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Surface Water Change Detection via Water Indices and Predictive Modeling Using Remote
Sensing Imagery: A Case Study of Nuntasi-Tuzla Lake, Romania
Reprinted from: Water 2022, 14, 556, doi:10.3390/w14040556 . . . . . . . . . . . . . . . . . . . . . 4

Maral Habibi, Iman Babaeian and Wolfgang Schöner
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Editorial

Assessing Hydrological Drought in a Climate Change: Methods
and Measures
Alina Barbulescu 1,* and Stefan Mocanu 2

1 Department of Civil Engineering, Transilvania University of Bras, ov, 5 Turnului Str., 500152 Bras, ov, Romania
2 Fcaulty of Mechanical Engineering and Robotics in Constructions, Technical University of Civil Engineering

of Bucharest, 59 Calea Plevnei, 010234 Bucharest, Romania
* Correspondence: alina.barbulescu@unitbv.ro

Water is a resource indispensable for human life and activity, significantly affected
by climate change (by decreasing the water quantities available for drinking) and anthro-
pogenic activities (by pollution). In recent decades, the frequency and intensity of drought
has increased in extended zones of the planet, with an obvious negative impact on the
environment, human life, and the economy. In this context, the Special Issue “Assessing Hy-
drological Drought in a Climate Change: Methods and Measures” addresses the following
main topics:

• Designing new drought indices to better quantify drought effects;
• Analyzing drought events from both qualitative and quantitative viewpoints;
• Detecting drought events and their correlations with climate change;
• Estimating the drought frequency and intensity of drought episodes;
• Modeling and forecasting time series related to drought events.

Remote sensing has become a regular tool for assessing hydrological drought, mainly
when onsite recorded data are insufficient or absent for specific periods. It was the primary
investigation tool used in the case of the Nuntasi-Tuzla Lake, situated in the Danube
Delta Natural Reserve, Romania [1]. An event in 2020, when the water level significantly
decreased, was the beginning point for finding the causes of this phenomenon and its
relationship with climate change and anthropic influence. The 1965–2021 data series and
indicators derived from Landsat TM/ETM+/OLI and MODIS datasets (NDVI, MNDWI,
WNDWI, and WRI) were used in the investigation. The results showed that hydrological
drought and anthropic activities influenced the significant variation in the lake’s water level.

A similar study was performed for the Urmia Lake Basin, Iran [2], for 1981–2018,
using SPI, SPEI, and SMRI indexes. The decreasing trends of SPEI and SMRI suggested
that evaporation and low snowmelt increased the drought after 1995. As in the case
of the Nuntasi-Tuzla Lake, the water level diminishing was also the result of defective
water management.

Starting from the idea that hazard indexes, built for estimating drought, do not give
information on the location and moment when the adverse effects appear, Thomaz et al. [3]
proposed a new index to assess drought—the Water Scarcity Risk Index (W-ScaRI). It com-
prises two sub-indices. The first one, formed by integrating SPI, RDI, and SDI, describes the
hazard, whereas the second describes the hazard’s consequences. It demonstrated promis-
ing results in the presented case study and can be extended by including other subindexes.

In [4], the authors used the SPI drought prediction at different time scales. They
also investigated the influence of the data series stationarity/nonstationarity on the SPI
computation and the bias introduced and draw attention to the misuse of these indexes.

Botai et al. [5] evaluated hydrological drought in three Cape provinces utilizing the
Standardized Streamflow Index computed for trimestral and semiannual accumulation
periods in a study aiming to propose solutions to mitigate the adverse drought effects. The
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results show that drought frequency increased and that there was a spatial inhomogeneity
(of the drought events) in the studied zone.

Another series of articles analyzed river discharge events in different countries. After
a critical overview of the percentiles and flow duration curve (FDC) use, Raczyński and
Dyer [6] introduced a new methodology to compute the low flow threshold (LFT) based
on the change point detection. They indicate that the new algorithm has the advantage
of objectively identifying the beginning of the low flow events, unifying the approaches
for selecting the threshold levels. The algorithm is accompanied by a module written
in Python.

To study the low flow patterns, the autocorrelation and partial autocorrelation func-
tions and the Hurst exponent were employed in the article by Raczynski et al. [7]. They
helped to make the distinction between the white noise and the seasonal processes.

Climate change has manifested in some regions of Romania through long drought
periods followed by high precipitation in a short period, leading to flooding. Ţigăneşti and
Brânceni are villages that have been affected many times by floods, as in July 2005, when
the water flow was 676 m3/s. The article [8] investigates the mentioned event and evaluates
the produced damages using field observation and recorded data HEC-RAS simulation.
It was emphasized that the existence of a levee along the Vedea River would protect the
villages from flooding.

In the same vein, Garza-Díaz et al. [9] computed the streamflow drought index in a
study related to the landscape modification in a river basin by the anthropogenic drought
in Mexico.

In the conditions of the accentuated drought, irrigation is a must for maintaining high
crop production and ensures the consumption necessities. With this in mind, Dumitriu
et al. [10] propose a new tool—IrrigTool—that facilitates the quick computation of the
irrigation rate, having hydro-meteorological variables, crop type, and soil as inputs. It is
implemented in Excel and VBA, has a user-friendly interface, and provides the graphical
output and possible comparisons between the irrigation rates in two locations. A case
study is also provided, together with step-by-step functioning explanations.

We hope that the reader will find useful information on hydrological drought, its
quantification, and its analysis.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Surface Water Change Detection via Water Indices and Predictive
Modeling Using Remote Sensing Imagery: A Case Study of
Nuntasi-Tuzla Lake, Romania
Cristina S, erban 1,* , Carmen Maftei 2,* and Gabriel Dobrică 1

1 Faculty of Mathematics and Computer Science, Ovidius University of Constanta, 900527 Constanta, Romania;
gabriel.dobrica@yahoo.com

2 Faculty of Civil Engineering, Transilvania University of Brasov, 900152 Brasov, Romania
* Correspondence: cgherghina@gmail.com (C.S, .); cemaftei@gmail.com (C.M.)

Abstract: Water body feature extraction using a remote sensing technique represents an important
tool in the investigation of water resources and hydrological drought assessment. Nuntasi-Tuzla
Lake, a component of the Danube Delta Natural Reserve, is located on the Romanian Black Sea littoral.
On account of an event in summer 2020, when the lake surface water decreased significantly, this
study aims to identify the variation of the Nuntasi-Tuzla Lake surface water over a long-term period
in correlation with human intervention and climate change. To this end, it provides an analysis in the
period 1965–2021 via hydrological drought indices and data mining classification. The latter approach
is based on several water indices derived from Landsat TM/ETM+/OLI and MODIS full-time series
datasets: Normalized Difference Vegetation Index (NDVI), Normalized Difference Vegetation Index
(NDVI), Modified NDWI (MNDWI), Weighted Normalized Difference Water Index (WNDWI), and
Water Ratio Index (WRI). The experimental results indicate that the proposed classification methods
can extract relevant features from waterbodies using remote sensing imagery with a high accuracy.
Moreover, the study shows a similarity in the evolution of surface water cover identified with the
data mining classification and the drought periods detected in the flow data series for the Nuntasi
and Sacele Rivers that supply the Nuntasi-Tuzla Lake. Overall, the results of our investigation show
that human intervention and hydrological drought had an extensive impact on the long-term changes
in surface water of the Nuntasi-Tuzla Lake.

Keywords: hydrological drought; remote sensing; water indices; Nuntasi-Tuzla Lake; Romania

1. Introduction

Climatic changes can induce modification of lake surfaces and riverbeds with se-
vere implications for agricultural and economic activities [1–3]. The scientific literature
demonstrates the “sensitivity” of physical, chemical, and biological lakes’ properties to
climate change and human intervention [4–6]. Since 1960 permanent surface water has
been shrinking, drying or has completely disappeared: Aral Lake, Urmia Lake (70% of
its surface between 2012–2017 [7]), Chad Lake, Lop Nur, etc. [4,5]. Lake surface area was
used by Benson and Paillet [8] in order to establish an indicator of lakes’ hydrological
response to climatic change. In comparison with classic methods, Remote Sensing (RS)
technology presents a viable alternative to improve the observation of lake water surface in
hydrological studies.

Initially, the NDVI (Normalized Difference Vegetation Index) was an indicator used
to efficiently monitor vegetation condition [9] and drought activity [10,11]. This index
was used also to extract water features [12]. McFetters [13] developed a new method to
delineate water bodies based on the spectral characteristics of water which refers to the
capability of a water body to absorb near infrared radiation (NIR) and allows visible green
light to penetrate the water body. This new indicator, NDWI (Normalized Difference Water
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Index) was modified by Xu [14] in order to resolve the issue of the zero (0) threshold
agreed by McFetters as the separation between water body and background. Xu [14]
proposed a modified NDWI (MNDWI) index using the middle infrared band (MIR) instead
of NIR. According to the author [14], MNDWI can more accurately distinguish water
from non-water features. One other well-known multiband water index is the water ratio
index (WRI). Due to the domination of the spectral characteristics of the green and red
bands compared with the NIR and MIR bands, the WRI shows values greater than 1 for
water [15]. Guo et al. [16] proposed a new index: the weighted normalized difference
water index (WNDWI), that weighted average NIR and SWIR (shortwave infrared) bands.
According to the authors, the new index improves the accuracy of water extraction by
correctly classifying turbid water as a water body and vegetation in the shadow area as
non-water body [16]. Acharya [17,18] proposed a combination of different indices in order
to improve water extraction.

In the summer of 2020, Nuntas, i-Tuzla Lake (1050 ha), located on the Romanian Black
Sea littoral (Figure 1), dried out.
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In this context, the purpose of this paper is to: (i) analyze the hydrological data in order
to understand the response of surface water to climate change or/and human intervention
and (ii) evaluate the performance of the most commonly used water indices using time
series Landsat data in order to capture the variation in surface water during 1984–2021
period. These results will contribute to a better understanding of the lake’s evolution in the
context of global changes.

2. Materials and Methods
2.1. Study Area

The Nuntasi-Tuzla Lake is situated in the well-known Histria region (Histria or Istros
acropolis is the first urban settlement, founded by ancient Milesian in the 7th century BC).
From a geomorphological point of view, the Histria region is a coastal lowland developed
at the contact between the Central Dobrogea plateau and the Black Sea [19]. The average
altitude is 25 m with a slope that decreases towards the sea. Geologically, green schist
covered with a loess layer of varying thickness (2–15 m) represents the basement. The
climate of the region is temperate continental with marine influences (precipitation of
400 mm and 11 ◦C average temperature). From a hydrological point of view, the lake
is part of the Razim-Sinoe lagunar complex, a component of the Danube Delta Natural
Reserve. Today, the Razim-Sinoe complex (Figure 2), initially a marine bay (the former
Halmyris gulf), is composed of the following lakes: Razim, Sinoe, Golovita, Zmeica,
Babadag, Nuntasi-Tuzla, Istria, and Ceamurlia si Agighiol.
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Concerning the lake’s genesis, the latest scientific arguments clearly demonstrate that
neo-tectonic activity was the main factor that led to the Nuntasi-Tuzla and Istria lakes’
development 1200–1600 years ago [19]. The other lakes were separated from the Black Sea
by sand-belts [17], which formerly had outlets allowing the penetration of sea water. The
lakes were interconnected by small creeks.

According to Breier [20], Nuntasi-Tuzla Lake has the following morphometric features:
the length is 2 km, the breadth varies between 1.7 and a maximum of 3 km, the depth of the
lake varies between 2.15 m and 6.15 m, and the surface area is 1050 hectares. The Nuntasi-
Tuzla Lake is supplied by two rivers: Nuntasi and Sacele. From the economic point of view,
according to town hall documents, agriculture and fisheries are the predominant economic
sectors in the region. The mud baths were a great tourist attraction at the beginning of
the 20th century due to its therapeutic qualities. Nowadays, the most important touristic
attraction in the region is Histria ancient city.

In a recent work [21], we described the irrigation system built in 1971–1975 and
operable till 1990. After this year, the demand for irrigation decreased to 20% of its capacity.

In order to ensure water demand, the Razim-Sinoe lagoons were transformed into a
large freshwater reservoir. The three greatest hydraulic works were constructed in that
period: (i) closure of the natural gateway between the lagoons and Black Sea, (ii) closure—
via sluices of the connections between the lakes and (iii) resizing of three canals which
supply the reservoir with fresh water from the Danube (St George Arm) so as to ensure
a total discharge of 260 mc/s (for a probability of occurrence of 1%) with an average of
80 mc/s [21]. These works led to important changes in the hydrological regime of the region
and to a great disturbance of the ecological balance of all the lakes. Nuntasi-Tuzla Lake was
connected to Istria Lake by a canal and sluice. This canal was silted up with alluvium.

A detailed description of all human intervention in this area is provided in Section 3.1.

2.2. Data Sets
2.2.1. Hydrological Datasets

Two hydrological parameters are monitored at the two hydrometric stations (Nuntasi
and Sacele). This study is based on two time data series: annual average discharge for
Nuntasi and Sacele spanning the 1965–2020 period, and daily discharge for the period
2008–2020. The annual average discharge was used in order to investigate changes in the
time series. The time series data were collected by the National Administration “Romanian
Water” Dobrogea-Littoral Branch at the hydrometric station situated in the Nuntasi-Tuzla
lake basin.

2.2.2. Remote Sensing Datasets

The time-series datasets of Landsat surface reflectance are acquired directly from the
GEE (Google Earth Engine) platform for the period 1984–2021 in the following way: (i) from
1984 to 1999, and from 2003 to 2011, the data were collected from Landsat 4–5 Thematic
Mapper (TM); (ii) for 2000, 2001 and 2002, Landsat 7 Enhanced Thematic Mapper (ETM+)
images were collected; and (iii) for 2013–2021, the data were collected from Landsat 8
Operational Land Imager (OLI). The datasets belong to Landsat Collection 1—Level 1
corrected data, which have the highest radiometric and positional quality and are suitable
for time-series analysis. The spatial resolution of all Landsat scenes is 30 m.

Due to Landsat 7 ETM+ data gaps from 2012, the time-series dataset of the moderate-
resolution imaging spectroradiometer (MODIS) TERRA surface reflectance (MOD09GA) was
used to determine the surface water for the seasons of 2012. MODIS images with 500 m spatial
resolution were acquired from the GEE platform. The study area is entirely contained within
path 181 and row 29 for all Landsat TM/ETM+/OLI and Modis images (Figure 1).

2.3. Methods

The methodology used in this paper consists of three parts: A. a literature investigation
to understand human intervention in the Nuntasi-Tuzla Lake basin; B. a hydrological anal-
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ysis of two tributaries (Nuntasi and Sacele) concerning hydrological drought occurrence,
which refers to (i) detecting changes in time series data through KhronoStat software and
(ii) calculating hydrological drought; and C. RS analysis, which refers to: (i) processing of
the Landsat and MODIS datasets so that only the images with Cloud Cover of less than
30% are investigated (ii) calculation of RS indices (RSI) NDVI, NDWI, MNDWI, WNDWI,
WRI and their average for each season of each year of the period considered; (iii) in order
to extract the water surface features, a decision tree was built. We chose the Classification
and Regression Tree (CART) model developed by Breiman et al. [22], as a very popular
statistical learning tool for analyzing large complex data.

2.3.1. Hydrological Analysis

KhronoStat (HydroSciences, Montpellier, France) is statistical software able to identify
the sudden changes in a hydro or climatic data series using a set of statistical tests: the Pettitt
rank-based test (non-parametric test), Buishand “U” test, Lee and Heghinian Bayesian
method (parametric test) and Hubert procedure segmentation. The Buishand “U” and Lee
and Heghinian tests are applicable if the time series investigated are normal. The Hubert
procedure is the only one able to detect multiple breaks. The series is divided into “m”
segments and, in order to limit the segmentation, the averages of two contiguous segments
must be significantly different. This constraint is satisfied by Sheffe’s test [23,24].

Considering hydrological drought analysis, an overview of the principal scientific
literature [25–28] demonstrates that methodologies to characterize hydrological droughts
can be divided into two categories (Figure 3): (i) determine the low flow index (a percentile
from flow duration curve (FDC); annual minimum flow (MAM); base flow index (BFI);
and (ii) deficit characteristics by Threshold Level Method—TLM and SPA—Sequent Peak
Algorithm. The biggest disadvantage of the first category of methods is that it cannot give
any information about the length of the drought period or about the beginning or end of
the drought, while the methods in the second category offer a number of characteristics
relating to the drought duration, the volume of severity, the intensity of the event (ratio of
the volume and duration of drought), and the minimum of each event.
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Figure 3. Methods to characterize hydrological drought.

Based on the SPA method, two droughts could be pooled if the reservoir has not totally
“recovered” after the first drought event. Our interest is to find minor droughts also and not
only major ones. For this study, we decided to use the TLM method. The TLM method, well
known as the “method-of-crossing theory”, was introduced by Yevjevich in 1967 [29]. First,
a threshold level, Qo, is chosen. The deficit begins where the flow values are below this Qo
level and ends where the flow is above Qo value. We propose to use as threshold a value in
the range of Q70%–Q95% resulting from the FDC analysis. To conclude, in order to evaluate
the hydrological drought in the Nuntasi and Sacele Rivers, the methodology proposed
is: (i) in order to select the driest period, an analysis of annual discharge time series data
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(1965–2020) will be performed with KhronoStat software which detects a sudden change in
time series data; (ii) an assessment threshold value with the FDC curve; (iii) hydrological
drought assessment with TLM methods using daily discharge data.

2.3.2. RS Analysis

Using the special spectral reflectance (RS) properties of water, it is possible to differen-
tiate between water and other surface materials. A multiple RS indices algorithm based
on supervised classification was used to identify the surface water cover of Nuntasi Tuzla
Lake. The spectral indices measurements acquired from Landsat TM/ETM+/OLI and
MODIS datasets from 1984–2021 were analyzed by the algorithm that trains the randomly
chosen samplings to construct a binary decision tree, and finally decodes this in order to
classify the surface water (Figure 4). The algorithm was fully implemented and run on the
GEE platform.
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Figure 4. Flowchart of surface water detection based on a Decision Tree Classification.

Cloud filtering and masking of remote sensing data is a necessity to monitor the land
surface cover more accurately. We used the cloud flag from the Level 1 Quality Assessment
(QA) band of the Landsat datasets to limit the cloud cover at less than 30% in each selected
image. Then, cloudy pixels were masked and not taken into consideration during the
modeling of the surface water. This method is considered robust against errors [30,31].
After applying the cloud filter, we selected 233 Landsat RS images covering three seasons
(spring, summer and autumn) of each year for the period investigated (Table 1). Similarly,
the MOD09GA dataset for each season of 2012 was selected. In winter, most of the RS
images did not pass the cloud filter, thus we decided to omit this season from our research.

Table 1. Number of Landsat RS images investigated.

Period Spring Summer Autumn

1984–1999 15 50 25
2000–2012

2000–31 May 2003 9 8 6
1 June 2003–2011 11 29 13

2013–2021 19 27 21

The RSI indices extracted from the full-time Landsat and MODIS surface reflectance
dataset (Table 2) were then averaged as seasonal RSI from 1984 to 2021. For example,
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seasonal RSI in summer 2020 is taken from the RSI indices summed from 1 June to
31 August 2020 divided by the valid data (number of RS images) from the same period.

Table 2. RSI used for water surface extraction [1,12,16].

RSI Formula Observation

NDVI NDVI = (NIR − Red)/(NIR + Red) Water has negative value
NDWI NDWI = (Green − NIR)/(Green + NIR) Water has positive value

MNDWI MNDWI = (Green − MIR)/(Green + MIR) Water has positive value
WNDWI WNDWI = (Green – a · NIR − (1 − a) · SWIR)/(Green + a · NIR + (1 − a) · SWIR) a [0;1] 1

WRI WRI = (Green + Red)/(NIR + MIR) Water is >1
1 weighted coefficient; if a = 0 than WNDWI = MNDWI, if a = 1 than WNDWI = NDWI. For our study, the
weighted coefficient a was set to 0.50, as the tests show that this value allows a high overall accuracy of the index
performance [17].

In the formula, Green denotes the reflectance of the green band (Band 3 of the Landsat
OLI data, Band 2 of the Landsat TM/ETM+ imagery, Band 4 of the MODIS data), Red
represents the reflectance of the red band (Band 4 of the Landsat OLI data, Band 3 of the
Landsat TM/ETM+ imagery, Band 1 of the MODIS data), NIR designates the reflectance of
the near-infrared band (Band 5 for Landsat OLI, Band 4 for Landsat TM/ETM+, Band 2
of the MODIS data), MIR indicates the reflectance of the middle-infrared band (Band 6
for Landsat OLI and MODIS, Band 5 for Landsat TM/ETM) and SWIR stands for the
reflectance of the SWIR1 band, which corresponds to Band 6 for Landsat OLI and MODIS
data, and Band 5 for Landsat TM/ETM+ datasets.

The CART models lie on the supervised branch of the machine learning (ML) algo-
rithms and may be used for both classification and regression problems. They find homo-
geneous subsets by recursively partitioning the input data, based on independent variable
splitting criteria employing variance-minimizing algorithms. Being a non-parametric algo-
rithm, intuitive and with a significant ability to characterize complex interactions among
variables, the CART models have been widely used in different practical remote sensing
applications [32,33]. For this study, we employed the CART algorithm provided by the GEE,
with the seasonal averaged values of the RS indices (NDVI, NDWI, MNDWI, WNDWI and
WRI) for each year as the input data. The surface water results for each season of the period
investigated were then predicted based on the trained classification model.

To evaluate the performance of the RSI indices and the trained classification algorithm,
three Landsat images for each period studied were randomly selected (Table 3).

Table 3. Selected scenes of Landsat TM/ETM+/OLI surface reflectance imagery used for
accuracy assessment.

Data Satellite Date Cloud Cover (%)

D1 Landsat 5 TM 16 July 1988 2.00

D2 Landsat 5 TM 3 September1994 4.00

D3 Landsat 5 TM 28 May 1999 14.00

D4 Landsat 7 ETM+ 7 June 2000 0.00

D5 Landsat 5 TM 22 March 2004 0.00

D6 Landsat 5 TM 18 September 2011 3.00

D7 Landsat 8 OLI 10 September 2014 10.30

D8 Landsat 8 OLI 08 May 2015 0.83

D9 Landsat 8 OLI 29 July 2016 1.16

In order to represent the water and the land features in the study area, we used the
stratified random sampling method to select 240 test samples (120 water and 120 non-water
samples). The water samples consist of river, lake and sea water pixels, and the non-water
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samples are composed of soil, vegetation and built-up area pixels. The validation of the
accuracy assessment has been achieved by referring to the original satellite images and
Google Earth images.

3. Results and Discussion
3.1. Human Intervention

A review of the principal scientific literature [27,34–40] concerning human intervention
in the Nuntasi-Tuzla Lake region demonstrates huge landscape modification that began
more than a century ago. Two series of works were carried out in the region: the first began
in the period 1903–1905 and the second started in 1970. The first series was carried out
for fisheries and finalized in four stages [37]: (i) 1903–1916, when a link between the Sf
Gheorghe arm and the Razim-Sinoe Lake was made in order to improve the fresh water
circulation [41]; work began in 1905 with the Dunavat canal and was continued with the
Dranov (1912) and Crasnicol canals; (ii) in 1930–1948 and (iii) 1950–1963, a great number of
canals were excavated in order to connect the Danube with the lakes (Lipoveni, Fundea,
Mustaca canals) and these lakes with each other; (iv) in 1963–1985, the existing canals were
broadened and deepened [37] and a water gate at Portita mouth was built [39]. In 1963,
a study was conducted concerning the territorial planning of the Dranov-Razelm-Sinoie
Lacuster Complex [40]. This document recommended the closure of the Razim Sinoe
Lagoon complex and the transformation of this system into an irrigation reservoir. In this
context, in the period 1971–1975 the Portita mouth was closed by a dam [28] and a series
of hydraulic works were made to control the communication between Razim Lake and
the Black Sea through Sinoe Lake. From 1971 to 1976, the irrigation system was built and
consisted of six subsystems. The Sinoe irrigation subsystem, of which the study area is
a part, came into operation in 1976. The Sinoe SPA (Supply Pumping Station) covered
a surface of 57,162 ha and had a flow rate of 46.1 mc/s. The distribution network had a
length of 157.3 km [36]. The irrigation system was in operation from 1976 to 1990. After this
year, water demand for irrigation decreased. Under the new property law, a conservation
process for the irrigation system began [41,42], resulting in their destruction (over 75% of
these arrangements were inoperable in 2016 [42,43]. According with the National Agency
for Land Improvement, in 2021 only 10,930 ha were contracted (19%) in the study area and
only 1250 ha have been irrigated. All this human intervention modified the hydrological
condition of the Nuntasi-Tuzla ecosystem. The former Research and Design Institute for
Water Management (the current Aquaproiect Company) shows a high demineralization of
lake water from 57.8 g/L (1934) to 1.6 g/L (1982), a decrease in production of therapeutic
mud, which was 0 in 1980, and an increase in the fresh water supply through the two
tributaries, from 5 mil/mc in 1977 to 15 mil/mc in 1980 [44]. Braier [20] specified in her
study that the salinity of this lake decreased due to the freshwater input and to the fact that
the connection between this lake and the Istria lake was interrupted.

3.2. Hydrological Drought Analysis

Unfortunately, there are no meteorological or hydrological drought studies for this
region. The idea to investigate this area appeared when, in 2020, the Istria town hall
informed the authorities that Lake Nuntasi-Tuzla had dried up.

The Nuntasi Tuzla Lake is supplied by the Nuntasi and Sacele Rivers and we assume
that there is a breakpoint in the time series data based on the variation of annual discharge
presented in Figure 5, which shows a descending trend. As we showed in Section 2.2.1,
in order to detect changes in the time series data, we used the annual discharge series for
the 1965 to 2020 period. The multiannual average discharge for Nuntasi River is 0.348 m3/s,
and is 0.081 m3/s for the Sacele River. It should also be specified that, for the Nuntasi River,
the values for 2015 and 2017 are missing.
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Figure 5. Variation of annual average discharge of the Nuntasi and Sacele Rivers.

The hydrological data are not normally distributed, even after several transformations.
For the Nuntasi and Sacele annual discharge series, Buishand and Lee and Heghinian tests
were not performed. The Pettitt test rejected the null hypothesis H0 = no break for all confi-
dence levels (90%, 95% and 99%) and admitted a break in 1997. The Hubert segmentation
procedure detected four break points (1980, 1989, 1997 and 2006). For the Sacele discharge
series, the Pettitt test rejected the null hypothesis for all confidence levels and admitted a
break point in 2003, whilst the Hubert segmentation detected two break points, one in 1996
and one in 2003. For both Nuntasi and Sacele annual discharge, the breakpoints detected
by the Pettitt and Hubert tests corresponded (1997 for the Nuntasi time series and 2003
for Sacele, respectively). As shown in the following table (Table 4), the average calculated
for each subseries period detected by the Hubert procedure corresponded to the different
stages of hydraulic work implemented in the study region and described in the previous
Section 3.1. For the Nuntasi River, during the maximum operating period (1981–1989)
of the irrigation system, the average annual discharge is 1.4 times greater than that from
the previous period (1965–1980). This increase is due to the infiltration resulting from the
irrigation water. The drill installed in the region by the former Land Improvement Office
provided an increasing in the aquifers level [36]. Moreover, after 1989 the multiannual
discharge for the period 1990–1997 returned to the baseline (1965–1980) and continued to
decrease, reaching a dangerous level (6.75 times less than the average annual discharge for
the 1965–1980 period). The same behavior was seen in the Sacele River, but the decrease
was only by 3.1 times. Based on this situation, in order to detect hydrological drought using
the two procedure described in the Section 2.3 (TLM and SPA, respectively) we used the
daily discharge time series data for the 2007–2020 period.

Table 4. Average of the subseries detected via the Hubert segmentation procedure.

Hydrometric Station Subseries Period Average (m3/s) Observation

Nuntasi

1965–1980 0.466 hydraulic work construction and
irrigation system operation1981–1989 0.637

1990–1997 0.410 gradual disrupting of
irrigation system1998–2006 0.229

2007–2020 0.069

Sacele
1965–1996 0.103
1997–2003 0.095 id.
2004–2020 0.033
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Firstly, we construct the FDC by plotting the empirical cumulative frequency (EFQ)
of the river daily discharge against exceedance frequency. Figure 6 shows the FDC for the
Nuntasi River.
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Figure 6. Flow Duration Curve for the Nuntasi River.

The difference between Q95%, Q90%, Q80% and Q75% is small (Table 5). In this
context we chose as threshold (Qo) the value corresponding to Q90% for both rivers.

Table 5. Threshold values determined by FDC.

Hydrometric Station EFQ (%) Qo (m3 s−1)

Nuntasi

95 0.03
90 0.03
80 0.04
75 0.05

Sacele

95 0.01
90 0.01
80 0.02
75 0.02

For a threshold value of 0.03 (Q90%), the TLM identified not only major droughts
but also minor droughts (Figure 7). There are 11 periods of hydrological drought in total
(Table 6) and the driest years are 2013 and 2020 with 16% and 20% deficit, respectively, of
the period investigated. For the Sacele river, only two hydrological drought periods have
been detected, in 2019 (4 days) and 2020 (4 days).

Table 6. Drought characteristics obtained with TLM and SPA for the Nuntasi station.

Date Start Date End Length Period (Days)

7/20/2008 7/22/2008 3
9/28/2011 9/30/2011 3
9/27/2012 9/29/2012 3
6/13/2013 6/30/2013 18
7/2/2013 7/2/2013 1

7/23/2013 8/30/2013 39
8/15/2019 8/16/2019 2
8/29/2019 9/1/2019 4
8/3/2020 9/14/2020 43

9/16/2020 9/30/2020 15
10/7/2020 10/20/2020 14
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Figure 7. The TLM results for the Nuntasi station (2013): (a) zoom for 13 June 2013–30 August 2013
period; (b) zoom for 3 August 2020–20 October 2020 period.

3.3. Remote Sensing Analysis
3.3.1. Accuracy Assessment

Table 7 presents the confusion matrix of seasonal surface water detection results for
the selected imagery introduced in Table 3. The overall accuracy (OA), Kappa coefficient,
producer accuracy (PA) and user accuracy (UA) [45] of the surface water mapping are
above 90%. On that account, the approach presented in this paper can be considered one of
the optimal methods for surface water extraction for the study area (Figure 8).
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Table 7. Summary of accuracy assessments for Landsat dataset.

Data No. Class UA (%) PA (%) OA (%) Kappa

D1
Water 95.74 100.00

98.21 0.96
Non-Water 100.00 97.31

D2
Water 100.00 98.11

99.09 0.98
Non-Water 98.27 100.00

D3
Water 98.36 100.00

99.01 0.98
Non-Water 100.00 97.61

D4
Water 96.77 100.00

98.03 0.96
Non-Water 100.00 95.23

D5
Water 100.00 98.36

99.09 0.98
Non-Water 98.03 100.00

D6
Water 98.50 100.00

99.06 0.98
Non-Water 100.00 98.00

D7
Water 98.07 100.00

99.03 0.98
Non-Water 100.00 98.11

D8
Water 98.21 100.00

99.03 0.98
Non-Water 100.00 97.95

D9
Water 97.95 100.00

99.09 0.98
Non-Water 100.00 98.38

Similarly, an accuracy verification procedure was applied on MODIS extracted surface
water results (Table 8). The confusion matrix provided accuracies of higher than 90%,
proving that the trained classification algorithm could effectively detect surface water from
the MODIS dataset.

Table 8. Summary of accuracy assessments for MODIS dataset.

Date Class UA (%) PA (%) OA (%) Kappa

20 August 2012
Water 95.75 95.55

95.74 0.91
Non-Water 95.94 95.91

23 September 2012
Water 96.07 98.00

96.66 0.94
Non-Water 97.91 95.91

Further, in order to evaluate the effectiveness of the surface water detection results
from the MODIS dataset for 2012, a correlation analysis was performed for the period
2000–2011 between the MODIS and Landsat results. The multiple correlation coefficient of
surface water between Landsat and MODIS was 0.97 and the coefficient of determination
(R-squared) was 0.95 (Figure 9), showing that the surface water results from the MODIS
dataset closely correspond to those from Landsat. On that account, the surface water
detected from MODIS can effectively be used for seasonal change analysis of the surface
water cover in the study area.
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3.3.2. Seasonal Water Surface Variation

Figure 10 shows the variation of the seasonal average surface water from 1984 to 2021
of Nuntasi-Tuzla Lake.
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Figure 10. Variation in the seasonal average surface water area for the investigated period.

The largest seasonal average value from 1984–1999 period was recorded in autumn
1995 (Figure 11a), and the minimum was determined in autumn 1989 (Figure 11b). For
the 2000–2012 period, the maximum average surface water was estimated in summer
2001 (Figure 11c), and the minimum in summer 2012 (Figure 11d). For the last period
considered, 2013–2021, the largest seasonal average surface water was determined in
spring 2019 (Figure 11e), and the smallest in autumn 2020 (Figure 11f). Figure 12a,b
show the lake surface maps overlaid to produce lake surface area changes maps for the
periods investigated.

The Hubert test detected five subseries in the seasonal water surface data series (in
summer 1991, spring 2012, spring 2013, summer 2019 and summer 2020) which coincide
with the detection in the flow data series of the Nuntasi and Sacele Rivers and full irrigation
system operation.
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Figure 11. Seasonal surface water extraction maps (a) autumn 1995 (b) autumn 1989 (c) summer 2001
(d) summer 2012 (e) spring 2019 (f) autumn 2020 (g) summer 2013.

The seasonal average surface water was approximately 992 ha from 1984 to summer
1991, and increased by 4%, on average, after 1991. It did not then suffer significant changes
until spring 2012 (Figure 10). Figure 12c shows the maximum growth of surface water area,
11.34%, from the smallest area in autumn 1989 to the largest in summer 2001. In summer
2012, the extracted surface water area decreased by 16.57% compared to the previous
season, and it further reduced considerably till summer 2013 (Figure 11g), when the lake
surface reached 670 ha, approximately. Figure 12d shows the decrease in surface water area
from spring 2013 to summer 2013. Following 2014, the seasonal average surface water area
increased steadily until spring 2019 (Figure 11e). Figure 12e shows the decrease in water
area from spring 2019 to autumn 2019.

On average, the surface water from 2013 to spring 2020 decreased by about 9.26%
compared to values from 2000 to 2012 and by 8.86% compared to the 1984–1999 period. In
summer and autumn of 2020, it dramatically decreased by 18.76% and 57.83%, respectively,
compared to the average surface water of previous years.

It is noted that the periods with the lowest values for lake surface coincide with the
prolonged drought periods determined according to the TLM method (Table 6).
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4. Conclusions

The main purpose of this study was to detect via remote sensing techniques the long-term
variation of the Nuntasi-Tuzla Lake surface water during the 1984–2021 period in correlation
with human intervention and climate change. We have reached several conclusions:

(i) In natural conditions, the lake system is connected to the Black Sea via the Portita,
Periboina and Edighiol outlets (Figure 2) and with the St George Arm of the Danube
River via a system of canals and marshes. The nine lakes which compose the Razim
Sinoe System are interconnected by the above mentioned system of canals. Human
intervention has led to a deterioration of the ecosystem of the entire Razim Sinoe
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system, which has been isolated from the Black Sea, and the connections between
the lakes have been cut by sluices. In this context, the water became freshwater. The
cannal between Nuntasi-Tuzla Lake and Istria Lake has been silted since 1976. In
view of the fact that the Dobrogea region is the driest region of Romania [35] and
in order to ensure agricultural development, the state authorities from the period
1968–1975 built an important irrigation system in this region. In the irrigation period,
the two tributaries (Nuntasi and Sacele rivers) have supplied the lake constantly,
but after 1990, when the irrigation was stopped, the river flow decreased over time
reaching its lowest level in the 2004 (2007)–2020 period. In a recent publication,
the authors [21] showed that “the precipitation increased starting with 2012 but the
evapotranspiration losses are much larger than the precipitation increase”. We can
conclude that the budget is negative. It is apparent that the surface lake may be a
subject of irreversible changes.

(ii) The analysis of the daily flows of the two rivers during the 2007–2020 period detected
several important drought events. Among these, two drought periods with long
duration were determined, in 2013 and 2020. In this context, we further investigated
if there was any influence of flow decreasing on the lake water surface and if there
have been any other similar situations in the past.

(iii) Using the CART model with the seasonal averaged values of RS indices (NDVI,
NDWI, MNDWI, WNDWI and WRI) as the input data, we assessed the seasonal water
lake surface variation during the period 1984–2021 with over 90% mapping accuracy,
user accuracy and overall accuracy. The results of the proposed classification method
revealed that the evolution of surface lake water is correlated with human intervention
and the hydrological drought identified with the TLM method. Significant decrease
during the 2003–2020 period was identified in the surface water lake’s evolution,
thus the hydrological drought identified in 2011, 2012, 2013 and 2020 corresponds
with the lowest values for water lake surface. In our opinion, the method based on
remote sensing data and the CART model is calibrated, due to the results obtained.
Unfortunately, we have only a short series of daily records, which limits this study.

Overall, the findings of this study provide some insights into the evolution of the
Nuntasi Tuzla Lake and the factors driving it through a long period of time, which may be
further used to formulate scientific measures to prevent other drought disasters similar to
that of August 2020. Future work may imply improvement of the surface water changes’
detection method, by investigating other spectral indices and comparing with state-of-the-
art classification methods. Although the CART model is a very intuitive and powerful
classifier, it often involves longer time to train and fails to meet the best performance if the
problem has many uncorrelated variables. Other classification methods, such as support
vector machines (SVM) or multilayer perceptron (MLP) neural network, which work well
with large input data, can be adopted to identify surface water in Landsat satellite images.

According to the Romanian Water National Administration—Littoral Branch (ABADL),
an extensive restoration campaign started in September 2020 and the canal between Istria
and Nuntasi-Tuzla lakes was restored (Figure 13).

A fragile equilibrium was reestablished and in spring of 2021 a group of flamingo
birds was spotted.

An Integrated Drought Management Programme (IDMP) was launched in 2013 by
GWP (Global Water Partnership) for Central and Eastern Europe. The main objective [21]
is to support the responsible authorities to prepare and integrate the Drought Management
plan (DMP) within the future Basin Management Plan (BMP). In this context, more efforts
are needed to validate the method proposed in this study.
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Abstract: The water level of the Urmia Lake Basin (ULB), located in the northwest of Iran, started
to decline dramatically about two decades ago. As a result, the area has become the focus of
increasing scientific research. In order to improve understanding of the connections between declining
lake level and changing local drought conditions, three common drought indices are employed to
analyze the period 1981–2018: The Standard Precipitation Index (SPI), the Standard Precipitation-
Evaporation Index (SPEI), and the Standardized Snow Melt and Rain Index (SMRI). Although rainfall
is a significant indicator of water availability, temperature is also a key factor since it determines rates
of evapotranspiration and snowmelt. These different processes are captured by the three drought
indices mentioned above to describe drought in the catchment. Therefore, the main objective of
this paper is to provide a comparative analysis of drought over the ULB by incorporating different
drought indices. Since there is not enough long-term observational data of sufficiently high density
for the ULB region, ECMWF Reanalysis data version 5(ERA5) has been used to estimate SPI, SPEI,
and SMRI drought indicators. These are shown to work well, with AUC-ROC > 0.9, in capturing
different classes of basin drought characteristics. The results show a downward trend for SPEI and
SMRI (but not for SPI), suggesting that both evaporation and lack of snowmelt exacerbate droughts.
Owing to the increasing temperatures in the basin and the decrease in snowfall, drought events
have become particularly pronounced in the SPEI and SMRI time series since 1995. No significant
SMRI drought was detected prior to 1995, thus indicating that sufficient snowfall was available at
the beginning of the study period. The study results also reveal that the decrease in lake water level
from 2010 to 2018 was not only caused by changes in the water balance components, but also by
unsustainable water management.

Keywords: Urmia Lake Basin; drought; climate change; snow cover; evapotranspiration; ERA5;
extremes

1. Introduction

Droughts are significant natural hazards worldwide, with widespread impacts on
humans and ecosystems. While the frequency and magnitude of droughts are expected
to change in the coming decades due to climate change, the regional evolution of future
droughts remains highly uncertain [1,2]. The Middle East and southwest Asia are water-
stressed regions, societally vulnerable, and prone to severe droughts. Since the 1940s,
there have been two particularly severe drought periods in these regions, 1999–2001 and
2007–2008, respectively [3–5]. Different drought indices have confirmed that 2001 was one
of the most severe periods of drought in Iran [6,7]. Studies regarding the periodic behavior
of drought in Iran show that, in addition to the dominant short-term periods over the
northwest of Iran, long-term periods of 10 and 30 years have also been observed. Although
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the average rainfall in southern Iran is much lower than in the north, short-term droughts
in the north are more severe than in the south. Meanwhile, long-term droughts are more
severe in Iran’s west, east, southeast, south, and center [8–10].

Large-scale atmospheric circulation and teleconnection play an essential role in the
development of drought in Iran. Dry periods are usually accompanied by westward
displacement of a subtropical high, while wet periods are associated with eastward dis-
placement of the high-pressure system toward the Arabian Sea. The Southern Oscillation
Index (SOI) in its positive phase can decrease precipitation in the northwest of Iran [11].
Research has also confirmed that the late withdrawal of the Indian monsoon is associated
with a delay in the onset of fall precipitation over Iran. This delay is accompanied by
prolonged subtropical high pressure settling over Iran’s plateau, with the latter preventing
the formation of polar jet frontal systems [12–15].

Northwestern Iran has the highest risk of severe and long-lasting drought [16], and the
shrinking of the Urmia Lake has been quite dramatic over the last two decades. Whether or
not this is an effect of ongoing climate change or is the result of human activity, such as water
management (e.g., water dams and unapproved wells) or agriculture [17,18], is the subject
of considerable debate. The declining water level of Lake Urmia is now a major challenge in
national water and environmental management. In addition, climate change and reduced
precipitation [19–21], decreased water levels [22], and the expansion of saline areas around
the lake have also all led to numerous environmental and economic impacts [23]. Over the
Urmia Lake basin, a warming trend of 0.18 ◦C/decade has been detected, and precipitation
has decreased by approximately 9 mm/decade [24]. This has resulted in an increase in
evaporation from the lake of 6.2 mm/decade [24]. Consequently, the water level of Lake
Urmia has been rapidly declining since 1995, with a 6.1 m decline for the period 1995–2009.
The lake surface area has also decreased by about −188.3 km2/yr, from 5503 km2 in 1998 to
2323 km2 in 2011. Mean precipitation in the ULB has decreased by 9.2%, and the average
maximum temperature has increased by 0.8 ◦C over 1964–2005 [25]. The leading cause of
the recession of Lake Urmia is the diminution of inflow from rivers [19,24,26–28]. Aziz
et al. [29] found that compared with other impacts, the operation of dams (26%) and
increasing water demand (16%) have played a clear role in reducing the water input to the
lake. Changing climate contributed up to 16% of the lake level change within 1999–2014.
The lake reached its highest level in 1995, but it has generally declined since then, reaching
the lowest level in recent years [19,23,30]. The mean annual water inflow into the lake is
6900 × 106 m3, of which 4900 × 106 m3 is from rivers (with 2000 × 106 m3 of this coming
from the river Zarrineh Rood), 500 × 106 m3 from floodwaters, and 1500 × 106 m3 from
precipitation onto the lake [31]. However, as water inflow into the lake has also recently
declined [19,26], Lake Urmia’s surface area and volume have continued to decrease [24].

The decline in the lake’s water level and surface area [26] over the last two decades
has caused an environmental disaster, led to increased salinity, and negatively affected
agriculture, livelihoods, and health [32,33]. The strong natural climatic variability is being
threatened and amplified by climate change, thus increasing the occurrence of hydrologi-
cally extreme drought events [34]. The impact of drought, particularly its socioeconomic
impact, means that substantial improvements in water management practices are required
in order to preserve or partially restore the lake [24]. Data from weather stations located
in the ULB indicate that an increase in drought is to be expected in the future [35]. Salt
storms around the former shoreline and lakebed have already begun to sweep across
the region [36], negatively impacting local agriculture and adversely influencing human
health [24].

Drought may be analyzed in terms of its duration, severity, spatial coverage, and
water deficit characteristics. Several methods and indices have been developed based on
climatic and hydrological variables to monitor and quantify drought intensity and impacts.
These cover factors such as precipitation [37–39], soil humidity [40], evapotranspiration
and vegetation conditions [41–43], or combine these in a number of specific indices [44–47].
Analyzing the impact of global climate change on drought has also become common [35].
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Over the past few decades, new indices have been developed for drought quantification,
and apart from data on precipitation, they have added variables such as temperature,
snowpack, evapotranspiration, soil moisture, runoff, streamflow, groundwater, reservoir
storage, and snowmelt [37–41,48–52].

