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José Maurı́cio, Inês Domingues and Jorge Bernardino

Comparing Vision Transformers and Convolutional Neural Networks for Image Classification:
A Literature Review
Reprinted from: Appl. Sci. 2023, 13, 5521, doi:10.3390/app13095521 . . . . . . . . . . . . . . . . . 306
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Preface

With the rapid development of artificial intelligence, big data, and self-media, computational

thinking and analysis methods of network science have become prevalent in people’s life and work,

and a variety of theoretical calculation methods and analysis techniques for network science have

emerged. This Special Issue will be rich in content, covering many disciplines such as computer

science, mathematics, journalism and communication, sociology, and management. It is not only

suitable for graduate students in computer science and artificial intelligence, but it is also suitable for

researchers in related fields.

It focuses on the modeling and analysis of network science, including that of key node

identification, community detection, personalized recommendation systems, image processing,

object detection, and the optimization method of artificial intelligence technology.

These research results will not only provide decision references and theoretical guidance

for relevant management departments, but will also help relevant enterprises and institutions to

optimize products and services, and will provide accurate personalized recommendations for users

according to the different characteristics of individuals in complex networks.

Xiaoyang Liu, Giacomo Fiumara, Pasquale De Meo, and Annamaria Ficara

Editors
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1. Introduction

Artificial intelligence (AI) in complex networks has made revolutionary breakthroughs
in this century, and AI-driven methods are being increasingly integrated into different
scientific research [1–3]. The scientific research of complex networks can be traced back
to two aspects. Firstly, the main mathematical subjects of graph theory and statistical
physics. One of the major breakthroughs in graph theory is the idea of random graph
theory. Complex topologies arise from simple random rules. Random graph theory is
often used in conjunction with percolation theory to describe random network modeling.
Secondly, complex systems and statistical physics gave birth to a few important theoretical
models, such as the Ising model [4–8], mean-field theory, nonequilibrium thermodynamics
and dissipative structure theory, synergetic theory, and self-spinning glass model [8,9].

Moreover, AI plays a crucial role in improving the performance of network dynam-
ics, key node mining, community detection, and recommendation behaviors in complex
networks [10,11]. The social impact of artificial intelligence is becoming increasingly promi-
nent. On the one hand, as the core force of a new round of scientific and technological
revolution and industrial reform, artificial intelligence is promoting the upgrading of tradi-
tional industries, driving the rapid development of an “unmanned economy”, and having
a positive impact on people’s livelihoods, such as intelligent transportation, smart homes,
and intelligent medical care. On the other hand, issues such as personal information and
privacy protection, intellectual property rights of AI-created content, possible discrimina-
tion and bias of AI systems, traffic regulations for driverless systems, and the scientific and
technological ethics of brain–computer interfaces and human–machine symbiosis, have
emerged and need to be urgently provided with solutions [12–15].

Despite the transformative potential of AI in complex networks, there are challenges
such as data privacy, user privacy protection, data sample scarcity and diverse network
structure, and so on. As these technologies continue to evolve, addressing these issues is
paramount for ensuring their responsible and ethical implementation. In the future, further
developments in AI technologies are expected to refine and expand their applications
in social networks, social computing, transportation and finance networks, large model
applications, etc.

2. An Overview of the Published Articles

Complex network theory is widely used in the field of artificial intelligence, and key
node identification is the core technology of complex network theory research, which
has been highly concerned by the academic community. Many scholars have conducted
in-depth research on academic problems such as the identification of critical nodes or the
ranking of node importance in complex networks, and have achieved a large number of
research results (contributions 1, 4, 7, 10).

A community in a network is a set of nodes that are highly connected to each other,
unlike other nodes in the network, which have relatively random and scattered relation-
ships. A key role of community detection algorithms is that they can be used to extract
useful information from the network. The biggest challenge for community detection is
that the community structure is not universally defined (contributions 3, 5, 19).

Appl. Sci. 2024, 14, 2822. https://doi.org/10.3390/app14072822 https://www.mdpi.com/journal/applsci1
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As the most central component of the personalized recommendation system, the
efficiency of the recommendation algorithm directly affects the performance of the entire
recommendation system. More mature recommendation algorithms include content-based,
collaborative filtering, and other algorithms. Although these algorithms have been widely
used, there are still many areas to be improved. The recommendation algorithm based
on complex network theory is a good attempt, and it is also one of the current research
hotspots (contributions 9, 11, 12, 16).

The data modeling, image processing, object detection and optimization methods of
artificial intelligence technology have all been widely used (contributions 2, 6, 8, 13, 14, 15,
17, 18, 20).

There are two main ways to predict information propagation in complex networks.
One is feature-based methods; these methods rely on users to manually extract features,
such as the content features of the information, the timing features of the current propaga-
tion, the structural features, and the user characteristics on the propagation path. Based
on these features, a regression algorithm is used to predict the number of retweets. The
effects of these kinds of methods depend heavily on the extraction of features. For different
problems, users need to extract appropriate features according to their own experiences.
The second category is the generative algorithm, which designs a model to simulate the
mechanism of information diffusion, tries to retain the main characteristics of information
diffusion in the model, and then uses the model to calculate the spread range of each piece
of information in the future.

These papers were received from Europe and Asia, with a number combining the
expertise of researchers from different countries and even different continents. Finally, we
are particularly pleased with the breadth of authors, topics, techniques, and findings that
can be found within this Special Issue, “Artificial Intelligence in Complex Networks”.

3. Conclusions and Future Perspectives

With the publication of the present Special Issue, we hope to contribute to better
links being formed between artificial intelligence and complex networks; as such, we
have selected original works aimed at including key node identification, community
detection, recommendation systems, object detection, data processing, and optimal decision
algorithms in complex networks. Due to its interdisciplinary and complexity characteristics,
the study of complex networks involves the knowledge and theoretical bases of many
disciplines, especially those of system science, statistical physics, mathematics, computer
and information science, etc. The commonly used analysis methods and tools include graph
theory, combinatorics, matrix theory, probability theory, stochastic process, optimization
theory, genetic algorithms, etc. The main research methods of complex networks are based
on graph theory and its methods, and have achieved gratifying results.
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Abstract: In research on complex networks, mining relatively important nodes is a challenging
and practical work. However, little research has been done on mining relatively important nodes
in complex networks, and the existing relatively important node mining algorithms cannot take
into account the indicators of both precision and applicability. Aiming at the scarcity of relatively
important node mining algorithms and the limitations of existing algorithms, this paper proposes
a relatively important node mining method based on distance distribution and multi-index fusion
(DDMF). First, the distance distribution of each node is generated according to the shortest path
between nodes in the network; then, the cosine similarity, Euclidean distance and relative entropy are
fused, and the entropy weight method is used to calculate the weights of different indexes; Finally, by
calculating the relative importance score of nodes in the network, the relatively important nodes are
mined. Through verification and analysis on real network datasets in different fields, the results show
that the DDMF method outperforms other relatively important node mining algorithms in precision,
recall, and AUC value.
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1. Introduction

With the vigorous growth of network and information technology represented by
the Internet, human society has entered a new and complex era of networks. Information
mining in complex networks is important in theoretical research and offers great application
and socioeconomic values [1–4]. For example, if users can unearth important nodes or
edges in the spread network of a virus, then they can curb the spread of the virus in a
short time by isolating or cutting off the important nodes or edges in the virus network at
the beginning of the virus spread and thereby eliminate unnecessary economic losses [5].
Efficient information mining in complex networks has naturally become a key topic that
continues to attract the attention of many scholars.

The existing studies on complex network information mining are generally ranked
on the basis of the importance of all nodes and edges in the network [6–10]. However,
determining which nodes are the most important in the network relative to one or one group
of specific nodes presents an issue. This problem reminds us about the practical significance
of mining relatively important information in networks, especially very large-scale ones.

The relative importance of nodes refers to the importance of nodes relative to known
important nodes. It is also called proximity or similarity [11]. According to the key idea
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of relative importance, information mining in a complex network can be described as a
process in which the importance of a node in a network relative to a known important
node is quantified and the importance of a node relative to a known important node set is
calculated to identify the relatively important nodes in the network.

The central idea of relative importance can be widely used in many fields. For example,
potential criminals can be found using known criminal data in the field of criminal networks,
and terrorists in hiding can be captured on the basis of known terrorist data [12,13]. In
the bionetwork field, people susceptible to diseases can be identified for timely treatment
and isolation on the basis of relevant information on populations infected with known
infectious diseases. Unknown pathogenic genes may be determined according to known
pathogenic gene information in protein networks [14]. In the field of power grids, on
the premise that the information on important power generation units or circuit breakers
is known, finding relatively important power generation units, circuit breakers, etc. is
prioritized for protection, in order to effectively avoid large-area power outages caused by
successive faults. Mining relatively important nodes in complex networks obviously offers
great research significance and application value [15].

The node distance distribution in a complex network quantifies many types of topo-
logical information in the network, including the degree of nodes, average degree of the
network, diameter of the network, closeness centrality of nodes, and average path length
of the network [16]. Therefore, the study on the relative importance of nodes in a network
based on node distance distribution in the network will contribute to the accurate mining of
relatively important nodes in networks. In the current study, the distance distribution of all
nodes in a network is calculated. On the basis of known important node information, the
differences in distance distribution between known important nodes and target nodes are
measured from three dimensions, namely, direction, distance, and distribution. A relatively
important node mining method based on distance distribution and multi-index fusion
(DDMF) is proposed.

The DDMF method involves two main steps: First, the distance distribution of all
nodes (including known important nodes and target nodes) is calculated on the basis
of the shortest distance between nodes in the network. Then, the calculated results are
converted into vector form. Second, multi-index fusion is made for cosine similarity,
Euclidean distance, and relative entropy. The weights corresponding to different indexes
are calculated using the entropy weight method to obtain the relative importance scores
of the nodes. The nodes with high scores are regarded as a relatively important nodes in
the network.

Our key contribution is in proposing a novel method based on network topology to
find relatively important nodes in the network. The DDMF method not only fills the gap of
relatively important node algorithms in the scientific field of complex network theory, but
also provides a new idea for community detection and link prediction. Since the network
in real life exists in different kinds of fields, we also conduct some experiments on different
types of real network datasets to verify whether the method has practical application value
in real life. Experiments demonstrate that DDMF method outperforms other relatively
important node mining algorithms in terms of precision and applicability.

The remainder of this paper is organized as follows. In Section 2, works related to
the proposed method are given. Section 3 deals with detailed descriptions of the proposed
algorithm. The experimental results and analysis are presented in Section 4. Finally, we
summarize in Section 5.

2. Related Work

At present, many researchers in the field of complex networks focus on the mining
of important nodes in networks; that is, ranking the importance of all nodes in a network
as a whole. Existing research has primarily aimed to develop an identification algorithm
for influential nodes. Inspired by the heuristic scheme, Wang et al. [17] proposed the
price-performance-ratio PPRank method, selecting nodes in a given range and aiming to
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improve the performance of the diffusion. Yang et al. [18] proposed a method of ranking
node importance based on multi-criteria decision-making (MCDM). The weight of each
criterion is calculated by an entropy weighting method, which overcomes the impact of the
subjective factor. Li et al. [19] proposed a method of calculating the importance degree of
urban rail transit network nodes based on h-index, which considers the topology, passenger
volume, and passenger flow correlation of the urban rail network. Luo et al. [20] proposed
a relationship matrix resolving model to identify vital nodes based on community (IVNC),
as an attempt to identify influential nodes in OSNs.

However, the study on node mining based on relative importance remains limited.
The earliest study on relative importance in networks is that on a personalized variant HITS
algorithm [21]. Haveliwala [22] and Jennifier et al. [23] later proposed their own variant
PageRank algorithms, which consider the relative importance of nodes in a network. Alza-
abi et al. [24] defined the universal framework of mining algorithms for relatively important
nodes and proposed that the relative importance of nodes in a network relates to one node
set or one group of specified node sets. Wang et al. [25] proposed a path probabilistic
summation method, which defines the importance of any node relative to the nearest neigh-
bor node as the probability of jumping from the node to the nearest neighbor node in the
random walk process. Rodriguez et al. [26] proposed a cluster particle propagation method,
which is used to evaluate the relative importance of nodes. Magalingam et al. [27] used
shortest distance as a measurement indicator of relative importance. Langohr et al. [28]
used the reciprocal of the P norm of the shortest distance as a measurement indicator
of relative importance. In addition, some researchers have considered mining deep net-
work information by using network embedded learning methods [29–35]. For example,
some classical network-embedded learning algorithms have been used to mine relatively
important nodes in networks.

Although some algorithms have been employed to mine relatively important nodes
in networks, they suffer from problems that require immediate resolution, such as low
accuracy and narrow use range. Therefore, novel and efficient methods for mining relatively
important nodes need to be developed.

In the study of complex networks, the most classic and most widely used relative
importance calculation indicators include the Ksmar index [11], PPR index [21], and
Katz index [36]. Zhao et al. [37] proposed a relatively important node mining algorithm
based on neighbor layer diffuse (NLD) in 2021, which is the latest relatively important node
algorithm. In Section 4, we empirically compare our method with these methods using
various real world networks.

3. Relative Importance Measure Based on Distance Distribution and
Multi-index Fusion

To fully measure the impact of network structure information on the relative impor-
tance of nodes, this study proposes a relatively important node mining method based on
distance distribution and multi-index fusion, i.e., the DDMF method. In this section, we
first introduce the problem definition in complex networks and use a specific example
to explain what is the distance distribution. Then three indicators of cosine similarity,
Euclidean distance, and relative entropy are described in detail. Finally, we discuss how to
calculate the relative importance score of a node based on multi-index fusion.

3.1. Problem Definition

Under normal conditions, a complex network can be represented by G(V, E). Here, V
refers to the node in the network G and E refers to the edge of the network G. The network
G comprises n nodes. Among them, n nodes can be divided into important node set V1 and
unimportant node set V2. The important node set V1 has n1 nodes, while the unimportant
node set V2 has n2 nodes. The important node set V1 includes known important node set R
and unknown important node set U. The unimportant node set V2 and unknown important
node set U constitute target node set T, i.e., T = V2 ∪ U.
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The key to finding the relatively important nodes in the target node set T is to first
calculate the importance of a node in the target node set T relative to a known important
node, and then calculate the importance of a node relative to all nodes in the known
important node set R.

The main contents of this work include the following: For the information of known
important node set R, the importance of any node in the target node set T relative to the
node in the known important node set R is analyzed and calculated. The expectation is
to find top − k relatively important nodes in the target node set T. The final results are
analyzed and evaluated on the basis of three evaluation indicators, namely, precision, recall,
and area under the curve (AUC).

3.2. Distance Distribution

Distance distribution in complex networks is usually represented by the shortest
path distribution between nodes. The node distance distribution in the network mainly
considers the number of nodes with different shortest path lengths to the current node;
thus, it can intuitively obtain the shortest path information of nodes in the network and
reflect many important topological information in the network [38].

The distance distribution of each node vi in the complex network can be represented
as Pi = {pi(j)}; the calculation formula of pi(j) is

pi(j) =
Ni(j)

n
(1)

where j represents the shortest path length with a value in the range of 0 ≤ j ≤ D(G). D(G)
refers to the diameter of the network G, and its value is the maximum distance between any
two nodes in the network G. Ni(j) represents the number of nodes with j of the shortest path
length to node vi in the network G; n represents the number of nodes in the network G.

Take a network Gexample as an example. The detailed calculation process of node
distance distribution in Gexample is introduced as follows. In Figure 1, the red nodes are the
nodes in the current study while the yellow, light green, blue, and pink nodes represent the
nodes that can be reached by taking one, two, three, and four steps consecutively, starting
from the nodes studied currently.

Figure 1. The topology of the example network.

The number of nodes n in the sample network Gexample is 20, and the diameter
D(G) is 7. The distance distribution dimension mainly depends on the diameter of the
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network. Its value range is from 0 to D(G), with a total of D(G) + 1 cases. Therefore, the
distance distribution dimension d of each node in Gexample is 8. Provided that node 0 is
used as the starting research node, the set of nodes N(i) = {Ni(j)|0 ≤ j ≤ D(G)} that
can be reached by node 0 in turn can be obtained by calculating the shortest path length
between this node and other nodes in Gexample, that is, according to Formula (1) and N(i)
obtained through the above analysis, the distance distribution P0 of node 0 can be obtained
as: P0 = {0.05, 0.15, 0.30, 0.35, 0.15, 0, 0, 0}.

Similarly, the distance distribution of any node in the sample network Gexample can be
obtained. For a network G with n nodes, if the distance distribution of n nodes is known
P = {P0, P1, · · · , Pn−1}, then much important topology information in the network G can
be obtained on the basis of the distance distribution of nodes. For example, the degree ki
of any node vi in G, the average degree k of G, the average path length APL of G, and the
closeness centrality CCi corresponding to node vi.

For the network G with n nodes, a distance distribution matrix X = [xij] ∈ Rn×d is
established on the basis of the distance distribution information of all nodes in G; n refers
to the total number of nodes in the network G.

(1) Degree ki of node vi

ki = nxi1 (2)

(2) Average degree k of network G

k =
1
n

n−1

∑
i=0

nxi1 (3)

(3) Average path length APL of network G

APL =
2

n(n − 1)

n−1

∑
i=0

D(G)

∑
j=1

j × nxij (4)

(4) Closeness centrality CCi of node vi

CCi =
n

D(G)

∑
j=1

j × nxij

(5)

The analysis indicates that the distance distribution of nodes contains abundant network
topology information. Therefore, taking the distance distribution Pi of each node vi in the
network G as the main subject investigated and converting it into vector form, the difference
in the distance distribution between nodes in the known important node set R and the target
node set T is analyzed to find the relatively important nodes in the network G.

3.3. Introduction to Indicators

Cosine similarity is a measurement method for the difference between two individuals
and involves calculating the cosine value of the angle between two vectors in the vector
space, mainly focusing on the measurement of the difference between two individuals from
the dimension of direction. The basic idea is to covert the individual’s index data into the
vector space and then measure the difference between individuals by comparing the cosine
values of the angle in the inner product space between different individual vectors [39].
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In a M-dimensional space, assuming that A and B are M-dimensional vectors, namely
A = [a1, a2, · · · , aM], B = [b1, b2, · · · , bM], then the cosine similarity CosAB can be
expressed as:

CosAB =

M
∑

i=1
(Ai × Bi)√

M
∑

i=1
(Ai)

2 ×
√

M
∑

i=1
(Bi)

2

=
A · B

|A| × |B| (6)

where the value range of CosAB is [–1, 1], that is, CosAB ∈ [−1, 1].
In this work, the distance distribution of nodes in the network is converted into vector

form; that is, in the network G with n nodes, the vectors of distance distribution of any
node x and node y can be expressed as Px and Py, respectively. Then, the formula for the
cosine similarity between nodes can be represented as:

DCos
(

Px‖Py
)
=

Px · Py

|Px| ×
∣∣Py
∣∣ (7)

Cxy =
1 + DCos

(
Px‖Py

)
2

(8)

Normalization is performed for the cosine similarity between nodes DCos(Px‖Py)
based on Equation (8), and Cxy is obtained. Among them, Cxy ∈ [0, 1].

Euclidean distance, also called Euclidean metric, originates from the distance formula
between two points in Euclidean geometry [40]. It is mainly used to measure the real
distance between two points in M-dimension space; that is, focusing on the numerical
difference between individuals.

In a M-dimensional space, assuming that A and B are M-dimensional vectors, namely
A = [a1, a2, · · · , aM], B = [b1, b2, · · · , bM], then the Euclidean distance EucAB can be ex-
pressed as:

EucAB =

√√√√ M

∑
i=1

(ai − bi)
2 (9)

Similarly, the distance distribution of nodes in the network G is first converted into vec-
tor form. Then, the Euclidean distance between any node x and node y can be represented
as Eucxy:

Exy =
Eucxy

Eucmax
(10)

Normalization is performed for Euclidean distance Eucxy between node x and node y
based on Equation (10), and Exy is obtained. Among them, Exy ∈ [0, 1].

From information theory, relative entropy, also called KL divergence or information
divergence, is generally used to measure the difference between two probability distribu-
tions [41]. In this work, the difference in the distance distribution between different nodes
in the network is calculated from the dimension of distribution to effectively find relatively
important nodes in the network.

For the network G with n nodes, the distance distributions of node x and node y are Px
and Py, respectively. Then, relative entropy can be defined as the difference in the distance
distribution between the two nodes. The formula is as follows:

DKL
(

Px‖Py
)
=

D(G)

∑
j=0

px(j) ln
px(j)
py(j)

(11)

If relative entropy DKL(Px‖Py) is small, then the difference in the distance distribution
between node x and node y is small. The denominator of the logarithmic function cannot
be 0. Therefore, in px(j) = 0 or py(j) = 0, the values of ln px(j)

py(j) are uniformly set to 0.
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In addition, relative entropy is an asymmetric measure. Therefore, this study sym-
metrically converts the relative entropy between node distance distributions. The specific
formula is as follows:

Qxy =
DKL

(
Px‖Py

)
+ DKL

(
Py‖Px

)
2

(12)

Rxy = 1 − Qxy

Qmax
=

Qmax − Qxy

Qmax
(13)

The relative entropy in asymmetric form is converted into symmetric form Qxy in
Equation (12). On the basis of Equation (13), normalization processing is implemented for
the relative entropy in symmetric form, then Rxy is obtained. Among them, Rxy ∈ [0, 1].

This study aims to find relatively important nodes in the network G by calculating the
relative entropy of the distance distribution of nodes in the known important node set R
and target node set T. If the relative entropy is small, then the difference in the distance
distribution between different nodes is small. That is, the nodes with a smaller relative
entropy in the target node set T compared to the known important node set R are more
likely to be relatively important nodes in the network G.

3.4. Relative Importance Score Based on Multi-index Fusion

To fully integrate the advantages of cosine similarity, Euclidean distance, and rela-
tive entropy in the direction, distance, and distribution dimensions, this study performs
the multi-index fusion of cosine similarity, Euclidean distance, and relative entropy and
calculates the weights of the different indexes by using the entropy weight method [42]
to maximize the advantages of the different indexes. The entropy weight method is an
objective weighting method that is widely used and often depends on the discreteness of
data. It mainly weighs different indexes according to the amount of information of different
evaluation indexes.

Cosine similarity, Euclidean distance, and relative entropy are mainly considered in
this work. Thus, weight allocation becomes necessary. A relative importance score matrix,
Z = [ztg] ∈ R|T|×3, is defined herein.

zt1 =

|R|
∑

r=1
Ctr

|R| , t = 1, 2, · · · , |T| (14)

zt2 =

|R|
∑

r=1
Etr

|R| , t = 1, 2, · · · , |T| (15)

zt3 =

|R|
∑

r=1
Rtr

|R| , t = 1, 2, · · · , |T| (16)

where zt1, zt2 and zt3 represent the arithmetic mean of cosine similarity, Euclidean distance
and relative entropy between the t − th node in the target node set T and all nodes in the
known important node set R respectively. |T| refers to the number of nodes in the target
node set T, |R| refers to the number of nodes in the known important node set R, and g
refers to the number of indexes, g = 1, 2, 3.

Based on the relative importance score matrix, the entropy corresponding to cosine
similarity, Euclidean distance, and relative entropy can be further calculated. The formulas
are as follows:

eg = − 1
ln|T|

|T|
∑
t=1

ptg ln(ptg) (17)
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ptg =
ztg

|T|
∑

t=1
ztg

(18)

where eg represents the entropy of the index in the g column and ptg represents the
proportion of the index in the g column of the t − th node in the target node set T in
this column of indexes.

After the entropies of different indexes are obtained, the weight coefficient ωg of
each index can be further calculated. The weights corresponding to different indicators
determine the relative importance scores of the target nodes in the network. The specific
formula is:

ωg =
1 − eg

3
∑

g=1
(1 − eg)

(19)

where 1 − eg refers to information entropy redundancy. At the same time, ωg should meet
the restrictive conditions of ∑ ωg = 1, g = 1, 2, 3.

Therefore, the relative importance score of t − th node in the target node set T can be
expressed as:

st = ω1zt1 + ω2zt2 + ω3zt3 (20)

Finally, the relative importance scores of all nodes in the target node set T are
sorted in descending order, and the nodes with high scores can be regarded as relatively
important nodes.

The calculation of the relative importance scores of the nodes in a network by using
the DDMF method consists of the following steps:

First, on the basis of the information of the shortest distance between nodes in the
network G, the distance distribution vectors of all nodes in the network G are calculated,
along with all the nodes of the known important node set R and target node set T.

Second, the differences in the distance distribution of the nodes between the known
important node set R and the target node set T are determined. The cosine similarity,
Euclidean distance, and relative entropy of the distance distribution of the two node sets
are then calculated and normalized.

Finally, multi-index fusion is made for cosine similarity, Euclidean distance, and
relative entropy, and the weights corresponding to different indexes are calculated using
the entropy weight method. The relative importance scores of all the nodes in the target
node set T are further obtained. The nodes with high scores are regarded as relatively
important nodes.

4. Experimental Results and Analysis

The data of four real networks are used to analyze and verify the accuracy of the
DDMF method. The Node2vec algorithm [43] is a network-embedded learning algorithm
that cannot be directly used to calculate the relative importance scores of nodes. Therefore,
the NMF index is obtained on the basis of the improvement of the Node2vec algorithm.
The basic idea of the NMF index is as follows: first, the Node2vec algorithm is adopted
to generate the embedded vector of the network. Second, the multi-index fusion is made
for the obtained vectors so as to calculate the relative importance scores of the nodes. The
multi-index fusion method of the NMF index is consistent with proposed DDMF method.

The comparative algorithms included the Ksmar index, PPR index, Katz index, NLD
algorithm, and NMF index obtained on the basis of the Node2vec algorithm improvement.

4.1. Datasets

Experimental analysis is performed for the selected algorithms by using four classical
real network datasets. The selected datasets are of different sizes and come from differ-
ent network fields as much as possible, including virus networks, gene networks, and
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protein networks. The weight and direction of each network linking edge are ignored in
this experiment.

(1) The international aviation network where the SARS virus spread [44] comprises
224 nodes and 2247 edges. The nodes represent the countries where flights arrived while the
edges represent the routes between two countries. The important node set of the network
is defined as the countries where the SARS virus spread at the early stage.

(2) The Genepath human gene signaling network [45] comprises 6306 nodes and
57,340 edges. Nodes represent genes while edges represent the relationship between nodes.
The important node set of the network is defined as the Alzheimer’s disease gene.

(3) The mouse protein interaction network [46] comprises 1187 nodes and 1557 edges.
Nodes represent mouse proteins while edges represent the interaction between proteins.
The important node set of the network is defined as mouse protein kinase.

(4) The yeast protein network [47] comprises 5093 nodes and 24,743 edges. The nodes
represent proteins while edges represent the relationship between proteins. The important
node set of the network is defined as the important protein of the yeast network.

The basic topology characteristics of the four real networks used in this work are
shown in Table 1.

Table 1. Basic topological characteristics of real networks.

Dataset n m n1 k C

SARS 224 2247 18 20.06 0.65
Genepath 6306 57,340 51 18.19 0.32

Mouse 1187 1557 67 2.62 0.09
Yeast 5093 24,743 1167 9.72 0.1

Here, n refers to the number of nodes in the network, m refers to the number of edges
in the network, n1 refers to the number of important nodes in the network, k refers to the
average degree of the network, and C refers to the average clustering coefficient of the
network.

4.2. Evaluation Indexes

Precision, recall, and AUC are the three evaluation indexes used to quantify the
relatively important nodes obtained by several algorithms in this work.

Precision is mainly used to measure whether the top − L nodes in the results by the
algorithm are predicted correctly. It is specifically defined as the proportion of correct
predictions in top − L nodes among the predicted results. The formula is defined as:

precision =
Nr

L
(21)

where Nr refers to the frequency at which the top − L nodes predicted by the algorithm
occurred in the unknown important node set U.

Recall is mainly used to measure how many of the top − L nodes predicted by the
algorithm are correctly predicted. It is specifically defined as the proportion of the number
of unknown important nodes nr found in the top− L nodes in the prediction results relative
to all nodes in the unknown important node set U. The formula is defined as:

recall =
nr

|U| (22)

AUC is mainly used to measure the precision of the algorithm as a whole. The formula
is defined as:

AUC =
0.5N1 + N2

N
(23)
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The specific calculation process for AUC is as follows: one node is selected from the
unknown important node set U, and another is selected from the unimportant node set
V2 in each experiment, and the relative importance scores of the two nodes are compared.
If the two nodes receive the same score, then the score is recorded as 0.5 point; if the
relative importance score of the node selected from the unknown important node set U is
greater than that from the unimportant node set V2, then the score is recorded as 1 point.
N represents the number of all node combinations from the two sets U and V2. After N
independent experiments, the final AUC value is the sum of the scores of N experiments.
Among them, the frequencies of getting 0.5 point and 1 point are N1 and N2, respectively.

4.3. Experimental Analysis

The core goal of this work is to find relatively important nodes from the target node set
T. Therefore, the major subjects investigated from the four real networks selected, that is,
all nodes of target node set T, need to be determined. From the important node set V1, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the nodes are selected and used as known
important nodes. The experiment in this paper treats the proportion of nodes equally; that
is, the number of experiments corresponding to different proportion of nodes is the same.
Different algorithms are used to find the relatively important nodes in the network. At
the same time, precision, recall, and AUC values corresponding to different algorithms
are calculated, and their values obtained from the experiments are averaged. Finally, the
proposed DDMF method is used and compared with other comparative algorithms in
terms of the three evaluation indexes.

The parameters of five other comparative algorithms are adjusted to be close to the
optimal ones in the four networks. The specific values are as follows: K = 3 is taken from
the Ksmar indexes, S = 0.75 is taken from the PPR indexes, and ϕ = 0.0001 is taken from
the Katz indexes. In the NMF algorithm, random walk length walk_length is valued as 10,
embedded vector length size is set to 128, and hyperparameters p, q ∈ {0.25, 0.50, 1, 2, 4}.
In the NLD algorithm, the selection method of known important nodes hub is the same as
that of the DDMF method. The experimental results of the three evaluation indexes are
shown in Figures 2 and 3 and Table 2.

In this study, different proportions of nodes are selected from the important node set
V1 as the known important nodes R. The precision, recall, and AUC values are calculated
by six relatively important node mining algorithms on the basis of experiments. The
average value of 50 times in the experimental results is used as the final experimental result.
Figure 2 shows the precision values of six relative importance node mining methods in the
four networks. The X axis represents the proportion of nodes in the target node set T while
the Y axis represents the precision of different node proportions. Figure 3 shows the recall
rates of the six relative importance node mining algorithms in the four networks. The X
axis represents the proportion of nodes in the target node set T while the Y axis represents
the recall rates of different node proportions. Table 2 shows the AUC values obtained by
the six relative importance node mining algorithms in the four networks.

The experimental results show that with the increase in the number of nodes in
the target node set T, the precision of the algorithm decreases gradually while the recall
rate increases gradually. In order to better simulate the actual situation of different real-
world networks and to reduce accidental error, the important nodes of different batches
are selected in different proportions from the important node set. Then the relatively
important nodes corresponding to the important nodes of these different batches are
calculated and mined. By calculating the arithmetic average of the relatively important
nodes of different batches, the final relatively important nodes are obtained. In terms of
precision, the proposed DDMF method is obviously better than the other five comparative
algorithms in the SARS and Genepath networks, and all of them perform well in the
mouse and yeast networks. In terms of recall, the DDMF method performs well in the
SARS and mouse networks. Specifically, its recall, under multiple node proportions, is
better than those of the comparative algorithms. The DDMF method ranks second for
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the Genepath and yeast networks. In terms of the AUC, the DDMF method outperforms
the others in the SARS, Genepath, and mouse networks and ranks second in the yeast
network. In sum, the proposed DDMF method performs well in terms of all the evaluation
indexes in the SARS, Genepath, and mouse networks and comes in second place in the
yeast network. Specifically, the proportion of the important nodes in the yeast network is
relatively large. Therefore, some errors may occur in calculating the distance distribution
of important nodes.

In general, the proposed DDMF method achieves excellent performance in real and
complex network datasets, especially in terms of the evaluation of precision and AUC. It
is obviously better than several comparative algorithms. At the same time, the selected
datasets come from different fields. The results indicate that the DDMF method is char-
acterized by high precision and wide applicability in mining relatively important nodes
in networks.

  
(a) (b) 

  
(c) (d) 

Figure 2. Precision rate results in four networks: (a) SARS network; (b) Genepath network; (c) Mouse
network; (d) Yeast network.
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(a) (b) 

  
(c) (d) 

Figure 3. Recall rate results in four networks: (a) SARS network; (b) Genepath network; (c) Mouse
network; (d) Yeast network.

Table 2. AUC results in four networks.

Dataset Ksmar PPR Katz NMF NLD DDMF

SARS 0.686 0.683 0.650 0.635 0.667 0.692
Genepath 0.545 0.526 0.482 0.568 0.565 0.675

Mouse 0.696 0.693 0.685 0.654 0.669 0.737
Yeast 0.596 0.582 0.564 0.686 0.665 0.669

5. Conclusions

A relatively important node mining method based on DDMF is proposed in this
work. The DDMF method is mainly based on the distance distribution information of
nodes. Starting from known important nodes, it aims to find relatively important nodes in
a network. The detailed comparative experiments with five other algorithms for mining
relatively important nodes in four real networks reveal that the DDMF method performs
well in terms of precision and applicability. Moreover, the DDMF method can not only be
used to mine the relatively important nodes in a network, but also be considered as a new
idea for community detection and link prediction.
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Mining relatively important nodes in complex networks is a challenging task with
practical value. The DDMF method can be effectively used to find relatively important
nodes in networks and provides a new idea and direction for the related work of network
information mining in the future. With that being said, the limitation of the DDMF method
can be summarized as something that it only considers mining relatively important nodes
in single-layer networks. In the future, our relatively important nodes mining method can
be applied to complex and diversified multilayer networks. Random walk could also be
considered as a direction in future research.
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Abstract: Relatively important node mining has always been an essential research topic in complex
networks. Existing relatively important node mining algorithms suffer from high time complexity
and poor accuracy. Therefore, this paper proposes an algorithm for mining relatively important
nodes based on the edge importance greedy strategy (EG). This method considers the importance of
the edge to represent the degree of association between two connected nodes. Therefore, the greater
the value of the connection between a node and a known important node, the more likely it is
to be an important node. If the importance of the edges in an undirected network is measured,
a greedy strategy can find important nodes. Compared with other relatively important node mining
methods on real network data sets, such as SARS and 9/11, the experimental results show that the
EG algorithm excels in both accuracy and applicability, which makes it a competitive algorithm in
the mining of important nodes in a network.

Keywords: complex network; important nodes; relative importance; important edge

1. Introduction

With the advances in human scientific cognition and information technology, network
science has become a hot topic in academia. As the primary research object of network
science, complex networks are gradually emerging in the eyes of scholars [1]. A complex
network refers to a network with some or all of the properties of self-organization, self-
similarity, attractor, small world, and scale-free. Complex networks can model all aspects
of real-life human society, and through the study of these networks abstracted from reality,
people can explore the laws of the real world. Therefore, analysis of complex networks and
their applications is a crucial issue.

Many research papers on complex networks have been published [2–5]. Early research
covered the traditional statistical properties of networks (e.g., the two papers that laid the
foundation of complex networks—scale-free networks [6] and small-world networks [7]).
Later works described the structural properties of networks (e.g., the exploration of “com-
munity phenomena” [8] and “network modalities” [9]). Even later, papers addressed the
deeper study of points and lines. The examination of complex networks has undergone
tremendous evolution, and the study of the importance of the nodes or edges of complex
networks is one of the most important topics.

Nodes and edges are the basic elements of network structure. Studying important
nodes or edges helps us protect the system better, but also helps us understand the system
better. For example, a disease transmission network can search for known infected people.
Then, susceptible people can be searched, treated, and isolated, in order to prevent further
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spread of the virus. For another example, Fan et al. collected 20 years of trade data
from 232 countries and regions around the world, and then constructed a trade network.
In this network, a novel node importance ranking and analysis method was proposed
by comprehensively considering factors such as generalized degree, DHC theorem and
weight [10]. This method helps the formulation of trade policies in countries around the
world, and deepens our understanding of the history of world trade. Xu et al. also pointed
out that for traditional information retrieval evaluation metrics based on citation network
structure, it is difficult to accurately assess the impact of a particular piece of literature.
They experimentally argued that the adapted PageRank and LeaderRank methods are still
the most accurate evaluation criteria available [11].

As an interdisciplinary subject, there are examples of applying various computer tech-
nologies to the research of complex networks. For example, Liu et al. proposed an artificial
neural network-based model for information dissemination and opinion evolution, IPNN
(Information propagation and public opinion evolution model based on artificial neural
network, IPNN) [12]. Fan et al. proposed a reinforcement learning-based algorithm for
node importance identification in complex networks, FINDER. It first learns the exhaustive
method in a simulated BA network, continues training the previously trained model in
the real network, and evaluates the performance of the model based on the order of node
removal [13]. In addition, many excellent improvements to the traditional node importance
recognition algorithm have also been proposed. For example, Fan et al. proposed a new
node importance ranking metric, the circle ratio, beginning from a circular structure in the
network [14]. Traditional methods judge the importance of a node by the contributions of
neighboring nodes. However, the circle ratio judges the importance of the current node by
the amount of information it brings to its neighbors, which inspires a new research idea [14].
Lu and Liao et al. summarized and sorted out the current node importance identification
and ranking methods in various existing networks [15,16].

As we can see, most of the current research on nodes focuses on the mining and
discovery of important nodes in a network, but little research exists on the mining of
relatively important nodes. The idea of relative node importance considers questions like
“which node in a network is the most important relative to a specific node or a specific
group of nodes?” Compared with other research fields, the relative or local importance
of nodes also has practical implications, especially when the scale of the network grows
larger. Some research results on relative node importance mining are available today,
but these methods still need improvement. Areas of improvement include whether the
time complexity and space complexity can be further reduced, how to further improve the
accuracy of exiting method, which kind of method performs the best on a specific type of
network, and the parameter selection and optimization method, etc.

In this paper, we consider the connection role of important edges in an unweighted
network, where the edge importance represents the degree of association between two
nodes. The connections between important nodes should be closer, thus we propose a
metric to measure edge closeness for important nodes in an unweighted network. It is
based on the idea of “the node with the largest edge closeness to a known important node
is likely to be an important node” for which an edge importance greedy strategy (EG) is
proposed to mine relatively important nodes. Through the comparison experiments with
the NN [17] and the RD [18], which originated from protein networks, and the Katz [19],
which is based on random wandering, it can be proved that the EG strategy achieves ideal
experimental results and shows its application value in identifying the importance level of
unprivileged network nodes.

2. Greedy Strategy Based on Edge Importance

The EG algorithm uses greedy strategy that requires an importance measure for the
edges in a network before each use. It works by adding known important nodes to a set
C that includes all their neighbors, after which one can assign an importance score to the
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connected edges of the known important nodes based on the topological information of the
network. The importance score can be calculated as follows:

SV =
kj

ki
· 1
d2 +

1
cn + 1

(1)

where (kj/ki)·
(
1/d2) is an important component called NP value, which measures the

importance of a certain node; ki is the degree of known important node i; kj is the degree of
known important neighbor node j; d is the shortest distance between node j and the set of
known important nodes; and cn is the number of common neighbors of node j and known
important nodes.

The core idea of Equation (1) is actually very straightforward: the larger the kj is,
the greater the importance of node j. On the other hand, since d is the shortest distance
between node j and the set of known important nodes, the larger the d is, the smaller the
value of 1/d2. A small kj or a large d results in a smaller NP, and thus a lower importance
score for node j. In other words, nodes with low degree and large distance from known
important nodes tend to have lower importance, and vice versa.

In particular, there will be cases where two nodes have the same NP value. In order
to solve this problem, a bias value 1/(cn + 1) is added to Equation (1) to distinguish
their importance.

Once the importance score is obtained, the greedy strategy is used to find the node
whose edge has the largest score from an edge set that corresponds to known important
nodes. The found node will then be added to set C. The edge scores corresponding to
each node in set C will be again calculated, and the node will be found by using the same
strategy stated previously. This process is repeated until all nodes are added. The order in
which nodes are added to set C is exactly the order of their importance.

The pseudo-code for the EG algorithm, also known as Algorithm 1, is as follows:

Algorithm 1: EG Algorithm

Begin

Input Network G = (V, E), the set of known important nodes R;
Initialization C = R; S = 0;
1. While the number of elements in C is less than |V| do:

2. for i in C do:

3. for j in i neighbors do:

4. SV(i, j) = k_j/k_i ·1/d̂2 + 1/(cn + 1);
5. end for

6. t = {j|max(SV)};
7. Place the node t into set C;
8. end for

9. end while

10. return C
End

The EG algorithm is divided into three parts, which are as follows: computation of the
shortest path of a single source; computation of the node importance score; and selection of
the greedy policy. The EG algorithm chooses to compute the neighboring nodes of known
important nodes. Lines 1–2 of the algorithm are the traversal of the set C, and the nodes in it
are computed and analyzed. Lines 3–5 of the algorithm calculate the node importance score
by first selecting a node i from among the set of known important nodes, then traversing its
neighbor nodes and calculating the importance score of each neighboring node. Lines 6–8
of the algorithm apply a greedy strategy to select nodes, and the node with the highest SV
is added to set C. The above process is repeated until all nodes are added to set C.

It can be found that the time complexity of the EG algorithm depends mainly on the
calculation of the shortest path of a single source and the importance score. It is easy to see
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that the calculation of the node importance score is a cumulative process, and depends on
the degree of the important nodes. When there is only one element in the set of important
nodes, its time complexity is k, and k is the average degree of the network; when there are
two elements, its time complexity is 2k, and so on. The time complexity of this part can be
written as k + 2k + 3k + . . . + nk, which equals to O

(
n2k
)

.
One can also notice that the previously calculated node importance scores are fully

reusable when new nodes are added to the set of important nodes. In this case, each time
an important node is added, only the neighboring node scores of the newly added node
need to be calculated. Based on above analysis, one can conclude that the time complexity
actually depends on the number and average degree of nodes in the network, thus the
overall time complexity would be O

(
nk
)

.
The following section will use the network shown in Figure 1 to illustrate the compu-

tation process of the edge greedy strategy.

Figure 1. Example network of the edge importance greedy strategy.

Step 1, number the nodes in Figure 1 sequentially are 1, 2, 3, 4, 5, 6 and 7. Let node 1 be
a known important node, and add node 1 to set C. Calculate the edge scores first according
to the known important node. The edge scores here are (1,2):2.33, (1,3):1.65 and (1,4):2.0.
Node 2, which corresponds to edge (1,2), has the largest value of 2.33, and it is added to
set C.

Step 2, calculate the edge importance score for nodes 1 and 2 in set C, and one obtains
(1,3):1.65, (2,4):1.75, (2,5):1.125, and (2,6):1.0625. Node 4, which corresponds to edge (2,4),
has the largest value and is added to set C.

Step 3, calculate the edge importance score for nodes 1, 2 and 4 in set C, and one
obtains (1,3):1.65, (2,5):1.125, (2,6):1.0625 and (4,7):1.083. Node 3 has the largest value and is
added to set C.

Step 4, calculate the edge importance score for nodes 1, 2, 4 and 3 in set C and obtain
(2,5):1.125, (2,6):1.0625 and (4,7):1.083. Node 5 is selected and added to set C.

Step 5, calculate the edge importance score for nodes 1, 2, 4, 3 and 5 in set C and obtain
(2,6):1.0625 and (4,7):1.083, and node 7 is added to set C.

Step 6, calculate the edge importance score for nodes 1, 2, 4, 3, 5 and 7 in set C. The
edge importance score is (2,6):1.0625 and node 6 is added to set C.

At this point, all nodes are added and the loop ends. For node 1, the order of relatively
important nodes possibilities would be 2, 4, 3, 5, 7 and 6.
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3. Experiment

The experiments in this paper use four real network data sets.

(1) The 9/11 criminal relationship network [20]. The nodes represent the terrorists who
hijacked the planes and those who had contact with them; the edges represent the
interpersonal relationships between them; and the set of important nodes represents
the group of terrorists who hijacked the planes on 9/11.

(2) SARS international aviation network [21]. Each node represents a country; the edge
represents the existence of routes between two countries; and the earliest group of
countries with the SARS virus is the set of important nodes.

(3) Mouse protein interaction network [22]. The nodes represent mouse proteins; edges
represent the existence of interactions between proteins; and the group of mouse
protein kinases is the set of the important nodes.

(4) Human protein interaction network [22]. The nodes represent human proteins; edges
represent the existence of interactions between proteins; and the group of human
protein kinases is the set of the important nodes.

The topological information of these network data sets is listed in the following Table 1.

Table 1. Network topology information.

Network N N′ M K C

9/11 37 19 85 4.59 0.52
SARS 224 18 2247 20.06 0.65

Human 3574 186 6002 3.36 0.15
Mouse 1187 67 1557 2.62 0.09

The table header indicates the topological attributes of a network. N is the number
of nodes in the network; N′ is the number of important node sets; M is the number of
edges; and K and C are the average degree and clustering coefficient of the entire network,
respectively.

In this paper, we use AUC (Area Under Curve) to evaluate the overall results of this
algorithm for mining relatively important nodes. The AUC is calculated as follows.

AUC =
0.5n1 + n2

n
(2)

where n1 represents the number of times that the importance score of a node selected from
the unknown important node set equals that of a node selected from the unimportant node
set; n2 represents the number of times that the importance score of a node selected from the
unknown important node set is larger than that of a node selected from the unimportant
node set. n represents the number of comparisons, which is the product of the size of the
unknown important node set and the size of the unimportant node set.

In this paper, we conduct nine rounds of experiments for each network, and the ratios
(p) of known important nodes for each round are set to 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80% and 90%. Each round uses a different algorithm to calculate the relative importance of
the nodes, according to which these nodes are ranked. Twenty independent experiments
are conducted, and the AUC values are calculated for the ranking results.

This paper uses NN [17], RD [18] and Katz [19] for comparison, and the results are
as follows.

In Figure 2, the horizontal axis represents the percentage of known important nodes
of the set of important nodes, and the vertical axis represents the average AUC value.
A higher AUC value represents a higher effectiveness. It is easy to see that the AUC values
of most algorithms show an increasing trend as the ratio of important nodes in the network
increases. The effect of the EG algorithm is most significant for the 9/11 network, and its
AUC value remains stable at around 0.8, which is far ahead of other algorithms. In the
SARS network and the Human network, our algorithm also achieved satisfactory results.
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The AUC index maintains its leading position against comparison algorithms, although
the margins are not as prominent as those for 911net. One can also note that when the
proportion of important nodes exceeds 30%, the AUC value of the EG algorithm in the
Mouse network is slightly lower than that of the Katz algorithm, which may be due to the
fact that the EG algorithm depends on adjacent nodes for judgment.

Figure 2. Comparison results from AUCs of the edge importance greedy strategy algorithm.

The experiments proved that the EG method performs best on the 9/11, SARS,
and Human networks based on the evaluation of the AUC, regardless of the ratio of
known important nodes. It performs second-best on the Mouse network. From the perspec-
tive of network topology, the SARS network is different from other networks and possesses
the highest average degree (20). At the same time, both the 911net and SARS networks
are with high node aggregation. It can be inferred that the EG algorithm performs the
best in those networks that are similar to SARS and 911net. The fluctuation amplitudes of
the AUCs for the four algorithms at different important node ratios reside in the scope of
0.08~0.12. This indicates that the ratio value in dense graphs has limited effect on these four
algorithms. However, the clustering coefficients for both the Human and Mouse networks
are smaller compared with those of the SARS and 9/11 networks, and we believe it is this
attribute that reduces the advantage of EG over Katz, which performs second best for the
Human network.

Further analysis finds that the NN algorithm considers the nodes with more connec-
tions to known important nodes as relatively important nodes, so its accuracy decreases
when the known important nodes are fewer. On the other hand, when the known im-
portant nodes are in large amounts, it is also very challenging for an algorithm like NN
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to distinguish important nodes when the number of connected nodes equals that of the
known important nodes. The RD method uses the inverse sum of the shortest path lengths
with known important nodes to measure relative importance. However, in real networks,
the nodes close to known important nodes are not necessarily the nodes we are looking for,
and those far from the known important node may actually be the ones we need. The Katz
method adopts a random wandering strategy that can better complete the mining task of
relatively important nodes in some networks, but it still needs to improve its accuracy for
other networks.

4. Discussion and Conclusions

In this paper, we propose the EG method for mining relatively important nodes based
on the greedy strategy of edge importance. This method measures the importance of the
edges of known important nodes, and uses the most important edges to find nodes that
are closely related to the current important nodes. The EG method does not calculate or
consider network paths, and thus avoids the limitations of some methods that consider
path information only. By comparing with the existing methods of mining relatively
important nodes, such as NN, RD and Katz, based on the indicator of AUC, we proved the
performance and the feasibility of the EG algorithm.

Although the adaptability of our proposed algorithm to different networks has been
discussed, we still consider it necessary to further analyze the impact network topology has
on an algorithm in a more detailed and systematic way, in order to obtain better guidance
for the use of the EG algorithm. The EG method is designed for undirected networks,
and does not consider applications in directed or weighted networks. Extending the EG
method to directed graphs, weighted graphs, or even time series networks could be another
possible future direction. Lastly, it seems that the EG method does not possess a rigorous
physical or mathematical meaning; some theoretical work can be carried out surrounding
this issue in the future.
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Abstract: In a complex network, some nodes are relatively concentrated in topological structure, thus
forming a relatively independent node group, which we call a community. Usually, there are multiple
communities on a network, and these communities are interconnected and exchange information
with each other. A node that plays an important role in the process of information exchange between
communities is called an inter-community bridge node. Traditional methods of defining and detecting
bridge nodes mostly quantify the bridging effect of nodes by collecting local structural information
of nodes and defining index operations. However, on the one hand, it is often difficult to capture the
deep topological information in complex networks based on a single indicator, resulting in inaccurate
evaluation results; on the other hand, for networks without community structure, such methods
may rely on community partitioning algorithms, which require significant computing power. In
this paper, considering the multi-dimensional attributes and structural characteristics of nodes, a
deep learning-based framework named BND is designed to quickly and accurately detect bridge
nodes. Considering that the bridging function of nodes between communities is abstract and complex,
and may be related to the multi-dimensional information of nodes, we construct an attribute graph
on the basis of the original graph according to the features of the five dimensions of the node to
meet our needs for extracting bridging-related attributes. In the deep learning model, we overlay
graph neural network layers to process the input attribute graph and add fully connected layers to
improve the final classification effect of the model. Graph neural network algorithms including GCN,
GAT, and GraphSAGE are compatible with our proposed framework. To the best of our knowledge,
our work is the first application of graph neural network techniques in the field of bridge node
detection. Experiments show that our designed framework can effectively capture network topology
information and accurately detect bridge nodes in the network. In the overall model effect evaluation
results based on indicators such as Accuracy and F1 score, our proposed graph neural network model
is generally better than baseline methods. In the best case, our model has an Accuracy of 0.9050 and
an F1 score of 0.8728.

Keywords: social network analysis; bridge node detection; graph neural network; community

1. Introduction

At present, various complex network structures have been integrated into our life,
such as transportation networks, computer networks, citation networks, and so on. Thus,
emerging network science has become an important research field. In a complex network,
there is a type of node that plays a key role in the information dissemination between
local network structures, which is called a bridge or bridge node. In this paper, we use
bridge node to refer to such a node. Due to their special topological position in the network,
when these bridging nodes are activated, they can effectively promote the information flow
between local structures in the network; on the contrary, when immune to them, they can
effectively prevent the information flow between local structures. Accurately discovering
bridge nodes in the network is an important research topic in network science, and its results
have important application value in scenarios such as community immunization [1,2] and
drug analysis [3].
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So far, researchers have proposed many detection methods for bridge nodes, which are
mainly divided into two categories: methods based on community structure and methods
that do not consider community structure. The method based on community structure
focuses on the detection of bridge nodes as important information transmission media
between communities, which is more in line with the definition of “bridge”; the method of
bridge node detection that does not depend on community structure focuses on the bridging
role of nodes in the global network; this “bridging effect” is more similar to the definition
of node “influence”. On the other hand, the method based on community structure is
more suitable for some real-world application scenarios. Suppose a large computer cluster
network is infected by a virus, and it is necessary to immunize the computers in key
locations to prevent the further spread of the virus. If the location of the bridge nodes is
determined based on the network community structure, the original network topology
will be protected to the greatest extent from damage after the node computer is removed,
and most functions of the network will be maintained normally. Therefore, in recent years,
more and more bridge node-related work is based on the community structure.

As far as we know, the current community-based algorithms for detecting bridge
nodes are based on the local structure information of nodes and perform index calculations
to define the bridging role of nodes. The calculation of a single index means that such
methods cannot comprehensively consider the multi-dimensional information of nodes to
characterize the bridging effect of nodes, thus affecting the accuracy of evaluation results.
In addition, community-based structures may rely on community detection algorithms,
resulting in the consumption of additional computing resources.

This paper systematically studies bridge nodes in complex networks and proposes a
deep learning-based method for detecting bridge nodes between communities. The paper
contains the following three main contributions:

• A deep learning-based framework named BND is proposed to detect bridge nodes,
through which we can avoid expensive community detection algorithms;

• On this basis, we applied graph learning technology and constructed a GNN model,
BND-GCN, for bridge node detection on complex networks;

• We test our model on sex real social networks and compare it with other baseline
methods. Experiments show that BND-GCN performs well on bridge node detection
tasks, and is generally better than the baselines.

The rest of this paper is organized as follows. In Section 2, we systematically
introduce a series of related works on bridge node detection and graph representation
learning. Section 3 details our proposed bridge node detection framework, BND. In
Section 4, a method for constructing the training dataset is presented. In Section 5, extensive
experiments are designed and conducted to verify the effectiveness of the framework.
Finally, in Section 6, we summarize our research work.

2. Related Works

Our research is related to the following works.

2.1. Bridge Nodes Detection Methods

Regarding the definition of node bridging, there are many definitions given by re-
searchers due to differences in network types and research ideas. Before conducting
research on bridge nodes, it is necessary to establish a standard and universal definition. Ac-
cording to the research of Meghanathan [4], the existing approaches can be roughly divided
into two categories: community-unaware approaches and community-aware approaches.

2.1.1. Community-Unaware Approach

The community-unaware approach does not rely on the community partition algo-
rithm, but uses the local or global topology information of nodes to define the bridging of
nodes. The research ideas are not limited to the definition and calculation of indicators [3–6],
but also including random walk-based methods [7], heuristic algorithms [8], and so on.
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Since the general definition of bridging is more based on node neighborhood, network
local information is used more in the decision method of bridge nodes.

Hwang et al. [3] first proposed bridging centrality in 2008 to evaluate drug targets.
The definition of this indicator combines the calculation of random betweenness centrality
and the bridging coefficient.

Through this similar idea of combining global and local indicators, Liu et al. [5]
proposed a bridge node quantification indicator named BNC, which combines route-
betweenness and the bridgeness-coefficient. For each node, its route-betweenness is the
sum of routing weights through that node, and its bridgeness-coefficient is defined as the
reciprocal of the sum of distances from that node to all its neighbors and indirect neighbors.
Similarly, after the dispersion standardization of the above two indicators, the product is
used as the final BNC score for the node.

The community bridge finder algorithm (CBF) proposed by Salathe et al. [7] is a
random walk-based bridge node detection algorithm, which attempts to detect bridging
nodes between communities without relying on the community structure of the network.
The basic idea is that the first node that is not connected back to the current random
walk that has already been visited is more likely to belong to a different community. The
algorithm selects a random node at the beginning and then follows a random path until a
node is found not connected to multiple previously visited nodes during the random walk;
then, this node is identified as a potential community bridge. It then randomly selects two
of its neighbor nodes, and if neither of them is connected to a previously visited node, then
the community bridge is an effective bridge.

Meghanathan et al. [4] summarized the research results of bridge nodes in recent
years in detail, and designed a neighbor-based bridge node centrality triplet NBNC to more
comprehensively evaluate the bridging of nodes, which has the following form:

(NG#comp
i , NGACR

i , |NGi|) (1)

where NG#comp
i is the number of components in the neighborhood graph NGi of node i,

|NGi| is the number of nodes in NGi, and NGACR
i is the ratio of the algebraic connectivity

of NGi and |NGi|. In this paper, the neighborhood graph of a node i is defined as a
graph composed of its neighbor nodes and all edges connecting the neighbor nodes, and a
component is defined as a subgraph composed of nodes and edges in the graph and is not
connected to the outside world. Obviously, by describing the state of the neighborhood
graph after removing nodes, NG#comp

i intuitively defines the bridging role that nodes
play in their neighborhoods. NGACR

i improves algebraic connectivity [9] and describes the
bridging of nodes from another aspect. When using NBNC tuples to determine the bridging
rank of nodes, the priority of each element is decreasing; that is, when the previous element
cannot determine the bridging rank of two nodes, the next-level element index is used.

Although the community-unaware approach eliminates the limitation of the commu-
nity, it can also be directly applied to the network without community structure, but due to
the limitation of the available information, it can only mine the properties related to the
bridging effect from the local or global topology information of the nodes. Additionally, the
goal of this type of algorithm is to find influential nodes from the perspective of bridging,
and we think it is inappropriate to define bridge nodes in the community-unaware way.

2.1.2. Community-Aware Approach

The community-aware approach focuses on detecting nodes that play a bridging
role in the process of information exchange between communities, so it must be executed
under the premise of divided communities. Due to the different partitioning algorithms, the
community structure is further divided into overlapping communities and non-overlapping
communities, so there are correspondingly two different types of detection algorithms.
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Approach based on overlapping community

Overlapping communities means that there are some shared nodes between two
different communities on the same network. This kind of situation is common in the real
world (for example, a social network user participates in multiple groups at the same time),
and some existing community partitioning algorithms are also able to reveal the existence
of overlapping communities. Due to the special topological location of such shared nodes,
some researchers started to define the bridging of nodes by using overlapping nodes in
overlapping communities [1,2,10].

Nepusz et al. [10] proposed an extended overlapping community detection method
and, based on this, they proposed a way to define node bridging. However, in some special
cases, this indicator will identify nodes outside the community as bridge nodes. Therefore,
the author proposes a method of correcting bridgeness with indicators such as degree
centrality, which is called degree-corrected bridgeness.

For networks that have divided overlapping communities, Taghavian et al. [1] proposed
a random walk-based sorting algorithm for bridge nodes to enforce network immunity
strategies. First, extract overlapping nodes according to the community division results; then
perform random walk RWOS from random nodes in the network and set the overlapping
nodes visited in this process as immune targets until enough targets are collected.

On the basis of the above results, Kumar et al. [2] conducted another similar work and
proposed the overlapping neighborhood-based immune strategy, overlap neighborhood.
The basic idea of this strategy is that among the neighboring nodes of overlapping nodes,
there is a high probability of nodes with high degree, and immunizing these nodes can
effectively control the spread of epidemics. Based on this, the process of the algorithm is as
follows. First, use the overlapping community division algorithm to find overlapping nodes;
then, find the neighbor nodes of all overlapping node and arrange them in descending
order of node degree; then, the immune priority sequence of the network can be obtained.

In general, the method of defining bridge nodes based on overlapping community is
simpler and more intuitive, but it relies too much on overlapping community, so that such
algorithms can only focus on the overlapping parts of the communities in the network and
cannot measure the bridging effect of the vast majority of nodes, which cannot give enough
target objects in tasks such as network immunity.

Approach based on non-overlapping community

This type of method is based on non-overlapping community division, focusing on
two attributes of nodes, that is, the connection of nodes within the community and the
outside world.

Gupta et al. [11] first proposed the Commn centrality index, which considers the in-
degree and out-degree of a node in the community. In-degree and out-degree respectively
represent the number of edges directly connected to the node in the community and out
of the community. For the nodes in the community C, the calculation process of Commn
centrality is as follows:

CC(i) = (1 + μC) ∗ (
kin

i
max(kin

j ∀j ∈ C)
∗ R) + (1 − μC) ∗ (

kout
i

max(kout
j ∀j ∈ C)

∗ R)2 (2)

where R is an arbitrary positive integer and its function is to make the obtained in-degree
and out-degree values within the same value range, i.e., [0, R]. The author proposes R
to take the largest in-degree in the community C, i.e., max(kin

j ∀j ∈ C). μCis the ratio of
outgoing connections to the total number of connections in the community C and can be
calculated as:

μC =
∑i∈C

kout
i
ki

size(C)
(3)
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Another metric, gateway local rank (GLR) [12], is based on the idea that nodes that
have shortest path to core nodes of community can spread information more efficiently.
First, a local critical node and a gateway node are defined In each community. The GLR
value of node v is calculated as follows:

GLR(v) = [α1 ∑
u∈Γk

d(v, u) + α2 ∑
p∈ΓG

d(v, u)]−1 (4)

where Γk is the set of local cores, ΓG is the set of gateway nodes, and d(v, u) is the shortest
path between node v and u. Parameters α1 and α2 are set to weight the different parts.

In terms of centrality based on community structure, there are some other related
works such as community hub-bridge centrality [13], modular centrality [14], etc. Another
feasible idea is the method proposed by Magelinski et al. [15], which is based on the
modularity of the network about the community, and measures the importance of the node
in maintaining the community structure by calculating the change of the corresponding
modularity after removing the node.

The algorithms based on non-overlapping community structure focus on the connec-
tion between communities, and most of them have the same idea, that is, to comprehen-
sively consider the connection status of nodes inside and outside the community and then
make an evaluation. Therefore, some related indicators, such as in-degree, out-degree,
community size, etc., are used in the intermediate process of calculating such indicators.
As a cost, such methods ignore the topology features of nodes in the global network, and
rely on computationally expensive community detection algorithms.

2.2. Graphical Representation Learning

In recent years, due to its powerful performance and wide application range, the
research on graph representation learning [16] has received more and more attention, and it
has been widely used in social network analysis such as community detection, node classifi-
cation, link prediction, and behavior analysis. There is significant related work in this field,
and researchers divide these into dimensionality reduction-based, random walk-based,
graph decomposition-based, and neural network-based methods according to different
graph embedding methods. The methods based on dimensionality reduction include
PCA [17], LDA [18], MDS [19], etc. Representative works based on random walk include
DeepWalk [20] and node2vec [21]. The method based on graph decomposition realizes
graph embedding by decomposing the adjacency matrix of the graph; representative works
include graph Laplacian eigenmaps [22], GraRep [23], and so on. Recently, inspired by
RNNs and CNNs, researchers have begun to generalize these to graphs, resulting in a new
class of neural network-based methods. This class of methods integrates semi-supervised
information into graph representation learning and has strong performance; representative
works include GCN [24], GraphSAGE [25], GAT [26], etc.

Before graph representation learning, there were also many studies applying tradi-
tional machine learning methods, such as logistic regression, SVM, etc., to social network
analysis. Due to the high degree of fit between the graph data structure of social networks
and graph neural networks, some researchers have begun to try to apply graph representa-
tion learning to social network influence recognition, such as with Deepinf [27], RCNN [28],
and InfGCN [29]. These research works realize the embedding process of the network by
extracting the relevant attributes of the node network topology structure; further, graph con-
volution is used to realize the aggregation of node features and generate a low-dimensional
representation of the node. The trained and tuned graph neural network model can finally
predict the influential nodes in the network. Experiments show that although transforming
the network influence prediction task into a classification problem [28] produces more
severe application scenarios, this method is better than some other methods in terms of
efficiency and accuracy.
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3. Main Framework

In this section, we formally propose the inter-community bridge node detection
framework BND to detect bridge nodes between complex network communities. Its basic
structure and process are shown in Figure 1. For a target social network that does not
define bridge nodes, the framework first uses the Louvain algorithm and three bridge node
detection algorithms to define bridge node labels (see Section 3.1 for details); then, it per-
forms feature extraction of nodes (see Section 3.2 for details) to generate the corresponding
attribute graph. The neural network model takes the attribute graph as input and outputs
the result after propagation through the multi-layer neural network (see Section 3.3 for
details); finally, the model output is compared with the ground truth value to calculate
the loss.

Original Social Network

Loss Function

Loss

N
N

 Layers

...

 

Network with 
Ground Truth

Network with 
Community Structure

 

Degree centrality

Local Rank

Clustering coeffieient

PageRank

Betweenness centrality

LOCAL

GLOBAL

Property Graph

 

 

 

 

 

Input

Figure 1. The structure of bridge nodes detection framework.

3.1. Label Definition

In a framework based on graph deep learning, high-quality label data is an important
condition to ensure the effect of the model. For network datasets with real labels of bridge
nodes, our framework can directly receive these as input; for complex networks without
labels, we need to define the bridge nodes in the network ourselves.

In this paper, we combine three bridge-related algorithms—Commn, GLR, and
NBNC—to define the bridging role of nodes in complex networks. The three algorithms
are proven to be precise and efficient. Commn and GLR are based on community structures
and can be combined to detect bridge nodes efficiently. As a community-unaware approach,
NBNC is used to correct the contingency of the above two methods.

First, we use the classic Louvain algorithm to divide the community structure of the
network. Then, the Commn value of all nodes can be calculated based on community
information, as can GLR value and NBNC tuple. Finally, we can obtain three node bridging
ranks according to the result, and nodes that obtain high rank in all of the three ranked lists
are defined as bridge nodes.

3.2. Feature Extraction

We extract node features from two dimensions, namely local features and global
features. The purpose is to ensure that the extracted features can more comprehensively
describe the topology information of each dimension of the node. At the same time,
considering the need to avoid over-reliance on feature engineering as much as possible,
we only selected five types of node topology-related indicators as node features, and most
of these indicators are simple and easy to calculate. Among them, local features include
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degree centrality, LocalRank [30], and clustering coefficient, and global features include
PageRank and betweenness centrality. They are detailed in Table 1.

Table 1. Descriptions of the selected features.

Type Feature Description

Local
Degree Measure the number of the neighbors of a node.
LocalRank Aggregate the information contained in the fourth-order neighbors of each node.
Clustering coefficient Describe the degree of interconnection between the neighbors of a node.

Global PageRank Measure the importance of a particular webpage relative to other webpages.
Betweenness Measure the degree of interaction between the node and other nodes based on the shortest path.

In order to improve the generalization ability and convergence speed of the model,
we normalize the selected features. For each feature X:

Xnorm =
X

max(X)
(5)

3.3. Graph Neural Network

In order to detect bridge nodes in the network more accurately, the model we build
must have the ability to extract the deep topological information from the complex network.
Therefore, based on the principle of graph representation learning, we propose a deep
neural network model BND-GCN (bridge node detection-GCN) for detecting bridge nodes.

