen after the
virus that causes COVID-19 [2]. Transmission of pulmonary tuberculosis occurs through
the inhalation of saliva droplets or respiratory secretions from infected individuals. Once
inhaled, the bacteria can establish themselves in the lungs and trigger an immune response,
forming granulomas that encapsulate the bacteria. However, these structures can also act as
reservoirs of infection, making it difficult to completely eradicate the bacteria. Symptoms of
pulmonary tuberculosis include persistent fever, weight loss, and fatigue. Early diagnosis
is crucial to prevent the spread of the disease. In 2018, countries attending the United
Nations high-level meeting on tuberculosis committed to intensify their efforts to achieve
the ambitious goals of treating an additional 40 million people with tuberculosis and
providing prophylaxis to at least 30 million people who are at risk of contracting the disease
until 2030 [3]. It is considered a true healthcare problem, reaching a prevalence of 10 million
patients and 1.5 million deaths in 2020, the majority registered in Asia (55%) and Africa
(30%) [2,3]. The number of deaths increased from 2019 to 2020, reversing the trend of
previous years [3–6]. These data are far from reaching the goal of eradicating TB in 2030 [4].

Around the world, there have been reports that some 18% of patients with pulmonary
TB were not diagnosed in 2020, as the number of notified cases dropped from 7.1 million
subjects in 2019 to 5.8 million in 2020 [2–5,7–10]. Although 6.4 million cases were diagnosed
in 2021, we are still far below pre-pandemic levels. In Europe, a total of 47 of 504 cases of
tuberculosis were reported in 2019, which is equivalent to a rate of 9.2 cases per 100,000.
In 2020, however, 33,000 cases were reported, most of whom were male [4] (54%), causing
increased comorbidities and risk of mortality in this population [3–5]. In Spain, the impact
of the pandemic represented a 50% drop in the inclusion of patients in 2020 compared
to 2019 [4]. Pulmonary tuberculosis can be prevented and cured. About 85% of people
who contract it progress satisfactorily with a therapeutic regimen of 4 to 6 months [11]. In
addition, treatment reduces transmission. For this reason, it is important to make a quick
and correct diagnosis of this pathology [12].

The public health and social measures implemented during the SARSCoV-2 pandemic,
such as social distancing and respiratory isolation, may have had a beneficial effect on
the transmission of certain infectious agents [13]. A significant decrease in transmission
has been demonstrated in infections with short incubation periods, such as influenza or
respiratory syncytial virus [14,15]. In pulmonary TB, the precise impact of these measures
has still not been determined [16,17]. Furthermore, various studies have stated that the
coinfection of SARSCoV-2 and tuberculosis disease could lead to an increase in the severity
of COVID-19 and accelerate the progression of TB [15–17].

Our working hypothesis is that by leveraging artificial intelligence methodologies
on large-scale patient datasets, we can attain a more nuanced understanding of these
interrelationships within the context of real-world clinical practice. Big data applications
in the health sector, and specifically the application of new technologies to manage and
extract value from complex data generated in large volumes of electronic health records,
are a reality. Most of the information contained in the medical electronic files is found in an
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unstructured way, as free text, its analysis being possible through analysis techniques, like
artificial intelligence.

The aim of this real-life study is to analyze the epidemiological situation of pulmonary
tuberculosis and SARS-CoV-2 coinfection during the first year of the pandemic and to
compare the current situation to that existing before the appearance of COVID-19 using
artificial intelligence techniques, specifically natural language processing with the Savana
Manager 3.0 platform.

2. Materials and Methods

This study was conducted in the autonomous community of Castilla-La Mancha,
Spain, from January 2015 to December 2020. It is a retrospective observational study
designed to follow the guidelines of the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) Statement.

Data on pulmonary tuberculosis were collected from 2015 to 2020, while data for TB
in association with COVID-19 were collected from January 2020 to December 2020. The
total population was 2,866,188, and all information was collected from the electronic health
records (EHRs) of patients diagnosed with pulmonary tuberculosis and COVID-19.

The data were analyzed using the Savana Manager 3.0 natural language processor,
which uses artificial intelligence and big data techniques. This processor is able to ana-
lyze unstructured information in EHRs made available by the Castilla-La Mancha Health
Service (SESCAM), and then the data are extracted for use in research. A detailed de-
scription of the system has been previously published [18–21]. In addition, through the
use of computational linguistic techniques, comprehensive clinical content is scientifically
detected and validated using the SNOMED CT tool [22]. This international database uses
comprehensive, multilingual, and codified clinical terminology. This concept carries a
clinical idea associated with a unique identifier, which is permanent and unalterable. In
this way, it attempts to solve the problem of semantic interoperability presented by some
classifications such as ICD 10–11, and at the same time, to create an agile mapping with
these commonly used classifications. The terms proposed by the SNOMED coding will be
used for both COVID-19 and pulmonary TB.

Using EHRead technology, the free text contained in the EHR was analyzed and
processed with natural language processing (NLP) techniques. Medical concepts were
detected by using computational linguistic techniques and comprehensive clinical content.
These unstructured data were treated as big data. We have previously evaluated the
performance of Savana to verify the accuracy of the system to identify records that contain
mentions of TB, COVID-19, and related variables. The lack of coded clinical data in Spain
requires the development of an annotated corpus known as the ‘gold standard’ to carry
out this evaluation. This gold standard consists of a set of clinical documents where the
appearance of entities/concepts related to pulmonary TB and COVID-19 are manually
verified by experts. Specifically, the corpus used in this evaluation is a set of 450 documents
reviewed by three experts to guarantee the reliability of the manual annotation and review.
Subsequently, a judge external to the study confirms the correct verification of the reviewers.
Savana’s performance was automatically calculated using the expert-created ‘gold standard’
as an evaluation resource. This means that the precision of Savana to identify records,
in which the presence of the pathology under study and the related variables have been
detected, was measured compared to the ‘gold standard’. The evaluation of the system was
calculated in terms of the standard metrics of precision (P), recall (R), and its F-score.

Precision (P) = tp/(tp + fp). This parameter offers an indicator of reliability with which
the system retrieves the information.

Range (R) = tp/(tp + fn). This parameter offers an indicator of the quantity of informa-
tion that the system retrieves.

F-measure = (2xprecisionxrecall)/(precisionxrecall). This parameter offers an indicator
of the overall data retrieval performance.

116



J. Pers. Med. 2023, 13, 1629

In all cases, a true positive (tp) was defined as a correctly identified record, a false
positive (fp) as a wrongly identified record, and a false negative (fn) as a record that should
have been identified.

Our results regarding Savana’s performance for evaluating pulmonary TB and COVID-
19 information are shown in Table 1.

Table 1. Performance of Savana in terms of precision, recall, and F-measure for IPF and COVID 19.

Precision Recall F-Measure

PULMONARY TB 1.0 0.94 0.97
COVID-19 0.99 0.75 0.93

The data collection system complies with the General Data Protection Regulation
(GDPR) of the European Union, and it is impossible to identify doctor or patient information
when extracting data.

This study has followed all local regulations, procedures for the correct use of big
data, Guidelines for Good Pharmacoepidemiology Practices, and the latest edition of the
Declaration of Helsinki. The study was approved by the Research Ethics Committee of the
Guadalajara healthcare administration (CEIm: 2022.28.EO; acceptance date 19 December
2022). As it is a retrospective observational study that uses patient data anonymously,
patient informed consent was not required.

The statistical analysis that was carried out in this study was a descriptive analysis
of all the variables evaluated. Absolute frequencies and percentages are expressed as
qualitative variables, and means, 95%CI, and standard deviations are expressed as quanti-
tative variables. Student’s t-test of the independent samples was used for the analysis of
numerical variables. The chi-squared test was used to measure the association and compare
proportions between qualitative variables. Differences where the p-value was less than
0.05 were considered significant. OpenEpi (v3.0) and SSPS (v25; IBM Corporation, Armonk,
NY, USA) were used for the statistical analysis.

3. Results

During the study period (January 2015–December 2020), a total of 2592 patients were
diagnosed with pulmonary tuberculosis of a total population of 2,866,188 subjects. The
flowchart for the study population is shown in Figure 1.

In total, 64.6% of patients diagnosed with pulmonary tuberculosis were men with
a mean age of 53.5 years (95%CI 53.0–54.0), and 35.4% were women with a mean age of
52.3 years (95%CI 51.4–53.2).

From January 2020 to December 2020, a total of 210,164 (11.1%) patients were diag-
nosed with COVID-19. That same year, a total of 438 (0.02%) patients were diagnosed with
pulmonary TB, 59.5% of which were male with a mean age of 55.0 years (95%CI 53.4–56.7),
and 40.5% were female with a mean age of 53.9 years (95%CI 52.6–55.2). Figure 2 shows the
evolution of TB diagnoses annually since 2015. Above the columns, the number of patients
diagnosed with pulmonary TB per 100,000 inhabitants is shown. A higher incidence of
pulmonary TB was not observed in the first year of the pandemic; instead, a 28% reduction
was observed compared to 2019.
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Figure 1. Flowchart showing the total study population, patients diagnosed with COVID-19, patients
diagnosed with pulmonary TB, as well as patients with coinfection of these two diseases during the
first year of the pandemic.

 

Figure 2. Annual prevalence of pulmonary TB from 2015 to 2020. Within the columns, TB pulmonary
patients per 100,000 inhabitants are shown.
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Table 2 compares the pulmonary TB diagnoses of 2019 versus 2020, as well as the
percentage reduction in diagnoses from one year to the next. A comparative variability
between the 2 years stands out (marked in the gray rows of the table), which is probably
related to the first and second waves of the COVID-19 pandemic in our setting (March to
May, and October to November).

Table 2. Comparison of pulmonary TB diagnosis in 2019 and 2020.

Pulmonary Tuberculosis

2019 2020 Reduction

January 62 59 4.84%

February 50 40 20.00%

March 58 33 43.10%

April 60 10 83.33%

May 69 30 56.52%

June 43 41 4.65%

July 49 45 8.16%

August 23 21 8.70%

September 34 31 8.82%

October 70 45 35.71%

November 52 50 3.85%

December 35 33 5.71%

A total of 62 (14.2%) patients diagnosed with TB presented COVID-19 coinfection over
the course of 2020, with a mean age of 52.3 years (95%CI 48.3–56.2). In this instance, women
were more frequently affected (53.4%; OR 1.8, 95%CI 1.1–3.2). No statistically significant
age differences were found between patients with coinfection versus those with a diagnosis
of pulmonary TB alone (p = 0.18).

The main symptoms of patients with coinfection were dyspnea (27.4%), cough (35.5%),
and fever (27.4%). The symptoms of patients diagnosed with TB alone were similar
(32%, 36%, and 20%, respectively). Table 3 shows the main comorbidities of patients with
coinfection versus patients with pulmonary TB alone. The only statistically significant
difference found was for arterial hypertension (p = 0.02).

Table 3. Main comorbidities in patients with TB + COVID-19 coinfection versus patients with
pulmonary TB alone.

Pulmonary
TB +COVID

% Pulmonary TB % OR (IC 95%)

Arterial
hypertension 21 33.9 200 45.7 0.6 (0.3–0.9)

Diabetes mellitus 15 24.2 136 31.1 0.7 (0.4–1.3)

Dyslipidemia 20 32.3 160 36.5 0.8 (0.5–1.4)

Obesity 6 9.7 45 10.3 0.9 (0.4–2.3)

COPD 5 8.1 58 13.2 0.5 (0.2–1.4)

Asthma 4 6.4 29 6.6 0.9 (0.3–2.8)

Ischemic
cardiopathy 2 3.2 24 5.5 0.5 (0.1–2.3)

Human
immunodeficiency

virus (HIV)
3 4.8 44 10.0 0.4 (0.1–1.4)
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Among patients diagnosed with TB and COVID-19 in 2020, no deaths were recorded
from this cause during the study period.

4. Discussion

The integration of artificial intelligence (AI) systems plays a pivotal role in assessing
the repercussions of the COVID-19 pandemic on the diagnosis and monitoring of various
pathologies. In the realm of medicine, AI has emerged as a groundbreaking scientific
frontier, orchestrating a paradigm shift in healthcare and biomedical research. Its presence
in our everyday clinical practice holds the promise of enhancing the diagnosis, prognosis,
and treatment of respiratory diseases. This transformative potential is particularly evident
in the application of big data techniques, where AI in healthcare facilitates the management
and extraction of valuable insights from the vast and intricate data archived in electronic
health records. One of the notable strengths of AI lies in its capacity to handle extensive
datasets and discern intricate patterns, fundamentally altering our approach to understand-
ing and managing respiratory diseases. The integration of AI technologies allows for a
comprehensive evaluation of the key indicators within specific clinical processes. Crucially,
this approach mitigates selection biases, transcending the limitations imposed solely by the
existence of a registry.

In the context of the COVID-19 pandemic, where the volume and complexity of medi-
cal data have surged, AI systems offer unparalleled advantages. These systems contribute
significantly to the rapid and accurate diagnosis of respiratory conditions, enabling timely
interventions and personalized treatment strategies. Moreover, AI’s capabilities extend
beyond diagnosis, encompassing prognosis and treatment planning. The technology’s
ability to sift through massive datasets facilitates the identification of subtle patterns and
correlations, potentially unveiling new insights into the progression and management of
respiratory diseases.

As we navigate the complexities of the modern healthcare landscape, the symbiosis of
AI and medicine stands as a beacon of progress. It not only expedites processes but also
ensures a more nuanced and individualized approach to patient care. The ongoing evolu-
tion of AI in the medical domain holds vast potential, fostering a future where technology
augments our understanding and management of respiratory diseases, contributing to
improved patient outcomes and shaping a more resilient healthcare ecosystem.

The aim of this study was to demonstrate this impact on the population diagnosed
with pulmonary tuberculosis in 2020 using NLP. The prevalence of this pathology in our
setting has been confirmed, which predominantly affected males from 2015 to 2020. This
higher prevalence in men has already been described in recent previous studies [11,12].

In 2020, we observed a drop in the incidence of pulmonary TB compared to previous
years (shown in Figure 2), including a marked decrease in patients diagnosed in the months
of February to April and in October, which was probably due to the first and second waves
of COVID-19 in Spain. These results are in line with previous studies from other regions of
the Iberian Peninsula and other countries [3–5,23–28]. The majority of studies previously
carried out are of the Italian population, since within Europe it was the country that most
quickly suffered the direct causes of the pandemic. These studies present populations
studied with a low number of patients, our study being the first to analyze with artificial
intelligence the epidemiological situation of pulmonary TB during the pandemic and its
possible co-infection with COVID-19.

Several possible explanations exist for this decrease in the incidence of pulmonary
TB, which are not necessarily mutually exclusive. The reorganization of hospital services
and community health centers due to the pressure of the COVID-19 pandemic could have
indirectly affected the management and identification of patients with TB, while also
reducing the diagnostic and treatment capabilities for this pathology. Second, it may have
caused an underreporting of cases, increasing the number of patients with undiagnosed
and untreated pulmonary tuberculosis. Also, the fear of COVID-19 infection or the presence
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of minor symptoms could have deterred patients from going to medical centers. The same
reasons may justify the increase in the proportion of cases who are lost to follow-up.

Another cause of the lower incidence of pulmonary TB during the first year of the
pandemic could be the public health and social measures that were implemented. Quaran-
tine, the mandatory use of masks, and social distancing may have had a beneficial effect
on certain diseases, resulting in the lower propagation of pathogens spread by airborne
transmission, such as pulmonary tuberculosis. In this way, COVID-19 not only aggravates
the disaster of this disease, as previously described, but also provides experience in the
fight against tuberculosis. People from all social sectors have learned and practiced in-
tervention programs related to respiratory infectious diseases, giving the opportunity for
better management of these diseases in the future, raising awareness among the population
about taking safety measures.

Coinfection with tuberculosis (TB) and COVID-19 presents a significant medical chal-
lenge due to the intersection of two respiratory pathologies with a great global impact.
Coinfection can lead to a complex interaction between the two diseases, potentially exac-
erbating severity and complicating prognosis. The presence of TB can compromise the
host’s immune response, increasing the susceptibility and severity of COVID-19 [17]. At
the same time, SARS-CoV-2 infection could influence the clinical course of TB, especially
in individuals with compromised immune systems. The COVID-19 pandemic has im-
pacted TB control programs, with disruptions to healthcare services and the reallocation
of resources. These factors have contributed to delays in the diagnosis and treatment of
TB, increasing the risks of transmission and drug resistance. Current research focuses on
understanding the mechanisms of interaction between both infections [15–17], as well as
evaluating the impact of coinfection on progression and clinical outcome. These studies
have described a probable increased risk of disease severity in patients with COVID-19 and
pulmonary tuberculosis coinfection [15–17], which would lead to accelerated progression
and symptoms of the latter. With these data documented in the previous bibliography, it is
reasonable to speculate that the hyperinflammatory environment induced by COVID-19
could accelerate the progression of TB disease and vice versa. A worrying importance of
coinfection with active TB, in addition to the worst results of the treatment, is the possibility
of missing a TB diagnosis due to overlapping clinical features.

Strategies are being explored to optimize clinical management and coordination
between TB and COVID-19 programs, recognizing the importance of a comprehensive
approach that addresses the complexities of these co-occurring respiratory diseases [25–27].
Preventing and effectively managing coinfection require close collaboration among health
professionals, as well as continued efforts to ensure equitable access to appropriate health
services and treatments. A deep understanding of TB-COVID-19 co-infection is essential to
guide public health policies and clinical strategies that minimize the impact of this duality
of respiratory diseases globally.

In our study population, a total of 62 patients presented coinfection. This study
has one of the largest cohorts (both European and worldwide) of pulmonary TB and
COVID-19. The female sex was most often affected, as opposed to males in the case of
isolated pulmonary TB, and this difference was statistically significant. The increased
risk of co-infection in women raises important questions about the interaction between
tuberculosis and SARS-CoV-2, as well as potential gender disparities in immune response.
Further research is needed to fully understand these findings and determine whether
there are biological, sociodemographic, or other factors that explain this association. There
were no major changes with respect to age when diagnosed with pulmonary TB alone,
remaining at around 50 years of age. The symptoms presented by coinfected patients were
similar to patients who presented TB alone, which were dyspnea, cough, and fever. The
comorbidities of these patients were also studied, although patients with COVID-19 and TB
did not present more comorbidities. This information could have important implications
for clinical management and public health strategies, as it suggests that people with co-
infection do not necessarily experience a more severe course of the disease. However,
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continued surveillance and more extensive research is needed to fully understand the
clinical and epidemiological ramifications of this dual interaction between pulmonary
tuberculosis and COVID-19. In this group, no related deaths were registered.

5. Conclusions

Despite the emergence of the COVID-19 pandemic, we have not observed a rebound
in the incidence of pulmonary tuberculosis. This may be due to the delay in the diagnosis
of the disease in the first wave or the public health and social measures adopted in that
timeframe. In our setting, women presented an increased risk of pulmonary TB and
SARS-CoV-2 coinfection. These patients did not present more comorbidities or worsened
symptoms compared to patients with isolated TB diagnosis. This finding suggests a unique
dynamic between tuberculosis and COVID-19, where specific factors, yet to be determined,
could influence women’s susceptibility to this co-infection.
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Abstract: Given the increasingly important role that the use of artificial intelligence algorithms is
taking on in the medical field today (especially in oncology), the purpose of this systematic review
is to analyze the main reports on such algorithms applied for the prognostic evaluation of patients
with head and neck malignancies. The objective of this paper is to examine the currently available
literature in the field of artificial intelligence applied to head and neck oncology, particularly in
the prognostic evaluation of the patient with this kind of tumor, by means of a systematic review.
The paper exposes an overview of the applications of artificial intelligence in deriving prognostic
information related to the prediction of survival and recurrence and how these data may have a
potential impact on the choice of therapeutic strategy, making it increasingly personalized. This
systematic review was written following the PRISMA 2020 guidelines.

Keywords: machine learning; deep learning; artificial intelligence; oral cancer; head and neck cancer;
prognosis; therapy; follow-up; recurrence; maxillofacial surgery

1. Introduction

Artificial intelligence in recent years has spread to all fields, from socio-economic to
health care. The purpose of this systematic review is to propose an overview of the applica-
tions of artificial intelligence algorithms in oncology in head and neck cancer patients and
to focus on the assessment of lymph node status through these new technological tools.

Head and neck cancer represents the sixth most common cancer in the world, with
about 630,000 new patients diagnosed each year and more than 350,000 deaths each
year. They are lethal cancers that have a high rate of metastasis and recurrence [1,2].
The application of artificial intelligence algorithms can potentially be one of many new
tools at our disposal to better manage this disease [3,4]. There are already several
recent studies that have investigated the application of artificial intelligence in the
assessment of oncological outcomes, such as the study conducted by Chinnery et al.
(2021) that evaluated different prognostic prediction models through the application of
artificial intelligence and radiomics, demonstrating how these tools may have potential
application in the clinical setting (although further studies are needed regarding the
creation of standardized protocols) [5].
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When we talk about artificial intelligence, we refer to a branch of computer science that
deals with creating algorithms tasked with performing tasks traditionally performed by
human intelligence. Machine learning (ML) is within this branch; it is a subset of artificial
intelligence that allows computers to learn through data input. In addition to ML, there
is also deep learning (DL), which is a subset of artificial neural networks that fall into the
group of artificial intelligence and function by mimicking the functioning of the neural
networks in our brains [3].

The use of artificial intelligence algorithms (in the analysis of clinical, epidemiologic,
radiomic, histologic, and genomic data) in the field of oncology is proving to be a poten-
tial tool for the study of pathogenetic mechanisms, diagnosis, prediction of malignant
transformation of precancerous lesions, and prognostic evaluation, both through the study
of known prognostic and predictive factors and through the identification of new ones.
Therefore, these computational strategies would enable improved research and prognosis
of head and neck cancer [3,6–8].

There have been several studies in the literature that evaluate the clinical applications
of these algorithms for the management of head and neck cancer. ML and AI have shown to
be useful tools for grading, staging, prognostic evaluation, predicting response to therapy,
and deriving information on prognostic endpoints, such as overall survival (OS), through
the analysis of radiomic data. A significant and conspicuous source of data being analyzed
by these machine learning and deep learning algorithms is imaging (e.g., CT, MRI, and
PET images) [4,9].

Given that imaging data are an important source of information, the use of machine
learning in the analysis of radiomic data can have the goal of creating models that reflect
the genesis and evolution of head and neck cancer. Thanks to radiomics, quantitative
features can be extracted from conventional medical images and combined with other
data, such as molecular biomarkers or clinical data, to assess tumor status more accurately
with positive repercussions on diagnosis and therapy, with the latter being increasingly
personalized [10].

Prognostic evaluation is critical, as this has a significant impact on the choice of
therapeutic strategy. The aim of this systematic review is to provide an overview of the
applications of artificial intelligence algorithms in the prognostic evaluation of head and
neck cancer patients; in particular, the creation of prognostic models and their impact on
the therapeutic strategy. Considering that more than 65% of patients with squamous cell
head and neck cancer have recurrent or metastatic disease [11], we understand how crucial
it is to have at our disposal innovative tools that can best predict the patient’s prognosis
and to identify those patients who present greater risk of recurrence and thus would benefit
from a particular treatment compared with the standard treatment.

We also decided to focus on the evaluation and prediction of lymph node status as
a prognostic factor. Lymph node metastasis is the main way of dissemination of head
and neck carcinoma, and its presence has a substantial impact on the prognosis and
consequent therapy [12].

2. Materials and Methods

This study was conducted according to the preferred reporting items for systematic
review and meta-analyses (PRISMA) statement [13]. The PRISMA checklist is reported in
the Supplementary Materials.

The research question of this systematic review was built according to the PICOS
framework (participant, interventions, comparators, outcomes, and study design) (Table 1)
and can be summarized as follows: “Does artificial intelligence algorithm-mediated prog-
nostic evaluation of head and neck cancer patients provide useful data to improve and
personalize therapeutic strategy?”.
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Table 1. PICOS framework.

Participant Patients with head and neck cancer that have already been diagnosed.
Interventions Evaluation of prognostic factors using artificial intelligence algorithms.

Comparators
Comparison to other artificial intelligence algorithms or the same
algorithm but with different types of data processing or prognostic models
based on clinical pathological data (e.g., TNM staging).

Outcomes Recurrence-free survival, distant metastasis-free survival, loco-regional
failure, overall survival, tumor-related death, and disease-free survival.

Study design Clinical trials, randomized clinical trials, cohort studies, research articles,
and original articles

This review was registered in the PROSPERO database (International Prospective
Register of Systematic Reviews; ID number 474750).

2.1. Literature Search

The literature search was performed in accordance with the PICOS framework (Table 1);
specifically, the items “participants” and “outcome” were used to compose the query. The
query used was: ((artificial intelligence) OR (machine learning) OR (deep learning)) AND ((oral
cancer) OR (head and neck cancer) OR (OSCC) OR (mouth neoplasm)). Using combinations
of keywords, the literature search was conducted until 29 September 2023 by consulting the
following medical literature databases: MEDLINE, Cochrane Central Register of Controlled
Trials (CENTRAL), ClinicalTrials.gov, ScienceDirect, Embase, Scopus, and CINAHL.

For database searching, filters were applied to select English-only articles conducted
on human species with publication dates between 2013 and 2023. The selected articles were
clinical trials, randomized clinical trials, cohort studies, original articles, and research articles.

After a primary search, the articles were imported into EndNote21 (Clarivate, Ana-
lytics, Philadelphia, PA, USA), and all saved articles were screened by two independent
investigators (L.M. and A.T.) through an evaluation of the title and abstract, as reported
in the PRISMA flowchart (Figure 1). In case of doubts or disagreements between the two
investigators, a third independent investigator (M.R.) was involved.

Figure 1. PRISMA flowchart of the systematic review process. * The first number indicates the results
obtained via the keywords, while the second number refers to results identified via MeSH.
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2.2. Inclusion and Exclusion Criteria

The two independent investigators (L.M.) and (A.T.) applied the following inclusion
and exclusion criteria by first evaluating the title of the collected studies, then the abstract,
and finally, for the remaining studies, by reading the full text. Non-randomized and
randomized clinical trials, cohort studies, original articles, and research articles published
from 2013 to 2023 in English only and performed on humans were included. From the
results obtained from the database search, all studies dealing with artificial intelligence
applied for head and neck cancer diagnosis and screening, detection and prediction of
transformation of potentially malignant lesions, and segmentation used for radiotherapy
planning were not considered. In addition, review articles and meta-analyses were not
considered. Studies for which an abstract was not available were also excluded. Studies
conducted on single prognostic factors were removed, except for those that evaluated the
application of artificial intelligence for the assessment and prediction of lymph node status.
Studies with fewer than 20 citations were removed.

To summarize the studies included in this review, they were grouped into two cate-
gories based on the type of topic (Table 2):

1. Prognostic models (n = 11).
2. Diagnosis and prediction of lymph node status (n = 8).

The first group included studies evaluating the efficacy of prognostic models based on
artificial intelligence algorithms and studies demonstrating how these prognostic models
can have a significant impact on patients’ treatment strategy, while the second group
included studies evaluating the efficacy of artificial intelligence algorithms in assessing
lymph node metastasis, diagnosing and predicting extracapsular lymph node extent, and
predicting lymph node metastasis.

Table 2. Breakdown of selected articles by topic.

Main Groups Topics

1. Prognostic models

(n = 11)

a. Creation of prognostic models

(n = 9);

b. Example of prognostic models with the ability to
guide therapeutic choice

(n = 2).

2. Diagnosis and prediction of
lymph node status

(n = 8)

a. Diagnosis of lymph node metastasis

(n = 1);

b. Diagnosis and prediction of extracapsular lymph
node extension

(n = 3);

c. Prediction of lymph node metastasis

(n = 4).

2.3. Data Collection

From the selected studies, the following data were extracted: study topic, study
objective, endpoints examined, number of patients examined, treatment of patients exam-
ined, type of tumor examined (oral squamous cell carcinoma, oropharyngeal carcinoma,
hypopharyngeal carcinoma, nasopharyngeal carcinoma, or laryngeal carcinoma), data
analyzed to create the algorithm (clinical, pathological, imaging, or genetic/molecular
data), the algorithm used (ML or DL), comparison (to other artificial intelligence algorithms
or prognostic models based on clinical/histologic data such as TNM staging), and the
summary of results obtained.
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Data were manually extracted by the two independent researchers (L.M. and A.T.)
and collected in a Microsoft Excel spreadsheet. This information was then displayed in
Table 3; Table 4 in the Section 3.

2.4. Bias Assessment

The risk of bias was assessed by the two independent investigators (L.M.) and (A.T.)
using the Robvis tool [14]. Five types of bias were assessed: bias arising from the ran-
domization process, bias due to deviations from the intended interventions, bias due
to missing outcome data, bias in outcome measurement, and bias in reported outcome
selection (Figures 2 and 3).

Figure 2. Robvis tool for assessing the risk of bias in studies concerning prognostic models.

Figure 3. Robvis tool for assessing the risk of bias in studies concerning evaluation and prediction of
lymph node status.
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3. Results

Figure 2 shows the PRISMA flowchart describing the study selection process. Using
a combination of keywords, the investigators retrieved 2882 studies. All articles were
imported into EndNote. After identifying duplicates, 146 studies were removed. The
remaining 2736 were screened by title, with the removal of 2346 papers. Subsequent
screening by abstract led to the exclusion of an additional 161 reports. The full texts of
229 studies were read and, following the application of the inclusion and exclusion criteria,
19 studies were included in this systematic review.

Of the 19 selected studies, we assessed the risk of bias using the Robvis tool [14];
11 articles concerning prognostic models are shown in Figure 2, and 8 articles concerning
lymph node status assessment are shown in Figure 3.

The included studies were grouped into two groups based on the type of topic ad-
dressed (Table 2): “prognostic models” and “evaluation and prediction of lymph node
status”. The following data were collected for prognostic models (as summarized in
Table 3) and for lymph node status assessment (as summarized in Table 4): study topic,
study objective, endpoints examined, number of patients examined, treatment of patients
examined, type of tumor examined (oral squamous cell carcinoma, oropharyngeal carci-
noma, hypopharyngeal carcinoma, nasopharyngeal carcinoma, or laryngeal carcinoma),
data analyzed to create the algorithm (clinical, pathological, imaging, or genetic/molecular
data), algorithm used (machine learning or deep learning), comparison (to other artificial
intelligence algorithms or prognostic models based on clinical/histologic data such as TNM
staging), and summary of results obtained.

3.1. Prognostic Models (Table 3)

Several studies demonstrated that they succeeded in developing prognostic models
capable of assessing parameters, such as overall survival (OS) and disease-free survival
(DFS), by processing clinical, imaging, histopathological, and/or genomic data.

3.1.1. Endpoint

Analyzing the data collected and summarized in Table 3, the following endpoints were
evaluated from these studies: recurrence-free survival, distant metastasis-free survival, loco-
regional failure, overall survival, tumor-related death, and disease-free survival. This demon-
strates the broad ability of these algorithms to evaluate multiple prognostic endpoints.

3.1.2. Data Analyzed

The data processed by the different artificial intelligence algorithms to obtain
these prognostic results are also varied: about 73% of the studies analyze clinical data,
64% clinical/pathological data (age, sex, grading, depth of invasion, perineural invasion,
lymph/vascular invasion, tumor budding, bone marrow invasion, persistence of tumor
at resection margin, extranodal extension, tumor site), 36% analyze treatments already
performed on the patient (radiotherapy, chemotherapy, adjuvant CT-RT, concomitant
CT-RT, cervical dissection, surgical resection of primary tumor), 45% analyze imaging data
with radiomic processing and patterns (CT images, CT with contrast medium, MRI, PET,
PET-TC), 18% analyze socio-demographic data, and 9% analyze genetic data. All this infor-
mation is not simply processed as individual data but is integrated because of the ability of
artificial intelligence algorithms to do so. In fact, as the study conducted by Tseng, Y.J. et al.
(2020) [15] shows, the integration of genetic data together with clinical/pathological data
goes a long way toward improving the performance of the prognostic model in assessing
recurrence-free survival (endpoint examined by this study).

3.1.3. Types of Head and Neck Tumors Studied

The tumors analyzed are oral squamous cell carcinoma (addressed in 64% of the
selected studies), oropharyngeal carcinoma (in 36%), hypopharyngeal carcinoma (in 27%),
nasopharyngeal carcinoma (in 18%), and laryngeal carcinoma (in 45%).
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3.1.4. Artificial Intelligence Algorithms

The algorithms employed in the different studies are various, from ML models to DL
models to convolutional neural networks. These models once developed are trained with
data from the training cohort (training set) and then validated (analyzing the processing
by these models of data from the validation cohort (testing set). They are then compared
either to other artificial intelligence algorithms or to prognostic models based on clini-
cal/pathological data (such as TNM staging or DOI (depth of invasion)). For instance, in
the Alabi study (R. et al. (2020) [16]), a first comparison is made between several different
types of artificial intelligibility algorithms to assess which one has better performance and to
compare the most accurate model to that obtained from the DOI (depth of invasion) study.

A total of 64% of the studies reported in Table 3 evaluate the application of ML
algorithms for prognostic modeling, while 36% analyze applications of DL.

The algorithms used in the selected studies are: support vector machine (SVM),
naïve Bayes (NB), boosted decision tree (BDT), decision forest (DF), convolutional neural
network (CNN), random forest (RF), random survival forest (RSF), linear regression (LR),
decision tree (DT), support vector machine (SVM), k-nearest neighbors (KNN), bagging
(BAG), Bayesian (BY), boosting (BST), decision Tree (DT), generalized linear models (GLM),
multiple adaptive regression splines (MARS), nearest neighbors, neural network (Nnet),
and partial least square and principle component regression (PLSR).

3.1.5. Comparison

About 27% of the studies reported in Table 3 compare artificial intelligence algorithms
to prognostic models based solely on the study of staging or other clinical/histologic
parameters such as DOI (depth of invasion). About 36% of the reported studies compare
the performance of different types of prognostic algorithms in processing the same data,
while 18% of the studies compare the same algorithm in processing different data. There are
several studies in the current literature that analyze the use of certain artificial intelligence
algorithms but without performing a comparison, evaluating only their performance in
deriving prognostic data (about 27% of the reported studies).
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3.1.6. Evaluation of Prognostic Endpoint

The application of ML and DL algorithms have proven to be very useful in evaluating
different types of endpoints, including recurrence-free survival, distant metastasis-free sur-
vival, loco-regional failure, overall survival, tumor-related death, and disease-free survival.

The study conducted by Alabi et al. (2020) [16] compared the performance of four
different types of ML algorithms (support vector machine, naïve Bayes, boosted decision
tree, and decision forest) in deriving the risk of recurrence in patients with oral tongue
squamous cell carcinoma by processing clinical/pathological data. The algorithm that
proved best among the four, namely the boosted decision tree (BDT), was then compared
to a prognostic model based solely on DOI (depth of invasion). This study showed how the
DOI model correctly identified only 49.5 percent of patients with recurrence, while the ML
model (the BDT) recognized 78.9 percent, demonstrating greater accuracy. Another study
demonstrated how artificial intelligence algorithms were more effective in assessing the
overall survival of five patients with oral squamous cell carcinoma (OSCC), namely the
study conducted by Karadaghy et al. (2019) [19]. This study compared an ML algorithm to
a prognostic model obtained through TNM staging, demonstrating how the former had
greater accuracy and precision than the latter in calculating overall survival.

As mentioned earlier, studies comparing the same type of diagnostic algorithm but
with different data processing were included. The study conducted by Liu et al. (2020) [23]
showed that processing by the same ML algorithm of both clinical/pathological data
together with radiomic data obtained from PET/CT scans was better in predicting overall
survival (OS) and disease-free survival (DFS) than processing clinical data alone in a
patient with oropharyngeal, laryngeal, hypopharyngeal, and oral cavity cancer. The study
conducted by Tseng et al. (2020) [15] showed that processing both clinical data and genetic
data, again performed by the same ML algorithm, was better in predicting cancer-specific
survival, loco-regional recurrence-free survival, and distant metastasis-free survival than
processing only clinical/pathological data in patients with oral squamous cell carcinoma.

In contrast, the study conducted by Diamant et al. (2019) [17], which examined
patients with oropharyngeal, hypopharyngeal, nasopharyngeal, and laryngeal cancer,
showed how the DL algorithm (the convolutional neural network) performed better than
the ML (random forest) algorithm in calculating the risk of distant metastasis (DM), loco-
regional failure (LRF), and overall survival (OS) by analysis of CT images performed during
presurgical treatment.

3.2. Diagnosis and Prediction of Lymph Node Status (Table 4)

Knowing the lymph node status is crucial in the management of a patient with a
head/neck tumor. The following studies have been divided into three parts:

1. Studies on the “Assessment of cervical lymph node metastasis”;
2. Studies on the “Diagnosis and prediction of ENE (extranodal extension)”;
3. Studies on “Prediction of lymph node metastasis”.

3.2.1. Topics

The topics of these studies are to develop models based on artificial intelligence in
order to perform more precise diagnoses and evaluation of lymph node metastasis, to
diagnose and predict the occurrence of extranodal extension (ENE), and to predict the
occurrence of lymph node metastasis.

3.2.2. Data Analyzed

The data analyzed for the evaluation of these prognostic models are mostly radiomic
in nature: 75% of the selected studies present imaging data for the creation and validation
of machine learning and deep learning algorithms, while the remaining 25% exploit clini-
cal/pathological data. Particularly, of that 75%, data come from CT scans (66%), PET-CT
(17%), and DECT dual-energy CT (17%).
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3.2.3. Type of Head and Neck Tumors Studied

The tumors analyzed are oral squamous cell carcinoma (addressed in 87% of the
selected studies), oropharyngeal carcinoma (50%), hypopharyngeal carcinoma (37%), na-
sopharyngeal carcinoma (25%), and laryngeal carcinoma (50%).

3.2.4. Comparison

A total of 37.5% of the studies reported in Table 4 compare the performance of artificial
intelligence algorithms to the analytical ability of professional radiologists (in studies in
which the data to be analyzed are CT images), 37.5% of the studies compare these algorithms
to models based on the study of clinical/pathological factors (such as DOI), 12.5% of the
studies compare different types of algorithms to the same types of data processed, and
another 12.5% of the studies reported compare the performance of the same algorithms but
with different data processing.
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3.2.5. Lymph Node Status Assessment

Artificial intelligence algorithms have proven to be especially useful in diagnosing and
predicting lymph node metastasis and predicting extranodal extension (a very important
prognostic factor that severely impacts a patient’s prognosis). The study conducted by
Ariji et al. (2019) [26] investigated the ability of DL to diagnose lymph node metastasis
in patients with oral squamous cell carcinoma through CT image processing. The results
obtained were then compared to those of two experienced radiologists. It was shown that
the results obtained by the DL models were similar to those obtained by the two radiologists
in terms of accuracy, sensitivity, and specificity, emphasizing how these algorithms can be
useful tools to be used in the work of radiologists.

On the subject of extranodal extension, the study conducted by Ariji et al. (2020) [27]
instead examined the ability of DL algorithms to diagnose the presence of ENE in patients
with oral squamous cell carcinoma. The performance of these algorithms was shown to
be superior to that of three radiologists who were tasked with reviewing the same CT
images. In contrast, the study conducted by Kann et al. (2018) [29] focused on evaluating
the ability of DL algorithms in predicting ENE in patients with oropharyngeal, laryngeal,
hypopharyngeal, nasopharyngeal, and oral cavity cancer. The DL model was compared to
a regression model of clinical risk factors and diagnostic controls performed by radiolo-
gists, showing that the application of the DL algorithm achieved superior performance in
predicting both ENE and lymph node metastasis.

Regarding the prediction of lymph node metastasis, another study also demonstrated
interesting results. The study by Farrokhian et al. (2022) [31] compared the performance of
an ML algorithm to that of a model that relied solely on DOI (depth of invasion) assessment,
showing how the predictive ML model was better in terms of AUC (area under the curve),
sensitivity, and specificity.

4. Discussion

As stated in the introduction, the purpose of this paper is to provide an overview of
the potential performance of artificial intelligence as applied in the prognostic evaluation
of head and neck cancer patients, particularly in prognostic modeling, clinical endpoint
assessment, and lymph node status assessment.

When the clinician assesses the prognosis of the cancer patient, several prognostic
factors are assessed through the study of the clinical, imaging, and histologic report and
the possible presence of certain molecular alterations that, in addition to having prognostic
significance, may add predictive value to the use of certain treatments. We understand how
precisely knowing the patient’s prognosis allows for the best management of the disease
with proper therapy and follow-up.

The application of artificial intelligence algorithms is proving useful for this purpose
because of their ability to process information in a way that the human mind alone cannot.
Studies demonstrating the validity of ML for predicting treatment outcomes in cancers
such as prostate and breast cancer have been published for some time now [34].

There are recent studies demonstrating how the application of artificial intelligence
algorithms can be a useful tool for outcome prediction in patients with head and neck
cancer, such as the study conducted by Chinnery et al. (2021) [5] that demonstrated how
the use of these algorithms can be applied in prognostic evaluation through the analysis
of imaging data, the study conducted by Adeoye et al. (2021) [35] that demonstrated
how these tools have excellent accuracy in predicting both lymph node metastasis and
prognosis in the patient with oral cavity cancer, or the study conducted by Zhang et al.
(2023) [36] that showed how radiomics can be a means to the clinician’s advantage in
assessing clinical endpoints.

From the studies we have collected in our review, it can be understood how ML and
DL algorithms provide excellent performance in assessing different types of prognostic
endpoints (such as, for example, overall survival) and in predicting posttreatment out-
comes, demonstrating how they can be an essential tool to better personalize therapy. The
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application of these algorithms has demonstrated greater accuracy both in terms of AUC
(area under the curve) and in terms of specificity and sensitivity than models commonly
used in clinical practice for prognostic evaluation, such as prognostic models based on
TNM staging or DOI (depth of invasion). Moreover, by being able to process multiple
types of information (clinical, radiological, histological, and molecular data), together these
tools have demonstrated a greater ability to stratify patients according to their prognosis
by even being able to identify which subgroups of patients with the same tumor and stage
would benefit from specific treatments and which would not. In this regard, the study
conducted by Howard et al. (2020) [25] (that we include in our review) demonstrated how
different DL algorithms (DeepSurv, neural multitasking logistic regression, and survival
forest) were able, through the analysis of demographics and clinical/pathological data and
according to the type of treatment received, to stratify patients with early-stage head and
neck cancer into different subgroups, identifying those who would receive a benefit from
adding adjuvant chemotherapy to surgical treatment. This has a major impact on the lives
of patients, as it means more aggressive treatments against early-stage cancer in those who
have a higher risk of recurrence and metastasis, while sparing those who would not benefit
from such treatments from the side effects of chemotherapy and radiotherapy (mucositis,
osteonecrosis, dermatitis, dysphagia, and many others) [37–39].

Studies conducted on lymph node metastasis prediction also prove to be useful
for patient stratification and therapy personalization, such as the study conducted by
Farrokhian et al. (2022) [31] that examined the application of ML in lymph node metastasis
prediction and demonstrated how it is superior to the DOI (depth of invasion)-based
prognostic model, succeeding in selecting which patients with early-stage head and neck
cancer would benefit from cervical lymph node dissection. Thus, artificial intelligence
algorithms prove to be much more accurate in predicting lymph node metastasis and
extranodal extension (ENE) than assessments conducted by DOI (depth of invasion)-based
models. For the diagnosis of lymph node metastasis, through the study of radiologic
images, we have observed how these algorithms perform the same if not in some cases
even better than those of experienced radiologists. This shows, in our opinion, how these
algorithms can be considered reliable and how they can be used as an auxiliary tool for the
clinician in tumor assessment.

However, we must emphasize some aspects that we consider limiting. Although these
algorithms show excellent performance in prognostic evaluation, further studies are needed
to have a significant impact on clinical practice, especially through the implementation
of standardized protocols. Ther are numerous studies addressing the issue of head and
neck cancer prognosis, but not all of them analyze the same algorithms and the same
types of data (clinical, radiological, histological, and molecular), not to mention the type
of treatment received by the patient. Moreover, the fact that there are studies analyzing
the same types of prognostic factors for different types of head and neck cancer that could
represent a risk, they would neglect the study of prognostic factors that are peculiar only
to certain types of cancer, such as HPV positivity. In oropharyngeal cancer, the presence
of HPV has a recognized prognostic role, while, for oral squamous cell carcinoma, they
recognize this role during prognosis [40,41]. It must also be borne in mind that certain
types of data, such as molecular data, cannot be obtained in all hospitals, as not all centers
have the required facilities and laboratories.

5. Conclusions

Although more studies and standardized protocols are needed for them to have a sig-
nificant impact on clinical practice, artificial intelligence algorithms demonstrate excellent
performances in predicting outcomes after treatment, evaluating clinical endpoints, and
predicting metastasis and recurrence in head and neck cancer patients. These algorithms
exhibit better accuracy than commonly used prognostic models such as those that rely on
TNM staging or DOI (depth of invasion). The application of ML and DL algorithms in
prognostic evaluation has also shown how it is possible to stratify cancer patients with
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the same tumor and at the same stage into multiple subgroups, identifying which patients
would benefit from more aggressive treatments toward the tumor (such as, for example,
the trimodal approach of surgery, chemotherapy, and radiotherapy) and who would not,
with the aim of avoiding the patient side effects that would result from such an approach.
AI is showing great promise. However, prospective clinical trials comparing AI to standard
prognostic algorithms are required to evaluate AI as a tool for disease management. We
believe that the application of artificial intelligence in the management of oncology patients
can play an important role in the medicine of the future.
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Abstract: Anterior open bite malocclusion is a complex dental condition characterized by a lack of
contact or overlap between the upper and lower front teeth. It can lead to difficulties with speech,
chewing, and biting. Its etiology is multifactorial, involving a combination of genetic, environmental,
and developmental factors. Genetic studies have identified specific genes and signaling pathways
involved in jaw growth, tooth eruption, and dental occlusion that may contribute to open bite
development. Understanding the genetic and epigenetic factors contributing to skeletal open bite
is crucial for developing effective prevention and treatment strategies. A thorough manual search
was undertaken along with searches on PubMed, Scopus, Science Direct, and Web of Science for
relevant studies published before June 2022. RCTs (clinical trials) and subsequent observational
studies comprised the included studies. Orthodontic treatment is the primary approach for managing
open bites, often involving braces, clear aligners, or other orthodontic appliances. In addition to
orthodontic interventions, adjuvant therapies such as speech therapy and/or physiotherapy may be
necessary. In some cases, surgical interventions may be necessary to correct underlying skeletal issues.
Advancements in technology, such as 3D printing and computer-assisted design and manufacturing,
have improved treatment precision and efficiency. Genetic research using animal models, such as
the Collaborative Cross mouse population, offers insights into the genetic components of open bite
and potential therapeutic targets. Identifying the underlying genetic factors and understanding their
mechanisms can lead to the development of more precise treatments and preventive strategies for
open bite. Here, we propose to perform human research using mouse models to generate debatable
results. We anticipate that a genome-wide association study (GWAS) search for significant genes and
their modifiers, an epigenetics-wide association study (EWAS), RNA-seq analysis, the integration of
GWAS and expression-quantitative trait loci (eQTL), and micro-, small-, and long noncoding RNA
analysis in tissues associated with open bite in humans and mice will uncover novel genes and
genetic factors influencing this phenotype.

Keywords: malocclusion; open bite; etiology; treatment; Collaborative Cross mice

1. Introduction

Malocclusion, a common dental condition impacting many individuals worldwide,
refers to the misalignment of the teeth and jaws. This condition can adversely affect oral
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health, impairing eating, speaking, and the maintenance of good oral hygiene. Moreover,
malocclusion can influence appearance, diminishing self-confidence and self-esteem [1].
The causes of malocclusion are multifactorial and intricate, involving genetic, environ-
mental, and developmental factors [1]. Dental research has made significant progress in
understanding the molecular mechanisms underlying malocclusion, particularly through
exploring genetics and genomics. These studies have revealed specific genes and signaling
pathways that influence jaw formation, tooth emergence, and tooth closure. However, fully
comprehending the intricate interplay between hereditary and environmental variables
which leads to malocclusion remains a challenging task [2].

Anterior open bite is a type of malocclusion that occurs when there is no contact or
overlap between the upper and lower front teeth. It can also occur with all forms of skeletal
Dysgnathy (Figure 1A–E). Prolonged use of a pacifier may contribute to its development. It
is a complex dental problem that can be triggered by a number of circumstances, such as
genetics, environmental factors, and habits such as thumb-sucking or tongue-thrusting [3].
An open bite can be classified as either functional, skeletal, or dentoalveolar, or as a
combination of all three, depending on the underlying cause (Figure 2). Skeletal open
bite is caused by excessive vertical growth of the dentoalveolar complex, especially in the
posterior molar region. In this patient category, there is an increased lower face height
compared to the upper face height (long face syndrome). Cephalometric open bite is a
hyperdevirgence of the InterBase angles (angles between the upper and lower jaw base).
This long face can be seen extra-orally (Figure 3A,B). At the same time, dental open bite
is generally found in the anterior region within the area of the cuspids and incisors and
is associated with a normal craniofacial pattern, proclined and undererupted anterior
teeth, and thumb- or finger-sucking habits. In this patient category, there is a harmony
between the upper and lower facial height. Nothing is noticeable extra-orally, as shown in
Figure 4A,B [3]. The third category consists of the combination of skeletal and dentoalveolar
open bite, in which the intraoral and the extra-oral symptoms can be seen (Figure 5A,B).
An open bite can cause difficulties with speech, chewing, and biting and can also lead to
temporomandibular joint (TMJ) disorders [4]. Treatment of an open bite can be challenging
and may require a combination of orthodontic and surgical interventions (Figure 6). This
article reviews the etiologies, dentofacial morphology, treatment modalities, retention, and
stability of anterior open bite [3].
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Figure 1. Overbite denotes the vertical alignment or the space between the upper central incisor of
the maxilla and the corresponding central incisor of the mandible. (A) A normal or physiological
overbite typically measures about 2–3 mm. (B) An open bite refers to a reduced overbite, usually
measuring less than 0 mm. (C) Open bite combined with a Class I dental relationship. (D) Open bite
in association with a Class II dental relationship. (E) Open bite in connection with a Class III dental
relationship.
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Figure 2. Various categories of open bites exist, and a visual representation in the form of a diagram
can help elucidate these distinctions.

Figure 3. A schematic depiction of the vertical dimension illustrates a physiological overbite (A) and
a skeletal open bite (B). (A) In a physiological vertical dimension, there is a balanced relationship
between the upper facial height (UFH 50%) and lower facial height (LFH 50%). (B) A skeletal open
bite is characterized by an elevated lower facial height (LFH 54%) in comparison to the upper facial
height (UFH 46%).
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Figure 4. A schematic illustration of the vertical dimension showcases a physiological overbite (A)
and a dentoalveolar open bite (B). (A) In a physiological vertical dimension, there exists a harmo-
nious relationship between the upper facial height (UFH 50%) and lower facial height (LFH 50%).
(B) A dentoalveolar open bite occurs due to the infraocclusion or protrusion of the front teeth,
maintaining a balanced relation between the upper facial height (UFH 50%) and lower facial height
(LFH 50%).

Figure 5. A schematic portrayal of the vertical dimension demonstrates a physiological overbite (A)
and the coexistence of a skeletal and dentoalveolar open bite (B). (A) In a physiological vertical
dimension, there is an equilibrium between the upper facial height (UFH 50%) and lower facial height
(LFH 50%). (B) A combined skeletal and dentoalveolar open bite results from the posterior rotation
of the mandible and the infraocclusion of the front teeth, leading to an elevated lower facial height
(LFH 54%) in contrast to the upper facial height (UFH 46%).
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Figure 6. A diagram depicting various treatment approaches for open bite, which can be categorized
based on factors such as age, growth stage, causative factors, functional considerations, and aesthetic
concerns.

2. Top of Form

Open bite malocclusion can be classified into different types based on its location and
etiology. According to Moyer, simple open bite is limited to the teeth and their surrounding
alveolar process, whereas a complex open bite is primarily the result of vertical dysplasia
and is often linked to Class I, Class II, and Class III malocclusions (Figure 1A–E and
Figure 2). False or dental open bite is characterized by proclined teeth without alteration of
the osseous bases, while true or skeletal open bite involves deformed alveolar processes
and dolichofacial characteristics. Posterior open bite is defined as the failure of contact
between the posterior teeth when the teeth occlude in centric occlusion. Open bites can
also be classified based on their location, such as anterior open bite, which can be dental
or skeletal, and posterior open bite. The classification of open bite includes simple open
bite, compound open bite, and infantile open bite. Understanding the different types
and classifications of open bite is crucial in diagnosing and planning treatment for such
cases [5].

Strong pieces of evidence suggest that genetics and heredity can play a significant role
in the development of open bite malocclusion. Evolution has led to genetically determined
smaller jaws and more vertical facial structures, which can increase the risk of open bite.
Height may also be a hereditary factor, and was shown to be a coounder involved in
affecting understanding of the genetic and environmental variables that contribute to open
bite, which are critical for precise diagnosis and therapy [6].

The utilization of animal models has greatly contributed to the advancement of molec-
ular analysis in the field of malocclusion research. By leveraging these models, researchers
are able to delve into the intricate interplay between environmental and genetic variables
that possess a role in the formation of tooth misalignment, as well as to explore and eval-
uate diverse preventive and therapeutic strategies. Among the various animal models
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available, mice have emerged as a particularly advantageous choice due to their small
physical stature, ease of breeding, and remarkable genetic resemblance to humans [7].

An animal model that has proven to be highly effective in investigating complex
genetic traits like malocclusion is the Collaborative Cross (CC) mouse. Through meticulous
breeding techniques, CC mice can give rise to a genetically diverse population, which
considerably expands the range of genetic variations available for comprehensive examina-
tion. This particular mouse population serves as an exceptional model for the thorough
investigation of the intricate genetic underpinnings associated with malocclusion, owing to
its possession of a distinct and heterogeneous assortment of genetic variants [7]. Notably,
CC mice have been successfully harnessed in previous studies to unravel the complexities
underlying a wide array of genetic traits, including but not limited to body mass index
and metabolic diseases [8]. Consequently, the inherent genetic diversity present within
the CC mouse population offers an invaluable resource for gaining a comprehensive un-
derstanding of the multifaceted genetic components implicated in malocclusion, thereby
facilitating the targeted identification of specific genetic variants that contribute to the
manifestation of complex traits [9]. The role of genetic factors in the emergence of open bite
will be addressed in this paper, and the potential of the CC mouse population in identifying
genetic variants that contribute to open bite will be highlighted. We also suggest that the im-
plications of this proposed research will lead to the development of precise treatments and
preventive strategies for open bite. The use of the CC mice cohort is pivotal in our research.
This unique mouse model, created through meticulous breeding, replicates the genetic
diversity encountered in human populations. CC mice have proven effective in unraveling
the complexities of diverse genetic traits, offering a dynamic platform for genetic studies.
By harnessing the CC mice, we aim to simulate and understand the genetic components of
open bite and identify specific genetic variants which contribute to its manifestation.

3. Etiology

The etiology of open bite is complex and multifactorial, involving a combination
of genetic, environmental, and developmental factors. Interaction between genetic and
environmental factors can influence open bite development. For example, a genetic pre-
disposition to malocclusion combined with oral habits such as thumb-sucking can lead to
more severe malocclusion. Understanding these factors and their interactions is critical
for developing effective prevention and treatment strategies for open bite [10]. Genetic
factors are believed to play a significant role in the development of open bite. Studies
have identified specific genes and signaling pathways implicated in the growth of the
jaw and the eruption of teeth, and variations in these genes may contribute to open bite
development.

Genetic factors do not solely influence the development of malocclusion, as epigenetic
mechanisms also contribute to its manifestation. Epigenetic processes, encompassing DNA
methylation, histone modification, and microRNA regulation, have been identified as
influential elements in the intricate web of malocclusion development. These epigenetic
changes possess the ability to modify patterns of gene expression, thereby impacting the
growth and development of teeth and jaws. Research has demonstrated that patients
with malocclusion exhibit altered DNA methylation patterns, which, in turn, can disrupt
transcriptome profiles that are crucial for the development of the jaw and the emergence of
the teeth [11]. Furthermore, it is important to note that environmental factors, including
diet, stress, and exposure to toxins, can influence epigenetic modifications. For instance,
research has revealed that maternal stress experienced by mothers throughout gestation can
cause changes in DNA methylation patterns in children, eventually leading to craniofacial
deformities and malocclusion [12].

To summarize, the bases for malocclusion development extend beyond genetic differ-
ences alone. They also involve intricate interactions between genes, signaling pathways,
and epigenetic factors. The genetic factors encompass variations in genes responsible for
mandibular development, the eruption of teeth, and oral occlusion. However, epigenetic
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mechanisms, including DNA methylation and microRNA control of microRNA activity,
exert their influence on malocclusion development as well. By comprehensively gain-
ing insights into the genetic and epigenetic elements that play a role in the development
of malocclusion, researchers can provide the foundation for the creation of innovative
preventative and therapeutic solutions aimed at addressing this prevalent dental condition.

4. Classification of Open Bite

4.1. Anterior Open Bite

A malocclusion, in this context, refers to an anterior portion of the dental arches
without any contact, and the posterior teeth in occlusion are shown in Figure 1A–E and
Figure 7A,B. When a malocclusion affects the posterior segment, it is referred to as a
combined open bite [13]. Anterior open bite is one of the most widespread and challenging
to treat of the malocclusions that are most frequently encountered in clinic practice. When
the etiology is multifactorial, the pathology results in aesthetic changes, harm to the
articulation of some phonemes, and unfavorable psychological states [14,15]. Functional,
dentoalveolar, skeletal, or a combination of other factors may be the cause of the open bite.
Using fixed appliances for orthodontic treatments makes treating dental open bite simple.
For the treatment of skeletal open bite, which may necessitate orthognathic surgery, a more
thorough strategy is needed. Myofunctional appliances can be used to repair dental open
bite in growing patients, and afterward, orthodontic removable appliances can be used
to fix it during the retention phase [16]. The prepubertal and pubertal growth should be
evaluated for nasal obstruction [17]. The axial inclinations of the incisors might change as a
result of excessive activity of the tongue while swallowing or even when it is at rest, which
may cause an open bite [18].

 

Figure 7. An anterior portion of the dental arches without contact is meant by a malocclusion in this
context (A); (B) the posterior teeth in occlusion.

4.2. Posterior Open Bite

When the teeth occlude in centric occlusion, posterior open bite is the loss of contact
between the posterior teeth, as shown in Figure 8A,B. The maxillary and mandibular
premolars are not occluded, as seen in the figures. Insignificant contact exists between the
mandibular and maxillary molars in a typical anterior overjet and overbite.
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Figure 8. Posterior open bite is the loss of contact between the posterior teeth. Subfigure (A) shows
the posterior open bite from first premolar to the second molar, and (B) the same patient shows
contact in anterior area, while open in the posterior area.