Despite the many existing studies of the ULB, drought quantification remains an
ongoing issue of high practical value. The present study focuses on quantifying drought
for the ULB by using SPI, SPEI, and SMRI, and looks at precipitation, evapotranspiration,
and snowmelt as the major components of water balance.

Snow droughts remain relatively unexplored compared to other drought types, and
only a few studies have included snow information in drought characterization [41,52–57].
Snow droughts have become more prevalent, intensified, and prolonged across the Western
United States. In addition, Eastern Russia, Europe, and the US have emerged as snow
drought hotspots, with respective increases in drought duration of ~2%, 16%, and 28%
in recent decades. While runoff from mountain snowmelt can support agricultural activ-
ities in downstream areas (e.g., California’s Central Valley), snow also directly provides
meltwater to croplands and protects winter wheat from frost and freezing (e.g., in Russia
and Ukraine) [58]. The gradual increase in temperature in some regions in North America,
such as the Athabasca River Basin (ARB), Central North America, and Alaska, resulting in
snowpack melting in early spring, has already been described [59–61]. A snow drought or
a deficit in snow water equivalent (SWE is the amount of water obtained if the snowpack is
melted instantaneously) can have severe regional and global impacts on human activities
and ecosystems, both in snow-covered and snow-free areas. Precipitation storage as snow
in winter and spring can critically modulate hydrological droughts in summer. Concerning
streamflow, droughts are often related to the presence or absence of snow in the preceding
winter, whereas winter droughts can occur despite large amounts of precipitation falling as
snow [62]. One extension of the SPI is the Standardized Snowmelt and Rain Index (SMRI).
This accounts for the impact of rain and snowmelt deficits on streamflow. The SMRI has
been found to be a valuable complementary index for characterizing streamflow droughts
in catchments with a significant snowmelt component in runoff generation [52]. When the
snow/precipitation ratio decreases, the SMRI approaches the SPEI. However, the difference
between SPEI and SMRI increases with the increasing impact of snow cover on streamflow
for the entire and dry periods only [52]. Moreover, meteorological drought indices that
include evaporation or snowmelt can be better correlated with streamflow [63].

The water level of Lake Urmia also experiences monthly and seasonal variations, pri-
marily determined by snowmelt [24]. Thus, depending on the snowmelt in the surrounding
mountains, the Urmia water level peaks in May–June (precipitation peaks from October
to May) and drops to a minimum in October to December due to the lack of snowmelt.
Overall, monthly fluctuations in lake water level can be up to nearly 0.6 m [24]. Urmia
Lake started drying out about twenty years ago, and the lake level has declined by more
than eight meters during this period. Since reaching its highest level in 1995 (1278.48 m),
the water level has decreased annually on average by 40 cm over the last two decades.
In September 2015, it reached the lowest level, and southern parts of the lake dried out.
Indeed, the whole lake is a moderately shallow water body (about 6 m deep on average)
Figure 1 [64].

The main objective of the present study is to better understand drought events in the
ULB by focusing on SMRI in addition to the SPI and SPEI indices. Use is made of the SPEI
index in order to assess the impact of rising temperatures. The ERA5 dataset has been used for
drought indices to provide for a higher density of meteorological data and allow for a more
elongated data period. The paper is organized as follows: Section 2 introduces the materials
and methods. Sections 3–5 contain results, discussion, and conclusions, respectively.
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2. Materials and Methods
2.1. Lake Urmia Catchment

Located in the mountainous region of north-western Iran, Lake Urmia (Figure 2) and
its catchment basin cover an area of approximately 52,000 km2. Lake Urmia, the world’s
second-largest saline lake, covers about 5000 km2 and belongs to Iran’s Western Azerbaijan
and Eastern Azerbaijan provinces.

The specific geology of this area, the high amount of evaporation, and the constant
solute aggregation result in highly salty soils. The lake is surrounded by some freshwater
wetlands, which are of ecological importance. The Mediterranean climate of the Urmia
Basin is influenced by the surrounding high mountains and is characterized by cold
winters and relatively temperate summers. The basin’s long-term average temperatures are
0.2 ◦C in winter (December–January–February) and 23.9 ◦C in summer (June–July–August),
while the average annual temperature is 12.3 ◦C. July and August are the warmest, and
January and February are the coldest months of the year. Long-term average evaporation
(for the 35-year record from 1966 to 2000) from Lake Urmia is 1373.7 mm yr−1, and the
highest evaporation has been observed in July and August. Precipitation in the Urmia
basin is estimated to be 302.8 mm yr−1, mainly falling in the period from October to
March (with the highest amount in spring), during which the region is affected by the
Rossby-forced advection of the Mediterranean, and sometimes, the Siberian air masses. In
contrast, precipitation is comparatively low from June to September due to the dominance
of upper-level ridges of high pressures. Annual evaporation is much higher than annual
precipitation, suggesting that the lake is suffering from a water deficit [24].

2.2. ERA5 Reanalysis Data

The European Center for Medium-range Weather Forecast (ECMWF) has released the
ECMWF Reanalysis v5 (ERA5) dataset as part of the Copernicus Climate Change Services.
The dataset uses a spatial resolution of 31 km, covering the period from 1979 onwards [65].
We used ERA5 monthly precipitation and 2-m air temperature data with a 0.25◦ grid spacing
for 1981–2018. ERA5 datasets were compared with gauge observations over the Karun basin
in southwestern Iran and were found to be quite accurate [66]. In contrast, ERA-Interim,
The Climate Forecast System Reanalysis (CFSR), and the Japanese 55-year Reanalysis (JRA-
55) interpolated datasets show larger underestimations relative to observations [67]. In
addition, the performance of ERA5 data is generally more consistent across different climate
variables. In the absence of observational precipitation data, ERA5 and ERA-Interim are
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the best choices for data covering the Sistan and Baluchestan provinces, one of Iran’s poorly
gauged areas for rain [67]. The ERA5 data has also been validated against observations
from the Ardabil province near the ULB [68]. It was found that, after correcting for bias,
the ERA5 daily and monthly precipitation data was quite adequate, particularly given the
data scarcity prevailing in the region. The ERA5 precipitation dataset was compared to
observational datasets from meteorological stations in nine different precipitation zones
of Iran for the period 2000–2018. After correcting for bias, ERA5 precipitation reanalysis
datasets were found to be a very promising substitute for weather station data [69].
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2.3. Observational Data

Precipitation and temperature data was obtained from the Iran Meteorological Orga-
nization for nine synoptic weather stations from 1995–2018. Table 1 and Figure 2 show the
geographical location of the weather stations in the basin. The synoptic stations, geograph-
ically dispersed around the Urmia Lake basin, were selected to represent the conditions
prevailing among the mixture of plain and mountainous locations.

Table 1. Geographical characteristics of stations in the basin.

Station Lon. Lat. Altitude(m) Period of Data

Saghez 46.28 36.23 1522 1995–2018
Takab 47.12 36.40 1817 1995–2018

Mahabad 45.73 36.77 1352 1995–2018
Maragheh 46.23 37.40 1344 1995–2018

Urmia 45.08 37.53 1336 1995–2018
Sarab 47.57 37.98 1682 1995–2018

Kahriz 44.97 37.88 1336 1995–2018
Tabriz 46.28 38.08 1364 1995–2018

Zarineh 46.55 36.04 2142 1995–2018

2.4. Drought Indices

The SPI, SPEI, and SMRI drought indices were generated using the R software pack-
age [70]. This is a free software package for statistical computation and graphics.

2.4.1. Standardized Precipitation Index (SPI)

The SPI is designed to assess drought conditions based on the probability distribution
of long-term precipitation using the gamma distribution [39]. Precipitation data is trans-
formed into normalized values. The SPI is given as the number of standard deviations
by which the observed precipitation deviates from the long-term mean for a normally
distributed random variable. It can thus be used to define and compare drought conditions
in different areas. The index gives a good and reliable estimate of drought magnitude,
severity, and spatial extent. When precipitation is above the long-term mean value, the SPI
is positive, and if precipitation falls below the long term, the SPI is negative. Unlike other
drought indices, SPI is relatively easy to use because it only requires a single input data
series of long-term precipitation [71]. As it is based on normalized data, the SPI is spatially
invariant, and droughts can be assessed in different regions [72]. The index is calculated as
follows:

SPI =
xi − x

σ

where xi is the precipitation of the selected period during the year i, x is the long-term
mean precipitation and σ is the standard deviation for the selected period.

2.4.2. Standardized Precipitation Evaporation Index (SPEI)

SPEI is calculated based on the non-exceedance probability of the differences between
precipitation and potential evapotranspiration (PET), adjusted using a three-parameter
logistic distribution which accounts for common negative values [51,73]. SPEI uses a three-
parameter distribution to capture the deficit values since it is most likely that the moisture
deficit can be damaging in arid and semi-arid areas. For two-parameter distributions as
used in SPI, the variable x has a lower boundary of zero (0 < x < ∞), meaning that x can
only take positive values. In contrast, for the three-parameter distributions used in SPEI,
x can take values in the range (γ < x< ∞), implying that x can also take negative values;
γ is the parameter of origin of the distribution [51]. Use of the log-logistic distribution is
thus recommended for SPEI since it provides a better fit for extreme negative values [74].
The SPEI is obtained by normalizing the water balance into the log-logistic probability
distribution. For the purposes of the present study, PET is estimated using the Thornthwaite
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method [75]. The difference (Di) between precipitation (P) and PET for the month (i) is
given by:

Di = Pi − PETi

The calculated D values are aggregated at different time scales as follows:

Dk
n =

k−1

∑
n=0

Pn−1 − (PET)n−1

where k is the timescale (months) of the aggregation and n is the calculation month. The
probability density function of a log-logistic distribution is given as:

f (x) =
β

α

(
x − y

α

)β−1
(

1 +
(

x − y
α

)β
)−2

where α, β and γ are scale, shape, and origin parameters respectively for γ > D < ∞. The
probability distribution function for the D series is then given as:

D =
[
1 + (α/x − y)β

]−1

With f (x) the SPEI can be obtained as the standardized values of F(x) according to the
empirical method of [76]: where

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3

And
W =

√
−2ln(P)

For
P ≤ 0.5

P is the probability of exceeding a determined Di value and is given as P = 1 − f (x)
while the constants are:

C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

The probability distribution function is given by; F(x) = 1[1 + exp(−y)]−1. The F(x)
values were then transformed to a normal variable by means of the above approximation
by [77].

Hosking and Wallis [78] showed that the Di (P-ET0) distribution consistently produces
the best goodness of fit to the generalized logistic (GLO) functions across all accumulation.
The GLO is given by the above probability density function.

Since SPEI is a standardized variable, it can be used to compare droughts over different
spatial and temporal scales. As with SPI values, negative SPEI values define drought
conditions, and its accumulated values define the intensity, severity, magnitude, and
duration of drought [79].

2.5. Standardized Snow Melt and Rain Index (SMRI)

The SMRI is based on precipitation and snowmelt minus snow accumulation. Snow
accumulation, expressed as the amount of liquid water accumulated as snow, occurs when
the mean temperature is smaller than a threshold temperature of 1 ◦C. In contrast, snowmelt,
expressed as the amount of liquid water melted, is calculated with a simple temperature
index model using a melt factor of 3 mm/◦C-day (similar to [80]). The difference values,
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where Pi is precipitation, PET is potential evaporation, SA is snow accumulation, and SM
is snowmelt [52,81], lead to the following SMRI equation:

Di = Pi − PETi +
∞

∑
i=1

SM −
∞

∑
i=1

SA

2.6. Drought Characteristics—Duration, Severity, Frequency

Once a drought event was identified using the SPI, SPEI and SMRI indices, the drought
starts and ends, drought duration (DD), and drought severity (DS) were derived from
index data. DD is equal to the number of months between the starting month (included)
and ending month (not included). DS is the absolute value of the integral area between
line indices and the horizontal axis (SPI = 0, SPEI = 0, and SMRI= 0) from the beginning
and ending month of drought. Drought frequency (DF) is represented by the number of
events per 38 years (the whole period). Table 2 gives an overview of indices values for three
drought categories. Drought begins when the index value is less than or equal to −1, and
it ends when values become positive [39,82–84]. Figure 3 shows the drought characteristics
using the run theory for a given threshold level. In runs theory, drought intensity is the
average value of a drought parameter below the threshold level, which is measured as the
drought severity divided by the duration [85]

Table 2. Drought classification scheme [39].

Value Drought Category

−1 to −1.49 Moderate dryness
−1.5 to −1.99 Severe dryness

<−2 Extreme dryness
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The duration (D) of drought is the period in which the SPEI/SPI/SMRI value is
continuously negative. It starts when the indices values are equal to −1 and ends when
values become positive. The drought severity (S) is the cumulated index values within the
drought duration, which is defined by:

S = −
D

∑
i=1

Indexesi

2.7. Relative Operative Characteristics (ROC) and Brier Skill Score (BSS)

The ROC curve is a performance measurement for classification problems at various
threshold settings. The ROC method is a useful tool for assessing how well the ERA5-based
drought classes can capture observational-based drought classes. It identifies how capable
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the model is of distinguishing between simulated classes (true positive, false positive, true
negative, false negative). The ROC plots the True Positive Rate (TPR) against the False
Positive Rate (FPR), where TPR is shown on the y-axis and FPR is shown on the x-axis. The
rates are calculated as shown below [86]:

TPR =
TP

TP + FN

FPR =
FP

FP + TN
where,

TP: True Positives, are correct captures of drought classes.
FP: False Positives, are incorrect capture of drought classes.
TN: True Negatives, represent the capture of non-occurrence of specific drought classes
FN: False Negatives, represent the failure to capture the occurrence of specific drought
classes.

The larger the Area Under Curve (AUC, which is the area under the ROC curve), the
better the model simulates the classes (a perfect simulation is achieved when AUC = 1). For
a model equivalent to random guessing, the AUC value is equal to 0.5. Table 3 shows a
contingency table for distinguishing drought classes in terms of ERA5 and observational data.

Table 3. Contingency table for analysis of drought event detection by ERA5 data.

Drought Classes
(Wet, Normal, and Dry)

ERA5

Yes No

ERA5 Simulated
Yes TP FP
No FN TN

3. Results
3.1. The Ability of ERA5 to Capture Drought Characterization over ULB

Figure 4 shows the basin’s mean annual precipitation and temperature during 1995–
2018 using ERA5 gridded (red line) and observational data (blue line). The basin’s mean
precipitation and temperature for the ERA5 and observational data are calculated using
the mean gridded and Thissen methods, respectively. The correlation, RMSE, and bias
of ERA5 precipitation and temperature with respect to observational data are shown in
Tables 4 and 5. From Figure 4 and Table 4, it can be concluded that ERA5 data, after simple
bias correction, can reasonably simulate the observed precipitation and temperature of the
basin, specially over areas lacking adequate data. (Figure 4).
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Table 4. Correlation, bias and RMSE of ERA5 data comparing to observational data over Urmia Lake
basin.

Correlation Bias RMSE

Precipitation (mm) 0.389 0.112 0.205
Temperature (◦C) 0.911 1.229 1.25

Table 5. Correlation and RMSE of ERA5 against observational indices over Urmia Lake basin.

Indices Correlation RMSE

SPI3 0.458 0.356
SPEI3 0.759 0.269
SMRI3 0.628 0.348

SPI6 0.638 0.438
SPEI6 0.815 0.3
SMRI6 0.632 0.445
SPI12 0.627 0.524

SPEI12 0.829 0.346
SMRI12 0.626 0.5772

As ULB weather stations data are often inadequate, we used ERA5 reanalysis data
(thus providing us with full spatial coverage) to analyze the basin’s drought conditions.
In order to quantify systematic differences between the two data sets, the SPI, SPEI, and
SMRI drought classes computed from station observations were compared with relevant
ERA5- derived indices (for 3-, 6- and 12-monthly accumulated values). The ROC curves
and Brier Skill Score (BSS) were then used to evaluate how well the ERA5 dataset captures
different drought classes over the basin compared to measurements at meteorological
stations (Table 6).

Table 6. Brier Skill Score (BSS) of ERA5 data representing drought over ULB using SPI, SPEI, SMRI.

Run
SPI SPEI SMRI

Dry Normal Wet Dry Normal Wet Dry Normal Wet

3-m 0.96 0.83 0.69 0.89 0.84 0.91 0.88 0.87 0.87
6-m 0.96 0.83 0.69 0.93 0.96 0.93 0.94 0.87 0.84

12-m 0.96 0.83 0.70 0.89 0.84 0.92 0.91 0.94 0.86

The BSS scores (Table 6) show high consistency between ERA5 and observational
data for SPI, SPEI, and SMRI. To further illustrate the consistency of the drought indices
from ERA5 data, we also analyzed ROC curves. The ROC curves are close to each other
for the dry, wet, and normal SPEI category on 12-months running, with an average BSS
score of 0.9–1 showing good to excellent consistency between ERA5 and observations
over ULB. In SPI, the ROC curves for dry and normal events with AUC of 0.83–0.96 show
excellent consistency of ERA5 data with observation, especially in the simulation of dry
cases. The amount of AUC (BSS) for wet events is 0.70. Figure 5 shows that among the three
indicators on a 12-month scale, the highest correlation exists between the SMRI drought
index obtained from ERA5 and observation data. In addition, as can be seen for all drought
indices, dry conditions are better identified by ERA5 data than are other conditions.
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3.2. Temporal Evolution of the SPI, SPEI, and SMRI in ULB

To quantify the temporal evolution of SPI, SPEI, and SMRI for the ULB and to check
the robustness of ERA5 results we compared the basin-wide indices for observational
data with ERA5 over the period 1995–2018. This is shown in Figure 6. There is a general
consistency between both input data sets for SPI (Figure 6a), SPEI (Figure 6b), and SMRI
(Figure 6c). However, SPI and SPEI drought indices differ slightly depending on the time
interval, especially at 3-, 6- and 12-months intervals. In recent decades, droughts indicated
by SPEI have been more severe than those of SPI, mainly due to an increase in temperature
and the related higher evapotranspiration rate. On the other hand, SMRI index values
have also been rising, reflecting the conversion of solid precipitation to rain, the decline in
snow storage in winter, and the relatively low amount of snowmelt during late spring to
early summer. Figure 6 and Table 5 also imply that, as the time scale of the drought index
increases from 3 months to 12 months, the correlation between ERA5 and observation data
increases.
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evapotranspiration) developed in most months, whereas for SPI-type droughts 
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Figure 6. Time series showing 3-, 6- and 12- months accumulated values of SPI (a), SPEI (b) and SMRI (c) indices based on
ERA5 (red) and observation (blue).

Regarding the seasonal distribution of the three drought indicators (averaged over the
Urmia Lake Basin for the period 1995–2018) our analyses show that more severe droughts
of the SPEI type (i.e., those induced by changes in precipitation and evapotranspiration)
developed in most months, whereas for SPI-type droughts (precipitation driven) occurrence
tends to be limited to late spring and summer (i.e., to the warmer months of the year).
For SMRI-type droughts, severe droughts occurred from summer until to the end of fall)
Figure 7.

In addition to seasonal variability, long-term variations and changes in SPI, SPEI, and
SMRI data are also of interest, particularly with respect to the impact of climate change. On
the one hand, drought frequencies and intensities differ, with differences decreasing with
increasing drought timescale. The differences between the SPI and the other two indices
have been increasing in recent years. This is particularly obvious from 2001 onwards. In
fact, while there are a few moderate to extreme (index ≤ −1) droughts of SPI type from
2001 onwards, there is a clear increasing trend in extreme SPEI and SMRI type droughts
(Figure 8). It is also clear that snowmelt-type droughts (SMRI) have become more common
in recent years—especially since 2010—than other types of droughts (SPI and SPEI). This
follows from the rising basin temperatures over the same period, which has led to a decrease
in solid precipitation and a decreased snowmelt, and thus to an increase in the SMRI drought
sequence. As a result of the associated rise in evapotranspiration, the SPEI type droughts are
also affected by the basin temperature increase (Figure 8).
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3.3. Drought Characteristics

The identified droughts were further characterized in terms of their severity, duration,
and frequency at various timescales by analyzing their spatial distributions. For this purpose,
we focused on specific dry and wet events derived from monthly SPI, SPEI, and SMRI data
for the 38-year period from 1981 to 2018. In order to identify drought hotspots, we focused
particularly on the years with moderate to extreme drought. Based on Table 2, threshold
values related to moderate, severe, and extreme drought (index ≤ −1) were chosen to assess
the drought characteristics using the three drought indices.
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3.3.1. Drought Duration

Drought duration data in the ULB show a clear increase in snowmelt-driven droughts
(SMRI) over the last years of the study period, particularly in 2010, 2015, and 2018. Similarly,
drought duration for precipitation-driven droughts (SPI) were recorded in 1999, 2000, and
2001. Another noteworthy point on the SMRI droughts is that before 1995, no snowmelt
drought occurred on any of the 3 to 12-month scales, indicating that there was not snowmelt
in the water balance from 1981 to 1994. The decrease in snow precipitation in the basin then
becomes noticeable and is clearly captured by the SMRI after 1995. The changes in the SPEI
drought index are similar to those in the SMRI. This is no great surprise as the increase
in ULB air temperatures and associated rise in evapotranspiration also began to play an
ever-increasing role in drought events. Consequently, SMRI and SPEI indices are now more
suitable for capturing drought conditions in the basin than the SPI index. Figure 9 also
shows that based on SMRI data the most prolonged droughts occurred in the last decade
in 2010, 2015, and 2018 (in particular for the 12-months timescale). This corresponds to
other sources on drought information. The lake surface area diminished from 5650 square
kilometers in 1998 to about 2005 square kilometers in 2010 [87]. The lowest annual surface
discharge to the lake, recorded in 2015, was only 0.5 km3 [88]. During their fieldwork in
October 2018, previous research noticed that, especially on the eastern side of the lake,
many people were complaining about the increasing occurrence of respiratory diseases
as a result of a lake salt storm [89]. According to the SPI index, the 2015 and 2018 ULB
droughts are classified as light drought and slightly wet, respectively. However, the SPEI
index reveals large differences with respect to the impact of temperature, and the two
droughts are classified as severe and moderate, respectively. According to the Ministry of
Energy [90], the SPEI drought index results are consistent with the actual drought in the
basin.
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3.3.2. Drought Severity

Developments in the time series of drought severity (Figure 10) are similar to those
found for drought duration. From the beginning of the study period up to 1996, drought
severity according to the SMRI index is almost zero. This indicates that before 1996, the
Urmia Lake Basin did not face the challenge of snowmelt drought. The first severe SMRI
drought event occurred around 1995/1996. From 1996 onward, however, the severity
of snowmelt drought in the basin has increased. As was the case for drought duration,
the most severe snowmelt droughts occurred in the more recent years, i.e., 2010, 2015,
and 2018.The severity levels using SPEI and SPI indices were clearly less marked than
those indicated by the SMRI data. Again, these results indicate that snowmelt drought is
highly relevant for ULB, and droughts identified by SMRI give a more realistic picture of
ULB droughts than the other two indicators. As can be seen in Figure 11, there is a clear
correspondence between ULB drought severity and drought duration. The more severe
the drought, the longer the drought duration. Use of the Palmer Drought Severity Index
has also shown that while, on average, drought episodes have hit the Urmia Lake Basin
every five years and most of them reached severe levels, the more recent droughts have
also become more intense and of longer duration [25].
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3.3.3. Spatial Distribution of Drought Severity

Besides the temporal changes in drought events, the spatial patterns of drought events
within the study region are also relevant for drought management. Figure 12 maps drought
severity and shows some obvious drought hotspots. The spatial distribution of drought
conditions in selected years with moderate and severe/extreme droughts were mapped
for each index in order to evaluate spatial characteristics. The year 2001 was selected as
the moderate year in the SPI index. The figure shows that the riverbed was most affected
by severe droughts, but in 1999, which was considered the most severe year, not only the
river but also the southern parts of the basin exhibit extreme drought. In evaluating SPEI
spatial severity, 2009 and 2004 were selected as moderate and severe years, respectively.
According to the SPI index, drought conditions were largely restricted to the riverbed. In
2009, the northeastern parts of the basin were subject to extreme drought. The SMRI index
shows that the broadest range of drought severity includes parts of the east, north-east and
south-eastern lake areas. This contrasts with spatial patterns as evidenced by the other two
indicators. However, not much difference was found between the severe year 2015 and the
extreme year 2018 in terms of snow drought patterns.

3.3.4. Spatial Distribution of Drought Frequency

Drought frequency (DF) is defined in terms of the number of drought events per
38 years. DF under −1 threshold maps indicate extreme conditions in the near lake
region based on three drought indices. The drought frequency maps (Figure 13) show
the difference between the drought frequency in the Urmia basin in terms of the three
different indicators, SPI, SPEI, and SMRI. When considering SMRI data, the most extreme
and prolonged events occurred in the Zarine river sub-catchment. Using SPI, all parts of
the lake shore were affected by prolonged drought events, occurring in 30 out of 38 years,
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and drought patterns using the SPEI index show the prevalence of drought conditions
ranging from the southern part of the lake to the southern parts of the basin for most years.
It needs to be noted that in Figure 13, the SPI index only shows the occurrence of drought
in the lake shore stations, while the SPEI index shows a relatively more expansive range of
drought-affected areas. However, the SMRI index clearly identifies the drought area due to
runoff deficiency in the south of the basin.
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4. Discussion

The above comparison of drought events across the Urmia Lake Basin (ULB) has
helped reveal specific drought behavior occurring over recent decades. The combined use
of three common drought indices, i.e., SPI, SPEI, and SMRI, has provided clear insight
into drought characteristics. Given the low density of meteorological stations, the inade-
quacies of existing statistics, the presence of geographical and topographical complexities
(mountains, lowlands, and sea), an analysis of drought characteristics can only properly be
carried out by making use of data with high spatial density. Therefore, the precipitation
and temperature data of ERA5 were used to calculate drought indices. The suitability of
the ERA5 dataset for purposes of drought monitoring was examined by making use of two
series of data from observational and simulated ERA5. ROC and AUC (BSS) calculations
were then used in order to check model performance. The results showed that the drought
indices obtained by ERA5 are highly consistent with observational data and that they
provide an excellent alternative to such data.

We also analyzed drought severity, duration, and frequency for various timescales,
and additionally looked at spatial distribution, focusing on specific dry and wet events.
There was a positive, significant, and robust correlation (p-value < 0.001) between the
severity and duration of the drought, meaning that the more severe the drought occurrence,
the longer its duration. The analysis revealed that both SMRI and SPEI are more suitable
for capturing ULB drought characteristics than SPI. However, in recent decades, drought
conditions as reflected by SPEI have been more severe than those indicated by SPI. This is
mainly due to the fact that the former index is capable of capturing the impact of an increase
in mean temperatures in the basin area. Furthermore, SMRI index data also exhibit a rising
trend in drought conditions. The results above confirmed that the SMRI-type drought
has become more abundant in recent years—especially since 2010—than other types of
droughts (SPI and SPEI). This may be due to rising basin temperatures and global warming
having led to a decrease in snowfall in the basin in the last decades, resulting in a decrease
in snowmelt surface water and an increase in the SMRI drought sequence. In general, it
can be confirmed that SMRI and SPEI indices are capable of capturing more real drought
conditions in the basin than the SPI index. We found that the most extended periods of
snowmelt-related drought, as measured by the SMRI, mainly occurred in the more recent
years of the study period, i.e., in 2010, 2015, and 2018. While the SPI also indicates a few
moderate to extreme (index ≤ −1) drought events, there is a clear and significant rising
trend in extreme SPEI and SMRI drought. Our study has benefitted greatly from being able
to make use of advances in SMRI data and from the availability of high-resolution ERA5
datasets.

Further tools are likely to become more widely available for investigating the possible
relationships between climate data and water level or streamflow. For example, the use
of robust wavelet analysis methods, such as the Least-Squares Cross-Wavelet Analysis
(LSCWA) and the cross-wavelet transform, appears promising. Wavelet analysis can
also show inter-annual and intra-annual variability within the climate and hydrological
time series [92]. The scope for future research possibilities in the field thus remains
undiminished.

5. Conclusions

The temporal evolution of drought indices was investigated to better understand the
causes of drought in the ULB. This is the first time that the relevance of snow cover has
been taken into account in analyzing drought in the ULB basin. In characterizing drought
events, variables such as drought frequency, duration, and severity all need to be carefully
examined. As the number of weather stations in the ULB is limited, and adequate data was
lacking, ERA5 reanalysis data was drawn upon in order to capture drought behavior in the
basin in a spatially consistent manner. ROC curves and BSS scores confirmed the ability
of ERA5 to capture drought events in the catchment area. We found that the ERA5-based
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drought indices mainly capture dry events in the ULB well but are not as good at capturing
wet events.

While drought events occurring before 1995 were mostly precipitation-driven (SPI),
and reached a peak around 2000, ET (SPEI) and snowmelt-driven events (SMRI) were
basically absent before 1995. Precipitation-driven droughts show no trend since 1980, while
drought driven by evaporation and lack of snowmelt showed a marked increase since
around 1995. In fact, the severe droughts found on the long timescale (12 months) in 2015
and 2018, were mainly driven by snowmelt. Other studies have also confirmed an increase
in such drought events. Drought severity and duration in the ULB also appear to be highly
interdependent (shown by means of correlation), i.e., there has been an increase in the
severity of drought events, and their duration.

Although there has been no severe SPI drought in the last few decades, the water level
in Lake Urmia has continued to decrease. This suggests that drought in the ULB is most
likely due to non-sustainable water management, or to an increase in evaporation caused
by global warming (and is not a direct result of rainfall variability). Most importantly, the
results also show that snow droughts have not only been more frequent and severe in recent
years but have also affected an increasing area over time. According to the snow drought
index results, most extreme events were observed in the Zarinehrood and Siminehrood
sub-basins, both of which play an important role in the revitalization of the lake.
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Abstract: Drought events have affected many regions of the world, having negative economic,
environmental and social impacts. When accompanied by increasing water demands, these events
can lead to water scarcity. Since droughts can significantly vary in each geographic area, several
indices have been developed around the world. Hazard indexes are commonly used to predict
meteorological, agricultural and hydrological droughts. These indexes intend to predict hazards, but
they do not provide information on when and where deficits can have negative consequences. This
study presents a new planning and decision-support tool for monitoring water scarcity situations in
a given region. This tool, called the Water Scarcity Risk Index (W-ScaRI), is formed by two subindices,
which are proposed to describe a hazard and its consequences. Each subindex was constructed using
a group of indicators and indices selected from the technical literature or originally proposed in this
work. The W-ScaRI was applied to the Rio de Janeiro Metropolitan Region (RJMR), supplied with
water by the Guandu/Lajes/Acari system. The RJMR is one of the most densely populated regions
in Brazil, located in an area that has no natural water bodies capable of meeting its supply needs.
Therefore, the Guandu River, which, in fact, is formed by two discharge transpositions from the
Paraíba do Sul River, is the main drinking water supply source for this region. The RJMR suffered
the consequences of unexpected, prolonged droughts in the Southeast region in 2003 and 2014–2015,
leading the local authorities to implement temporary emergency measures in the management system
of Paraíba do Sul and Guandu Basins, avoiding water shortage but showing the urgent need for
planning and management support tools to anticipate possible future problems. The results of the
study show that the formulation of the W-ScaRI can represent the water scarcity risk in a relatively
simple way and, at the same time, with adequate conceptual and methodological consistency.

Keywords: water scarcity risk; drought; hazard; consequence; vulnerability; water scarcity

1. Introduction

Drought is characterized as a gradual natural hazard ([1], [2] cited in [3]) usually driven
by climatic characteristics on a regional or even global scale [3]. For this reason, it is difficult
to identify the beginning and ending of a drought period, as well as the affected area [4].
According to Wilhite [5] and De Stefano et al. [6], the main features that make droughts
different from other natural hazards are as follows: (a) droughts are difficult to define—
there is no universally accepted definition; (b) it is difficult to determine the beginning
and the end of the event; (c) the impacts are mainly functional and nonstructural over
socioeconomic systems, and they are spread over large geographical areas; (d) droughts
are a normal, recurrent and cyclical aspect of climate in virtually all regions of the world
(but varying in intensity and duration).

In recent decades, drought events have increased in intensity and frequency, affecting
many regions of the world and having negative economic, environmental and social
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impacts [7]. Thus, several socioeconomic systems and sectors in the world have suffered
heavy losses due to the consequences of droughts [8]. In Europe, from 1976 to 2006, drought
costs were estimated at EUR 100 billion [4]. In 2015, California’s agriculture losses during
the drought period reached USD 1.84 billion, in addition to the loss of 10,000 seasonal
jobs [9]. In Canada, an increase in tree mortality was observed across the Boreal Forest
following a series of regional droughts from 1963 to 2008 [10].

While droughts are natural phenomena caused by abnormal precipitation deficits,
water scarcity combined with human action results in a water availability insufficient to
satisfy water demands for different socioeconomic uses [11]. According to Van Loon and
Van Lanen [12], water scarcity represents the overexploitation of water resources when
the water demand is greater than the water availability. Dolan et al. [13] said that water
scarcity is dynamic and complex, emerging from the combined influences of climate change,
basin-level water resources and managed systems’ adaptive capacities.

The increasing water demand accompanied by a changing climate can lead to the
unsustainable use of freshwater, consequently increasing water scarcity [14]. Regions
with water scarcity may suffer from strong constraints in terms of social integrity and
economic development [15]. This situation will be aggravated as rapidly growing urban
areas place heavy pressure on local water resources [16,17]. Therefore, it is necessary
to revise water management procedures, especially in areas with demographic changes
and that are vulnerable to climatic conditions, in order to ensure a sustainable and safe
water supply [15].

Understanding the evolution of and variation in drought events at different spatial
and temporal scales is crucial in drought planning [8]. One way to monitor drought
and water scarcity in a basin is to use indices and indicators. Indices are important
decision-support tools, as they aggregate information from indicators of different types,
forming a single representative value of a more complex situation. This integration of
several indicators allows for fast and easy comparisons across time and space [18,19]. Well-
constructed indicators can translate information about complex phenomena in a simple
way by aggregating and quantifying information with diverse sources and scales so that
their significance becomes more apparent [20].

Since drought events are significantly different around the world, several indices
have been developed and published internationally. According to Wang et al. [21], more
than 58 index types from different countries are listed in the World Meteorological Or-
ganization (WMO) technical reports. Many indices were developed to assess the char-
acteristics of a given type of drought according to its meteorological, agricultural or hy-
drological origin [22]. Cuartas et al. [23], for example, analyzed different drought indi-
cators to assess hydrological droughts in several regions of Brazil and their impact on
hydropower generation.

Drought alert systems, usually called drought monitors, use indices to detect and
predict drought hazard situations. For example, the US Drought Monitor uses five in-
dices to classify droughts [24,25]: the Palmer Drought Severity index (PDSI), CPC Soil
Moisture Model, USG Weekly Streamflow, Standardized Precipitation Index (SPI) and
Objective Drought Indicator Blends. In Brazil, the Northeast Drought Monitor was recently
developed based on the US Drought Monitor and experiences from Spain and Mexico [26].
The Northeast Drought Monitor uses three indices: SPI, the Standardized Precipitation-
Evapotranspiration Index (SPEI) and the standardized runoff index (SRI). These drought
warning systems, while able to predict hazards, do not provide information on when and
where deficits can have negative consequences [27]. However, this is important information
for drought risk planning and management strategies, which can be used to trigger and
prioritize specific actions [28].

In recent years, the number of studies related to the consequences of droughts has
increased due to the growing concern about the importance of changing the way of handling
natural disasters, moving from a crisis management approach to a risk-management-based
prevention approach. In addition, the rising severity of the impacts of droughts has also
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contributed to improving and optimizing management during these events [29]. One of
the most common ways to assess vulnerability is the use of indicators, which may or may
not be aggregated into indices [6], helping to jointly consider different system aspects.

Tsakiris [30], for example, assessed drought risk as a functional relation of hazard
(H) and vulnerability (V). In the vulnerability assessment, the study presented several
factors that can be used in formulations, such as exposure, the capacity of the system,
social factors, the severity and destructive capacity of the event, conditions and interrelated
factors. However, to show an application case, the study only used the RDI index to
represent the drought severity classes, which was associated with crop production losses.

Dabanli [31] developed a framework to assess drought risk in Turkey using hazard
components (SPI) and vulnerability (four socioeconomic indicators). The study did not use
exposure in its formulation.

Meza et al. [32] presented an integrated drought risk assessment that considers hazard,
exposure and vulnerability components to evaluate the impact of droughts on irrigated
and rainfed systems (separately) at the national level. To assess vulnerability, they used
more than 20 indicators. Tien Le et al. [33] also proposed a drought risk assessment using
hazard, exposure and vulnerability components, and it was applied to 27 province areas in
Vietnam. Both studies used specific indicators, indices and data to assess the drought risk
in agricultural areas.

Carrão et al. [34] also used a combination of hazard, exposure and vulnerability in-
dicators (most of them at the country scale). The drought hazard was derived from a
non-parametric analysis of historical precipitation deficits; drought exposure was based on
indicators of population and livestock densities, crop cover and water stress; and drought
vulnerability was computed as the arithmetic composite of social, economic and infrastruc-
tural indicators, using 15 indicators. The study mapped the global distribution of drought
risk, serving as a kind of first triage analysis to determine where local risk assessments
should be carried out in detail. However, with significant intra-annual variations in water
use and availability, it is important to understand when water is available [28].

The study by Dunne and Kuleshov [35] assessed the spatial–temporal distribution of
agricultural drought risk across the Murray–Darling Basin. The developed drought risk
index included nine indicators. One of the vulnerability component indicators was the
same as that used by Carrão et al. [34], and it aggregates several socioeconomic factors.

Sayers et al. [3] described a new approach called “Strategic Drought Risk Management”
(GERS). According to this approach, drought risk is defined as “an emerging property
of natural and human systems that reflects the interaction between the hazard of meteo-
rological drought, blue drought (hydrological) and green drought (agricultural) and the
vulnerability of exposed people, ecosystems and economies”.

Considering the presented aspects, this paper proposes a new index named the Water
Scarcity Risk Index (W-ScaRI), which aims to assess the risk of water scarcity in a given
region, especially focusing on urbanized watersheds and, particularly, in metropolitan
regions. The drought hazard, in a broad way, is related to the meteorological drought,
the blue drought and the green drought, as proposed by Sayers [3], while vulnerability is
expressed to convey the environmental, social and economic consequences of the event.
However, this new proposal attempts to maintain a simple vulnerability component, using
a small number of representative indicators. In this context, the proposed index is built to be
applied mainly in urban areas in order to assess the risk of water scarcity related to human
and industry supplies. Thus, the indicators and indices chosen to compose the W-ScaRI
were selected or created to represent this risk, within an adequate scale of analysis, in a
relatively simple way, using fewer but representative parameters of the risk components.
The main contribution of this work lies in the possibility of establishing a relatively simple
index that can be integrated in daily management operations, allowing for the definition of
both a spatial hierarchization of critical areas (according to the mapped vulnerabilities) and
a set of threshold values for the W-ScaRI that can raise warning flags and implement specific
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actions to diminish drought risks (for example, limiting water supply to the least affected
activities, rationalizing water uses and temporarily using alternative water source supplies).

The W-ScaRI was tested in the Rio de Janeiro Metropolitan Region (RJMR) for the
period of 2014–2015, when a serious water crisis occurred in the Paraíba do Sul River
Basin, the main water supply source for the region. The successful application of W-
ScaRI can validate its use in the future in the preparation of a strategic drought risk
management plan for the region, helping to understand the temporal evolution of drought
risks and supporting actions that can promote reduced vulnerability of exposed systems
and increased resilience. However, the W-ScaRI is not limited to the tested region—it can
be applied to other basins, with the possible adaptation of weights and indicators.

2. Materials and Methods

The W-ScaRI index proposed in this paper is built based on the risk formulation de-
scribed by [3], where the drought risk is determined through two main components: a
hazard and its consequences. A hazard is a potentially threatening situation that causes
damage, and it is composed of a combination of atmospheric processes and hydrological
responses, reducing the available water in lakes, rivers, reservoirs and/or soil. The con-
sequences reflect the exposure and vulnerability of a system to the environmental, social
and economic impacts of droughts. The vulnerability component also includes resilience,
which is a system’s ability to adapt to or recover from damage. Thus, the risk caused by
water scarcity comes from the drought itself, as well as from the aspects of water and land
management.

The “hazard” and “consequence” subindices are constructed by combining the indica-
tors or indices selected from the existing technical literature but also by using indicators
originally proposed and developed in the current study. The W-ScaRI is based on a mixed
formulation consisting of a weighted product of two weighted sums. Thus, each subindex
is composed of weighted summations, and, subsequently, these subindices are weighted
and multiplied to compose the W-ScaRI. The W-ScaRI is illustrated in Figure 1 and is
represented by Equation (1):

W − ScaRI = HIwh × x CIwc (1)

where HI is the drought hazard subindex; CI is the consequence subindex; and wh and
wc are the weights associated with the hazard (HI) and consequence (CI) subindexes,
respectively.
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Note that this formulation is chosen to represent the risk process conceptually. The
product indicates that risk only exists if the hazard and possible negative consequences
are both non-zero elements. However, the hazard and its consequences are subindices
composed of a sum of a set of possible components that contribute to each one of these
risk elements. Regarding the scale of the W-ScaRI, to clarify communication and maintain
simplicity, its subindices and indicators are normalized within the range of 0 to 1, where
the value “0” corresponds to the minimum risk (or the absence of risk, to be precise) and
“1” corresponds to the maximum risk.

The drought hazard subindex consists of indicators representing the three components
that characterize different aspects of droughts: meteorological, agricultural/green water
and hydrological/blue water (Figure 1). The hazard subindex formulation is presented in
Equation (2):

HI = MDI × wm + ADI × wa + HDI × wh (2)

where MDI, ADI and HDI are the hazard indicators of meteorological, agricultural/green
water and hydrological/blue water droughts, respectively, and wm, wa and wh are the
weights associated with each indicator.

The Standardized Precipitation Index (SPI) developed by McKee et al. [36] is used to
represent the meteorological drought indicator (MDI). The SPI consists of the difference
between the measured precipitation and the historic average rainfall (over a given period
of time) divided by the standard deviation. Since precipitation does not typically follow
a normal distribution, the gamma distribution is adjusted, and gamma transformation is
applied to the normal distribution. To facilitate analyses, we propose a color scale for the
drought classes and the SPI values, as shown in Table 1.

Table 1. Drought classification by SPI ranges [36,37].

Color Scale SPI Classification
SPI > 0 Wet period

0 to −0.99 Mild Drought
−1.00 to −1.49 Moderate Drought
−1.50 to −1.99 Severe Drought

SPI ≤ −2.00 Extreme Drought

To normalize the indicators, three equations are adjusted considering the typical
probability values of the normal distribution and the SPI values between “0” and “−3”. To
normalize the indicator between 0 and 1, the cumulative probability values of a normal
curve are adopted, assuming that the SPI values equal to −1, −2 and −3 are associated
with the cumulative probabilities up to 1, 2 and 3 standard deviations at the right side of
the curve, as shown in Table 2.

Table 2. SPI indicator normalization.

SPI Values Cumulative Probability—Normal Distribution Adjusted Equation

0
−1

0.50
0.841 y = −0.341x + 0.5

−1
−2

0.841
0.977 y = −0.136x + 0.705

−2
−3

0.977
0.999 y = −0.022x + 0.933

The Reconnaissance Drought Index (RDI) developed by Tsakiris and Vangelis [38] is
used to represent the agricultural drought indicator (ADI), which addresses water deficits
as a kind of balance between the entry and exit of a water system. The RDI is calculated
based on information about the accumulated rainfall (observed) and the potential evapo-
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transpiration (calculated). The initial RDI values satisfactorily follow both the gamma and
lognormal distributions [39,40].

The hydrological drought indicator (HDI) used to represent the hydrological drought
hazard is the Streamflow Drought Index (SDI) [41], as shown in Equation (3):

SDIi,k =
Vi.,k − Vk

Sk
(3)

where Vi,k is the cumulative flow volume of the hydrological year i in the reference period
k, and Vk and Sk are the mean and standard deviation of the accumulated flow volumes,
respectively.

The SDI is calculated by adjusting a two-parameter log-normal distribution [41].
For both RDI and HDI, the drought classification (Table 1) and the indicator normal-

ization (Table 2) are the same as those used for the SPI index.
The consequence subindex (CI) is characterized by indicators that represent the system

exposure and by three groups of vulnerability indicators that comprise the main drought
impacts: environmental, social and economic impacts. The formulation of the consequence
subindex is presented in Equations (4)–(6):

CI = ExI × VI (4)

ExI = ExIwex1
1 × ExIwex2

2 (5)

VI =

(
EnVI × wen + SVI × ws +

n

∑
i=1

EVIi × wei

)
(6)

where ExI is the exposure indicator; VI is the vulnerability indicator; EnVI is the envi-
ronmental vulnerability indicator; SVI is the social vulnerability indicator; EVI is the
economic vulnerability indicator; and wex, wen, ws and we are the weights of these
indicators, respectively.