As shown in Figure 2, we first superimpose two GCN layers as the main part of the
model; with the graph structures and feature vectors they can learn representation vectors
of nodes. Each GCN layer has propagation rules defined as follows:

Hi+1 = σ(AHiWi + bi) (6)

where Hi is the representations of nodes at the ith GCN layer and Wi and bi are its trainable
parameters. A is the symmetric normalized Laplacian of the network and σ denotes the
nonlinear activation function.

After propagation through the multi-layer graph neural network, we can obtain a
low-dimensional node representation that aggregates the topological information of the
complex network. At the end of the neural network, we add three fully connected layers
to process the node representation and give the final output as a classifier. The activation
function between fully connected layers is LeakyReLu, and the activation function of the
output layer is Sigmoid. Finally, we choose the cross-entropy function as the loss function
of the model. According to the classifier output and the known ground-truth labels of the
nodes, the loss function can calculate the loss of the model and then adjust the relevant
parameters of the neural network layer through backpropagation. In addition, we adopt the
dropedge [31] strategy on GCN layers and apply the dropout technique on fully connected
layers to prevent the model from overfitting. The skip connection technique is also used in
our model.

On the other hand, we also try to replace GCN layers in the model with GraphSAGE
and GAT layers. Accordingly, we modified some model parameters to adapt to differ-
ent network layer structures. Experiments show that the variants of BND-GCN, which
we named BND-GraphSAGE and BND-GAT, also have good results on the bridge node
detection task.
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Figure 2. BND-GCN model architecture.

4. Experiment

In this section, we will elaborate on our experimental framework process and the
reasons for designing the experiments in this way. In addition, we also give a detailed
description of the parameter settings in the experiment in this section.

4.1. Dataset Construction

We selected six real networks as our dataset sources: (1) collaboration network of
Arxiv General Relativity category CA-GrQc [32], (2) collaboration network of Arxiv High
Energy Physics Theory category CA-HepTh [32], and (3) a series of snapshots of the
peer-to-peer file sharing network of Gnutella, among which three networks, p2p-Gnutella04,
p2p-Gnutella08, and p2p-Gnutella25, were selected [32]. Related information about these
networks is shown in Table 2.

Table 2. Information of the five selected networks

Network Nodes Edges

CA-GrQc 5242 14,496
CA-HepTh 9877 25,998

p2p-Gnutella04 10,876 39,994
p2p-Gnutella08 6301 20,777
p2p-Gnutella25 22,687 54,705

For the convenience of experiments, we ignored other properties of these networks,
treated them as undirected and unweighted networks, and removed self-loops in the net-
work. After obtaining the processed network, we divided each network into a community
structure according to the Louvain algorithm, and obtained defined labels as described
above. It should be noted that we may encounter two special types of nodes when dealing
with the network: isolated nodes with degree 0 and small community nodes (the number of
community nodes is less than 3). We directly defined these as non-bridging nodes, because
such nodes have little bridging effect.

After ranking nodes with three bridging algorithms, we counted the top 30% of ranked
nodes for each rank and took their intersection as the bridge nodes of the network. In
contrast, other nodes in the network are non-bridge nodes. We used labels “1” and “0”
to identify bridge and non-bridge nodes in the network, respectively. In the machine
learning-based classification task, when the proportion of labels of a certain category is
too large, it will easily lead to a long tail problem, resulting in poor model performance.
Therefore, in order to avoid this problem, we randomly selected some non-bridge nodes
and all of the bridge nodes to form the dataset, so that the ratio of the number of bridge
nodes and non-bridge nodes was 1:2.
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During experiments, we randomly divided the training set and testing set according
to the ratio of 7:3 and, at the same time, ensured that the ratio of positive and negative
labels in training and testing remained the original 1:2. We built the model to train and test
on five network datasets and the obtained test results can measure the effect of the model
on bridge node detection. In the experiments, we selected Accuracy, Precision, Recall, and
F1 score as the evaluation metrics for our proposed deep learning model.

4.2. Parameter Settings

We used two hyperparameters when building the dataset, Bridge-Percentage—the
proportion of nodes we select from the three ranks, and Label-Ratio—the ratio of negative
labels to positive labels. In the experiment, we set Bridge-Percentage to 30% and Label-
Ratio to 2 by default. Additionally, we conducted experiments to explore the settings of
these two hyperparameters; the results are presented in detail in Section 5.

Our BND-GCN model consists of two GCN layers and three fully connected layers,
which contain 16, 16, 16, 8, and 2 neurons, respectively. The learning rate in the model is
uniformly set to 0.01 and the dropout probability is set to 0.2. The dropedge rate is the
percentage of the dropped edges to the total during each round of the training, which we
set to 0.1. When it came to BND-GraphSAGE and BND-GAT, we maintained most model
parameters including the number of layers and neurons. The number of hidden layer
neurons of GAT is set to 8. We use the GCN aggregator [25] in the BND-GraphSAGE model
with the following:

hk
v ← σ(W · MEAN({hk−1

v } ∪ {hk−1
u , ∀u ∈ N(v)})) (7)

where hk−1
v is the node’s previous layer representation and hk

N(v) is the aggregated neigh-
borhood vector.

In order to ensure that the model can converge well on networks of different sizes, we
set the number of model training rounds to 200.

4.3. Baseline Methods

In this part of the work, we have performed many comparative experiments to verify
the advantages of our model. The following baselines are compared to our work.

Logistic regression (LR)

Logistic regression (LR) is a classic machine learning model. We trained an LR model
with the features mentioned earlier to predict bridge nodes.

Support vector machine (SVM)

Support vector machine (SVM) is a generalized linear classifier based on supervised
learning. We also used support vector machine (SVM) with a linear kernel as the classifica-
tion model. The model uses the same features as the logistic regression model.

Multilayer perceptron (MLP)

An MLP consists of multiple fully connected layers. We built a five-layer multilayer
perceptron as a representative to test its performance.

Inf-GCN

Inf-GCN [29] is a GCN-based method proposed to find influential nodes in complex
networks, which performs very well in its area. The author claims that they can reach an F1
score of 90.7 in the best case. We used a Inf-GCN model on the bridge node detection task
to compare it with our work.

Variants of BND-GCN

We implemented two variants of BND-GCN, denoted by BND-GAT and BND-GraphSAGE.
Related parameters of these models have been introduced in the previous section.
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5. Experimental Results and Analyses

5.1. Bridge Node Prediction Experiment

First, we conducted bridge node detection experiments on five real networks. In this
part of the experiment, we used selected features to generate the feature vector of the
node, and trained and tested the models on this basis. The experiments included our three
proposed models—BND-GCN, BND-GraphSAGE, BND-GAT—and four baselines. Table 3
shows the test results of these models on various networks.

Table 3. Bridge node detection experimental results

Model Score CA-GrQc CA-HepTh p2p-Gnutella04 p2p-Gnutella08 p2p-Gnutella25

LR
Accuracy Precision
Recall F1 score

0.6667 0.5000
0.0141 0.0274

0.6860 0.7857
0.0866 0.1560

0.7731 0.9043

0.3574 0.5123
0.5971 1.0000

0.0276 0.0537
0.8007 0.8591
0.5903 0.6998

SVM
Accuracy Precision
Recall F1 score

0.6230 0.3333
0.0141 0.0270

0.6887 0.6667
0.1417 0.2338

0.8293 0.8777
0.5670 0.6889

0.6728 0.8000
0.0276 0.0533

0.8832 0.8013
0.8641 0.8315

MLP
Accuracy Precision
Recall F1 score

0.7789 0.7647

0.5493 0.6393
0.5955 0.4661
0.9213 0.6190

0.7292 0.5925
0.8694 0.7047

0.7604 0.8361
0.3517 0.4951

0.7676 0.6105
0.9777 0.7516

Inf-GCN
Accuracy Precision
Recall F1 score

0.7418 0.5889
0.7465 0.5684

0.8285 0.6802

0.9213 0.7826

0.8832 0.7723
0.9210 0.8401

0.7742 0.7238
0.5241 0.6080

0.8683 0.7199
0.9907 0.8339

BND-GraphSAGE
Accuracy Precision
Recall F1 score

0.7559 0.6044
0.7746 0.6790

0.8047 0.6448
0.9291 0.7613

0.8305 0.7527
0.7320 0.7422

0.7604 0.5945
0.8897 0.7127

0.7789 0.6189
0.8771 0.7257

BND-GAT
Accuracy Precision
Recall F1 score

0.7277 0.6585
0.3803 0.4821

0.7784 0.6443
0.7559 0.6957

0.8706 0.7947
0.8247 0.8094

0.8041 0.8409
0.5103 0.6352

0.9050 0.7883

0.9777 0.8728

BND-GCN
Accuracy Precision
Recall F1 score

0.7934 0.6364
0.8873 0.7412

0.7995 0.6269
0.9921 0.7683

0.8877 0.7629
0.9622 0.8511

0.8779 0.7347
0.9931 0.8446

0.8925 0.7563
1.0000 0.8613

For each metric, we bolded the highest score obtained in each network. Experimental
results on five networks of different sizes show that our proposed BND-GCN model exhibits
outstanding advantages compared with baseline models on the task of identifying bridge
nodes between communities with known communities. In addition, the two variants of
BND-GCN, BND-GraphSAGE and BND-GAT, also perform well. Compared to traditional
methods, GNN-based methods show that the attribute graph constructed by selecting node
features can describe the network structure well, so as to achieve a good embedding effect.
On the other hand, the BND-GCN model is more robust compared to the baseline method
Inf-GCN according to the results. This may be due to improvements we made to the model.

5.2. Hyperparameter Analysis
5.2.1. Label-Ratio

The ratio of negative to positive labels in the dataset, Label-Ratio, will have a certain
impact on the effect of the model, because a change of Label-Ratio may lead to too little
label data or long tail problems. In order to verify the influence of Label-Ratio on the effect
of our proposed model and to help us set the appropriate Label-Ratio parameter value in
the experiment, we designed multiple sets of experiments based on the BND-GCN model;
the experimental results are shown in Figure 3.
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Figure 3. Effects of different Label-Ratio on five social networks.

Through the experimental results, we can see that with the increase of Label-Ratio,
the overall effect of the model generally tends to decline. This is due to the increase in the
number of negative labels, and the long-tail problem becomes more and more significant,
resulting in a poorer model classification effect. A relatively balanced Label-Ratio can
improve model performance; this may have good guiding significance for us when choosing
data to build a training set.

5.2.2. Bridge-Percentage

According to the work in [29], the proportion of bridge nodes in the network also
affects the model test results. Therefore, we set different Bridge-Percentage for repeated
experiments to change the proportion indirectly. For example, if Bridge-Percentage is
set to 10%, the top 10% of nodes by Commn are marked, and we do the same for nodes
ranked with NBNC and GLR. Then, the intersections of the three parts are defined as bridge
nodes. It is clear that Bridge-Percentage directly determines the proportion of bridge nodes.
Therefore, we set different value of Bridge-Percentage to verify the effect of the parameter
on the effect of the BND-GCN model. The results are shown in Figure 4.

The experimental results in this part show that as the Bridge-Percentage increases,
the number of nodes defined as bridge nodes in the network increases, and the overall
effect of the model decreases. Based on the experimental results, we speculate that when
the Bridge-Percentage value is smaller, the bridging value of the selected node is more
concentrated, and the characteristics of bridge nodes that are different from other nodes
are more prominent and easier to capture. This may mean that our model will be more
applicable in networks where there are few bridge nodes. When Bridge-Percentage is too
small, it will lead to the problem of insufficient labels and data waste. This is another aspect
that we should take into account when setting parameters.
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Figure 4. Effects of different Bridge-Percentage on five social networks.

5.3. Pre-Training Experiments

The idea of transfer learning [33] has been widely used in various fields. Using
transfer learning, the transfer and application of knowledge between different fields can
be realized, helping people solve problems such as insufficient label data. In our scenario,
due to the inconsistency of the node embedding vector space between different networks,
the node features of another network cannot be directly used in the training process of
this network. However, this barrier can be broken down by transfer learning; a similar
graph neural network pre-training process has been applied in [29] with remarkable results.
Therefore, we conducted similar pre-training experiments to verify whether the bridge
node features learned in the network can help the training process in other networks. We
trained the BND-GCN model on network CA-HepTh and fine-tuned the model on the other
four networks. With the fine-tuned model, we can successfully implement bridge node
detection tasks on different networks. Figure 5 shows the changes in Loss, Accuracy, and
F1 score of the model during training when using the pre-trained model and the directly
trained model.

By comparing the loss curve of the model before and after pre-training, it is obvious
that our pre-training process accelerates the convergence rate in the early stage of model
training and plays a good role in initializing the model. Through transfer-learning technol-
ogy, we can transfer the bridge node feature information learned on another network to
this network for use. This is very meaningful where there are few label resources available.
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Figure 5. Cont.
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Figure 5. Comparison of the performance between the pretrained model and unpretrained model.

6. Conclusions

In this paper, we first propose a new inter-community bridge node detection frame-
work, BND, which transforms the bridge node detection task into a classification problem
and uses deep learning techniques to detect bridge nodes in the network, thus overcoming
the traditional method’s dependence on the community division algorithm. At the same
time, BND makes judgments on bridge nodes after synthesizing network topology infor-
mation and node characteristics, so it has high accuracy. On this basis, we propose a graph
neural network model BND-GCN and two variants, BND-GAT and BND-GraphSAGE,
for bridge node detection. Our extensive experiments on five real social networks show
that they outperform other deep learning models and some traditional machine learning
models in bridge node detection. As far as we know, this is also the first application of
graph neural network technology in the field of bridge node detection, and there is no
similar application work in this field.

In future work, we will continue to study how to mine community structure infor-
mation in the graph embedding or node feature stage, improve the accuracy of inter-
community bridge node detection, and further improve our framework.
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Abstract: Recently, blockchain technology has appeared as a powerful decentralized tool for data
integrity protection. The use of smart contracts in blockchain helped to provide a secure environment
for developing peer-to-peer applications. Blockchain has been used by the research community as a
tool for protection against attacks. The blockchain itself can be the objective of many cyberthreats.
In the literature, there are few research works aimed to protect the blockchain against cyberthreats
adopting, in most cases, statistical schemes based on smart contracts and causing deployment and
runtime overheads. Although, the power of machine learning tools there is insufficient use of these
techniques to protect blockchain against attacks. For that reason, we aim, in this paper, to propose a
new framework called BChainGuard for cyberthreat detection in blockchain. Our framework’s main
goal is to distinguish between normal and abnormal behavior of the traffic linked to the blockchain
network. In BChainGuard, the execution of the classification technique will be local. Next, we embed
only the decision function as a smart contract. The experimental result shows encouraging results
with an accuracy of detection of around 95% using SVM and 98.02% using MLP with a low runtime
and overhead in terms of consumed gas.

Keywords: blockchain; Ethereum; cyberthreats; machine learning; MLP; SVM; smart contract

1. Introduction

The concept of blockchain was firstly proposed by Satoshi Nakamoto in [1] as a
decentralized system for money transfer.

Blockchain is a system that consists of a network of multiple blocks where each block
contains several transactions, and each block connects to its previous block through a
hash-based procedure. This hashing procedure and the utilization of other cryptogra-
phy methods have given blockchain technology its property of protecting block content
integrity [1]. Figure 1 shows the list of blockchain characteristics [2], which are:

• Block: contains a list of information such as the block number, nonce, time stamp, data,
the hash of the previous block, and the hash of block itself.

• Ledger: a list of block forms a ledger.
• Distribution: is an important characteristic of blockchain, as blockchain architecture is

based on P2P network, and each miner contains the whole blockchain.
• Transaction: the data in the block are a list of transaction
• Confirmation: is needed by at least 51% of miners to validate the list of transactions in

the block.
• Proof of work: is the right value of nonce giving a block hash starting by a list of zeros.
• Result: add a new block to the blockchain.

1.1. Motivation and Problem Statement

Blockchain has attracted the research community, as well as the industry. Actually,
blockchain is used in serval domains such as the Internet of Things [3,4] and also in
healthcare [5,6], in addition to other fields such as finance [7].
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Figure 1. Blockchain characteristics.

Blockchain characteristics ensure content and operations safety, making it a suitable
choice for system security, although its characteristics are the subject of many cyberthreats
such as DDoS, eclipse, 51% attack, and so on. Therefore, developing a cyberthreats detection
system on the blockchain is highly needed.

Although many efforts have been made by the research community to tackle blockchain
threats, this domain needs more investigation. Most of the proposed framework in this
context is using statistical methods or simple algorithms, but machine learning techniques
are lowly used. Furthermore, there are many limitations in existing related works such
as the overheads due to deployment and runtime. More details will be given later in
this paper.

1.2. Objectives

The main objective of this paper is to develop a framework called BChainGuard for
cyberthreats detection in Blockchain. BChainGuard will be based on smart contracts in
order to assure safe execution and on machine learning tools in order to provide high-
accuracy detection. This will help to distinguish between normal and abnormal behavior
of the traffic linked to the blockchain network. This choice will decrease the deployment
and the runtime overhead. In the proposed framework, the execution of the classification
technique will be in a local machine. Next, we embed only the decision function as a smart
contract. This will create a new layer in blockchain for cyberthreat detection.

The contributions of this research work can be summarized as follows:

• Build a novel framework to detect cyberthreats on blockchain by merging machine
learning and deep learning to increase the accuracy of detection and the blockchain itself.

• Propose a new layer in the blockchain-based on smart contracts for cyberthreats
detection in order to protect the blockchain.

• Measure the effectiveness of the proposed technique by comparing it with an existing
solution [8] in terms of accuracy, deployment, and execution overhead.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 outlines the literature review
including a study of recently proposed techniques that deal with the issue of blockchain
attacks and protection. Section 3 describes the BChainGuard contribution. Section 4 presents
the experimental study. Finally, the conclusion is given in Section 5.

2. Literature Review

This section is divided into three subsections. First, a study on the most relevant
attacks on the blockchain is given. Next, it goes through a literature review to outline the
framework and system for intrusion detection in the blockchain. Finally, we discuss and
compare these frameworks.

2.1. Review of Blockchain Cyberthreats

Many cyberthreats and their countermeasures have been studied by research commu-
nities. In what follows, we outline the most relevant works in this context.

In [9], the authors studied (Distributed Denial of Service) DDoS attacks. This attack
can cause an increase in mining fees, and it can have an effect on the cryptocurrency
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systems’ memory pools. The authors use Bitcoin mempools to study DDoS and to observe
its effect. To tackle DDoS attacks, the authors propose fee-based and age-based designs.
The proposed technique is validated through simulation studies with different kinds of
attack conditions.

In [10], the authors discussed a DAO attack. They proposed a framework called
VeriSolid to be used to formally verify smart contracts, which are using a transition system-
based model. This will help developers to check, at a high level of abstraction, the contract
behavior. The proposed framework helps in generating the Solidity code from the verified
models. This allows the development of smart contracts based on correct-by-design concept.

Another type of BC attack was studied in [11]. The authors showed that the most
widely used Ethereum implementation called Go Ethereum (Geth) is exposed to eclipse
attacks. For that reason, they study the fundamental properties of Geth’s node discovery,
which can be the cause of false friends’ attacks, and they propose countermeasures to avoid
the eclipse attack.

In [12], the authors proposed a countermeasure for a malleability attack. This attack
happens when the malicious tries to change some byte in the signature, while it may still
be effective, so that the attacker can control bitcoin transactions. To tackle this, attack the
authors suggest modifying the specification of bitcoin by calculating the transaction hash
deprived of its input script.

The paper of [13] dealt with time hijacking attacks that happened due to the vulnera-
bility of the time stamp process in bitcoin. The attacker alters the bitcoin time counter, as
well as the node’s time. This can lead to a perturbation of times. To avoid this attack, the
authors propose to not accept time ranges or not utilize the system time of nodes.

Sybil attack was discussed in [14]. This kind of attack occurs when the malicious try
to control the blockchain network by creating a great number of pseudonymous identities
and manipulating blockchain redundancy and anonymity. The authors proposed to avoid
this attack by proving identities using a trusted agency. This credible agency is responsible
for certifying identities. Before being part of a Peer-to-Peer network, a third party will be
used to authenticate it.

In [15], the authors outlined the phishing attack which happens when the attacker
tries to steal user credentials through websites or using untrue emails or both of them
simultaneously. To defend against this attack, the authors suggest adopting a strategy
based on excluding the unreasonable behavior of the user in addition to detecting and
filtering phishing resources. This will help to avoid the stolen of phishing infrastructure
elements such as passwords.

Border Gateway Protocol (BGP) attacks can target blockchains [16]. This attack is
linked to routing protocols. It happens when a malicious system creates and broadcast
fake advertisements to its neighbors. This can result in the redirection of traffic to specified
destinations. In this case, the attacker may control the node traffic destroying the consensus
mechanism. To defend against BGP attacks, the authors propose a new Bitcoin relay
network with great extensibility and safety denoted as SABRE, where blocks are relayed
using a list of connections that can resist attacks on routing.

In [17], the authors discussed selfish mining attacks. This attack occurs when selfish
miners use selfish techniques for getting non-deserved incomes. As an example, the
malicious miner pool decides to not disseminate the block after finding the next block and
to continue the hashing process in order to create a new valid chain and neglect the right
one. To tackle this attack, the authors proposed to neglect blocks that are not achieved in
time and give awards to blocks merging links into their previous competing blocks.

Another serious attack targeting blockchain is called the integer overflow attack [18].
This attack is a serious problem linked to Ethereum smart contracts, which are program
codes. The integer in these codes has an upper and lower limit. The integer overflow attack
can happen essentially in the value-type conversion, which can cause a big loss. To tackle
this kind of attack, the authors propose the Osiris framework in order to control integer
overflow in a smart contract by combining taint analysis and symbolic execution.
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2.2. Intrusion Detection System in Blockchain

Although blockchain has been widely used as a tool for IDS in other environments,
there is an extreme lack of IDS solutions on the blockchain.

In [19], the author proposed to use a GPU solution based on TRS (Target Rooted
Subgraph) to detect anomalies in transactions by using a part of the data. Through an
experimental study, the proposed techniques archive 195 times faster than the existing
method. Furthermore, it outperforms the existing method in terms of accuracy and true
positive rate, due to the use of subgraphs to detect local anomalies in the case of transactions
on a small scale. This rate is near the existing method in the case of transactions on a
large scale.

The authors In [20] proposed a method to detect anomalies in bitcoin transactions.
They use a dataset including a list of bitcoin transactions with normal behavior. The authors
created another list of transactions with abnormal behavior by including three types of
attacks, which are: DDoS, 51% attack, and Double spending attack. For the detection, they
used SVM (support vector machine) and K-means. Through experimental study, they show
that both techniques give good accuracy.

Since smart contracts are vulnerable to attacks, in [21], the authors discussed tackling
these vulnerabilities by proposing ContractGuard as the first intrusion detection system
for smart contracts in Ethereum. After deploying the proposed system with real smart
contracts in Ethereum, the authors showed the effectiveness of their solution in terms of
protection with low execution overheads (only add 28.27%) and with light deployment
(only add 36.14%). The vulnerabilities decreased by a rate of 83%.

In [22], the authors proposed SODA as a new framework for the online detection of
many attacks. The authors showed that SODA outperforms existing solutions in terms of
efficiency, compatibility, and capability. The aim of SODA is to let users rapidly develop
a new application for cyberthreat detection. To show the effectiveness of SODA, the
authors developed 8 applications, including new detection methods for the detection
of attacks focusing on smart contract vulnerabilities. SODA is also embedded into the
EVM-based blockchain. Through experiments, SODA shows effective attack detection with
low overhead.

Another proposed IDS was denoted BAD: Blockchain Anomaly Detection [23]. BAD
can detect only two types of attack: eclipse attack and zero-day attack. The main goal
of BAD is to detect anomalies in transactions in addition to preventing their spreading.
The prevention is based on the collection of malicious activities in addition to building
a distributed database of threats. The authors make an analysis of BAD overhead, its
implementation, and in order to show its effectiveness in the detection of eclipse attacks, as
well as zero-day attacks.

Recently, an important technique called SolGuard was proposed in [24] in order to
prevent all issues linked to smart contracts. The proposed work is based on using multi-
agent robotic systems. The work is based on studying Ethereum smart contracts to show
its vulnerabilities due to several programming problems—in particular, the use of low-
level calls to malicious resources. The proposed technique is performed by implementing
SolGuard, aiming to prevent three serious issues linked to low-level calls to malicious
resources done by smart contracts written in solidity. Through an empirical study, based
on efficiency and accuracy, the proposed technique is outperforming existing tools in the
same context.

In [25], DefectChecker was proposed aiming to detect defects in smart contracts by us-
ing symbolic execution to analyze the bytecode of the smart contract. In fact, DefectChecker
is using various rules in order to detect eight vulnerabilities in contracts. After running it on
a previous work dataset, it accomplishes encouraging results. DefectChecker outperforms
some existing tools for defect detection in smart contracts. The experiment shows that
15.89% of Ethereum smart contracts include at least one example of the eight vulnerabilities
in the contract.
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2.3. Discussion

In this subsection, we make a discussion of the previously outlined system and
framework for intrusion and threats detection in the blockchain. Table 1 presents a general
comparison of them.

Table 1. Comparison of the existing frameworks for blockchain intrusion detection.

Tools Technique of Detection Cyberthreat Coverage Limitations

TRS [17] Using graph theory to detect
anomalies in smart contract Smart contract vulnerabilities

In the case of a transaction having a
large scale this rate of anomalies

detection is similar to the
existing method

ADM [18]
Using one-class SVM and
K-means for transaction

anomalies detection

DDoS, 51% attack, and
Double spending attack

The anomalies are executed by the
authors themselves so they can

be nonrealistic

ContractGuard [19] A mechanism for
intrusion detection

Attempts of
malicious intrusion

Needs more experience with real
smart contract vulnerabilities

SODA [20] On-chain applications to
detect anomalies

DAO attack, time hijacking,
smart contract vulnerabilities

Used only for online detection of a
specific attack list

BAD [21] Blockchain Anomaly
Detection solution Eclipse attack, zero-day attack Used only for online detection of

2 kinds of attacks

SolGuard [22] A solution to detect anomalies
in smart contract

Smart contract vulnerabilities
and DoS attack

High overheads due to deployment
and runtime

DefectChecker [23] Analyzing byte code to detect
anomalies in smart contracts

Detecting if a contract is
controlled by an attacker

functions call issues cannot
be detected

Most of the proposed techniques to deal with attacks on BC are using statistical
methods or simple algorithms, but machine learning techniques are lowly used. There
are many limitations in existing related work such as the overheads due to deployment
and runtime. There is a need for more simulations to measure the effectiveness of some
proposed techniques. Some attacks are difficult to be detected, such as 51% attack, because
it is linked to the consensus protocols themselves. Some other solutions are designed only
for the Ethereum platform by using smart contracts. Consequently, the development of new
techniques to detect abnormal behavior in the blockchain is still needing investigation. For
that reason, it is important to develop a framework for cyberthreat detection in Blockchain.
This framework will be based on smart contracts (to guarantee safe execution) and on
machine learning tools (to ensure high-accuracy detection). BChainGuard’s main goal is to
distinguish between normal and abnormal behavior of the traffic linked to the BC network.
To significantly decrease the deployment and the runtime overhead, our framework will be
a hybrid. The execution of the classification technique will be done locally. Next, we embed
only the decision functions as smart contracts. This will create a new layer in blockchain
for cyberthreat detection.

3. Contribution: BChainGuard

In this section, we describe the proposed framework in Figure 2 in addition to the list
of used algorithms to detect cyberthreats.

3.1. BChainGuard Phases

Phase 1: Selection of the dataset and artificial intelligence tool

In this phase, the dataset of attack on the blockchain is selected which is located in [26].
In addition, we plan to use SVM (support vector machine) as a machine learning tool and
MLP (multi-layer perceptron) as a deep learning tool.
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Phase 1
•Dataset and Machine learning tools selection

Phase 2
•Dataset protection (on-chain solution)

Phase 3
•Checking the integrity of the data set
•Executing classification techniques

Phase 4
•Uploading decision functions to the blockchain

Phase 5
•Performance evaluation 

Figure 2. Overview of the proposed work.

Phase 2: Linking the dataset to the Ethereum blockchain

To link the dataset from the client to the blockchain, there are two strategies: (1) on-
chain solution, which means uploading the whole dataset in the blockchain, or (2) off-chain
solution, which means uploading only the hash of the dataset to the blockchain. Both
strategies help to protect the integrity of the dataset.

Phase 3: Checking the integrity of the data set and executing classification techniques

Before executing the classification techniques on the client side using Python, we can
either: (1) download the dataset from the blockchain in case we choose on-chain strategies
or (2) hash the dataset and compare the hash with that of the dataset in the blockchain in
case of off-chain strategies.

Phase 4: Uploading decision functions to the blockchain

During this phase, classification techniques are executed in the local machine using
Python. Next, we extract the parameters of the decision function for both SVM and MLP.
Finally, upload these parameters to be used by smart contracts on blockchain to segregate
between normal behavior and abnormal behavior. This helps to protect the blockchain
against attack.

Phase 5: Performance evaluation

The performance evaluation of the proposed techniques can be measured following
many parameters, such as the accuracy, the recall, the f1-score, and the time of execution.
The proposed technique will also be compared with an existing technique using the same
dataset [27] to validate the contribution and to show its effectiveness.

3.2. SVM Training and Parameters Extraction

To train SVM, we used the Radial Basis Kernel Function (RBF). This function calculates
the Euclidean distance between vectors. After the training process was completed, the
training parameters of the following model were extracted to be kept on-chain, as shown
in Table 2.

46



Appl. Sci. 2022, 12, 12026

Table 2. Extracted SVM training parameters.

Name Description Size Data Type

support_vectors_ Datapoints defining hyperplane
decision boundaries placements 18 × 395 Decimal

matrix

_dual_coef_ Weights of data points 1 × 395 Decimal
array

_intercept_ The bias 1 Decimal

_gamma The parameter that handles
non-linear classification 1 Decimal

Algorithm 1 describes the steps of SVM execution and the decision parameter extractions.
Those parameters will be sent next to the blockchain to be used for the decision function.

Algorithm 1: SVM execution

Input: dataset
Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute SVM on the dataset
5: Print SVM performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.3. MLP Training and Parameters Extraction

The MLP training process included two hidden layers of sizes 5 and 2 over 1000 epochs.
The feedforward deep learning NN relied on a nonlinear activation function, known as the
Rectifier Linear Unit activation function (ReLu). Indeed, Table 3 shows the MLP parameters
stored on-chain after the training is complete.

Table 3. MLP parameter details.

Name Description Size Data Type

coefs_ Weights of neuron’s inputs in three layers,
two input layers, and the output layer

5 × 18
2 × 5
1 × 2

Decimal
matrices

intercepts_ Biases of each neuron in three layers
1 × 5
1 × 2
1 × 1

Decimal
arrays

Algorithm 2 describes the steps of MLP execution and the decision parameter extractions.
Those parameters will be sent next to the blockchain to be used for the decision function.

Algorithm 2: MLP execution

Input: dataset
Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time
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3.4. SVM Decision Function

The values returned by the decision function of an RBF kernel SVM vary between −1
and 1. This function is described in the mathematical representation below.

h∗(x) = (w�φ(x)) + �
0 = ∑

∈PS

α� ·K(x − x) + �
0

where:

• h∗ is the decision function;
• α � is the value of the coefficients;
• is the support vector output of the kernel function K;
• x is the new data point;
• x is the support vector;
• �

0 is the bias or the intercept of each vector.

K(x, x′
)
= exp(−γ‖x − x′‖2)

The core function of this SVM implementation was the RBF function. Its mathematical
representation is described above.

• The RBF kernel function returns the product of negative gamma with the Frobenius
norm of two input vectors.

• The exp() function is the exponent of Euler’s number, .

‖x − x′‖F =

√√√√∑
=1

∑
=1

| , |2

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection

Input: V: input vector including list of features
Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then

5: Normal behavior
6: Else

7: Attack
8: End If

3.5. MLP Decision Function

MLP is a supervised classifier that takes an n-dimensional input to return an m-
dimensional output.

In the implementation, the input layer of MLP is 9-dimensional, and the two hidden
layers 5 and 2-dimensional. Additionally, there is a 1-dimensional output layer. Figure 3
shows a visualization of the implemented MLP layers.

Where:

• x denotes the input characteristics;
• a designates the neurons of the first hidden layer;
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• p designates the neurons of the second hidden layer;
• b denotes the bias;
• y denotes the output neuron.

Figure 3. MLP layers visualization.

MLP’s decision function concludes a series of additions and multiplications to classify
an input. In this calculation, the value of each hidden neuron is equal to the linear sum of
all the neuron values of the previous layer multiplied by their coefficients, knowing that
the weights between the neuron’s layer and the last layer.

An additional intercept value, or bias, is added to this summation.
where:

• x is the value of the neuron;
• w is the weight of the neuron.

Note that the bias, b, is denoted by x0 with a value of +1, and the w0 is the intercept
value in each layer’s bias table.

h(1)i = φ

(
∑

j
xjw

(1)
ij + b(1)i

)

h(2)i = φ

(
∑

j
h(1)j w(2)

ij + b(2)i

)

yi = φ

(
∑

j
h(2)j w(3)

i,j + b(3)i

)
In the above representation, h in is the neuron, i, value in the nth layer. This imple-

mentation includes two layers and a final output layer with one neuron,

• yi, gives the final summation value.
• φ() is the non-linear activation function that calculates neuron’s value by a weighted

sum.
• xj is the input features vector.
• hj

n is the neurons’ values at layer i − 1.
• wi,j is the weight.
• bi

n is the intercept of neuron i at the nth layer.

f (x) = max(0, x)

This study employed the ReLu nonlinear activation function. The above annotation
shows that the ReLu function returns the maximum between x and 0. Algorithm 4 shows
steps of implementing the MLP decision function.
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Algorithm 4: MLP decision function for attack detection

Input: V: input vector including list of features
Output: attack or normal behavior

1: Read MLP decision parameters from Python
2: Create decision function using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is −1 Then

5: Normal behavior
6: Else

7: Attack
8: End If

4. Experimental Results

In this section, we give the description for the dataset and the environment of execution.
We also discuss the experimental results.

4.1. Dataset Description

This study implementation used the dataset stored in Github [27]. It is a website that
makes it easy for programmers and developers to work together to improve application
code. It relies on the principle of version control, which uses branching and merging to
ensure seamless collaboration without affecting the integrity of the original project [26]. In
Table 4, we present the used dataset that contain a list of attack on the Ethereum blockchain.

Table 4. Dataset features.

Features Features Details

Old features

hash Transaction hash
nonce How many transactions did the sender’s account make?

transaction indicator Transaction index in block
From the address Origin account

To the address destination account
The value The transferred value in Wei which is the smallest Ether unit

gas Quantity of gas per source
gas_price The price of gas (Wei) which is provided by the source

input The data sent during the transaction
cumulative gas reception used How much gas was used by this transaction while executing a block

receiving gas used Total gas has been used by this single given transaction
timestamp_block Block timestamp was used by this transaction

block_number Operation block number
block hash Hashing the block used during the transaction

New added
features

Of fraud
- 1 indicates that the return address is the result of forgery

- 0 indicates that the sender’s address is correct

to sheat
- 1 indicates that the return address is the result of forgery

- 0 indicates that the sender’s address is correct

from_category Determine if the abnormal activity that occurred from the sender
address is phishing or scamming, and (null) for normal operation

to_category Determine if the abnormal activity that occurred from the sender
address is phishing or scamming, and (null) for normal operation

To evaluate the detection systems that use labeled data (i.e., transactions), the proposed
data set should be labeled. Therefore, the transactions included in the proposed data set
were classified as normal or harmful transactions, so the number “0” indicates that the
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transaction is valid., while the number “1” means that the transaction is an attack. As a
reminder, each transaction has two addresses: (1) for the sender and (2) for the recipient.

The address account has been passed to the Etherscamdb API through the Python
programming language to find out the source of the fraud. Is it the sender or the receiver?
Then, four new columns were added to the transaction table: “of_fraud”, “to sheat “,
“from_category”, and “to_category”; the description of these extensions is found in Table 4.

Additionally, two types of attacks were recorded in relation to the proposed technique
when API response, as there are two main categories, namely phishing and scamming,
as shown in Table 5 and Figure 4. The percentages of abnormal transactions are 22% and
80%, respectively.

Table 5. Ethereum transactions in the dataset.

Type Transaction Ratio

Threat transaction 14,250 20%

Normal transaction 57,000 80%

Total 71,250 100%
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Figure 4. Distribution of transactions in the dataset.

4.2. Environment Description

Table 6 shows the development computer system and the specifications of the
development tools.

Table 6. System specifications.

Item Specifications

Computer OS Windows 10

CPU AMD64 3.20 GHz

RAM 8 GB

Ganache v2.5.4

Solidity v0.5.16

Vyper v0.3.0

MetaMask v10.2.2

Python v3.9.7

The experimentation is done as follows:

• We use a smart contract to upload the dataset line by line to Ethereum (Ganache) for
integrity protection.

51



Appl. Sci. 2022, 12, 12026

• SVM and MLP are executed locally on Python on the same dataset. Next, the decision
parameters are extracted and sent to Ethereum (Ganache).

• We use smart contracts to receive the decision parameters on Ethereum (Ganache).
• We re-write the decision MLP decision function and SVM decision function as a smart

contract on Ethereum (Ganache).
• Finally, we test the performance of MLP and SVM decision functions.

The aim of BChainGurad is to embed the protection on Ethereum (Ganache). BChain-
Guard is using smart contracts which work as a defender by checking the traffic of transac-
tions to decide if abnormal behavior is detected or not based on the training already done.

In the experiment, we use Ganache as a local Ethereum platform. Solidity and Vyper
are used to write the smart contract for decision function and to protect the dataset. Meta-
Mask is a gateway allowing the communication between web applications and blockchain
using ‘web3.js’. The local training and testing of SVM and MLP are executed using Python.
The right values of each item used in the experiment are indicated in Table 6.

4.3. Evaluation Parameters

The evaluation parameters are described by the following equation: The accuracy is in
Equation (1)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (1)

The equation of precision is given in the following:

Precision = TP/(TP + FP) (2)

Equation (3) describes the recall:

Recall = TP/(TP + FN) (3)

Finally, the F1-score is described using the equation below:

F1 Score = 2 × (Recall × Precision)/(Recall + Precision) (4)

4.4. Machine Learning Result Analyses

We compared both models on the same dataset. Table 7 and Figure 5 show the
performance of the MLP and SVM models. We concluded from this comparison that the
two models have distinct performances. In addition, our analysis also showed that the
MLP belonging to the deep learning family outperforms SVM in all metrics with a small
difference (3.02% for accuracy, 3.27% for precision, 5.03% for F1-score and 3% for the recall
metric). In summary, after conducting several experiments, the MLP and SVM networks
have confirmed that they have very distinct solutions for regression, classification and
prediction tasks.

Table 7. SVM vs. MLP performance.

Classifier Accuracy Precision F1-Score Recall

SVM 95 95.03 93 95
MLP 98.02 98.5 98.03 97

Although MLP has the best generalizability, the observed performance differences are
negligible in most cases. The main difference lies in the complexity of the networks. An
MLP network that implements a global approximation strategy typically uses a very small
number of hidden neurons.

4.5. Blockchain Decision Function Result Analyses

Gas fees are payments made by users to pay validators and miners for the computa-
tional energy consumed to process and validate transactions on the Ethereum blockchain.
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Figure 6 shows a graphical representation of the performance of MLP and SVM mod-
els in term of consumed gas in gwei. Figure 7 shows a graphical representation of the
performance of MLP and SVM models in term of decision function elapsed time in seconds.
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Figure 5. SVM vs. MLP performance.
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Figure 6. Consumed gas in gwei for SVM decision function and MLP decision function.
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This comparison analysis is useful to verify the effectiveness of both models. The
consumed gas in gwei for SVM decision function is equal to 0.1914, while this consumption
is multiplied more than 44 times for SVM and reaches 8.4415. This big difference can be
explained in two ways.

First explanation: the implementation of the MLP approximative strategy usually
employs a very small number of hidden neurons. On the other side, the SVM is based on the
local approximation strategy and uses a large number of hidden units. This large number
can be the cause of differences in consumption and also need more time for execution.
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Second explanation: If a gas price is set too low, the transaction could be ignored,
missed or the wallet could become stuck, freezing transactions from that wallet. Therefore,
the wallet can remain blocked until the transaction is resolved.

4.6. Overeall Result Discussion

An overall result comparison shows that MLP is providing the best results. Indeed,
the SVM decision function is more expensive in terms of consumed gas and time. This can
be explained by the number of parameters and operations in SVM decision function. In
our case, we adopt only two layers in MLP. For that reason, the MLP decision function is
cheaper than that of SVM.

Furthermore, MLP outperforms SVM in terms of accuracy and precision; this can be
rendered to the data itself. In addition, these results are linked to the implementation of the
MLP as an approximative strategy that usually employs a very small number of hidden
neurons while SVM is based on the local approximation.

The provided performances’ favorite MLP is used in this case. However, this is
always linked to the type of the used transaction themselves. An enlargement of the
dataset by considering more types of attacks may favorite another technique to be used for
cyberthreat detection.

4.7. Comparison between BChainGuard and Works on the Same Dataset

In this section, we make a comparison between our framework result and the result
of work on the same dataset. In BChainGuard, the accuracy of MLP in is 98.2% and 95%
for SVM. However, in [28], the best accuracy is performed at 98.8% using Random Forest,
while the smallest one is 82% for logistic regression. In the same context, the accuracy
of detection abnormal transaction using SVM and KNN is 95%. Our contribution is not
only improving the accuracy of detection but also securing the dataset against poisonous
attack, making the detection safe by embedding the decision function as a smart contract.
In addition, we chose to embed only the decision function on the blockchain to minimize
the overhead of runtime and deployment, which was discussed in the previous section. In
what follows, we make a comparison between BChainGuard and other frameworks.

Table 8 shows that our framework is the first one that uses machine learning, em-
bedded in the blockchain itself, and with the lowest deployment and runtime overhead
compared to others. In future works, we plan to make a secure analysis of BChainGuard
by injecting attacks on the dataset, as well as on Ethereum, to see the performance of
our framework.

Table 8. Frameworks comparison.

Tools Technique Place Overhead

BChainGuard Machine learning On-chain Low

TRS [17] Graph theory On-chain High

ADM [18] Machine learning off-chain -

ContractGuard [19] Statistical analysis On-chain High

SODA [20] Statistical analysis On-chain High

BAD [21] Statistical analysis On-chain High

SolGuard [22] Statistical analysis On-chain High

DefectChecker [23] Statistical analysis On-chain High

Recently, many research efforts have been conducted to show the great impact of
applying blockchain in Industry 4.0 [28]. This generation of industry investigates the appli-
cation of the latest technology innovation in Artificial Intelligence, Big Data, the Internet of
Things and Blockchain for supply chain and manufacturing improvement. On one hand,
Blockchain with its great potential can raise many opportunities for Industry 4.0. On the
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other hand, although Blockchain is one of the most secure peer-to-peer systems, it can be
the target of attacks and cyberthreats. Consequently, securing service-based blockchain
has high importance. In this context, we believe that BChainGuard is a successful key to
supporting the application of Blockchain in Industry 4.0. Our framework can be improved
by considering more types of attacks and next integrated into Ethereum as a new protection
layer against smart contract vulnerabilities. This can improve Ethereum’s trustworthiness
to be more attractive to the industry.

4.8. BChainGuard Limitations and Possible Future Improvements

BChainGuard is based on executing SVM and MLP locally and next embedding only
the decisions function in blockchain in order to detect attacks. Despite the advantages of
our contribution, it can be improved in the future by:

• Considering more realistic datasets linked to blockchain smart contract and transactions.
• Using different scenarios of transactions and smart contracts that help to convert more

situations that can be the target of attacks.
• Applying other machine learning and deep learning techniques that may be offered

the best results.
• Adopting federated learning instead of machine learning in the case of the nonavail-

ability of the dataset, since federated learning helps to protect privacy.

5. Conclusions

The blockchain, as any system, and despite of its power protection, can be prone to
many attacks. For that reason, many efforts have been made by the research community
to protect it. The majority of efforts have been based on analyzing statistically the smart
contracts. To the best of our knowledge, we propose, for first time BChainGuard, a new
layer in Ethereum for blockchain protection. Our idea is based on executing SVM and
MLP locally and next embedding only the decisions function in the blockchain in order
to detect attacks on blockchain. Our contribution is not only improving the accuracy of
detection but also securing the dataset against poisonous attack. In addition, we choose to
embed only the decision function on the blockchain to minimize the overhead of runtime
and deployment.

Smart contracts can contain numerous security vulnerabilities, such as reentrancy,
unhandled exceptions, Integer Overflow and unrestricted action. The aim of BChainGuard
is to ensure the safe execution of smart contracts by avoiding vulnerabilities. As an open
system, Ethereum can be the target of many attacks embedded in smart contracts them-
selves. New types of attacks can always appear. To tackle them, a strategy of BChainGuard
continuous improvement must take place. This strategy must be defined to take into
consideration the integration of new attack detection.

The limitations of BChainGuard are: (1) detecting only if an attack is happened or
not without preventing the type of attack, (2) dealing only with two types of attacks in the
used dataset, which are phishing and scamming attacks, and (3) using only MLP and SVM
techniques, when other techniques may provide best detection accuracy.

Despite the advantages of our contribution, it can be improved in the future by
considering more realistic datasets linked to blockchain smart contracts and transactions.
Additionally, using different scenarios of transactions and smart contracts helps to convert
more situations that can be the target of attacks. The use of other machine learning and
deep learning techniques may offer the best results. As a future work, we also plan to make
a secure performance analysis of BChainGuard. This can be done by injecting poisonous
attacks on the dataset to see how blockchain can protect its integrity. In addition, we can
run some malicious smart contracts on Ethereum to measure the reaction of our framework.
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Abstract: As most of the community discovery methods are researched by static thought, some
community discovery algorithms cannot represent the whole dynamic network change process
efficiently. This paper proposes a novel dynamic community discovery method (Phylogenetic Planted
Partition Model, PPPM) for phylogenetic evolution. Firstly, the time dimension is introduced into
the typical migration partition model, and all states are treated as variables, and the observation
equation is constructed. Secondly, this paper takes the observation equation of the whole dynamic
social network as the constraint between variables and the error function. Then, the quadratic form of
the error function is minimized. Thirdly, the Levenberg–Marquardt (L–M) method is used to calculate
the gradient of the error function, and the iteration is carried out. Finally, simulation experiments
are carried out under the experimental environment of artificial networks and real networks. The
experimental results show that: compared with FaceNet, SBM + MLE, CLBM, and PisCES, the
proposed PPPM model improves accuracy by 5% and 3%, respectively. It is proven that the proposed
PPPM method is robust, reasonable, and effective. This method can also be applied to the general
social networking community discovery field.

Keywords: temporal networks; community discovery; phylogenetic evolution; planted of partition

1. Introduction

1.1. Background

Complex network analysis is an interdisciplinary research field which can be applied in
a lot of areas such as computer science [1,2] and social, biological and physical sciences [3–5],
and it is capturing the attention of many scholars. A complex network is a simple graph
defined as a set of nodes connected by a set of edges. Nodes can represent individuals or
organizations. Edges are relational ties between two nodes, e.g., friendship relationships
between two social users. Graphs are one of the most important and powerful data
structures. Complex network analysis and modeling can be used to reveal patterns of social
interaction, to study recommendation systems, or protein complexes and protein functional
modules. By far the most basic tasks in complex networks are node identification, link
prediction, and information dissemination. These tasks have received extensive research
and attention. In addition, community structure discovery is also one of the most important
tasks; it is usually defined as identifying tightly connected subgraphs from a complex
network. Because communities help to reveal the structure–function relationship of the
network, it has been studied extensively. For example, communities within cancer networks
mark key pathways associated with cancer progression [6], and the communities in the

Appl. Sci. 2022, 12, 3795. https://doi.org/10.3390/app12083795 https://www.mdpi.com/journal/applsci58



Appl. Sci. 2022, 12, 3795

multi-layer transportation network correspond to common practices, which provides clues
for airline management [7]. Therefore, a great deal of work has been carried out in the
discovery of communities in the network [8–10]. A lot of work has been proposed for
community discovery, existing algorithms either optimize predefined quantitative functions
or acquire potential feature matrices for community detection. Typical methods include
modularization-based methods [11], model-based methods [12,13] and random-walk-based
methods [14–16]. S. Fortunato et al. [17,18] have conducted a comprehensive survey.

However, all these methods assume that the target network is static and ignore the
timeliness of the network. In reality, many networks from society and nature are dynamic,
meaning that the network structure changes over time; that is, it performs the dynamic
network. More specifically, in a dynamic network, nodes may appear or disappear over
time, and links between two nodes may also appear or disappear. For example, inter-
personal relations often change due to individual behavior [19]. For another example,
tumor cell migration leads to metastasis, which is crucial for the diagnosis and treatment of
tumors [20]. Therefore, it is worthwhile to track how a community evolves in a dynamic
network (also known as a dynamic or evolutionary community).

For dynamic network modeling, the most widely used method is to introduce explicit
smoothing frameworks, which quantifies the similarity between snapshots in two subse-
quent steps by introducing the Temporal Smoothed Framework (TSF). Various TSF-based
algorithms have been proposed to evolve the community by extending the static community
discovery algorithm. For example, for topological connectivity, the Kim-Han algorithm [21]
found dynamic communities by optimizing modularity, and the DYNMOGA method [22]
is presented for the multi-objective genetic algorithm to simultaneously optimize clustering
accuracy and clustering drift. Regarding matrix decomposition, the ESPC method [23] is
used with matrix spectrum, the ECKF method [24] is proposed by using kernel ENMF,
and the Se-NMF method [25] is used by a semi-supervised strategy to develop community
testing. The Gr-NMF method [26] is adopted by graph-regularized NMF for community
discovery in evolution. In the probabilistic model: FaceNet method [27] is researched by
using Maximum a Posteriori (MAP) estimate, DSBM method [28] adopted the Bayesian
method to obtain the evolving community by extending the random block model. Accord-
ing to the existing literature [29], there are six evolutionary events in the community (as
shown in Figure 1), including birth, death, growth, contraction, merging, and splitting.
Sometimes, a seventh event is added to these, i.e., continuing. Finally, an eight event was
proposed by Cazabet and Amblard [30] and it is resurgence. A generic dynamic community
discovery algorithm does not necessarily have to handle all these events, which can be
differently managed in different works [31].

 

Figure 1. 6 evolutionary events in dynamic communities.
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1.2. Motivation

While much work has been carried out to address the problem of dynamic community
discovery, there are still some issues that need to be addressed.

Firstly, most existing dynamic network models assume that it is a hidden Markov
structure, in this structure, when the current network state is given, a network snapshot at
any given time is conditionally independent for all previous snapshots. This approach may
not be flexible enough to replicate some of the observations in real network data.

Secondly, the dynamic system is used by filters, even for Gaussian distributions.
However, after a nonlinear transformation, Gaussian terms are lost. Mean and covariance
are the only measures computed by the filter. This is the result of a nonlinear transformation
approximated by Gauss, and therefore this approximation may be poor.

Finally, how to combine the information of the community structure available at
the previous moment with the information available at the current moment is an impor-
tant question. In the traditional hidden Markov dynamic Bayesian network model, the
probability of an edge appearing in a dynamic network is realized by the estimated state.

Therefore, this paper proposes a phylogenetic planted partition method, which uses
the graph optimization strategy to continuously discover the evolving communities.

1.3. Our Work and Contributes

The main contributions of this paper can be summarized as follows:

(1) The time dimension is introduced into the typical stochastic block-model, and all states
in the whole dynamic network system are treated as variables, and the observation
equation is taken as the constraint between variables to construct an error function
about the whole dynamic network system.

(2) By adopting the graph-based optimization strategy, the constraints in the entire
motion trajectory can be considered once. In the linearization process, only the
Jacobian matrix is calculated, and the calculation process is also relative to the entire
motion trajectory. Therefore, the entire system evolution process is transformed into
the nonlinear system optimization process.

(3) In natural ecosystems, inspired by the evolutionary thinking of species populations
and combined with the typical probability model of stochastic block-model in com-
munity discovery, a phylogenetic planted partition method (PPPM) for dynamic
community discovery is proposed.

(4) The proposed PPPM method in the two scenarios of artificial network and the real
network is verified by experiments, which proves that the performance of the novel
method is better than the four state-of-the-art methods (FaceNet, SBM + MLE, CLBM,
and PisCES).

1.4. Organization

The remainder of this paper is structured as follows: In Section 2, related work is
discussed; Section 3 introduces the proposed model in detail, describes the proposed PPPM
method, and gives the derivation process. In Section 4, the experimental results of the novel
PPPM method in the artificial dynamic network and real dynamic network are presented,
and then compared with other existing models. Finally, in Section 5, some conclusions are
given and future directions are discussed.

2. Related Work

According to the research of Aynaud et al. [32], the dynamic community discovery
algorithms can be divided into four categories: coupling network, two-stage algorithm,
evolutionary clustering, and probability model. However, Hartmann et al. [33] believed
that all existing dynamic community discovery methods can be identified as online or
offline methods. Rossetti and Cazabet [31] proposed a new survey on community detection
in dynamic networks, which proposed the unique functions and challenges of dynamic
community discovery algorithms.
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The first kind of coupled network-based algorithm firstly builds the network by
fusing edges at different times. Then, the classical static community detection algorithm
is used to find the communities in the coupled network. For example, Agarwal et al. [34]
discovered the ongoing events in the microblog message flow by adding edges between
vertex instances at different times to build the coupling network, in which the dynamic
community corresponds to the community in the built network. Because coupled networks
cannot fully describe the dynamic characteristics of networks, these algorithms have been
shown to accurately discover only short-cycle communities. To overcome this problem,
the second kind of two-stage algorithm separated the community detection from the
community dynamic, avoiding the coupling of the dynamic network.

Specifically, these algorithms used static community detection algorithms to find the
community each time and then connected the community the next two times to extract
the evolving community. Typical algorithms included GraphScope [35] and TRMMC [36]
coupled networks and two-stage algorithms that detected dynamic communities in a
dynamic network by simply extending static community detection methods and detecting
dynamic communities in each operation dynamic network or static community. In general,
these algorithms can achieve better performance in the case of weak network dynamics.
In this case, the dynamic update method can accurately identify the dynamic community
without running the community detection algorithm each time, and only need to update
the previously discovered community. However, the accuracy of these algorithms is low.

The third type of dynamic community discovery method is related to clustering evolu-
tionary, which is proposed by Chakrabarti et al. [37]. They extracted the implicit community
structure in each snapshot, which is one of the most widely used methods for dynamic
community discovery. The evolutionary clustering algorithm adopted the assumption of
time smoothness. The community structure will not change much over a continuous-time
slice. This time smoothing method can be used to overcome the randomness. Compared
with other algorithms, the evolutionary community discovery algorithm aims to discover
a smooth sequence of communities in a series of network snapshots (as can be seen in
Figure 2). The overall objective function of the evolutionary algorithm can be decomposed
into two parts: Snapshot Cost (CS) and Temporal Cost (CT) [38].

Cost = α · CS + (1 − α) · CT (1)

Figure 2. The series of network snapshots.

Among them, CS measures the adaptability of the community structure and network
at the time t, while CT measures how similar the two community structures (the community
structure is acquired at the time t to the structure is obtained at previous time t − 1). The
parameter α is for balancing the importance between CS and CT. By introducing different
object functions based on modularity, normalization of mutual information and spectrum
clustering et al., this framework has been used in much of the literature [39,40] to discover
communities in dynamic networks.

Folino and Pizzuti [39] formalized the dynamic community discovery algorithm as
a multi-objective optimization problem, which maximized the clustering accuracy of the
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current time step and minimized the clustering drift from one time step to one successive
time step. Ma and Dong [40] proposed two evolutionary non-negative matrix decompo-
sition (ENMF) frameworks and proved the equivalence relation between evolutionary
module density and evolutionary spectrum clustering. In addition, they introduced a
semi-supervised approach, which is called sE-NMF, that incorporated prior information
into the ENMF.

Chi et al. [23] extended this idea with two frameworks of evolutionary spectral clus-
tering, which are defined as Preserving Cluster Quality (PCQ) and Preserving Cluster
Membership (PCM). Both frameworks have proposed the optimization and correction cost
functions, but they differ in how to define the CT. In the PCQ framework, the CT is the cost
of the clustering results at the time t applied to the similarity matrix at the time t − 1. In
PCM, the CT is defined as a measure of the distance between the clustering results at the
time t and t − 1. In the PCQ:

max
Z∈Rn×k

αtr(ZTWt−1Z) + (1 − α)tr(ZTWtZ), ZTZ = I. (2)

where Wt−1 and Wt represent the adjacency matrix at the time t − 1 and t, respectively.

αWt−1 + (1 − α)Wt (3)

Finally, the membership of community members can be obtained by calculating the
eigenvector of Formula (3).

After the above work, an evolutionary community discovery algorithm is proposed
to try to optimize the modified cost function in the definition. Since the user definition
of snapshot and CT of community discovery results varies with community discovery
algorithms, the aim of the above work is to solve the problem of how to select the param-
eter α, which can determine how much weight to assign to previous data or community
discovery results.

Xu et al. [41] proposed an adaptive evolutionary clustering algorithm, using the
following smooth approximation matrix Ψ̂t to better estimate the network state.

Ψ̂t = αtΨ̂t−1 + (1 − αt)Wt (4)

where the parameter αt controls the rate of forgetting past information, so it is also defined
as a forgetting factor.

Ma et al. [26] proposed a non-negative matrix decomposition for co-regularization
evolution to identify dynamic communities under a time-smoothing framework.

Ot = Lt + βQt + γRt (5)

where β and γ are regularized parameters.
In recent years, researchers have proposed some excellent techniques to improve

the performance of dynamic community discovery algorithms. In the probability model,
the researchers have put forward an innovative model, and this paper puts forward a
new dynamic model, which is suitable for dynamic Bayesian networks, namely the system
evolution partition transplantation model. In this method, the model parameters are tracked
by using the graph of optimization strategy. Table 1 compares some recent representative
dynamic social network discovery algorithms based on a probability model.
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Table 1. Comparison of our work with previous model literatures.

Ref. Year Approach Theory Dataset

[42] 2015 Maximum Likelihood Estimation Consistency MIT Reality Mining
[43] 2015 Kalman Filtering + Local Search / Facebook wall posts

[44] 2016 Expectation Maximization / Internet AS graphs,
Friendship networks

[45] 2016 Expectation Maximization Detectability thresholds Synthetic
[46] 2017 Expectation Maximization Detectability thresholds Synthetic
[47] 2017 Time-lag corrected Convergence rates Synthetic

[48] 2018 Aggregating SBM subroutines + MLE Correctness/Stage-wise
convergence rates

Enron emails, Facebook
friendships

[49] 2020 Exhaustive grid search Convergence rates Synthetic

Our work 2022 Graph-based optimization Convergence rates MIT Reality Mining,
Enron emails

3. Meterials

3.1. Formal Definition

In this paper, a novel phylogenetic planted partition model is defined for temporal
social networks by the following definitions:

Definition 1. A social network can be represented by a graph, G, on a set of nodes, V, and a set of
edges, E. Nodes and edges are represented by an adjacency matrix A, where ρij = 1 represents the
existence of an edge from node i ∈ V to node j ∈ V − {i}, and ρij = 0 represents the absence of an
edge. This paper assumes the network is a directed graph, which is generally ρij 
= ρji and has no
self-loop, namely ρii = 0.

Definition 2. The positive integer n represents the number of nodes, and ε = (ε1, . . . , εk) is the
probability vector on [k] = {1, . . . , k} (k is the number of network communities). W is a symmetric
matrix whose element is k × k between [0,1]. (X, G) is defined under the Stochastic Block-Mode
(SBM) SBM(n, θ, W). X is a n dimensional random vector; it is independent and identically
distributed under ε. Let the community set Cr = Cr(X) = {C1, . . . , Ck}, r ∈ [k] denotes the
division of V into k communities. In this paper, we use the symbols p and q to indicate two generic
communities, ci and cj, where i and j are the two nodes of a simple graph G of n vertices, which
respectively belong to ci (i.e., i ∈ p) and cj (i.e., j ∈ q) at time t. Nodes i and j are connected
according to a probability εct

i c
t
j
, independently from the other node pairs. Therefore, the probability

distribution of (X, G) [50] is as follows, where G = (V, E).

Pr{X = x} =
n
Π

i=1
εci =

k
Π

r=1
εr

|Cr(x)| (6)

Pr{E = y|X = x} = Π
1≤i<j≤n

ε
yij
ci ,cj(1 − εci ,cj

)1−yij (7)

= Π
1≤p<q≤k

ε
Npq(x,y)
p,q (1 − εp,q)

Nc
pq (x,y) (8)

where Npq(x, y) represents the observed value of the number of edges in the partition, which can be
expressed as Npq(x, y) = ∑

ci=p
∑

cj=q
yt

ij; Nc
pq(x, y) represents the probability value of the number of

edges in the partition, which can be expressed as follows.

Nc
pq(x, y) =

{∣∣p∣∣(∣∣p∣∣−1)/2 − Npp(x, y) p = q∣∣p∣∣∣∣q∣∣−Npq(x, y) p 
= q
(9)
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Equation (8) can be rewritten by:

Pr{E = y|X = x} = exp{
k

∑
p=1

k

∑
q=1

[Npq(x, y) log εp,q + Nc
pq(x, y) log(1 − εp,q)]} (10)

Definition 3. Define an evolutionary sequence of discrete time steps for social network (dynamic
Bayesian network); the nodes and edges may appear or disappear with time. The temporal social
networks can be expressed as

{
G1, G2, . . . , GT}, where Gt = (Vt, Et), superscript t represents the

time step, Vt and Et, respectively, in the time step are t collection of nodes and edges. Let A(T)

represent the sequence of adjacency matrix on the node-set sequence V(T) = ∪T
t=1Vt, and let c(T)

represent the sequence of community member membership vectors of the node. For this dynamic
social network, the probability distribution of edges can be defined as:

Pr = (1 − εt−1
pq )εt

pq · · · εt+d−1
pq (1 − εt+d

pq ) (11)

For any pair of nodes i ∈ p and j ∈ q at t − 1 and t, s.t. ρt−1
ij = 1. Namely, there

is an edge from node i to the node j at the time t − 1 and ρt
ij is Independent Identically

Distributed (IID). The same is true for ρt−1
ij = 0. The mapping process of random sampling

and probability allocation is shown in Figure 3.

Figure 3. Randomly sample (i, j) and allocate ε with probability ρij = 1, ρt
ij
∼ Bernoulli(εt

ct
i c

t
j
).

Figure 3 shows the hypothesis of this paper. There are only two possibilities for
random events: existence or non-existence of edges. In this paper, we randomly sample
(i, j) and allocate ε, with probability ρij = 1, ρt

ij
∼ Bernoulli(εt

ct
i c

t
j
). Each term of the

adjacency matrix At is independent. Therefore, Equation (10) can be rewritten as the
likelihood form with parameter Wt.

f (At; Wt) = exp{
k

∑
p=1

k

∑
q=1

[αt
pq log εt

pq + βt
pq log(1 − εt

pq)]} (12)

where αt
pq and βt

pq are, respectively, denoted as follows:

⎧⎪⎪⎨⎪⎪⎩
αt

pq = ∑
ci∈p

∑
cj∈q

ρt
ij

βt
pq =

{
|p|(|p|−1)/2 p = q
|p||q| p 
= q

(13)
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3.2. A Migration Partitioning Model for Phylogenetic Evolution

The proposed dynamic community discovery method can track the status of the target
over time to discover community results. Therefore, this paper constructs an observation
model, which can be described by

St = Wt + Zt, t = 0, 1, 2, . . . (14)

where Zt is an independent Gaussian noise matrix with zero mean and variance (σt
pq)

2
=

εt
pq(1 − εt

pq)/βt
pq. This matrix reflects the transient variations caused by noise. In this paper,

we assume that Zt, Zt−1, . . . are independent of each other.
In the dynamic system model, S(t) expresses the set of observed values, and W(t)

represents the state of the sequence of observed values that generate noise in the dynamic
system. This paper refines the final model by modeling the evolution of specified states
over time. Because εt is a probability between 0 ∼ 1, and this paper deals with εt in
logarithmic form, that is, yt = log(εt

pq/(1 − εt
pq)), then a time-series dynamic observation

model of system evolution can be constructed as follows:

yt = Htyt−1 + zt (15)

where Ht denotes the state transition model, yt represents the vector metric representation
of matrix Wt, zt implies the process noise, zt is a random vector with zero mean and Θt

is the covariance matrix. According to the vectorization expression of St and observation
noise Zt, the observation model (15) can be rewritten as:

st = g(yt) + zt (16)

The logical activation function g(·) is handled by the Sigmod function, which is:

g(x) =
1

1 + e−x (17)

This paper assumes that the initial state of the dynamic system obeys the Gaussian
distribution, namely, y0 ∼ N(μ0, Θ0). The nonlinear optimization problem in the time-
series dynamic observation model of system evolution is constructed in this paper, which
is the problem of calculating the Maximum a Posteriori (MAP) of ct, while for Gaussian
distributions, the maximization problem can be translated into the negative logarithm
problem of minimizing the target probability ct. Therefore, Equation (12) is converted into
the following logarithmic likelihood:

ĉt = log f (At
∣∣yt)

=
k
∑

p=1

k
∑

q=1
{αt

pq log h(yt
pq) + βt

pq log[h(1 − yt
pq)]}

(18)

The following error function will be constructed:

et(y) = yt − f (yt−1, vt, 0) (19)

Then, minimize the quadratic form of the error function:

minJ(y) =
T

∑
t=1

(
1
2

et(y)T(Wt)
−1et(y)) (20)

Finally, make the first-order expansion of f (x):

f (x + Δx) ≈ f (x) + J(x)Δx (21)
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where J(x) is the derivative of f (x) with respect to x, which is actually a matrix of m × n,
which is also Jacobian. The derivative problem can be turned into a recursive approximation
problem; therefore, L–M method is adopted in this paper to determine the step size Δx,
the L–M method avoids the non-singular and morbid state properties of the coefficient
matrix of linear equations and can provide a more stable and accurate increment Δx. In
the previous methods, as the approximate second-order Taylor expansion adopted in the
GaUSs-Newton method could only have a good approximation effect near the expansion
point, a trust-region is added to Δx. It should be noted that the trust-region should not be
so large that the approximation is inaccurate. The approximate value in the trust region is
considered to be valid; when it is outside of this region, the approximation might go wrong.
The scope of the trust region is determined by the difference between the approximate
model and the actual function. Determine rules: if the differences are small, let the scope
be as large as possible; if the difference is large, narrow the approximation. Therefore,
Equation (22) is used to judge whether the Taylor approximation is good enough or not.