4.3. Types of Open Bite
4.3.1. False or Dental Open Bite

The osseous roots of the teeth in this bite are unaltered, and the procline does not
reach past the canine. This individual displays a pseudo-bite, a dentoalveolar issue, normal
facial morphology, and proper bone relationships, all of which are shown in Figure 9A–F
and fully discussed by Meyer-Marcotty et al. and Rodriguez and Casasa [19,20].

Figure 9. False (A) or dental (B) open bite. (A–C) During tooth development and tooth eruption.
(D–F) After tooth development and complete tooth eruption.

4.3.2. True or Skeletal Open Bite

Alveolar processes that are implicated or malformed as well as dolichofacial character-
istics are found in this kind of open bite. The lower third and vertical dimensions of this
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patient’s face are increased, and they have hyper-divergency in their maxilla, as shown in
Figure 3A,B and Figure 5A,B and discussed by Chang and Moon [21].

Open bites are classified into anterior and posterior open bites based on the region in
which they occur. From an etiological standpoint, these two divisions correspond to dental
and skeletal open bites. A dental eruption obstruction causes the dental anterior open bite,
while posterior facial development causes the skeletal open bite. The posterior open bite is
defined by the inability of a significant number of teeth in either or both of the opposing
buccal segments to achieve occlusion despite incisor contact. It occurs seldom and may
be brought on by the tongue interposing, eruptional disturbances (such as ankylosis), a
basic lack of eruption, or a fully open bite, as presented in Figure 5A,B and Figure 7A,B
and discussed by Greenlee et al. [22].

4.4. Andrew Richardson Classification
4.4.1. Transitional Open Bite

When the permanent teeth start erupting, this kind of open bite happens. An anterior
open bite is the outcome of the dentoalveolar region’s inadequate development. Alveolar
growth that continues and the typical growth increase in the lower anterior face height
cause spontaneous adjustments.

4.4.2. Digit-Sucking Open Bite

An anterior open bite results from digit sucking, which prevents the incisor teeth
from erupting fully. By stopping the habit, such open bites can be avoided (Figure 10A–C).
Rarely do these open bites last throughout adulthood, despite being uncommon during
pubertal growth stages. Anterior open bites often spontaneously close due to the growth of
the dentoalveolar process and the incisor uprighting. Cysts, dilacerations, and ankylosis
are a few of the local pathological diseases that can cause an anterior open bite. A proper
surgical procedure to remove the local disease facilitates dentoalveolar development. In
contrast, an open bite brought on by the skeletal pathology or abnormalities becomes visible
near the conclusion of the growing phase. These illnesses include cleft palate, craniofacial
dysostosis, cleidocranial dysostosis, and achondroplasia. The nonpathological skeletal
group is divided into three subgroups.

Open bite during the early tooth development phase which closes throughout growth
periods before and during puberty is caused by dentoalveolar growth compensation. As
a result, the frequency of open bites tends to decline with age. The second subgroup
is noticeable in the pre-pubertal period, but it disappears throughout adolescence and
reemerges during the post-pubertal stage. This is a result of the interaction between the
vertical facial growth and compensatory dentoalveolar growth, which is enough to seal
the open bite. However, vertical facial growth takes over in the post-pubertal period and
results in an open bite. The third category poses the most challenging clinical orthodontic
issue, as facial development predominates and causes a gross anterior open bite as people
mature [23].
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Figure 10. An anterior open bite results from digit sucking. After preventing finger sucking by using
a special device, spontaneous closure of the anterior open bite occurred (A–C).

4.5. Factors and Characteristics of Open Bite

One of the most challenging orthodontic issues is open bite malocclusion, which is
regarded as a problem. Multiple variables, including genetic and environmental influences,
can contribute to open bites. Two general categories—skeletal and dental—can be used
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to classify open bites. A real skeletal open bite might require dental surgery in addition
to orthodontic therapy, while a dental open bite can be corrected with braces. An open
bite can cause people to experience problems with their appearance, oral function, and
mental health. Children’s development is hampered by functional issues, which include
speech, mastication, and deglutition defects. The open bite frequency might reach up to
17% in mixed dentition [24]. Recurrent adenoid infections can result in a malpositioned
tongue, a chronic infantile swallow, and bad oral habits that can be observed as the incisors
are partially erupting. Dento-alveolar anterior open bite is caused by bad oral practices
such as finger or lip sucking, breathing through the mouth, and tongue pushing. This is
easily remedied with just orthodontic care. This is true if the patient receives a diagnosis
early and the related practices can be changed. Mouth breathing is frequently accompa-
nied by difficulty in speaking, particularly spitting consonants, and dry nasal passages.
There is a propensity for vertical dentofacial dysplasia to recur. Both open bite and deep
bite malocclusions result in this [25]. Anterior open bite found in vertical dysplasia is
multifactorial [26,27].

4.6. Hereditary Factors

Most frequently, inherited facial expansion is connected to the open bite abnormality.
Dysplasias in the vertical plane may be inherited since horizontal skeletal dysplasias appear
to be inherited [28]. Research on the causes of craniofacial growth have focused on three
significant ideas in the last few years [29]. Similar to other tissues, bone determines its own
growth to a large extent [30]. Cartilage controls skeletal development, with the bone acting
incidentally and passively [31].

4.7. Non-Hereditary Factors

Maciel and Leite [32] and Arat et al. [33] have emphasized aberrant functioning
patterns and harmful oral habits of the tongue, as well as atypical swallowing habits
(Figure 10A–C) and speech issues, as contributing to and being part of the open bite
phenomena. An irregular swallowing pattern may be the root cause or the outcome of a
tongue problem.

The location of the open bite defect varies depending on the pressures present and
the teeth and supporting structures’ capacity to resist change, according to Wajid et al. [5].
There may be a propensity toward an anterior open bite, for instance, if the swallowing
pattern is incorrect and the tongue is propelled forward strongly. Additionally, the existence
of harmful thumb, finger, or lip suckling, as well as poor oral breathing practices and weak
labial muscles, have a significant impact on the severity of the anterior open bite.

5. Sucking Habits

The duration, frequency, severity, and location of the sucking practices all play a role
in the extent of the harm done to the teeth and underlying tissues. When a child is between
the ages of four and five, thumb- or finger-sucking habits might be observed. This is
regarded as a typical habit that does not cause a malocclusion to become permanent. An
anterior open bite, however, may well occur if thumb sucking continues unabated up until
the age groups of mixed and permanent dentition [34]. Some youngsters actively suck
their thumbs or fingers, while others just let their thumbs passively lie in their mouths.
The malocclusions will have varied degrees of severity depending on the intensity and
consistency of the habit. The anterior aspect of the maxillary complex may be subjected to
upward and forward stress as a result of frequent thumb sucking (Figure 11A,B).
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Figure 11. An anterior open bite (A), the upper jaw shape results from thumb sucking during growth (B).

6. Adaptability

According to Reichert et al. [35], an open bite with ineffective lips may occur from
an excessive rearward rotation of the mandible. For the purpose of forming an oral seal
during deglutition, hyperactive mentalis and tongue muscles may be needed [36].

7. Environmental Factors

Habits, neurological impairments, trauma, and illnesses are examples of environmen-
tal variables. According to Park et al. [37], macroglossia is frequently accompanied by
harmful oral behaviors such as tongue thrusting and mouth breathing. According to To-
gawa et al. [38], the neuromuscular inadequacies classify the open bite’s skeletal component.
Leptoprosopic patients with muscular dystrophy exhibit supra eruption of the posterior
buccal segment, precipitating as an anterior open bite. Skeleto-facial or dentoalveolar
trauma are two possible types. Ankylosis of the condyle, which manifests as abnormal
vertical growth of the mandible, or the stoppage of condyle growth, which causes a clearly
defined anterior open bite, are the most common causes of this condition (Figure 12A–D).
An anterior open bite is a sign of dental trauma, especially to the incisors. Prior to the
patient’s full growth, damaged teeth begin to ankylose [39]. Condylar resorption frequently
coexists with degenerative conditions such as idiopathic condylar resorption and juvenile
rheumatoid arthritis [40].
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Figure 12. Patient with a temporomandibular joint fracture in the growth phase, the result was
ankylosis and growth disorders in the ramus mandible, an open bite developed (A–D).

8. Genetics

The genetic make-up of the body controls innate growth potentials. For instance,
control over the sagittal, transverse, and vertical dimensions is typically passed on in
families, like the Hapsburg jaw. The patient’s genetic makeup is also responsible for
growth and growth rotations that take place in the late maturation stage. Molars can
erupt vertically in facial types like the hyper and leptoprosopic types, which results in an
excessively vertical skeletal architecture [41].

9. Findings of Literature Search

Although the etiology of posterior open bite (POB) is poorly understood, a possible
genetic cause has been suggested in an investigation of a non-syndromic family collection
of cases with strong POB penetrance over two generations [42]. The intricate interaction
of environmental and genetic variables contributes to the root cause of POB, a complex
issue to understand and comprehend. However, the possibility of a genetic cause for POB
exists [42]. The majority of genetic investigations on the genesis of malocclusion have been
on syndromic disorders. Many single-gene correlated diseases, such as Apert’s syndrome,
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Treacher Collins syndrome, and cleidocranial dysplasia, are characterized by craniofacial
and oral symptoms and are triggered by alterations in fibroblast growth factor receptor 2
(FGFR2), treacle ribosome biogenesis factor 1 (TCOF1), and Runt-related transcription factor
2 (RUNX2), correspondingly [42]. Malocclusions in these illnesses tend to be components
of and subsequent to a complicated pattern of several dentofacial abnormalities. Although
there has been no evidence in the literature of any genetic etiology of POB (excluding those
indirectly induced by primary failure of eruption (PFE)), the potential remains [42]. There
is an unusual pedigree of POB patients with strong penetrance spanning two generations
in the orthodontic clinic at Rutgers School of Dental Medicine, but no syndromic disorders
have been recorded. Patients MM1, MM2, and MM3 are three Caucasian siblings who all
have POB. They all have straight to somewhat concave profiles, perioral muscular tension,
and several missing teeth. The study implies that identifying the implicated gene(s) and
their roles will assist scientists in comprehending the etiology and processes of POB, as
well as in building the groundwork for improved therapies and results [42]. This article
highlights the importance of identifying the fundamental genetic component of POB by
genetic linkage analysis or whole genome sequencing to better understand its mechanisms.
Further investigations into the gene(s) and mechanism(s) implicated cannot just offer
an exceptional chance to better comprehend POB and the complex muscular–occlusal
interaction, it can also provide strong insight into the most successful treatments.

Several studies have investigated the genetic factors contributing to this malocclu-
sion [43]. One of the main findings of these studies is that open bite is a polygenic character-
istic, indicating that it is caused by the simultaneous segregation of many genes [43]. The
specific genes leading to a particular skeletal variability are not yet fully understood, but
studies have demonstrated that vertical characteristics are more genetically regulated than
anteroposterior parameters, and heredity is displayed anteriorly rather than posteriorly [43].
The mandibular shape also seems to be determined more genetically than mandibular size.
Different inheritance models have been suggested for mandibular prognathism, which is
sometimes associated with open bite, including the simple recessive or autosomal dominant
with incomplete penetrance models. However, the polygenic nature of craniofacial features
makes determining the precise genes responsible for skeletal variations difficult [43]. In
addition to genetic factors, environmental factors such as thumb sucking, tongue thrusting,
and mouth breathing can also lead to the formation of open bite. However, the relative
contribution of genetic and environmental factors to open bite development is not yet
fully understood [43]. A genetic syndrome might accompany some malocclusions with
severe skeletal discrepancies, and mutations in specific genes can cause these syndromes.
For example, mutations in the Fibrillin (FBN) 1 gene are the major cause of Marfan syn-
drome, which can lead to maxillary/mandibular retrognathia, a long face, a highly arched
palate, and other craniofacial abnormalities. In conclusion, the genetic basis of open bite is
complex and not fully understood. Open bite is a polygenic trait, and the specific genes
leading to particular skeletal variabilities are not yet fully understood. Further genetic
investigations are needed to identify all of the individual genes that contribute to certain
skeletal variations, which could pave the way to the genetic repair of genetically regulated
dentofacial malformations and malocclusions in the future [43].

Another research article explores the relationship between amelogenesis imperfecta,
which is a genetic disorder that affects the development of tooth enamel, which is the hard,
outer layer of the teeth. This condition can cause teeth to be discolored, to be pitted, or
to have an abnormal shape. In some cases, the enamel may be so thin that the teeth are
more prone to damage or decay. Amelogenesis imperfecta can be inherited in an autosomal
dominant, autosomal recessive, or X-linked pattern, and there are several different types
of the condition with varying degrees of severity, including anterior open bite, a dental
condition where the front teeth do not touch. The study found that an anterior open bite
was always associated with a severe discrepancy in the vertical relationship of the jaws and
that this vertical dysgnathia was the primary etiological factor predisposing patients to an
anterior open bite. The article suggests that the frequent association of anterior open bite
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and amelogenesis imperfecta is caused by a genetically determined anomaly of craniofacial
development, rather than by local factors influencing alveolar growth. The article highlights
the importance of cephalometric analyses in identifying other derangements within the
cranial base and facial skeleton [44].

Other studies have investigated genetic factors that contribute to the development of
open bite, and have found that genes involved in the growth and development of bones,
teeth, and soft tissues may be associated with this malocclusion [45]. Several genes have
been identified, including CYP19A1, GHR, TNF-α, RANKL/RANK, OPG, MYO1H, MMP,
TIMPs, α-actin, and PTHR1 [46]. However, environmental factors are also important, and
the occurrence of open bite is multifactorial, resulting from the interaction of genetic and
environmental factors. Habits such as pacifier sucking and digital sucking are among the
most prominent environmental variables involved in the establishment of open bite.

According to Nishio and Huynh [47], there is evidence to suggest that genetics play a
role in the development of open bite. One study mentioned in the document found that
two candidate genes, PAX5 and ABCA4-ARHGAP29, have been associated with vertical
discrepancies ranging from skeletal deep to open bite. Additionally, another study found
that patients with deep bite and the hypodivergent phenotype had a significant occurrence
of palatally displaced maxillary canines, which suggests a genetic component to the etiology
of this dental anomaly. However, further studies are necessary to clarify the frequency of
occurrence of these dental disturbances in patients with vertical skeletal malocclusions and
whether there is a genetically aetiological association between these disorders. A cross-
sectional study aimed to evaluate whether polymorphisms of four genes (TNF-α, MTR,
MTRR, and TGFβ1) could be biomarkers for oral health-related quality of life (OHRQoL) in
preschoolers with anterior open bite (AOB). Overall, the study provides valuable insights
into the genetic background of AOB and its impact on OHRQoL in preschool children [48].

In our research, we will employ a variety of advanced genetic analysis techniques to
unravel the complex etiology of open bite. Genome-Wide Association Studies (GWAS) will
allow for a comprehensive exploration of the entire genome, revealing specific genetic loci
associated with open bite malocclusion and offering crucial insights into the genetic basis
of this condition. Epigenome-Wide Association Studies (EWAS) will provide an in-depth
analysis of epigenetic modifications, such as DNA methylation and histone modifications,
which significantly influence open bite development by shaping gene expression patterns.
Furthermore, through RNA sequencing (RNA-seq) analysis, we will seek to identify genes
that exhibit differential expressions in tissues related to open bite, providing valuable
insights into the molecular mechanisms underlying this condition and uncovering potential
therapeutic targets. The integration of GWAS data with Expression Quantitative Trait
Loci (eQTL) analysis will offer a comprehensive approach to understanding the intricate
relationship between genetics and the manifestation of this dental condition. These genetic
analysis methods will be pivotal in advancing our knowledge of open bite etiology and
will hold promise for innovative prevention and treatment strategies.

10. Treatment

The degree and form of malocclusion, the dysfunction, the age of the patient, and
the general well-being, along with other individualized variables, all influence open bite
therapy. Orthodontic therapy is generally considered the first line of treatment for open
bite, and may involve the use of braces, clear aligners, or other orthodontic devices to
reposition the teeth correctly and close the open space. In some cases, a surgical approach
may be essential to address the fundamental skeletal problem responsible for the open bite.

There are different treatment strategies depending on the type of dysgnathy or den-
toalveolar malformation, age, and desired treatment goals in terms of function, aesthetics,
and stability:
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10.1. Myofunctional Therapy

The aim of this treatment is to normalize function. The most common example is
unphysiological breathing due to the position of the tongue in the oral cavity. This disorder
leads to a narrowing of the airways, which causes an unphysiological tongue position. This
malposition of the tongue can cause growth and tooth eruption disorders. With this treat-
ment strategy, the function changes as well as the occlusion and the profile (Figure 13A–H).

Figure 13. Patient with an anterior open bite. Due to the narrowed tongue space in the upper jaw
and, thus, narrowed airways, there was a developmental disorder of the alveolar bone and the
teeth. (A–D) Situation before treatment, (D) shows the narrowed airway. (E–H) The extra-oral and
intraoral images after treatment, there was spontaneous bite closure after maxillary expansion. The
physiological tongue position led to an expansion of the airways.

10.2. Skeletal Treatment by Influencing Growth

The existence of sufficient growth is a prerequisite for this treatment strategy. The
growth of the maxilla can be reduced by vertical forces so that the mandible autorotates
when the mandibular growth is undisturbed. This autorotation changes the position of the
mandible in the vertical and sagittal dimensions. This leads to a reduction in the lower
facial height and closure of the open bite. With this treatment strategy, the function changes
as well as the occlusion and the profile (Figure 14A–I).
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Figure 14. Skeletal open bite in a 10-year-old female patient, treated with growth-influencing mea-
sures. (A–C) Profile photo shows a long face with a skeletal open bite, which is confirmed intraorally
and skeletal or cephalometrically. (D,E) Overdevelopment of the maxilla and alveolar bone resulted
in posterior rotation of the mandible and thus posterior displacement of the mandible, resulting
in the lower face lengthening. (F–H) treatment results of influencing the growth of the upper jaw
in the vertical dimension, a harmonization of function and form, and, thus, a change in aesthetics.
(I) Representation of the growth inhibition of the maxilla in the vertical direction, the autorotation of
the mandible, and the alteration in position of the mandible.

10.3. Skeletal Treatment through Orthognathic Surgery

A prerequisite for this treatment strategy is completed growth. The skeletal open
bite is corrected by surgically changing the vertical emission (upper jaw impaction), thus
shortening the height of the lower face. A precisely planned maxillary impaction results in
vertical and ventral autorotation of the mandible (Figure 15A–L).
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Figure 15. Skeletal open bite of a 25-year-old patient treated by orthognathic surgery. (A–C) The
photograph shows a long face with a skeletal open bite, which is confirmed intraorally and is skeletal
or cephalometric. (D,E) To correct the vertical relation, impaction of the maxilla was performed,
and the excess bone of the maxilla was reduced. (F) A result of the maxillary action, the mandible
autorotates with a change in sagittal and vertical position. (G,H) Simulation of the surgical impaction
of the maxilla and the reaction of the mandible as described with cranial and simultaneous ventral
autorotation. The greater the impact, the greater the autorotation of the mandible. (I–K) Situation
after the treatment. (L) Superposition of the cephalograms pretreatment (black) and posttreatment
(red).

Presurgical preparation sometimes requires dentoalveolar corrections by extrusion
of the anterior teeth for a stable and perfect treatment result (Figure 16A–M). With this
treatment strategy, the occlusion and the profile change, in addition to the function, are
improved.
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Figure 16. Skeletal and dental open bite in a 23-year-old man treated by orthognathic surgery.
(A–C) Situation before the treatment, extended lower face due to the skeletal structure. The open
bite has additionally strengthened the infra occlusion of the front teeth. (D) During the pre-surgical
preparation, part of the open bite was corrected by extruding the front teeth. (E,F) Simulation of
the surgical procedure. After impaction of the maxilla, the mandible autorotated with a change in
position in the vertical and sagittal planes (E); for the final correction of the skeletal disgnathia, a
dorsal displacement of the mandible (F) was carried out. (G,H) Description of maxillary impaction.
(I,J) Representation of the surgical adjustment of the mandible for the correction of the position of the
mandible. (K–M) Situation after the treatment.
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10.4. Dentoalveolar Compensation Therapy (Camouflage Therapy) of Skeletal Dysgnathia

Some of the prerequisites for this therapy are that there are no functional disorders
(such as difficult lip and mouth closure) and no serious extra-oral impairments (aesthetic
disorders). This therapy uses intrusive biomechanics of the posterior teeth and extru-
sion biomechanics of the anterior teeth (Figure 17A–G). With this treatment strategy, the
occlusion and the dental aesthetics change in addition to the function.

 

Figure 17. The Skeletal and dental open bite in a 25-year-old patient, treatment is dentoalveo-
lar. It is crucial that the patient does not have any functional or aesthetic disorders extra-orally.
(A–C) Situation before the treatment. (D) Presentation of the biomechanics used for ventoalveolar
closure of the open bite; extrusion of the front and intrusion of the molars. (E–G) Situation after
the treatment.

10.5. Dentoalveolar Treatment Strategy of the Dental Open Bite

No abnormalities can be seen extra-orally because the harmony is in the bones and in
the soft tissue structures. Therefore, the treatment focuses on the dental malformations. The
most common dental malformation is infraocclusion of the front teeth. When smiling, these
patients show an inverted smile compared to an ideal smile. With this treatment strategy,
the occlusion and the dental aesthetics change in addition to the function (Figure 18A–J).

In addition to the aforementioned factors, significant advancements in technology have
brought about promising prospects in the realm of malocclusion treatment. Innovations
including technologies like 3D printing and computer-assisted design and manufacturing
(CAD/CAM) have revolutionized the field by enabling the production of personalized
orthodontic appliances and surgical guides. This breakthrough facilitates the attainment of
enhanced treatment precision and efficiency, as the appliances can be tailored to meet the
specific requirements of each patient. The utilization of these cutting-edge technologies
holds great potential in optimizing treatment outcomes for individuals with malocclusion.
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Figure 18. Dentoalveolar open bite in a 27-year-old patient, the treatment is dentoalveolar. The
patient has no extra-oral functional or aesthetic disorders. There were intraoral dental functional and
aesthetic disorders. (A–E) Before treatment, the infraocclusion of the front teeth in the upper jaw is
clearly visible (E). (F–J) After treatment, to close the open bite, the maxillary front was extruded (J).

However, it is important to recognize that achieving the best possible results in maloc-
clusion treatment necessitates the development of a personalized treatment plan under the
guidance of a qualified orthodontic specialist. Several crucial factors must be taken into
account, including the age and general well-being of the patient, as well as the degree and
form of the malocclusion. By carefully considering these aspects, orthodontists can tailor
treatment approaches to suit the unique needs and expectations of each patient. Therefore,
fostering open and effective patient–orthodontist communication is essential, as it ensures
the establishment of a comprehensive treatment plan that aligns with the individual’s
specific circumstances, leading to optimal outcomes.

11. Exploring the Etiology of the Open Bite through A Collaborative Cross Mouse Model

Dental conditions like open bite have significant implications for dental and overall
wellness. To develop effective treatment strategies, it is imperative to comprehend the
fundamental genetic and environmental variables that contribute to these conditions. In
recent years, the utilization of mouse models, including the Collaborative Cross population,
has emerged as a powerful method for investigating complex features and deciphering
the underlying causes of dental problems. This section delves into how such creative
methodologies can provide insights into the phenotypes of open bite, shedding light on
underlying causes as well as prospective treatment methods [49].

12. Unveiling the Genetic Basis

Animal models provide an excellent platform for studying the genetic variables that
contribute to deep bite and open bite. Scientists can develop mice with oral characteristics
similar to these disorders by altering certain genes or causing mutations. This enables
the study of potential genes implicated in the formation and preservation of dental oc-
clusion. Scientists can investigate the impacts of specific genes and their connections
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on dental morphology and occlusal relations using knockout or knock-in mice models.
Such investigations provide valuable insights into the genetic basis of deep bite and open
bite, expanding our understanding of the complex genetic networks underlying these
conditions [50].

The Collaborative Cross (CC) mouse population offers an exceptional chance to ex-
plore the multidimensional character of the open bite. The CC population is made up
of genetically varied recombinant inbred mouse strains descended from many founder
strains. This genetic diversity allows scientists to examine the effects of variation in genetic
backgrounds on phenotypic variability. By thoroughly phenotyping the dental occlusion of
CC mice, researchers can identify genetic loci associated with deep bite or open bite traits.
Subsequent mapping studies help pinpoint specific genomic regions and candidate genes
contributing to the observed phenotypes, enabling a more comprehensive understanding
of the underlying biological mechanisms [51–56].

13. Discussion

Open bite malocclusion is a complex dental condition that can have genetic, envi-
ronmental, and developmental causes. Genetic factors have an important impact on the
development of open bite, involving certain genes and signaling pathways that play a part
in jaw development, the eruption of teeth, and dental occlusion. Epigenetic mechanisms
like DNA methylation and microRNA regulation may additionally impact malocclusion
progression. Recognizing the genetic and epigenetic elements involved in open bite can
lead to the development of better prevention and treatment strategies.

The treatment of open bite depends on various factors, and orthodontic treatment is
generally the first line of approach. This may involve the use of braces, clear aligners, or
other orthodontic appliances to move the teeth into the correct position and close the open
space. In some cases, surgical intervention may be necessary to address the underlying
skeletal issue causing the open bite. Advancements in technology, such as 3D printing and
CAD/CAM, have improved treatment precision and efficiency.

Research using animal models, particularly the Collaborative Cross mouse population,
has provided valuable insights into the genetic components of malocclusion. The genetic
diversity of the CC mouse population allows researchers to study the genetic variants that
contribute to open bite and understand its underlying mechanisms. Identifying the genetic
factors involved in open bite can lead to the development of more targeted and effective
treatment approaches.

Beyond genetic factors, environmental influences play a pivotal role in the develop-
ment of dental occlusion abnormalities. The Collaborative Cross mouse approach provides
researchers with the means to study the interactions between genes and the environment
by exposing CC mice to various environmental conditions. Scientists can test how external
variables interact with genetic predispositions to alter dental occlusion by altering factors
such as food, mechanical loading, or hormone effects. This holistic approach allows for a
deeper exploration of the intricate interaction between genetic and environmental variables
in the formation of open bite [49].

The findings from mice models and CC populations hold immense potential for im-
proving diagnostic and therapeutic strategies in human dentistry. Understanding the genetic
and environmental variables that contribute to deep bite and open bite in mouse models can
enable scientists to find possible biomarkers and genetic susceptibility factors in humans.
These results can help to guide the creation of focused therapies and tailored treatment plans.
Moreover, mouse models facilitate the preclinical testing of novel therapeutic interventions,
including gene therapies and pharmacological treatments, before advancing them to clini-
cal trials. This translational approach ensures a more comprehensive and evidence-based
approach to addressing the challenges posed by deep bite and open bite [49]. Figure 19
demonstrates the procedure for creating system genetic databases using cellular, molecular,
and clinical trait data in order to investigate associations between malocclusion and open
bite phenotypes [57]. The regulatory genomic regions linked in phenotypic variance moni-
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toring characteristics may be discovered using QTL mapping in the CC mouse model and
humans by merging SNP genotype data and RNA expression. Combining existing data with
future potential gene association studies in people offers the potential to find vulnerability
genes linked to the development of open bite malocclusion in humans.

Figure 19. Process for creating system genetic datasets using cellular, molecular, and clinical trait data in
order to investigate relationships between malocclusion and open bite phenotypes. Using QTL mapping
in the CC mouse model and humans, regulatory genomic areas associated in phenotypic variance mon-
itoring characteristics may be discovered by integrating SNP genotype data and RNA expression. The
combination of existing data with future candidate gene association studies in people has the potential to
find susceptibility genes linked to the development of open bite malocclusion in humans.
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14. Conclusions

Orthodontists find it challenging to correct open bite malocclusion. Functional ap-
pliances and adult surgery are two common treatment techniques for growing children.
Fixed orthodontics and other habit-breaking appliances are effective treatments for mi-
nor cases. With this kind of malocclusion, relapse rates are higher. The stomatognathic
system’s ability to function effectively is compromised in such circumstances. Since any
mistake in determining the etiology could have negative consequences, more care should
be given when diagnosing and arranging therapy for situations like this. As we delve
into the intricate genetic underpinnings of open bite malocclusion, emerging tools and
models like Collaborative Cross (CC) mice offer a promising avenue for research. The
utilization of genetic insights and CC mice can lead to a deeper understanding of the
genetic components governing this condition. By elucidating these genetic factors and their
interactions, we pave the way for more precise diagnostic methods and targeted therapies.
In this evolving landscape of malocclusion research, a paramount consideration is careful
and meticulous diagnosis and treatment planning. Given the potential repercussions of
errors in determining etiology, practitioners should exercise the utmost diligence. With
genetics and CC mice at the forefront of exploration, the path toward innovative preventive
and therapeutic strategies for open bite malocclusion is being illuminated, heralding a new
era of dental care.
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Abstract: Cancer is the second major cause of disease-related death worldwide, and its accurate early
diagnosis and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a
complex and heterogeneous disorder, results from the disruption and alteration of a wide variety
of biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, that eventually
emerge as clinical symptoms. Traditionally, diagnosis is based on clinical examination, blood tests for
biomarkers, the histopathology of a biopsy, and imaging (MRI, CT, PET, and US). Additionally, omics
biotechnologies help to further characterize the genome, metabolome, microbiome traits of the patient
that could have an impact on the prognosis and patient’s response to the therapy. The integration of all
these data relies on gathering of several experts and may require considerable time, and, unfortunately,
it is not without the risk of error in the interpretation and therefore in the decision. Systems biology
algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a rapid
and accurate analysis and integration of patient’s big data, and support the physician in making
diagnosis and tailoring the most appropriate therapeutic intervention. However, AI is not free from
possible diagnostic and prognostic errors in the interpretation of images or biochemical–clinical data.
Here, we first describe the methods used by systems biology for combining AI with omics and then
discuss the potential, challenges, limitations, and critical issues in using AI in cancer research.

Keywords: artificial intelligence; medical technology; smart health; digital health; omics technologies;
imaging; diagnosis; personalized medicine

1. Introduction

Delayed diagnoses, misdiagnoses, and missed diagnoses impact patient health and
safety, and have great societal consequences. Mistakes in diagnosis may account for up
to 60% of all medical errors and are accountable for up to 80,000 deaths in U.S. medical
centers each year [1]. Typically, clinicians have limited time to make decisions based on the
interpretation of huge amounts of laboratory, imaging, and clinical data, and this increases
the risk of underestimating (or sometimes overestimating) some data. Furthermore, subjec-
tive factors, such as personal experience and medical specialty, are potential bias factors
that influence the accuracy of diagnosis [2].

Artificial Intelligence (AI), a field of computer science used for prediction and automa-
tion, has emerged as a potential solution to promote a precision approach in healthcare and
is expected to reduce errors caused by human judgment in various medical domains [3].

Cancer is the leading cause of death in people, accounting for an estimated 10 mil-
lion deaths by 2020 [4]. It is a complex disease resulting from anomalies in physiological
processes involving genes, coding and non-coding RNAs, proteins, metabolites, and other
biomolecules [5,6]. To understand such a complex disease from its onset to its progression,
multi-omics analysis of these numerous bio-entities is required. Modern biotechnologies
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allow for the high throughput analysis of the sequence and expression of many genes (ge-
nomics and epigenomics), proteins and their post-translational modifications (proteomics,
phospho-proteomics and glycol-proteomics), RNAs (RNA transcriptomics), non-coding
RNAs (including miRNAs and long-non-coding RNAs), and metabolites (metabolomics)
from the same organism [7]. However, a platform where all these big data are integrated
to uncover correlations and synergisms among the biological pathways and processes is
required. Systems biology combines the power of AI and of multi-omics technologies for
modeling the signaling and metabolic signature of a given cancer. This is instrumental
for designing effective diagnostic and prognostic markers and novel and patient-tailored
therapeutic interventions.

Despite difficulties in providing individualized and data-driven care, advancements in
screening, diagnosis, treatment, and survival rate in cancer patients have been remarkable
in recent decades [8]. Early detection and prognosis prediction represent two crucial clinical
needs for limiting cancer progression. Body and organ computed scan methodologies, the
histopathology imaging of biopsies, and a range of blood tests for detecting biomarkers
are instrumental in the initial diagnosis process and for determining cancer staging, the
grade of malignancy, and prognosis. These approaches do not provide information on the
molecular alterations that precede and follow the onset of cancer. Molecular and omics
technologies can provide a genetic, epigenetic, and metabolic profile of the tumor that can
better define such alterations thus helping to determine the most appropriate treatment as
well as predict the response to therapy [9,10].

The development and extensive use of high-throughput technologies has ushered in
the era of biological and medical big data. This has led to the accumulation of data sets
on a large scale, thereby opening a wide range of potential applications for data-driven
methods in cancer treatment, spanning from basic research to clinical practice: molecular
tumor characterization, tumor heterogeneity, drug discovery and potential therapeutic
strategies. As a result, the data-driven research field of bioinformatics adapts data mining
techniques, such as systems biology, machine learning, and deep learning, which are
discussed in this review paper. Systems biology uses a data-driven approach to identify
important signaling pathways. The pathway-oriented analysis is extremely important
in cancer research because it helps researchers comprehend the molecular features and
heterogeneity of tumors and tumor subtypes [11]. In this context, the proper clinical care
for cancer patients can be improved by the introduction of AI in cancer detection, diagnosis,
and treatment [12–15].

AI-based technologies applied to oncology aim at improving clinical practice, includ-
ing but not limited to the early and accurate diagnosis and prediction of personalized
outcomes (i.e., prognosis and therapy response), by acquiring a profound perception of
tumor molecular biology through the association of multiple biological parameters [16].

Artificial Intelligence in Medicine at Glance

AI is meant to mimic human cognitive abilities in elaborating the information but at a
much higher speed and with no emotional interference. The main types of AI that apply
to cancer-patient healthcare include machine learning (ML) and its evolved subtype deep
learning (DL), which can assist in making a rapid and more accurate diagnosis (based on
biochemical, clinical data, and medical imaging), in discovering and developing new drugs,
in designing personalized therapy, in predicting the therapy response, and in guiding the
robotic surgery [17,18] (Figure 1).
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Figure 1. Overview of the applications of AI to cancer diagnosis and oncology research field. The
scheme depicts the main fields of application of AI discussed in this review. Abbreviations: computed
tomography, CT; gene expression models, GEMs; machine learning, ML; magnetic resonance imaging,
MRI; nano differential scanning fluorimetry, Nanodsf; next-generation sequencing, NGS; positron
emission tomography, PET; partial least squares analysis, PLS; ultrasound imaging, U/S.

Current AI systems have been involved to be used in a variety of clinical settings,
including (i) image-based computer-aided discovery and diagnosis in various medical
specialties, (ii) the translation of genomic information for recognizing genetic variants using
high-throughput sequencing technologies, and (iii) the prediction and tracking of patient’s
prognosis [19,20]. Moreover, they have been implemented as well in (iv) the discovery of
new biomarkers by combining omics and phenotype data, (v) the detection of health status
using biological signals (e.g., enzyme activity and protein concentration) obtained from
wearable devices, and (vi) the production and implementation of autonomous robots in
medical procedures [19,20].

The creation of AI models that predict the properties of vast and interconnected net-
works found in living organisms would allow for a thorough examination of how signaling
molecules generate functional cellular reactions. Machine learning (ML) algorithms, a
subset of AI, are capable of making decisive interpretations of large, complex data sets,
making them an effective tool for analyzing and comprehending multi-omics data for
patient-specific observations [20]. We can anticipate the remarkable growth of AI in the
medical field in light of the digital acquisition of high-dimensional and annotated medical
data, the progress of ML methods, open ML data science, and advancements in compu-
tational power and storage services [20]. AI is expected to make it easier to diagnose
specific illnesses in patients. Commonly, deep learning (DL) architectures are analogous to
artificial neural networks of multiple non-linear tiers. Over the past decade, a large variety
of DL designs have been developed depending on the input data type and the purpose
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of the research. Moreover, the assessment of the model’s efficiency has revealed that DL
application on cancer prognosis surpasses other traditional ML techniques. DL frameworks
have also been used in cancer diagnosis, classification, and treatment by utilizing genomic
profiles and phenotype information. Systems biology has been an effective method to
comprehend the complex molecular profile of cancers, interpret the mechanisms of tumor
progression, and allow for the amalgamation of omics data as well as the characterization
of diverse tumors [21,22].

2. Omics Data for Identifying Cancer Metabolic Biomarkers

Omics technologies allow for the in depth analysis of the molecular characteristics
of cancer at both bulk and single-cell level, providing a wealth of multi-omics data that
challenge the capability of scientists and medical doctor to combine for drawing a consistent
picture of the multilayer complexity of cancer biology. Genomic, epigenomic, transcrip-
tomic, proteomic, and metabolomic data can be elaborated using appropriate models for
making predictions about prognosis and treatment response in a patient-tailored (personal-
ized) manner [13,15,22].

2.1. Survival Models

To find cancer metabolic biomarkers, survival models have been used more fre-
quently than partial least squares (PLS) models, ML models, and gene expression modeling
(GEM) [23] (Figure 2). The Kaplan–Meier method, the log-rank test, and/or the Cox regres-
sion model are representative survival models used in cancer studies. These models are
used to describe the likelihood of survival (or survival curve) for a group of patients after
treatment, compare the survival curves of two or more treatment groups, and describe the
effects of multiple explanatory (independent) variables, profiles of gene expression, and
metabolite concentration) on survival curves, respectively. In contrast to Kaplan–Meier
models, which must discretize their data, the Cox regression model has the advantage
of processing continuous values directly, minimizing data loss [24]. In their study, based
on GEM of seven major metabolic pathways, Peng and colleagues identified 30 tumor
subtypes in 33 different cancer types (such as breast invasive carcinoma, cholangiocarci-
noma, colorectal cancer, glioblastoma multiforme, gastrointestinal tumors, lung cancer,
pancreatic cancer, and ovarian serous cystadenocarcinoma, among others) and evaluated
the clinical utility of so-called metabolic expression subtypes. For this, correlations between
metabolic expression subtypes and their corresponding prognosis were investigated us-
ing the Kaplan–Meier method, log-rank test, and Cox regression model. Consequently,
subtypes with upregulated lipid metabolism appeared to have a better prognosis than
subtypes with upregulated glycemic, nucleotide, vitamin, and cofactor metabolism. The
association of various somatic mutations in cancer driver genes with metabolic expression
subtypes has also been discovered. Two transcription factors, SNAI1 and RUNX1, were
identified from knockdown studies as potential therapeutic targets for a subtype of cancer
with upregulated carbohydrate metabolism that consistently had a poor prognosis across
cancer types [23].

2.2. PLS Models

Partial least squares regression (PLS) was initially created as a regression model
that processes numerous independent variables that are correlated and produce numerous
dependent variables, which many statistical and ML techniques cannot directly handle. PLS
models and their variations, particularly PLS-discriminant analysis (PLS-DA) are frequently
used for the analysis of omics data with a focus on metabolomics [25]. PLS-DA has been
primarily used to extract insights from large datasets of omics data, such as identifying
metabolites from metabolome data that differentiate between cancer cells in their various
statuses. PLS-DA might have an overfitting issue too, like other data mining techniques, so
it needs thorough validation, frequently performed through cross-validation [26].
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Figure 2. Overview of the omics technologies exploited in cancer diagnosis/prognosis. The scheme
depicts the main omics models currently used in biomarker identification. Abbreviations: gene
expression modeling, GEM; partial least squares analysis, PLS.

PLS-DA and its variants have been used to analyze metabolome data to identify
a variety of cancers, including breast cancer, glioma, non-small cell lung cancer, oral
precancerous cells, cervical precancerous lesions, and prostate cancer [27,28]. Among its
advantages, PLS-DA allows for the analysis of highly collinear and noisy data. Moreover,
the calibration model provides a subset of useful statistics, including prediction accuracy,
scores and loading plots. However, a potential limitation has emerged when this method
was applied to metabolomics; the use of this model by non-experts may produce inaccurate
results, owing to a lack of appropriate statistical validation [29] (Table 1).

Table 1. Summary of the main advantages and limitations of PLS models.

Advantages Limitations

Ability to robustly handle more descriptor
variables Higher risk of overlooking ‘real’ correlations

Provide more predictive accuracy Sensitivity to the relative scaling of the
descriptor variables

Low risk of chance correlation

2.3. Genome-Scale Metabolic Models

Gene expression modeling (GEM) is a computational model based on the law of mass
conservation of metabolites and allows for the prediction of metabolic fluxes for entire
biochemical reactions taking place inside a cell by using numerical optimization [30,31].
Technically, GEM describes the participation of each metabolite for an entire set of biochem-
ical reactions in the form of a stoichiometric matrix and is simulated using varied forms
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of objective functions and constraints that reflect genetic and environmental conditions
of interest. As a result, GEM allows for the efficient simulation of a target cell’s metabolic
phenotypes under a wide range of genetic and environmental conditions. GEM can also
be integrated with omics data, such as RNA-seq, for building a cell-specific model and
thereafter modeling multicellular organisms. In comparison with ML models, GEMs gener-
ate more interpretable prediction outcomes that grasp a cell-specific metabolic phenotype.
GEM simulations, however, demand consideration. Due to the possibility of biologically
incorrect objective functions or constraints, it is advised to proceed with the analysis of the
predicted intracellular metabolic flux distributions from GEMs with caution. A representa-
tive issue is the use of constraints that do not accurately reflect a culture medium. Finally,
GEMs do not directly produce additional data for regulatory and signaling networks, which
are also crucial for understanding the physiology of a cell [32,33] (Table 2).

Table 2. Summary of the main advantages and limitations of GEM models.

Advantages Limitations

Explore metabolism in multiple cell types Uncertainties in the estimated parameters
regarding quantitative flux predictions

Validating or discovering biomarkers for
screening, diagnostics, prognostics, and/or

patient stratification

Ambiguous normalization of experimentally
quantified fluxes

Identify cancer-specific metabolic features that
constitute generic potential drug targets for

cancer treatment

2.4. Machine Learning Models

The classification task of disease prediction has been thoroughly studied in medical
oncology and cancer research, based on well-established machine learning algorithms for
dealing with binary or multi-class learning problems. Patient categorization would allow
for the development of ML-based predictive models capable of assessing risk stratification
with generalizable performance. Based on images and genetic data, DL models were trained
to classify and detect disease subtypes. These data-driven approaches demonstrated the
superiority of ML-based frameworks for leveraging heterogeneous datasets for improved
diagnosis and treatment [34].

2.5. Deep Neural Networks (DNNs)

Deep neural network (DNN) models are rapidly evolving and becoming more sophis-
ticated. They have been widely used in biomedical research across the board. Initially,
large-scale imaging and video data aided its development. While most biomedical data sets
are not considered big data, the rapid data accumulation enabled by NGS made it suitable
for the application of DNN models that require a large amount of training data [35]. In
2019, for example, Samiei et al. used TCGA-based large-scale cancer data as benchmark
datasets for bioinformatics machine learning research, such as Image-Net in computer
vision [36]. Following that, large-scale public cancer data sets like the TCGA encouraged
the widespread use of DNNs in cancer research [37] (Table 3).

Table 3. Summary of the main advantages and limitations of DNN models.

Advantages Limitations

Ability to handle complex data and
relationships Massive data requirement

Effective at producing high-quality results High processing and computational power

Extremely scalable because of its capacity to
analyze large volumes of data

Black box problem making them hard to debug
and understand how they make decisions
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2.6. Graph Neural Networks (GNNs)

Graph neural networks (GNNs) have achieved great results and are being progres-
sively employed in a node classification task. It offers a strategy to acquire novel repre-
sentations of nodes by combining the features of its local neighborhood and connectivity.
Recently, some GNN-based approaches have been proposed to forecast the molecular sub-
typing of cancer. Rhee et al. created a graph convolutional network (GCN)-based model to
investigate the gene–gene alliance and information transmission for cancer subtyping [38].
Lee et al. developed a GCN model with a focus on the mechanisms to learn pathway-level
representations of cancer samples for their subtype classification [39]. Even though GNNs
are strong, it is reported that they are susceptible when the structure of the graph and
nodes’ features are polluted with noise [40]. Thus, a robust GNN model is required for the
precise and stable prediction of cancer subtypes [41] (Table 4).

Table 4. Summary of the main advantages and limitations of GNN models.

Advantages Limitations

Rapid processing of massive data Limited to a fixed number of points

Reliable performance in mining deep-level
topological information Time and space complexity are higher

Extracting text relationship and reasoning the
structure of graphics and images

Less handling of edges of graphs based on
their types and relations

3. Computational Models for the Prediction of Cancer Metabolic Biomarkers

Single-cell sequencing allows for the study of the molecular changes occurring in
individual cells within the tumor mass. Nonetheless, attributing a specific cellular anno-
tation (in terms of cell type or metabolic state) is challenging, in particular to distinguish
cancer cells in single-cell or spatial sequencing experiments. The information provided
by high-throughput single-cell sequencing provides not only the description of distinct
cellular annotations but also the functional annotation of single cells, for example the esti-
mation of the differentiation potential, vulnerability to metabolic changes, and a prediction
of cellular crosstalk [42]. However, the use of this technology also raises computational
difficulties [43]. One of the major challenges in single-cell data analysis is to attribute a cell
annotation to each cell analyzed [44]. The magnitude of the generated datasets renders the
manual annotation processes unfeasible, whereas the peculiarities of data generation have
stimulated the spread of novel and creative classification methods [45]. This limitation is
particularly found in datasets coming from cancer tissues, in which the variability in the
transcriptomic states does not conform to traditionally defined cell types [46,47].

In addition to the genome data, the transcriptome, proteome, and metabolome data
offer snapshots of a cell’s phenotype space. As shown by PCAWG58 and TCGA59, which
also provide transcriptome data in addition to genome data, the transcriptome, particularly
RNA sequencing (RNA-seq), is the most frequently generated omics data among these. To
perform more complex transcriptomic analyses, bulk RNA-seq has evolved into single-cell
RNA-seq (scRNA-seq) and spatial RNA-seq. To enable a greater understanding of cell
phenotypes, massive amounts of proteome and metabolome data are being generated for
various human cells [48,49]. The Human Metabolome Database (HMDB) and Human
Protein Atlas (HPA) are representative databases for the human proteome and metabolome,
respectively. Integrative omics analysis has gained importance since these omics data are
complementary to one another, and multiple omics data are frequently generated for a
target cell [50,51].

Several studies have combined NGS data with ML to propose a novel data-driven
methodology in systems biology [52]. Several network-based ML models have been im-
plemented to analyze cancer data and aid in the understanding of novel mechanisms in
cancer development [53,54]. Furthermore, the use of DNN models for large-scale data
analysis enhanced the accuracy of computational models for the prediction of the muta-
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tional landscape, molecular subtyping and drug repurposing [55–58]. A growing number
of DNN-based applications have recently integrated multi-omics and systems biology data
into the learned models. Such approaches aim to apply the DNN model to well-established
biomedical knowledge, thereby improving our understanding of diseases and therapeutic
effects in novel ways [59,60].

A common aim of NGS data analysis in cancer research is the identification of po-
tential biomarkers that are predictive of specific cancer types or subtypes. A variety of
bioinformatics tools and ML models, for example, aim to identify a molecular signature
that is significantly altered in cancer cells on a genomic, transcriptomic, or epigenomic level.
Statistical and ML methods are typically used to identify the best set of biomarkers, such
as single nucleotide polymorphisms (SNPs), mutations, or differentially expressed genes
that are important in cancer progression. Previously, those markers had to be discovered or
validated using time-consuming in vitro analysis. As a result, systems biology provides in
silico solutions to validate such findings by utilizing biological pathways or gene ontology
data [61].

4. AI in Cancer Prognosis

Detecting and predicting the course of the disease are key components to controlling
tumor enlargement and providing adequate treatment to cancer patients. With the un-
derstanding that cancer can affect individuals differently, AI has been utilized to isolate
subgroups within the patient population based on prognosis and survival data. Aside from
segmentation, AI has pinpointed biomarkers that can indicate the recurrence of the disease.
AI has been implemented to prognosticate high-risk neuroblastoma patients. Utilizing com-
bined gene expression and copy number variations, an unsupervised learning algorithm
called auto encoder determined significant features, which were then used for division
into two clusters [62]. In a separate study, Francescatto et al. employed the integrative
network fusion framework together with an ML classifier to distinguish features that could
differentiate between distinct outcomes of patients [63].

DL-based neural networks have also been applied to breast cancer survival prognosis.
To prevent overfitting effects due to the vast size of omics data, the SALMON survival
analysis algorithm operates on eigengene matrices of co-expression network modules.
To enhance robustness, it brings together traditional cancer biomarkers and multi-omics
information and pinpoints key feature genes and cytobands [64]. The use of a DL-based
algorithm allows for the combination of the information from the same gene across different
types of omics data, thus resulting in a successful and insightful analysis [65].

5. AI in the Identification of Therapeutic Targets

A subset of alternative network approaches to identifying cancer targets are provided
by network-based biology analysis algorithms. More importantly, because different algo-
rithms can look at network data from different angles, they can compensate for each other
to provide accurate biological explanations [66].

Interactome data can be organized and represented in the form of network structures
to explain the molecular mechanisms underlying carcinogenesis, where the nodes are
biological entities (genes, proteins, mRNAs, and metabolites) while the edges represent
the associations–interactions between them (gene co-expression, signaling transduction,
gene regulation, and physical interaction between proteins) [67,68]. AI algorithms could
efficiently process biological network data by implementing classification, clustering, and
prediction tasks in biological networks using machines or programs that enhance human
intelligence [69]. As a result, AI algorithms will be able to elucidate the complexity of
cancer behavior that rely on the interactions between genes and their products in biological
network structures [70], allowing us to better understand carcinogenesis and identify novel
anti-cancer targets [71].

One of the fundamental needs of precision oncology is anticipating therapy response
for a patient population. The advantages of ML strategies have been tried for treatment
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response displaying and expectation following both center-based and component choice-
based strategies [72]. The profound neural system-based examination has been used to
predict therapy response. MOLI, a multi-omics late mix strategy in light of a profound
neural system, consolidates somatic transformation, and duplicates number variation
and quality articulation information to anticipate medication reaction conduct. MOLI is
additionally utilized for board medication information, and information on medications
with a similar target [73].

The Support Vector Machine (SVM) and the Leave-One-Out Cross-Validation (LOOCV)
models have been employed to detect significant changes in RNA and miRNA transcrip-
tomics data between from pancreatic ductal adenocarcinoma specimens and normal tissues.
These features (selected RNAs and miRNAs) in combination with miRNA target expression
data were further exploited to identify efficient diagnostic markers that were validated
in other distinct datasets and biologically interpreted by pathway analysis of the corre-
sponding target genes [74]. Moreover, ML-based analysis has been utilized to discover
specific anticancer drug targets for breast tumors [75]. The characteristic genes extracted
from multi-omics data of breast cancer with the aid of capsule network-based modeling
were compared with well-known oncogenes, and novel genes were identified [76].

Recently, a comprehensive examination of nine cancers has demonstrated that pro-
teomics data combined with gene expression, miRNAs expression and genomics is more
effective in predicting the responsiveness of drugs and molecules specifically designed
to target them. This research was conducted across 58 cell lines over nine cancers with
Bayesian Efficient Multiple Kernel Learning (BEMKL) models [72]. This confirms the
robustness of multi-omics data analysis across cancer types.

6. AI Clinical Application

The DELFI technology, which uses a blood test to indirectly evaluate the packing of
DNA in the nucleus of a cell by assessing the bulk and amount of cell-free DNA present
in the flow from various regions of the genome, is one example of AI in clinical prac-
tice. Cancer cells release DNA into the bloodstream when they die. DELFI uses ML to
investigate millions of cell-free DNA pieces for unusual design in order to distinguish
the occurrence of cancer. The strategy provides a perspective on cell-free DNA known
as the “fragmentome” and only requires low-coverage genome sequencing, allowing the
technology to be economically affordable in a screening setting [77].

The DELFI methodology finds that patients who were later diagnosed positive for
cancer had a wide fluctuation in their fragmentome profiles, while those who had a negative
cancer diagnosis had predictable fragmentome profiles. Overall, the technique was able to
distinguish more than 90 percent of patients with lung cancer (including those with early
stages) and displaying different subtypes [78].

Another study focused on glioblastoma, whose diagnosis is based on resection or
biopsy which can be especially arduous and perilous in the case that the tumor mass is
located in a deep position. Moreover, tracking cancer progression also necessitates repeated
biopsies that are often impracticable. Consequently, there is an urgent requirement to
identify biomarkers to diagnose and follow-up glioblastoma evolution by limiting the
invasive approaches. Recently, an innovative cancer detection method has been developed
based on plasma denaturation profiles obtained by a novel use of differential scanning
fluorimetry. By comparing the denaturation profiles of blood samples collected from glioma
patients and from healthy subjects, the researchers demonstrated that ML-based algorithms
can automatically distinguish the cancer patients from the healthy individuals (with a
precision around 92%). Additionally, this high-throughput workflow can be applied to any
type of cancer and may represent a potent pan-cancer diagnostic and monitoring tool that
requires only a plain blood test [79].

Among the limitations of the current approaches, tissue biopsy presents a fixed
overview of the tumor that fails to record the intratumor distinguishment and dynamic
changes occurring during carcinogenesis, also determined by clonal pressure caused by the
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applied medication [80]. On top of that, it is an invasive procedure, which usually cannot
be performed multiple times on request, making this system unfeasible to be conducted
as a regular practice for cancer patients’ long-term supervision and treatment adjustment.
The emergence of liquid biopsy has been a revolutionary development for the current
clinical practice, offering great potential to improve the management of ongoing cancer
patients for the diagnosis, prognosis, and tailoring of treatment. This approach presents the
advantage of being a minimally invasive procedure that utilizes tumor-derived materials
obtained from several body fluids, such as peripheral blood, urine, pleural liquid, saliva,
or ascites [81]. This solution is not limited by space or time, and it supplies clinically
meaningful information related to both primary and metastatic malignant lesions. Among
the components of tumor-derived materials that can be analyzed by liquid biopsy, circulat-
ing tumor cells, cell-free circulating nucleic acids, and extracellular vesicles are the most
extensively studied and characterized cancer markers and are used for various objectives,
for instance, the early detection of cancer, staging, prognosis, drug resistance, and minimal
residual disease [82].

Another AI approach is the PinPoint test, a cost-effective AI-driven blood test for
cancer that is meant to upgrade rapid cancer referral paths. The test is found on an
algorithm that uses ML to investigate regular constituents, as well as the patient’s age and
sex. It can calibrate and combine these individual variables into one solid and highly precise
result, such as the likelihood that a patient has cancer [83]. The PinPoint test has been
crafted as a decision support tool to give medical professionals the data they need to better
sort patients when they initially present with symptoms. Those with high risk can be given
precedence for speedy examination in secondary care, while those with the lowest risk can
be securely excluded from the “2 week wait” pathway for further discussion with their
physicians [84]. This strategy of pinpointing those at the greatest risk for prioritization will
promote early detection, contribute to a more dependable pathway, and assist in decreasing
post-pandemic delays [85].

7. AI imaging in Cancer Diagnosis

In the field of cancer imaging, AI displays a great utility in three main clinical tasks:
tumor detection, characterization, and monitoring [86]. The localization of objects of interest
in radiographs is referred to as detection, and it is a subset of computer-aided detection
(CADe). AI-based detection tools can be used to reduce observational errors and serve as a
first line of defense against omission errors [87].

Characterization in general includes tumor segmentation, diagnosis, and staging.
It can also include a disease-specific prognosis as well as outcome prediction based on
specific treatment modalities. Segmentation determines the extent of abnormalities and can
range from simple 2D measurements of the maximum in plane tumor diameter to more
involved volumetric segmentations that assess the entire tumor as well as any surrounding
tissues. This information could be exploited for future diagnostic purposes as well as for
calculating the appropriate dose administration during radiation planning. AI has the
capability to significantly improve the efficiency, reproducibility, and reliability of tumor
measurements through automated segmentation. In computer-aided diagnosis (CADx)
systems, systematic processing of quantitative tumor features is used, allowing for more
reproducible descriptors. In the case of inconsistencies in interpretation by different human
readers, CADx systems have been used to diagnose lung nodules in thin-section CT and
prostate lesions in multiparametric MRI [88].

Staging is another aspect of tumor characterization in which tumors are classified into
predefined groups based on the size and spread of the tumor mass, thus providing infor-
mation regarding the expected clinical course and for the decision of the most appropriate
treatment strategies [89]. The application of AI-based methods to cancer imaging allows
for the estimation of tumor size, shape, morphology, texture, and kinetics. Additionally, the
use of dynamic assessment of contrast uptake on MRI enables physicians to characterize
the tumor mass in terms of heterogeneity, phenotypes of spatial features and dynamic
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characteristics [90]. Another variable taken in consideration from AI-based tools is entropy,
a mathematical descriptor of randomness that provides information on how heteroge-
neous the pattern is within the tumor, thereby describing the heterogeneous pattern of
vascular system uptake (contrast uptake) within tumors imaged on contrast-enhanced
breast MRI. As demonstrated by the NCI’s The Cancer Genome Atlas (TCGA) breast cancer
dataset, such analyses could reflect the heterogeneous nature of angiogenesis and treatment
susceptibility [91].

DL systems have been used to simultaneously detect and classify prostate lesions.
For training convolutional neural networks (CNNs) for prostate cancer diagnosis by MRI,
both de novo training [92] and the transfer learning of pre-trained models [93] have been
successful. The implementation of CNNs models with anatomically aware features has
been shown to improve their performance [94,95]. In addition to MRI, AI techniques for
prostate cancer classification have shown promising results by integrating ultrasound data,
specifically radiofrequency. Again, both traditional ML and DL approaches were used to
train classifiers to estimate the grading of prostate cancer by exploiting temporal ultrasound
data [96].

8. Critical Issues, Challenges, and Limitations

The accuracy and consistency of AI systems are frequently restricted by their training
data and the hardware used. We must keep in mind that AI can make mistakes in some
situations because its decision-making ability is predictive and probabilistic. As a result,
there are no clear regulations or guidelines in place to determine who is legally liable
when AI malfunctions occur or causes issues while providing a service. Another factor
to take in consideration is that most of the places where the potential of AI in healthcare
has been evaluated are basically high-income and resource-driven areas. When used in
low-income countries with a shortage of well-trained physicians and oncological specialists,
AI-based prediction tools are expected to have a greater impact and increment the success
of cancer treatment.

The improvement in the AI interpretation is a crucial step toward mitigating this risk
and providing a decision-making rationale. One limitation is represented by the lack of
a human verification step in the process unless a physician supervises the AI system. As
a result, no one expects AI to entirely replace medical professionals. AI-based precision
medicine will be critical for cancer treatment in the future. Living databases will exploit
extremely complex models capable of making a personalized therapy selection, estimation
of the drug dose, follow-up schedule, and so on. However, the transition from artificial
narrow intelligence to artificial general intelligence will result in the automation of all the
steps involved in cancer prediction, diagnosis, and treatment.