To represent the exposure (ExI), two indicators are used. The first indicator (ExI1)
is the water stress indicator, which is used in order to link the consumption demands of
the various water uses in the basin to the water availability. Values close to zero indicate
that there is a water surplus in the basin. Values close or equal to 1 denote that almost
all the available water is used to supply the various water uses. The second exposure
indicator (ExI2) is the percentage of the reservoir equivalent storage (VEqR), which is used
by the Brazilian National Water Agency (ANA) to monitor the evolution of reservoir useful
storage in the main Brazilian basins [42]. This is calculated by dividing the sum of the
accumulated storages of the existing reservoirs in the basin, at a given moment, by the sum
of the total useful storages of these reservoirs. It is a strategic method to consider the joint
effect of several in-line reservoirs. To apply this method to other places, the same logic can
be used when one or more reservoirs are upstream of the interest catchment.

Equation (7) shows how to calculate ExI2 from the VEqR results:

ExI2 = 1 − VEqR
100

(7)

Table 3 shows the drought classifications based on the VEqR and ExI2 value ranges
and the color scales proposed in this study.

The ExI2 indicator cannot be used if the basin does not have reservoirs. In this situation,
the weight of the indicator is zero, and the weight of the ExI1 indicator is 1.
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Table 3. Drought classifications based on VEqR and ExI2 ranges.

Color Scale VEqR (%) ExI2 Classification
VEqR > 40 ExI2 < 0.6 Wet period

30 < VEqR ≤ 40 0.70 > ExI2 ≥ 0.6 Mild Drought
20 < VEqR ≤ 30 0.80 > ExI2 ≥ 0.7 Moderate Drought
10 < VEqR ≤ 20 0.90 > ExI2 ≥ 0.8 Severe Drought
0 ≤ VEqR ≤10 1 ≥ ExI2 ≥ 0.9 Extreme Drought

For the environmental vulnerability indicator (EnVI), the qualitative water balance
indicator, Bqual (%), is used according to [43] and as shown in Equation (8):

Bqual =
Wdil + Wcons

Wavail
× 100 (8)

where Wcons is the discharge representing the consumed water (m3/s); Wavail is the water
availability (m3/s); and Wdil is the necessary flow to dilute a given effluent (m3/s), which
is calculated according to Equation (9):

Wdil = 0.001 × BODL
BODC

(9)

where BODL is the sum of the biochemical oxygen demand (BOD) load of the domes-
tic sewage discharged in the basin (mg/s), and BODC is the maximum allowable BOD
concentration in the water course (mg/L) that enables the following water uses: human
consumption after conventional treatment; the protection of aquatic communities; primary
contact recreation; and irrigation.

EnVI is calculated by dividing Bqual by 100. For values of Bqual greater than 100, EnVI
is equal to 1.

Population density (PD) is used to represent the social vulnerability indicator (SVI).
Thus, the higher the density, the greater the expected social impacts of water scarcity. The
indicator is calculated for each municipality in the study area based on a linear equation
that normalizes the population density. To adjust this equation, the country’s average
population density is associated with a vulnerability equal to 0.5, while the value of the
city with the highest population density in the country is associated with a vulnerability of
1 (Table 4), creating a local scale (that can be adapted to other regions or countries) that can
help with risk comparisons. This procedure allows the for the application and comparisons
of the indicator in different urban or metropolitan regions of the reference country. The
final integrated indicator for the study area is calculated using the weighted average of the
population of each considered municipality.

Table 4. Social vulnerability indicator determination.

Population Density—PD
(People/km2)

Social Vulnerability Indicator—SVI
(0–1) Adjusted Equation

City with the highest
population density 1 SVI = a × PD + b,

where PD is the population
density; a and b are the adjusted
parameters of the SVI equation.

Country’s average
population density 0.5

The following indicators are used to represent economic vulnerability: gross domestic
product (GDP) per capita (EVI1) and the level of competition with human supply (EVI2).
The use of GDP per capita aims to characterize the exposure of economic activities to the
risk of water scarcity (considering that water is an important input to most significant
economic activities). Thus, the higher the GDP per capita of a region, the greater the impact
in a situation of water scarcity. This indicator is calculated for each municipality in the study
area based on a linear equation that normalizes the GDP per capita. To adjust this equation,
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the country’s average GDP per capita is associated with a vulnerability equal to 0.5, and that
of the city with the highest GDP per capita in the country is associated with a vulnerability
of 1 (Table 5). This procedure allows for the application and relative comparisons of the
indicator in different regions of the country. The final integrated indicator for the study
area is calculated using the weighted average of each municipality’s GDP.

Table 5. Economic vulnerability indicator determination.

GDP per Capita
Economic

Vulnerability Indicator—EVI1
(0–1)

Adjusted Equation

City with the highest
GDP per capita 1 EVI1 = c × GDP per capita + d

where c and d are the adjusted
parameters of the

IVE1 equation.
Country’s average GDP

per capita 0.5

Usually, when water scarcity occurs, the use of water is prioritized for human con-
sumption and animal watering. This principle is also stated in the Brazilian “water law”
(Federal Act 9433/97). Therefore, any other type of water use can be firstly impacted in
water scarcity cases. The second indicator of economic vulnerability (EVI2) is the level of
competition for the general use of human water supplies; this indicator is built with the
purpose of characterizing the impacts on industrial activities located in basins where water
is used for human supplies. Thus, in a basin where there are both industrial and human
water supply abstractions, the lower the flows abstracted for industry supply compared
to those abstracted for human supply, the greater the vulnerability. EVI2 is expressed by
Equation (10):

EVI2 =

(
1 − Qi − Qa

Qcap

)
(10)

where Qi is the flow abstracted by the industrial sector (m3/s); Qa is the flow abstracted by
the human supply sector (m3/s); and Qcap is the total flow abstracted (m3/s).

EVI2 = 1, when
(

1 − Qi − Qa
Qcap

)
> 1

In the final assessment of each subindex, weights are applied to each group of hazard
and vulnerability indicators. Similarly, weights are also used for the subindices in the
W-ScaRI’s final calculation. The weight sensitivity study, as well as the insertion of the
resilience component in the W-ScaRI, which led to development of the proposed index, is
carried out at a later stage of the research project.

It is important to highlight that the present work develops the structure of the index
and evaluates its potential application. Thus, the definition of weights, although essential
in practical applications to effectively use the index as a management tool, is of secondary
relevance until the final index formulation proposal is achieved. Table 6 shows the weights
used in this study, which were equally divided among the indicators.

The sum of the weights of the meteorological (MDI), agricultural (ADI) and hydrologi-
cal (HDI) drought indicators are considered equal to 1 in the hazard subindex calculation.
The weights of the exposure indicators, water stress and % VEqR are considered equal
to 0.50.
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Table 6. Weights used for W-ScaRI calculation.

Drought Hazard Subindex Consequence Subindex

Indicators Weight Exposure Vulnerability

Indicators Weight Indicators Weight

Meteorological
Drought (MDI) SPI 0.333 Water

stress 0.5 Environmental vulnerability
(EnVI) Bqual 0.333

Agricultural
Drought (ADI) RDI 0.333 % VEqR 0.5 Social vulnerability (SVI) PD 0.333

Hydrological
Drought (HDI) SDI 0.333 Economic vulnerability (EVI)

GDP per capita 0.1665

% Competition with
human supply 0.1665

Weight = 0.5 Weight = 0.5

3. Study Area

The area where the W-ScaRI is tested is the Rio de Janeiro Metropolitan Region (RJMR)
(Figure 2), the largest urban agglomeration of the Brazilian coastal zone, with a population
of about 12.4 million in 2017 [44].
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Figure 2. Rio de Janeiro State and Rio de Janeiro Metropolitan Region (RJMR).

A large part of the RJMR population, around 82%, representing almost 10 million
inhabitants, is supplied water by the Guandu/Lajes/Acari system. This system currently
produces a total discharge of 52.4 m3/s, of which 45 m3/s comes from the Guandu System,
5.5 m3/s comes from the Lajes Reservoir (Lajes System) and 1.9 m3/s comes from the Acari
system [45].

The main source of water for this supply system is the Paraíba do Sul River Basin
(Figure 3), which covers an area of 61,307 km2, involving three of the most developed states
in the country—São Paulo (13,934 km2), Minas Gerais (20,699 km2) and Rio de Janeiro
(26,674 km2) [46]. The Paraíba do Sul River is formed by the union of the Paraibuna
and Paraitinga Rivers in the Bocaina Mountains, in the State of São Paulo, at an altitude
of 1800 m.
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Figure 3. Paraíba do Sul River Basin.

The basin has a complex system, which includes accumulation reservoirs, power
plants and pumping stations, as well as a water transposition system with the original
purpose of generating electricity in the Lajes Hydroelectric Complex (RJ). However, today,
this system supplies water to most of the RJMR.

The Paraíbuna, Santa Branca, Jaguari and Funil Hydroelectric Plants, located along
the headwaters of the Paraíba do Sul River, regulate its flow, allowing water diversion from
the main transposition of the basin. This diversion is accomplished by the Santa Cecília
Dam, in the city of Barra do Piraí, offering a maximum pumping capacity of 160 m3/s.
The water is carried to the Santana Reservoir, and it is pumped from there to the Vigário
Reservoir. The accumulated water in the Vigário Reservoir is then diverted by gravity to
the Serra do Mar Atlantic hill, and it is sent to the Nilo Peçanha and Fontes Nova Power
Plants. The outflows from these plants and the Lajes Reservoir are sent to the Ponte Coberta
Reservoir (Pereira Passos Power Plant), located on the Lajes Stream, which is the Guandu
River’s main source. The operation of the Pereira Passos Hydropower Plant (HPP) must
ensure the continuity of the supply to the Guandu water treatment plant and other users of
the Guandu River Basin [47]. Figure 4 illustrates the steps of this complex water transfer
system from the Paraíba do Sul River to the Guandu River.

In the last 25 years, two critical droughts have occurred in the Paraíba do Sul Basin. In
the first one, from 2003 to the beginning of 2004, the storage level of the flow regulating
the reservoirs of the Paraíba do Sul River indicated the possibility of rationing, including
for the RJMR. Faced with the possibility of a water crisis, the ANA issued resolutions that
resulted in a flow reduction downstream of the Santa Cecília Dam, in the derivation to
the Lajes Complex in Santa Cecília, and downstream of the Pereira Passos HPP on the
Guandu River [43].
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Figure 4. Schematic drawing of the water transfer from Paraíba do Sul to Guandu Rivers.

In the 2014–2015 period, the severe water scarcity in the Southeast region of Brazil
affected the two most important metropolitan regions of the country: Rio de Janeiro (RJMR)
and São Paulo (SPMR). Regarding the RJMR, the storage volume of the reservoirs of the
Paraíba do Sul River Basin showed the need to use the dead volume of some reservoirs,
which actually started to happen at the end of January 2015. In order to preserve reservoir
stocks and, at the same time, ensure water uses, reductions in the minimum inflows to the
Santa Cecilia Reservoir were gradually allowed, together with periodic assessments of the
impacts on water uses downstream [48]. In addition, the flow reduction downstream of the
Pereira Passos HPP was also authorized.

4. Results and Discussion

Since the Paraíba do Sul River is the main water supply source for the RJMR, the
indicators of the hazard subindex were applied to this river basin, upstream of the Santa
Cecília Dam, as follows:

• Meteorological and agricultural droughts: Several precipitation and temperature
monitoring gauges.

• Hydrological drought: The SDI indicator was applied to the series of natural flows
to the Santa Cecília Reservoir (transposition site), and for analysis purposes, it was
applied to the series of other reservoirs in the basin.

The consequence subindex indicators were applied as follows:

• Exposure: The water stress indicator (ExI1) was applied to the Guandu Basin between
Pereira Passos HPP and the mouth. The equivalent reservoir volume percentage indi-
cator (ExI2) was applied to the reservoirs in the Paraíba do Sul River Basin, upstream
of the Santa Cecília Dam (transposition site).

• Environmental vulnerability: The qualitative water balance indicator (IVA1) was
applied to the Guandu Basin and the rivers located in the municipalities supplied by
the Guandu/Lajes/Acari system.

• Social vulnerability: The population density of the municipalities supplied by the
Guandu/Lajes/Acari system.
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• Economic vulnerability: The economic activities of the municipalities supplied by the
Guandu/Lajes/Acari system and industries in the Guandu Basin.

Figure 5 shows the region where the W-ScaRI was applied. The W-ScaRI was applied
to January 2015, when the equivalent reservoir of the Paraíba do Sul Basin reached one of
its lowest values, and to October 2015, at the end of the water crisis. To apply the SPI, RDI
and SDI indices, the DrinC computer program was used [37].
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4.1. Data Collection and Analysis

The data used to calculate the W-ScaRI indicators/indices are presented in Table 7.

Table 7. Data used for W-ScaRI application.

Indicator Type of Information Period Reference

MDI
(SPI)

Monthly rainfall series. Gauges: Resende, Taubaté, Fazenda Santa
Clara, S. Luiz do Paraitinga, Igaratá and Santa Isabel 1991–2016 [49–51]

ADI
(RDI)

Monthly rainfall and monthly average and maximum and minimum
temperature series. Gauges:

Resende and Taubaté
1991–2016 [49,50]

HDI
(SDI)

Average monthly natural flows at Paraibuna HPP, Santa Branca HPP,
Funil HPP and Santa Cecília Dam 1931–2017 [52]

ExI1
Water stress

Pereira Passos HPP outflows series,
incremental 95% flow (Guandu mouth—Pereira Passos HPP), water

consumption data (Guandu River users)

1994–2016
2014 [43,52]

ExI2
% Equivalent volume of reservoirs

Daily series of accumulated useful volumes of Paraibuna, Santa Branca,
Jaguari and Funil Reservoirs, and useful volume of reservoirs 1993–2017 [52]

EnVI
Qualitative water balance

Consumed flows by the users of RJMR basins,
dilution flows of RJMR basins and water availability in RJMR basins 2014 [43]

SVI
Population density Municipal population and area 2017 estimate [44]

EVI1
GDP per capita GDP and population 2015 [53]

EVI2
% Competition
human supply

Industrial abstraction flows
Human supply abstraction flows 2014 [43]
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4.2. Hazard Subindex
4.2.1. Meteorological Drought Indicator (MDI)

The SPI index at each rainfall gauge was calculated for monthly durations (Figure 6)
for a period of severe drought in the basin (2013–2015). Figure 6 shows that drought
began to occur at the end of 2013, extending practically throughout 2014 until January
2015. Starting in February 2015, there was an increase in rainfall at all measuring gauges,
reflecting the increase in SPI. However, even with a few wetter months, the water stress
situation in the basin lasted for most of 2015. In November, the rainfall returned to normal
at all gauges, and the basin’s reservoirs began to recover.
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Figure 6. Monthly SPI of rainfall gauges in the region under study.

It is important to highlight that drought is more severe in the Paraíba do Sul Basin
when critical SPI values occur in summer (rainy season). In this situation, the reservoir
levels may not recover before the dry season begins.

Figure 7 shows the SPI calculated for January 2015 at all gauges used in the study,
considering the color scale presented in Table 1. This figure also shows the area of influence
of each gauge, as defined using the Thiessen method.

A duration of 12 months, comprising the reference month and the previous 11 months,
was considered in the final calculation of the meteorological drought indicator (MDI), which
integrates the hazard subindex. For example, for January 2015, the SPI was calculated
from February 2014 to January 2015. The SPI of each rainfall gauge was normalized
using the procedure shown in Table 2. The MDI (Table 8) was calculated by using the
weighted summation of SPI, where the weight of each gauge was determined using the
Thiessen method.

4.2.2. Agricultural Drought Indicator (ADI)

Figure 8 presents the RDI monthly duration results from September 2013 to
December 2015.
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Table 8. Meteorological drought indicator (MDI) application.

Rainfall Gauges Weight January 2015 October 2015

SPI SPI (0–1) SPI SPI (0–1)
Paraitinga 0.20 −2.74 0.99 −0.78 0.77

Taubaté 0.18 −2.36 0.98 −1.72 0.94
Resende 0.27 −1.35 0.89 −1.34 0.89

Cachoeira Paulista 0.18 −0.55 0.69 −0.08 0.53
Igaratá 0.11 −0.55 0.69 0.36 0.00

Santa Isabel 0.06 −0.94 0.82 0.37 0.00
Meteorological drought indicator—MDI 0.87 0.66
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Figure 8 shows that 2014 was drier than 2015. When a drought occurs in the rainy
months, as mentioned earlier, it is negatively reflected in the available discharges.

The normalization presented in Table 2 was considered in the final calculation of the
agricultural drought indicator (ADI). Table 9 presents the application of the ADI for the
Resende and Taubaté gauges.

Table 9. Agricultural drought indicator (ADI) application.

Gauges Weight January 2015 October 2015
RDI RDI (0–1) RDI RDI (0–1)

Resende 0.50 −1.22 0.99 −1.25 0.84
Taubaté 0.50 −2.54 0.87 −1.01 0.87

Agricultural drought
indicator—ADI 0.93 0.86

4.2.3. Hydrological Drought Indicator (HDI)

To apply the SDI index, the color scale classification presented in Table 1 is used, along
with the series of natural discharges inflowing to Santa Cecília (diversion place) and the
series of HPP reservoirs located in the basin, namely, Paraibuna, Santa Branca, Jaguari
and Funil.

Figure 9 presents the SDI results for a monthly duration during a severe drought in
the basin (2013–2015). This figure shows that there was an extremely dry period between
January 2014 and October 2015, especially in February 2014 and January 2015, usually wet
months, as observed in the SPI values. However, the SDI values over the period analyzed
are more severe than the SPI values. This is probably due to the duration of the drought
event, which extended over a long period of time. It is therefore important to analyze the
SPI for longer durations.
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Figure 9. Monthly SDI in the basin’s reservoirs and Santa Cecília Dam.

Figure 10 shows the application results for January 2015 at the Santa Cecília, Paraibuna,
Santa Branca, Jaguari and Funil Reservoirs. The Paraibuna HPP Reservoir (Figure 10) has
the largest useful volume among the reservoirs under discussion, and it is the most relevant
due to its storage capacity. This reservoir presented very low SDI values throughout the
period, indicating an extremely severe drought. In fact, the Paraibuna Reservoir reached a
zero useful volume in January and February 2015.
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Figure 10. Monthly SDI in the basin’s reservoirs and Santa Cecília Dam (January 2015).

To calculate the hydrological drought indicator (HDI) in order to compose the hazard
subindex, the SDI index was only calculated for the Santa Cecília Dam, which reflects the
flows from the entire upstream basin. The calculation used the monthly duration, and
the normalization followed the procedure used for the meteorological drought indicator.
Table 10 presents the final application results of the HDI, where an extremely severe drought
situation is observed in January 2015.

Table 10. Hydrological drought indicator (HDI) application.

Place
January 2015 October 2015

SDI SDI (0–1) SDI SDI (0–1)
Paraíba do Sul River in Santa Cecília −2.96 1.0 −1.35 0.89

Hydrological Drought Indicator—HDI 1.0 0.89

4.3. Consequence Subindex

The consequence subindex was determined using the method presented in the Section 2
and the data presented in Table 7.

4.3.1. Exposure Indicators (ExI)

For the application of the water stress indicator (ExI1), the series of the monthly
minimum outflows of the Pereira Passos HPP was used, plus an additional value of the
95% permanence flow of the incremental area between the Pereira Passos HPP and the
mouth of the Guandu River.

Water consumption data from the various uses in the Guandu Basin were also em-
ployed: human supply, industrial use and environmental flow. From the total of 95.1 m3/s,
the 25 m3/s portion corresponds to the environmental flow, 42.0 m3/s corresponds to
human supply, 29.1 m3/s corresponds to industrial use and 0.95 m3/s corresponds to the
portion of returned sewage [43].

Table 11 shows that, in October 2015, the available flow was lower than the water
uses in the basin, which means that the environmental flow was used to meet the needs
of human and industrial supplies and, indeed, had a lower value than the established
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expected minimum. This could be observed for several days in 2015, probably as a way of
avoiding impacts on human supply, as well as helping to preserve the reservoir stocks of
the Paraíba do Sul Basin.

Table 11. Water stress indicator (ExI1) application.

Local Basin Water Uses (m3/s)
Available Flow (m3/s)

January 2015 October 2015

Guandu River Basin
between mouth and
Pereira Passos HPP

95.1 101.3 79.3

Water stress Indicator—ExI1 0.94 1.0

The reservoir equivalent volume percentage indicator—VEqR—was calculated using
the daily series of accumulated volumes of the reservoirs of the Paraibuna, Santa Branca,
Jaguari and Funil HPPs, all located in the Paraíba do Sul Basin (Figure 7), upstream of the
transposition, and the sum of the total useful volumes of each reservoir. Table 12 presents
the minimum monthly values of VEqR for the period between 2013 and 2015. The ExI2
indicator is determined using Equation 7 and the lowest value of the equivalent volume
percentage of the reference month (Table 13).

Table 12. Minimum monthly values of the indicator VEqR (%).

Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
2013 42 54 60 68 69 65 62 57 51 48 45 48
2014 48 42 41 39 34 28 23 18 13 7 4 2
2015 0.4 0.3 8 16.3 17.1 15.3 11.6 7.1 6.6 5.4 5.8 9.9
2016 18 27 34 43 44 44 52 50 48 46 45 49

Table 13. Exposure indicator (ExI2) application.

Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
2013 0.58 0.46 0.40 0.32 0.31 0.35 0.38 0.43 0.49 0.52 0.55 0.52
2014 0.52 0.58 0.59 0.61 0.66 0.72 0.77 0.82 0.87 0.93 0.96 0.98
2015 1.00 1.00 0.92 0.84 0.83 0.85 0.88 0.93 0.93 0.95 0.94 0.90
2016 0.82 0.73 0.66 0.57 0.56 0.56 0.48 0.50 0.52 0.54 0.55 0.51

The ExI2 indicator was very high in January and February 2015 (Table 13), with the
accumulated useful volume of the reservoirs close to zero (Table 12), showing that the basin
ran without reserves.

4.3.2. Environmental Vulnerability Indicator (EnVI)

The environmental vulnerability was determined for each RJMR sub-basin supplied
by the Guandu/Lajes/Acari system, using Equation (3). The final indicator was calculated
using the weighted average of the discharge values needed for dilution purposes in each
sub-basin, as shown in Table 14.

4.3.3. Social Vulnerability Indicator (SVI)

The social vulnerability indicator was determined for each RJMR municipality sup-
plied by the Guandu/Lajes/Acari system, using the methodology described in Section 2.
To normalize the population density, the linear equation shown in Table 4 was adjusted
using the Brazilian average population density associated with a vulnerability equal to 0.5,
while the density of the city of São Paulo (the city with the highest density in Brazil) was
associated with 1, as shown in Table 15.
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Table 14. Environmental vulnerability indicator (EnVI) application.

Sub-Basin Dilution Flow—Wdil (m3/s) Bqual (%) Vulnerability
(0–1)

Piraí River 3.3 50.3 0.5

Lajes Reservoir - 33.4 0.33

Guandu River 7.3 81.9 0.82

da Guarda River 16.9 478.3 1

Guandu-Mirim and
Litorâneos Rivers 105.6 1195.1 1

Iguaçu and Saracuruna Rivers 226.6 1305.4 1

Jacarepaguá and Marapendi
Lake Rivers 156.0 1184.8 1

Pavuna-Meriti, Faria-Timbó
and Maracanã Rivers;

Governador and Fundão
Island Rivers; Rodrigo de

Freitas Lake Rivers

171.3 1248.7 1

Environmental Vulnerability Indicator—EnVI =0.99

Table 15. Social vulnerability indicator determination.

City/Country
Population

Density—PD
(People/km2)

Social Vulnerability
Indicator—SVI (0–1) Adjusted Equation

São Paulo 7959.27 1 SVI = 6 × 10−5 × PD
+ 0.4985Brazil 24.40 0.5

The final social vulnerability indicator was calculated using the weighted average of
the population of each municipality (Table 16).

Table 16. Social vulnerability indicator (SVI) application.

Municipality Population Density
(Inhabitants/km2)

Population
(Inhabitants)

SVI
(0–1)

Belford Roxo 6277 495,783 0.88

Duque de Caxias 1905 890,997 0.61

Itaguaí 446 122,369 0.53

Japeri 1237 101,237 0.57

Nilópolis 8164 158,329 0.99

Nova Iguaçu 1542 798,647 0.59

Mesquita 4130 171,280 0.75

Paracambi 264 50,447 0.51

Queimados 1921 145,386 0.61

Rio de Janeiro 5433 6,520,266 0.82

São João de Meriti 13,075 460,461 1.00

Seropédica 297 84,416 0.52

Social Vulnerability Indicator—SVI =0.79
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Figure 11 shows the results of the social vulnerability indicator application for each
municipality. The vulnerability of Rio de Janeiro has a major influence on the final SVI value
due to the significant amount of the population potentially affected in the municipality.
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4.3.4. Economic Vulnerability Indicators (EVI1 and EVI2)

The economic vulnerability indicator (EVE1) was calculated for each RJMR municipal-
ity supplied by the Guandu/Lajes/Acari system, according to the procedure previously
discussed in the Section 2. To normalize the GDP per capita, the linear equation shown
in Table 5 was adjusted considering, in our test case, the data of Brazil’s GDP per capita,
associated with a vulnerability equal to 0.5, and the data of the city of São Paulo’s GDP
per capita (the city with the highest GDP per capita in Brazil), associated with 1, as shown
in Table 17.

Table 17. Economic vulnerability indicator (EVI1) determination.

City/Country GDP per
Capita

Economic
Vulnerability Indicator—EVE1 (0–1) Adjusted Equation

São Paulo 54.4 1 EVI1 = 0.02 × GDP
per capita—0.0856Brazil 29.3 0.5

The final EVI1 value was calculated using the weighted average of each municipality’s
GDP (Table 18). Figure 12 shows the results of the economic vulnerability indicator (EVI1)
application for each municipality. The vulnerability of the Rio de Janeiro municipality has
a major influence on the final EVI1 value due to the significant value of the GDP per capita.
Thus, this region could experience considerable impacts in situations of water scarcity.
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Table 18. Economic vulnerability indicator (EVI1) application.

Municipality GDP (103 BRL) GDP per Capita IVE1

Belford Roxo 7,479,539 16 0.23

Duque de Caxias 35,114,426 40 0.71

Itaguaí 7,404,493 62 1.00

Japeri 1,342,219 13 0.18

Nilópolis 2,525,559 16 0.23

Nova Iguaçu 15,948,718 20 0.31

Paracambi 2,084,163 12 0.16

Mesquita 843,386 17 0.26

Queimados 4,851,828 34 0.59

Rio de Janeiro 320,774,459 50 0.90

São João de Meriti 7,931,134 17 0.26

Seropédica 2,306,345 28 0.47

Economic Vulnerability Indicator—EVI1 =0.82
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The indicator of competition between industrial uses and human supply needs (EVI2)
was calculated for the Guandu Basin, where the Guandu water treatment system is located,
and which also serves significant industrial uses. The results of the application are presented
in Table 19, where it can be observed that the vulnerability is the maximum possible for
this indicator. In the Guandu Basin, industrial abstractions are lower than abstractions for
human supply, which can have a great impact on the industrial sector in situations of water
scarcity. According to the Brazilian “water law” (Federal Act 9433/97), in these situations,
the use of water is prioritized for human consumption and animal watering.
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Table 19. Economic vulnerability indicator (EVI2) application.

Water Use Abstraction Flow (m3/s) Percentage (%)

Industrial sector 29.1 41%

Human supply 42 59 %

Economic Vulnerability Indicator EVI2 = 1.00

4.4. W-ScaRI Calculation

The Water Scarcity Risk Index (W-ScaRI) was calculated for the entire available data
series. Figure 13 shows a complete representation of the drought periods in the Paraíba
do Sul River Basin (2003–2004 and 2014–2015) using the W-ScaRI, and it shows that the
scarcity water was worse in the 2014–2015 period than in the previous one (which, in
fact, is recognized as being true), with higher W-ScaRI values. It is interesting to note the
importance of evaluating the risk index by combining hazards and consequences. For
instance, for March 2012, the hazard subindex was 0.82, but the W-ScaRI was lower, with
a value of about 0.60. In this case, if the planner uses an index that only represents the
hazard, it could lead to the employment of unnecessary actions.
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Tables 20 and 21 show the results of the W-ScaRI application for the RJMR in January
and October 2015, where high index values can be observed in both months. In January, the
basin reservoirs, represented by the equivalent volume indicator, had the lowest volume in
all observed history, resulting in a maximum risk value (equal to 1). High values were also
found for the HDI indicator, which, together with the MDI and ADI, increased the drought
hazard subindex.

In October 2015, the hydrological drought indicators and the meteorological and
agricultural indicators were lower than those in January, with the hazard subindex value
being equal to 0.80, which is still high. However, the consequence subindex in October
was higher than that obtained in January due to the exposure indicator. The results show
that, in water stress situations, the RJMR is very vulnerable to environmental, social and
economic impacts.
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Table 20. W-ScaRI calculation for RJMR—January 2015.

Drought Hazard Subindex Consequence Subindex

Indicators Weight Value
Exposure

Indicators Weight Value
Indicator Weight Value

Meteorological drought
indicator (MDI) SPI 0.333 0.87 Water

stress 0.5 0.94
Environmental
vulnerability

(EnVI)
Bqual 0.333 0.99

Agricultural drought
indicator (ADI) RDI 0.333 0.93 %

VEqR 0.5 1.00
Social

vulnerability
(SVI)

PD 0.333 0.79

Hydrological drought
indicator (HDI) SDI 0.333 1.00

Economic
vulnerability

(EVI)

GDP per capita 0.167 0.82

% Human
supply

competition
0.167 1.00

Final Exposure 0.97 Final Vulnerability 0.90

Hazard Subindex 0.93 Consequence Subindex 0.87

Weight 0.50 Weight 0.50

Water Scarcity Risk Index—W-ScaRI 0.90

Table 21. W-ScaRI calculation for RJMR—October 2015.

Drought Hazard Subindex Consequence Subindex

Indicators Weight Value
Exposure

Indicators Weight Value
Indicator Weight Value

Meteorological drought
indicator (MDI) SPI 0.333 0.66 Water

stress 0.5 1.00
Environmental
vulnerability

(EnVI)
Bqual 0.333 0.99

Agricultural drought
indicator (ADI) RDI 0.333 0.86 % VEqR 0.5 0.95

Social
vulnerability

(SVI)
PD 0.333 0.79

Hydrological drought
indicator (HDI) SDI 0.333 0.89

Economic
vulnerability

(EVI)

GDP per capita 0.167 0.82

% Human
supply

competition
0.167 1.00

Final Exposure 0.97 Final Vulnerability 0.90

Hazard Subindex 0.80 Consequence Subindex 0.87

Weight 0.50 Weight 0.50

Water Scarcity Risk Index—W-ScaRI 0.84

To summarize, in January 2015, all the drought hazard indicators increased the hazard
subindex, and, thus, the W-ScaRI also increased, while in October 2015, the exposure (water
stress) and volume equivalent percentage indicators of the reservoirs (% VEqR) caused the
W-ScaRI to assume high values, practically the same as those observed in January 2015.

5. Conclusions

This study proposes a new index called the “Water Scarcity Risk Index (W-ScaRI),
which aims to assess the risk of water scarcity in a given region, relating the drought hazard
to the environmental, social and economic consequences of the event. Differently from
other available indices, the W-ScaRI tries to maintain the simplicity of the consequence
subindex, combining exposure with a set of few and representative vulnerability indicators.
It also sheds light on urban/metropolitan issues and mainly focuses on human and industry
supplies. To validate the index and test its representativeness, the W-ScaRI was applied to
the Rio de Janeiro Metropolitan Region (RJMR) for the period of 2014–2015, when a serious
water crisis occurred in the Paraíba do Sul River Basin, the main water supply source for
the region.
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The methods used to assess the drought hazard produced consistent results for the
three components considered to be part of this representation: the meteorological drought,
the agricultural drought and the hydrological drought. All indices used in the composition
of the hazard subindex—SPI, RDI and SDI—clearly identified the periods of drought
occurring in the case study proposed for the Paraíba do Sul Basin to validate the potential
of the W-ScaRI. Although these three indices (used as indicators of the hazard subindex
in the proposed formulation) are well-known, they are not usually integrated into the
same formulation.

The procedures adopted to represent the consequence subindex were also considered
adequate when applied to the RJMR supplied by the Guandu/Lajes/Acari system. All
vulnerability indicators—environmental, social and economic—were found to be high, as
expected based on the knowledge of the local reality. The value of 0.90 obtained for this
component shows how vulnerable the region is and suggests that it may suffer severe
impacts in the future during drought events. The “water stress” and “reservoir equivalent
volume percentage” indicators also adequately represented the exposure of the system to
possible impacts. These indicators directly access and affect the environmental, social and
economic consequences in the risk assessment.

The results of this study also show the importance of evaluating the risk index by
combining the hazard and its consequences. For instance, in some periods, the hazard
subindex was high, but the W-ScaRI had a lower value. Only using the hazard subindex
may lead to the employment of unnecessary actions, although we recognize that it is an
important step in any case and that it can serve as a warning.

Therefore, the final formulation of the W-ScaRI represents the water scarcity risk in a
relatively simple way, especially when considering the complexity of the real situation, and,
at the same time, with adequate conceptual and methodological consistency. It is important
to highlight that this study does not intend to present a complete representation of the
physical process but rather to indicate the risks of drought in a region. This is one of the
great challenges of building indices, since a rigorous representation of the physical process
is not sought but rather indications of a given situation from the available information,
accepting the limitations of its representation and preferably keeping its meaning simple.
The results of the index’s application were consistent and representative of the case studied.
In this sense, W-ScaRI identified all periods of water scarcity risk in the basin, and it also
identified periods when the hazard was high but the consequences were still low.

The W-ScaRI index showed to be a methodological tool capable of assessing the tenden-
cies of water scarcity risks, and this is a significant feature to support the water resources
management system of any basin. The system manager can define rules to effectively
use this index according to each system’s particularities. For example, a threshold could
be defined to represent a safe operational range limit—in this sense, a given basin, for
instance, could be considered safe if the W-ScaRI values are below 0.70. This arbitrary
threshold can be defined in a different way depending on the system failure consequences
or the absolute water availability. However, if the index is greater than the defined value,
alerts can be provided so that actions can be proposed to control consumption, reduce
distribution losses or reduce water abstractions. These measures may be introduced using
a planned escalation logic, intending to prevent the index from achieving higher values and
eventually approaching its maximum (which would indicate no available water reserves).
In this way, the index can be used in a continuous manner to evaluate the current system
safety status and to also map new trends after making management decisions, helping the
water resources management systems to quantitatively assess the responses proposed to
save water (depending on the physical interpretation of each basin, its consumption and
its users).

6. Limitations and Recommendations

The W-ScaRI was developed mainly to assess the risk of water supply in urban/
metropolitan areas. For this reason, some vulnerability indicators may be missing in a
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broad sense. For example, indicators such as farmland lost or sold due to droughts, as well
as livestock lost or sold due to droughts, were not directly considered, although the GDP
indicator does indirectly represent losses in agriculture and livestock. Future revisions of
the index should assess the possibility of including these or other indicators, as well as
indicators of environmental vulnerability, such as land fragmentation near water resources.
However, the idea of maintaining the simplicity of the index should be preserved.

During the development of this study, we verified the need to apply the method to
other regions in order to validate the obtained results in different situations. A sensitivity
analysis of the weights used for the indicators and subindices will also be provided in a fu-
ture study to guide their choice by managers and stakeholders. Another possible evolution
is the inclusion of a resilience component in the formulation of the W-ScaRI, combining it
in the consequence subindex or introducing a third component in the calculation. All these
actions will make the W-ScaRI a more robust and reliable instrument for use by managers
when facing possible water crises in the future.
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Abstract: The standardized precipitation index (SPI) is used for characterizing and predicting
meteorological droughts on a range of time scales. However, in forecasting applications, when
SPI is computed on the entire available dataset, prior to model-validation, significant biases are
introduced, especially under changing climatic conditions. In this paper, we investigate the theoretical
and numerical implications that arise when SPI is computed under stationary and non-stationary
probability distributions. We demonstrate that both the stationary SPI and non-stationary SPI (NSPI)
lead to increased information leakage to the training set with increased scales, which significantly
affects the characterization of drought severity. The analysis is performed across about 36,500 basins
in Sweden, and indicates that the stationary SPI is unable to capture the increased rainfall trend
during the last decades and leads to systematic underestimation of wet events in the training set,
affecting up to 22% of the drought events. NSPI captures the non-stationary characteristics of
accumulated rainfall; however, it introduces biases to the training data affecting 19% of the drought
events. The variability of NSPI bias has also been observed along the country’s climatic gradient with
regions in snow climates strongly being affected. The findings propose that drought assessments
under changing climatic conditions can be significantly influenced by the potential misuse of both
SPI and NSPI, inducing bias in the characterization of drought events in the training data.

Keywords: meteorological drought; SPI; bias; model-validation; drought class transitions

1. Introduction

Droughts have significant environmental and socio-economic impacts comparable
to other hazards, including floods, landslides, and earthquakes. In particular, the total
economic damage of natural disasters during the 2003–2013 decade was estimated at
USD 1.53 trillion [1], whilst the economic losses from droughts in Europe and the United
Kingdom are expected to increase due to global warming between EUR 9.7 billion (under a
+1.5 ◦C warming) and EUR 17.3 billion per year (under a +3 ◦C warming) [2]. Consequently,
a variety of drought risk mitigation measures have been employed during the last decades
in drought-sensitive sectors, including, for example, drought-resistant crops for agriculture,
improved cooling techniques for health and early warning alerting systems for emergency
management [2]. In addition, the Copernicus Emergency Management Service launched
the European and Global Drought Observatories to improve preparedness by monitoring
the occurrence and severity of droughts and forecasting the meteorological drought with a
3-month lead time [3].

The standardized precipitation index (SPI; [4]) has been widely used in early warning
and climate services for the estimation of the onset, duration, and intensity of meteorolog-
ical drought [5,6]. SPI expresses the accumulated precipitation over a specific period as
a departure from the precipitation probability distribution and is very popular due to its
simplicity; with only precipitation being required as input. It can be computed in different
time scales (usually 3 to 24 months, indicated as SPI(3) to SPI(24), respectively) and can
capture different aspects of the meteorological drought ranging from short- to long-term
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scales [7–10]. SPI(1) to SPI(3) address short accumulated periods and indicate relatively
immediate precipitation responses such as reduction in soil moisture and snowpack. SPI(3)
to SPI(12) address medium accumulation periods and indicate changes in seasonality of
streamflow and reservoir storage [11]. For long accumulation periods, SPI(12) to SPI(48)
are used to assess changes in slow responding fluxes, such as groundwater recharge.

SPI requires fitting a probability density function to the accumulated precipitation
series (see Section in the Appendix A), with the Gamma distribution being the most
popular as it is simple and can very well describe the accumulated precipitation at various
scales [12,13]. However, the selection of a distribution may introduce bias to the index
values by introducing over-/under-estimated drought events [14]. Alternatively, the Log-
Normal, Normal [15], exponatiated Weibull [16], and the generalized extreme values
(GEV) [17] distributions have been considered in many cases. In a changing climate
where precipitation exhibits non-stationarity, traditional SPI calculation involves fitting
the accumulated precipitation to a time-invariant probability density function, resulting
to a trending SPI series that reflects the trend of accumulated precipitation [18]. To avoid
this limitation, different versions of a non-stationary standardized precipitation index
(NSPI) have been proposed using a time-varying probability density function that models
precipitation under climate change. Russo et al. [19] modeled precipitation data with a
linear trend in the scale parameter of the Gamma distribution, using generalized linear
models on climate projections of global climate models. Wang et al. [20] developed a
time-dependent SPI by fitting generalized additive models in location, scale, and shape
(GAMLSS) to monitor regional droughts during the summer period in the Luanhe River
basin in China. Results suggested that under non-stationarity in precipitation, the use of
the traditional SPI does not lead to accurate drought classification.

Nevertheless, there are many studies where the stationary SPI has been used thor-
oughly to forecast meteorological drought at different time scales. Stochastic linear models,
such as the autoregressive integrated moving average (ARIMA) and the seasonal autore-
gressive moving average (SARIMA) [21], have been used for SPI forecasting in different
climatic domains [22–25]. Although these models address the non-stationary characteristics
of drought, their ability to forecast non-linear components of the time series is limited.
Methods such as the support vector regression (SVR) [26] and the artificial neural network
(ANN) [27] have shown potential in drought forecasting applications due to their ability
to capture non-linearities in the time series. The performance of these models is gener-
ally comparable, and hence both SVR and ANN have been recommended for forecasting
applications [28,29].

Despite SPI’s popularity in drought forecasting applications, the effect of the esti-
mation of the index during model-validation has not been addressed until now. SPI is
very sensitive to the temporal characteristics of precipitation and hence when computed
on precipitation records at different accumulation periods, SPI leads to values with nu-
merical differences. This is mainly due to the difference of the underlying probability
distribution of precipitation from one period to another which increases in the long-term
scales of the index [30]. In most studies that focus on drought forecasting applications, SPI
has been computed on the entire dataset, omitting any model-validation for time-series,
and further use of the validation and test datasets to estimate the respective distribution
parameters [29,31–33]. In this case, the observations of SPI in the training dataset share the
same parameter estimates with the validation and test datasets. This approach violates
the fundamental principles of model-validation as accessing future information leads to
different characterization of drought events in the training set, potentially enabling fitted
models to access future information while it is not present.

Here, we investigate and quantify the complications related to incorrect computation
of SPI, particularly with respect to climate change and the corresponding rainfall vari-
ability. Imprecise estimation of SPI, results to systematic biases leading to changes in the
classification of drought events.The biases should not be ignored as they are propagated
in the building process of any forecasting model. Most studies treat SPI as a traditional
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univariate sequence of observations, omitting the temporal dependence of the index on
historical and future records [34,35]. Therefore, we note that drought forecasting is not
the goal of this study, and instead, we address the violated fundamental principles of
model-validation and pose the following scientific questions: (1) Are there any differences
between the densities of accumulated precipitation when SPI is calculated using the entire
data, prior to model-validation? (2) Are there deviations in drought events when stationary
or non-stationary drought indices are computed? (3) Is the bias sensitive to the SPI scale?
and (4) How does the bias vary in space depending on the underlying climate? To address
these questions, we: (a) investigate the incorrect computation of SPI, (b) quantify the bias
introduced to the index data when the SPI is computed prior to model-validation, and (c)
assess the bias along a climatic gradient.

The paper is organized as follows. Section 2 presents a theoretical overview of model-
validation for drought forecasting applications. Section 3 presents the proposed method-
ology. Section 4 presents the results, followed by a discussion in Section 5. Finally, in
Section 6 we present the conclusions. The methodologies provided to calculate SPI and
NSPI are provided in the Appendix A.

2. Theoretical Overview
2.1. Data Separation in Model-Validation for Time Series Forecasting

Two well-known model validation techniques are presented here; the out-of-sample
(OOS) model-validation and the cross-validation (CV). OOS model-validation is the most
common technique of data partitioning in traditional time series forecasting applications.
The data are split into two different sets; the training set, which is used to train a model us-
ing a set of hyper-parameters and features, and the validation set, which is used to validate
the model and it usually constitutes the last block of the series [36]. This approach pre-
serves the temporal order of the series and copes with the dependency among observations
(see Figure 1, OOS: train (blue), validation (orange)). Various extensions of the standard
OOS validation approach have been introduced during the last years [37]; the fixed origin
evaluation, within rolling-origin-recalibration evaluation, rolling-origin-update evaluation
and rolling-window evaluation are some of the most important validation methods applied
on individual series. However, using the last block of the series for model-validation does
not always lead to a diverse validation error as the error reflects the characteristics of the
series in the validation set, not present in the historical and future data [37].

CV is a statistical method that is used to evaluate the skill of regression and classifica-
tion algorithms by measuring their performance on “unseen” datasets. It differs to the OOS
validation method as the training and validation sets must cross-over in successive rounds,
such that each data point has a chance of being validated. The k-fold cross validation is one
of the most widely used approaches to assess the predictive performance of a model [38].
Here, the data are split into K roughly equal sized parts, while a model is fitted on the
K− 1 parts of the data, and the prediction error is evaluated on the Kth part. The predic-
tion error is a combination of K individual predictive errors and is used to select the best
model across a series of models trained using different hyper-parameters and features (see
Figure 1, CV: train (blue), validation (orange)). In traditional time series forecasting, k-fold
CV receives little attention due to the theoretical and practical implications that violate the
temporal dependency of the series [37]. To avoid violations on the temporal dependence,
the validation set needs to be chronologically placed after the training set [36]. Blocked-CV
(B-CV) is a variation of the standard k-fold CV, where the data are not partitioned randomly
but sequentially into K sets, preserving the temporal order of the series [37] (see Figure 1,
train (blue), validation (orange)).
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Figure 1. Conceptualization of data separation in model-validation. Training (blue), validation
(orange) and test (green) datasets are shown for the OOS, 3-Fold CV and 3-Fold B-CV methods.