ρ =
f (x + Δx)− f (x)

J(x)Δx
(22)

where the numerator ρ is the decreasing value of the actual function, and the denominator
is the decreasing value of the approximate model. If ρ is close to 1, then the approximation
is good. If ρ is too small, meaning that the actual reduced value is far less than the
approximate reduced value, then the approximate result is considered to be poor and the
approximate range needs to be narrowed. On the contrary, when ρ is large, it means that
the actual decline is larger than expected, and the approximate range can be enlarged.

Because the temporal dynamic observation model of system evolution constructed
is nonlinear and d f /dx is not easy to obtain, this paper intends to adopt an iterative
method (if there is an extreme value, then convergence to approximation) to converge the
approximation. The steps are shown in Algorithm 1.

Algorithm 1: Main procedure of the iterative method

1. Given an initial value x0, radius r and parameter k
2. for the k-th iteration, solving:
min
Δxk

1
2 || f (xk) + J(xk)Δxk||2, s. t. ||DΔxk||2 ≤ r

3. Compute ρ

4. if ρ > 3/4
5. r = 2r
6. else if ρ < 1/4
7. r = 0.5r
8. xk+1 = xk + Δxk
9. if convergence
10. break

11. end

where the limiting condition r is the radius of the trust region. In Equation (21), the
incremental range is limited to a sphere of radius r, which is seen as an ellipsoid after
multiplying by D. D is taken as a non-negative diagonal matrix, usually with the square
root of the diagonal element JT J, and it is equivalent to directly constraining Δx in the ball.

min
Δxk

1
2
|| f (xk) + J(xk)Δxk||2 + λ

2
||DΔx||2 (23)

where λ is the Lagrange multiplier. Finally, this paper needs to obtain the gradient by
solving the objective function (23). Since it is an optimization problem with inequality
constraints, the Lagrange multiplier is used in this paper to transform the objective func-
tion into an unconstrained optimization problem. Additionally, then the target function
is transformed.
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Let us expand out the square of the target function of (23).

1
2

∣∣∣∣∣∣ f (xk) + J(xk)Δxk

∣∣∣|2 + λ
2

∣∣∣∣∣∣DΔxk

∣∣∣∣∣∣2
= 1

2 ( f (xk) + J(xk)Δxk)
T( f (xk) + J(xk)Δxk)

+ λ
2 (DΔxk)

T(DΔxk)

= 1
2 (
∣∣∣∣∣∣ f (xk)

∣∣∣|22 + 2 f (xk)
T J(xk)Δxk + Δxk

T J(xk)
T J(xk)Δxk)

+ λ
2 (DTΔxk

T DΔxk)

(24)

Then, solve the derivative of Δxk in Equation (24) and set it to zero:

2J(xk)
T f (xk) + 2J(xk)

T J(xk)Δxk + 2λDT DΔx = 0 (25)

The following equations are obtained:

J(xk)
T J(xk)Δxk + λDT DΔxk = −J(xk)

T f (xk) (26)

Let J(xk)
T J(xk) = H, the right-hand side of the equation be defined as g, and the

equation can be simplified as follows:

(H + λDT D)Δxk = g (27)

In the initial time step of the algorithm, the proposed PPPM method is initialized with
the spectral clustering algorithm; that is, the initial estimation of community is generated at
the time t = 1. The advantage of using the spectral clustering algorithm as the initialization
algorithm here is that it can prevent the local search from falling into ct poor local maximum
in the initial time step. The main procedure of the proposed PPPM method can be shown
in Algorithm 2.

Algorithm 2: The main procedure of PPPM

Input: G =
{

G1, G2, . . . , GT}, k//dynamic networks and the number of communities
Output: ct//the community
1. at t = 0
2. Initialize c0 by using spectral clustering applied on W0

3. at t > 0
4. if iteration ≤ max iteration//hill-climbing algorithm
5. ĉt

0 ← −∞ //negative Log of the best adjacent case till to a constant
6.

.
ct ← ct //currently being traversing case

7. for i = 1 to
∣∣Vt
∣∣ do//traverse all adjacent solutions

8. for j = 1 to k; s.t. ct
i 
= j do

9.
.
ct

i ← j //change community of a node
10. compute yt using Equations (15)–(17)
11. compute Log ĉt

1 using (18)
12. if ĉt

1 > ĉt
0 then//current case is the best case

13. (ĉt
0, ct) ← (ĉt

1,
.
ct
)

14.
.
ct

i ← ct
i //refresh community of current node

15. if ĉt
0 > ĉt then//the best adjacent case is better than the current best case

16. (ĉt, ct) ← (ĉt
0, ct)

17. else//achieve a minimum
18. break
19. end

20. end

21. return ct

4. Results

In order to prove the rationality of the novel proposed method, four algorithms are
compared, namely FaceNet [27], SBM + MLE [48], CLBM [49], and PisCES [51]. Firstly,
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FaceNet was chosen because it was the first proposed dynamic web community discovery
algorithm that could be compared as a baseline; secondly, SBM + MLE and CLBM were
used because they are the latest proposed probabilistic model-based algorithms; finally,
PisCES is also a recently proposed non-probabilistic model algorithm. In this paper, the
indicators of the following two evaluation models are adopted.

(1) Adjust Rand Index (ARI), ARI ∈ [−1.1], if the value of ARI is closer to 1, it means
better results.

ARI =
RI − E(RI)

max(RI)− E(RI)
(28)

where E(RI) represents the expected value of RI and max(RI) denotes the maximum
value of RI.

(2) Mean-squared errors (MSE), the smaller the value, the smaller the error, that is, the
better the result.

MSE =
1
n

m

∑
i=1

(yi − ŷi)
2 (29)

where yi is the real data, ŷi expresses the fitting data, and n implies the number of
samples.

Figure 4 can simulate the evolution process of an artificial dynamic network over time.
The network consists of 156 nodes and 614 edges, and a total of eight time steps are set.

tt t t tt t t

Figure 4. The simulation of the evolution process of an artificial dynamic network.

In Figure 4, there are eight rhombic blocks, and the whole dynamic social network
can be represented by the evolution of these eight rhombic blocks over time. The upper
part represents the dynamic network of a time step, the lower part denotes the community
where the current time step may exist, and the lower part is composed of the nodes with
the highest degree of nodes of each color in the network absorbing nearby nodes to form
larger nodes. (Absorption rule: connected with the node with the greatest degree and
with the same color). For example, in the lower half t = 1, there are three submodules,
each of which represents a possible community. More specifically, each submodule can be
composed of nodes of different colors and sizes, and each color can represent nodes with
the same characteristics in the dynamic social network. it can be seen that the community
structure of dynamic social networks is phylogenetic over time.

4.1. Synthetic Networks

The artificial network is generated in this paper, which consists of 128 nodes, initially
divided into four communities, where each community has 32 nodes. At the initial time
step, the edge probability of the system evolution migration partition is set as ε1

pp = 0.3109
and ε1

pq = 0.0765 (p, q = 1, 2, 3, 4 and p 
= q). The initial covariance Θ1 is set to the identity
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matrix 0.04I. The state vector G evolves according to the Gaussian random walk model,
namely Ht = I in Equation (15). This paper generates 25 and 50 time steps. At each time
step, nodes are randomly selected to leave their communities and randomly assigned to one
of the other three communities. Table 2 statistically compares the proposed PPPM method
with the average ARI experimental results of multiple parameters of four representative
models in an artificial network environment.

Table 2. The results of the proposed PPPM and representative model on the Mean ARI (synthetic
data).

Time Step Random Rate Proposed PPPM PisCES CLBM SBM + MLE FaceNet

25
10%

0.65702 0.50409 0.48838 0.56099 0.46667
50 0.56630 0.38265 0.34544 0.49414 0.34324
25

20%
0.72236 0.57972 0.54694 0.66961 0.50949

50 0.94401 0.90616 0.89504 0.92753 0.88592
Mean 0.72242 0.670 0.56895 0.663068 0.55133

In Table 2, bold font indicates that the result is the best. It can be clearly seen that
the proposed PPPM method has the best performance under all parameters. It can be
calculated that the average performance of the novel method is improved by 0.05 compared
with the other four best models.

Figure 5 shows the comparison of average ARI results between the proposed method
and four representative models in an artificial network environment.

Figure 5. Comparison of the proposed model with 4 different models on Mean ARI (synthetic net-
work). (a) indicates that the time step is 25 and the randomly selected parameter is 10%, (b) indicates
that the time step is 50 and the randomly selected parameter is 10%, (c) indicates that the time step is
25 and the randomly selected parameter is 20%, (d) indicates that the time step is 50 and the randomly
selected parameter is 20%.
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As shown in Figure 5a, 25 time steps are generated by the artificial network. On each
time step, the randomly selected parameter is set to 10%. In this experiment, the parameters
of the noise item are changed at the 15th time step (the left line) and set back to the original
state at the 16th time step (the right line). It is evident that in the 15th time step, the only
two models with SBM and PPPM + MLE line charts show the correct change in trend, i.e.,
a downward trend, and the proposed PPPM method declines faster, and the increasing
trend of PisPCES, CLBM, and FaceNet are unaffected and keep the previous state, after the
16th time step, which also can obviously show that compared with the other four kinds of
models, the novel method callback trend is more obvious. This indicates that the proposed
novel method has a more consistent response to noise terms.

In Figure 5b, the artificial network generates 50 time steps, randomly selects parame-
ters and sets them to 10%, changes the parameters of the noise item at the 20th time step
(the left line), and sets them back to the original state at the 21st time step (the right line).
It is evident that in the 20th time step, the only two models with PPPM and CLBM line
charts show the correct change trend, i.e., a downward trend, and PPPM declines faster,
and PisPCES and FaceNet are on the rise, with SBM CLBM + MLE remaining unaffected
and they to keep the previous state, after the 16th time step, which also can obviously show
that compared with the other four kinds of models, PPPM callback trend is more apparent
in terms of reverting to the previous state, which shows that this paper proposed the model
of response that is more consistent in noise.

In Figure 5c, the artificial network generates 25 time steps, randomly selects parameters
and sets them to 20%, changes the parameters of the noise item at the 15th time step (the
left line), and sets them back to the original state at the 16th time step (the right line). It is
obvious that at the 15th time step, the line graph of all models shows the correct trend of
change, namely the downward trend. It is worth noting that the downward trend of PPPM
is the most obvious. After the 16th time step, it is also obvious that compared with the
other four models, the proposed novel method has a more obvious callback trend, which
also indicates that the novel method has a more consistent response to the noise term.

Figure 5d shows that the artificial network generates 50 time steps, randomly selects
the parameters and sets them to 20%, changes the parameters of the noise item at the 20th
time step (the left line), and sets them back to the original state at the 21st time step (the
right line). It is evident that in the 20th time step, only two models with PPPM and FaceNet
line charts show the correct change trend downward trend, and PPPM decline faster, while
the remaining three kinds of model, CLBM, SBM + MLE, PisPCES, are not affected, and
keep the previous state; after the 16th time step, PPPM and FaceNet all can to go back to
the previous state, which demonstrates that the proposed method has a more consistent
response in noise.

In conclusion, in the artificial network, this paper proposed a dynamic community-
found PPPM method compared with the other four kinds of a typical model. The model is
tested in the perturbation parameter test (the noise is changed in a particular time step).
The prediction accuracy of the model index (ARI) increased by 5% on average, and the
experimental results show that the proposed model is robust.

4.2. Real-World Networks
4.2.1. MIT Reality Mining

This experiment is conducted on the MIT dataset [52]. The dataset is collected by
recording the mobile phone activity of 94 students and employees over a year. The dataset
built a dynamic network based on physical distance, which is measured by scanning nearby
Bluetooth devices every 5 min. Data collected near the beginning and end of experiments
with low participation rates are excluded in this experiment. Each time step corresponds to
one week, so there are 37 time steps between August 2004 and May 2005. Figure 6 shows
the mean-variance error results of the proposed novel method and four representative
models under the artificial network.
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Figure 6. Comparison of the proposed method with 4 different models on MSE (synthetic network).

Figure 6 shows that, under the MSE evaluation index, the smaller the error, the better
the result; that is, the closer the model image is to the x-axis. Obviously, compared with
other colors (the other four models), the image with blue color (the proposed method in this
paper) is closer to the x-axis; that is, the proposed PPPM method has a lower MSE value and
a smaller error. Table 3 compares the average ARI results of the proposed method with those
of the four representative models in the real network (MIT reality mining) environment.

Table 3. The results of the proposed PPPM method and representative model on the Mean ARI (real data).

FaceNet PPPM SBM + MLE CLBM PisCES

Max 0.8991 0.9555 0.8678 0.8876 0.9412
75% 0.7125 0.8005 0.7856 0.6258 0.7811

Median 0.4902 0.6523 0.6215 0.4981 0.6536
25% 0.3154 0.5111 0.4992 0.2314 0.4902
Min 0.1002 0.40 0.2671 0.1487 0.3243

In Table 3, the bold font shows that the result is the best, you can clearly see that the
proposed PPPM in all parameters (the maximum value; the first 75% of the value; the
median; the first 25% of the value; minimum value) cases are the best and clear, the average
performance of PPPM performance (median) than the best model is increased by 3% in the
other four. Figure 7 shows the comparison of MARI values on the MIT dataset between the
proposed method and four state-of-the-art models.

FaceNet PPPM SBM+MLE CLBM PisCES
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Figure 7. Comparison of the proposed model with 4 different models on MARI (reality network).
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In Figure 7, the upper and lower edges of each box in the boxplot represent 25% and
75% values, respectively, and the middle red line denotes the median. It is obvious that
PPPM, SEM + MLE, and the three boxes perform better than the other two model boxes.
Among the three models with better performance, the PPPM box position is slightly higher
than that of SEM + MLE and PisCES boxes, and the median value is also slightly higher
than that of SEM + MLE and PisCES models. In conclusion, compared with the other
four representative models in the real network, the proposed dynamic community PPPM
method performs better under the two evaluation indexes of prediction accuracy and error.

4.2.2. Enron Email Data

The experiment is conducted on the dynamic social network, which is built by En-
ron [53], and it consisted of about 500,000 emails between 184 Enron employees from
1998 to 2002. The directional edge between the employee and the time point occurs if at
least one email is sent within the first week. Each time step corresponds to an interval of
1 week. This dataset does not distinguish between emails sent to “recipients,” “CC” or
“BCC.” In addition to email dataset, most employee roles (such as CEO, president, manager,
employee) exist within the company and they are used as known communities. The first
56 weeks and the last 13 weeks are filtered because only a few emails are sent. Figure 8
compares the estimated community probability between a normal week and an event week.
The higher the probability, the higher the community activity. Both the x-axis and the
y-axis denote the estimated communities, and the color blocks on the diagonals express the
activity within each community, and the color blocks of the diagonals imply the activity
between each community.

Figure 8. The comparison of community probability in normal week and event week. (a) indicates
the normal week(week 59), (b) indicates the event week (the 89 weeks when CEO Jeffrey resigns).

As shown in Figure 8a, in a normal week (week 59), the president community is the
most active, followed by managers and employees, and the CEO community is the least
active. It is also worth noting that from the color block distribution of managers and em-
ployees, the two communities may merge into one large community. This phenomenon can
be reflected in the fact that communication between department managers and employees
is usually close, and managers and employees are more likely to get along with each other.
As shown in Figure 8b, in the event week (the 89 weeks when CEO Jeffrey resigns), the
most active community is that of the managers, followed by president community, and
the brightest color block is the managers to the employee community. This is reflected in
the fact that in real life when CEOs resign, the discussion is most intense among managers
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because it is directly related to their personal interests. Discussions between managers and
employees also proliferate for the same simple reason that it is indirectly related to the
employees’ personal interests. Figure 9 reveals the estimated edge connections between
communities in Enron’s email network under the proposed dynamic community’s discov-
ery approach PPPM and shows a 95% confidence interval (note: the lines on the left and
right of the figure are for weeks 59 and 89, respectively).

Figure 9. Probability of edges between communities on the Enron mail. (a–f) are the edge probabilities
between different roles.

As shown in Figure 9a, it is the edge probability of presidents to CEOs; it can be seen
that the presidents to CEOs edge probability increased slightly at week 59 (normal) and
89 (Jeffrey CEO resigned), which corresponds to presidents to CEOs activity (increased)
from Figure 8a,b. Figure 9b shows the side probability within the president community. In
the 59th and 89th weeks, the side probability inside the community shows a downward
trend. This also corresponds to the active state (decreased activity) within the president
community from Figure 8a,b. Figure 9c,d show the side probabilities between managers
and the manager community and between the managers and the employee community,
respectively. It can be seen that in the 59th and 89th weeks, the changing trend of the side
probabilities of these two communities is consistent with that in Figure 9a.

Similarly, this change also corresponds to the changes in active state between man-
agers and manager community and the employee community (increased activity) from
Figure 8a,b. Figure 9e shows the edge probability between the employees and the manager
community. It is not difficult to see that there is no obvious trend of change in week 59
and 89. Similarly, this situation also corresponds to the consistent change in the active
state between the employees and the manager community from Figure 8a,b (there is no
significant change in the activity). Finally, Figure 9f shows the edge probability between
employees and the employee community. In week 59 and 89, similarly, the changing trend
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of edge probability of these two communities is consistent with the change in Figure 9b;
namely, it displays the downward trend. At the same time, it also corresponds to the
consistent change in active state between employees and the employee community from
Figure 8a,b (decreased activity).

To sum up, the proposed PPPM method can well reflect some phenomena existing in
the real network, and the probability estimated by the novel method can make relatively
consistent predictions with the advance of time and the occurrence of specific events.

5. Conclusions

The proposed model has practical theoretical and practical significance to mine and it
also simulates deeper hidden information that is present in dynamic social networks. At
present, the dynamic social network community discovery method cannot effectively rep-
resent the entire dynamic network evolution process. Therefore, inspired by the evolution
theory of natural biosensors, this paper proposes a community discovery method based
on phylogenetic planted partition. Firstly, the time dimension is added to the transplant
partition model, all states in the whole dynamic network system are treated as variables,
the observation equation is used as a constraint between variables, and an error function
about the whole dynamic network system is constructed. Then, the quadratic form of the
error function is minimized, which can abstract the observation results of the network more
realistically. Secondly, a graph optimization strategy is used to consider the constraints
in the whole motion trajectory at one time, and the Jacobian matrix is calculated during
the linearization process. Because the calculation process is relative to the whole motion
trajectory, the whole system evolution process is transformed into a nonlinear system
optimization process. The gradient of the error function is obtained by using the L–M
method, and then the iteration is carried out according to the direction of the gradient;
finally, the proposed method is compared with four state-of-the-art representative models
under two scenarios of artificial network and real network. The experimental results show
that the PPPM method has better performance than the other four representative models in
building a dynamic network model and mining dynamic network hidden information.

Next, this paper will consider how to integrate the multi-layer model mechanism into
the proposed model and will study dynamic network hiding information with multi-layer
information in future research.
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Abstract: Networks can be used to model various aspects of our lives as well as relations among
many real-world entities and objects. To detect a community structure in a network can enhance our
understanding of the characteristics, properties, and inner workings of the network. Therefore, there
has been significant research on detecting and evaluating community structures in networks. Many
fields, including social sciences, biology, engineering, computer science, and applied mathematics,
have developed various methods for analyzing and detecting community structures in networks. In
this paper, a new community detection algorithm, which repeats the process of dividing a community
into two smaller communities by finding a minimum cut, is proposed. The proposed algorithm is
applied to some example network data and shows fairly good community detection results with
comparable modularity Q values.

Keywords: community detection; graph cut; betweenness centrality; modularity

1. Introduction

Graphs consisting of vertices and edges can be used to model various aspects of our
lives and real-world environments. For example, social media services can model each
service subscriber as a vertex and a friend relationship between two individuals as an edge
connecting the two corresponding vertices. Another example would be a water supply
network; a pipe network connecting many water sources and consumers can be modeled
as a graph. The Internet and the world wide web can be modeled as networks as well.

As networks can represent many abstract contexts of our lives, it is a natural desire
to try to discover a core structure inherent in them. Partitioning a network via grouping
vertices of similar affiliations can help us to grasp the main structure of a given network
with a holistic viewpoint. In other words, a community structure of a network can give us
a better understanding of its characteristics, properties, and inner workings. An example
of community detection of a network is shown in Figure 1.

Figure 1. An example of community detection of a network.

There has been significant research on detecting and evaluating community structures
in networks. Many fields, including social sciences, biology, engineering, computer science,
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and applied mathematics, have identified their own needs for developing methods to
analyze and detect community structures in networks. Graph partitioning problems in
graph theory are also closely related to the community detection problem. Many algorithms
for community detection and clustering have been proposed so far, and there are a few
extensive review papers on them [1,2].

The main contribution of this paper is to propose a new community detection algo-
rithm, which repeats the process of dividing a community into two smaller communities
by finding a minimum cut of the community. In order to compute the minimum cut of a
community, the betweenness centrality values of vertices are used to choose the source
and sink nodes. The modularity criterion is used in a greedy way to determine the local
optimal partition among many candidate communities to be cut.

The rest of this paper is organized as follows. Section 2 briefly reviews prior work on
community detection methods. Section 3 presents the proposed algorithm, and Section 4
illustrates the results of the algorithm applied to a few example networks. Finally, Section 5
discusses the results and concludes the paper.

2. Prior Works

Uncovering community structures inherent in networks can shed light on many
aspects of our world because networks can model various relations and inner workings
among entities and objects. Therefore, community detection in networks has received a lot
of attention from many fields [2–7], and it is rapidly evolving. Scientists and researchers
from various fields have accordingly produced a large number of research articles and
study results .

The community detection problem has been studied mainly for static networks, but the
problem has also been studied for dynamic networks as well as overlapping communi-
ties recently [8–14]. At their initial development phase, community detection algorithms
concerned disjoint communities, where each vertex of a network belongs to only one com-
munity. However, many real-world networks such as social networks can have overlapping
communities, so that a vertex is permitted to belong to several communities at the same
time. Even though the problems for dynamic networks or overlapping communities are
interesting and worth tackling, this paper limits its scope to methods for disjoint community
detection of static networks.

Since it is unrealistic to review all the previously proposed algorithms for community
detection, only a few representative algorithms are mentioned in this section. More detailed
reviews and studies regarding community detection can be accessed through several
extensive review articles and books [2–5,15–17].

Even though many algorithms for community detection have been proposed so far,
it seems that there is no single algorithm that can detect communities universally well
for many kinds of various networks [18,19]. Therefore, it is believed to be better to have
multiple different algorithms and the apply suitable one to each particular network. Most
algorithms proposed for disjoint community detection of static networks may be classified
into three categories: traditional, modularity-based, and dynamic algorithms [2].

Traditional algorithms include hierarchical clustering [1,20–24], Girvan–Newman (GN)
algorithms [25–28] and their variants [29–31], spectral clustering [32–39], and graph-
partitioning-based algorithms [39,40]. Most of these algorithms are based on clustering,
and they have provided basic concepts of community detection for later developments.

Modularity-based algorithms include the Guimera and Amaral algorithm [41], the fast
GN algorithm [27], the Clauset algorithm [42], optimization-based algorithms [25,41,43–46],
and genetic algorithms [47–51]. The concept of modularity was introduced by Newman
and Girvan [25], and modularity-based algorithms try to optimize the modularity value
by finding a good community structure in a network via some heuristics. The concept of
modularity is briefly reviewed in Section 3.

Dynamic algorithms include those that are based on spin models, random walk,
and synchronization. A random walk can be used for community detection by letting an
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entity make random moves along the edges of a network [52–55]. More details on dynamic
algorithms can be found in review papers and books [2–5].

Since many algorithms and methods for community detection have been proposed,
the task of evaluating them becomes important as well. To measure the performance
of the algorithms and methods, a few standard benchmarks of complex networks with
known community structures have been devised. Among these benchmarks, the GN and
LFR (Lancichinetti, Fortunato, and Radicchi) benchmarks are frequently used [56,57]. These
benchmark networks are synthesized with predetermined community structures, and an
algorithm is evaluated by comparing the result of community detection to the known
answer, i.e., the predetermined community structure. Besides these synthetic benchmarks,
there are some real-world network data that are frequently used to evaluate community
detection algorithms. In Section 4, some of these real-world network data are used to
illustrate the performance of the algorithm proposed in this paper.

3. Methods

The community detection method proposed in this paper is based on the idea that
connections between vertices of the same community tend to be denser than connections
between vertices of different communities. Since a minimum cut in graph theory finds as
few connections to a cut as possible, applying a minimum cut to a network may give us
boundaries between different communities. In other words, a minimum cut might result in
a cut-set that contains more inter-connections between communities than intra-connections
within communities.

The proposed method of this paper iteratively applies the minimum cut solution
to a network to generate a community structure. The method first finds two temporary
source and sink nodes that are expected to be of different communities, and computes a
minimum cut between the two nodes. As a result of the cut, the network is divided into
two groups. Then, the same procedure is applied to each group, and quality measures
of the resulting community structures of the entire network are compared to select the
better result between the two. The same procedure is repeated until no further refinement
of the quality of community structure is obtained. A precise description of the proposed
algorithm is presented later in this section.

3.1. Network and Community Structure

To describe the problem and the proposed algorithm precisely, some basic notations
are introduced.

Definition 1. A network is a graph G = (V, E) defined by V and E, where V and E are the set of
vertices (nodes) and the set of edges, respectively. An edge is a pair of two vertices. Given a network
G = (V, E) and a subset C ⊂ V of vertices, E(C) ⊂ E is a subset of E consisting of all the edges
whose endpoints belong to C.

This paper concerns undirected graphs without loops or multiple edges. even though
the proposed method may be easily extended to the case of directed graphs. Therefore,
an edge e = {u, v} ∈ E is a pair of two vertices u, v ∈ V, and the order of the two is
not relevant unless it is noted otherwise. We also assume that the graph is connected;
every pair of vertices (u, v) of G has a path from u to v. In this paper, networks are used
interchangeably with graphs.

Definition 2. A community structure C = {C1, C2, . . . , Ck} of a network G = (V, E) is a
partition of V, the set of vertices of G. In other words, ∪k

i=1Ci = V and Ci ∩ Cj = ∅ for
i, j = 1, . . . , k with i 
= j. Here, k refers to the number of communities of the community structure C.

With these definitions, the objective of the community detection problem can be stated
as finding a good community structure C when a network G is given.
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3.2. Minimum Cut

Since the minimum cut in graph theory is employed in the proposed method, a brief
review is provided in this section.

Definition 3. A cut C = (S, T) is a partition of the set of vertices V of a graph G = (V, E) into
two subsets S and T. The cut-set of a cut C = (S, T) is the set {{u, v} ∈ E | u ∈ S, v ∈ T} of
edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the
graph G, then an s-t cut is a cut C = (S, T) such that s ∈ S and t ∈ T.

In this paper, we consider networks whose edges have no weight values assigned,
i.e., unweighted and undirected graphs. However, graphs may have edge weights in
general, and the weight of a cut in an undirected graph is defined as follows.

Definition 4. In an unweighted and undirected graph, the size or weight of a cut is defined to be
the number of edges that belong to the cut-set of the cut. In a weighted graph, the value or weight
of a cut is defined to be the sum of the weights of the edges in the cut-set.

Given the definitions of a cut and the weight of a cut, a minimum cut of a network is
defined as follows.

Definition 5. A minimum cut of an undirected graph is a cut whose weight is not larger than the
weight of any other cut.

It is well known in network science that the maximum flow of a flow network from a
source vertex s to a sink vertex t is equal to the capacity of a minimum cut that separates the
two vertices s and t. This result is called the max-flow min-cut theorem and was introduced
by Ford and Fulkerson [58]. The Ford–Fulkerson method can be used to find a minimum
cut and a maximum flow, and the Edmonds–Karp algorithm is an implementation of the
method that runs in polynomial time [59,60].

Even though the max-flow min-cut theorem deals with a directed graph with capacity
values assigned on edges, it is straightforward to extend the theorem to undirected and
weighted graphs. Besides the Ford–Fulkerson method, there are other algorithms for
finding a minimum cut of undirected edge-weighted graphs such as the Stoer–Wagner
algorithm [61,62]. The Stoer–Wagner algorithm has the time complexity of O(|V||E| +
|V|2 log |V|) [62].

Since the max-flow min-cut theorem is well known and there are many algorithms for
finding a minimum cut of undirected graphs, we denote such an algorithm as MINIMUM-
CUT without a detailed description of the procedure.

Definition 6. Given a connected graph G = (V, E), a capacity function c, and source and sink
vertices s and t, the procedure MINIMUM-CUT(G, c, s, t) is an implementation of a method that
finds a minimum cut of the graph G with c, s, and t.

The capacity function c in Definition 6 gives the weight value of each edge of a
weighted graph, i.e., a capacity is used interchangeably with a weight in this paper.
The MINIMUM-CUT procedure is employed in our proposed algorithm, and more details
are described later.

3.3. The Betweenness Centrality

To apply MINIMUM-CUT to a graph, source and sink vertices s and t should be
provided as well as the capacity c for each edge. For community detection, the source
and sink vertices should be chosen so that the two vertices do not belong to the same
community, because the two vertices are cut by MINIMUM-CUT. The betweenness centrality
in graph theory is used to select two vertices in our proposed method. In particular, the two
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vertices of highest betweenness centrality values are chosen as the source and sink vertices
in applying MINIMUM-CUT.

In graph theory, betweenness centrality is a measure of the centrality of a vertex in a
graph [63]. Roughly speaking, the betweenness centrality of a vertex represents the degree
of how many pairs of nodes are connected via the shortest paths passing through the vertex.
The betweenness centrality cB(v) of a vertex v ∈ V of a graph G = (V, E) based on shortest
paths is defined as the following

cB(v) = ∑
s,t∈V

σ(s, t|v)
σ(s, t)

, (1)

where σ(s, t) is the number of shortest paths from s ∈ V to t ∈ V, and σ(s, t|v) is the
number of those paths passing through a vertex v other than s and t [64,65]. If s = t, we
let σ(s, t) = 1, and if v ∈ {s, t}, we let σ(s, t|v) = 0. On unweighted graphs, computing
betweenness centrality takes O(|V||E|) times using Brandes’ algorithm [64].

As briefly mentioned before, the betweenness centrality values for all the vertices are
computed to select the source and sink vertices s and t, which are provided as inputs to
MINIMUM-CUT. Those two vertices of the highest values are chosen because it is expected
that many shortest paths connecting vertices of different communities pass through these
two nodes.

3.4. The DIVIDE-INTO-TWO Algorithm

To find a community structure of a given network, the proposed algorithm of this paper
iterates by dividing a group of vertices into two smaller groups until a stopping criterion is
satisfied. Before the algorithm is described precisely, we present the procedure of dividing
a group of vertices into two smaller groups in Algorithm 1, called DIVIDE-INTO-TWO.

Algorithm 1 The DIVIDE-INTO-TWO algorithm
Input: A connected graph G = (V, E)
Output: C = {C1, C2}, a partition of G

1: procedure DIVIDE-INTO-TWO(G)
2: if |V| ≤ 1 then
3: C ← {V}
4: else
5: Compute betweenness centrality cB(v) for all v ∈ V
6: s ← arg maxv∈V cB(v)
7: t ← arg maxv∈V\{s} cB(v)
8: S ← {v ∈ V | {s, v} ∈ E}
9: T ← {v ∈ V | {t, v} ∈ E}

10: for all {u, v} ∈ E do
11: cuv ← 1
12: end for
13: for all v ∈ S do
14: if v /∈ T ∪ {t} then
15: csv ← ∞
16: end if
17: end for
18: for all v ∈ T do
19: if v /∈ S ∪ {s} then
20: ctv ← ∞
21: end if
22: end for
23: C ← MINIMUM-CUT(G, c, s, t)
24: end if
25: end procedure
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After the source s and sink t are selected by the betweenness centrality computation,
DIVIDE-INTO-TWO initializes the capacity values of all the edges of the network to be
one. Then, it assigns infinity as the capacity to the edges that are connected to the source or
sink vertices. This assignment is to prevent the edges connected to s or t from being cut by
MINIMUM-CUT. The procedure forms a group of vertices S and T, where vertices of S and
T are neighbors of the source and sink nodes, respectively. The capacity value of infinity
makes the vertices of groups S or T strongly connected to themselves, which prevents the
edges from being cut by MINIMUM-CUT. All the other edges remain with a capacity of
one, as initialized.

When assigning infinity as a capacity value to edges, it should be avoided that the
source s and sink t are connected by a path whose every edge has infinity as its capacity
value. If there is any path connecting the source and sink vertices where all the edges of the
path have infinity as capacity, then MINIMUM-CUT cannot find a cut set of finite minimum
cut value. To carefully assign infinity as capacity, DIVIDE-INTO-TWO checks whether the
other vertex belongs to S or T, as described precisely in Algorithm 1.

Computing the betweenness centralities via Brandes’ algorithm takes O(|V||E|) time,
while the MINIMUM-CUT procedure takes O(|V||E|+ |V|2 log |V|) time when using the
Stoer–Wagner algorithm. The Stoer–Wagner algorithm is one of the fast algorithms for
finding a minimum cut from a graph. Considering these time complexities, the DIVIDE-
INTO-TWO algorithm has the same time complexity as MINIMUM-CUT. Note that all
the other executions of DIVIDE-INTO-TWO except for the two main procedures can be
performed in linear time. For example, selecting the source and sink vertices and forming
the two sets S and T can be done in linear time. Assigning capacity values to all the edges
also takes linear time.

3.5. Modularity: A Quality Measure

In most practical cases, community detection algorithms are applied to a network
whose community structure is not known ahead of time. Therefore, it is necessary to have
a quality measure to evaluate a community structure derived by a community detection
algorithm. In other words, we need a measure to answer the question of how well the found
community structure represents the underlying connection characteristics of the network.

Even though a quality measure of community structure is needed, there exists one
difficulty in defining such a measure. There is no pre-defined precise answer for the
community structure of a given network; two people may have different opinions about
the inherent community structure of the same network. It is hard to say that a community
structure of a network is strictly better than another community structure of the same
network. Examples that illustrate this difficulty are presented in Section 4.

Although it is difficult to find a well-defined and unified quality measure to evaluate
a particular division of a given network, some measures have been proposed so far. One of
the widely used measures is modularity [25]. The modularity measure is defined as follows.

Definition 7. Given a network G = (V, E) with a community structure C = {C1, C2, . . . , Ck},
a k × k symmetric matrix M is defined, where each element Mij for i, j = 1, . . . , k is the fraction of
all edges that connect vertices in community i to vertices in community j. Then, the modularity
measure Q of the community structure C of the network G is defined by

Q(C; G) = Tr M −
∥∥∥M2

∥∥∥, (2)

where ‖X‖ is the sum of the elements of the matrix X.

Note that the row sum mi = ∑j Mij of the matrix M represents the fraction of edges
that have at least one vertex in community i at its endpoints. If all the pre-existing edges are
removed and new edges are randomly placed between vertices while preserving the row
sums, the expected fraction of all the new edges that connect vertices in community i and
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vertices in community j equals mi · mj. Therefore, the difference between the pre-existing
and the expected fraction, Mii − m2

i , may be used as an indication of how strongly the
vertices in the community i are connected to each other. In other words, it can measure
how densely the vertices in the community i are linked. By adding these differences for all
the k communities, the modularity measure can be defined as

Q =
k

∑
i=1

(
Mii − m2

i

)
, (3)

which is shown to be equal to the right side of Equation (2).
The maximum value that Q can have is Q = 1, and this value indicates a network

with a very strong community structure [25,66]. The modularity Q values for networks
with strong community structure usually range from about 0.3 to 0.7.

Our proposed algorithm computes the modularity value after each division of the
given network via graph cuts, and it determines the next step based on the calculated
Q values. In particular, the Q value is used as a stopping criterion to stop iterations of
community division. Therefore, the Q values are critical for the algorithm.

3.6. The Proposed Algorithm

The proposed algorithm is a divisive one, so that a given network is divided into
groups of vertices in a stepwise manner. The main idea of the algorithm is that a connected
network may be partitioned into two subgroups by finding a minimum cut separating
the two, which is expected to reveal a good community structure of the given network.
After a division of each connected component of a network, the Q value for the resulting
community structure is calculated. By comparing the resulting Q value for every connected
component, the algorithm selects the best partition and creates two communities out of the
selected component. The algorithm iterates this process until no further improvement in
the modularity value is observed. The algorithm is named MCCD (Minimum Cut-based
Community Detection) and is presented precisely in Algorithm 2.

Algorithm 2 The MCCD algorithm
Input: A connected graph G = (V, E)
Output: C = {C1, . . . , Ck}, a community structure of G

1: procedure MCCD(G)
2: C ← {V}
3: Q ← 0
4: loop
5: if |C| = |V| then
6: break
7: end if
8: for i ← 1 to |C| do
9: {Ci1, Ci2} ← DIVIDE-INTO-TWO(Ci, E(Ci))

10: Qi ← Q
(
{C1, . . . , Ci−1, Ci1, Ci2, Ci+1, . . . , C|C|}; G

)
11: end for
12: m ← arg maxi Qi
13: if Q > Qm then
14: break
15: end if
16: C ← {C1, . . . , Cm−1, Cm1, Cm2, Cm+1, . . . , C|C|}
17: Q ← Qm
18: end loop
19: end procedure
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Note that the locally optimal partition {C1, . . . , Cm−1, Cm1, Cm2, Cm+1, . . . , C|C|}, where
m = arg maxi Qi, is selected at each iteration of the MCCD algorithm. The iteration repeats
until a decrease in the modularity Q value is observed or each vertex has its own com-
munity, i.e., the entire network is partitioned into one-vertex communities. As illustrated
in Section 4, however, the Q value starts decreasing after only a few iterations for many
networks. In other words, many networks are expected to have a community structure
consisting of not so many communities.

Even though the MCCD algorithm stops its iteration of dividing each community into
two smaller communities when it detects decreasing Q values, it is also possible to continue
the iteration until a desired number of communities are obtained, via a slight modification
of the algorithm. This modified algorithm is precisely presented in Algorithm 3 and is
called k-MCCD. The desired number of communities k, which is given as an input, is
assumed to satisfy 1 ≤ k ≤ |V|. As presented in Algorithm 3, k-MCCD stops its iterations
when the number of communities reaches the desired number k.

Algorithm 3 The k-MCCD algorithm
Input: A connected graph G = (V, E) and a desired number of communities k
Output: C = {C1, . . . , Ck}, a community structure of G

1: procedure k-MCCD(G, k)
2: C ← {V}
3: Q ← 0
4: loop
5: if |C| = k then
6: break
7: end if
8: for i ← 1 to |C| do
9: {Ci1, Ci2} ← DIVIDE-INTO-TWO(Ci, E(Ci))

10: Qi ← Q
(
{C1, . . . , Ci−1, Ci1, Ci2, Ci+1, . . . , C|C|}; G

)
11: end for
12: m ← arg maxi Qi
13: C ← {C1, . . . , Cm−1, Cm1, Cm2, Cm+1, . . . , C|C|}
14: Q ← Qm
15: end loop
16: end procedure

As mentioned previously, the procedure DIVIDE-INTO-TWO has the time complexity
of O(|V||E|+ |V|2 log |V|). Therefore, when MCCD calls DIVIDE-INTO-TWO(Ci, E(Ci))
for a community Ci, it takes O(|Ci||E(Ci)|+ |Ci|2 log |Ci|) time. MCCD calls DIVIDE-INTO-
TWO for each community Ci during one iteration, so the total computation time summed
for every community can be given by

|C|
∑
i=1

O(|Ci||E(Ci)|+ |Ci|2 log |Ci|). (4)

The computation time of Equation (4) satisfies

|C|
∑
i=1

O(|Ci||E(Ci)|+ |Ci|2 log |Ci|) ≤
|C|
∑
i=1

O(|Ci||E|+ |Ci|2 log |Ci|)

≤ O(|V||E|+ |V|2 log |V|),

where the convexity of a function f (x) = yx + x2 log x for sufficiently large x is used for
the second inequality.

Besides DIVIDE-INTO-TWO, another procedure should be accounted for when con-
sidering the time complexity of MCCD, which is the computation of the modularity Qi for
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each community Ci. Assuming that the change in Q is tracked during the iterations, it is
known that the time complexity of modularity computation is bounded by O(|V|+ |E|) [27].
Therefore, the modularity computation does not affect the time complexity of MCCD, be-
cause DIVIDE-INTO-TWO takes a longer time. Since MCCD iterates dividing a community
into two smaller communities until the stopping criterion is satisfied, in the worst case
where the iteration number is equal to |V|, the time complexity of MCCD is given by
O(|V|2|E|+ |V|3 log |V|), which is in polynomial time. However, many practical networks
are believed to have a small number of communities, which is equal to the total number
of iterations of MCCD. Therefore, the time complexity of MCCD may be bounded by
O(|V||E|+ |V|2 log |V|) in those cases.

4. Results

This section describes the results of application of the proposed MCCD algorithm
to four different example networks. The first example deals with a very simple network
whose community structure is obvious. This example checks the validity of the proposed
algorithm; if the algorithm cannot detect the obvious community structure of the simple
network, it is useless to consider it any further. After the simple validity check, three more
examples are used to show the performance of the MCCD algorithm. These examples
are frequently used in the literature on the study of networks, so they can provide an
evaluation of the performance of the proposed algorithm.

4.1. Example 1: A Simple Network

A very simple network, whose community structure is obvious, is generated as shown in
Figure 2a. The network is a slightly generalized version of a graph, usually called an n-barbell
graph, and it has two complete subgraphs that are connected by a path [67–69]. It is obvious
that the network has two communities: C1 = {0, 1, 2, 3, 4, 5} and C2 = {6, 7, 8, 9, 10, 11}.

(a) (b)

(c) (d)

Figure 2. A barbell graph and the application of MCCD to the graph. (a) The barbell graph; (b) the
two detected communities by MCCD; (c) the betweenness centrality values cB(v); (d) the modularity
values after each iteration of DIVIDE-INTO-TWO.
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The result of the MCCD algorithm applied to the network is shown in Figure 2b.
As expected, the MCCD algorithm detects the two obvious communities, and they are
represented as blue rectangles (C1) and orange circles (C2) in the figure. Therefore, the
MCCD algorithm works well for the simple barbell graph.

The betweenness centrality value cB(v) for all vertices v of the barbell network is
shown in Figure 2c. Vertices 5 and 6, which are boundary nodes of each community, have
the highest betweenness centrality value because the shortest paths connecting nodes of the
network pass through them more than any other nodes. Therefore, the MCCD algorithm
selects the two vertices 5 and 6 as the source and sink nodes at the first iteration of the
process. The algorithm then succeeds in finding the minimum cut between the two vertices
and in detecting the obvious communities C1 and C2.

Note that the MCCD algorithm stops its iteration after the second pass because the
modularity score of the second pass, which is about 0.4527, is lower than that of the first
pass, which is about 0.4565. The modularity value of every iteration is shown in Figure 2d,
where the MCCD algorithm is slightly modified to perform its iterations even though
the modularity value Qm of each iteration starts decreasing; the lines 13–15 of MCCD
Algorithm 2 are temporarily ignored to repeat the DIVIDE-INTO-TWO procedure until
every edge is cut, so that each vertex forms its own community. As can be observed in
Figure 2d, the modularity value quickly decreases as MCCD repeats its iteration passes.

4.2. Example 2: Zachary’s Karate Club Network

One of the frequently used real-world network data is Zachary’s karate club network [7].
The karate club network represents social interactions between 34 individuals, who were
the members of a karate club at a university. Wayne Zachary obtained the network data by
observing social interactions between the members for a period of three years from 1970 to 1972.

Before the study began, the club had employed an instructor (Mr. Hi) for karate
lessons. At the beginning of the study, there was a conflict between the instructor and the
club president (John A.) over the price of karate lessons. The instructor wished to raise
prices while the president wanted to stabilize them. As time passed, there arose a series
of factional confrontations, and then the president fired the instructor for attempting to
raise lesson prices unilaterally. The supporters of the instructor resigned and formed a new
organization headed by the instructor, thus completing the fission of the club.

Figure 3a shows the karate club network, where each vertex represents a member of the
club. Vertices 0 and 33 represent the instructor and the president, respectively; the members
who belong to the group headed by the instructor after the fission are represented by blue
square vertices and the members who belong to the other group are represented by orange circle
vertices. An edge of the network is drawn if two individuals were observed to interact outside
the normal activities of the club, i.e., if they could be said to be friends outside the club activities.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Zachary’s karate club network and the application of MCCD to the network. (a) The karate
club network; (b) the two detected communities by MCCD; (c) the betweenness centrality values
cB(v); (d) the modularity values after each iteration of DIVIDE-INTO-TWO.

The result of the proposed MCCD algorithm is shown in Figure 3b. Comparing the
result with the data shown in Figure 3a, only one vertex, which is labeled 8, is misclassified
by MCCD; vertex 8 joined the organization headed by the instructor after the fission, but
the MCCD algorithm predicts that it belongs to the other group. Therefore, it can be said
that MCCD works well for the karate club network.

Figure 3c shows the betweenness centrality values cB(v) for the vertices of the network.
As expected, the instructor and the president nodes have the highest values, so MCCD
selects the two vertices as the source and sink nodes at its first iteration. The modularity
values after each iteration of MCCD are shown in Figure 3d. The modularity value achieves
its maximum value of 0.3715 after the first iteration, and the values quickly decrease as
MCCD iterates its DIVIDE-INTO-TWO procedures.

To model information flow in the karate club, Zachary defined a capacitated network
for the club, which includes a capacity matrix C whose entries are interpreted as represent-
ing a capacity or value of maximum possible information flow between two members of
the club [7]. In other words, each edge of the network has a quantified value representing
the strength/weakness of friend relationship between the two end vertices. These capacity
values were assigned by analyzing data of social interactions between the club members.
Using this capacitated network model, Zachary employed the max-flow min-cut theory and
applied the labeling procedure of Ford and Fulkerson [58,70,71]. To apply the algorithm,
the vertices 0 and 33 of the network were manually designated as the source and sink nodes.

Zachary obtained the same result as MCCD, which is expected, and explained why
vertex 8 is misclassified [7]. One point to note is that, contrary to Zachary’s method, MCCD
automatically selects the source and sink nodes and iterates the DIVIDE-INTO-TWO
operation to find the best result for community detection.

Many community detection algorithms that have been proposed previously used the
karate club network data to verify their performances, and the modularity results of a few
well-known algorithms are shown in Table 1. Most algorithms result in higher modularity
values than MCCD, but the ground truth of the karate club network has the modularity
value of 0.371 [6]. As described above, MCCD misclassifies only one vertex, so that the
modularity value of MCCD is very close to the ground truth. This result illustrates that
modularity is not a perfect measure even though it is a very good one.
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Table 1. Modularity values for the karate club network of a few well-known community detection
algorithms and MCCD: Girvan and Newman (GN) [25]; Newman (FN) [27]; Clauset, Newman,
and Moore (CNM) [42]; Duch and Arenas (DA) [72]. Data from [25,27,46,72].

Algorithm GN FN CNM DA MCCD

Modularity 0.401 0.381 0.381 0.419 0.372

4.3. Example 3: The Social Network of Bottlenose Dolphins

The third example network is the social network of bottlenose dolphins that was
studied by Lusseau [73]. Lusseau conducted a study about a social network of bottlenose
dolphins residing in the Doubtful Sound, Fiordland, New Zealand, from November 1994
to November 2001. Based on the observations and study, 62 dolphins were formed into a
social network, and it is shown in Figure 4a [74].

(a) (b)

(c) (d)

Figure 4. The social network of bottlenose dolphins in Doubtful Sound, New Zealand, and the appli-
cation of MCCD to the network. (a) The social network of bottlenose dolphins; (b) the communities
detected by MCCD; (c) the betweenness centrality values cB(v); (d) the modularity values after each
iteration of DIVIDE-INTO-TWO.

As can be seen from Figure 4a, the community structure of the dolphin network is
not random, but it is not obvious, either. In other words, it seems that there is a weak
community structure in the network, and different people may have different opinions on
the structure as well as the number of communities. As mentioned before, it is hard to find
a universally agreed answer for the community structure of a network, and this example
illustrates this difficulty.

Figure 4b shows the result of MCCD application to the network. The modularity
value achieved its maximum of 0.4021 after three iterations; hence, MCCD detects four
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communities shown in the figure. The betweenness centrality values of the vertices and the
modularity values after each iteration are shown in Figure 4c,d, respectively. It turns out
that the modularity values of the first few iterations are similar, and this implies that it is
hard to tell which structure is best for community detection. Even though MCCD generates
the four community structure, structures of slightly different numbers of communities are
also plausible. Lusseau presented a sociogram with three groups in his original paper [74].
In fact, the whole network visually seems to have two large groups, where the network is
divided into two groups mostly by the gender of dolphins: males and females.

4.4. Example 4: The Characters Network of Les Misérables

Figure 5a shows the network of major characters in Les Misérables, a famous novel
written by Victor Hugo. The network data was constructed by considering coappearances
of characters in the same chapter of the book [75]. The 77 vertices of the network are major
characters, and an edge between two vertices represents coappearance of the corresponding
two characters in the same chapter. Even though Knuth assigned a value to each edge by
counting the number of coappearances of the two characters, our method does not use the
edge attribute values; MCCD uses the network structure only.

(a)

(b)

Figure 5. Cont.
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(c) (d)

Figure 5. The character network of Les Misérables and the application of MCCD to the network.
(a) The network; (b) the communities detected by MCCD; (c) the betweenness centrality values cB(v);
(d) the modularity values after each iteration of DIVIDE-INTO-TWO.

The result of MCCD application to the network is shown in Figure 5b. As shown
in Figure 5c, the modularity value achieves its maximum of 0.4570 when the network
is partitioned into four communities. As expected, the protagonist Jean Valjean and the
police officer Javert form the central positions of the main community. Another community
that consists mainly of the members of the Friend of the ABC, the fictional association of
revolutionary French republican students, is also detected. Enjolras, the charismatic leader
of the association, belongs to this community. Furthermore, two more communities are
also detected, and it can be observed that these two are centered by the main characters
Myriel and Fantine, respectively.

5. Discussion

In this paper, a new algorithm for community detection was proposed and some experi-
mental results were provided. As previously mentioned, the problem of community detection
has its inherent difficulties; there is no exact solution for the problem. People may have
different opinions about the community structure of a given network. As seen in Section 4,
the networks of bottlenose dolphins and of characters in the novel Les Misérables are compli-
cated, so that there is no universally agreed-upon community structure. Even though the
modularity measure Q can provide a criterion to estimate the quality of community structures,
it is only an indirect measure, and some may find a lower-scored community structure to be
better than a higher-scored one.

Considering that the problem of community detection has no exact solution, the pro-
posed algorithm MCCD shows fairly good results with comparable Q values when applied
to the example networks of Section 4. In particular, the algorithm shows satisfactory re-
sults for the barbell graph and Zachary’s karate club network. For the more complicated
networks in Section 4, it also detects community structures well, which can be visually
observed from Figures 4 and 5.

Even though the proposed algorithm showed its feasibility via the example networks
of Section 4, further evaluation of the performance of the algorithm by using various
benchmarks and larger network data is needed and remains as future work. Frequently
used benchmarks such as GN and LFR may be used for the evaluation. For the example
networks of Section 4, MCCD takes a few seconds with typical current computers, but the
time performance should be carefully investigated with larger networks and benchmarks.

Optimization of the MCCD algorithm implementation is also left as future work.
Many procedures called by MCCD may be carefully modified and implemented to reduce
computation time. Modifying the algorithm so that it can be applied to detect overlapping

90



Appl. Sci. 2022, 12, 6218

community structures may be left as another element of future work. This may not be easy,
however, because graph cut methods in general divide vertices without overlapping.
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Abstract: Community detection is an important task in the analysis of complex networks, which is
significant for mining and analyzing the organization and function of networks. As an unsupervised
learning algorithm based on the particle competition mechanism, stochastic competitive learning has
been applied in the field of community detection in complex networks, but still has several limitations.
In order to improve the stability and accuracy of stochastic competitive learning and solve the problem
of community detection, we propose an unsupervised community detection algorithm LNSSCL (Local
Node Similarity-Integrated Stochastic Competitive Learning). The algorithm calculates node degree
as well as Salton similarity metrics to determine the starting position of particle walk; local node
similarity is incorporated into the particle preferential walk rule; the particle is dynamically adjusted
to control capability increments according to the control range; particles select the node with the
strongest control capability within the node to be resurrected; and the LNSSCL algorithm introduces
a node affiliation selection step to adjust the node community labels. Experimental comparisons
with 12 representative community detection algorithms on real network datasets and synthetic
networks show that the LNSSCL algorithm is overall better than other compared algorithms in terms
of standardized mutual information (NMI) and modularity (Q). The improvement effect for the
stochastic competition learning algorithm is evident, and it can effectively accomplish the community
detection task in complex networks.

Keywords: unsupervised learning; community detection; local node similarity; particle competition;
stochastic competitive learning; complex networks

1. Introduction

With the advancement of information technology, many complex systems in real
life can often be described and represented in the form of complex networks, such as
social networks, citation networks, scientist collaboration networks, and protein interaction
networks. The majority of these real-life networks typically exhibit distinct community
structures, where a network consists of multiple communities, and the connections between
nodes within a community are highly dense, while connections between nodes of different
communities are relatively sparse [1]. Community detection is a fundamental task in
the analysis of complex networks, aiming to partition the entire network into several
communities. This process holds significant importance for studying and analyzing the
organizational structure and functionality of networks, as well as uncovering latent patterns
within them.

There has been a great deal of research in detecting and evaluating community struc-
tures in complex networks. In pursuit of this fundamental task of community detection,
researchers have proposed numerous community detection algorithms based on various
methods such as graph partitioning, statistical inference, clustering, modularity optimiza-
tion, dynamics, and deep learning. More detailed reviews of community detection can
be available through several more extensive review articles [2–6]. Among many methods,
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dynamics-based methods constitute a significant branch of community detection algo-
rithms, which reveal the community structure by modeling the interactions between nodes
in a network. Currently, some of the mainstream dynamic-based community detection
algorithms include label propagation, random walk, Markov clustering, dynamic distance,
and particle competition [7].

To further improve the accuracy and stability of community detection algorithms,
competitive learning is applied to the field of community detection. Competition is a natu-
ral process observed in the natural world and many social systems with limited resources.
Competitive learning, as a crucial machine learning strategy, has been widely applied in
artificial neural networks for achieving unsupervised learning. Early developments in-
clude Adaptive Resonance Theory networks [8], Self-Organizing Feature Map networks [9],
Learning Vector Quantization neural networks [10], Dual Propagation neural networks [11],
and Differential Competitive Learning [12]. The competition among particles in complex
networks can generate intricate patterns formed by predefined interactions among individ-
uals within a system. The simple interactions between particles in a network can construct
the complex behaviors of the entire network, enabling functions like community detection
and node classification. Particle competition-based community detection methods were
first proposed by Quiles and Zhao [13]. In this approach, a set of particles is initially placed
randomly in the network. These particles engage in random walks and compete with each
other based on predefined rules to occupy nodes. When each community is dominated
by only one particle, the process reaches dynamic equilibrium, thus accomplishing the
community detection task. Silva et al. [14] introduced the Stochastic Competitive Learning
(SCL) algorithm for unsupervised learning, refining the walk rules of the particle compe-
tition model. Particles move in the network based on a convex combination of random
walk and preferential walk rules. After entering a silent state due to energy depletion,
particles execute a jump resurrection step. The final attribution of nodes to communities is
determined based on the relative control abilities of particles, achieving the community
detection task. The SCL algorithm represents a nonlinear stochastic dynamical system,
characterized by adaptability, local motion reflecting the whole, and has contributed to
the advancement of complex network dynamics. Subsequently, stochastic competitive
learning has found extensive application in various fields such as label noise detection [15],
overlapping community detection [16], prediction of the number of sentiment evolution
communities [17], graph anomaly detection [18], image segmentation [19], and assisting
the visually impaired [20]. These applications have demonstrated the feasibility, rationality,
and effectiveness of applying stochastic competitive learning to the domain of complex
network community detection.

Despite the commendable effectiveness of the stochastic competitive learning algo-
rithm in various fields, it has been found that the algorithm still has some shortcomings in
the community detection task. Firstly, the random selection of initial positions for parti-
cles in stochastic competitive learning leads to unstable community detection outcomes.
This randomness might result in an overly concentrated placement of different particles,
affecting convergence speed and subsequently diminishing the quality of community de-
tection. Secondly, the stochastic nature of the preferential walk process of particles and
the uncertainty in selecting resurrection positions upon energy depletion contribute to
suboptimal final results. Lastly, the constant increment in particle control ability leads to
potential misjudgments in affiliating boundary nodes between communities of varying
scales. The above issues make stochastic competitive learning underperform on community
discovery tasks.

In order to address the aforementioned issues, this paper proposes the Local Node
Similarity-Integrated Stochastic Competitive Learning algorithm LNSSCL for unsupervised
community detection. The algorithm first integrates the node degree and Salton metrics
to determine the starting point of particle walk in the network. During the particle walk
process, the wandering direction is guided by the walk rule that incorporates the local
similarity of nodes. At the same time, the control ability of the particle is dynamically
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adjusted according to its current control range. When a particle runs out of energy, it is
assigned a unique resurrection position. After the wandering is completed, the community
label is adjusted through the node affiliation selection step to obtain the final community
discovery result. The main objectives and contributions of this study are as follows:

(1) Determining the initial positions of particles based on node degrees and the Salton
similarity index, ensuring fixed and dispersed particle placements to mitigate intense
early-stage competition and subsequently accelerate convergence speed;

(2) Incorporating the proposed node similarity measure to enhance the deterministic and
directional aspects of particle preferential walk rules; refining the rules for selecting
particle resurrection positions; introducing a node affiliation selection step to refine
the final community detection results and enhance algorithm stability;

(3) Dynamically adapting the increment of particle control ability according to the parti-
cle’s current control range, thereby improving the effectiveness of detecting communi-
ties of varying sizes within the network;

(4) The LNSSCL algorithm is experimentally compared with 12 representative algorithms
on real network datasets and synthetic networks. The results demonstrate that the
proposed algorithm enhances the community detection performance of stochastic
competitive learning and, overall, outperforms other algorithms.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 introduces some related preliminary knowledge. Section 4 describes the details
and main framework of the proposed LNSSCL algorithm. The experiments are shown and
discussed in Section 5. Section 6 gives the conclusions of this paper.

2. Related Work

Complex networks can model various relationships and internal operating mecha-
nisms between entities and objects in the real world. Detecting the community structure
present in the network can help us further reveal aspects of the real world. Therefore,
community detection in complex networks has received attention from many fields and is
rapidly evolving. Among the many methods proposed, Dynamics-based methods utilize
the dynamic properties of complex networks. Most of these algorithms have linear time
complexity and can be better scaled to large-scale networks. Since it is impractical to review
all previously proposed algorithms for community detection, this section mentions only
some representative algorithms from recent years.

Roghani et al. [21] introduced a community detection algorithm based on local balance
label diffusion. They assigned importance scores to each node using a novel local similarity
measure, selected initial core nodes, and expanded communities by balancing the diffusion
of labels from core to boundary nodes, achieving rapid convergence in large-scale networks
with stable and accurate results. Toth et al. [22] proposed the Synwalk algorithm, which
incorporates the concept of random blocks into random walk-based community detection
algorithms, combining the strengths of representative algorithms like Walktrap [23] and
Infomap [24], yielding promising results. Yang et al. [25] introduced a method of enhancing
Markov similarity, which utilizes the steady-state Markov transition of the initial network
to derive an enhanced Markov similarity matrix. By partitioning the network into initial
community structures based on the Markov similarity index and subsequently merging
small communities, tightly connected communities are obtained. Jokar et al. [26] proposed
a community discovery algorithm based on the synergy of label propagation and simulated
annealing, which achieved good results. You et al. [27] proposed a three-stage community
discovery algorithm TS, which obtained good results through central node identification,
label propagation, and community combination. Fahimeh et al. [28] proposed a community
detection algorithm that utilizes both local and global network information. The algorithm
consists of four components: preprocessing, master community composition, community
merging, and optimal community structure selection. Zhang et al. [29] propose a graph
layout-based label propagation algorithm to reveal communities in a network, using
multiple graph layout information to detect accurate communities and improve stability.

96



Appl. Sci. 2023, 13, 10496

Chin et al. [30] proposed the semi synchronization constrained label propagation algorithm
SSCLPA, which implements various constraints to improve the stability of LPA. Fei et al. [31]
proposed a novel network core structure extraction algorithm for community detection
(CSEA) using variational autoencoders to discover community structures more accurately.
Li et al. [32] developed a new community detection method and proposed a new relaxation
formulation with a low-rank double stochastic matrix factorization and a corresponding
multiplicative optimization-minimization algorithm for efficient optimization.

3. Background

In this section, we introduce some related preliminary knowledge, including basic
definition, local node similarity, and the theory of stochastic competitive learning.

3.1. Basic Definition

Given a complex network G = (V, E), where V = {vi |1 ≤ i ≤ n} is the set of nodes
and E =

{
(vi, vj) |1 ≤ i 
= j ≤ m} is the set of edges. The number of nodes is n and the

number of edges is m. Unless otherwise specified, this paper solely focuses on the analysis
of undirected simple graphs. The neighborhood of node vi is defined as N(vi) =

{
vj ∈

V
∣∣(vi, vj

) ∈ E
}

, and the degree of node vi is defined as d(vi) = |N(vi)|. Let A be the
adjacency matrix of network G, an n-order matrix, defined as follows:

aij =

{
1,
(
vi, vj

) ∈ E
0,
(
vi, vj

)
/∈ E

(1)

3.2. Local Node Similarity

In the analysis of complex networks, node similarity metrics are commonly employed
to assess the degree of similarity between nodes. Generalizing from the classical triadic
closure principle in social network analysis, it is understood that in a given complex
network, the greater the number of common neighbors between two nodes, the more
similar these nodes are. The specific definition of the common neighbor of nodes vi and vj
is as follows:

CN
(
vi, vj

)
= N(vi) ∩ N(vj) (2)

Based on the local structure, node similarity metrics are derived from the concept of
common neighbors and encompass various indices such as the Salton index, Jaccard index,
Sorenson index, Hub Promoted Index, Hub Depressed Index, Leicht-Holme-Newman
Index, Preferential Attachment Index, Adamic-Adar Index, and Resource Allocation In-
dex [33]. The higher the local similarity between nodes, the higher the probability that
they belong to the same community, and vice versa. Node similarity metrics based on
local structure also offer the advantage of lower computational complexity and have been
introduced into the task of complex network community detection.

3.3. Stochastic Competitive Learning

Stochastic Competitive Learning, as a classical particle competition model, constitutes
a competitive dynamical system composed of multiple particles, achieving community
detection through unsupervised learning [14].

In Stochastic Competitive Learning, multiple particles are randomly placed within the
nodes of the network. Each particle serves as a community indicator, while the nodes in
the network are treated as territories to be contended. The primary objective of particles
is to expand their territories by continually traversing the network and gaining control
over new nodes, while simultaneously strengthening their control over already dominated
nodes. Due to the finite number of nodes in the network, natural competition arises
among particles. When a particle visits any node, it enhances its control over the current
node, consequently weakening the control of other competing particles over that node.
Ultimately, each particle’s control range tends to stabilize, leading to convergence. By
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analyzing the control ranges of particles after convergence, the underlying community
structure of complex networks is unveiled [13].

As a stochastic nonlinear dynamical system, Stochastic Competitive Learning describes
the state of the entire dynamic system through vectors p(t), E(t), S(t), and matrix Nu(t).
Among these, vector p(t) represents the current positions of each particle within the
network; vector E(t) signifies the energy possessed by each particle. When a particle visits
a node under its control, its energy increases by Δ, whereas visiting a node controlled by a
competing particle reduces its energy by Δ. This mechanism limits each particle’s roaming
range, thus minimizing remote and redundant network access. Vector S(t) denotes the
dynamic state of each particle: particles with energy are in an active state, continuously
traversing the network; when energy depletes, particles enter a dormant state and randomly
jump to one of the nodes under their control for revival. Matrix Nu(t) records the visitation
counts of each particle for all nodes in the network. The more a particle visits a particular
node, the greater its control over that node. The particle with the highest visitation count
for a node attains control over it.

In Stochastic Competitive Learning, particles in an active state navigate through the
network following a convex combination of random and preferential walk rules [34]. The
particle walking rule, denoted as P(k)

transition(i, j, t), is defined as follows:

P(k)
transition(i, j, t) � λP(k)

pre f (i, j, t) + (1 − λ)P(k)
rand(i, j) (3)

where i denotes node vi. j denotes node vj. t represents the moment. k indicates the particle.

P(k)
pre f (i, j, t) denotes the particle preferential walk rule. P(k)

rand(i, j) represents the particle
random rule. λ ∈ [0, 1] represents the probability of a particle performing preferential
walk, regulating the balance between random and preferential walking. When λ = 1, the
particle exclusively follows preferential walking; when λ ∈ (0, 1), the particle performs a
combination of both random and preferential walking; and when λ = 0, the particle solely
engages in random walking. The random walking mode guides the particle’s exploratory
behavior, where the particle randomly visits neighboring nodes without considering their
control capacity. This mode reflects the particle’s randomness, and the equation for random
walking is defined as follows:

P(k)
rand(i, j) �

aij

∑
u∈N(vi)

aiu
(4)

The preferential walking mode guides the particle’s defensive behavior, where the
particle prioritizes visiting nodes it already controls, rather than nodes that are not yet
under its control. This mode reflects the particle’s determinism, and the equation for
preferential walking is defined as follows:

P(k)
pre f (i, j, t) �

aijNu(k)
j (t)

∑
u∈N(vi)

aiuNu(k)
u (t)

(5)

where Nu(k)
j (t) represents the current control capacity of particle k over node vj, determined

by the proportion of visits that the particle makes to the node. The equation is defined
as follows:

Nu(k)
j (t) �

Nu(k)
j (t)

∑
u∈K

Nu(u)
j (t)

(6)
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When the entire system reaches the convergence criterion, particles cease their wan-
dering. The convergence criterion for the system is defined as follows:

‖Nu(t)− Nu(t-1)‖∞ < ε (7)

where the convergence factor ε typically takes a value of 0.05. Finally, the community
structure is revealed based on the control ranges of individual particles after convergence.