Despite its numerous benefits, AI presents several challenges and constraints that
hinder it from fully functioning in cancer research. Particularly, three layers of complex-
ity must be considered: (i) cancer is a highly heterogeneous organoid-like structure that,
at the time of diagnosis, is made up of many different cancer subclones embedded in a
stroma (the tumor microenvironment) that itself contributes to cancer progression; (ii) as
cancer progresses, tumor evolution leads to increased intratumor heterogeneity so that
by the time therapy is started, the targeted cancer may not respond; (iii) cancers with
the same molecular and histological signatures behave differently in each single patient
because of individual epigenetic and immunological modulations [97–99]. Thus, the fi-
nal clinical outcome will depend on the complex interplay between the cancer (with its
multiple subclones) and the tumor microenvironment (which includes the stroma com-
position and the inflammatory and immune response), and, finally, the general patho-
physiological condition of the patient (e.g., the body mass, the adipose tissue mass, the
nutrition status, the psychological status, the immune status, etc.). This poses an important
limit to the capability of AI in predicting the therapy efficacy and the prognosis, which
once again stresses the fundamental role of the clinician that cannot be substituted by
an algorithm.
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The new era of innovation brings with it many challenges that should be overcome
to drastically improve oncology procedures at several levels. The lack of inclusive and
different datasets for training represents a significant obstacle to the widespread adop-
tion of AI algorithms and decision-support systems in cancer care. Most of the powerful
AI models require a large sample size to efficiently train the tool. Although there are
dimensionality reduction and feature selection methods for addressing these aspects,
proper implementation is critical for achieving better and reliable results. The number
and type of data annotated influences the constructions of algorithms, and an imbal-
ance in data from patients differing for gender, age, race, nutritional state, lifestyle, and
environment will affect AI and ML training. Thus, the lack of sensible data may in-
crease the risk of missed diagnosis. Therefore, experts are fundamental in data curation
and data annotation to provide reliable datasets to be used for training AI classifier and
predictors models.

In medical data sets, particularly in the case of cancer data, classes are typically
distributed unequally. The continuous use of AI- and ML-based tools for diagnosis and
treatment decisions can be risky due to distributional shifts, which means that target data
may not match the ongoing patient data employed to train the model, resulting in incorrect
outputs. Predictions made by AI at the time of diagnosis likely changes during the course
of the therapy and the evolution of the disease along with changes in patient’s habit (style
of life, diet, medications, etc.).

Changes in technology, healthcare, and population, such as the gene pool, are likely
to have an impact on the relationship between the data items. The actual application of
AI models in clinics is not being actively considered. The predictions achieved with these
models frequently require validation in the clinical practice to assist medical experts in
confirming diagnosis decisions.

Significant issues regarding data availability and interpretability caused by AI’s “black
box” process, in parallel with the emergence of an inherent bias toward limited cohorts
that reduces the reproducibility of AI models and perpetuates disparities in the healthcare,
collectively prevent the widespread application of AI in clinics. Additionally, the distribu-
tion of AI-based technologies in many developing countries may be hampered by a lack of
knowledge in computing algorithms and technologies of the physicians.

Taken together, the clinically relevant achievements discussed in the present review
need to become more solid to be translated into the right treatment for the right patient.
Hence, the rapidly ongoing evolution of AI-based medical data analysis will significantly
improve the treatments in cancer.

9. Conclusions and Perspectives

In this paper, we present an overview of the models applied in diagnosing and
identifying therapeutic targets, and we discussed the challenges and future perspectives
of AI in cancer research (Figure 3). As the power and potential of AI are increasingly
demonstrated, in the coming future several other biomedical fields may exploit the use
of AI in their routine clinical practice. AI methodologies’ accuracy and predictive power
must be significantly improved, as well as demonstrated efficacy comparable to, or better
than, human experts in controlled studies [100]. Up to now, AI shows early promising
results in the management of several disease conditions, but more efforts in prospective
trials and in the education of physicians, technologists, and physicists are needed before
it can be widely used. Although there will always be a “black box” for human experts to
view AI-generated results, data visualization tools are becoming more widely available
to provide some visual understanding of how algorithms make decisions [101]. It is to be
stressed that AI is meant to complement the medical doctor facilitating his work, but it will
not replace the medical doctor.
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Figure 3. Advantages and limitations of AI. The scheme summarizes the main benefits along with
the current concerns related to the use of AI in the clinical practice.

Author Contributions: Conceptualization, A.F. (Alaa Fawaz) and C.I.; writing—original draft prepa-
ration, A.F. (Alaa Fawaz) and A.F. (Alessandra Ferraresi); writing—review and editing, C.I.; visual-
ization, A.F. (Alaa Fawaz) and A.F. (Alessandra Ferraresi). All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: A.F. (Alessandra Ferraresi) is the recipient of a post-doctoral fellowship from
Fondazione Umberto Veronesi (FUV 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Artificial Intelligence, AI; Bayesian Efficient Multiple Kernel Learning, BEMKL; computed tomog-
raphy, CT; computer-aided detection, CADe; computer-aided diagnosis, CADx; convolutional neural
networks, CNNs; deep learning, DL; deep neural network, DNN; gene expression modeling, GEM;
graph convolutional network, GCN; graph neural networks, GNNs; Human Metabolome Database,
HMDB; Human Protein Atlas, (HPA); Leave-One-Out Cross-Validation, LOOCV; machine learn-
ing, ML; magnetic resonance imaging, MRI; nano differential scanning fluorimetry, Nanodsf; next-
generation sequencing, NGS; positron emission tomography, PET; partial least squares-discriminant
analysis, PLS-DA; single nucleotide polymorphisms, SNPs; single-cell RNA sequencing, scRNA-seq;
Support Vector Machine, SVM; The Cancer Genome Atlas, TCGA; ultrasound imaging, US.

181



J. Pers. Med. 2023, 13, 1590

References

1. Committee on Diagnostic Error in Health Care; Board on Health Care Services; Institute of Medicine; The National Academies
of Sciences, Engineering, and Medicine. Improving Diagnosis in Health Care; Balogh, E.P., Miller, B.T., Ball, J.R., Eds.; National
Academies Press: Washington, DC, USA, 2015. Available online: http://www.ncbi.nlm.nih.gov/books/NBK338596/ (accessed
on 3 May 2023).

2. Rodziewicz, T.L.; Houseman, B.; Hipskind, J.E. Medical Error Reduction and Prevention. In StatPearls; StatPearls Publishing: St.
Petersburg, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK499956/ (accessed on 3 May 2023).

3. Taylor, N. Duke Report Identifies Barriers to Adoption of AI Healthcare Systems. MedTech Dive. Available online: https:
//www.medtechdive.com/news/duke-report-identifies-barriers-to-adoption-of-ai-healthcare-systems/546739/ (accessed on
3 May 2023).

4. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The Ever-Increasing Importance of Cancer as a Leading Cause of
Premature Death Worldwide. Cancer 2021, 127, 3029–3030. [CrossRef]

5. Ponomarenko, E.A.; Poverennaya, E.V.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Kopylov, A.T.; Zgoda, V.G.; Lisitsa, A.V.; Archakov, A.I.
The Size of the Human Proteome: The Width and Depth. Int. J. Anal. Chem. 2016, 2016, 7436849. [CrossRef]

6. Nadhan, R.; Kashyap, S.; Ha, J.H.; Jayaraman, M.; Song, Y.S.; Isidoro, C.; Dhanasekaran, D.N. Targeting Oncometabolites in
Peritoneal Cancers: Preclinical Insights and Therapeutic Strategies. Metabolites 2023, 13, 618. [CrossRef] [PubMed]

7. Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 83. [CrossRef] [PubMed]
8. Perkins, D.O.; Jeffries, C.; Sullivan, P. Expanding the ‘Central Dogma’: The Regulatory Role of Nonprotein Coding Genes and

Implications for the Genetic Liability to Schizophrenia. Mol. Psychiatry 2005, 10, 69–78. [CrossRef] [PubMed]
9. Tsakiroglou, M.; Evans, A.; Pirmohamed, M. Leveraging Transcriptomics for Precision Diagnosis: Lessons Learned from Cancer

and Sepsis. Front. Genet. 2023, 14, 1100352. [CrossRef] [PubMed]
10. Haga, Y.; Minegishi, Y.; Ueda, K. Frontiers in Mass Spectrometry–Based Clinical Proteomics for Cancer Diagnosis and Treatment.

Cancer Sci. 2023, 114, 1783–1791. [CrossRef]
11. Janes, K.A.; Yaffe, M.B. Data-Driven Modelling of Signal-Transduction Networks. Nat. Rev. Mol. Cell Biol. 2006, 7, 820–828.

[CrossRef]
12. Luo, J.; Pan, M.; Mo, K.; Mao, Y.; Zou, D. Emerging Role of Artificial Intelligence in Diagnosis, Classification and Clinical

Management of Glioma. Semin. Cancer Biol. 2023, 91, 110–123. [CrossRef]
13. Wang, S.; Wang, S.; Wang, Z. A Survey on Multi-Omics-Based Cancer Diagnosis Using Machine Learning with the Potential

Application in Gastrointestinal Cancer. Front. Med. 2023, 9, 1109365. [CrossRef]
14. Liao, J.; Li, X.; Gan, Y.; Han, S.; Rong, P.; Wang, W.; Li, W.; Zhou, L. Artificial Intelligence Assists Precision Medicine in Cancer

Treatment. Front. Oncol. 2023, 12, 998222. [CrossRef] [PubMed]
15. He, X.; Liu, X.; Zuo, F.; Shi, H.; Jing, J. Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Semin.

Cancer Biol. 2023, 88, 187–200. [CrossRef] [PubMed]
16. Dembrower, K.; Wåhlin, E.; Liu, Y.; Salim, M.; Smith, K.; Lindholm, P.; Eklund, M.; Strand, F. Effect of Artificial Intelligence-Based

Triaging of Breast Cancer Screening Mammograms on Cancer Detection and Radiologist Workload: A Retrospective Simulation
Study. Lancet Digit. Health 2020, 2, e468–e474. [CrossRef] [PubMed]

17. Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [CrossRef]
[PubMed]

18. Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 25–60. [CrossRef]

19. Venkatesan, D.; Elangovan, A.; Winster, H.; Pasha, M.Y.; Abraham, K.S.; Satheeshkumar, J.; Sivaprakash, P.; Niraikulam, A.;
Gopalakrishnan, A.V.; Narayanasamy, A.; et al. Diagnostic and therapeutic approach of artificial intelligence in neuro-oncological
diseases. Biosens. Bioelectron. X 2022, 11, 100188. [CrossRef]

20. Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: Advances in clinical machine learning for
cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [CrossRef]

21. Mohammed, A.; Biegert, G.; Adamec, J.; Helikar, T. Identification of Potential Tissue-Specific Cancer Biomarkers and Development
of Cancer versus Normal Genomic Classifiers. Oncotarget 2017, 8, 85692–85715. [CrossRef]

22. Zhang, Y.; Xiong, S.; Wang, Z.; Liu, Y.; Luo, H.; Li, B.; Zou, Q. Local Augmented Graph Neural Network for Multi-Omics Cancer
Prognosis Prediction and Analysis. Methods 2023, 213, 1–9. [CrossRef]

23. Peng, X.; Chen, Z.; Farshidfar, F.; Xu, X.; Lorenzi, P.L.; Wang, Y.; Cheng, F.; Tan, L.; Mojumdar, K.; Du, D.; et al. Molecular
Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep. 2018, 23, 255–269.e4.
[CrossRef]

24. Yokota, K.; Uchida, H.; Sakairi, M.; Abe, M.; Tanaka, Y.; Tainaka, T.; Shirota, C.; Sumida, W.; Oshima, K.; Makita, S.; et al.
Identification of Novel Neuroblastoma Biomarkers in Urine Samples. Sci. Rep. 2021, 11, 4055. [CrossRef]

25. Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemom. 2003, 17, 166–173. [CrossRef]
26. Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. MixOmics: An R Package for ‘omics Feature Selection and Multiple Data

Integration. PLoS Comput. Biol. 2017, 13, e1005752. [CrossRef] [PubMed]
27. Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; van Duijnhoven, J.P.M.; van Dorsten, F.A.

Assessment of PLSDA Cross Validation. Metabolomics 2008, 4, 81–89. [CrossRef]

182



J. Pers. Med. 2023, 13, 1590

28. Brereton, R.G.; Lloyd, G.R. Partial Least Squares Discriminant Analysis: Taking the Magic Away: PLS-DA: Taking the Magic
Away. J. Chemom. 2014, 28, 213–225. [CrossRef]

29. Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A Tutorial Review: Metabolomics and
Partial Least Squares-Discriminant Analysis—A Marriage of Convenience or a Shotgun Wedding. Anal. Chim. Acta 2015, 879,
10–23. [CrossRef]

30. Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome
Biol. 2019, 20, 121. [CrossRef]

31. Fang, X.; Lloyd, C.J.; Palsson, B.O. Reconstructing Organisms in Silico: Genome-Scale Models and Their Emerging Applications.
Nat. Rev. Microbiol. 2020, 18, 731–743. [CrossRef]

32. Thiele, I.; Palsson, B.O. A Protocol for Generating a High-Quality Genome-Scale Metabolic Reconstruction. Nat. Protoc. 2010, 5,
93–121. [CrossRef]

33. O’Brien, J.E.; Monk, J.M.; Palsson, B.O. Using Genome-Scale Models to Predict Biological Capabilities. Cell 2015, 161, 971–987.
[CrossRef]

34. Chand, S. A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning
method. Mach. Vis. Appl. 2020, 31, e270.

35. Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep Learning for Computational Biology. Mol. Syst. Biol. 2016, 12, 878.
[CrossRef]

36. Samiei, M.; Würfl, T.; Deleu, T.; Weiss, M.; Dutil, F.; Fevens, T.; Boucher, G.; Lemieux, S.; Cohen, J.P. The TCGA Meta-Dataset
Clinical Benchmark. arXiv 2019, arXiv:1910.08636.

37. Jin, S.; Zeng, X.; Xia, F.; Huang, W.; Liu, X. Application of Deep Learning Methods in Biological Networks. Brief. Bioinform. 2021,
22, 1902–1917. [CrossRef] [PubMed]

38. Rhee, S.; Seo, S.; Kim, S. Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer
Subtype Classification. arXiv 2018, arXiv:1711.05859.

39. Lee, S.; Lim, S.; Lee, T.; Sung, I.; Kim, S. Cancer Subtype Classification and Modeling by Pathway Attention and Propagation.
Bioinformatics 2020, 36, 3818–3824. [CrossRef]

40. Dai, H.; Li, H.; Tian, T.; Huang, X.; Wang, L.; Zhu, J.; Song, L. Adversarial Attack on Graph Structured Data. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018. Available online:
https://proceedings.mlr.press/v80/dai18b.html (accessed on 3 May 2023).

41. Zhang, X.; Zitnik, M. GNNGuard: Defending Graph Neural Networks against Adversarial Attacks. In Advances in Neural
Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2020; Volume 33, pp. 9263–9275. Available online:
https://papers.nips.cc/paper/2020/hash/690d83983a63aa1818423fd6edd3bfdb-Abstract.html (accessed on 3 May 2023).

42. Abdelaal, T.; Michielsen, L.; Cats, D.; Hoogduin, D.; Mei, H.; Reinders, M.J.T.; Mahfouz, A. A Comparison of Automatic Cell
Identification Methods for Single-Cell RNA Sequencing Data. Genome Biol. 2019, 20, 194. [CrossRef]

43. Tan, Y.; Cahan, P. SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across
Species. Cell Syst. 2019, 9, 207–213.e2. [CrossRef]

44. Hu, J.; Li, X.; Hu, G.; Lyu, Y.; Susztak, K.; Li, M. Iterative Transfer Learning with Neural Network for Clustering and Cell Type
Classification in Single-Cell RNA-Seq Analysis. Nat. Mach. Intell. 2020, 2, 607–618. [CrossRef]

45. Andreatta, M.; Corria-Osorio, J.; Müller, S.; Cubas, R.; Coukos, G.; Carmona, S.J. Interpretation of T Cell States from Single-Cell
Transcriptomics Data Using Reference Atlases. Nat. Commun. 2021, 12, 2965. [CrossRef]

46. Michielsen, L.; Reinders, M.J.T.; Mahfouz, A. Hierarchical Progressive Learning of Cell Identities in Single-Cell Data. Nat.
Commun. 2021, 12, 2799. [CrossRef]

47. Ranjan, B.; Schmidt, F.; Sun, W.; Park, J.; Honardoost, M.A.; Tan, J.; Rayan, N.A.; Prabhakar, S. ScConsensus: Combining
Supervised and Unsupervised Clustering for Cell Type Identification in Single-Cell RNA Sequencing Data. BMC Bioinform. 2021,
22, 186. [CrossRef]

48. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al.
Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6, pl1. [CrossRef]

49. Grossman, R.L.; Heath, A.P.; Ferretti, V.; Varmus, H.E.; Lowy, D.R.; Kibbe, W.A.; Staudt, L.M. Toward a Shared Vision for Cancer
Genomic Data. N. Engl. J. Med. 2016, 375, 1109–1112. [CrossRef]
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Abstract: The landscape of sarcoma care is on the cusp of a transformative era, spurred by the
convergence of digital health and artificial intelligence (AI). This perspectives article explores the
multifaceted opportunities and challenges in leveraging these technologies for value-based, precision
sarcoma care. We delineate the current state-of-the-art methodologies and technologies in sarcoma
care and outline their practical implications for healthcare providers, administrators, and policymak-
ers. The article also addresses the limitations of AI and digital health platforms, emphasizing the
need for high-quality data and ethical considerations. We delineate the promise held by the synergy
of digital health platforms and AI algorithms in enhancing data-driven decision-making, outcome
analytics, and personalized treatment planning. The concept of a sarcoma digital twin serves as
an illustrative paradigm for this integration, offering a comprehensive, patient-centric view of the
healthcare journey. The paper concludes with proposals for future research aimed at advancing
the field, including the need for randomized controlled trials or target trial emulations and studies
focusing on ethical and economic aspects. While the road to this transformative care is laden with
ethical, regulatory, and practical challenges, we believe that the potential benefits far outweigh the
obstacles. We conclude with a call to action for multidisciplinary collaboration and systemic adoption
of these technologies, underscoring the urgency to act now for the future betterment of sarcoma care
and healthcare at large.

Keywords: digital health; artificial intelligence; value-based healthcare; sarcoma; precision medicine;
benchmarking; interoperable platforms; quality indicators

1. Introduction

Sarcoma, a rare and heterogenous group of malignant tumors originating from mes-
enchymal tissues, poses unique challenges for healthcare providers and patients alike.
With over 100 subtypes and often complex clinical presentations, treating sarcoma requires
a multidisciplinary, data-driven approach—an approach that modern healthcare is pro-
gressively leaning towards but has not yet fully realized [1–5]. In terms of the state of
the art, recent advancements in genomics, targeted therapies, and immunotherapy have
begun to reshape the landscape of sarcoma treatment. However, these advancements are
often isolated in their impact, lacking a cohesive, data-driven strategy for implementation
across healthcare systems. The integration of artificial intelligence (AI) and digital health
platforms represents the next frontier in this context. These technologies have the potential
to synthesize large and complex datasets, from genomic information to real-world-time
patient outcomes, thereby enabling more precise and personalized care. This is partic-
ularly crucial for sarcoma, given its heterogeneity and the consequent need for highly
individualized treatment plans. The dawn of precision medicine has ushered in an era
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where treatment is personalized, not just to the disease but to the individual [6]. Yet, while
the promise of precision medicine is substantial, its full realization is intricately tied to
the evolution of healthcare systems towards value-based models, especially for complex
conditions like sarcoma [7,8].

The notion of value-based healthcare (VBHC) emphasizes patient-centricity, focusing
on metrics that matter most to the patient’s well-being. This patient-centricity must be
supported by robust, real-world-time data analytics that not only gauge the quality of care
but also its cost-effectiveness [9,10]. Recent advancements in digital health technologies
and AI have demonstrated unprecedented potential to empower this transition, offering an
innovative toolkit for data collection, management, and predictive analytics [11–13].

However, the intersection of digital health and AI remains an underexplored terrain,
especially in the context of sarcoma care [14]. This article aims to go beyond a mere review
of existing technologies and methodologies. Instead, it seeks to offer a forward-looking
perspective on how the confluence of these technologies could redefine the very essence of
sarcoma care, contributing to a future where diagnosis is precise, treatment is personalized,
and outcomes are continually optimized [15] (Figure 1).

 
Figure 1. The figure depicts the evolution of sarcoma care, emphasizing patient-centricity and a
data-driven approach. Digital health technologies, like Sarconector, form the foundation, stream-
lining patient data integration. Building on this, AI employs advanced algorithms to precisely
characterize sarcoma subtypes and predict treatment outcomes. The pinnacle is the ‘digital twin’,
a virtual patient profile that harnesses AI for predictive modeling and treatment optimization.
CROMS = clinician-reported outcome measures; PROMS = patient-reported outcomes measures;
POCOMS = patient-omics-centric outcome measures; ECOMS = economic measures.

In doing so, this article embarks on a visionary journey to explore the untapped
potential of digital health and AI. It aims to serve as a catalyst for multidisciplinary dialogue
and research, encouraging healthcare professionals, policymakers, and technologists to
collaborate in transforming the future of sarcoma care—making it more precise, sustainable,
and, above all, value-based.

2. The Vision for Value-Based Precision Care in Sarcoma

The pursuit of value-based healthcare is not merely a trend but a paradigm shift—one
that brings the patient to the center of the healthcare universe [16]. In the context of
sarcoma, a complex and rare malignancy, this transformation is not just aspirational but
essential [15]. The heterogeneity of sarcoma, spanning multiple subtypes and clinical
complexities, demands an individualized, outcomes-focused approach [17,18]. Traditional
healthcare systems, largely built on a volume-based model, often fall short in providing
the comprehensive, personalized care that sarcoma patients require. Value-based care
in sarcoma envisions a healthcare ecosystem where every stakeholder, from surgeons
and oncologists to data scientists and policymakers, collaborates to enhance the patient
experience—from diagnosis to treatment and follow-up. It is an approach that goes beyond
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the immediate clinical outcomes to consider the patient’s quality of life, long-term well-
being, and the economic sustainability of the care provided. In this envisioned ecosystem,
treatment protocols are not rigid pathways but dynamic algorithms, constantly updated
with real-world-time data and adapted to each patient’s unique medical history, genomic
profile, and even psychosocial needs [19–21].

This vision is not utopian; it is attainable. Emerging technologies in digital health,
coupled with advances in artificial intelligence and machine learning, offer the tools needed
to actualize this vision. Imagine a future where an interoperable digital platform integrates
multi-dimensional data, from medical imaging to genomic sequencing and patient-reported
outcomes. These data are then processed by sophisticated AI algorithms to provide ac-
tionable insights, ranging from predicting treatment responses to estimating healthcare
costs [19,22]. Moreover, the continuous benchmarking against quality indicators ensures
that the care provided is not just effective but continually optimized [22].

However, the transition from vision to reality entails overcoming significant barriers—
technological, ethical, and institutional. The subsequent sections of this article delve into
these challenges, offering a multi-faceted perspective on how the confluence of digital
health and AI can serve as the linchpin in materializing the vision for value-based care
in sarcoma.

3. Potential of Digital Health

Digital health stands as a cornerstone in the realization of value-based care, especially
in the intricate landscape of sarcoma [23,24]. The advent of technologies such as interopera-
ble Electronic Health Records (EHRs), telemedicine, and real-world-time data platforms has
enabled healthcare systems to move beyond the siloed structures of the past [19,22]. These
technologies permit the seamless integration of multi-dimensional patient data—from
diagnostic imaging and laboratory results to patient-reported outcomes and follow-up
care metrics [25]. The role of digital health in sarcoma care is not merely auxiliary; it is
transformative. For instance, telemedicine has proven to be invaluable in providing special-
ized sarcoma care to patients in remote locations, breaking down geographical barriers to
quality healthcare. This is particularly crucial for a rare and complex disease like sarcoma,
where specialized expertise may not be readily available in all regions. Interoperable EHRs,
on the other hand, facilitate multi-disciplinary collaboration by allowing seamless data
sharing between oncologists, radiologists, pathologists, and even primary care physicians.
This is vital in sarcoma care, which often requires a multi-disciplinary approach for optimal
outcomes. The EHRs can also be integrated with AI algorithms to flag potential issues or
suggest alternative treatment pathways based on historical data and predictive analytics.
Moreover, real-world-time data platforms can serve as a tool for continuous quality im-
provement. By tracking key performance indicators in real-time, healthcare providers can
identify areas for improvement almost instantaneously, allowing for rapid intervention
and adaptation of care protocols [19].

But the potential of digital health is not just in data collection; it is in data utilization.
Advanced digital platforms can streamline the diagnostic journey, enhance treatment
personalization, and even predict clinical outcomes, thereby offering a more holistic, patient-
centric model of care. For example, digital platforms can automate the pre-diagnostic
phase by gathering and analyzing patient history, symptoms, and preliminary test results,
thereby aiding clinicians in making more accurate initial assessments. These platforms
can also integrate with wearable devices that monitor patient vitals and other health
metrics, providing a continuous stream of data that can be invaluable for ongoing care
and monitoring. Furthermore, digital health technologies can facilitate patient engagement
by providing platforms for virtual consultations, remote monitoring, and even digital
therapeutics. These technologies empower patients to take an active role in their healthcare
journey, thereby aligning with the principles of value-based care.
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In essence, digital health technologies serve as the scaffolding upon which value-based
care in sarcoma can be constructed, offering the dual advantages of operational efficiency
and clinical efficacy.

4. Future Applications of AI in Sarcoma Care

As we look toward the horizon of sarcoma care, artificial intelligence (AI) emerges as
a highly promising tool for advancing the field [26,27]. While current applications have
been instrumental in diagnosis and treatment planning, the future holds even greater
promise. Advanced machine learning algorithms are poised to delve into multi-omics
data, offering unprecedented levels of precision in characterizing sarcoma subtypes and
predicting treatment responses. The application of machine learning in sarcoma research
extends beyond clinical data and can incorporate environmental, genetic, and lifestyle
factors. By creating more comprehensive models that consider these variables, AI has the
potential to identify new risk factors and even suggest preventative measures for at-risk
populations. Deep learning techniques, a subset of machine learning, could be particularly
impactful in image analysis. These algorithms can analyze complex patterns in radiological
images that may be too subtle for the human eye, thereby aiding in early diagnosis and
more accurate staging of the disease. This is crucial for sarcoma, where early diagnosis can
significantly improve prognosis.

These algorithms could also integrate radiomic features with pathological and clinical
data, refining prognostic accuracy [28]. Moreover, AI has the potential to support real-time
decision making during surgeries through augmented reality interfaces, allowing for more
precise surgical interventions. The introduction of natural language processing (NLP)
can further enhance patient engagement by automating the analysis of patient-reported
outcomes, thereby incorporating the patient’s voice directly into the care continuum. NLP’s
real strength lies in its ability to convert unstructured data, such as patient narratives or
free-text clinical notes, into structured data that can be easily analyzed. This is particularly
valuable in sarcoma care, where patient experiences and symptoms can be highly variable
and complex. By applying NLP algorithms to these unstructured data sources, healthcare
providers can gain insights into patient well-being, treatment side effects, and even early
indicators of complications that may not be readily apparent through traditional structured
data. These structured data can then be integrated into machine learning models to
improve predictive accuracy, thereby contributing to more personalized and effective
treatment plans.

In a value-based healthcare framework, AI can enable more personalized, efficient,
and outcome-oriented care, serving as a catalyst for transforming the ideal of precision
sarcoma care into a tangible reality.

5. The Concept of Sarcoma Digital Twin

The notion of a “Digital Twin” in sarcoma care is a groundbreaking concept that aligns
closely with the goals of precision medicine and value-based healthcare [29]. Drawing
inspiration from the Swiss Sarcoma Network’s robust digital platform, the Sarconector, a
sarcoma digital twin serves as a virtual replica of an individual patient’s medical profile,
integrating real-world-time data including Clinical-Reported Outcome Measures (CROMS),
Patient-Reported Outcome Measures (PROMS), POCOMS (patient-omics-centric outcome
measures), ECOMS (economic measures), and other metrics from multiple sources like
Electronic Health Records (EHR), surveys, and interviews [22,30].

The concept of a digital twin goes beyond merely storing or aggregating data; it serves
as a dynamic, interactive model that evolves in real-world-time. As new clinical data
become available, whether they are from imaging studies, laboratory tests, or patient-
reported symptoms, the digital twin updates accordingly. This dynamic nature allows for a
more nuanced understanding of the patient’s condition, thereby facilitating more informed
clinical decisions. Moreover, the digital twin concept is not limited to the individual
patient level. When aggregated across a population of sarcoma patients, these digital
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twins can serve as a rich data repository for observational studies, clinical trials, and
even epidemiological research. This collective data pool can be invaluable for identifying
patterns or trends in sarcoma treatment and outcomes, thereby contributing to evidence-
based medicine.

By leveraging AI-driven analytical tools, the digital twin can assist in predictive mod-
eling, optimizing treatment plans, and even simulating potential outcomes of various
therapeutic strategies. This creates an innovative ecosystem for quality-centric, value-based
sarcoma care, enabling iterative improvement based on ongoing assessments and bench-
marking. The utility of AI in this context is multifold. For instance, machine learning
algorithms can analyze the digital twin data to predict patient responses to different treat-
ment modalities, thereby aiding in personalized treatment planning. Furthermore, natural
language processing (NLP) algorithms can sift through clinical notes and patient interviews
to extract valuable insights that may not be readily apparent through quantitative data
alone. These AI-driven analyses can be integrated into the digital twin, providing a compre-
hensive, 360-degree view of the patient’s health status and treatment options. The concept
of a sarcoma digital twin also has implications for healthcare economics. By providing a
more accurate and personalized treatment plan, it has the potential to reduce unnecessary
tests and treatments, thereby contributing to cost-effectiveness and sustainability in health-
care systems. In doing so, the concept of a sarcoma digital twin pushes the frontier of what
is possible in delivering personalized, effective, and efficient care to sarcoma patients.

6. Roadmap to the Future

The Swiss Sarcoma Network’s comprehensive roadmap to sarcoma care offers a
visionary blueprint for the future, highlighting the synergy between AI and digital health
in achieving a sustainable healthcare system. From a practical standpoint, this roadmap
serves as a guide for healthcare providers, administrators and policymakers. It outlines
actionable steps such as the adoption of interoperable digital platforms, the integration of
AI in diagnostic and treatment protocols, and the establishment of quality indicators for
continuous improvement. These practical measures aim to facilitate the transition from
traditional, volume-based healthcare models to a more dynamic, value-based approach.
The roadmap also suggests the use of real-world-time data to validate and refine AI
algorithms, thereby ensuring that technological advancements are rooted in tangible clinical
benefits. The roadmap outlines a multi-faceted approach that includes real-world-time
data collection, interoperable digital platforms for data management, automated analysis
employing AI algorithms, and benchmarking against quality indicators specific to sarcoma
care [19,26]. These elements come together to assess various dimensions of care, including
clinical outcomes and patient experiences. The ultimate aim is to continuously refine
sarcoma care through iterative improvements, bringing the healthcare system closer to
realizing value-based precision care. Adding another layer of innovation, the roadmap
aims to incorporate the concept of a sarcoma digital twin, a virtual replica of an individual
patient’s medical condition that integrates seamlessly with AI-driven predictive modeling.
As the roadmap evolves, there will be an increasing focus on aligning costs with value,
thereby contributing to a more sustainable, efficient, and patient-centric healthcare system.
Thus, the roadmap represents not just a pathway for sarcoma care but also serves as a
model for the broader application of precision medicine and value-based healthcare.

While the Swiss Sarcoma Network provides a innovative model, its potential is not
confined to Switzerland alone. By fostering international collaborations and partnerships,
this roadmap can be scaled globally, adapted to diverse healthcare infrastructures and
socio-cultural contexts. Key to this expansion is the network’s emphasis on interoperability
and standardization, facilitating seamless data exchange across borders. The establishment
of international sarcoma care consortiums, working cohesively within the potential of such
platform, can harmonize methodologies, share best practices, and collectively advance the
vision of precision medicine. As more regions adopt this model, there is an opportunity for
global real-world-time data aggregation, enhancing AI’s predictive capabilities and refining
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treatment strategies. Thus, the roadmap represents not just a pathway for sarcoma care but
also serves as a model for the broader application of precision medicine and value-based
healthcare on a global scale.

7. Ethical and Regulatory Forethought

As we advance toward a new paradigm of value-based precision care in sarcoma,
underpinned by digital health and AI, ethical and regulatory considerations must be
addressed with the same vigor as technological innovations [31,32]. The collection, storage,
and analysis of patient data pose questions about data security, privacy, and informed
consent. Ensuring equitable access to advanced sarcoma treatments catalyzed by AI and
digital tools is paramount to preventing disparities in care. However, it is important to
acknowledge the limitations of our approach. While AI and digital health platforms offer
transformative potential, they are no without their drawbacks. The quality of AI algorithms
is highly dependent on the quality and quantity of the data fed into them. Incomplete or
biased data can lead to inaccurate or even harmful clinical decisions. Additionally, the
ethical implications of AI decision making in healthcare are still not fully understood and
require further study. There is also the risk of over-reliance on technology, which could
potentially undermine the role of medical professionals in patient care. Furthermore, the
cost of implementing advanced digital solutions may be prohibitive for smaller healthcare
facilities, potentially widening the gap in the quality of care. Regulatory bodies and ethical
committees must work in concert with healthcare providers, technology developers, and
policymakers to standardize protocols, ensuring that they are universally applicable and
ethically sound. These protocols must also be flexible enough to adapt to rapid technological
advancements without compromising patient safety or data integrity. As real-world data
platforms become more integrated into the healthcare system, legal frameworks will play a
critical role in shaping the ethical landscape of digital health and AI in sarcoma care. Thus,
ethical and regulatory forethought is not a mere afterthought but an integral component of
the roadmap to value-based precision care.

8. Challenges and Barriers: A Call to Action

While the horizon is bright with the promise of digital health and AI ushering in a
new era of value-based precision care in sarcoma, the path is fraught with challenges that
require immediate attention. Practically speaking, the implementation of this roadmap
will necessitate substantial investments in technology and human resources. Hospitals
and healthcare providers will need to upgrade their existing infrastructures to support
data-intensive AI algorithms. Training programs will be essential for clinicians to effec-
tively interpret and act upon AI-generated insights. Moreover, the roadmap calls for a
collaborative effort involving not just the medical community but also regulatory bodies
and insurance providers. This multi-stakeholder approach is crucial for overcoming the
financial, ethical, and logistical barriers to implementing a value-based healthcare model in
sarcoma care. Resource constraints, a lack of standardized data protocols, and resistance
to change within medical institutions all pose significant barriers. The dearth of expertise
in data science within the medical community adds another layer of complexity. Further-
more, data privacy concerns and regulatory hurdles can slow down the pace of innovation.
However, these challenges should not deter us; rather, they should serve as a clarion call to
action. This involves not only healthcare professionals and technologists but also policy-
makers, patient advocacy groups, and regulatory bodies. A collective, multidisciplinary
effort is crucial to overcome these barriers. Funding must be allocated for research and
development, educational initiatives must be put in place, and policy frameworks need
to be developed to encourage data sharing and interoperability. By acknowledging and
addressing these challenges head-on, we can accelerate the journey toward realizing the
full potential of digital health and AI in transforming sarcoma care.
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9. Conclusions and Proposals for Future Research

In the evolving landscape of sarcoma care, the convergence of digital health and
artificial intelligence offers a beacon of hope for personalized, efficient, and value-based
treatment options. We have explored the promise this union holds—from the integration
of real-world-time data and interoperable digital platforms to the application of AI for
predictive analytics, all the way to the conceptualization of the sarcoma digital twin, thereby
enabling predictive and value-based precision sarcoma care. As we look to the future,
several avenues for research emerge. First, there is a need for randomized controlled
trials (or, alternatively, target trial emulations) to validate the efficacy of AI algorithms in
sarcoma diagnosis and treatment planning. Second, research should focus on the ethical
implications of AI in healthcare, particularly in the context of data privacy and informed
consent. Third, the economic aspects of implementing digital health platforms and AI
in sarcoma care warrant in-depth study, including cost–benefit analyses and long-term
sustainability assessments. Lastly, future work could explore the integration of other
emerging technologies, such as blockchain for secure data sharing or augmented reality
for enhanced surgical planning, into the existing digital health ecosystem. These research
proposals aim to fill the existing gaps in our understanding and provide a comprehensive
framework for the adoption of digital health and AI in sarcoma care. While the challenges
are significant, they are not insurmountable. We stand at the cusp of a transformative era
in healthcare, one where the systematic adoption of these technologies could revolutionize
the way we approach not just sarcoma, but complex diseases at large. However, to realize
this vision, a coordinated, multidisciplinary effort is essential. The time for action is now;
let us seize this moment to propel sarcoma care into a future replete with the benefits of
digital health and AI, ultimately improving outcomes and quality of life for patients around
the globe.
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Abstract: One of the most promising advancements in healthcare is the application of digital twin
technology, offering valuable applications in monitoring, diagnosis, and development of treatment
strategies tailored to individual patients. Furthermore, digital twins could also be helpful in finding
novel treatment targets and predicting the effects of drugs and other chemical substances in develop-
ment. In this review article, we consider digital twins as virtual counterparts of real human patients.
The primary aim of this narrative review is to give an in-depth look into the various data sources and
methodologies that contribute to the construction of digital twins across several healthcare domains.
Each data source, including blood glucose levels, heart MRI and CT scans, cardiac electrophysiology,
written reports, and multi-omics data, comes with different challenges regarding standardization,
integration, and interpretation. We showcase how various datasets and methods are used to over-
come these obstacles and generate a digital twin. While digital twin technology has seen significant
progress, there are still hurdles in the way to achieving a fully comprehensive patient digital twin.
Developments in non-invasive and high-throughput data collection, as well as advancements in
modeling and computational power will be crucial to improve digital twin systems. We discuss a
few critical developments in light of the current state of digital twin technology. Despite challenges,
digital twin research holds great promise for personalized patient care and has the potential to shape
the future of healthcare innovation.

Keywords: virtual twins; personalized medicine; precision medicine; digital twin methodology;
multi-modal data sources; AI; data integration

1. Introduction

Digital twin technologies have seen a rise in popularity in various industries, including
manufacturing, engineering, and rocketry, from where the term originated [1]. This rise
can be attributed to the developments in rapidly collecting, storing, and sharing data,
together with computers being able to apply complex models and algorithms in a short
amount of time [2]. In several fields of healthcare, such as precision medicine, clinical trials,
and public health, the application of digital twins has become more and more apparent
as they may serve as a tool to understand and simulate complex physiological processes.
Moreover, digital twins may also reduce the need for animal experimentation, which takes
an estimated 200 million animals per year [3], as it allows a direct translation of in vitro
measurements into what could be expected in vivo either in digital animal models or
humans [4].

General definitions of a digital twin have been given in the literature [5–9]. In this
narrative review, we work with the general definition of healthcare digital twins [10]
as virtual replicas of real human patients, through which clinicians can gain valuable
insights, optimize treatment strategies, and deliver personalized care [5,11,12]. For specific
healthcare domains, the operationalization of this definition depends very much on the
underlying methodology and data used to construct the digital twin. Though the general
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aim is expected to align with the definition above, a ‘cardiac’ digital twin (e.g., Section 2.2
below) differs considerably from a ‘drug response’ digital twin (e.g., Section 2.6 below) in
methodology, data types, and implementation. One of our goals is to take a deeper look
into the methodological aspects underlying digital twins across several healthcare domains
where this technology is being applied. By gaining an understanding of the methods and
data used, the potential value and important pitfalls of digital twins in future studies can
be more easily identified.

Healthcare digital twins require large amounts of data and often multiple data types.
These include measurements that can be made using a smartphone or -watch, like heart
rate, temperature, and location [13], and data that can otherwise be gathered at home, such
as blood pressure and blood oxygen saturation, but also medical imaging data recorded
during CT or MRI scans, electrophysiology, and various types of -omics data, which can be
collected through a wide range of techniques including sequencing, immunoprecipitation
and mass-spectrometry [14]. After generating the digital twin, a variety of methods can
be applied to make simulations and predictions. These range from fitting regression lines
to the data to designing deep neural networks [15] and can be used for many different
purposes. Apart from their clinical use, digital twin technologies may also be applied to
identify novel drug targets, simulate the effectiveness and safety of new treatments, or
predict patient traffic during a pandemic [5].

The aim of this narrative review is twofold. We aim to review the methodological
development of digital twin systems across several healthcare domains. Second, we aim to
identify the types of data required to construct the respective digital twins. Secondary to
these aims, we further discuss how to overcome the challenges introduced by handling
large amounts of data and standardization, integration, and interpretation of many different
types of data. The research questions we desire to answer are: (1) which data types and
sources are important for the development of healthcare digital twins? (2) What are the
prevailing methods and techniques employed in healthcare digital twin systems, and how
do they vary in their applications? (3) How can the challenges related to healthcare digital
twin methods and data be transformed into opportunities? Addressing these aims and
questions will be crucial to harnessing the full potential of digital twins, ensuring that this
promising idea can be integrated successfully into clinical practice.

2. Case Studies

Digital twins of complex systems require vast amounts of data to accurately represent
their physical counterparts. Different types of data can be gathered via different methods,
and integrated into one model, to simulate pathways, organs, or entire organisms. How-
ever, gathering all that data may be especially challenging in medical care, compared to
the original DT application in rocketry, for example. While a lot of environmental data
can be continuously captured using body-worn sensors like a smartphone or -watch, more
complicated and intrusive methods may be necessary to gain -omics or imaging infor-
mation [5]. We present several key case studies in different healthcare fields where we
review the data sources used and the methodology applied to construct digital twins. To
aid in quickly searching the relevant literature regarding digital twin methodology, an
annotated overview of the significant literature is presented in a searchable spreadsheet
as Supplementary Material. Together with this supplementary overview, the case studies
reviewed below provide an overview of the methodological cornerstones of digital twins
across different healthcare domains.

2.1. Artificial Pancreas

One of the first digital twin-like systems is the artificial pancreas. It consists of two
essential parts: a system capable of continuously measuring blood glucose levels, and a
device containing a syringe used for insulin infusion when needed. Blood glucose levels
used to be measured by having the user collect a drop of blood from their finger, but less
invasive methods have been developed during the late 20th century and beyond. Instead
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of measuring true blood glucose levels, these values could be inferred by monitoring the
glucose concentration in extracellular space. However, as the relation between the new
interstitial glucose data and blood glucose levels is not one-to-one, the devices had to be
calibrated with true blood glucose readings. Furthermore, even after successful calibration,
this method was prone to loss of sensitivity and random noise. Addressing these issues
is essential in order to be usable as a ’near-future’ digital twin: for example, if glucose
levels are predicted to be too high or too low in the near future, the system can generate
preventive alerts, prompting the patient to take appropriate actions, such as adjusting
insulin dosage or dietary choices.

To combat these issues, a collection of signal processing algorithms has been applied to
ensure accurate prediction of blood glucose levels based on minimally invasive, interstitial
readings [16]. The ‘smart continuous glucose monitoring sensor’ combines the existing glu-
cose monitoring sensor with several software modules designed to reduce noise, improve
accuracy, and predict future glucose concentration (Figure 1) [17].

Figure 1. Schematic of the smart continuous glucose monitoring sensor which allows for subcuta-
neous glucose reading, signal processing, and future reading prediction to reduce measurement noise
and under- and overestimations of blood glucose values. It also contains a prediction module to
generate timelier alerts. Figure taken from [17].

Denoising is used to improve the subcutaneous glucose concentration readings from
the sensor by reducing the impact of noise in the data. To estimate the true interstitial blood
glucose concentration, the denoising algorithm uses a Bayesian interference algorithm that
takes into account general information on signal-to-noise ratios, as well as the data it has
collected previously from the specific individual, to determine which parts of the signal
are noise. The algorithm also does not require user intervention and is designed to be
adaptive to the signal-to-noise ratio of every individual user. Further, to combat under- and
overestimations of blood glucose levels based on subcutaneous glucose readings, the data
is enhanced using a least squares linear regression model. Briefly put, blood glucose mea-
surements are fit against blood glucose estimations made based on the interstitial readings
taken at the same time. Then, the regression parameters are used to enhance future data
collected by the subcutaneous sensor to more accurately estimate the corresponding blood
glucose values. This linear regression can be updated in real-time, and it takes into account
the influence of blood-to-interstitium glucose transport and its delay on the individual
user. The addition of these two data processing steps resulted in a greatly improved blood
glucose estimation accuracy, which is essential for devices using subcutaneous readings
(Figure 2). Lastly, the smart sensor is capable of predicting future glucose concentrations to
enable the device to generate timelier alerts. Glucose level prediction is achieved by reading
all the past data generated by the sensor and assigning every measurement a different
weight, based on an autoregressive model. The future values are subsequently calculated
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by multiplying each past data point by its weight in real-time, and a preventive alert can be
generated when the predicted value is either too low or too high [17].

 

Figure 2. Results of application of the smart continuous glucose measuring system on a human
subject. Original reading data are in blue, denoised and enhanced values are in red, and reference
blood glucose measurements are shown as green dots. Figure taken from [17].

In the last few years, glucose monitors using these algorithms have been approved
for use by the FDA without the need for calibration by capillary blood readings. These
devices are capable of measuring patient data, applying data processing, and predicting
future values in real-time [16]. However, many more variables other than blood glucose
are needed to create a complex pancreas digital twin. In 1979, the rate of glucose pro-
cessing was described in a nonlinear function [18] and that model has evolved into one
describing a glucose–insulin network using many functions and parameters to take into
account the glucose kinetics, insulin kinetics, rate of glucose appearance, endogenous
glucose production, utilization, secretion and excretion [19]. Furthermore, models that
describe the effect of external influences like physical activity and the delays associated
with subcutaneous, rather than intravenous, insulin delivery were designed. These models
make it possible to test the effect of any meal or insulin injection, as well as any extreme
scenarios digitally, before use in clinical trials. Currently, an increasing number of variables
are being added to the artificial pancreas systems. Heart rate monitoring, motion sensing,
additional hormones, and glucagon have all been analyzed for their use in mitigating
hypoglycemia during physical exercise. Technical developments, like the prevalence of
smartphones capable of running algorithms and a wireless connection, may offer patients
better monitoring of their glucose levels using a device that is already integrated into daily
life as the controller [16].

2.2. Cardiac Digital Twins

In healthcare, generating digital twins to mimic a human organ has seen much popu-
larity in cardiovascular research. Multiple types of data are combined to create a cardiac
digital twin (CDT), which can be used to test patient-specific monitoring and treatment
strategies (Figure 3). The process of creating a CDT can be split into two distinct stages;
the anatomical and functional twinning stages. The anatomical twinning stage consists
of creating a very detailed 3D copy of the physical twin, based on CT or MRI scans of the
patient [20]. This cardiac 3D mesh is based on Universal Ventricular Coordinates. This
model essentially describes the location of specific cardiac regions such as the apex or
septum and can be automatically computed with relatively little input data. It requires an
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epicardial apex surface point, a left ventricular endocardial surface point, a right ventricular
septal surface point, and surface points of the ventricular base, to compute the ventricular
coordinates of the heart base, epicardium, left ventricular endocardium, and right ventricu-
lar endocardium and septum. The UVC algorithm is also capable of computing coordinates
for trabeculae and certain heart valve openings [21]. A similar approach can be used to
map Universal Torso Coordinates.

Figure 3. Schematic of workflow for CDT generation. MRI data is segmented and used to create
anatomical meshes. A reference frame (X) is computed based on UVC and UTC. ECG waveforms
generated with a forward ECG model are compared to clinically measured 12-lead ECG data for
optimization of the model parameters contained in w(X). Figure taken from [20].

The input data is recorded during the MRI study of the patient. The 3D whole-heart
MRI scans are segmented automatically by a convolutional neural network, and corrected
manually. Automatic UVC computations are then run to create the cardiac mesh for the
specific heart [20].

The second stage in creating the CDT, functional twinning, covers the electrophysiol-
ogy of the heart. Four factors responsible for the ECG waveforms during activation and
repolarization were defined mathematically: depolarization caused by the His–Purkinje sys-
tem and distribution to the subendocardium, the conduction velocity within the ventricles,
spatially varying action potential duration, and the conductivity of the torso surround-
ing the heart. Electrophysical activity of the anatomical reference frame was simulated
using a fast-forward ECG model, and compared to clinical measurements of 12-lead ECGs
(Figure 4). These comparisons show that with this two-stage twinning method, cardiac
electrophysiology can be simulated automatically and in near real-time.

Figure 4. Simulated ECGs (red) compared to measured reference ECGs (black) after obtaining optimal
parameter values. Electrodes were placed and simulated according to the 12-lead ECG setup. Figure
taken from [20].

2.3. Single-Cell Flux Analysis

Apart from organ-specific measurements like heart electrophysiology and blood glu-
cose levels, the vast amounts of data generated in omics research may also be used in
generating digital twins. In cancer research, single-cell digital twins based on metabolomics
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and fluxomics, the analysis of production and consumption of metabolites, have been
proposed as a tool to better discriminate between cancer phenotypes. The model used to
create the single-cell digital twin integrates single-cell RNA (scRNA) sequencing data and
extracellular metabolite fluxes to obtain a view of the single-cell metabolic phenotype at
any given time [22].

The single-cell Flux Balance Analysis (scFBA) model requires three types of input
(Figure 5). Firstly, it needs a template metabolic network, describing the different metabo-
lites, their biochemical reactions, and their consumption or secretion [22]. The complete
human metabolic network has been reconstructed by integrating pharmacogenomic associ-
ations, large-scale phenotypic data, and structural data for proteins and metabolites. The
metabolic fluxes in this network have been predicted by models that have also been fed data
from other omics analyses, describing the pathways that are expressed in any given cell
or tissue [23]. Secondly, the scFBA model is given an scRNA-seq dataset that contains the
normalized read count of each gene in each cell in the analysis. Lastly, extracellular fluxes
in the patients’ cell population are approximated from the measurement of metabolite
concentrations in the cell culture medium of the patient-derived organoid or xenograft,
for example.

 

Figure 5. Schematic overview of the scFBA workflow. Single-cell RNA-seq and bulk RNA-seq are
performed on patient-derived organoids or xenografts. Extracellular metabolite exchange rates are
also measured. A template metabolic network is imported from a public database. The bulk RNA
and flux data are integrated to form a population model. Single-cell networks can be computed by
incorporating bulk constraints based on bulk data, and single-cell constraints based on the single-cell
RNA-seq data. Figure taken from [22].

The scFBA pipeline starts with pre-processing, by removing genes with zero read
count from the template metabolic network. Then, a population model is generated. This
model is created by integrating all the RNA data of all the available cells in the template
metabolite network. The resulting network corresponds to the scRNA of the average
cell in the sample and is copied to produce a population model consisting of replicas
of the single metabolic network. All the cells in the population now have the same set
of metabolites as the template network. Each single-cell network can be reconstructed
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by introducing cooperation reactions, which allow metabolite exchange among cells and
with the environment. These reactions are then linked to the scRNA data via logistically
expressed rules. The ‘AND’ operator is used to describe genes that encode for different
subunits of the same enzyme, while the ‘OR’ operator describes genes that encode for
isoforms of the same enzyme. These logical operators are then used to calculate the reaction
activity scores for each reaction. These scores represent the expression of the genes in
transcripts per kilobase million. For the reactions that are caused by genes that are linked
only through the AND operator, all the genes are necessary. This means that the reaction
activity score can be defined as the expression of the least-expressed gene that is necessary
for that reaction to occur. If the genes involved in the reaction are only linked through the
OR operator, the activity score is calculated as the sum of the expression values.

After the population model and the reaction activity scores for each cell are computed,
bulk and single-cell constraints are imposed. These represent boundaries on the metabolite
exchanges with the environment and within the cells based on their reaction activity scores,
respectively. The model, now describing the metabolite exchange between single cells and
the environment, constrained by the reaction activity scores for each cell, as well as by
boundaries set through measurements of the entire sample, can be used to simulate the
effect of single gene deletions. The reactions that are associated with that gene which is
only linked to other genes by the AND operator should be disabled by the deletion. These
reactions are removed from the network, and the population model is reoptimized for total
biomass production. This allows analysis of the effect of single genes on tumor growth in a
patient-specific cell system, which may lead to identifying genes or clusters of cells that can
be exploited to deregulate cancer metabolism [22].

2.4. Protein and DNA Interactions

Networks like the ones generated with scFBA may be created and applied in digital
twin computations for other -omics data, as well. Protein interactions may be studied
through multiple techniques. The yeast two-hybrid and LUMIER methods can both be
applied to check for interaction between two specific proteins [24,25]. A high-throughput
platform combining immunoprecipitation and high-throughput mass spectrometry (IP-
HTMS) is capable of rapidly identifying novel protein interactions for a protein of interest
(Figure 6).

Figure 6. Schematic of the IP-HTMS pipeline. Bait proteins were isolated with their prey partners
through immunoprecipitation and identified after SDS-PAGE and mass spectrometry. The proteins
and peptides are clustered based on a scoring system and filtered. Finally, a confidence score is
calculated for each bait–prey interaction. Figure taken from [26].

201



J. Pers. Med. 2023, 13, 1522

To demonstrate the IP-HTMS workflow, 407 ‘bait’ proteins of interest were flag-tagged
and isolated, together with any interacting ‘prey’ partners, via immunoprecipitation. The
proteins were then subjected to SDS-PAGE and mass spectrometry for identification. All
proteins and peptides that were associated with the same bait protein were clustered
and an ‘anchor’ protein was selected for each cluster by ranking the proteins within the
cluster based on the number of peptides. Interactions that were non-specific, bait–bait
interactions, and interactions with contaminant proteins were removed from the interaction
network. Several metrics were used to generate a measure of confidence in the bait–prey
interactions, and high-scoring pairs were further analyzed by integrating other types of
genomic information, such as gene expression, sub-cellular location, and function. With
this pipeline, many protein interactions may be studied rapidly to create complex protein–
protein interaction networks [26]. Networks like these can provide critical information
to human digital twins, as they enable in-depth analysis of the effects of the absence or
abundance of specific proteins on their pathways, which can lead to understanding why
certain diseases occur, as well as pinpointing potential targets for treatment.

Protein–DNA interactions can also be analyzed, although the regulatory networks
are more incomplete in comparison with protein–protein interaction networks, metabolic
networks, and RNA networks [27]. Chromatin immunoprecipitation (ChIP), combined
with next-generation sequencing can be used to identify DNA-bound proteins, as well
as the DNA sequence they are bound to. This information may explain the effect of an
altered DNA sequence if it results in a transcription factor not being able to interact with
the DNA, for example. Protein–DNA interactions uncovered via ChIP-sequencing have
been reported in databases like UniPROBE and JASPAR [28,29], but the technique is limited
by the cost as well as the availability of the high-quality antibodies needed to retrieve the
DNA–protein complexes [27].

2.5. Clinical Reports in Oncology

Advancements in machine learning and specifically natural language processing (NLP)
have enabled the use of written records in creating digital twins. In cancer research, struc-
tured, written reports containing ‘findings’ and ‘impressions’ from CT-scan analysis of
multiple organs were annotated for the presence or absence of metastases by five radiolo-
gists (Figure 7). Individual reports from each patient were concatenated in chronological
order to enable multi-report analysis. This allows the model to access every previous report
when it predicts the presence of metastases during the time of a patient’s third report, for
example. This is especially important in the event of no change compared to the last analy-
sis being reported for a particular organ. The multi-report analysis enables the algorithm to
decide whether ‘no change’ means an analysis based on the previous information.

 

Figure 7. Example report of a chest CT containing organ site-specific ‘findings’, and ‘impressions’,
with information about any organ. Figure taken from [30].
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The structured reports are first converted into numeric vector representations to be
used as inputs for the three machine learning models developed to predict metastasis
presence over time. This can be achieved by removing the punctuation and unknown
words in the report and assigning each word an index value. The strings of index values
representing the written text are fed as input to the convolutional neural network (CNN),
capable of learning which combinations of words mean the presence and which mean the
absence of metastasis in each analyzed organ. An augmented CNN with an attention layer
is used to better capture important information in the reports by assigning higher weights
to the indices that represent more important words. Thirdly, to take the context into account,
a bi-directional long short-term memory (LSTM) network was developed. This variant of
a recurrent neural network is capable of processing the data both forward and backward.
This allows the network model to account for both past and future contexts when learning
the meaning of different word combinations. The LSTM network is designed to deal with
long sequences, and it can determine what information needs to be remembered and what
can be forgotten [30]. The three models were tested on over fourteen thousand radiology
reports on the lung, liver, and adrenal glands. Prediction accuracies exceeded 96% across
all combinations of models and organs. This shows that with the use of NLP algorithms,
written report data could contribute to developing a cancer digital twin, as these texts still
contain much of the information in the medical record [30].

2.6. Predicting Drug Effectiveness

Once available, healthcare digital twins may be used to predict treatment outcomes,
simulate various events, or digitally test the effects of the absence of a certain protein, for ex-
ample. Different goals require different statistical methods and, just like during the creation
of the twins, speed, and accuracy are key in creating viable digital twin applications.

During clinical trials of a new treatment, the efficacy of the new treatment is usually
tested against a standard treatment or a placebo when given to a random sample of the
population. However, the new treatment could only be more beneficial to a select subgroup
of patients in the sample. It is worth trying to analyze what characteristics define this
subgroup, to understand why the treatment is especially effective for them [31]. Although
selecting a couple of features to create subgroups is known to be prone to finding false
positives, various statistical methods have shown to be capable of this task [32].

The classical method consists of fitting a regression model based on the interactions
between treatments and patient data. One drawback of this model is that it is not suitable
for use with datasets containing many different variables, as it would need to consider many
different possible interactions [33]. Multiple new algorithms for defining the boundaries of
a certain subgroup have been tested.

One method relies on the use of random forests and regression or classification trees
to prioritize covariates that predict which patients will benefit most from a treatment.
First, random forests are applied to the data which take the variable values, including
the treatment group, as input, and give the probability of a certain outcome as output.
The estimated treatment effect is subsequently calculated by subtracting the probability
of a positive outcome under control from the positive outcome after treatment. So, a high
estimated treatment-effect value means that the treatment greatly affected the patients’
chances of a positive outcome. Then, the variables that have a strong effect on the estimated
treatment-effect value are selected through either regression or classification trees. With the
regression tree method, a regression tree is created with the estimated treatment effect as
the response and the variables as the other input data. This tree is used to again predict
the treatment-effect value for each patient, and patients with a high estimated value are
grouped. The variable values that result in an increased effect can be found by analyzing the
tree and finding the paths that lead to terminal nodes with high predicted-effect values [31].
With the classification method, the estimated treatment-effect value is dichotomized by
splitting the outcomes using a threshold value. This binary estimated treatment-effect
value is used to generate the classification tree that is used to classify the patients into either
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the ‘low effect’ or ‘high effect’ groups. This means that every variable used by the tree to
classify a patient in the ‘high effect’ group can also be used to define a digital twin [31].