In both OOS and CV techniques, the test set should be kept in a vault (see Figure 1,
test set is presented in yellow) and should be brought out at the end of the data anal-
ysis to perform model evaluation on unseen data (test error) as expected in real world
applications [38].

In this study, we focus on the OOS model-validation method, since it is the key
model-validation approach in drought forecasting applications [28], both for individual
series analysis, regression and classification models. We denote the OOS model-validation
function, MVoos, for time series forecasting tasks as follows:

Let Y = [y1, y2, . . . , yM] be a vector of time series records with temporal dependence
and length equal to M. Let also k:{1, . . . , N} → {1, . . . , K} be an indexing function that
indicates the training set and l:{1, . . . , N} → {K + 1, . . . , N} an indexing function that
indicates the validation set such that K < N < M. Denote f̂−k the fitted function with
the kth part of the data removed, and f̂−k(i) the function evaluated on the ith observation
of the kth part of the data. Then the OOS model-validation estimate of the test error is
defined as:

MVoos( f̂ ) =
1

N − (K + 1)

N

∑
i=K+1

L(yi, f̂−k(i)(yi)) (1)

Given a set of models f̂ (y, β) tuned by a parameter β, denote f̂−k(y, β) the βth model
evaluated with the kth part of the data. Then, for this set of models we define:

MVoos( f̂ , β) =
1

N − (K + 1)

N

∑
i=K+1

L(yi, f̂−k(i)(yi, β)) (2)

The function MVoos( f̂ , β) provides an estimate of the test error and our goal is to find
the tuning parameter β̂ that minimizes it. Let m:{1, . . . , M} → {N + 1, . . . , M} be an index
that indicates the observations of the test set. The actual test error of the βth model is
given by:

MVoos( f̂ , β) =
1

M− (N + 1)

M

∑
i=N+1

L(yi, f̂−k(i)(yi, β)) (3)

2.2. Addressing the Effect of Bias during Model-Validation in Drought Forecasting Applications

Even though OOS model-validation and k-fold B-CV deal with the temporal character-
istics of the time series, there are additional sources of bias that violate the model validation
process when predicting SPI. As presented in several studies (among others, [32,39]), SPI
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is computed using the entire available dataset; this means that the associated probabil-
ity distribution parameters are estimated using information from historical and future
records. The SPI series is often non-stationary and the probability distribution of monthly
precipitation changes over time. When the SPI records of the training set are influenced
by the properties of the precipitation distribution in the validation and test sets then the
model-validation estimate of the test error is biased as it accesses future information while it should
not. In this paper, we address the source and the magnitude of bias introduced during
model-validation by demonstrating three different versions of the index calculated on
different subsets of the data. To do so, we formulate the model-validation function for each
one of these cases.

Let X = [x1, x2, . . . , xM] be a time series of monthly precipitation records with length
equal to M. Let also k:{1, . . . , M} → {1, . . . , K} be an indexing function that indicates the
training set, l:{1, . . . , M} → {K+ 1, . . . , N} indicates the validation set and m:{1, . . . , M} →
{N + 1, . . . , M} indicates the test set, respectively, such that K < N < M. We denote by
Y(s) the SPI at scale s that is computed for three different subsets of the data:

Y(s),(k) = [y(s),(k)s−1 , y(s),(k)s−1+1, . . . , y(s),(k)K ] (4)

Y(s),(k,l) = [y(s),(k,l)
s−1 , y(s),(k,l)

s−1+1 , . . . , y(s),(k,l)
N ] (5)

Y(s),(k,l,m) = [y(s),(k,l,m)
s−1 , y(s),(k,l,m)

s−1+1 , . . . , y(s),(k,l,m)
M ] (6)

where Y(s),(k), Y(s),(k,l), Y(s),(k,l,m) being the different versions of SPI computed using the
train (k), train and validation (k, l) and train, validation and test (k, l, m) sets, respectively
(Figure 2). Consequently each version of the index is computed on data of different length.
For each subset, a probability distribution function (e.g., Gamma, non-stationary Gamma)
is fitted and its parameters are estimated to compute the SPI. Different lengths of data lead
to different probability distribution functions [36] and subsequently to different SPI raw
data, such that {∀i ∈ R→ {Y(s),(k)

(i) 6= Y(s),(k,l)
(i) 6= Y(s),(k,l,m)

(i) : K < N < M}}.

Figure 2. Calculation of the SPI using different subsets of the data within time series cross-validation.

The model-validation function for each version of the SPI index is defined as follows:

MVoos( f̂ ) =
1

N − (K + 1)

N

∑
i=K+1

L(y(s),(k)i , f̂−k(i)(y(s),(k)i )) (7)

where f̂−k(i) is the function evaluated on the validation set with index k and y(s),(k)i ∈ Y(s),(k)

is the ith observation of the SPI index computed on the training set only (Equation (4)).
The model-validation function of the SPI computed using the training and validation sets
is given by:

MVoos( f̂ ) =
1

N − (K + 1)

N

∑
i=K+1

L(y(s),(k,l)
i , f̂−k(i)(y(s),(k,l)

i )) (8)
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where y(s),(k,l)
i ∈ Y(s),(k,l) is the ith observation of the SPI. Equivalently, the model-validation

function of the index computed on the training, validation, and test sets is as follows:

MVoos( f̂ ) =
1

N − (K + 1)

N

∑
i=K+1

L(y(s),(k,l,m)
i , f̂−k(i)(y(s),(k,l,m)

i )) (9)

where y(s),(k,l,m)
i ∈ Y(s),(k,l,m) is the ith observation of the index.

It is clear from the above definitions that different versions of SPI, with respect to data
subsets, lead to different versions of the expected test error. The amount of bias introduced
to the model-validation functions of Equations (8) and (9) is due to SPI’s dependency on
the parameter estimates of future and historical precipitation records. This leads to in-
formation leakage through L(y(s),(k,l)

i , f̂−k(i)(y(s),(k,l)
i )) and L(y(s),(k,l,m)

i , f̂−k(i)(y(s),(k,l,m)
i )).

We call this information leakage of SPI introduced to the model-validation process in drought
forecasting applications.

2.3. Estimating Bias during Model-Validation

The bias in SPI introduced from the data in the training set during model-validation is
estimated by measuring the deviation between our baseline, Y(s),(k) (Equation (4)) and the
SPI computed on the entire dataset, Y(s),(k,l,m) (Equation (6)). We employee different ap-
proaches that cover different aspects of the bias introduced to the distribution parameters in
the training set: (1) the comparison between the distributions of accumulated precipitation
that influence the estimation of drought in the training set, (2) the drought class transition
approach that reflects potential changes in the characteristics of drought events, and (3) a
set of statistical measures to quantify the deviation between the two versions of the index
and generate insights when different scales are employed.

2.3.1. Comparison between the Distributions of Accumulated Precipitation

One of the main calculation steps of SPI, requires fitting a probability distribution
function (e.g., Gamma, non-stationary Gamma) on the accumulated precipitation records
for a given time scale. The parameters of the distribution are estimated using maximum
likelihood and then the cumulative distribution is converted into a standard z-score (see
Section in the Appendix A). When SPI is computed using the training, validation, and test
data, then the probability distribution function is fitted on the entire data and this violates
the fundamental principles of model-validation, described in Section 2.2. We compare the
distribution parameter estimates between the two computational approaches of SPI, Y(s),(k)

and Y(s),(k,l,m), to conclude whether potential change in the accumulated precipitation
introduces bias in the training data. We perform further analysis by comparing the densities
of accumulated precipitation for individual months and stations and demonstrate our
findings in Section 4.

2.3.2. Drought Class Transition

A drought class transition is defined as the change in the characterization of a drought
event when SPI is computed using the entire available dataset (Y(s),(k,l,m)), instead of the
training set (Y(s),(k)). By measuring drought class transitions (Y(s),(k) → Y(s),(k,l,m)), we
aim at quantifying the magnitude of change in SPI classification with respect to the subsets
used during model-validation (Figure 3). A transition from Moderately Wet when the Y(s),(k)

is computed to Moderately Dry when the Y(s),(k,l,m) is instead computed suggests that the
version of the SPI computed on the entire dataset incorporates bias to the training data by
underestimating a wet event and classifying it as dry event.
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Figure 3. Two computational approaches of (N)SPI calculation. (top) (N)SPI calculation us-
ing the training set (Y(s)(k)), (bottom) (N)SPI calculation using the training, validation and test
sets (Y(s)(k,l,m)).

2.3.3. Comparison between the Raw SPI Data

The mean absolute deviation (MAD) was used to quantify the amount of error intro-
duced to the training data. MAD is a linear score that measures the average magnitude of
the deviations from the mean:

MAD =
∑K

i=1 |y
(s)(k)
i − y(s)(k,l,s)

i |
K

(10)

where K is the total number of records in the training set, s is the scale of the SPI and k, l, s
are the index vectors for the training, validation and test sets, respectively.

3. Methodology
3.1. Data and Region of Interest

Sweden has a surface area of about 450,000 km2, with its climate being characterized
by a strong spatial gradient and a seasonal pattern. Precipitation is high in the west
(mountainous areas) and is gradually reduced eastwards. The climatic patterns over
the country can be clustered into three regions according to the Köppen-Geiger climate
classification system [40]; snow, polar, and warm temperate (Figure 4). Sweden receives
precipitation between 500 and 800 mm/year; however in the southwestern part of the
country precipitation ranges between 1000 and 1200 mm, whilst in mountainous areas in
the north precipitation can reach up to 2000 mm. An extensive 58-years record of observed
daily precipitation (1 January 1961 till 30 September 2018) over Sweden at 36,662 basins
has been provided by the Swedish Meteorological and Hydrological Institute (SMHI)
(see Figure 4). The precipitation is spatially interpolated from SMHI’s station network
and elevation corrected to capture precipitation for hydrological applications at the basin
scale [41]. This meteorological dataset is considered as state-of-the-art observation product
in Sweden and has been used in various investigations, including seasonal forecasting and
climate projections. These daily precipitation records were aggregated into monthly values,
which were further used here.
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Figure 4. (left) Locations of precipitation stations used over Sweden. (center) Spatial distribution of
the Köppen-Geiger climate classification system. (right) Mean monthly precipitation (mm) during
the period 1961–2018.

3.2. Experimental Setup

A set of experiments were performed on the 36,662 basins using the available data
to quantify the bias introduced to the training set. The analysis period is from January
1961 to September 2018 and each station consists of 693 monthly precipitation observations.
At each location, the data were split into training (60%), validation (20%), and test (20%)
sets using the OOS model-validation methodology described in Section 2.1. This ensures
that the training set consists of at least 30 years of precipitation records to compute each
version of SPI [4,42]. Two probability distribution functions were used: (1) the stationary
Gamma, using maximum likelihood estimation, that leads to the computation of the
traditional SPI (see Appendix A, Equations (A1)–(A7)), and (2) the non-stationary NS-
Gamma (with time-varying location and scale parameters) that leads to the non-stationary
SPI (NSPI) and is able to capture the increased precipitation trend during the last decades
(see Appendix B). Additionally, different SPI scales were calculated (SPI(3), SPI(6), SPI(9),
SPI(12), SPI(24)) to exploit potential relationships between the scale of the index and the
level of bias introduced to the training set during model-validation. The two computational
approaches of the SPI are employed; first, SPI is computed using only the training data,
Y(s)(k), and second, SPI is computed using the entire dataset (training, validation, and test),
Y(s)(k,l,m) (see Figure 3). In our experiments, we treat Y(s)(k) as the baseline since it does
not violate the fundamental assumptions of the OOS model-validation process eliminating
information leakage. The analyses are performed in the training set to:

1. Compare the densities of accumulated rainfall (see Section 2.3.1);
2. Count the number of drought class transitions (see Section 2.3.2);
3. Analyze the magnitude of the bias introduced at different SPI scales (see Section 2.3.3);
4. Assess the variation of bias along Sweden’s climatic gradient. The error introduced to

the model-validation is quantified based on one statistical metric; the mean absolute
deviation (see Section 2.3.3).

Moreover, we showcase a set of experiments using data from a meteorological station
the characteristics of which are presented in Table 1. It is clear that there is a change in the
mean monthly precipitation between the two subsets.
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Table 1. S-3357 meteorological station.

Station Longitude Latitude Mean Monthly Rainfall
(Train)

Mean Monthly Rainfall
(Train, Valid, Test)

S-3357 67.37 22.28 77.6 mm 84.2 mm

4. Results
4.1. Comparison between the Distributions of Accumulated Precipitation

In Section 2.2, we provided the theoretical implications that arise during model-
validation when SPI is computed using the entire data. Here, we identify the presence
of bias by comparing the parameter estimates of Gamma and non-stationary Gamma
distributions using two different subsets of the data and different scales of the index (SPI(3),
SPI(6), SPI(9), SPI(12), and SPI(24)). Initially, we fitted the Gamma and non-stationary
Gamma distributions on the accumulated precipitation records using the training data,
and as a subsequent step, we fitted the same distributions using the training, validation,
and test data. Figure 5, provides a graphical comparison of SPI(12) between the parameter
estimates of Y(12)(k) (x-axis) and Y(12)(k,l,m) (y-axis) across the 36,662 basins.

Figure 5. Comparison between the distribution parameter estimates of accumulated precipitation
between Y(12),(k,l,m) (y-axis) and Y(12),(k) (x-axis) for 36,662 basins in Sweden during 1961–2018:
(top) stationary SPI and (bottom) non-stationary SPI.

As presented in Figure 5 (top), results show the deviation of the shape and scale
parameter estimates from the diagonal. This is an indication of systematic bias in the
training data when Y(12),(k,l,m) is compared to Y(12),(k). The increased shape parameter
in the training set, using Y(12),(k), leads to more symmetric shapes (71.1% of the basins
have increased shape parameter in the training data). Additionally, the increased scale
parameter in the entire data, using Y(12),(k,l,m), suggests that the distribution of accumulated
precipitation has “heavier” tails and consequently higher variance compared to the Gamma
distribution fitted on the training data, Y(12),(k) (76.2% of the basins have increased scale
in the entire data). There are two main reasons behind the deviations observed in the
parameter estimates: (1) the stationary SPI is time invariant; it uses a location specific
Gamma distribution and results in a trending SPI that reflects the same trend as the
increasing rainfall trend in Sweden during the last three decades; and (2) the rainfall trend
is increasing even further in the validation and test data and this introduces even larger
deviations between the parameter estimates of Y(12),(k,l,m) and Y(12),(k). In the small scales
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of the index, the deviations between the parameter estimates present smaller deviations;
this is mainly attributed to the short “memory” property of SPI that shares the same
parameters with series of shorter length in the validation and test set (Figure 5).

Furthermore, the results from the implementation of NSPI indicate that the location and
scale parameter estimates deviate from the diagonal as well (Figure 5, bottom). GAMLSS
are able to estimate time-varying location and scale distribution parameters as a function of
the increasing trend of accumulated precipitation. However, they are not able to capture
the change in distribution of accumulated precipitation in the validation and test sets.

4.2. Drought Class Transitions

Here, we address the question “Are there drought class transitions in the training set?”.
Both the Gamma and NSGamma probability densities were used at different SPI scales
(i.e., SPI(3), SPI(6), SPI(9), SPI(12), and SPI(24)) to measure the number of drought classes
that change state in the training set when the two different versions of SPI are computed
(Y(12),(k) versus Y(12),(k,l,m)). Figure 6 presents the class-transitions in the training set,
when either SPI(12) or NSPI(12) is computed using the two aforementioned approaches.
The drought class transitions were computed for all 36,662 basins; each basin has available
693 monthly records, leading to 25,406,766 precipitation records in total that were analyzed
for this experiment.

Figure 6. Transition of drought classes from Y(12)(k) (x-axis) to Y(12)(k,l,m) (y-axis) for 36,662 basins
in Sweden during the period 1961–2018. Blue color leads to changes of lower magnitude while red
color leads to changes of higher magnitude.

Results using both SPI and NSPI are subject to biases in the training data, leading to
transitions of drought events when they are calculated using the entire dataset. The com-
putation of a stationary SPI leads to a systematic underestimation of wet events when the
index is computed using the entire dataset, i.e., Y(12)(k,l,m). The most frequent transitions
are from Moderately Wet to Near Normal (change at 6.3% of the SPI values, which are 931,968
out of 25,406,766 values) and from Near Normal to Moderately Dry (change at 3.7% of the SPI
values). In addition, outliers are observed, where Very Dry events switch to Extremely Dry
(change at 0.7% of the SPI values). This systematic change is associated to the increase in
the mean monthly precipitation amount in the country during the last three decades, that is
not captured through the stationary SPI calculation. This observed increase in precipitation
is probably attributed to climate change [43], which is consequently propagated in the SPI
estimation and therefore drives the SPI performance. These findings reflect the difference
between the monthly precipitation distribution in the training set and the training, vali-
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dation, and test set. The mean monthly precipitation across all 36,662 basins is equal to
59 mm in the training set (1961–1995) and 64 mm in the validation (1995–2007) and test
sets (2007–2018). The systematic trends in drought class transitions (upper triangular in
Figure 6) is caused by the stationary nature of SPI and the incorrect computation of index
that uses the entire dataset.

NSPI leads to a systematic overestimation and underestimation of drought events
in the training data when the index is computed using the entire dataset, i.e., Y(12)(k,l,m).
The most frequent transitions are from Moderately Dry to Near Normal (change at 2.5% of
the NSPI values) and from Moderately Wet to Normal (change at 2.3% of the NSPI values)
(see Figure 6 NSGamma). Although NSPI involves the calculation of time-varying location
and scale distribution parameters in the training set, it is unable to capture the change in
the distribution of accumulated precipitation in the validation and test sets, consequently
leading to systematic change in the classification of drought events.

4.3. Comparison between the Raw SPI Data

Further analysis on the SPI data provides more in depth diagnostics regarding the
effect of the information leakage (bias) in the training set. In Figure 7, SPI and NSPI were
calculated using the two computational approaches presented in Section 2.3 for the station
S-3357. The stationary SPI, Y(12)(k,l,m), shows systematically lower values in the training
set compared to Y(12)(k), consequently leading to more dry events than could have been
predicted with the latter approach. This finding is associated to the observed change in
the mean monthly precipitation in the validation and test sets which is equal to 94.2 mm,
as opposed to to the mean monthly precipitation in the training set which is equal to
77.6 mm. NSPI generates biases of lower magnitude when Y(12)(k,l,m) is compared to
Y(12)(k) (see Figure 7 bottom). This is mainly due to the property of NSPI to capture the
increasing precipitation trend and incorporate it in the NSPI calculation, resulting to a trend-
free index. The observed deviations between the two NSPI computational approaches are
mainly due to the change in the distribution of accumulated precipitation in the validation
and test sets that is not captured in the NSPI calculation.

Figure 7. Comparison between Y(12),(k,l,m) (red) and Y(12),(k) (black) using Gamma and NSGamma
probability density functions.

In addition, we investigated whether the observed changes in the raw SPI records for
station S-3357 are associated to potential deviations between the distributions of accumu-
lated precipitation in the training and the training, validation, and test sets. In Figure 8, we
estimated the density of the 12-month accumulated precipitation for each month. It is clear
from the results that the density estimation using the entire data is more skewed to the
left compared to the density fitted on the training data, and this is an indication that the
variance of accumulated precipitation in the train, validation, and test set is higher than for
the entire data.
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Figure 8. Comparison of the density estimates of the accumulated rainfall between Y(12)(k) (black)
and Y(12)(k,l,m) (red).

4.4. Sensitivity Analysis of the Bias at Different SPI Scales

We next address the question “Is the bias introduced to the training set sensitive to the
SPI scale?” For this, we analyze the bias introduced to the training set at different SPI
and NSPI scales (i.e., 3, 6, 9, 12, 24). Results show a positive correlation between the scale
of the index and the information leakage in the training set (see Figure 9). In particular,
results show that between 6.7% (for SPI(3)) and 22.1% (for SPI(24)) of the training records
change drought class, corresponding to deviations (in terms of MAD) between 0.07 and
0.27. The same behavior is observed when different scales of NSPI are calculated, affecting
between 5.7% (for NSPI(3)) and 19.3% (for NSPI(24)) of the training records corresponding
to deviations (in terms of MAD) between 0.06 and 0.22. This observed dependency of the
error to the (N)SPI scale is mainly attributed to the fact that in large scales, the index has
long memory and accesses long sequences of the data in the validation and test sets. This
finding is in agreement with the results of Wu et al. [30], where larger deviations between
the probability density functions were observed in larger accumulated periods.

Figure 9. Mean absolute deviation (left), percentage of records with drought class transitions (right);
for different scales of SPI and NSPI across Sweden.
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4.5. Bias along a Spatial Gradient

Here, we explore the potential relationship between the bias introduced to the training
data and the regional climatic conditions. In this section, we computed the percentage of
drought events that change class following the methodology described in Section 2.3.2,
and generated the spatial distribution of drought class transitions across the country for
different time scales of NSPI (see Figure 10). The percentage of drought class transitions
increases with increased NSPI scale and affects up to almost 60% of drought events for
certain stations in the southern (snow climate) and northwest part of the country. This
result is strongly emphasised at scales NSPI(12) and NSPI(24).

Figure 10. Percentage of drought class transitions for different scales of SPI, using the non-stationary
Gamma distribution, across 36,662 basins.

Additionally, the distribution of bias (in terms of MAD) for all 36,662 stations was
computed for different time scales and under different climatic conditions. Results in
Figure 11 show that the bias increases with increased NSPI scale, while larger deviations
are observed in scales NSPI(12) and NSPI(24) and for the snow climatic conditions. This
could be attributed to the increase in the mean monthly precipitation during the last
decades, however, there might be additional factors, not explicitly addressed in this study,
that influence the information leakage issue, such as the physiographic characteristics of
the region that could possibly affect the drought spatial variability and its corresponding
impacts [44,45].

Figure 11. Distribution of the mean absolute deviation (MAD) between the NSPI computed on
the training set only and the NSPI computed on the training, validation and test sets for different
Köppen-Geiger climatic classes and 36,662 basins in Sweden during 1961–2018.
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5. Discussion
5.1. Generalization over a Stronger Spatial Gradient

The results here indicate that change in the climate can be a significant source of bias
affecting the training data and, consequently, the learning algorithms that generate drought
forecasts. The systematic increase in the mean monthly precipitation in Sweden during
the last decades, leads the stationary SPI to underestimate wet events and overestimate
dry events in the training set and this is mainly due to the difference in the parameter
of the Gamma distribution during estimation (see Figure 5). Similarly, the change in the
distribution of accumulated precipitation during the last decades, leads the non-stationary
SPI to both overestimate and underestimate wet events. In Europe, the meteorological
droughts are associated to decrease in precipitation, especially during the summer period.
This precipitation reduction tends to be more severe in the Mediterranean countries that
present a different drought regime compared to the rest of Europe [46,47]. Over the next
decades, it is projected that temperature will increase more in Europe compared to the
global average [48]. A large fraction of Europe is expected to face an increase in the mean
temperature of more than 1 ◦C both during winter and summer. With increased warming,
winter precipitation is projected to increase with more frequent precipitation in North
Eastern Europe, while in South Eastern Europe, precipitation during summer is expected
to decrease.

Under these scenarios, there is a clear indication that the precipitation distribution will
change over the next decades in Europe. The learning models that will be used to forecast
future droughts will be influenced by the potential misuse of the drought indices and will
induce bias in the prediction of future drought events. Based on the insights drawn here, it
is expected that the bias in the North Eastern part of Europe will lead to overestimation
of dry events in the training set, while in the South Eastern Europe it will lead to an
underestimation of dry events, when the stationary SPI is employed. Equivalently, changes
in the distribution of accumulated precipitation will lead to biases in the training set during
NSPI calculation. To prevent this behavior from future drought forecasting applications,
we highlight the need to introduce a drought forecasting framework that deals with these
limitations and ensures model generalization capability, especially in areas with extreme
climatic conditions, i.e., the Mediterranean.

5.2. Applicability Using Different Drought Indices

Although this study focuses on the identification of bias during model-validation using
SPI and NSPI, the methodology is valid to other indices whose calculation is performed
similarly. For instance, the standardized precipitation-evapotranspiration index (SPEI) [49]
and the effective drought index (EDI) [50] have been used thoroughly to also describe
the meteorological droughts [51,52]. Additionally, the Palmer severity drought index
(PDSI) [53] and the combined drought indicator (CDI) developed by the European Drought
Observatory of the Copernicus Emergency Management Service [54] have been used to
characterize agricultural droughts [55,56]. Additionally, characterization of hydrological
droughts using streamflow information plays a very important role in drought early
warning systems, with the most common indices being the variable threshold (VT), the fixed
threshold (FT) and the standardized streamflow index (SSI) [57]. The computation of those
indices requires attention, particularly since such indices are widely used in climate services
and their misuse could lead to incorrect characterization of drought events and incorrect
identification of mitigation and adaptation measures.

6. Conclusions

Herein, we highlighted the importance of correct computation of SPI and NSPI in a
drought forecasting setting, and demonstrated the theoretical and numerical implications
when the index is computed on the entire dataset, which methodologically neglects model-
validation. We quantified the bias introduced to the training set by conducting various
experiments for different (N)SPI scales from 3 up to 24 months across 36,662 basins in
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Sweden. Two different computational approaches were compared. First, the SPI and NSPI
were computed using the training data only (baseline) and second the SPI and NSPI were
computed using the training validation and test data (entire dataset). The latter approach
is the one that introduces bias in the training set, as it violates the fundamental principles
of OOS model-validation. The main conclusions from this study are as follows:

• Climate change coupled with the computation of SPI prior to model-validation can
be a significant source of bias in drought forecasting applications. In the case study
presented, the increased precipitation during the last decades leads to changes in the
distribution parameters of accumulated precipitation for different time scales of the
stationary SPI. This phenomenon affects the estimation of drought in the training set
and violates the fundamental principles of OOS model-validation;

• NSPI calculation using GAMLSS, involves the estimation of time-varying location
and scale parameters of a Gamma distribution as a function of the increasing trend of
accumulated precipitation over time. Although this property results to a trend-free
index, still the misuse of the data, introduces biases to the training set;

• The bias introduced to the training data is larger when the stationary SPI is computed.
This is mainly because SPI requires fitting the accumulated precipitation records to a
time invariant probability density function that incorporates the increasing rainfall
trend during SPI calculation. This property leads to a systematic underestimation
of wet events in the training data consequently affecting future use of this data in
forecasting applications;

• With increased SPI scale, the number of drought class transitions increases and affects
up to 22.1% for SPI(24) and 19.3% for NSPI(24) of the available records. This finding is
further supported by the MAD metric that indicates increased information leakage
with larger SPI and NSPI scales. This is mainly due to the “memory” of the index to
access longer sequences of future records during OOS model-validation, thus, leading
to increased information leakage issue in the training data;

• The bias introduced due to the incorrect computation of NSPI has spatial dependence,
especially in the large scales of the index. The regions affected most are located in the
southern (snow climate) and northwest part of the Sweden that exhibit changes in the
distribution of accumulated precipitation in the validation and test sets.

Taking into account the findings presented in this paper, we propose that many
existing drought forecasting studies that focus on the prediction of SPI should not be
applied to real world forecasting applications if the fundamental principles of OOS model-
validation are violated. It is expected that the bias introduced to the training set can have
a significant impact on the learning algorithms under the drought forecasting setting,
especially in larger scales of the index and varying climatic conditions. Even though,
the results presented are related to the climatic conditions of Sweden, they could be
directly applied to other climatic regions that stronger changes in precipitation have been
recorded, i.e., the Mediterranean. It is expected that the bias identified here would be
substantial in such climates, and consequently significantly affect the drought predictions
and corresponding decision-making.
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Appendix A. Stationary Standardized Precipitation Index

The standardized precipitation index (SPI), proposed by [4], defines and monitors
drought events. Positive SPI values indicate wet conditions with greater than the median
precipitation, while negative SPI values indicate dry conditions with lower than the median
precipitation. Table A1 provides the classification of different SPI values.

Table A1. SPI ranges for different meteorological conditions.

SPI Values Classification

[2, inf) Extremely Wet
[1.5, 1.99] Very Wet
[1.0, 1.49] Moderately Wet

[0.99,−0.99] Near Normal
[−1.0,−1.49] Moderately Dry
[−1.5,−1.99] Very Dry
(− inf,−2] Extremely Dry

The computation of SPI requires fitting a probability distribution on monthly aggregated
precipitation series at different time scales (e.g., 3, 6, 9, 12 months). Usually, the Gamma
distribution fits best precipitation data and is given by the following expression:

g(x) =
1

βαΓ(α)
xα−1e−

x
β (A1)

for x > 0 where α > 0 is the shape parameter, β > 0 is the scale parameter and x is the
precipitation amount. The Gamma function is defined by the integral:

Γ(α) =
∫ ∞

0
yα−1e−ydy (A2)

Fitting the Gamma distribution to the monthly precipitation records requires the
estimation of the α and β parameters using maximum likelihood estimation [58].

α̂ =
1

4A
(1 +

√
1 +

4A
3
) (A3)

β̂ =
x
α̂

(A4)

where:

A = ln (x)− ∑n
i=1
n

(A5)

and n is the number of precipitation records. The resulting parameters are used to compute
the cumulative probability of the observed precipitation records for a given period and
time scale [58].

G(x) =
∫ x

0
g(x)dx =

1
β̂α̂Γ(α̂)

∫ x

0
xα̂−1e

− x
β̂ dx (A6)
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The Gamma distribution is undefined for x = 0 since there may be no precipitation
and by letting t = x

β̂
[58] the incomplete Gamma distribution is given by:

G(x) =
1

β̂α̂Γ(α̂)

∫ x

0
tâ−1e−tdt (A7)

Appendix B. Non-Stationary Standardized Precipitation Index (NSPI)

In this study, we computed the non-stationary version of SPI (NSPI) using the
GAMLSS framework introduced by Rigby and Stasinopoulos [59]. GAMLSS has been
thoroughly used in the past to model non-stationary versions of drought indices [60,61].
It is a semi-parametric regression model, in which a parametric distribution assumption
is required for the response variable, and the selected distribution’s parameters can vary
as a function of explanatory variables or random effects. Within the GAMLSS framework,
observations yt, for t = 1, 2, . . . , n, where n is the length of the observations, are assumed
to be independent and fitted to a probability density function f

(
yt|θt), conditional on

θt =
(
θ1t, θ2t, . . . , θpt

)
, where p is the number of distribution parameters at time t. Various

distributions are supported by GAMLSS, including, highly skew or kurtotic continuous
and discrete distributions. The distribution parameters θ, characterized as location, shape,
and scale parameters are related to explanatory variables by monotonic link functions gk(·),
k = 1, 2, . . . , p, given by:

gk(θk) = ηk = Xkβk +
Jk

∑
j=1

Zjkγjk (A8)

where βk and ηk are vectors of length n, θk = (θ1k, θ2k, . . . , θnk)
T , βk =

(
β1k, 1β2k, . . . , β Jkk

)

is a parameter vector of length Jk, Xk is a fixed known design matrix of order n× Jk, Zjk
is a fixed known n × qjk design matrix, and γjk is a qjk dimensional random variable.
In Equation (A8), for k = 1, . . . , p, ηk, are comprised of a parametric component Xkβk
(functions of explanatory variables) and additive components Zjkγjk (random effects).
If Jk = 0, the model is reduced to a fully parametric GAMLSS model.

Here, we computed NSPI by fitting a GAMLSS on the accumulated precipitation series
using different time scales. The accumulated precipitation series were assumed to follow a
two-parameter Gamma distribution with its location and scale parameters, linked to a linear
trend that evolves over time, t. The following additive formulation was used in this study:

ga(µ) = Xkαk +
jk

∑
j=1

hjk(xjk) (A9)

gb(σ) = Xkβk +
jk

∑
j=1

hjk(xjk) (A10)

where µ and σ are the location and scale parameters of the Gamma distribution with the
link functions ga and gb, respectively. Xk is a matrix of covariates (in our case a linear
trend that evolves over time) of order n× jk = n× 1, βk, is a parameter vector of length jk,
and hjk(·) represents the dependence function of the distribution parameters on the linear
trend xjk. Mathematically, NSPI is similar to SPI, because they have similar calculation
steps, however, NSPI is based on a non-stationary Gamma with time-varying location and
scale parameters.
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Appendix C. Comparison of Distribution Parameters

Figure A1. (top) Comparison between the stationary Gamma distribution parameter estimates (SPI);
(bottom) Aggregated GAMLSS location and scale parameters of non-stationary Gamma (NSPI) of
accumulated precipitation between Y(3),(k,l,m) (y-axis) and Y(3),(k) (x-axis) for 36,662 basins in Sweden
during 1961–2018.
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Abstract: Global impacts of drought conditions pose a major challenge towards the achievement
of the 2030 Sustainable Development Goals. As a result, a clarion call for nations to take actions
aimed at mitigating the adverse negative effects, managing key natural resources and strengthening
socioeconomic development can never be overemphasized. The present study evaluated hydrological
drought conditions in three Cape provinces (Eastern, Western and Northern Cape) of South Africa,
based on the Standardized Streamflow Index (SSI) calculated at 3- and 6-month accumulation periods
from streamflow data spanning over the 3.5 decades. The SSI features were quantified by assessing
the corresponding annual trends computed by using the Modified Mann–Kendall test. Drought
conditions were also characterized in terms of the duration and severity across the three Cape
provinces. The return levels of drought duration (DD) and drought severity (DS) associated with
2-, 5-, 10-, 20- and 50-year periods were estimated based on the generalized extreme value (GEV)
distribution. The results indicate that hydrological drought conditions have become more frequent
and yet exhibit spatial contrasts throughout the study region during the analyzed period. To this end,
there is compelling evidence that DD and DS have increased over time in the three Cape provinces.
Return levels analysis across the studied periods also indicate that DD and DS are expected to be
predominant across the three Cape provinces, becoming more prolonged and severe during the
extended periods (e.g., 20- and 50-year). The results of the present study (a) contribute to the scientific
discourse of drought monitoring, forecasting and prediction and (b) provide practical insights on
the nature of drought occurrences in the region. Consequently, the study provides the basis for
policy- and decision-making in support of preparedness for and adaptation to the drought risks in
the water-linked sectors and robust water resource management. Based on the results reported in
this study, it is recommended that water agencies and the government should be more proactive in
searching for better strategies to improve water resources management and drought mitigation in
the region.

Keywords: hydrological drought; water resources; mitigation; streamflow; return levels; trends;
GEV distribution

92



Water 2021, 13, 3498

1. Introduction

Drought is a naturally recurring hazard associated with a decrease in water availability
over time within a region. Such conditions are often attributed to anomalous weather
conditions associated with the decreasing intensity or a deficiency of precipitation; the
changes in the onset and cessation of precipitation; and in climatological parameters, such
as temperature, relative humidity and evapotranspiration [1–3]. Drought is also influenced
by natural global circulation changes; the long-term abnormal Sea Surface Temperature
(SST), particularly in the tropics; and El Nino Southern Oscillation (ENSO) associated with
below-normal rainfall [4]. In addition, drought over Africa (especially in the Sahel region)
could be associated with the southward shift of the warm SST in the Atlantic and the
warming in the Indian Ocean [5].

South Africa, similarly to many semi-arid and arid countries globally, suffers from
frequent occurrence of drought conditions. In recent years, some parts of the country have
been declared disaster areas; however, some regions have since recovered or are slowly
recovering. Some regions have experienced what has been termed the “worst drought in
over 35 years” [6], including the 2015 drought that was partly attributed to a rainfall deficit
that reached the lowest annual average since 1904 [7]. The southwestern and southeastern
regions of the country, particularly the Western, Eastern and Northern Cape provinces, have
been experiencing diverse impacts of drought, resulting from the common classified cate-
gories (e.g., meteorological, agricultural, hydrological and socioeconomic) conditions [8,9].
The drought conditions had profound and negative implications on the economies of
these adjacent provinces. In particular, a persistent physical phenomenon attributed to the
first three classes of drought (meteorological, agricultural and hydrological) has caused
substantial and irreversible socioeconomic challenges in the Eastern Cape, resulting in
significant low water levels, bringing uncertainty to the most vulnerable communities. The
Western Cape province has also experienced a water crisis, particularly in 2015/2016 and
2018/19, which was attributed to past drought conditions in the province [10]. In addition,
severe drought in the Northern Cape province has affected farming activities and cost the
provincial government millions of Rands in drought-related funding relief to mitigate the
inherent effects.

Persistent drought conditions in the three Cape provinces have led the National
Disaster Management Centre to reclassify drought as a national drought disaster in a bid to
mobilize the necessary resources to support the affected communities, including farmers.
While this declaration is essential and provides a short-term solution, there is a need to
explore long-term solutions to alleviate the negative impacts of drought in these regions.
Effective drought monitoring and early warning systems form the basis for reducing
vulnerability, as well as developing proactive policies to enhance adaptive capacity and
drought mitigation measures. Drought indices are some of the tools that can be used
to evaluate and monitor drought. Examples of existing drought indices that have been
applied in drought-related studies include the Standardized Precipitation Index (SPI) [11],
Standardized Precipitation and Evapotranspiration Index (SPEI) [12], Palmer Drought
Severity Index (PDSI) [13], Effective Drought Index (EDI) [14], Surface Water Supply
Index (SWSI) [15], Streamflow Drought Index (SDI) [16] and Standardized Streamflow
Index (SSI) [17], among others. The selection and application of these drought indices are
dependent on various factors, such as the nature of the index, local conditions and data
requirements and availability. Some of these indices have been extensively applied in South
Africa for drought-related studies. These include drought characteristics over the Western
Cape province [10], in the Free State and North West provinces [18], in Mpumalanga,
Kwa-Zulu Natal, Free State, and North West provinces [19] and the Southern Africa [20].
Moreover, drought propagation using SPI and SSI was reported by Reference [21], as well
as drought-risk assessment in the Eastern Cape province [22], hydroclimatic extremes in
the Limpopo River Basin [23] and drought characteristics based on the SPI and EDI in the
Free State province [24], among others.
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Most of these studies have primarily focused on a meteorological drought, where
they have analyzed precipitation data, presumably because rainfall is the leading driver
to drought. Despite the fact that, in most parts of South Africa, the impacts of drought
are manifested in water resources, e.g., increased water demand for domestic, irrigation
and industrial use, among others, studies on hydrological drought are rather limited.
The purpose of this study was to characterize and understand the extent of hydrological
drought conditions that have adversely affected the water resources in the three Cape
provinces of South Africa, using the SSI. The specific study objectives were to (1) assess
characteristics of the past hydrological drought in terms of historical trends, duration and
severity and (2) determine the return levels of drought duration and severity across selected
periods. The results can contribute towards the implementation of drought monitoring
and early warning systems that could support planning, preparedness and innovation to
improve the regions’ adaptive capacity for water resources’ supply and demand.

2. Study Area, Materials and Methods
2.1. Study Area

The three Cape provinces of South Africa, (the Northern Cape (NC), Eastern Cape (EC),
and Western Cape (WC)), as shown in Figure 1, are located in the southwest of the country
and account for more than half (55%) of the country’s total geographical area [25,26]. The
WC province is situated on the southwestern tip of South Africa between the Indian and
Atlantic oceans. It is characterized by a warm temperate Mediterranean climate, with cool,
wet winters and relatively dry, warm summers [27]. The province experiences diverse
climate conditions, including dominant rainfall in austral winter and early spring. In
general, the WC province exhibits two dominant rainfall zones, e.g., the winter (west
coast) and the bi-modal (spring and autumn in the southern regions) rainfall features [27].
All-season rainfall is received in the south-coast regions of the province [27]. The received
rainfall is highly variable, ranging between the lowest of 60 mm to the highest of 3345 mm
per year [28]. Most areas in the province receive annual rainfall between 350 and 1000 mm
per year [28]. Coastal and inland temperatures range between 15 and 27 ◦C and between 3
and 5 ◦C, respectively [28]. The WC province is responsible for a large share of national
output in agriculture, forestry and fisheries, with a large proportion of the agricultural
activities mostly concentrated in the Cape Winelands [29].

The EC province is a coastal province that lies on the country’s southeastern coast
bordering the subtropical KwaZulu-Natal and Mediterranean WC province. The province
is characterized by a bi-modal type of rainfall, meaning that it receives both summer (most
southern) and winter (southwestern) rainfall [30]. Some pocket areas in the western coast
of the province are classified as all-season rainfall regions. In general, the EC province has
an arid to semi-arid climate, with annual rainfall ranging between 350 and 550 mm/year,
mean annual temperature of 17.6 ◦C and daily maximum temperatures of up to 40 ◦C in
the summer [31].

The NC province is South Africa’s largest province, covering approximately 31% of the
country’s land area, and has the country’s lowest population density of all provinces [32]. In
general, the NC province is mostly a desert-to-semi-desert area. The region is characterized
by fluctuating temperatures and varying landscapes [33]. The western areas of the province
receive winter rainfall, whereas summer rainfall with thunderstorms is experienced in the
eastern regions. The mean annual rainfall is sparse, ranging between 50 and 400 mm per
annum, while the temperature in summer often reaches maximum of 40 ◦C [34].
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The daily observed streamflow datasets were acquired from the Department of Wa-
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fied/hymain.aspx (accessed on 6 September 2021). The present study considered datasets 
from 39 stations distributed across the three Cape provinces, with provincial distribution 
as follows: 6 in the NC, 16 in the EC and 17 in the WC (see Figure 1). Table 1 gives a 
summary of the selected flow gauge stations, including the location, catchment area and 
average flow. The stations were selected based on the availability of continuous datasets 
for the period spanning from 1985 to 2020 and less than 5% gaps. As shown in Figure 1, 
the WC has a dense network of streamflow stations, followed by the EC province. Not-
withstanding harboring few streamflow stations, the northern parts of the NC province 
have Kalahari Desert conditions. As a result, a better characterization of the drought con-
ditions in the province was deemed necessary.  

Table 1. Selected river stations, with basic information including annual mean flow. The letters in station names (e.g., C, 
D, G, …, K) represent the drainage region, while the middle H letter stands for hydrological data. 

Station No. Station Name Location Latitude Longitude Catchment Area (km2) Mean Flow (m3/s) 
1 C3H007 NC −27.9032 24.61514 23.900 5.52 
2 C9H009 NC −28.5162 24.60069 121.220 23.85 
3 D1H003 EC −30.6783 26.71638 36.975 116.63 
4 D3H012 NC −29.9911 24.72027 89.755 126.80 
5 D7H002 NC −29.6517 22.74591 337.690 130.17 
6 D7H005 NC −28.4579 21.23923 361.530 156.61 

Figure 1. Central area: study area map and distribution of streamflow gauge stations. Top left panel: map of Africa with
South Africa highlighted in brown. Top right panel: map of South Africa with its nine provinces. The 3 Cape provinces are
highlighted in brown, where NC, WC and EC are abbreviations for the Northern Cape, Western Cape and Eastern Cape
provinces, respectively.

2.2. Materials

The daily observed streamflow datasets were acquired from the Department of Water
and Sanitation, South Africa, on https://www.dws.gov.za/Hydrology/Verified/hymain.
aspx (accessed on 6 September 2021). The present study considered datasets from 39 sta-
tions distributed across the three Cape provinces, with provincial distribution as follows:
6 in the NC, 16 in the EC and 17 in the WC (see Figure 1). Table 1 gives a summary of
the selected flow gauge stations, including the location, catchment area and average flow.
The stations were selected based on the availability of continuous datasets for the period
spanning from 1985 to 2020 and less than 5% gaps. As shown in Figure 1, the WC has
a dense network of streamflow stations, followed by the EC province. Notwithstanding
harboring few streamflow stations, the northern parts of the NC province have Kalahari
Desert conditions. As a result, a better characterization of the drought conditions in the
province was deemed necessary.

Table 1. Selected river stations, with basic information including annual mean flow. The letters in station names (e.g., C, D,
G, . . . , K) represent the drainage region, while the middle H letter stands for hydrological data.

Station No. Station Name Location Latitude Longitude Catchment Area (km2) Mean Flow (m3/s)

1 C3H007 NC −27.9032 24.61514 23.900 5.52
2 C9H009 NC −28.5162 24.60069 121.220 23.85
3 D1H003 EC −30.6783 26.71638 36.975 116.63
4 D3H012 NC −29.9911 24.72027 89.755 126.80
5 D7H002 NC −29.6517 22.74591 337.690 130.17
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Table 1. Cont.