To address the issue of determining the number of particles, stochastic competitive
learning employs the particle average maximum control capability metric to establish a
reasonable particle placement count within the network, thereby determining a suitable
community quantity [35]. The definition of the particle average maximum control capability
metric is as follows:

〈R(t)〉 = 1
|V|

V

∑
u=1

max
s∈K

(
Nu(s)

u (t)
)

(8)

where max
s∈K

(
Nu(s)

u (t)
)

represents the maximum control capability exerted by particle s on

node u. For a network with a community count of K, if the number of particles placed is
exactly K, each particle will dominate a community without excessively interfering with
the control regions of other particles. Therefore, 〈R(t)〉 will take its maximum value. When
the particle count is less than the actual number of communities, each particle competes
with others to control larger communities, resulting in the attenuation of their control
over nodes and causing a decrease in 〈R(t)〉. When the particle count exceeds the actual
community count, particles unavoidably fiercely compete for control over the same group
of nodes, leading to a decrease in 〈R(t)〉. In conclusion, when 〈R(t)〉 is maximized, the
corresponding optimal number of particles placed is the best quantity. The specific method
is as follows: gradually increase the placed particle count from 2 to K + 1 and record the R
value when the system converges under different particle counts. The optimal number of
particles placed corresponds to the particle count that yields the maximum 〈R(t)〉 value.

4. LNSSCL Algorithm

To enhance the stability and accuracy of community detection results, improvements
have been made in various aspects such as particle initialization positions, particle pref-
erential walking rules, particle control ability increments, particle resurrection position
selection, and the introduction of node affiliation selection. In light of these enhancements,
we propose the Unsupervised Community Detection Algorithm with Stochastic Competi-
tive Learning Incorporating Local Node Similarity, which integrates local node similarity
into the stochastic competitive learning framework.

4.1. Determining Particle Initialization Positions

The Stochastic Competitive Learning algorithm stipulates that each particle randomly
selects a different node in the network as its starting position for walking. The random
uncertainty in particle initialization can lead to unstable community detection outcomes.
Additionally, this initialization approach might result in particles’ starting positions cluster-
ing within a single community, intensifying the competitive relationships among particles
during their walks. This situation requires a considerable amount of time for convergence.
Addressing these concerns, the random placement for initialization is abandoned. Instead,
each particle’s initial position is determined based on the node’s degree and the Salton
similarity index between nodes. This approach aims to distribute particles across different
communities as much as possible, accelerating the convergence rate of particle walks and
enhancing the stability of community detection outcomes.
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Node degree is commonly used to measure the importance of a node within the
entire network, while the Salton similarity index is often employed to gauge the similarity
between a node and its neighboring nodes. It is defined as follows:

Salton(i, j) =

∣∣N(vi) ∩ N(vj)
∣∣√

d(vi)× d(vj)
(9)

Combining the two aforementioned metrics, the rules for determining particle initial-
ization positions are as follows. Firstly, arrange all nodes in the network in descending
order based on their degree values. Select the node with the highest degree value as the
starting position for the first particle’s walk. Next, calculate the average Salton similarity
index between the node where the already determined starting-position particle is located
and all other nodes in the network. Choose the node with the smallest average Salton
similarity index as the starting position for the next particle. This process is then repeated
iteratively to progressively determine the starting positions for the remaining particles.
Finally, when the starting position for each particle is determined, the particle initialization
process is completed. Figure 1 depicts the particle initialization position under the condi-
tion of three particles. As can be seen from the figure, particles 1, 2, and 3 are dispersed
and placed in the network after the position initialization step. p(k)(0) denotes the starting
position of particle k. The rules for determining particle initialization positions can be
expressed as follows:

p(k)(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmax(d(vi)), k = 1

argmin

⎛⎜⎝
k−1
∑

u=1
Salton(j,p(u)(0))

k

⎞⎟⎠, 2 ≤ k
(10)

Figure 1. Schematic of particle initialization position.

4.2. Incorporating Node Local Similarity into Particle Preferential Movement Rule

The stochastic competitive learning algorithm stipulates that particles navigate through
the network based on a convex combination of random walk and preferential walk rules.
The preferential walk rule ensures that particles preferentially access nodes under their con-
trol, reflecting the deterministic nature of particle traversal, and numerically equivalent to
the particle’s control ability ratio. However, this rule solely focuses on the particle’s control
ability over nodes, without considering the influence of node local similarity indicators.
This may lead to a relatively high degree of randomness and weak inclination in the initial
direction of preferential walk, thereby affecting the stability and accuracy of community
detection results. To address these issues, an enhancement to the particle preferential walk
rule is introduced by incorporating node similarity, enabling nodes with greater similarity
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to be more likely visited by particles. This modification enhances the directionality and
determinism of particle traversal during the walk.

The improved node similarity for the enhanced particle preferential walk rule not only
considers cases where nodes share common neighbors, but also accounts for situations
where nodes lack common neighbors. When there are shared neighbors between nodes, a
similarity index considering both common neighbors and degree difference is employed to
measure the degree of similarity between two nodes, as defined below:

Sim(i, j) =

∣∣N(vi) ∩ N(vj)
∣∣∣∣N(vi) ∩ N(vj)

∣∣+ ∣∣N(vi) ∪ N(vj)
∣∣ ×

∣∣N(vi) ∩ N(vj)
∣∣

1 + |Ns − Nh| (11)

For nodes vi and vj, if |N(vi)| ≥
∣∣N(vj)

∣∣, then Ns is set to N(vj), and Nh is set to N(vi);
if |N(vi)| <

∣∣N(vj)
∣∣, then Ns is set to N(vi), and Nh is set to N(vj). When there are no

shared neighbors between nodes, further consideration is needed for nodes with a degree
value of 1. For nodes without shared neighbors and with a degree value of 1, since their
behavior is solely related to their unique first-order neighbor, their similarity value is set to 1.
For nodes without shared neighbors and with a degree value greater than 1, their similarity
is associated with the node’s degree value. Based on the negative correlation between node
degree and the unfavorable Hub Depressed Index, the degree value is inversely related to
its similarity. The equation for calculating the similarity between nodes without shared
neighbors is defined as follows:

Sim(i, j) =

{
1, (d(vi) = 1) ∨ (d(vj

)
= 1
)

aij

max{d(vi),d(vj)} , d(vi) 
= 1, d
(
vj
) 
= 1 (12)

Building upon this, the equation for the particle’s preferential walk rule incorporating
node similarity is provided:

P(k)
pre f (i, j, t) �

aijNu(k)
j (t)(1 + Sim(i, j))

∑
u∈N(vi)

aiuNu(k)
u (t)(1 + Sim(i, u))

(13)

where Sim(i, j) represents the similarity index between nodes vi and vj, and Nu(k)
j (t) repre-

sents the control capacity of particle k over node vj. The improved preferential walk rule
takes into account both the particle’s control capacity over nodes and the similarity index
between nodes as equally significant factors. This approach avoids the issue of randomness
in the preferential walk direction that arises after particle initialization, thereby enhanc-
ing the inclination and certainty of particle movement throughout the entire preferential
walk process.

4.3. Dynamically Adjusting Particle Control Capacity Increment

In the Stochastic Competitive Learning algorithm, the control capacity of particles is
quantified as the proportion of node visits, thereby the number of times a particle visits
a node determines its control capacity over that node. When particle k visits node vi, the
equation for the change in the particle’s visit count to that node is given by:

Nu(k)
i (t + 1) = Nu(k)

i (t) + 1 (14)

According to Equation (14), it can be observed that the increment of particle control
capacity remains constant at 1. This would lead to particles having the same level of
competitive increment during the walking process. This uniform competitive increment
among different particles could potentially result in similar community sizes controlled
by different particles. Consequently, this might lead to instances where representative
particles of smaller communities erroneously compete for nodes at the boundaries of
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larger communities. However, many real-life complex systems, represented as complex
networks, often encompass communities of varying sizes. The constant increment in
particle control capacity could potentially yield suboptimal results in the final community
detection outcome. Figure 2 depicts the possible encroachment of a small community into
a large community node when the particle control capacity increment is constant. The size
of community 1 in the figure is actually larger than that of community 2. However, because
of the constant particle control capacity increment, it makes it possible for the range of
communities controlled by each particle to converge to the same size. This then causes
nodes that should belong to community 2 to be misclassified to community 2.

Figure 2. Schematic of error community detection when particle control capacity increment
is constant.

Addressing the aforementioned issues, an improvement is made to the particle control
capacity increment in order to enhance the effectiveness of discovering communities of
varying sizes within the network. The enhanced particle control capacity increment is
dynamically adjusted based on the current control range of the particle, and the specific
equation is provided below:

Nu(k)
i (t + 1) = Nu(k)

i (t) + 1 +

∣∣∣C(k)(t)
∣∣∣

|V| (15)

where
∣∣∣C(k)(t)

∣∣∣ represents the current control range of particle k, which indicates the
number of nodes currently under the control of particle k. From Equation (15), it can be
observed that the particle’s control capacity increment is positively correlated with its
current control range. This relationship can unveil community structures of different sizes
within the network and prevent particles from erroneously encroaching upon nodes located
at the boundaries of communities.

4.4. Determining Particle Resurrection Locations and Node Affiliation Selection

In stochastic competitive learning, when a particle visits a node under its control,
its energy increases. On the other hand, when it visits a node controlled by a competing
particle, its energy decreases. This energy manipulation serves to constrain the particle’s
walking range, thus reducing long-range and redundant accesses in the network. If a parti-
cle frequently visits nodes controlled by competing particles, its energy will continuously
decrease until it is exhausted and enters a dormant state. Subsequently, the particle will
randomly jump to a node within its control range to revive and recharge.

Clearly, the choice of the particle’s revival location has a high degree of randomness,
which can lead to unstable community detection results. To address this issue, based on the
particle’s control over nodes, we select the node with the highest control capability as the
unique revival location among the nodes it already controls, eliminating the uncertainty in
location selection. If a particle currently doesn’t control any nodes, it will randomly choose
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any node in the network for revival. The improved particle revival location selection is
shown in Figure 3, where the energy of particle 1 is depleted due to its traversal into the
control region of particle 3. After the improvement, particle 1 will no longer randomly
jump to any controlled node within the dashed box, but will instead jump to the node
indicated by the dashed arrow (assuming that node has the highest control capability value
for particle 1).

Figure 3. Schematic of particle resurrection location selection.

Once the algorithm reaches the convergence criterion, particles will cease their walks.
Based on the control capabilities of each particle over nodes, all nodes in the network
are assigned to the corresponding communities represented by particles. However, due
to the potential randomness and potential misclassifications in the steps executed by
particles before stopping their walks, a node membership selection step is introduced. By
considering the frequency of community labels among neighboring nodes, this step ensures
that each node is correctly assigned to its appropriate community, further optimizing
the community detection outcomes. Specifically, for each node, the occurrence frequency
of community labels among its neighboring nodes is observed. If the most frequent
neighboring community label is unique, it is selected as the community label for that node.
If the most frequent neighboring community label is not unique, an influence score is
computed for each community, and the community label with the highest influence score
is selected. The influence score E f f ectCk for a community is calculated as shown in the
equation below:

E f f ectCk = ∑
j∈N(vi)

Sim(i, j), j ∈ Ck (16)

where Ck is one of the most frequent communities, and N(vi) represents the set of neigh-
boring nodes of node vi.

4.5. Algorithm Description

Algorithm 1 describes the method of the LNSSCL algorithm; the pseudocode is
shown below.
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Algorithm 1 LNSSCL algorithm

Input: Graph G = (V, E)
The probability of preferential walk for particles λ,
Particle energy increment Δ, Convergence factor ε

Output: The number of communities K, The set of communities C
1: t = 1
2: K = 2
3: repeat

1: for each particle k do:
5: calculate the initial positions of particles p(k)(0) using Equation (10)
6: end for

7: repeat

8: for k = 1 to K do:

9: calculate the particle’s random walk probability P(k)
rand(i, j) using Equation (4)

10: calculate the particle’s preferential walk probability

P(k)
pre f (i, j, t) using Equation (11), (12), and (13)

11: calculate the particle’s walk probability P(k)
transition(i, j, t) using Equation (3)

12: particles walk based on the walk probability and dynamically
adjust the particle’s control increment using Equation (15)

13: if E(k)(0) ≤ 0:
14: particle performs the revival step by jumping to the

within their control range that possesses the
control capability for revival and re-energization.

15: end if

16: end for

17: update Nu(t), Nu(t), E(t), S(t)
18: t = t + 1
19: until Equation (7) is satisfied
20: calculating and record the average maximum control capability

indicator for particles 〈R(t)〉 using Equation (8).
21: K = K + 1
22: until 〈R(t)〉 reaches its maximum value
23: assign the number of particles corresponding to step 22 to K
24: for each node vi ∈ Vdo:
25: Assign the corresponding community label to node vi based on the mag-

nitude relationship of Nui(t)
26: end for

27: for each node vi ∈ Vdo:
28: get the set of neighboring nodes N(vi) for node vi and count the frequen-

cy of appearance of community labels for each neighboring node
29: if the most frequently occurring neighboring community label is unique:
30: the label of node vi is updated to the most frequently occurring

community label.
31: else:
32: calculate the power score of each most frequent community E f f ectCk

using Equation (16)
33: the label of node vi is updated to the community label with the

highest community effectiveness score
34: end if

35: end for

36: return K − 1, C

4.6. Time Complexity Analysis

For a complex network G = (V, E), assuming the average degree of nodes is d, the
number of nodes is n, the number of edges is m, and the common neighbors between
two nodes is c. The determination of particle starting positions involves calculating node
degrees and the Salton similarity index between nodes, with a time complexity of O(m).
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Active particles wandering in the network require calculating the probability for each
particle to move from the current node to neighboring nodes. The random walk probability
for each particle only requires computing node degrees, while the preferential walk proba-
bility needs to calculate the similarity index between the current node and its neighbors,
with a time complexity of O

(
Kcd
)

. When a particle’s energy is exhausted, the revival
step involves maintaining a hash table to store each particle’s control nodes and their
corresponding control capability values. Finding the node with the maximum control
capability for jumping has a time complexity of O(1). Updating the particle control matrix
has a time complexity of O

(
K2). Since each node in the network is visited at least once by a

particle, the total time complexity of particle wandering is O
(

Kcdn + K2n
)

. To determine
the optimal number of particles, the algorithm needs to gradually change the particle count
from 2 to K′, where K′ is a constant slightly larger than the actual number of communities
in the network. Therefore, the entire particle wandering process of the LNSSCL algorithm
has a time complexity of O

(
K2cdn + K3n

)
. After the particle wandering process concludes,

assigning community labels to all nodes based on their control capability values requires a
time complexity of O(n). The node membership selection step involves each node selecting
its community label based on the frequency of community labels among its neighboring

nodes, with a time complexity of O
((

d + cd
2
)

n
)

. Since complex networks are usually

sparse networks, d � n. In summary, the time complexity of the LNSSCL algorithm is

O
(

m + K2cdn + K3n +
(

d + cd
2
)

n
)

≈ O(M(m + n)), where M is a constant. The time
complexity of the LNSSCL algorithm is linearly related to the sum of the number of nodes
and edges in the network, making the algorithm highly scalable on large-scale networks.

5. Experiments and Discussions

To test the effectiveness of the LNSSCL algorithm, experiments were conducted on
real network datasets and synthetic networks, comparing the proposed algorithm with
12 representative community detection algorithms. The selected benchmark algorithms
for experimentation include community detection algorithms based on random walk such
as Walktrap [23] and Infomap [24]; modularity-based algorithms CNM [36], Louvain [37],
and Leiden [38]; label propagation-based algorithms LPA [39], TS [27], GLLPA [29], and
SSCLPA [30]; hierarchical clustering algorithm Paris [40], Markov chain-based community
detection algorithm MSC [25], and the stochastic competitive learning algorithm based on
the particle competition mechanism SCL [14].

5.1. Experimental Environment and Initial Parameters

The algorithm was implemented using NetworkX and scikit-learn. The specific experi-
mental environment is shown in Table 1.

Table 1. Experimental environment parameters.

Hardware/Software Configuration

OS Windows 11 Home
CPU Intel(R) Core(TM) i5-11400H @ 2.70GHz
RAM 16 GB
GPU NVIDIA GeForce RTX 3050 Ti Laptop

Anaconda 3.9.12
Python 3.7.12

NetworkX 2.6.3
scikit-learn 1.0.2

For the setting of the initial parameters, we refer to the value range of the literature [35].
The value range of the particle preferential wandering probability parameter λ is [0.2, 0.8],
and we set its initial value to 0.6; the value range of the particle energy update value
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Δ is [0.1, 0.4], and we set its initial value to 0.3; the convergence factor ε is set to 0.05; and
the minimum value of the particle energy Emin is set to 0, and the maximum value of the
particle energy Emax is set to 1.

5.2. Datasets

The experiment utilized 11 real network datasets, including four labeled real network
datasets and seven unlabeled real network datasets. The labeled real network datasets consist
of the Karate network [41], Dolphins network [42], Polbooks network [43], and Football
network [1]. The unlabeled real network datasets include the Lesmis network [44], Jazz
network [45], Email network [46], Netscience network [47], Power Grid network [48], Facebook
network [49], and PGP network [50]. The basic information is presented in Table 2.

Table 2. Basic information of real network datasets.

Dataset Nodes Edges Community

Karate 34 78 2
Dolphins 62 159 2
Polbooks 105 441 3
Football 115 613 12
Lesmis 77 254 -

Jazz 198 5484 -
Email 1133 5451 -

Netscience 1589 2742 -
Power Grid 4941 6594 -
Facebook 4039 88,234 -

PGP 10,680 24,316 -

Likewise, to expand experiments, the LFR benchmark is used as synthetic networks [51].
We generate different scale networks on the LFR test network model for experiments.
The specific parameter settings of the LFR network are shown in Table 3, where d is
average degree, dmax denotes maximum degree, minc represents minimum community
size, maxc is maximum community size, and tau1 and tau2 are the parameters for power
law distribution. μ is the mixed parameter. The larger the mixed parameter, the more
difficult the community division.

Table 3. The parameters for LFR network construction.

Network n d dmax minc maxc tau1 tau2 μ

LFR1 1000 15 50 20 100 2 1.1 0.1–0.8
LFR2 4000 15 50 20 100 2 1.1 0.1–0.8

5.3. Evaluation Index

In this paper, we use two widely adopted evaluation metrics for community detection
algorithms to assess the quality of the algorithm’s community detection results. For
labeled real network datasets, we utilize Normalized Mutual Information (NMI) [52]
and modularity [36] to evaluate the community detection results of each algorithm. For
unlabeled real-world network datasets, since the ground-truth community structures of
these network datasets are still unknown, we assess the quality of the detected results in
terms of the modularity only. For LFR networks, we use NMI to evaluate the community
detection results of each algorithm.

The NMI score is defined as shown in Equation (17):

NMI(X, Y) =

−2
CX
∑

i=1

CY
∑

j=1
Cijlb

(Cij N
CiCj

)
CX
∑

i=1
Cilb

(
Ci
N

)
+

CY
∑

j=1
Cjlb

(Cj
N

) (17)
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where X represents the ground truth community structure and Y represents the community
detection results of the algorithm. CX denotes the number of true communities in the
ground truth, and CY represents the number of communities detected by the algorithm.
C represents the confusion matrix, where rows represent the ground truth community
structure and columns represent the algorithm’s community detection results. Cij represents
the number of common nodes between the true community i in X and the community j
detected in Y. Ci represents the sum of row i in matrix C, and Cj represents the sum of
row j in matrix C. N stands for the total number of nodes in the network. NMI ∈ [0, 1].
A higher NMI value indicates a better agreement between the algorithm’s community
detection results and the true community structure, thus implying a better performance of
community detection.

The modularity(Q) is defined as shown in Equation (18):

Q =
1

2m∑
i,j

(
aij −

d(vi)× d
(
vj
)

2m

)
× δ
(
ci, cj

)
(18)

where m denotes the number of edges in the network, aij denotes the connection status
between node vi and node vj; ci denotes the community label of node vi, cj denotes the
community label of node vj; δ

(
ci, cj

)
denotes the Kronecker function, which takes the value

1 if cj and cj are the same; otherwise, it takes the value 0. Generally, a larger modularity
value implies a more distinct community structure.

5.4. Experimental Results and Analysis
5.4.1. Experimental Results and Analysis on Labeled Real Network Datasets

On the four labeled real network datasets, namely Karate, Dolphins, Polbooks, and
Football, we conducted comparative experiments between the proposed LNSSCL algorithm
and 12 other representative community detection algorithms. We evaluated the community
detection results of each algorithm using NMI score and modularity Q. The experimental
results are shown in Tables 4 and 5.

Table 4. Comparison of the NMI of each algorithm on labeled real network datasets. The largest NMI
are in bold.

Algorithm Karate Dolphins Polbooks Football

Walktrap 0.504 0.582 0.543 0.887
Infomap 0.699 0.417 0.529 0.911

CNM 0.692 0.557 0.531 0.698
Louvain 0.587 0.484 0.569 0.885
Leiden 0.687 0.581 0.574 0.890

LPA 0.445 0.595 0.534 0.870
TS 0.710 0.888 0.550 0.900

GLLPA 0.753 0.790 0.580 0.909
SSCLPA 0.826 0.616 0.493 0.919

Paris 0.835 0.780 0.565 0.831

MSC 0.836 0.777 0.539 0.921

SCL 0.821 0.816 0.552 0.861

LNSSCL 0.848 0.899 0.610 0.937
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Table 5. Comparison of modularity Q of each algorithm on labeled real network datasets. The largest
Q are in bold.

Algorithm Karate Dolphins Polbooks Football

Walktrap 0.353 0.489 0.507 0.603
Infomap 0.401 0.532 0.521 0.600

CNM 0.381 0.495 0.502 0.550
Louvain 0.415 0.516 0.526 0.602
Leiden 0.420 0.527 0.527 0.602

LPA 0.375 0.499 0.481 0.583
TS 0.420 0.381 0.520 0.600

GLLPA 0.438 0.496 0.507 0.608
SSCLPA 0.415 0.525 0.518 0.601

Paris 0.372 0.380 0.426 0.510

MSC 0.418 0.495 0.519 0.600

SCL 0.371 0.463 0.508 0.581

LNSSCL 0.424 0.532 0.524 0.613

As can be seen in Tables 4 and 5, the LNSSCL algorithm achieves the highest NMI
values on all labeled real network datasets and has some degree of improvement over the
other algorithms. Whereas, for the comparison of modularity Q, the LNSSCL algorithm
does not take the optimal value on all the datasets. Though the proposed algorithm took
the highest value only on Dolphins and Football datasets, the modularity scores on Karate
and Polbooks datasets were close to the highest level.

The NMI measures the similarity between the algorithm’s output community segmen-
tation results and the real online community structure. The larger the NMI, the higher
the similarity between the algorithm’s output community segmentation results and the
real online community structure. It can be seen that the community detection results
of the LNSSCL algorithm on the four labeled real network datasets of Karate, Dolphins,
Polbooks, and Football are closest to the real community structure of the above networks.
In addition, the LNSSCL algorithm improves its NMI values by 3.3%, 10.2%, 10.5%, and
8.8% on the Karate, Dolphins, Polbooks, and Football datasets, respectively, compared to
the SCL algorithm. This demonstrates the effectiveness of a series of improvements to the
SCL algorithm by the LNSSCL algorithm, which improves the stability and accuracy of the
SCL algorithm.

For other algorithms, CNM, Louvain, and Leiden algorithms seek to maximize the
modularity of the whole network, which obtains good modularity scores but fails to
discover the real community structure well. LPA, TS, GLLPA, and SSCLPA algorithms
tend to have a certain degree of randomness in the node order of label updating and the
label propagation process, making the final community. The computational complexity
of Walktrap and Infomap, two randomized wandering algorithms, is relatively high and
sensitive to the parameters set by themselves. Due to the small size of the dataset used
in the experiments and the existence of small communities, although they have higher
modularity scores, they failed to achieve higher NMI scores, and the consistency with the
real community structure is insufficient.

Overall, the LNSSCL algorithm works best for community detection on the Karate,
Dolphins, Polbooks, and Football datasets.

5.4.2. Experimental Results and Analysis on Unlabeled Real Network Datasets

On the seven unlabeled real network datasets, namely Lesmis, Jazz, Email, Netscience,
Power Grid, Facebook, and PGP, the proposed LNSSCL algorithm was compared against
12 representative learning algorithms through experimental evaluation. The assessment of
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various algorithm’s community detection outcomes was conducted using modularity Q,
and the experimental results are shown in Table 6.

Table 6. Comparison of modularity Q of each algorithm on unlabeled real network datasets. The
largest Q are in bold.

Algorithm Lesmis Jazz Email Netscience Power Grid Facebook PGP

Walktrap 0.521 0.438 0.531 0.956 0.831 0.812 0.832
Infomap 0.546 0.442 0.538 0.930 0.759 0.706 0.821

CNM 0.501 0.439 0.503 0.955 0.935 0.777 0.853
Louvain 0.527 0.282 0.463 0.907 0.627 0.835 0.885
Leiden 0.558 0.443 0.563 0.959 0.935 0.836 0.887

LPA 0.560 0.445 0.574 0.960 0.939 0.737 0.745
TS 0.535 0.440 0.550 0.924 0.930 0.796 0.767

GLLPA 0.556 0.440 0.292 0.920 0.784 0.785 0.786
SSCLPA 0.557 0.406 0.513 0.906 0.838 0.779 0.801

Paris 0.504 0.276 0.451 0.876 0.405 0.586 0.679

MSC 0.544 0.447 0.565 0.948 0.890 0.812 0.872

SCL 0.539 0.411 0.550 0.932 0.863 0.804 0.815

LNSSCL 0.575 0.463 0.585 0.971 0.952 0.847 0.896

Since the unlabeled network dataset is without real community structure, we can
accomplish community delineation by identifying structural features with strong inter-
nal connections and sparse external connections. Modularity measures the strength of
community structure in the network and evaluates the results of algorithmic community
delineation when the dataset has no real community structure. The larger the modularity
degree is, the better the quality of community detection and the stronger the connection
within the community.

As can be seen in Table 6, the LNSSCL algorithm achieves the maximum modularity
on all seven unlabeled network datasets used in the experiments, outperforming other
comparison algorithms. In addition, these network datasets are of different types, sizes,
and sparsities, and the high modularity performance of the LNSCCL algorithm reflects the
algorithm’s good generalization and universality. In particular, the performance on two
larger datasets, Facebook and PGP, shows that the algorithm has some scalability. For other
algorithms, CNM, Louvain, and other algorithms oriented to maximize the modularity
achieved high modularity on the Netscience, Power Grid, Facebook, and PGP datasets,
with Leiden in particular being the most prominent, but did not show the best performance
on the smaller datasets. LPA, TS, GLLPA, and SSCLPA algorithms are not as effective as
the stable LNSSCL algorithm in the experiments, because some randomness in the node
order of the label update and label propagation process cannot show stable and accurate
performance. The MSC algorithm constructs a steady-state Markov similarity augmented
matrix, which is capable of stable and efficient community delineation, and achieves high
modularity in the experiments. Further, the NSSCL algorithm improves its modularity
values by 6.7%, 12.7%, 6.4%, 4.2%, 10.3%, 5.3%, and 9.9% on Lesmis, Jazz, Email, Netscience,
Power Grid, Facebook, and PGP datasets, respectively, as compared to the SCL algorithm.
This shows that the LNSSCL algorithm improves the stability and accuracy of the original
SCL algorithm for community detection to some extent.

5.4.3. Experimental Results and Analysis on synthetic networks

In order to better measure the performance of the algorithm, we generate networks of
different sizes for experiments on the LFR test network model. In this case, the number
of nodes in the LFR1 network is 1000 and the number of nodes in the LFR2 network is
4000. Since the real community structure of the LFR network is known, the performance
of the algorithm is measured using NMI. Among the important parameters used to create
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the LFR network, the mixing parameter μ is used to represent the complexity of the
community structure and determines the clarity of the community structure. As the mixing
parameter μ increases, the community structure becomes more complex and the difficulty
of recognizing the community increases. The experimental results of the LFR network
with different mixing parameter μ are shown in Figure 4, where the horizontal coordinates
represent the individual values of the mixing parameter μ and the vertical coordinates
represent the NMI.

Figure 4. Experimental results of NMI under synthetic networks: (a) experimental results of LFR1
network where n = 1000; (b) experimental results of LFR2 network where n = 4000.

As can be seen in Figure 4, the performance of each algorithm decreases to vary-
ing degrees in both sets of networks as the mixing parameter μ increases, but the com-
munity detection performance of the LNSSCL algorithm still outperforms most of the
compared algorithms.

When the mixing parameter μ is less than 0.4, the algorithms have higher NMI values,
except for the CNM and Paris algorithms. When μ is greater than 0.4, the NMIs all show
a decrease. Among them, label propagation-based algorithms such as LPA have very
obvious changes in decline, especially the LPA algorithm, which has an NMI value of
0 in both networks when μ is not less than 0.6. The reason for the analysis is that label
propagation-based algorithms have a certain degree of randomness, which is prone to cause
low performance and instability in community detection when the community structure
is not clear enough. Comparing the synthetic networks LFR1 and LFR2, the NMI of
most of the algorithms increased with the increase in the number of nodes. However, the
performance of the CNM algorithm shows a decrease, which is attributed to the fact that
the algorithm may have the problem of resolution limitation when dealing with networks
with larger communities, and is unable to decompose large communities into smaller
sub-communities. From Figure 4, it can be found that the NMI value of LNSSCL tends
to 1 when μ = 0.1, and the NMI value of LNSSCL is maximum when μ = 0.8. It indicates
that the performance of LNSSCL decays the slowest, i.e., the performance of LNSSCL is
more stable.

In summary, the community detection results of the LNSSCL algorithm are better on
synthetic network datasets generated with different parameters.

5.4.4. Parameter Sensitivity Analysis

In this section, we focus on the effects of the parameters λ and Δ on the LNSSCL
algorithm. λ represents the probability of a particle performing preferential walk, regulating
the balance between random and preferential walking. When the parameter λ takes
a relatively low value, the particles are more inclined to wander randomly, visit new
nodes, and expand the community range, but are prone to the problem of too much
randomness. When the parameter λ takes a relatively high value, the particle is more
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inclined to preferentially wander, frequently visit the nodes that have been controlled,
and consolidate the community scope, but it is easy to fall into the localized area and it
cannot visit new nodes. From Figure 5, it can be seen that the parameter λ can achieve
the best community detection performance by appropriately increasing the value of the
parameter when balancing random wandering and preferential wandering (λ = 0.5). For
the Polbooks, Football, and Jazz datasets, the best performance is achieved when the value
of λ is 0.6, while the Email dataset takes the value of λ as 0.5.

Figure 5. Parameter sensitivity analysis for λ: (a) experimental results of Polbooks; (b) experimental
results of Football; (c) experimental results of Jazz; (d) experimental results of Email.

The parameter Δ is responsible for updating the particle’s energy value. When
Δ is very small, the particle is not penalized enough by the energy it receives for vis-
iting nodes that are not under its control, so the particle’s energy will not be depleted
during its wanderings. The particle will frequently visit nodes that should belong to the
nodes to which the competing particles belong and enter the core of other communities.
As a result, all nodes in the network will be in constant competition, unable to establish
and consolidate community boundaries, and the final community detection will be less
effective. When Δ is very large, the particle will simply run out of energy once it visits a
node controlled by a competing particle. The particle will frequently enter the resurrection
phase and is not expected to move away from its initial position to take control of other
nodes. As can be seen in Figure 6, a parameter Δ of 0.3 achieves the best performance on
all four datasets of the experiment. The different values of the parameter Δ have roughly
the same trend in affecting the performance on different datasets in the experiment.
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Figure 6. Parameter sensitivity analysis for Δ: (a) experimental results of Polbooks; (b) experimental
results of Football; (c) experimental results of Jazz; (d) experimental results of Email.

According to Figures 5 and 6, the algorithm is somewhat sensitive to the values of
λ and Δ. Numerically, there is little fluctuation within a small interval of relative range.
Based on the results of the parameter sensitivity analysis experiments, we set λ to 0.6 and
Δ to 0.3 for experiments on other datasets.

6. Conclusions and Future Work

This paper introduces a novel unsupervised community detection algorithm named
LNSSCL, which incorporates node local similarity into the process of stochastic competitive
learning. Firstly, the algorithm determines the starting position of particles’ walks by
calculating the degree value of nodes as well as the Salton similarity index. At the same
time, the fusion of node similarity optimizes the particle preferential walk rule. During
the particle wandering process, the particle control capacity increment is dynamically
adjusted according to the control range of each particle. When a particle runs out of energy,
the particle selects the node with the largest control power within its control range for
resurrection. After the particle stops wandering, the nodes in the network are selected for
affiliation based on the frequency of occurrence of community labels of neighboring nodes
and the effectiveness score of neighboring communities, and the community detection re-
sults are finally obtained. Comparative experiments on real network datasets and synthetic
networks show that the LNSSCL algorithm is effective in improving the SCL algorithm.
Compared with other representative algorithms, the LNSSCL algorithm has better quality
of community detection and is able to reveal a more reasonable community structure.

Nevertheless, the LNSSCL algorithm also has some defects. Compared with the SCL
algorithm, the algorithm performs multiple node local similarity calculations during the
community detection process, which requires more computational cost and complexity,
and may have a larger time overhead on ultra-large networks. In the selection of some
hyperparameters of the algorithm, no special parameter tuning method is used; the param-
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eters are tuned manually. Further, the networks studied in this paper are simple undirected
networks and not complex networks that are closer to the real world, such as directed,
weighted, or attribute. In the next step of this study, we can consider optimizing the
similarity calculation to further reduce the time overhead, adopting a dynamic adaptive
hyper-parameter tuning strategy instead of traditional parameter tuning. GNN is intro-
duced to fuse attribute information and structural features to obtain node representations
and calculate node representation similarity to study the community detection strategy for
attribute networks.
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Abstract: Traditional collaborative filtering recommendation algorithms only consider the interaction
between users and items leading to low recommendation accuracy. Aiming to solve this problem,
a graph convolution collaborative filtering recommendation method integrating social relations
is proposed. Firstly, a social recommendation model based on graph convolution representation
learning and general collaborative filtering (SRGCF) is constructed; then, based on this model, a
social relationship recommendation algorithm (SRRA) is proposed; secondly, the algorithm learns the
representations of users and items by linear propagation on the user–item bipartite graph; then the
user representations are updated by learning the representations with social information through the
neighbor aggregation operation in the social network to form the final user representations. Finally,
the prediction scores are calculated, and the recommendation list is generated. The comparative
experimental results on four real-world datasets show that: the proposed SRRA algorithm performs
the best over existing baselines on Recall@10 and NDCG@10; specifically, SRRA improved by an
average of 4.40% and 9.62% compared to DICER and GraphRec, respectively, which validates that
the proposed SRGCF model and SRRA algorithm are reasonable and effective.

Keywords: social relations; collaborative filtering; graph convolutional network; recommendation system

1. Introduction

1.1. Background

During the age of information explosion, recommender systems have become widely
used and effective method to identify the most valuable one in a massive amount of data. A
recommender system (in short, RS) aims at estimating the likelihood of interactions between
target users and candidates based on interactive history [1,2]. RSs first learn the users’
and items’ representations (also called embeddings), and then use these representations to
predict how a target user will like a specific item.

The first successful algorithm to generate recommendations is Collaborative Filtering
(CF) which only on user provided ratings. Traditional CF methods suffer from data
sparsity. Matrix Factorization (in short MF) techniques are a viable method to alleviate
data-sparsity: specifically, MF methods decompose the (high-dimensional) user–rating
matrix into the product of two low-dimensional user–factor and item-factor matrices such
that the inner product of the vectors associated with a user and items explains observed
ratings. MF methods are also effective to cope with the cold-start problem (i.e., how to
generate predictions for new members of a recommender system for which historical data
are poor).

Graph Convolution Networks (GCN) have been successfully applied to improve the
accuracy of an RS. However, recent studies [3] prove that two common operations in the
design of GCNs (namely the task of transforming features and nonlinear activation) provide
a little contribution to the performance of an RS. He et al. proposed a new GCN model
for supporting CF tasks called LightGCN; the LightGCN architecture includes only the
neighborhood aggregation step and, thus, it learns user and item embeddings by linear
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propagation on the user–item graph. It finally computes the weighted sum of embeddings
at all layers to produce final embeddings.

Although LightGCN achieves high levels of accuracy, it only takes data about histori-
cal interactions between users and items; many RS can manage a wealth of data describing
user-to-user relationships (such as friendship or trust relationships) which are, de facto,
ignored by LightGCN. As a consequence, the semantics of information mined by LightGCN
is relatively simple and we ask if social data can be profitably integrated in the recommen-
dation task to increase the level of accuracy and, potentially, to make the recommendation
process more scalable. Motivated by theories from social science about influence and
homophily, many researchers suggested to integrate user–item ratings with information
describing social relationships (such as friendship or trust relationships); in fact, users’
preferences as well as the decisions they take are often influenced by the behaviors from
their peers and, thus, the predictive accuracy of an RS is magnified if social relationships
are somewhat taken into account.

An RS which considers social information is often called social recommender system.
Graph theory provide powerful tools to represent user interactions among users as well as
interactions between users and items. On one hand, in fact, we could define a user–user
interaction network (often called social graph), which maps user onto nodes and in which
edges cab represent friendship or trust relationships. On the other hand, we could use
a bipartite graph (often called user–item interaction graph) to model users and items as
nodes while edges are relevant to encode a variety of interactions such as purchases, clicks,
and comments. Several social recommender systems which jointly leverage social graph
and interactive graph have been proposed so far. The first is to extend matrix factorization
methods into the interactive graph and the social graph, and the second is to apply Graph
Neural Networks (in short, GNNs) to obtain meaningful representations.

1.2. Motivations

Despite it is useful to integrate social data into RS, we believe that there is still room to
enhance the accuracy of an RS. We introduce a new GCN architecture which integrates social
data in the recommendation process Our approach aims at solving the following problems:

(1) Heterogeneous data are difficult to use: the data used in social recommendation often
contain both user interaction data and user social data. Heterogeneity of data implies
that we are in charge of handling representations of different objects (items and users);
as a consequence, we deal with nodes which are not in the same embedded space,
and, thus, these nodes are hard to be fused.

(2) High-order semantic information is hard to extract: For instance, high-order semantics
describe relationships that users are indirectly connected to in the user–user social
network. It is thus crucial to capture complex long-term dependencies between
nodes. The more iteration layers of graph convolution architecture, the higher order
semantic information will be extracted. However, excessive iteration layers will cause
excessive smoothness.

(3) Difficulties in fusing multiple semantic information: Social recommender systems
manage both social network and interactive graph and it also has the task that effec-
tively integrate the information coming from both of these graphs is still open research.

1.3. Our Contributions

The following contributions have made:

(1) We innovatively integrate social relations into the training of graph convolution-based
collaborative filtering recommendation method. Specifically, we propose a graph
convolution collaborative filtering recommendation model integrating social relations
(called SRGCF). The SRGCF model learns node embeddings by integrating high-order
semantic information about social behaviors as well as interactions.

(2) We propose a recommender algorithm (called SRRA) running on top of the SRGCF
model. The SRRA algorithm models the high-order relations in interactive data and
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social data, respectively, fuses these two types of high-order semantic information
at the same layer and then forms the final embeddings. Generated embeddings are
finally used in recommendation task.

(3) We experimentally compared the SRRA algorithm with baselines on a range of real-life
and large datasets. Our experiments indicate the superiority of our model against
baselines.

2. Related Work

2.1. Traditional CF Recommendation Algorithm

In e-commerce industry, collaborative filtering (in short, CF) has been widely used,
and in the past two decades many CF algorithms have emerged in academia and industry.
Roughly speaking, CF algorithms is classified into two categories: neighborhood-based CF
algorithms [4] and model-based recommendation algorithms.

Neighborhood-based CF algorithms [5–8] can find potentially relevant items from user
past behaviors without any domain knowledge, and they can be further classified into two
specific types which are user-based CF and item-based CF. The key of neighborhood-based
CF methods is how to calculate similarity and sum up these scores.

The primary idea behind the model-based CF algorithms [9] is to embed users as
well as items into the same embedding space, and then make prediction through the
inner-product of their embeddings. Using data mining and machine learning techniques,
model-based approaches predict unknown scores by finding patterns in training data.

However, the accuracy of traditional CF recommendation method is limited because
they make only use of interactions between users and items to predict unknown ratings.

2.2. Social Recommendation Algorithm

Users in rating platforms are often allowed to create explicit relationships between
other users affiliated with the same platform. Examples of these relationships are friendship
and trust. Some researchers [10,11] suggest to incorporate social relations in the recom-
mendation process to better deal with data sparsity in the rating matrix. The resulting
recommendation algorithm is often called social recommender system while the user–user
social network is often called social graph.

Most traditional social recommender systems leverage CF technique. In Figure 1 we
report the general structure of a social recommender systems.

Figure 1. Social recommendation framework based on CF.

Figure 1 shows that a social recommender has two inputs, namely interactive informa-
tion and social information.

According to different fusion mechanisms of these two types of data, social recom-
mender systems can be classified into two categories: regularization-based and feature-
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sharing based methods. The regularization-based social recommendation algorithm has
the hypothesis that users trust friends in their social circle more than strangers and tend
to conform to their preferences. The regularization-based recommendation algorithm
projects social data and ratings into the same space and restricts each other so that users
can consider their social influence before making decisions. Two important examples of
regularization-based algorithms are SocialMF [12] and CUNE [13]. Regularized social
recommendation algorithms indirectly simulate social network, while, due to the indirect
modeling of social information, there is a low degree of overlap and correlation between
user–item interaction information and social information, which leads to a weak integration
of social information and ratings.

The basic assumption of feature sharing recommendation algorithms is that user
feature vectors in interactive space and social space can be projected into the same space.
TrustSVD [14] and SoRec [15] are two examples of feature-sharing social recommendation
algorithms. Feature sharing based recommendation algorithm can generate accurate pre-
diction. However, the current mainstream algorithms only use original social information,
it means they cannot make full use of social data.

2.3. Graph Embedding Based Recommendation

Network embedding, also referred to as graph embedding, is a process of mapping
graph data into a dense vector that is usually low-dimensional, so that the obtained
vectors can have representation and reasoning ability in vector space [16,17]. Network
embedding can be used as the input of machine learning model and then be applied to the
recommendation task.

Graph Embedding can retain the structure information of nodes in the graph, that is,
the more similar the structure is in the graph, the closer its position in the vector space will
be [18,19]. The principle of graph embedding is shown in Figure 2.

Figure 2. Illustration of graph embedding principle.

Figure 2 shows that node 1 and node 3 are similar in structure, so they maintain a
symmetric position in vector space; nodes 4, 5, 6, and 7 are structurally equivalent, so
they have the same position in vector space. Graph embedding based recommendation
algorithms has two categories: homogenous graph embedding based and heterogeneous
graph embedding based. A homogenous graph contains nodes and edges of only one
type, and it only needs to aggregate neighbors of a single type to update the node repre-
sentation. These algorithms are mostly based on random walk, such as Deepwalk [20],
which uses truncation random walk sequence to represent the node nearest neighbor, and
Node2vec [21], an improved version of Deepwalk. These algorithms only work on homoge-
nous networks. Unfortunately, most real-world datasets can be modeled as heterogeneous
graphs naturally. Thus, recommendation algorithms based on heterogeneous networks
attract more attention.

In recent years, many experts and scholars [22,23] have studied the transformation
of recommendation tasks into heterogeneous graph data mining tasks because real-world
datasets can often be abstracted into heterogeneous graphs. Heterogeneous information
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networks (HIN) include various types of nodes and edges. Figure 3 is an example diagram
based on HIN recommendation system.

Figure 3. Illustration of a HIN recommendation system.

Figure 3 shows that a HIN contains multiple (two or more) types of entities linked by
multiple (two or more) relationships.

In what follows we describe some HIN approaches which jointly consider social data
and user interactions with item to generate recommendations.

In the research of Fan et al. [24], interactions and opinions are captured jointly in the
interactive graph with GraphRec, which models two graphs (interactive graph and social
graph) and heterogeneous edges. Wu et al. [25] proposed a DiffNet for the analysis of how
the user in the social diffusion process is affected. DiffNet only modifies users’ latent vectors
while it does not update items’ latent vectors which are independent of social influence.
Yu et al. [26] present a social recommender system called MHCN, which uses hypergraphs
to capture high-order social information. Each motif is encoded by a dedicated channel of
a hypergraph convolutional network, and user embedding is calculated by aggregating the
embeddings learned by each channel. Huang et al. [27] propose KCGN. KCGN models
interdependencies between items as a triplet and it uses a coupled graph neural architecture
to learn embeddings. In addition, it can automatically learn the temporal evolution of the
interactive graph. Most traditional social recommenders learn embeddings in Euclidian
space. Such a choice, however, is not entirely satisfactory to capture latent structural
properties in graphs. In fact, both the interactive graph and the social graph display a tree-
like structure that is hard to embed into a Euclidian space. To this purpose, Wang et al. [28]
applied hyperbolic embeddings to represent users and items and they introduce a system,
called HyperSoRec. Zhao et al. [29] describe a framework called BFHAN, which is able
to improve node representations in graphs with a power-law degree distribution, and
to handle various relationships of nodes associated with users. Fu et al. [30] introduce
the DICER system. DICER first constructs an item-item and a user–user similarity in a
weighted undirected graph way. A relation-aware graph neural network (RGNN) module
is applied on the item-item graph (as well as user social network and user–user similarity
graph) to obtain better users and items representations. Zhang et al. [31] describe a social
recommender system called MG-HIF which constructs meta-paths and applies discrete
cross-correlation to learn representations of user–item pairs; MG-HIF applies generative
adversarial networks (GANs) on the social graph to learn latent friendship relationships.
In addition, it uses two attentions models to fuse information from both graphs.

3. Preliminaries

3.1. Social High-Order Connectivity

Social relationships have high-order connectivity, as shown in Figure 4c.
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Figure 4. Social relationships.

The target node u0 is marked with a double circle in the social graph.
Let us consider the path u0 ← u2 ← u1 , u0 and u1 are not directly connected, indicat-

ing that u1 may be a potential friend of u0. In all the pathways that can reach u0, the closer
a node is to u0, the more paths it occupies, and the greater the influence on u0.

3.2. Interactive High-Order Connectivity

Interaction relationships also have high-order connectivity, as shown in Figure 5c. Let
us concentrate on a target user, say u0, marked with a double circle in the left subgraph of
the user–projected interaction diagram.

Figure 5. User–item interaction.

The subgraph on the right shows the tree structure expanded obtained by running a
BFS search from u0. High-order connectivity indicates the existence of a path to u0 of length
l greater than 1. This high-order connectivity contains rich semantic information with
collaborative signals. For example, path u0 ← i6 ← u4 represents the behavioral similarity
between u0 and u4 because the longer path u0 ← i6 ← u4 ← i2 indicates that u0 is likely
to adopt i2 because its similar user u4 has previously interacted with i2. Moreover, from
the path of l = 3, u0 is more likely to be interested in i2 than i5, because < i2, u0 > has two
paths connected, while < i5, u0 > has only one.

4. Proposed Recommendation Method

4.1. Recommendation Model Design

For the purpose of extracting the higher-order relationships in interactive data and
social data and fully integrate them to learn high-quality representations, we propose the
SRGCF (Social Recommendation Graph Collaborative Filtering) model. Figure 6 shows the
overall architecture of SRGCF.
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Figure 6. The overall frame structure of the proposed SRGCF model.

The SRGCF model first initializes node embeddings by using the initialization em-
bedding layer. Second, semantic aggregation operations are carried out on the social
embedding propagation layer and the interactive embedding propagation layer in the
semantic aggregation layer to refine the embedding of users and items, derived from both
graphs are fused in the semantic fusion layer. Then weighted sum the user and item em-
beddings of every layer, respectively, to form the final embeddings. Finally, the prediction
layer is applied for producing recommendations.

4.1.1. Embedding Initialization Layer

Embedding matrix of the nodes are randomly initialized and the initial embeddings
e(0)u ∈ R

d and e(0)i ∈ R
d of user u and item i and they can be queried, where d is the

dimension of nodes’ embeddings.

4.1.2. Semantic Aggregation Layer

We propose a semantic aggregation layer in order to aggregate and update the nodes’
embeddings, as a result, it is a good way to keep high-level semantic information. We first
introduce the concept of first-order semantic aggregation in semantic aggregation layer, and
then extend it to high-level semantic aggregation to realize high-level semantic aggregation.

(1) First-order Semantic Aggregation

By iteratively aggregating the neighbor’s features, GCN generates new representa-
tion of the target node. In SRGCF model, the interactive embedding propagation layer
aggregates the embeddings of interacted items to refine the embedding of users. First-order
semantic aggregation is reported in (1) and (2).

eu = AGG
i∈Hu

(ei) (1)

ei = AGG
u∈Hi

(eu) (2)

where AGG(·) denotes aggregation function; Hi represents the set of first-order neighbors of
item i, that is, the set of users that have interacted with item i. Similarly, Hu represents the
set of first-order neighbors of item u. Equations (1) and (2) indicate that in the interaction,
eu derived from an embedded set of its immediate neighbors, as is ei.
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The social embedding propagation layer refines user embedding by aggregating
information from users’ friends. The first-order semantic aggregation process is shown
in (3).

eu = AGG
v∈Fu

(ev) (3)

where Fu represents the friends’ collection of user u. It indicates that in social interaction, the
embedded eu of user u is generated through the aggregation of embedded ev of first-order
neighbor (social interaction).

(2) High-order Semantic Aggregation

The semantic aggregation layer achieves the aggregation of higher-order semantics by
stacking multiple first-order semantic aggregation layers. It includes semantic aggregation
for social embedding propagation layer (SEPL) and interactive embeddings propagation
layer (IEPL).

(a) Semantic Aggregation for SEPL

According to social high-order connectivity, stacking l layers can fuse the information
from each of l-order neighbors. Semantic aggregation for social embedding propagation
layer captures higher-order friend signals by stacking multiple social embedding propaga-
tion layers to enhance user embeddings. The mathematical expression of this process is
shown in (4) and (5).

c(l+1)
u = ∑

v∈Fu

1√|Fu|
√|Fv|

c(l)v (4)

c(l+1)
v = ∑

u∈Fv

1√|Fv|
√|Fu|

c(l)u (5)

where c(l)u denotes the embedding of u at the l-th layer from GS, and Fu denotes the set of
friends of u.

(b) Semantic Aggregation for IEPL

It can be seen from interaction high-order connectivity that stacking even layers (i.e.,
from the user, the length of path is even) can capture the similarity information of user
behavior, while stacking odd layers can capture the potential interaction information
of users to items. Semantic aggregation for interaction embedding propagation layer
captures collaborative signals of high-order connectivity in interaction data by stacking
each interaction embedding propagation layer, thus enhancing embeddings. Expression of
this process is shown in (6) and (7).

e(l+1)
i = ∑

u∈Ni

1√|Hi|
√|Hu|

e(l)u (6)

e(l+1)
u = ∑

i∈Nu

1√|Hu|
√|Hi|

e(l)i (7)

where e(l)u and e(l)i represent u’s and i’s embedding at l-th layer from GR, respectively.

4.1.3. Semantic Fusion Layer

User embeddings can be enhanced by integrating social embedding propagation layer
and interactive embedding propagation layer with certain social information.

After obtaining the social semantic aggregation embedding and interactive semantic
aggregation embedding, respectively, the user embeddings of each layer are fused, and the
fusion process is shown in (8).

ẽ(l)u = g(e(l)u , c(l)u ) (8)
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where ẽ(l)u denotes the l-th layer embedding of u from GR and GS, and we let e(0)u = c(0)u . g(·) is
a fusion function, which can be implemented in many ways, and we adopt (9) to fuse:

ẽ(l)u = norm(sum(e(l)u , c(l)u )) (9)

where sum(·) denotes element-wise summation. Intuitively, it is an operation to enhance
the signal representation, and also can keep the feature space unchanged; norm(·) denotes
row-regularization operation that normalizes user vectors.

Then, the final user embedding e∗u and item embedding e∗i is obtained by fusing
embeddings of all layers:

e∗u =
L

∑
l=0

αl ẽ
(l)
u ; e∗i =

L

∑
l=0

βl e
(l)
i (10)

where e∗u denotes u’s final embedding, e∗i denotes the i’s final embedding, and L denotes
total number of layers. In line with LightGCN, set α and β as 1/(L + 1). The settings of
these two parameters are flexible, and attention mechanism can be applied to learn them.

4.1.4. Prediction Layer

The last part of the model recommends products to users according to the embedding
of items. We use the inner-product form for prediction:

ŷui = e∗uTe∗i (11)

Then BPR loss [32] was calculated and model parameters were optimized as shown in
Equation (12).

J = ∑
(u,i,j)∈O

− ln σ(ŷui − ŷuj) + λ‖Θ‖2
2 (12)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} represents pair-wised training data, R+ ex-
presses interactions that exist in history, and R− denotes interaction that does not. Θ are
model parameters, where the model parameters only include the initial embedding vectors
e(0)u and e(0)i . λ is used to prevent overfitting.

4.2. The Proposed SRRA Recommendation Algorithm

In order to facilitate implementation, SRRA algorithm is proposed under the frame-
work of SRGCF model, which is implemented in the form of matrix (see Algorithm 1
for details).

The interactive matrix is denoted as R ∈ R
M×N , M are the numbers of user and N are

the numbers of item, Rui equals to 1 if u have interaction with i, if not Rui equals to 0. Then
the adjacency matrix A of GR is:

A =

⎧⎪⎪⎩ 0 R
RT 0

⎫⎪⎪⎭ (13)

Let the embedding matrix of layer 0 be E(0) ∈ R
(M+N)×d, where d is the dimension of

embedding vector, and the (l + 1)-th layer matrix can be computed as:

E(l+1) = (D− 1
2 AD− 1

2 )E(l) (14)

where D is the degree matrix of A, which is a diagonal matrix and its dimension is (M +
N) × (M + N). Each element Dii represents the number of non-zero values of the i-th row
vector in A.
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Algorithm 1: Social Relationship Recommendation Algorithm (SRRA).

Step1: calculate the embeddings of users and items

Input: R, S, M, N, d, l
Initialize: E(0) = C(0), K, α = β = 1/(l + 1)
calculate A and B by R, S, respectively
calculate D and P by A, B, respectively
EU

(0), EI
(0) ← E(0) , · · · CU

(0) ← C(0)

ẼU ← EU
(0), CU

(0) ,
set EI

∗ = EI
(0)

For l ∈ L:

calculate E(l+1) and C(l+1) by E(l), C(l), respectively
get EU

(l+1), EI
(l+1), CU

(l+1) by split E(l+1), C(l+1), respectively
ẼU

(l+1) ← EU
(l+1), CU

(l+1)

EU
∗+ = ẼU

(l+1), EU
∗+ = EI

(l+1)

End For

EU
∗ = αEU

∗, EI
∗ = βEU

∗
Step2: calculate the loss of SRRA

set LBPR = 0
For u ∈ U:

eu
(0) = lookup(EU

(0), u) // find the initial vector of user u from EU
(0)

LBPR+ =
∥∥∥eu

(0)
∥∥∥2

// add the regularization item into loss

For i ∈ Ru
+: // iterate over the positive example item set for user u

ei
∗ = lookup(EI

∗, i) // find the vector of item i from EI
∗

ŷui = eu
∗Tei

∗ // calculate the score of positive samples
For j ∈ R−

u : // iterate over the negative example item set for user u
ej
∗ = lookup(EI

∗, j)
ŷuj = eu

∗Tej
∗

LBPR+ = (− ln σ(ŷui − ŷuj))// calculate the BPR loss
End For

End For

Step3: generate recommendations

Train the algorithm until it converges
According to the predicted score, select Top 10 items for recommendation

Return Recall, NDCG

Similarly, the social matrix is denoted as S ∈ R
M×M, where Suv is 0 if u and v are

friends, otherwise Suv is 1. The adjacency matrix B of GS is:

B =

⎧⎪⎪⎩ 0 S
ST 0

⎫⎪⎪⎭ (15)

Let the embedding matrix of layer 0 be C(0) ∈ R
(M+M)×d, and the user matrix of layer

l + 1 can be obtained as shown in (16).

C(l+1) = (P− 1
2 BP− 1

2 )C(l) (16)

where P is the degree matrix of matrix B.
Then, due to E(l) = stack(EU

(l), EI
(l)), E(l) can be divided into user’s and item’s ma-

trices, denoted as EU
(l) and EI

(l), respectively. Similarly, due to C(l) = stack(CU
(l), CU

(l)),
C(l) can be divided into two parts, both of which are user embedding matrix, where
CU

(l), EU
(l) ∈ R

M×d and EI
(k) ∈ R

N×d.
Finally, the l-th layer user representation is calculated as:

ẼU
(l) = norm(sum(EU

(l), CU
(l))) (17)
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The final representations can be obtained through integrating the representation of
each layer:

EU
∗ =

L

∑
l=0

αl ẼU
(l), EI

∗ =
L

∑
l=0

βlEI
(l) (18)

We use inner-product to compute score:

Ŷ = EU
∗TEI

∗ (19)

4.3. Model Training

The loss function calculated by BPR is shown in (20).

LBPR = −
M

∑
u=1

∑
i∈Hu

∑
j/∈Hu

ln σ(ŷui − ŷuj) + λ
∥∥∥E(0)

∥∥∥2
(20)

Adam [33] is used as the optimizer of loss function. Its primary characteristic is that it
can self-adapt learning rates.

5. Experiment

5.1. Experiment Setup
5.1.1. Datasets

We used four datasets in this paper. The following is an introduction to these datasets,
and their statistical details are summarized in Table 1.

• Brightkite. A position sharing platform with social networking platform where users
share their locations through check-ins. It includes check-in data as well as social data.

• Gowalla. A position sharing platform similar to Brightkite. This dataset includes
check-in data and user social data.

• Epinions. A consumer review website which allows users to clicked items and add
trust users. This dataset contains users’ rating data and trust network data.

• LastFM. A social music platform for music sharing. This dataset includes data about
users’ listening to music and users’ relationships.

Table 1. Statistical details of four datasets.

Dataset Brightkite Gowalla Epinions LastFM

#User 6310 14,923 12,392 1860
#Item 317,448 756,595 112,267 17,583

#Interaction 1,392,069 2,825,857 742,682 92,601
#Connection 27,754 82,112 198,264 24,800

R-Density 6.9495 × 10−4 2.5028 × 10−4 5.3384 × 10−4 2.8315 × 10−4

S-Density 6.9705 × 10−4 3.6872 × 10−4 1.2911 × 10−3 7.1685 × 10−3

5.1.2. Baselines

For the purpose of illustrating how effective our model is, we compared SRRA with
three types of approaches: one social recommendation model based on deep learning (DL),
three social recommendation models based on DL and GNN, and one recommendation
model based on GCN, which is shown in Table 2.

• LightGCN [3]: It is effective to extract the collaborative signal explicitly in the embed-
ding process by modeling high-order connectivity in interactive graphs.

• DSCF [34]: It utilizes information provided by distant neighbors and explicitly captures
the neighbor’s different opinions towards items.

• DiffNet [25]: It is a GNN model which analyzes how users make their decisions based
on recursive social diffusion.
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• GraphRec [24]: It captures interactions and opinions in GR and it also models two
graphs (e.g., GR and GS) and the strength of heterogeneity in a coherent way.

• DICER [30]: It models user and item by introducing high-order neighbor information,
and draws the most relevant interactive information based on deep context.

Table 2. Comparison of the model’s characteristics.

Methods Social Recommendation DL
Graph-Based

GNN GCN

LightGCN
√

DSCF
√ √

DiffNet
√ √ √

GraphRec
√ √ √

DICER
√ √ √

SRRA
√ √

5.1.3. Evaluation Metrics

We utilize two widely adopted metrics Recall@K and NDCG@K in comparisons, since
we try to recommend the Top-K list items for each user. Specifically, Recall measures the
percentage of the test data that users actually like from the Top-K list. In addition, NDCG
is a position-aware ranking metric that measures how the hit items are placed and gives a
higher score if they are at the top of the list.

5.1.4. Experiments Details

We use 80% of Brightkite, Gowalla, Epinions and LastFM for training, 10% for tuning
hyper-parameters, and 10% for testing final performance. Parameters for all methods are
randomly initialized with standard normal distribution. In addition, initialization and
tuning of parameters for the baseline algorithms followed the procedures described in the
corresponding papers. With batch size 1024, we tested each value in {8, 16, 32, 64, 128, 256}
for embedding size d, and we also find the proper value for learning rate and L2 regular-
ization factor in {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and

{
1 × 10−6, 1 × 10−5, . . . , 1 × 10−2},

respectively. The aggregation factors αl and βl of each layer were set as 1/(L + 1), where L
represents the total number of layers.

5.2. Overall Comparison

We compare all methods in this subsection. In Table 3, we show performance compari-
son between SRRA and baselines. The following conclusions can be drawn:

First, methods that incorporate social relations outperform that does not. In Table 3,
for example, DSCF, DiffNet, GraphRec, DICER, and SRRA outperform LightGCN. This
demonstrates that social information is effective and helpful by being incorporated into
recommender systems.

Second, our method SRRA achieves the best performance on these four datasets.
Specifically, in comparison to DICER, a GNN and DL-based social recommendation model,
SRRA scores better by an average improvement of 2.27%, 2.85%, 5.58%, and 6.90%; and
to GraphRec, a very expressive GNN-based social recommendation model, SRRA scores
better by an average improvement of 5.55%, 6.44%, 13.42% and 13.08% on the four datasets,
respectively. We guess a possible reason is that, for Brightkite and Gowalla, as they are
social networks related to location, the activities and consumption preferences for users
in this type of social platform is not easy to be affected; and for Epinions and LastFM,
people strongly rely on social relations to acquire correct review of goods and lists of music
they will listen to. It is possible to attribute our improved model over the baseline to two
factors: (1) our model use GCN architecture to extract the social ties and interactive ties in
a high-order way, which can leverage the relative information from multi-hop neighbors
and high-order collaborative information propagated over the user interaction graph;

127



Appl. Sci. 2022, 12, 11653

(2) we fuse all-order social and collaborative information when modeling user and item
representation which generates improved user and item representation.

Table 3. Performance comparison between SRRA and baselines.

Recall@10

Datasets
Methods

LightGCN DSCF DiffNet GraphRec DICER SRRA

Brightkite 0.1642 0.1895 0.1962 0.2172 0.2235 0.2293

Gowalla 0.2083 0.2253 0.2399 0.2779 0.2886 0.3011

Epinions 0.2269 0.2613 0.2874 0.2845 0.3155 0.3341

LastFM 0.2519 0.2742 0.2932 0.2876 0.3059 0.3272

NDCG@10

Datasets
Methods

LightGCN DSCF DiffNet GraphRec DICER SRRA

Brightkite 0.1321 0.1393 0.1539 0.1612 0.1672 0.1701

Gowalla 0.1355 0.1482 0.1667 0.1724 0.1744 0.1782

Epinions 0.1425 0.1598 0.1642 0.1709 0.1737 0.1824

LastFM 0.1431 0.1563 0.1628 0.1862 0.1953 0.2086

5.3. Parameter Analysis

For the proposed model, there are two crucial parameters: the number of layers l and
the embedding size d. In this section, we first change only one parameter and fix the others,
and then observe how the performance changes.

Effect of the number of layers l. Take Gowalla and Epinions for example, we set
the l from 1 to 5 to measure the impact of different layers, and then we can obtain the
performance with the different number of layers that showed in Figure 7. We observed that
performance increases and then decreases as the number of layers grows. When the number
of layers grows from 1 to 4, performance of SRRA is improved. However, performance
starts to become worse when the number of layers is 5. It demonstrates that too many
layers may cause over smoothness that is a common problem existing in graph convolution
methods. Thus, in order to prevent this, we need to use the proper number of layers.

Figure 7. Effect of #layers l on Gowalla and Epinions.

Effect of embedding size d. In this subsection, take Gowalla and Epinions for exam-
ple, we analyze how the embedding size of eu and ei affect proposed model. On these
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two datasets, Figure 8 compares the performance of our proposed model when varying its
embedding size d.

Figure 8. Effect of embedding size d on Gowalla and Epinions.

Accordingly, as embedding size increases, performance first become better, then
worse. If the size grows from 8 to 64, the performance improves obviously. However, the
performance of SRRA starts to deteriorate when the embedding size is 128. It demonstrates
that a large embedding size is likely to produce powerful representations. Nevertheless,
if the length of embeddings is too long, our model will become more complex. Thus, we
must find an appropriate embedding size to make a trade-off, and we find that 64 is the
optimal value.

6. Conclusions

In this work, we proposed a new social recommendation method which leverages
graph convolution technique and integrates social relations. Firstly, we construct the archi-
tecture of a general collaborative filtering social recommendation model based on graph
convolution (SRGCF), which consists of four parts, which are initialization embedding
layer, semantic aggregation layer, semantic fusion layer and prediction layer, respectively.
The semantic aggregation layer and semantic fusion layer are the core of SRGCF, which
play the role of extracting high-order semantic information and integrating various seman-
tic information, respectively. Then, we propose a feasible SRRA algorithm on top of the
architecture, which can model interactions as well as social relations. It can use richer social
information to mine the potential relationship, so as to improve the performance of recom-
mendations. Comparative experiments on four datasets have proven the effectiveness of
the proposed model.

Different from previous work, we try to explore how to use graph neural network
method and introduce social auxiliary information to construct recommendation model in
order to learn better representation. The graph-based model is superior to the traditional
recommendation model because it can learn not only the representation of entities but also
the relationships between them. However, limited by the shortcomings of graph neural
network itself, such as excessive smoothing after several iterations, entity representation
may not be fully learned, which requires some optimization in model design. In the
future, we plan to optimize the model architecture by increasing the coupling between
social modeling and interactive modeling, so that the representation learning is more
adequate. We will also try to explore the advantages of other graphical representation
learning techniques to improve the learning ability of the model.

Author Contributions: Conceptualization, M.M.; methodology, X.L.; software, Q.C.; formal analysis,
Q.C.; writing—original draft preparation, Q.C.; writing—review and editing, Q.C. All authors have
read and agreed to the published version of the manuscript.

129



Appl. Sci. 2022, 12, 11653

Funding: This research was funded by Science and Technology Research Project of Chongqing Mu-
nicipal Education Commission, grant number KJZDK202001101; Chongqing Postgraduate Research
Innovation Project, grant number gzlcx20223205; General Project of Chongqing Natural Science
Foundation, grant number cstc2021jcyj-msxmX0162; 2021 National Education Examination Research
Project, grant number GJK2021028.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The calculated data presented in this work are available from the
corresponding authors upon reasonable request.