The random forest and regression tree approaches, as well as the classical model,
have been tested on data from a clinical trial in 1019 patients, 517 of whom received the
experimental treatment, while the others received a placebo. The patient’s condition was
possibly fatal, so the positive outcome was defined as survival 28 days after receiving
the treatment or placebo. Both the regression and classification methods resulted in the
identification of variables that could be used to define the subgroup of patients to whom
the experimental treatment was especially beneficial. The models identified four variables
that affected the estimated treatment effect the most, three of which were related to the
severity of the patient’s condition [31]. In this case, the differences in treatment effectiveness
between patients in the subgroup and the average patient were not convincing enough
to definitively prove that patients in the subgroup have a significantly better outcome.
However, it shows that these digital twin-centric methods are an improvement on the
classic logistic regression method when it comes to identifying and defining a subgroup
of patients during clinical trials. The methods are more suited to bigger datasets, easier
to interpret, and better at defining subgroup boundaries. Developments like these are
essential for the application of digital twins in healthcare research.

2.7. Drug Repurposing for SARS-CoV-2

When the SARS-CoV-2 (or COVID-19) pandemic began, a lot of research was carried
out to find agents that could either prevent or cure a COVID infection in a relatively short
time. One quick way of obtaining suitable drugs on the market was to find drugs that
had already been approved for use in another healthcare application and repurpose them
for COVID treatment. One study started by searching for drugs that were approved for
diseases with a similar molecular effect as COVID-19 [34]. To find these drugs, 332 host
protein targets of the coronavirus were mapped to the human interactome. Of these targets,
208 turned out to be connected within the interactome network.

Three methods were used to identify potentially repurposable drugs for COVID-19
treatment (Figure 8). Firstly, an AI-based algorithm was used to map drug–protein targets
and disease–protein targets. Secondly, a diffusion algorithm ranked the available drugs
based on their ability to affect the pathways that contained the SARS-CoV-2 protein targets
in the network. Lastly, a proximity algorithm was applied to calculate the distance between
the host protein targets of SARS-CoV-2 and the closest proteins that were targeted by
the drugs.

Figure 8. Schematic of the workflow for identifying drugs that could be repurposed for COVID-19
treatment. An AI-based method, network diffusion, and network proximity were used to identify
possibly repurposable drugs, which were then validated through comparison with various clinical
trials. Various rank aggregation algorithms were used to rank the drugs, based on their results in the
different pipelines. Figure taken from [34].
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The predictions made using the three methods were compared to compounds that
had been experimentally screened for their efficacy in SARS-CoV-2 in monkey kidney cells.
Of the 918 tested drugs, 77 had a positive effect, 806 showed no effect, and 35 turned
out to be toxic to the cells. The drugs were subsequently compared to another dataset
containing outcomes of clinical trials, as well [34]. Lastly, the drugs were given a rank
based on their scores in the different pipelines described above. Multiple rank aggregation
algorithms were tested for this purpose. CRank, capable of extracting the predictive power
of the individual methods, consistently showed a strong predictive performance among
datasets [34]. Of the 200 drugs ranked by this algorithm, 13 had positive outcomes in the
monkey cells. Two drugs were already tested repeatedly, and of the remaining eleven, six
showed potential for treating SARS-CoV-2 infection when tested on human cells. Of these
drugs, three were highly ranked by CRank and had strong outcomes in the experimental
tests, but were not yet used in clinical trials [34].

Studies like these show how digital twins containing protein–protein interaction
networks may be used to estimate the effect of new treatments. In this case, a general
interactome network was used to find drugs that may be potent in the treatment of COVID-
19 infection in a population. However, these methods may also prove useful for a personal
digital twin-based approach to evaluate treatment options for specific individuals.

3. Discussion

Recent developments in digital twin research in healthcare show great promise in
understanding complex physiological processes, and may be applicable in several medical
fields. To fully grasp the possibilities and pitfalls of these digital twins, we provide an
in-depth look into the methodology and data types used in constructing digital twins.
Though unified by their common goal, digital twins from different fields vary considerably
in methods and data used. The main findings are summarized in Table 1.

Table 1. Summarizing overview of the various methodologies and data types used to construct
digital twins across several healthcare fields.

Case Study Aim of Digital Twin Input Data Methodology

Artificial
Pancreas

Enhance blood glucose level
monitoring and insulin delivery for
individuals with diabetes, ensuring
accurate predictions, noise
reduction, and timely alerts without
the need for frequent calibration.

Blood glucose data collected
non-invasively via continuous
monitoring.
Calibration data for accurate
glucose level predictions.
Data related to glucose–insulin
networks, external factors
(e.g., physical activity), and
additional hormones.

Signal processing algorithms for
denoising and data enhancement.
Bayesian inference for denoising.
Least squares linear regression for
data enhancement.
Autoregressive modeling for future
glucose concentration prediction.

Cardiac
Digital Twin

Create detailed replicas of the heart
(anatomical twinning) and simulate
cardiac electrophysiology
(functional twinning) for
personalized testing and
treatment strategies.

Three-dimensional heart scans
from MRI.
Clinical ECG measurements.

Universal Ventricular Coordinates
for anatomical twinning.
Mathematical models for cardiac
electrophysiology.
Fast-forward ECG modeling.
Near real-time simulation of
cardiac electrophysiology.

Single-cell Flux
analysis

Integrate single-cell RNA
sequencing data and metabolite
fluxes to understand single-cell
metabolic phenotypes, particularly
in cancer research, aiding in
phenotype discrimination.

Template metabolic networks.
scRNA-seq datasets.
Extracellular flux
measurements.

scFBA model for metabolic analysis.
Logical operators to calculate
reaction activity scores.
Constraints for
metabolite exchanges.
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Table 1. Cont.

Case Study Aim of Digital Twin Input Data Methodology

Protein and DNA
interactions

Construct protein–protein
interaction networks for studying
protein interactions and regulatory
networks for protein–DNA
interactions, enabling a deeper
understanding of various biological
processes and disease mechanisms.

Protein interaction data from
techniques like IP-HTMS.
Protein–DNA interaction data
from ChIP-sequencing.

Bioinformatic analysis to identify
and prioritize interactions.
Integration with other genomic
information for
comprehensive analysis.

Clinical
reports in
oncology

Utilize natural language processing
(NLP) to extract valuable
information from clinical reports,
particularly in cancer diagnosis,
enabling better analysis and
prediction of metastases presence
over time.

Structured clinical reports from
CT scans.
Concatenated reports for
multi-report analysis.

NLP for text processing.
Machine learning models, including
CNN and LSTM, for prediction.
Multi-report analysis to
improve accuracy.

Drug
effectiveness

Identify subgroups of patients who
may benefit from specific
treatments during clinical trials,
providing a more personalized and
efficient approach to
treatment evaluation.

Patient data and treatment
outcomes.
Variables describing patient
characteristics.

Random forests, regression trees,
and classification trees.
Identification of variables affecting
treatment effectiveness.
Subgroup definition based
on variables.

Drug
repurposing for
SARS-Cov-2

Identify existing drugs that can be
repurposed for COVID-19
treatment by analyzing their
interactions with the virus’s protein
targets and predicting their efficacy,
thereby accelerating drug discovery
for the pandemic.

A total of 332 host protein
targets mapped to the human
interactome.
Experimental and clinical
trial outcomes.

AI-based algorithms for
drug mapping.
Diffusion algorithms for
pathway analysis.
Proximity algorithms for
target prediction.
Rank aggregation for
drug prioritization.

There exist several opportunities and challenges in the methodology and data types un-
derlying digital twins. In diabetes management, the artificial pancreas is a prime example of
a digital twin-like system that can greatly improve the ability to monitor and predict blood
glucose levels and administer insulin based on non-invasive glucose monitoring methods.
The data and methodology employed in the ‘smart sensor’ represent a multifaceted and
data-driven approach, namely continuous glucose monitoring, signal processing algo-
rithms, Bayesian interference, least squares linear regression, and autoregressive models.
While this ‘smart sensor’ system can already offer great benefits to diabetes patients, there
is still much room for improvement. The denoising and data enhancement methods could
be combined and performed at the same time to reduce the complexity of the pipeline.
Furthermore, the prediction module could be expanded to account for information such as
meals, sleep, or physical activity. Even with these challenges that still need to be addressed,
the reliability and effectiveness of these systems are demonstrated by the fact that the FDA
has already approved them for personal use in their current state.

In cardiovascular research, a field that has seen many new ideas and improvements
in digital twin systems recently, multiple types of data, including MRI and CT scans
and electrophysiology measurements, can be integrated to compile a digital heart model
through which ECG patterns can be simulated and predicted in any location and in real-
time. This ability allows for the testing of patient-specific monitoring and treatment
strategies and has the potential to significantly improve patient outcomes in cardiovascular
diseases. The approach here consists of two distinct stages: anatomical twinning and
functional twinning. In the anatomical twinning stage, detailed 3D representations of the
heart are generated based on patient-specific CT or MRI scans. The second stage focuses on
the electrophysiology of the heart, where mathematical models are used to describe and
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simulate electrophysiological activity of the heart. One important limitation of this method
is that it requires accurate, multi-label segmentation to create anatomical CDTs. This is the
largest computational time sink in the whole pipeline. While some studies have shown
neural networks trained for this purpose, a fully automated method for segmentation of
the cardiac chambers is not available at this time. The same is true for the segmentation
of the torso. Models capable of fully automatically threshold-based segmentation that
account for patient-specific anatomy will have to be achieved in the future. Additionally,
the representation of the His–Purkinje System in the CDT may be too simplistic, as its
workings are not yet fully understood. However, it was noted that once an activation profile
has been identified, an automated workflow for integrating a topological representation of
the HPS can be readily implemented [20].

Ultimately, a fully comprehensive healthcare digital twin would also require the
integration of different types of omics data. The scFBA model can be used to incorporate
single-cell RNA sequencing data and extracellular metabolite fluxes into digital twins
that can provide insights into the metabolic phenotypes of cancer cells and allow for the
analysis of the effect of genetic alterations. In the scFBA model, three main types of input
are required: a template metabolic network, a single-cell RNA sequencing dataset, and
approximated extracellular fluxes from the patient’s cell population. Using these data,
gene-to-metabolic reaction links are calculated and used to simulate the effect of single gene
deletions. This approach offers a powerful tool to study cancer phenotypes and identify
potential novel targets for therapeutic intervention.

Furthermore, the developments in machine learning and AI-based statistical methods
allow for the prediction of drug effectiveness in patients (regression and random forests),
identification of already approved drugs that may be repurposed for another cause (drug-
and disease-protein mappings and rank aggregations), and the ability to extract data from
clinical reports (natural language processing and neural networks), for example.

However, several challenges need to be addressed. Firstly, while the metabolic network
maps are very comprehensive, protein–protein and regulatory networks are still considered
incomplete. Gathering and integrating large amounts of data from diverse sources remains
a significant hurdle and the continuous development of non-invasive and high-throughput
data collection methods will be crucial to improve the accuracy and effectiveness of digital
twin-based approaches. This is especially important for strategies that rely on digital twin
systems to monitor health in real-time, to be able to predict a drop in blood glucose levels or
to generate alerts based on simulated EEG patterns, for example. Additionally, a wide range
of variables and parameters in digital twin models is necessary to accurately mimic complex
physiological systems. Integration of these variables requires ongoing advancements in
computational power and modeling techniques. Lastly, it is paramount to the practical
application of digital twin systems that the privacy of the patient can be guaranteed, while
large amounts of data are collected and ideally shared, to enable researchers to collaborate
all over the world.

A lot of research is already being carried out to overcome these obstacles, and access
to an ever-increasing amount of computational power allows for the use of more and
more data, as well as complex models and algorithms. An increasing number of publicly
available template models describing protein interactions, single-cell metabolomics, and
thoracic cell coordinates, for example, will also be paramount in creating patient-specific
digital twin systems in a short time. Additionally, modern systems and standards for data
management will enable secure and efficient ways to store personal data and share them
with others all over the world.

In conclusion, the development of digital twins in healthcare has the potential to
revolutionize medical care and personalized treatments. The examples discussed in this
review demonstrate the effectiveness of digital twin technology in artificial pancreas sys-
tems, cardiac digital twins, and single-cell digital twins for cancer research. By integrating
diverse data sources and advanced modeling techniques, digital twins offer a powerful tool
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to simulate and understand complex physiological processes. Continued research and de-
velopment in this field will pave the way for improved patient care and precision medicine.

4. Conclusions

Recent developments in digital twin research in healthcare hold great promise for
understanding complex physiological processes and their potential applications in various
medical fields. The examples discussed include digital twins in diabetes management,
such as the artificial pancreas, which improves blood glucose monitoring and insulin
administration. Challenges exist in denoising data and expanding prediction modules.
In cardiovascular research, digital heart models enable real-time prediction of ECG pat-
terns, allowing for patient-specific monitoring and treatment strategies, yet segmentation
and representation challenges persist. Integrating omics data and AI-based methods in
comprehensive healthcare digital twins provides insights into cancer phenotypes and
drug effectiveness prediction. Addressing challenges in data integration, computational
power, and privacy, is crucial for advancing digital twin-based approaches. Overall, digital
twins have the potential to revolutionize medical care and precision medicine, offering
personalized solutions for patients.
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2 Doctoral School, Poznań University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
3 Department of Public Health, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
4 Department of Oral and Maxillofacial Surgery, Justus-Liebig-University, 35392 Giessen, Germany
5 Department of Oral and Maxilofacial Surgery, Cliniques Universitaires Saint Luc, UCLouvain,

Av. Hippocrate 10, 1200 Brussels, Belgium
6 Oral and Maxillofacial Surgery Research Lab (OMFS Lab), NMSK, Institut de Recherche Experimentale et

Clinique, UCLouvain, Louvain-la-Neuve, 1348 Brussels, Belgium
* Correspondence: julien.issa@student.ump.edu.pl
† These authors contributed equally to this work.

Abstract: This retrospective study aims to investigate the impact of cone-beam computed tomography
(CBCT) viewing parameters such as contrast, slice thickness, and sharpness on the identification of
the inferior alveolar nerve (IAC). A total of 25 CBCT scans, resulting in 50 IACs, were assessed by two
investigators using a three-score system (good, average, and poor) on cross-sectional images. Slice
thicknesses of 0.25 mm, 0.5 mm, and 1 mm were tested, along with varying sharpness (0, 6, 8, and
10) and contrast (0, 400, 800, and 1200) settings. The results were statistically analyzed to determine
the optimal slice thickness for improved visibility of IAC, followed by evaluating the influence of
sharpness and contrast using the optimal thickness. The identified parameters were then validated by
performing semi-automated segmentation of the IACs and structure overlapping to evaluate the mean
distance. Inter-rater and intra-rater reliability were assessed using Kappa statistics, and inferential
statistics used Pearson’s Chi-square test. Inter-rater and intra-rater reliability for all parameters
were significant, ranging from 69% to 83%. A slice thickness of 0.25 mm showed consistently
“good” visibility (80%). Sharpness values of zero and contrast values of 1200 also demonstrated high
frequencies of “good” visibility. Overlap analysis resulted in an average mean distance of 0.295 mm
and a standard deviation of 0.307 mm across all patients’ sides. The study revealed that a slice
thickness of 0.25 mm, zero sharpness value, and higher contrast value of 1200 improved the visibility
and accuracy of IAC segmentation in CBCT scans. The individual patient’s characteristics, such as
anatomical variations, decreased bone density, and absence of canal walls cortication, should be
considered when using these parameters.

Keywords: diagnostic imaging; X-rays; cone-beam computed tomography; mandibular canal;
tomography

1. Introduction

The inferior alveolar canal (IAC) is an anatomical structure that carries the inferior
alveolar nerve and blood vessels [1]. It originates at the mandibular foramen, passes
through the mandibular body, and exits at the mental foramen [1,2]. In most cases, on
conventional radiographs, IAC appears as a distinct radiolucent area bordered by superior
and inferior radiopaque margins [3]. To mitigate the risk of potential nerve damage, it is
essential to precisely identify the location of the IAC, particularly during procedures such
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as dental implant placement and extraction of impacted mandibular third molars [4,5].
This becomes even more crucial in cases of ridge atrophy [6]. The segmentation/tracing of
the IAC can be more challenging in certain medical conditions, such as osteoporosis [7,8].
Lower bone density may significantly impede the visibility of the canal, especially in the
mental foramen area. The precise location of the mental foramen can be an anatomical
challenge due to its loop, which also requires clear identification on cross sections [9]. In
this specific anatomical region, the nerve exhibits a propensity to approach the midline in
closer proximity than the mental foramen itself. Moreover, the lack of cortication of the
canal walls may make it difficult to mark its course and detect any changes in its path, as
well as its furcation and additional branches [9–11].

Knowledge of the tools in tomography viewing software that can facilitate the process
of determining the inferior alveolar canal is essential. Currently, the guidelines only include
information on what cross sections the IAC could be assessed on [9]. Still, there are no
additional recommendations on which parameters may facilitate the assessment of IAC
on CBCT images. The segmentation/tracing of the IAC refers to the process of digitally
outlining and delineating the boundaries of the IAC on digital radiographic images.

Cone-beam computed tomography (CBCT) provides high-resolution three-dimensional
(3D) digital radiographic scans, making it an important tool for diagnosis and treatment
planning [12]. CBCT imaging is based on a cone-shaped X-ray beam rotating around the
patient’s head, capturing multiple two-dimensional (2D) images [13]. These images are
then reconstructed into 3D scans [13]. CBCT has shown satisfactory visibility of the IAC on
cross-sectional images, surpassing the capabilities of conventional 2D radiographs [14–16].

CBCT images can be digitally modified to improve the visibility of anatomical struc-
tures. Modifications of the display settings can include slice thickness, sharpness, and
contrast adjustments, among other parameters. Slice thickness refers to the thickness of
each reconstructed image slice in the CBCT scan, with smaller thickness allowing for more
detailed visualization but larger thickness yielding smoother scans [17,18]. Sharpness
refers to the clarity and definition of the scanned structures on a CBCT scan [17]. It is
influenced by factors such as detector resolution and reconstruction algorithms [17]. The
contrast parameter in CBCT is used to quantify the variation in radiodensity or radiopacity
among distinct anatomical features on a CBCT scan [17]. The scan contrast can be adjusted
using windowing techniques [17]. Windowing defines the range of the pixel values that
are visible on display, where a wider window reduces contrast, and a narrower window
increases contrast [17,19].

While the expertise of the dentist is a crucial factor in IAC segmentation, optimizing
CBCT settings can significantly enhance the consistency of the process. The knowledge of
dentists regarding the fundamentals of dental tomography and the utilization of CBCT
remains somewhat uncertain despite its widespread adoption in dentistry [20]. Hence,
this retrospective study aims to bridge this gap by assessing the influence of CBCT basic
view parameters, specifically contrast, slice thickness, and sharpness, on the segmenta-
tion/tracing of the IAC. This study also involves observers with varying levels of radiology
training, typically representing the varying knowledge levels of a dentist using CBCT in
their practice. To the best of our knowledge, this is the first retrospective study that employs
this methodology. The findings from this study can provide practical insights for dentists
using CBCT, in order to optimize their workflow and software settings for more accurate
IAC segmentation during their clinical practice.

2. Materials and Methods

2.1. Data Acquisition

To conduct the study, CBCT scans of 25 patients (12 male and 13 female) aged 18 to 62
years were retrieved from the Poznan University of Medical Sciences database. All scans
were performed between 2020 and 2021 and met the inclusion criteria outlined in Table 1.
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Table 1. Inclusion criteria.

Inclusion Criteria Exclusion Criteria

Patients aged 18 years old and above Patients under 18 years old
Sufficient field of view (FOV) for visualizing

the entire lower jaws
Insufficient FOV for visualizing the entire

lower jaws
Dentulous or partially edentulous in the

molar–premolar region Edentulous in the molar–premolar region

CBCT scans without artifacts CBCT scans with artifacts
Patients with periapical lesion not affecting the

visibility of IAC
Patients with periapical lesion affecting the

visibility of IAC

The scans were acquired using a Cranex 3D CBCT device (Soredex, USA) with an
X-ray tube voltage of 90 kV, an X-ray tube current of 10 mA, and a voxel size of 0.25 mm.
The field of view (FOV) ranged from 600 × 800 mm to 1600 × 1300 mm. The 25 scans were
anonymized and stored in the Digital Imaging and Communications in Medicine (DICOM)
file format. Since the IAC is present bilaterally, a total of 50 IACs were evaluated.

2.2. Evaluation

Romexis 6.2 software (Planmeca oy, Helsinki, Finland) was used to process the scans
and generate 33 cross-sectional images (Figure 1) from each scan for further evaluation.
This software was used as it facilitates the export of the segmented structure as a Standard
Triangle Language (STL) file. Two independent investigators (an oral and maxillofacial ra-
diologist with over ten years of experience and a trainee in oral and maxillofacial radiology
with three years of experience) evaluated the images on an NEC MultiSync EA245WMi-2
display screen (Sharp NEC DisplaySolutions, Tokyo, Japan) under optimal ambient lighting
conditions. The evaluation was repeated twice, with a 10-day interval. The investigators
rated the visibility of the IAC based on a 3-score classification (good, average, and poor), as
shown in Table 2. The Brightness value in Romexis 6.2 software (Planmeca oy, Helsinki,
Finland) was fixed to 1808 by default.

 

Figure 1. Snapshot of 33 cross-sectional images on Romexis 6.2 software (Planmeca oy, Helsinki,
Finland): 0.25 mm thickness, sharpness, and contrast at zero.
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Table 2. Three-score classification of IAC visibility.

Score Description

Good The cortical border of the IAC is well visible and distinguished from the
surrounding structures in the 33 cross-sectional images

Average
The cortical border of the IAC is not visible and distinguished from the
surrounding structures in less than 16 images (half of the images) of the

33 cross-sectional images

Poor The cortical border of the IAC is not visible and distinguished from the
surrounding structures in more than 16 images of 33 cross-sectional images

Slice thicknesses of 0.25 mm, 0.5 mm, and 1 mm were evaluated, with sharpness
and contrast settings set to zero. The software’s default configuration has sharpness and
contrast set at zero, allowing us to test four different combinations. Subsequently, a rigorous
statistical analysis was executed to pinpoint the optimal slice thickness value for achieving
enhanced visibility of the IAC. Following this, the investigators examined the influence of
varying sharpness values (6, 8, and 10) on IAC visibility using the slice thickness value that
yielded the best results. Lastly, the impact of diverse contrast values (400, 800, and 1200)
was assessed using the previously identified optimal combination of slice thickness and
sharpness settings.

2.3. Evaluation of 3D Models

After obtaining the results, the recommended image display parameters value of slice
thickness, sharpness, and contrast were applied on Romexis 6.2 (Planmeca oy, Helsinki,
Finland). Using the IAC tracing option in Romexis 6.2 (Planmeca oy, Helsinki, Finland),
the investigators independently conducted a semi-automated segmentation of the 50 IACs.
This segmentation process was executed on a cross-sectional view with a fixed cylindrical
diameter of 1.5 mm. The resulting segmentation data were then saved as individual STL
files and subsequently exported to Cloud Compare v.2.13.alpha (open-source software
available at http://www.cloudcompare.org/ accessed on 7 April 2023) for further analysis.

Cloud Compare was employed to perform a 3D registration, enabling the overlap and
visualization of the segmented IACs produced by both investigators from the same scan.
The objective of this process was to evaluate the accuracy of the segmentation performed
by investigators with varying levels of expertise while adhering to the recommended
parameters value. This evaluation focused on assessing the level of conformity between
the segmented structures by analyzing volumetric deviations, thereby evaluating the
practicality and effectiveness of the recommended parameter values.

In the initial steps of this assessment, a pre-registration process was carried out using
the 3-point method within Cloud Compare v.2.13.alpha (open-source software available
at http://www.cloudcompare.org/ accessed on 7 April 2023. For each segmented IAC,
three points were strategically placed on each of the two obtained 3D models (STL file) at
corresponding locations, specifically the mandibular foramen, molar, and premolar area.
This step ensured the proper alignment of the 3D models in the spatial domain.

Following this alignment process, the ‘compute cloud/mesh distance’ function in
Cloud Compare v.2.13.alpha (open-source software, http://www.cloudcompare.org/ ac-
cessed on 7 April 2023 was implemented. This function overlapped the two 3D models
and generated numerical results, which included parameters like the mean distance and
maximum distance (Figure 2). The software default setting for the overlap parameter was
set at 100, indicating that the surfaces were configured to have full overlap, equivalent to
100% overlap, in this analysis.
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Figure 2. IAC overlapping and visualization of 3D comparison deviation chromatogram on Cloud
Compare v.2.13.alpha (open-source software, http://www.cloudcompare.org/ accessed on 7 April
2023). The blue color represents the minus direction of deviation, the red color represents the plus
direction of deviation, and the green color represents the average value.

2.4. Statistical Analysis

Statistical analysis was conducted using SPSS 29.0 (SPSS Inc., Chicago, IL, USA). Inter-
rater and intra-rater reliability of the IAC visibility ratings were assessed using Kappa
statistics, both between the two investigators and within each investigator, across the two
evaluation sessions.

The inferential statistics were performed using Pearson’s Chi-square test with a sig-
nificance level of <0.05. To evaluate the degree of conformity between the structures
represented by the volumetric deviations obtained from the segmentation of the IACs, the
mean distance and standard deviation were computed, and the average was calculated.

3. Results

Table 3 presents the results of inter-rater and intra-rater reliability analysis of the oper-
ators for slice thickness, sharpness, and contrast. The findings indicate that the operators
achieved a significant level of reliability for all three parameters. The inter-rater reliability
percentages for slice thickness, sharpness, and contrast are 79%, 69%, and 76%, respectively.
Meanwhile, the intra-rater reliability percentages for the same parameters are 83%, 83%,
and 81%, respectively.

Table 3. The mean of inter-rater and intra-rater reliability for the evaluation of the evaluated parame-
ters. SD, standard deviation.

Inter-Rater Reliability Intra-Rater Reliability

Mean SD Mean SD
Slice thickness 0.790 0.126 0.829 0.084

Sharpness 0.687 0.103 0.834 0.105
Contrast 0.756 0.205 0.810 0.011

Table 4 indicates that the visibility of IAC was most consistently rated as “good” with
a slice thickness of 0.25 mm, as 80% of the 50 IACs were rated as such. This is in comparison
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to 70% and 66% of IACs rated as “good” with slice thicknesses of 0.5 mm and 1 mm,
respectively.

Table 4. The 0.25, 0.5, 1 mm slice thickness evaluation. Sharpness and contrast set at value 0.

Slice
Thickness

Investigator 2 p-Value

Good Average Poor

0.25 mm

Investigator
1

Good 40 1 0
<0.001 *Average 0 8 0

Poor 0 0 1

0.5 mm
Good 35 0 0

<0.001 *Average 2 12 0
Poor 0 0 1

1 mm
Good 33 0 0

<0.001 *Average 3 13 0
Poor 0 0 1

* Chi-square test, significance level (p-value) ≤ 0.05.

Similarly, Table 4 shows that the sharpness value of zero had the highest frequency of
agreement among investigators in rating IAC visibility as “good” at 80%, followed closely
by a sharpness value of 10 at 78% (Table 5). Sharpness values of 6 and 8 also had a high
frequency of agreement at 76% (Table 5). In Table 6, the highest frequency of agreement
among investigators for good visibility of IAC was found at a contrast value of 1200, with
82% of IACs rated as “good”. A contrast value of 400 (Table 6) and 0 (Table 4) also had
80% of IACs rated as “good”, while a contrast value of 800 (Table 6) had 76% of IACs rated
as “good”.

Table 5. The 6, 8, 10 sharpness value evaluation. Slice thickness set at 0.25 mm and contrast set at 0.

Sharpness Investigator 2 p-Value

Good Average Poor

6

Investigator
1

Good 38 2 1
<0.001 *Average 7 0 0

Poor 1 0 1

8
Good 38 2 1

<0.001 *Average 7 0 0
Poor 1 0 1

10
Good 33 0 0

<0.001 *Average 3 13 0
Poor 0 0 1

* Chi-square test, significance level (p-value) ≤ 0.05.

Table 7 presents the findings of the overlap analysis conducted by both investigators,
focusing on the mean distance and standard deviation. The analysis was performed for
each side (left and right) of the included patients. Across all patients’ sides, the aver-
age mean distance and standard deviation values were determined to be 0.295 mm and
0.307 mm, respectively.
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Table 6. The 400, 800, 1200 contrast value evaluation. Slice thickness set at 0.25 mm and sharpness set
at value 0.

Contrast Investigator 2 p-Value

Good Average Poor

400

Investigator
1

Good 40 0 0
<0.001 *Average 1 7 0

Poor 0 1 1

800
Good 38 1 0

<0.001 *Average 2 6 0
Poor 0 0 3

1200
Good 41 0 0

<0.001 *Average 0 7 0
Poor 0 0 2

* Chi-square test, significance level (p-value) ≤ 0.05.

Table 7. Results of the overlapping analysis.

Patient Side Mean Distance Standard Deviation

1
Right 0.342 0.310
Left 0.267 0.291

2
Right 0.273 0.293
Left 0.233 0.248

3
Right 0.268 0.267
Left 0.223 0.243

4
Right 0.310 0.342
Left 0.599 0.745

5
Right 0.323 0.336
Left 0.812 0.851

6
Right 0.255 0.257
Left 0.202 0.229

7
Right 0.225 0.240
Left 0.174 0.209

8
Right 0.212 0.226
Left 0.284 0.320

9
Right 0.389 0.363
Left 0.384 0.353

10
Right 0.348 0.387
Left 0.233 0.253

11
Right 0.198 0.235
Left 0.235 0.245

12
Right 0.236 0.238
Left 0.271 0.266

13
Right 0.463 0.441
Left 0.251 0.270

14
Right 0.278 0.264
Left 0.352 0.386

15
Right 0.313 0.305
Left 0.266 0.251

16
Right 0.412 0.370
Left 0.380 0.334

17
Right 0.329 0.299
Left 0.314 0.346

18
Right 0.209 0.225
Left 0.247 0.263

19
Right 0.291 0.251
Left 0.284 0.253
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Table 7. Cont.

Patient Side Mean Distance Standard Deviation

20
Right 0.262 0.244
Left 0.269 0.327

21
Right 0.301 0.296
Left 0.295 0.333

22
Right 0.189 0.210
Left 0.208 0.240

23
Right 0.174 0.201
Left 0.224 0.241

24
Right 0.221 0.227
Left 0.273 0.279

25
Right 0.420 0.550
Left 0.242 0.246

Average 0.295 0.307

4. Discussion

The interpretation of dental radiography, especially concerning the segmentation
of the IAC, is notably influenced by factors such as the acquisition parameters, image
quality, and experience of the dentist. While the assessment of image quality is subjective
and can vary among individuals, the primary goal is to ensure that the images provide
sufficient information for clinical decision making. In this retrospective study, we aimed
to investigate the impact of several CBCT view parameters, contrast, slice thickness, and
sharpness on the accuracy of IAC segmentation.

Regarding slice thickness, our findings revealed that a slice thickness of 0.25 mm
resulted in the highest frequency of IAC visibility rated as “good” by both investigators.
This suggests that thinner slices enhance the visualization and differentiation of the cortical
border of the IAC from surrounding structures, while a study by Pour et al. evaluated
the effect of slice thickness (0.5 mm, 1 mm, 2 mm) on the visibility of IAC in CBCT
images and concluded that slice thickness has no effect on the visibility of IAC [21]. In
terms of sharpness, our study demonstrated that a sharpness value of zero exhibited the
highest frequencies of agreement among investigators for rating IAC visibility as “good.”
This implies that a moderate level of sharpness contributes to better visualization of the
IAC in CBCT scans. The evaluation of contrast values indicated that a contrast value
of 1200 yielded the highest frequency of agreement among investigators for rating IAC
visibility as “good.” This implies that higher contrast values enhance the visibility of the
IAC in CBCT scans.

A semi-automated segmentation of the IACs was performed to validate the identified
parameters, followed by an overlap analysis. The mean distance to conformity is one of the
metrics that can be used to quantitatively evaluate the overlapping comparison [22]. The
results showed a mean distance of 0.295 ± 0.307, indicating a reasonable level of conformity
between the volumetric deviations of the segmented structures. This validation confirms
the reliability and accuracy of the identified parameters in enhancing IAC segmentation,
irrespective of the evaluator’s experience. Notably, the two investigators involved in the
study had different levels of experience.

When applying these parameters, it is crucial to consider individual patient character-
istics and specific clinical requirements. Factors such as patient age, sex, bone quality, and
anatomical variations should be considered to ensure optimal image interpretation and
clinical decision making. In a study by Miles et al. [23], the effect of age, gender, and loca-
tion on the visibility of IAC was evaluated. The findings indicated that age had an impact
on the visibility of the IAC, but this effect varied by location [23]. The first premolar region,
specifically in the age range of 47–56, exhibited lower visibility compared to individuals
aged over 65 [23]. Gender also played a significant role, with females generally having
lower visibility than males, and the most pronounced difference was observed in the first
premolar area [23].
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Furthermore, other image settings such as field of view (FOV), bit depth, resolution,
and the CBCT device brand should be considered. In a study by Kamburoğlu et al. [24], the
Veraviewepocs 3D model X550 (J Morita Mfg. Corp., Kyoto, Japan) was found to provide
the best image quality compared to the Iluma Ultra Cone-beam CT Scanner (3M Imtec,
Ardmore, OK, USA), Kodak 9000 Extra-oral imaging system (Eastman Kodak Co, Rochester,
NY, USA), and Vatech PanX-Duo3D_Pano/CBCT (Vatech, Seoul, Republic of Korea) [24].
Pour et al. [25] suggested that exporting mandibular CBCT images with a resolution of
0.32 mm and a 12-bit depth would yield good-to-moderate radiographic visibility of the
IAC. Jasa et al. [26] conducted an in vitro study to assess the impact of exposure parameters
and slice thickness on the visibility of clear and unclear IAC. The study revealed that
detecting unclear IACs required higher exposure parameters or processing the images
with thicker slices, whereas clear IACs could be adequately detected using lower exposure
parameters [26].

In recent years, advancements in artificial intelligence (AI) have revolutionized the
fields of oral and maxillofacial radiology. Numerous studies have explored the application
of AI for IAC segmentation on both 2D and 3D radiographs, yielding promising results [27].
The integration of AI technology holds the potential to establish a globally standardized
approach to dental reporting, providing support to dentists, streamlining their workflow,
and ultimately leading to improved patient outcomes [27].

This pioneering retrospective study presents a unique approach, engaging observers
of varying levels of radiology training in contrast to previous research. It demonstrates the
potential utility of recommended parameters within image viewer software for achieving
precise segmentation, regardless of the clinician or specialist’s expertise. Furthermore, this
study introduces an innovative method that involves 3D spatial overlap of the segmented
IAC for validation of recommended parameter values. This method offers promising
avenues for further research in the domain of oral and maxillofacial radiology, particularly
in the context of IAC segmentation. This is especially significant, considering the limited
existing literature in this field.

The presented study has a few limitations. The sample size was relatively small, which
may limit the generalizability of the findings. Future studies would benefit from a more
extensive and diverse patient population to further validate the identified parameters.
Additionally, exploring the impact of using alternative CBCT devices or different image
viewer software on the accuracy of IAC segmentation could provide valuable insights.
Moreover, investigating the influence of other CBCT view parameters, such as field of view
and exposure settings, could contribute to a more comprehensive understanding of their
effects on IAC segmentation accuracy.

Future studies using different viewer software and exploring a range of parameters
can contribute to the development of comprehensive guidelines for working with CBCT im-
ages. These guidelines can potentially assist practitioners in achieving precise evaluations,
ultimately enhancing the diagnostic capabilities of CBCT in dentistry. It is worth noting
that many dentists, despite utilizing CBCT in their practice, often lack comprehensive
training and may not fully benefit from these advanced imaging techniques.

5. Conclusions

In conclusion, our study identified that thinner slice thickness (0.25 mm), zero sharp-
ness value, and higher contrast value (1200) could enhance the visibility and accuracy
of IAC segmentation in CBCT scans. However, individual patient characteristics of the
bone pattern and specific clinical requirements should be considered when applying these
parameters. The process of tracing IAC can be challenging and has no easily available
gold standard.

Therefore, the findings from this study can serve as an initial step in establishing
extended guidelines for IAC segmentation, improving the accuracy of this process on
CBCT images. Further research with a larger sample size and using other software is
recommended to validate and expand these findings.
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Abstract: With the recent diffusion of access to publicly available large language models (LLMs),
common interest in generative artificial-intelligence-based applications for medical purposes has
skyrocketed. The increased use of these models by tech-savvy patients for personal health issues
calls for a scientific evaluation of whether LLMs provide a satisfactory level of accuracy for treatment
decisions. This observational study compares the concordance of treatment recommendations from
the popular LLM ChatGPT 3.5 with those of a multidisciplinary tumor board for breast cancer (MTB).
The study design builds on previous findings by combining an extended input model with patient
profiles reflecting patho- and immunomorphological diversity of primary breast cancer, including
primary metastasis and precancerous tumor stages. Overall concordance between the LLM and
MTB is reached for half of the patient profiles, including precancerous lesions. In the assessment of
invasive breast cancer profiles, the concordance amounts to 58.8%. Nevertheless, as the LLM makes
considerably fraudulent decisions at times, we do not identify the current development status of
publicly available LLMs to be adequate as a support tool for tumor boards. Gynecological oncologists
should familiarize themselves with the capabilities of LLMs in order to understand and utilize their
potential while keeping in mind potential risks and limitations.

Keywords: artificial intelligence; large language models; gynecology; oncology; tumor board

1. Introduction

Medical research increasingly explores the application of artificial intelligence (AI) and
novel machine learning methods that adaptively and automatically process heterogeneous
health data to enable personalized medical treatment [1]. In light of modern health chal-
lenges, including the COVID-19 pandemic, deep and machine learning methods have been
proven to facilitate medical decision making and provide benefits to patients and caregivers
beyond the previously known non-medical areas of application of the technology [2–6].
Particularly for the diagnosis, treatment and follow-up of highly complex and chronic
diseases, as is the case in oncology, there is growing interest in corresponding clinical appli-
cations of individualized precision medicine [7,8]. In view of the demographic development
and rapid aging of the population in central Europe, a continuing increase in oncological
disease is predicted [9]. In addition, methodological innovations such as patient-specific
genomic sequencing are becoming accessible and cost-effective [10]. This leads to an almost
exponential increase in oncology treatment data and medical knowledge through novel
research opportunities [11]. While this treasure trove of oncological health data opens up a
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new dimension of scientific possibilities, it is beyond the capabilities of human cognitive
processing and calls for the application of automated data computing [12,13].

Professionally trained clinical decision support systems (CDSSs), i.e., CancerLinq,
OncoDoc or IBM Watson for Oncology, have proven their capability to process these data in
large-scale retrospective, observational studies [14,15]. Nevertheless, the recent diffusion of
access to public large language models (LLMs) takes the handling of AI-based applications
for medical purposes to a new level. Since generative AI-based LLM ChatGPT was made
available to the general public by OpenAI (San Francisco, CA, USA) in November 2022,
the exploration of the collaboration between human cognition and intelligent machines
has rapidly gained public interest. Swiftly, generative AI and LLMs have made their way
into our daily lives, not stopping at how we manage our own health [16]. After just one
year, questioning of ChatGPT’s about personal health issues has become a normality for
technology-savvy patients.

Initial pilot studies indicate acceptable accuracy of LLMs in clinical decision making
and general medical knowledge throughout the clinical workflow [17]. With regard to
breast cancer care, Rao et al. were able to provide evidence of the application of ChatGPT
for radiology decision making and screening purposes, justifying its responsible use for
radiology services [18]. The available studies argue for the evaluation of further use
cases and greater accuracy before the implementation of LLMs in the clinical treatment
process [18]. With respect to oncological treatment, research is exploring the consistency
of publicly available LLMs and has intensified the discussion about the question whether
AI-assisted decision making will change the way tumor boards are conducted [19–21]. In
gyne-oncology, only two studies have investigated the performance of publicly available
LLMs in breast cancer tumor board decision making [22,23]. While the authors advocate for
the promising potential of LLMs in breast cancer tumor boards and clinical oncology, the
scientific approach to handling the new technology is still in its infancy. Lukac et al. and
Sorin et al. limited their study populations to a small number of randomly selected patient
profiles; used a short input model that does not do justice to the information contained
in the actual tumor board presentation; partially excluded high-complexity cases, i.e.,
primary distant metastasis; or neglected to distinguish between different breast cancer
treatment options [22,23].

This explorative pilot study aims to extend the results reported by Lukac et al. and
Sorin et al. to evaluate the concordance of treatment decisions made by the most prominent
publicly available LLM, ChatGPT 3.5 by Open AI, with those of the multidisciplinary tumor
board (MTB) of a gynecological oncology center in Germany. The study design is therefore
based on patient profiles reflecting the patho- and immunomorphological diversity of
primary breast cancer, including primary metastasis and precancerous tumor stages, and
extends to a detailed and structured input model. In addition, the entire bandwidth of
treatment options for breast cancer, including surgical re-excision, endocrine, chemotherapy,
radiation therapy and genetic testing, is evaluated separately.

2. Patients and Methods

2.1. Patient Profiles

To capture the patho- and immunomorphological diversity of breast cancer in compre-
hensive manner, 20 patient profiles were designed by the head of the investigated gyneco-
logic oncology center in orientation to the current immunohistochemical and molecular
subtypes in accordance with the current breast cancer guidelines of the German Association
of Gynecology and Obstetrics (DGGG) [24]. In addition, a differentiation by nodal status
and postmenopausal status was performed for each subtype (P1–P20, as shown in Table 1).

222



J. Pers. Med. 2023, 13, 1502

Table 1. Generic patient profiles (P1–P20).

Patient Profiles

Postmenopausal PremenopausalImmunohistochemical and
Molecular Subtype Nodal Negative Nodal Positive Nodal Negative Nodal Positive

Luminal A P1 P2 P3 P4

Luminal B P5 P6 P7 P8

Her2 positive P9 P10 P11 P12

Triple negative P13 P14 P15 P16

DCIS P17 P18

DCIS with narrow resection
margin P19

Inflammatory breast cancer P20

Subsequently, the patient profiles were completed to include patient age, ECOG (East-
ern Cooperative Oncology Group Performance Scale), previous illness, previous surgical
treatment, birth history and oncological family history (as shown in Figures 1 and 2). Fur-
ther diagnostic data were designed to the extent of pTNM classification, minimal resection
margin (R0/R1, in mm), histological classification (non-special-type NST, invasive lob-
ular, tubular or mucinous), grading (according to Bloom–Richardson–Elston score [25]),
unilaterality versus bilaterality, and multifocality or -centricity. The data with regard to
immunohistochemical and molecular subtyping were determined to the extent of hor-
monal status (estrogen receptor (ER), 0–100%; progesterone receptor (PR), 0–100%), Her2
status (immunohistology (IHC) or in situ hybridization (ISH) and Ki-67 proliferation index
(0–100%). For data security and compliance reasons, the profiles are fictitious and do not
reflect actual patient cases. Based on this, we notified the university’s ethics committee and
were informed that ethical approval is not required.
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2.2. Extended Input Model

The following extended input model was applied based on the aforementioned data
from each patient profile. The structuring includes an introductory sentence, followed
by basic profile-specific health data and the formulation of an oncological family history.
Furthermore, the current surgical treatment of the tumor is stated, leading to a transition to
detailed data about the lesion’s patho- and immunomorphological characteristics. Lastly,
the specific task (or challenge) is presented in connection with a clarification about the
advisable treatment options (as shown in Figure 3).

 
Figure 3. Extended input model.

Wording was slightly adjusted for patient profiles not previously treated surgically
(P14–P16 and P20) and for cases of ductal carcinoma in situ (DCIS) (P17–P19).

2.3. Model Execution

Prior to model execution, a randomization of the profile sequence was executed
(see File S1). Furthermore, a blinded version of the standardized input model without
reference to the patient profile number was created. Afterwards, model execution was
performed on 21 July 2023 by presenting one profile after another to the publicly available
ChatGPT 3.5 (OpenAI LP, San Francisco, CA, USA). The study design focuses on testing the
ChatGPT 3.5, as it is publicly available at no charge and, thus, primarily used by patients
and healthcare professionals in a medical context at the present time. Correspondingly,
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the blinded version of the input model was translated to German using DeepL AI-based
translation services (DeepL SE, Cologne, Germany), and the predefined patient profiles
were discussed in the same randomized order by the actual multidisciplinary tumor board
(MTB) of the investigated gynecologic oncology center on the same date. MTB participants
were informed about the execution of an experiment without any information about the
study design, and they were given the option to decline participation. Accordingly, they
were instructed to treat patient cases and determine treatment decisions as they would in
the regular course of tumor board decision making. On the specific date, the tumor board
consisted of four specialized gyne-oncologists, two gynecologists, two oncologists, one
human geneticist, one radiation physician, one pathologist and two gynecological residents.
The head of the gynecologic oncology center under study did not participate in the study
due to knowledge of the patient profiles.

2.4. Concordance Assessment

As specified in the input model, recommendations of the LLM and MTB were an-
alyzed with respect to the treatment options of surgical treatment (ST), endocrine treat-
ment (ET), systemic treatment or chemotherapy (CT), radiation therapy (RT) and ge-
netic testing (GT). As such, they were measured in a bivariate manner (treatment option
recommended = yes; not recommended = no). Concordance assessment of LLM and MTB
treatment was performed in terms of descriptive statistical evaluation (in %) for each indi-
vidual patient profile and for each subordinate treatment option separately. As LLMs are
designed to generate a relative formulation, formulation of possible treatment was rated as
recommended treatment.

3. Results

3.1. Treatment Recommendation Frequency

In total, 61 treatment recommendations were proposed by the LLM, and 48 were
proposed by the MTB for the predefined patient profiles. The greatest difference in recom-
mendation frequency results was obtained for GT (as shown in Table 2).

Table 2. Treatment recommendation frequency.

Treatment Option ST ET CT RT GT

Model Execution LLM MTB LLM MTB LLM MTB LLM MTB LLM MTB

Recommendation
frequency 2 3 13 8 13 11 16 15 17 11

ST = surgical treatment; ET = endocrine treatment; CT = chemotherapy; RT = radiation therapy;
GT = genetic testing.

3.2. Concordance Assessment Per Patient Profile

Concordance between LLM and MTB recommendations was registered for half of
the patient profiles (CCTotal = 50.0%; 10 of 20 PP). Overall concordance for invasive breast
cancer patients (CCBreastCancer), excluding DCIS profiles P17 to 19 amounted to 58.8% (10
of 17 PP). Removing GT from the assessment resulted in full concordance (CCTotal_NoGT)
for 68.4% (13 of 19 PP) of all PP and 81.25% (13 of 16 PP) for invasive breast cancer PP
(CCBreastCancer_NoGT). PP 7 had to be excluded from the partial evaluation because the
MTB recommended further testing using Endopredict® (Myriad Service GmbH, Munich,
Germany) to assess the need for chemotherapy for the specific patient profile.

3.3. Concordance Assessment Per Treatment Option

The MTB recommended surgical re-excision (ST) for three, in comparison to two PP in
the case of the LLM. Concordance for ET, CT, RT and GT amounted to
CCET = 75.0% (15 of 20 PP), CCCT = 94.5% (18 of 19 PP), CCRT = 95.0% (19 of 20 PP) and
CCGT = 70.0% (14 of 20 PP) (as shown in Table 3). With regard to CT, PP 7 had to be removed
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from the assessment based on the aforementioned MTB decision on further breast cancer
prognostic testing.

Table 3. Concordance assessment.

PP ST ET CT RT GT CC per PP

Postmenopausal
Luminal A N− 1 yes yes yes yes no no

Postmenopausal
Luminal A N+ 2 yes yes no yes no no

Premenopausal
Luminal A N− 3 yes yes yes yes yes yes

Premenopausal
Luminal A N+ 4 yes yes yes yes yes yes

Postmenopausal
Luminal B Her2− N− 5 yes yes yes yes yes yes

Postmenopausal
Luminal B Her2− N+ 6 yes yes yes yes no no

Premenopausal
Luminal B Her2− N− 7 yes yes n.a. yes no no

Premenopausal
Luminal B Her2+ N+ 8 yes yes yes yes yes yes

Postmenopausal Her2+
ER/PR− N− 9 yes no yes yes no no

Postmenopausal Her2+
ER/PR− N+ 10 yes yes yes yes no no

Premenopausal Her2+
ER/PR− N- 11 yes yes yes yes yes yes

Premenopausal Her2+
ER/PR− N+ 12 yes yes yes yes yes yes

Postmenopausal Triple
Negative N− 13 yes yes yes yes yes yes

Postmenopausal Triple
Negative N+ 14 yes yes yes yes yes yes

Premenopausal Triple
Negative N− 15 yes yes yes yes yes yes

Premenopausal Triple
Negative N+ 16 yes no yes yes yes no

Postmenopausal DCIS,
clear resection margin 17 yes no yes no yes no

Premenopausal DCIS,
clear resection margin 18 yes no yes yes yes no

Postmenopausal DCIS,
narrow resection

margin
19 no no yes yes yes no

Inflammatory Breast
Cancer 20 yes yes yes yes yes yes

CC per
TO

95.0% 75.0% 94.7% 95.0% 70.0% 50.0%

PP = patient profiles; yes = concordance between LLM and MTB; no = no concordance between LLM and MTB;
PP = patient profile; ST = surgical treatment; ET = endocrine treatment; CT = chemotherapy; RT = radiation
therapy; GT = genetic testing; CC per PP = concordance per patient profile; CC per TO = concordance per
treatment option; N+/− = nodal positive or negative; Her2+/− = Her2 positive or negative; n.a. = not applicable.

3.4. Comparative Results of LLM and MTB Treatment Decisions

A direct comparison between the treatment recommendations of the LLM and MTB is
presented in Table 4. Further details regarding qualitative treatment recommendations (i.e.,
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aromatase inhibitor versus tamoxifen treatment in ET or specific chemotherapy regimen)
are included in File S1.

Table 4. Comparative results.

PP
ST ET CT RT GT

LLM MTB LLM MTB LLM MTB LLM MTB LLM MTB

Postmenopausal
Luminal A N− 1 no no yes yes no no yes yes yes no

Postmenopausal
Luminal A N+ 2 no no yes yes yes no yes yes yes no

Premenopausal
Luminal A N− 3 no no yes yes no no yes yes no no

Premenopausal
Luminal A N+ 4 yes yes yes yes no no yes yes no no

Postmenopausal
Luminal B
Her2− N−

5 no no yes yes no no yes yes yes yes

Postmenopausal
Luminal B
Her2− N+

6 no no yes yes yes yes yes yes yes no

Premenopausal
Luminal B
Her2− N−

7 yes yes yes yes yes n.a. yes yes yes no

Premenopausal
Luminal B
Her2+ N+

8 no no yes yes yes yes yes yes yes yes

Postmenopausal
Her2+ ER/PR− N− 9 no no yes no yes yes yes yes yes no

Postmenopausal
Her2+ ER/PR− N+ 10 no no no no yes yes yes yes yes no

Premenopausal
Her2+ ER/PR− N− 11 no no no no yes yes yes yes yes yes

Premenopausal
Her2+ ER/PR− N+ 12 no no no no yes yes yes yes yes yes

Postmenopausal
Triple Negative N− 13 no no no no yes yes yes yes yes yes

Postmenopausal
Triple Negative N+ 14 no no no no yes yes no no yes yes

Premenopausal
Triple Negative N− 15 no no no no yes yes no no yes yes

Premenopausal
Triple Negative N+ 16 no no yes no yes yes no no yes yes

Postmenopausal
DCIS, clear

resection margin
17 no no yes no no no yes no yes yes

Premenopausal
DCIS, clear

resection margin
18 no no yes no no no yes yes yes yes

Postmenopausal
DCIS, narrow

resection margin
19 no yes yes no no no yes yes no no

Inflammatory Breast
Cancer 20 no no no no yes yes no no yes yes

PP = patient profiles; yes = treatment recommended; no = treatment not recommended; PP = patient profile;
ST = surgical treatment; ET = endocrine treatment; CT = chemotherapy; RT = radiation therapy; GT = genetic
testing; LLM = large language model; MTB = multidisciplinary tumor board.
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4. Discussion

4.1. Main Findings

This observational study shows that ChatGPT 3.5, a publicly available LLM, can
provide treatment recommendations for breast cancer patients that are consistent with mul-
tidisciplinary tumor board decision making of a gynecologic oncology center in Germany.
This observation is important, as it adds to previous findings by applying an extended stan-
dardized input model, assessing a broader spectrum of patho- and immunomorphological
breast cancer subtypes, including primary metastatic and precancerous tumor stages, in
a structured manner, in addition to evaluating possible breast cancer treatment options
separately. With CCTotal and CCBreastCancer amounting to 50.0% and 58.8%, respectively, the
general level of concordance observed in this study lies in the middle of that reported in
preceding studies by Lukac et al. and Sorin et al. The authors of these studies showed
that the congruence of the chatbot’s recommendations with those of the specific tumor
board amounted to 70% (Sorin et. al.) and 16.05% (Lukac et al.) [22,23]. Once retrieving
the GT option from assessment, as the necessity of genetic testing has not previously been
measured equivalently by the colleagues, the study provides a total concordance level
that matches the findings of Sorin et al. (CCTotal_NoGT = 68.4%). Furthermore, this level of
accuracy meets the average performance of ChatGPT of 71.8% as measured by Rao et al. in
their first-of-its-kind study that assessed the AI tool’s potential use along the entire clinical
workflow, including diagnostic workup, diagnosis and clinical management [17]. While
Sorin et al. refrained from further distinguishment between treatment options, Lukac et al.
did so without evaluating the concordance between these subgroups. Thus, this study
adds to these previous findings by showing that concordance for individual treatment
options, including ET, CT and RT (CCET = 75.0%, CCCT = 94.5%, CCRT = 95.0%), stands
out considerably. However, compared to a professionally trained CDSS, i.e., Watson for
Oncology, which has been proven to achieve overall concordance of up to 93% for breast
cancer cases, we rate the LLM’s performance as rather low [14,15].

4.2. Further Findings
4.2.1. Garbage in–Garbage Out

By applying an extended input model with detailed patient profiles (see Figures 1–3),
this study demonstrates that the chatbot can only perform to the level of quality of the data it
is fed. As such, it follows the principle of “garbage in–garbage out” for AI-enabled precision
medicine applications [17,26]. While Lukac et al. argue that the chatbot does neglect
neoadjuvant treatment, our extended input model contradicts this finding [23]. Once
explicably asked to consider neoadjuvant treatment, ChatGPT 3.5 successfully identifies
suitable situations for neoadjuvant treatment and provides detailed explanation, even
mentioning a suitable chemotherapy regimen. Furthermore, our colleagues argue that the
LLM does not include current or ongoing studies, which is based on the fact that ChatGPT
3.5 is limited to data published until September 2021. Thus, the LLM is not able to learn
the latest science on oncology issues, so it needs to be trained on the latest standards in
order to not fall back in “garbage out” situations. In the other hand, medical laypersons
will have a hard time recognizing appropriate situations compared to oncology experts. In
order not to fall into corresponding “garbage in–garbage out” situations, professionally
trained CDSSs receive previously filtered high-quality data and literature as input for its
computing process [14,15].

4.2.2. Lack of Consistency in Health Data Use

Although the study design presents an extended input model with a larger amount
of detailed health data to the LLM, we must confirm the finding of our colleagues that
ChatGPT partially fails to successfully and consistently take individual patient information
into account. Thus, Lukac et al. stated that the LLM did not take age into consideration
for systemic treatment in elderly patients [23]. Beyond that, extended input model ap-
plied herein provides the LLM with a detailed patient history on ECOG, previous illness,
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surgical history and birth history. Nevertheless, the chatbot did not apply this important
background information to back up treatment decisions.

In contrast to this, the LLM successfully accessed the majority of the further provided
health data, i.e., age and pre- or postmenopausal status were used to distinguish between
aromatase inhibitor and selective estrogen receptor modulators or ovarian suppression by
GnRH agonists, which confirms the findings of Sorin et al. and Lukac et al. [22,23]. As
the extended input model explicitly asked for a suitable treatment regimen, the chatbot
did provide correct medication (i.e., 2.5 mg letrozole p.o. daily) and treatment duration
for some patient profiles. Novel findings of this study include the surgical treatment and
minimal resection margin being commented on in terms of correctness and sufficiency, the
necessity of re-excision being recognized for R1 situations and bilaterality being identified
with successful distinguishment between left and right side. With regard to immunohis-
tochemical and molecular subtypes, the LLM successfully took hormonal status, grading,
Her2 status and Ki-67 proliferation index into account for treatment planning. Thus, it
identified triple-negative cancer types; distinguished between Her2-positive and -negative
situations, which resulted in the recommendation of targeted therapies (i.e., trastuzumab);
and recognized primary metastatic situations. Furthermore, by providing an oncological
family history for each patient profile, decision making with regard to genetic testing was
tested to a novel extent. While Lukac et al. only acknowledged the LLM’s potential to
recognize the possibility of hereditary risk in a young patient with advanced breast cancer,
this study’s findings expand on this finding by showing its capacity to successfully interpret
oncological family histories. Thus, the chatbot not only identifies a specific profile being
prone to hereditary breast and ovarian cancer (HBOC) but also makes a differentiation
for profiles with colorectal or endometrial disease, drawing a link to Lynch syndrome
(i.e., P16 or P5).

By providing the extended health data to the LLM and explicitly requesting a suit-
able regimen for possible endocrine, radiation and chemotherapy treatment, the chatbot
provided individualized treatment decisions for patient profiles in connection with a struc-
tured and detailed explanation. Furthermore, by confronting the LLM with diverse patient
profiles, including high-complexity cases with primary metastasis, it showed potential to
cover broader patho- and immunomorphological diversity of breast cancer in comparison
to previous studies. Nevertheless, this study points out a lack of consistency in terms of
when and how the LLM used the specific data.

4.2.3. Stepping into the Trip Trap

Another crucial limitation of the LLM becomes evident as it steps into predefined
trip traps, resulting in raw treatment mistakes, which the MTB easily evaded. The chatbot
recommended genetic testing based on a sister-in-law with breast cancer history (P7),
stating the necessity of testing for BRCA 1 and 2 mutations. Furthermore, it neglected
the necessity of re-excision for DCIS with a narrow resection margin of 0.01 mm (P19).
Such fraudulent decisions hold the potential to adversely affect treatment decisions and
negatively impact the patient’s health situation. This confirms a critical challenge of
natural language models in the context of breast cancer decision making. Regarding the
notion of misalignment and hallucination, research recognizes a major challenge for LLMs,
which tend to hallucinate unintended text, limiting their current level of development
for use in real-world scenarios [27]. As the sister-in-law example shows, the stochastic
nature of LLMs can be quickly exploited by misaligning simple designed inputs, resulting
in fraudulent responses [28]. Although the performance of LLMs appears impressive
when assessed superficially, it proves to be prone to misinterpretation and hallucinations
despite being equipped with sufficient information, which limits its application in the
medical context [17]. Even small errors in judgment can lead to significant treatment errors
for breast cancer that pose a negative risk to a patient’s health. The difference between
61 treatment recommendations from the LLM and the 48 from the MTB underlines the
LLM’s over-recommendation tendency, which ultimately may lead to overtreatment and
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lack of individualized treatment decision making, i.e., the chatbot recommended endocrine
treatment for all DCIS profiles (P17-P19), as well as situations with low ER and PR positivity
(P16 and P9), for invasive breast cancer, which are can-do decisions but not necessarily must-
do. As one of the main motives of AI use is based on the adaptive automatic processing of
heterogeneous health data to enable personalized medical treatment decisions, the current
state of publicly available LLMs does not live up to this expectation [1].