Station No. Station Name Location Latitude Longitude Catchment Area (km2) Mean Flow (m3/s)

6 D7H005 NC −28.4579 21.23923 361.530 156.61
7 D8H004 NC −28.7359 19.30553 856.400 117.90
8 E1H006 WC −32.2117 18.93666 160 1.31
9 E2H007 WC −32.7803 19.28333 265 1.35
10 G1H008 WC −33.3139 19.07472 393 2.05
11 G1H013 WC −33.1308 18.86277 2936 17.13
12 G1H020 WC −33.7078 18.99111 628 10.07
13 G2H005 WC −33.9736 18.93805 31 0.52
14 G4H007 WC −34.3294 18.98833 464 6.65
15 H2H006 WC −33.5708 19.50611 707 2.67
16 H5H004 WC −33.8978 20.01166 6713 23.39
17 H6H010 WC −33.9836 19.32916 15 0.05
18 H7H006 WC −34.0675 20.40555 9842 32.77
19 H8H001 WC −34.2517 20.99194 790 2.88
20 J2H005 WC −33.4897 21.48944 253 0.19
21 J2H018 WC −32.2403 22.58583 98 0.03
22 J3H014 WC −33.4211 22.24083 151 0.44
23 K3H003 WC −34.0067 22.35027 145 0.70
24 K5H002 WC −33.8911 23.02944 133 0.76
25 L7H006 EC −33.731 24.61794 29.560 1.85
26 P1H003 EC −33.3294 26.07775 1479 0.18
27 Q2H002 EC −31.9042 25.43061 1713 0.35
28 Q4H013 EC −32.3142 25.74111 4742 0.54
29 Q7H005 EC −33.0276 25.8933 19.130 7.04
30 Q8H008 EC −32.785 25.61483 1512 0.62
31 Q9H012 EC −33.0983 26.44475 23.054 7.12
32 Q9H018 EC −33.2378 26.99486 29.743 11.17
33 R1H015 EC −33.1854 27.39075 2530 3.27
34 R2H001 EC −32.7319 27.29361 29 0.31
35 S5H002 EC −32.0443 27.82238 2359 3.91
36 T3H002 EC −30.4828 28.62083 2101 9.61
37 T3H005 EC −31.0318 28.8845 2597 14.59
38 T3H009 EC −31.0717 28.35361 307 3.60
39 T7H001 EC −31.5512 29.2438 315 1.19

2.3. Methods
2.3.1. Standardized Streamflow Index

The SSI developed by Vicente-Serrano [17] is considered a useful index for the assess-
ment and characterization of hydrological drought. Hydrological drought is associated
with a reduction in the groundwater and/or surface-water resources, including river flows,
reservoir storage and acquires [35], consequently affecting water supply for various pur-
poses, including domestic, agriculture, power generation and recreation, among others.
The SSI has been applied in various studies globally for the assessment of hydroclimatic
extremes [23], characterization of anomalies in streamflow data [17,36], drought assess-
ment [37], etc. While there has been no consensus on the exact methodology to use in the
computation of the SSI, two approaches have been proposed in the literature by Modar-
res [36] and Vecente-Serrano et al. [17]. In studies by Vecente-Serrano et al. [17], the SSI
considers a probability distribution fitting that best represents the streamflow variations
over the analyzed domain. This concept is statistically similar to the calculation of the
Standardized Precipitation Index (SPI) [11].

In this study, the SPI concept was used to compute SSI to characterize the hydrological
drought conditions across the three Cape provinces of South Africa. An important aspect
when computing a drought index is the ability to select the most suitable probability
distribution function that best fits the datasets of hydroclimatic variables. For instance, the
gamma probability distribution has been identified as the best and hence is widely used in
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computing SPI [11]. In the case of SSI, no single probability distribution has been identified
as being suitable for its computation [17]. However, according to References [38,39], the
gamma distribution is also appropriate and can be used to fit long-term streamflow data
and calculate SSI. In this regard, the gamma probability distribution was used in the present
study to fit the aggregated monthly streamflow records.

A gamma distribution in which a random variable, x, is continuous can be expressed
as follows [11,40]:

g(x, α, β) =
1

βαΓ(α)
xα−1e−x/β (1)

where α > 0 and β > 0 are the estimated shape and scale parameters, respectively; x > 0 is
the streamflow (m3/s); and Γ(α) is the gamma function defined by the following:

Γ(α) =

∞∫

0

xα−1e−xdx (2)

The gamma distribution is used to compute the cumulative probability function given
as follows:

G(x) =
x∫

0

g(x)dx =

x∫

0

1
βαΓ(α)

xα−1e−x/βdx =
1

Γ(a)

x∫

0

ta−1e−1dt (3)

If x = 0 and q = P(x = 0) > 0, where P(x = 0) is the probability of zero streamflow, then
the gamma distribution is undefined. In this regard, the cumulative probability density
can be described by the following:

H(x) = q + (1− q)G(x) (4)

The cumulative probability distribution function is transformed into a normal dis-
tribution, with an average and standard deviation of zero (0) and one (1), respectively,
resulting in SSI time series. The resulting SSI consists of both negative and positive val-
ues which represent drought/dry (i.e., a period having negative/below zero values) and
non-drought/wet (i.e., a period with positive/above zero values) events, respectively.

In this study, the SSI was computed for three (e.g., SSI-3) and six (SSI-6) accumula-
tion periods and categorized by using the classification criteria of SPI, recommended by
the World Meteorological Organization standards [41] as given in Table 2. The selected
accumulated time-steps cover both seasonal (or agricultural) and supra-seasonal, where
water resources are likely to be affected due to insufficient and/or delayed precipitation.
Annual features of the SSI were calculated based on the hydrological calendar year (e.g.,
October–September).

Table 2. Classification of drought based on the Standardized Streamflow Index estimated values.

Non-Drought Mild Drought Moderate Drought Severe Drought Extreme Drought

SSI ≥ 0.0 −1.0 ≤ SSI < 0.0 −1.5 ≤ SSI < −1.0 −2.0 ≤ SSI < −1.5 SSI ≤ −2.0

2.3.2. Drought Duration and Severity

The SSIs calculated for the 3- and 6-month time scales were used to characterize
hydrological drought in terms of drought duration (DD) and drought severity (DS) across
the three Cape provinces. Following various studies (e.g., References [42,43]), the following
procedure was used to calculate the DD and DS:

(a) A drought event (epoch) was determined when 2 or more consecutive months exhib-
ited negative SSI values.

(b) For each drought event, DD represents the number of months of the drought event.
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(c) The DS was computed as the absolute sum of the SSI, and is given in Equation (5) [43,44]:

DSe =

∣∣∣∣∣
DD

∑
j=1

SSIj

∣∣∣∣∣ (5)

where j represents a drought month, and DD corresponds to the duration of a drought
event e.

2.3.3. The Modified Mann–Kendall Trend Analysis

Trends analysis for streamflow, as well as the selected drought features (SSI, DD and
DS), across the study area, was carried out by using the Modified Mann–Kendall (MMK)
test [45,46]. The MMK test, as the name implies, is the modified version of the original
form of the Mann–Kendall (MK) test [47–49]. The MK non-parametric test is known to be
flexible with all distributions [50] and has been extensively used in research fields, such
as meteorology, hydrology and climatology, among others, to detect shifts and changes
in climatic [51] and hydrologic variables [52,53]. Despite this, the MK test has drawbacks
in handling issues relating to autocorrelation in the datasets, as is commonly the case of
streamflow data. In this regard, the MMK trend test was used in the present study to
account for the presence of autocorrelation in the streamflow data.

The MK test statistic (S) is defined by Equation (6), as described in Malik and Ku-
mar [46]:

S =
n−1

∑
i=1

n

∑
j=1

sgn
(
Xj − Xi

)
(6)

where n represents the number of datasets, Xi is the rank for the ith datasets (i = 1, 2, 3, . . . ,
n − 1) and Xj is the rank for the jth datasets (j = i + 1, 2, . . . , n). The sign function, sgn, is
computed as per Equation (7) [46]:

sgn
(
Xj − Xi

)
=





1; if
(
Xj − Xi

)
> 0

0; if
(
Xj − Xi

)
= 0

−1; if
(
Xj − Xi

)
< 0

(7)

The MMK test is normally applied to a significant autocorrelation coefficient of time-
series data, with the modified variable computed by using Equation (8):

Var(S)∗ = Var(S)
n
ns

(8)

where Var(S)∗ is the modified variance of the MMK test, Var(S) represents the variance of
the MK test series and n/ns is a correction attributed to autocorrelation within the data, as
is given by Equation (9):

n
ns

= 1 +
2

n(n− 1)(n− 2)

n−1

∑
k=1

(n− k)(n− k− 1)(n− k− 2)rk (9)

In Equation (9), n corresponds to an actual number of datasets, and rk is a significant
autocorrelation coefficient at lag-k, with its value ranging between negative and positive
one. The standardized MMK test statistics are estimated as follows:

ZMMK =





S−1√
Var(S)∗

; if S > 0

0; if S = 0
S+1√
Var(S)∗

; if S < 0
(10)

The ZMMK satisfies a standard normal distribution, where the mean and variance are
zero (0) and one (1), respectively. In this study, the null hypothesis (e.g., no trend) and
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the opposite hypothesis (trend) were tested at a 95% confidence level, e.g., trends were
considered statistically significant whenever the p-value was less or equal to 0.05.

2.3.4. Drought Return Levels Analysis

The DD and DS values were analyzed by using the Generalized Extreme Value (GEV)
distribution. The GEV is a family of three distributions (e.g., Gumbel, Frechet and Weibull)
used for analyzing extreme events, including modeling the block maxima [54,55]. Using
the GEV, the distribution of the magnitudes of DD and DS can be approximated as per
Equation (11):

F(x) = exp−
{
−
[

1− ξ

(
z− µ

σ

)] 1
ξ

}
(11)

where µ, σ and ξ are the location, scale and shape GEV parameters (all dimensionless),
respectively. These parameters are estimated based on the maximum likelihood estimation
method [55], where the likelihood function is given by the following:

L =
N

∏
i=1

{
1
σ

[
1− ξ

(
xi − µ

σ

)] 1
ξ−1

e−[1−ξ
(xi−µ)

σ ]
1
ξ

}
(12)

where N is the number of observations. In this study, the predicted DD and DS return
levels associated with 2, 5, 10 and 20 years were calculated by using Equation (13):

Zp = µ̂− σ̂

ξ

[
1−

{
−log

(
1− 1

T

)}−ξ
]

(13)

where Zp is the estimated return level corresponding to T-years return periods (e.g., T = 2,
5, 10, 20 and 50).

3. Results
3.1. Historical Trends of Streamflow

Figure 2a–c depicts annual streamflow (in m3/s) for selected gauge stations in the WC,
NC and EC provinces, respectively. Streamflow is highly variable across the provinces,
ranging between ~2 and ~50 m3/s in the WC, ~1 to ~20 m3/s in EC and ~30 to ~420 m3/s
in NC province. The highest annual streamflow was recorded in 1992, 1993, 1997, 2008
and 2013 in the WC region. In the NC region, the highest annual streamflow was recorded
in 1988, 1997, 2000, 2002, 2006 and 2011. Similarly, the EC province recorded the highest
annual streamflow in 1988, 2006 and 2011. In general, the EC has received the lowest
streamflow, whereas a greater streamflow was received in the NC province over the period
1985–2020. It is also noted that streamflow has reduced in the WC and EC from 2015 to
2020. On the other hand, the NC province has experienced reduced annual streamflow
from 2012 to 2020. The distribution of averaged mean streamflow (m3/s) across the stations
and study site is depicted in Table 1. Most of the stations in both the WC and EC provinces
show significantly small averaged mean streamflow values.

Historical trends of streamflow from 1985 to 2020 across the three Cape provinces
were assessed based on the MMK test. The results are presented in Figure 3, where the
upward and downward triangles correspond to positive and negative trends, and the
blue and black dots inside the triangles represent significant and non-significant trends,
tested at 95% significant level, respectively. In general, the study area demonstrates notable
drying trends. In particular, 75%, 88% and 67% of the stations in the EC, WC and NC
provinces, respectively, depict negative annual trends in streamflow. Overall, 80% of the
stations exhibit a negative trend in streamflow across the three provinces. In addition,
38% of the detected negative trends are statistically significant at a 95% significant level.
While most areas in the WC province are known to be “all-year rainfall” [10,28], there has
been either a shift (where there was no rainfall in some seasons) or delayed/insufficient
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rainfall to benefit water resources. These results are consistent with the continued drought
conditions that persist to burden the supply of water resources, particularly in the EC and
WC provinces.
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3.2. Characteristics of Standardized Streamflow Index

Figure 4a–c depicts SSI-3 and -6 annual mean time series for selected stations in the
WC, EC and NC provinces. Based on the results, most of the stations have experienced
mild drought over the study period. The longest drought in the EC and NC provinces was
observed in the years 1991–1996, 2003–2005 and 2015–2020, mostly lying between mild and
moderate categories. The WC province experienced the most prolonged drought in the
years 1995–2000, 2003–2006, 2010–2012 and 2015–2020, mostly fluctuating between mild
and moderate drought categories. The WC province also experienced severe drought in
2017 across all the selected stream-gauge stations.

The MMK trend test results of the SSI computed from streamflow data at 3- and
6-month accumulation time-steps across the study sites are shown in Figure 5. In this
figure, the top and bottom panels correspond to trends based on 3- and 6-month cumulative
periods, respectively. Positive (negative) and significant (non-significant) trends are shown
by green (red) triangles and blue (black) dots, respectively. The test results depict similar
annual trend patterns across the accumulation periods and stations within the study area.
Dry conditions are evident across the study area, with all the stations in the WC exhibiting
negative trends for both SSI-3 and SSI-6 accumulation epochs. Similarly, most of the NC
regions, where gauge stations are located, depict negative trends, reflecting a long-term
hydrological drought pattern. On the contrary, most of the stations (approximately 68%)
in the EC province depict notable increasing trends in SSI values across the time-steps for
the period 1985–2020. These trends are, however, not statistically significant at the 95%
confidence level.
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3.3. Characteristics of Drought Duration and Severity

Figure 6 illustrates the spatial distribution of the average duration and severity of
drought across the three Cape provinces during the study period (1985–2020). The average
DD ranges between 5 and ~9 months across the provinces. While most parts of the WC
experienced average DD ranging between ~5 and ~7 months, the parts of the EC and
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NC provinces experience the longest DD lasting for ~9 months. In particular, the WC
exhibits the lowest DD ranging from 5 to 7 across the stations and accumulation periods.
Similarly, greater DD values are observed in the NC and EC provinces, ranging from 6
to 8 months across the accumulation time-steps. The EC and NC provinces DD range
from approximately 6 to 9 months across the accumulation time-steps. Severe drought is
observed across the provinces, with estimated maximum average DS of 5.0 noticed across
most of the stations, and in both the analysis of 3- and 6-month accumulation periods.
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Figure 6. Annual mean of drought duration (in months) and severity based on the SSI-3 and SSI-6 analysis shown in left
and right panels, respectively.

The trend analysis results indicate that DD has significantly increased across the
study area, with exceptions to parts of the EC province (see the first column of Figure 7).
Approximately 47% of the observed trends in DD are statistically significant at the 95%
statistically significance level. The severity of drought (second column of Figure 7) has
increased during the study period (1985–2020), particularly in the WC and NC provinces.
Overall, about 78% of the stations exhibit positive trends in DS, with 48% of the observed
trends being at the statistically significant 95% significance level. In the EC province, only
18% of the stations indicated an increase in the DS, while the majority of the stations (82%)
displayed a decrease in the severity of drought over the 1985–2020 study period.
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3.4. Return Levels of Drought Duration and Severity

Figure 8 depicts the spatial distribution of drought events estimated from the SSI at
3- and 6-month accumulation time-steps across the three Cape provinces. These events
were estimated based on the condition that the SSI exhibited continued negative values
for 2 months or more. The results of SSI at 3- and 6-month accumulation time-steps at six
stations in the NC region indicate that there were 21–30 and 14–25 drought events during
the period 1985–2020, respectively. The EC province experienced 24–36 and 14–30 drought
episodes based on the analysis of SSI at 3- and 6-month accumulation periods, respectively.
In the WC province, drought episodes ranged from the seven, which was the lowest, to
39, the highest, for the SSI-3 analysis. Drought episodes were reduced when considering
the SSI-6 analysis, with the events ranging from five at the lowest to 27 at the highest. The
J2H018 in the WC region is the solely stream-gauge station that has recorded the lowest
drought events during the 3.5 decades. Such a huge deviation requires further inspection
of streamflow data for this station. Overall, the results indicate that SSI-3 exhibited greater
drought events as compared to the SSI-6 accumulation period. The drought events in
Figure 8 were used to estimate the return levels of DD and DS at both 3- and 6-month
accumulation time-steps.
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Figure 9 depicts the spatial distribution of estimated return levels of DD associated
with 2-, 5-, 10-, 20- and 50-year periods computed based on 3- (first column) and 6-month
(second column) accumulation time-steps. In Figure 9, DD return levels for the NC province
study site are shown in the first row, whereas the second and third rows represent the output
for the WC and EC provinces, respectively. As noted in the results, the estimated return
levels exhibit localized and spatial variability across the studied periods and accumulation
time-steps. In both the DD at 3- and -6-month accumulation periods’ analyses, the return
levels increase in subsequent periods. In the NC province, hydrological drought is expected
to occur with duration ranging between 5 and 8 and between 10 and 19 months across
the province for the 2- and 5-year periods, respectively. Prolonged hydrological drought
is expected to range from 28 to 66 and from 53 to 148 months in the next 20- and 50-year
periods, respectively. Hydrological drought is likely to be short (2–5 months) in the WC
during the next 2 years, followed by a rapid increase in subsequent periods, with duration
in the range of 15–72 and 22–115 months for the 20- and 50-year periods, respectively.
The J2H018 is the only stream-gauge station depicting extreme return levels across the
periods, resulting in a slight deviation pattern from the rest of the stations. Similarly,
hydrological drought is expected to last between 4 and 9 months in a shorter period
and reach a maximum of 138 in 50 years’ time. Results for the 6-month accumulation
period depict a similar increasing pattern across the stations and the provinces. Moreover,
the results indicate that the NC is likely to experience prolonged DD, followed by the
EC province. The WC province is expected to experience short DD, as compared to the
other Cape provinces. Overall, the results of the return levels suggest that the three Cape
provinces are likely to experience persistent drought with localized duration. Moreover,
the duration of drought is expected to increase in subsequent periods.

The results for the return levels of DS associated with the 2-, 5-, 10-, 20- and 50-year
periods are shown in Figure 10 for 3- and 6-month accumulation periods. Similar to DD,
the estimated return levels for DS increase with increasing periods. The 2-year return levels
for DS range from the lowest of 1.4 to maximum severity of 5 in the WC to 1.2–4.6 in the EC
and to 2.1–3.5 in the NC provinces. The severity doubles for the 5-year period across the
stations and provinces. A significant increase in drought severity is recorded for the 20- and
50-year periods, reaching a maximum severity of 55.6, 55.0 and 48.8 for the 20-year period
and in the NC, WC and EC provinces, respectively. The severity of hydrological drought is
expected to double in magnitude in 50 years, as compared to the 20-year analysis period.
A similar increasing pattern of DS return levels is observed for the 6-month accumulation
time-step. While drought is expected to become severe in the future, the WC is likely to
experience less severity. On the contrary, drought is likely to be more severe in the NC
region, followed by the EC province.
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4. Discussion

The present study investigated past hydrological drought conditions in the three
Cape provinces of South Africa. Streamflow observations spanning 3.5 decades were
used to compute SSI and its features at 3- and 6-month accumulation epochs. Based on
the results, streamflow across most stations (~80%) exhibited a decreasing trend pattern.
These findings collaborate with various research conducted in the WC and EC provinces.
For instance, studies by Lakhraj-Govender and Grab [56] reported a decreasing trend in
annual and winter rainfall and river flow in the WC province for the period spanning
from 1987 to 2017. Similar studies focusing on rainfall characteristics have been reported
by Botai et al. [10] in the WC, Botai et al. [22] in the EC and Mahlalela et al. [57] in the
Southwestern Cape regions. The observed downward trend can be attributed to seasonality
effects, manifested as reduced precipitation, coupled with increased temperature, as well
as other influential factors, such as relative humidity and wind speed. These climatic
variables, particularly the temperature, atmospheric humidity and wind speed, have
moderating effects on other hydroclimatic variables, for instance, influencing potential
evaporation [58,59]. Precipitation fundamentally affects water availability and supply
within a region [59]. Consequently, it is clear that the change in these climatic variables
has modified the surface water balance, contributing to the drying conditions in the three
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Cape provinces in the past three and a half decades (1985–2020). Moreover, conditions in
the EC province are further complicated by its climatic conditions, e.g., the western parts
lie near the transition zone between the summer and winter rainfall regions towards the
southeastern part of the country [60]. The EC regions are also influenced by mid-latitude
and tropical systems, which lead to complex meteorology that involves interlinkages with
the neighboring Agulhas current or landscape [61], contributing to a decrease in mean
summer rainfall along the EC coast [62]. The streamflow in the WC province is also
influenced by regional climate, including fluctuation in rainfall and evaporation rates
(due temperature changes), as well as enhanced water withdrawal (and demand) for
consumption [59].

Prolonged drought episodes are notable across the three provinces. These drought
episodes include the 1991–1996 (EC), 1995–2000 (WC) and 2015–2020 across the three Cape
provinces. These results agree with previously reported drought events that led to severe
water crisis in the region [10,22,57,63]. Negative trends in SSI-3 and SSI-6 were detected
in approximately 67% of the stream-gauge stations across the provinces. While the SSI
values in the EC province depict positive trends in approximately 68% of the stations,
water resources have remained excessively under pressure during the study period. This
condition is still largely experienced currently, with provincial average dam levels in 2020
reaching the lowest of less than 50% full storage capacity. The ongoing drought in the EC
province has left the most vulnerable communities with great uncertainty of facing the
famously so-called “day zero” state [64], where plans, such as increasing water restrictions
and the possibility of shutting off taps, are being considered. Most of the major dams
that supply water in the region are currently below 50% [65]. Therefore, these suggest
that, while some areas in the EC province might have received increased precipitation
during the study period, the received amount could not have been significant to enhance
ground-water recharge and compensate the growing demand for water resources.

The WC province has also experienced severe drought conditions that resulted in a
decline in dam storage capacity. Significant reduction in water levels can be attributed to
the 2015–2018 drought conditions, which were reportedly a manifestation of past droughts
in the province [10]. During this period, dam levels reached the lowest of ~30% full storage
capacity, particularly in 2017 and ~40% in 2018, posing threats of an impending “day
zero” state. The current results suggest that the WC province is still experiencing acute
drought conditions. Such conditions can be attributed to factors such as climate change,
deficit/decrease in rainfall and lack of monitoring systems [66]. Persistent drought in the
WC regions is likely to exacerbate water shortages, particularly in vulnerable urban and
rural areas, affecting agricultural activities and other activities that highly depend on water
resources. The NC province is a generally arid area, and, therefore, it is inherently prone
to drought conditions which increase the vulnerability and coping capacity of economic
sectors, such as agriculture and mining.

The duration and severity of drought conditions over the three provinces have in-
creased during the 1985–2020 study period, as evidenced from the observed upward trends
of DD and DS across the 3- and 6-month accumulation epochs. While the study area is
prone to drought conditions, the duration and severity features vary spatially across the
provinces. For instance, the southeastern regions covering the WC and the EC provinces
experienced DD lasting for 5–7 months on average, whereas the NC, which exhibits a
unique geographical location (e.g., mostly aridity) and climate conditions, experienced
prolonged drought, reaching a maximum of ~9 months. Furthermore, drought has become
more severe over time, reaching a maximum severity of 5.0 in most parts of the three Cape
provinces. The observed DD and DS for the period 1985–2020 are expected to continue,
according to results from drought return levels, associated with 2-, 5-, 10-, 20- and 50-year
periods. Results indicate that DD and DS will slightly increase for 2-year return period,
followed by a rapid increase in subsequent periods, particularly in the next 20 and 50 years.
These increases will be localized and vary according to geographical location, as well as
the climate conditions, as observed in the historical features.
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Increased return levels of extreme events are likely to have significant impacts on
key water-linked sectors, such as agriculture and tourism, as well as manufacturing and
production industries, which sustain socioeconomic development in the three provinces.
Such extreme events are expected to add more pressure to the already burdened water
resources, thereby increasing water stress and impact on agricultural activities and their
value chain (e.g., livestock production, wheat, fruit and wine production). According to
Kalaba [67], the country’s economy only grew by a mere 1.1% per annum between 2015
and 2017, a period when the country was gripped with one of the worst droughts. Such a
growth rate is not sufficient to help tackle the triple challenges of poverty, unemployment
and inequality and have implications on efforts to achieve national and global development
goals (e.g., National Development Plan and SDG). Persistent drought conditions and the
corresponding extreme events which are likely to reverberate into the future will probably
exacerbate the triple challenges in the three Cape provinces. Additionally, the drought
conditions would impact employment and especially the remuneration for low skilled and
seasonal workers in sectors, such as agriculture and agro-processing, whereby productivity
is likely to be affected by the availability of water for crop irrigation. In general, as
evaluated in the current study, hydrological drought is a reality that requires concerted
proactive actions by water agencies within the provinces, as well as the surrounding
provinces that share catchments. Information derived from this study can support disaster
management efforts at provincial and national levels to reduce spending on disaster relief,
which often diverts money away from other fiscal activities. Such drought-risk information
can also support the management of water resources in catchments at risk management
and reduction, food price inflation, the food-import bill and economic growth in the future.

5. Conclusions

In this contribution, the SSI computed from 3.5 decades of streamflow data was used
to evaluate hydrological drought conditions in the southwestern and southeastern parts of
South Africa, covering the WC, NC and EC provinces. A decreasing streamflow trend was
detected in most of the stream-gauge stations across the three Cape provinces. Hydrological
drought analysis based on the SSI for 3- and 6-months accumulation periods indicate that
most of the study regions experienced pronounced, yet localized drought conditions during
the studied period. More specifically, negative trends in SSI-3 and SSI-6 were detected in
approximately 67% of the stations across the provinces. Such a downward trend can be
attributed to reduced streamflow, influenced by reduced precipitation or a shift in seasonal
precipitation, coupled with increased temperature, among other factors. Based on the
estimated return levels, increased DD is expected to occur within the study regions, with
shortened and prolonged duration in the southeastern and southwestern areas, respectively.
Severe drought events are also expected in the future, following a similar pattern as the
estimated DD. In general, the historical trends analyses presented in this study form the
basis for streamflow and drought projections in the three provinces. The present study
and its findings are crucial for the implementation of appropriate policies and strategies
for effective water-resource planning and management in the WC, EC and NP provinces.
Based on the key findings of this study, it is recommended that water agencies and the
government should be more proactive in searching for strategies to improve water resource
management and drought mitigation in these regions.
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Abstract: Low flow events (a.k.a. streamflow drought) are described as episodes where stream flows
are lower or equal to a specified minimum threshold level. This threshold is usually predefined at the
methodological stage of a study and is generally applied as a chosen flow percentile, determined
from a flow duration curve (FDC). Unfortunately, many available methods for choosing both the
percentile and FDCs result in a large range of potential thresholds, which reduces the ability to
statistically compare the results from the different methods while also losing the natural character
of the phenomenon. The aim of this work is to introduce a new approach for low flow threshold
calculation through the application of an objective approach using breakpoint analysis. This method
allows for the identification of an environmental moment of river transition, from atmospheric feed
flows to base flow, which characterizes the moment at the beginning of the hydrological drought. The
method allows for not only the capture of the genesis of a low flow event but, above all, unifies the
approach toward threshold levels and completely excludes the impact of the subjective researcher’s
decisions, which occur at the methodological stage when selecting the threshold criteria or when
choosing a respective percentile. In addition, the method can be successfully used in datasets
characterized by a high level of discretization, such as numerical model data, where the subsurface
runoff component is not described in sufficient detail. Results of this work show that the objective
identification method is better able to capture the occurrence of a low flow event, improving the
ability to identify hydrologic drought conditions. The proposed method is published together with
the Python module objective_thresholds for broad use in other studies.

Keywords: low flow; national water model; objective; threshold; breakpoint; low flow identification;
streamflow drought

1. Introduction

Drought, as a long-term hydrologic phenomenon, is difficult to numerically define
and parameterize. Especially in the case of surface waters, where it is difficult to define
the moment of drought initiation as the conditions are generally a result of numerous
surface and atmospheric factors [1]. The lowering of river water levels is usually due to
prolonged dry conditions; therefore, river low flows are generally considered an indicator
of hydrological drought progression [2]. This indicator is somewhat easier to parameterize
than other types of droughts due to a direct relation with river levels; however, one still
needs some kind of criterion to define when flows are considered “low”. In response to
this, Yevjevich [3] introduced the threshold level method (TLM), which was based on a
threshold approach to the phenomenon. The TLM method has been widely accepted by
the scientific community, and now, even in the current literature, low flow events (a.k.a.,
streamflow droughts) are defined as periods when river discharge is not higher than the
defined threshold level [4,5]. Such a definition, however, contributed to large discrepancies
in later studies [5–11].
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Since the definition of low flows based on a predefined flow threshold was established,
the methods for determining it have been extended to include statistical, hydrological,
economic, and other criteria [12]. For the hydrological criteria, the value of the threshold
has included: (1) lowest average annual flow, (2) highest annual minimum flow, (3) average
annual minimum flow, (4) a division using one of the prior conditions using seasonal values
or n-day annual minima, and others [4,12–15]. When applying statistical criteria, the most
common approach is to use a specific flow percentile provided by the flow duration curve
(FDC); however, the chosen value may differ depending on the study, with exceedance
probabilities of p = 70, 80, 90, 95% having been used previously [2,10,12,16–20]. Such
a range of criteria for selecting the threshold, which is a critical value in the context of
the subsequent analysis of hydrological drought, results in a substantial heterogeneity
of the resulting analyses and the inability to compile and compare the results [21]. This
issue is compounded by the application of different low flow criteria for varying purposes
(e.g., reservoir operations, water resource management, water quality, etc.). Seeing as
defining and quantifying hydrologic drought is a common application of low flow analysis,
developing an objective method for that purpose provides a useful tool that adds value to
many associated scientific and management approaches.

Various levels of probability or graphical and other methods used to identify low flows
have further contributed to the development of intermediate criteria. As strictly numerical
values do not necessarily carry an environmental context, especially in complex hydrologic
environments, additional criteria have begun to emerge that allow for connecting and
separating periods of low flow that could have the same origin but were separated as
a result of an external event (e.g., storm, reservoir, wastewater drop, etc.). Zelenhasić
and Salvai [22] introduced the inter-event time criterion (IT) in which they introduced
another parameter to the definition of a low flow: the maximum duration of flows that
would not separate events [23]. In terms of IT, it is up to the researcher to determine the
critical time (e.g., five days), which indicates the same genesis of successive low flows.
Madsen and Rosbjerg [24] modified the criterion to a so-called inter-event time and volume-
based criterion (IC) by supplementing the definition with the maximum volume of water
supplied during the threshold exceedance time. This affected the method of determining
the basic parameters of the low flow event, as accounting for the excess threshold time and
associated volume to include within low flow episode parameters became a requirement.
Vogel and Stedinger [25] approached this issue differently, considering the low flow in
terms of hydrological drought and the related runoff deficiencies. They concluded that the
appropriate criterion for the distribution of independent events should be based on the
amount of water deficit created in the environment during the low flow and not on the
basis of the duration of the threshold exceedance. Vogel and Stedinger [25] adapted the
reservoir algorithm concept to the needs of low flow analysis, leading to the sequent peak
algorithm (SPA) method.

The existence of various criteria for the division and parameterization of low flows
in the literature still contributes to large methodological discrepancies. For the IT and IC
criteria, depending on the study, authors use different criteria, e.g., 3-day periods [21],
5- or 6-day periods [9], or even one-month periods [26]. Furthermore, Yahiaoui et al. [27]
recommended that the period should be selected each time depending on the needs of the
analysis. In addition to the above criteria, the SPA algorithm has also seen wide application
in the analysis of low flows [28,29]. Yet another criterion used by researchers with the same
frequency is the method based on the value of the “smoothed” n-day moving average [9,30]
or the minimum annual mean n-day flow [31].

The evolution of the low flow definition methods described above served to improve
the definition of a low flow event to reflect the actual low flow conditions in a river,
which is overall useful and encouraged. At the same time, however, the multitude of
definition criteria, parameterizations, and assumptions introduces numerous combinations,
and it is up to the researcher to choose a specific method appropriate to the research
application. These choices have direct consequences on the impact and applicability
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of the results, as using a common criterion ensures the comparability of results while
adjusting the criterion to the problem under study (e.g., temporal, spatial, or environmental
dependence) makes the results potentially more locally representative but not directly
comparable [32]. Although statistical criteria are currently the most popular, especially the
Q10 flow (corresponding to the 10th percentile of the flow), also referred to as Q90 if the
cumulative distribution function is used [33] or the 7Q10 criterion (as the 10th percentile of
the 7-day average flows) [34], the development of modern methods of numerical modeling
introduces another issue: discretization and uniqueness of data.

In the case of observed streamflow, the primary disadvantage is data stationarity [35]
or the completeness of the dataset. More often, however, observations suffer from insuf-
ficient spatial density, mainly due to the costs of their acquisition and spatial coverage.
For this reason, other sources such as statistical or physical model simulations become
necessary. In the case of physical models, parameterizations related to complex and/or
unknown variables, such as subsurface runoff, lead to differences in accuracy and the
representativeness of related processes, which during droughts, are crucial for the correct
calculation of the baseline runoff and low flows in the river [6,36,37]. This sometimes leads
to a large discretization of the flow values, i.e., the lowest flows can have repeated values
in a dataset. If the data uniqueness is greater than 90%, then the use of the Q10 as the
threshold will represent statistical information; however, in some cases, for example with
the National Water Model (NWM) retrospective data, minimum streamflow values are
often repeated for extended periods [38]. In this case, the FDC flattens out on the lower
flows, with the 10th percentile being equivalent to higher percentile values (i.e., 15th or
20th percentile). In this case, the use of percentiles as thresholds leads to the separation
of values from the respective environmental information or even false statistical results
if the threshold is equal to all of the other lowest flows in the data series. Such episodes
will have zero volume based on the TLM definition, which further translates into issues in
parameterizing low flow episodes.

All the above-mentioned problems lead to the same conclusion: there is a need to
develop a criterion for the identification of low flows by means of TLM, which will allow for
(1) the minimization (and ideally exclusion) of the subjective assessment of the researcher
in the process of selecting threshold criteria, (2) the ability to account for the state of
the environment in the process of identifying the onset of hydrological drought, and
(3) the application of the methodology in a data series with a significant degree of value
discretization. The aim of this work is to develop such a method without also introducing
complex or computationally expensive criteria.

The remainder of the article is organized into the following Section 2: overview of
the data used, Section 3: description of the method, Section 4: comparison of the newly
introduced method to low flows defined using the Q10 method, and Section 5: conclu-
sions. Additionally, Supplementary Materials are available, which include information
about how to obtain, install, and use the developed algorithm (a Python module termed
objective_thresholds), which will allow researchers to directly apply the method without the
need to reconstruct the methodology.

2. Data

The streamflow data used to develop the low flow algorithm came from the National
Water Model (NWM) retrospective v.2.1 dataset (NOAA National Water Center, version:
Retrospective 2.1, Tuscaloosa, AL, USA), which has a period of record from 1979–2020 [39].
The NWM was developed by the National Oceanic and Atmospheric Administration
(NOAA) Office of Water Prediction (OWP) in 2016 to improve the accuracy and spatial
coverage of hydrological predictions over the continental United States (CONUS) and is
based on the Weather Research and Forecasting–Hydrological Modeling System (WRF-
Hydro). While the NWM has undergone numerous upgrades and revisions since its
release, the most recent retrospective simulation was used for this project, which utilizes
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the analysis of record for calibration (AORC) for initialization. Unlike the operational
version of the NWM, however, the retrospective data do not incorporate data assimilation.

The study area was limited to the Southeast US, defined by the USGS Region 3 hy-
drologic unit (South Atlantic-Gulf (SAG)), which constitutes 338,037 NWM retrospective
stream nodes (hereafter referred to as nodes) along waterways that ultimately drain into
the Atlantic Ocean within and between Virginia and Florida, or the Gulf of Mexico running
within and between Florida and Louisiana (Figure 1). After the evaluation of data com-
pleteness, a decision was made to include only stations of Strahler order three and higher
since 80% of the lower-order nodes showed streamflow values of 0 m3/s, which, from the
perspective of drought analysis, introduced the risk of a misrepresentative calculations for
both threshold level and drought event statistics. The study dataset, therefore, consisted of
73,891 nodes, from which daily mean flow values were calculated from the hourly model
values. Additional criteria of no more than 5% of zero or null data were introduced to
avoid computational bias, which resulted in 61,948 nodes.
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Figure 1. Study area showing NWM nodes used for analysis.

For the NWM nodes retained for analysis, analysis of FDCs revealed that the average
percentage of unique flow values above the 90th percentile was 98%, while below the
10th percentile, it was roughly 50%. Additionally, the nodes below the 10th percentile
were characterized by a low variability (Table 1, Figure 2). In these nodes, therefore, there
is a situation where the lowest 10% (or even 20% in some cases) of the flow values are
identical. This is likely because the model is not able to adequately reflect the influence of
groundwater inflow on river discharge, especially along smaller river segments, causing
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predicted annual low flow thresholds to be the same values as annual or monthly minimums
and/or overestimating baseflow characteristics [40].

Table 1. Characteristics of the lowest 10% of values from the study data. n—number of data points;
nu—ratio of unique values; Qm—mean flow [m3/s]; std—standard deviation [m3/s]; var—variance;
Cv—coefficient of variation; IQR—inter-quartile range [m3/s].

n nu Qm std Cv IQR

mean 527.7 0.554 0.079 0.014 0.252 0.022
std 333.8 0.353 0.231 0.039 0.196 0.062
var 111438.8 0.125 0.053 0.002 0.038 0.004
Cv 0.633 0.637 2.917 2.825 0.779 2.831

IQR 665 0.703 0.032 0.007 0.133 0.011
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Figure 2. Example of standardized flow values (Qs) for the lower range (to 35th percentile) of the
FDC for a sample series with high discretization (a: unique values constitute less than 0.01% of the
lower FDC range), moderate discretization (b: unique values constitute 1% of the lower FDC range),
and close to natural distribution (c: unique values constitute around 90% of the lower FDC range).

After consideration, a decision was made to exclude 1198 nodes that were character-
ized by constant minimum flow values (not shown), leading to a final dataset consisting
of daily flows for the period from 1 February 1979 to 31 December 2020 for 60,750 nodes
(2,551,500 stream years).

3. Methods
3.1. Breakpoint Approach to Low Flow Identification

According to the generally accepted pattern of drought generation and evolution,
hydrological drought is the last stage of environmental drought development [5]. The
moment when primary river inflow changes from surface or shallow subsurface runoff
(which characterizes mean conditions) to groundwater is an indicator of drought initiation;
therefore, this transition can be identified as the beginning of low flow conditions. Based on
this, then, an underlying assumption for the methodology presented here is that low flow
begins at the moment when primary river inflow changes sources and baseflow conditions
are reached [5,41–43]. To define this transition objectively, one can follow the so-called
curve breakpoint method—where the breakpoint is identified as a change in the slope of a
trend line within the hydrograph—as the most ecologically relevant moment [44,45]. This
approach is often used in flood analysis, where the breakpoint is most often interpreted as
water levels reaching bankfull conditions [46,47], but can also be used for drought studies
if applied correctly. Considering the range of low flows in a series of sorted values, the
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breakpoint of the curve will be the moment of change in the river supply from surface
runoff to groundwater [43,48]. Tomaszewski [48] proposed this approach by determining
the minimum annual (or monthly) flows from a series of data. The moment of supply
change is then defined as a point on the curve in which there is a significant change in the
slope of the regression line, signifying a change in the series (Figure 3). This point can be
used as the estimator of the threshold level for hydrological drought.
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Figure 3. Trend change method for finding the threshold (Qgen) based on Tomaszewski’s method [48],
on the example series of minimum annual flow values (Qmin) sorted increasingly (a) and the example
series for which no clear trend change is present (b).

When examining various cases of the distribution of annual minima, one may en-
counter cases in which the change of the trend is inconclusive or absent (Figure 3) [49]. In
this case, Tomaszewski [43] suggests adopting the highest annual minimum flow as the
threshold. According to observations from an area in eastern Poland, the value of the high-
est annual minimum flow in catchments where the trend changes were not found coincides
with the 30th percentile, while other studies indicated the 20th or 10th percentile [49,50].
This discrepancy may be related to the length of the data series being analyzed when
using annual values, as the shorter the data series, the fewer the points from which to
derive curves and find the trend change. This approach also fails in the case of data series
characterized by a high degree of discretization, like in the case of NWM, as explained in
Section 2.

While these issues can be addressed by incorporating the full flow time series in the
calculation of the low flow breakpoint, which maximizes the number of data points while
minimizing discretization, such an approach introduces the possibility of the breakpoint
being defined at the upper end of the FDC in relation to other environmental factors such
as over-bank flow conditions. As a result, it is important to truncate the full time series to
only include the lower end of the FDC to focus the method on only low flow patterns. To
that end, one can assume that low-intensity (a.k.a. shallow) low flows are those related
to general environmental water shortage where researchers set limits of low flow around
the 30th percentile (or highest of the lowest annual flows). In the case of high-intensity
(a.k.a. deep) low flows, which are indicative of severe hydrologic drought, the threshold
is usually around the 10th percentile (or the mean of the lowest annual flows or similar
methods). This suggests that the expected optimal threshold may be somewhere from
the 10th–30th flow percentiles, with any values below the 50th percentile reflective of dry
conditions [8,51].

3.2. Breakpoint Algorithm Selection

To determine the breakpoint of the data series corresponding to each node in the study
data, several of the most recognized breakpoint algorithms were analyzed, including:

• Fisher-Jenks algorithm (FJ) [52];
• Dynamic programming (DP) [53,54];
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• Kernel change detection (KCD) [55,56];
• Binary segmentation (BiS) [57];
• Bottom-up segmentation (BUS) [54,58];
• Window sliding segmentation (WS) [54,59,60];
• K-means algorithm (KM) [61,62];
• Ward method (WA) [63,64].

Apart from the K-means algorithm, all methods were able to replicate the same
obtained threshold result over 10 repetitions of the calculations. For KM, only 0.56% of the
nodes achieved the same value over the 10 repetitions. This is due to the assumption of the
method starting point as each time, the method randomly initiates the cluster centers and
then progresses until the stabilization of the distance matrix occurs. Changing the method
to start from the same space every time to unify the outputs would add an additional source
of researcher intervention into defining the initial conditions, which stands in opposition
with developing objective research guidelines.

The highest values of the low flow thresholds were obtained by the KM and KCD
algorithms, while the lowest were obtained by the WS algorithm (Figure 4). Among the
tested methods, the WS and KM algorithms were characterized by the largest deviations
from the mean value, while the FJ and WA algorithms were characterized by the values
closest to the mean of all the tested algorithms, with the mean difference not exceeding
0.2% (Figure 4). The execution time (per hundred nodes) of the DP, KCD, BiS, and BUS
algorithms exceeded 10 s, whereas WS and KM required around eight seconds, and FJ
only four seconds (Figure 4). Considering the above, the FJ algorithm was selected as the
preferred breakpoint detection algorithm as it resulted in values closest to the mean of all
tested algorithms and had short execution times.
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mean from all the methods, and (b) the mean time (t) of algorithm execution per 100 nodes.

In the absence of a discrete breakpoint in the dataset, represented by the lower range
of the FDC, all the methods showed a tendency to select a specific point in the dataset.
For example, the KM algorithm tended to choose the highest value as the breakpoint,
while WS generally chose the lowest value. Four algorithms (FJ, DP, KCD and BiS) tended
to choose a value close to the median of the distribution. To test if the results of the
breakpoint algorithms were statistically different from the medians, a T-test was run using
series representing the objective threshold based on the FJ algorithm, the median, and the
percentile representing the middle probability value of a given range (e.g., for a FDC range
of 30% the values of Q15 was considered the middle probability). Since all series were
considered part of the same data distribution, a dependent T-test was used. The differences
between the objective thresholds, median values, and middle-range flow percentiles were
shown to be statistically significant, meaning the series did not result in the same values
most of the time (Table 2). This shows that although the FJ method showed a tendency to
define the breakpoint of the FDC as a value close to the median, the resulting Qobj remained
statistically significant in its difference from the median.
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Table 2. Results of T-tests for the comparison of series representing objective thresholds defined using
the FJ algorithm (Qobj), median value, and middle percentile flow (Qp) for multiple FDC ranges.