Acknowledgments: The author would like to thank the anonymous reviewers for their valuable
comments on our paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

U the set of users
I the set of items
GR user–item interaction graph
Gs user–user social graph
d the dimension of node embedding
Hi neighbors of item i on GR
Hu neighbors of user u on Gs
l #layer
L total number of layers
Fu the friends of user u
e(l)u the embedding of user u at the l-th layer from GR

c(l)u the embedding of user u at the l-th layer from Gs
ẽ(l)u the l-th layer embedding of user u from GR and Gs
e∗u final embedding of user u
e∗i final embedding of item i
M the numbers of users
N the numbers of items
R user–item interaction matrix
S social matrix
A adjacency matrix of GR
B adjacency matrix of Gs
D degree matrix of matrix A
P degree matrix of matrix B
R+ observable interactions
R− unobserved interactions
Θ model parameters
E(l) the l-th layer matrix of GCN on GR
C(l) the l-th layer matrix of GCN on Gs
EU

∗ final embedding matrix of users
EI

∗ final embedding matrix of items
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Abstract: Network disassembly refers to the removal of the minimum set of nodes to split the network
into disconnected sub-part to achieve effective control of the network. However, most of the existing
work only focuses on the disassembly of undirected networks, and there are few studies on directed
networks, because when the edges in the network are directed, the application of the existing methods
will lead to a higher cost of disassembly. Aiming at fixing the problem, an effective edge module
disassembly method based on a non-backtracking matrix is proposed. This method combines the
edge module spectrum partition and directed network disassembly problem to find the minimum set
of key points connecting different edge modules for removal. This method is applied to large-scale
artificial and real networks to verify its effectiveness. Multiple experimental results show that the
proposed method has great advantages in disassembly accuracy and computational efficiency.

Keywords: directed network dismantling; non-backtracking matrix; spectral partition; minimal
dismantling set

1. Introduction

In complexity science, a network (denoted by G = (V , E) in graph theory) is com-
posed of a node set V consisting of n nodes and an edge set E consisting of m edges between
the nodes. Many real-world networks such as the Internet, WWW, large-scale power net-
works, transportation networks and interpersonal networks can be modeled in this concise
way [1]. Using this method, these networks can be regarded as a collection of nodes with
independent characteristics interconnected with other individuals. Each individual is
regarded as a node in the network, and the connection between nodes is regarded as the
edge of the network. This abstract method can intuitively show the topology of the real
network, and also provides an effective research method for understanding the state and
the function of the real network [2].

However, with the continuous development of technology and society, epidemic
viruses [3], computer viruses [4], misinformation [5], or corruption [6] have more serious
negative effects in the human world. However, removing or deactivating a part of the
key nodes through the network dismantling method in the network to decompose the
network into several isolated sub-parts can effectively protect the robustness of the network,
control the dynamic behavior of the network, and curb the negative effects in the network
mentioned above. Previous studies proved that this method to remove or deactivate the
key nodes can effectively curb the spread of epidemics in the population [7], prevent the
spread of misinformation through social networks [8] and prevent the spread of viruses in
computer networks [9]. Some studies on complex networks choose a set of node subsets S
in the network with an optimal method, and explore the influence of removing S on the
network characteristics. For example, exploring how the maximum connected (strong)
subset of the network will change after removing S, in the example of epidemics or network
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viruses transmission, if S is isolated or infected first, the impact on the speed of virus
transmission can be determined [10]?

In the actual situation, it will produce a certain cost consumption C when selecting
and removing the node subset S in the network. In the epidemic propagation model, the
vaccination of the node requires a certain socioeconomic cost. Removing different node sets
in the computer virus or public opinion propagation network consumes different resources
in the actual situation. Therefore, a combinatorial optimization problem is generated,
whereby under the influence of the constraint removal node subset S in the network, the
removal cost C is minimized. Additionally, removing nodes will destroy the network
structure and affect the function of the network, so it is necessary to remove as few nodes
as possible and find a set of nodes with the lowest removal cost C, that is, the minimum
disassembly set (we consider the most common situations where the disassembly cost is
the unit cost; the minimum disassembly set is the set with the least number of nodes) and
remove it. After the network is decomposed into multiple sub-parts that are not connected,
network disassembly is achieved [11]. Finding the minimum disassembly set is an NP-
hard problem [12]. For this kind of problem, only effective approximation algorithms or
heuristic algorithms can be found at present. For the disassembly problem, there have been
some recursive algorithms based on the degree or centrality of the nodes. For example,
in 2015, a heuristic algorithm called ’collective’ influence (CI) [13] was proposed, which
determines the ownership of the nodes in an undirected random network according to
the degree of nodes and the degree of local neighbor nodes; in 2016, Alfredo Braunstein
proposed a three-segment minimum sum (hereafter referred to as the Min-Sum) method for
dismantling large random undirected networks [11]; for large undirected random networks,
this method is a more effective dismantling algorithm. In 2019, Ren proposed a general
network disassembly (hereafter referred to as the GND) method for undirected weight
networks [14]. In addition, some relatively new disassembly methods and analyses of
disassembly [15,16] are provided, such as the disassembly algorithm based on the message
passing model (2020) [17] and the sensitive disassembly method of neighbor connection
(2020) [18].

Most of the existing disassembly algorithms are carried out in undirected networks,
while there are few disassembly algorithms for directed networks. However, in many
real-world networks (such as WWW networks, acquaintance relationships, network email
networks, text association networks and article citation networks, etc.), the edges between
nodes are unidirectionally connected, and there is no mutual relationship in undirected
networks [19]. The existing disassembly methods are sometimes not suitable for the
disassembly of these directed networks. Compared with disassembly in the undirected
network, disassembly in the directed network needs to consider the direction of the edges
between the nodes in the network. For example, in a public opinion network, when an
incoming node (Innode) connected by a directed edge e (also known as an arc in graph
theory) is a communicator, the outgoing node of this edge (Outnode) is not likely to
be propagated by the node. When applying the undirected network-based disassembly
method to disassemble the network, this one-way relationship between nodes is sometimes
ignored, resulting in the removal of this edge e, and causing unnecessary disassembly to
affect the disassembly effect.

The influence of the internal mechanism of this network on the disassembly is ignored
in the traditional disassembly method. To solve this problem, the non-backtracking matrix
representing the edge adjacency relationship is applied as the operator of spectral division,
whereby it retains the directionality of the node relationship, and combines the disassembly
of the directed network with the spectral division method. An improved spectral disassem-
bly method for directed networks (hereafter referred to as the DIR method) is proposed;
the edges in the directed network are directly applied as the disassembly unit, and the
strongest connected subgraph of the directed network is used as the disassembly subject.
The spectral characteristics of the edge adjacency matrix (non-backtracking matrix) are
applied to the bipartition of the edge modules in the maximum strongly connected subset.
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The overlapping node set of the node sets connecting the two edge modules is then found
as the minimum disassembly set to disassemble the network until the disassembly scale
reaches the specified disassembly scale of the network (the maximum number of nodes in
the strongly connected subgraph). The excellent characteristics of the non-backtracking
matrix can be made full use of by using the DIR method, and the DIR method can greatly
protect the topology of the network during the disassembly process. Furthermore, it is
verified by experiments that the DIR method is suitable for the disassembly of directed
networks. Finally, the influence of different disassembly methods on the network structure
is analyzed by analyzing the changes of network indexes such as the clustering coefficient,
assortativity coefficient and modularity function in the disassembly process, and it is veri-
fied that the application of edge module partition to disassemble the network can greatly
retain the structural information in the networks.

2. Related Works

As described in the previous section, many network dismantling methods have been
proposed in recent years. Next, I will introduce two methods that are compared with this
article, namely the GND algorithm and Min-Sum algorithm.

GND method. This method considers the case where the node removal cost is equal
to the node weight and is not a unit cost. First, perform spectral division of the Laplacian
matrix for which the operators are node weights of the network. After the division is
successful, the node weight coverage algorithm is applied to the edges connecting different
divisions to find the minimum weight point set that can divide the network, so as to find
the minimum cost disassembly set. Compared with the previous algorithm, GND is more
general and applicable. It considers the influence of node weights in undirected networks
on the network disassembly problem. However, the operator in the GND method is a node
adjacency matrix.

Min-Sum method. Braunstein et al. proposed a three-stage Min-Sum algorithm to
dismantling networks. They first decycle a network with a variant of the Min-Sum message
passing algorithm. After all cycles are broken, they break the remaining trees into small
components until the largest component is smaller than the desired threshold. Finally, they
refine the node set of network dismantling by moving some of them back to the original
network. However, this kind of method tends to delete irrelevant nodes during the loop
removal step and then moves them back to the original network in the following node
re-inserting step, which reduces the disassembly efficiency.

However, when analyzing directed networks, most spectral methods using node adja-
cency matrices will use symmetric adjacency matrices to make the network undirected [20].
This processing method will inevitably lose some information in the network [21], resulting
in the search process for the minimum set of nodes to be disassembled in the directed
network which will add some unnecessary nodes and cause unnecessary disassembly.

3. Preliminaries

In this section, we will provide a simple disassembly flow chart and introduce the
knowledge of non-backtracking matrices so that readers can understand the proposed
method more easily.

3.1. Model

As shown in Figure 1, by applying the DIR method to disassemble the directed net-
work in the figure, according to the spectral characteristics of the non-backtracking matrix,
the edge of the directed network is divided into two different red and blue modules;
overlapping nodes 5 and 6 that connect these two different edge modules were found.
By removing nodes 5 and 6 and disconnecting the edges connected to them, the directed
network can be divided into two disconnected sub-parts. Compared with the previous
disassembly method, this disassembly method for removing overlapping nodes of edge
modules requires fewer disassembly steps, does not need to find the minimum node cover-

135



Appl. Sci. 2022, 12, 12047

age set, and the corresponding disassembly cost is lower (the nodes found by the traditional
decomposition method are 5, 6, 7, 12), which is more suitable for directed networks.

Figure 1. Directed network disassembly flow chart.

3.2. Non-Backtracking Matrix

In a directed network G, i, j, k and l are all nodes in V , according to the definition
of non-backtracking random walk, but only when j = k and i 
= l, directed edge i → j
is connected to another directed edge k → l. In a directed network, B is a m ∗ m non-
backtracking matrix. This non-backtracking matrix is used to represent the adjacency
relationship of edges in a directed network, defined as

Bi→j,k→i =

{
1, if j = k and i 
= l
0, other cases

(1)

The non-backtracking matrix B is different from the adjacency matrix A, where B
takes each directed edge as an element, and represents the adjacency relationship between
the edges in the matrix; therefore, it is also called the edge adjacency matrix. The excellent
properties of the non-backtracking operator have been shown above [22], and the spectral
characteristics of the non-backtracking matrix have better performance in the network than
the node adjacency matrix A or other matrices, especially in terms of the strong separation
of its second eigenvector for the network structure division. At the same time, directed
networks in the real world tend to have relatively sparse structures and large scales. The
non-backtracking matrix B also performs well in sparse networks compared to the node
adjacency matrix A. The adjacency matrix of the edge, B, stores the relationship between
the edges in the network, and is not sensitive to the information of the nodes in the network
so as to avoid the tendency to remove the nodes with a relatively large degree during
dismantling and cause damage to the connected subset of the network [23], thus retaining
the structural information in the directed network to the greatest extent. It is also proved
by experiments that applying the non-backtracking matrix to disassemble the one-way
connection relationship of the edges in the directed network can reduce the disturbance
of the node’s topology information to the selected disassembly node set, and effectively
avoid the problem of network information loss when directly using the directed network
adjacency matrix as the spectral algorithm operator.

4. Method

In this section, we propose a method that combines edge module partition with net-
work disassembly to construct a network disassembly algorithm in the directed networks.
The non-backtracking matrix is used to store the adjacent information of the edges, and
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the non-backtracking matrix is used as the operator to construct the minimum number of
edges in the disassembly function. The edge module is divided by solving the approximate
second eigenvector of the function matrix; after the division, the minimum number of edge
sets connecting the different edge modules and the node set where the modules overlap in
the edge sets are determined. By removing this node set, the connection between different
modules is destroyed, and disassembly is finally achieved.

4.1. Disassemble the Objective Function

In this section, we consider the general case of dividing a network in two modules of
equal size according to the nature of the edges, minimizing the number of edges between
two different modules. The non-backtracking matrix is used to store the edge adjacency in-
formation in the directed network, because in the disassembly problem, we will eventually
remove all overlapping nodes on different edge modules, and the weight of the edge does
not affect the selection of the minimum node set; therefore, we set the weight of each edge
as the unit weight. We divide m edges in the edge network into two equal-sized m

2 modules
according to the corresponding characteristic. We define an index variable si→j ∈ Rm for
any directed edge i → j, i, j ∈ N in the network, and assume that if this edge i → j belongs
to partition module 1, then si→j = 1; if edge i → j belongs to partition module 2, then
si→j = −1. So, we obtain

1
2

(
si→jsj→k + 1

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, If two connected edges

i → j, j → k(i 
= k) belong to
the same edge module

0, other cases

(2)

Equation (2) is used to determine whether two connected edges belong to the same
module. Combined with Equation (2), we use the non-backtracking matrix as an operator
to obtain the objective function of the minimum number of disassembled edges, which is
used to find a set of edges that connect two different modules with the smallest number:

min : R = ∑
i→j,k→l

Bi→j,k→l − ∑
i→j,k→l

1
2

(
si→jsk→l + 1

)
Bi→j,k→l

=
1
2 ∑

i→j,k→l

(
1 − si→jsk→l

)
Bi→j,k→l

=
1
2 ∑

i→j,k→l

(
di→jδk→l,i→j − Bi→j,k→l

)
si→jsk→l

=
1
2

sT B′s

(3)

s.t.
{

1Ts = 0,
si→j ∈ R, i → j ∈ E

(4)

where B′ = DB − B, DB is a diagonal matrix, (DB)i→j,i→j = ∑k→l Bi→j,k→l . Equation (3)
represents the difference obtained by the logarithm of the minimized total connected edges
minus the logarithm of the edges connected inside the edge module. When two connected
edges are divided into different edge modules, si→jsj→k = −1, Bi→j,j→k = 1, the nodes
connecting the two edges needs to be removed; on the contrary, when two connected edges
are divided into the same edge module, the nodes connecting the two edges do not need
to be removed. Finally, the set of nodes that need to be removed corresponding to the set
of partitions that minimize R is the minimum disassembly set. We specify the number of
nodes whose disassembly cost is the minimum disassembly set.

1Ts = 0 in Equation (4) ensures that the two modules are of equal size. Unfortunately,
this optimization problem is an NP-hard problem. For this problem, the approximate
solution can be found by relaxing constraint si→j ∈ {−1, 1} to si→j ∈ R. According
to the Courant-–Fisher theory[24], the solution of this relaxation constraint minimum
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optimization problem can be found by analyzing the eigenvector v(2) corresponding to the
second smallest eigenvalue λ2 of B′. So, if node j connects two edges i → j, j → k(i 
= k)
corresponding to the value of the second smallest eigenvector, one of the second smallest
eigenvectors are non-negative

(
v(2)i→j ≥ 0

)
, and the other’s second smallest eigenvector is

negative
(

v(2)i→j < 0
)

; this node will be removed. Removing all such nodes in the network
can decompose the network into two sub-parts.

4.2. Divide Vector
Because the large-scale network has many edges, its corresponding second eigenvector

of B is difficult to obtain accurately [25]. The traditional power-law iterative model is
applied to perform a simple and refined approximation algorithm for the second smallest
eigenvalue. Matrix B′ has m real non-negative eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λm, and
the corresponding eigenvectors are v(1), v(2), . . . , v(m), which are orthonormal bases in Rm

space. We define the maximum degree of elements in matrix B as dmax, x, y represents the
row and column of the matrix, and the upper bound of the spectrum can be obtained by
calculating the 1-norm.

λm ≤ max
‖v‖1=1

‖(DB − B)v‖1

= max
‖v‖1=1

m

∑
x=1

∣∣∣∣∣vx

m

∑
y=1

Bxy −
m

∑
y=1

vyBxy

∣∣∣∣∣
≤ max

‖v‖1=1

m

∑
x=1

m

∑
y=1

∣∣vxBxy
∣∣+ m

∑
x=1

m

∑
y=1

∣∣vxBxy
∣∣

= max
‖v‖1=1

‖Bv‖1 + ‖Bv‖1

= 2dmax

(5)

The upper bound of the spectrum calculated by Equation (5) is λm ≤ 2dmax. In order
to calculate the approximate second eigenvector, we calculate the matrix H = 2dmax − B′,
which has the same eigenvector as B′. Therefore, the corresponding eigenvalue is now
converted into the calculation 0 ≤ ξm = 2dmax − λm ≤ . . . ≤ ξ1 = 2dmax, in which the
eigenvector v(2) corresponding to the second largest eigenvalue ξ2 is calculated. Then,
we find the eigenvector of H corresponding to the eigenvalue λ2 using the following
power-law iterative algorithm.

Algorithm 1 can find an approximate eigenvector corresponding to λ2; we can use our
orthogonal eigenvector basis to represent any random vector v = ∑m

i=1 ϕiv(i); the second
step of the algorithm can guarantee ϕ1 = 0 and ϕ2 
= 0. Finally, by multiplying the vector v
by the linear operator Hk, we obtain

Hkv =
m

∑
i=2

ϕiv(i) ∝ ϕ2v(2) +
m

∑
i=3

ϕi

(
ξi
ξ2

)k
v(i) (6)

Since λ3 > λ2, there is
∣∣∣ ξi

ξ2

∣∣∣ < 1, and we obtain ϕi

(
ξi
ξ2

)k
v(i) → 0. When the scale of

the index k (the number of iterations) of the operator H is O
(
log(m)1+ε

)
, v tends to be the

expected value E
[∣∣∣λ2 − vT Bv

vTv

∣∣∣]→ 0 of the eigenvalue λ2 corresponding to B′, where m is
the number of edges of the real network.
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Algorithm 1: Approximate feature vector algorithm

input: Non-backtracking matrix B, network edge number m, v1 = (1, 1, . . . , 1)T

output: Approximate second eigenvector v
1: Randomly select vector v on the unit sphere;
2: v ← v − vT v

vT v1
· v1;

3: For i = 1 to τ(m);
4: v ← Hv

‖Hv‖ ;
5: End for;
6: Return v.

4.3. Directed Network Disassembly

Algorithm 2 provides a recursive solution that can repeatedly disassemble a network
to a specified scale. The number of nodes in the maximal strongly connected subset GSC is
defined as the disassembly scale. In this algorithm, we intend to disassemble the directed
network until the disassembly scale is smaller than the target scale C. The above algorithm
is also defined according to this idea. The input of the algorithm is the node-edge topology
of the directed network. The final output is the minimum node disassembly set and the
required disassembly cost when the directed network is disassembled to a specified scale;
in the first step of the algorithm, the maximal strongly connected subset of the network is
taken as the disassembly subject of the directed network, which can filter out the nodes
and edges in the network that are not related to network disassembly; this can further
improve the disassembly efficiency of the directed network. The selection of the strongly
connected subset as the disassembly subject can be directly compared with the connected
subset of the commonly used undirected network, which can avoid undirectional networks
to meet the undirected network disassembly conditions and cause redundant disassembly.
The process is controlled by judging the size of the strongest connected subset of the
network; the minimum disassembly set and disassembly cost are initialized to 0 in step 2;
the Laplacian matrix of the non-backtracking matrix of the maximum strongly connected
subgraph is generated in step 3 for the next division of the edge module; in the fourth
step, the eigenvector corresponding to the second eigenvalue is obtained by calculating
H = 2dmax − B′ and applying the eigenvector approximation algorithm, which is used to
divide the edge module; the overlapping node set between edge modules is found and
removed in the entire network G in step 5 and 6; the node to be removed is added to the
disassembly set and the maximum strongly connected subset and disassembly set of the
network in step 7 are updated; the minimum disassembly set and disassembly cost are
updated in step 8; whether the maximum strongly connected subset size of the network
reaches the target disassembly size is determined in step 9. This recursive algorithm
can obtain the set of nodes that disassemble the directed network into a minimum set of
connections between different edge modules of a specified size.

Algorithm 2: Directed network disassembly algorithm (DIR method)
input: Network G

output: Minimum disassembly set Ls, minimum disassembly cost c
1: Select the maximum strongly connected subgraph GSC in the network and calculate its
non-backtracking matrix BGSC according to Equation (1);
2: Initialize Ls, c to 0;
3: Calculating B′ corresponding to BGSC by Equation (3);
4: Use algorithm 1 to obtain the division vector v and divide the maximum strongly
connected subgraph into two edge modules;
5: Find the edge set connecting the two edge modules and create a partition subgraph;
6: Find the overlapping node set S in the partitioned subgraph;
7: Remove S from network G and update network G;
8: Merge S into Ls and update Ls, c, and BGSC ;
9: If the size of the largest strongly connected subgraph GSCsize < target disassembly size C,
return Ls and c;
Otherwise, go back to step 3.
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4.4. Algorithm Complexity

The time complexity of the approximate feature vector is equal to the number of
iterations τ(m) multiplied by the product of matrix H and vector v, namely O

(
τ(m)m2),

where m is the number of network edges.
The complexity of performing a bisection for the entire network is O

(
m2τ(m)

)
. The

complexity of performing another bisection on the two modules with an approximate size
of m/2 after the division is 2 · O

((m
2
)2

τ(m)
)

. The complexity of another bisection for the

four modules with an approximate size of m/4 after division is 4 · O
((m

4
)2

τ(m)
)

. Until

O(GSC) = 1, the complexity of another bisection for m/2 = 2log2(m)−1 modules with an

approximate scale of 2 after division is 2log2(m)−1O
((

m
2log2(m)−1

)2
τ(m)

)
. The total time

complexity is as follows:

O
(

m2τ(m)
)
+ 2 · O

((m
2

)2
τ(m)

)
+ 4 · O

((m
4

)2
τ(m)

)
+ . . . + 2log2(m)−1O

((
m

2log2(m)−1

)2
τ(m)

)

=
log2(m)−1

∑
i=0

2iO
((m

2i

)2
τ(m)

)
= O

(
m2τ(m)

)⎛⎝log2(m)−1

∑
i=0

1

⎞⎠2

= O
(

m2τ(m) log2(m)
)

(7)

The computational complexity of the dismantling recursive algorithm is O
(

m2τ(m) log2(m)
)

.

For a sparse network, τ(m) = log(m)1+ε at moment ε > 0 and there is an upper bound
1/ log

(∣∣∣ ξ2
λ3

∣∣∣) [14]; therefore, a better dismantling effect can be obtained. The computational

complexity is O
(
m2 log(m)3+ε

)
at this moment.

In the algorithm, the space required for each non-backtracking matrix is O
(
m2), the

recursive depth is O(log(m)), and the required space complexity is O
(
m2 log(m)

)
, where

m is the number of network edges.

5. Experimental Results

In order to verify the applicability of the DIR method in directed networks, it is used in
artificial directed ER networks, BA networks and real networks, and the disassembly results
are compared with two commonly used methods (GND algorithm and Min-Sum method).
The dataset of Table 1 is selected in the experiment, and the experimental comparison is
carried out in different artificial directed networks and large-scale real networks (for the
convenience of comparison, the disassembly scale and disassembly cost in this paper are
both proportional).

Table 1. Network dataset.

Network Name Number of Nodes n Number of Edges m Node Connection Probability p Average Degree

ER random network 1000 approximately equal to 10,000 0.01 10
BA random network 1000 approximately equal to 10,000 10

Email-EU-core network 1005 24,929 24.80
Weki-vote network 8297 103,689 12.50

Some scholars, e.g., Ren [14] have proved that the GND method has a higher dis-
assembly efficiency than other algorithms such as Min-Sum and information transfer in
undirected networks when the network disassembly cost is the unit cost (number of nodes)
and non-unit cost (based on node degree). When the disassembly scale is the same, the
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GND method has a lower disassembly cost than other algorithms, and the GND method
can destroy the network structure with a smaller disassembly cost. This method has better
performance than other algorithms in the disassembly of undirected networks. The DIR
method is compared with the GND method and Min-Sum method, considering that the
disassembly cost is the unit cost (i.e., the number of nodes).

Figures 2 and 3 are the disassembly results of different methods in different directed
networks, where the corresponding curves of disassembly scale and disassembly cost are
provided. The ordinate disassembly scale is the proportion of the number of nodes in the
largest (strongly) connected subgraph, and the abscissa disassembly cost is the proportion
of the number of nodes in the smallest disassembly set when disassembly is at the scale
shown in the ordinate. As shown in Figure 2, in a dense ER random network, when the
required disassembly size is less than 0.25, the disassembly cost of the DIR method is
smaller than that of the GND and Min-Sum methods; in the artificial BA directed network
with an average degree of 10, the disassembly cost of the DIR method is significantly lower
than that of the other two methods. Additionally, in the relatively sparse real directed
network (Figure 2), when the network is disassembled to the same specified scale, the
DIR method has a lower cost than other methods. The reason for the difference is that
methods such as GND and Min-Sum take the largest connected subgraph in the network
as the disassembly subject. The DIR method takes the largest strongly connected subset
of the network as the disassembly subject. When the network is dense enough, the size
of the largest strongly connected subgraph and the connected subgraph in the directed
network is not hugely different; however, in the relatively sparse network (such as the
Weki network), the cost of applying the maximum strongly connected subgraph of the
directed network for disassembly is significantly lower than that of the GND and Min-Sum
methods. The experiments show that the DIR method has the advantage of lower cost in
directed network disassembly, which shows the efficiency of the DIR method in directed
network disassembly.

Next, we explore the impact of different disassembly methods on the network structure.
By applying different disassembly methods to different networks and comparing the
clustering coefficient [26] and assortativity coefficient [27] of the disassembly process
network, the superiority of the DIR method to retain the network structure information to
a great extent is proved.

Figure 2. Curve graph of the disassembly cost and disassembly scale of directed ER random network
and directed BA random network.
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Figure 3. Curve graph of directed real network disassembly cost and disassembly scale.

The clustering coefficient in graph theory is used to measure the degree of node
aggregation. There is evidence that in most real-world networks, especially in social
networks, nodes tend to create relatively tightly connected groups; this possibility is often
greater than the average probability of randomly establishing a relationship between two
nodes. A network such as G = (V , E) is formally composed of a set of nodes and edges
between nodes, with edges connecting nodes. The neighborhood Ni of a node vi is defined
as its adjacent node, Ni =

{
vj : eij ∈ E ∨ eji ∈ E

}
. The local clustering coefficient Ci of a

node in a directed network is

Ci =

∣∣∣{ejk : vj, vk ∈ Ni, ejk ∈ E
}∣∣∣

ki(ki − 1)
(8)

As an alternative to the global clustering coefficient, Watt and Strogatz [19] use the
average of local clustering coefficients of all vertices as the overall clustering level of
the network.

C =
1
n ∑

i
Ci (9)

Here, we compare the influence of the DIR and the other two disassembly methods
on the degrees of node connection in the network by observing the change of the global
clustering coefficient of the network during the disassembly process, and then explore the
impact on the network structure.

The experiment first disassembles the artificial ER random network and the BA net-
work; the relationship between the disassembly cost and the clustering coefficient is shown
in Figure 4. When the disassembly cost is less than 0.7 in the artificial ER random network,
the curve of the average clustering coefficient corresponding to the DIR method is more
stable than the curve of the GND and Min-Sum method, and it also reaches a stable state
first in the BA network. The DIR method has less disturbances for the clustering coefficient
of the whole network compared to the GND and Min-Sum method, which reflects the su-
periority of removing overlapping nodes between modules by dividing the edge modules.
The influence of the DIR method on the network structure is smaller than that of directly
deleting nodes in the network; in the ER random network, the three methods will increase
the network clustering coefficient with the disassembly in a certain period of time. This
is because the disassembly has caused an increasing number of nodes in the network to
appear in clusters. The result of the experiment in the real network is shown in Figure 5. It
can be seen that in the real-world directed network, with the increase in the disassembly
cost, the three disassembly methods will reduce the clustering coefficient in the network,
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which is related to the sparsity of the real network. The dismantling of the nodes of the
real network will reduce the agglomeration between nodes and the connection between
groups will become sparse; however, it can still be seen from the graph that the curve
corresponding to the DIR method is more gentle than the GND and Min-Sum methods.
The influence of this aggregation phenomenon on the real network during the disassembly
process is smaller than that of the two methods; and relatively speaking, the Min-Sum
method will have a more obvious impact on the aggregation phenomenon of the network,
because the Min-Sum method tends to remove nodes with large degrees in the network
and is less able to protect the structural information of the network.

Figure 4. Curve graph of disassembly cost and clustering coefficient of directed ER random network
and directed BA random network.

Figure 5. Curve graph of real network disassembly cost and clustering coefficient.

The coefficient of assortativity is used to measure whether the network is assortative
or disassortative. It is used to investigate whether the nodes with similar values of degree
in the network tend to be connected to its approximate nodes. It can be characterized
by the Pearson coefficient r (degree-degree correlation). r > 0 indicates that the entire
network presents an assortative structure, and the nodes with large degrees tend to be
connected to the nodes with large degrees. r < 0 indicates that the entire network presents
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disassortativity, and r = 0 indicates that there is no correlation in the network structure.
In the experiment, the change of the network structure by the dismantling of the DIR
method is analyzed by observing the influence of the dismantling process on the network
assimilation index.

As shown in Figures 6 and 7, the changes of the assortativity in the network of the
DIR method are less in number than in the other two methods. Whether in the ER random
network or in the real network, when the disassembly cost is less than 0.7, the blue curve
is more gentle, the change of the global assortativity of the network is smaller, and the
influence of removing the overlapping nodes between the edge modules on the assortativity
of the network is smaller than that of the GND and Min-Sum methods.

Figure 6. Curve graph of disassembly cost and assortative coefficient of directed ER random network
and directed BA random network.

Figure 7. Curve graph of real network disassembly cost and assortativity coefficient.

The module degree [28] is used as a performance index to measure the community
division. It is used to see the impact on the structure of the network community when we
disassemble the network. The module degree function is Q = 1

2 ∑i,j aijδ
(
ci, cj

)
, where aij is

an element in the point adjacency matrix A, ci, cj is the community to which node i and j
belong to, and δ

(
ci, cj

)
is the membership function. If i and j are in the same community, it

is 1, otherwise it is 0.
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The calculation of the module degree Q in the disassembly process of the DIR method
is shown in Figure 8. It can be seen that when the disassembly cost is less than 0.8 in
the picture, the module degree Q increases with the increase in the disassembly cost.
It shows that the removal node in the disassembly process also deletes the inter-group
edges between different communities, which plays a certain role in promoting effective
community division. When the cost is greater than 0.88, the disassembly will destroy the
inter-group edges within the community and cause the modularity Q to decrease sharply.

Figure 8. Curve graph of disassembly cost and module degree Q of real network.

In summary, the directed network disassembly (DIR) method we proposed in all the
experiments has a higher disassembly efficiency than the GND and Min-Sum methods
in both artificial directed networks and real directed networks. When the network is
disassembled to the same scale, the DIR method incurs the lowest cost; at the same time,
by comparing the clustering coefficient and the assortative coefficient in the disassembly
process, it is also proved that the DIR method can reduce the influence of disassembly
on the network clustering coefficient and the assortative coefficient in the disassembly
process, and can also effectively retain the information in the network; the influence of
the DIR method on network modularity is also explored through experiments. When the
disassembly scale is less than a given threshold, the DIR method has a certain promoting
effect on network community division.

6. Conclusions

An effective disassembly method is proposed for the disassembly of directed net-
works; the method combines edge module division with network disassembly, using a
non-backtracking matrix to construct the function of the minimum number of edges for
edge disassembly, and finds the overlapping nodes between edge modules to obtain the
approximate solution of the eigenvector of the cost function. Different from the traditional
undirected network disassembly method, the DIR method considers the unidirectional
relationship between nodes in the directed network, makes full use of the excellent spectral
characteristics of the non-backtracking matrix to divide the directed network, ensures the
efficiency of disassembly and reduces the impact of disassembly on the overall structure
of the network by removing the overlapping nodes between the edge modules during
the network disassembly process. By comparing the DIR method with other methods
in different artificial directed networks and real directed networks, it is proved that the
DIR method is efficient in the network disassembly of directed networks. At the same
time, it is also verified that the partition of the edge module applied to the application of
non-backtracking operators in the network disassembly leads to a low disturbance of the
network structure. The experimental results show that using this method to disassemble
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the network can achieve lower costs and protect the structure information in the directed
network to a great extent.
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Abstract: A social tagging system improves recommendation performance by introducing tags as
auxiliary information. These tags are text descriptions of target items provided by individual users,
which can be arbitrary words or phrases, so they can provide more abundant information about user
interests and item characteristics. However, there are many problems to be solved in tag information,
such as data sparsity, ambiguity, and redundancy. In addition, it is difficult to capture multi-aspect
user interests and item characteristics from these tags, which is essential to the recommendation
performance. In the view of these situations, we propose a tag-aware recommendation model based
on attention learning, which can capture diverse tag-based potential features for users and items.
The proposed model adopts the embedding method to produce dense tag-based feature vectors for
each user and each item. To compress these vectors into a fixed-length feature vector, we construct
an attention pooling layer that can automatically allocate different weights to different features
according to their importance. We concatenate the feature vectors of users and items as the input of a
multi-layer fully connected network to learn non-linear high-level interaction features. In addition, a
generalized linear model is also conducted to extract low-level interaction features. By integrating
these features of different types, the proposed model can provide more accurate recommendations.
We establish extensive experiments on two real-world datasets to validate the effect of the proposed
model. Comparable results show that our model perform better than several state-of-the-art tag-
aware recommendation methods in terms of HR and NDCG metrics. Further ablation studies also
demonstrate the effectiveness of attention learning.

Keywords: attention learning; tag information; tag-aware recommendation

1. Introduction

A recommendation system (RS) has been considered as an extremely effective instru-
ment to tackle the problem of information overload, because it can provide personalized
services for individual users by analyzing their interests, preferences, and needs [1]. Many
algorithms have been proposed to generate personalized recommendations. To enhance
algorithm performance, other superior side information has been incorporated into the
recommender system in recent years. In particular, tag-aware recommender systems (TRS)
allow users to mark custom tags for relevant items. In this way, TRS can build the implicit
relationship between users and items through a wide range of tags. These tags are generally
composed of concise words or phrases defined by users, providing good supplementary
information for describing user preferences and item characteristics [2]. Thus far, TRS have
successfully found applications in many online business services, such as books, movies,
music, videos, and social media.

Although the introduction of tags can advance the recommendation performance,
some new problems will inevitably arise. For example, most users may only mark a
few tags to a few items, resulting in sparse data. In addition, since users can take any
word or phrase as a tag, it is easy to cause redundancy and ambiguity in the tag latent
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space [3–5]. Since user-defined tags are the key factor in expressing user interests and item
features, whether the tag information can be effectively processed is crucial to ensure the
recommendation performance. Accordingly, the clustering techniques are introduced to
extend the traditional collaborative filtering (CF) into TRS [3,4]. The goal of clustering
is to aggregate redundant tags. However, it is hard to calculate the similarity of tags,
especially when the tag space is extremely sparse. The tool WordNet [6], known as an
online English lexical database, is also absorbed to compute the similarity for improved
tag-aware recommendation [7]. Nevertheless, manually defining a valid dictionary is
time-consuming and words in dictionaries are usually limited. More importantly, these
methods cannot generate high-quality recommendation results. The reason may be that
the used learning methods are shallow structures that are insufficient to mine the potential
meaning of tags.

To obtain more abstract latent features, researchers begin to leverage the deep network
model, which has been proved as its most powerful feature expression ability in many
fields [8]. For instance, ACF [5] adopts the deep autoencoders to extract low-dimensional
dense user features based on tags. These tag-based features are then utilized by user-based
CF to generate recommendations. Experimental results show that ACF is obviously better
than the clustering-based CF. DSPR [9] uses deep neural networks to obtain the abstract
tag-based features of users and items and maximizes similarities between users and their
associated items based on those features. TRSDL [10] employs deep neural networks
and recurrent neural networks to learn the non-linear latent features of items and users,
respectively. Then, the rating prediction is conducted based on these latent features.

In TRS, users may mark various tags to different items, indicating their diverse inter-
ests. Similarly, items are assigned multifarious tags that describe their various character-
istics. However, in most deep network-based recommendation algorithms, user-defined
tags are first transformed into multi-hot feature vectors, and then compressed into a fixed-
length representation vector for a given user or a specific item by sum or average pooling,
and finally concatenated together to feed into a multi-layer perceptron (MLP) to learn the
non-linear relations. In other words, multi-aspect user preferences or item characteristics
are compressed into a certain fixed-length feature vector. In order to represent diverse
characteristics, the dimension of the feature representation should be large enough to have
sufficient expression ability. However, this will significantly increase the scale of learning
parameters, causing computing and storage burden.

In addition, as is known to us, the user’s preference on a target item comes from the
fact that certain characteristics of the item exactly match some specific interests of the user.
Therefore, it is not suitable to compress all the diverse interests of a user into the same
representation vector when estimating a candidate item, as not all features are equally
useful. The useless features may even produce unnecessary noises and deteriorate the
recommendation performance. In short, ingenious approaches that can differentiate the im-
portance of different features are required to extract tag-based latent features. Furthermore,
although deep networks can automatically learn more expressive feature representations,
it is not easy to extract appropriate low-dimensional dense representations for users and
items when the potential tag space is very sparse. As discussed in [11–13], both low-level
and high-level feature interactions should play important roles for recommendation perfor-
mance, since such interactions of features behind user preferences and item features are
highly sophisticated.

To process the above-mentioned issues, we develop a tag-aware recommendation
algorithm based on attention learning (TRAL), which adopts the attention mechanism to
discriminate the importance of different features from tag space. Firstly, we utilize the tag
embedding technique to extract low-dimensional dense features from the user-tag matrix
and item-tag matrix. Secondly, to acquire more abstract and effective representation vectors
for each user or item, the attention-based pooling layer is employed to compress these
features to a single representation. In this way, different features are assigned different
weights according to their importance. Therefore, tag-based features can make different
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contributions to the final prediction. More importantly, the use of the attention mechanism
means that the importance of different features can be automatically learned without any
human domain knowledge. Thirdly, the extracted representation vectors for users and items
are concatenated together to feed into a general MLP. The high-level feature interactions
are, hence, further learned for improving the recommendation performance. In addition,
to make full use of low-level feature interactions, the generalized linear model is also
introduced. Finally, we combine the representation vectors obtained from the linear model
and the depth model and input them into a common logic loss function for joint training.

To sum up, the main contributions of our work are listed as follows:

• We point out the limitation of using simple compression methods to obtain the fixed-
length tag-based vector that represents multi-aspect user preferences or item features.
To this end, we develop a new tag-aware recommendation algorithm which introduces
the attention network to adaptively learn the importance of different features.

• We combine a generalized linear model and a deep neural network so as to take
advantages of both low-level and high-level feature interactions.

• We perform extensive experiments on two real-world datasets, demonstrating the
rationality and effectiveness of the proposed TRAL.

The rest of this paper is organized as follows. Section 2 briefly summarizes the related
work. Section 3 introduces some preliminaries. We elaborate on the proposed TRAL in
Section 4 and conduct experiments in Section 5. Conclusions are given in Section 6.

2. Related Work

Naturally, many traditional recommendation algorithms are extended to TRS. For
example, Nakamoto et al. [14] proposed a tag-based contextual CF model which modifies
the user similarity computation and the item score prediction according to the tagging
information. Marinho et al. [15] projected the ternary relation of the user-item-tag to a lower-
dimensional space where CF can be applied to provide recommendations. Zhen et al. [16]
incorporated tagging information seamlessly into the model-based CF method by regular-
izing the matrix factorization procedure. Chen et al. [17] developed a tag-based CF model
that adopts topic modeling to capture the semantic information of tags for users and items,
respectively. Wang et al. [18] devised a robust and efficient probabilistic model based on
Bayesian principle for tag-aware recommendation.

To tackle the problem of ambiguity and redundancy in tag information, other kinds
of methods have been widely investigated. Shepitsen et al. [3] designed a personalized
tag-aware recommendation algorithm based on hierarchical clustering. Through the clus-
tering method, redundant tags can be aggregated, and the user’s preferences can be better
understood by measuring the importance of associated tag clusters. Symeonidis et al. [19]
developed a general tag-aware framework to model the three types of entities: user, items,
and tags. The modeled 3-dimensional data is first represented by a 3-order tensor and the
dimension reduction is then performed via a higher-order singular-value decomposition.
To address the problem of high dimension and sparsity of tagging information, Li et al. [20]
developed a novel tag-aware recommendation framework based on Bayesian personalized
ranking (BPR) with matrix factorization, where the tag mapping scheme was designed to
capture low-dimensional dense features for users and items. Different from the method
based on dimension reduction, Zhang et al. [21] developed an integrated diffusion-based
recommendation model directly based on user-item-tag tripartite graphs. In the recent
work, Pan et al. [22] designed a social tag expansion model to alleviate the tag sparsity
problem. The model can explore relations among tags and assign proper weights to the
expanded tags. By updating the user profile dynamically through the assigned weights,
better recommendation performance can be gained. In [23], the topic optimization was
introduced into CF to further enhance both the effectiveness and the efficiency of tag-aware
recommendations. In the proposed method, the tags’ topic model is established and then
used to find the latent preference of users and the latent affiliation of items on topics.
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Due to its powerful ability for feature extraction, deep learning has been widely em-
ployed in TRS recently. Zuo et al. [5] developed a tag-aware deep model, where tag-based
latent features for users are learned by the deep autoencoders. Xu et al. [24] developed
a novel tag-aware recommendation model which adopts deep-semantic similarity-based
neural networks to extract tag-based representations for users and items. In addition,
negative sampling technique is applied so as to enhance the efficiency of the training
process. Based on this model, autoencoders are integrated to further accelerate the learning
process in [9]. Liang et al. [10] proposed a hybrid tag-aware model by combining deep
neural networks and recurrent neural networks for rating prediction. The task of deep
neural networks is to capture abstract representation of item characteristics, while the aim
of recurrent neural networks is to model user dynamic preferences. Huang et al. [25]
proposed a novel tag-based recommendation model that combines the attention network,
the stacked autoencoder and MLP to provide recommendations. In the proposed model, a
neural attention network is conducted to overcome the difficulty of assigning tag weights
for personalized users. Chen et al. [26] designed an attentive intersection model which
integrates the neural attention network and factorization machine. The proposed model
fully utilizes the intersection between user and item tags to learn conjunct features. Re-
cently, Ahmadian et al. [27] proposed a new tag-aware algorithm that employs deep neural
networks to model the representation of trust relationships and tag information.

3. Preliminaries

Generally, users are allowed to assign certain items with personalized tags in TRS.
These different tags can indicate user interests and item characteristics from several angles.
By fully exploring the rich tagging information, TRS can further capture the connotation
of tags, abstract features of items and predict preferences of users, thereby improving
the quality of recommendations. Suppose the size of user set U, item set I, and tag set
T are |U|,|I|, and |T|, respectively. The user tagging behavior can be formally defined
as a tuple F = (U, T, I, Y), in which Y indicates the internal relations between users,
items and tags. More specifically, we can use the following 3-order tensor to represent Y:
Y = y(u,i,t) ∈ R|U|×|I|×|T|. If a given user u labels an item i with tag t, the corresponding
y(u,i,t) = 1, otherwise y(u,i,t) = 0.

Given a user u and a tag t, we can compute the number of times that u has marked
items with t. Analogously, the number of times that the item i has been labeled with tag t
is also calculated. In this way, the user–item–tag tensor is decomposed into two adjacent
matrices: user–tag matrix and item–tag matrix, as shown in Figure 1. Each row of the
user–tag matrix represents the tag-based feature for one user, while each row of the item–
tag matrix indicates the tag-based feature for one item. Note that each user often utilizes
many tags, and each item is usually annotated by several tags. Consequently, tag-based
multi-valued discrete vectors are obtained for users and items, respectively. The aim of the
proposed model is to generate the personalized ranked item list for each user based on
these tag-based features, also known as the top-n recommendation.
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Figure 1. An example of obtaining the user–tag matrix and the item–tag matrix by decomposing the
user–item–tag tensor.

4. Method

In this section, we describe the proposed TRAL in detail, the overall structure of
which is presented in Figure 2. There are three main modules in the framework: (1) the
deep component that integrates a neural attention network and fully connected layers
to capture higher-order tag-based features for users and items; (2) the wide component
that conducts the generalized linear model to learn low-order features; and (3) the predict
layer that combines high-order and low-order features and leverages joint optimization for
generating personalized recommendations. More specifically, we first obtain the tag-based
representation vectors for users and items from the user–item–tag tensor. These vectors are
then used as the input of the deep component and the wide component, respectively, to
capture high-order and low-order interaction features. Finally, we integrate these features
of different types in the predict layer to provide high-quality tag-aware recommendation.

4.1. The Deep Component

In TRS, user interests and item characteristics are hidden in tagging behavior data. It
is remarkable to capture latent tag-based features for users and items, which is the key to
advance the performance of recommendations. Consequently, we design a deep component
to make the best of deep learning in representation and combination. As presented in
Figure 2, the deep component is composed of three main layers: embedding layer, attention
layer, and interaction layer.
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Figure 2. The overall structure of the proposed model. The upper right corner illustrates the difference
between average pooling and attention pooling. The weights of different feature vectors are set to the
same value in average pooling, while these weights will be automatically learned according to their
importance in attention pooling.

4.1.1. Embedding Layer

In order to transform the high-dimensional sparse binary features into low-dimensional
dense vectors, we introduce the widely used embedding method, which is inspired by
representations for words and phrases [28]. Concretely, we first construct a tag-based
embedding dictionary for users:

Eu = [eu
1 , · · · , eu

j , · · · , eu
|T|] ∈ R

d×|T| (1)

where eu
j ∈ R

d represents the embedding vector for tag j that is relative to users and d is the
embedding size. Then, for a given user, we extract the corresponding row of the user-tag
matrix to produce its user-tag vector uT , which is apparently a multi-valued discrete vector.
Assuming that uT [x] >= 1 for x ∈ {j1, j2, · · · , jk}, we can acquire the tag-based embedding
representation according to the table lookup mechanism, which is a list of embedding
vectors: hU

t = {eU
j1

, eU
j2

, · · · , eU
jk
}. In particular, in order to capture more accurate potential

features based on tags, we also embed tag frequencies, since they can reveal the degree of
user preference and item properties [29]. Finally, the resulting embedding list is as follows:

hU
t = {eU

j1 ||eF
j1 , eU

j2 ||eF
j2 , · · · , eU

jk
||eF

jk} (2)

where || denotes the concatenation operation and eF
j1

represents the embedding of tag
frequency which is divided into discrete buckets in the pre-processing. For a target item, a
similar method can be conducted to generate its embedding representation hI

t . Although
tags describing users and items belong to the same set, the latent feature of users and items
are obviously different. For this reason, we use two different embedding dictionaries for
users and items, respectively.

4.1.2. Attention Layer

In a real-life scenario, there are obvious differences in users’ behavior habits and
cultural backgrounds. Therefore, the number and the content of tags for the same item
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marked by different users will be significantly different. Note that the input dimensions
of full connected neural networks are required to be consistent. Additional operators
should be taken to convert the variable list of embedding vectors to a fixed-length vector.
A common approach is to construct a pooling layer, where the list of embedding vectors
is compressed by a weighted sum operator. Suppose that the list of embedding vectors
for a given user is hU

t = {e1, e2, · · · , eL}, the compressed feature vector is obtained by the
following weighted sum operation:

vU
t =

L

∑
j=1

ajej (3)

where aj is the weight indicating the importance of the corresponding tag-based embedding
vector ej. Two widely adopted strategies are sum pooling and average pooling, which treat
each embedding vector equally and set all weights to the same value.

Clearly, user tagging behaviors play critical role in modeling user preferences in TRS.
For a certain user, the compressed fix-length feature vector by sum or average pooling
remains constant no matter what the predicted item is. It requires that the tag-based
feature vector is capable to express multiple interests of users. To this end, the embedding
size should be expanded to large enough, resulting in the increase in computation burden.
Moreover, we argue that not all user tagging information are equally important and effective
when predicting a target item. Those tag-based features that are less useful should naturally
be given a lower weight, which is the main limitation of sum or average pooling.

Based on the above considerations, we resort to the attention mechanism, which allows
the weight to be calculated automatically from data. The rationale is that the contributions
of different embedding vectors should be taken into consideration when compressing them
into a single representation vector. In this work, we construct a two-layer neural network
to realize the attention mechanism. Specifically, the weight of each tagging feature vector is
first calculated by:

âj = qT ReLU(Waej + b) (4)

where Wa ∈ R
m×d, b ∈ R

m, q ∈ R
m are learnable parameters, and m represents the number

of hidden layer neurons in the attention network, which is called attention factor. The final
attention weights are then normalized by a softmax function:

aj =
exp(âj)

∑L
j=1 exp(âj)

(5)

In this way, a fixed-length user representation vU
t can be adaptively derived by dis-

criminating the importance of different embedding feature vectors. An attention network
with similar structures is created so as to generate a fixed-length item representation vI

t .

4.1.3. Interaction Layer

To capture the high-order interaction features, the obtained tag-based user and item
representations from the attention layer are concatenated and further fed into a fully con-
nected neural network with multiple layers. In this way, we can enhance the flexibility and
non-linearity of our model to learn the interactions between user vU

t and item vI
t , compared

with the simple element-wise product operations. Formally, given the concatenated fea-
ture vector Z0 = [vU

t ||vI
t ], the update rule of the neural network in the k-th layer can be

defined as:

Zk = σk(WkZk−1 + bk) (6)

where Wk, bk and σk represent the weight matrix, the bias vector, and the activation function
for the k-th layer, respectively. For the activation function, we apply ReLU (Rectifier), which
is proved to be non-saturated and well-suited for sparse data [30]. It is worth mentioning
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that the network is established by using a classic tower structure, in which the number
of neurons in each layer gradually decreases from bottom to top. Consequently, after
performing the computation layer by layer, we can obtain more abstract representation
from the tag-based user-item interactions.

4.2. The Wide Component

Low-order feature interactions are beneficial to the recommendation results and can
be used as an effective supplement to high-order features. Therefore, the wide component
adopts a generalized matrix factorization method [11]. Suppose the latent vectors for user
u and item i are vu and vi, respectively. The representation vector for low order feature
interactions is calculated by:

Zw = vu � vi (7)

where � means the element-wise product of two vectors. To obtain the tag-based latent
vectors for users and items, we adopt a similar approach as used in the embedded layer of
the deep component. Specifically, two embedding dictionaries for users and items are first
established, respectively. Then, a list of embedding vectors representing a given user or
item is obtained by extracting the corresponding rows from the embedding dictionary. To
obtain a fixed-length latent vector, we finally perform a simple average pooling. It should
be noted that we do not use the attention network in the wide component. The reason for
this lies in two aspects. On the one hand, the wide component focuses on learning low
order features by making full use of the generalized linear model, so the attention network
is unnecessary. On the other hand, it will bring more parameters, making training more
difficult, and increase the possibility of over-fitting. Specifically, in order to further improve
the training efficiency, we share the tag embeddings used in the deep component.

4.3. Joint Optimization

In our work, two different components are established for capturing high-order and
low-order feature interactions, respectively. To further combine the advantages of both, we
perform the joint optimization. More specifically, the outputs of the two components are
concatenated and then input into the predict layer for joint training. Let Zw and Zd denote
the tag-based interaction feature from the wide and deep component, respectively. The
prediction of the combined model is formally defined as:

ˆyu,i = σ(WT [Zw||Zd] + b) (8)

where σ(·) is the sigmoid function, W is the weight matrix, b is the bias term, and ˆyu,i is the
predicted score that measures how much users u like item i.

The commonly used negative log-likelihood function is taken as the loss function,
which can be defined as:

L = − ∑
(u,i)∈S+∪S−

(yu,i log ˆyu,i + (1 − yu,i) log(1 − ˆyu,i)) (9)

where S+ and S− denote the positive and negative sample set, respectively. If the sample
(u, i) ∈ S+, yu,i is set to 1. Otherwise, yu,i is set to 0. For a given user u, the positive sample
(u, i+) can be easily obtained from the observed interactions, while the negative sample
(u, i−) is selected from the non-interacted items. If all unobserved interactions are treated as
negative samples, the amount of calculation will inevitably increase dramatically. To cope
with this problem, we adopt the negative sampling technique [11,24,31], which generates
negative instances by randomly sampling from the unobserved interactions based on a
uniform distribution. More concretely, for each positive sample, we randomly select a
certain number of negative samples.

Moreover, we utilize the L2 regularization to avoid over-fitting. The final objective
function can be defined as:
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L = − ∑
(u,i)∈S+∪S−

(yu,i log ˆyu,i + (1 − yu,i) log(1 − ˆyu,i)) + λ‖W‖2 (10)

where λ indicates the strength of regularization. Joint optimization is finally achieved by
back-propagating the gradients from the output to the wide and deep components of the
proposed model simultaneously with the help of mini-batch stochastic optimization. To fur-
ther reduce the computational load, we introduce the mini-batch aware regularization [32],
which only computes the L2 norm on the parameters of non-zero sparse features in the
current mini-batch.

5. Experiments

In this section, we elaborate on our experiments, including datasets, evaluation metrics,
baselines, parameter settings, comparison results, and related analysis.

5.1. Dataset Description and Evaluation Metrics

To measure the proposed tag-aware model, we conduct a series of experiments on
the following two public datasets: Delicious and LastFM, which are both published on the
website of HetRec [33].

• Delicious is a dataset obtained from the Delicious social bookmarking system, which
allows users to annotate web bookmarks with various tags. In this dataset, bookmarks
are regarded as items to be recommended.

• LastFM is a dataset collected from Last.fm online music system, where users are
encouraged to tag music artists they have listened. In this dataset, artists are treated
as items to be recommended.

Note that user–item interactions are established by the tagging behaviors. Following
the same assumption as in [5,24], we consider that an item is liked by those users which
have tagged this item. In addition, those infrequent tags used less than 5 times in Last.Fm
and 15 times in Delicious are eliminated to alleviate sparsity of tagging information [5].
Specific statistics of the two processed datasets are summarized in Table 1. The task of
the proposed model is to provide recommendations based on user–item interactions and
tagging information.

Table 1. Statistics of the two datasets.

Dataset #Users #Items #Tags #Assignments

Delicious 1843 65,877 3508 339,744
LastFM 1808 12,212 2305 175,641

To measure the results of the recommendation, we perform the common leave-one-out
evaluation [11,34]. More specifically, for each user, we take the last interacted item as
the positive test instance and leave the remaining interactions for training. Moreover, we
sample 99 items as negative instances for each user randomly from the item set that are
not interacted by this user. Adding the positive instance, a test set of 100 items is obtained.
Instead of using all the non-interactive items as negative instances, the random sampling
strategy can dramatically reduce the amount of calculation [35,36]. After predicting the
relevant scores of each item in the test set, the recommendation model will provide a top-n
ranked list for each user. The performance of the ranked list is finally estimated by Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) [37]. HR considers
whether the positive item appears in the top-n list, while NDCG measures the quality of
ranking by computing the position of the positive item in the list. The higher score of HR
and NDCG indicate better recommendation results.
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5.2. Baselines and Parameter Settings

To show the effectiveness of the proposed TRAL, we compare the recommendation
performance with the following baselines.

• CCF: CCF uses hierarchical clustering to obtain different tag clusters, each of which
can be viewed as the representation of a certain topic area [3]. Cluster-based feature
vectors for users and items are generated and the relevance relation between them can
be estimated.

• ACF: ACF introduces the deep autoencoders to derive tag-based user latent features,
on which user-based CF is performed to provide recommendations [5].

• NCF: It is a general framework to employ neural network architectures for CF [11].
By replacing the inner product with a MLP, NCF can learn non-linear interactions
between users and items.

• DSPR: DSPR adopts MLPs with shared parameters to extract latent features for users
and items based on tagging information [24]. Deep-semantic similarities between
target users and their relative items can be computed to generate the ranked recom-
mendation list.

• TRSDL: It is a tag-aware recommendation method, which introduces pre-trained word
embeddings to represent tag information and learns latent features of users and items
via deep structures [10].

• BPR-T: It is a ranking-based collaborative filtering model which incorporates the tag
mapping scheme and the Bayesian ranking optimization [20].

• STEM: STEM establishes a new social tag expansion model to tackle the problem of
tag sparsity, thereby improving the recommendation accuracy [22].

To guarantee the recommendation performance, we randomly select one interaction
for each user as the validate set to determine hyper-parameters of each model. For the
sake of fairness, each model is optimized by the mini-batch Adam [38]. The learning rate
of each model is tuned in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}, while the batch size is
searched from {128, 256, 512, 1024}. The number of negative samples is search from 1 to
10. The maximum number of iterations for optimization is fixed to 300 for all the models.
Early stopping strategy is also applied in the light of the performance on the validation
set. For the proposed TRAL, the embedding dimension of tags and the attention factor
are set as 32 and 16, respectively. The embedding dimension of tag frequency is fixed
to 8. In addition, we construct a tower network architecture with three layers. The c is
searched from {1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1}. The specific parameters
of our model are listed in Table 2. The proposed model is implemented with Pytorch and
all experiments are conducted on a PC configured with an Intel Core I9-10900X @3.40GHz
CPU with 32 GB memory, and an Nvidia GeForce RTX 3080 Ti GPU with 12 GB memory.

Table 2. Specific parameters of the proposed TRAL used in experiment.

MLP and Attention Learning

embedding size of tags 32
embedding size of tag

frequency 8

size of hidden layers [80, 40, 20]
attention factor 16

Training Process

optimizer Adam
learning rate 0.001

maximum number
of iterations 300

batch size 256
regularization L2 norm

number of negative samples 4
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5.3. Performance Comparison

Experimental results of eight recommendation models on two public datasets are
presented in Table 3, where we show the best results in boldface and best baseline results
in underline. Additionally, we calculate the improvement (imp.) of the proposed model
compared to the best baseline. It is clear that the proposed TRAL consistently surpasses
other approaches in all evaluation metrics. For example, the performance of TRAL achieves
5.9% and 2.6% improvement over the best baseline in the light of HR@10 and NDCG@10
on Delicious.

Table 3. Overall performance comparison on two datasets in terms of HR and NDCG metrics.
Boldface represents the highest score and underline denotes the best result of the baselines. The
improvement (imp.) of the proposed model compared to the best baseline is calculated.

Dataset Delicious LastFM

Metrics HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20

CCF 0.6103 0.3851 0.6346 0.4123 0.5420 0.2548 0.5618 0.2652
ACF 0.6524 0.4216 0.6812 0.4520 0.5624 0.2651 0.5816 0.2764
NCF 0.6836 0.4435 0.6970 0.4712 0.5961 0.2872 0.6108 0.3056
DSPR 0.8041 0.6182 0.8166 0.6315 0.6854 0.3125 0.7012 0.3204

TRSDL 0.7925 0.6012 0.8104 0.6214 0.7052 0.3356 0.7126 0.3468
BPR-T 0.7123 0.5556 0.7492 0.5725 0.6532 0.3173 0.6750 0.3325
STEM 0.7458 0.5423 0.7643 0.5680 0.6726 0.3027 0.6953 0.3252
TRAL 0.8518 0.6345 0.8618 0.6505 0.7336 0.3621 0.7582 0.3820

Imp. 5.9% 2.6% 5.5% 3.0% 4.0% 7.9% 6.4% 10.2%

It is worth noting that CCF performs worst in most metrics among these baselines,
which adequately reveals that the clustering method is insufficient to capture accurate
abstract representation for users or items compared to deep learning strategies. In addition,
the performance of DSPR, TRSDL, and TRAL are significantly better than ACF. The reason is
that ACF only employs the autoencoder to capture low dimensional feature representations
of users by constantly optimizing the reconstruction error. In contrast, other deep learning
models directly optimize the correlation between users and items so as to extract more
accurate feature representation. Furthermore, we can see that NCF behaves marginally
better than ACF, but it is obviously worse than other deep learning recommendation
methods with the help of tagging information. This convincingly proves the important
role of tags as auxiliary information in improving the recommendation performance. The
performance of BPR-T and STEM is obviously better than that of NCF, but worse than the
proposed TRAL, which indicates that the deep learning model should be well designed for
current problems to bring competitive results.

To summarize, the main reasons why the proposed model is superior to other baselines
are as follows: (1) constructing the deep architecture to capture effective tag-based features;
(2) exploiting the attention mechanism to distinguish the importance of different tag-based
features adaptively; and (3) combining the deep and the wide component to learn the
high-order and low-order interactions between user and item latent features.

5.4. Ablation Studies

In this section, we carry out several ablation studies on the proposed components or
strategies in our model, including the effect of the attention network and the combination
of the two components.

5.4.1. Effect of the Attention Network

To investigate the effect of the attention network, we replace it with average pooling to
generate a variant method called TRAL-no-A. Figure 3 presents the recommendation results
on two datasets in terms of HR and NDCG metrics. It can be observed that TRAL performs
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significantly better than TRAL-no-A on both metrics, indicating that the recommendation
performance will be seriously degraded without the attention network. Benefiting from
the attention mechanism, different tag-based features are automatically compressed into
a fixed-length vector with different weights. More accurate representations of users and
items are thus derived to facilitate subsequent recommendations.

Figure 3. Performance comparison in terms of HR@n and NDCG@n on the two datasets. (a) HR@n
on Delicious. (b) NDCG@n on Delicious. (c) HR@n on LastFM. (d) NDCG@n on LastFM.

As the model capability of the attention network is affected by the attention factor,
we conducted several experiments to further study the impact of the attention mechanism.
Figure 4 displays the results of different attention factors on the two datasets in terms of
NDCG@10. Note that for Delicious and LastFM, the range of NDCG values under different
attention factors falls within [0.62, 0.64] and [0.35, 0.37], respectively. The results show
that the performance of TRAL is relatively stable across different attention factors on both
datasets. It demonstrates that the design of attention network can make the model have
strong robustness while improving the algorithm performance.
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Figure 4. Recommendation results of different attention factors. (a) NDCG@10 on Delicious.
(b) NDCG@10 on LastFM.

5.4.2. Effect of Combining the Two Components

To verify the effectiveness of combining the wide and the deep component, we com-
pare the performance of the proposed model with that of its two variants, in which only
the wide or the deep component is employed, named TRS-w and TRS-d, respectively. In
addition, we also compare the results with the model using the wide component and the
attention network, termed it as TRS-w-a. Table 4 presents the comparison results. It is clear
that removing either the wide or the deep component will lead to a significant decline in al-
gorithm performance, revealing the rationality of combining the two components. Among
the three variants, TRS-d achieve the best results, which is due to the better expression
ability of deep learning. Note that TRS-w performs slightly worse than TRS-w-a, indicating
the positive effect of the attention mechanism.

Table 4. Ablation results on the two datasets.

Dataset Delicious LastFM

Metrics HR@10 NDCG@10 HR@10 NDCG@10

TRS-w 0.6125 0.3420 0.5671 0.2683
TRS-d 0.8093 0.5052 0.6924 0.3458

TRS-w-a 0.6340 0.3654 0.6021 0.2735
TRAL 0.8518 0.6345 0.7336 0.3621

5.5. Parameter Analysis
5.5.1. Number of Negative Samples

To examine the influence of the number of negative samples on recommendation
performance, we search the number ranging from 1 to 10. Figure 5 displays the experiment
results on Delicious and LastFM in terms of NDCG@10. In addition, the results of NCF
and DSPR are also plotted. We can see that the performance of the proposed TRAL is
significantly better than NCF and DSPR for different numbers of negative samples. It is
worth noting that there is no fixed optimal value for all datasets or all models. When only
one negative sample is used for each positive sample, the recommended performance is
obviously not good enough, while too many samples will lead to performance degradation.
A suitable number of negative samples is around 3 to 6. In our work, we set the number to
4, which is also used in the previous experiments [11].
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Figure 5. Recommendation results of different number of negative samples. (a) NDCG@10 on
Delicious. (b) NDCG@10 on LastFM.

5.5.2. Embedding Size

To investigate the impact of the embedding size, we establish experiments by varying
its value in the range of {8, 16, 32, 64, and 128}. Experimental results are summarized
in Figure 6. From the results, we can given several observations. When the embedded
dimension is relatively small, the expression ability is insufficient to model the interactions
between users and items. With the increase in the embedding size, the performance of
the proposed model is gradually improved. However, after the dimension increases to a
certain value, the model cannot achieve significant improvement. In particular, we even
find slight performance degradation on LastFM when using a large value of embedding
size. To balance the performance and the computational cost, we set the embedding size to
32 in our work.

Figure 6. Recommendation results of different embedding sizes. (a) NDCG@10 on Delicious.
(b) NDCG@10 on LastFM.

6. Conclusions

In social tagging systems, a great variety of tags are utilized to describe item char-
acteristics and user preferences. In order to effectively handle tagging information, we
propose a novel tag-aware recommendation model based on attention learning. The pro-
posed model constructs a deep component to extract high-level interaction features by
integrating an attention network and a multi-layer fully connected network. The aim of
the attention network is to make different features contribute differently according to their
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importance. Furthermore, we establish a wide component to capture low-level interaction
features. By combining these different features, we can obtain more accurate representation
for users and items, thus improving the recommendation performance. Experimental
results demonstrated that the proposed model performs significantly better than other
comparison algorithms.

However, there may be some limitations. Firstly, the proposed model is capable of
addressing tagging information effectively when these tags are sufficient to express the
accurate user interests and item characteristics. Unfortunately, the tagging behavior data in
the real recommendation scenario is rather sparse. Secondly, the proposed model cannot
deal with the cold-start problem, which refers to how to provide recommendations for new
users or fresh items. The obvious reason is that these new users or items have no tagging
information at all. Thirdly, the proposed model ignores the sequence information of users,
which can indicate the drift of user interests.

To further improve the proposed model, future research directions thus focus on
the following aspects. (1) We will investigate some new techniques achieve appropriate
data augmentation, such as tag expansion [22] and graph data augmentation [39]. (2) To
solve the cold-start problem, we can combine other side information, including images,
texts and social relations. Moreover, the introduction of additional information will boost
the recommendation performance if the hybrid algorithm is well designed. (3) In order
to accurately capture the changes of users’ interests over time, we need to design new
component which can extract sequence information.
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Abstract: Social recommendation systems can improve recommendation quality in cases of sparse
user–item interaction data, which has attracted the industry’s attention. In reality, social recommen-
dation systems mostly mine real user preferences from social networks. However, trust relationships
in social networks are complex and it is difficult to extract valuable user preference information,
which worsens recommendation performance. To address this problem, this paper proposes a social
recommendation algorithm based on multi-graph contrastive learning. To ensure the reliability of
user preferences, the algorithm builds multiple enhanced user relationship views of the user’s social
network and encodes multi-view high-order relationship learning node representations using graph
and hypergraph convolutional networks. Considering the effect of the long-tail phenomenon, graph-
augmentation-free self-supervised learning is used as an auxiliary task to contrastively enhance node
representations by adding uniform noise to each layer of encoder embeddings. Three open datasets
were used to evaluate the algorithm, and it was compared to well-known recommendation systems.
The experimental studies demonstrated the superiority of the algorithm.