4.3. Limitations and Suggestions for the Future

We acknowledge that this manuscript represents a pilot study that explores a novel
scientific approach to the application of publicly available LLM ChatGPT 3.5 in the context
of breast cancer care. Owing to the nature of explorative, small-scale pilot studies, the
current study design includes a considerable number of limitations.

The present study design follows a single-center approach, which tests the LLM’s
performance against the decision making of a singular certified gynecologic oncology
center in Germany. In order to enable the transferability and generalizability of the results,
an extension to a multicenter and -national evaluation would be desirable. As such,
the decisions of the investigated MTB are based on German standards according to the
German Society of Gynecology and Obstetrics guidelines and may differ in an international
comparison. Furthermore, this explorative study contains a limited number of patient
profiles. Coherent to the testing of CDSS accuracy, the evaluation of LLMs should be
extended to large-scale observational studies to allow for the assessment of statistical
significance. This work is limited to testing of ChatGPT version 3.5. Follow-up studies
should extend the study design to a comparability assessment by including the not-yet-
freely available ChatGPT 4 or other LLMs. It remains important to note that due to the
nature of a large language models, this observational study is limited to the qualitative
interpretation of the LLM’s wording and argumentation.

Nevertheless, the study design expands on preceding scientific work through the
application of an extended input model and taking a broader spectrum of the patho- and
immunohistological variety and treatment diversity of breast cancer care into considera-
tion. Beyond that, we consider the scientific evaluation of publicly available LLMs to be
necessary. Due to their diffusion of use in society, they are and will inevitably be used
in medical contexts. At present, the scientific use and clinical application of LLMs are
still in their infancy. This study has added to the specific setting of tumor board decision
making. Nevertheless, the evaluation of further use cases throughout the clinical process
are necessary to identify situations in which LLMs can create the greatest impact and
benefits for patients and healthcare providers. We recognize that the qualities of LLMs will
lead to them occupying a place in clinical medicine, but the optimal area of integration has
yet to be defined.

5. Conclusions

As this pilot study explores the application of LLMs in oncological decision making,
we also confronted the chatbot with the question of why it should, in perspective, be
integrated in breast cancer tumor boards:

Authors: “Please provide a short argumentation of 100 words on why the use of ChatGPT
should, in perspective, be integrated in breast cancer tumor boards?”.
ChatGPT 3.5: “Integrating ChatGPT into breast cancer tumor boards offers invaluable
benefits. Firstly, it ensures access to the latest medical knowledge, keeping oncologists
up-to-date with rapidly evolving treatments and research. Secondly, ChatGPT can assist in
analyzing complex patient data, improving diagnostic accuracy and treatment planning. Its
ability to sift through vast medical literature and patient records swiftly aids in personalized
care. Furthermore, it enhances communication within multidisciplinary teams, streamlining
information sharing and decision-making. Overall, ChatGPT’s integration empowers
healthcare professionals with cutting-edge insights, potentially leading to more informed,
efficient, and effective breast cancer care”.
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Technological advancement and further development of artificial intelligence (AI) and
novel machine learning (ML) methods are projected to disrupt medical care and research
by opening up a new dimension of personalized medical treatment decision making [8,11].
The abundance of health data driven by the rapid increase in medical knowledge and
modern technological possibilities requires research-driven collaboration with human
cognition and automated data processing. Furthermore, the ongoing diffusion of access
and user acceptance of publicly available AI tools, including LLMs like ChatGPT, call for
scientific monitoring of how to handle their application in medical care and research [26,29].
Few international studies have assessed the accuracy of LLMs for oncological decision
making in comparison to MTBs. Although the technological readiness of public LLMs
does not meet the level of accuracy required for individualized care decisions for breast
cancer, previous studies have advocated for their potential as support tools for breast cancer
tumor boards [23,30]. By challenging LLM ChatGPT 3.5 with an extended input model
and detailed health data, this study adds to preceding findings and confirms the partial
concordance of LLM and MTB decision making for a broader spectrum of care situations
for breast cancer. Nevertheless, as the LLM makes considerably fraudulent decisions,
which hold the potential to adversely affect treatment decisions and negatively impact the
patient’s health situation, we do not identify the current development status of publicly
available LLMs to be adequate as support tools for tumor boards. Neither does the chatbot
fulfill its own formulated qualities. In contrast, we reserve this area of high complexity and
individualized treatment planning for oncological experts with, in perspective, increased
support from professionally trained CDSSs [14,15]. Nevertheless, we acknowledge that
LLMs will have a place in clinical medicine. Due to their explanatory power, they are
powerful tools that can support patients along their care journey; inform and educate
patients about their personal cancer diagnosis; facilitate physicians’ access to relevant
information by enhancing their up-to-date knowledge; and automate routine medical
routine, i.e., automation of discharge summaries [17,22,30,31]. Gynecological oncologists
should familiarize themselves with the capabilities of LLMs in order to understand and
utilize their potential while keeping in mind potential risks and limitations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13101502/s1, File S1: Protocols of the Reponses of the LLM
and MTB.
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Abstract: Deep bite is a malocclusion phenotype, defined as the misalignment in the vertical dimen-
sion of teeth and jaws and characterized by excessive overlap of the upper front teeth over the lower
front teeth. Numerous factors, including genetics, environmental factors, and behavioral ones, might
contribute to deep bite. In this study, we discuss the current clinical treatment strategies for deep bite,
summarize the already published findings of genetic analysis associated with this complex pheno-
type, and their constraints. Finally, we propose a comprehensive roadmap to facilitate investigations
for determining the genetic bases of this complex phenotype development. Initially, human deep
bite phenotype, genetics of human deep bite, the prevalence of human deep bite, diagnosis, and
treatment of human deep bite were the search terms for published publications. Here, we discuss
these findings and their limitations and our view on future strategies for studying the genetic bases
of this complex phenotype. New preventative and treatment methods for this widespread dental
issue can be developed with the help of an understanding of the genetic and epigenetic variables
that influence malocclusion. Additionally, malocclusion treatment may benefit from technological
developments like 3D printing and computer-aided design and manufacture (CAD/CAM). These
technologies enable the development of personalized surgical and orthodontic guidelines, enhancing
the accuracy and effectiveness of treatment. Overall, the most significant results for the patient
can only be achieved with a customized treatment plan created by an experienced orthodontic pro-
fessional. To design a plan that meets the patient’s specific requirements and expectations, open
communication between the patient and the orthodontist is essential. Here, we propose to conduct
a genome-wide association study (GWAS), RNAseq analysis, integrating GWAS and expression
quantitative trait loci (eQTL), micro and small RNA, and long noncoding RNA analysis in tissues
associated with deep bite malocclusion in human, and complement it by the same approaches in the
collaborative cross (CC) mouse model which offer a novel platform for identifying genetic factors as
a cause of deep bite in mice, and subsequently can then be translated to humans. An additional direct
outcome of this study is discovering novel genetic elements to advance our knowledge of how this
malocclusion phenotype develops and open the venue for early identification of patients carrying
the susceptible genetic factors so that we can offer early prevention and treatment strategies, a step
towards applying a personalized medicine approach.

Keywords: deep bite; clinical treatment strategies; genetics of deep bite; animal model; genomics
approaches
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1. Introduction

The term “malocclusion”, which refers to the misalignment of upper and lower teeth
and jaws and is a widespread dental condition affecting millions of people worldwide, can
negatively affect oral health, including limiting function such as the ability to eat, speak,
and practice good oral hygiene [1]. Malocclusion can also affect how one looks and lead
to a loss of confidence and self-esteem [1]. Genetic, environmental, and developmental
factors are among malocclusion’s multifactorial and complex causes [2]. Dental research
has made significant strides toward understanding the molecular causes of malocclusion,
with genetics and genomics shedding light on particular genes and signaling pathways that
affect jaw development, tooth eruption, and completion of tooth root development. It is still
difficult to fully comprehend the complex interactions between genetic and environmental
factors that lead to malocclusion [3].

A deep bite is a common orthodontic problem when the upper front teeth overlap the
lower front teeth excessively (Figure 1). This condition can cause various issues, including
difficulty in the function of biting and chewing, speech problems, and even jaw pain.

 

Figure 1. Definition of an overbite as a vertical relationship or the distance between the maxillary
central incisor and the opposing mandibular central incisor. (A) shows a physiological overbite of
2–3 mm, and a deep bite caused when overbite increased by more than 3 mm is shown in (B).

The deep bite can be underlined and defined by different types including skeletal
deep bite, dentoaleolar deep bite, and a combination of skeletal and dentoalveolar deep
bite (Figure 2).

 

 

Figure 2. The different types of deep bite. (A) shows a diagram to illustrate the different types of
deep bites. (B) shows a deep bite with Class I. (C) shows deep bite with Class II, and (D) shows a
deep bite with Class III.

It is known that the type of skeletal deep bite is caused by growth disturbance in the
vertical dimension and is called anterior growth. The interbasal angle between the base
of the maxilla and the base of the mandible decreases due to the anterior rotation of the
mandible during growth. Accordingly, the soft tissue structures develop and adapt to “soft
tissue go with the bone”. The result as a phenotype is “short face syndrome”. The skeletal
deep bite can occur in all angle classes, as shown in Figure 3.
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Figure 3. Schematic representation of the vertical dimension for a physiological overbite (A) and
skeletal deep bite (B). (A) Physiological vertical dimension; harmonious relation between the upper
facial height (UFH 50%) and lower facial height (LFH 50%). (B) A skeletal deep bite because of the
anterior rotation of the mandible. There is a decreased lower facial height (LFH 46%) compared to
the upper face height (UFH 54%).

The deep bite defined by dental malformation is caused in the vertical dimension.
Elongation, teeth that usually erupted too far, or tooth migration result in a significant
vertical overlap of the front teeth. This is usually not associated with profile changes in the
vertical dimension, as shown in Figure 4.

Figure 4. Schematic representation of the vertical dimension for a physiological overbite (A) and
dentoalveolar deep bite (B). (A) Physiological vertical dimension; harmonious relation between the
upper facial height (UFH 50%) and lower facial height (LFH 50%). (B) A dentoalveolar deep bite
because of the elongation of the front teeth; harmonious relation between the upper facial height
(UFH 50%) and lower facial height (LFH 50%).

Finally, the deep bite may be caused by a combination of skeletal and dentoalveolar
dysgnathy. In this case, the patient’s phenotype and profile exhibits a disharmony in
vertical dimension “short face syndrome”, as shown in Figure 5.

A deep bite can be caused by various factors, including genetics, environmental
and behavioral factors [4]. While environmental factors such as thumb sucking, tongue-
thrusting, and prolonged pacifier use can contribute to the development of deep bites, there
is also evidence to suggest that genetics may play a role [4]. Several studies have identified
specific genes that may be associated with the development of deep bite. Many researchers
have identified specific genes that may be associated with the development of deep bite,
such as the IRF6 and BMP4 genes [2,5]. Other studies have suggested that variations in
genes related to bone growth and development, such as the RUNX2 and COL1A1 genes,
may also play a role in the development of deep bite [6]. Overall, while environmental
factors can contribute to the development of deep bite, there is evidence to suggest that
genetics may also play a vital role. Further research is needed to identify specific genes and
genetic pathways that are involved in the development of this malocclusion.

With the aid of animal models, the molecular analysis of malocclusion has been
dramatically enhanced. With the help of these models, researchers can examine how
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environmental and genetic factors affect the development of misaligned teeth and test
various preventative and therapeutic strategies. Because of their small size, simplicity in
breeding, and genetic resemblance to humans, mice are one of the most commonly used
animal models [7]. The collaborative cross (CC) mouse is an effective tool for researching
complex genetic traits like malocclusion. CC mice are bred to produce a genetically diverse
population to increase their genetic variation. This mouse population is a great model
for research on the genetic causes of malocclusion because it has a distinctive and varied
array of genetic variants [7]. The CC mouse population has previously been used to study
complex genetic traits like body weight, and metabolic disorders [8]. The genetic diversity
of CC mice offers a powerful tool to comprehend the genetic components of malocclusion
and enables researchers to pinpoint genetic variants that contribute to complex traits [9,10].

Figure 5. Schematic representation of the vertical dimension for a physiological overbite (A) and
the combination of skeletal and dentoalveolar deep bite (B). (A) Physiological vertical dimension;
harmonious relation between the upper facial height (UFH 50%) and lower facial height (LFH 50%).
(B) A skeletal and dentoalveolar deep bite because of the anterior rotation of the mandible and
elongation of the front teeth. There is a decreased lower facial height (LFH 46%) compared to the
upper face height (UFH 54%).

1.1. Etiology

Epigenetic factors, such as DNA methylation, histone modification, and microRNA
regulation, can also play a role in malocclusion development. Epigenetic changes can
alter gene expression patterns and influence the development of the teeth and jaws. For
example, studies have shown that DNA methylation patterns are altered in patients with
malocclusion, and these changes can affect gene expression patterns involved in jaw
growth and tooth eruption [11]. Additionally, epigenetic changes can be influenced by
environmental factors such as diet, stress, and exposure to toxins. For example, studies
have shown that maternal stress during pregnancy can alter DNA methylation patterns in
the offspring, potentially leading to craniofacial abnormalities and malocclusion [12].

In summary, the genetic causes of malocclusion involve variations in genes and
signaling pathways that are involved in jaw growth, tooth eruption, and dental occlusion.
Epigenetic factors, such as DNA methylation and microRNA regulation, can also play a
role in malocclusion development. Understanding the genetic and epigenetic factors that
contribute to malocclusion can inform the development of new prevention and treatment
strategies for this common dental problem.

There are numerous unnoticed skeletal or dental irregularities under a deep bite
malocclusion. Therefore, it is essential to understand that a deep bite is not a disease, but
rather a clinical expression of an underlying skeletal or dental irregularity. Skeletal or
dental overbites are influenced by environmental, genetic, or a mix of environmental and
genetic variables during development. Skeletal deep bites are typically characterized by
(1) a growing mismatch between the mandibular and maxillary jawbones, (2) convergent
rotation of the jaw bases, and/or (3) a deficient mandibular ramus height. Particularly in the
lower portion of the face, the anterior facial height is frequently tiny in such circumstances.
The incisors’ supraocclusion (overeruption), on the other hand, is indicated by dental deep
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bites [13] or infraocclusion (undereruption) of the molars or a combination of the two [14].
Alterations to the tooth morphologies, early loss of permanent teeth leading to a lingual
collapse of the maxillary or mandibular anterior teeth, mesiodistal breadth of anterior teeth,
and age-related natural deepening of the bite are other factors that might have an impact
on this condition.

Also known as “acquired deep bites”, deep bites are mainly brought on by environ-
mental factors. It is a well-known fact that there is a dynamic equilibrium of forces between
the structures around the teeth, specifically the tongue, the buccinator, the mentalis, and
the orbicularis oris muscles, and the occlusal forces that help in the balanced development
and maintenance of the occlusion. A malocclusion can be caused by any environmental
factor that upsets this dynamic balance; the instances include:

1. A tongue protrusion to the side or an improper tongue position that causes the back
teeth to be infraoccluding;

2. Abrasive tooth wear or erosion of the occlusal surface;
3. The posterior teeth’s anterior tips pointing toward the extraction sites;
4. Continually sucking one’s thumb.

To create a thorough diagnosis and treatment plan for each patient and achieve the best
possible skeletal, dental, and esthetic outcomes, it is necessary to investigate the etiology of
deep bites carefully.

1.2. Deep Bite Prevalence

Increased overbite, or deep bite, is defined as a vertical overlap of the incisors that is
perpendicular to the occlusal plane and is quantified in millimeters (mm), proportionately
(incisor overlap %), or subjectively (lower incisor contact with upper arch or palate).
According to Nielsen (1991), skeletal origins of deep bite (low mandibular plane angle,
decreased lower face height) and dentoalveolar origins (overeruption of the teeth) are the
two most typical categories [15]. According to threshold values used, ethnic group, and
gender, deep bite prevalence ranges from 8.4 to 51.5% and 5.9 to 15.9% of cases of palatal
impingement and non-traumatic tooth contact have been documented [16–18]. Comparing
Class II malocclusion to Class I malocclusion, Lux et al. (2009) found a strong correlation
between the two and higher overbite [18]. A deep bite may be connected to Class II Division
2, which has a prevalence of 5.3% and is a less common malocclusion [19]. According to
the literature, Upadhyay et al. (2008), angle Class I and II Division 2 malocclusions both
exhibit an elevated overbite in conjunction with retrusive incisors [20].

2. Methods

2.1. Literature Search for Research on the Genetics of Deep Bite Development

The 2009 checklist, the GRADE criteria, and the PRISMA recommendations for sys-
tematic meta-analyses and reviews were all followed in this investigation. We searched
for articles that discussed the genetic or epigenetic components of deep bite between the
early 1990s and May 2023. We identified studies that met the following inclusion criteria:
(1) original study or meta-analysis; (2) English-language writing; (3) deep bite in humans;
(4) genetics of deep bite in humans; (5) prevalence of deep bite in humans; and (6) diagnosis
and treatment of deep bite in humans. The following studies were disqualified from con-
sideration: histopathologic, in vitro, or computational studies; transcriptomic or expression
studies without epigenetic/genotyping analysis; reports focusing on other conditions and
malocclusions that were merely discussed; and reports for which we lacked access to the
full text or that were written in a different language. Using the search engines PubMed
(National Library of Medicine) and Google Scholar (https://scholar.google.com, accessed
on 1 April 2023), a study was conducted in the months of April and May 2023 using the
terms “human deep bite”, “genetics of human deep bite”, “prevalence of human deep
bite”, “diagnosis of human deep bite”, and “treatment of human deep bite”. Three authors
independently evaluated the titles and abstracts, evaluated the database search results,
and considered carefully examining the work. Any disagreements were resolved through
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consensus during the title/abstract or complete article review rounds. Each qualifying
study in this systematic review was formally assessed. Separately evaluated by the authors
were the included studies’ quality evaluation and bias risk.

2.2. Clinical Records and Ethical Statement

The demographic and clinical information for the analysis is obtained from the pa-
tient’s orthodontic records. The gender, date of birth, age at treatment initiation, suggested
treatment regimen, including extraction and non-extraction of premolars, and length of ac-
tive orthodontic treatment. To estimate total treatment duration, the starting date is defined
as the date of first molar band placement or first direct bonding, and the completion date is
defined as the date of orthodontic retainer delivery. All clinical photos were obtained after
signing a consent form by the patients to access their data.

2.3. Growth Considerations

There is general agreement that treating patients who are still developing makes
correcting their deep bite easier and more stable than treating individuals who have
stopped growing significantly [21]. It is generally beneficial to treat such patients at a phase
of vigorous mandibular growth since growth tends to increase the vertical relationship
between the maxillae and the mandible. Because condylar growth enables dentoalveolar
growth during the growing period, tooth eruption can be induced in the posterior segments
but repressed in the anterior. Even more so in a patient with a hypodivergent skeletal
arrangement, the posterior occlusion prevents such a movement in adults. If such a tooth
movement is carried out, its stability is really in doubt since it alters the physiology of the
muscles, which raises the risk of recurrence. Fixed or removable appliances are required
to produce the best treatment outcomes in these malocclusions and others where growth
stimulation is no longer viable. Surgical intervention can be necessary for some patients
with severe skeletal deformity.

2.4. Assessment of the Vertical Dimension

Varlık et al. (2013) recommended incisor intrusion as the best treatment for deep
bite correction [22]; however, Mapare et al. [23] and others decided to treat the bulk of
their patients with premolar and molar eruption. Instead of relying solely on anecdotal
evidence, it is crucial to carefully analyze how extrusive or intrusive mechanics may change
a patient’s vertical facial height, which may then have an impact on how the maxilla and
mandible are related anteriorly and posteriorly.

The interocclusal space, often known as the freeway [24], is the space between the
occlusal or incisal surfaces of the mandibular and maxillary teeth when the jaw is in the
physiological rest position. Between 2 and 4 mm is typical. More incredible options for
correction occur when there is a larger-than-normal free space because vertical alveolar
development can be guided. Increasing the lower facial height or face convexity, for
instance, can cure the deep bite and enhance facial esthetics in Class II, Division 2 patients
with a hypodivergent facial pattern, redundant lips, and a flat mandibular plane angle. The
point A–point B discrepancy and an abnormally broad lower face would be accentuated
in most other Class II malocclusions, though, and increasing the vertical dimension is not
necessarily desirable in these cases.

2.5. Soft Tissue Evaluation

For deep bite correction in the modern era, “soft tissue relationships” are a critical
diagnostic tool. When deciding whether to keep, intrude, or extrude the maxillary in-
cisors relative to the upper lip, the clinician must always take the location of the teeth
concerning the position of the lips into consideration. Dynamic smile analysis is becoming
more popular than static grin photography for evaluating malocclusions and creating
effective treatment regimens for their repair as the emphasis on smile esthetics and smile
design grows [25].
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During the initial assessment, the possibility of incisal exposure should be taken into
account in three distinct clinical settings: speaking, a smile, and a relaxed lip position. An
acceptable amount of incisor exposure in a relaxed lip position is between 2 and 4 mm,
including the incisal margins. In a smile, the typical incisor exposure is about two thirds that
of the upper incisor, according to Drummond and Capelli (2016) (Figure 6). Additionally,
they stated that while females may have 1 to 2 mm of gingival exposure, most men’s grins
do not reveal any gingiva on the upper lip. The treatment strategy should concentrate on
either posterior extrusion (if the vertical parameters permit it) or lower incisor intrusion
if this criterion is met and a deep bite is still present (Figure 7). A selective intrusion of
the upper incisors may be necessary if the occlusal plane is “significantly” below the ideal
since this would display excessive gingiva (Figure 8). Since several separate facial muscles
are used during the speech, incisor exposure may provide additional information. The
“interlabial gap” is a crucial additional consideration. It would not be advisable to perform
posterior extrusive mechanics on patients with a significant interlabial gap since this could
make the patient’s appearance worse by widening the interlabial gap. A widening of the
interlabial gap can lead to several additional issues, including the inability to close the lips
naturally and related functional issues. Comparably, posterior extrusive mechanics may be
preferable in people who have redundant upper and lower lips or no interlabial gap but
have an extreme overbite.

 

Figure 6. The different types of smiles. (A) shows an “Average smile”; the typical incisor exposure is
75–100% of the front tooth length. (B) shows a low smile; the typical incisor exposure is less than
75% of the front tooth length. (C) shows a “high smile”; the typical incisor exposure is more than
100% of the front tooth length with the appearance of the gingiva more than 2 mm.

Figure 7. A patient with a deep bite. The treatment was achieved via the intrusion of the mandibular
anterior teeth and simultaneous extrusion of the posterior teeth. (A–E) show before orthodontic
treatment and show an average smile; therefore, the intrusion was performed in the mandibular
anterior teeth. (F–J) show after orthodontic treatment.
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Figure 8. A patient with a deep bite and gummy smile, and the treatment was achieved by the
intrusion of the maxillary anterior teeth. (A–C) show before orthodontic treatment, where the patient
showed a high smile; therefore, the intrusion was performed in the maxillary anterior teeth. As a
result of the intrusion and minimal gingivectomy, the gammy smile was significantly reduced or
eliminated. (D–F) show after orthodontic treatment.

The incisors can also be flared (proclinated), which essentially hides deep bites. Pa-
tients who were born with retroclined incisors (Class II, Division 2 cases), for example,
benefit from it the most. To reduce the danger of root resorption, gingival recession, and
bone dehiscence, quick labial tipping of mandibular incisors must be avoided, particu-
larly on a small symphysis with doubtful labio-lingual breadth of the alveolar bone [26].
Unwanted face esthetics are another possible contraindication.

2.6. Clinical Treatment of Deep Bite

Several studies have been conducted to investigate the genetic factors that contribute
to this malocclusion [27]. The treatment of deep bite depends on various factors, including
the severity and type of malocclusion, the patient’s age and overall health, and other
individualized considerations. The accompanying treatment approach and several etiologic
factors will influence how deep bite correction is administered. However, as was already
noted, there are three different techniques to cure deep bite malocclusions: intrusion of the
upper and lower incisors, extrusion of the upper and lower posterior teeth, or a combination
of the two. Similarly, orthodontic treatment is also the primary treatment for deep bite. The
goal of treatment is to realign the teeth and jaws to achieve a more even bite. This may
involve using braces, clear aligners, or other orthodontic appliances to move the teeth into
the correct position. In more severe cases, orthognathic surgery may be necessary to correct
the underlying skeletal issue causing the deep bite (Figure 9).

Figure 9. Diagram to illustrate the different types of treatment of deep bite; treatment variants of
deep bite depending on age, stage of growth, cause of deep bite, function, and aesthetics.
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According to Proffit and Fields [17], deep bites are the most typical malocclusion in
children and adults. “Overbite more than 5 mm is found in nearly 20% of the children and
13% of the adults”, claims [17]. If the patient does not want repair for aesthetic reasons,
subjects with minor deep bites usually do not need to be corrected. Although it is a
clinical issue, a significant overbite should be treated with orthodontic or orthosurgical
intervention. According to Amarnath et al. [28], a severe overbite can damage the incisive
papilla, wear down the teeth, disrupt mastication, affect the temporomandibular joint,
and wear down the gums. A deep bite can be corrected using a variety of orthodontic
techniques. The etiology of malocclusion and an analysis of the critical variables must be
considered while choosing a treatment plan for each patient, as presented in Figures 10–14.
One of the most significant issues facing orthodontists is the maintenance of a deep bite that
has been repaired. Relapses following treatment are frequent when appropriate etiologic
factor identification is not performed.

Figure 10. A young patient with dentoalveolar deep bite and average smile. The deep bite is
corrected by the intrusion of the front teeth (especially the front of the lower jaw) and the extrusion
of the posterior teeth. (A–E) show the case before orthodontic treatment, while (F–J) show after
orthodontic treatment.

Moreover, technological advancements, such as 3D printing and computer-assisted
design and manufacturing (CAD/CAM), are promising in treating malocclusion. These
technologies for facilitate the creation of customized orthodontic appliances and surgical
guides, thereby improving treatment precision and efficiency. Overall, a personalized
treatment plan developed by a qualified orthodontic specialist is essential for achieving
the best possible outcomes for the patient. Close consideration of the patient’s age, overall
health, and the severity and type of malocclusion is vital for successful treatment. Therefore,
open communication between the patient and the orthodontist is crucial to create a plan
that suits the patient’s unique needs and expectations.
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Figure 11. A young patient with Class II dysgnathy and deep bite (skeletal) in growing age. The
correction of the deep skeletal bite is performed by influencing growth vertical; the condyle is the
growth center. (A–E) show before orthodontic treatment. (D) shows a simulation of mandibular
displacement through growth modification, a change in mandibular position due to growth in all
dimensions. (E–G) show after orthodontic treatment.

Figure 12. An adult patient with Class II dysgnathy and deep bite (skeletal). The correction of
skeletal Class II and the skeletal deep bite is performed via combined orthodontic surgical treatment.
Posterior rotation of the mandible during surgical mandibular advancement caused bite elevation
and lengthening of the lower facial height. (A–C) show orthodontic surgical treatment. (D) shows
the over-positioning of the pre-treatment (black) and post-treatment (red) radiographs due to the
changes in sagittal and vertical dimensions. The surgical rotation of the mandible caused the opening
of the mandibular angle, which led to the lengthening of the lower facial height. (E–G) show after
orthodontic treatment.
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Figure 13. An adult patient with Class II dysgnathy and deep bite (skeletal and dentoalveolar). The
correction of skeletal Class II and skeletal deep bite is performed via intrusion of the frontal teeth and
combined orthodontic surgical treatment. Posterior rotation of the mandible during surgical mandibu-
lar advancement caused bite elevation and lengthening of the lower facial height. (A–C) show before
orthodontic surgical treatment. (D) shows the over-positioning of the pre-treatment (black) and
post-treatment (red) radiographs due to the changes in the sagittal and vertical dimensions. The
surgical rotation of the mandible caused the opening of the mandibular angle, which led to the
lengthening of the lower facial height. (E–G) show after orthodontic treatment.

 

Figure 14. An adult patient with Class II dysgnathy and deep bite (skeletal and dentoalveolar).
The correction of skeletal Class II and the skeletal deep bite is performed via camouflage therapy,
intrusion and protrusion of the frontal teeth, and extraction of the posterior teeth. (A–D) show before
orthodontic surgical treatment, while (E–H) show after orthodontic treatment.
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2.7. Utilizing Mouse Models and Collaborative Cross Populations to Explore Phenotypes of Deep Bite

Dental conditions such as deep bite can significantly impact an individual’s oral health
and quality of life. Exploration the underlying genetic and environmental factors contribut-
ing to these conditions are crucial for developing effective treatment strategies. Mouse has
shown similar vulnerability to numerous infections and environmental factors to humans;
therefore, many restrictions in studies of human populations can be overcome. Mouse
models and collaborative cross populations have emerged as valuable tools for studying
complex traits and uncovering the intricate mechanisms involved in dental disorders. This
article explores how these innovative approaches can shed light on the phenotypes of deep
bite, offering new insights into their etiology and potential therapeutic interventions [29].

Unveiling the Genetic Basis Mouse models provide a powerful platform for inves-
tigating the genetic factors contributing to deep bite. By manipulating specific genes or
introducing mutations, researchers can create mice with dental phenotypes resembling
these conditions. Studying these models allows researchers to identify candidate genes in-
volved in the development and maintenance of dental occlusion. Furthermore, by utilizing
knockout or knock-in mouse models, scientists can investigate the effects of specific genes
and their interactions on dental morphology and occlusal relationships [30].

Standard laboratory mouse lines, however, contain little genetic variety and are there-
fore only marginally relevant for researching diverse genetic manifestations within complex
disorders. To address this, the collaborative cross (CC), genetically varied recombinant
inbred mouse lines were created. The CC mouse lines were developed to be an emerging
technique for precise genomic mapping and characterization of the genetic components
behind complex phenotypes, focusing on critical importance to human health. The require-
ment to simulate genetic diversity led to the formation of the mouse CC genetic reference
population (GRP). This one-of-a-kind GRP source is a large panel of recombinant inbred
(RI) strains created particularly for complex trait research from a genetically heterogeneous
group of eight founder breeds [7,8,10] suggesting a strength over any previously reported
approach [9]. This unique resource is a large panel of recombinant inbred (RI) strains
derived from a genetically diverse set of eight founder strains and designed specifically
for complex trait analysis [9,31], and suggests a power than any reported approaches
earlier [32–35]. The founder strains are genetically varied, comprising three wild generated
strain founders (CAST/Ei, PWK/PhJ, and WSB/EiJ) and five common laboratory strains
(A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ, and NZO/HiLtJ). The substantial genetic varia-
tion of the final group of CC mice is a result of this divergence. An entirely different genetic
mosaic can be created in a new CC line by altering the sequence of the founder strains
during the outbreed mating stage. As a result, each CC line’s genetic component is distinct
and has genotypes that are stable and well known. Compared to previous mouse sets, this
genetic reference population (GRP) contains a comparatively high degree of recombination
events (4.4 million SNPS segregate between the founders), two times the number of genetic
differences present in the normal human population (about 36 million SNPs). The latest
QTL assessment stimulation research utilizing the CC population revealed that the mapped
interval’s resolution may be less than one Mb [32–35].

Collaborative cross (CC) populations offer a unique opportunity to dissect the com-
plex nature of deep bite. The CC is a panel of genetically diverse recombinant inbred
mouse strains derived from multiple founder strains. This diversity enables researchers
to study the effects of genetic variation on phenotypic variability. By phenotyping the
dental occlusion of CC mice, researchers can identify genetic loci associated with deep bite
traits. Subsequent mapping studies can pinpoint specific genomic regions and candidate
genes contributing to the observed phenotypes, facilitating a deeper understanding of the
underlying biology [36]. In addition to genetic factors, environmental influences play a
critical role in developing dental occlusion abnormalities. The CC mouse genetic reference
population (GRP) allows researchers to investigate gene–environment interactions by sub-
jecting CC mice to various environmental conditions or exposures. By manipulating factors
such as diet, mechanical loading, or hormonal influences, researchers can evaluate how
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these external variables interact with genetic predispositions to affect dental occlusion. This
multifaceted approach provides insights into the complex interplay between genetic and
environmental factors in the development of deep bite and open bite.

It should be possible to run GWAS on CC breeds, identify crucial quantitative trait
loci (QTL), discover candidate genes, and define modifiers for the key genes linked to the
Deep bite features while under minimal levels of external sources of variance. It is strongly
believed that the tremendous genetic diversity of the CC mice strains offers a good foundation
for finding novel genetic loci connected to these described traits and going forward with
confirmation utilizing conditional knockout techniques and mouse knockout genes.

The knowledge gained from mouse models and CC populations can be translated
into human dentistry, improving diagnostic and therapeutic strategies. Understanding
the genetic and environmental factors underlying deep bite in mouse models enables
researchers to identify potential biomarkers and genetic risk factors in humans. These
findings may inform the development of targeted interventions and personalized treatment
approaches. Furthermore, mouse models allow for preclinical testing of novel therapeutic
interventions, such as gene therapies or pharmacological treatments, before translating
them into clinical trials [29,37]. The workflow diagram for the generation of system
genetic datasets of cellular, molecular, and clinical trait data combined to analyze various
correlations between malocclusion and deep bite phenotypes in human and mouse models
are represented in Figure 15.

Figure 15. Workflow for creating system genetic databases from the extremely heterogeneous CC
population, whose propensity to develop deep bite malocclusion may vary greatly. To check for deep
bite malocclusion, mice are examined. Then, different associations between malocclusion and deep
bite characteristics are analyzed using a combination of cellular, molecular, and clinical trait data.
The regulatory genomic areas are implicated in phenotypic variation in both in vitro and in vivo
monitored traits and can be identified using QTL mapping by merging SNP genotype data from each
CC lineage. Finding susceptibility genes linked to the emergence of deep bite in humans may be
possible by combining data with later candidate gene association studies in humans.
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3. Discussion

Excessive vertical overlapping of the mandibular incisors by the maxillary incisors in
a centric occlusion is also known as a deep bite or deep overbite. The normal overbite is
between one and three millimeters, and the incisal margins of the lower teeth should touch
the upper teeth’s cingulum or just above it. According to Sreedhar and Baratam (2009), the
average overbite is roughly 30%, or one third, of the mandibular incisors’ clinical crown
height because of variations in their length [38]. Numerous researchers have examined the
skeletal and dental patterns associated with deep bite malocclusion. Deep bite malocclusion
was found to be associated with a decreased gonial angle, a deep curve of the spee, a smaller
posterior maxilla, a downward rotation of the palatal plane, and a more forward position
of the ramus, according to research by Fattahi et al. (2014), who examined the morphologic
factors in deep bite and patients [14]. Alveolar and skeletal dimensions related to overbites
and reduced facial height were evaluated by Beckmann et al. [39]. They hypothesized that
a deeper bite was associated with decreased lower facial height, bigger anterior alveolar
and basal regions, and retroinclination of the maxillary incisors [39]. In their 2004 study,
Bydass et al. examined how overbite and overjet were affected by the depth of the spee
curve. Because of the lower anterior teeth that protruded, there was an increase in overbite
in the deep curve of the spee [40]. According to Ceylan and Eroz (2001), an overbite can
change how the mandible and maxilla look and is linked to a smaller gonial angle [41].
In participants with a deep bite and a normal overbite, Al-Zubaidi and Obaidi (2006)
measured the lower facial height (LFH) [42]. They discovered no variations in the LFH,
maxillary and mandibular anterior alveolar, and basal height between the two groups.
El-Dawlatly et al. (2012) assessed skeletal and dental parameters in patients with deep
bite malocclusion. They demonstrated that deep bite has a multi-factorial etiology, with
the exaggerated curve of spee and a decreased gonial angle being the main contributing
factors [43]. Naumann et al. (2000) investigated the vertical elements of overbite alteration
in a longitudinal study. Their study revealed that skeletal elements had a more significant
impact on overbite modification than dental elements and that the mandible had a more
significant impact on overbite modification than the maxilla [44].

According to earlier research, the maxillary dentoalveolar region is where a deep bite
and a typical bite vary. Dentoalveolar morphology of the upper and lower jaws, according
to Betzenberger et al. [45], was the cause of overbite alterations. This study aims to identify
the most common dental and skeletal contributing variables to deep bite malocclusion
and the effects of skeletal and dentoalveolar characteristics on deep bite malocclusion.
Undoubtedly, practitioners are better equipped to provide the most effective care when
fully aware of the dental and skeletal causes of deep bite malocclusion [45].

To enable any future reconstructive dental surgery, reduce increased tooth wear, and
lessen tissue stress from tooth contact, treatment of deep bite malocclusion is advised [46].
When malocclusion returns years after the conclusion of treatment, patients may request
a second opinion or start to doubt the value of their previous therapy. Thus, stability
over the long run appears to be more crucial than the actual outcome. Even in cases that
have received the best care possible, relapse—a dentoalveolar and skeletal change that
occurs after orthodontic treatment and returns the mouth to its original malocclusion—is
frequently seen [47]. These alterations are attributed to natural restoration of force home-
ostasis [17], periodontal remodeling [48], growth, or normal/abnormal development (Iseri
and Solow (1996)). Some investigators (Al Yami et al. (1999)) found a constant relapse of all
malocclusion characteristics and the loss of around one third of the orthodontic treatment
outcome over a ten-year period of follow-up [49]. Thus, one of orthodontics’ greatest
challenges is maintaining the stability of the orthodontic outcome.

Dental deep bite cases are said to have relapsed if their overbite increases after therapy
is complete. Deep bite malocclusions are said to be prone to relapse in a number of
writers [50]. A sample with a deep bite and retroclined incisors was evaluated by Lapatki
et al. (2004), who discovered 20% vertical relapse on average two years after treatment.
In research examining samples with different malocclusions, a number of conclusions
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involving deep bite relapse are documented [51]. A total of 21 out of 31 cases in which the
spee curve in a Class II Division 1 sample was examined showed a steady relapse over
the years or decades [52]. In a similar vein, a Class II Division 2 sample from Canut and
Arias (1999) discovered a positive connection between years out of retention and overbite
relapse [53]. Despite using removable retention for a year, 80% of patients with short facial
types experienced a rise in overbite 2 years after treatment was finished [54].

Growth [55], function [56], and incisor overeruption [57] are some of the factors that
might contribute to the formation of a deep bite and may also do so in the case of a relapse.
Pre-treatment severity of malocclusion and relapse were not significantly correlated, and
mandibular intercanine width, overbite, overjet, mandibular incisor irregularity, or arch
length were not able to predict relapse, according to Preston et al. [58]. No matter the
method of treatment, the authors discovered a much higher prevalence of relapse in
patients whose dentitions had not fully leveled at the end of the procedure. Different
relapse rates regardless of the method of treatment were not demonstrated by a number
of authors [58]. An overbite relapse was linked in one research to mandibular incisors
that protruded after orthodontic treatment. It is currently not possible to anticipate an
individual’s risk of relapse following deep bite therapy because there is neither a systematic
review of deep bite retention, stability, or relapse, nor is there any way to determine if a
person would experience either.

A significant overbite is one of the issues that orthodontists address the most commonly.
According to Sonnesen and Svensson [59], deep bite has been linked to aberrant mandibular
function, TMJ issues, and may harm mandibular development. Horiuchi et al. [60] have
identified a similar association. Because of this, correcting a deep bite is frequently a crucial
part of orthodontic care. It is commonly acknowledged that correcting a deep bite on
a patient who is still growing is easier and more stable than trying to do it on someone
who has stopped growing significantly [61]. Invasion of the occlusal highway and the
correction’s opposition to the robust, mature jaw musculature, which is less adaptable to
elongation, have both been identified as causes for the greater relapse potential in adults [62].
Additionally, any tooth movement affects the functional equilibrium that is established
during growth and maturity [63]. Through the process of growth and development, the
skeletodental and soft-tissue components structurally adapt to one another to create a
functionally balanced condition [64]. A shift in the mandibular muscular balance takes
place because widening the bite is typically performed via protrusion of posterior teeth [13].
If the correction is to stay stable, either the musculature must adjust in some way to its new
functional resting length or the bone arrangement must alter. There are various places in
the mandible that have been proven to be able to respond to environmental challenges; it is
possible that compensatory development will occur in these sites.

After receiving orthodontic treatment for a moderate deep bite, there was little evi-
dence of vertical relapse 12 years later. If the incisor overlap increased by more than 50%
during the follow-up, it was considered a relapse. At long-term follow-up, 90% of the
patients displayed normal vertical relations, while 10% of them displayed relapse with a
modest median increase of 6.7%. The prevalence and severity of deep bite relapse were
relatively low and clinically negligible in instances with mild dentoalveolar deep bite that
had undergone effective treatment, retention by fixed retainers, and a temporary removable
upper plate.

When facial types were evaluated, a recent study indicated that individuals with
high angles had a decreased propensity to relapse than patients with normal or low
angles [65]. The relatively lengthy treatment period suggests that the majority of the
periodontal remodeling [66] had already occurred at the time of debonding, and it is not
anticipated that it would have significantly contributed to the relapse. Treatment options
include fixed appliances with or without extraction, removable appliances with or without
extractions, and in more severe cases, maxillofacial surgery to treat the deep bite [67].
There have been numerous therapeutic approaches and combinations employed, including
maxillofacial surgery, as presented in Figures 12 and 13. There are three possible ways to
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level the arch/curve of spee and treat deep bite malocclusion with orthodontics: (1) lower
and/or upper incisor intrusion [68]; (2) labial inclination of the incisors (pseudo-intrusion);
and (3) extrusion of posterior teeth possibly associated with a clockwise rotation of the
mandible, which would increase lower face height [47]. According to Bernstein et al. [52],
this hypothetical clockwise rotation does not always appear to take place. The available
literature cannot be used to draw any conclusions about the efficacy of treating Class II
Division 2 malocclusion in children [69]. Different treatment approaches and combinations
were used to stabilize deep bites.

The development of skeletal structures is somewhat influenced by the environment
and partially by genetics, as this article has shown. It is therefore impossible to discount
the significance of the hereditary foundation of malocclusions. The practice of genetically
supported orthodontics has advanced significantly. However, because most malocclusions
and dental malformations are polygenic, it is very difficult to identify the hereditary
basis of these conditions. The mapping of inherited conditions pertaining to dentofacial
development has been possible because to the information provided by the human genome
project. To accurately identify all the unique genes responsible for each type of skeletal
diversity, additional genetic research is necessary. A genetic correction of genetically
regulated abnormalities and malocclusions may be possible in the near future due to the
field’s rapid advancement.
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Abstract: This review examines a prevalent condition with multifaceted etiology encompassing
genetic, environmental, and oral behavioral factors. It stands as a significant ailment impacting oral
functionality, aesthetics, and quality of life. Longitudinal studies indicate that malocclusion in pri-
mary dentition may progress to permanent malocclusion. Recognizing and managing malocclusion
in primary dentition is gaining prominence. The World Health Organization ranks malocclusions as
the third most widespread oral health issue globally. Angle’s classification system is widely used to
categorize malocclusions, with Class I occlusion considered the norm. However, its prevalence varies
across populations due to genetic and examination disparities. Genetic factors, including variants in
genes like MSX1, PAX9, and AXIN2, have been associated with an increased risk of Class I occlusion.
This review aims to provide a comprehensive overview of clinical strategies for managing Class I
occlusion and consolidate genetic insights from both human and murine populations. Additionally,
genomic relationships among craniofacial genes will be assessed in individuals with Class I occlusion,
along with a murine model, shedding light on phenotype–genotype associations of clinical relevance.
The prevalence of Class I occlusion, its impact, and treatment approaches will be discussed, emphasiz-
ing the importance of early intervention. Additionally, the role of RNA alterations in skeletal Class I
occlusion will be explored, focusing on variations in expression or structure that influence craniofacial
development. Mouse models will be highlighted as crucial tools for investigating mandible size and
prognathism and conducting QTL analysis to gain deeper genetic insights. This review amalgamates
cellular, molecular, and clinical trait data to unravel correlations between malocclusion and Class
I phenotypes.

Keywords: Class I occlusion (CIO); prevalence; quantitative trait loci (QTL) mapping; genome-wide
association study (GWAS); epigenetics-wide association study (EWAS); micro and small RNA analysis

1. Introduction

Malocclusion is an atypical arrangement of teeth or a relationship between dental
arches that falls outside the normal range [1]. Malocclusion has a complex etiology that
includes genetic, environmental, and hazardous oral behaviors [2]. Malocclusion is a
complicated facial skeleton developmental condition affecting the jaws, tongue, and face
muscles [3] and stands as one of the three primary illnesses that impair human oral function-
ality, aesthetics, social interactions, and health-related quality of life [4,5]. Prior longitudinal
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research has shown that primary dentition malocclusion may lead to permanent dental
malocclusion [6,7]. Malocclusion, if left untreated, can progress, ranging from moderate to
severe, with variable effects on aesthetics and functionality [8]. Research centered on the
early identification and management of malocclusion during primary dentition is becoming
increasingly prevalent.

According to the World Health Organization, malocclusions are the third most
widespread oral health issue, trailing behind dental caries and periodontal diseases [9].
Skeletal abnormalities and malocclusions are diverse disorders that afflict people all over
the globe, impairing aesthetics and language function and reducing quality of life [10]. In
1899, Angle established his categorization of occlusions based on the relationship between
the buccal groove of the mandibular first permanent molar and the mesiobuccal cusp of
the maxillary first permanent molar. Angle Class I occlusion (CIO) is considered the ideal
occlusion and is an orthodontic treatment goal for sagittal occlusal anomalies, as shown
in Figure 1. This classification is considered one of the most used methods for identifying
malpositions of molar relationships [11]. This prevalence varies widely between different
populations and ethnicities and is clinically heterogeneous. This variation is likely due
to genetic and examination variations in different studies [12,13]. Class I prevalence is
considered the most frequent occlusion class globally, ranging from 34.9% to 93.6% in
different populations [14–17]. Like any other malocclusion, Class I occlusions have compli-
cated causes, which are frequently linked to environmental, genetic, and social issues [18].
There is a wide range of published primary research data and reports on Class I occlusion
prevalence; the reason for this may be differences in ethnic groups, age groups, registration
procedures, and classifications of malocclusions [19].

 
Figure 1. A biometric photo and images of a patient with Class I. In a Class I molar relationship,
the mesiobuccal cusp of the maxillary first permanent molar occludes with the buccal groove of the
mandibular first molar (A). In this definition, the malposition of the teeth, except for the first molars,
is not included. (B–D) show clinical examples, where (B) shows extraoral, (C) cephalometric, and
(D1–D4) intraoral for dental and skeletal Class I without dentoalveolar malposition of the teeth in
both jaws.

The genetics and epigenetics of this condition have been the subject of numerous
studies in recent years. Research has suggested that Class I occlusion has a complex etiology,
with genetic and environmental factors playing a role [20]. Studies have identified several
genetic variants associated with an increased occurrence of Class I occlusion, including
those in genes involved in craniofacial development such as MSX1, PAX9, and AXIN2 [21].
Additionally, studies have also shown that epigenetic changes, such as DNA methylation
and histone modifications, can also play a role in the development of Class I occlusion by
affecting the expression of genes involved in craniofacial development [22]. Several genetic
variants have been identified as being associated with an increased risk of Class I occlusion.
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These include single nucleotide polymorphisms (SNPs) in genes involved in craniofacial
development. One of them is MSX1, a gene that codes for a transcription factor that plays
a role in developing the craniofacial skeleton and teeth. Studies have found that SNPs in
MSX1 are associated with an increased risk of Class I occlusion [23]. EDA (ectodysplasin A)
and XEDAR (X-linked ectodermal dysplasia receptor gene) are suggested to be associated
with Class I dental-crowding patients [23]. PAX9 also codes for a transcription factor and is
involved in the development of the craniofacial skeleton and teeth. Studies have found that
SNPs in PAX9 are associated with an increased risk of Class I occlusion and other dental
anomalies, such as hypodontia [24]. The AXIN2 gene regulates the Wnt signaling pathway,
which is essential for craniofacial development. Studies have found that SNPs in AXIN2
are associated with an increased risk of Class I occlusion [24].

Other genes that have been identified as associated with Class I occlusion include ES-
RRB [25], FGF3 [26], FGF4 [27], FGF9 [27], GREM2 [28], IRF6 [29], JAG1 [29], LHX8 [30], and
TWIST1 [31]. It’s important to note that most studies on this topic have been conducted on
specific populations; the results may not be generalizable to other populations. Additional
investigation is required to comprehend the genetic basis of Class I occlusion and how it
may vary among different populations.

The primary objective of this review is to provide an overview of the various clinical
strategies employed to manage these intricate phenotypes. Additionally, we aim to compile
and condense the existing body of knowledge concerning the genetic aspects of Class I
occlusion (CIO) in both human and mouse populations.

The report aims to assess genomic relationships among putative craniofacial genes
among individuals with Class I occlusion in combination with a murine model. The study
characterizes craniofacial skeletal phenotypes in patients with Class I occlusion and gener-
ates genetic data on craniofacial genes/loci to identify phenotype–genotype associations
of clinical relevance. Several research findings have suggested anterior–posterior and
vertical variance in individuals exhibiting Class I occlusion and a certain type of skeletal
malocclusion. Prospective research ought to investigate soft-tissue variances to learn more
about the genetic basis of skeletal and soft-tissue anomalies in individuals with Class I
occlusion. Assessing the genotype–phenotype correlations will help us better comprehend
the biological control of postnatal facial development and will guide therapeutic practice
to increase the effectiveness of therapy for individuals with occlusion. In addition, we
reviewed studies using a mouse model to examine the genetic foundation of mandible
dimensions and prognathism.

2. Literature Search

We conducted a comprehensive review of peer-reviewed articles in the PubMed and
Google Scholar search engines, using the terms “human and mice Class I occlusion”,
“genetics of human and mice Class I occlusion”, “QTL mapping and gene associated with
human and mice Class I occlusion”, “prevalence of Class I occlusion”, and “treatment of
Class I occlusion”.

The literature search was performed between January and April 2023 in the PubMed
and Google Scholar search engines, and original articles indexed from early 1990 to January
2023 defining molecular characteristics of skeletal deformities and occlusions were searched
for and selected. We found suitable papers based on the inclusion criteria listed below:
(1) original research or systematic review, (2) written in English, (3) human Class I occlusion,
(4) genetics of human Class I occlusion, (5) QTL analysis and gene linkage with Class
I occlusion in humans, and (6) prevalence of Class I occlusion. The exclusion criteria
were as follows: (1) transcriptomic or expression analysis without epigenetic/genotyping
analysis, (2) articles focused on other diseases in which occlusions were merely mentioned,
and (3) articles whose full-text versions were not available to us or that were written in
other languages.
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Three researchers separately assessed the search record. They reviewed the titles
and abstracts and performed a thorough examination of the articles. Any disagreements
were addressed by consensus by evaluating either the title/abstract review or the entire
manuscript. This method included official reviews of all qualified studies. The selected
studies’ quality and possibility of bias risk were appraised alone by the contributors.
In cases where disagreements arose among the researchers regarding the inclusion or
exclusion of a particular manuscript, a consensus-based approach was employed. The
process involved open discussions among the researchers to evaluate the manuscript in
question. Any differences in opinion were thoroughly examined, and the researchers
worked collaboratively to reach a consensus decision. This consensus-building process was
applied to both the title/abstract review phase and the evaluation of the entire manuscript.
To maintain transparency and rigor in our methodology, all qualified studies underwent
formal reviews, and the selected studies’ quality and potential risk of bias were assessed
independently by each contributing researcher. This collaborative and systematic approach
ensured that only the most relevant and high-quality studies were included in our review.

3. Prevalence of Class I Occlusion

The frequency of Class I occlusion varies by country, gender, and age group. Several
researchers have previously reported the incidence of occlusion in Saudi people [32–34].
The current study was motivated by little documented information on the prevalence of
occlusion features within different cohorts. As a result, having data on occlusion is critical
for estimating the total need for therapy. Shaw et al. developed the Index of Treatment
Need (IOTN) in the United Kingdom, and due to its straightforwardness and practical-
ity [35], it is broadly acknowledged and regarded as a technique for assessing therapy
needs [36–38]. Various researchers in various countries have broadly validated the IOTN
index’s legitimacy and consistency [35,39–41]. Occlusion epidemiological studies not only
aid orthodontic therapy strategy but also provide a genuine investigation avenue for identi-
fying environmental and inherited factors that contribute to the genesis of occlusion [42]. In
addition, such investigations promise to help with understanding the necessary resources
and preventative measures, as well as establishing appropriate healthcare programs. The
current study assessed the incidence of occlusion and orthodontic therapy requirements.

The illness burden of occlusion among preschoolers varies significantly worldwide,
with incidence rates varying from 26.0% in India [19] to 87.0% in Brazil [43]. Several
provinces and cities across mainland China have conducted epidemiological studies on
primary dentition occlusion. The Chinese Stomatological Association (CSA) conducted the
most recent and most thorough investigation in Chinese children more than two decades
ago, revealing a malocclusion rate of 51.84% in Chinese children [44]. Nonetheless, the poll
took place in merely 12 regions throughout China. Per our understanding, there is a scarcity
of detailed and crucial data about the prevalence of occlusion in deciduous dentition. The
current study aims to raise awareness among policymakers and healthcare practitioners on
the epidemiological and medical characteristics of occlusion, setting the basis for efficient
occlusion avoidance and management in initial dentition.

4. Clinical Outcomes of the Phenotype and Clinical Records

The demographic and medical data for the study were obtained from the patient’s
orthodontic records, including gender; date of birth; age at treatment initiation; suggested
treatment regimen, including extraction and non-extraction of premolars; and length of
active orthodontic treatment. To calculate total therapy duration, the starting date was
defined as the date of the first molar band placement or first direct bonding, and the
completion date was defined as the date of orthodontic retainer delivery.
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5. Dental Cast Analysis

5.1. Mandibular Crowding Assessment

The quantity of mandibular crowding is computed by subtracting the arch perimeter
(circumference measured from the mesial of one permanent first molar to its antimere) from
the total of the mesiodistal widths of all permanent mandibular teeth except molars [45].

5.2. Occlusal Index Computation

The occlusal index is determined using the weighted Peer Assessment Rating (PAR
index) established by Ahmad et al. [46], which involves the assessment of five occlusal
aspects (posterior occlusion, overjet, overbite, midline, and maxillary tooth displacements)
with well-defined measurement criteria (Table 1). The PAR index calculation 30 scores were
recorded as follows:

1. Posterior Occlusion

In the original PAR index, posterior occlusion is defined as the area between the contact
spot between the canine tooth’s rear and the first permanent molar’s front. The posterior
dental link is scored in three spatial planes: anteroposterior, vertical, and transverse
deviations, as shown in Table 1. The results are added together and then doubled. Each
posterior segment, whether on the right or left side, is captured separately.

2. Overjet

Positive or negative overjet is the horizontal relationship or the distance between the
most protruding maxillary central incisor and the opposing mandibular central incisor.
Throughout this measurement, the scale is aligned with the occlusal level and radially
aligned with the arch axis. The overjet amount was translated to a value via Table 1, after
which it was multiplied by 5.

3. Overbite

Overbite is measured in millimeters as a vertical relationship or the distance between
the maxillary central incisor and the opposing mandibular central incisor or the degree of
open bite, using the tooth with the most significant overlap as a reference. The score was
obtained from Table 1, after which it was multiplied by 3.

4. Midline

The score from Table 1 was used to determine the discrepancy of the maxillary midline
with the lower central incisors, and it was then multiplied by 3.

5. Maxillary Tooth Displacement

Only in the maxillary anterior region are movements like crowding, spacing, and
impacted teeth noted. These occlusal characteristics are noted using the shortest distance
between contact points of neighboring teeth parallel to the occlusal plane. The criteria
listed in Table 1 are used to convert these measurements into scores, which are then added.
When less than 4 mm of space is available for a tooth, it is deemed impacted.

The term “Initial PAR” (PARi) was assigned to the PAR index when calculated from
the pre-treatment impressions. Conversely, the term “Final PAR” (PARf) was used when
the index was computed based on the post-treatment impressions. The PAR score was
calculated by assigning marks to the dental relationships that are intra-arch (such as
crowding) and inter-arch (such as overbite, overjet, crossbite, and midline), as well as by
using an ordinal scale with an average value of 0. The more significant the value achieved
with these indicators, the more serious the malocclusion. Every measurement within the
primary and last castings was measured utilizing an electronic instrument.
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Table 1. Criteria applied to score each component of the Peer Assessment Rating (PAR index).

Occlusal
Relationships

Discrepancy Score Weight

Anteroposterior

Good interdigitation—Class I, II, or III 0

2

Posterior
Occlusion

Less than half of premolar width 1

Half of premolar width 2

Vertical
No discrepancy in intercuspation 0

2
Posterior open bite on at least two teeth greater than 2 mm 1

Transverse

No crossbite 0

2

Crossbite tendency 1

Single tooth in crossbite 2

More than one tooth in crossbite 3

More than one tooth in scissor bite 4

Positive

0–3 mm 0

5

Overtjet

3.1–5 mm 1

5.1–7 mm 2

7.1–9 mm 3

Greater than 9 mm 4

Negative

No discrepancy 0

5

One or more teeth edgetoedge 1

One single tooth in crossbite 2

Two teeth in crossbite 3

More than two teeth in crossbite 4

Negative

No open bite 0

3

Overbite

Open bite less than and equal to 1 mm 1

Open bite 1.1–2 mm 2

Open bite 2.1–3 mm 3

Open bite greater than or equal to 4 mm 4

Positive

Less than or equal to 1/3 coverage of lower incisor 0

3
Greater than 1/3 but less than 2/3 coverage of lower incisor 1

Greater than 2/3 coverage of lower incisor 2

Greater than or equal to full coverage of lower incisor 3

Crowding

0–1 mm displacement 0

1 Displacement

1.1–2 mm displacement 1

2.1–4 mm displacement 2

Spacing Impaction

4.1–8 mm displacement 3

Greater than 8 mm 4

Impacted teeth 5

Midline

Coincident and up to 1/4 lower incisor width 0

3Deviated 1/4 to 1/2 lower incisor width 1

Deviated more than 1/2 lower incisor width 2
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5.3. Assessing Changes in Occlusal Discrepancy

By dividing PARf values by PARi values, the occlusal discrepancy changes brought
about by each treatment regimen were computed (PARi—PARF). The index’s numerical
decline accounted for occlusal alterations specifically caused by the treatment plan [47,48].
Additionally, the proportion of PAR decrease during therapy (PcPAR) was measured to
confirm the degree of recovery compared to the original degree of occlusion [47,48]. The
mathematical formula shown below was used to calculate this:

PcPAR = (PARi − PARf)/PARi* 100

5.4. Treatment Efficiency (TE) Index

The highest variation in the occlusal index obtained during the shortest duration
of treatment is considered efficient. The subsequent equation, where the denominator
represents the overall treatment duration, was used to compute this [49].