Relation Qobj–Median Qobj–Qp Median–Qp

FDC range 20%

statistics −54.0508 −59.3941 4.6209

p-value 0.0000 0.0000 0.0000

FDC range 25%

statistics −51.2043 −58.6077 4.4995

p-value 0.0000 0.0000 0.0000

FDC range 30%

statistics −39.3186 −44.1184 4.0386

p-value 0.0000 0.0000 0.0001

FDC range 35%

statistics −22.8904 −25.4409 4.0794

p-value 0.0000 0.0000 0.0000

FDC range 40%

statistics 8.5917 13.9009 3.4002

p-value 0.0000 0.0000 0.0007

FDC range 45%

statistics 38.5965 41.6176 3.2249

p-value 0.0000 0.0000 0.0013

FDC range 50%

statistics 49.8975 50.6962 3.1834

p-value 0.0000 0.0000 0.0015

3.3. Objective Threshold Approach Description

Based on the above considerations, a method was derived that takes into account the
range of flows from the lower part of the FDC to estimate the breakpoint corresponding
to the moment of change when river flow is based on predominantly atmospheric input
(in the range of average flows) to groundwater input (or other non-atmospheric supplies,
such as reservoir discharge), characteristic of lower flow ranges. The calculation method
consists of the following steps:

1. Determination of the number (n) of points in the daily flow series needed to calculate
the breakpoint based on the lower FDC range (by default: below the 35th percentile,
as described further in the Results section):

Q: {Q ∈ R + | Q ≤ Q35}

2. Implementation of the Fisher–Jenks algorithm to define the breakpoint [52] by mini-
mizing deviation of each class from the class mean, while maximizing the deviation
of each class from the means of the other classes:

a. Order flow data series in increasing order and assigning weights (w):

w: i ∈ {1, . . . ,n}

b. Compute the diameter matrix Di,j to store the distance between all pairs of n
observations, such that:

1 ≤ i ≤ j ≤ n
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c. Populate the error matrix with variance of n observations when classified into
two classes (one class for atmospheric driven resources, representing mean
flow conditions (FDC part above breakpoint), and second for the drought
conditions and baseflow (FDC part below breakpoint)):

E[Pi,L] = min
(

D1,j−1 + E
[
Pj−1,L−1

])

d. Locate the optimal partition from the error matrix by maximizing inter-class
variance and minimizing intra-class variance:

E[Pn,2] = E
[
Pj−1,1

]
+ Dj,n

3. Application of the defined breakpoint (Qt) as the low flow threshold for further
analysis of low flow distribution, streamflow droughts, or for water management
systems at the alert point, according to the following relation:

Ql f =

{
0, i f Q > Qt
Q, i f Q ≤ Qt

where: Q—flow in a specific moment,

Qt—threshold flow determined by Fisher-Jenks algorithm,
Qlf—flow identified as low flow.

The calculated flow breakpoint value can be directly applied as the threshold in the
TLM for low flow or hydrological drought analysis.

The above method can be applied directly in other research by using the lowflow
module from the objective_thresholds Python package. More information on the installation
and usage of this can be found in Supplementary Materials, available with this article or at
the package repository website.

4. Results

Analysis carried out on the study data shows that the 35th percentile of daily flows
(indicated in Section 3.3) is sufficient enough to find the curve breakpoint, indicating a
change in the river supply, as all of the low flow thresholds identified by the objective
breakpoint method did not exceed the 30th percentile of flow, and in most cases (around
83%) the threshold fell within the 15th and 20th percentiles (Figure 5).
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The relation between Q10 and Qobj can be represented by a linear relation (Figure 6),
with R2 values of around 0.998 for the study area rivers. This relationship reveals that, on
average, Qobj is 1.17 times higher than the Q10 threshold. Higher threshold values relate
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to an increase in low flow parameters; however, because the values fall in the 10th–30th
percentile range, they remain in the range of “shallow” and “deep” streamflow drought as
indicated in Section 3. Less than 1% of the cases in the tested data sample had threshold
values lower than the associated Q10, although in about 90% of the nodes, the increase did
not exceed 100% of the Q10 threshold value (Figure 6). In a few cases, the ratio of Qobj to Q10
exceeded three; however, these cases corresponded to situations when the threshold value
determined by the Q10 was low (~0.01–0.03 m3/s) due to the flattening of the FDC at the
lower range (multiple repetitive values), while the threshold determined by the objective
breakpoint method was around 0.05–0.10 m3/s.
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When comparing the average annual number of days with low flows, determined
by the classical Q10 method and the objective breakpoint method, a different distribution
of the density function occurred (Figure 7). Concerning the Q10 method, in most cases
the duration of low flow events averaged around 30–35 days, with a low variance around
this value (Table 2). For low flow duration based on Qobj, the distribution has a higher
mean and variance. In most cases, the average number of low flow days each year is
about 60; however, due to a more normal distribution of values in the series, it is possible
to better capture the specific environmental conditions occurring in each catchment area
individually. Both distributions are left skewed, indicating that there are nodes with a
lower number of days with low flow. For Q10, the kurtosis of the distribution was 4.0, while
for Qobj, it was 2.6 (Table 3), implying a much more leptokurtic distribution for Q10 (as
shown in Figure 7).
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Table 3. Descriptive statistics for the distribution of the annual number of days with low flow for Qobj

and Q10 methods: µ—mean [m3/s], m—median [m3/s], σ—standard deviation [m3/s], β2—kurtosis,
Skp—skewness, nσ1,2,3—percent of values within one, two and three σ from µ.

µ m σ β2 Skp nσ1 nσ2 nσ3

Qobj 59.64 62.05 16.03 2.635 −1.315 76.76 94.49 97.45
Q10 32.40 36.45 8.816 3.979 −2.012 85.62 92.74 96.49

Due to the general increase in the low flow threshold value, using the Qobj method
relative to Q10, the basic parameters of low flow (e.g., number of events, duration, and
volume) change accordingly. In the case of the number of low flow events determined using
Q10, for each of the analyzed nodes, about 50–100 low flow events were observed during
the 42-year study period (upper range was 175). These values increased substantially when
using Qobj, where both the mean and the median increased by about 50 (Figure 8). The
maximal number of episodes increased from 200 for Q10 to 300 for Qobj, which translates to
an average of 8.4 days per episode for Qobj and 6.3 days per episode for Q10 per year. The
low flows identified by the objective method are longer, which allows for the inclusion of
periods occurring in streamflow, even when additional criteria, of a minimal time of 7 days,
are applied [12,38].
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The duration of the low flows varied slightly more than the number of events. In the
case of Q10, in most cases the low flows did not last more than 2000 days in total over the
study period. However, the mean and median values are close to the lower and upper
IQR limits, respectively (Figure 8), which indicates that, while outliers shift the median
towards the upper limits, the considerable number of low values (around 1000 days) shifts
the mean to the lower limit. This introduces inconsistency to the spatial distribution of low
flows (Figure 8). When using Qobj, the range of values is higher, but this corresponds to the
percentile range indicated earlier (convergence in relation to the 15–20th percentile) such
that as the percentile value is doubled, the duration of low flows is doubled. The mean and
median of the distribution are closer to each other and oscillate within the center of the
IQR, as in the cases of normally distributed series (Figure 8).

Although the median low flow volume for both methods oscillate around a similar
value, it is relatively low. This is due to the large share of low-order rivers in the studied
dataset, in which no considerable outflow deficiencies developed. Nodes of Strahler order
three and four constitute around 73% of the total nodes, which affects the shifting of the
median volume of low flows to a lower range (Figure 8). However, when analyzing the
distribution of the values, the wider distribution of the volume observed with Qobj better
captures the diversity of environmental conditions leading to the formation of outflow
deficiencies with varying intensity.

Due to the way in which the definition of the TLM method is constructed, where
the low flow is a period with a flow equal to or lower than the adopted threshold, the
phenomenon of a zero-volume low flow event might occur. This problem is mostly asso-
ciated with model data, where a small number of unique values in the lower FDC range
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are present due to high discretization. This leads to the inclusion of days that meet the
mathematical criteria for low flow, but due to the occurrence of the same value in the
associated outflow hydrograph, the threshold value corresponds to a volume of zero.

In terms of spatial relationships, the analysis was conducted based on Strahler stream
order division. Within the study dataset, the highest river order is eight, which included two
rivers: the Mobile River and the Apalachicola River. With Qobj, there is a clear distinction
between low flow volumes between these two rivers, while Q10 shows similar volume
ranges for both rivers (Figure 9). A similar pattern exists for the distribution of total low
flow duration time, where the Mobile River has shorter durations, and the Apalachicola
River has longer durations distributed along the reach. For Q10, the duration of low flows is
similar among the two rivers, albeit with some outliers showing no distinct spatial pattern
along the reach. The distribution of low flow volumes in rivers of order seven is similar for
both methods, with four rivers having higher volumes when using Q10 (Figure 9); however,
the length of low flows is different with Q10, resulting in no spatial differentiation (with
some outliers), while Qobj varies spatially. In general, most rivers have longer total low
flow durations in their upper reaches that decrease downstream, which reflects the natural
tendency of smaller tributaries to have a faster response in river levels to environmental
events that drive streamflow. This pattern becomes more pronounced at lower Strahler
stream orders, where the biggest differences are noted in the spatial distribution of low flow.
Along these river reaches, the highest low flow volumes and times occur within the eastern
part of the study area in North and South Carolina, as well as central parts of Georgia
and Alabama. This relation is, however, not reflected in the Q10 method, where the spatial
distribution of low flow volumes and times is relatively equal throughout the study area.

The above observations are highlighted when considering the relation between the du-
ration of low flows and their volumes (Figure 10). In general, Qobj results in a wider spread
of values relative to Q10, representing a greater difference in environmental conditions.
This means that either the change in duration times does not affect the volumes, or changes
in the volumes are not reflected in the changes in duration. Additionally, Qobj results in a
lower number of nodes with volumes close to 0. It is worth mentioning that for nodes with
higher Strahler stream orders (e.g., seven and eight), the relationship changes between the
two thresholds. For Qobj, the volumes are usually close when there are small changes in
duration time, while for Q10, the durations are close when volumes are prone to change.
This is a direct result of the statistical character of Q10 and the consequences defined earlier.
The strength of the relationship between low flow time and volume depends on the stream
order; however, when considering the mean correlation values, they are higher for the
objective method by approximately 0.22 (Qobj r = 0.57 and Q10 r = 0.35).

Q10 is unable to accurately represent spatial relations and differences, and due to its
statistical nature, results in constant, undifferentiated low flow patterns across the study
area (with some randomly occurring outliers). At the same time, Qobj is able to distinguish
spatially varying river characteristics, such that low flows identified by this threshold vary
spatially and along the course of individual rivers. Qobj allows for the accurate capture of
the natural character of events like streamflow droughts and introduces the environmental
aspects to the analysis, taking into account the specificity of a given river in the studied
node. As the objective threshold (Qobj) fell within the 10th–30th percentile range for all
nodes used in this study, it is important to investigate the relationship between not only
Qobj and Q10 but also between Qobj and Q30 to better understand the pattern of the objective
threshold values relative to the static statistical criteria. As shown in Figure 11, while the
correlations between Qobj and both Q10 and Q30 have a strong linear relationship, the slope
of the resulting regression lines shows opposite values relative to the 1:1 trend line. In other
words, for Qobj compared to Q30, instead of exceeding the objective threshold value for a
given percentile, there is a decrease in value relative to the percentile. This is expected as
statistical thresholds inherently maintain a constant frequency of events and always result
in the same part of the dataset considered as an event (for Q10 this will be 10% of data and
for Q30, 30% of data, regardless of the environmental aspects of the river).
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5. Conclusions

Augmenting available hydrological data with numerical model data provides addi-
tional information about the state of local-scale environments, and supplements the spatial
deficiencies resulting from the limitations of existing river observation networks. However,
the inclusion of model data contributes to issues with data quality and interpretation, which
are related to the quality of the models themselves, their complexity, and the level of dis-
cretization of the resulting data. The computational capabilities of modern computers allow
for the use of more advanced and effective computational methods in research; therefore,
it is worthwhile to define those methods that can be used in turn to define and describe
hydrological conditions, irrespective of the source of the data, especially for the analysis
of extreme events such as floods or droughts. For the latter, definitions have historically
been based on methods introduced decades ago, and although effective, there are distinct
limitations related to the subjective decisions of researchers about the threshold level of
low flows or the use of statistical criteria in defining a low flow (e.g., Q10, Q30, 7Q10, etc.).
This article presents a new way of defining the low flow threshold based on an objective
approach, utilizing a breakpoint method derived from a given streamflow time series,
which is more representative of environmental criteria.

The introduced method is based on the use of the Fisher–Jenks algorithm to find the
breakpoint of a curve constructed from 35% of the lowest flow values, which corresponds
to the lower FDC range. The resulting breakpoint corresponds to the moment of change
of the way a river input is derived from primarily atmospheric (representative of normal
conditions) to groundwater sources (representative of drought conditions). The use of the
objective breakpoint approach allows for the inclusion of these inherent environmental
conditions into the TLM method, which then excludes subjective researcher decisions
regarding the low flow threshold value or percentile. This allows for a more robust, data-
driven approach to defining low flow thresholds that can be applied to both observed and
simulated hydrologic time series.

The comparison between Qobj and the widely used Q10 threshold reveals that Q10 is
unable to differentiate spatial patterns, resulting in a similar range of defined low flow
events, with skewed, widely spread distributions of low flow parameters. Based on the
same data, Qobj is able to better capture the natural characteristics of rivers, allowing for
spatial recognition of the drivers responsible for streamflow drought occurrence. The
objective threshold approach outperforms set statistical criteria (e.g., 10th percentile) in
terms of spatial pattern recognition by introducing environmental factors into the threshold
definition. Additionally, low flow parameters such as duration and volume are closer to
a normal distribution when defined using Qobj, with fewer outliers and volumes close to
zero. The correlation between low-flow duration and volume depends on the stream order.
On average, stream order to T and V correlation is higher by 0.22 for Qobj, compared to Q10.

The computational methodology presented in this article can be applied directly to
other research by importing a Python module called objective_thresholds. Details on how to
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install and use the module are available in the Supplementary Materials available with this
article and in the module’s documentation in the Python library and its repository.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14142212/s1, documentation, installation, and usage notes of
objective_thresholds Python package.
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38. Dyer, J.; Mercer, A.; Raczyński, K. Identifying spatial patterns of hydrologic drought over the southeast US using retrospective

National Water Model simulations. Water 2022, 14, 1525. [CrossRef]
39. NOAA. The National Water Model. 2022. Available online: https://water.noaa.gov/about/nwm (accessed on 15 May 2022).
40. Lahmers, T.M.; Hazenberg, P.; Gupta, H.; Castro, C.; Gochis, D.; Dugger, A.; Yates, D.; Read, L.; Karsten, L.; Wang, Y.-H. Evaluation

of NOAA National Water Model Parameter Calibration in Semi-Arid Environments Prone to Channel Infiltration. J. Hydrometeorol.
2021, 22, 2939–2969. [CrossRef]
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Abstract: Understanding the patterns of streamflow drought frequency and intensity is critical in
defining potential environmental and societal impacts on processes associated with surface water
resources; however, analysis of these processes is often limited to the availability of data. The objective
of this study is to quantify the annual and monthly variability of low flow river conditions over the
Southeastern United States (US) using National Water Model (NWM) retrospective simulations (v2.1),
which provide streamflow estimates at a high spatial density. The data were used to calculate sums
of outflow deficit volumes at annual and monthly scales, from which the autocorrelation functions
(ACF), partial autocorrelation functions (PACF) and the Hurst exponent (H) were calculated to
quantify low flow patterns. The ACF/PACF approach is used for examining the seasonal and
multiannual variation of extreme events, while the Hurst exponent in turn allows for classification of
“process memory”, distinguishing multi-seasonal processes from white noise processes. The results
showed diverse spatial and temporal patterns of low flow occurrence across the Southeast US study
area, with some locations indicating a strong seasonal dependence. These locations are characterized
by a longer temporal cycle, whereby low flows were arranged in series of several to dozens of years,
after which they did not occur for a period of similar length. In these rivers, H was in the range
0.8 (+/−0.15), which implies a stronger relation with groundwater during dry periods. In other
river segments within the study region the probability of low flows appeared random, determined
by H oscillating around the values for white noise (0.5 +/−0.15). The initial assessment of spatial
clusters of the low flow parameters suggests no strict relationships, although a link to geologic
characteristics and aquifer depth was noticed. At monthly scales, low flow occurrence followed
precipitation patterns, with streamflow droughts first occurring in the Carolinas and along the Gulf
Coast around May and then progressing upstream, reaching maxima around October for central
parts of Mississippi, Alabama and Georgia. The relations for both annual and monthly scales are
better represented with PACF, for which statistically significant lags were found in around 75% of
stream nodes, while ACF explains on average only 20% of cases, indicating that streamflow droughts
in the region occur in regular patterns (e.g., seasonal). This repeatability is of greater importance
to defining patterns of extreme hydrologic events than the occurrence of high magnitude random
events. The results of the research provide useful information about the spatial and temporal patterns
of low flow occurrence across the Southeast US, and verify that the NWM retrospective data are able
to differentiate the time processes for the occurrence of low flows.

Keywords: streamflow drought; low flows; national water model; multiannual patterns; autocorrela-
tion; southeastern united states

1. Introduction

Due to increasing population stress on existing water resources and water quality,
as well as uncertainty associated with current and future climate variability, understand-
ing drought formation and evolution processes has become extremely important. As a
result, the ability to accurately model and predict droughts is a critical step not only for
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maintaining the natural environment, but also for ensuring the needs for human water
resources. The growing importance of droughts, especially in the light of the latest research
showing the intensification of this phenomenon in the coming years [1–6]; Wang et al. [7],
raises questions about forecast accuracy, and more importantly, the scale at which accurate
drought predictions can be produced. The first, and perhaps the most important, problem
in any forecast or analysis process for any natural phenomenon is data availability. For
investigation of hydrological processes, river flow data are usually collected by govern-
mental institutions, such as the United States (US) Geological Survey (USGS). Although the
data collected by these institutions provide accurate and reliable observational datasets,
the length of these datasets is related to the history and ability to perform continuous
measurements at each gauge. This leads to limitations in the possibilities of spatial analysis
of hydrological phenomena in areas with sparse and/or incomplete gauge information,
and further hinders the development of modeling frameworks that allow for realistic
simulations in places for which real data are not available.

Large-scale hydrologic models, in order to maintain computational feasibility and
physical representativeness, must use spatial and temporal resolutions representative of the
larger model domain; therefore, they often cannot accurately reflect local conditions related
to geology, groundwater, heat fluxes, or evapotranspiration, which are important from
the drought perspective [8–13]. On the other hand, complexity of local conditions makes
it difficult to generate and maintain accurate local-scale models, especially when these
conditions themselves evolve over space and time; therefore, some level of generalization
must be introduced to produce a baseline simulation.

In 2016 the US National Oceanic and Atmospheric Administration (NOAA) con-
tributed to the improvement of the accuracy and spatial coverage of data related to the
observation, assessment, and prediction of hydrological extreme events over the conti-
nental United States (CONUS) by developing a hydrologic modelling framework called
the National Water Model (NWM). The NWM is based on the Weather Research and
Forecasting–Hydrological Modeling System (WRF-Hydro), and provides operational sim-
ulations of land surface and hydrologic conditions at a variety of time scales (e.g., short,
medium, and long range). In addition to the operational version of the model, each major
version of the simulation framework is used to produce a historical (also known as, retro-
spective) simulation for research and analysis purposes. These simulations are forced with
the North American Land Data Assimilation (NLDAS) data sets for versions 1.2 and 2.0 and
Office of Water Prediction Analysis of Record for Calibration (AORC) data for version 2.1.
Thanks to this approach, the NWM has become the substrate for the large-scale distributed
simulation of hydrological conditions across the US. Streamflow simulations are dependent
on multiple surface and hydrological parameters, of which precipitation and snowmelt play
major roles. The main limitations of the NWM include the inability to reproduce reservoir
management flows [14,15], especially in previous versions of the model (i.e., v1.2 and v2.0)
although the newer operational version of the model (v2.1) includes new reservoir treat-
ment that leverages River Forecast Center (RFC), USGS and U.S. Army Corps of Engineers
(USACE) data feeds. While this improves the model response for river segments located
below reservoir, some artifacts might still exist [16]. The ability to simulate hydrological
conditions at 2.7 million stream locations nationwide means not only better forecasts of
water resources, but also improved safety and stability of communities, industry, and
protection of life and property [17]. Additionally, retrospective simulation datasets provide
continuous surface and hydrologic records for all computational nodes covered by the
operational version of the NWM, which in turn allows for analysis of historical hydrological
conditions without restrictions related to locations of river observation sites.

A primary motivation for the development of the NWM was the improvement of
flood prediction information and dissemination, which are the costliest and deadliest type
of natural disasters in the United States [18]. This approach contributed to an improved
mathematical representation of the upper range of flows over a large spatial extent; however,
due to the increasing importance of droughts in recent years [19], the ability to apply the
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NWM to drought assessment has become an important topic [20,21]. This is especially
true given that due to climate change water resources are more likely to behave in a
non-stationary way [22], requiring the use of comprehensive physical models such as
the NWM to provide meaningful predictions of hydrologic drought conditions. There is
some evidence of NWM performance being linked to river basin size [23,24], or location,
with streams underperforming in semiarid environments [25] or in rivers sensitive to
snowmelt runoff [26]. As a result, the NWM has been shown to perform better in streams
with a precipitation forced regime [21], and in general the NWM is able to capture major
droughts [27] and general streamflow patterns in humid regions such as the Southeastern
United States [20].

The aim of this work is to assess the variability of streamflow droughts at annual and
monthly scales over the Southeastern United States, based on NWM retrospective v2.1 data,
to quantify the spatial and temporal patterns of regional hydrologic drought. The study
area is characterized by abundant water resources affected by stress due to industrial and
agricultural water withdrawals. This stress is further exacerbated by advancing climate
change resulting in changes of water resources and increasing drought risk [28–31]. The four
main research questions posed in this paper are as follows: (i) can NWM retrospective data
represent low flow occurrence patterns at different time scales, and differentiate regional
dependencies, (ii) what are the patterns of hydrologic drought occurrence in terms of annual
and monthly variability, (iii) what are the spatial patterns and associated physical drivers
of streamflow drought generation and progression, and (iv) are these patterns reflected
in the NWM retrospective data, such that machine learning-based occurrence models can
be developed to predict future development of streamflow droughts? Autocorrelation
and partial autocorrelation were used as the primary analysis tools within this study,
providing information about statistically significant periods of streamflow droughts, as
well as quantifying the significance of streamflow drought occurring as an extreme event,
more or less randomly, versus reoccurrence in periods related to seasonality. The difference
between the two occurrence patterns was further measured with the Hurst exponent
statistic, which allows for assessment of so called “process memory”. The analysis of
variability in the hydrologic data will allow for the recognition of fluctuations in low
flow events over time. This, in turn, will allow for the construction of models of the
phenomenon, based on time dependencies, for example using machine learning approaches.
Additionally analysis will provide critical information regarding not only the utility of
the NWM retrospective data to define and represent low flow conditions and associated
characteristics, but will allow for the generation of a baseline dataset that can be used
for subsequent investigations of streamflow drought patterns and processes across the
Southeast US for water resource assessments.

2. Study Area

The study area constitutes the southeastern part of the US, specifically identified in a
hydrologic context as USGS Region 3: South Atlantic-Gulf Region (Figure 1). This region,
which includes all rivers flowing to the Atlantic Ocean and the Gulf of Mexico between
the James River catchment in Virginia and the Lower Mississippi River in Mississippi,
comprises a total area of ~724,000 km2. The area incorporates a diverse array of natu-
ral landscapes, with variable land use/cover, vegetation, meteorological, and geological
characteristics that lead to a range of hydrologic conditions. The Coastal Plain, a major
part of the region that represents around 60% of the total area, is composed mainly of soft
unconsolidated sands, gravels, and clays or consolidated and semi-consolidated limestone.
The northern regions within the Appalachian highlands contain mainly hard, consolidated
rocks, indurated and metamorphosed sedimentary rocks, and crystallin igneous rocks.
Groundwater is associated mainly with Cretaceous and Quaternary deltaic sand and gravel
deposits, with daily groundwater discharge of around 0.3 km3 that moves seaward in a
pattern reflective of the general layout of the regional river networks [32]. Elevation varies
between −25–1589 m.a.s.l. over the area, and average stream density is 0.24 km/km2 (total
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river length is ~175,000 km). Stream density has a high regional variability, with a denser
network in the northern and northeastern areas and a sparse river network in the south.
Approximately 60% of streamflow is contributed by baseflow and 40% by direct runoff [33].
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The climate over the majority of the area is subtropical, with hot and humid summers.
Mean annual temperature is between 14 ◦C–25 ◦C, depending on the region [25], and
annual precipitation varies between 1000 to 2000 mm/year. The relation between water
resources and climate variability is strong [34,35], and longer-term changes in precipitation,
evaporation, and runoff are caused mainly by the El Niño-Southern Oscillation (ENSO),
which affects terrestrial water storage and associated anomalies as well as streamflow dis-
charges [35–38]. Occurrence of La Niña is connected with higher maximal temperatures and
lower precipitation, mainly noticeable in June [29], with some evidence showing varying
links to dry winters with La Niña in the past, that now depends purely on internal atmo-
spheric variability [31,39]. Decreasing streamflow trends are observed during water-year
and spring-summer periods, with strong evidence of abrupt step changes being of greater
importance than gradual changes over past years [40]. Constant decrease in streamflow
of rivers over the study area is linked to increasing sea surface temperatures [38,41]. Due
to the specific environmental conditions of the region, increasing population, growing
agriculture needs as well as changes in local climate patterns, Alabama, Mississippi and
Florida are identified as regions facing water supply shortages in the future [42]. Further
evidence also shows that the entire region faces a substantial drought threat both now
and in the future, mainly due to increasing water demands, limited storage capacity, and
agricultural dependance on precipitation [43–45], as local water supply regulations were
often developed during wetter periods in the region [46].
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3. Data and Methods
3.1. Hydrometeorological Data

Streamflow information for this study comes from the NWM retrospective v2.1 dataset,
which contains 338,037 unique retrospective stream nodes (hereafter referred to as nodes)
with a period of record of February 1979–December 2020. After data quality evaluation a
decision was made to include only nodes of Strahler order 3 and higher, since lower orders
contained over 80% zero values, which from the perspective of drought analysis introduces
the risk of non-representative threshold levels and drought event statistics. This decision
also relates to a general limitation of the NWM, such that the model underperforms in lower
order streams [23,24]. Additional criteria of no more than 5% of zero or null data were
introduced to avoid computational errors, and an additional 1198 nodes were characterized
by almost unchanging minimum flow values, which led to the defined low flow threshold
(see below for method details) being the same value as the minimum flow. These nodes
were excluded from the study, leading to the inclusion of 60,750 nodes with hourly mean
streamflow values, which were converted to daily mean flow values representing 00–
00 UTC. The final dataset constituted daily flows for a period from 1 February 1979–31
December 2020, which equates to 2,551,500 stream years.

Precipitation data, which was used for analysis of low flow processes, was obtained
from the U.S. Federal Government Climate Resilience Toolkit [47] for monthly and an-
nual scales.

3.2. Low Flow Conditions Definition

In this study, low flow definition is based on the widely adopted threshold level
method (TLM; [48]), whereby stream discharge is considered low flow if it is equal to or
lower than a defined threshold level. There are many ways of calculating a threshold;
however, this study adopts an objective breakpoint method to define unique threshold
levels at each node. In this approach, the lower part of the flow duration curve (FDC) is
considered as a series with a breakpoint that serves as the indicator of the moment of change
from atmospheric supply to groundwater supply, which constitutes a natural marker for
the beginning of low flow conditions. This method is described in detail by Raczynski
and Dyer [49]. To accurately measure the seasonal and annual outflow deficits, no pooling
method and no additional minimal time criteria were applied. In this study the term low
flow refers to discharge values identified as lower or equal to a threshold discharge level,
while low flow event/conditions are considered the same as streamflow drought—a series
of low flows that occur over some period that lead to formation of hydrologic drought.

3.3. Statistical Analysis

A basic parameter used in this study is a low flow volume (V) which is calculated as
a difference between the defined streamflow threshold and the flow hydrograph during
drought episode:

V =
∫ t2

t1

(Qt −Q)dt (1)

where: V—volume (m3), Qt—threshold flow (m3 s−1), and Q—outflow (m3 s−1).
To describe changes in episodes occurrence, autocorrelation functions (ACF) were

calculated for event volumes aggregated to monthly and annual scales. Autocorrelation
allows for examination of seasonal or multi-annual variations in low flow conditions by
estimating the degree of correlation between element with element shifted by k [50], where
the length of this shift (also referred to as lag) may vary:

ρk =
sk
s0

(2)
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where s0 is variance of the time series at t and sk is covariance at k lag:

sk =
1
n ∑n−k

i=1 (yi − y)(yi+k − y) =
1
n ∑n

i=k+1(yi − y)(yi−k − y) (3)

For this study, a time series constitutes of low flow volumes in a single node aggregated
to monthly or annual scale.

In order to assess the possibility of applying data from NWM to occurrence models
based on machine learning techniques, the number of lags needed to obtain statistically
significant result should be estimated. Based on the information about the significance of
the lags (q) of the autocorrelation functions, the usefulness of potential seasonal models
can be estimated. The model based on the seasonality resulting from the autocorrelation
relationship is the moving average (MA(q)) model, which is expressed by the number of
statistically significant correlations of lags in ACF. For example, the MA(7) model means
that the modeled dependence has statistically significant relationships up to the 7th lag
(seven periods back—depending on the resolution of the tested series, e.g., months or
years). In addition to ACF, partial autocorrelation functions (PACF) were calcualted to
introduce the control of all lags. PACF explains partial correlation between the series and
lags of itself. Significance of PACF lags (p) provides valuable information on potential lag
steps in seasonal modeling using autoregressive models (AR(p)), as significant PACF lags
(p) correspond to lags in AR(p) models on the same basis as ACF lags (q) are used for the
MA(q) models [51,52]. Therefore, estimating whether and at which lag there are statistically
significant relationships in ACF and PACF distributions constitute the basis for assessing
whether the studied relationships can, at a later stage, be modeled using machine learning
techniques, using the AR and/or MA seasonality models.

Summability or non-summability of the autocorrelation function is an indicator of
the process memory length, which describes the tendency for grouping of natural extreme
events into sequences. So-called “process memory” was first observed in hydrologic data
by Hurst [53], which led to the development of the Hurst exponent (H) that describes the
process memory length within a hydrologic data series. The detailed methodology for
determining the value of the exponent was described by Koutsoyiannis [54]. Values of H
close to 0.5 reflect white noise processes, where consecutive values are random, while H
values closer to 1 reflect long process memory, understood as a tendency for similar events
to group in longer sequences (large values are followed by large values, and vice versa).
Although in natural processes the range of H is usually 0.5–1 [54], it is possible for H to
range from 0–0.5, where values H < 0.5 means an anti-persistent series where high and low
values appear alternately.

To classify spatial relations between groups of nodes with similar process memory,
an unsupervised machine learning algorithm of K-means clustering was applied. The
algorithm is used to group similar data into clusters by minimizing the objective function
J(z,A) with updating cluster centers [55]:

J(z, A) = ∑n
i=1 ∑c

k=1 zik||xi − ak||2 (4)

where c is number of clusters, xi is the data point, ak is cluster center, and zik is a binary
variable that indicates if the data point is considered within the cluster.

All statistics were performed for two-tailed α = 0.05.

4. Results and Discussion
4.1. Annual Distribution

To determine annual patterns of streamflow droughts, the daily water outflow de-
ficiencies (volumes) were aggregated to the annual scale. It was expected that at least
two different ACF shapes would be obtained as indicated in other works [56,57], and
analysis confirmed that these patterns are present in the dataset. In the first case the pattern
of low flow occurrence is close to random and the majority of the ACFs are statistically
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insignificant, with autocorrelation values shifting every year or so. H for these rivers is
close to white noise with a mean of 0.59 (Figure 2), and 26% of the analyzed nodes were
classified in this group. These patterns are usually described as related to meteorological
conditions, and are easy to predict [10,58]. An example of this type of process is presented
in Figure 2, where low flows occurred in around half of the 42-year study period (average
of 18.5 years with low flow and 23.5 without low flow). On average there were 15 shifts
between years with and without low flows, and episodes occur in two to three consecutive
years and then disappear for a similar period.
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Figure 2. Examples of autocorrelation functions (ACF) (top row) and climacograms for Hurst
exponent (bottom row) for the same, randomly selected nodes in each defined cluster; solid line–
white noise process, dash line–Hurst-Kolmogorov process.

The second, and at the same time the largest group (65% of nodes), were rivers with
low flows occurring in about 6–7 year intervals with 1–2 year breaks in occurrence (Figure 2).
Similar to the first group, an average of 14 shifts were observed during the study period.
In total, low flows occurred during 32 of the 42 years in the study period. H for this
group is 0.70 and ACFs show higher repeatability, indicating that groundwater is of greater
importance in these types of rivers, especially when multi-annual streamflow drought
occurrence is present [11,59,60].

There is also a third group that constituted less than 9% of the analyzed nodes, and
included rivers where low flow occurred almost annually (mean of 40 years with low
flow over the study period; Figure 2). The average H is closer to representing white noise
than for the second group, having a mean value of 0.63, which is most likely due to the
high irregularity of shifts in occurrence along with the relatively short period (on average
one year).

Analysis of the spatial distribution of the clusters showed no statistically significant
correlation between the type of low flow occurrence and stream order, and in fact there
are some rivers along which the cluster changes along the stream. Most nodes with low
flow patterns that fall within the third group are located in North Carolina, especially in
the Cape Fear and Pee Dee River systems, as well as in the upper Pearl River watershed
in Mississippi. The lowest frequency of low flow occurs in central parts of Mississippi,
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Alabama and Georgia, below the Appalachian piedmont, as well as in northern parts
of the Carolinas in upstream river sections (Figures 3 and 4). The former relation might
be explained by groundwater inflow to rivers located at the base of the Appalachian
Mountains, while deeply allocated aquifers in the piedmont region of the Carolinas may
explain the high magnitude of low flows in that area.
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High values of H are observed in both North and South Carolina, where over 80% of
nodes are characterized by H higher than 0.6 and around half of nodes with H higher than
0.7. This suggests that longer process memory occurs in this region; however, defined ACF
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clusters do not accurately reflect spatial relations for part of study area. While Virginia
and the Carolinas show relatively high values of H, suggesting strong seasonality, ACF
clustering finds most of these rivers belong to the Cluster 1 (Figure 3). Additionally, sta-
tistically significant decreasing trends are observed in the Carolinas, meaning low flows
are in general becoming more severe [61,62]. Multiyear droughts with high magnitudes
were also identified in this region [62], which is confirmed by high H values found in this
study. High magnitude, recurring streamflow droughts in the Carolinas with increasing
trends are associated with decreased precipitation and increased potential evapotranspi-
ration, especially in the July-September warm-season period, as the changes correspond
to variations in meteorological factors [59,63]. This dependence is further intensified by
long recovery times after dry conditions are gone [64] and agricultural practices such as
irrigation that affect negatively water supplies in the region [65].

High values of H (>0.7) are also observed for central and southern parts of Alabama
and Georgia (Figure 3B), where ACFs alter every 2–3 years. This is in contrast to clustering
results, as H values suggest relatively easy to predict processes taking place in this region,
while the cluster average was close to white noise. However, evidence of seasonality of low
flows is seen from central Mississippi to north central Georgia, where increases in H are
related to intervals of ACF Cluster 2. This might be due to high repeatability of 2–3-year
patterns in these nodes while ACF functions were variable, resulting in a shape reminiscent
of random processes. This relation is likely affected to some degree by ENSO, as during
these conditions over the southeast US intense groundwater withdrawals for irrigation
are observed that act to decrease baseflow and lower low flows [66]. Decreasing values
of low flows in this region, however, might be also linked to additional human-induced
influences [67], related mainly to land-use, population growth, and agriculture [66,68,69].

For less than half of the studied nodes in Alabama and Georgia, first, second and third
lags were statistically significant. This relation is visible for other regions in the study area
as well, where only a fraction of nodes with high H values yield significant autocorrelations.
In total, 83.8% of all nodes do not have any significant lag (of the first 20 lags) and only
7.9% have the first lag significant (Table 1). These results indicate that there is no constant,
univariate process that could be quantified by averaged seasonal models as residuals are
not linearly dependent on current and past values. PACF distribution (Figure 4) in most
nodes contains some statistically significant lags, and from all studied nodes, around 27%
do not contain statistically significant p lags (Table 1). This dependence suggests that
models based on seasonal repeatability defined by the autoregressive component (AR(p))
might reflect the actual changes in the annual occurrence of low flows better than moving
average (MA(q)) models.

Table 1. Percent of nodes with statistically significant lags of annual ACF and PACF.

No
Lag 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

ACF 83.82 7.92 0.86 0.96 0.72 2.02 0.17 0.80 0.09 0.28 0.32 0.22 1.56 0.15 0.01 0.04 0.01 0.02 0.01 0.00 0.02

PACF 26.77 8.86 3.96 1.17 3.95 4.66 1.92 2.35 3.54 2.64 3.63 2.11 2.56 3.05 2.23 3.35 3.12 4.50 5.80 3.26 6.59

4.2. Monthly Distribution

Although annual distributions of low flow occurrences show some spatial depen-
dencies, the monthly distribution provides a better understanding of the processes. In
general, the distribution of monthly streamflow droughts follows precipitation patterns,
which was also confirmed in other studies [5,63]. The relations are strongest along the
Atlantic coast, where sandy soils lead to relatively rapid hydrologic response of river levels
to rainfall. January low flow frequency is at or near zero in 64% of nodes over the study
period, with mainly low magnitude events in Florida and southern Georgia; however,
evidence suggests some relation to precipitation is also present in Virginia. In subsequent
months, low flows continue to disappear in the majority of the study area except Florida,
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where winter precipitation is on average around 40 mm/month and there is a clear, strong
relation with streamflow drought characteristics and precipitation through April, measured
by the Spearman rank correlation (Figure 5). This pattern matches general climatic features,
with subtropical regions north of Florida having a wet winter, while Florida has a relatively
drier winter as it reflects a tropical climate.
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Figure 5. Spearman rank correlations between mean monthly precipitation and streamflow drought
parameters, divided by state; C(x)—periodicity of streamflow drought occurrence, µ—mean length
of process memory, p—number of periods with streamflow drought, v—mean monthly volume,
t—mean duration.

During spring (April–June) there is also increased risk of flash droughts in northern
and western Florida as well as south Georgia, which was observed by [70]. Starting from
May the precipitation patterns begin to change due to the difference in climate patterns
between Florida and the Gulf Coast and areas to the north, when sums of precipitation
increase over Florida (tropical climate) and decrease through the central and northern study
area (sub-tropical climate, Figure 6). In May and June low flows occur mainly over Florida
and southern Georgia, while over the following months low flows continue to develop from
the Gulf Coast toward central and western parts of the study region (Figure 6). During this
time the relation of low flows to precipitation weakens (Figure 5), likely due to increased
potential evaporation [59]. At the same time Florida’s low flows disappear due to increased
precipitation. This spatial direction is consistent with patterns in development of flash
droughts found by Chen et al. [70]. In general, droughts related to climatic forcings are
regionally specific, with a clear relation between increases in drought with precipitation
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decreases and potential evaporation increases, especially for north Florida, North Carolina,
and Virginia [28,71].
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Figure 6. Periodicity (C(x)) of streamflow droughts in consecutive months with isohyets of average
monthly precipitation (mm).

The highest periodicity of low flows changes by region, with the most intense low
flows occurring in July in North Carolina (also annual maxima), in September and October
in Mississippi and northern Alabama, and November in the piedmont region (Figure 6).
The region of north-central Alabama was also found to be most prone to drought persistence
within the study region [72]. The summer period (July–October) is also characterized by
high periodicity, reaching 25–30 repeats with low flow each month over the study period,
especially in the central and northern parts of the study region. This dependence is opposite
to the precipitation distribution, where the Carolinas are characterized by high monthly
mean precipitation reaching 175 mm in Coast area, while at the same time the periodicity is
highest (Figure 6), emphasizing the role of lowering groundwater levels due to pumping
presented by [59]. During late winter and spring a substantial number of nodes had no
streamflow droughts during the entire study period, with the total percentage of nodes
showing no low flows being 13% in February, 32% in March, 34% in April, and 16% in May.

Similar to annual observations, PACFs generally provide more information than ACFs.
The latter on average were statistically significant for around 20% of nodes, with mostly
insignificant functions in all 20 lags for April (85.3%) and the lowest values over the winter
period (December–February, on average 79%). In most cases, significant ACF lags were
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related to lag 1 or 12, which follows seasonal and annual patterns. When considering PACFs,
on average 60% of nodes contain statistically significant lags, with the highest number for
November (79%) and lowest for March (33%). In general, ACFs and PACFs provide the
same pattern as described before, with the lowest explanatory power during March and
April due to lowest number of drought episodes, and then increasing in lag significance
from May over the Carolinas and Gulf Coast before progressing inland. Around June and
July the highest concentration of significant lags is found in eastern parts of the study
region, while during late summer and fall the western regions are better explained by both
ACFs and PACFs (Figures 7 and 8). This pattern is confirmed in monthly precipitation
distributions as well as H values (Figure 9). Florida is characterized by the lowest number
of significant ACF and PACF lags and varying H values, which could be attributable to
the high number of drought episodes interrupted by precipitation from tropical cyclones,
which for Florida is the case for over 30% of episodes [73]. This might also explain the
relations for south Georgia and the Carolinas, where tropical cyclone precipitation accounts
for the cessation of between 20–30% of droughts, while for the Appalachian region this is
less than 10% [73].
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5. Conclusions

This article assesses the variability of streamflow droughts at annual and monthly
scales over the Southeastern United States and quantifies temporal and spatial patterns
of hydrologic droughts in the region. As hydrologic input data the NWM retrospective
v2.1 daily flows for period February 1979–December 2020 for 60,750 nodes was used.
Streamflow droughts were identified using an objective threshold approach [49] and the
ACF and PACF were calculated based on aggregated annual and monthly flow series.

At annual scales the Carolinas are characterized by a high periodicity of streamflow
droughts with occurrence almost every year. The presence of high process memory is
further confirmed by high H values both over the Carolinas as well as central parts of
Alabama and Georgia. ACFs values, however, are mostly insignificant over the study
region, with around 80% of nodes showing no significant relationship. At the same time,
PACFs explained around 75% of temporal relations, with monthly aggregated data showing
clearer spatial patterns. Except for Florida, which exhibits a tropical climate pattern with a
dry winter, streamflow droughts rarely occur during spring and then begin to increase in
frequency around May over the Carolinas and Gulf of Mexico regions before progression
inland which reflects general precipitation patterns. Eastern parts of the study area are
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characterized by droughts during late spring/early summer, with western parts showing
increased drought by late summer/early fall. This coincides with the progression of
decreased warm-season rainfall over the study area north of Florida, reflecting the sub-
tropical climate patterns, while Florida streamflow droughts occur mainly during winter, as
reflected by the drier winter representative of the tropical climate. Monthly ACF and PACF
dependences are confirmed by H values, with highest values (reaching H = 0.8) for June-
July over the Carolinas and September for the Gulf Coast area. Major parts of Mississippi,
Alabama and Georgia have H close to 0.2 for the March-April period, which suggests an
alternating character of events. This is also found in ACF annual functions, where only
around half of studied years had low flow episodes. Overall, PACFs are better adjusted to
spatio-temporal relations, and yield more statistically significant results than ACFs.

Since PACF yields more statistically significant results than ACF over the study area
for both annual and monthly series, autoregressive models (AR(p)) will be better adjusted
to capture seasonality, than moving average (MA(q)) based models. This in turn implies
that repeatability (represented by AR models) is of greater importance in the region with
respect to drought occurrence than extreme events occurrence (represented by MA models).

The results of this study are refl”ctiv’ of the NWM retrospective dataset (v2.1.); how-
ever, this study does not assess the accuracy of the model data against observations. Some
artifacts and/or differences in model performance over the study region may be present
in the results; therefore further research should focus on exploring spatial patterns and
tendencies in extreme hydrologic events using available observed data over the South-
eastern US study region. Using the results from this work as a baseline, a comparison of
results using similar methods applied to observed data will help to determine whether the
NWM retrospective dataset sufficiently reflects patterns and trends in extreme hydrologic
events. Additionally, as this work indicates the potential usefulness in application of AR(p)
machine learning models to quantify schemes and future predictions based on detected
significant lags, such an approach could be considered future applications using either
simulated or measured datasets.
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Abstract: Extreme hydro-meteorological phenomena have become more frequent in recent years
compared to the year 2000 in Europe, including Romania. Flooding occurs from heavy rainfalls
favored by natural and anthropogenic factors such as the valley’s flat slope or settlements situated
near the river. Ţigăneşti and Brânceni villages (from southern Romania) are no exception and have
been affected by floods many times. One of these events is that from 2005, when the flow reached
676 m3/s (a value 80 times higher than the normal flow of the Vedea River) in Br
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nceni. This paper
aims to present a simulation of the flood that occurred during 3–6 July 2005 and its impact on the
settlements, roads, and land, using field observation (including some from 2005), GIS software
(ArcGIS), software for flood simulations (HEC-RAS—Hydrologic Engineering Center River Analysis
System), and flow data from the Romanian National Institute of Hydrology. Simulations were run
in HEC-RAS. The obtained flooded areas imported back into GIS (Geographic Information System)
were used to determine the area covered by water and the length of affected roads. The surface
and number of flooded buildings were calculated using different tools from ArcMap. Results were
interpreted, commented on, and compared with data and maps provided by the Romanian Water
National Administration. The simulation shows that the villages would be protected from the flood
by building a levee along the Vedea River. Significant losses can be prevented, and money can
be saved.