Keywords: social recommendation; self-supervised learning; graph convolutional network

1. Introduction

With the advancement of the Internet, social platforms, such as WeChat, Weibo, and
Twitter, have become an essential part of people’s daily lives. More and more users like
to express their opinions and present their hobbies on these platforms, and the interac-
tions between users result in a wide range of consumption behaviors. Moreover, social
homogeneity [1] and social influence theory [2] demonstrate that connected users in so-
cial networks have similar interest preferences and continue to influence one another as
information spreads. Based on these findings, social relations are frequently integrated into
recommender systems as a powerful supplement to user–item interaction information to
address the problem of data sparsity [3], and numerous social recommendation methods
have been developed. Social recommendation algorithms based on graph neural networks
have demonstrated improved performance recently and helped advance recommendation
technology; however, these models still have certain drawbacks.

1. Interaction data are sparse and noisy. Most recommendation models utilize su-
pervised learning techniques [4,5], which substantially rely on user–item interaction data
and are unable to develop high-quality user–item representations when data are sparse.
As a result, cold-start problems usually occur. In addition, GNN-based recommendation
algorithms must aggregate and propagate node embeddings and their neighbors during
training, which amplifies the impact of interaction noise (i.e., user mis-click behavior),
resulting in confusion with regard to user preferences.

2. The effect of the long-tail phenomenon. Due to the skewed distribution of inter-
active data [4], the recommendation algorithm only emphasizes a portion of some users’
mainstream interests, resulting in underfitting of the sample tail distribution and trapping
of the user’s interest in the “filter bubble” [6], which is known as the long-tail phenomenon.
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3. Noise in social relationships. Existing recommendation models are generally
based on the assumption that users in social networks have similar item preferences.
However, the formation of social relationships is a complicated process that can be based
on interests or pure social relationships. Users may have completely different preferences
for certain items, but this is not always the case. The model becomes noisier as a result of
this assumption, which makes it difficult to effectively incorporate user characteristics and
recommendation targets in social networks.

Present work. In view of the above limitations and challenges, this paper proposes an
improved social recommendation model—graph-augmentation-free self-supervised learn-
ing for social recommendation (GAFSRec). Here, we applied self-supervised contrastive
learning to recommendation with the goal of increasing the mutual information for the
same user/item view, thereby reducing the reliance on labels and resolving the first and
second issues mentioned above. Most contrastive learning techniques currently in use
(such as random edge/node loss) improve the consistency of nodes across views through
structural perturbations [4,7–9]. However, the most recent research demonstrates [10] that
data augmentation can still be accomplished without structural perturbation by adding the
proper amount of random uniform noise to the original image. As a result, we employed
the method of adding sufficiently small and uniform noise to the graph convolution layer
of the recommendation task to achieve cross-layer comparative learning. This technique
can operate in the embedding space, making it more effective and simpler to use, and it can
subtly attenuate the long-tail phenomenon. The third problem was solved by using both
explicit and implicit social relationships, employing hypergraph convolutional networks to
mine users’ high-order social relationships, and adding the role of key opinion leaders to
prevent extra social noise from affecting user preferences.

To improve efficiency, we employed a multi-task training technique with recommenda-
tion as the primary task and self-supervised contrastive learning as an auxiliary task. We first
created four views using a social network graph and a user–item interaction graph: user–item
interaction graph, explicit friend social graph, implicit friend social graph, and user–item
sharing graph with explicit friends. Graph encoders (a graph convolutional network and
hypergraph convolutional network) were then built for each view to learn the users’ high-
order relational representation. To avoid the difficulties caused by data sparsity in modeling,
we incorporated cross-layer contrastive learning without graph augmentation into GAFSRec,
amplified the variance via a graph convolutional neural network, and regularized the rep-
resentation of recommendations with contrast-augmented views. Finally, we combined the
recommendation task and the self-supervised task within the framework of master-assisted
learning. The performance of the recommendation task was significantly improved after
jointly optimizing these two tasks and utilizing the interactions between all components.

The main contributions of this paper can be summarized as follows:

1. We designed a high-order heterogeneous graph based on motifs, integrated social
relations and item ratings, comprehensively modeled relational information in the
network, and undertook modeling through graph convolution to capture high-order
relations between users;

2. We incorporated the cross-layer self-supervised contrastive learning task without
graph augmentation into network training, enabling it to run more efficiently while
ensuring the reliability of recommendations;

3. We conducted extensive experiments with multiple real datasets, and the comparative
results showed that the proposed model was superior and that the model was effective
in ablation experiments.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3
describes the framework for the multi-graph contrastive social recommendation model.
Section 4 presents the experimental results and analysis. Finally, Section 5 brings the paper
to a close.
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2. Related Work

2.1. Graph-Based Recommendation

To obtain high-order collaborative signals, graph-based recommendation algorithms
employ multi-hop interaction topologies [11,12]. The success of graph convolutional neural
network technology served as inspiration for Feng et al. [10] to develop a hypergraph
representation learning framework that captures the relationship between high-order data
by developing hyperedge convolution operations. Hypergraphs have a flexible topology
and can be used to model complex and high-order dependencies. Additionally, some
recently created recommender systems, such as HyperRec [13], MHCN [9], and HCCF [14],
have begun to use hypergraph topologies to capture high-order interactions among nodes.
HyperRec [13] applies numerous convolutional layers to hypergraphs to capture multi-
level connections in order to describe short-term item correlation features. In order to mine
high-order user relationship patterns, Yu et al. [9] presented a multi-channel hypergraph
convolutional network (MHCN) and created numerous topic-induced hypergraphs. They
also employed self-supervised learning to boost the learning of mutual information shared
between channels. The application of hypergraphs to social recommendations is made
possible by the retention of more high-level information. By simultaneously collecting local
and global cooperation information through a hypergraph-enhanced cross-view contrastive
learning architecture, HCCF [14] overcomes the over-smoothing problem. In comparison,
our system makes use of hypergraph encoders to help create heterogeneous networks,
maintain the collaborative relationship between users and items, and enhance the ability to
identify user preferences.

2.2. Self-Supervised Contrastive Learning

Self-supervised learning is divided into two categories: generative models and con-
trastive models. The goal of creating a model is to reconstruct the input so that the input
and output are as similar as possible using techniques such as GAN [15] and VAE [16]
autoencoders. Contrastive models have recently emerged as an effective self-supervised
framework for capturing feature representation consistency across different viewpoints.

Model contrasts are classified into three types [17]: structure-level contrasts, feature-
level contrasts, and model-level contrasts. Local–local and global–global structural-level
comparison targets exist. SGL [8] is a typical representative, changing the structure of
graphs through local perturbations (node loss, edge loss, and random walk). These data
enhancement and pre-training methods can extract more supervisory signals from the
original graph data, allowing the graph neural network to learn node representation
more effectively. Due to dataset constraints, feature-level comparisons have received less
attention. Model-level comparison can be implemented end-to-end relatively easily, and
SimGCL [10] directly adds noise to the embedding space for enhancement. Experiments
show that, regardless of whether graph enhancement is used or not, optimization of
the contrast loss can help learn representations. To model node embeddings, we used a
cross-layer contrastive learning method without graph augmentation in this study.

3. Proposed Model

3.1. Preliminaries

Let U = {u1, u2, · · · , um} (|U| = m) represent the collection of users and
I = {i1, i2, · · · , in} (|I| = n) represent the collection of items. Since we are focused on item
recommendation, we define R ∈ R

m×n to represent the user–item interaction binary matrix.
For each pair (u, i), rui = 1 indicates that user u has interacted with item i and, conversely,
rui = 0 indicates that user u has not interacted with item i or that user u is not interested
in item i. We represent social relations using directed social networks, where S ∈ R

m×m

represents an asymmetric relation matrix. Additionally,
{

Z(1)
u , Z(2)

u , · · · , Z(l)
u

}
∈ R

m×d and{
Z(1)

i , Z(2)
i , · · · , Z(l)

i

}
∈ R

n×d denote the embeddings of the size d-dimensional users and
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items learned in each layer, respectively. This article uses bold uppercase letters for matrices
and bold lowercase letters for vectors.

Definition 1. Hypergraph.
Let G = (V, E) represent a hypergraph, V a vertex set containing N vertices in the hypergraph,

and E an edge set containing M hyperedges. Each hyperedge ε ∈ E contains two or more vertices and
is assigned a positive weight Wεε. All weights form a diagonal matrix W ∈ R

M×M. A hypergraph
is represented by an incidence matrix H ∈ R

N×M, which is defined as follows:

Hi,j =

{
1, if vi ∈ V
0, if vi /∈ V

(1)

If the hyperedge ε j ∈ E contains a vertex, then Hi,j = 1; otherwise, Hi,j = 0. The degrees of the
vertices and edges of a hypergraph are represented as follows: Dv = ∑M

ε=1 Wεε Hiε; De = ∑N
i=1 Hiε.

3.2. High-Order Social Information Exploitation

In this study, we used two graphs as data sources: a user–item interaction graph Gr
and a user social network graph.

We aligned the two networks into a heterogeneous network and divided it into three
sets of views—an explicit friend social graph, an implicit friend social graph, and items
shared by users with explicit friends’ graphs—in order to establish high-order associations
between users in the network. The project-sharing graph of users and explicit friends
describes a user’s interest in sharing items with friends, which can also serve as relationship-
strengthening. The social graph of explicit friends describes a user’s interest in expanding
their social circle. The social graph of implicit friends describes the similar interests a user
shares with similar but unfamiliar users and can alleviate the negative impact of unreliable
social relations.

Taking into account the fact that there are some significant social network structures
that have impacts on the authority and reputation of nodes in the representation of higher-
order relationships as network motifs, we used the motif-based PageRank [18] framework.
PageRank is a general algorithm for ranking users in social networks [19]. It can be utilized
as a measurement standard for opinion-leader mining, impact, and credibility analyses
by assessing the authority of network nodes. However, only edge-based relations are
exploited, with higher-order structures in complex networks being neglected. This aspect
is improved by the motif-based PageRank algorithm. As shown by Figure 1, which covers
the fundamental and significant user social types, the user–item interaction graph splits
the explicit friend social graph into seven motifs. M8, also defined as the user’s implicit
friend social network, represents strangers who share the user’s interests. The relationship
M9–M10, generally described as users’ and explicit friends’ item-sharing graph, is, at the
same time, extended in accordance with friends’ shared buying behaviors.

 

1M 2M 3M 4M 5M 6M 7M

8M 9M 10M

Figure 1. Directed triangle pattern theme for a social network.
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When given any motif set Mk, we can calculate the adjacency matrix of the motif using
Table 1.

(AM)i,j = ∑
i∈U,j∈U

1 (i, j occur in Mk) (2)

In Table 1, B = S � ST and U = S − B are the adjacency matrices of two-way and one-
way social networks respectively. Without considering self-connections, Ae = ∑7

k=1 AMK ,
Ai = AM8 , and Aj = AM9 + AM10 , where, in Aj = AM9 + AM10 , we only keep values
greater than 5 for the reliability of the implicit friend pair experiment. Furthermore, the
adjacency matrix for the user–items graph is Ar = R.

Table 1. Computation of motif-based adjacency matrices.

Motif Matrix Computation AMi

M1 C = (U · U)� UT C + CT

M2
C = (B · U)� UT + (U · B)�

UT + (U · U)� B C + CT

M3
C = (B · B)� U + (B · U)�

B + (U · B)� B C + CT

M4 C = (B · B)� B C

M5
C = (U · U)� UT + (U ·
UT)� U + (UT · U)� U C + CT

M6
C = (U · B)� U + (B · U)�

UT + (UT · U)� B C

M7
C = (UT · B)� UT + (B ·
U)� U + (U · UT)� B

C

M8 C = R · RT C
M9 C = (R · RT)� B C
M10 C = (R · RT)� U C + CT

3.3. Graph Collaborative Filtering BackBone

In this section, we present our model GAFSRec. In Figure 2, the schematic overview
of our model is illustrated.

Due to its strong ability to capture node dependencies, we adopted LightGCN [20] to
aggregate neighborhood information. Formally, a general GCN is constructed using the
following hierarchical propagation:

Z(l) = D−1AZ(l−1) (3)

where Z(l) is the l-th layer embedding of the node, and Gq ∈ {Gr, Ge, Gi, Gj
}

are the four
views, with A being the adjacency matrix and D the degree diagonal matrix of A. We
encoded the original node vectors into the embedding vectors required by each view
through gating functions.

Z(0)
q∈{r,e,i,j} = Z(0) � σ(Z(0)Wq

g + bq
g) (4)

where σ, Wq
g ∈ R

d×d, and bq
g ∈ R

d are the activation function, weight matrix, and bias
vector. q ∈ {r, e, i, j} represents four views. Z(0) denotes the initial embedding vector and
� represents the dot product.

We used the generalization ability of hypergraph modeling to capture more effective
high-level user information. Therefore, in the encoder, a hypergraph convolutional neural
network [21] was used.

Z(l) = D−1AZ(l−1) = D−1
v HWD−1

e HTZ(l−1) (5)

where A = HWD−1
e HT is the Laplacian matrix of the hypergraph convolutional network;

H is the incidence matrix of each hypergraph; Dv and De are the degree matrix of the
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nodes and the degree matrix of the hyperedges; and σ, Θ, and W are activation functions,
learnable filter matrices, and the parameters of the diagonal matrix.

 

Figure 2. The overall system framework for GAFSRec.

Considering node influence and credibility, we adopted motifs [18] to construct a
hypergraph. Given the complexity of the actual construction of the Laplacian matrix for
hypergraph convolution (which includes a large number of graph-induced hyperedges),
matrix multiplication can be considered for simplification.

Finally, the hypergraph convolutional neural network can be expressed as:

Z(l)
q∈{r,e,i,j} = D̃

−1
q AqZ(l−1)

q , where D̃q ∈ R
m×m is the degree matrix of Aq. It can be seen

from this that the graph convolutional neural network is a special case of the hypergraph
neural network.

After l-layer propagation, we used the weighting functions and the readout function
to output the representations of all layers, obtaining the following representations:

Zu|q =
1

L + 1

L

∑
l=0

Z(l)
u|q, Zi|q =

1
L + 1

L

∑
l=0

Z(l)
i|q

We applied an attention approach [22] to learn the weights α and aggregate the user
embedding vectors for augmented views.

αq =
exp(aTWaZu|q)

∑
q′∈{e,i,j}

exp(aTWaZu|q′)

where a and W are trainable parameters. The final user embedding Zu and item embedding
Zi look like this:

Zu = ∑q∈{e,i,j} αqZu|q +
L
∑

l=0
Z(l)

u|r

Zi =
1

L+1

L
∑

l=0
Z(l)

i|r
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The ranking score generated by this model recommendation is defined as the inner
product with user and item embeddings:

�
y u,i = ZT

u Zi

To optimize the parameters in the model, we adopted the Bayesian loss function [23].
The main reason was that the Bayesian loss function considers the comparison of pairwise
preferences between observed interactions and unobserved interactions. The loss function
of this model is:

LBPR = − ∑
i∈I(u),j/∈I(u)

ln σ(
�
y u,i −

�
y u,j) + β‖Φ‖2

2

where Φ is a trainable parameter and β is a regularization coefficient that controls the
strength of L2 regularization, prevents overfitting, and is a sigmoid function. Each input
datum is a triplet sample < u, i, j >; this triplet includes the current user u, the positive item
i purchased by u, and the randomly drawn negative item j. The negative item j is the user
u’s unliked or unknown items.

3.4. Graph-Augmentation-Free Self-Supervised Learning

Data augmentation is the premise of self-supervised contrastive learning models, and
they can obtain a more uniform representation by perturbing the structure and optimizing
the contrastive loss. With regard to the learning of graph representations, a study on
SimGCL [10] showed that it is the uniformity of distribution rather than dropout-based
graph augmentation that has the greatest impact on the performance of self-supervised
graph learning. Therefore, we considered adding random noise to the embedding to create
a self-supervised signal that could enhance the performance of the contrastive learning.

Z̃
(l)

= D−1AZ̃
(l−1)

+ ε(l)

where ε is the added random uniform noise vector, and the noise direction is in the same
direction as the embedding vector, ε = x � sign(z), x ∈ R

d ∼ U(0, 1). The embedding
representation added with perturbation retains most of the information of the original
representation, as well as some invariance.

By applying different scales of embedding vectors to the current node embedding, the
perturbed embedding vectors can then be fed into the encoder. The embedding vector of
the final perturbed node is expressed as:

Z̃ =
1

L + 1

L

∑
l=0

Z̃
(l)

We regarded augmented views from the same node as positive examples and aug-
mented views from different nodes as negative examples. Positive auxiliary supervision
promotes the consistency of predictions among different views of the same node, while
negative supervision strengthens the divergence between different nodes. Formally, we
adopted the contrastive loss InfoNCE [24] to maximize the consistency of positive examples
and minimize the consistency of negative examples:

LU
cl = − ∑

u∈U
log exp(sim(z̃(k)u ·z̃u)/τ)

∑v∈U exp(sim(z̃(k)u ·z̃v)/τ)

LI
cl = − ∑

i∈I
log exp(sim(z̃(k)i ·z̃i)/τ)

∑j∈I exp(sim(z̃(k)i ·z̃j)/τ)

where z̃(k)u = z̃(k)u /‖z̃(k)u ‖2 represents the k-th layer L2-regularized embedding vector com-
pared with the final layer embedding, sim(a, b) represents the dot-product cosine similarity
between normalized embeddings, and b. τ is the temperature parameter. The total loss
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function for self-supervised learning includes the contrastive loss for each view user and
the item contrastive loss, as shown in the following equation:

Lssl = ∑
q∈{r,e.i,j}

Lq,U
cl + Lr,I

cl

To improve recommendation through contrastive learning, we utilized a multi-task
training strategy to jointly optimize the recommendation task and the self-supervised
learning task, as shown in the following equation:

L = LBPR + λLssl

where λ is the hyperparameter used to control the auxiliary task.

3.5. Complexity Analysis

In this section, we analyze the theoretical complexity of GAFSRec. Since the time
complexity of LightGCN-based convolutional graph encoding is O(L × |R| × d), the total
encoder complexity of this architecture is less than 4×O(L× |R| × d) because the adjacency
matrix of the auxiliary encoder is sparser than that of the user–item interaction graph.
The time costs of the gate function and the aggregation layer are both O(m × d2). This
architecture adopts BPR loss; each batch contains B interactions, and the time cost is
O(2 × B × d). Since the contrasting between positive/negative samples in contrastive
learning increases the time cost, cross-layer self-supervised contrastive learning contributes
a time complexity of 5×O(B × M × d), where M represents the number of nodes in a batch.
Since this model does not involve graph augmentation, the complexity of GAFSRec is much
lower than that of graph-augmented social recommendation models. In our experiments,
with the same embedding size and using the Douban-Book dataset, MHCN took 34 s per
epoch and GAFSRec only took 11 s. Detailed information on the experiments can be found
in Section 4.2.1.

4. Experiments and Results

In this section, we describe the extensive experiments we conducted to validate GAFS-
Rec. The experiments were conducted in order to answer the following three questions:
(1) Does GAFSRec outperform state-of-the-art baselines? (2) Does each component in
GAFSRec play a role? (3) What are the effects of hyperparameters on the GAFSRec model?

4.1. Experimental Settings
4.1.1. Datasets

We conducted experiments using three real-world datasets: Douban-Book [25], Yelp [26],
and Ciao [5]. The statistical data for the datasets are shown in Table 2. In accordance with the
summary provided by Tao et al. [27], we conducted statistical analyses of the three datasets,
which were helpful for the analysis of the results of the subsequent experiments. It was found
that the higher the level of social diffusion was (greater than 1), the greater the possibility
of similar preferences among users was, and the higher the effective social density was, the
lower the scoring density was, indicating that explicit social relationships are very important
for recommendation. We performed fivefold cross-validation with the three datasets and
report the averaged results.
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Table 2. Data statistics for social recommendation datasets.

Douban-Book Yelp Ciao

Users (U-I graph) 12,859 19,539 7375
Users (U-U graph) 12,748 30,934 7317

Items 22,294 22,228 105,114
Feedback 598,420 450,884 284,086

Valid user pairs 48,542,437 51,061,951 5,052,316
Social pairs 169,150 864,157 111,781

Valid social pairs 77,508 368,405 56,267
Candidate user pairs 165,353,881 381,772,521 54,390,625

Valid ratio 29.357% 13.375% 9.289%
Valid social ratio 45.822% 42.632% 50.337%

Social density 0.104% 0.090% 0.209%
Rating density 0.209% 0.104% 0.037%

Social diffusity level 1.561 3.187 5.419
Valid social density 0.160% 0.721% 1.114%

4.1.2. Baselines

We evaluated GAFSRec against 13 baselines spanning different recommendations:

• MF-based collaborative filtering models;
• BPR [23]: a popular recommendation model based on Bayesian personalized ranking;
• SBPR [28]: an MF-based social recommendation model that extends BPR and utilizes

social relations to model the relative order of candidate items;
• GNN-based collaborative filtering frameworks;
• NGCF [7]: a complex GCN-based recommendation model that generates user/item rep-

resentations by aggregating feature embeddings with high-order connection information;
• LightGCN [20]: a general recommendation model based on GCN, improved on the

basis of NGCF by removing linear changes and activation functions;
• DiffNET++ [29]: a GNN-based social recommendation method that simultaneously

simulates the recursive dynamic social diffusion of user space and item space;
• Recommendation with hypergraph neural networks;
• MHCN [9]: a social recommendation method based on a motif-based hypergraph.

It aggregates high-level user information through hypergraph convolutional multi-
channel embedding and utilizes auxiliary tasks to maximize the mutual information
between nodes and graphs and generate self-supervised signals;

• HyperRec [13]: this method leverages the hypergraph structure to model the relation-
ship between users and their interactive items by considering multi-order information
in dynamic environments;

• HCCF [14]: a hypergraph-guided self-supervised learning recommendation model
that jointly captures local and global collaborations through a hypergraph-enhanced
cross-view contrastive learning architecture;

• Self-supervised learning for recommendation;
• SEPT [25]: a social recommendation model that utilizes multiple views to generate

supervisory signals;
• SGL [8]: the most typical self-supervised comparative learning recommendation

model, which uses structural perturbation to generate comparative views and maxi-
mizes the consistency between nodes. The experiment in this study used the structural
perturbation method involving missing edges;

• BUIR [30]: this method adopts two encoders that learn from each other and randomly
generates augmented views for supervised training;

• SimGCL [10]: the latest self-supervised contrastive learning recommendation model. It
uses the no-image-enhancement method and only adds the final embedding obtained
by adding uniform noise in the embedding space for comparison;

• NCL [31]: a prototypal structural contrastive learning recommendation model.
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4.1.3. Metrics

To evaluate all the models, we chose two evaluation metrics: Recall@K and NDCG@K.
Recall@K employs the proportions of each user’s favorite items appearing in the recom-
mended items. Normalized discounted cumulative gain (NDCG) means that the scores for
the relevance of each recommendation result are accumulated and used as the score for the
entire recommendation list. The greater the relevance of the recommendation result is, the

greater the DCG is. The recall rate is defined as: Recall@K = ∑K
i=1 reli

min(K,|ytest
u |) . The normalized

discounted cumulative gain is defined as DCG@K = ∑K
i=1

2reli−1
log2(i+1) NDCG@K = DCG@K

iDCG@K .

4.1.4. Settings

To ensure a fair comparison, we checked the best hyperparameter settings reported
in the original papers for the baselines and then used grid search to fine-tune all the
hyperparameters for the baselines. For the general setup of all baselines, all embeddings
were initialized with Xavier. The embedding size was 64, the L2 regularization parameter
was β = 0.01, and the batch size was 2048. We optimized all models using Adam with a
learning rate of 0.001 and let the temperature τ = 0.2.

4.2. Recommendation Performance

Next, we verified whether GAFSRec could outperform the baselines and achieve the
expected performance. The purpose of social recommendation is to alleviate data sparsity.
We also conducted a cold-start experiment with the entire training set. The cold-start
experiment dataset only included the data for cold-start users with fewer than ten historical
purchase records. The results are shown in Tables 3 and 4. It can be observed that GAFSRec
outperformed the baselines in general and cold-start cases with all datasets.

4.2.1. Comparison of Training Efficiency

In this section, we report the actual training time to verify the theoretical plausibility
of the method. The reported data were collected using a workstation equipped with an
Intel(R)Core™ i9-9900K CPU and a GeForce RTX 2080Ti GPU. The model depths of all
methods were set to two layers.

As shown in Figure 3, compared with the MHCN and SGL models, GAFSRec demon-
strated longer computation time due to the parallel processing of hierarchical self-supervised
learning tasks in the MHCN model, and the running time also increased with the number
of datasets. For SGL-ED, only the user–item interaction dataset was computed, and most
of the runtime was spent on building the perturbation graph. In the large Douban-Book
dataset especially, the speed of GAFSRec was three times faster than that of MHCN, thus
demonstrating the strong advantage of graph-augmentation-free cross-layer contrastive
learning in terms of operational efficiency.

4.2.2. Comparison of Ability to Promote Long-Tail Items

As mentioned in the introduction, GNN-based recommendation models are easily
affected by the long-tail problem. To verify that GAFSRec could entirely alleviate the
long-tail problem, we divided the test set into ten groups according to popularity. Each
group contained the same numbers of interactions, and the larger the ID of a group was, the
more popular the items were. Then, we set the number of layers to two for the experiments
and verified the long-tail recommendation ability of the model by observing Recall@20.
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Figure 3. The training speeds of the compared methods.

As shown in Figure 4, LightGCN tended to recommend popular items and had
the lowest recommendation ability for long-tail items (as illustrated in the small figure).
Due to sparse interaction signals, it was difficult for LightGCN to obtain high-quality
representations of long-tail items. However, with SimGCL, by optimizing the consistency
of InfoNCE-loss learning representations, long-tail problems could be avoided as much
as was possible, and excellent recommendation performance could be achieved. MHCN
also optimized the InfoNCE loss through global and local comparisons but did not learn
a more consistent representation, resulting in inferior performance to SimGCL when
recommending long-tail items. In contrast, GAFSRec showed outstanding advantages
when recommending long-tail products (such as GroupIDs 1, 2, and 3) and the highest
recall value, but it was not as good as other models for GroupID 10. It can be seen that
learning a more uniform representation by optimizing the InfoNCE loss can enable models
to debias and alleviate the long-tail phenomenon, as well as increasing freshness and
helping to meet user needs.

Figure 4. The ability to promote long-tail items.

4.3. Ablation Study
4.3.1. Investigation of Multi-Graph Setting

To investigate the influence of high-order relationships in user social networks on
recommendation, we first investigated the impact of individual views on recommendations
by removing any one of the three social relationships’ views and leaving two remaining.
As can be seen from Figure 5, removing any view resulted in performance degradation.
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The bars in the figure (except the complete bar) represent the cases with the corresponding
views removed, while the complete bar represents the complete model.

 
Figure 5. Contributions of each graph with different datasets.

Obviously, for the Douban-Book dataset, due to the low effective social density of the
dataset, the explicit user view had little influence on the recommendation, while the recom-
mendation performance of the view lacking the implicit user dropped sharply, indicating
that the implicit user was the user. Items that met user needs were recommended, proving
the key role of implicit users for recommendation. For the Yelp and Ciao datasets, due to
the higher effective social density of the datasets, explicit user views had a greater impact
on the recommendation. Figure 6 visualizes each graph’s attention score (median attention
score for training set users), revealing that the implicit user had the highest attention score,
while the explicit user and the joint graph had low attention scores. According to the
findings shown in Figures 5 and 6, implicit users contributed significantly to the analysis
of user preferences while explicit users played a greater role when the social density was
high, and the joint graph did not necessarily bring greater benefits due to social noise.

Figure 6. Attention weights for each graph with different datasets.
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4.3.2. Investigation of Contrastive Learning Setting

In this study, we investigated the impact of contrastive learning on recommendation
through two GCLSRec variants:

1. Removing social recommendation for contrastive learning tasks (without CL);
2. Disabling cross-layer comparison and using the final embedding of each layer em-

bedding to add uniform noise and construct two sets of views for comparison of the
learning task recommendations (CL-c).

The evaluation results are reported in Table 5. It can be observed that not adding
self-supervised contrastive learning (without CL) reduced the accuracy of recommendation,
and when recommending top 40 items, the recommendation performance only improved
slightly, as the aggregation mechanism of GCN can obscure high-order connection infor-
mation. While model recommendation by constructing contrasting views individually
(CL-ours) worked well, constructing contrasting views individually (CL-c) led to high
model complexity and was time-consuming. However, GAFSRec with cross-layer compar-
ative learning could not only guarantee recommendation accuracy but also had remarkably
high recommendation efficiency.

Table 5. Performance comparison of different GCLSRec variants.

Dataset Douban-Book Yelp Ciao

Metric Recall NDCG Recall NDCG Recall NDCG

Top 20

Without
CL 15.318% 13.371% 9.926% 6.175% 5.704% 4.265%

CL-c 17.716% 16.716% 12.870% 8.152% 6.644% 4.942%

CL-ours 17.806% 16.370% 12.922% 8.256% 6.922% 5.219%

Top 40

Without
CL 15.958% 11.379% 14.123% 7.147% 8.633% 5.402%

CL-c 23.038% 18.055% 18.178% 9.815% 8.987% 5.737%

CL-ours 22.943% 17.724% 18.516% 10.045% 8.821% 5.628%

4.4. Parameter Sensitivity Analysis
4.4.1. Influence of λ and ε

We observed the effect on the recommendation performance when the combination of
λ and ε was changed. When λ was [0, 0.01, 0.05, 0.1, 0.2, 0.5, 1], ε was [0, 0.01, 0.05, 0.1, 0.2,
0.5, 1], and the number of model layers was set to two.

As shown in Figure 7, when fixing ε at 0.1, all parameters showed similar trend
changes, and the best performance was achieved at specific λ values (Douban-Book dataset
λ = 0.1, Yelp dataset λ = 0.05, Ciao dataset λ = 0.01). However, when λ was too large
(λ = 0.5, 1), a significant performance drop could be seen.

We fixed λ at the best values for the three datasets, as reported in Figure 8, and then
adjusted ε to observe the performance change. When ε = 0.01, the best recommendation
performance (Douban-Book dataset and Yelp dataset) was achieved. However, when ε was
too large or too small, the recommendation was especially vulnerable to changes in ε, so
the performance declined faster. What can be seen from this is that GAFSRec was more
sensitive to changes in λ, and with ε = 0.01, the model could maintain stable performance.
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Figure 7. The influence of λ.

 
Figure 8. The influence of ε.

4.4.2. Layer Selection for Contrasting

For the recommendations using cross-layer contrastive learning, it is necessary to
choose one of the embeddings of one layer and the final embedding for the comparative
learning. To explore the optimal model depth and compare the choice of layers, we stacked
graph convolution depths from one to five layers. As shown in Table 6, the performance
was the best when the model had a depth of two layers. The performance of GAFSRec
dropped for all datasets as the number of layers increased. The reason may have been that,
as the depth increased, it became more likely to encounter the problem of over-smoothing.
In particular, the performance was best only when the first layer of embeddings was learned
in contrast to the final embedding. Therefore, the model under consideration could directly
select the first layer to compare with the final embedding, making it possible to achieve
better results.
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Table 6. Influence of the depth of GCLSRec.

Datasets Douban-Book Yelp Ciao

Metric Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

One layer 1 17.570% 15.866% 12.739% 8.127% 6.647% 4.982%

Two layers 1 17.806% 16.370% 13.002% 8.272% 6.922% 5.219%
2 17.001% 15.660% 12.280% 8.153% 6.675% 5.080%

Three layers
1 17.557% 15.915% 12.729% 8.137% 6.550% 4.986%
2 17.392% 15.832% 12.671% 8.090% 6.494% 5.006%
3 16.170% 14.745% 12.202% 7.846% 6.456% 4.941%

Four layers

1 17.035% 15.432% 12.427% 7.966% 6.303% 4.877%
2 16.900% 15.417% 12.385% 7.888% 6.217% 4.856%
3 15.835% 14.482% 11.860% 7.624% 5.998% 4.634%
4 15.276% 13.807% 11.211% 7.084% 6.159% 4.783%

Five layers

1 16.761% 15.037% 12.057% 7.676% 6.129% 4.714%
2 16.724% 15.137% 11.985% 7.636% 6.035% 4.685%
3 15.687% 14.210% 11.490% 7.324% 5.911% 4.703%
4 15.132% 13.685% 10.962% 6.952% 5.924% 4.664%
5 14.121% 12.245% 10.634% 6.640% 5.957% 4.623%

5. Conclusions

In this paper, we proposed a graph-contrastive social recommendation model (GAFS-
Rec) for ranking predictions. To fully mine high-order user relationships, the social graph
was divided into multiple views, which were modeled using a hypergraph encoder to
improve social recommendations. In particular, we presented a method of cross-layer com-
parative learning to help maintain the consistency of user preferences. Our experiments
showed that implicit users outperformed datasets with sparse explicit social relations, and
GAFSRec outperformed state-of-the-art baselines using three real datasets. Here, we only
considered incorporating the trust relationships between friends in a social network into
the recommendations. In the real world, however, a social graph with attributes could
better reflect the relationships between users and products. Therefore, exploring social
recommendations with attributes will be our next research direction.
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Abstract: Infrared image target detection technology has been one of the essential research topics
in computer vision, which has promoted the development of automatic driving, infrared guidance,
infrared surveillance, and other fields. However, traditional target detection algorithms for infrared
images have difficulty adapting to the target’s multiscale characteristics. In addition, the accuracy
of the detection algorithm is significantly reduced when the target is occluded. The corresponding
solutions are proposed in this paper to solve these two problems. The final experiments show that
this paper’s infrared image target detection model improves significantly.

Keywords: infrared image; deep learning; neural network; target detection; transfer learning; multiscale
characteristics; context analysis

1. Introduction

Infrared image target detection identifies and labels each target class from an infrared
image containing multiple targets. Infrared images consist of information about the ther-
mal radiation emitted by the target and are not susceptible to environmental influences.
Therefore, infrared images have advantages over visible images in low-visibility environ-
ments, such as night scenes, haze, rain, snow, and dust. In recent years, IoT technologies
such as nighttime intrusion warning systems have cited infrared images based on this
advantage [1].

Target detection algorithms, in general, can be divided into two categories: traditional
target detection algorithms based on image processing and machine learning and new target
detection algorithms based on deep learning. Traditional infrared image target detection
algorithms include edge detection, module matching, Hough transform, etc. Some target
detection algorithms use edges, contours, and textures for target detection. Dalal et al.
proposed using gradient direction histograms to detect HOG features of pedestrians [2].
They divided the image and obtained the directional histogram of the gradient edges of
each pixel point in each region. The combined directional histogram was used as a feature
representation for each area. Papageorgiou et al. proposed using Haar wavelet features
for target detection, calculating the pixel values in adjacent rectangles obtained from the
detection window and their differences and then using the differences to classify each
region in the image [3]. Wu et al. proposed to detect pedestrians using Edgelet features
and obtained high target detection performance [4]. Traditional target detection algorithms
extract features manually for images. These features rely on a priori knowledge and have
limited expressiveness, limiting the accuracy of target detection algorithms.

In recent years, with the rapid development of deep learning, many deep-learning
algorithms have been applied to the field of computer vision. Deep-learning-based target
detection algorithms have been proposed one after another. Compared with traditional
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target detection algorithms that use manual feature extraction, deep-learning-based target
detection algorithms can self-extract features, which do not require a priori knowledge
and have the more expressive power of the extracted features. This is more beneficial to
improve the performance of target detection models. In 2014, Girshick applied the regional
convolutional neural network to target detection and proposed the R-CNN model [5].
This model is an essential milestone in deep-learning-based target detection algorithms.
R-CNN first uses the Selective Search method to extract about 2000 candidate regions,
then uses CNN to remove features from the stretched candidate regions, and finally uses
support vector machine SVM to classify these features and box regression. In 2015, Girshick
proposed a faster Fast R-CNN based on R-CNN [6]. Unlike the computational process
of R-CNN, Fast R-CNN first convolves the whole image to get the feature map and then
combines the two steps of candidate region classification and frame regression for training
so that the computation speed is faster.

Neither R-CNN nor Fast R-CNN solves the problem of relying on the selective search
algorithm in the candidate region generation phase, which causes a very time-consuming
pain, so Ren et al. proposed the Faster R-CNN model. Faster R-CNN introduces a Region
Proposal Network (RPN), which extracts candidate regions directly on the feature map
output from the convolutional neural network, significantly improving the detection speed
of the target detection model. Then, Bell proposed the ION model based on the Faster
R-CNN model [7]. This model uses spatial recurrent neural networks to combine contextual
features and the output of the features from different convolutional layers and uses them
as multiscale features for target detection.

The above studies mainly focus on target detection in visible images. However, deep
learning in target detection research of infrared images is not yet common. Inspired by
the idea of transfer learning, this paper migrates the target detection algorithm on visible
images to the infrared image target detection field. Firstly, we propose a target detection
model CMF Net to solve the problem of the existence of target multiscale features. The
CMF Net model is based on the VGG16 network (a convolutional neural network) and uses
two multiscale feature extraction mechanisms for image feature extraction and fusion. This
makes the final feature map input from the backbone network to the classification network
contain low-level visual features that facilitate target localization and high-level semantic
features that enable target recognition. Secondly, to solve the problem of low detection
accuracy of the algorithm when the target is occluded, we propose the CMF-3DLSTM model.
The model improves the classification network into a 3D long- and short-term memory
network based on the CMF Net model. We use an attention mechanism to assign weights to
the contextual features extracted in different dimensions. Finally, target detection features
include multiscale features and contextual features to achieve the fusion of spatio-temporal
features.

The rest of this paper is organized as follows: Section 2 summarizes the infrared image
target detection algorithm-related work. Section 3 introduces the details of the CMF Net
model. Section 4 introduces the structure and details of the CMF-3DLSTM model in detail.
Section 5 describes the design and results of relevant experiments. Section 6 summarizes
the work of this paper.

2. Related Work

2.1. Target Detection Framework Based on Deep Learning

Target detection aims to locate and identify each target instance using a bounding box.
Traditional target detection algorithms include edge detection [8], module matching [9],
Hough transform [10], etc. These target detection algorithms use edges, contours, and
textures for target detection. These features rely on a priori knowledge and have limited
expressiveness, limiting the accuracy of target detection algorithms. With the rapid devel-
opment of deep learning, the field of computer vision has achieved remarkable success
in target detection tasks using deep-learning algorithms [11]. Deep-learning-based target
detection frameworks have also been proposed one after another [12,13].
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Target detection frameworks based on deep learning mainly fall into two categories:
two-level detection framework and single-level detection framework [14]. The two-level
detection framework includes a pre-processing step for region recommendations. That
is, candidate regions are selected and then classified. Such representatives include Faster
R-CNN and Mask R-CNN [15], etc. They adopt the R-CNN proposed by Girshick et al. [16]
as the target suggestion method [17], which significantly reduces the amount of calculation
compared with the traditional method. The conventional method usually uses superpixel,
edge [18], and shape to score Windows, containing objects to generate region suggestion
boxes. Deepbox [19] used a lightweight ConvNet model for training, which rearranged
the regional suggestion boxes generated by the Edge box. Compared with R-CNN, these
traditional methods often require a more extensive calculation. The single-stage detection
framework adopts the regression method to directly regress the position and type of the
target from the feature graph. The grid method or convolution of different scales is used to
operate the feature graph to obtain the position and classification information of the target
directly. Such representatives include YOLO and SSD. Generally speaking, the two-stage
detection frame has higher accuracy, and the single-pole detection frame is faster. In order
to improve the performance of CMF-3DLSTM, we use an infrared image target detection
model based on multiscale feature fusion and context analysis proposed in this paper, and
we adopt the target detection framework of Faster R-CNN as its basic framework.

2.2. Transfer Learning

The main idea of transfer learning is to transfer labeled data or knowledge structures
from related domains to accomplish or improve the learning of the target domain or task.
One of the main assumptions in traditional machine learning algorithms is that training
and test data must be in the same feature space and have the same distribution. Transfer
learning relaxes the basic assumption that training and test data may be in different feature
spaces or follow other data distribution [20]. Specifically for the target detection task of
this paper, the task of the source domain is defined as the target detection based on the
sizeable visible dataset ImageNet, and the task of the target domain is defined as the target
detection based on the small infrared dataset FLIR. Since both infrared imaging and visible
imaging are similar, they collect target information for imaging through optical systems.
The migration learning approach can be used to initialize the parameters of the infrared
image target detection model with the pre-trained model on the visible image dataset.
Eventually, the model can be fine-tuned and trained using the infrared image dataset.

2.3. Cross-Layer Connection Mechanism

The cross-layer connection mechanism is a classical idea of direct routing from the
lower to the higher, ignoring the middle layer. The specific details of the cross-layer con-
nection method vary in different models. A cross-layer connection mechanism is proposed
in this paper to solve the problem of multiscale feature detection in images. This method
implements two multiscale feature extraction mechanisms and feature fusion mechanisms,
which can adapt to the multiscale features of the target and improve the target detection
performance of the model. The cross-layer connection mechanism used in this paper is
closest to the pedestrian target detection method [21]. In contrast, the two multiscale
feature extraction mechanisms proposed in this paper use parameter sharing to process the
feature images output from the first, third, and fifth convolution layers in different ways.
To keep the resolution consistent, we took the resolution of the feature graphs output by
the third convolution layer and the fifth convolution layer as the benchmark, adjusted the
resolution of the feature graphs output by other convolution layers, and finally realized the
cross-layer connection.
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3. CMF Net

This section introduces the CMF Net target detection model in detail. Its innovation
lies in using multiscale feature extraction mechanisms of parameter sharing to extract
multiscale feature information and carry out feature fusion.

3.1. Network Structure of CMF Net

The network structure of CMF Net is shown in Figure 1, which consists of four parts:
backbone network, region proposal network RPN, ROI pooling layer, and classification
network. The first part is the backbone network, which mainly adopts the migration
learning method, two multiscale feature extraction mechanisms, and a feature fusion
mechanism. The output feature map contains both low-level visual features and high-level
semantic features. The second part is the region proposal network RPN [22], which is
mainly used to extract the region proposal frames containing the target for the feature
map output from the backbone network and filter out about 300 high-scoring regions
proposal frames. The third part is the ROI pooling layer, mainly used to map ROI regions to
convolutional regions and pool them into feature maps of fixed size. The fourth part is the
classification network, which is used mainly for target location correction and classification
recognition after mapping the ROI pooling layer and achieving target detection.

 

Figure 1. CMF Net architecture.

3.2. Multiscale Feature Extraction I

In the vgg16 network, the visual features extracted from the lower convolutional layer
play an important role in the target location, while the semantic features extracted from
the higher convolutional layer play an important role in target recognition. The multiscale
feature fusion method can retain the low-level visual and high-level semantic features and
avoid extracting redundant features from the two adjacent convolutional layers. The first
multiscale feature fusion method is shown in Figure 2. Considering that the intermediate
convolutional layer contains visual and semantic features, which combine the two, it is
essential for target detection. Therefore, the feature map output by the third convolutional
layer is retained completely, and the resolution of the feature map is taken as the benchmark.
The feature map extracted from the first convolutional layer is divided into two pools, and
the feature map extracted from the fifth convolutional layer is deconvoluted [23]. This can
further study the feature map output of the first layer and the fifth volume layer, resolve
the feature maps of the low-, middle-, and high-volume outputs that are adjusted to the
same level, and, finally, connect them to achieve feature fusion.
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Figure 2. Multiscale feature extraction I.

3.3. Multiscale Feature Extraction II

In the first multiscale feature extraction mechanism, the feature graph output from
the third convolution layer is retained completely. Then, based on the resolution of the
feature images output from the third layer, the feature images output from the first con-
volution layer are pooled, and the feature images output from the fifth convolution layer
is deconvolution processed. This makes the feature images output by the first, third, and
fifth convolution layers maintain the exact resolution. However, this processing method
loses the high-level semantic features learned by the fifth convolution layer to some extent,
which affects the accuracy of the target detection model. Therefore, a second multiscale
feature extraction method is proposed, whose structure is shown in Figure 3. The feature
map output from the fifth convolutional layer is retained completely, and the resolution
of the feature map is taken as the benchmark. The feature map extracted from the first
convolutional layer is pooled twice. The feature map extracted from the third convolutional
layer is pooled once. The resolution of the feature map output from the first, third, and fifth
layers is adjusted to be the same and connected to achieve feature fusion.

 
Figure 3. Multiscale feature extraction II.

3.4. Feature Fusion Strategy

Two multiscale feature extraction methods use different strategies to extract multiscale
feature maps. The final output of the feature map has its unique advantages. The first
multiscale feature extraction method ultimately retains the mixed features of target location
and target recognition extracted from the middle convolutional layer. Still, it loses some
high-level semantic features and affects target recognition. The second multiscale feature
extraction method preserves the semantic features of a high-level convolutional layer but
loses some mixed features, which affects the target location. Therefore, it is necessary to
fuse the two kinds of feature maps so that the final output feature map simultaneously
contains rich mixed features and semantic features.
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The final feature maps obtained by the multiscale feature extraction mechanism suffer
from inconsistent resolution and inconsistent amplitude of feature values. Therefore, these
feature maps cannot be directly fused with features. The feature fusion method proposed
in this paper makes the feature maps output by the first multiscale feature extraction mech-
anism consistent with the resolution of the feature maps output by the second multiscale
feature extraction mechanism through a pooling process. Secondly, L2 normalization is
performed in the feature maps outputted by the two feature extraction methods, so that
the amplitudes of feature values in the two feature maps are consistent. Then, we connect
two feature maps to get a feature map containing rich visual features, mixed features, and
semantic features. Finally, we input it to RPN to extract ROI information.

We assign a binary class label to each box (including the target or excluding the target).
We set a binary class label (include target or not) to each box. We assign a positive title to a
box with an IoU threshold higher than 0.7 with any ground truth box and then assign a
negative label to a box with an IoU threshold lower than 0.3 with all ground truth boxes.
Our goal is to minimize a multitask loss function.

L(k, k∗, t, t∗) = Lcls(k, k∗) + λLreg(t, t∗) (1)

Lcls is the classification loss, Lreg is the coordinate regression loss of the box with a
positive label assigned. k∗ and k are true to label and predicted labels separately, respectively.
Lreg(t, t∗) = R(t − t∗) where R is the smoothed loss function defined in Faster R-CNN. We
express the coordinates of the positive box as t =

(
tx, ty, tw, th

)
and the coordinates of the

predicted box as t∗ =
(

t∗x, t∗y , t∗w, t∗h
)

.

tx = (Gx − Px)/Pw·ty =
(
Gy − Py

)
/Ph

tw = log(Gw − Pw)·th = log(Gh − Ph)
(2)

where Pi =
(

Px, Py, Pw, Ph
)

specifies the coordinates of the center point of the predicted box.
Gi specifies the coordinates of the center point of the positive box.

The RPN module first resamples the unbalanced sample set of positive and negative
samples, using the oversampling method in random sampling to obtain more sample first
data balance by randomly repeating examples from a small number of class sample sets.
Then, the gradient descent method is used for training, and the classification loss error Lcls
and regression loss error Lreg are back-propagated to update the model parameters until
the RPN module converges. The parameters for the training of the RPN module are set as
shown in Table 1.

Table 1. RPN training parameters list.

Description Value

The Anchor scale 32, 64, 128
MiniBatch Quantity 256
PRN foreground–background ratio 1:1
IOU threshold used by NMS for RPN training 0.3
IOU thresholds used by NMS for RPN prediction 0.7

4. CMF-3DLSTM

The infrared image target detection model CMF Net based on multiscale feature fusion
proposed in Section 3 adopts two multiscale feature extraction mechanisms and feature
fusion methods for the final output feature graph of the backbone network. It adapts to the
multiscale characteristics of the target. It can be regarded as the feature fusion of spatial
dimension, which is of great help to improve the performance of infrared image target
detection. CMF Net can achieve better target detection performance when the background
environment is the relatively simple spacing between targets. However, the problem with
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CMF Net is that it is easy to misjudge when multiple targets are close together, overlapping,
and semantically confusing, as shown in Figure 4.

 
Figure 4. CMF Net target detection results.

This section proposes CMF-3DLSTM, an infrared image target detection model based
on spatio-temporal feature fusion and attention mechanism. This model first inherits
the multiscale feature fusion strategy of CMF Net to achieve feature fusion in the spatial
dimension. Then, the model is based on 3DLSTM, which extracts contextual information
along with the positive and negative directions of each dimension from the length, width,
and height dimensions of the 3D feature map. Meanwhile, the model uses an attention
mechanism to assign weights to the contextual features extracted in various dimensions and
directions. CMF-3DLSTM effectively improves target detection performance in complex
situations such as multiple targets approaching each other, overlapping each other, and
semantic confusion.

4.1. Network Structure of CMF-3DLSTM

CMF-3DLSTM target detection model includes four modules, namely trunk network,
regional proposal network, ROI pooling layer, and classification network, as shown in
Figure 5.

Figure 5. Structure diagram of CMF-3DLSTM model.

The trunk network still adopts a 16-layer VGG16 network. The model file saved after
pre-training the target detection model Faster R-CNN on the visible light domain dataset
Image Net is used for parameter initialization in CMF-3DLSTM utilizing the idea of transfer
learning, and two multiscale feature extraction mechanisms are still used for multiscale
feature extraction and feature fusion. The process of generating candidate boxes for regional
proposal network RPN is unchanged. It still extracts and screens regional proposal boxes
that may contain targets from the feature graph output by the trunk network, and about
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300 high-scoring regional proposal boxes are screened. The ROI pooling layer mainly
generates a fixed-size feature map based on region proposal mapping of candidate box
generated by RPN network recommendation for subsequent classification and regression.
The classification network primarily uses the multiscale feature map processed by ROI
pooling layer mapping and uses the 3D six-way long- and short-term memory network
3DLSTM, constructed based on BI-LSTM, to extract context information. At the same time,
the attention mechanism is used to assign different weights to the context features extracted
from other dimensions and directions to achieve the fusion of spatio-temporal features.
Finally, the input is given to the classification and location layers for target classification
recognition and position correction.

4.2. Context Information Extraction Network

Figure 6 shows a 3D long- and short-term memory network, which can extract context
information. The 3DLSTM network firstly transforms the 3D feature image into the 2D
feature image. Then, each row in the two-dimensional feature graph is regarded as a vector
or a sequence, and each column in the two-dimensional feature graph is considered to be a
time step. Finally, the context information of feature map extraction is transformed into the
extraction of vector or sequence relations.

Figure 6. 3DLSTM network structure diagram.

We fix the feature map’s length, width, and height separately and stretch the other two
directions. In this way, the shape of the 3D feature map can be transformed into a 2D feature
map. This two-bit information is then input into Bi-LSTM to extract contextual information
along the fixed direction of the original feature map. Taking the length direction of the
fixed feature map as an example, the 3D feature map becomes a 2D feature map (length,
width × height) after transformation, and the specific transformation process is shown in
Figure 7.

Figure 7. 3D feature-length expansion diagram.

Finally, the features generated are connected. At this time, the feature graph input to
the classification regression network contains the context information extracted from the
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length, width, and height of the original feature graph, so the network is called 3DLSTM.
Compared with RNN, LSTM, and BI-LSTM, which extract 2D context information, this
network is more conducive to improving the performance of the target detection model.

4.3. Attentional Mechanism

Attention mechanisms are generally used in natural language processing. As the
length of text sequence increases in practical applications, the more advanced information
in the series is lost more seriously, leading to a significant decline in model performance. A
common solution is to input text sequences in both sequential and reverse order or LSTM.
Although the two methods can improve the model performance to a certain extent, it is
still difficult to effectively solve the problem of a too-long sequence.

The final output size of the feature graph of 3DLSTM is 3256, which adopts bi-LSTM
to output vectors with the length of 256 from the three dimensions of length, width, and
height of the 3D feature graph, respectively. Each element in the vector represents the
neuron’s output under a time step. Such a feature map size has the problem of a too-long
sequence. Moreover, the weights of the three vectors are different, and the weight of each
element in each vector should also be different. Therefore, an attention mechanism is
adopted that can selectively screen out a small amount of important information from a
large amount of information and focus on this vital information.

A source in attention consists of a series of key–value pairs. The weight coefficient of
each key corresponding to value is obtained by calculating the similarity of each key in
input vector query and source. Formula (3) is the calculation of the similarity between the
query and the key. Formula (4) determines the weight coefficient of each key corresponding
to value by the So f tmax function.

Simi(Query, Keyi) =
Query·Keyi

‖Query‖·‖Keyi‖ (3)

ai = So f tmax(Simi) =
eSimi

∑N
j=1 eSimj

(4)

The weighted sum of values obtains the final attention value according to these weight
coefficients. The calculation formula of attention value is as follows:

Attention(Query, Source) =
N

∑
i=1

ai·Valuei (5)

Using the attention mechanism, you can assign different weights to the context in-
formation collected by 3DLSTM in different directions and to the different elements in
the context information in each direction. This enables the target detection model CMF-
3DLSTM to pay more attention to the salient features of the target, thus improving the
target detection performance of CMF-3DLSTM.

4.4. Model Training Strategy

CMF-3DLSTM uses the same training methods of pre-training migration and model
fine-tuning as CMF Net, but the training strategy of the classification module is different.
In the classification module, 3DLSTM is based on three bidirectional long- and short-term
memory networks, while the network structure of Bi-LSTM is based on LSTM. Therefore,
the ultimate goal of 3DLSTM is the same as that of LSTM, which is to minimize a loss
function L(t). The specific calculation formula is as follows:

L =
T

∑
t=1

l(t) (6)
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where t represents the current moment, T represents the total time step, and l(t) represents
the loss function at the current moment. The calculation formula of l(t) is as follows:

l(t) = f (h(t), y(t)) = ‖h(t)− y(t)‖2 (7)

h(t) represents the hidden layer output at the current time t, and y(t) represents the
output layer output at the present time t. To minimize l(t) loss function, the 3DLSTM
network is trained by the gradient descent method. When the error is propagated back,
the chain derivative method is used to update the model weight parameters. The specific
calculation formula is as follows:

∂L
∂w

=
T

∑
t=1

M

∑
i=1

∂L
∂hi(t)

·∂hi(t)
∂w

(8)

i represents the memory unit of the hidden layer. M is the number of memory units. w
represents the model weight parameter. hi(t) represents the output of the memory unit in
the hidden layer at the current time t. After calculating the gradient of weight parameter
w of all models, 3DLSTM uses the gradient descent method to update the parameters
iteratively. Finally, it minimizes the loss function L to achieve the purpose of training the
classification module.

For infrared image target detection model CMF-3DLSTM, a joint optimization 10-step
training process is designed in this paper, as shown in Algorithm 1.

Algorithm 1: CMF-3DLSTM training process

Input: Infrared image dataset.
Output: Target detection model CMF-3DLSTM.
Step 1: Initialize the network parameters in Step2 and Step3 using the pre-training model on the
VOC2007 dataset.
Step 2: Use the first multiscale feature extraction mechanism to extract feature information.
Step 3: Using the second multiscale feature extraction mechanism to extract feature information.
Step 4: CMF Net is used to carry out feature fusion for the feature information extracted by Step 2
and Step 3.
Step 5: Train the RPN network to generate the proposals using the characteristic information
obtained from Step 4.
Step 6: Implement ROI Pooling of Step 5 and adjust them to the same size.
Step 7: The 3DLSTM network is used to extract the context information of ROI in Step 6.
Step 8: The attention mechanism is used to assign weight to the output of the features by Step 7.
Step 9: Classification layer and regression layer are used for target detection for the output of the
features by Ste p8.
Step10: The unified network of Step 5 and Step 9 joint training is taken as the final model.

The training parameters of CMF-3DLSTM, CMF Net, and Faster R-CNN are shown
in Table 2, in which Faster R-CNN has 136,708,989 training parameters, and CMF Net has
152,048,765 training parameters. The number of training parameters of CMF-3DLSTMA
is 40,761,469, which drops to the level of 10 million and dramatically reduces the space
complexity of the algorithm. However, the 3DLSTM network and attention mechanism
introduced in the classification module of CMF-3DLSTM is more complex than the fully
connected layer in the classification module of CMF Net, thus causing an increase in
time complexity. The CMF Net model performs target detection at a speed of about 0.87
s/pc on a machine with a graphics card configuration of GeForce GTX 1080. In the same
experimental environment, the Faster R-CNN performs target detection at about 0.75 s/pc,
and the CMF-3DLSTMA has a reduced target detection speed of about three s/pc.
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Table 2. Experimental environment.

Model
Backbone
Network

RPN ROI Pooling
Classification
Network

Total

Faster R-CNN 14,714,688 2,382,893 0 11,961,1408 136,708,989
CMF Net 17,077,824 7,691,309 0 127,279,632 152,048,765
CMF-3DLSTM 17,077,824 7,691,309 0 15,992,336 40,761,469

5. Experiment and Analysis of Experimental Results

5.1. Description of Dataset

We have trained and evaluated our model on FLIR, a public infrared driving image
dataset, and achieved excellent results. The introduction of the dataset is shown in Table 3.

Table 3. Dataset specifications.

Content Synced annotated thermal imagery and non-annotated RGB imagery for reference. Camera
centerlines approximately 2 inches apart and collimated to minimize parallax

Images >10 K from short video segments and random image samples.

Image Capture Refresh Rate Recorded at 30Hz. Dataset sequences sampled at 2 frames/s or 1 frame/s. Video
annotations were performed at 30 frames/s recording.

Frame Annotation Label Totals

10,228 total frames and 9214 frames with bounding boxes.

1. Person (28,151);
2. Car (46,692);
3. Bicycle (4457);
4. Dog (240);
5. Other vehicle (2228).

Driving Conditions Day (60%) and night (40%) driving on Santa Barbara, CA area streets and highways from
November to May with clear to overcast weather.

Dataset File Format

1. Thermal—14-bit TIFF (no AGC);
2. Thermal—8-bit JPEG (AGC applied) w/o bounding boxes embedded in images;
3. Thermal—8-bit JPEG (AGC applied) with bounding boxes embedded in images for

viewing purposes;
4. RGB—8-bit JPEG;
5. Annotations: JSON (MSCOCO format).

5.2. Description of Evaluation

In this paper, the target detection performance of the method on the FLIR infrared
driving image dataset is evaluated from mAP (mean average precision), which is widely
used as a standard measure in previous target detection research. The calculation formula
is as follows:

Precision =
TP

TP + FP
(9)

MAP(Q) =
1
|Q|

|Q|
∑
j=1

1
mj

mj

∑
k=1

Precision
(

Rjk

)
(10)

where TP indicates that the prediction is true and the label is true, FP indicates that the
prediction is true and the label is false. Q is the set of target categories to be detected, mj is
the number of pictures of all categories corresponding to Qj, Rjk is the set of all pictures in
the returned result until picture k is found. That is to say, the corresponding precision is
calculated in this set.

5.3. Experimental Analysis

The training set of Infrared image dataset FLIR contains 7860 IR images, and the
test set has 1360 Infrared images. To facilitate the experiment, we converted the image
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annotation files of the Infrared image from JSON format (MSCOCO format) to XML format
(VOC2007 format).

We conducted a total of four experiments. The first set of experiments tested the
performance of the Faster R-CNN target detection model under various network layer
combinations. The second group of experiments analyzed the performance comparison
between CMF Net (Faster R-CNN model that adopts two multiscale feature extraction
mechanisms and carries out feature fusion) and those using two multiscale feature ex-
traction mechanisms alone. The third group of experiments analyzed the performance
comparison between CMF Net and other target detection models. The fourth group of ex-
periments analyzed the performance comparison between CMF-3DLSTM (using 3DLSTM
network to replace the full connection layer in CMF Net) and other target detection models.

(1) Experiment I: The performance of the target detection model depends mainly on
whether the feature map contains rich features or not. To investigate which network
layers and network layer combinations can make the model the best performance, we
conduct seven sets of tests based on the Faster R-CNN target detection model. The
final target detection performance of the feature maps output by convolutional layer
1 (single 1), convolutional layer 3 (single 2), and convolutional layer 5 (single 3) are
first tested separately. Then, the target detection is performed for the feature maps
output by the convolutional layer combination 1+2+3 (Group 1) and 3+4+5 (Group
2), respectively. Finally, the target detection is performed for the feature maps output
by the convolutional layer combination 1+3+5 with two different multiscale feature
extraction mechanisms (Group 3 and Group 4). The experimental results are shown
in Table 4.

Table 4. Results of combining different convolutional layers.

Layers Single 1 Single 2 Single 3 Group 1 Group 2 Group 3 Group 4

mAP 0.514 0.605 0.583 0.567 0.618 0.636 0.661

Experimental results show that the target detection model of convolution layer combi-
nation 1+3+5 with two different multiscale feature extraction mechanisms (Group 3 and
Group 4) has better detection performance on FLIR. Therefore, the proposed infrared image
target detection model uses a 1+3+5 convolution layer combination.

(2) Experiment II: To verify the performance of the two multiscale feature extraction
mechanisms and CMF Net, we carried out three experiments, and the experimental
results are shown in Figure 8. We found that our target detection model CMF Net has
a great improvement.

The mAP of CMF Net improved about 6.8% and 4.4% compared to the first multiscale
feature extraction mechanism and the second multiscale feature extraction mechanism,
respectively. Although the target detection accuracy of CMF Net decreased in the bicycle
category, it improved by 6.1% and 24% in the car and person categories, respectively, com-
pared to the first multiscale feature extraction mechanism, and 13.2% and 9.3%, respectively,
compared to the second multiscale feature extraction mechanism, CMF Net’s accuracy
only in the bicycle target. The accuracy of CMF Net is reduced by 9.6% compared to the
first multiscale feature extraction mechanism and 9.3% compared to the second multiscale
feature extraction mechanism. This experimental result illustrates the importance of feature
fusion based on two multiscale feature extraction mechanisms compared to one multiscale
feature extraction mechanism alone to improve the performance of the target detection
model.

(3) Experiment III: To fully prove the correctness of our multiscale feature extraction
strategy, we still adopted the idea of transfer learning to migrate the pre-training
networks of Faster R-CNN, YOLO, and SSD, which are currently popular in the
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visible light domain, to FLIR infrared driving image dataset, continue training until
the model converges.

Figure 8. Performance comparison between CMF Net and two multiscale feature extraction mechanisms.

The experimental results are shown in Figure 9 We evaluate the performance of CMF
Net on the test set of FLIR infrared driving image dataset. Using the above methods, we get
about 71% of mAP by CMF Net, 58% by Faster R-CNN, 65% by YOLO, and 54% by SSD.

 
Figure 9. Performance comparison between CMF Net and other target detection models.

Compared with other common target detection model’s mAP, our multiscale feature
fusion model CMF Net achieved significant improvement in accuracy, about 13 percentage
points higher than Faster R-CNN’s mAP, about 6 percentage points higher than YOLO’s
mAP, and about 17 percentage points higher than SSD’s mAP.

In FLIR infrared driving image dataset, due to the different shooting distances, the
size of the car, person, and bicycle targets in the infrared image is different, which has
significant multiscale characteristics. Our model adopts two multiscale feature extraction
mechanisms and two-level feature fusion methods, which makes the final output of the
backbone network contains rich visual features and semantic features, so the detection
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accuracy of car, person, and bicycle is far higher than the other three networks. The accuracy
of CMF Net on car target is 11%, 5%, and 12% higher than Faster R-CNN, YOLO, and SSD,
respectively; the accuracy on person target is 23% and 17% higher than Faster R-CNN
and SSD, respectively, and the accuracy on bicycle target is 4%, 16%, and 21% higher than
Faster R-CNN, YOLO, and SSD respectively. Compared with YOLO, the accuracy of the
personal target is reduced by 3%. The importance of the combination of two multiscale
feature extraction mechanisms and two-level feature fusion methods is fully proved.

As shown in Figure 10, the target detection result of CMF Net is on the left, and the
target detection result of Faster R-CNN is on the right. The scenes on the left and right
are the same, with vehicles and pedestrians appearing on the street at different scales.
Faster R-CNN detected most targets in the image well but failed to detect pedestrians
appearing at a small scale in the middle of the image. CMF Net can adapt to the multiscale
characteristics of the target because it adopts two multiscale feature extraction mechanisms.
Therefore, the pedestrians on a small scale can be successfully identified and positioned
correctly.

 
Figure 10. Comparison of target detection results between CMF Net and Faster R-CNN.

(4) Experiment IV: CMF Net, a target detection model based on multiscale feature fusion,
has a problem: it is easy to cause misjudgment in the complex situation of multi-
target detection. In particular, it is challenging to detect CMF Net effectively when
multiple targets are close to or even overlapping each other. It is imperative to use
the contextual information around the target effectively. This paper proposes an
infrared image target detection model CMF-3DLSTM based on multiscale feature
fusion and context analysis. CMF-3DLSTM is inherited from CMF Net. The difference
between CMF-3DLSTM and CMF Net is that it replaces the complete connection
layer of the classification regression network with a 3D long- and short-term memory
network. Context information can be extracted based on multiscale feature fusion.
CMF-3DLSTM improved target detection performance by about 2.9% on the infrared
image dataset FLIR compared to CMF Net’s mAP.

The experimental results are shown in Figure 11. The target detection model CMF-
3DLSTM and other target detection models are evaluated on the test set of FLIR. Using the
above methods, CMF-3DLSTM obtained about 73.3% mAP, while the mAP on CMF Net
was about 70.4%, the mAP on Faster R-CNN was about 68.7%, the mAP on YOLO3 was
approximately 64.8%, and the mAP on SSD was about 60.8%.

Although the CMF-3DLSTM model does not achieve optimal detection results for car,
person, and bicycle alone, the average detection accuracy is more important in complex
situations where multiple targets are nearby or even overlap or obscure each other. The
target detection results of CMF-3DLSTM on the infrared image dataset FLIR are illustrated
in Figure 12.
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Figure 11. Performance comparison between CMF-3DLSTM and other target detection models.

 
Figure 12. Comparison of target detection results between CMF-3DLSTM and CMF Net.

6. Conclusions

This paper transfers the target detection model in the visible light domain to the
infrared environment by transfer learning. In our work, we creatively proposed the
method of feature fusion and multiscale feature extraction with two shared features. We
obtained the network architecture of CMF Net that makes full use of multiscale feature
fusion information for target detection. Through multiscale feature fusion, rich visual and
semantic features can be obtained to improve the accuracy of target detection and adapt to
the multiscale characteristics of the target to be detected. To improve the target detection
performance of the model in complex scenes such as mutual occlusion and overlapping
of multiple targets, we constructed a 3D long- and short-term memory network based
on CMF Net to extract context information and finally realized the CMF-3DLSTM model.
Compared with Faster R-CNN, YOLO3, and SSD, CMF-3DLSTM achieves higher target
detection performance on infrared image dataset FLIR. This proves the importance of
constructing an infrared image target detection model based on multiscale feature fusion
and context analysis.