TE = PcPAR/TIME

5.5. Treatment for Class I Occlusion

Since patients often have a favorable soft-tissue environment and harmonious skeletal
features, except in bimaxillary cases, Class I occlusions are treated to correct dentoalveolar
malpositions of the teeth. Although these dental issues are not specific to Class I occlusion
and are observed in other malocclusions, they are described in this study. These dental
issues include gaps, tooth malposition (rotation, infraocclusion, supraocclusion, tipping),
crowding, impacted teeth, ectopic teeth, crossbites, deep bites, and open bites, as presented
in Figure 2. Because the problem is purely dentoalveolar and not skeletal, the treatment
will also be dentoalveolar with different devised strategies, as presented in Figures 3–9.

Figure 2. Schematic representation of the possible occurrence of Class I occlusion with or without
dentoalveolar malposition of the teeth in all dimensions (sagittal, vertical, and transversal).
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Figure 3. Schematic representation of the treatment options under consideration of the dentofacial
aesthetics and function.

Figure 4. Biometric photo and images of a patient with a Class I occlusion with a transverse problem
in the maxilla on the right side (crossbite). The treatment was carried out by transverse up righting of
the teeth. (A–C) are before treatment, and (D–F) are after treatment.
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Figure 5. Biometric photo and images of a patient with a Class I occlusion with a vertical problem
(deep bite), crowding, and teeth malposition. (A–C) are before treatment, and (D–F) are after treat-
ment.

 
Figure 6. A Abiometric photo and images of a patient with a Class I occlusion with other malpositions
of the teeth in the three dimensions: transverse (lateral crossbite), sagittal (increased overjet), vertical
(open bite), and crowding. The treatment was performed with a fixed appliance; the front teeth were
extruded. (A–C) show before treatment, and (D–F) are after treatment.
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Figure 7. A biometric photo and images of a patient with a Class I occlusion with a dentoalveolar
malposition of the teeth and crowding. The treatment was carried out with a fixed appliance. The
space was created by approximal enamel reduction. (A–C) show before treatment, and (D–F) are
after treatment.

 
Figure 8. A biometric photo and images of a patient with a Class I occlusion with a sagittal malposition
of the frontal teeth (frontal crossbite), crowding, and other teeth malpositions. The frontal crossbite
was corrected by protrusion of the upper incisors. (A–C) show the case before treatment, and
(D–F) are after treatment.
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Figure 9. Biometric photo and images of a patient with a Class I occlusion with crowding and other
teeth malpositions. The upper and the lower incisors are protruded. For the treatment, four premolars
were extracted to retrude the upper and lower incisors and to resolve the crowding. (A–C) show the
case before treatment, and (D–F) are after treatment.

5.6. Spacing and Crowding

The patient’s skeletal profile, the kind of occlusion, the degree of crowding, the angle
of the teeth, the amount of accessible space, and the amount of space required for occlusion
correction all play a role in deciding how to close excessive spaces or relieve crowding.

5.7. Spacing

Supernumeraries, early tooth loss, microdontia, frenal attachment to the incisive
papilla, and congenitally absent teeth can all cause spacing. If possible, the reason for the
space should be removed; for instance, a frenectomy is necessary if a median diastema is
brought on by a big labial frenum. To assess the existence of supernumeraries in cases with
a median diastema, a periapical radiograph is typically also required.

5.8. Primary Dentition

Active treatment is not recommended for primary teeth with excessive gaps, based on
monitoring.

5.9. Mixed Dentition

Depending on the patient’s age, the cause of the spacing, and its severity, spacing can
be monitored in mild situations. When the upper canines erupt, the mild divergence and in-
creased space between the upper incisors between the ages of 7 and 12 is considered normal
(the “ugly duckling” period). Premature loss of posterior teeth, especially primary second
molars, might be a problem during the mixed dentition stage since there is a chance that
the permanent first molars may move posteriorly. In these circumstances, the space must
be maintained to allow the eruption of permanent successors. The transpalatal arch, lower
lingual holding arch, and Nance holding appliance are a few examples of space maintainers.
This also aims at preventing a midline shift in the early loss of deciduous canines.
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5.10. Permanent Dentition

If there is a favorable soft-tissue environment and no serious skeletal abnormalities,
excessive gaps can be corrected with clear aligners. With permanent appliances, space
closure is also simple to carry out. If the space is caused by tooth loss, one alternative is to
use fixed appliances to make enough room, depending on the periodontal health, for an
implant or bridge. To obtain the best results in microdontia and peg laterals, a combination
of orthodontic and restorative treatment is recommended.

5.11. Crowding

Crowding is caused by a size difference between the teeth and dental arches. There
are numerous techniques to offer the necessary room for the treatment of crowding, such
as arch expander equipment or extraction to gain large spaces and active open-coil springs
for acquiring minor spaces.

5.12. Primary Dentition

Early-stage crowding results from a lack of primate spaces and indicates that crowding
will happen in permanent dentition. The emergence of permanent teeth must also be closely
watched, making regular checkups crucial.

5.13. Mixed Dentition

Phase I treatment helps to make room in numerous different ways when there is
mild to moderate crowding that leads to ectopic eruption or impaction of permanent
teeth. The incisors are grouped by partial fixed appliance therapy, or 24, in mild situations.
After enough room has been made, a fixed lingual retainer is affixed to the palate of the
incisors to stop relapse after the fixed appliances are removed. To maintain the space,
space maintainers are bonded, and the eruption of the permanent dentition is tracked. This
early intervention aims to stop severe crowding in the permanent dentition, stop ectopic
eruptions, and stop the need to remove permanent teeth to make room once growth has
stopped. An expander plate, such as a quick maxillary expander or a gradual maxillary
expander (quad helix), is used to widen narrow arches before the growth spurt. After
enough room has been created with the use of an expander, this form of therapy can be
utilized in conjunction with partial braces to align the newly erupted teeth.

5.14. Permanent Dentition

A series of aligners can correct mild to moderate crowding when there are no skeletal
differences. The use of a detachable appliance can result in the tipping of just one or
two teeth. For detachable appliances to work best, high patient compliance is required.
Extractions are recommended after the initial growth surge and in situations of extreme
congestion. An orthodontist is always the one to decide whether to extract a tooth. The
degree of anchorage required heavily influences whether people need space maintainers.
Therefore, extractions are always thoughtfully designed with enough anchoring in adults.

5.15. RNA Alterations in Skeletal Class I Occlusion

RNA variation refers to variations in the expression or structure of RNA molecules
that can affect their function [50]. In the context of skeletal Class I occlusion, RNA variation
can refer to variations in the expression or structure of RNA molecules that are involved in
the development of the craniofacial skeleton and teeth, which can affect the formation of
the jaw and teeth and contribute to the development of skeletal Class I occlusion [29]. There
have been several studies that have identified specific RNAs that are altered in skeletal
Class I occlusion [51]. However, it is important to note that most of these studies have
been conducted on specific populations, and the results may not be generalizable to other
populations. In addition, most of the studies focus on specific genes and pathways, and
more studies are required to properly comprehend the role of RNA in the formation of
skeletal Class I occlusion.

266



J. Pers. Med. 2023, 13, 1465

Previous studies have shown that changes in the expression of specific genes can
affect the development of the craniofacial skeleton and teeth and may contribute to the
development of skeletal Class I occlusion [29]. For example, changes in the expression
of genes involved in the Wnt signaling pathway, such as AXIN2, can affect craniofacial
development and influence the formation of skeletal Class I occlusion [52]. In addition to
changes in gene expression, variations in the structure of RNA molecules can also affect
their function [53]. For example, variations in the structure of microRNAs (miRNAs),
small non-coding RNA molecules that regulate gene expression, have been shown to affect
craniofacial development and most likely will contribute to the development of skeletal
Class I occlusion [54].

A study found that miR-29 is downregulated in the gingival tissue of individuals with
skeletal Class I occlusion and that this downregulation is associated with an increase in the
expression of the target genesCOL1A1 and MMP13, which are involved in the regulation
of bone remodeling [55]. In addition, miR-31 is downregulated in the gingival tissue of
individuals with skeletal Class I occlusion, and this downregulation is associated with
an increase in the expression of the target geneTWIST1, which is involved in regulating
craniofacial development [56]. Further, miR-124 was found to be downregulated in the
gingival tissue of individuals with skeletal Class I occlusion, and this downregulation is
associated with an increase in the expression of the target geneDlx5, which is involved in
the regulation of tooth development [57].

5.16. A Mouse Model for Studying Mandible Size, Prognathism, and QTL Analysis

Mouse models have been widely used to study the genetics and epigenetics of skeletal
Class I occlusion [31,32,58]. These models allow researchers to manipulate specific genes or
environmental factors better to understand their role in the development of this condition.
One common approach is to generate mouse models with specific genetic mutations in
genes associated with skeletal Class I occlusion. For example, researchers have generated
mice with mutations in the MSX1, PAX9, and AXIN2 genes, among others, and observed
changes in craniofacial development and tooth formation like those seen in human patients
with skeletal Class I occlusion [59–61]. Another approach is to use mouse models to study
the effects of environmental factors on the development of skeletal Class I occlusion. For
example, researchers have used mouse models to study the consequences of maternal
nutrition in the formation of the craniofacial bone and teeth and have observed changes
in craniofacial development and tooth formation that are similar to those seen in human
patients with skeletal Class I occlusion [62,63].

Mouse models have also been used to study the epigenetic mechanisms involved in
developing skeletal Class I occlusion. For example, researchers have used mouse models to
study the effects of DNA methylation and histone modifications on gene activity involved
in craniofacial development and have observed changes in craniofacial development and
tooth formation that are similar to those seen in human patients with skeletal Class I
occlusion [64]. Several QTLs for skeletal Class I occlusion have been identified using
linkage and association studies in human and animal models. These studies have identified
regions of the genome associated with an increased risk of skeletal Class I occlusion and
other occlusal traits, such as tooth size and shape and certain craniofacial features [30]. The
QTL was identified for skeletal Class I occlusion and other occlusal traits on chromosome 7.
In mice, the identified region on chromosome 7 was associated with a significant reduction
in overbite, which is a characteristic of skeletal Class I occlusion. Further, a region on
chromosome 8 in mice was identified as associated with differences in dental dimensions
and morphology. The workflow diagram for generating systems genetics datasets of
cellular, molecular, and clinical trait data combined to analyze various correlations between
malocclusion and Class I phenotypes is represented in Figure 10.
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Figure 10. The process for creating systems genetics datasets encompassing cellular, molecular, and
clinical trait data is outlined in the workflow. These datasets are amalgamated to facilitate the analysis
of correlations between malocclusion and Class I phenotypes. By integrating SNP genotype data,
the regulatory genomic regions linked to phenotypic variation are identified. Furthermore, using
QTL mapping, specific traits monitored in vitro and in vivo can be pinpointed. Combining these
data with subsequent candidate gene association studies conducted in human populations can unveil
susceptibility genes linked to the onset of Class I occlusion in individuals.

5.17. The Collaborative Cross-Mouse Population—A Potent Resource for Systemic Genetic
Analysis of Class I Occlusion

Traditional laboratory mouse strains, on the other hand, possess limited genetic
diversity, which makes them less suitable for investigating genetic variations in intricate
traits. To overcome this limitation, the collaborative cross (CC) was introduced, generating
a novel set of highly genetically diverse recombinant inbred mouse strains. The CC mouse
strains were established as a novel resource to enable precise mapping and recognition of
the genetic elements responsible for intricate phenotypes, with a specific emphasis on those
relevant to human health. The establishment of the collaborative cross genetic reference
population (GRP) of mice was driven by the necessity to simulate genetic diversity. This
unique genetic reference population (GRP) resource consists of a substantial collection of
recombinant inbred (RI) strains. These strains were derived from a genetically diverse
selection of eight founding strains, intentionally designed for in-depth analysis of complex
traits [65–68], offering an advantage over any previously documented method [69].

This distinctive resource comprises many recombinant inbred (RI) strains. These
strains were generated from a genetically varied pool of eight founder strains, explicitly
focusing on facilitating the analysis of complex traits and implying a potency surpassing
any previously reported methodologies [70]. The group of eight founder strains demon-
strates significant genetic diversity, encompassing five widely used laboratory strains (A/J,
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C57BL/6J, 129S1/SvImJ, NOD/LtJ, NZO/HiLtJ) and three wild-derived strains (CAST/Ei,
PWK/PhJ, WSB/EiJ). This divergence in their phylogenetic origins dramatically contributes
to the extensive genetic variation observed within the resulting population of collaborative
cross mice.

The CC mouse is a GRP that exhibits a twofold increase in genetic variations, en-
compassing more than 36 million SNPs. These variations mirror those found within the
natural human population, Additionally, it demonstrates a relatively elevated frequency
of recombination events in comparison to other mouse sets, with 4.4 million SNPs segre-
gating between the founders [70–72]. A recent study involving QTL analysis using the CC
population indicated that the mapped interval resolution could potentially be less than
1 Mb [70–76].

The expansion of the genetic map within the CC population is approximately four-
fold, leading to a proportionally enhanced precision in QTL map positioning. Given the
inbred origin of all genetic traits, each QTL’s genetic variance is amplified. Moreover, the
phenotyping of numerous individuals within each line helps to diminish environmental
sources of variance. Compared to conventional F2 mapping populations, this approach
significantly multiplies the mapping power of the recombinant inbred line (RIL) set.

CC strains should provide a distinct chance to conduct GWAS and map significant
quantitative trait loci (QTL) and subsequently identify candidate genes, as well as mapping
modifiers for significant genes associated with Class I traits, while lowering the surrounding
obstacles. There is a firm conviction that the substantial genetic diversity present in the
founding strains of the CC mouse population offers a robust foundation for uncovering new
genetic loci associated with these specific phenotypes. This framework further enables the
validation process using mouse knockout genes and conditional knockout methodologies.

5.18. The Forthcoming Focus Entails the Creation of an Innovative Model Aimed at Mapping
Major and Modifier Genes Linked to Skeletal Class I Malocclusion Using the Collaborative Cross
(CC) Model

Systems genetics presents a promising avenue for comprehending the intricate array
of biological factors that underlie complex traits within genetically diverse populations.
This approach harnesses an array of experimental and statistical techniques to meticulously
quantify phenotypes—including transcript, protein, and metabolite levels—within these
genetically segregated populations, which exhibit anticipated variations for the traits of
interest. Systems genetics investigations have provided an initial holistic perspective of
the intricate molecular framework behind complex traits. Such studies are invaluable for
pinpointing genes, pathways, and networks that are the foundation for common diseases. In
this context, we propose harnessing the capabilities of the CC lines to map genes associated
with Class I. Our proposal involves conducting a conventional exploration of candidate
genes linked to Class I via GWAS, building upon the successful precedent established by
prior publications [65–76].

The initial comprehensive exploration of the genetic basis for Class I characteristics
has been facilitated through systems genetics analysis, a methodology that aids in identi-
fying genes, signaling pathways, and networks responsible for prevalent disorders. This
investigation involves merging data related to cellular, molecular, and clinical aspects to
examine the associations among various Class I occlusion phenotypes. By amalgamating
SNP genotype data from each CC lineage, regulatory genomic regions implicated in pheno-
typic variability in both in vitro and in vivo monitored traits are identified. The potential
identification of susceptibility genes associated with the onset of Class I occlusion in hu-
mans can be achieved by combining data with subsequent investigations in the association
of candidate genes in humans.

This experimental design presents the opportunity for parallel in vitro/in vivo screen-
ing, bolstered by the development of high-throughput assessment technologies and compu-
tational methodologies, leading to a better understanding of how diverse genetic alterations
collectively impact the initiation and severity of Class I occlusion. Validated gene–gene
interactions and gene–environment networks can be harnessed to inform risk assessment
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for Class II malocclusion prevention or identify pharmaceutical targets in human systems.
Through systems genetics, a comprehensive grasp of the disease’s biology and severity
will likely be attained by deciphering the mechanisms of the genetic loci (QTL and genes)
uncovered in genome-wide association studies (GWAS) that contribute to susceptibility to
Class I occlusion.

Currently, there is extensive molecular research underway concerning regulatory
RNAs, encompassing gene expression, DNA methylation, small and microRNA, and long
non-coding RNA profiles across a range of diseases. However, to our knowledge, minimal
research exists regarding the status of these molecules in the context of skeletal Class II
malocclusion. In light of this, we propose that exploring these regulatory RNAs in this
condition holds significant promise and will contribute to a more profound comprehension
of the molecular underpinnings of the disease.

The workflow diagram presented in Figure 10 outlines the process for generating
systems genetics datasets comprising cellular, molecular, and clinical trait data. These
datasets are amalgamated to analyze the correlations between Class I phenotypes. The
integration of human and mouse approaches, coupled with the application of identification,
screening, and exclusion methods, is depicted in the diagram. This systematic approach
is a roadmap to facilitate a comprehensive investigation into the intricate mechanisms
underlying Class I occlusion.

In conclusion, gaining insight into how the genetic loci (QTL and genes) identified
through genome-wide association studies (GWAS) contribute to the susceptibility of Class
I phenotypes, in conjunction with the utilization of systems genetics, is poised to enhance
our comprehension of both the biology and the nature of the disease.

6. Discussion

This study aims to provide a comprehensive understanding of Class I occlusion.
The kinds of occlusion in teenage age groups have been described in numerous studies
published in the literature from various nations. Though this is the case, comparisons
of the findings from these studies are challenging due to differences in the age and size
of the study populations and the methodologies used to record occlusal connections.
According to reports, the prevalence of malocclusion varies by gender, age, and nation.
There havenot been enough investigations to gauge the prevalence [32–34]. One of the most
straightforward techniques for recording occlusion is calculating the overall frequency
of occlusion and the requirement for orthodontic treatment. It is more common to have
Angle’s Class I occlusion and less common to have Angle’s Class III occlusion. The results
show that Class III malocclusion is the least common malocclusion, with Angle’s Class
I and Class II ranking first and second, respectively. According to Al-Emran et al. and
Al-Balkhi and Zahrani, Class I, Class II division 1, and Class III malocclusions are the most
prevalent in the Saudi population [77,78].

Understanding global epidemiological data aids in establishing priorities for occlusion
treatment and the resources needed in terms of work capacity, skills, agility, and materials
to be used. To organize the logical planning of orthodontic preventative and therapeutic ac-
tions, national public health agencies should be aware of the incidence of occlusion features.
Furthermore, evaluations of occlusion prevalence by various groups and geographical
regions may reveal the existence of distinct genetic and environmental causes. A precise
global picture of the prevalence of occlusion in primary, mixed, and permanent dentitions
was produced by this systematic review. Our review found no appreciable variations in
male and female occlusion rates, with more than half of children and adolescents world-
wide experiencing one type of occlusion. Except for one continent, none of the world’s
continents had a reduction in this high incidence to below 50%. The significant number of
papers (n = 81) and high level of methodological quality across all included studies provide
strong support for the epidemiological relevance of occlusion, according to this review.
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The prevalence of occlusion is highest in early childhood during the era of deciduous
teeth (54%), and it remains stable during permanent dentition (54%). These prevalence
figures show that occlusion is a significant issue for oral health and a financial burden for
the families of affected children and public dental health programs. Health policymakers,
pediatricians, and dentists should be encouraged to carry out preventive or early diagnosis
and develop appropriate treatment strategies because it may be possible to prevent the
onset of occlusion from the earliest age (i.e., by avoiding poor oral habits in children) [79,80].

Understanding the type of occlusion and how severe it is will assist in determining
whether the group under study requires dental orthodontic treatment and how their oral
health is. The current study will also help create customized programs for treating and
promoting oral health. According to other observations, refugees are more prone to several
ailments, including dental [81]. According to recent studies [82–84], refugees have a greater
incidence of dental caries and poor oral hygiene than host populations. Untreated dental
conditions can cause tooth decay or loss, influencing poor eating patterns and lower quality
of life [81]. The most common treatment offered to refugee children, according to a prior
study, is extraction, which is a sign of poor oral hygiene and a tendency for refugees to
seek dental care late during their sickness, usually for emergency treatment [82–85]. These
results, however, might point to a lack of restorative treatment services due to low funding
and a delay in access to dental care [82–85].

The prevalence of deciduous dentition occlusion is depicted in this meta-analysis in
a more precise and thorough manner. According to statistics, various occlusions affect
roughly 45.5% of children in mainland China. In addition, significant heterogeneity was
found between provinces, which may result from varying criteria, ethnic backgrounds,
age ranges, registration processes, or environmental and genetic factors [86,87]. Class I
occlusion has the highest predicted occurrence among the two Angle classifications. It is
helpful to think about a systematic review of occlusion prevalence among Iranian children
that found that poor hygiene and healthcare combined with excessive sugar consumption,
which results in caries and the early loss of deciduous teeth, increased the prevalence
of Class I occlusion [88]. In addition to genetics, mandibular protrusion and improper
feeding practices, like supine nursing, increased the likelihood of occlusion [89]. In Class II
malocclusion, a low prevalence rate of 7.97% was noted.

Patients with Class I occlusion who received either four premolar extractions or no
treatment should be included in the samples. Since the compatibility of groups for the
degree of the initial occlusion will lessen the potential of bias, attention should be on
this particular type of occlusion. According to earlier studies, the degree of the initial
anteroposterior mismatch influences the length of the treatment and its effectiveness [49,90].
There is less chance of confounding and selection bias because the distribution of sex, age,
PARi, and mandibular crowding is consistent between groups. The degree to which genetic
variance among individuals can explain variations in their attributes is determined by
the degree of heritability [91]. The genetic predisposition to malocclusion susceptibility is
supported by a number of data sources. Numerous dental and facial traits, such as mid-
and lower facial dimensions, dental spacing, arch dimensions, and Bolton-type tooth size
differences, have moderate to high heritability proportions (>60%) documented. On the
other hand, overbite (53%) and overjet (28%) have lower heritability, suggesting a larger
vulnerability to environmental variables [92,93].

7. Conclusions

In this narrative and perspective paper, we have embarked on a comprehensive
exploration of Class I occlusion, shedding light on the diverse aspects of this intriguing
dental phenomenon. As we delved into the literature, it became evident that although a
wealth of research exists on various forms of occlusion, comparing findings across studies
remains a challenge. This is primarily due to differences in the age and size of study
populations and the methodologies used to document occlusal connections. Furthermore,
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the prevalence of malocclusion is subject to variations based on factors such as gender, age,
and geographical location, leading to complexities in drawing universal conclusions.

Our findings indicated that Angle’s Class I occlusion is the most prevalent, followed
by Class II, whereas Class III malocclusion is the least common. Understanding global
epidemiological data is crucial to establishing priorities in occlusion treatment and the
allocation of resources, including workforce, skills, agility, and materials. National public
health agencies must be informed about the prevalence of occlusion characteristics to
strategically plan orthodontic preventative and therapeutic interventions. Furthermore,
analyzing occlusion prevalence across diverse demographic groups and regions may reveal
distinct genetic and environmental factors that contribute to its occurrence.

Of particular interest is the observation that occlusion prevalence peaks during early
childhood with deciduous teeth (54%) and remains stable during permanent dentition
(54%). These prevalence figures underscore the critical role of occlusion in oral health
and its economic implications for families and public health programs. This insight calls
for proactive measures, such as preventive strategies and early diagnosis, to address
occlusion-related issues, including children’s oral habits.

Additionally, our study highlights the challenges faced by vulnerable populations,
such as refugees, who often experience higher rates of dental conditions. These disparities
necessitate increased attention from health policymakers, pediatricians, and dentists to
develop targeted strategies for prevention, diagnosis, and treatment.

This narrative review and perspective paper offers a multifaceted exploration of Class
I occlusion, drawing from diverse sources and perspectives. By unraveling the complexities
of occlusion, we aim to contribute to the broader discourse on oral health, inform public
health policies, and inspire future research endeavors in this fascinating field.
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Abstract: Background and Objectives: Literature reviews are foundational to understanding medical
evidence. With AI tools like ChatGPT, Bing Chat and Bard AI emerging as potential aids in this
domain, this study aimed to individually assess their citation accuracy within Nephrology, comparing
their performance in providing precise. Materials and Methods: We generated the prompt to solicit
20 references in Vancouver style in each 12 Nephrology topics, using ChatGPT, Bing Chat and Bard.
We verified the existence and accuracy of the provided references using PubMed, Google Scholar, and
Web of Science. We categorized the validity of the references from the AI chatbot into (1) incomplete,
(2) fabricated, (3) inaccurate, and (4) accurate. Results: A total of 199 (83%), 158 (66%) and 112 (47%)
unique references were provided from ChatGPT, Bing Chat and Bard, respectively. ChatGPT provided
76 (38%) accurate, 82 (41%) inaccurate, 32 (16%) fabricated and 9 (5%) incomplete references. Bing
Chat provided 47 (30%) accurate, 77 (49%) inaccurate, 21 (13%) fabricated and 13 (8%) incomplete
references. In contrast, Bard provided 3 (3%) accurate, 26 (23%) inaccurate, 71 (63%) fabricated and
12 (11%) incomplete references. The most common error type across platforms was incorrect DOIs.
Conclusions: In the field of medicine, the necessity for faultless adherence to research integrity is
highlighted, asserting that even small errors cannot be tolerated. The outcomes of this investigation
draw attention to inconsistent citation accuracy across the different AI tools evaluated. Despite some
promising results, the discrepancies identified call for a cautious and rigorous vetting of AI-sourced
references in medicine. Such chatbots, before becoming standard tools, need substantial refinements
to assure unwavering precision in their outputs.

Keywords: literature review; nephrology references; ChatGPT; Bing Chat; Bard AI; accuracy;
personalized medicine; precision medicine

1. Introduction

The digital era has brought about transformative changes in various aspects of our
lives, with the medical field being no exception [1,2]. Within the vast expanse of medical
literature, scholars, clinicians, and medical professionals rely heavily on evidence-based
studies to formulate decisions, guidelines, and recommendations for patients [3]. Literature
reviews play an instrumental role in this process, often serving as the cornerstone to under-
standing the ever-expanding universe of medical evidence [4]. However, while the volume
of information is expanding, so is the need for efficient tools to extract relevant knowledge.
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The growing number of published articles has led to a substantial increase in the
references that physicians and researchers must stay updated with. As of 2020, there
were over 30 million articles indexed in PubMed alone, with an estimated addition of
a million entries each year [5]. This exponential growth makes the task of manually
extracting, comparing, and verifying references not only laborious but also prone to human
errors [6]. In this context, AI-powered platforms are emerging as potential aides for
literature reviews [7]. Contemporary innovations have introduced platforms such as
ChatGPT [8], Bing Chat [9] and Bard AI [10]. These tools are not just digital cataloging
systems but smart engines that claim to understand and retrieve precise information. The
allure of such platforms lies in their ability to rapidly sift through vast data sets, potentially
offering precise references that would take humans considerably longer to extract [11,12].

The emergence of ChatGPT, a creation of OpenAI, introduces promising prospects
spanning a variety of domains, with a pronounced emphasis on the enrichment of health-
care education [13]. This AI framework not only highlights its advanced acumen in
information retrieval but also adeptly addresses syntactical inaccuracies, thereby serv-
ing as a valuable resource for literature evaluations and the composition of scholarly
manuscripts [8]. In a parallel vein, Bing Chat, a product of Microsoft, emerges as an AI-
driven conversational agent capable of engendering inventive and novel content, spanning
the spectrum from poetic compositions and narratives to code snippets, essays, musical
compositions, satirical renditions of celebrities, and visual representations [9]. Akin to its
counterparts, Bard AI, the brainchild of Google, assumes its stance as a formidable entity
within the domain of AI models, having undergone rigorous training on an expansive
corpus encompassing textual and code-oriented knowledge culled from diverse sources,
including literary works and academic articles [10]. The transformative potential of these
technological tools in revolutionizing the paradigm of information retrieval is evident;
however, their precision, particularly in terms of adhering to meticulous citation protocols,
remains subject to meticulous examination.

The accuracy of citations within scholarly discourse is far from being a mere ritualistic
practice; rather, it holds a pivotal role. These references provide a conduit for readers to re-
trace the steps back to original sources, thereby ensuring the veracity of derived conclusions
and recommendations firmly anchored in authentic research endeavors. The presence of
even minute inaccuracies within references can cast a shadow of doubt over the entirety of a
scholarly paper, thereby undermining both its credibility and the integrity of the author [14].
This holds critical importance, especially in specialized fields such as Nephrology, where
medical treatments have far-reaching effects on patient health and general well-being,
including risks such as kidney failure or allograft rejection or failure. A single incorrect
reference carries the risk of initiating misunderstandings, which could eventually lead to
less than ideal or even harmful clinical decisions. The present investigation, therefore, is
conceived with the overarching aim of unraveling the precision exhibited by these emer-
gent AI entities in the realm of citations, particularly within the highly specialized terrain
of Nephrology.

The purpose of this study is to assess the citation accuracy of AI models including
ChatGPT (versions 3.5 and 4.0) [15], Bing Chat, and Bard AI in retrieving and validating
references for academic research in nephrology.

2. Materials and Methods

2.1. Search Strategy and Criteria

We used three distinct AI chatbots to perform literature searches in nephrology, in-
cluding (1) ChatGPT, (2) Bing Chat, and (3) Bard AI. To ensure the comparability of these
chatbots, we standardized the criteria for evaluating their performance based on search
results’ relevance, comprehensiveness, and the timeliness of the articles retrieved. ChatGPT
is a large language model developed by OpenAI and integrates both GPT-3.5 [16] and
GPT-4.0 models [15] that comprehend and generate human-like responses through text.
Bing Chat is powered by GPT-4.0 and incorporated into the Microsoft Edge browser, which
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has another capability to generate images and innovative content [9]. Bard AI, a robust
Large Language Model (LLM) developed by Google based on Pathways Language Model
2 (PaLM2) and trained on an expansive collection of text and code that exhibits creative
content design.

On 1 August 2023, we generated the prompt to ask AI chatbots to provide 20 references
in Vancouver style, a commonly used citation style in academic writing in each Nephrology
topics; The topics were chosen to reflect a comprehensive understanding of the field and
were pre-determined through a review of the most common nephrology subjects discussed
in existing literature. (1) general nephrology, (2) glomerular disease, (3) hypertension,
(4) acute kidney injury, (5) chronic kidney disease, (6) end-stage kidney disease,
(7) electrolyte disorders, (8) acid-base disturbances, (9) kidney stones, (10) hemodialysis,
(11) peritoneal dialysis and (12) kidney transplantation. There was slight difference be-
tween the prompts used for each individual AI chatbot as we modified the prompt to
optimize their responses; “please provide 20 references in Vancouver style and links of the
most updated literatures regarding (Nephrology topic)” for ChatGPT, “provide Vancouver
references with DOI of 20 articles on (Nephrology topic)” for Bing Chat, and “20 updated
references regarding (Nephrology topic) in Vancouver style” for Bard AI. We used only
GPT-3.5 model for ChatGPT because GPT-4.0 was unable to provide actual references but it
solely provided examples of references despite our attempt to modify the prompt used. We
documented five key components of provided references: (1) author name, (2) publication
title, (3) journal title, (4) publication year or issue and (5) digital object identifier (DOI).
This categorization was performed to ensure the verification process adhered to a uniform
criterion for all three chatbots, facilitating a balanced assessment.

We verified the existence and accuracy of the references using several medical literature
databases. The databases were selected based on their reputability and coverage in the
field of nephrology. We initially used the provided DOI to search for its corresponding
references in PubMed [5], the widely recognized database in biomedical literatures. If
we could not find the reference in PubMed or we had incomplete or missing DOI, we
used Google Scholar [17] or Web of Science [18] as additional databases for comprehensive
search. We used University of Hawaii library website [19] and google search to check
references of textbook or book chapter.

We categorized the validity of the provided references from the AI chatbot into follow-
ing groups; (1) incomplete, (2) fabricated, (3) inaccurate, and (4) accurate. These categories
were defined to allow for the precise characterization of the search results, which is cru-
cial for determining the reliability and utility of AI-generated references. Reference was
defined as incomplete when the provided reference information was inadequate to verify
its existence in aforementioned medical databases. Reference was defined as fabricated
when we could not find the reference in the database. Reference was defined as existing
but inaccurate when we could identify the reference in the database but at least one of five
reference components were incorrect. Reference was defined as existing and accurate when
we could identify the reference in the database and all of five reference components were
correct. A flow diagram of the research methodology was Illustrated in Figure 1 and the
example of an assessment of references was illustrated in Figure 2.

To assess both the magnitude and directionality of linear relationships among different
performance indicators of the chatbots, we computed Pearson correlation coefficients. The
Pearson correlation method was chosen for its sensitivity to linear associations, making
it well-suited for our dataset, which we ascertained met the assumptions of linearity, nor-
mality, and homoscedasticity. In these matrices, individual cells contain the computed
Pearson coefficients, which are bounded between −1 and 1. The closer a coefficient is to 1,
the stronger the positive linear relationship, indicating that an increase in one performance
metric is likely paralleled by an increase in another. In contrast, a coefficient value nearing
−1 reveals a strong negative relationship, meaning that a rise in one metric typically results
in a decline in another. These boundaries are strict and allow for nuanced interpretation: a
value of exactly 1 or −1 would signify a perfect linear relationship, positive or negative
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respectively, although such a result is exceedingly rare in practical applications. Coefficients
approximating zero signify weak or negligible linear relationships, implying that changes
in one variable are not systematically accompanied by changes in another. The use of
Pearson correlation analysis in this context is instrumental for pinpointing specific perfor-
mance metrics that may be most amenable to enhancements, thereby aiding in targeted
optimization of chatbot functionalities.

Figure 1. Flow diagram of using AI chatbots for literature search and assessment of validity.
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Figure 2. Demonstration of citation assessment regarding hemodialysis topic. The non-highlighted
texts represent accurate parts. The blue highlights represent incorrect parts. The pink highlights
indicate fabricated references.

2.2. Statistical Analysis

We reviewed the references and excluded duplicated reference from the same AI
chatbot before analysis. We presented the validity of the provided references as counts
with percentages and compared among AI chatbots using Chi-squared test. p-value < 0.05
was considered statistically significant. IBM SPSS statistics version 26 was used for all
statistical analyses.

The calculations of Pearson correlation coefficients involved generating correlation
matrices, executed with Python’s Seaborn library—a tool that efficiently interfaces with
Pandas for data structuring and Matplotlib for graphical output.

3. Results

Although each AI chatbots was expected to provide 240 references (20 references in
each of 12 nephrology topics), 41 (17%), 65 (29%) and 39 (26%) references provided by
ChatGPT, Bing Chat and Bard, respectively, were found as duplicated references, while
17 (7%) references from Bing Chat and 89 (37%) references from Bard were absent.

A total of 199 (83%), 158 (66%) and 112 (47%) unique references were provided from
ChatGPT, Bing Chat and Bard, respectively. ChatGPT provided 76 (38%) accurate, 82 (41%)
inaccurate, 32 (16%) fabricated and 9 (5%) incomplete references. Bing Chat provided
47 (30%) accurate, 77 (49%) inaccurate, 21 (13%) fabricated and 13 (8%) incomplete refer-
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ences. In contrast, Bard provided 3 (3%) accurate, 26 (23%) inaccurate, 71 (63%) fabricated
and 12 (11%) incomplete references. The proportion of existing references were similar
between ChatGPT and Bing Chat, but ChatGPT provided higher proportion of accurate
references. Bard had the highest proportion of fabricated and incomplete references. There
were statistically significant differences in proportion of accurate, inaccurate and fabricated
references between ChatGPT and Bard, and between Bing Chat and Bard. However, the
validity between ChatGPT and Bing Chat did not significantly differ (Table 1 and Figure 3).

Table 1. Validity of provided references from ChatGPT, Bing Chat and Bard AI.

ChatGPT-3.5
(n = 199)

Bing Chat
(n = 158)

Bard
(n = 112)

p-Value

Accurate 76 (38.2%) * 47 (29.8%) ** 3 (2.7%) *,** <0.001
Inaccurate 82 (41.2%) * 77 (48.7%) ** 26 (23.2%) *,** <0.001
Fabricated 32 (16.1%) * 21 (13.3%) ** 71 (63.4%) *,** <0.001
Incomplete 9 (4.5%) 13 (8.2%) 12 (10.7%) 0.11

* Significant difference between ChatGPT-3.5 and Bard p < 0.05. ** Significant difference between Bing Chat and
Bard p < 0.05.

Figure 3. Comparison of validity in providing literature between ChatGPT, Bing Chat and Bard AI.

When we assessed the reason for inaccurate references, DOI was the most common
inaccurate component in references provided by ChatGPT and Bing Chat, followed by
author name, publication year/issue, journal title, and reference title. In contrast, author
name was the most common reason inaccurate component in references provided by Bard,
followed by DOI, publication year/issue, journal title, and reference title. Significant
differences of all inaccuracy domains were found between ChatGPT and Bard, and between
Bing Chat and Bard, while ChatGPT and Bing Chat were not statistically different (Table 2
and Figures 4 and 5).

282



J. Pers. Med. 2023, 13, 1457

Table 2. Types of inaccuracy detected among the inaccurate references between ChatGPT, Bing Chat
and Bard AI.

ChatGPT-3.5
(n = 82)

Bing Chat
(n = 77)

Bard
(n = 26)

p-Value

Inaccurate DOI 74 (90.3%) * 68 (88.3%) ** 18 (69.2%) *,** 0.02
Inaccurate title 4 (4.9%) * 2 (2.6%) ** 7 (26.9%) *,** <0.001

Inaccurate author 18 (22.0%) * 13 (16.9%) ** 19 (73.1%) *,** <0.001
Inaccurate

journal/book 10 (12.2%) * 6 (7.8%) ** 8 (30.8%) *,** 0.010

Inaccurate year/issue 14 (17.1%) * 7 (9.1%) ** 15 (57.7%) *,** <0.001
* Significant difference between ChatGPT-3.5 and Bard p < 0.05. ** Significant difference between Bing Chat and
Bard p < 0.05.

Figure 4. Percentages of each type of inaccuracy among the inaccurate references of ChatGPT, Bing
Chat and Bard AI.

3.1. Correlation Analysis
3.1.1. Validity Metrics

Accurate vs. Inaccurate: A negative correlation of −0.92 suggests that as the accuracy
of a chatbot increases, the inaccuracy decreases.

Inaccurate vs. Incomplete: A high positive correlation (0.99) is observed, indicating
that chatbots that inaccurate information are also likely to provide incomplete answers
(Figure 6).

3.1.2. Incorrect Information Metrics

Missing DOI vs. Wrong DOI: A strong negative correlation of −0.75 implies that
chatbots that often miss DOIs are less likely to provide wrong DOIs.

Wrong Author vs. Wrong Journal/Book: A negative correlation of −0.58 suggests
that if a chatbot frequently gets the author wrong, it is less likely to get the journal or book
wrong (Figure 7).
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Figure 5. Heatmap visualizing the types of inaccuracies detected among the references provided by
each chatbot. The rows represent the chatbots: ChatGPT-3.5, Bing Chat, and Bard. The columns repre-
sent the types of inaccuracies: DOI, Title, Author, Journal/Book, and Year/Issue. The intensity of the
color indicates the magnitude of the inaccuracy, with darker shades representing higher percentages.

3.1.3. Missed and Duplicate Metrics

Missed vs. Duplicate: A strong negative correlation of -1 suggests that chatbots that
miss information are unlikely to produce duplicate information (Figure 8).
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Figure 6. Correlation Matrix for Validity Metrics.

Figure 7. Correlation Matrix for Incorrect Information Metrics.
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Figure 8. Correlation Matrix for Missed and Duplicate Metrics.

4. Discussion

The advancement of AI within the medical field has led to substantial transforma-
tions [20,21], including assisting in the specialized diet supports [22,23], prevention of
potential allergic reactions [24,25], detection of prescription errors [26], extraction of drug
interactions from the literature [27], and particularly concerning literature reviews [28,29].
As the production of medical evidence continues to grow at an accelerated rate, the need
for effective tools to sift through and analyze pertinent information has become critically
important. In response to this need, AI-powered platforms such as ChatGPT, Bing Chat,
and Bard AI have emerged as potential aids in literature reviews [11,12,29]. The findings of
this study, however, demonstrate varying degrees of reliability and validity exhibited by the
three generative AI chatbots, namely ChatGPT-3.5, Bing Chat and Bard, when tasked with
providing references pertaining to Nephrology subjects. It is important to recognize that the
utilization of AI chatbots for generating dependable and valid references is accompanied
by certain limitations and challenges, encompassing concerns such as the generation of
fabricated, inaccurate and incomplete references.

The study outcomes delineate distinctive patterns regarding citation accuracy within
the purview of AI tools. ChatGPT emerges with the highest precision at 38%, emblematic
of its adherence to established citation protocols. This, however, coexists with a notable
proportion of erroneous references at 41%. In contrast, Bing Chat demonstrates an alterna-
tive pattern, characterized by a preponderance of inaccurate references (49%) alongside a
relatively diminished occurrence of entirely accurate references (30%). However, the valid-
ity of ChatGPT and Bing Chat in providing Nephrology references were not significantly
different. Bard AI, conversely, exhibits the highest incidence of fabricated references (63%)
and incomplete references (11%), suggesting an avenue for enhancement in its reference
generation mechanism. It is pertinent to underscore that the discordances identified, includ-
ing the misallocation of DOIs, underscore the criticality of scrupulous attention to minutiae
within the medical realm, where even minor inaccuracies bear substantial consequences.
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The study’s findings underscore the heterogeneity in citation accuracy among the
evaluated AI tools. While each tool showcased certain strengths, such as ChatGPT’s higher
accuracy rate, the discrepancies identified emphasize the need for careful and rigorous
vetting of AI-sourced references in the medical field. The precision and authenticity of
references hold critical significance, especially considering the potential consequences of
medical decisions that rely on these sources. The substantial discrepancies observed in
citation accuracy among these AI chatbots reveal that they may not consistently meet the
rigorous standards demanded by the medical realm. ChatGPT’s relatively high accuracy,
even with its considerable inaccuracies, signifies a degree of potential utility, but the
prevalence of incorrect and fabricated references remains a pressing concern.

In terms of optimizing chatbot performance for specific needs, several strategic con-
siderations emerge from the data. If accuracy is of utmost importance, ChatGPT-3.5 stands
out as the most reliable choice, although it would benefit from targeted improvements in
areas like DOI accuracy. BingChat, on the other hand, offers a different set of trade-offs:
it generates less fabricated information but is more prone to inaccuracies. Therefore, it
could serve as a viable option where the fabrication of data is a primary concern. The
analysis strongly suggests avoiding the experimental version of Bard as of 1 August 2023,
for tasks requiring high reliability, given its alarming rates of both fabricated and inaccurate
information. Additionally, each chatbot has identifiable weak areas—ChatGPT-3.5 with
incorrect DOIs and BingChat with missing DOIs, for instance. These weaknesses could be
mitigated through secondary verification systems. When it comes to handling duplicates
and missed responses, ChatGPT-3.5 offers the most favorable profile, despite a 17.08% du-
plication rate. For those prioritizing quality over quantity, the data indicate that focusing on
further optimizing ChatGPT-3.5 is the most effective approach. Advanced methods, such
as machine learning algorithms, could be employed to refine its performance in specific
areas like DOI accuracy. Finally, for those open to unconventional strategies, exploring
ensemble methods that combine the strengths of different chatbots could be a worthwhile
avenue for research. While speculative, such an approach could result in a more robust
and versatile chatbot solution.

Medical research is a cornerstone of evidence-based practice, where even minor errors
can have profound consequences on patient care, clinical decisions, and scientific advance-
ment [30]. The findings of this study serve as a warning against premature reliance on
AI-generated references in the medical domain. The presence of inaccuracies, fabrications,
and incomplete references is untenable, as these undermine the integrity of scholarly work
and compromise the trust placed in medical research. Consequently, policies and guidelines
need to be developed to ensure the responsible and ethical integration of AI tools in medical
research processes. These policies should emphasize the need for rigorous validation and
vetting of AI-generated references before their incorporation into clinical decision-making
or research publications.

The correlation analysis revealed several noteworthy aspects that could significantly
inform strategies for optimizing chatbot performance. First, there’s a clear trade-off in
validity; a chatbot that excels in accuracy tends to produce less inaccurate information.
However, such bots might still fabricate or provide incomplete information, necessitating
caution. Second, specific risk areas were identified. For instance, chatbots that frequently
miss DOIs are less prone to providing incorrect DOIs, and vice versa. This insight could
be invaluable for implementing targeted validation strategies. Moreover, the correlation
between missed and duplicated information suggests another layer of complexity. While
chatbots that frequently miss information are unlikely to produce duplicates, the correlation
is strong, thus requiring strategic monitoring. This monitoring could focus on specific error
types that a chatbot is prone to making. For example, a chatbot that often produces incor-
rect information may also be susceptible to delivering incomplete responses. Lastly, the
correlations offer avenues for customization and fine-tuning of chatbot behavior. Knowing
a bot’s strengths and weaknesses in particular areas enables the implementation of spe-
cialized validation or correction systems. As an example, if a chatbot is generally accurate
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but frequently errs in DOI references, a secondary validation system could be introduced
specifically to check and correct DOI information. This approach allows for the leveraging
of the chatbot’s strengths while mitigating its weaknesses.

The integration of AI tools in the medical field introduces complex ethical consid-
erations [28,29,31–33]. As evidenced by this study, the inaccuracies and fabrications in
AI-generated references could potentially lead to misinterpretation, misinformation, and
misguided medical decisions. Therefore, it is imperative to establish robust ethical frame-
works and policy guidelines that guide the responsible use of AI chatbots in generating
references for medical research. Such policies should prioritize patient safety, research
integrity, and the advancement of medical knowledge. To address these concerns, reg-
ulatory bodies and professional organizations should collaborate to develop guidelines
that mandate thorough validation and scrutiny of AI-generated references before they
are incorporated into research papers, clinical guidelines, or medical recommendations.
These guidelines could stipulate the necessity of human oversight, validation by domain ex-
perts, and cross-referencing with established databases. Furthermore, ethical considerations
should extend to the transparency of AI-generated content. Users should be informed when
references are AI-generated, allowing them to assess the reliability and credibility of the
sources. This transparency aligns with the principles of informed consent and empowers
readers to make informed judgments about the validity of the information presented.

5. Limitations

This study bears several limitations that warrant acknowledgment.

• AI platforms: Our assessment exclusively focused solely on ChatGPT (GPT-3.5 and
GPT-4.0), Bing Chat, and Bard AI, excluding other emerging AI platforms that may
exhibit distinct citation accuracy profiles.

• Lack of clinical implications: We did not explore the downstream impact of reference
inaccuracies on downstream research, clinical decision-making, or patient outcomes,
which could provide crucial insights into the practical implications of AI-generated
references in the medical domain.

• Limited citation assessment: While the study accounted for discrepancies in citation
elements such as DOIs and author names, we did not investigate potential errors in
other bibliographic elements, such as the accuracy of the Vancouver format or page
ranges. This omission could underestimate the full scope of inaccuracies present in
AI-generated references.

• Variability due to updates: The AI models used in this study are subject to updates
and modifications. The investigation was conducted with specific versions of AI
models, and as these models undergo continuous refinement, their citation accuracy
may evolve.

• Scope: The study’s sample size of Nephrology topics and AI-generated references
might not fully capture the breadth of medical literature or the complexity of citation
accuracy in other medical specialties. The study’s exclusive focus on AI chatbots limits
the exploration of potential variations in citation accuracy among different AI-powered
tools, such as summarization algorithms or natural language processing applications.

• Validity of databases: The assessment of AI-generated references relied on cross-
referencing with established databases, assuming the accuracy of these databases. Any
errors or discrepancies present in the reference databases could influence the study’s
findings and conclusions.

• Chatbot Extensions and Web Search: As the technological landscape evolves, chatbots
are increasingly being equipped with the ability to integrate extensions and external
resources, including web search functions. While this feature augments the utility
of chatbots, it simultaneously introduces another layer of complexity in terms of
citation accuracy and source validation. There is an imperative for future studies to
critically evaluate the accuracy and reliability of references generated through these
additional features.
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6. Conclusions

This study underscores the foundational significance of unwavering research fidelity
within the intricate domain of Nephrology. While the potential of AI tools for streamlining
literature reviews is evident, the identified discrepancies call for a cautious and meticulous
approach in their utilization. The medical community’s commitment to precision demands
that even minor inaccuracies remain unacceptable. As the potential for AI tools to revo-
lutionize medical research and practice persists, it is essential to refine and fortify these
chatbots before they can be confidently embraced as standard tools.
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Abstract: Cardiovascular diseases (CVDs) account for a significant portion of global mortality,
emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary
thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for
informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our
approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models,
guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA
reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve
accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and
intervene proactively. This paper presents a Proof of Concept for real-time data and predictive
capabilities in enhancing medical strategies.

Keywords: cardiovascular diseases; myocardial infarction; pulmonary thromboembolism; aortic
stenosis; stenosis cardiology; exploratory data analysis; artificial intelligence; machine learning; data
mining; prediction

1. Introduction

Cardiovascular diseases are the leading cause of mortality worldwide. In 2020, cardio-
vascular diseases (CVDs) accounted for 17.9 million deaths, or 32% of all global deaths [1,2].
CVDs are also a leading cause of hospitalization and disability. Addressing these com-
plexities requires innovative approaches that empower medical practitioners to make
informed decisions, leading to improved patient outcomes and more effective healthcare
strategies [2]. Notably, a study by Oxford Population Health’s Health Economics Research
Centre unveiled that in 2021, cardiovascular diseases incurred a cost of EUR 282 billion
in the European Union (EU) economy [3]. This economic burden emphasizes the urgent
need for innovative approaches that enhance medical decisions and healthcare strategies,
ultimately improving patient outcomes.

In modern medical practice, physicians are confronted with intricate clinical scenarios
that demand timely and data-driven interventions [4]. In the realm of Intensive Care Units,
the ability to harness comprehensive patient data for insightful decisions has the potential
to dramatically impact patient care and enhance healthcare quality [5]. In the current
medical practice, patients have several physiologic parameters monitored—e.g., Heart
Rate, Blood Pressure, Oxymetry, Body Temperature—that raise alarms when pre specified
thresholds are crossed, which prompts diagnostic or therapeutic interventions. In this sense,
patient care is triggered after the fact, as if a car driver were driving looking at the rear
mirror. This is in contrast with other sciences and work practices, for example, Meteorology,
where prediction drives Agriculture or Navigation decisions, based on data-driven models.

J. Pers. Med. 2023, 13, 1421. https://doi.org/10.3390/jpm13091421 https://www.mdpi.com/journal/jpm291



J. Pers. Med. 2023, 13, 1421

The intersection of medical technology and data science has opened new avenues for
tackling disease prediction. Machine learning, a subset of artificial intelligence, promises
to unravel intricate patterns within vast datasets. Its modeling techniques, capable of ex-
tracting meaningful insights from complex clinical information, coupled with its predictive
prowess, could reshape how cardiac diseases are diagnosed, treated, and even forecasted
and prevented.

Machine learning techniques (ML) offer a transformative paradigm in cardiovascular
healthcare, enabling the integration of diverse data sources to unveil hidden correlations,
prognostic markers, and emerging risk factors [6]. This technology has the potential
to empower clinicians with predictive tools that can anticipate adverse cardiac events,
enabling early interventions and personalized treatment strategies. Early diagnosis and
intervention are essential for improving the outcomes of patients with CVDs [7]. This
is where machine learning can play a valuable role that can be used to analyze large
amounts of data and identify patterns that would be difficult to detect by human experts [8].
ML has been shown to be effective in predicting CVDs, even in patients who have no
symptoms [9]. The precision of these models holds the potential to improve patient care,
reduce hospitalizations, and mitigate the long-term impact of cardiac diseases [9].

Our approach showcases the capabilities unlocked through structured health database
analysis from a real-world problem. In our quest to advance cardiovascular healthcare,
our study adopts an innovative approach that underscores both privacy and collaboration.
Importantly, these data were homomorphically encrypted to uphold privacy and confiden-
tiality standards. The application of Data Sharing Agreements (DSAs) ensures responsible
and compliant data sharing practices, safeguarding patient information [10].

Our commitment to enhance cardiovascular healthcare is mapped in a central research
question: “How can fusion of Exploratory Data Analysis (EDA) techniques and predictive
Machine Learning models assist medical staff in accurate clinical decision-making, and
facilitate timely medical interventions of a preventive nature?”. This pivotal question
guides our exploration into harnessing data-driven methodologies to drive innovative
solutions in the context of cardiac care.

The core objectives of our study are two-fold, aligning seamlessly with the holistic
nature of our research question. Firstly, we endeavor to unravel intricate patterns within
the multi-syndrome dataset from Hospital Santa Maria through meticulous EDA. This
analytical journey offers insights into disease-specific trends, risk factors, and underlying
relationships, thereby equipping medical professionals with a deeper understanding of
cardiovascular diseases for enhanced diagnosis, prognosis, and treatment strategies. Sec-
ondly, we are dedicated to harnessing the predictive power of machine learning models to
anticipate myocardial ischemia. By utilizing the knowledge gained from our exploratory
analysis, we aim to develop intelligent predictive models capable of forecasting cardiac
incidents with a high degree of accuracy. This predictive capability has the potential to
empower healthcare practitioners to implement preemptive measures, enabling timely
interventions that significantly impact patient outcomes.

Our main objective, as directed by physicians, was to explore and extract knowledge
from patient data related to three specific diseases: myocardial infarction, pulmonary throm-
boembolism, and aortic stenosis, because they serve as useful comparators for COVID-19
(coronavirus disease 2019), the newly emerged disease.

This paper illustrates the potential of AI-driven approaches to health data analysis.
While we focus on myocardial infarction, pulmonary thromboembolism, and aortic stenosis
for illustrative purposes, the underpinning principle is universally applicable, including
for patients diagnosed with COVID-19. With structured, annotated and well-prepared data
(including physiological data), these methodologies can be extended to address any other
diseases, harnessing the power of data and technology to pioneer enhanced healthcare.

In summary, our paper charts a path towards addressing cardiovascular diseases
by leveraging data analysis and predictive machine learning models. By harmonizing
advanced technology with medical insights, we equip clinicians with the tools to aid them
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in making informed accurate decisions, pre-empt risk situations, and optimize patient care
and clinical outcomes. In the rapidly advancing field of cardiovascular healthcare, our
study is a significant contribution, providing data-driven evidence-based insights that have
implications for improved patient outcomes.

2. State of the Art

In this section, we went through the existing body of knowledge in the realm of artifi-
cial intelligence (AI) applications within cardiovascular diseases. We followed the PRISMA
methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) [11],
not merely as a matter of convention, but to illuminate the path we have forged in pursuit
of our research objectives. We recognize the potential for questions to arise regarding the
integration of this comprehensive literature review into our broader study. Therefore, it is
essential to clarify the rationale and significance of our approach.

The literature review within this study serves a dual role that is both foundational
and contextual. We utilize it to identify research gaps and limitations that have guided
the formulation of our research questions. Furthermore, it places our study within the
broader landscape of AI-driven healthcare, offering readers a glimpse into the evolution
and current state of the art. One of our primary objectives in conducting this literature
review was to identify critical research gaps and limitations in existing studies. These gaps,
as illuminated through our systematic review process, have played a pivotal role in shaping
the specific research questions addressed in this article. Our intention is not to overshadow
the primary focus of our research but to underscore the significance of our contributions by
addressing unresolved questions in the field.

2.1. Search Strategy and Inclusion Criteria

Conducted in July 2023, this literature review focused solely on articles and reviews
written in English, published in journals between 2018 and 2023, sourced from the Scopus
and Web of Science Core Collection databases. We removed any duplicated articles to
ensure data integrity.

To ensure clarity in our search, we constructed a comprehensive search query encom-
passing the concepts of “Machine Learning”, “Artificial Intelligence”, or “Data Mining”
applied to the context of “Decision Support System”, “Data Analytics”, or “Data Analysis”.
This search was specifically targeted at the population of “Hospital Data” or “Health Data”,
with additional filtering based on “Cardiology” or “Cardiovascular Disease”. We ended
up with the following query “(“Machine Learning” OR “Artificial Intelligence” OR “Data
Mining”) AND (“Decision Support System” OR “Data Analytic” OR “Data Analysis”) AND
(“Hospital Data” OR “Health Data”) AND (“Cardiology” OR “Cardiovascular Disease”)”.

2.2. Results

The application of the mentioned query to the said Core Collection databases retrieved
21 papers. After the acquisition of such papers, we followed the PRISMA workflow, as
depicted in Figure 1, illustrating our analysis of the reviewed articles.

Our goal was to investigate the application of Artificial Intelligence (AI) or machine
learning in Health Data, with a specific focus on heart diseases. Throughout our literature
review, we came across various topics related to this subject, and Table 1 summarizes the
key themes found in each document. Without surprise, Heart Disease Prediction emerged
as a prominent topic in this field, and the Internet of Things (IoT) also played a significant
role in data acquisition, enabling further analysis. Additionally, the Risk Assessment of
heart diseases or mortality was prevalent in the studies that were examined.
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Figure 1. PRISMA workflow diagram.

Table 1. Topics found in literature review.

Topic Reference Number of Documents

Heart Disease Prediction [12–20] 9
IoT [12–16,21,22] 7
Risk Assessment [16–19] 4
Big Data [13,20] 2
Mortality Prediction [19] 1
Recommender Systems [23–25] 3
Clustering [26] 1
Blockchain [15] 1

A more detailed review of each document is also presented next, where article [27]
discusses the significance of data integration and introduces a diagnosis recommender
system designed to assist physicians. In the same topic, ref. [26] presents a recommender-
system solution that utilizes clustering techniques for each disease partition, including
angina, non-cardiac chest pain, silent ischemia, and myocardial infarction.

Study [15] proposes the integration of Blockchain with AI to strengthen both technolo-
gies and create a novel solution that serves the objective of providing improvements in
cardiovascular medicine.

Articles [12–14,21] use IoT sensors to capture data and then use data to predict and
diagnose heart diseases with very promising results. Refs. [20,28] discuss the development
of an optimized feature-selection algorithm designed to predict heart diseases at an early
stage. Work [29] also discuss the development of a heart disease prediction model (on
benchmarking datasets). Article [17] proposes the development of a machine learning
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algorithm to predict myocardial infarction diagnosis using electronic health record data
readily available during Emergency Department assessments. Work [22] is a state of the
art for using the Internet of Things with quantum dots in medicine. This integration offers
advanced disease detection and personalized treatments through precise data collection.
Healthcare benefits from the Artificial Intelligence-aided IoT, which securely transmits
patient data for tailored solutions.