Keywords: flood; ArcGIS; simulation; hydraulic modeling; catchment; flow

1. Introduction

Natural hazards are sources of potential harm and dangers. They include phenomena
that significantly impact the natural and human environment, with destructive conse-
quences and high material losses. These include earthquakes, volcanic eruptions, gravita-
tional processes such as landslides, rock falls, or avalanches, and hydrological phenomena
such as floods, flash floods, forest fires, desertification, storms, and hurricanes. The haz-
ards’ impact can be so severe that the entire inhabited zones are destroyed while relief
appearance, vegetation, fauna, and soils are modified. Even if the natural phenomena
have a smaller impact, they can still affect the natural environment and inhabited areas.
For example, part of the population must be relocated until the phenomena end or, if the
impact is too severe, the inhabitants need to be permanently relocated [1].

Central Europe is affected by flooding when high precipitations occur (in May, June,
or July) and sometimes when the snow melts very fast in the areas situated close to
the mountains (subalpine zones) [2]. Western countries such as the United Kingdom,
The Netherlands, France, and Belgium can be affected by heavy rainfalls and storms
because of the oceanic influence [3]. Landslides and avalanches can occur in mountainous
regions such as the Alps, Carpathians, or the Caucasus due to global warming and human
intervention [4]. Summers can be arid in the far eastern parts of Europe. Due to continental
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influences, drought is frequent. Moreover, the rain quantity is small throughout the year,
while the annual thermic amplitude between summer and winter is high. The winters are
harsh in countries in eastern and northern Europe due to freezing weather, blizzard, and
heavy snowfall. Forest fires can be encountered in Mediterranean areas due to intense
heat [3].

Romania is located at the junction between the Mediterranean, continental, and oceanic
influences. Thus, different extreme phenomena can occur, such as drought in the southeast,
extreme cold, strong winds, and heavy snow in northeastern parts of the country due to
continental influences and in eastern parts of Transylvania due to thermic inversions in
the mountain depressions [5]. Even if desertification is not highly encountered, it occurs in
some small areas in the southwest and southeast. Vegetation fires can appear in the summer
due to intense heat, while flooding and flash flooding appear in May, June, and July due
to heavy rainfalls or fast snow melting in the spring [4]. The precipitation, lower than
in western Europe, is unequally distributed in time and space in Romania. Its volume is
sometimes concentrated in one or two months, while in the rest of the year, weeks or months
without precipitation are recorded, leading to floods followed by the soil deprivation of
water and further erosion and desertification [3].

The impact of such extreme phenomena is so severe sometimes that agricultural
production is compromised, houses are destroyed (and people must leave them due to
flash floods), or the roads are closed by heavy snow or destroyed by floods [6]. Therefore,
identifying the areas with risk is essential to take measures and exclude or at least reduce
the human and material losses.

Hydrological phenomena are common in Romania on catchments such as Siret, Timiş,
Ialomiţa, or Mureş. Different studies [1,6–9] have been dedicated to flash flood analysis to
forecast and avoid their negative impact. Most research focused on atmospheric circulation
and aimed at determining the mechanism of the heavy rain apparition. The results give an
overview of the negative impact of such phenomena and offer a clear perspective to the
authorities based on which they must take measures, such as relocating the inhabitants
susceptible to flooding and building river dams or water reservoirs for flow regulation.

This paper aims to evaluate the impact of floods in the study area, considering the
terrain slope, land use, shape of the river catchment, riverbed slope, or proximity of
inhabited areas. Simulations have been performed using HEC-RAS, and comparisons with
the available data have been made. The simulation shows that the villages are protected
from flooding by building a levee along the Vedea River. The study must be extended to
other regions since it provides information to the authorities. Taking into account their
results, emergency institutions must be prepared with human and material resources
(vehicles, shelters, food, or drinks) when instant actions are needed [10,11].

2. Study Area and Methodology
2.1. Study Area

The study area—Ţigăneşti and Br
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nceni villages—is situated in southern Romania, in
Teleorman county (Figure 1), 100 km southwest of Bucharest, 10 km south of the county
capital, Alexandria [12] situated in Teleorman County, in the catchment of Vedea River.
In 2005, the population of Ţigăneşti was over 5000 inhabitants, while Br
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nceni had a
population of 2900 inhabitants [12].

The terrain is relatively flat in the interfluve zones, with valleys that are medium in
size downstream for the rivers in Teleorman. Because of steep slopes, narrower meadows,
and hilly areas, flash floods can appear, favoring water accumulation downstream in
Teleorman [1]. The valleys in Teleorman can be situated at least 20 m below the altitude
of the interfluve, thus creating a favorable factor for water accumulation [6]. According
to field observation and maps, the catchments of the Vedea River and its tributaries are
elongated, with an almost flat riverbed, with a medium width, bordered by slopes with
medium inclination. These characteristics, combined with showers lasting for many days,
lead to severe flooding [13].
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The last significant flood on the Vedea River happened in 2014, but the most important
one in recent times took place in July 2005, with a severe impact on Ţigăneşti and Br
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nceni
villages. In the 1990s, floods occurred annually, with minor consequences on settlements
but affecting the agricultural terrains. The flood analyzed in the present research occurred
during 3–6 July 2005, affecting a significant number of buildings, roads, and terrains, and
the first author was present there when it took place.
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nceni villages are situated at an altitude of about 35–37 m, close to
the Vedea River. The slopes bordering the valleys can climb to altitudes higher than 60 m.
The climate is temperate continental (transition influences) with cold winters (average
of −3 degrees Celsius in January) and warm summers (average of 22 degrees Celsius
in July), high-temperature amplitudes (over 25 degrees between January and July) with
precipitations between 500 and 600 mm/m2/year, important quantities falling in May, June,
and July [14].

Meadow vegetation (close to Vedea), patches of deciduous forests, and steppe are
found in the analyzed zone. Most of the former steppe and forest were replaced with
agricultural terrains, settlements, and roads [14]. The absence of extensive forests on the
slopes can increase the chances of water runoff into the river [13]. Meadow and chernozem
soils are specific to Ţigăneşti and Br
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nceni. Flooding apparition is favored if the infiltration
capacity is exceeded and the soils are saturated with water [15].

2.2. Methodology

The present research is based on field observations, personal observations from the
flood that occurred in 2005, and hydrological data from the National Institute of Hydrology.
GIS (Geographic Information Software) computing and HEC-RAS 6.2 2D version simulation
have been used to evaluate the flood impact on the settlements, land, and roads in the two
villages. To process data for HEC-RAS in ArcMap, the HEC-GeoRAS extension of ArcGIS
was installed.

The GIS software used to process the data is ArcMap (ArcGIS) from ESRI. GIS
database [16] was imported into ArcMap to obtain maps of the terrain, settlements, river,
and roads [17], while HEC-RAS was used to simulate floods [18].
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The following databases were used: Digital Terrain Model (DTM) of Romania at 30 m,
road network, buildings, rivers, and territorial administrative units (TAUs). The coordinate
system used was Stereo 1970 (31700).

First, it was necessary to process the large data mentioned above to obtain the infor-
mation necessary for the simulation in the two villages. The shape of the Vedea valley
containing the two villages was obtained by extracting the TAUs and cutting polygons.
For example, in ArcGIS, the TAUs or buildings are polygon shapefiles, while rivers are
polylines. Moreover, points are equivalent to points of interest [19].

The DTM of the inhabited areas and surroundings of Ţigăneşti and Br
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nceni was
obtained using “Raster Clip” from Raster Processing (Data Management Tools).

A raster image file is a rectangular array of regularly sampled values, known as pixels.
In GIS, a raster can be converted into a shapefile.

To create a more realistic appearance, “Hillshade” was applied from the Raster Surface
extension of the 3D Analyst Tools alongside an increase of contrast in the display properties
of the newly obtained raster layer. Then, transparency was set up for the raster layer
obtained from DTM and the “Hillshade” raster layer. The two were overlayed, obtaining
maps such as those in Figure 2. The roads and buildings were added after using “Clip”
from Geoprocessing.
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nceni; (b) RAS layers, including 11 cross-sections.

The next step was to activate the HEC-GeoRAS option and prepare the terrain for
flood simulations in HEC-RAS. The RAS layers were manually created, such as stream
centerline (or thalweg, the lowest point of a river), bank lines (shore), flow paths (slope),
and cross-sections lines (transversal lines from an interfluve or hill to another where the
depth of the flood can be observed after stimulation in HEC-RAS) [20].

In Figure 2b, the four elements necessary for flood simulation can be seen. After
processing, data were exported for further processing in HEC-RAS.

From HEC-RAS, the obtained data in ArcGIS were added. Before running the simula-
tion, several actions are required. In the “Steady Flow Data” under Edit, the flow value in
cubic meters/second (m3/s) was added, while in the Boundary Conditions, the “Critical
Depth” was set up. In the present situation, the river selected for analysis is Vedea [18].
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In “Geometric Data in Tables”, the “Manning’s n or k values” tab is accessed to set
up the roughness coefficient (n). Therefore, it is essential to specify the correct values. An
increase of n will cause a decrease in the water flow velocity across a surface [21]. High
values mean an increased favorability to water accumulation. Table 1 contains the values
of n for each cross-section. The value n#1 represents the coefficient for the left bank, n#2 for
the main channel, and n#3 for the right bank. The values for the main channel are smaller
because it is smoother (based on field observations the surface is earth channel, weedy,
n = 0.03), while the banks are rougher (pasture, agricultural land, n = 0.035). The numbers
in Table 1 are based on a list of roughness coefficient values for different surfaces [21].

Table 1. Manning’s roughness coefficient for the Vedea River.

River Station
(Equivalent to Cross-Section) n#1 n#2 n#3

1 0.035 0.03 0.035
2 0.035 0.03 0.035
3 0.035 0.03 0.035
4 0.035 0.03 0.035
5 0.035 0.03 0.035
6 0.035 0.03 0.035
7 0.035 0.03 0.035
8 0.035 0.03 0.035
9 0.035 0.03 0.035

10 0.035 0.03 0.035
11 0.035 0.03 0.035

Manning’s equation, used in HEC-RAS for steady flows gives the flow rate as a
function of the channel velocity, flow area, and channel slope [21].

Q = VA = (1/n)AR2/3
√

S (1)

where:
Q = Flow rate (m3/s)
V = Velocity (m/s)
A = Flow area (m2)
n = Manning’s roughness coefficient—setup by the HEC-RAS user (Table 1)
R = Hydraulic radius, (m)
S = Channel slope, (m/m)
After setting the variables, the simulation can be run by accessing the “Steady Flow

Analysis”. After processing, the level of flooding for each cross-section and the flooded
surface can be observed [22].

According to the documentation from HEC-RAS, the energy Equation (2) is used for
the profile calculations:

Z2 + Y2 + a2V2
2 /(2g) = Z1 + Y1 + a1V2

1 /(2g) + he (2)

where:
Z1, Z2—elevation of the main channel inverts (m)
Y1, Y2—depth of water at cross-sections (m)
V1, V2—average velocities (total discharge/total flow area) (m/s2)
a1, a2—velocity weighting coefficients
g—gravitational acceleration (m/s2)
he—energy head loss (m)
HEC-RAS simulates floods based on the information specified by the user and men-

tioned above in the methodology: stream centerline, bank lines, flow paths, cross-sections,
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digital terrain model, roughness coefficient, flow value (example: 676 m3/s), and specifying
the information under “steady flow data” as critical depth [22].

After obtaining the flooded areas (2D), the accumulated water level for each cross-
section can be visualized. In the present research, 11 cross-sections can be accessed [17].
Figure 3 shows the valley shape, the flooded areas, and the water depth for two cross-
sections. The user can view the flooded surface by accessing “X-Y-Z perspective plots”
from the View tab (Figure 4). The length and depth of the water for the entire valley differ
for each cross-section.
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nceni area (the water volume represented in blue).

After verifying the correctness of the obtained data, the flooded area was exported
from HEC-RAS as a raster layer using RAS Mapper to be imported into ArcMap. Figure 5
shows a shape of a flooded area. The blue area represents the flooded surface, the green
lines the cross sections, while the color palette from green to gray represents altitudes. In
ArcMap, the imported raster of the flood was reclassified from multiple values (multiple
values come from the depth of the flooded area) into a single value using “Reclassify” from
the Raster Reclass extension (3D Analyst Tools). It is essential to have a single value for
the raster because, in the following steps, it is easier to quantify the affected buildings and
roads and calculate the flooded area.
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Further, the raster was converted in GIS into a shapefile using Conversion Tools (from
Raster to Polygon shapefile) [23].

For computing the flooded area, a new column was created (“surface”) in the attributes
of the flooded area polygon shapefile. Using “calculate geometry” in the attribute table, the
flooded surface in “km2” was estimated.

Then, the surface of the total surface of the flooded buildings was computed. First,
with the help of “Clip” from Geoprocessing, the affected buildings were obtained based
on the flood polygon shapefile [23]. In the attribute table of the affected buildings, the
surface of each item can be observed. To calculate the total surface of the buildings in “m2”,
“Summary Statistics” from Statistics extension (Analysis Tools) was used. A table under
“List by source” (Table of Contents) with the total surface of the buildings was obtained.

When using ArcMap, one can also determine the number of flooded buildings. First,
polygons corresponding to each structure were transformed into points using “Feature to
Point” from the Features extension (Data Management Tools). Further, the points were
summarized using “Spatial Join” from the Overlay extension (Analysis Tools) based on
the flooded area polygon shapefile [24]. In the attribute table, under the new column
called “Join_Count” of the newly created polygon, one can see the number of affected
buildings [24].

The length of the flooded roads can also be calculated in ArcMap. Using “Clip” from
the Geoprocessing tab, the flooded roads were obtained based on the flooded area polygon
shapefile [25]. In the attribute table, the distance of each flooded road in meters was
computed using “calculate geometry” under a newly created column. The next step was
to determine the total flooded roads. Using “Summarize Statistics” from the Statistics
extension (Analyst Tools), the total length of flooded roads was calculated. The new table
is also available under “List by source” (Table of Contents) [25].

The methodology used to calculate the surface of the flooded area can be applied to
any flooded area polygon shapefile obtained based on flow values (m3/s). Of course, the
surface of the affected buildings and the length of flooded roads are different depending
on the flow values used to calculate them. The flow values used in this study were 200, 400,
676, and 800 m3/s.

Even though the values in July 2005 did not exceed 676 m3/s based on the data
from the National Institute of Hydrology, it was interesting to see the flooded surface at a
bigger value, 800 m3/s, because after discussing with the villagers that lived for decades in
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nceni, it was learned that larger floods occurred in the 1970s and 1980s.
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nceni, the DTM was modified in HEC-RAS by adding a levee to see how it
protects the village from flooding at different flow values.

The losses were also calculated based on the Ministry of Environment and national
road company data. The model was validated based on the observations from 2005
(similarities in how the flood area appeared in reality and the simulation), the configuration
of the Vedea Valley, and values from the National Institute of Hydrology. Moreover, the
observations from 2014, when important flow values occurred, showed that the village
could be protected even at high values.

In the HEC-RAS simulation, the water level did not exceed the dike of approximately
2 m at flows up to 800 m3/s. Based on a document from the Romanian Waters, the levee
was projected to withstand flows of 813 m3/s; it is one of the reasons why the value of
800 cubic meters was also chosen in the analysis. A similar situation was observed in
2014 when even though the flow was very high, the water level did not exceed the newly
constructed levee (the difference between the water level and the top of the dike was a little
over half a meter).

The study limitation comes from the data available from the National Institute of
Hydrology that does not include the water depth measured at the hydrometric station, but
only the flow rate. Thus, the matching between the simulation and the event on the site
had to be done using the above methods.

3. Results and Discussion

The flow registered for river Vedea in Ţigăneşti and Br
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nceni during 3–6 July 2005 was
significantly high to affect the two villages. Usually, the river flow is around 8.36 m3/s.
Thus, the flow exceeded more than 80 times when the flood occurred. On the 3 July at
noon, river Vedea had a flow of abound 200 m3/s. The next day, it was at its maximum
of 676 m3/s at 11 a.m. and 12 p.m. On the 6 July at 6 a.m., the flow value decreased to
133 m3/s. The water depth increased by almost 5 m from the thalweg. The water level
reached up to 1–2 m in the inhabited area.

According to Figure 6a, at a flow of 200 m3/s, most of the areas affected included
crops, significant parts of the meadow located in the proximity of the river, pasture areas,
but also some roads and houses in the northern and central part of Br
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nceni and several
settlements, roads in the southeastern and northern parts of Ţigăneşti and a bridge in the
same village. Because of the impressive quantity of precipitation felt in that period (2005
was the rainiest year in recent times), several ponds formed in the two villages, flooding
roads and buildings.

Figure 6b shows that at a flow of 400 m3/s, the flooded area increased compared to
that for 200 m3/s, covering important surfaces with houses and roads in Br
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nceni (the
northern and central parts and smaller numbers in the south). Ţigăneşti was less affected
by comparison with Br

Water 2023, 15, x FOR PEER REVIEW  10  of  15 
 

 

The village hall, school, kindergarten, church, monastery, dispensary, police station, 
and several shops were completely flooded. Here, the water levels exceeded 1 m. After 
the flooding, one house was destroyed, the structure of several settlements was affected, 
animals drowned, household  crops were  compromised  that year,  and water  from  the 
fountains was no  longer safe  to drink.  In addition, after  the waters’ withdrawal, areas 
covered with dirt and waste remained. 

 
Figure 8. Flooded areas in Brȃnceni at 676 m3/s. 

Figure 9 contains photos from that period. The left one presents a flooded house on a 
lateral street. The second shows National Road 51 covered by water, while the third  is 
from the center of Brȃnceni. 

 
Figure 9. Photos from the 2005 flooding in Brȃnceni. 

Table 2 contains the estimated loss by flooding in the four scenarios. At 200 m3/s, the 
flooded area was 2.7 km2, and 306 buildings were affected, representing 23,314 m2 (3.39% 
of the total surface of the buildings). The length of the flooded roads was 3212 m (4.84% 
of the total length of the roads). 

At 400 m3/s, the flooded surface was 3.46 km2 and 674 buildings were affected, rep‐
resenting 52,278 m2  (7.6% of  the buildings’ surface). The distance of  the  flooded  roads 
was 6483 m (9.78% of the total length of the roads). 

nceni. Agricultural terrains and pastures were flooded as well.
When the highest flow rate of 676 m3/s was recorded, according to Figure 7a, the

areas affected were significant parts of Br
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cut because of the flooding, making the authorities’ intervention difficult. The bridge
affected in Ţigăneşti had only local importance, connecting the village with the pasture
land located in the east.
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Even though the flow rate of 800 m3/s is hypothetical, it was probably recorded in the
1970s when bigger floods occurred. A larger surface was affected compared to the one at
676 m3/s. One-third of the settlements and roads in Br
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nceni is entirely covered by water,
according to Figure 7b.

The most critical factors that favored the settlements’ flooding are their location near
the river, the terrain elevation [26], very high precipitations that lasted for days, almost flat
terrain in the river valley, the elongated shape of the catchment, absence of large forested
areas, and precarious hydro-technical works. The water depth in the villages exceeded
in some parts 1.5 m. Figures 6 and 7 show that Br
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According to Figure 8, in Branceni, almost the entire section of the main road was
flooded. The village supply of goods was affected for a couple of days, while the electricity
was stopped for four days. The village was accessible only by large 4 × 4 vehicles through
its edge from the interfluve (hill).
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nceni at 676 m3/s.

The village hall, school, kindergarten, church, monastery, dispensary, police station,
and several shops were completely flooded. Here, the water levels exceeded 1 m. After
the flooding, one house was destroyed, the structure of several settlements was affected,
animals drowned, household crops were compromised that year, and water from the
fountains was no longer safe to drink. In addition, after the waters’ withdrawal, areas
covered with dirt and waste remained.

Figure 9 contains photos from that period. The left one presents a flooded house on a
lateral street. The second shows National Road 51 covered by water, while the third is from
the center of Br
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Table 2 contains the estimated loss by flooding in the four scenarios. At 200 m3/s, the
flooded area was 2.7 km2, and 306 buildings were affected, representing 23,314 m2 (3.39%
of the total surface of the buildings). The length of the flooded roads was 3212 m (4.84% of
the total length of the roads).

Table 2. List of values for flooded areas, buildings, and roads at different flow values.

Flow Rate 200 m3/s 400 m3/s 676 m3/s 800 m3/s Damages

Flooded area (km2) 2.7 3.46 4.16 4.45 Total surface of buildings (m2)
Number of flooded buildings 306 674 1117 1380 687,718

Surface of flooded buildings (m2) 23,314 52,278 99,693 108,469 Total length of roads (m)
Length of flooded roads (m) 3212 6483 10,287 12,125 66,238

At 400 m3/s, the flooded surface was 3.46 km2 and 674 buildings were affected,
representing 52,278 m2 (7.6% of the buildings’ surface). The distance of the flooded roads
was 6483 m (9.78% of the total length of the roads).

At a flow of 676 m3/s, the flooded area was 4.16 km2, and 1117 buildings were flooded,
representing 14.49% of the buildings’ total surface. The length of the flooded roads was
15.53% of the total length of the roads.

Regarding the hypothetical flow of 800 m3/s, the flooded surface would be 4.45 km2,
and 1380 buildings and 12.125 km would be affected.

Table 3 contains the estimated flood losses at a flow of 676 m3/s in both villages. The
building unit value is a national estimation from the Ministry of Environment from 2005.
The current value from 2022 was calculated by multiplying the 2005 value with the annual
inflation from 2006 to 2022. The cost for the complete reconstruction of one kilometer of the
national road that crosses the villages in the flat area, such as the one studied in this article,
comes from the contracts of the national road company (CNAIR). The unit value loss in the
case of buildings is 14,959 lei, while the total loss is more than 3 million euros. In the case
of the national road, the unit value (1 km) is 12,223,600 lei, while the estimated loss is more
than 8 million euros if the road should be rebuilt. Thus, the losses can be very high.

Table 3. Estimated losses in Romanian currency (lei) and euros for year 2022.

Infrastrucure Elements Number of
Houses/km Unit Value (RON) Estimated

Losses (RON)
Estimated Losses

(Euros)

Houses 1117 14,959 16,709,203 3,389,433
Length of national roads (km) 3.306 km 12,223,600 40,411,221.6 8,197,704

In 2005, the flood impact was very high, comparable with a hydrological phenomenon
with a probability of 1%. Figure 10a is the result of our simulation—the flood at 676 m3/s—
while Figure 10b is the map obtained from the National Administration Romanian Water,
showing the flood with a probability of 1% in the same zone [27,28]. One can find in the
two images similarities regarding the flooded surfaces. For example, the most affected
zones are the northern part of Br
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nceni to defend the
village from flooding. The levee proved to be useful in 2014 when the water level of the
Vedea River augmented again due to heavy rainfall [29]. In the simulation from Figure 11
at (a) 200 and (b) 400 m3/s the village is not flooded because the levee protects it. This
applies also to the higher flows of 676 and 800 m3/s (Figure 12).
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(b)(a)

Figure 12. Flooding at (a) 676 m3/s, (b) 800 m3/s after building the levee.

Based on the information from the European climate change website (climate.ec.europa.eu),
the cost for lower river levees is 3 million euros/km. The combined distance of the dikes in
Br
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nceni and Ţigăneşti is 7 km. Thus, the implementation cost is 21 million euros. Because
the levee prevents floods, the potential loss becomes, in this case, a benefit (avoid the houses
and roads losses). The benefit-cost is 11.58 million euros if the flood occurs only once. In
the past 30 years, there have been two major floods (2005 and 2014) and other small ones.
It is hard to determine the difference between the implementation and benefit for 100 years,
for example. However, if the flow of 676 m3/s occurred twice in 100 years, then the benefit
would be 11.52 million euros multiplied by 2 (a total of 23.16 million euros). Therefore, it
is worth building levees in this area because the difference between implementation and
benefit is 23.16 − 21 = 2.16 million euros.

4. Conclusions

In this paper, we presented of case study on the floods of the Vedea River, Romania.
The location was selected because it is prone to flooding when large quantities of precipita-
tions fall due to the elongated catchment shape, the location of the settlements close to the
Vedea River, and the almost horizontal slope of the valley.

At the beginning of July 2005, the maximum recorded value of the flow registered was
676 m3/s (80 times higher than the average flow), affecting 1117 houses, administrative
buildings, 12.287 km of roads, crops, and pasture areas, especially in the northern and
central parts of the Br
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nceni village. The water level exceeded 1 m in the central area of
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nceni. Ţigăneşti village was less affected. The flooding that occurred in July 2005 brought
attention from the national media. The emergency authorities used special 4 × 4 vehicles,
inflatable boats, and water pumps. The intervention was difficult, especially in Br
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nceni,
because the paved road was completely covered with water, and the access from the
two cities, Alexandria and Zimnicea, was cut off.

Extreme flooding phenomena are hard to predict. They frequently occur in May, June,
and July, or spring (after heavy winters, when the snow melts rapidly due to the abrupt
temperature change). The region of Ţigăneşti and Br

Water 2023, 15, x FOR PEER REVIEW  10  of  15 
 

 

The village hall, school, kindergarten, church, monastery, dispensary, police station, 
and several shops were completely flooded. Here, the water levels exceeded 1 m. After 
the flooding, one house was destroyed, the structure of several settlements was affected, 
animals drowned, household  crops were  compromised  that year,  and water  from  the 
fountains was no  longer safe  to drink.  In addition, after  the waters’ withdrawal, areas 
covered with dirt and waste remained. 

 
Figure 8. Flooded areas in Brȃnceni at 676 m3/s. 

Figure 9 contains photos from that period. The left one presents a flooded house on a 
lateral street. The second shows National Road 51 covered by water, while the third  is 
from the center of Brȃnceni. 

 
Figure 9. Photos from the 2005 flooding in Brȃnceni. 

Table 2 contains the estimated loss by flooding in the four scenarios. At 200 m3/s, the 
flooded area was 2.7 km2, and 306 buildings were affected, representing 23,314 m2 (3.39% 
of the total surface of the buildings). The length of the flooded roads was 3212 m (4.84% 
of the total length of the roads). 

At 400 m3/s, the flooded surface was 3.46 km2 and 674 buildings were affected, rep‐
resenting 52,278 m2  (7.6% of  the buildings’ surface). The distance of  the  flooded  roads 
was 6483 m (9.78% of the total length of the roads). 

nceni is no exception.
The simulation of the flood impact was performed at flow rates of 200, 400, 676 m3/s,

and 800 m3/s, indicating an increase in the number of the flooded buildings from 306 to
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1380, of the surface of flooded buildings from 23,314 m2 to 108,469 m2, and the number of
kilometers of flooded roads from 3.212 to 12.125, in the worst case (800 m3/s) compared to
the best one (200 m3/s). Losses were very high at a flow of 676 m3/s (11.58 million euros)
before the levee construction.

The situation of the two villages improved after the flooding in 2005 since, in Br
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nceni,
a high and solid levee was built on the right bank, while in Ţigăneşti, protection works
against floods with a probability of occurrence of 5% were carried out [28]. The new levee
in Brânceni protects the village from floods even at flow values of 800 m3/s, as results from
the performed simulation.

Similar studies will be carried out for other zones where flooding is expected and
will be publicly available to provide the authorities with solid documentation for making
decisions for population protection.

This paper is unique for the Brânceni and Ţigăneşti villages quantifying the flooded
roads and buildings (including building surface). It determined the flooded areas at
different flow values, the potential losses, and the economic loss. It also showed the
usefulness of the levee. So far, no such research has been carried out for the discussed area.
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Abstract: As water resources enter the era of the Anthropocene, the process of anthropogenic
droughts arises as the interplay between climate cycles and human-centered water management in
rivers. In their natural conditions, rivers exhibit a natural hydrologic variability, wet and dry cycles,
that are a vital property for promoting ecological resilience. Human activities alter the temporal
variability of streamflow, a resilience property of river systems. We argue that anthropogenic droughts
in river basins can lead to changes in the resilience properties of the system depicted in stability
landscapes. This study aims to analyze anthropogenic droughts and the changes provoked to the
stability landscapes of the streamflow system of a river basin. We use 110 years of regulated and
naturalized streamflow data to analyze the hydrologic variability (wet periods and droughts) of a
river system. First, we determined the streamflow drought index (SDI), and the results were assessed
using probability distribution functions to construct stability landscapes and explore the resilience
properties of the system. The transboundary basin of the Rio Grande/Rio Bravo (RGB) is used as a
case study. Our main findings include evidence of resilience erosion and alterations to the properties
of the stability landscape by the human-induced megadrought in the RGB, which resulted from
extensive anthropogenic alteration and fragmentation of the river system. The novelty of this research
is to provide a baseline and move forward into quantifying ecological resilience attributes of river
basins in water resources planning and management.

Keywords: anthropogenic drought; ecological resilience; river basin; stability landscape

1. Introduction

As social-ecological systems (SES), river basins are inherently bound to a fundamental
property of ecological resilience: dynamism, expressed by the temporal variability of the
natural flow regime. Historic cycles of flooding and drought in the natural flow regime are
integral components of most intact running water ecosystems [1] as these exert dominant
controls on ecosystem structure and function [2]. As water resources are well into the era
of the Anthropocene, climate change and human dominance pose pressing challenges to
the hydrologic cycle and its components, putting the integrity and resilience of river basins
at higher risk. The human influence on the global hydrological cycle is now the dominant
force behind changes in water variability across the world and in regulating and triggering
hydrologic resilience changes in the Earth system. Globally, extreme weather or climate
events are expected to become more frequent and increase in intensity and duration, due
to climate change and are largely exacerbated by the persistent pressures of human water
demands in creating such extreme environmental conditions. The complex and interre-
lated processes between natural and human-induced changes drive the development of
anthropogenic droughts [3–6]; a compound multidimensional and multiscale phenomenon
governed by the combination of natural water variability, climate change, human decisions
and activities, and altered micro-climate conditions due to changes in land and water
management [3]. The growing frequency of precipitation extremes, especially droughts,
will have profound consequences on the hydrologic variability of the streamflow systems
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and the natural flow regime, creating selective pressures in the environment and society. In
return, this will affect the resilience of river basins and the capacity of systems to withstand
shocks and perturbations without modifying their functional identity and adapting to
changing conditions [7].

Resilience theory applied to water systems can offer a perspective on the understand-
ing of anthropogenic droughts as one of the central disturbances of streamflow dynamics
and the potential changes in hydrological resilience across all scales, from local watersheds
to regional and transboundary basins. Catastrophic disturbances such as anthropogenic
megadroughts can cause shifts in ecosystems into alternative states, through which many
ecosystems can lose their functionality and identity. This phenomenon can be assessed by
determining the relationships between natural drivers and processes that allow for ecosys-
tem functioning (e.g., streamflow) and anthropogenic pressures (e.g., water use, land use
change, and management practices. To see how resilience is affected by changes in hydro-
logic conditions, we may construct stability landscapes [8] which are good approximations
for understanding resilience concepts [9]. The metaphor of stability landscapes in resilience
theory depicts the various stable states of a system as a series of “basins of attraction,”
which are regions in state space in which a system tends to remain (Figure 1—retrieved
from Dakos and Kefi, 2002 [10]) and have been used to explain the dynamics of several
ecosystems and the components of resilience including resistance, latitude, precariousness,
and panarchy [11]. Stability landscapes help understand the properties of dynamical sys-
tems and have been used to represent resilience characteristics of shallow lakes [12], urban
water systems [13], tropical forest and savanna [14], climate states [15], plant patterns in
drylands [16,17], and river management [18].
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Figure 1. A (hypothetical) stability landscape of a two-dimensional system with hilltops and valleys,
also known as a marble-in-a-cup or balls-and-cups landscape. Black balls are found at the bottom of
the valley and represent stable states. Retrieved from Dakos and Kefi, 2020 [10].

A stability landscape with several basins of attraction corresponds to the various
stable states in which a system will exist. As streamflow in river basins is modified by
exogenous drivers (precipitation, exchange rates) and endogenous processes (infrastructure,
management practices), the streamflow system may move from one basin of attraction to
another when substantial disturbances occur (e.g., hurricanes, dry spells, ENSO patterns,
management practices) and affect the state variables. State variables include temporal or
spatial characteristics, and when these occur, the set of variables will persist in one of many
possible configurations, which may shift to a different configuration or equilibrium after
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a perturbation [9]. However, changes in environmental conditions that affect processes
between state variables, such as river fragmentation or changes in the natural flow regime,
will alter the shape of the stability landscape as these pressures directly affect state variables.

We argue that the evidence of anthropogenic drought in river basins can lead to
changes in the stability landscape, such as changes in position, width, depth, and configu-
ration of the basins of attraction. The problem is that, for most systems, its quantification
is challenging to operationalize, and we usually do not know the shape of the stability
landscape, but in principle, we could derive their shapes [10,19] to assess the resilience
properties of resistance, latitude, precariousness, and panarchy. The objective of this study
is to assess anthropogenic droughts and the changes provoked to the stability landscapes
of the streamflow system of a river basin. This study assessment is twofold: (1) analyze the
hydrologic variability (floods and droughts) of a river system by comparing the natural and
regulated flow regimes using long-term streamflow data, and (2) construct stability land-
scapes and explore properties of resilience in terms of changes in the basins of attraction
of the natural and anthropogenic state. The transboundary basin of the Rio Grande/Rio
Bravo, located half in the United States (U.S.) and the other half in Mexico, will be used
as a case study given its arid, water-limited, and drought-prone landscape, its binational
context, and its long history of human manipulation. This research identifies the current
anthropogenic state of a transboundary basin in comparison to its natural state and approx-
imates the metaphor of stability landscapes and basins of attraction using streamflow as a
representation of the resilience conditions of river basins which can be used in any local,
regional, or international scale worldwide.

2. Materials and Methods

To analyze the basin-wide dynamics, this study uses 110 years of monthly streamflow
from 1900 to 2010 at eight control points (i.e., hydrologic gauge stations) to portray the nat-
ural and anthropogenic states of the RGB. Four control points are selected in the mainstem
of the river basin: San Marcial, El Paso, Above Amistad Dam, and Anzalduas. And four at
the outlet of the main sub-basins: Rio Conchos, Pecos River, Rio Salado, and Rio San Juan
(Figure 2). The overall methodology includes (1) data collection of historical streamflow
data, including inflows and outflows of the river system; (2) converting gaged or observed
flows to naturalized flows using a water mass balance; (3) performing a hydrologic drought
assessment for the observed and naturalized flows to observe the hydrologic variability of
the river basin; and (4) developing of stability landscapes to compare resilience attributes
between the naturalized and anthropogenic states of the river basin.

2.1. Case Study

The transboundary Rio Grande/Bravo (RGB) basin is a water-scarce basin full of
extreme climate conditions, from heavy snowfall and tropical storms to prolonged minimal
precipitation, which ranges from 190 to 2250 mm per year and an average temperature range
of −2 ◦C to 25 ◦C. As one of the largest drainage basins in North America, the Rio Grande-
Rio Bravo (RGB) extends approximately 557,000 km2 between the United States of America
(U.S.) and Mexico. The RGB provides water to eight states, three in the U.S. (Colorado, New
Mexico, and Texas) and five in Mexico (Chihuahua, Coahuila, Durango, Nuevo León, and
Tamaulipas). Snowmelt from the Rocky Mountains and monsoon runoff from the Sierra
Madre Occidental flows mostly through arid regions, including the Chihuahuan Desert,
North America’s largest desert. The northern branch of the RGB joins the Rio Conchos at
La Junta de los Rios near Ojinaga (Chihuahua)/Presidio (Texas) to form the mainstem river.
Several other tributaries contribute to streamflow, including but not limited to the Pecos
River, which originates in New Mexico and flows through Texas until the mainstem, and
other Mexican tributaries such as the Rio Salado and the Rio San Juan, which originate in
the states of Coahuila and Nuevo León, respectively. The annual average natural supply of
the Rio Grande delivered to the Gulf of Mexico was between 10 and 12 km3 [20].
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2.2. Data Collection

Long-term streamflow data are required to represent specific conditions of river
basins, including the dynamics and behaviors of hydrologic, climatic, anthropogenic, and
seasonal variables over extended periods in a river basin. This analysis requires two
streamflow datasets: (1) Observed flow regimes, which represent a clear manifestation
of the Anthropocene, including water diversions, withdrawals, and reservoir operations,
among others. Observed flow data were obtained from the Mexican National Water
Commission (Comisión Nacional del Agua [CONAGUA]), the International Boundary
and Water Commission (IBWC), and the U.S. Geological Survey (USGS). (2) Natural flow
regimes represent streamflow without anthropogenic impacts, removing the impacts of
reservoirs, diversions, return flows, groundwater sources, and any other water management
practice and assuming to capture the relevant characteristics of climate and natural river
basin hydrology [21]. Naturalized streamflow data sources were retrieved from previous
studies, including the Upper RGB at Rio Grande Del Norte, Colorado, to the Rio Grande
Above Presidio, Texas [22]. Then for the Lower RGB, daily and monthly naturalized
data was retrieved from below Presidio/Ojinaga to Anzalduas, Tamaulipas from 1900–
1943 [23,24], and from 1950 to 2008 [25]. Data gaps were calculated using streamflow
naturalization.

2.3. Streamflow Naturalization

Streamflow naturalization is used in observed flow regimes for removing anthro-
pogenic influence disturbances such as impoundments of rivers, land-use changes, water
extractions, return flows, and other factors from streamflow time series. As the influence of
humans continues to have a direct impact on river flows, the natural and anthropogenic
parts of observed flows need to be distinguished [26,27]. The method used to naturalize
flow is the water balance, which is the most widely used, despite the fact that it is primarily
governed by data availability. This approach consists of decomposing flow into a natural
part and an influenced part by removing the volume variation induced by the source of
influence (e.g., reservoirs) [28] by accounting for the system’s gains and losses for the
desired time frame [21]. The mass water balance equation (Equation (1)) is the following:

Qnat
t = GFt + Ot − It + ∆St (1)

where Qnat
t is the natural flow, Gt is the observed/gauged flows, Ot is the outflows, It is

the inflows, and ∆St is the change of reservoir storage at a given daily time step t.
Outflows include evaporation losses from the reservoir and streamflow losses, ob-

tained from the Mexican National Data Bank for Superficial Waters (Banco Nacional de
Datos de Aguas Superficiales [BANDAS]) and IBWC. Moreover, any consumptive use,
including agriculture diversions retrieved by the Agricultural Statistics of the Irrigation Dis-
tricts in Mexico (Estadísticas Agrícolas de los Distritos de Riego), domestic and industrial
water uses obtained by CONAGUA. Inflow data include agriculture and urban returns,
flows, precipitation in the reservoir, and streamflow gains obtained by BANDAS and
CONAGUA. Furthermore, the change of storage was obtained from BANDAS and IBWC.
Lastly, to validate our results, we performed a statistical analysis comparison between our
results and available research including the studies of Orive de Alba [29] and Blythe and
Schmidt [22]. The goodness of fit criteria used from Moriasi et al. [30] were the coefficient
of determination (R2), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and percent
bias (PBIAS).

2.4. Streamflow Drought Index

The streamflow drought index (SDI) developed by Nalbantis and Tsakiris [31] is used
to characterize the severity of hydrological droughts. To capture decadal changes and
long-term droughts in the basin for each control point. First, the cumulative streamflow
of the naturalized streamflow data was estimated in a time window of 120 months. Then,
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the aggregated time series were fitted to probability distribution functions (normal, log-
normal, and gamma) using the Kolmogorov–Smirnov (K-S) test; the log-normal distribution
function (p-value less than 0.5) was selected based on the goodness of fit at a 95 percent
confidence level and the least sum squared error between each probability distribution
function (see Supplemental Materials). The software used to test and select the best
probability distribution function was the Python package: fitter [32]. At last, the estimation
of the cumulative probability is transformed into a standard normal random variable with
a mean zero and standard deviation of one, resulting in the values of the naturalized SDI.

SDIi,k =
Vi,k − Vk

Sk
(2)

where SDIi,k is the standard drought index value, Vi,k is the cumulative streamflow volume,
Vk is the mean, and Sk is the standard deviation of the cumulative streamflow volume for
an i-th hydrological year with a period length of k. Consecutively, the observed streamflow
data is evaluated by correlating the cumulative observed streamflow volumes with the
closest aggregated naturalized volume; then, its corresponding SDI value is assigned.
Hydrologic wet states are values between 0 and 3, and dry states between 0 and −3. For
this study, eight states of hydrological droughts representing different severities are used
(Table 1), which is the criterion of Nalbantis and Tsakiris [31] modified by Garza-Díaz and
Sandoval-Solis [33].

Table 1. Description of hydrologic stated based on a modified streamflow drought index (SDI)
criterion by Garza-Díaz and Sandoval-Solis [33].

Description of State Criterion

Extremely dry −2 < SDI ≤ −3
Severely dry −1 < SDI < −2

Dry −0.5 < SDI < −1
Moderately dry 0 < SDI < −0.5
Moderately wet 0 < SDI < 0.5

Wet 0.5 < SDI < 1
Severely wet 1 < SDI < 2

Extremely wet 2 < SDI ≤ 3

2.5. Computation of Stability Landscapes

Properties of the stability landscape in environmental systems are commonly linked
to the geometric properties of a potential function [10]. Where minima and maxima
respectively correspond to stable and unstable equilibria of the basins of attraction, the
slopes of the potential surface are proportional to the rates of change in the system [10].
Even if this method is widely used, finding a potential function for systems with more
than one dimension can be difficult [34]. Alternative measures have been applied to other
systems, including the use of probability distribution functions (pdf) as it is closely related
to the potential function where local minima of the potential function correspond to local
maxima in the pdf [35]. Hypothetical three-dimensional stability landscapes for the river
basin were computed directly from the pdf of the natural and regulated SDI values. These
figures depict the conditional probability of a given SDI value (SDIt) given a previous SDI
value (SDIt−1). For instance, given that the system had an SDI of −3 in the previous year
(SDIt−1 = −3), what is the probability of having an SDI value of X in the present year. The
pdfs dominant modes serve as proxies of the shape of the basins of attraction and are used
to reflect the stability landscape properties and how they change over time.

3. Results and Discussion
3.1. Data Validation

Results of the analysis comparison between the streamflow estimations from the
period of record of 1900–1943 from Orive de Alba [29] were R2 = 0.9, d = 0.9, NSE = 0.9,
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and PBIAS = 3.6. In addition, the comparison between Blythe and Schmidt [22] with
a period of record is 1900–2010 are R2 = 0.9, d = 0.9, NSE = 0.9, and PBIAS = 1.8. The
statistical performance for both comparisons was very good according to the criteria of da
Silva et al. [36].

3.2. Hydrologic Variability of the Natural State of a River Basin

The RGB basin spans a climatic gradient from semi-arid to subhumid; its environment
is vulnerable to extreme hydroclimatic events [37]; and to investigate its dichotomy, the
hydrologic variability of the natural state of the RGB is depicted in a 120-month SDI analysis
(Figure 3) which allowed identification of hydrologic drought and flood events.
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Figure 3. Streamflow drought index of the naturalized control points of the Rio Grande-Bravo Basin.

Overall, the hydrological behavior of the basin indicates recurrent periods of water
stress (Table 2). Droughts in this basin are common and, on average, can span from 10
to 25 years, including consecutive extremely and severely dry periods ranging from 5
to 9 years. In contrast, wet periods tend to be shorter, from 11 to 16 years; extremely
and severely wet periods could typically last from 2 to 4 years. Alternating dry and wet
cycles could last 24 years in the mainstem of the RGB; these cycles are correlated with
ocean-atmosphere climate variability [38].

Table 2. Hydrologic periods of the Rio Grande–Bravo basin. Each hydrologic period is the average of
the consecutive number of years that ranges from specific SDI values.

Control Point

Hydrologic Period (Average of Consecutive Years)

Dry
(−3 to −0.5) 1

Extremely Dry
(−3 to −2) 1

Wet
(0.5 to 4) 1

Extremely Wet
(2 to 4) 1

San Marcial 10 8 11 2
El Paso 13 8 15 2

Above Amistad 13 9 16 3
Anzalduas 13 6 12 2

Rio Conchos 12 6 16 3
Pecos River 25 2 16 4
Rio Salado 23 5 13 2

Rio San Juan 18 4 15 3
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Table 2. Cont.

Control Point

Hydrologic Period (Average of Consecutive Years)

Dry
(−3 to −0.5) 1

Extremely Dry
(−3 to −2) 1

Wet
(0.5 to 4) 1

Extremely Wet
(2 to 4) 1

Average 16 6 14 3
Median 13 6 15 3

Note: 1 streamflow drought index (SDI) values.