However, we still need to make further improvements work. The target detection
model proposed in this paper improves the accuracy, reduces the number of parameters,
and decreases the spatial complexity compared with models such as Faster-RCNN, but it
increases the time complexity, making it challenging to meet the requirements of real-time
detection. We need to optimize the network structure further to improve the model’s
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real-time detection capability. At the same time, we need to train and evaluate the model
on more infrared image datasets with different scenes to meet the requirements of other
scenes in practical applications.
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Abstract: Due to the leaps of progress in the 5G telecommunication industry, commodity pricing
and consumer choice are frequently subject to change and competition in the search for optimal
supply and demand. We here utilize a two-stage extensive game with complete information to
mathematically describe user-supplier interactions on a social network. Firstly, an example of how
to apply our model in a practical 5G wireless system is shown. Then we build a prototype that
offers multiple services to users and provides different outputs for suppliers, where in addition, the
user and supplier quantities are independently distributed. Secondly, we then consider a scenario
in which we wish to maximize social welfare and determine if there is a perfect answer. We seek
the subgame perfect Nash equilibrium and show that it exists, and also show that when both sides
reach it, social welfare likewise reaches its maximum. Finally, we provide numerical results that
corroborate the efficacy of our approach on a practical example in the 5G background.

Keywords: social network; game theory; provider competition; 5G wireless production; equilibrium

1. Introduction

Because of the telecommunication industry’s irregularity, wireless consumers have
complete freedom in selecting providers to achieve the greatest future tradeoff. Public Wi-Fi
connections are a well-known example, where users may connect to any Wi-Fi provider for
free but are charged for the time they spend connected. Despite the fact that the majority of
users prefer to connect to free public Wi-Fi, there are still many users who are willing to pay
for a premium service [1]. In this paper, we focus on the Wireless Service Providers (WSPs)
in the 5th Generation Mobile Communication Technology (5G) who offer specific limited
resources, such as a wireless frequency band, time slots, or transmission power. 5G is a
new generation of broadband mobile communication technology that has high-speed rates,
minimal latency, and a strong connection, making it superior to previous generations. How
providers set commodity pricing and how users pick a source and commodity quantities
is an important and fascinating issue. Suppliers are supposed to give different degrees of
service to consumers, and users are aware of the difference for in-depth analysis, to monitor
each interaction for each characteristic. As a result, each user is thought to have their own
utility functions.

We study the widely used linear pricing schemes in the literature (see [2,3]). This spurs
many ideas: the current TCP protocol can be explained as usage-based pricing methods
that solve the problem of maximizing network utility [2]. Many researchers in the related
literature look at resource supply and interaction through the lens of price strategy and
game theory. The related research of wireless settings generally is classified as follows: the
majorization-based allocation of one supplier’s resource (see [4–9]), theoretical study of
the game between one supplier’s buyers (see [10–13]), competition between suppliers in
the name of users(see [14,15]), and the price competition between suppliers (see [16–24]).
Additionally, one work studies a three-tier system for a particular utility function, and the
model is similar to ours [20]. The work we are interested in [22] uses evolutionary game
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theory to study multi-buyer, multi-seller dynamics in a cognitive radio setting. Then finally,
the price competition of multihop wireless networks is studied in [23,24]. The work [25]
by Chen inspired us to design and prove the decentralized algorithm. Nevertheless, our
work has many significant differences. First, we used a less-rigorous precondition to prove
our convergence. Second, our research shows that there are a finite (rather than infinite)
number of globally optimum solutions. Third, with our work, consumers are free to use
any resource quantity they choose. Finally, current research only focused on a single OFDM
cell in resource allocation optimization, while we prefer to investigate NOMA or uRLLC
with a high-speed network and low delay in the 5G background [26].

In this study, we explain the user-supplier interaction in the 5G wireless system using
a two-stage extended game with comprehensive information (see [27]). To understand how
to apply our model in a practical 5G wireless system, we take a 5G popular technology
as a specific example. Then we explain how the two-stage works. Suppliers set their
commodity pricing in the first stage, and consumers select the amount and supplier in
the second stage. A user may choose the less costly commodity with poor service or the
more expensive commodity with superior service. Based on users’ responses to suppliers’
prices, the suppliers take advantage and maximize profits. With this in mind, we first create
a prototype that provides consumers with a variety of services and distinct outputs for
providers. A multistage game model is utilized to describe the user-supplier relationship,
and the user and supplier quantities are independently distributed. Next, we consider a
social welfare maximization situation and determine that there must be an optimal solution.
At that point, we move to the supplier competition game, which generates a decentralized
algorithm that gradually finds equilibrium. The flowchart of the proposed algorithm
is shown in Figure 1. Users make decisions based merely on the suppliers’ set price;
meanwhile, suppliers determine the pricing based on demand (the user’s want). Finally,
we present numerical results that demonstrate the efficacy of the suggested approach.

Figure 1. The flowchart of the proposed framework.

Our model aims to address the lack of a strong strategy to address the mismatch
between supply and demand in the current 5G market, as well as the insufficient structure
of market, which can have extremely negative effects. The model provides the user with a
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perspective on how to select a supplier, also provides a perspective for suppliers on the
needs of users. It targets welfare maximization and provides an efficient way of managing
supply and demand-side constraints. At the same time, the model helps to motivate market
participants to make decisions that are most beneficial to the remaining economic agents.

2. The Model

Let us start with the features of 5G. In this section, 5G wireless networks will surpass
the mobile Internet. In addition to increasing data rates compared to today’s 4G and 4.5G
(LTE Advanced), new IoT and key communication examples will require new ways to
improve performance. For example, “low latency” is about providing real-time interactivity
for services that use the cloud: this is crucial to the success of self-driving cars for example.
In addition, low power consumption enables networked objects to run for months or years
without human assistance.

To better understand our research, we explain some notions here. As we set about for-
mulating our problem, initially, we assume there are two sets: M = {1, . . . , M} represent
the 5G wireless suppliers and N = {1, . . . , N} represent the 5G wireless users. Supplier
m ∈ M provides a Rm unit commodity to the users to maximize its return. User n ∈ N
buys commodities from one or more suppliers to maximize its payoff. We assume that
each user utilizes orthogonal resources, there is no interference between them, and mean-
while, the communication can be upward or backward. We simplify the interaction to be a
multileader-follower game (see [28,29]), with suppliers leading the way and users following.
In a relatively static network environment, channel gains are almost constant and also, pub-
lic information is known to both sides. For example, every supplier gathers its respective
channel information on every user and then applies it to all users. Section 4 assumes that
our decentralized algorithm yields the same outcome as the supplier competition game.

2.1. Supplier Competition Game

There are two stages in the supplier competition game. Each supplier claims its price
in the first stage. In the price vector b = [b1,. . . ,bM], bm represents the price for the unit
commodity that supplier m charges. In addition, every user n ∈ N chooses a demand from
different suppliers, depicted by vector rn = [rn1,. . . ,rnM]. Then we use a vector to depict the
overall demand: r = [r1,. . . ,rN].

In the second stage, as prices b have already been set, user n selects its demand
rn to maximize its payoff based on the price. We define the payoff as a utility after
subtracting expenses:

vn(rn, b) = un(
M

∑
m=1

rnmcnm)−
M

∑
m=1

bmrnm. (1)

In this equation, cnm is the offset of channel quality between provider m and user
n (see Example 1 and Assumption 2). Here, un is the utility function, which is concave
and increases with quantity. We can see that the utility function is based on the term
∑M

m=1 rnmcnm, which is the amount of service that users acquire, and also the function
of commodity uses. In the first stage, after taking into account the resource constraint
∑N

n=1 rnm � Rm, and in the second stage, after factoring users’ demand, then supplier m
sets the price to bm to maximize its return bm ∑N

n=1 rnm. We assume linear pricing, with each
user facing the same price.

In this model, any user can buy a commodity from more than one supplier simultane-
ously. In other words, for users, n, more than one rnm (m ∈ M) can be positive. It may be
reasonable only if the user’s device has several wireless interfaces. Interestingly, for most
users (N − M at least), the optimal strategy is to select one or no supplier.

In the following, a specific example shows how to apply our model in a practical 5G
wireless system.
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Example 1 (NOMA). Non-Orthogonal Multiple Access (NOMA) is a popular technology to
improve the efficiency of the 5G spectrum, with low latency, low signaling cost, and attenuation
resistance (see [30,31]). Wm, m ∈ M are the non-orthogonal frequency bands on which wireless
providers operate. rnm is the portion of time user n can transmit exclusively on supplier m’s
frequency band, in which ∑n∈Nm rnm = 1, m ∈ M is the constraint. We assume a peak power

constraint Pn exists as well for each user. Then we define cnm as Wm log (1 + Pn |hnm |2
σ2

nmWm
) by Shannon’s

theorem, in which the channel’s Gaussian noise variance is σ2
nm between provider m and user n,

while hnm is channel gain, channel gain describes the transmission capability characteristics of the
channel itself. The payoff for the user, then, is the remaining utility after subtracting payment for
the service, vn = un(∑M

m=1 rnmcnm)− ∑M
m=1 bmrnm.

Similarly, our model applies when suppliers sell bandwidth of ultra-reliable low
latency communication (uRLLC) tones to users who face a maximum power constraint [32].
For example, cnm—the offset factor in Example 1—not only represents channel capability
but essentially any aspect of the channel capacity’s increasing function. Compared with
other previous technologies, 5G has a more significant channel gain. According to the
Shannon formula, when the channel gain hnm increases, the channel capacity cnm will
increase to achieve an extremely low delay.

Although the payment for the 5G service is high, the significant improvement of
quality of service(QoS): utility function un, is enough to offset the payment, and the final
income is significantly higher than that of time division multiple access(TDMA), and it can
also meet the requirements of low delay and high spectrum efficiency in modern times.

Finally, we find that this problem resembles a generalized network flow setting’s
multipath routing problem. A user parallels a source, similar to how a supplier corresponds
to a link. Fortunately, there is one fundamental similarity: the multipath routing problem is
equal-weighted, which applies to our model and does not hold in the TDMA model.

2.2. Assumptions about the Model

To focus on the problem of social welfare optimization, we make hypotheses, ignor-
ing some unnecessary factors in the supplier competition game. Here, we outline our
model assumptions.

Assumption 1. un(y) is increasing, differentiable, and strictly concave in y for each user n ∈ N .
In the network literature, this is how resilient data applications typically are modeled.

Assumption 2. We draw offset cnm for the channel’s quality from continuous, different probability
distributions. cnm are independent of each other, and evidently, different cnm cannot be equal.
cnm indicates that a user will have different results if it buys the same commodity quantity from
different suppliers.

As Example 1 shows, cnm is a function of hnm, which is the channel gain between a
supplier and user. Given that hnm is drawn from the independent continuous-probability
distributions, these assumptions can be fulfilled. In the next section, we study a related
socially optimal resource-allocation problem to analyze the supplier competition game.
Additionally, we show the solution based on a user’s unique demand. In Section 4, we
return to the supplier competition game. We find that the socially optimal, unique solution
resembles the supplier competition game’s unique equilibrium. Here, even when suppliers
and users are selfish, the game remains as efficient as previously.

3. Social Welfare Optimization

3.1. Maximizing Social Welfare

In the following, we study social welfare, a problem where we maximize the sum of
payoffs for both users and suppliers. We show that the solution is unique based on the
user’s demand. As users pay for advanced 5G resources and give money to suppliers,
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the payments between users and suppliers offset one another. Therefore, to maximize
social welfare, we need to maximize users’ utility functions. We define the social welfare
maximization problem as a function of service acquired by users, which is ultimately
inherent to users’ interests.

Definition 1. Let y = [y1, . . . , yN ] be the vector of services acquired, where the service acquired
by user n, yn = ∑M

m=1 rnmcnm acts as a function of rn = [rn1, . . . , rnM], the demand for resources
by user n.

Then we define the social welfare optimization problem (SWO) as

SWO : max u(y) =
N

∑
n=1

un(yn) + c

s.t.
N

∑
n=1

rnm = Rm, m ∈ M
M

∑
m=1

rnmcnm = yn, n ∈ N

over rnm, yn ≥ 0, ∀n ∈ N , m ∈ M.

(2)

Here, c is a variable that denotes the unpredictable change, but for simplicity, we set
c = 0. Two variables comprise the SWO: the service-acquired vector y and the demand
vector r. In fact, y is uniquely determined by r. So y is a function of variable r. Then we can
write y as y(r). For brevity, we write u(y(r)) as u(r).

3.2. Socially Optimal Demand Vector r∗’s Uniqueness

However, it is interesting that un(·)s fail to be strictly concave to the demand vector
rn, as is the case of SWO to r. As we all know, a maximization problem that is not strictly
concave may have more than one global optimal solution (see [33,34]). To get more than
one solution of vector r∗ in SWO, we simply modify cnms, Rms, and un(·)s to some value.
For example, if cnm is constant and the same for different n, m as it is for Rm, we can get a
non-unique maximizer of SWO. However, as we showed previously, cnms are independent
random variables from continuous distributions, and the probability of that case occurring
is zero (see Assumption 2).

As we also learn in Lemma 1, no two maximizing demand vectors can exist in SWO
that possess the same nonzero components. If two maximizing demand vectors combine,
the result is still a maximizing demand vector. Finally, with the previous intermediate
result, we see that maximizing demand vectors yields no convex combinations possessing
different nonzero components, and this contradicts Lemma 1. So, we can use this to prove
the primary finding of this section (Theorem 1).

Next, we define a demand vector rn’s support set.

Definition 2. User n’s support set is composed of suppliers from which user n’s demand is
strictly positive:

M̂n(rn) = {m ∈ M : rnm > 0.}
Given demand vector r, we define the support sets’ ordered collection M̂1,M̂1, . . . ,M̂N as

{M̂n}N
n=1.

Lemma 1. If r∗ is SWO’s maximizing demand vector containing the corresponding collection of
support sets of {M̂n}N

n=1, then it is almost true that r∗ can be a unique maximizing demand vector
compared to {M̂n}N

n=1.

Proof. Equation (2) holds for the maximizing demand vector r∗, and r∗ is uniquely con-
structed from {M̂n}N

n=1.

204



Appl. Sci. 2022, 12, 8798

Then two categories exist for the users: decided and undecided.
We define that the decided users are those who buy from one supplier (|M̂n| = 1),

while the undecided users are those who buy from more than one supplier (|M̂n| > 1). In
fact, some users will buy nothing. Without loss of generality, these users are defined as
decided users. y∗n = ∑M

m=n r∗nmcnm holds for all users. If user n is a decided user—which
means that he only buys from supplier m and buys nothing from other suppliers—we can
reduce the equation to y∗n = r∗nm̄cnm̄, because other terms are zero. Then the unique demand
vector that corresponds is r∗n = [0 . . . 0, y∗n

cnm̄
, 0 . . . 0].

Theorem 1. There is a unique maximizing solution b∗ with probability 1 in SWO. There are no
multiple maximizing demand vectors, and the convex combination of SWO for maximizing demand
vectors retains the same support.

Proof. Suppose that more than one SWO optimal demand vector exists. Two of them are
r′ and r∗. We learn from Lemma 1 that r∗ and r′ almost certainly have distinct support
sets

{
M̂∗

n
}N

n=1 and
{

M̂′
n
}N

n=1. Then, let rλ = λr∗ + λ̄r′, λ ∈ (0, 1), λ̄ = 1 − λ. If y∗n =

∑M
m=1 r∗nmcnm = ∑M

m=1 r′nmcnm and ∑M
m=1 rλ

nmcnm = λ ∑M
m=1 r∗nmcnm + λ̄ ∑M

m=1 r′nmcnm = y∗n,
then we can say that rλ is an SWO maximizing solution for each λ ∈ (0, 1). Next, we can
say that support set M̂λ

n (rλ) =
{

m ∈ M : rλ
nm = λr∗nm + λ̄r′nm > 0

}
when user n is M̂λ

n =

M̂∗
n ∪ M̂′

n, for every (λ ∈ (0, 1)). Note that the support sets
({

M̂λ
n
}N

n=1

)
, in particular, are

the same for all (λ ∈ (0, 1)). If two maximizing demand vectors exist with different support
sets of SWO, then the convex combinations of SWO for two maximizing demand vectors
retain the same support. This contradicts Lemma 1.

We prove the uniqueness and existence of a Lagrange multiplier vector b∗ based on
an SWO’s optimal demand vector r∗ [35]. In the following, we explain how the supplier
competition game’s unique equilibrium is (r∗, b∗).

4. Game Analysis

So far, with the multileader-follower supplier competition game, we showed that the
equilibrium is existing and unique, which is compared to the Lagrange multipliers and
SWO’s unique optimal solution. Now, here we explain that the Lagrange multipliers are
prices announced by suppliers. Furthermore, in this equilibrium, there are no more than
M − 1 undecided users.

The equilibrium concept is interpreted as follows [27]:

Definition 3. Say that we have a subgame perfect equilibrium (SPE) with a price demand tuple
(b∗, r∗), in which no participant would like to change at any stage of the game. Moreover, given the
price b∗, every user maximizes their payoff. Given users’ demand, r∗(b∗) and other participants’
price, every supplier maximizes its return.

The equilibrium is solved by backward induction. In Stage 2, the users’ equilibrium
strategy, users choose the best amount of resource r∗(b) based on the vector of prices b.
The function of Stage 2 is used to substitute the terms in Stage 1, the suppliers’ equilibrium
strategy, resulting in equilibrium price b∗. According to BGR decoding, r∗(b) is uniquely
determined by equilibrium price b∗.

4.1. Users’ Equilibrium Strategy

Taking every user’s decision into account, we can solve the problem of user payoff
maximization (UPM):

UPM : max
rn�0

vn = max
rn�0

un(
M

∑
m=1

rnmcnm)−
M

∑
m=1

bmrnm. (3)
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Lemma 2. Regarding the UPM problem, with each maximizer rn, ∑m=1 cnmrnm = y∗n, for a
unique nonnegative value of y∗n. Furthermore, for any m such that rnm > 0, bm

cnm
= mink∈M

bk
cik

.

Proof. We can easily verify that Slater’s conditions are satisfied via UPM [36]. The follow-
ing are the Karush–Kuhn–Tucker (KKT) conditions required for an optimal solution rn ≥ 0
of UPM of user n:

u′
n(yn)cnm ≤ bm, m ∈ M (4)

rnm(u′
n(yn)cnm − bm) = 0, m ∈ M, (5)

where yn =
M

∑
m=1

rnmcnm, rn ≥ 0. (6)

Here, (4) implies that u′
n(yn) ≤ ϕ, where ϕ = mink∈M

bk
cnk

. Based on user n’s utility
function, two scenarios are possible: u′

n(0) < ϕ and u′
n(0) ≥ ϕ.

For the first scenario, u′
n(0)cnm − bm < 0, so cnmu′

n(yn) − bm < 0 for all m ∈ M
since, by Assumption 1, u′

n(·) is a marginal utility-with a strictly decreasing function. So,
keeping (5) in mind, rnm = 0 for all m ∈ M. Then rn = 0, and with (6), we see y∗n = 0. So,
Equations (4)–(6) hold for the y∗n = 0 unique value.

With the second scenario, u′
n(0) ≥ ϕ. However, keeping in mind that u′

n(·) dwindles
to zero (Assumption 1), a unique ŷn ≥ 0 exists, such that u′

n(ŷn) = ϕ. First, we make sure
rn exists, such that Equations (4)–(6) hold with yn = ŷn. We find that Equation (4) holds,
because u′

n(ŷn) = ϕ ≤ bm/cnm for all m ∈ M. Then, with (5), we remember that for any m
such that bm/cnm > ϕ = u′

n(ŷn) there is rnm = 0. For any other m, bm/cnm = ϕ = u′
n(ŷn),

so, when it comes to (5), rnm can take any non-negative value. In particular, so that (6) holds
for the set {m ∈ M : bm/cnm = ϕ}, it is possible to choose rnm’s.

We provide the last part of the lemma by noting that rnm is positive only when
bm/cnm = ϕ. It remains to be seen whether ŷn is the only value of yn for which rn satisfies
Equations (4)–(6). We can say that for any yn < ŷn, u′

n(yn) > ϕ, which violates (4) for m ∈
arg min bk/cnk. Then, for each yn > ŷn, un(yn) < ϕ, which means that un(yn)cnm − bm < 0
for every m ∈ M. Equation (5) implies, then, that rnm = 0 for every m ∈ M, meaning that
yn = 0; this is contradictory to yn > ŷn > 0. The unique searched value y∗n is thus ŷn.

Definition 4. Each supplier m ∈ M with bm
cnm

= mink∈M
bk
cik

is included in user n’s preference
set Mn(b) for price vector b.

According to Lemma 2 and Section 2, we can divide users into decided and undecided
users based on the preference sets’ cardinality. The support sets in Section 2 are quite
similar to the preference sets. However, unlike support sets where users buy resources from
suppliers, it is just possible for a user to request a resource from suppliers in the preference
set. Evidently, the support set acts as a subset for the preference set: M̂n(r(b)) ⊂ Mn(b).
Knowing this, we set about using the preference sets to construct a BGR so that there are
on-loops with probability 1.

We define the Lagrange multipliers b∗ as prices. Every user knows this information,
so it is not difficult to calculate the preference sets of other users and construct the BGR
in comparison. Undecided users can determine their unique demand vector using a BGR
decoding algorithm. For this, we consider all the demand vectors at a specific time and
consider the equality of supply and demand. Then we find the uniqueness of the demand
from BGR decoding. Although an infinite amount of best responses exist under prices
b∗, the supply and demand will balance only if the demands are found by BGR decoding.
Later, we prove that it is the supplier competition’s unique SPE.

206



Appl. Sci. 2022, 12, 8798

4.2. Suppliers’ Equilibrium Strategy

The user’s utility functions determine the suppliers’ optimal choice of prices. A utility
function un can be characterized by its coefficient of relative risk aversion [37], i.e., kn

RRA =

− yu′′
n (y)

u′
n(y)

. This quantity characterizes the relationship between price and user demand.

Assumption 3. Relative risk-aversion coefficient. kn
RRA < 1, ∀n ∈ N.

Some utility functions satisfy Assumption 3—for example, log(1 + y) and the ϕ − f air

utility function s y1−ϕ

1−ϕ , for ϕ ∈ (0, 1) [38]. To maximize the return, a monopoly will sell
all the resources Rm. Once a supplier decreases the price, the users’ demand substantially
increases, resulting in the supplier earning more than before. Thus, the supplier will lower
the price until total supply and total demand are equal.

Theorem 2. In keeping with Assumption 3, SPE as a price vector tuple meeting KKT conditions.
We constitute the supplier competition game’s SPE using the Lagrange multiplier vector b∗ and
SWO’s unique socially optimal demand vector r∗.

Proof. Suppose b = [b1, b2, . . . , bM] is the price that suppliers charge. As defined in
Equation (3), every user faces a local maximization problem UPMn(b). Given Assumption 3,
we further remark that r is an SPE of the supplier competition game only if each supplier’s
supply equals demand, n.e., ∑N

n=1 rnm = Rm for every m ∈ M. So, we consider the SPE as
a price vector tuple meeting KKT conditions. Moreover, these meet the KKT conditions for
any vector tuple b, r to be the SWO’s maximizing solution. We, therefore, designed a formal
equivalence between the maximizing demand vector and SPE of the supplier competition
game and the SWO problem (r∗, b∗)’s Lagrangian multipliers. From this, we deduce that
(r∗, b∗) form the supplier competition game’s unique SPE.

That social efficiency is not reduced by suppliers’ competition results in users’ utility
functions being strictly concave and the users’ demand is relatively elastic. Therefore, if the
price decreases a bit; demand will increase so much that the return is more than before.
If suppliers set the price different from the optimal price b∗, the supply and demand are
unequal. According to Theorem 2, we define the supplier competition game’s unique SPE
(b∗, r∗) as the equilibrium.

5. The Algorithm

Here, we provide a continuous-time algorithm, in which all the variables are func-
tions of time. For brevity, we write rnm(t) and bm(t) as rnm and bm, respectively. Then
we write their time derivatives ∂rnm

∂t and ∂bm
∂t as ˙rnm and ˙bm. Note that r∗ is the SWO’s

unique maximizer, while the corresponding Lagrange multiplier vector is b∗. According to
Theorem 2, we know that the supplier competition game’s unique SPE is (b∗, r∗), and its
values are invariant.

Given the demand vector rn(t), we write user N’s marginal utility according to rnm as
ψnm(t) or simply ψnm.

ψnm =
∂un(rn)

∂rnm
= cnm

∂un(y)
∂y

|y=yn=∑M
m=1 rnmcnm

. (7)

Here, we denote ψnm(t)’s value evaluated at r∗n as ψ∗
nm. Then we define column vectors:

∇un(rn) = [ψn1, . . . , ψnM]T and ∇un(r∗n) = [ψ∗
n1, . . . , ψ∗

nM]T .
Next, (y)+ = max(0, y) is defined, so that

(y)+x =
{

y x > 0
(y)+ x ≤ 0.
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In the following, the standard primal-dual variable update algorithm is motivated by
the work in [25]:

ṙnm = kr
nm(ψnm − bm)

+
rnm

, n ∈ N , m ∈ M (8)

ḃm = kb
m(

N

∑
n=1

rnm − Rm)
+
bm

, m ∈ M. (9)

Here, kr
nm and kb

m are the constants that represent update rates. It is ensured that a
variable of interest (rnm or bm) will not turn negative when it is zero, even if the update’s
direction is negative. We define the tuple (r(t), b(t)) controlled by Equations (8) and (9) as
the differential equations’ solution trajectory. Users only need to be given the prices that
suppliers request. The providers do not need to be given other suppliers’ demands of the
users, except for that of their resources. Only user n needs to know cnm, m ∈ M.

The procedure of bipartite graph representation is as follows. First of all, for every
undecided node n ∈ N̂ , calculate the checksum Λn ← y∗n. Then, for every supplier m ∈ M̂
calculate the checksum Γm ← Rm − ∑n:(n,m)/∈G r∗nm, ∀m ∈ M̂. Next, for every r∗nm > 0, add
edge (n, m) to the edge set E. And we have two steps in the loop. Step 1, Find a leaf node l
and associated edge (n, m), if the leaf node is a user node, then r∗nm ← Λn

cnm
, else r∗nm ← Γn.

Step 2, Let Λn ← (Λn − r∗nmcnm) and Γn ← (Γn − r∗nm), remove edge (n, m). Keep doing
these two steps until E ∈ ∅.

To find the unique optimal r∗n for undecided users, the algorithm provides detailed
procedures. Here, E,

(N̂ ), and
(M̂)

are sets of edges, user nodes, and supplier nodes
separately. Using the algorithm, we can find the demand of undecided users. Because the
probability that a BGR has no loops is 1, suppose that the BGR is an unrooted tree. Then
an uncomplicated iterative algorithm can remove a node with a single associated edge,
which we define as a leaf node and its incoming edge at each iteration. First, a leaf node is
found in the BGR. Second, the demand of the leaf node’s incoming line is given from BGR
Feature (1) or (2). Third, the parent node’s check-sum is updated with this value. Finally,
the leaf node and incoming edge are removed. This process is one iteration. Iterate until no
edges exist in the graph.

We can run the step finding the demand of undecided users because the probability
that a BGR has no loops is 1, and we suppose that the BGR has no loops. However, in
the last iteration, only one supplier node m plus one user node n exist, connected via
an edge with value r∗nm. Λn and Γm are their check-sums, which satisfy Λn = Γmcnm,
because Λn = r∗nmcnm and Γm = r∗nm. At last, undecided users’ unique demand is given by
the algorithm.

6. Numerical Results

We need to expand the settings to get numerical results. In Example 1, the fraction
of time restricted to the 5G wireless supplier’s frequency band is the resource that is
being sold, i.e., Rm = 1 for m ∈ M. Let Wm = 700 MHz, m ∈ M. Wm means the 5G
wireless suppliers’ bandwidth. anlog(∑M

m=1 rnmcnm + 1) is user n’s utility function, in which
the spectral efficiency cnm from the Shannon formula 1

2 Wlog(1 + Eb/N0
W |hnm|2), an is the

“willingness to pay” factor, which we assume is the same among users, rnm is allocated time
fraction, and Eb/N0 is the transmit power divided by thermal noise.

Suppose that the coding choices and modulation are perfect, with a continuum of
values supplying a steady communication rate. Users are placed, then, uniformly in field
that is 500 × 500 square meters. We only provide these parameters to elucidate our point;
we can change the numbers and the theory still applies to the parameters. Let us think
of an example in the 5G background with 5 suppliers and 20 users. In Figures 2 and 3,
the equilibrium prices are represented as dashed lines. The competition among users can
influence the equilibrium. Notice that supplier d offers a higher price than supplier a.
Therefore, although supplier d can provide better resource quality, the user’s choice will
also be affected by the equilibrium prices. Meanwhile, supplier b has the most buyers, its
price is the highest, as Figures 2 and 3 shows.
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Figure 2. Evolution of difference between demand and supply.

Figure 3. Evolution of prices. The chart shows that when the equilibrium state is reached, the price
of supplier d is approximately 1.5 times higher than that of supplier a.

As for the convergence time in the discrete-time version: Suppose there are only
five suppliers, then the number of users increases from 20 to 100. At each condition, we
repeat the experiments 2000 times with random locations of suppliers and users. That way,
we can obtain the average convergence speed and plot it. We define convergence as the
number of iterations after which εRm is larger than the gap between demand and supply.
For different ε, Table 1 shows the average convergence time. Generally, if ε = 10−3, the time
to convergence is 2000–4000. If ε = 10−4, the time to convergence is 3000–6000.
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Table 1. Average time to convergence for different ε. When εRm is larger than the gap between
demand and supply, we define the number of iterations as convergence. In comparison, the smaller
the parameter ε, the larger the gap between supply and demand, so more iterations are required.
For instance, if ε = 10−3, the time to convergence is 2000–4000 in most cases, if ε = 10−7, the time to
convergence is 6000–12,000.

Number of Users ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

Number of iterations

20 2022.4 3105.7 4209.9 5314.0 6209.9
30 2068.8 3006.3 4068.8 5110.5 6110.5
40 2407.0 3802.9 5011.2 6302.9 7532.0
50 2786.8 4203.5 5807.7 7016.0 8203.5
60 3145.8 4833.3 6312.5 8020.8 9520.8
70 3525.6 5129.8 7025.6 8733.9 10,067.3
80 3988.8 5509.6 7530.4 9509.6 10,926.3
90 4243.6 6035.3 8056.1 10,076.9 11,931.1

100 4435.9 6456.8 8435.9 10,540.1 12,519.3

In Table 2, we change the number of suppliers and see how the average convergence
time changes. Now, let ε = 10−4, and let it be constant. The update rates decide the
convergence time: with low rates, the variables are likely to stabilize, and they will not
take long to converge. In contrast, with high rates, the variables may converge rapidly.
Based on Section 4’s theoretical analysis, to obtain the algorithm’s global convergence, let
us distribute update variables randomly. Generally, the algorithm will iterate many times
to converge if the ratio of users per supplier is too low or too large.

Table 2. Average time to convergence for different numbers of suppliers when ε = 10−3. The chart
shows that when the ratio of suppliers to users is too high or low, the algorithm will iterate many
times to converge. For instance, nearly 7000 iterations are required for 9 suppliers and 20 users. When
the number of users increases gradually, the number of users is approximately positively correlated
with the average convergence time.

Number of Users 5 Suppliers 7 Suppliers 9 Suppliers

Number of iterations

20 6814.7 4199.3 3199.3
30 3947.5 3493.0 3045.4
40 3493.0 3793.7 3793.7
50 3849.6 4150.3 4255.2
60 4402.0 4604.8 4807.6
70 4807.6 5101.3 5304.1
80 5108.3 5437.0 5611.8
90 5611.8 5723.7 6108.3

100 6059.4 6213.2 6562.9

At last, Table 3 presents the average convergence time when there are five suppli-
ers with the standard variation. If the number of users is not 20, it does not affect the
convergence time variance. If the number of users per supplier is under 4, update rates
significantly impact the algorithm. In Table 2, we find that demands and prices vibrate and
converge slowly in such instances.
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Table 3. Including standard deviation in the average time to convergence.

Number of Users Mean Standard Deviation

Number of iterations

20 3098.0 2397.7
30 3053.3 899.1
40 3804.0 1095.1
50 4208.9 853.1
60 4798.3 1002.9
70 5306.9 904.9
80 5608.1 1089.3
90 6013.0 1037.5

100 6510.1 1198.8

7. Conclusions

This paper considers the competition between a random number of 5G wireless
providers to attract users with different channel gains and willingness to pay. In this study,
we utilized a two-stage wireless provider game to simulate the interaction in this work,
and we proved the convergence and unique equilibrium. In the provider competition, our
findings show that there is only one socially optimum resource allocation. At equilibrium,
there are some undecided users. There are also fewer undecided users than providers.
Finally, we designed a decentralized algorithm that uses only regional information to
converge to the equilibrium demand vectors and price.
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Abstract: Despite the unabated growth of algorithmic decision-making in organizations, there is a
growing consensus that numerous situations will continue to require humans in the loop. However,
the blending of a formal machine and bounded human rationality also amplifies the risk of what is
known as local rationality. Therefore, it is crucial, especially in a data-abundant environment that
characterizes algorithmic decision-making, to devise means to assess performance holistically. In this
paper, we propose a simulation-based model to address the current lack of research on quantifying
algorithmic interventions in a broader organizational context. Our approach allows the combining of
causal modeling and data science algorithms to represent decision settings involving a mix of machine
and human rationality to measure performance. As a testbed, we consider the case of a fictitious
company trying to improve its forecasting process with the help of a machine learning approach.
The example demonstrates that a myopic assessment obscures problems that only a broader framing
reveals. It highlights the value of a systems view since the effects of the interplay between human
and algorithmic decisions can be largely unintuitive. Such a simulation-based approach can be an
effective tool in efforts to delineate roles for humans and algorithms in hybrid contexts.

Keywords: machine learning; system dynamics; simulation modeling; algorithmic decision-making;
bounded rationality; supply chain planning

1. Introduction

The phenomenal growth of AI in recent years, especially machine learning (ML), a
self-improving subfield of AI, has cemented its status as a general-purpose technology [1],
like the steam engine or electricity of the past. Therefore, and unsurprisingly, it is also at
the center of a strident debate about its impact across multiple dimensions (e.g., economic,
social, and ethical) [2], with two very noticeable camps emerging: the optimists and the
pessimists [3]. The former camp primarily extolls the virtues (current or anticipated) of ML
benefiting all of humanity. The latter, however, warns us about technological sophistication
outstripping our ability to reason about its unintended consequences.

Less noticeable, but increasingly gaining traction, is a third camp composed of pragma-
tists. While acknowledging AI’s staggering achievements (thus refuting ardent pessimists),
they point out that much progress is still ahead of us and call attention to mounting evi-
dence that should give pause to unchecked optimism. In this view, numerous examples of
brittleness (for instance, in the face of adversarial ML) [4,5], poor out-of-distribution perfor-
mance [6], challenges with explainability [7] (compounded by regulatory pressures [8]),
and poor adoption [9] must count as evidence. (On the last point, a recent study has shown
that the adoption rate of AI in organizations in the US is less than 7% [10].)

Pragmatism about ML’s status and prospects promotes recognition that autonomy
is not a viable goal in numerous situations, particularly in open-ended problems (where
there is uncertainty about relevant variables, and the effects of causes tend to be distant
in space and time). It leads to advocacy for humans in the loop [11]. Of course, given
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the field’s dynamism, the nature of human–ML collaboration must naturally evolve, as
well. Therefore, the inevitability of roles for humans in complex decision-making situations
coupled with the fast-paced nature of technological change elicits a nuanced view of
automation. On this account, a picture of automation antithetical to a simplistic either/or
dichotomy [12] emerges.

It is a picture of persistent tension caused by task interdependencies, which are apt
to change over time, giving rise to spatial and temporal dynamism. For example, Shes-
takofsky’s [13] empirical work shows that automating a task impacts adjacent tasks in that
these (say, previously manual tasks) might benefit from augmentation. Furthermore, the
trajectory of these changes heavily depends on the organizational context. Therefore, what
further crystallizes is an argument that rejects technological determinism [14] and places
importance on context. One where besides the apparent technical aspects, gross behavioral
elements such as social relations and politics play substantial roles—a view that accords
with the economic theory of complementarities [15]. It holds that studying technological
adoption benefits from viewing the human–technology ensemble as a sociotechnical system
embedded in an organization, creating a system of complements, a more formal notion of
the intuitive idea of synergy.

Although the literature on complementarity illuminates how organizational value
derives from the interactions between the embedded technology and the surrounding
organizational and broader environmental factors [16], there is a gap when the technology
in question is ML [17]. The autonomy that ML affords, albeit partial, represents a break
from traditional IT that predominates the discourse about the impact of technology on
value creation and capture. In particular, ML’s role transcends a mere tool and can assume
various other roles, such as those of assistant, peer, and manager [18], depending on con-
text/maturity [19]. A profound consequence of this, plainly stated, is that the ML agents
(the technology) now contribute to organizational learning, the object of which is organiza-
tional mental models that drive behavior (and create value, or not). Puranam [20] points
out an unprecedented dynamic in the history of the technology-driven complementarities
that this produces. ML agents can now make the same decisions as humans. So, through
aggregation (the wisdom of crowds effect [21]), organizations could generate performance
superior to what humans or ML can achieve working alone. Since organizational mental
models are the storehouse of creativity, this further implies that, jointly, not just improving
existing ways but entirely new ways of doing things (the realm of strategy) open up [22].

The modest premises discussed (self-learning ML, the importance of humans in the
loop, and new forms of complementarity that ML affords) combine to yield enormous
implications for organizational performance. The challenge of achieving the desired level of
performance transforms into a coordinating coalition of human and ML agents that explore
the performance landscape in search of tall peaks. Since in the real world of organizational
problem-solving, payoffs and the menu of choices are uncertain [23] (as opposed to the
closed world of games)—what Hogarth terms “wicked” problems [24]—the exploration
has to contend with a “rugged landscape” [25] (i.e., the risk of local maxima).

Knudsen and Srikanth [26] observe that prior work on the normative question of ex-
ploring the terrain—or the problem space [27]—in search of satisfactory solutions assumes
the organization as a “unitary actor”. They note that researchers have scarcely attended to
the collaborative aspects (in particular, the role of mutual learning). For instance, the issue
of second-guessing arises when there are multiple agents, which can lead to dysfunctional
behavior such as, to use their phrasing, “joint myopia” (or local rationality [28]) or “mutual
confusion” (a result of misperceiving the causes of positive or negative payoffs). Although
further complexities arise when humans and ML team up [17], a standout dimension is
the inability of ML to fully imbibe tacit knowledge [29] that is crucial to solving many
complex tasks.

This is a topic that opens up several avenues for research. However, they fall into two
broad categories. The first is research that focuses on the usability aspects of the technology
itself. For instance, a burgeoning field known as explanatory AI [30] tries to make ML
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models less opaque by endowing them with the ability to answer “why” questions, that
is, why a specific result or counterfactual questions such as “what would have happened
had the input been different?” (in short, an ability to “introspect” their “beliefs”). The
second concerns itself with the appropriate use of ML to maximize value—organizational
design questions such as the division of labor between humans and ML, and ideal learning
configurations [20] fall in this category.

A prerequisite to fruitful research pursuit in either category is the ability to evaluate
the combined rationality [31] sufficiently broadly to elucidate the contribution of ML (and,
by extension, data) in the context of a longer means-end chain (connecting behavior to
business value). It is to this that our work seeks to contribute. We adopt a simulation-
based approach (using system dynamics) for the evaluation model. System dynamics is
particularly amenable to investigating emergent properties of interdependent actions since
it emphasizes dynamic complexity [32] (e.g., due to feedback, a core component of learning)
more than component-level complexity. Specifically, our contributions are two-fold:

• We complement the conceptual literature on human–ML teaming that, by necessity (as
it caters to various types of organizations), provides general guidelines on effectively
structuring collaborations. Our modeling framework allows quantification of the
blending of algorithmic ML rationality and bounded human rationality. We test our
approach using an imaginary case of a company trying to improve its supply chain
planning process.

• We complement existing work on explanatory AI in terms of framing “why” questions.
Concretely, two metrics generally evaluate ML’s explanations: interpretability and
completeness [33]. Our model provides the organizational problem-solving context
(shedding light on the landscape of choices human and ML agents navigate) that must
inform the selection of relevant “why” questions.

The structure of the remainder of the paper is as follows. In Section 2, we discuss
conceptual frameworks that provide guidelines for human–ML role separation, from which
we draw insights that inform the theoretical base for the quantitative framework. In
Section 3, we justify our design choices in the framework. Specifically, we explain why
choosing a systems approach to modeling best fits the design requirements outlined at the
end of Section 2. In Section 4, we describe the details of the framework and run tests using
synthetic data to validate our central claim about the risk of local rationality. Finally, in
Section 5, we discuss the implications of our findings and comment on what they have to
say about related work in this area.

2. Related Work

Various qualitative approaches in the literature suggesting the creation of a human–ML
coalition adopt as a guide the insight that ML suffers from what Marcus terms “pointillistic”
intelligence [6]. Therefore, in this reading, the overarching brief for humans is to serve
as orchestrators in the group such that it can exhibit “general collective intelligence” [18];
Malone describes this group of human strategists and ML tacticians as superminds. Kas-
parov has written about the strategy/tactics distinction [34] in the context of chess, which
serves as a valuable proxy for any intellectual endeavor [35]. It stems from acknowledging
that although the cognitive architecture of humans predisposes them to poor performance
(compared to ML) on memory and information processing, it allows them to excel in
long-term planning, crucial for convergent thinking or the process that results in choosing
from among alternatives. (The importance of strategy to decision-making is why Malone
recommends that we consider putting computers in the group rather than putting humans
in the loop as the mantra for creating effective coalitions.)

Despite the heterogeneity in the details informed by diverse philosophical and intel-
lectual commitments, these approaches share a similar strategy for delineating human and
ML roles. They rely on noticing that tasks, seen through the lens of tractability, fall along a
spectrum, with some resembling games—fictions of the human mind—or are “game-like”,
while others, closer to life itself, are “life-like”. Game-like tasks are more agreeable to
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a closed formulation as they have more of the following properties. The rules are well
specified and require minimal background knowledge, feedback is unambiguous, feedback
loops are short, and behavior is observable. From the perspective of objective attainment,
such properties contribute to the connections between the means and the end being neither
tenuous nor uncertain (unlike in life-like tasks where the structure is a “tangled web” [36]).
It also implies much less difficulty in agreeing on the “best” means for a given end, further
aiding a closed formulation.

In contrast, several factors complicate modeling efforts for life-like tasks where so-
cial aspects dominate, the value-ladenness of means/ends scuttles efforts to find the
“best” option, and poor or absent feedback contributes to flawed mental models. In short,
game-like tasks represent a “kind” environment, whereas life-like tasks inhabit a “wicked”
environment [24]. A sensible strategy that the approaches often adopt is carefully choos-
ing dimensions that allow the ordering of tasks along the game-like/life-like spectrum,
suggesting the appropriate blending of algorithmic and human rationality. In this way,
the dimensions proposed include open/closed [19], weak/severe (according to risk) [19],
social/asocial [37], creativity/optimization [37], low-dexterity/high-dexterity [37], deci-
sion space specificity, size, decision-making transparency, speed, and reproducibility [21],
abstraction, intuition/prediction, simulation [38], and thinking/feeling [39].

Although the conceptual models provide a means to assess tasks according to their
suitability for ML, they suffer from a critical drawback. Since the recommendations must
be broadly applicable, the frameworks have an “objective” bias regarding the problem (that
human–ML teams must solve), which yields a disinterested observer or experimenter’s
eye view of the problem. However, one can scarcely begin to solve real-world problems
as posed. A wealth of research in cognitive science supports the importance of framing or
problem representation, emphasizing the complexity reduction aspects of problem-solving
that make otherwise intractable problems solvable. In their seminal paper on human
problem solving, Newell and Simon [27] draw a distinction between the objective problem,
the “task environment”, in their phrasing, and the problem representation (namely, the
“problem space”). The transformation process from the former to the latter is a function
of problem complexity. Most problems of interest in organizational decision-making—the
consumers of the conceptual frameworks—elude optimal solutions requiring significant
simplification efforts. (Simon introduced the term “satisficing” to denote the finding of
inexact but satisfactory solutions [40].)

The contrast between the (unreasonable) expectations of optimally solving problems
and the reality of searching for a suitable representation that yields good-enough solutions
mirrors the contrasting philosophies of the economic man and bounded rationality in cog-
nitive psychology. Several streams of research in organizational theory have explored the
implications of bounded rationality in decision-making. They include Klein’s naturalistic
decision-making [41], Galbraith’s organizational information-processing theory [42], Nel-
son and Winter’s evolutionary theory of economic change [43], and Gigerenzer’s ecological
rationality [44]. These efforts outline structures and tactics that constitute organizational
adaptations to the challenges of their task environments. In unison, they reject the idea of
an infinitely malleable organization that takes the shape of the problem it is trying to solve,
thereby advocating subjectivity (that bounded rationality inevitably entails).

Among the concepts that underpin problem-simplification approaches, the notion
of hierarchy stands out as a unifying construct serving as a conceptual glue—in Simon’s
words, “[h]ierarchy [ . . . ] is one of the central structural schemes that the architect of
complexity uses” [40]. Hierarchy captures the essence of the near-universal technique of
breaking down a complex problem into simpler parts that complex systems embrace. The
concept of hierarchical planning systems [45], widespread in supply chain management,
vividly illustrates the divide-and-conquer approach inherent in the hierarchical notion. In
hierarchical planning’s most straightforward formulation, the system stratifies decisions
into strategic, tactical, and operational. As a problem passes through the stages, it under-
goes the progressive addition of constraints that transform a relatively open problem into a
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closed one. It results in the sequential imbuing of subjectivity, simultaneously simplifying
and providing context to the problem for the organization.

The preceding discussion highlights the importance of an organization-specific prob-
lem formulation for evaluating the pairing of humans and ML.

Since such an evaluation typically precedes implementation, it must be quantita-
tive and, given that organizational decisions are context-rich, sufficiently broad in scope,
enabling a holistic assessment. To the best of our knowledge, such a quantitative simulation-
based model to evaluate the blending of formal/ML and substantive/human rationality in
a holistic context is currently lacking, a gap this paper seeks to redress.

3. Design of a Quantitative Model

The desirable traits outlined in the previous section (that an evaluation framework
must possess) to assess collaborative human–ML decisions are consistent with findings
from the business value literature that deals with the value of technology investments or,
more generally, information. A fundamental result from this stream of research, yet one
that is often overlooked, is that value does not come from mere investments but derives
from proper use [46], reinforcing the importance of quantifying any intervention.

More detailed empirical work [16] on the mechanics of value creation, especially in the
resource-based view tradition, recognizes the role of firm-specific resource configuration
(erecting “resource position barriers” [47]) in establishing sustained competitive advantage.
A resource in this formulation is broad and encompasses such factors as business processes,
policies, and culture. This expansive view contrasts with the classical economics definition
of resources restricted to only labor, land, and capital. In such an integrated view of value,
an assemblage of resources, writ large, mediates technology’s performance impact on
business outcomes.

An analogous notion to firm-specific resource configuration is the concept of comple-
mentarity [48] in organizational economics. In addition to giving quantitative rigor to the
hypothesis of synergy behind specific resource configurations, research on complementari-
ties also shows the futility of simplistic ideas of “best practice”, a fallacy because business
performance is a function of a highly subjective, tenuous mix of internal and external
variables. There is substantial empirical [49–51] and anecdotal evidence [48] pointing to
the precarity of a desirable system of complements. An organization might suffer signifi-
cant unintended consequences due to relatively minor changes (also revealing the naivety
behind blind imitation). As a result, the metaphor of moving along a rugged landscape
(the ruggedness a function of industry dynamism and competition [52]) aptly describes
an organization’s gradual and tentative attempts to improve its business performance. It
aligns with the evolutionary model where the landscape has many local maxima that make
finding “good enough” solutions (“satisficing”) the only sensible approach.

With empirical support for the subjectivity of technological impact on organizational
performance lending credence to intuition from various theoretical bases (chiefly bounded
rationality, systems theory, and organizational information processing theory), one can
make the implications for an evaluation model—previously mentioned requirements—
more precise.

Quantitative. The relative nascency of ML (the technology under consideration here)
and the novelty of combining machine and human intelligence further compound the
trial-and-error nature of finding an appropriate means of embedding for technology in
existing organizational assets. Consequently, it becomes essential to quantify the benefits
of competing options, giving rise to the requirement of “quantitative” modeling. Here,
the definition of the term quantitative follows from Bertrand and Fransoo [53], which
translates to the need for basing the model on a set of variables with “causal relationships”
between them.

Simulative. From a modeling perspective, the diversity of paths to value (subjectivity
in action) presents the challenge of abstracting from the details while still capturing the
richness of context, which plays a pivotal role in determining outcomes. A measure of

218



Appl. Sci. 2022, 12, 11642

the appropriateness of a model’s level of abstraction is its ability to predict real-world
performance. More technically, the model must be “empirical”„ again adopting Bertrand
and Fransoo’s terminology. The alternative approach, called “axiomatic”, focuses on better
understanding the problem structure (relationship between variables in the model); the
objective here is not about achieving correspondence with reality.

The chosen term simulatively performs a double duty: in addition to denoting ex-
planatory power, it forecloses the option of closed-form mathematical formulation, which,
in line with the philosophical commitment to bounded rationality, is infeasible given
the combinatorial complexity of even moderately sized problems where performance is
context-sensitive. In a critique of the predilection for mathematical solutions to closed-form
simplifications of real-world problems in the operations research field, Ackoff has cautioned
that they tend to be “mathematically sophisticated but contextually naive” [54].

Holistic. A synthetic outlook is a requirement implicit in the term empirical, seen
in combination with the premise of subjective problem-framing. However, given its im-
portance, it is a point that bears articulation. The opposite of synthesis is analysis, a
reasonable approach to answering mechanistic “how” questions [54]. However, searching
for causal explanations of performance requires answering “why” questions, justifying the
“holistic” imperative.

Collaborative. The decision-making process must accommodate algorithmic rational-
ity and human judgment or substantive rationality that highlights the (uniquely) human
capability for value-rational decisions.

Consistent with evidence from studies about ML’s impact on labor [55] that hold that
the appropriate unit of analysis is at a task level (rather than at a job level, which is too
coarse), the (human–ML) role distinction is likely to be task- and organization-specific.
Despite the specificity, a pattern likely to repeat, in agreement with the conceptual frame-
works discussed earlier, is the preference for judgment in open contexts and algorithms
in relatively closed contexts. Consequently, a challenge—and the raison d’être for such
a model—is identifying if what appears to be rational in a limited or local setting [28]
remains so when considered globally and does not devolve into dysfunctionality [56].
The need for systemic evaluation narrows the field of candidate paradigms, with system
dynamics, a technique created by Jay Forrester [32], emerging as the best choice upon
further consideration.

System dynamics buys into a core tenet of complex systems by recognizing that the
thrust while modeling must be on the interactions between the components rather than
the intricacies of their inner workings. This perspective, inspired by cybernetics, holds
that the information flows or feedback are at the heart of learning, influencing our (or
organizational) mental models, which manifest as behavior [57]. Noting the pervasiveness
of feedback loops (often passing unnoticed) in explaining behavior, Powers goes so far as
to say, “ . . . it is as invisible as the air we breathe. Quite literally, it is behavior” [58]. A
powerful tool in the system dynamics toolbox, the causal loop diagram, operationalizes this
way of thinking about behavior where it is “one of the causes of the same behavior” [58] by
depicting a system of cause-and-effect variables in a closed loop.

Therefore, this illustration technique is a common design artifact before implementa-
tion in a tool such as Vensim [59,60] that finds extensive use in industry and academia for
its straightforward interface and simulation and reporting capabilities. It is also the tool
used in the experiment described in the next section.

Causal loop diagrams that visualize a system’s feedback structure turn up another
vital property of complexity. The individual causal links are simple enough but collectively
produce complex emergent behavior, epitomizing the wisdom of complexity theory that
Simon articulates thus: “complexity, correctly viewed, is only a mask for simplicity” [40].
In the modeling process, this property has the beneficial effect of simplification. Since the
scope boundary is drawn more broadly (compared to alternative approaches)—in line with
holistic thinking—the emergent nature of complexity has an overall offsetting effect in the
modeling effort.
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The discussion about system dynamics has shown that the paradigm meets the quali-
tative, simulative, and holistic criteria. However, regarding collaboration that requires the
mixing of judgment and algorithmic reckoning, a tool such as Vensim does not natively
support incorporating ML methods. Here, a Python library, PySD, developed by Houghton
and Siegel [60], addresses the gap and allows the infusion of data science techniques into
system dynamics models, thus satisfying the collaborative criterion.

PySD enables the bridging of causal modeling (the backbone of system dynamics) and
the ever-growing field of data science. It opens doors to exploiting the natural synergy
between the fields: the former premised on the tenet that structure drives behavior, and the
latter rich in techniques that allow both the modeling of more sophisticated behaviors and
their analysis (which can inform improved models).

Despite the potential for embedding ML agents in system dynamics models, the
overarching principle that the presence of structural elements such as feedback, delays,
and stocks means that one cannot reliably predict the overall dynamic behavior of a system
still holds. Thus, such systems’ “dynamic complexity” [32] renders analytical solutions
infeasible, providing further impetus to simulation-based approaches.

The importance of the structure noted above stems from taking a firm stance (which
PySD implicitly does) related to the epistemological question of whether knowledge can be
model-free. There have been claims that with big data, we have entered a new paradigm
where data can speak for themselves [61], a claim that contradicts the core of the scientific
method. However, Pearl [62] and numerous others (e.g., [63,64]) argue that meaning relies
on a structure one cannot build from data alone. Trending issues in ML around out-of-
distribution performance and explainability further support the position that to progress
from merely observing correlations to attributing causes, one has to, in Pearl’s words,
climb the “ladder of causation” [65]. It requires translating mental representations, the
infrastructure humans use so effectively, into formal models that, in conjunction with data,
can make understanding possible.

4. Experiment

This section introduces a small-scale experiment to test the viability of the main ideas
in the proposed modeling framework (the ML code, system dynamics simulation files, and
data are available on GitHub under: https://anonymous.4open.science/r/aicollab-model-
C108) For evaluating human-AI collaborative decision-making.

It focuses on the importance of a holistic problem-solving approach that is more
resistant to the potentially distracting effect [28] of superior information processing in that
such an approach is wary of immediately visible improvements local in time and space,
masking unintended consequences that may be quite distant (due to delays and complex
feedback structures).

Concretely, improvements in the forecasting process—the result of a machine learning
algorithm replacing a judgmental process—represent the “visible” local improvement in
the experiment. However, this unearths a suboptimal decision routine in the production
process that results in overall underwhelming performance (especially given the magnitude
of improvement in forecasting accuracy when viewed narrowly).

4.1. Problem Context

The experiment involves a fictitious company, Acme, attempting to improve its prod-
uct sales and returns-forecasting process. The company uses a simple first-order exponential
smoothing process—a simple but surprisingly hard-to-beat procedure [66]—and would
like to evaluate the benefits of implementing an advanced machine learning algorithm,
especially for returns. The basic assumption that returns forecasting can benefit from an
algorithm more sophisticated than Acme’s current univariate (or single-variable) forecast-
ing method is well founded. Specifically, more sophistication afforded by a multivariate
approach might improve forecasting accuracy by using additional (leading) indicators,
such as historical sales in the case of forecasting returns.
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Although a simple comparison of forecast accuracy between the two approaches is a
reasonable starting point for evaluating the potential benefits, it is often insufficient. The
insufficiency stems from the forecasting process being just one among several processes
in end-to-end process chains that encompass forward (material flow from suppliers to-
wards customers) and returns flows (where the customer becomes the supplier for the
post-consumer product [67]). Therefore, it is critical to check the local intervention (the
forecasting process in the case of this experiment) for unintended global consequences. At
Acme, besides the planned machine learning model for forecasting, most other decisions
are assumed to be based on rules of thumb or heuristics. Therefore, a systemic assessment
(checking if the locally rational algorithmic component translates globally, given that there
is a mix of algorithmic and human rationality at this level) of the comingling of human and
algorithmic decisions entails modeling the relevant parts of the adjacent production and
order-fulfillment processes.

4.2. Data

The experiment (see Figure 1 for experimental protocol) uses a seasonal time series
from the M forecasting competition [68] to generate a synthetic sales dataset by first
decomposing it (into trend-cycle, seasonal, and remainder components) and subsequently
constructing samples with similar demand characteristics.

Figure 1. Experimental protocol consists of three stages: generation of synthetic data, creation of the
RNN model for predictions, and incorporation of the RNN model in the system dynamics causal
model for simulating scenarios for heuristics (human)–ML collaboration.

Regarding the returns time series, the assumption is that Acme has three classes of
customers with distinct returns characteristics or profiles (where a profile is a specific com-
bination of the mean and standard deviation of returns that follows a normal distribution).
A discrete event-simulation model built in AnyLogic [69] on this assumption generates
the requisite returns data. It first spawns customer “agents” (based on the sales data) and
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sorts them randomly into three groups, assigning them their corresponding returns profiles.
After a specified time offset, the model simulates an agent generating a product return per
its profile—that is, a sample value, which stands for the number of units returned, is drawn
from a normal distribution with the profile’s mean and standard deviation (see Figure 2).

 

Figure 2. Dataset generation for product returns.

The synthetic data generation process outputs a file consisting of 480 months of
monthly sales (broken down by customer group) and returns data. Before model generation,
the data undergo a further important processing step designed to tackle the problem of
poor generalization common in ML.

Poor generalization performance, or the phenomenon of overfitting, is when model
performance deteriorates severely on unseen data. It typically happens when the model
learns spurious correlations or memorizes inputs [70] to return good training performance
that does not translate to good performance in the real world. The usual recommendation
to avoid overfitting is to split the data into train, test, and validation sets [71], which
the experiment adopts by splitting the data according to a 60/10/30 ratio. Although
several specific techniques exist to perform the split, the experiment takes a simple holdout
validation approach. In this variant, the training set determines model parameters, the
validation set helps fine-tune those parameters, and the test set forms the basis for the final
performance evaluation. Given the relatively simple nature of the original seasonal sales
data with a limited number of possible features and the synthetic data generation approach
(affording finer control over the noise, thus placing modest demands on sample size), there
are no grounds for more complex treatments such as K-fold and iterated K-fold validation
more suited to feature-rich/data-sparse contexts [70].

4.3. Main Components
4.3.1. Modeling Judgmental Forecast

System dynamics offers various techniques for modeling simple rules that charac-
terize human decisions in most contexts [57]. One such representation is the so-called
anchor-and-adjust [72], which produces an effect similar to the first-order exponential
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smoothing procedure, which serves as the experiment’s current-state judgmental process
for forecasting sales and returns. The term anchor-and-adjust alludes to a well-known fact
from psychological research that humans, when tasked with estimation, “anchor” on an
initial value and adjust it according to the cues they receive [73]. Despite the apparent
simple-mindedness of the procedure, there is abundant empirical evidence [72] that sup-
ports its use by decision-makers in contexts where the sheer number of influencing factors
make satisficing rational in intention.

In the experiment’s forecasting process, the initial value or anchor is a historical av-
erage of sales or returns. The value undergoes continuous adjustments upon receiving
informational feedback (actual sales or returns orders). The adjustment rate, which de-
pends on empirical details regarding such factors as feedback delays experienced by an
organization, is set to three months in Acme’s case. A delay of three months roughly
corresponds to setting the smoothing constant to 0.3 when using the exponential smoothing
procedure. Although it is possible to search (for instance, using a grid search technique) for
a more optimal value, it is not essential given that the experimental objective only relies on
the claim that ML represents any improvement over a heuristic approach. In other words,
the qualification criterion for local rationality is that ML is somewhat better than the extant
approach. Furthermore, as we will also see, the magnitude of the difference in accuracy
between the two approaches renders any fine-tuning effort of the delay parameter moot.

4.3.2. Modeling ML Forecast

As mentioned earlier, the primary focus of the ML method in Acme’s context is
improving returns forecast accuracy. Since sales (split by the three customer groups) serve
as an early indicator for future returns (except, potentially, historical returns), the intuition
is apparent behind using an ML algorithm that can learn how the two relate without explicit
instructions. More technically, an ML model can learn, from training samples (consisting
of input/output pairs), the transformation from the input (set of early indicators) to the
output (future returns) that minimizes prediction errors. This description corresponds to a
supervised learning regime.

However, the requirements for sequential data (in this context, time series) are slightly
more stringent—the architecture must be capable of maintaining temporal ordering. From
this perspective, there are two basic ML architectures: feedforward networks that flatten
the inputs, hence their lack of means to carry forward information meaningfully, and
architectures with a feedback loop. A recurrent neural network (RNN) is an architecture that
falls into the latter type, which the evaluation framework uses. An RNN can use its memory
about earlier periods in a time-series setting and combine it with the current period while
making a prediction. One can best imagine the process by “unrolling (the network) through
time” [74]; that is, imagining the network processing each of the periods sequentially. In the
simplest case of a network of a single artificial neuron, it receives as input both the current
period value and the output of the previous period (usually initialized to zero at the start).
Thus, at any given period, the additional input—the output of the previous period—is akin
to the memory of the entire past, which influences predictions.

For the RNN implementation, the framework uses the Keras API, which offers con-
venient routines for training deep learning models [70]. In Keras, there are three types of
RNN available: SimpleRNN, long short-term memory (LSTM), and the gated recurrent
unit (GRU). Each type shares the basic idea of carrying over information when processing
sequential information such as time series. The crucial difference between RNN and both
LSTM and GRU lies in the latters’ relative ability to handle long sequences. Since the
backpropagation procedure has to deal with a significantly deeper network, given the un-
rolling through time, SimpleRNN (the vanilla implementation) suffers from a debilitating
memory loss problem. It is a problem that LSTM and GRU specifically address, partly by
being more discerning about what to retain and what to forget [74]. In the experiment, the
sales model uses LSTM given the long historical sales horizon (36 months since there are
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seasonal effects). For the returns scenario, the experiment uses GRU as it performed better
during the parameter tuning phase.

Figures 3 and 4 below provide a schematic representation of the ML (using RNN for
illustrative purposes) and heuristic approaches.

Figure 3. Schematic representation of the unrolling through time in the RNN architecture.

Figure 4. An illustration of how the anchor-and-adjust heuristic works.

4.4. Execution and Results
4.4.1. Comparing Stand-Alone Forecasting Performance

The first stage of the experiment is a straightforward comparison of the forecast
accuracy of the RNN and heuristic approaches. The RNN sales- and returns-forecasting
models have the following main parameters (see Table 1): a single hidden layer (the former
with 225 units and the latter with 150 units), a dropout rate of 10%, a mean squared error
(MSE) loss function, and 150 epochs of training. As noted earlier, the sales model uses
LSTM and a returns model GRU. (Including dropouts is another effective means to avoid
overfitting as the dropping out of units from the network with a certain probability (rate)
leads to more robust overall learning since it trains the elements to be more self-reliant and
discourages excessive reliance on specific inputs.)
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Table 1. RNN model parameters.

Parameter Description
Value

Sales Returns

Historical periods Actual historical sales or returns horizon to
use for forecasting. 36 months 1 month

Forecast periods Forecast horizon. 1 month 1 month

RNN layer

There are three built-in layers in Keras:
SimpleRNN, GRU, and LSTM (the latter

two support longer time-series sequences;
we describe the rationale in the text).

LSTM GRU

Optimizer Gradient method used. Adam Adam
Layers Depth of the neural network. 1 1

Number of units Artificial neurons per layer. 225 150

Dropout Regularization parameter
(described in the text). 10% 10%

Epochs Training iterations. 150 150

After model fit, an evaluation of the model to assess overfitting (Figure 5) shows the
converging training and validation loss curves, which indicates a robust fit. The canonical
overfitting behavior is when training loss decreases while the validation loss increases—the
divergence is predictive of poor generalizability.

Figure 5. Loss curves for the sales and returns models.

Carrying out a partial model test to verify intended rationality [56] by embedding the
forecasting routine in the system dynamics model shows that the accuracy (measured using
the mean squared error metric) of RNN is 87.4% better for sales (21.4 compared to 2.7) and
81% better for returns (5.8 compared to 1.1). Figure 6 below shows the system dynamics
model for returns; the sales model follows the same structure. Table A1 in Appendix A
provides a complete list of the parameters for the system dynamics model.
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Figure 6. The partial system dynamics model for predicting returns.

The graphs below (Figures 7 and 8) compare the RNN and heuristic predictions against
the actual sales and returns orders. At first glance, a more significant improvement in
sales-forecasting accuracy with RNN might be surprising. However, this is because the
sales time series shows seasonality, but the anchor-and-adjust heuristic does not account
for seasonal factors, providing a satisfactory explanation.

As an additional sanity check, a comparison of the accuracy of the heuristic to a simple
exponential smoothing procedure using the Statsmodels library [75] (with a smoothing
equivalent to a delay of three months, as described earlier) shows that the MSEs are roughly
the same (Figure 9). It confirms the magnitude of the local improvement indicated earlier.

Figure 7. Comparing heuristic and RNN sales predictions.
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Figure 8. Comparing heuristic and RNN returns predictions.

Figure 9. An exponential smoothing approach to forecasting sales and returns.
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4.4.2. Comparing Overall System Performance

The second and most crucial stage involves evaluating the impact of the forecasting
intervention (use of RNN) in its proper context by including relevant aspects of Acme’s
overall forecasting, order fulfillment, and extended production processes. A decision
parameter in the whole-model simulation (Figure 10a) determines the source of predictions
(for sales and returns)—heuristics (or judgmental) or RNN. If set, PySD substitutes a hook
in the model with a function that makes online predictions that integrate with the rest of the
model (Figure 10b). Otherwise, judgmental or heuristic predictions take effect (Figure 10c).
Acme follows a make-to-stock strategy, implying that it fulfills orders from inventory. Here
(order fulfillment sector in the figure below), the system dynamics model includes simple
rules to satisfy orders as they come in and to ascertain backorders and lost sales if there
is a shortage—in other words, when the forecast is inaccurate. If the delivery lead time
exceeds the goal, delivery pressure (a function of backlog) builds up, resulting in lost sales
if the delay exceeds the tolerance limit (Figure 10d). Production orders are simply the
difference between forecasted sales and returns in the production sector. For simplicity, the
experiment assumes a negligible production lead time (a few days) relative to the planning
periodicity (of months). At the end of the month, the forecasts generate production orders,
assumed to be available as inventory at the start of the following period.