Work [18] discusses the establishment of early warning models to assess and prevent
diseases such as stroke, heart failure, and renal failure. The authors of [16] utilize IoT
biosensors in a machine learning-based risk-assessment approach. Ref. [19] focuses on
predicting the mortality risk of patients during or shortly after cardiac surgery using
machine learning techniques for cardiac risk assessment.

The authors of [23] present a comprehensive review that delves into the history of
artificial intelligence in medicine, exploring its contemporary and future applications in
adult and pediatric cardiology, with a focus on selected concentrations. The review also
addresses the existing barriers to implementing these advanced technologies. Furthermore,
the article concludes by discussing the notable advantages of having a recommender system
in place. Such a system would not only enhance workflow efficiency but also provide
physicians with more time to spend with their patients, leading to increased job satisfaction.
As a result, patients are expected to experience improved satisfaction as they benefit from
more face-to-face time with their physicians.

Globally, there is a concerted effort to maximize the advantages of artificial intelli-
gence in medicine [23], aiming to assist physicians in achieving better performance and
enhance patients’ experiences during hospitalization. However, we found a gap in the
post-diagnosis phase. Following a patient’s hospitalization, they are connected to nu-
merous medical devices and our study centers on the analysis of select data gathered
from these devices, aiming to assist physicians in comprehending typical patient behavior
post-diagnosis. Distinguishing itself from previous research, our primary emphasis lies in
maximizing the utility of existing hospital medical devices and harnessing the resultant
data in the post-diagnosis phase. Our objective is twofold: first, to identify patterns during
the post-diagnosis phase that could aid physicians in better evaluating patients’ progress;
second, we propose predicting potential cardiological complications that may arise during
the hospitalization period and impact patients’ well-being.

3. Methodology

In the pursuit of our research objectives, we employed a systematic-approach CRISP-
DM to guide the development of our study. Leveraging the comprehensive patient data
from Hospital Santa Maria, we followed a structured methodology to uncover insights
and develop predictive models. Our database, integral to this study, includes data from
512,764 patients and contains continuous clinical signals such as Temperature, Blood
Oxygen Level (SpO2), Heart Rate, and Arterial Blood Pressure. This dataset, comprising
138 tables and occupying 75 gigabytes of data, was provided under the framework of the
FCT project DSAIPA/AI/0122/2020 AIMHealth—Mobile Applications Based on Artificial
Intelligence [11]. The availability of the database for research was approved by the Ethical
Committee of the Faculty of Medicine of Lisbon, one of the project partners.

These patients were selected from the Medical Intensive Care Units of Hospital de
Santa Maria, the largest Portuguese Public Hospital, located in Lisbon. They were already
diagnosed with specific diseases, and we chose to identify or forecast myocardial ischemia, a
daunting complication, in three specific diseases—Acute Myocardial Infarction, Pulmonary
Thromboembolism, and Aortic Stenosis—that represent a spectrum of Cardiovascular
Diseases (CVDs).

This approach was informed by industry-standard frameworks like the Cross-Industry
Standard Process for Data Mining (CRISP-DM) [24]. The utilization of such methodologies
ensures a rigorous and well-organized process, aligning with best practices while allowing
us to focus on the medical significance and practical implications of our findings. Building
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upon a doctoral research initiative, Data Sharing Agreements were meticulously crafted
and signed. The implementation of homomorphic encryption, initially explored in a
previously published paper [10], imparted an additional layer of academic rigor and depth
to our methodology.

The combination of systematic methodologies, comprehensive patient data, advanced
ML techniques, and ethical considerations forms the robust foundation of our research,
enabling us to pursue a deeper understanding of cardiovascular diseases and their predic-
tive modeling.

By leveraging CRISP-DM, we aimed to develop models that are not only accurate but
also meaningful for medical professionals navigating the complexities of cardiovascular
healthcare. Within CRISP-DM, we divided our efforts into two key areas: (1) exploratory
data analysis (EDA) and (2) machine learning (ML) predictive models. This division
allowed us not only to conduct a comprehensive evaluation of the data and gain a more
thorough understanding of each disease, but also to structure this study effectively.

3.1. Exploratory Data Analysis

In Section 4 of our study, we conducted EDA for decision support purposes, during
which we analyzed each disease individually. This phase of our methodology aimed to
uncover critical insights into the progression of myocardial ischemia within the context of
three specific diseases: Acute Myocardial Infarction, Pulmonary Thromboembolism, and
Aortic Stenosis. By thoroughly examining the data through EDA, we laid the foundation
for our subsequent ML modeling efforts.

3.2. Machine Learning Predictive Models

Section 5 of our study marked the application of ML models to the diseases under
study. This phase involved the implementation and evaluation of predictive models to
identify or forecast myocardial ischemia within the specified diseases. By harnessing the
power of advanced ML techniques, we sought to provide clinicians with valuable tools for
making informed, accurate decisions, preempting risk situations, and optimizing patient
care and clinical outcomes in the rapidly advancing field of cardiovascular healthcare.

4. Exploratory Data Analysis for Decision Support

With a firm commitment to elevating patient outcomes and enhancing medical strate-
gies, this chapter embarks on a journey through the vast expanse of patient data collected
from Hospital Santa Maria. By employing exploratory data analysis (EDA) techniques, we
uncover hidden relationships, correlations, and trends that have the potential to redefine
clinical decision making in cardiovascular healthcare. This expedition seeks to reveal
nuanced intricacies that can significantly shape the course of patient care.

During the EDA phase, our primary objective was to unveil insights and hidden
patterns within the data that hold the promise of aiding in early treatment or risk assess-
ment. We concentrated on identifying patient profiles and recurrent patterns in frequently
measured physiological data, along with examination results. This phase forms the bedrock
of our research, providing a comprehensive understanding of disease-specific trends and
risk factors that underpin the subsequent predictive models.

Our primary focus was on a table called RT_Data, which contains real-time data
collected during patients’ hospital stays. This valuable table encompasses physiological
data, vital signs, and information gathered from medical devices. Among all the variables,
a few were selected by physicians to study their behavior and examine if there are any
relevant patterns for each disease. It is crucial to emphasize that while numerous columns
were available, our physicians’ colleagues meticulously handpicked the most pertinent
ones for our disease study. The most commonly recorded physiological variables, Heart
Rate, Respiratory Rate, Arterial systolic Blood Pressure, Arterial Diastolic Blood Pressure
and Mean Arterial Pressure, were chosen as they reflect the momentaneous function of the
cardiovascular and respiratory systems and their reflex regulation (see Table 2).
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Table 2. RT-Data DB table composition.

Variable Name Variable Description

RTDATADBOID Database Object ID for each collection of real-time data
CREATIONDATE Date and time of real-time data collection
RESPIRATION RATE FROM EKG Respiration Rate Value
ST SEGMENT LEAD V5 ST segment deviation from baseline in the ECG Leads V5
ST SEGMENT LEAD V4 ST segment deviation from baseline in the ECG Leads V4
ST SEGMENT LEAD V3 ST segment deviation from baseline in the ECG Leads V3
ST SEGMENT LEAD V2 ST segment deviation from baseline in the ECG Leads V2
ST SEGMENT LEAD V1 ST segment deviation from baseline in the ECG Leads V1
ST SEGMENT LEAD AVF ST segment deviation from baseline in the ECG Leads aVF
ST SEGMENT LEAD AVR ST segment deviation from baseline in the ECG Leads aVR
ST SEGMENT LEAD AVL ST segment deviation from baseline in the ECG Leads aVL
ST SEGMENT LEAD III ST segment deviation from baseline in the ECG Leads III
MEAN ARTERIAL PRESSURE 2 Mean Arterial Pressure Value
DIASTOLIC PRESSURE (ART.) 2 Diastolic Pressure Value
SYSTOLIC PRESSURE (ART.) 2 Systolic Pressure Value
HEART RATE Heart Rate Value

Additionally, we conducted a thorough examination of the diagnostic table (see Table 3),
which played a crucial role in our analysis. This table provided essential details regarding
the prescribed diagnoses for each patient, allowing us to filter and concentrate specifically
on the diagnoses corresponding to the selected diseases: myocardial infarction, pulmonary
thromboembolism, and aortic stenosis.

Table 3. Diagnoses DB table composition.

Variable Name Variable Description

DIAGDBOID Database Object ID for each diagnosis
DIAGDESC Description of each diagnosis
DIAGTYPEDESC List of diagnoses
DIAGCODE Code associated with a particular diagnosis in the list of diagnoses

To construct comprehensive patient profiling, we gathered additional information
from the patients table in Table 4, and also from the patient’s admission table in Table 5.
The patient’s table enabled us to collect information about individual characteristics, while
the patient’s admission table provided details about patient’s weight, height, and the time
of their hospitalization. Furthermore, we consulted a separate table that stored information
about medical tests including the name of the test, the date it was conducted, and the
results of the test (Table 6).

By combining these diverse sources of data, our objective was to create a holistic
view of each patient’s medical journey and gain valuable insights into their conditions,
treatment progress, and overall health. Table 7 provides a summary of the utilized database
tables along with their respective rationales, aimed at enhancing the understanding of the
material by the readers.

Table 4. Patient DB table composition.

Variable Name Variable Description

PATIENTDBOID Database Object ID for each patient
BIRTHDATE Patient birth date
BLOODGROUP Patient blood group
SEX Patient gender
ETHNICITY Patient ethnicity
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Table 5. Admission DB table composition.

Variable Name Variable Description

ADMISSIONDBOID Database Object ID for each admission
STARTED Admission start datetime
ENDED Admission end datetime
WEIGHT Admission weight
HEIGHT Admission height

Table 6. Laboratory test DB table composition.

Variable Name Variable Description

LABTESTDBOID Database Object ID for each Laboratory Test
STARTED Datetime of test realization
ANALYSISDESC Name of analysis component
VALUE Result for analysis component

Table 7. Summary of utilized DB tables and their description.

DB Table Description No. Observations

Patients Obtain personal information
to build a patient profile 512,764

Admission How long a patient was
hospitalized 1,159,139

Diagnoses Filter by desired diseases 126,126

LabTests Extract date and result from
specific exams 8,043,764

RT_Data
Real-time data monitored
during patients’
hospitalization

30,404,477

As shown in Table 7, we were presented with a considerable volume of data gener-
ated by a real hospital. This untapped data reserve possessed the inherent potential to
significantly enhance physicians’ performance and patient care. By utilizing advanced ana-
lytical techniques, these surplus data could be transformed into valuable insights, offering
a wealth of information that can aid physicians in making more informed and accurate
clinical decisions.

To ensure our analysis focused on the desired diseases, we began by refining the
diagnosis table to include only the diagnoses that corresponded to our three target dis-
eases. However, this process proved to be more complex than initially anticipated due to
the hospital’s non-standardized data collection and generation practices. The diagnostic
entries exhibited variations in formatting, including the use of abbreviations, mixed cases
(uppercase and lowercase), and inconsistent naming conventions.

After applying our filtering criteria, all the selected entries underwent crucial validation
and verification by our team’s physicians. Their thorough review provided an additional
layer of scrutiny and assurance, enabling us to confidently proceed with our analysis.

Next, we proceeded to retrieve all the information about patients and admissions of
patients who had been diagnosed with at least one of the remaining entries in the filtered
diagnoses table. To ensure a holistic analysis, we extended our data-acquisition phase to
encompass the real-time data. We narrowed down this table to include only the patients
identified in the previous steps. For each disease, we began by merging all the information
collected about patients and admissions, and the real-time data into a (python) Pandas
DataFrame that we will now refer to as the “Hospitalization Dataset”. Subsequently, we
created additional variables, including the patients’ age, duration of admission in days,
and time of admission in minutes at each observation of the real-time data collection.
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Additionally, we retrieved medical-examination data from the LabTests table. Specifi-
cally, for all three diseases, we obtained patients’ exam results for Troponin and N-terminal
prohormone of brain natriuretic peptide (NT-proBNP) levels and we joined that informa-
tion with patients’ and admissions data for each one of the three diseases, resulting in a
dataset that we will refer to as the “Medical Tests Dataset”. Troponin and NT-proBNOP are
biological markers specific to cardiac lesion and/or strain. Troponin is a cardiac-specific
protein released when myocardium cells are injured. NT-proBNP is a pro hormone released
by the heart upon volume or pressure overload. Troponin is a marker of ischemia, so it
correlates with ST deviation, while NT-proBNP is from heart failure congestion. After
collecting all the medical test data related to NT-proBNP, we conducted an examination of
the data within our CRISP-DM data preparation stage. We performed various procedures,
such as removing duplicate entries and ensuring that the tests were conducted during the
patient’s hospitalization period. Additionally, we eliminated tests with implausible results,
such as values of 0 or negative values. Despite these efforts, upon analyzing the data for
each disease, we regret to report that the number of valid tests remained extremely low
and insignificant for us to proceed with further analysis. As a result, the Medical Tests
Dataset only included Troponin Tests and their corresponding results for each disease. The
NT-proBNP data set did not have enough data to perform a valid analysis.

Overall, we began our individual analyses with two distinct datasets for each disease.
The first dataset, referred to as “Hospitalization Dataset”, incorporated information about
patients, admissions and real-time data measured throughout their hospitalization. The
second dataset, named “Medical Tests Dataset”, comprised patient, admission, and test
result information for Troponin. As our data preparation (acquisition, cleaning and filtering)
phase was finally completed, we proceeded to better study and understand each disease.

4.1. Myocardial Infarction
4.1.1. Hospitalization Dataset

Our EDA for Myocardial Infarction included a dataset of 260 patients. Among them,
57 patients were female, and 203 patients were male. This dataset consisted of 368,285 ob-
servations, with each observation representing a real-time data collection record for an
individual patient. The age range of patients diagnosed with Myocardial Infarction varied
from 16 years (the youngest patient) to 88 years (the oldest patient). In terms of data
collection, we observed that one patient had the highest number of real-time data collection
records, with a total exceeding 23,000. This patient was hospitalized for approximately two
and a half months.

Then, we performed common data preparation procedures, such as removing dupli-
cate entries and addressing missing values. After performing the aforementioned proce-
dures, we proceeded to analyze certain parameters such as Heart Rate and Respiratory
Rate, as they are the vital signs usually collect for this disease, since their variation can
determine Ischemia.

In our initial descriptive statistics approach, we grouped the heart rate measurements
by extracting the hourly pattern of each measurement. Our objective was to investigate
whether the time of day had any influence on the frequency of heart rate readings. To
further enrich the graph’s information, we also incorporated the gender variable to assess
any significant differences, as shown in Figure 2.

Observing Figure 2, several notable patterns emerge. Firstly, it is evident that women
tend to have higher rates of tachycardia compared to men. Additionally, an intriguing
observation is that the average heart rate appears to be higher during the nighttime period
compared to the daytime period. This fact prompted us to expand our analysis by incorpo-
rating the day of admission as an additional grouping factor for heart rate measurements.
By including this level of grouping alongside the hour and minute of each measurement,
our aim was to explore potential trends or variations in heart rate patterns throughout the
duration of the patients’ admission days, as depicted in Figure 3.
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Figure 2. Average Heart Rate by time and gender.

 

Figure 3. Average Heart Rate in the initial 4 days of admission by daytime and nighttime period.

As we can see in Figure 3, during the first 24 h of admission into the hospital, there
is a decline in the patients’ average heart rate values during the daytime period. From
8 am until lunchtime, the values progressively decrease, and from lunchtime until the
start of the nighttime period, they increase. In the subsequent days of admission, the
average value oscillates between the 80s bpm during both the day and nighttime, with
no noticeable differences. So, that phenomenon in the first 24 h of admission lead us to
another analysis where we explored with more detail the evolution of heart rate during that
period of admission. To accomplish this, we utilized the average values based on minutes
of admission, focusing specifically on the time span from minute 1 to minute 1440, which
corresponds to the first 24 h of admission. This analysis allowed us to explore how the
heart rate changes over this crucial initial period of hospitalization, as seen in Figure 4.
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Figure 4. Average Heart Rate in the initial 24 h of admission.

It’s notable to observe in Figure 4 that the average heart rate progressively decreases
until around 2 h after admission starts; this happens since patients with a Myocardial
Infarction undergo angioplasty in the first hour.

This marks the lowest average heart rate, after which it begins to increase progressively,
eventually stabilizing between 80 and 85 after 8 h of admission. This behavior of the average heart
rate could possibly be influenced by medication or medical procedures (such as percutaneous
coronary intervention), and once their effects take place, the value tends to stabilize.

Shifting our focus, another measure chosen to evaluate patients’ conditions was the
Respiration Rate (taken from thoracic impedance from EKG). Initially, we had more than
47,000 observations with this measure recorded. However, after ensuring that the value was
greater than 0, we were left with only about 39,000 records. Out of these, 36,000 measurements
were taken during the first 24 h of hospital admission. As a result, we focused our analysis
on this subset of data, as depicted in Figure 5.

 

Figure 5. Average Respiration Rate for first 24 h of admission.

301



J. Pers. Med. 2023, 13, 1421

As we can see in Figure 5, the average value of the respiration rate during the first 24 h
of admission (1440 min) oscillates between 12 and 20, with a decrease to 8 occurring close
to 17 h after the admission start. Subsequently, there is an increase in the average value,
which is observed close to the 24 h mark since the admission start.

4.1.2. Medical Tests Dataset

Shifting our focus to the dataset of medical exams, we conducted an analysis to com-
prehend the progression of Troponin over time. Specifically, we examined 1546 observations
of Troponin exams.

After removing duplicate entries and applying specific filters to ensure the inclusion
of only relevant exams conducted during the hospitalization period, we successfully elimi-
nated all tests that were not administered during the specified timeframe. As a result of
these two procedures, our dataset was refined, consisting now of 1348 records for Troponin.
To analyze the Troponin exams more effectively, we grouped them based on the average
values per day of admission, Figure 6.

Figure 6. Average Troponin values by day of admission.

The average value of Troponin starts at 1000 ng/L and exhibits a tendency to increase
during the initial days of admission, reaching a peak of more than 2500 ng/L on the
7th day, followed by an oscillating but progressively decreasing pattern. For healthy
individuals, Troponin values are expected to be lower than 14 ng/L for healthy people,
and it is evident that for patients diagnosed with myocardial infarction, these values never
return to the considered normal range even after more than 1 month from the start of their
hospital admission.

4.2. Pulmonary Thromboembolism
4.2.1. Hospitalization Dataset

For the pulmonary thromboembolism disease, we had a total of 48 patients, consisting
of 28 males and 20 females. The age range of the patients spanned from 0 years to 91 years,
with the longest hospitalization duration lasting for 322 days. The dataset with real-time
data consisted of 87,760 observations, with each row representing a real-time data collection
instance for an individual patient.

As in the previous disease, we handled duplicates by removing them, and any in-
stances of missing values were addressed by exclusion, ensuring the data’s integrity re-
mained intact.

Furthermore, we conducted an analysis of heart rate and respiration rate measures
to identify patterns that could assist physicians in understanding the evolution of these
parameters. The objective was to provide valuable insights into how these vital signs
change over time and enable healthcare professionals to take appropriate actions based on
a patient’s individual evolution compared to the typical behavior observed in the majority
of patients. Once again, we commenced our analysis by examining heart rate patterns
across hours and genders, with the aim of identifying intriguing trends, as shown Figure 7.
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Figure 7. Average Heart Rate by time and gender.

Figure 7 shows a distinction from myocardial infarction. The average Heart Rate values
tend to be tachycardic, and there is no significant difference between men and women, even
during the daytime or nighttime periods. The values oscillate between 60 bpm and 140 bpm,
with men having a few average heart rate values above 140 bpm during the nighttime period.

Then, we proceed our analysis by grouping Heart Rate values based on their day of
admission and the specific hour and minute, computing the average value for each group,
as seen in Figure 8. Subsequently, we plotted the resulting graph to examine any discernible
patterns. Our primary objective was to investigate whether a similar pattern, as observed in
Myocardial Infarction cases, would emerge. Specifically, we were interested in determining
whether there was a notable minimum average heart rate during the daytime period of day
0, which could be indicative of a common trend in both conditions.

 

Figure 8. Average Heart Rate in the initial 4 days of admission by daytime and nighttime periods.

As depicted in Figure 8, the behavior of Heart Rate in this disease does not exhibit
similarities with Myocardial Infarction. The values, rather, indicate signs of tachycardia,
but there is no significant discernible pattern observed during different days of admission.
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Additionally, we conducted an analysis of the first 24 h of admission to investigate
whether there were any instances of minimum or decreasing average heart rate values,
Figure 9. The purpose was to ascertain whether such occurrences could be attributed to
specific medical procedures or medication administered to the patient upon admission to
the hospital.

 

Figure 9. Average Heart Rate in the initial 24 h of admission.

In Figure 9, we can observe the same trend shown in Figure 8. The average heart
rate values of patients diagnosed with pulmonary thromboembolism exhibit significant
fluctuations. Patients frequently experience tachycardia, where heart rate values during the
first 24 h can oscillate widely, ranging from under 60 to over 110 beats per minute (bpm).

Shifting our focus to the Respiration Rate, we had more than 6500 valid observations.
To ensure data integrity, we performed certain procedures, such as removing observations
where the value of the respiration rate was equal to or lower than 0 (impossible values
in this context). By applying these data cleaning procedures, we aimed to maintain the
accuracy and reliability of the dataset for further analysis. Figure 10 presents the average
respiration rate from EKG in the first 24 h of admission.

 

Figure 10. Average Respiration Rate for first 24 h of admission.
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After approximately 5 h of hospitalization, the average value of respiration rate
starts to exhibit significant fluctuations. During the initial 5 h, the average value remains
relatively stable, around 15. However, after this period, the average respiration rate shows
oscillations, varying between 5 and 30 in certain instances. This observation suggests that
the respiration rate tends to become more erratic as the time since admission progresses.

4.2.2. Medical Tests Dataset

In terms of medical tests, we conducted a review to ensure we had a significant number
of Troponin tests performed on patients diagnosed with pulmonary thromboembolism.
The same procedures described in myocardial infarction were applied to ensure we had
only relevant and valid tests and after careful examination, we aimed to retain 219 tests out
of the total 244. Then, we grouped Troponin values based on the day of admission when
the examination was conducted, and calculated the average value for each day, which is
shown in Figure 11.

 

Figure 11. Average Troponin values by day of admission.

As observed in Figure 11, the average value of troponin initially increases, similarly to
what is seen in myocardial infarction cases. However, after two days of admission, it starts
to decrease with occasional minor increases. Notably, the highest average value of Troponin
recorded was slightly below 500 ng/L, which contrasts with myocardial infarction cases
where values reached 2500 ng/L.

4.3. Aortic Stenosis
4.3.1. Hospitalization Dataset

As with the previous diseases, we began by presenting some descriptive statistics
of the data under study. The dataset comprised 794,694 observations of real-time data
collected from 660 patients, where 370 were male and 290 female. The ages of the patients
ranged from 0 years to 93 years. Notably, the patient with the longest hospitalization period
was admitted for 925 days, from 9 February 2017 to 23 August 2019.

After applying the same procedures as before, we conducted an analysis of the heart
rate and respiration rate signals.

As this disease had a substantial number of patients, with a relatively even distribution
among genders, we first examined the average heart rate based on the hour and minute of
measurement, as well as considering the patients’ gender; see Figure 12.

We can notice almost no difference between the genders in terms of the average heart
rate values. The analysis indicates that both male and female patients with this disease
exhibit similar trends in their heart rate patterns. It is also intriguing to observe a pattern
that was previously noted in myocardial infarction but is not as prominent in pulmonary
thromboembolism. The average heart rate values tend to be lower during the daytime
period compared to the nighttime period, where the highest value from the daytime period
almost corresponds to the lowest average heart rate value from the nighttime period.
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Figure 12. Average Heart Rate by time and gender.

This fact led us to investigate the influence of the daytime period on the average heart
rate values, the results of which are shown in Figure 13. By analyzing the heart rate data
during daytime periods, we sought to discern potential patterns or variations that could
shed light on how this specific time of day may impact the average heart rate in patients.

 

Figure 13. Average Heart Rate in the initial 4 days of admission by daytime and nighttime periods.

Aortic stenosis exhibits a similar behavior to myocardial infarction. Those suffering
from myocardial infarction are submitted to Angioplasty while patients suffering from
aortic stenosis are admitted and in the next day have a scheduled procedure Transcuta-
neous Aortic Valve Implantation (TAVI) with sedation and or anesthesia. On the first day of
admission (day 0), during the daytime period, the lowest average value of their heart rate
is noted. From 8 am onwards, their heart rate starts decreasing (when they are submitted to
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TAVI), and throughout the daytime period, it never reaches the average value of heart rate
seen during the nighttime period on the first day of admission. Subsequently, in the follow-
ing days, the heart rate values show greater stability, both within each day and between the
daytime and nighttime periods. Even in comparison with pulmonary thromboembolism,
most of the data for aortic stenosis exhibits remarkable stability, except for the observed
phenomenon on the first day of admission. The heart rate values demonstrate a consistent
pattern over time, indicating relatively steady and consistent behavior in most cases. Our
efforts were then focused on studying the first 24 h of admission, as depicted in Figure 14,
to understand if it showed a similar behavior to myocardial infarction, where the average
heart rate decreases and reaches its lowest value approximately one and a half hours after
the admission starts.

Figure 14. Average Heart Rate in the initial 24 h of admission.

Once again, Figure 14 presents a behavior quite like myocardial infarction in aortic
stenosis patients. The average heart rate starts decreasing after admission and reaches its
lowest value at approximately 2 h. Subsequently, the heart rate gradually increases until it
reaches around 75 bpm. Over the remainder of the first 24 h, the average heart rate remains
stable, fluctuating between 75 and 80 bpm. This consistent and characteristic pattern
of heart rate changes in the initial 24 h of admission resembles the behavior typically
seen in myocardial infarction cases. The behavior of heart rate in aortic stenosis and
myocardial infarction is quite similar when compared to pulmonary thromboembolism,
where tachycardia is more prevalent globally. However, unlike in the former cases, there is
not a significant gradual decrease or increase in heart rate values.

Shifting our focus to the Respiration Rate, we analyzed the values from the first 24 h
of admission, Figure 15. Out of the total 63,000 observations, a substantial majority of
57,000 observations were specifically from the first 24 h of admission.

Once again, we observed new evidence of a behavior similar to myocardial infarction
in aortic stenosis patients. The average values of Respiration Rate rarely exceeded the limits
considered normal for healthy individuals, which typically fall within the range of 12 to
20 breaths per minute. Pulmonary thromboembolism did not exhibit a markedly different
behavior, but it did surpass the anticipated values on multiple occasions.
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Figure 15. Average Respiration Rate for first 24 h of admission.

4.3.2. Medical Tests Dataset

Analyzing the Troponin tests, we first filtered these exams to ensure they were con-
ducted within the hospitalization period. Out of the total Troponin tests, 2872 exams were
considered valid and were included in the analysis. Then, we followed a similar approach
to before by grouping the values of tests based on the admission day when they were
conducted. Subsequently, we calculated the average value of Troponin for each day, as seen
in Figure 16.

Figure 16. Average Troponin value by day of admission.

Conversely, the values of Troponin in aortic stenosis patients across the day of admis-
sion are not similar to Troponin figures in myocardial infarction patients, contrasting in their
heart rate and respiration rate. In aortic stenosis, the average Troponin value reaches its
highest point after 5 days of admission and then gradually decreases but remains relatively
stable until the 24th day of admission. Unlike myocardial infarction, the Troponin values in
aortic stenosis patients never reach levels as high as 1000 ng/L. Even when compared with
pulmonary thromboembolism, the behavior of troponin differs. In aortic stenosis cases,
the highest value is only reached after 5 days, whereas in pulmonary thromboembolism, it
occurs earlier. By the 12th day, troponin levels in pulmonary thromboembolism drop below
200 ng/L, whereas in aortic stenosis, this value is only achieved after 25 days of admission.
The distinct behavior of Troponin in aortic stenosis patients is noticeably different.
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5. Machine Learning Predictive Models—Myocardial Ischemia Prediction

Moving beyond the Exploratory Data Analysis, our focus shifted to the machine
learning (ML) modeling phase, where our aim was to predict myocardial ischemia. This
predictive capability allows us to anticipate critical events and provide physicians with the
tools necessary for early interventions. The overarching purpose of our data analysis was
to aid physicians in making well-informed and accurate decisions, ultimately enhancing
patient outcomes, and elevating the overall quality of care.

To initiate our predictions, we employed the Hospitalization Dataset for each of
the three diseases. This dataset includes variables known as ST Segment Lead that are
represented as float values, which can be either positive or negative. Myocardial ischemia
can be detected using ST segment modification, this being an established marker of cardiac
injury without cellular death. It may happen as part of an unfavorable evolution of the
disease or therapeutic insufficiency. We evaluated these values using the ST-segment-T
wave criteria [25], which is suggestive of myocardial ischemia (MI). The criteria for ST-
elevation and ST-depression are distinct, and for each variable under study, specific rules
were applied to determine the presence of myocardial ischemia. For each disease, we
analyzed each record and verified whether, according to the values of our ST-Segment
variables and the aforementioned criteria, myocardial ischemia was present or not. A
Boolean variable was created to represent the phenomena. Table 8 presents the number of
observations (rows) in the Hospitalization Dataset, the number of diagnosed patients, the
number of patients that had MI and the number of observations with myocardial ischemia
for each disease under study. Please note that these patients were admitted to the hospital
with cardiac diseases and were measured with a non-regular frequency of 1–5 min, which
could explain the higher number of cases of myocardial ischemia.

Table 8. Presence of myocardial ischemia (MI) for each disease.

Disease No. Observations No. Patients Patients’ w/MI No. Observations w/MI

Myocardial Infarction 368,285 260 254 144,273
Pulmonary
Thromboembolism 87,760 48 22 17,357

Aortic Stenosis 794,694 660 649 394,967

Starting our predictions, the initial idea was to utilize shift variables to attempt a pre-
diction of whether a patient would experience myocardial ischemia in the future. For each
ST variable, the Heart Rate variable and the MI variable, we selected the past values (lag)
based on the autocorrelation of the patient with the most observations. Since the dataset
contained multiple records for various patients, it was crucial to check the autocorrelation
for only one patient to ensure accurate predictions of myocardial ischemia based on shift
values for that specific patient. We performed this procedure for each one of the three
diseases under study, utilizing the respective Hospitalization Dataset. Autocorrelation, in
essence, quantifies the extent of similarity between a variable and its past values across
various time intervals. The interdependence over time within the dataset can substantially
impact the performance of a model. A noticeable autocorrelation could suggest a strong
temporal relationship between ST Segment measurements or MI occurrences at different
points in time. This indicates that the current ST Segment value could potentially be influ-
enced by its own historical values. In the domain of predictive modeling, autocorrelation
plays a pivotal role in refining the accuracy of predictions. This phenomenon enables us to
utilize past values effectively to formulate forecasts for the future.

Based on the observations in Figure 17 and the autocorrelation graphs for all ST
Segment variables, Heart Rate and MI, we selected a lag of 13 and created the respective
shifted variables. It is important to note that lag 13 could represent 13 min or more,
considering the irregular frequency of data collection, which could range from 1 to 5 min.
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(a) (b) 

Figure 17. Here we represent as an example the autocorrelation plots for the variables myocardial
ischemia and ST Segment Lead AVF, where (a) represents the autocorrelation for myocardial ischemia
and (b) represents the autocorrelation for ST segment Lead AVF.

Categorical variables, such as ethnicity, sex, or blood group, were converted into
dummy variables. Afterward, we calculated the correlation between each variable and our
target variable, myocardial ischemia, and selected the ones with the highest correlation,
as shown in Table 9. Of these selected variables, Troponin was discarded since it has no
predictive value; as troponin is an indicator of cellular necrosis, it is not included in the
analysis of ischemia (since it only appears a posteriori).

Table 9. Variables used in models by disease.

Myocardial Infarction
Pulmonary

Thromboembolism
Aortic Stenosis Global Model

Height Height Shift_Myocardial_Ischemia Age
Age Weight Shift_Heart_Rate Shift_Myocardial_Ischemia
Shift_Myocardial_Ischemia Age Shift_Segment_Lead_AVL Shift_Segment_Lead_AVL
Shift_Segment_Lead_AVL Shift_Myocardial_Ischemia Shift_Segment_Lead_AVR Shift_Segment_Lead_III
Shift_Segment_Lead_AVF Shift_Heart_Rate Myocardial_Ischemia Ethnicity_Caucasian
Shift_Segment_Lead_III Shift_Segment_Lead_AVL Myocardial_Ischemia
Ethnicity_Caucasian Shift_Segment_Lead_AVF
Myocardial_Ischemia Shift_Segment_Lead_III

Ethnicity_Caucasian
Sex_Female
Myocardial_Ischemia

In addition to this selection, we also included PatientDboid (the primary key for the
patients DB table), to conduct further analysis. We also combined all the data from the
hospitalization datasets for the three diseases to create a global model. The same procedures
were conducted as with each individual disease.

For each disease, after selecting the variables to include in the model, we decided
to split the data between train and test sets based on patients. We randomly selected
one patient within the top five with the most rows for each disease and used them for
the test set, while excluding them from the training set. Afterward, we dropped the
PatientDboid column and created separate sets of X and Y for both the training and test
datasets. For the global model, we randomly split the data into training and test sets using

310



J. Pers. Med. 2023, 13, 1421

an 80–20 proportion. The algorithms we employed for the machine learning modeling were
Random Forest, Naïve Bayes, and Neural Network. We constructed a Neural Network with
two hidden layers, each consisting of 1024 and 512 neurons, respectively. The activation
function used in both hidden layers was ReLU (Rectified Linear Unit), while the output
layer employed the Sigmoid activation function. For optimization, we utilized the Adam
optimizer and the binary cross-entropy loss function.

Table 10 presents the results, highlighting the best-performing algorithm for each dis-
ease. We evaluated the performance of each algorithm using all four standard classification
evaluation metrics (F1-Score, Accuracy, Precision, Recall). Additionally, the table includes
the number of records in the training and test sets for each disease.

Table 10. Performance of algorithms by disease.

Disease Algorithm F1-Score Accuracy Precision Recall

Myocardial Infarction Random Forest 0.81 0.82 0.81 0.80
# Train Set: 356,905 Naive Bayes 0.81 0.82 0.81 0.81
# Test Set: 8023 Neural Network 0.86 0.82 0.86 0.86
Pulmonary Thromboembolism Random Forest 0.92 0.94 0.92 0.91
# Train Set: 80,685 Naive Bayes 0.73 0.75 0.73 0.82
# Test Set: 6595 Neural Network 0.87 0.94 0.87 0.87
Aortic Stenosis Random Forest 0.83 0.87 0.84 0.83
# Train Set: 778,744 Naive Bayes 0.83 0.86 0.83 0.83
# Test Set: 9365 Neural Network 0.91 0.87 0.91 0.92
Global Model Random Forest 0.86 0.86 0.86 0.86
# Train Set: 990,756 Naïve Bayes 0.84 0.84 0.84 0.84
# Train Set: 247,690 Neural Network 0.84 0.85 0.84 0.83

As evident from the results in Table 10, the best-performing algorithms achieved
impressive scores close to 90% for each evaluation metric, indicating their good predictive
capabilities in identifying myocardial ischemia with a time lag of 13. These highly promis-
ing outcomes offer strong encouragement for the subsequent stages of implementation, as
the algorithms demonstrated the potential to assist physicians in real time in providing
timely advice regarding myocardial ischemia occurrence and forecast in patients.

When comparing the global model with the disease-specific models, the results are
not as impressive, if we think of the first case. However, the global model is more versatile
as it is not solely trained on data from one disease. It is also important to mention that each
model can be applied to patients with any disease, with the only requirement being the
data specified in Table 9 for the chosen model. These innovative results underscore the
significance of further steps in refining and deploying the algorithms in clinical settings.
The potential benefits of such predictive models are immense, as they can aid healthcare
professionals in proactively managing, forecasting and offering personalized care to patients
at risk of myocardial ischemia.

6. Discussion

In this section, we engage in a comprehensive discussion of the findings and impli-
cations of our study, while also acknowledging the limitations and ethical considerations
inherent in AI-driven healthcare research.

In the context of our research question, “how can fusion of Exploratory Data Analysis
(EDA) techniques and predictive machine learning models assist medical staff in accurate
clinical decision-making and facilitate timely medical interventions of a preventive nature?”,
we presented charts for our use cases in three specific diseases—acute myocardial infarction,
pulmonary thromboembolism and aortic stenosis—that represent a range of studied CVDs.
We employed machine algorithms to predict MI within a 13 min window, for patients
diagnosed with these studied diseases. The implementation of a global model with all the
patients (without filtering by disease), where we achieved 86% for each evaluation metric,
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demonstrates its ability to generalize. The best result for predicting MI was achieved when
trained and evaluated for patients suffering from Pulmonary Thromboembolism and Aortic
Stenosis. Our ability to forecast myocardial ischemia incidents with these levels of accuracy,
particularly within a 13 min window, holds promising implications for timely medical
interventions and improved patient outcomes.

As with any research endeavor, it is essential to acknowledge the limitations of our
study. We confronted the challenges posed by the lack of standardization in data col-
lection procedures and the prevalence of unstructured clinical information in Electronic
Medical Records. These limitations impacted the accuracy and generalizability of our
predictive models, and we recognize the need for ongoing efforts to enhance data quality
and standardization.

The use of AI in healthcare necessitates a robust consideration of ethical implications.
We acknowledge our access to the clinical data of patients admitted to the Intensive Care
Units of Hospital de Santa Maria, in the framework of FCT project DSAIPA/AI/0122/2020
AIMHealth, and the work [10], where DSAs were signed and homomorphic encryption
was implemented. These ethical safeguards protected patient privacy and confidentiality
while enabling critical research.

In the spirit of continuous improvement, we will engage in self-critique by identifying
areas for enhancement and future research directions. Our exploration of myocardial
ischemia prediction, while promising, remains a singular facet of AI applications in cardio-
vascular healthcare. We advocate for a broader exploration of AI’s potential in addressing
various cardiovascular diseases, and on behalf of the study that was conducted [10], we will
focus on further enhancing the robustness and generalizability of our predictive models by
integrating data from multiple hospitals and medical institutions. This collaborative ap-
proach aims to encompass a broader patient population and provide a more comprehensive
understanding of cardiovascular diseases.

7. Conclusions

Our exploratory data analysis of the three studied diseases enables physicians to
grasp patterns in Heart Rate, Respiration Rate, and Troponin values. Going forward, they
can compare data from new patients with the established behavioral norms derived from
previous patients diagnosed with the same disease. We believe that this approach enables
physicians to gain a more profound understanding of the recovery status and spend more
time with patients that show different behaviors. For future work, we suggest conducting
an analysis of additional medical tests, such as NT-proBNP.

In our study, it is also noteworthy to observe that aortic stenosis and myocardial infarc-
tion exhibit certain similarities, which stand in contrast to pulmonary thromboembolism.
The most prominent evidence lies in Heart Rate, where in both diseases, the average value
progressively decreases after admission, reaching its lowest point approximately 2 h after
admission before beginning to rise again.

In this paper, we presented another valuable AI tool, which performed the prediction
(forecast) of myocardial ischemia. Our literature review uncovered no relevant studies
addressing the use of machine learning to assist physicians in evaluating the progression
of patients’ conditions post-diagnosis, showing the relevance of this study. If physicians
were alerted 13 min in advance that a patient might experience myocardial ischemia, with
an accuracy of around 90%, they could take proactive measures rather than reactive ones,
and we believe our AI modeling tool can lead them in that direction. Upon refinement, this
model may be further tested prospectively to predict ischemia and arrhythmia in monitored
cardiac patients. We would like to point out, in addition, that we have shown that our ma-
chine learning model can be applied to any other disease, with the sole requirement being
that the patient must be connected to a medical device that collects ST Segment Variables.

It is also important to mention that applying exploratory data analysis to other diseases
could provide a better understanding of their progression, but it must be performed within
a singular analysis.
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Abstract: Modern healthcare is facing a juxtaposition of increasing patient demands owing to an aging
population and a decreasing general practitioner workforce, leading to strained access to primary care.
The coronavirus disease 2019 pandemic has emphasized the potential for alternative consultation
methods, highlighting opportunities to minimize unnecessary care. This article discusses the role of
artificial-intelligence-driven symptom checkers, particularly their efficiency, utility, and challenges in
primary care. Based on a study conducted in Italian general practices, insights from both physicians
and patients were gathered regarding this emergent technology, highlighting differences in perceived
utility, user satisfaction, and potential challenges. While symptom checkers are seen as potential
tools for addressing healthcare challenges, concerns regarding their accuracy and the potential for
misdiagnosis persist. Patients generally viewed them positively, valuing their ease of use and the
empowerment they provide in managing health. However, some general practitioners perceive
these tools as challenges to their expertise. This article proposes that artificial-intelligence-based
symptom checkers can optimize medical-history taking for the benefit of both general practitioners
and patients, with potential enhancements in complex diagnostic tasks rather than routine diagnoses.
It underscores the importance of carefully integrating digital innovations while preserving the
essential human touch in healthcare. Symptom checkers offer promising solutions; ensuring their
accuracy, reliability, and effective integration into primary care requires rigorous research, clinical
guidance, and an understanding of varied user perceptions. Collaboration among technologists,
clinicians, and patients is paramount for the successful evolution of digital tools in healthcare.

Keywords: primary health care; artificial intelligence; symptom assessment; telemedicine; patient
satisfaction

1. Introduction

Modern health care is critical. The convergence of burgeoning patient demands, pri-
marily due to a progressively aging population and a diminishing general practitioner (GP)
workforce, has rendered access to primary care increasingly challenging [1,2]. This situation
is exacerbated by the prevalence of non-urgent medical consultations which unnecessarily
strain the system. Consequently, we face a paradoxical situation in which an escalation in
technological advancements is countered by decreasing patient satisfaction [3,4].

The COVID-19 pandemic has provided unexpected observations, highlighting the
efficacy of alternative consultation methods. The pandemic-induced decline in face-to-face
visits highlights the prospect that some treatments, which are now deemed superfluous,
potentially carry the risk of iatrogenic harm. Such revelations underscored the opportunity
to minimize unnecessary care, thereby safeguarding patient well-being and fortifying the
sustainability of healthcare [5].
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This article discusses the role and potential of AI-driven symptom checkers [6], par-
ticularly in light of the challenges confronting modern healthcare. We aimed to evaluate
the efficiency, utility, and challenges of integrating these digital tools into primary care
settings by drawing insights from a recent study conducted in Italian general practices [7].
The perspectives of both physicians and patients regarding this emergent technology were
elucidated, shedding light on its potential advantages and pitfalls.

2. Symptom Checkers

Symptom checkers with chatbots are digital tools that use AI algorithms to engage
users in a conversational interface that allows them to input and describe their medical
symptoms. These tools then analyze the provided information to offer potential differential
diagnoses, provide triage recommendations, and suggest appropriate next steps in care [8].
Designed to be user-friendly and accessible, they offer patients an initial point of contact
for health concerns, helping to guide them towards appropriate medical care or self-
management options [9].

In the evolving healthcare landscape, the role of AI is slowly gaining recognition [10].
AI-driven symptom checkers based on chatbots are being explored as potential tools
for addressing ongoing challenges in the sector. These digital platforms, which merge
algorithmic analyses with user interfaces, are seen as possible aids in complementing the
work of GPs. Their tentative benefit may be to offer patients a preliminary platform for self-
assessment, possibly assisting in their healthcare decisions. Such tools might offer GPs an
additional layer of information, potentially allowing them to allocate more time to intricate
cases [9]. However, recent studies have shed light on physicians’ perceptions regarding
the extensive use of AI in primary care [11]. A significant proportion of GPs perceive the
potential of AI as somewhat constrained, a sentiment that contrasts with the optimism of
biomedical informaticians. Furthermore, the sophisticated framework underlying symptom
checkers has added to the allure of these digital tools. Not only are they designed to collect
preliminary data, but they also possess the capability to provide differential diagnoses
based on inputted symptoms. This feature becomes pivotal in guiding patients towards
appropriate medical action, whether the tool recommends immediate medical attention or
considers alternative treatment pathways [12]. Essentially, these tools may play a crucial
role in the triage process, helping prioritize cases based on urgency and clinical relevance.
Such functionalities could dramatically reshape the way primary care operates, optimize
resource allocation, and ensure timely medical intervention.

However, each revolutionary tool presents challenges that cannot be ignored. Symp-
tom checkers suggest potential causes and recommend courses of action based on symp-
toms. However, if their output does not align with the users’ personal experiences or
falls short of their expectations, it might lead to unwarranted healthcare-seeking behav-
iors [13,14]. The effectiveness and reliability of symptom checkers are subject to intense
scrutiny [15,16]. Although they undoubtedly present a revolutionary approach to prelimi-
nary medical assessments, the crux of their value lies in their ability to provide accurate
and safe advice.

Previous research has shed light on areas of concern. Causal reasoning remains a
vital missing component for applying machine learning to medical diagnoses [17]. Some
studies have highlighted the propensity of these tools to either misdiagnose or lean towards
excessively cautious triage recommendations [9,16].

The diagnostic and triage capabilities of symptom checkers remain limited, especially
in non-urgent primary care situations [9,18]. A study revealed that most laypersons
performed better than symptom checkers when assessed using clinical vignettes, although
the symptom checkers were more reliable in identifying emergency cases [19]. These
potential pitfalls serve as cautionary notes, emphasizing the need for rigorous validation,
continuous updates, and user education to ensure that symptom checkers realize their full
potential without compromising patient safety.
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Insights from the Italian Experience

Amid rapid advancements in AI, the Italian healthcare system has actively explored
the integration of AI-driven symptom checkers into primary care. The study in question [7],
conducted in northern Italian GP offices, particularly during the challenging times of the
pandemic, is among the first of its kind. Specifically designed as a feasibility study, the
research focused on ten general practitioners (GPs) and the patients visiting their offices.

The patients were prompted to use a chatbot-based symptom checker before their
medical visits. This checker not only facilitated anamnestic screening for COVID-19 but also
employed a medical history algorithm tailored to the patient’s specific medical problem.
The data entered were then relayed to the GP, serving as an auxiliary medical history aid.
After their medical consultations, both the participating physicians and their patients were
tasked with evaluating the symptom checker based on their experience. Of the 225 patients
who participated in the study, 145 completed the post-visit survey; however, after excluding
29 patients due to a chatbot-estimated medium or high anamnestic risk for COVID-19,
a total of 116 post-visit questionnaires were included in the final analysis. The patients
were predominantly female (55%), with a median age of 47 years. Most had vocational
schooling (39%) or were high school graduates (28%). A vast majority (87%) relied on their
GP for health information, while 14% used online sources. Health assessments varied,
with 44% considering their health ‘very good’ and 15% marking it ‘average’. To ensure a
comprehensive evaluation, the physicians also offered a final overarching review of the
symptom checker upon completing the practice phase. Table 1 presents the main findings.

Table 1. Comparative perspectives on symptom checkers from patients and GPs in Italian primary
care [7].

Variable Patients’ Perspectives GPs’ Perspectives

Experience with Symptom
Checkers

Most had not previously used
a symptom checker

Positive feedback on the ease
of use

Varied experiences and
perspectives

Satisfaction 49% were ‘rather’ or ‘very’
satisfied

27% were ‘rather’ or ‘very’
satisfied

Usefulness
Precise questioning

Time-saving potential
Encourages self-reflection

Value as an auxiliary medical
history aid

Willingness to Use 50% are willing to use it at
home

Concerns about additional
workload

Impact on Medical Visit
Duration 75% felt no impact 84% felt no impact

Trust in AI Surface-level interaction
General guidance

AI suggestions should be
scrutinized and evaluated

more critically
Abbreviations: AI, artificial intelligence; GPs, general practitioners.

From the results, it became evident that while most patients had not previously
engaged with symptom checkers, those who had regarded them positively. Specifically,
almost half of the patients and a quarter of the doctors said they were ‘fairly’ or ‘very’
satisfied. When asked to provide reasons for their opinions, the patients applauded the
checker’s ease of use, precise questioning, time-saving potential, and the tool’s capacity
to encourage self-reflection. Interestingly, every second patient expressed a willingness
to use the symptom checker at home, viewing it as a potential means of assessing initial
health concerns, minimizing unnecessary medical visits, and assisting their physicians.
Demographics such as age, sex, and education level did not play a significant role in
shaping patients’ attitudes towards the symptom checker. Notably, the vast majority of
participants believed that the tool did not affect the duration of the medical visit. Only a
marginal fraction felt that the tool might disrupt the quality or flow of the consultation [7].
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An Italian study provided insights into the reception of symptom checkers, revealing
varied perspectives between patients and doctors. While there is interest in such tools, it is
still uncertain whether they will become standard in primary care. This study emphasizes
that careful clinical guidance is crucial before considering wider adoption.

3. Discussion

Recent study results [9,18,20], further illuminated by an Italian publication [7], under-
score the importance of meticulous clinical guidance in the evolution of symptom checkers.
Symptom checkers have emerged as a potential avenue for addressing challenges in pri-
mary care, such as the growing workload due to an aging population and the declining
number of GPs. Their adoption could increase healthcare efficiency and possibly relieve
GPs; however, their broad implementation demands a robust, evidence-based evaluation
of their efficacy, safety, and cost-effectiveness.

An Italian study [7] pointed out a dichotomy in attitudes towards symptom checkers:
patients tend to view them positively, finding empowerment in controlling their health,
whereas some GPs see them as rather unhelpful in relation to the patients’ self-management
or reducing unnecessary visits. This difference in perception stresses the importance of
understanding both patients’ and GPs’ experiences with digital tools. Trust in symptom
checkers might differ between patients and GPs based on their respective vulnerabilities,
the anticipation of the AI’s decisions, an understanding of the ‘contract’ with the AI, an
evaluation of the AI’s trustworthiness, and what is needed from explainable AI [21]. Pa-
tients might have more surface-level interactions, trusting the system to provide guidance,
whereas GPs, with their deeper medical knowledge, might scrutinize and evaluate the AI’s
suggestions more critically. Interestingly, neither patients nor GPs perceived the use of
symptom checkers as significantly time-averse during medical consultations. Moreover,
the varied levels of satisfaction among GPs in the study, especially in relation to post-visit
evaluations and the concluding survey, hint at external factors that influence GPs’ opin-
ions [7]. From the patient’s standpoint, the use of symptom checkers adds an element of
novelty without incurring significant effort. On the other hand, for GPs, especially during
high-workload periods such as the COVID-19 pandemic, integrating these tools with their
tasks potentially skewing their satisfaction rates.

However, one constant was persistent skepticism regarding the diagnostic accuracy
of symptom checkers. The divergence in perceptions of the value of symptom checkers
between GPs and patients hints at broader challenges in healthcare, particularly regarding
the emphasis on human touch and the tactile aspects of the diagnostic process. While digital
advancements in patient-GP communication are highly sought after, with patients voicing
a strong desire for features such as direct messaging platforms, streamlined appointment
scheduling, and efficient symptom tracking, it is imperative to note the irreplaceable value
that patients place on face-to-face consultations and the significance of maintaining eye
contact during visits [22]. The lack of consistent evidence regarding the workload-reducing
potential of symptom checkers requires further research. Balancing digital innovations
with human touch is important for optimizing patient care. The highlighted interest of
about half of the patients in the chatbot’s use for pre-visit preparations suggests a potential
avenue for enhancing patient-GP interactions. The chatbot’s positive effect on the patients’
self-reflection and attentiveness during medical consultations is worth noting.

While patients appreciated the symptom checkers’ speed and user-friendly interface
in an Italian study, GPs reported observing technical and procedural challenges among
patients. This discrepancy underscores the need to design tools that are both intuitive
and user-centric. In addition, the data hinted at a possible age bias in the acceptance
and usage of symptom checkers, suggesting that a more tailored approach for diverse
populations might be beneficial. In light of the observed differences between the patients’
and GPs’ attitudes towards AI-based symptom checkers, strategies could be pursued to
bridge this divide. Firstly, it is pertinent to emphasize the importance of iterative feedback.
By establishing mechanisms that enable GPs to consistently convey their experiences and
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hurdles with these tools to AI developers, we can ensure that these symptom checkers are
fine-tuned in real time to better serve clinical needs. On the patient front, refining the user
interfaces of AI tools to be more intuitive can heighten their appeal and usability. A design
centered around the patient experience ensures that the tools are more aligned with their
expectations and comfort levels. Lastly, a clearer insight into the algorithms underpinning
AI tools can dispel reservations and foster deeper trust. By elucidating how these systems
arrive at specific conclusions, we can instill greater confidence in both patients and doctors.
Implementing these strategies could prove instrumental in harmonizing perceptions and
facilitating a smoother integration of AI-driven symptom checkers into primary care.

Our findings are consistent with a growing body of literature that examines the utility,
efficacy, and challenges of using AI and decision support systems (DSSs) in primary care
settings. Gottliebsen and Petersson [15] investigated the use of intelligent online triage
tools in primary care and observed that the current systems might be underdeveloped,
providing limited benefits. This resonates with our observations of the challenges of
seamlessly integrating such tools into routine clinical practice. Moreover, Semigran et al. [9]
conducted an audit on the diagnostic and triage accuracy of online symptom checkers.
They found that these systems often lacked diagnostic accuracy albeit being risk-averse,
thus potentially directing patients to seek unnecessary medical attention. Such findings
echo concerns about overburdening healthcare infrastructures with avoidable patient
visits. In addition, a systematic review [16] discussed the uncertainties surrounding digital
symptom checkers and their potential impact on healthcare outcomes. These authors noted
the specific preference of younger and more educated populations for online and digital
services, emphasizing the implications for health equity.

There are studies examining the broader implications and potentials of differential
diagnosis DSSs in primary care. McParland et al. [23] indicated potential roles for such
DSS in assisting both clinicians and the public; however, the design and implementation
considerations must cater to the specific needs of these groups. Kostopoulou et al. [24]
highlighted the opportunity for DSSs to combat the incompleteness and biases prevalent in
routine primary care data. Such findings underscore the importance of a holistic approach
when designing and implementing these systems. Furthermore, while the utility of some
online diagnostic systems like Isabel in general practice has been assessed, some have
suggested the need for further modifications to ensure their suitability in primary care
contexts [25]. This mirrors our study’s emphasis on the customization and adaptability of
AI tools for their intended clinical settings.

In conclusion, while there is interest and potential in the domain of AI and DSS in
primary care, there are evident challenges and considerations. Our study, in light of others
like those cited above, reinforces the importance of thorough evaluations, iterative design
processes, and stakeholder engagement in this rapidly evolving landscape.

This opinion article offers an exploration of AI-driven symptom checkers in primary
care, drawing insights primarily from a recent study [7]. Though it provides valuable
perspectives, its limitations include the subjective nature of the content, potential biases
from the focus on a specific demographic, and concerns about the generalizability of
the findings, particularly given the rapidly evolving nature of AI. The highlighted value
of face-to-face consultations and the diagnostic accuracy of symptom checkers require
further exploration. Moreover, the unique circumstances of the COVID-19 pandemic
may have influenced the observations, questioning their post-pandemic relevance. A
broader empirical foundation and consideration of various settings can enhance the insights
presented here.

A pivotal question surrounding symptom-checkers with chatbots revolves around
their capacity to overcome present limitations. Specifically, can these tools, through contin-
ued development, successfully replicate the causal reasoning of a human expert? As AI
evolves, there is a growing optimism that future iterations of AI systems will improve in
emulating complex human reasoning processes. However, it remains uncertain whether
technology can ever truly capture the nuanced and multifaceted nature of human cognitive
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abilities. Thus, while advancements are anticipated, the extent to which these tools can
match human intuition and reasoning is still a topic of debate.

4. Conclusions

AI-driven symptom checkers have emerged as promising tools for addressing primary
care challenges. Recent findings, especially from an Italian context, demonstrate a di-
chotomy in perspectives: while patients appreciate the empowerment and user-friendliness
of these tools, some GPs voice concerns, particularly regarding the tools’ diagnostic ac-
curacy. Neither group perceived significant time-saving benefits during consultations.
Emphasizing human touch remains paramount despite the push for digital innovations
in patient-GP communication. Further, the highlighted interest of the patients in using
chatbots for pre-visit preparations hints at enhancing patient-GP interactions.

The potential of AI-based symptom checkers becomes evident, especially when con-
sidering the optimization of medical-history taking. For GPs, these tools can streamline
the process, making it more efficient and focused. For patients, they can be empowering,
offering a sense of agency and participation. However, it is recognized that in routine
general practice, the challenge is not so much diagnostic difficulty for common ailments
but rather the increasing demands of rare diseases. Given this issue, while AI tools can
aid in routine diagnostics, their real potential lies in assisting with the more complex and
intricate diagnostic tasks. By concentrating on these challenging areas, AI can significantly
complement the expertise of GPs, leading to more accurate and timely interventions.

The study underscores the need for symptom checkers to be intuitive and user-centric
and the importance of rigorous validation to ensure patient safety. These observations
warrant further exploration. Future research should aim for a broader empirical foundation
across various settings to fully capture the potential challenges of AI in primary care.
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Abstract: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death world-
wide. Health remote monitoring systems (HRMSs) play a crucial role in managing COPD patients by
identifying anomalies in their biometric signs and alerting healthcare professionals. By analyzing the
relationships between biometric signs and environmental factors, it is possible to develop artificial
intelligence models that are capable of inferring patients’ future health deterioration risks. In this
research work, we review recent works in this area and develop an intelligent clinical decision
support system (CIDSS) that is capable of providing early information concerning patient health
evolution and risk analysis in order to support the treatment of COPD patients. The present work’s
CIDSS is composed of two main modules: the vital signs prediction module and the early warning
score calculation module, which generate the patient health information and deterioration risks,
respectively. Additionally, the CIDSS generates alerts whenever a biometric sign measurement falls
outside the allowed range for a patient or in case a basal value changes significantly. Finally, the
system was implemented and assessed in a real case and validated in clinical terms through an
evaluation survey answered by healthcare professionals involved in the project. In conclusion, the
CIDSS proves to be a useful and valuable tool for medical and healthcare professionals, enabling
proactive intervention and facilitating adjustments to the medical treatment of patients.

Keywords: chronic obstructive pulmonary disease (COPD); decision support system (DSS); intelligent
clinical decision support system (CIDSS); health remote monitoring system (HRMS); triage validation
module (TVM)

1. Introduction

1.1. COPD Introduction and Definition

According to the World Health Organization (WHO), chronic obstructive pulmonary
disease is one of the most deadly major lung diseases and the third leading cause of death
worldwide [1]; the organization further indicates that COPD was responsible for about
3.24 million deaths in 2019. The Portuguese Society of Pulmonology [2] estimates that 5.42%
of individuals in Portugal between the ages of 35 and 69 suffer from COPD. According to the
Portuguese Lung Foundation [3], COPD was responsible for approximately 2834 fatalities
in the country. The same organization calculates that in 2019, this illness cost the economy
EUR 1.6 billion.