3.2.1. Synchronous and Asynchronous Wet and Dry Periods

Synchronous and asynchronous wet and dry periods occurred along the RGB main-
stem due to the difference in physiographic and climatic main controls in the RGB,
snowmelt runoff in the headwaters of the San Juan Mountains, and the strong influence of
the North American monsoon gives rise to two different hydroclimate regions: the hydro-
climatic snowmelt variability in the headwaters of the RGB (the northern branch, including:
San Marcial, El Paso, and Pecos River) and the North American monsoon variability ex-
perienced downstream of its confluence with the RGB (the southern branch, including
Above Amistad, Anzalduas, Rio Conchos, Rio Salado, and Rio San Juan). This can be
shown in the overlap and out of phase of droughts and wet periods that are concurrent
in specific decades and regions, and other times are out of phase and independent. For
example: synchronous wet periods occurred in the late 70s and the 80s, which were the
wettest of the century, and matching droughts years include 1909–1920, the 1930s, 1950s,
and 2005–2010. Although in some of these periods, the severity was not as extreme as
in other regions. For example, the drought experienced in 1910 by the Rio Conchos was
less severe than those in San Marcial or El Paso, or the wettest period was more severe for
Anzalduas than El Paso. On the contrary, asynchronous wet and dry periods can also occur;
for example: the beginning of the twentieth century was particularly wet for the Pecos
River and the Rio Salado, which showed positive SDI values from 1900–1930. After this
wet period, these rivers exhibit contrasting dry/wet periods from 1940 to 1950, where the
Pecos River has the second driest period on record while the Rio Salado shows its wettest
period. In addition, all control points exhibit differences in severities and durations, even if
these overlap, indicating that one or more underlying circulation mechanisms influence the
entire basin [39].

3.2.2. Occurrence of Droughts

The RGB is vulnerable to extreme hydroclimatic events, especially droughts, which are
expected to become more severe in this region by the end of the 21st century. Paleoclimate
reconstructions using tree rings have been used in the RGB to reconstruct streamflow. For
the Pecos River, a 700-year paleoclimate reconstruction estimated streamflow declines in a
multi-century context, setting the drought of 1950–1957 as one of the highest ranked based
on magnitude and intensity, slightly less severe as the 11-year drought of 1772–1782 [40]. For
the RGB near Del Norte [39] and the Rio Conchos [41], a 344-year (1749–1933) reconstruction
of seasonal precipitation and a 243-year (1775–2015) reconstruction of streamflow volume
reported an extraordinary drought from 1950 to 1957 and from 1948 to 1958, respectively.
These studies coincide with our research where the severely dry period for the natural
streamflow system is estimated, from 1950 to 1965, for several control points, including
Pecos River and Rio San Juan. The drought of the 1950s has been well documented in
rainfall, discharge, and dendro-chronological data and is consistent with drought spells
in northern Mexico [42]. However, in our records, the most severe drought in the Rio
Conchos was in 2005, and the second driest in the 1950s. Nonetheless, the study of Ortega-
Gaucin [43], reports from 1997 to 2008 as an extraordinarily hydrological dry period for the
portion of the RGB located in Mexican territory, specifically the severe and extremely dry
period from 2000–2008 in the control points of Rio Conchos. Moreover, San Marcial and El
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Paso experienced extreme and severe drought in the early 1900s, a decade distinguished by
predominantly below-average flows in the northern branch of the RGB [39].

3.2.3. Occurrence of Snowfall and Hurricanes

Snowfall and hurricanes significantly affect the water availability throughout the
basin. The RGB (San Marcial and El Paso) and Rio Conchos showed an exceptionally wet
decade between the 1980s and 1990s, as reported by the northern branch using a 445-year
streamflow reconstruction forecast [44] and streamflow data along the RGB mainstem
(at Johnson Ranch) and the Rio Conchos [45]. The Rio Salado shows its wettest period
in the 1970s, which coincides with estimates of Ortiz-Aguilar [46]. Then the 1900s was
extraordinarily wet within the context of the Pecos basin, only broken by the widespread
1950s drought, which was ended by the 1980s wet event. In addition, the 20th century
was the wettest in the Pecos basin over the past 700 years [40]. Heavy rains, influenced
by tropical storms and hurricanes that hit the RGB from the Pacific and Atlantic Oceans,
have increased in frequency. These storms, concentrated in short periods, are responsible
for high annual discharge in the RGB. In the Rio Salado and Rio San Juan, the hurricanes
Beulah, 1967; Allen, 1980; Barry, 1983; and Gilbert, 1988 [47] resulted in an extremely wet
and wet period, respectively. In the 2000s, hurricanes Emily, 2005; Dean, 2007; Dolly, 2008;
and Alex, 2010 [47] resulted in a severely wet period for the Rio San Juan basin and in
Anzalduas, the outlet of the RGB.

3.2.4. Impacts of Climate Change

Effects of climate change are already altering the RGB streamflow timing and volume
through changes in rainfall, snowfall and snowpack, and increased temperatures and
evapotranspiration rates [48]. Despite that this study did not distinguish the effects of
climate change and human impacts separately; and climate and hydrologic forced models
(e.g., rainfall-runoff models) are needed as additional research to distinguish the impact
of climate change on the natural streamflow. The intensity and frequency of dry and
wet conditions for the natural system in Figure 3 have increased since 1950. Extreme
hydroclimatic events, such as intense precipitation and drought, are expected to increase
in this region by the end of the 21st century [49,50]. For example, streamflow declines
are occurring in tributaries upstream of Albuquerque between 1980 and 2016 [51]. In
addition, in the past 40 years, snow drought has impacted the RGB headwaters in Colorado
and New Mexico [52]. Moreover, elevated evapotranspiration rates since 1980 in the Rio
Conchos, Rio Salado, and Rio San Juan are affecting crop production [53] and changes in
air temperature exacerbate water quality issues in border cities of the southern branch of
the RGB [54]. Furthermore, there has been an increase in the frequency of tropical cyclones
and hurricanes since 1950 generated in the Pacific Ocean [55] resulting in economic losses
by flooding and crop destruction.

3.3. The Modern Hydrology: A Perennial Human-Induced Extreme Drought

A comparison between the natural and modern streamflow variability in the mainstem
of the RGB is shown in Figure 4 and the subbasin control points in Figure 5. The natural
hydrology of the RGB exhibits a strong hydrologic variability with alternating dry and
wet periods. In contrast, the regulated hydrology lacks the cyclical periods of wet and
dry periods highlighted in the natural system; it shows a permanent state of human-
induced extreme drought in the basin. The lack of hydrologic variability intensifies the
dry states’ severity and frequency, shifting from a possible wet or moderately wet to a dry,
moderately dry, or even extremely dry period that could last several years. The loss of this
dynamism puts the system in a perennial and extreme dry state for most of the sites for
decades, in some regions more severe than others, yet the magnitude and extent of the
dry state permeate all regions of the RGB. In the RGB mainstem, perennial extreme dry
periods started in San Marcial and El Paso in 1920 (for 90 years), above Amistad in 1939
(for 71 years), and in Anzalduas since the beginning of the 20th century (for 110 years).
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Anzalduas represents the response of the entire RGB basin given its location near the outlet;
it shows that since the early 1900s, water diversions and flow regimes modified the basin
as if it was in a perennial drought. For the main tributaries of the RGB, perennial extreme
dry periods started in the Pecos River in 1945 (for 65 years) and the Rio Conchos in 1960
(50 years). In the San Juan and Rio Salado basins, they appear to have periods of extreme
drought that are separated by periods of dry and moderately dry periods; these can be
explained by the1980s wet period in the San Juan and the severely and extremely wet
period in the 1970s in the Salado basin.

3.3.1. Causes of the Perennial Human-Induced Drought

At the core of this permanent state of human-induced drought is the interplay of
human development and climate. Since the 1870s, the RGB has been subject to a long
history of human manipulation [20]. The present perennial drought state is the result of
increased water demands (for agriculture, municipal, and industrial), water agreements
(at the international, interstate, regional and local scales), water overallocation, and the
construction of large water infrastructure (reservoirs, canals, levees) [33,37]. Water resources
are often insufficient to meet human and environmental requirements due to the natural
water scarcity in the basin and the increased human water demand. The RBG basin provides
water for more than 10.4 million inhabitants. Moreover, the basin supports extensive
irrigated agriculture, comprising approximately 780 thousand hectares of irrigated land [33]
and accounting for 83% of water withdrawals in the RGB [37]. In the U.S., the extent
of irrigation activities expanded during the 19th century after the Desert Land Act of
1877 [56,57], prompting a disproportionate expansion of agricultural land, water diversions
for irrigation, and water consumption. In the U.S., irrigated agriculture accounts for 80 to
90% of the overall water use. The main crops are forage, cotton, pecans, and vegetables [58].
In contrast, as a result of the Mexican Revolution in 1917, the Mexican Agrarian Reform
implemented a prolonged distribution of land, where more than half of the Mexican
territory was assigned to farmers [59]. A total of 11 irrigation districts were created, totaling
458 thousand hectares of irrigated land [33], where the states of Chihuahua and Tamaulipas
account for 87% of the total irrigated areas. In both countries, the large-scale farming
systems require large reservoir projects and extensive channelization, which started in 1916
with Elephant Butte in New Mexico and La Boquilla in Chihuahua. Since then, 27 large
dams (greater than 16,000 Mm3 of storage capacity) have been built in the basin, including
two international dams: Amistad and Falcon.

As streamflow is reduced by overconsumption and climate change, access to water is
becoming a looming crisis, and droughts have become more devastating due to increased
use of water resources for human purposes, changes in regulations for water allocation
between users, states, or countries. Management actions for concealing water shortages
and increasing water supply through more river engineering in one area certainly affect
downstream communities. For example, the construction of El Cuchillo Dam in Rio
San Juan during the drought of 1990 aimed to supply water for the city of Monterrey
in Nuevo Leon. However, this action led to a diminishing water supply for farmers in
Tamaulipas. Droughts have also triggered a change in regulations for water allocation,
whether in international agreements or state water allocation systems [37]. For instance,
the Pecos River Compact [60] between New Mexico and Texas promotes collaboration and
sharing of water resources. However, constraining surface water use created an increase
in groundwater use, that ultimately ended up in groundwater overdraft that diminished
baseflows that downstream users depended on. Droughts have also triggered conflicts
among water users, states, and countries. For example, the drought in the late 1990s
triggered disputes between farmers and the federal government in Mexico. From 1997
to 2002, Mexico incurred a substantial water debt to the U.S. The Rio Conchos basin was
not able to deliver water to U.S. and Mexican downstream water users due to drought
and increased water use in the Rio Conchos basin. At that time, the Mexican government
resolved this conflict by delivering water to the U.S. from other tributaries and from

174



Water 2022, 14, 2835

Mexican water stored in the international reservoirs, leaving without downstream water
users in Tamaulipas. The imbalance between supply and demand creates a complex web of
governance structure, infrastructure, and user conflicts, which translate into compounding
effects for anthropogenic droughts.
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Figure 4. Streamflow drought index (SDI) indicating the hydrologic variability of the natural (left) and
the regulated (right) state of four mainstem control points of the Rio Grande-Bravo Basin at (a) San
Marcial, (b) El Paso, (c) Above Amistad, and (d) Anzalduas.
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3.3.2. The Degradation Toll of the Environment Due to Human Activities

Land use change, reservoir development, straightening of the main river, and over-
extraction of water have a high degradation toll on ecosystems by altering the river’s natural
flow pattern, timing, temperature, and quantity of river flows. By changing the temporal
variation of streamflow in river basins, assemblages of riparian species are profoundly
transformed because their life cycle is synchronized with the timing, magnitude, duration,
and rate of change, of the natural flow regime. For example, lack of fall monsoonal flooding
facilitates the invasion by non-native organisms by shifting regionally endemic species (e.g.,
generalist red shiner; Cyprinella lutrensis) to dominant generalist fish species (e.g., endemic
Tamaulipas shiner; Notropis braytoni) [61]. In addition, other native species have gone locally
extinct in some areas of the RGB (e.g., the Rio Grande Monkeyface mollusk; Quadruka
couchiana), while others have been listed as endangered species (e.g., the Rio Grande silvery
minnow; Hybognathus amarus). In addition, reduced flood flow frequency has enhanced
invasive vegetation encroachment and caused channel incision and narrowing [37]. Native
ecosystems are adapted to droughts; however, the level and persistence of the current
human-induced drought are severely affecting river ecosystems and species throughout
the basin. In the 20th century, the flow of the RGB had been reduced by nearly 95% of its
natural flow [22,23], and at least 30 springs have gone dry in the states of Chihuahua and
Coahuila [62,63].

3.3.3. The Human-Induced Megadrought

The perennial drought state of the RGB can be better described as an anthropogenic
megadrought; a compound multidimensional and multiscale phenomenon governed by
the combination of natural water variability, human decisions, increased water use for
human activities, climate change, and altered microclimate conditions due to changes
in land and water management [3]. Since the early 2000s, the Rio Grande/Bravo has
been listed among the most at-risk rivers in the world [64]. Other regions in the world
are experiencing anthropogenic megadrought, for instance, across Canada, the United
States, and Mexico [5], and in South America, a multi-year dry spell has been referred to
as the Central Chile Mega Drought [65]. These examples point out that anthropogenic
forcing is critical to explain the perennial dry states of regions, given its capability of
transforming a dry spell into a full-blown multiyear megadrought [4]. The regulated state
in Figures 4 and 5 show that the human-induced megadrought has become the new normal
in the RGB, posing environmental and socioeconomic hardship, including the unwanted
anthropogenic consequences of altering natural systems beyond their resilience carrying
capacity. Prolonged droughts cause major fluctuations in the structure and functioning of
the RGB; resilience erosion can trigger changes in the stability landscape of the system or
even changes in regimes.

3.4. Stability Landscape Metaphor: Resistance, Latitude, Precariousness, and Panarchy

The resilience of a system can be described using the stability landscape metaphor [11]
by characterizing the components that govern a system’s dynamics: resistance, latitude,
precariousness, and panarchy. A three-dimensional stability landscapes is used to estimate,
visualize, and compare the resilience attributes of the natural and regulated flow regimes
(Figure 6). The topology of the stability landscape is portrayed by the occurring valleys and
hilltops [11] that delineate the boundaries between the basins of attraction and represent the
states where the system exists for a determined period of time. The resistance indicates how
easy or difficult the system can be changed between states; it is expressed by the depth of
the basin. The latitude is the maximum amount the system can be changed and is depicted
as the width of the basin of attraction. Wide basins mean a greater number of system states
can be experienced without crossing a threshold, while deep basins indicate greater pertur-
bations are required to change the current state of the system away from the attractor [66].
The precariousness indicates the trajectory of the system at a given time within the stability
landscape and how close it is to crossing it. Finally, panarchy acknowledges that systems
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are dynamic and continually passing through “adaptive cycles” at various scales [67]. Like
any metaphor, there are limitations to using stability landscapes as a decision-making
tool. Nonetheless, it is a valuable resilience concept that helps us to think about ecosystem
dynamics and how human management might affect resilience properties.
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Figure 6. Stability landscapes of the Rio Grande-Rio Bravo at Above Amistad control point. (a) Natu-
ral flow regime (Figure 5A), two states are identified: (1) a persistent dry zone, characterized by a
constricted-deep basin of attraction; and (2) a persistent wet zone, portrayed as one shallow-wide
basin. (b) The regulated flow regime shows a single wide-deep basin of attraction pertaining to the
persistent dry zone.

3.4.1. The Dynamic RGB Natural Stability Landscape

In the natural flow regime (Figure 6A), two states are identified: (1) a dry state
portrayed as a constricted-deep basin of attraction located in the persistent dry zone; and
(2) a wet state located portrayed as a shallow-wide basin located in the persistent wet zone.
Valley bottoms correspond to the highest likelihood value of the system to remain in a
given state; they are the modes of the probability density distribution [10]. At a given time,
if the system is in a dry state, the system will remain in this state between 15 and 20 years,
or if the system has transitioned to a wet state, it will remain in this state between 2 and
5 years. Based on the duration and frequency of both states, the basins of attraction differ in
width, depth, and the number of valleys. In general, the RGB basin will tend to remain in a
dry state, and greater perturbations are needed to move the system out of the persistent
dry zone. In contrast, the RGB basin will remain less time in a wet state, and smaller
perturbations will likely move the system away from the persistent wet zone. In essence,
the stability landscape of the natural flow regime incorporates a diverse topography with
different shapes and valleys where environmental stochasticity in the form of perturbations,
such as hurricanes, droughts, tropical depressions, ENSO events, among others, will expose
the system to a wide range of dynamics under the two stable states: dry and wet.

3.4.2. The Precarious RGB Regulated Stability Landscape

In contrast, the regulated flow regime (Figure 6B) has only a dry state depicted as a
single wide-deep basin of attraction located in the persistent dry zone. Anthropogenic
forcing (e.g., increased water use for agriculture) has altered the dynamics of river basins,
changing the behavior and functionality of the natural ecosystem and causing alterations
in the topology of the stability landscape. In the absence of environmental stochasticity due
to the water regulations and streamflow diminishment, the resilience of the natural system
erodes, and precariousness increases, moving the system closer to crossing a threshold.
Precariousness is the result of management actions under historical conditions that have
transformed the system and as a result, the number of states [68]. The anthropogenic
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megadrought in the RGB is likely the driver that transformed the stability landscape,
reducing and shrinking the two states (dry and wet) of the natural stability landscape into
the one state (dry) of the regulated system.

The intrinsic nature of coupled human–environmental systems and the adaptive cycles
of panarchy in the RGB basin modified the stability landscape eroding its resilience. There
is a higher resistance (depth of the basin) in the regulated system (Figure 6B) in comparison
with the natural system (Figure 6A), indicating that greater forces and perturbations are re-
quired to move the system out of the current dry state. Even if the critically endangered RGB
is trapped in an undesirable and unsustainable human-induced megadrought state, our
society has the ability to modify the current stability landscape through transformability—
the capacity to create a fundamentally new system when ecological, economic, or social
structures make the existing system untenable [11]. The challenge is to reduce or avoid
the human activities (e.g., modification of flow regime due to water storage in reservoirs
that only meet human water needs) that create undesirable basins of attractions and move
toward stability landscapes that resemble the natural state (e.g., implementation of envi-
ronmental flows through dem releases mimicking the natural flow regime). “Different
management actions would be required to initiate a transformative change that envisions
and restores natural dynamic processes. Reservoir re-operation and environmental flows
are strategies targeted to minimize hydrologic alteration by incorporating water releases
that include functional flow metrics such as timing, frequency, magnitude, duration, and
rate of change of the natural flow regime. Other management actions include environ-
mentally, socially, and climate responsible agriculture, such as adequate selection of crops,
deficit irrigation, and the implementation of cover crops which are measures to reduce
consumptive water use.”

4. Conclusions

Natural hydrologic variability is vital for promoting ecological resilience, as it governs
the water quantity, quality, habitat, and health of riverine ecosystems. In the Anthropocene,
the alteration of natural flow variation by human-induced changes is the dominant force in
social-ecological systems, causing changes in flow regimes and the resilience properties
of river basins. This study demonstrates how human development and human-centered
water management regulations are the main drivers of the anthropogenic megadrought in
the Rio Grande. In addition, we demonstrate how this process has produced changes in the
stability landscape of these river basins, including changes in the topology (resistance and
latitude), the trajectory (precariousness), and the dynamic processes of a natural system
(panarchy). The stability landscape alteration is depicted as the modification of two basins
of attraction, which represent the natural wet and dry hydrologic states, into a single basin
of attraction representing a permanent dry state. The implication of the resilience erosion
in the RGB indicates that streamflow conditions have changed sufficiently to provide early
warning signals of crossing a resilience threshold, meaning that the system could suffer
consequences. As a society, we are already experiencing the effects of a water crisis, and
current management practices and policies are beginning to migrate into placing aspects of
social-ecological resilience analysis at the core of integrated water resources management.
Aside from the limitations to operationalizing the concept of stability landscapes, the
broader impact of this study is that it sheds light on quantifying ecological resilience
attributes in river basins. We believe that a shift toward addressing resilience in river basins
is a prerequisite to understanding current systems and reconnecting our societies with
adaptable strategies aimed to be in sync with the dynamics of natural resources. Scenario
planning and adaptive management are also necessary to overcome undesirable systems
and foster flexibility and adaptability. Our ability to understand the dynamic processes
of the natural system and modify our outdated vision of highly manipulated systems to
obtain maximum yields is the most effective way to manage sustainable, resilient river
basins in the face of increasing environmental and social change.
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Abstract: In the context of climate change, irrigation has become a must for ensuring crop production
because in some regions, the drought episodes became more frequent. The decision to efficiently
allocate water resources should be made quickly, based on tools that provide correct information
with a low computational effort. Therefore, we propose a new user-friendly tool—IrrigTool—for
assessing the irrigation rate considering the precipitation, temperature, evapotranspiration, soil type,
and crop. IrrigTool implements the Thornthwaite equations and can be used to identify weakness
due to drought stress and as an educational tool. Apart from the computation, it provides a graphical
representation of the results and possible comparisons of the output for two locations. The application
is built in Microsoft Excel for graphics and Visual Basic VBA. The user does not have programming
knowledge to use it. Data on monthly precipitation and temperature data must be introduced in the
specified fields, and after pressing the run button, the results are automatically displayed. The article
exemplifies the functioning on data series from Romania’s Dobrogea region.

Keywords: evapotranspiration; irrigation; soil water reserve; water balance

1. Introduction

Water scarcity is one of the world’s most critical issues since water resources are not
uniformly distributed and are affected by pollution. Moreover, people from some regions
have no access to fresh water. Industrial activities, intensive chemical fertilizers utilization,
vehicle exhaust, acidic rain, and climate change are among the most critical threats to
groundwater quality [1,2]. The water quality for agricultural use is questionable in many
situations, while in others, the water composition is not appropriate for such use [3]. Thus,
water availability has become a restrictive factor for irrigation in different world regions [4].

In climate change conditions, this issue becomes more acute [5]. Since a population of
about 7 billion people must be fed, an increasing concern for ensuring food necessities has
manifested. Scientists and professionals should cooperate to find new approaches to ensure
food production [6]. Different solutions have been proposed, each based on the particular
climate of the region of interest. Rational irrigation, influenced by climate, crop, and soil
type, aiming at ensuring the humidity necessary for plants’ development and minimizing
water consumption, is one of them [7].

While the climate influences irrigation necessity, it seems that, in its turn, irrigation
impacts the climate of the regions where it is applied [8–10].

Efficient irrigation should consider the new technology and water management prac-
tices that may increase the performance of the available irrigation systems [11,12].

Different authors presented the procedure of “irrigation interval” scheduling [13]
available only for particular regions. For example, the Michiana Irrigation Scheduler
program schedules irrigation for some crops using the Stress Day Index and provides the
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estimated final yield throughout the season as the soil becomes too dry. The KanSched
benefit by a network of weather stations and evapotranspiration (ETRM) is found on the
Internet, but data must be input by hand. The Computerized Irrigation Scheduling by the
Checkbook method (North Dakota State University) uses an earlier bulletin on checkbook
irrigation scheduling. The Cropflex 2000 developed by the Colorado State University aims
at managing irrigation and fertility. The Woodruff Chart maker developed by the University
of Missouri uses the historical hydro-meteorological data for drawing an accumulative
water-use curve for crops, emergence date, and weather. The curve is a graphical tool for
scheduling the irrigations. Unfortunately, these software are of particular use for some
USA regions only.

Water-requirement tables have been built by other scientists [14,15] based on the FAO
documents [16,17]. Different software have been proposed to compute the evapotran-
spiration, an essential component of the water balance equation, mostly based on the
Penman–Monteith equation [18,19], which is the official method adopted by FAO. CROP-
WAT 8.0 [20], WTRBLN [21], EVAP [22], and Excel worksheets have been proposed over
time for water-balance calculation based on the Thornthwaite–Mather methodology [23] or
estimating the ETRM by the Hamon equation [24].

WTRBLN [21] that computes the water balance has its initial version in Basic 3.0, and
the new one in MATLAB needs a license to be used as well as computational skills. The
Excel 2000 worksheet announced by Armiraglio et al. [23] is available on request, and
that of Mammoliti et al. [25] computes only the water balance. EVAP [22] is a FORTRAN
program that implements the Thornthwaite equation for the ETRM computation similar
to [20,21,23] but not the irrigation rate.

Related studies using remote sensing (RS) are those of Droogers et al. [26], Olivera-
Guerra et al. [27], Brocca et al. [28], Bretreger et al. [29], and Foster et al. [30].

Droogers et al. [26] proposed an irrigation scheme based on a two-step modeling
approach. The remote-sensing ETRM was used for optimizing two parameters of the SWAP
model, and then, a forward–backward algorithm was applied to assess the accuracy of
remotely sensed actual ETRM. Olivera-Guerra et al. [27] proposed a new methodology to
estimate the timing and the irrigation rate based on the Landsat-7/8 data in the following
stages: deriving the crop water stress coefficient from the Landsat land surface temperature,
estimating the daily root zone soil moisture, retrieving irrigation at the Landsat pixel scale,
and aggregating pixel-scale irrigation estimates at the crop field scale.

Through the inversion of the soil-water balance equation and by using satellite soil
moisture products as input, the amount of water entering into the soil and hence irrigation
is determined by Brocca et al. [28]. The study of Bretreger et al. [29] utilized the Landsat
satellites (5–8) for monitoring the crop situation based on the vegetation index for assessing
crop development through a crop coefficient. Soil parameters were provided by the digital
soil maps and in situ observations. The results were in concordance with the recorded
irrigation time series. Foster et al. [30] presented an analysis of the relative accuracy of
different satellite-based irrigation water-use monitoring approaches, with evidence of large
uncertainties when water-use estimates are validated against in situ irrigation data at both
the field and regional scale.

In this context, this study introduces a new tool—IrrigTool—aiming to optimize the
water supply necessary for crop growth based on the average monthly temperatures
and precipitation, the soil characteristics, and the type of agricultural crop. It uses the
Thornthwaite equation for the ETRM computation. This tool can be utilized for learning
and practical purposes. It is can also be used without deep knowledge of computer science.

2. Methodology

This section contains the basic formulas employed for the implementation purposes
necessary to understand the implementation.

The irrigation rate (M) is the water quantity used to irrigate the surface of 1 ha
cultivated with a specific type of plant. Hence, it represents the total water quantity that
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must be applied to a crop during and outside the vegetation period to fill the soil moisture
deficit up to the value of the potential evapotranspiration [31].

The water application rate (m) is the quantity of water necessary per 1 ha of the crop
during a unique watering operation. Therefore,

M = ∑ m (1)

and the watering number is
n = M/m. (2)

The watering number is rounded up to the closest natural number, and the irrigation
rate will be corrected accordingly.

The first element that must be considered for computing the irrigation rate is the water
loss by evapotranspiration. The monthly water consumption by the plants’ evapotranspira-
tion and evaporation from the soil surface, denoted in the following by ETRM (m3/ha), is
computed here by the Thornthwaite equations, with a correction that depends on the crop
and geographical zone.

For a month j, ETRM is calculated by [32]:

ETRMj = 160 ×
(
10tj/I

)a × K1 × Kp (3)

where:
tj—the medium temperature of the j-th month, j = 1, ... , 12.
I—the annual thermic index:

I =
12

∑
j=1

( tj

5

)1.514
(4)

a = 6.75 × 10−7 × I3 − 7.71 × 10−5 × I2 + 1.792 × 10−2 × I + 0.49239, (5)

where K1—a coefficient specific to each latitude,
Kp—a coefficient that depends on the crop type.
The second element to be estimated is the water soil storage (m3/ha).
Outside the vegetation period, the depth taken into account for computing the water

available to the plant is the maximum thickness of the storage layer from which the plant
can utilize the water (H). H = 1.5 m for deep soils, H = the real soil depth for soils with short
profiles, and H = the specific depth for soils with heavy and compacted argillic layers [32].

Outside the vegetation period, the soil water reserve varies in the interval [R min, H ,
R max, H], where [32]:

R min,H = 100 × H × DAH × C0,H , (6)

R max, H = 100 × H × DAH × Cc,H , (7)

• R min,H (m3/ha)—the minimum water reserve in the soil, corresponding to the wilting
point, at the depth H,

• R max,H (m3/ha)—the maximum water reserve in the soil, corresponding to the water
field capacity, at the depth H,

• DAH (t/m3)—the soil bulk density corresponding to the depth H,
• Cc,H (%)—the water field capacity corresponding to the depth H,
• C0,H (%)—the wilting coefficient corresponding to the depth H.

During the vegetation period, the water soil storage computation considers the depth
of the active layer (where the principal mass of roots is developed at the maturity stage) h
and the soil type. Therefore, for this period, the maximum and minimum water reserve in
soil R max,h (R min,h) are given by [32,33]:

R max,h = 100 × h × DAh × Cc,h

[
m3/ha

]
, (8)
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R min,h = 100 × h × DAh × Pmin,h

[
m3/ha

]
, (9)

with

• DAh (t/m3)—the soil bulk density corresponding to the depth h,
• Cc,h (%)—the water field capacity corresponding to the depth h.
• Pmin,h(%)—the minimum moisture level, defined as the limit under which the soil

humidity should not decrease for ensuring normal conditions for the plant growth. It
is computed at the depth h by [34]:

Pmin.h =





C0,h + 1/3(Cc,h − C0,h), for light textural type
C0,h + 1/2(Cc,h − C0,h), for medium textural type
C0,h + 2/3(Cc,h − C0,h), for heavy textural type

(10)

where C0,h (%)—the wilting coefficient, corresponding to the depth h.
Pmin,h depends on the soil texture and takes values between the field capacity and the

wilting coefficient.
The water balance equation for a month is [34]:

R f = Ri − ETRM + Pu − A f (11)

where:
ETRM—the monthly water consumption by the plants’ evapotranspiration and evapo-

ration from the soil surface,
Pu (m3/ha)—the water intake from precipitation in that month,
Ri (m3/ha)—the initial water reserve in soil at the considered depth, at the beginning

of the month,
R f (m3/ha)—the final water reserve in soil for the considered depth at the month’s

end,
A f —the groundwater supply. A f is positive only for deep-rooted plants (alfalfa, corn,

beets, soybeans, trees, etc.). Otherwise, A f = 0.
In areas where irrigation is applied before sowing, the initial water reserve is taken

equal to the field capacity Cc,H .
In rainy years during the vegetation period, when Pu > ETRM + R f − Ri, irrigation

is not necessary because the amount of rainfall completely covers the water need.
The water balance computation starts from 1st of October (October is the first month

of the agricultural year). The water reserve at the end of a month j (R f j
) becomes the initial

water reserve for the next month (Rij+1).
From the above, it results that for the months October–March (months I–VI of the

agricultural year), the water balance is calculated at H, whereas for the vegetation period
(April–September), it is calculated at the depth h [34,35].

To compute the irrigation rate, the following rules should be followed:

a. The water reserve in soil must be lower than R max,H (R max,h) in the cold (vegetation)
season. When it is higher, the quantity that exceeds the above limits is considered
lost by infiltration and cannot be used by plants;

b. In the cold period, the water reserve can decrease without limitation except for the
crops subject to water provision.

c. In the vegetation period, the water reserve cannot decrease under R min,h. If the
reserve decreases under this value, watering must be applied.

If the groundwater level varies during the year, then the groundwater supply will be
considered resulting from hydrological forecasts. If the groundwater level does not vary
during the year, then one may use the data from [18].

The water application rate is computed by [36]:

m = 100 × h × DAh × (Cc,h − P min). (12)
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The flowchart of the study is presented in Figure 1.
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The analysis steps (according to Figure 1) are:

(a) Input data from the Excel files where they have been previously introduced. They
are: monthly precipitation (Pu in the flowchart) and temperature series (t– in the
flowchart), the series of the monthly coefficients K1 and Kp, and the A f series. The
input data are validated by checking if the cells are filled in with numerical values. If
not, the algorithm stops. Otherwise, it passes to the next step, as follows:

(b) Read the soil characteristics, namely H, h, DA, C0, and Cc , corresponding to h and
H from the worksheets where they were previously introduced. If all the values are
numerical, and none is absent, the algorithm passes to step (c). Otherwise, it stops.

(c) Compute R min and R max for winter;
(d) Compute P min;
(e) Compute R min and R max for summer;
(f) Compute the monthly irrigation rate;
(g) Compute the initial and final water reserve for each month;
(h) Compute the water application rate and the annual irrigation rate;
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(i) Display the results and the graphical representation.

3. Data Series

The climate in Romania is continuously changing, so the drought regions are becoming
more arid. The Dobrogea region (Figure 2), situated in the south-eastern part of the country,
is experiencing a more extended period without precipitation followed by short periods
with high rainfalls. It was shown that the mean annual temperatures were augmented by
0.8 ◦C after 1997, and many rivers are drying up in summer. Increasing trends are noticed
for the region’s maximum and minimum annual, summer, winter, and spring temperature
series [37–41]. Therefore, the necessity of crop irrigation becomes more relevent than ever.
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The monthly average temperatures and precipitation series recorded at Constant,a
(CT) and Tulcea (TL) during the agricultural years 1998–2019, which were employed to
exemplify the proposed tool, are presented in Figure 3. The basic statistics of these series
are given in Table 1.
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Table 1. Basic statistics of the CT and TL monthly series used for exemplification.

Series Max Min Mean Median Std. Dev. Coef. of Variation Skewness Kurtosis

CT precipitation 259.20 0.30 43.27 36.00 36.53 0.84 1.96 6.95
TL precipitation 173.00 0.00 44.83 37.35 33.91 0.76 1.06 0.85
CT temperature 26.70 −0.20 12.83 12.60 8.17 0.64 −0.03 −1.29
TL temperature 26.20 −4.50 12.08 11.65 8.60 0.71 −0.06 −1.28

4. Implementation

The application was built in Microsoft Excel for graphics and VBA (Supplementary
Materials S1 and S2) because these environments have also been employed for hydrological
analysis, and the environment is easy to use [42–46].

The application’s structure allows the irrigation rate calculation for two locations (S1
and S2) and the comparison of results.

The main worksheets—“Irrigation S1” (Figure 4) and “Irrigation S2”—contain the
work data for each site, the numerical results obtained, and the afferent charts obtained
after running the algorithm.
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Figure 4. The “Irrigation S1” worksheet.

Before running, the input data is entered in seven worksheets (“Pu, t (S1)”, “Pu, t (S2)”,
“ETRM”, “K1”, “Kp”, “Af”, and “Soil”) that are simple and easy to populate by the user
with data according to its need. They will be presented in the following section.

The software selects the values of interest through numerical codes, which correspond
to the data sets entered by the user. In the “Irrigation S1” and “Irrigation S2” worksheets,
the user indicates the codes (settable by him) in the table entitled “DATA SELECTION”.

The user will introduce into the cells Q4–Q11 the following codes:

− in Q4—a code selected from the first column of the worksheet “K1”;
− in Q5—a code selected from the first column of the worksheet “Kp”;
− in Q6—a code selected from the first column of the worksheet “Af”;
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− in Q7—a code selected from the first column of the worksheet “Soil” corresponding to
the winter season;
− in Q8—a code selected from the first column of the worksheet “Soil” corresponding to
the summer season;
− in Q9—a code selected from the first column of the worksheet “ETRM” or “auto”;
− in Q10—"0” or a value selected by the user.

Details will be provided in the following section.
The software takes the data corresponding to the codes from the worksheets “Pu, t

(S1)” (Figure 5), “ETRM” (Figure 6), “K1” (Figure 7), “Kp” (Figure 8), “Af” (Figure 9), and
“Soil” (Figure 10).
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Figure 7. The “K1” worksheet. Data are taken from [34,47].

Initially, the cells from the rectangle C4–N4–N12–C12 in the “Irrigation S1” and
“Irrigation S2” are empty. They are automatically filled in, concomitantly with the charts
“WATER BALANCE” and “WATER RESERVE”, after running the code.

The monthly precipitation and temperature series are introduced in the worksheets
“Pu, t (S1)” and “Pu, t (S2)” (Figure 5). The data are entered consecutively for an unlimited
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number of years for precipitation—in column C—and temperature—in D column D—
separately. The worksheets (Figure 5) implement a 1–12 monthly average calculation
module for both precipitation and temperature series. For performing the computation, the
user can select all the years entered or a specific interval (for example, from year 5 to year
10) and press the button “Find Averages”.
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The average values obtained are automatically displayed in the table next to the series:
the cells I3–T3 for the average monthly precipitation and I4–T4 for the average monthly
temperature. Cells are also automatically filled in the table from the main worksheets—
“Irrigation S1” (for the series introduced in “Pu, t (S1)”) and “Irrigation S2” (for the series
introduced in “Pu, t (S2)”)—namely the cells C4–N4 (for the average monthly precipitations)
and C5–N5 (for the average monthly temperatures). These values are then employed to
calculate the irrigation rates.

When running the program, the user may introduce the corresponding code (11 in
the cell Q6 in the worksheets “Irrigation S1” and “Irrigation S2” from Figure 6) for ETRM.
If the evapotranspiration is known (such as in Figure 6), and data were previously filled
in the worksheet “ETRM”, the balance Equation (11) is computed using these values. If
ETRM is unknown, the user must introduce the code “auto” in the cell Q6 in the worksheets
“Irrigation S1” and “Irrigation S2”, and the ETRM is estimated using Equation (3).

To not restrict the use of the tool for some specific soil types, the series of coefficients
K1, Kp, and A f are entered by the user in separate worksheets with the same names.
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The “K1” worksheet (Figure 7) already contains some K1 values corresponding to
different northern latitudes, among which is the 45◦ north latitude utilized in the exempli-
fication. The table can be filled with values for other latitudes and the corresponding K1
code (assigned by the user). Two different latitudes must have different K1 codes.

The “Kp” worksheet (Figure 8) contains some examples of Kp values but can be filled
with other values according to the crop and the region where it is cultivated. The user can
assign the Kp code in column A and introduce any necessary description in column B.

In Figure 8 there are two types of crops—corn and alfalfa—and the corresponding
coefficients for each location—Constant,a and Tulcea. The values are filled in according
to [35] for the two locations used for exemplification. For other locations and other crops,
some values are provided in [33].

The K1 code and Kp code must be filled in the cells Q4 and Q5, respectively, from the
main worksheets. When pressing the button “RUN Irrigation” from these worksheets, the
corresponding K1 and Kp values are filled in automatically in the cells C6–N6 and C7–N7,
respectively, in the main worksheets.

The “Af” worksheet (Figure 9) contains the groundwater’s supply values. The user
can introduce them, and the code is filled in the cell Q6 from the main worksheets. When
running the code, the values are automatically filled in the table from the “Irrigation S1”
and “Irrigation S2” worksheets (the cells C8–Q8).

Figure 9 refers to the case when there is no water supply from the groundwater.
The “Soil” worksheet (Figure 10) contains the values of H, h, DAH , DAh, C0,H , and C0,h.

It must be filled with the corresponding values for each soil type and each season. Since
the soil characteristics are specific to the season, crop, and soil type, the user should specify
(in column B) the location, the crop (column D), and season (column E).

The irrigation rate and watering numbers (abbreviated by “Water no.” in the charts)
are computed by pressing the command button in the “Irrigation S1” and “Irrigation S2”
worksheets using Equations (1) and (2). The results and graphs are updated (the previous
results are overwritten) both in the two main worksheets and in the comparison one (“S1
vs. S2”) (Figure 11).
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5. Results

In the following, we exemplify how IrrigTool works, giving as input the monthly
temperature and precipitation at Constant,a and Tulcea (Romania) for 22 agricultural years
(1998–2019). Given that the agricultural year starts in October (1 or month X in all the
charts), the data series are introduced in the “Pu, t (S1)” and “Pu, t (S2)” worksheets. The
chosen crop was corn.

Considering the geographical position of Romania, the K1 code represents the values
of K1 corresponding to 45◦ northern latitude (Figure 7—C10).

The Kp code was chosen as 11 and 13 for CT and TL, respectively (Figure 8).
The water supply from groundwater was A f = 0 because the region is arid, so the Af

code was set to 11 (Figure 9).
The Soil code (Figure 10) for winter (summer) was the same, 11 (12), given the same

soil characteristics. The ETRM code was set to “auto”, so the ETRM was computed using
Equation (3).

The initial water reserve in soil for October (Ri for month X) must be provided to start
the computation. The user may introduce the value in the cell corresponding to “Ri for
month X” from “Irrigation S1” and “Irrigation S2” or allow the software to compute it
based on the formula (6) if “0” is inserted in that cell. The results obtained when the Ri for
October is computed according to the methodology presented above are shown in Figure 12
(for CT) and Figure 13 (for TL), whereas their comparison is provided in Figure 14.

Row 15 in Figures 12 and 13 contains the watering numbers. One watering must be
applied in June, August, and September and two in July for both locations. The water
application rate is m = 812 m3/ha (cells K12, M12, and N12, in Figures 12 and 13). The
value 1623 from cell L12 in Figures 12 and 13 is equal to 2m. The irrigation rate is 4058 in
both cases (row 16 in the left-hand side table in Figures 12 and 13).

The “Water balance” charts (Figures 12 and 13) illustrate the mean monthly precipi-
tation, ETRM, A f , and m, whereas the second ones contain the water reserve (initial and
final, maximum and minimum). The charts from Figure 14 summarize the findings for
both locations.

The ETRMs are comparable at CT and TL. The initial and final water reserve is slightly
higher at TL. The irrigation rate is the same at TL and CT. The watering should be applied
the same month and in the same amount.

From Figures 12–14, row 30, it results that during the first eight months of the agri-
cultural year (October–May), it is not necessary to apply irrigation. In June, August, and
September, one watering should be applied (812 m3/ha). In July, watering should be
applied twice (a total of 1624 m3/ha).

This aspect is emphasized in Figures 12 and 13, the bottom left chart, by the black
dotted curves and in Figure 14, the top chart, by the yellow continuous curve (for CT) and
the black dotted curve (for TL).

Given that the watering distribution depends on the initial soil reserve in October, the
user may run the algorithm many times, at each run considering the initial water reserve in
soil in October to be equal to the final water reserve in September in the previous run (and
introducing manually this value in the cell “Ri for month X”).
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6. Discussion

First, we compared the irrigation rate obtained using the Thornthwaite equation
with the results obtained using the measured ETRM in the neighborhood of Constant,a
(at Mamaia). We mention that the procedure followed in Romania is that the ETRM is
measured only for nine months, from March to November, so the rest of the values are
considered to be zero. Therefore, IrrigTool was run with the ETRM code 12 in the worksheet
“ETRM” (Figure 15). The output is shown in Figure 16.
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There are no significant differences between the computed and measured ETRM 

values—cells C9–E9 in Figures 12 and 16 and the watering numbers are the same (one in 
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illustrate this assertion, we considered the crop alfalfa with the Kp code 12 (alfalfa). In 

Figure 15. Average ETRM values in the neighborhood of CT, at Mamaia (5 km from CT).

There are no significant differences between the computed and measured ETRM
values—cells C9–E9 in Figures 12 and 16 and the watering numbers are the same (one in
June, August, and September and two in July).

In the previous section, we indicated that the irrigation rate depends on the crop. To
illustrate this assertion, we considered the crop alfalfa with the Kp code 12 (alfalfa). In this
case, the soil code must be modified as well. In this case, it will be 15 for summer and 16
for summer (Figure 17).

The watering number has a different distribution: one in June and July and two in
August. The irrigation rate is 4224 m3/ha because, in this case, m = 1056 m3/ha.

It was also mentioned that the irrigation rate depends on the initial water reserve
in the soil. To exemplify, let us consider the same settings as in Figure 17, with Ri in the
month 1 = Rmin in the month IX (2614 m3/ha), and run the algorithm. In this case, one
watering should be applied in from May to July. The irrigation rate will remain the same:
4224 m3/ha (Figure 18).
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If the water reserve in the soil is known, it is indicated to use its value to better estimate
the irrigation rate.

7. Conclusions

This article presented a new tool, IrrigTool, designed for computing the irrigation rate
based on the Thornthwaite equation for ETRM. It is implemented in VBA and Excel and is
easy to use without knowledge of the formula implementation. The user can introduce the
data series in different worksheets whereby, during the computation, the programs import
the data into the main worksheets. The output for two different data sets can be compared
as series of numbers and graphically.

This tool’s main advantage is that it permits the user to use either the Thornthwaite
equation for ETRM computation or to manually fill in the recorded values of ETRM.
Manually selecting or automatically computing the initial water reserve for the first month
of the agricultural year is also permitted based on the available data. Moreover, there is no
limitation related to the climatic conditions. The tool is user-friendly because it does not
require programming skills but only basic knowledge of Excel.

A disadvantage of this tool is that the irrigation rate is computed only using the
Thornthwaite equation (when ETRM is not known) and does not provide a comparison
with another method. Therefore, in future work, we have the following goals: (a) to add
a module that computes the ETRM by the Penman–Monteith equation and (b) to add
a module to compare the irrigation rates computed based on the Thornthwaite and the
Penman–Monteith equations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152399/s1, Excel–VBA application: IrrigTool. S1. The VBA
code, S2. The VBA–Excel Application.
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