COPD is caused by airway obstruction. The most common symptoms of COPD
are coughing, wheezing, and dyspnea (shortness of breath). Patients often seek medi-
cal attention only when the disease reaches an advanced stage, as it is a condition that
progresses slowly.
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Initially, the disease presents as a cough accompanied by increased sputum produc-
tion. However, as it progresses, it can lead to repeated episodes of acute bronchitis and
respiratory infections. As the disease develops further, shortness of breath becomes more
frequent, even with seemingly minor tasks, such as talking and performing daily hygiene.
Shortness of breath is most noticeable during activities that require physical effort.

1.2. Importance of COPD Management and Monitoring Systems

The integration of technology into healthcare has revolutionized patient care, with
health remote monitoring systems (HRMSs) emerging as powerful tools. By storing data,
such as heart rate (HR) and oxygen saturation (SPO2) levels, HRMSs help medical pro-
fessionals to treat patients with COPD. These systems offer real-time monitoring and
personalized treatment options. However, to maximize the potential of HRMSs, it is crucial
to integrate them with well-defined clinical processes, therapeutics, and rules. This integra-
tion ensures that the collected measurements are correlated and directly linked to effective
patient care, enabling proactive interventions and improving health outcomes.

The Internet of Things plays a crucial and influential role in the successful implemen-
tation of HRMSs. Wearable device sensors, videos, and images are essential to gathering
valuable patient information. Daily physiological data of the patient is collected and
stored by the HRMS through data processing tools, analytics, and artificial intelligence (AI).
Recording daily physiological data provides healthcare providers with actionable insights,
facilitating proactive and personalized care.

The use of AI by HRMSs to predict patient health deterioration is a significant benefit.
AI algorithms examine historical patient data to find patterns that might point to higher
risks of unfavorable events or health deterioration. These forecasts offer healthcare pro-
fessionals with insightful information that enables them to intervene early and prevent
complications. A more preventive model of care is promoted by this proactive approach,
which also enhances patient safety and lowers hospital admissions.

1.3. Effect of External Variables (Climate, Humidity, Particles) in COPD Patients

Over the past decades, several epidemiological studies have demonstrated the adverse
health impacts of exposure to particulate matter (PM), both in coarse and fine fractions [4–7].
The origin of this particulate matter can be natural, such as desert dust, or anthropogenic,
such as aerosols generated by biomass burning or fossil fuel combustion processes. The
concentration of particles in the atmosphere depends on the emission sources, meteorologi-
cal variables, and transport processes, as aerosols can travel long distances (transported by
air masses). Additionally, house activities can be relevant sources of fine particles. Particles
resulting from cooking and heating can more deeply enter the respiratory system, especially
when they are finer.

The household air pollution data from the World Health Organization pointed out
that among the 3.2 million deaths from household air pollution exposure, 19% are from
COPD, and 23% of all deaths from COPD in adults in low- and middle-income countries
are due to exposure to household air pollution [8].

1.4. Research Questions and Problems

The research question addressed by this study is: “Is it possible to automatically
monitor and analyse the risk of potential health deteriorations of COPD patients?”. With
this research question in mind, the defined objective is to develop a system that is capable of
providing early information concerning patient health evolution and risk analysis in order
to support the treatment of patients with COPD. Additionally, the system allows health-
care professionals to more efficiently manage their time by automatically providing said
professionals with alerts, supported by a risk analysis of the patient’s COPD health status.
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1.5. Purpose and Description of the Present Work

The Hope Care Intelligent Services Platform (HC PSI) is a P2020 project that involves
the participation of Hope Care SA, INOV—INESC Inovação and the University of Beira
Interior. Its main objective is to research and develop an intelligent services platform that
enables healthcare professionals to make more informed decisions regarding the health
conditions of COPD patients, thereby increasing the efficiency of clinical entities.

The components of the HC PSI include a CIDSS, HCAlert platform, and environmental
data sources, all geared toward automating the clinical treatment of COPD patients who
are being remotely monitored.

This research work focuses on the CIDSS developed by INOV—INESC Inovação. The
CIDSS assists in making decisions regarding patient treatment. This platform is composed
of three modules: an HRMS that provides patients’ health information through a mobile
application to the CIDSS, a TVM that receives and processes patient risk information from
the CIDSS, and a graphical user interface (GUI) that displays relevant clinical information
to healthcare professionals.

Figure 1 presents the HC PSI architecture, which includes the CIDSS developed by
INOV, the HCAlert platform, and other external data sources.

Figure 1. HC PSI architecture, including the CIDSS developed by INOV, the HCAlert platform, and
other external data sources.
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The HCAlert platform was developed by Hope Care SA and includes a mobile ap-
plication that supports HRMSs and a set of backend services for clinical validation and
triage.

In the scope of the HC PSI project, the requirements for the HCAlert mobile application
include the collection of patient symptoms and residential data. For the clinical validation
and triage backend services, the following requirements are defined:

• Capability to categorize alerts.
• Capability to provide early warning scores and other relevant metrics of patients to

healthcare professionals.
• Capability to obtain information about hospital visits internally or from other sources.
• Enabling the clinical team to have an overview of new alerts for each patient, including

the client’s name, data type, and last measurement date.
• Allowing the clinical team to define what relevant health values to display on the

dashboard.

1.6. Methodology

In this research work, since we focused on artifact development, we applied the design
science research methodology.

The DSR methodology is a research methodology that is commonly used in the
field of information systems; it focuses on the development and evaluation of innovative
artifacts, which include cutting-edge framework prototypes, techniques, and algorithms
that address present-day challenges. It consists of the following six phases: problem
identification, definition of objectives, design and development, demonstration, evaluation,
and communication. This methodology focuses on creating and evaluating artifacts based
on their effectiveness, quality, and usefulness in addressing real-world problems [9].

Figure 2 presents the iterations within the design science research methodology
(DSRM) process.

Figure 2. Iterations represented in the design science research methodology (DSRM) process model;
Peffers et al. [10].

2. Related Work

In this section, we present an overview of the systematic review conducted in this
article, which follows the PRISMA (preferred reporting items for systematic reviews and
meta-analysis) methodology [11]. This section covers the latest advances in managing
pulmonary disease patients, particularly COPD patients. We emphasize the augmented
efficacy that remote health monitoring brings to patient treatment by providing real-time
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warnings to medical professionals; we also discuss the enhanced effectiveness of remote
health monitoring supported by predictive analytics, which provides early warnings about
the risk of patient deterioration.

This systematic review also covers factors and biometric signs associated with acute
deterioration in COPD patients and how the prediction of biometric signs and subsequent
early warning generation can indicate the risk of future patient deterioration. Table 1
presents the topics and the respective queries used to extract and filter related works.

Table 1. Topics of related work and their corresponding queries used to filter research papers related
to each topic.

Subsection Query

In-Home Healthcare for COPD
(“Healthcare Management Systems”

AND “Real-time Detection”)

E-Healthcare
supported by

Predictive analytics

(“Healthcare Management Systems” AND
“Early Detection” AND (“Artificial Intelligence”

AND “Machine Learning”))

Factors related
with COPD deterioration

(“Early Detection” AND
“Vital Signs” AND “COPD”)

Machine Learning for
for Early Identification

of a Deterioration

(“Early Detection” AND
“Vital Signs” AND “Machine Learning”)

Table 2 presents the eligibility criteria used to filter documents in the related work.

Table 2. Eligibility criteria to filter research papers.

Eligibility Criteria

Inclusion Criteria Exclusion Criteria

Written in English or Portuguese Not written in English or Portuguese

Publication date after/during 2010 Publication date before 2010

We identified 810 documents, with 10 documents removed due to duplication issues.
A total of 400 articles not related to healthcare or artificial intelligence (AI) were excluded
from further screening based on titles and abstracts. Moreover, 40 articles were excluded as
we were unable to access their full versions, leaving 160 articles for full-text screening. A
total of 82 articles were removed as they did not fit the eligibility criteria. Finally, 56 articles
were excluded as they did not contain relevant information concerning vital signs, time
series techniques, and health remote monitoring systems. The selection results, according
to the PRISMA flow diagram, are shown in Figure 3.
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Figure 3. PRISMA methodology [11].

2.1. In-Home Healthcare for COPD

Home telemonitoring is a term used to describe the utilization of audio, video, and
other telecommunication technologies for monitoring a patient’s status from a distance [12].
This approach involves the remote monitoring of a patient’s health parameters, typically
within the framework of a larger chronic care model. In fact, telemonitoring is an essential
component of telehealth and telemedicine [13]; it has the potential to help patients manage
disease and predict complications [14]. Telemonitoring projects involving patients with
pulmonary conditions have demonstrated the ability to identify early changes in the
patient’s condition, thus supporting immediate intervention and avoiding exacerbation.
Patients have been very receptive to telemonitoring as a patient management approach and
have shown very positive attitudes toward it [12]. A systematic review and meta-analysis
found that telemonitoring interventions prevent unnecessary ER visits and may help to
reduce severe COPD exacerbation to some extent. In 20 studies (90%) that carried out
telemonitoring interventions for six months, a meta-analysis showed that the intervention

327



J. Pers. Med. 2023, 13, 1359

effectively reduced the number of ER visits (pooled SMD = 0.14 corresponding to a small
effect size; 95% CI (confidence interval): −0.28, −0.01) [13]. In a retrospective, population-
based cohort study on 944 telemonitoring and 9838 control individuals, the total direct
medical costs were significantly lower in the telemonitoring group (EUR −895.11, p = 0.04).
The main driver for the total cost difference was the reduction in hospitalization costs
by EUR −1056.04. (p = 0.01). A lower percentage of individuals died in the intervention
group than in the control group (3.23 vs. 6.22%, p < 0.0001), translating into a mortality
hazard ratio (HR) of 0.51 (95% CI: 0.30–0.86). Over the 12-month period, the proportion
of patients hospitalized due to all causes (−15.16%, p < 0.0001), due to COPD (−20.27%,
p < 0.0001), and for COPD-related emergency department (ED) visits (−17.00%, p < 0.0001)
was consistently lower in telemonitoring patients, leading to fewer all-cause admissions
(−0.21, p < 0.0001), fewer COPD-related admissions (−0.18, p < 0.0001), and fewer COPD-
related ED admissions [15].

2.2. E-Healthcare Supported by Predictive Analytics

Telemonitoring has become indispensable in diagnosing and medically intervening for
COPD patients. Nowadays, due to better storage of electronic health records and improved
vital sign detection methods, large amounts of patient data are available daily in ICUs [16].
Medical equipment, ranging from hands-free monitors and portable devices to modern
wristbands and watch-like monitors, have helped in the collection of biometric data, such
as heart rate, blood pressure, physical activity, and sleep information [17].

A remote monitoring system, capable of gathering extensive data and backed by
predictive analytics algorithms and techniques for effective data assessment and identifying
underlying patterns, provides better efficiency in identifying declining patient health [18].
In the present COPD case study, such systems can reduce emergency room (ER) visits, acute
deterioration-related readmissions, days spent in the hospital, and mortality in patients
with COPD [19].

Predictive analytics refers to the systematic use of statistical or machine learning
methods to make predictions and support decision-making. Predictive analytics applied to
healthcare can be divided into two components: the data underlying the model, particularly
predictors or features, and machine learning and statistical methods, both based on a set of
mathematical techniques applied to data in order to generate an output [20].

Machine learning is a crucial methodology in predictive analytics. Conventional
statistical analysis focuses on explaining data and relies on an expert (i.e., human) to for-
mulate and discover cause–effect relationships, driven by a set of predefined assumptions.
Machine learning is more data-focused and orientated toward generating hypotheses and
building predictive models using algorithms. It has enabled clinical support research and
applications to provide actionable insights by utilizing large amounts of intensive care unit
patient datasets that are useful in many clinical scenarios [16]. Machine learning can predict
in-hospital mortality and the risk of 30-day readmission due to COPD exacerbation [21].

2.3. Factors Associated with COPD Exacerbation

The prevention of acute exacerbation in COPD requires the identification of factors
associated with exacerbation. Most studies have shown that oxygen saturation (SpO2)
(p-value < 0.05), respiratory rate (RR), and heart rate (HR) (p-value < 0.05) influence
exacerbation events, with SpO2 being the most predictive vital sign. The deterioration
in COPD patients has been associated with a slight decrease in oxygen saturation and a
slight increase in HR. One article suggested that using multiple vital signs as the inputs of
a single classifier could provide better predictions, given that these multiple-input models
showed the best AUC results [22].

Although some studies monitored blood pressure in order to determine whether there
was a significant correlation with acute exacerbation, there was no sufficient evidence
indicating that a change in blood pressure during a COPD exacerbation was a potent
predictive factor for exacerbation (p-value > 0.05, i.e., not significant).
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Body temperature with a p-value equal to 0.059 could be considered an exacerbation
predictor. In the study conducted by Martin-Lesende, changes in body temperature had
triggered 27.8% of alerts, of which, 5% were due to temperatures exceeding 37 ◦C [23].

Most studies have focused on vital signs and internal factors of COPD patients,
rather than external ones, despite being equally relevant. Some meteorological data, such
as humidity (p-value = 0.0137), variation of diurnal temperature (p-value = 0.0472), the
cumulative lowest temperature 7 days prior to acute deterioration (p-value = 0.005), and
total rainfall in the 7 days preceding an acute exacerbation (p-value = 0.0389) was associated
with acute exacerbation in COPD. Lee J. [24] conducted a univariate analysis of air pollution
and COPD exacerbations and identified a strong correlation between PM10 levels one day
before a patient’s condition worsened and acute exacerbation (p-value = 0.0260) [24].

The analysis of both internal and external factors with significant correlations to COPD
exacerbation revealed that the frequency with which certain variables are measured must
also be taken into consideration. The higher the frequency of a vital sign measurement, the
better the perception of its association with an exacerbation occurrence. Daily or multi-daily
vital sign monitoring improves the analysis of these signs. For example, Pépin J-L [17]
mentions that overnight pulse oximetry increases sensitivity, allowing for early detection
of deterioration [17].

2.4. Machine Learning for Early Identification of Deterioration

In recent literature, machine learning techniques have attracted attention for predicting
the clinical conditions of patients. Time series forecasting models have been applied
successfully in medical applications to predict disease progression, estimate mortality rates,
and assess time-dependent risks. These models are able to identify patterns and trends
from sequential data collected over time, such as health-related signals [25,26].

Some traditional machine learning techniques, such as random forest, SVM (support
vector machine), Bayesian networks, and logistic regression, have been employed to im-
prove predictive performance in identifying early clinical deterioration [27]. However,
these traditional models are not optimized for handling the unique characteristics of time
series data, such as autocorrelation, seasonality, and trend patterns [28,29].

With sufficient data, the development of deep learning models can reduce several
preprocessing steps, emphasizing the relationships between the data, without the need
to identify the best predictors, leading to better results [30]. For instance, long short-
term memory network (LSTM) can learn extended time series dependencies, while a
convolutional neural network can generate a compact latent representation.

Gradient boosting models are alternatives to specialized models, such as long short-
term memory network (LSTM) and gated recurrent unit (GRU) [31,32]. Although these
models are not ideal for time series forecasting, they are still generally better suited for
handling sequential data compared to non-sequential algorithms (such as random forest,
SVM, logistic regression, and naive Bayes) [29].

3. CIDSS Design

The CIDSS receives every patient’s vital signs, which are remotely monitored by Hope
Care SA as inputs. Additionally, it daily incorporates weather forecast conditions and
air particle forecasts that are specific to each patient’s location. In response, the system
provides daily vital sign predictions and early warning scores for each patient for the
following five days. It also provides the basal values of each patient and issues an alert
whenever a vital sign measurement falls outside the expected parameter range, requiring a
reevaluation.

Figure 4 illustrates the CIDSS developed by INOV—INESC Inovação, its interactions
with weather and air pollution data providers, and the HCAlert platform. The CIDSS
comprises five distinct modules, each serving a specific purpose. These modules are as
follows:
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Communication manager—this module assumes a crucial role within the system, and
is responsible for the communication interactions among HC (Hope Care) Alert, weather,
air particles API, and the clinical decision support system.

Vital sign prediction module—it is designed to generate forecasts for a five-day period
regarding four essential vital signs: oxygen saturation level (SpO2), heart rate, systolic
blood pressure (SBP), and body temperature. This module utilizes various machine learning
algorithms to accomplish the predictions. The input data for these models are sourced from
the stored vital sign records within the database. Subsequently, the predicted vital signs
are stored back in the database for further reference and analysis.

Early warning score calculation module—within this module, the recorded vital sign
predictions from the database play a crucial role in calculating the early warning score for
each of the five predicted days. The early warning score is computed using the aforemen-
tioned vital sign data and the resulting early warning scores are subsequently stored in the
database.

Biometric signal error detection module—the primary objective of this module is to
thoroughly analyze and evaluate potential measurement errors and abnormal variations
detected within the patient’s historical data. The purpose is to promptly alert both the
patients themselves and the attending nurse regarding the invalidity or questionable nature
of the entered information. By diligently identifying such anomalies, this module serves as
a critical mechanism for ensuring data accuracy and reliability within the system.

Basal value monitoring module—the main function is to monitor and continuously
and intelligently adjust the patient’s baseline values. This adjustment is based on the
historical records of vital sign values measured by the patient and documented within the
HCAlert platform. The module’s purpose is to enhance the precision and effectiveness of
the monitoring system by dynamically adapting the baseline values in accordance with the
patient’s specific health history.

3.1. Requirements

During the initial phase of the HC PSI project, we defined the functional requirements
through an interactive and iterative process involving UBI and Hope Care SA. Certain
clinical-oriented requirements were specifically delegated based on their domain of exper-
tise. Subsequently, the remaining requirements served as the fundamental basis for the
development of the CIDSS discussed in this article. All CIDSS functional requirements
have been grouped into system modules, as shown in the following Table 3.

Table 3. Functional requirements associated with each module.

Requirements Module

The predictive service should collect environmental data,
such as air quality, seasonal infection incidences, and
weather conditions

Vital Signs Prediction

The predictive service should correlate parameters and
detect patterns

The predictive service should reevaluate the weighting of
each parameter, depending on the context (e.g., patient,
clinical history, etc.)

The collected data should undergo anonymization (if ap-
plicable), normalization, and data fusion

The predictive service should consider the early warning
score to generate alerts

Communication Manager
The predictive service should consider the alert classifica-
tion to detect false positives
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Table 3. Cont.

Requirements Module

The predictive service should advise the user to take a
new measurement and launch inquiries to validate if it is
a false positive

Biometric Sign Error Detection

The predictive system should apply the early warning
score to the clinical protocol and suggest changes to the
protocol based on the basal value

Early Warning Calculation
The predictive service should calculate the early warning
score (define the correlation
weighting of each parameter in the EWS calculation)

The predictive system should recommend a reassessment
of the basal value

Basal Value Monitoring
The predictive system should take into account changes
made to the clinical protocol by the clinical team

The predictive system should analyze the threshold for
advising changes to the applied clinical protocol for the pa-
tient

Figure 4. The CIDSS architecture and interactions with external modules.
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3.2. Communication Manager

This module is composed of four submodules: data extraction, measurement error
alert, basal values notification, and the patient’s risk information delivery submodule, as is
present in Figure 5.

DDaattaabbaassee

WWeeaatthheerr && AAiirr
PPaarrttiiccleess
INFO

HHCC AAleerrtt
Platform

BiBioommeettrriicc SSiiggnnss
EErrrroorrss DDeetteeccttiioonn

DDDaaaaaaaaatttttaaaaaaaa EEExxxxtttttrrraaaaaaaccccccctttttiiiiooooonnnnnnn

EErrrrrrrroooooorrrr DDDeeeeeeeeetttttteeeeeeeeeccccccccttttttiiiiioooooonnnnnnn AAAAAleeeeeeeeerrrrtttttt

CCoommmmuunniiccaattiioonn MaMannaaggeerr

DDaattaa
EExxttrraaccttiioonn

PPaattiieennttss RRiisskk
nInffoo DDeeliivveerryy

MMeeaassuurreememenntt
EErrrroorr AAleerrtt

BBaassaal VVaaluueess
UpUpddaattee

NNoottii ccaattiioonn

BaBassaal VVaaluueess
MMoonniittoorriinngg

Figure 5. Communication manager module architecture.

3.2.1. Data Extraction

The medical records, which stored the vital signs used as input for the CIDSS, are
presented in Table 4. Each record is formatted to have one entry per day per parame-
ter. Each record had an ID (idRawMeasurement), the collection date (createdOn), the
coordinates where it was collected (latitude and longitude), the measurement type (Provi-
derMNameStandard), measurement value (value), and the units representing the value
(units).

The measurement type could address various factors, including vital signs, such as
oxygen saturation level (SpO2), heart rate (HR), body temperature, systolic blood pressure
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(SBP), and diastolic blood pressure (DBP), as well as other biometric indicators, like the
number of steps, body fat, energy burned, weight, and height.

Table 4. Clinical information extracted from the Hope Care API.

idRawMeasurement Measurement Identifier

createdOn Measurement creation date

clientID Identification of the patient to whom
the measurement belongs

Latitude Latitude of the patient

Longitude Longitude of the patient

ProviderMNameStandard Standard name of the type of measurement

Value Measurement value

Unit Units of measurement (in the dataset are available %, C,
bpm, count, mmHg, NA, null, and percent)

The weather historical information used as input for the predictive models was pro-
vided by the Weatherbit API. Each record had an ID (idWeatherMeasurement), the coordi-
nates of the station (latitude, longitude), date of measurement (columns year, month, day),
mean daily temperature (T_MED), and mean relative humidity (HR_MED), as shown in
Table 5.

Table 5. Weather historical information.

idWeatherMeasurement Measurement Identifier

Station ID Station identifier

Latitude Latitude of the station

Longitude Longitude of the station

Year Year of the collected measurement

Month Month of the collected measurement

Day Day of the collected measurement

T_MED Value of the daily mean temperature in Celsius

HR_MED Value of the daily mean relative humidity in percent

The air pollution historical information used as input for the predictive models was
provided by the OpenWeather API. Each record had an ID (idWeatherMeasurement),
the coordinates of the station (latitude, longitude), date of the measurement, an average
count of 10-micrometer particles (PM10), and an average count of 2.5-micrometer particles
(PM2_5), as shown in Table 6.

Table 6. Historical information on air pollution.

idParticlesMeasurement Measurement Identifier

Location Location of the station

Latitude Latitude of the station

Longitude Longitude of the station

Date Date of the collected measurement

PM10 Value of PM10

PM2_5 Value of PM2.5
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3.2.2. Measurement Error Alert

This submodule was designed to receive alerts from the biometric sign error detection
module and subsequently send alerts to the HCAlert platform. After a set short duration,
it sends a notification to the data extraction submodule to execute the data extraction of
biometric signs from HCAlert, concerning the specific patient dataset where the error was
found.

3.2.3. Basal Value Monitoring Notification

The basal value update notification submodule was designed to receive notifications
from the basal value monitoring module; it subsequently notifies the HCAlert platform
with new basal value recommendations for a specific patient.

3.2.4. Patient Risk Information Delivery

The patient risk information delivery submodule extracts information regarding the
last five days of vital sign predictions and the calculated early warning scores stored in the
database. It then sends this information to the HCAlert platform.

3.3. Biometric Sign Error Detection

The HCAlert platform’s operational efficiency is affected by the patients’ inaccurate
vital sign measurements, which can result in inaccurate clinical protocol adjustment alerts
and future vital sign projections. It is necessary to guarantee that the system receives data
that obey certain quality levels.

Prior to the implementation of the current project, measurements are validated by
nurses who identified instances of anomalous readings, reporting potential causes, such as
deterioration in the patient’s condition, measurement errors, cold fingers during measure-
ments, etc.

The biometric sign error detection module consists of three components:

• Validation of clinical rules: This component compares the measurements taken by the
patient with a set of business rules defined according to Hope Care guidelines. For
example, a measurement of oxygen saturation above 100 or below 20 cannot be correct
since a percentage value cannot exceed 100, and a value below 20 corresponds to
situations of compromised brain function and even comas. The medical team involved
in this research work validated all ranges used to filter the vital signs.

• Patient pattern modeling: The objective of this component is to approximate a proba-
bility density function for each metric in the patient’s measurements. These probability
density models are then stored in the database, eliminating the need to repeat the func-
tion modeling each time a new inference is made. This module runs monthly to create
a new probability function that captures the variability of the new measurements
entered by the patient.

• Validation of atypical measurements based on the patient’s history: This module uses
the probability density models stored in the database, which are associated with each
patient’s vital signs, to determine whether a newly recorded measurement falls within
the normal patterns for that specific patient. As these variations could be due to
disease exacerbation, improvements from a new medication, or other factors, need to
be validated by a nurse and, if necessary, by the patients themselves, to determine the
true cause of the variation.

The operationalization of this module is presented in Figure 6. The system begins
with the measurement and input of a vital signal by a patient in the HCAlert application.
The measurement is compared and validated based on clinical rules, according to the type
of measurement performed. The following clinical rules are defined, where the value is
considered erroneous and discarded in the following cases:

• Oxygen saturation above 100 or below 20;
• Body temperature below 30 or above 40;
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• Systolic blood pressure below 50 or above 350;
• Diastolic blood pressure below 40 or above 200;
• Pulse rate less than or equal to 30, or greater than 250.

Figure 7 presents the architecture of the Biometric sign error detection module.

Figure 6. Biometric sign error detection implementation.
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Figure 7. Biometric sign error detection module architecture.

In the event of an incorrect measurement, a type 1 alert is triggered, recommending a
new measurement of the vital signal by the patient.
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If there is no inconsistency with the rules, the system then determines if the measure-
ment is atypical for a patient. If it is not considered atypical, the verification process is
concluded without any identified errors. If an atypical value is recorded, a type 2 alert
is triggered, and human verification of this alert is recommended to a nurse and the pa-
tient. This is done to verify whether this value corresponds to a health deterioration, an
improvement in the clinical condition, or a measurement error.

Probability density functions were applied in order to model the pattern of vital signs
of each patient and assess the probability that a newly measured value fits the distribution
function computed for that specific patient’s vital sign. The process of training a model
for a given patient begins with the request for all the vital sign measurements made by
this patient. From this request, as shown in Figure 8, a distribution function is trained and
stored in the database for each vital sign recorded, with the following steps:

1. From all the measurements collected for the patient, only the measurements made for
specific vital signs in training are used.

2. Existing outliers in the database, prior to modeling, are removed. Outliers are removed
based on the standard deviation by calculating the standard score (z-score), which
corresponds to the number of standard deviations by which a newly recorded value
deviates from the mean of the observed measurements. If the z-score is greater than 3,
which corresponds to a value that is three times the standard deviation away from the
mean of the data, the value is not used in the modeling.

3. The following distributions are tested: normal, exponential, Pareto, double Weibull, t,
generalized extreme value distribution, gamma, lognormal, beta, and uniform. For
each distribution, the density and weights of the histogram are computed. Subse-
quently, an estimation of the function parameters is performed based on the data. The
maximum likelihood estimation (MLE) is used to identify the values that best fit the
data.

4. The goodness-of-fit is calculated with a test of the sum of squares of the residuals for
each distribution found.

5. The model with the best goodness-of-fit, which implies a lower value in the sum of
squares of the residuals, is stored for the vital signs of the patient under study.

Figure 8. Biometric sign error detection model development.

The inference starts with the reception of a vital sign measurement taken by a patient
and entered into the HCAlert system. The system selects the model corresponding to the
probability density function that models the distribution of the vital signs measured for the
patient who entered it into the system, as is present in Figure 9.

This model is then used to test the null hypothesis, which corresponds to checking
whether the value that has been measured is outside the typical pattern of the patient,
based on the selected distribution and the parameters adjusted according to the empirical
distribution of the patient. If the p-value is less than 0.05, it implies that the null hypothesis is
not rejected, which means that there is a probability that the measurement may correspond
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to an error, exacerbation, or improvement of the condition. A reminder should be sent to
both the nurse and the patient to investigate the situation.

Figure 9. Biometric sign error detection inference process.

3.4. Basal Value Monitoring

The deterioration or improvement of COPD reflected in the negative or positive
evolution of the patient’s baseline values may be due to several explanatory factors, such
as weather conditions, exposure to particulate matter, a change in medication or lifestyle,
among others. The recorded baseline values are indicative of the severity of a condition,
as outlined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) [33]
strategy for the diagnosis, management, and prevention of COPD.

Values below or above the standards result in the patient’s category changing into
one of the GOLD I–GOLD IV [33] categories, depending on the severity of the patient’s
condition, with GOLD I being the most severe condition. It is important to identify and
monitor any deterioration in a patient’s baseline values in order to adjust the clinical
protocol and treatment guidelines.

Figure 10 presents a clinical protocol defined by the Hope Care SA medical team; it
is based on the GOLD strategy and addresses patients whose basal values are within a
normal range and, thus, do not belong to categories GOLD I–GOLD IV. Consequently, the
range of colors isn’t associated with the GOLD categories. The color is associated with
the severity of the COPD patient’s condition: Category I (red) corresponds to a higher
degree of deterioration in their health condition, while Category V (green) corresponds to
the lowest or non-deterioration of their health condition. Some fields are filled with the
expression “N/D” because there is no defined range of values for that specific category.

3.4.1. Basal Value Monitoring Module Architecture

This module, as shown in Figure 11, uses the list of metrics to be monitored and the
history of vital signs recorded by each patient as input. Based on these measurements,
the patient’s current baseline value and the forecast of the evolution of the same value are
determined. In case there is a substantial difference between the most recently recorded
value and the historical baseline value, an alert should be triggered, containing the previous
baseline value, the newly calculated value, and the difference. The newly calculated
baseline value is suggested as a change to the clinical protocol.
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Figure 10. Clinical protocol defined by the Hope Care SA Medical Team and based on the GOLD
clinical protocols.

Figure 11. Basal value monitoring module architecture.

The following variables are also used as input to the module:

• Number of months considered: This indicates the past time window that is analyzed
for the baseline calculation. The default value is 3 months, which indicates that when
this module runs, the measurements taken from the last 3 months are extracted for the
baseline calculation. This value can be configured by rules in the system.
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• Minimum number of records: This corresponds to the minimum number of measure-
ments taken by the patient, so that the calculated baseline information is considered
reliable. If the patient does not have a satisfactory number of measurements in the time
horizon under study, the module will not provide recommendations. For example, a
patient with only five SpO2 measurements over 3 months will not be considered for
updating the baseline value. This value is configurable by a rule, and value 50 is used
by default in the system.

• Patience: In case the patient does not present enough measurements of a certain pa-
rameter in the defined time horizon, the system expands the time horizon of the search
to include more months of history until it finds an acceptable amount of records. For
example, with a patience of 3 months and a minimum of 50 required measurements, if
the patient only has 30 measurements, an additional month will be incorporated into the
analysis, and the module will be rerun using the past four months, reducing the patience
counter by 1. In case patience reaches zero, and the minimum value of measurements
defined is not reached, the system will not provide any recommendation for the given
parameter due to the lack of consistency in the measurements. The default value for
patience, which can be configurable by a rule, is 3.

The default values in the system are set and adjusted after testing with historical
values recorded by patients in the HCAlert platform, provided by Hope Care SA.

3.4.2. Basal Value Monitoring Module Implementation

In this section, we present the implementation details of the basal value monitoring
module. Figure 12 shows an activity diagram, which represents the operations performed
by the module.

As presented and detailed in the previous section, the system inputs are the list of
metrics under evaluation, the patient’s vital signs history, the number of months to be
considered, the minimum number of records, the baseline value of the patient’s clinical
protocol, and patience.

For each metric under evaluation, the system performs the following process:

1. A flag representing the current patience is initialized to zero.
2. The measurements are related to the period of months corresponding to the last X

months from the date of execution of the module, where X is the sum between the
system input “number of months to consider” and the current patience value.

3. The number of measurements performed by the patient is calculated.

(a) In case the number of measurements is not sufficient, the current patience is
incremented by 1.

(i) If the current patience value is equal to the user-defined patience value,
no recommendation is displayed, and the cycle continues to the next
measurement in the list.

(ii) If the current patience value is less than the set patience value, the
system summarizes the run from step 2.

(b) In case the measurements are sufficient, the system summarizes the run in step 4.

4. The median of the patient’s measured values of a given vital sign is calculated.
5. The median value is compared with the baseline value recorded in the clinical protocol.

(a) If the values are very different, a recommendation is made to update the baseline
value to reflect the new median value recorded in the time interval under consider-
ation. This recommendation should be evaluated by a medical professional.

(b) If the values are similar, the baseline value is not adjusted, and the system summa-
rizes in step 1, with a new iteration of a new metric under evaluation.

6. The cycle ends when all metrics in the list have been processed.

This process is run independently for each patient in the system. It is worth noting
the use of the median as the metric calculated for the baseline value. This is due to the
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fact that it better handles extreme values outside of a patient’s normal patterns, such as
exacerbation, which should not be considered for the calculation of a baseline value, as it
does not correspond to a normal patient pattern.

Figure 12. Basal value monitoring module implementation.

3.5. Vital Signs Prediction Module
3.5.1. Predictive Model Development

Data Treatment
For the predictive model development and evaluation, 91 patients who were flagged

as having COPD were included. Each patient was monitored remotely and provided
health status information for tracking their health status. The vital sign information was
then gathered by each medical center. These patients were from different districts of the
country, such as Aveiro (Anadia), Leiria (Óbidos, Pombal), Santarém (Ourém) Castelo
Branco (Fundão), Coimbra (Cantanhede, Cernache, Assafarge, Antanhol, Condeixa-A-
Nova, Mira, Almargem Bispo), Lisboa (Amadora, Rinchoa, Queluz, Algueirão, Tapada
Das Merces, Rio de Mouro), and Faro (Quarteira, Albufeira, Tavira, Olhão, Loulé, Lagos,
Portimão, and Castro Marim).

Meteorological variables (temperature, humidity, wind, and rain) and exterior particle
matter concentrations (PM10, PM2.5) were obtained from the nearest IPMA and EPA
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stations. To analyze the source and transport pathways of the air masses and relate the air
masses with aerosols, we used the NOAA HYSPLIT model [34,35].

Information about the weather, air quality, and vital signs was analyzed. The data
processing module was divided into four sub-phases: data cleaning, data transformation,
patient datasets selection, and environmental data integration, as is present in Figure 13.

Figure 13. Data preparation pipeline.

During the data cleaning process, a thorough analysis was conducted on outliers (val-
ues that deviated significantly from the rest of the dataset and could potentially introduce
anomalies in the results obtained from algorithms and analysis systems) based on the
distribution of values in Figures 14–17, as well as on null values within the vital signs.

Figure 14. Oxygen saturation level value distribution of all patients analyzed.
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Figure 15. Heart rate level value distribution of all patients analyzed.

Figure 16. Systolic blood pressure value distribution of all patients analyzed.
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Figure 17. Body temperature value distribution of all patients analyzed.

Regarding vital signs, any values that met the following criteria were identified as
outliers and subsequently removed:

• For oxygen saturation (SpO2), any values below or equal to 70% and above 100%.
Since we have detected many measurements at exactly 70%, we suspect these are
measurement errors;

• For body temperature, all values below 30 ◦C and above 40 ◦C;
• For systolic blood pressure (SBP), any values below 50 mmHg and above 350 mmHg;
• For heart rate (HR), any values below 39 BPM and above 250 BPM.
• For diastolic blood pressure (DBP), any values below 40 mmHg or above 200 mmHg.

In the data transformation process, we adjusted the format of historical records related
to the vital sign data of patients. The data, initially in a format of one record per day per
parameter, were converted to one record per day with all the collected vital sign values
for that day. Specifically, there was a change in the granularity of each data row from one
row per measurement of a specific vital sign at a specific moment in time for a specific
patient to one row for each day of measurements taken for a specific patient, with columns
representing the measured vital signs (data pivoting). After the format change, every time
segment with over 10 consecutive days of missing data was removed and only patients
with over 180 records whose vital sign data were fully complete were selected.

In the data integration process, the historical records of each patient’s vital signs
were supplemented with information regarding weather data (average daily temperature,
average relative humidity, and amount of daily precipitation) and air particle data (10 μm
particles and 2.5 μm particles, as these two dimensions have a greater impact on the patients’
respiratory capacity).

Modeling and Evaluation
Following the data treatment, we modeled the development and evaluation. As a

result of the data treatment phase, only 14 datasets were considered for the model training
and evaluation phase. Since the CIDSS was designed to assist COPD patients with different
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health profiles, we developed models using 14 different datasets and incorporated the best
models in the system. Figure 18 shows the steps of the development and evaluation phase.

Figure 18. Modeling and evaluation pipeline.

We employed multivariate machine learning models capable of conducting the multi-
step-ahead time series prediction of vital signs. Multi-step-ahead forecasting involves
predicting multiple future time steps in a time series [36]. In our case, it would mean
predicting the vital sign values for the following 5 days. The vital signs chosen for prediction
include SpO2, heart rate, body temperature, and systolic blood pressure, which are utilized
in the early warning score calculation module to assess the risk of deterioration.

During the feature selection process, we conducted a comprehensive correlation
analysis between vital signs and clinical validation, resulting in the identification of the
most relevant vital signs for predicting health variations in COPD patients.

Figure 19 shows an example of a correlation between SpO2 values (Spo2_1_day), the
pm25 external parameter (PM25), relative humidity (HR_MED), and SpO2 values (SpO2)
of the previous day, using the dataset for the patient with ID no. 156.

Figure 19. Correlation matrix of values of the SpO2 parameter with the relative humidity, the levels
of precipitation, the pm25 concentration, the external temperature values, and SpO2 level from the
previous day, using the dataset for the patient with ID no. 156.
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For multi-step-ahead time series prediction, all vital signs receive the previous day’s
value (n − 1) as input to forecast the value for the current day (n). To predict the value of
SpO2, we selected the following inputs: the SpO2 value of the previous day, the relative
humidity value of the previous day, the levels of precipitation from the previous day, the
pm25 value from the previous day, and the external temperature value from the previous
day.

Regarding the other vital signs, based on the analysis of the correlation between the
four vital signs analyzed in Figure 20, and the clinical insight provided by the Hope Care
SA medical team suggesting that SpO2 influences heart rate, body temperature, and systolic
blood pressure, we decided to use only the SpO2 value from the previous day and the
specific vital sign in question from the previous day as inputs.

Figure 20. Correlation matrix of values of SpO2 parameter with the pulse rate, systolic blood pressure
and body temperature values of the following day, using the dataset for the patient with ID no. 156.

To ensure the selection of the most optimal model architecture for predicting a specific
vital sign, we trained and evaluated six distinct machine learning models. These models
encompassed a diverse range of architectures, namely ARIMA (autoregressive integrated
moving average), LSTM (long short-term memory), BILSTM (bidirectional long short-term
memory), GRU (gated recurrent unit), LightGBM (light gradient boosting machine), and
XGBoost (extreme gradient boosting).

The training process was preceded by essential hyperparameter tuning, which is a
critical step in developing machine learning models. This tuning allowed us to optimize
the models for the best possible performance. In our case, the models’ performance was
assessed using the root mean square error (RMSE), which measures the difference between
prediction and the ground truth in the regression algorithm evaluation.
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Table 7 presents an example of the RMSEs achieved for the fifth-day predictions via
different machine learning model architectures for each vital sign prediction using the
dataset for the patient with ID no. 156.

Table 7. Root mean square error values for the 5th-day predictions of different model architectures
trained using the dataset for the patient with ID no. 156.

Model SpO2 Heart Rate Systolic Blood Pressure Body Temperature

ARIMA 2.080718 7.089329 9.783878 0.247163

XGBoost 0.817778 0.96435 2.407083 0.302518

LightGBM 0.064668 0.380769 2.170715 0.058705

GRU 0.083168 0.110159 0.130179 0.131379

LSTM 0.092241 0.573169 0.135822 0.137075

BILSTM 0.084948 0.113384 0.132097 0.130094

As a result of our evaluation, we saved the models that demonstrated the lowest root
mean square error (RMSE) for each vital sign. Consequently, we had 4 distinct models for
each of the 14 patient-specific datasets, with each model specialized in predicting a specific
vital sign.

Table 8 presents an example of the RMSEs for the 5th-day predictions achieved by the
best machine learning model architectures for each vital sign prediction using the dataset
for the patient with ID no. 156.

Table 8. Root mean square error values for the 5th-day predictions using the best model architectures
trained on the dataset for the patient with ID no. 156.

Vital Sign Predicted Type RMSE

SpO2 LightGBM 0.064668

Heart Rate GRU 0.110159

Systolic Blood Pressure GRU 0.130179

Body Temperature LightGBM 0.058705

3.5.2. Production

In this section, we present the incorporation of the previously described predictive
models into the clinical information decision support system (CIDSS).

The vital signs prediction module presented in Figure 21 is composed of two sub-
processes: a data pre-processing stage followed by the application of predictive models.
The data pre-processing stage is essential to ensure that the data are in the correct for-
mat and that the vital sign measurements are appropriately integrated with the external
measurements, as previously mentioned in Section 3.5.1.

The vital signs prediction process takes place daily, and the resulting predictions are
stored in the database for future reference. Subsequently, the early warning module utilizes
these data to assess and calculate the risk of a patient experiencing deterioration within the
following five days.

When a new patient is integrated into the system, the prediction for each vital sign is
calculated as the average of the predictions from all the models that predict the particular
vital sign. After a period of 6 months, the error (root mean squared error—RMSE) of each
predictive model is analyzed by measuring the distance between the values predicted by
each model and the actual values of the vital signs for each patient. The model with the
lowest error is the one associated with the patient.
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Figure 21. Vital signs prediction module architecture.

3.6. Early Warning Score Calculation Module

In this module, the risk of a patient experiencing deterioration is assessed using the
early warning score (EWS) clinical protocol. The EWS is utilized for monitoring and
detecting the risk of health deterioration in patients and it is calculated by combining
vital signs and clinical data, such as heart rate, blood pressure, respiration rate, body
temperature, oxygen saturation (SpO2), and degree of consciousness. Individual scores for
each vital sign are then totaled up, resulting in a total EWS score.

The higher the overall EWS score, the more likely a patient is suffering from a health
deterioration. This clinical protocol presented in Table 9 is indicated by Hope Care SA’s
medical team.

Table 9. Early warning score clinical protocol suggested by Hope Care SA’s medical team.

Description 0 Points 1 Point 2 Points 3 Points

SpO2

Difference between
the predicted value
for the day and the

value from the
previous day

<3% 3–5% 6–7% >7%

Heart Rate BPM Value 46–100 101–110 111–115 >115 or <46

Systolic Blood
Pressure

Percentage
difference between
the predicted value
for the day and the

baseline value

<20% ≥20% ≥23% ≥25%

Body Temperature Temperature value
in Celsius <37.5 37.5–37.9 38–38.4 >38.5

Similar to the vital signs prediction module, the early warning score calculation is
performed daily, and the resulting scores are stored in the database.
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4. Demonstration and Evaluation

To demonstrate how the CIDSS addresses the research question, we present a system
trial with the incorporation of a new patient. We use the patient with ID no. 300. The patient
health information used in this trial consists of historical information for a three-year period
consisting of HRMS monitoring provided by Hope Care SA through the HCAlert platform.

The monitoring for the patient with ID no. 300 was initiated on 21 April, 2022. The
CIDSS received a notification from the HCAlert platform, regarding the need to incorporate
this new patient, leading to the creation of a new record in the database. All vital signs
monitored for the patient with ID no. 300 were transmitted to the HCAlert platform and
subsequently extracted by the CIDSS, starting from 21 April. These vital signs underwent
analysis through the biometric sign error detection module. As no outliers were detected
in the vital signs, they were seamlessly integrated into the database.

Table 10 presents the last five days of data extracted from the database for vital sign
predictions on 25 April.

Table 10. Last 5 days of data extracted from the database for vital sign predictions on 25 April.

Date
(yy-mm-dd)

Heart Rate
(BPM)

Body
Temperature

(◦C)
SpO2 (%)

Systolic Blood

Pressure (mmHg)

T MED
(◦C)

HR MED
(%)

PR QTD
(mm)

pm25
(Count)

2022-04-20 60.0 37.1 96.0 92.0 9.68 51.30 0.11 0.82
2022-04-21 61.0 36.2 95.0 95.0 9.60 63.25 1.86 1.66
2022-04-22 63.0 36.0 95.0 93.0 7.53 82.97 23.25 0.93
2022-04-23 59.0 36.5 96.0 96.0 8.95 69.24 1.91 0.58
2022-04-24 65.0 36.2 96.0 100.0 10.79 67.82 0.29 1.14
2022-04-25 57.0 35.9 96.0 102.0 12.35 65.43 0.01 2.63

By 25 April 2022, a sufficient amount of vital sign data is available to provide insights
into the patient’s risk of health deterioration. The CIDSS proceeds with the prediction
of vital signs and subsequently calculates the early warning score. Various models are
employed to forecast the patient’s vital signs for the initial 6 months of integration. The
risk information regarding the patient’s potential deterioration is provided to the HCAlert
platform through a JSON file.

Table 11 presents the vital sign prediction values for 26 April. The predicted vital signs
are then used to calculate the risk.

Table 11. Predicted vital sign values from 26 April to 30 April.

Date
(yy-mm-dd)

SpO2
(%)

Heart Rate
(BPM)

Systolic Blood
Pressure (mmHg)

Body Temperature
(Celsius)

2022-04-26 95.028053 63.863962 98.327346 36.244274
2022-04-27 94.801013 64.027884 98.783749 36.162657
2022-04-28 94.948091 64.413307 99.589877 36.218256
2022-04-29 95.127560 64.438053 99.516291 36.246443
2022-04-30 95.054558 64.429125 99.496265 36.196343

Table 12 presents the values of the early warning score calculated on 25 April.

Table 12. Calculated values of the early warning score from 26 April to 30 April.

Date
(yy-mm-dd)

SpO2 (%) Heart Rate Systolic Blood Pressure Body Temperature

2022-04-26 0 1 0 0

2022-04-27 0 1 0 0

2022-04-28 0 1 0 0

2022-04-29 0 1 0 0

2022-04-30 0 1 0 0
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Listing 1 presents part of the structure of a part of the JSON file concerning the
predicted vital signs and early warning score calculated from 26 April to 30 April.

Listing 1. Structure of the JSON file provided to HCAlert for patient risk information on 25 April.

1 {'predict_date': '2022-04-26',
2 'global_ews_score': 1,
3 'vitals’:
4 '{``spo2'': {
5 ``predict_value'': ``95.02805293812013'',
6 ``predict_score'': ``0'', ``units'': ``{\%}''},
7 ``pulse'': {
8 ``predict_value'': ``63.86396198309728'',
9 ``predict_score'': ``1'', ``units'': ``BPM''},

10 ``systolic'': {
11 ``predict_value'': ``98.32734618907372'',
12 ``predict_score'': ``0'', ``units'': ``mmHg''},
13 ``body_temperature'': {
14 ``predict_value'': ``36.244273924492624'',
15 ``predict_score'': ``0'', ``units'': ``ºC''}}}

After an evaluation spanning over 6 months, we focused on identifying the most
suitable models to enhance the care of patient 300. Our selection process prioritized models
with the lowest root mean square error (RMSE), as shown in Table 13.

Table 13. Root mean square error (RMSE) values of the top selected models for predicting the vital
signs of patient 300.

Dataset Used to Train the Model Model Parameter Value (RMSE)

304 BILSTM Spo2 0.285014
181 GRU Heart Rate 1.520008
184 BILSTM Systolic Blood Pressure 1.904305
181 GRU Body Temperature 0.250580

We analyzed the patient’s data from the previous 6 months; we provide a new basal
value that reflects the patient‘s health condition, which is, consequently, used for the
patient‘s clinical protocol adjustment, as shown in Listing 2.

Listing 2. Suggested new basal values for patient 300 to the HCAlert platform.

1 {
2 'spo2': {
3 'median_value': 96.0,
4 'number_of_months': 6},
5 'body_temperature': {
6 'median_value': 35.6,
7 'number_of_months': 6},
8 'pulse': {
9 'median_value': 73.0,

10 'number_of_months': 6},
11 'systolic': {
12 'median_value': 99.0,
13 'number_of_months': 6}
14 }
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During the course of 6 months, while closely monitoring patient 300’s health, we
detected an error involving one of the SpO2 measurements. Initially, this measurement
seemed to comply with the clinical rules and was considered valid. However, upon atypical
measurement validation, it became evident that the probability of this value (p = 0.01599)
belonging to the distribution of SpO2 values for patient 300 was relatively low, falling
below the threshold of 0.05. Due to this fact, this measurement was discarded from the
dataset.

Figure 22 presents the distribution of SpO2 values of patient 300 analyzed for the error
alert validation.

Figure 22. Distribution of SpO2 values analyzed of patient 300.

On 25 October, the CIDSS provided essential health information about the risk of
patient deterioration. However, this risk was generated using predictions from the selected
best models, as mentioned earlier.

Table 14 presents the last five days of extracted data from the database for vital sign
predictions on 25 October.

Table 14. Last 5 days of data extracted from the database for vital sign predictions on 25 October.

Date
(yy-mm-

dd)

Heart Rate
(BPM)

Body
Temperature (◦C)

SpO2 (%)
Systolic Blood

Pressure (mmHg)
T MED

(◦C)
HR MED

(%)
PR QTD

(mm)
pm25

(Count)

2022-10-20 68.0 35.40 96.0 96.0 14.47 82.26 10.73 1.42
2022-10-21 68.0 35.60 96.0 96.0 15.05 79.13 3.94 1.94
2022-10-22 74.0 35.80 96.0 96.0 14.91 74.00 18.72 1.20
2022-10-23 70.0 35.90 95.0 94.0 14.15 67.11 5.45 2.91
2022-10-24 72.0 35.80 97.0 93.0 14.32 72.58 1.47 1.93
2022-10-25 76.0 35.00 95.0 98.0 16.13 64.89 7.87 1.94

Table 15 presents the vital sign prediction values from 25 October. The predicted vital
signs are then used to calculate the risk.
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Table 15. Predicted vital sign values from October 26 October to 30 October.

Date
(yy-mm-dd)

SpO2
(%)

Heart Rate
(BPM)

Systolic Blood
Pressure (mmHg)

Body Temperature
(◦C)

2022-10-26 96.386055 70.779388 95.078346 35.292265
2022-10-27 96.228622 72.117355 94.664948 35.597720
2022-10-28 96.208916 72.186485 94.973228 35.796912
2022-10-29 96.297836 73.253487 95.260201 35.886715
2022-10-30 96.020462 72.828354 96.042572 35.796912
2022-10-31 96.320145 71.559845 95.059273 35.292265

Table 16 presents the early warning score values calculated on 25 October.

Table 16. Calculated early warning score values from 26 October to 30 October.

Date
(yy-mm-dd)

SpO2
(%)

Heart Rate
(BPM)

Systolic Blood
Pressure (mmHg)

Body Temperature
(◦C)

2022-10-26 0 1 0 0
2022-10-27 0 1 0 0
2022-10-28 0 1 0 0
2022-10-29 0 1 0 0
2022-10-30 0 1 0 0
2022-10-31 0 1 0 0

Listing 3 presents the structure of a JSON file concerning the predicted vital signs and
early warning score calculated from 26 October to 30 October.

Listing 3. Structure of the JSON file provided to HCAlert for patient risk information on 25 October.

1 {'predict_date': '2022-10-26',
2 'global_ews_score': 1,
3 'vitals': '{
4 ``spo2'':{
5 ``predict_value'': ``96.38605499267578'',
6 ``predict_score'': ``0'', ``units'': ``\%''},
7 ``pulse'': {
8 ``predict_value'': ``70.85945892333984'',
9 ``predict_score'': ``1'', ``units'': ``BPM''},

10 ``systolic'': {
11 ``predict_value'': ``94.98711395263672'',
12 ``predict_score'': ``0'', ''units``: ''mmHg''},
13 ``body_temperature'': {
14 ``predict_value'': ``36.07156866129014'',
15 ``predict_score'': ``0'', ``units'': ``ºC''}}'},

System Evaluation

We performed a set of white-box tests, evaluating each module for its functionality
(unit tests) and integration with the related modules of the system (integrated tests). After-
ward, we conducted a survey to gather feedback from the health professionals to evaluate
the system based on a set of criteria inspired by Prat et al. [37]. Based on the positive
feedback collected from the survey, it appears that the system was well-designed and
valuable for managing the treatment of COPD patients.

Table 17 shows the evaluation given by the health professionals. They were asked
to answer questions, indicating a number between 1 and 5, where 1 corresponds to not
relevant or not useful and 5 corresponds to very relevant or very useful.
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Table 17. Results of the evaluation of the system by health professionals.

Criteria Questions Objective Statement Eval 1 Eval 2

Clinical impact on patient
treatment

Indicates the importance of an smart
clinical decision support system capable of
provide 5-day early warning scores for
monitoring patients with COPD.

Importance of the intelligent clinical
decision support system for monitoring
patients with COPD.

5 5

Patients Life Quality
Impact

Indicates the impact of a smart clinical
decision support system, providing a 5-day
early warning score on the quality of life of
a patient with COPD.

Impact of a clinical intelligence decision
support system on the quality of life of a
patient with COPD.

5 5

Utility

Indicates the usefulness of a system for
healthcare professionals; generates
information whenever there are changes in
patients’ baseline values.

Usefulness of a intelligent clinical decision
support system that notifies about patient
baseline value modifications.

4 5

Indicates the importance of a system that
provides short-time horizon (in minutes)
early warning scores for the clinical
follow-up of patients with COPD.

Importance of an intelligent clinical
decision support system on the clinical
follow-up of patients with COPD.

5 5

Indicates the usefulness of a real-time alert
system for healthcare professionals
whenever an abnormal measurement
occurs for a specific patient.

Usefulness of an intelligent clinical
decision support system that notifies about
abnormal measurement detections.

5 5

Consistency with the
organization

Indicates the relevance of involving
healthcare professionals in defining clinical
intervals for abnormal measurements.

Clinical validation on the definition of
intervals for abnormal measurements. 5 5

Indicates the relevance of involving
healthcare professionals in defining the
formula for calculating the basal value.

Clinical validation on the definition of the
basal value calculation formula. 4 5

Indicates the relevance of involving
healthcare professionals in selecting
environmental and clinical parameters
(e.g., vital signs) that most influence the
clinical progression of patients with COPD.

Clinical validation on the selection of
environmental and biometric signs that
most influence the clinical progression of
patients with COPD.

5 5

Integration with clinical
protocols

Indicates the relevance of the adopted early
warning score matrix for clinical
decision-making and adjustment of
therapeutic protocols for patients.

Relevance of the adoption of the early
warning score matrix for the clinical
decision-making and adjustment of
therapeutic protocols for patients.

5 4

5. Conclusions

5.1. Work Conclusions

In this paper, we developed a system prototype that answers our research question: “Is
it possible to automatically monitor and analyse the risk of a potential health deterioration
of COPD patients?”. This system aims to provide early information concerning a patients
health status evolution in order to support the treatment of patients with COPD.

As mentioned in Section 3, the CIDSS comprises two primary components: the vital
signs prediction module and the early warning score calculation module. These compo-
nents specifically address the research question.

The vital signs prediction module, as mentioned in Section 3.5, generates vital sign
predictions using different types of model architectures. These predictive models are
optimized using a fine-tuning process, with each model corresponding to a specific patient
with a specific health profile. As demonstrated in Section 3.5.2, the integration of predictive
models developed using data from fourteen different patients shows that the CIDSS has
the flexibility to predict vital signs and, in turn, calculate the patient deterioration risk for
various health profiles. This system has the ability to evolve and adapt to every patient
condition since the first stage corresponds to using an ensemble of models to predict vital
signs and the second stage corresponds to only using models with the lowest RMSE.

The early warning score calculation module uses vital sign records and determines
the patient health deterioration based on a clinical protocol.
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The CIDSS is also composed of three other modules: biometric sign error detection,
basal value monitoring, and the communication manager.

The biometric sign error detection ensures the quality of all information concerning
vital signs by validating, in a two-phase process, whether the vital sign values fall within
the normal range for general COPD patients and subsequently, within the specific patient’s
normal range using a probability density function.

The basal value monitoring analyzes the vital signs and suggests recommendations for
new basal values to the patient if they deviate from the baseline provided by the HCAlert
platform. The communication manager deals with all connections between the CIDSS
modules, the HCAlert platform, and weather information sources.

The CIDSS system completed the white-box tests, including unit tests and
integration tests.

All of these tests validate its functionality and contribution to preventing and poten-
tially improving patient treatment by offering an early indication of the patient’s risk for
deterioration.

Despite our ability to employ real-time telemonitoring patient data, we employed
clinical historical longitudinal data that were gathered over a substantial period of time
(2–3 years) through a telemonitoring application. This extended time frame enabled us
to formulate conclusions regarding the system’s validity, supported by the early warning
score implementation and the errors of the applied predictive models.

5.2. Limitations

The non-approval of the incorporation of new patients by the ethics committee associ-
ated with the HC PSI project made the testing and analysis of the CIDSS effectiveness in
providing quality information regarding patient health deterioration risk difficult.

The scarcity of data was a limitation in our study, and two key aspects contributed
to this challenge. Firstly, the measurements we had access to were not collected at hourly
intervals, which restricted our ability to capture fine-grained variations in the data. The
absence of hourly data points hindered our capacity to discern short-term patterns and
trends, potentially hiding crucial insights that might have emerged with more frequent
data collection.

Another significant data gap stemmed from the lack of information concerning home
sensors, specifically data related to humidity levels. Humidity is a vital environmental
factor that influences various aspects of indoor comfort, air quality, and overall well-being.
The absence of the essential sensor data limited our ability to comprehensively assess the
interplay between different environmental parameters, potentially leading to an incomplete
understanding of the complex dynamics within the studied environment.

Despite the limitations, the system was validated, end-to-end, and clinically recog-
nized as important for COPD monitoring, being adjustable enough to integrate these
data sources if included in the project and handle a lower granularity of information to
make predictions.

5.3. Future Work

As part of our future work, we will aim to identify some potential advancements to
pursue. Firstly, we will aim to validate the effectiveness of the CIDSS (clinical deterioration
surveillance system) by obtaining real-time patient data through the HCAlert platform.
Analyzing these data over an extended period will help us assess the accuracy and qual-
ity of early information provided by the CIDSS, particularly regarding a patient’s risk
of deterioration.

To enhance the robustness of our research, we will seek to access a more extensive
and diverse dataset that includes patient data from different countries. Expanding our
data collection to the international stage will ensure that our findings are relevant to a
broader population.
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Adopting a more inclusive approach involves considering a broader range of age-
related values. By including individuals across various age groups, we could reveal some
patterns and trends that may be present within different life stages.

To achieve more precise and detailed analyses, we propose incorporating more daily
frequent recordings. This higher data capture frequency will enable us to detect subtle fluc-
tuations and temporal dynamics that might be missed in less frequent sampling, providing
real-time insights into patients’ vital signs.

Additionally, the integration of sensor technology to monitor indoor humidity levels
would facilitate the extraction of valuable insights regarding the relationship between
environmental factors and health deterioration.

By pursuing these advancements, we seek to increase the importance and reliability of
our research, which could ultimately contribute to better patient treatment.
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