Figure 10. Whole simulation model. (a): Choice of forecasting procedure. (b): RNN forecast—a
“hook” that is programmatically substituted with online predictions via PySD. (c): Judgmental
forecast. (d): Delay tolerance. (e): Capacity adjustment under delivery pressure. (f): Capacity
ramp-up and ramp-down delays.

The decision rules discussed thus far are operational (in their evolutionary theory of
economic change, Nelson and Winter use the term “operating characteristics” to character-
ize such rules [43]). However, there is a routine in the capacity management sector that is at

228



Appl. Sci. 2022, 12, 11642

a higher level, typically considered tactical by supply chains. It is a routine that calibrates
the available capacity and is a crucial determinant of overall performance. The routine is
responsible for augmenting capacity under delivery pressure (Figure 10e). Augmentation
increases the capacity at a rate defined by the ramp-up delay (Figure 10f) to a maximum
capacity determined by the available discretionary capacity. On the other hand, capacity
normalization happens as the pressure eases. The equation for delivery lead time overshoot
captures the easing of delivery pressure. This is the difference between the goal delivery
lead time and the delivery lead time outlook (the ratio between the backlog and the current
clearance rate). As the overshoot moves close to zero—all other things being equal—the
normalization rule down-regulates the available capacity until it reaches the standard
available capacity.

As all the rules in the whole-model simulation, except the source of predictions, are
the same, verifying the effect of improved forecast accuracy on the overall performance
is allowed. In an ideal scenario—perfect forecast accuracy—the lost sales are zero, and
the average inventory equals half of the average production orders (since the planned
production is available at the start of the period and the consumption of inventory by
sales is assumed to proceed at a constant rate). Thus, lost sales and average inventory
are the outcome metrics—closer to actual business performance—that provide a window
into how well the process metric (forecast accuracy) translates to improved performance,
seen holistically.

Base Case

As the first step of the whole-model simulation, setting the capacity profile to two
months each for ramp-down and ramp-up and a 20% discretionary capacity, the results
show a 39% improvement in lost sales (RNN over heuristics) performance and a 6%
improvement in inventory (see Figures 11 and 12, and Table 2).

Table 2. Outcome metrics summary.

Case B vs. Case A

Metric
(in Units)

Heuristics
(H)

RNN (R) R vs. H Heuristics RNN

(A) Base case: 20% discretionary capacity,
quick ramp-up and ramp-down (1)

Lost Sales 29.06 17.85 −39% N/A N/A

Inventory 39.46 37.17 −6% N/A N/A

(B) After heuristic adjustment: 20%
discretionary capacity; quick ramp-up

and slow ramp-down (2)

Lost Sales 26.10 10.27 −61% −10.2% −42.5%

Inventory 39.52 37.54 −5% 0.2% 1.0%

Notes: (1) Quick ramp-up and ramp-down: Capacity ramp-up lasts two months. Capacity normalization when
delivery pressure eases also lasts two months. (2) Quick ramp-up and slow ramp-down: Capacity ramp-up lasts
two months. However, capacity normalization when delivery pressure eases lasts four months.

At first glance, the results seem to live up to the promise of the forecast accuracy
gains of RNN over heuristics. However, studying the graphs gives pause as it suggests
that there are further improvements to be made. Focusing on the lost sales and capacity
subplots and comparing the RNN and heuristics graphs, one sees that the capacity profile
in the case of RNN has significantly more spikes. The lost sales in the case of RNN are
also much more densely clustered compared to heuristics. This behavior results from
RNN’s superior ability to capture the peaks and troughs in customer demands (one can see
this by comparing the production rate curves). In particular, the inability of heuristics to
anticipate the troughs results in excess inventory. The inventory build-up obviates the need
for sustained additional capacity in the case of heuristics—thus, the capacity availability
curve is smoother.

On the other hand, the much-improved forecast accuracy of RNN translates to the
production rate closely chasing actual demands, thereby leading to a leaner inventory
profile. An additional consequence of the better anticipation of lows is that capacity seems
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to normalize too quickly during periods with “rugged” peaks. This suggests a simple
adjustment (an increase) to the capacity ramp-down delay. Intuitively, a slower ramp-down
should allow the provisioning of some buffer capacity to clear the backlog, even as the
production rate continues to roughly trace the sharp turns in the demands.

Heuristic Adjustment

After adjusting the ramp-down to four months (up from two months), the results
show a 61% improvement in lost sales (RNN over heuristics) performance and a 5%
improvement in inventory. This represents a 42.5% improvement in lost sales (with a slight
1% degradation in inventory performance) for RNN over the base case (see Figures 13
and 14, and Table 2).

Figure 11. Whole-model simulation results: heuristics with discretionary capacity; quick ramp-up
and ramp-down.
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Figure 12. Whole-model simulation results: RNN with discretionary capacity; quick ramp-up and
ramp-down.

As intuitively hypothesized, the improvement in the case of heuristics over the previ-
ous scenario is minor in comparison (10% improvement in lost sales and a 0.2% degradation
in inventory performance) to RNN, given its tendency to build excess inventory. Further-
more, as the capacity utilization for RNN is only slightly more than heuristics (3% more;
57.8 units/month versus 56.1 units/month), the nearly cost-neutral rule adjustment projects
substantial overall gains.

A graph that overlays lost sales and the capacity profiles in the second scenario for
RNN (see Figure 15) confirms our intuition regarding why RNN benefits disproportionately
from this rule change. The capacity availability profile in the second case has fewer spikes
owing to the more gradual ramp-down, which allows for additional buffer capacity (relative
to case A) for clearing the backlog, resulting in less dense clustering of lost sales than before.
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Figure 13. Whole-model simulation results: heuristics with discretionary capacity; quick ramp-up
and slow ramp-down.

Figure 14. Cont.
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Figure 14. Whole-model simulation results: RNN with discretionary capacity; quick ramp-up and
slow ramp-down.

Figure 15. Comparing quick and slow ramp-down along lost sales and capacity measures.
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5. Discussion and Conclusions

Despite the rapid pace of progress in ML, there are concerns about the disconnect
between innovation and adoption [9] and between investments and value (e.g., [76,77]).
A growing body of work reflecting on the state of ML notes the overemphasis of technol-
ogy over transformation (e.g., [78,79]) and worker substitution over augmentation [15].
Consequently, there is neglect in studying the unique ways by which humans and ML can
jointly unlock significantly more value (e.g., [14,22,80]). We contribute to the conversation
by adopting the view that ML is a technological asset that combines in an organizational-
specific manner with other assets, chiefly personnel, to generate value. In the following
paragraphs, we discuss the primary insights from the simulations performed using our
proposed quantitative model that is suitably subjective (and holistic) in its conceptualiza-
tion of the value-generation process. We also note the implications of these insights and
how they relate to other works of a more conceptual/abstract nature in this area.

Our simulations have highlighted that, although procedurally rational, local process
improvements (measured via process metrics) do not automatically translate to commen-
surate overall benefits (measured via outcome metrics). The system dynamics approach
provides an elegant way to confirm the rationale of the improvement (in this case, the
ML intervention) through partial model tests before proceeding to whole-model simula-
tions to check for unintended global consequences. Although, as noted earlier, the idea of
partial-model tests is not new [56], employing the idea when the improvement comes from
ML is novel. It assumes greater significance in light of recent work [17] on organizational
learning (using an abstract agent-based modeling approach) in a human–ML collaborative
context that shows that ML strongly influences the classic explore–exploit trade-off [81].
Specifically, since ML agents do not subscribe to preexisting organizational mental models,
they tend to facilitate nimbler exploration of the performance landscape. However, this
also amplifies the type of risk our experiments illustrate (entering an organization into
operating regimes with an increased likelihood of untested decision routines or operating
characteristics that might produce dysfunctional global outcomes). The new dynamics
caused by the introduction of ML forecasting in our experiment underscores this point.

Before ML, the incumbent heuristic method was slow to react to peaks and troughs in
actual sales and returns (because of the inertia inherent in the anchor-and-adjust heuristic,
current perceptions change only slowly). More pertinent to the earlier point regarding
exploration, ML predictions (from the forecasting process) that are closer to actual val-
ues readily expose the inadequacy of the adjacent capacity management process. For
instance, some high values that ML predicts are more than the standard available capacity,
and the rules for using additional discretionary capacity suffer from latency, leading to
poor order fulfillment performance. The example confirms the folk wisdom in manufac-
turing, supported by rigorous research, that saving time at a non-bottleneck resource is
a mirage [82]. Translated to the experiment, the forecast improvement beyond a point
collides with the capacity bottleneck, which limits the performance (unless addressed).
This example reinforces the point about broadening the scope of analysis—organizational
decision-making involves complex feedback loops that make it unrealistic to anticipate
high-level outcomes accurately.

In addition, the approach taken in the experiment to alleviate the problem demon-
strates the importance of complementarity between decision pairs. Concretely, the improve-
ment took the form of reducing the delay in using the discretionary capacity. In general,
ML increases the “clock speed” [83] of an organization, and the decision structures must
keep pace, for example, through decentralization that tends to reduce the number of levels
a decision has to pass through (reducing delays).

A further implication of bottlenecks preventing subsystem improvements cascading
to the system level—discovered through a synthetic rather than an analytical view of
performance—is how it provides a valuable frame for questions about the value of data.
In case additional data (costly to acquire and process) push the system to an operating
point that surfaces limiting constraints fixed in the short term (e.g., physical assets or lead
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times), it puts a cap on benefits. This, in turn, helps ascertain the value of data collection
efforts. From a more technical standpoint, a systems lens strengthens the argument for a
reasonable statistical baseline before attempting ML methods that usually require many
predictors and complex nonlinear relationships (between predictors and the target variable)
for their superior performance [84].

Treating data as instrumental to value (and not valuable in themselves) is a position
that follows naturally from the causal modeling approach that is the bedrock of system
dynamics simulation. Thus, the importance given to the data-generating process aligns with
the position of the causal inference research community (gaining wider acceptance) that
espouses the need for good explanations. In Pearl’s words, “empiricism should be balanced
with the principles of model-based science” [62]. One can surmise the upshot of this from
our simulations. By situating the forecasting process in the context of the end-to-end
order-to-delivery process chain, the model makes prioritizing aspects of the explanation
possible. For instance, one can focus on predictions that most impinge outcomes and
pose “why” questions (see Figure 16) to understand if they are representative or a product
of anomalous inputs. In this way, the proposed modeling approach contributes to the
explanatory AI work by identifying what the “completeness” criterion (for evaluating
explanations) must entail.

Figure 16. Causal modeling engenders asking relevant “why” questions to make algorithmic ratio-
nality less opaque.
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Appendix A

Table A1. System dynamics parameters.

Variable Equation or Value Units

Adjusted production rate IF THEN ELSE (“Use DNN?” = 1, MIN (Capacity, DNN predictions), MIN
(Capacity, Judgmental production rate)) Pcs/Month

Backlog INTEG (Sales orders − Fulfillment rate − Lost sales, 0) Pcs

Capacity INTEG (Capacity augmentation rate − Capacity normalization rate,
Normal capacity) Pcs/Month

Capacity augmentation rate IF THEN ELSE (Delivery lead time overshoot > 0, Capacity
flexibility/Capacity ramp-up time, 0) Pcs/(Month × Month)

Capacity flexibility Maximum capacity − Capacity Pcs/Month

Capacity normalization rate IF THEN ELSE (Delivery lead time overshoot > 0, 0, Excess
capacity/Capacity ramp-down time) Pcs/(Month × Month)

Capacity ramp-down time 2 (base case); 4 (heuristic adjustment) Month

Capacity ramp-up time 2 Month

Delay tolerance 2 Month

Delivery lead time goal 1 Month

Delivery lead time outlook IF THEN ELSE (Backlog = 0, 1, Backlog/Fulfillment rate) Month

Delivery lead time overshoot MAX(0, Delivery lead time outlook − Delivery lead time goal) Month

Discrepancy with actual returns Returns time series (Time/One month) − Perception of returns Pcs/Month

Discrepancy with actual sales Order time series (Time/One month) − Perception of sales Pcs/Month

Discretionary capacity 0.2 Dmnl

DNN predictions DNN sales predictions (Time/One month) − DNN returns predictions
(Time/One month) Pcs/Month

DNN returns predictions The result of RNN returns forecast is programmatically fed. Pcs/Month

DNN sales predictions The result of RNN sales forecast is programmatically fed. Pcs/Month

Excess capacity MAX(0, Capacity − Normal capacity) Pcs/Month

FINAL TIME 96 Month

Fulfillment rate MIN(Backlog, Inventory)/One month Pcs/Month

INITIAL TIME 1 Month

Inventory INTEG (Production rate + Return orders − Shipment rate, 0) Pcs

Judgmental production rate Perception of sales − Perception of returns Pcs/Month

Lost sales (Delivery lead time overshoot × Fulfillment rate)/Delay tolerance Pcs/Month

Maximum capacity Normal capacity × (1 + Discretionary capacity) Pcs/Month

Net requirements Sales orders − Return orders Pcs/Month

Normal capacity 55 Pcs/Month

One month 1 Month

Order time series Test dataset for actual customer orders. Pcs/Month
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Table A1. Cont.

Variable Equation or Value Units

Perception of returns
INTEG (Returns perception update, 19.67)
(Note: 19.67 is the initial value; equals the average of last 6 months
of returns)

Pcs/Month

Perception of sales INTEG (Sales perception update, 70)
(Note: 70 is the initial value; equals the average of last 6 months of sales) Pcs/Month

Production rate Adjusted production rate Pcs/Month

Return orders Returns time series (Time/One month) Pcs/Month

Returns perception update Discrepancy with actual returns/Update delay Pcs/(Month × Month)

Returns time series Test dataset for actual customer returns. Pcs/Month

Sales orders Order time series (Time/One month) Pcs/Month

Sales perception update Discrepancy with actual sales/Update delay Pcs/(Month × Month)

Shipment rate Fulfillment rate Pcs/Month

Update delay 3 Month

“Use DNN?” Programmatically set to switch between heuristic forecasting and RNN. Dmnl
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Abstract: Machine learning-based (ML) systems are becoming the primary means of achieving the
highest levels of productivity and effectiveness. Incorporating other advanced technologies, such
as the Internet of Things (IoT), or e-Health systems, has made ML the first choice to help automate
systems and predict future events. The execution environment of ML is always presenting contrasting
types of threats, such as adversarial poisoning of training datasets or model parameters manipulation.
Blockchain technology is known as a decentralized network of blocks that symbolizes means of
protecting block content integrity and ensuring secure execution of operations.Existing studies
partially incorporated Blockchain into the learning process. This paper proposes a more extensive
secure way to protect the decision process of the learning model. Using smart contracts, this study
executed the model’s decision by the reversal engineering of the learning model’s decision function
from the extracted learning parameters. We deploy Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP) classifiers decision functions on-chain for more comprehensive integration of
Blockchain. The effectiveness of this proposed approach is measured by applying a case study of
medical records. In a safe environment, SVM prediction scores were found to be higher than MLP.
However, MLP had higher time efficiency.

Keywords: blockchain; e-health; machine learning; deep learning; smart contract; decision function

1. Introduction

Present-day lives require people to depend on various types of technology to assist in
achieving higher levels of productivity and better operational efficiency. The continuous
growth of computer-based technologies has placed them as essential pillars in new world
development. Such intelligent technologies include the Internet of Things (IoT) [1] systems
such as smart homes and supply chain management systems, spam filtering systems,
and many others. As a critical life sector, smart healthcare systems, such as diagnostic
systems or e-health decision systems, are another application of these technologies. These
applications rely on Machine Learning (ML) models to detect and diagnose diseases and
help disease spread prediction, such as the COVID-19 virus. ML uses models that train
with heterogeneous data types to progressively develop and learn to make decisions based
on their calculated outcomes. These outcomes are the decisions that can help automate
routine tasks, detect abnormalities, and predict disease spreads.

Unfortunately, the outcome of this decision can encounter various threats that affect
and change its value. These threats can include model parameter manipulation, poisoning
attacks, and evasion attacks. The latter two are types of Adversarial Machine Learning
(AML) attacks which are manipulative attacks that affect the integrity of ML datasets. A
recent study of [2] applied adversarial attacks on six different COVID-19 detection systems
with underlying ML Deep Neural Network (DNN) models. The authors showed that
the confidence of the DNN model dropped from 91% to 9% on a subject having positive
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COVID-19 results when adding random noise of black and white batches in Computed
tomography (CT) scan training images. The previous experiment is one of many other
examples that proved ML models’ susceptibility to AML attacks.

1.1. Motivation and Problem Background

As shown by Figure 1, AML attacks include falsifying data samples to achieve ML
model inaccuracy in classifying new data inputs [3]. A typical ML process splits the dataset
between two phases, training and testing. A poisoning attack affects the training dataset,
while an evasion attack injects carefully crafted samples into the testing dataset. AML
research is literature designed to measure AML’s impact on ML models to find a way to
increase their robustness against such attacks [4]. For instance, works of [5–7] evaluated
Neural Networks (NN)-based systems against different types of evasion attacks. The
work of [5] performed an evasion attack on a Multi-Layer Perceptron (MLP) Intrusion
Detection System (IDS), where they succeeded in dropping the model’s accuracy from
99.8% to 29.87%. Moreover, Ref. [6] injected adversarial samples to fool Conventional
Neural Networks (CNN) malware detection. Meanwhile, Ref. [7]’s work was successful in
tricking a DNN visual recognition model into classifying adversarial inputs as benign.

Figure 1. An illustration of poisoning and evasion attacks workflow.

Additionally, Ref. [8]’s work is an example of a poisoning attack that tested the
susceptibility of a Support Vector Machine (SVM) spam filtering system by inserting a
well-crafted label-flipped malicious sample into the training dataset.

In e-Health applications, the authors of [9] applied a poisoning attack on a LASSO
regression ML model trained on a dataset that contained records of 5700 patients that
predicted the dosage of Warfarin, an anticoagulant drug. Applying a 20% poisoning attack
caused patients’ dosages to change by an average of 139.31%. An increased dosage of
Warfarin can cause severe bleeding, while a decreased dosage could cause blood clots,
leading to heart attacks if the patient has a history of blood clotting [10]. This notable impact
of AML attacks on people’s health can severely affect other similar e-health systems [4]. A
more comprehensive survey of similar studies on AML effects on other ML models, and
domains can be found in [3].

The AML field of research can easily state that most types of ML are prone to adver-
sarial attacks since it is impossible to assume that the system’s environment is entirely
benign. Security researchers are always on the work to deploy robust methods against
AML. For example, Blockchain is an emerging technology that uses means of cryptography
and decentralization to provide stable, secure, and immutable blocks of records. Multiple
blocks are connected together through a hash-based procedure. This hashing procedure
and the utilization of other cryptography methods have given Blockchain technology its
property of protecting block content integrity [11]. More security researchers incorporate
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Blockchain with ML to protect against AML. However, we believe that a more sophisticated
kind of integration of the ML decision process is still needed.

1.2. Study Contribution and Novelty

The paper’s main contributions are:

• Develop a trust-based AI framework that relies on the integration of Blockchain and
ML models;

• Develop an effective method to secure the decision functions of SVM and MLP models
by using immutable smart contracts.

1.3. Why Blockchain?

In our paper, the blockchain is used for two reasons:

• To protect the dataset against poisonous attacks. Since the used dataset is securely
uploaded to the blockchain instead of publishing it in a shared repository. Indeed, the
blockchain will guarantee the integrity of data;

• To protect machine learning techniques against evasion attacks. We perform this goal
by embedding model decision functions as smart contracts in the Ethereum blockchain.

The rest of this paper is organized as follows: Section 2 provides a brief review of
existing Blockchain-adopted ML research. Moreover, it explains the necessary background
details of Blockchain and ML models. The applied system flow is illustrated in Section 3,
while Section 4 elaborates on the implementation steps of the proposed system, including
the reconstruction of SVM and MLP decision functions. Lastly, Section 5 analyzes and
discusses the performance of the proposed system.

2. Background Study

The revolutionized growth in Blockchain technology has encouraged its emergence
with ML solutions. This section outlines related works and provides a brief technologi-
cal preview.

2.1. Related Literature

Several studies cover combining Blockchain with ML to solve security and privacy
issues in the literature. We summarize these integrations into three main categories, NN-
based integration, partial integration of Blockchain, and Blockchain with Federated Learn-
ing. One of the NN-based integration examples is called DeepRing, where authors of [12]
designed each NN layer to be presented as a Blockchain block to protect against tampering
attacks. Although this integration stood robust against a tampering attack that downgraded
a regular CNN performance by 20.71%, its application is limited to NN-based ML models.
Other research included the partially separated integration of ML with Blockchain [13].
One example is [14]’s work of combining ML with Blockchain for a more efficient and safer
COVID-19 vaccine supply chain. Their solution queried records from the Blockchain to feed
them into a separate Long Short Term Memory (LSTM) classifier. The demand forecasting
LSTM helped preserve 4% of the vaccine ratio, 6 million vaccine doses.

Most Blockchain-integrated ML solutions focus on employing the technology to protect
the privacy of the ML model. Studies with such scope deployed Federated Learning
(FL) [15], or as can be known as Decentralized ML (DML) [16], where a centralized server
collects and aggregates learning parameters among participating nodes.

The majority of found FL-based integration, such as works of [17–19], relied on off-
chain execution of ML training while applying different types of consensus algorithms
to manage work among nodes. This partial application of the ML decision process is
due to the metered usage and storage of Blockchain, which can result in the prosperous
implementation of the whole ML fitting and decision process.
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One other noticeable example is the collaborative deep learning framework called
DeepChain. Similar to the previously mentioned studies, Ref. [20] designed DeepChain
for nodes to train a global model locally and then upload their gradients through a smart
contract. They also relied on consensus algorithms for control updating the model’s
gradients which are averaged and broadcasted again for the next learning iteration. Table 1
summarises existing related work and their limitations.

Table 1. Summary of existing solutions incorporating ML with Blockchain and their limitations.

Ref. Summary Limitation

[14]
Combined Blockchain and ML to de-
sign a more efficient COVID-19 sup-
ply chain system.

Separate integration of ML modules.
No focus on security/privacy

[12]

Designed DeepRing, where each NN
layer is presented as a Blockchain
block to protect against tampering at-
tacks.

Not suitable for other none NN-
based ML models

[21]
Developed dynamic malware detec-
tion system based on behavioral logs
using Deep learning and Blockchain

No consideration to poisoning at-
tacks prevention. No privacy con-
sideration

[22] Used DanKu protocol to build a mal-
ware detection system on Blockchain

Resource wastage due to using
DanKu protocol. No consideration
to poisoning attacks

[18] Used FL with Blockchain to mitigate
end-point corruption attacks.

The consensus committee is only
one member who is considered non-
hostile

As shown in Table 1, the studies incorporating ML with Blockchain are scarce. At
the same time, most of these integrations focused on collaborative learning and partially
included Blockchain in the ML decision process. None of the found literature included the
decision process to be performed on-chain. To our knowledge, there is still no ML decision
integration with Blockchain. This study proposes the further inclusion of the decision
function in smart contracts to achieve a more reliable and secure decision process.

2.2. Technological Background

Since the apparition of bitcoin as an electronic cash system in 2008, researchers and
developers have been working to enhance Blockchain systems to be the main pillars of
future systems [23].

2.2.1. Blockchain Technology

The term “Blockchain” started to be popularly used to refer to the technology presented
in Nakamoto’s paper. Although it was considered a breakthrough in technology, concepts
of Blockchain, such as cryptography and hashing, were explored way before Bitcoin’s
publication [24].

Blockchain has many definitions, but it can be defined as the technology that uses
block-type data structure to store data, uses consensus algorithms to generate and update
the distributed ledger, and uses encryption to ensure security during transmission [25]. To
be put in other words, Blockchain is a Peer to Peer (P2P) network, where nodes share a
distributed ledger [26].
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Blockchain protects the integrity of the ledger content through hashing; each block’s
hash connects with the previous block, and a small change in any block’s content will
not go unnoticed [11]. Consensus algorithms are rules and agreements which the P2P
network uses to draw verdicts on the new block’s validity to the ledger. Nodes calculate
a cryptography challenge, called a nonce, to prove the block’s validity. Once the nonce is
validated, the new block is added. The previous operation is also called mining. Different
consensus algorithms rely on various intensives to encourage mining nodes [26].

2.2.2. Smart Contracts

Smart contracts control the ledger’s state by dynamically sending specific transactions
through execution conditions and logic. When conditions are met, the execution logic is
invoked [25]. Smart contracts enabled Blockchain to manipulate digital assets inside the
Blockchain. It was first implemented in the Ethereum Blockchain platform in 2015 [26].
Smart contracts can be written in Solidity or Vyper programming languages, and they
execute on the Ethereum Virtual Machine (EVM). Smart contracts enabled the development
of distributed applications (dApp) [26].

3. Proposed Methodology

This section presents the proposed model followed by experiments approve to achieve
ML execution security. Figure 2 shows the main steps to achieve the objective of this
study. A smart contract writes the dataset to Blockchain. There are two ways to store
the dataset. One way is to store the dataset off-chain while keeping the hash value of the
dataset on-chain. In contrast, the whole dataset can be stored on-chain. The choice of on- or
off-chain storage depends on the size of the dataset; storing a vast dataset on-chain can be
costly. Direct complete on-chain execution of the ML fitting process was not applicable due
to the following reasons:

1. EVM is still immature to execute complex ML operations;
2. Storing the large-size of ML libraries is considered costly in terms of deployment

and runtime.

The proposed methodology suggests that the ML fitting process be executed off-chain
in a local client. Fitted models’ parameters will then be extracted to be stored on-chain.

Since the dataset followed a classification problem, this study employed two classifiers,
SVM and MLP. SVM is a popular ML classifier that uses influence functions to find a
hyperplane that best separates two data classes. On the other hand, MLP is a deep learning
model that is a type of feedforward NN that uses a set of nodes organized into multiple
layers to draw prediction conclusions.

A smart contract writes the model’s parameters to Blockchain. These written parame-
ters are used to reversely construct the decision function of the ML model on-chain which
will help to classify a new given datapoint vector.

244



Appl. Sci. 2023, 13, 1035

Figure 2. An overview of the proposed model along with entities interaction and workflow.

4. Implementation

This section elaborates on the implementation details of the proposed methodology.
The implementation device was an AMD64 3.20 GHz CPU with a 16 GB RAM computer,
and the implementation of Blockchain was performed using Ganache [27].

4.1. Experimental Dataset Setup

The dataset used in this experiment is the Pima Indians Diabetes dataset, which
contained the measurements of labeled 21 or older 768 females, where 268 records were of
females with type 2 diabetes, and the rest were healthy females.

In preparation for ML fitting, two copies of the dataset were prepared. Copy 1 of the
dataset was set to be preserved on-chain. On the other hand, an evasion attack of manual
label-flipping was implemented on copy 2 of the dataset, where healthy records appeared
with diabetes labels and vice versa. Almost 33% of records were manipulated and labeled
as poisonous samples, and the rest were labeled as normal records.
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4.2. Writing Dataset

In this implementation, the data storage was on-chain storage since the 24 kilobytes
size of the experiment dataset was quite manageable. Algorithm 1 shows the pseudo code
of writing copy 1 of the dataset procedure, where each record of copy 1 of the dataset
was converted to Javascript Object Notation (JSON) string format before writing them to
the ledger. The storing of dataset on Blockchain will help to protect its integrity against
poisonous attacks. In addition, it makes it available for use with a high safety level.

Algorithm 1 Write dataset to the distributed ledger
Input: f ile dataset file

1: procedure UPLOADDATASET
2: for i ← 1 to length of f ile do
3: Record ← f ile[i] in JSON
4: DatasetProtect.writeRecord(Record)

Line 4 in Algorithm 1 is a call to a setter function in the DatasetHandler smart contract.

4.3. Reading Dataset

Loading records from the ledger is less expensive and more straightforward. Algorithm 2
shows the steps of the loading procedure.

Algorithm 2 Read dataset from the distributed ledger
Output: recordList[] list of records in JSON

1: procedure LOADDATASET
2: latestID ← DatasetHandler.dCount
3: Init recordList as Array
4: for i ← 1 to latestID do
5: R ← DatasetHandler.readRecord(i)
6: Push R to recordList[]
7: return recordList[]

Line 2 in Algorithm 2 is a call to a smart contract getter function to obtain the latest
record ID value. Line 5 is a call to a getter function inside the smart contract to retrieve
the record JSON string. This procedure returns a list of JSON strings representing all the
dataset records which then can be converted to any other format for ML model training, a
Comma-Seperated Value (CSV) file for instance.

4.4. Parameters Extraction and Preservation

At this stage, an off-chain client loads the dataset copy 2 and starts the ML fitting pro-
cess to detect poisonous records. In this use case of application, an additional standardizer
is implemented to normalize the dataset.

4.4.1. Scalar Parameters

Copy 1 of the dataset is scaled using a standard scalar that uses means and standard
deviation values to standardize data to values close to 1 and –1 . The extraction of the fitted
scaler produced two vectors with a length of 9, which is the same number as the dataset’s
features. The two vectors are the means for the means values, and the vars for the variances.
These vectors were set and preserved on-chain for future use.

4.4.2. SVM Parameters

SVM was trained using the radial basis kernel function (RBF), which calculates the
Euclidean distance between vectors. After the training process is complete, the following
model’s training parameters were extracted to be preserved on-chain as shown in Table 2.
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Table 2. SVM extracted parameters.

Name Description Data Type

support_vectors_
Datapoints defining hyperplane decision
boundaries placements

9 × 395 Decimal Ma-
trix

_dual_coef Weights of support vectors 1 × 395 Decimal Ar-
ray

_intercept The bias Decimal
_gamma To handle non-linear classification Decimal

Support vectors were saved individually through a loop similar to the one previously
used to store dataset records due to the HyperText Transfer Protocol (HTTP) limitations to
pass the sizeable multi-dimensional list to the chain in one transaction.

4.4.3. MLP Parameters

MLP training process included two hidden layers of sizes 5 and 2 over 1000 epochs.
The feed-forward deep learning NN relied on a nonlinear activation function, known as the
Rectifier Linear Unit activation function (reLU). Likewise, Table 3 shows MLP parameters
stored on-chain after the training is complete.

Table 3. MLP extracted parameters.

Name Description Data Type

coefs_
Weights of neuron’s inputs in three
layers, two input layers, and the out-
put layer

5 × 9, 2 × 5, 1 × 2 Decimal
Matrices

intercepts_ Biases of each neuron in three layers 1 × 5, 1 × 2, 1 × 1 Decimal
Arrays

The learning settings of both SVM and MLP were found to be best in this case of classi-
fying poisonous diabetes data records by balancing performance and avoiding overfitting.

4.5. ML Detection Implementation

This study proposes preserving efficiency by manually deploying decision functions
built from both algorithms’ previously-stored parameters to carry the detection of new
data input on-chain. As mentioned earlier, the entire algorithm learning process on-chain
was not cost-efficient.

4.5.1. Scalar Standardization Function

A new data point needs to be scaled first to be classified by the ML model. The scalar
applies the standardization function below to the means and variances values acquired in
the previous step:

z =
x − μ

σ
(1)

where z is the scaled vector, x is the input vector, μ is the mean value, and σ is the standard
deviation value, which is the square root of the variance value. Algorithm 3 shows the
scaling procedure steps.
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Algorithm 3 Standardize new data point vector.
Input:

vector integer input vector,
means means array,
vars variances array

Output:
scaledVector scaled decimal output vector

1: procedure SCALEDATA
2: stds ← sqrt(vars) � call math sqrt() function
3: for i ← 1 to length of vector do
4: vector[i] ← vector[i] in Decimal � convert integer to decimal format
5: scaledVector[i] ← (vector[i]− means[i])/stds[i]

It was not possible to pass decimal arrays directly to smart contract functions during
the implementation of the proposed methodology. For this reason, as seen in line 4 in
Algorithm 3, every decimal array was passed as an integer and then converted back to
decimal on-chain for further calculations.

4.5.2. SVM Decision Function

An RBF-kernel SVM’s decision function returns values close to (–1,1) and is generally
described in the math equation below:

h∗ = (x�φ(x)) + w�
0

h∗ = ∑
i∈PS

a�i ui· K(xi − x) + w�
0

(2)

In the above representation, h∗ is the decision function, a�i is the value of the coeffi-
cients, ui is the support vector output of the kernel function K, x is the new data point
vector, xi is the support vector, and w�

0.
Since the kernel function of this SVM implementation was the RBF function, it has the

mathematical representation as follows:

K(x, x’) = exp(−γ‖x − x’‖2) (3)

In the above equation, γ is the gamma value acquired previously. The RBF kernel
function returns the product of negative gamma with the Frobenius norm of two input
vectors. Function exp() is the exponent of Euler number, e.

‖x, x’‖F =

√√√√ m

∑
i=1

n

∑
j=1

| ai,j |2 (4)

The above math representation shows that the Frobenius norm, F, is the square root of
the summation of two input vectors, x, x′, squared difference, a.

Smart contracts did not provide complex decimal math libraries support for exp()
function, nor did they allow execution for decimal numbers to be the base or the exponent
of exponentials. This study came with the workaround to use the Taylor Maclaurin series
to calculate the exponential of decimals:

f (x) =
∞

∑
n=0

xn

n!
(5)

The above math representation shows that the Taylor Maclaurin series is the summa-
tion of a number x raised to power n divided by the factorial of that n.
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Taylor Maclaurin series is an approximation calculation, which means that calculating
ex using the summation of an infinite number n iterations will progressively produce a
value closer to the actual value.

The following Algorithm 4 shows the steps of calculating the Taylor Maclaurin series
in fifty rounds of calculations, as it was better suited for execution efficiency while obtaining
more precise values. Algorithm 5 shows the steps of calculating the Frobenius norm of
Equation (4).

Algorithm 4 Approximate ex using Taylor Maclaurin series
Input: x decimal number
Output: result decimal number

1: procedure TAYLOR
2: term ← result ← n ← 1
3: for i ← 1 in range(50) do
4: term ← (term ∗ x)/n
5: n ← n + 1
6: result ← result + term
7: return result

Algorithm 5 Frobenius norm of two vectors
Input:

x decimal support vector,
z decimal input vector

Output:
sum decimal number

1: procedure FNORM
2: sum ← 0
3: for i ← 1 to length of x do
4: y ← (x[i]− z[i])2

5: sum ← y + sum
6: return sqrt(sum)

Equation (3) of the kernel function is calculated by using the Frobenius norm and the
Taylor Maclaurin series, as shown by Algorithm 6.

Algorithm 6 RBF kernel of support vector and input vector
Input:

x decimal support vector,
z decimal input vector,
g gamma value

Output:
y decimal number

1: procedure RBF
2: norm ← Fnorm(x, z)2 � call Fnorm procedure
3: y ← (g ∗ norm) ∗ (−− 1)
4: return Taylor(y) � call Taylor procedure

It is worth noting that the square root step in Algorithm 5 line 7 cancels the squaring
step in Algorithm 6, line 2. For this reason, these steps were omitted in the smart contract
code implementation.

Algorithm 7 applies Equation (2), where it takes an integer vector input and returns a
value > 0 or <0. If the output of this function is larger than zero, a positive number, it has
a label of class 1. Alternatively, if the output is less than zero, a negative number, it has a
label of class 0.
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Algorithm 7 SVM decision function
Input:

x integer input vector,
sv support vectors matrix,
d f dual coefficients array,
incpt intercept decimal value,
g gamma decimal value

Output:
v decimal number

1: procedure SVMDECFUN
2: z ← ScaledData(x) � call ScaleData procedure
3: init rb f List[] as Array
4: for i ← 1 to length of d f do
5: rb f ← RBF(sv[i], z, g) � call RBF procedure
6: push rb f to rb f List[]
7: sum ← 0
8: for i ← 1 to length of d f do
9: y ← d f [i] ∗ rb f List[i]

10: sum ← sum + y
11: v ← (sum + incpt) ∗ (−− 1)
12: return Taylor(v)

4.5.3. MLP Decision Function

MLP has an input layer of 9-dimensions, and two hidden layers of 5 and 2 dimensions,
and since it is solving a binary classification problem, it has a 1-dimension output layer.

The decision function of MLP concludes a series of addition and multiplication to
classify an input. In this calculation, each hidden neuron’s value equals the linear summa-
tion of all previous layer’s neurons’ values multiplied by their coefficients, or the weights
between the neuron’s layer and the last layer. An additional value of intercept, or bias, is
added to this summation:

h(1)i = φ(∑
j

xjwi,j + b(1)i )

h(2)i = φ(∑
j

h(1)j wi,j + b(2)i )

yi = φ(∑
j

h(2)j wi,j + b(3)i )

(6)

Equation (6) calculates MLP decision function where hn
i is the neuron i value in the nth

layer. This implementation includes two layers and a final output layer with one neuron,
yi, which gives the final summation value. φ() is the nonlinear activation function that
calculates the neuron’s value by a weighted sum, where xj is the input features vector, hn

j is
the neurons’ values at layer i − 1, wi,j is the weight, and bn

i is the intercept of neuron i at
the nth layer.

f (x) = max(0, x) (7)

This MLP implementation follows a Rectifier Linear Unit activation function (reLu),
which, as illustrated by Equation (7), returns the max between 0 and the weighted sum, x,
of a neuron.

Algorithm 8 shows the steps in calculating the Equation (6) decision function of this
paper’s implementation of MLP by using a three-level loop. It is worth noting that the
current development of smart contracts did not allow for multi-loop applications. For this
reason, the inner loops were applied and called separate functions inside the contract.
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Algorithm 8 MLP decision function
Input:

x integer input vector,
w weight matrices,
b biases array

Output:
v decimal number

1: procedure MLPDECFUN
2: z ← ScaleData(x) � ScaleData procedure
3: init A[] as Array
4: init B[] as Array
5: for i ← 0 to i ← 2 do
6: if i ← 1 then
7: for j ← 0 to j ← 4 do
8: xSum ← 0
9: for k ← 0 to k ← 8 do

10: xw ← z[k] ∗ w[i][k][j]
11: xSum ← xSum + xw
12: a ← xSum + b[i][j]
13: a ← max(0,a)
14: push a to A[]

15: if i ← 1 then
16: for j ← 0 to j ← 1 do
17: aSum ← 0
18: for k ← 0 to k ← 4 do
19: aw ← A[k] ∗ w[i][k][j]
20: aSum ← aSum + aw
21: b ← aSum + b[i][j]
22: b ← max(0,b)
23: push b to B[]
24: if i ← 2 then
25: bSum ← 0
26: for k ← 0 to k ← 1 do
27: bw ← B[k] ∗ w[i][k]
28: bSum ← bSum + bw
29: y ← bSum + b[i]
30: y ← max(0, y) � last reLU function
31: return y

Eventually, the MLP decision function returns a decimal value of 0 or >0. If the output
is greater than zero, the classification label is 1; otherwise, it is 0.

The number of iterations in each loop is related to the number of neurons in each layer
of MLP, and Algorithm 8 was tailored according to this paper’s MLP implementation; a
different implementation should follow different specifications accordingly.

5. Results and Discussion

The evaluation and analysis of the proposed system’s execution steps are divided by
analyzing the experimental results and the decision function execution measurements.

After applying the proposed methodology, several results were obtained to measure
the proposed system’s efficiency.

5.1. ML Detection Performance

As previously mentioned, this study applied two classification models to develop a
poisonous record detection system. Table 4 shows SVM and MLP performance measure-
ment metrics.
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Table 4. ML Classifiers Performance.

Classifier Accuracy Precision Recall F1-Score

SVM 0.81 0.86 0.72 0.74
MLP 0.71 0.67 0.61 0.62

Figure 3 shows the Receiver Operating Characteristics (ROC) curve, which shows the
relation between the true positive rates (TPR) and the True Negative Rates (TNR) of the
two classifiers. The two classifiers’ performances show that SVM achieved higher accuracy
scores of 81% compared to MLP’s 71% accuracy score. SVM also obtained better TPR scores
than those MLP.

Figure 3. ROC curve for SVM and MLP classifiers.

5.2. Smart Contract Performance

This paper employs Blockchain technology through smart contracts. This subsection
measures the performance and cost of such employment.

Table 5 shows details of the deployed smart contracts, including the deployment cost
in gas. ML models of SVM and MLP were separately implemented to evaluate their perfor-
mance better. Table 4 shows that the SVM contract has the most expensive deployment.

Table 5. Smart Contract Deployment.

Smart Contract Language Gas Cost (gwei)

Dataset Handler Solidity 357,364
SVM Model Handler Vyper 3,320,656
MLP Model Handler Vyper 1,046,866

There was no clear way to measure the performance of smart contract functions
regarding the CPU performance of the EVM. For this case, this study chooses to follow the
judgment of each procedure’s performance based on the elapsed time taken to complete
each operation.

Table 6 shows the elapsed time for each read and write operation in the proposed
methodology. It is worth noting that these measurements were taken on a local Blockchain
network, with each transaction mined instantly to avoid any additional time latency.
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Table 6. Elapsed time for methods’ executions.

Procedure Method Run Time (s) Expected (s) Time Avg (s)

Runs Time

Upload Dataset writeRecord 0.57844 768 444.24 1
934.95

2

uploadDataset 1425.66631 -

Load Dataset readRecord 0.16492 768 129.6246 1
114.41

2

loadDataset 99.1903 -

Write Scalar Parameters setScalar 20.05179 - 20.05

Write SVM Parameters

setSupportVector 1.68084 395 663.9318 1
634.5

2

setSupportVectors 605.0704 -
setSVM 0.47049 - 0.47049

setDualCoef 46.240966 - 46.240966

Total = 681.21

Write MLP Parameters

setFirstWeights 40.60692 - 40.60692
setSecondWeights 11.84798 - 11.84798
setThirdWeights 2.745 - 2.745

setBiases 7.25123 - 7.25123

Total = 62.45
1 Calculated expected elapsed time by single run time × number of items’ runs. 2 Averaged time between
calculated expected and actual time of operation execution.

The elapsed time analysis showed that the write operation with smart contract setter
functions has low time efficiency than the getter functions. The longest time was to set
SVM’s support vectors since writing a single support vector takes about two seconds
to complete.

As mentioned before, the smart contract did not allow for the direct passing of decimal
vectors; vectors were sent as integers and then converted back to decimals. These additional
conversion steps could be the reason for the setting support vector procedure’s low time
efficiency; a more thorough CPU analysis could determine the cause for such latency.

5.3. Decision Function Performance

As mentioned before, this study chose to lower the implementation cost and only
deploy the ML model’s decision functions (DFs). Table 7 shows SVM and MLP performance
details, including the execution cost and the elapsed time with average of 10 runs.

Table 7. DF performance details.

DF Execution Cost (gwei) Elapsed Avg (s)

SVM DF 16,495,436 8.4415
MLP DF 316,215 0.1914

A similar script was applied to time the completion of each deployed classifier predic-
tion to calculate the smart contract DF. Figure 4 shows the elapsed time in seconds of both
SVM and MLP in comparison with the built-in functions executed on the test machine.

MLP performed better than SVM regarding deployed DF time-efficiency and cost-
efficiency. While obtaining a classification with the SVM’s smart contract DF takes almost
10 s, it takes less than a second to obtain a classification with MLP. However, both classifiers’
DFs fell behind in comparison with the client test machine’s performance, which could be
because of the humble EVM abilities to execute complex math methods in contrast with the
test machine’s abilities.
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Figure 4. Elapsed time of SVM and MLP DFs.

5.4. Overall Performance Comparison

This section discusses the proposed methodology’s overall performance by examining
three essential perspectives, security, cost efficiency, and run-time efficiency.

• Security Perspective: No system can be 100% secured, and smart contracts are not an
exception to that rule. Smart contracts can contain numerous security vulnerabilities:
re-entrancy, unhandled exceptions, Integer Overflow, and unrestricted action [28].
Many reports and literature have discussed and studied such vulnerabilities. For
instance, a study of [29] that evaluated 1.2 million smart contracts found that only 4%
of real-world smart contracts are affected by the integer bug vulnerability.
Authors of [28] argued that, even if the smart contract contained reported vulnerabili-
ties, it does not mean it can be exploited in practice. They analyzed 23,327 vulnerable
contracts and found that only 1.98% are exploited. By remarking on this, the proposed
smart contract-based system can preserve the safety of execution by 96–98%.

• Cost Efficiency Perspective: The proposed methodology of integrating ML into
Blockchain by only deploying the decision function of the ML model preserves the
cost of storing large ML libraries and the execution cost of training the ML model
entirely on-chain. Training the ML model off-chain and only deploying the decision
process on-chain enhances the ML-integrated Blockchain cost efficiency.

• Run-time Efficiency Perspective: The run-time of the proposed system depends on
EVM execution abilities. EVM is a run-time virtual machine with limited resources,
which causes it to take longer to execute basic programming procedures, such as loops.
Although the proposed system can preserve higher security and better cost efficiency, it
has low run-time efficiency, which is believed to be increased with EVM development.

6. Conclusions

The proposed methodology in this paper provides a more exhaustive and efficient way
to integrate AI abilities with Blockchain. In fact, it is more important to secure the process
of using ML than improve ML itself. Blockchain provides the means of hashing to ensure
this process of ML model decision integrity. This study proposed the flow of preserving
trained models’ gradients on-chain and reverse-engineering the decision function of SVM
and MLP models on-chain.
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During implementation, SVM proved to be more accurate than MLP in poisonous
records detection. However, MLP achieved a higher time efficiency. Joining Blockchain to
ML is very useful in sensitive domains like e-Health, which affects human life. This joining
provides a safe environment for ML techniques for decision-making.

For future work, a more improved ML training procedure will increase the detection
performance of the system. In addition, a layer of consensus could be added to control the
uploading of training parameters. The obstacles faced by this study were primarily because
of the immature EVM execution of complex math. When EVM becomes more efficient, the
application of the proposed methodology will achieve better performance. Additionally,
this integration of smart decisions gives Blockchain and smart contracts the AI ability to
intelligently classify and detect, which is applicable to various Blockchain scenarios besides
poisoning attack detection.

In our framework, the role of blockchain is to secure the decision process by using
smart contracts. As for the consensus mechanisms among the connected nodes, it can be
future work to further strengthen the learning process.

Finally, this study presented a prototype for the future incorporation of ML with Blockchain
to take both technologies further in their evolution by securing the decision process.
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Abstract: Infrared point-target detection is one of the key technologies in infrared guidance systems.
Due to the long observation distance, the point target is often submerged in the background clutter
and large noise in the process of atmospheric transmission and scattering, and the signal-to-noise
ratio is low. On the other hand, the target in the image appears in the form of fuzzy points, so that
the target has no obvious features and texture information. Therefore, scholars have proposed many
object detection methods for dimming infrared images, which has become a hot research topic on
account of the flow-rank model based on the image patch. However, the result has a high false alarm
rate because the most low-rank models based on the image patch do not consider the spatial-temporal
characteristics of the infrared sequences. Therefore, we introduce 3D total variation (3D-TV) to
regularize the foreground on account of the non-convex rank approximation minimization method,
so as to consider the spatial-temporal continuity of the target and effectively suppress the interference
caused by dynamic background and target movement on the foreground extraction. Finally, this
paper proposes the minimization of the non-convex spatial-temporal tensor low-rank approximation
algorithm (MNSTLA) by studying the related algorithms of the point infrared target detection, and
the experimental results show strong robustness and a low false alarm rate for the proposed method
compared with other advanced algorithms, such as NARM, RIPT, and WSNMSTIPT.

Keywords: complex background; infrared image; MNSTLA; point target detection

1. Introduction

The infrared detection system has the advantages of not being affected by light and,
therefore, being capable of working at all times of the day [1]; not emitting electromagnetic
waves and, therefore, being a system using a non-automatic detection method [2]; and
having a strong penetrability and, therefore, being capable of penetrating the covers of
dust, clouds, and smoke so as to better identify false camouflage targets, making it an
effective supplement or substitute for the traditional visible light detection system and the
radar detection system [3]. Therefore, the infrared point and moving target detection on
account of the infrared detection system has always been an important topic and hotspot
of research.

The infrared images have a low rank feature due to the many repetitive elements in
the background, and they have a sparse feature due to the few feature points of infrared
points and moving targets [4,5]. In this case, the detection of infrared points and moving
targets is transformed into a classification task on account of the good performance of
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sparse representation in the classification task, which is what the method on of low-rank
sparse is concerned about.

A sparse representation-based multispectral image target detection method was first
proposed by the US Army Sensor Research Laboratory in 2014 [6]. He adopted the aug-
mented Lagrange multiplier method to perform the optimization on account of the SR
theory and the low-rank matrix [7] in 2015 based off the LRSR mode. This method can
detect dim and point targets in a background with strong noise but does not have a good
background suppression effect.

To overcome the limitations of conventional methods, Gao put forward an IPI (In-
frared Patch-Image) model on account of the image segmentation by means of a sliding
window, and the method can detect dim and point targets according to the targeted sparse
feature of each patch image [8]. Considering the non-local autocorrelation structure for
the background, the assumptions of the infrared patch image (IPI) model are in excellent
agreement with the true scenario, which rephrases:

DP = BP + TP + NP (1)

where DP, BP, TP, and NP are patch-images corresponding to the original, background,
target, and random noise images, which are shown separately. Furthermore, the features of
low-rank for the background B, and the target T, which is sparsity.

Dai et al. of Nanjing University introduced a structural prior model into the detection
process of infrared points and moving targets, namely WIPI (Weighted Infrared Patch-
Image). This method can better preserve the infrared point and moving targets while
suppressing the strong edges [9]. Dai proposed an RIPT model. Furthermore, in view of
the detection of infrared points and moving targets with insufficient prior information
and strong edges [10], the SNN is used to separate the real target from the background by
combining the non-local and local spatial priors. In order to solve the problems that the
observation values of strong edge information are insufficient and the implicit assumptions
do not match, The NIPPS model put forward by Dai, which can detect the residual error in
the target image and is used for singular values [11]. As the SNN is not a convex envelope
of low-rank background, and in view of the fact that the traditional IPT method only uses
spatial information, Sun proposed the WNRIPT model [12].

In order to adapt to different images and solve the problem of images with strong
edges, Xiong Bin used adaptive weights and an augmented Lagrange multiplier method [13].
Wang put forward an IPI model-based detection method for infrared point and moving
targets, which maintains the spatial correlation among images, constructs a patch image
form, and uses the ADMM multiplier method to optimize the solution finding so as to deal
with the non-smooth and non-uniform background by the TV-PCP method [14].

Wang used different multi-subspaces for the areas to reduce the interference in each
area, combined the APG with the patch coordinate descent method, and used the SMSL
method to improve the accuracy of heterogeneous background [15]. However, for the
infrared images with a complex background, and especially for those that contain clut-
ter signals, as the noise also has a sparse feature as the target, the false alarm rate will
increase. For complex scenarios, Zhang et al. put forward a non-convex rank approxi-
mation minimization (NRAM) detection method for infrared points and moving targets,
which introduces extra regular terms into the edges [16]. Although the NRAM method has
achieved good results in single image frame detection, the false alarm rate of this method
is still high in complex and changing scenarios because it does not consider spatial and
temporal information.

The above methods only vectorize the infrared image into a matrix, but do not well
consider the temporal information. Therefore, many methods on account of the tensor
analysis are applied in the IRST system, such as multi-view clustering [17], subspace
clustering [18], super-resolution image generation [19], and image video processing [20].
Tensor analysis not only considers the spatial information of image sequences but also the
temporal information thereof.
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First, to fully exploit the inter-frame correlation between infrared image sequences,
considering the time consistency and local spatial smoothness between the consecutive
frames of the target, we introduced the spatial-temporal tensor into the NRAM model. To
obtain more precise background estimations in the detection of infrared points and moving
targets, as there was considerable noise in the infrared scenario, the norm was introduced
because, compared with the norm, the norm requires not only sparse columns but also
sparse rows, which can better remove the strong edge non-target noise. In order to simplify
the computational complexity, we introduced the Frobenius norm. Finally, we proposed a
minimization of the non-convex spatial-temporal tensor low-rank approximation algorithm
(MNSTLA). The main contributions of the MNSTLA model are:

(1) A non-convex spatial-temporal tensor low-rank approximation minimization method
for the detection of infrared points and moving targets in the sequence scenarios was
proposed. We introduced 3D-TV regularization into the NRAM model. The 3D-TV
constraint on the background is helpful for keeping the image details and removing
the noise, so it can achieve better detection performance under complex backgrounds.

(2) The norm is introduced into the detection of IR points and moving targets to better
describe the target components. By combining structured sparsity terms, non-target
components, especially those with strong edges, can be eliminated.

(3) The ADMM is used to efficiently reduce the computational complexity and solve the
low-rank component recovery problem.

The paper is organized as follows: in Section 2, the work related to the MNSTLA
method-based detection of infrared dim and point targets is briefly described; in Section 3,
the proposed MNSTLA model; in Section 4, the extensive experiments carried out on
various sequence scenarios are described to illustrate the efficiency of the MNSTLA model,
and the results are evaluated subjectively and objectively; and in Section 5, we give the
discussion and conclusion.

2. Related Work

In this section, we first briefly introduce how to construct an image sequence into
a spatial-temporal patch tensor model of image tensors. Furthermore, we introduce the
3D-TV regularization model and the tensor kernel norm model, respectively, and model
the foreground and background of the sequence image tensor considering both models.

2.1. Spatial-Temporal Patch Tensor Model

Generally speaking, given an image sequence f1, f2, . . . , fp ∈ Rm×n and a cube patch
tensor F ∈ R, the frames can be obtained by stacking them in time order. The tensor of the
IR point target image can be expressed as:

DT = BT + NT + TT (2)

where DT , BT , NT , TT ∈ Rm×n×L present the original patch-tensor, background tensor,
target-tensor, and noise-tensor. According to the infrared imaging mechanism, the relative
motion between the imaging sensor and the target is usually due to small changes at a
long distance, such as an early warning system. Therefore, it is generally believed that
the backgrounds of different frames change slowly in the whole sequence images, which
means that there is a correlation between adjacent sequences [8,21]. For the reason that
images containing infrared points and moving targets are considered to be of low rank,
the constructed background tensor can also be considered a low-rank tensor. Compared
with the matrix model, constructing a tensor model can not only mine the internal relations
between data from more angles in the tensor domain but also further improve the capability
of target detection by combining the spatial-temporal information.
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2.2. Foreground Modeling on Account of 3D-TV Regularization

Total variation (TV) regularization is widely used to detect the sharp edges and corners
of images, which can represent the desired spatial smoothness. In this study, we use 3D-TV
to leverage spatio-temporal information. Assuming N ∈ Rm×n×t, we define the 3D-TV
norm as:

||T||3D−TV = ∑
m,n,t

TVm,n,t(T) = |Tm+1,n,t − Tm,n,t|+ |Tm,n+1,t − Tm,n,t|+ |Tm,n,t+1 − Tm,n,t| (3)

where Tm,n,t represents the intensity of the pixels (m, n, t); at the same time, the differ-
ence operator along the temporal direction shows that it considers the persistence of the
foreground target in time.

We introduced the vector difference operators for the horizontal, vertical and
time directions: ⎧⎨⎩

Vh||T|| = vec(|Tm+1,n,t − Tm,n,t|)
Vv||T|| = vec(|Tm,n+1,t − Tm,n,t|)
Vt||T|| = vec(|Tm,n,t+1 − Tm,n,t|)

(4)

Then, the Formula (3) can be rewritten as:

||T||3D−TV = ||VT||1 = ||VhT||1 + ||VvT||1+||VtT||1 (5)

2.3. Background Modeling on Account of the Tensor Nuclear Norm

In the TRPCA model [22], the tensor nuclear norm is usually used instead of the rank
function to constrain the background. However, the general tensor nuclear norm is used to
matrix the tensor, and using the singular value of matrix to define the tensor nuclear norm
will destroy the spatial structure of the video, and the degree of approximation to the rank
function will be insufficient. On account of the t-product, Lu, et al. [23] an improved tensor
nuclear norm is proposed:

||B||∗∗ =
r

∑
i=1

S(i, i, 1) (6)

where r = rankt(B), B = U ∗ S ∗ V. and converted into the nuclear norm of the matrix:

||B||∗∗ =
1
N
||bcric(B)||∗ =

1
N
∣∣∣∣B∣∣∣∣∗ (7)

From the Formulas (6) and (7), we obtain:

||B||∗∗ =
1
n3

r

∑
i=1

n3

∑
j=1

S(i, i, j) (8)

where bcric(B) represents the patch cyclic matrix of B, and B represents the patch diagonal
matrix of B.

It can be seen from the Formula (6) that the improved tensor nuclear norm is directly
defined by the singular value tensor S, and it can be seen from the patch cyclic matrix and
patch diagonal matrix of the Formula (7) that the above tensor nuclear norm is defined
on account of the front-side slicing (the third-dimension time). In addition, the improved
tensor nuclear norm ||B||∗∗ is a convex envelope of the average rank in the unit sphere
of the tensor spectral norm, which has a better approximation to the rank function [23]
on account of the above considerations; this paper uses the above tensor nuclear norm
to perform low-rank constraining on the background, which strengthens the low rank of
the background.
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3. Methods

The spatial-temporal infrared patch-tensor model is described as:

fD = fB+ fT+ fN (9)

where fD, fB, fT, and fN represent the original, background, target, and noise images,
respectively. As shown in Figure 1, each image frame is split into small image patches,
and all the small image patches of consecutive L frames are superimposed into the 3D
patch-tensor. Therefore, the above formula can be rewritten into a tensor form as shown in
Formula (2) in Section 2.2.

 

Figure 1. Flow Chart of the MNSTLA Method.

In the WNRIPT model, the problem of point target detection is expressed as:

B.T =
min
B.T

||B||WB ,∗ + λ||WT � T|| (10)

where

∣∣∣∣∣
∣∣∣∣∣B
∣∣∣∣∣
∣∣∣∣∣WB ,∗ = 1

L

r
∑

i=1

L
∑

j=1
WB(i, i, j)S(i, i, j) .

In order to further improve the performance and efficiency of point target detection,
the 3D-TV regularization is introduced into the spatial-temporal tensor model, and its
expression is:

B.T.N =
arg min
B.T.N ||B||WB ,∗ + λ1||V(B)||3D−TV + λ2||T||1 + λ3||N||2F

s.t. F = B + T + N (11)

where k × || ∗ ||3D−TV is the norm of 3D-TV, and λ1, λ2, and λ3 represent the regularization
parameters of the 3D-TV term, target component, and noise component.

As the Frobenius norm [24,25] has a good noise suppression effect, the Frobenius norm
term is further introduced:

B.T.N =
arg min
B.T.N ||B||WB ,∗ + λ1||V(B)||1 + λ2||T||1 + λ3||N||2F

s.t. F = B + T + N (12)
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In this model, the 3D-TV regularization term is introduced, which can fully capture
the spatial-temporal information of infrared sequence images, so it is expected to achieve
better performance.

3.1. Low Rank and Sparse Frame Model

Different values of singularities in the conventional convex kernel norm solve the
imbalance penalty. Due to the equal treatment mechanism, if singular values are far from 1,
the nuclear norm will have a considerable deviation. Each time the nuclear norm weight
is determined, additional SVD will appear [26], which increases the running time of the
method. Zhao proposed the γ norma which is a new rank of non-convex function [27].
The γ norm is unitarily invariant. The γ norm is almost in agreement with the true rank
(γ = 0.002), and the heuristic of the log-det performs poorly at minimal singular values [28],
in particular when the value is close to 0; the γ norm of the matrix B is described as:

||B||γ = ∑
i

(1 + γ)σi(B)
γ + σi(B)

(13)

For the reason the l0 norm is NP-hard, the l1 norm [29] assigns the same weight to
each single element. Therefore, many other methods use the l1-norm to characterize the
sparsity of the target patch-image [30–32], and the target T with the l1-norm is described
as follows:

||T||1 = ∑
i,j

Wij|Tij (14)

where Wij = C/
(∣∣Tij

∣∣+ εT
)

is an element at position (i, j), C is a compromise constant;
moreover, εT is a small positive number.

Infrared images also have a lot of strong edge noise, which makes many advanced
methods [33–35] leave residual errors in the target image. The strong edge E is linearly
sparse relative to the whole image, and each line (i.e., line vector) is described by the vector

l2 norm, wi =
√

∑
j

∣∣Ei,j
∣∣2, that is, the vector w = [w1, w, . . . , wd]

T , and then the whole matrix

E needs to be described by the norm. Therefore, the l1 norm is used to describe w, that is,
the l2,1 norm of the strong edge E:

||E||2,1 = ||w||1 =
d

∑
i=1

√√√√ n

∑
j=1

∣∣Ei,j
∣∣2 (15)

According to the foregoing discussion, the patch-tensor model for the infrared image
sequences is proposed on account of the minimization of the non-convex spatial-temporal
tensor low-rank approximation algorithm (MNSTLA), that is, Formula (10) is redefined as:

B.T.E =
arg min
B.T.E ||B||γ,∗ + λ1||L||γ + λ2||T||1 + λ3||E||2,1

s.t. D = B + T + E (16)

3.2. Solution Finding of MNSTLA Model

The optimization method based on the ADMM is used to work out Formula (16).
Formula (16) can be rewritten as an augmented Lagrange function:

L(D, B, T, E, L, Z, Y, μ)

= ||Z||γ,∗ + λ1||L||γ + λ2||T||w,1 + 〈Y1, Z − B〉+ 〈Y2, L − V(B)〉+ 〈Y3, D − B − T − E〉
+ μ

2

(
||Z − B||2F + ||L − V(B)||2F + ||D − B − T − E||2F

)
+ λ3||E||2,1
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s.t. D = B + T + E, Z = B, L = V(Z) (17)

where Y∗, μ are an Lagrange multiplier and a positive penalty scalar, 〈∗〉 represents the
inner product, and || ∗ ||F is the norm for Frobenius.

The ADMM method is used to iteratively update the Z and L by the Formula (17),
respectively:

Zk+1 =
arg min

Z
||Z||γ,∗ +

μk

2
||Z − Bk +

Y1
k

μk ||2F (18)

Lk+1 =
arg min

L
||L||γ +

μk

2
||L − V(Bk)− Y1

k

μk ||2F (19)

Find their solutions by t-SVD [20] operation and unit contraction operator, respectively:

Zk+1 = DW/μk (Bk − Yk
1

μk ) (20)

Lk+1 = Thλ1/μk

(
V(Bk

)
− Y2

k

μk ) (21)

where D(*) represent the t-SVD operation and Th(*) represent the unit contraction operator.
Extract the term containing B from the Formula (17):

Bk+1 =
μk

2
(||D − B − Tk − Ek +

Yk
1

μk ||2F + ||Zk+1 − B +
Yk

2
μk ||2F + ||Lk+1 − V(B) +

Yk
3

μk ||2F) (22)

The Formula (22) is equivalent to the following linear equations:

(2I + V(B))Bk+1 = D − Tk − Ek +
Yk

1
μk + Zk +

Yk
2

μk + VT(Vk
B +

Yk
3

μk ) (23)

The closed form of the Formula (23) can be obtained by 3D Fast Fourier Transform:

Bk+1 = i f f tn(
f f tn(D − Tk − Ek +

Yk
1

μk + Zk +
Yk

2
μk + VT(Vk

B +
Yk

3
μk ))

2μk I + μk
∣∣ f f tn(V(B)

∣∣2 ) (24)

where f f tn is the fast 3D Fourier transform and i f f tn is the inverse transform of the f f tn.
Variables T and E are corrected:

Tk+1 =
arg min

T
λ2||T||W,1 +

μk

2
||D − Bk+1 − T − Ek +

Yk
3

μk ||2F (25)

Ek+1 =
arg min

E
λ3||E||2,1 +

μk

2

∣∣∣∣∣∣D − Bk+1 − Tk+1 − E
∣∣∣|2F (26)

By using the element-by-element shrinkage operation method in references [29,36],
we obtain:

Tk+1 = ThλW/μk (D − Bk+1 − Ek − Yk
3

μk ) (27)

Ek+1 =
μk(D − Bk+1 − Tk+1 − Yk

μk ) + Yk
3

μk + 2λ3
(28)

3.3. The Processing of the MNSTLA

The steps of the MNSTLA model (Algorithm 1):
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Algorithm 1: The Minimization of Non-Convex Spatial-Temporal Tensor Low-Rank
Approximation Algorithm(MNSTLA)

Input: Input the f1, f2, . . . , fp ∈ Rm×n, λ1, λ2, λ3, L and tol = 10−7

Initialize: Original patchtensorD ∈ Rm×n×L, B0 = T0 = E0 = Y1
k = Y2

k = Y3
k = 0, μ = 1e − 2

ADMM for solving the Equation (17)
while

(1) Fix the others and update and Lby (20) and (21) Zk+1, Lk+1

(2) Fix the others and update B by (24) Bk+1

(3) Fix the others and update Tby (25) Tk+1

(4) Fix the others and update E by (26) Ek+1

(5) Check the convergence conditions ||D−Bk+1−Tk+1||2F
||D||2F ≤ tol

(6) Update k = k + 1.
Output Bk+1, Tk+1

The flow chart of the MNSTLA model is shown in Figure 1.
The specific detection steps are as follows:

(1) The original infrared image sequences f1, f2, . . . , fp ∈ Rm×n are sequentially arranged
by n3 adjacent frames and are converted into several patch-tensor tensors D ∈ Rm×n×L.

(2) The original patch-tensor is decomposed into the target patch-tensor T, background
patch-tensor B, and structural noise (strong edge) patch-tensor E by using the method 1.

(3) The target image IT and the background image IB are reconstructed by inverse operation.
(4) In the last step, we segment the target using the adaptive threshold [8]:

tseg = mean(C) + λ × std(C) (29)

where mean(C) is the mean value of the reconstructed confidence map, std(C) is the
standard deviation, and λ is a constant.

4. Experiment and Analysis of Experimental Results

Where mean(C) is the mean value of the reconstructed confidence map, std(C) is the
standard deviation, and λ is a constant.

4.1. Data Set and Evaluation Indicators
4.1.1. Test Data Set

In the experiment, the “A data set for infrared detection and tracking of dim-small
aircraft targets underground/air background [37]” collected by Hui Bingwei et al. was used.
The sensors used for data acquisition were refrigerated medium-wave infrared cameras
with a resolution of 256 × 256 pixels.

There are 22 data scenarios in this dataset. The 22 image sequences of data 1–data 22
of this data set data are described and shown in Table 1:
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Table 1. Detailed Description of 22 Real Scenarios.

Data No. Frame Scenario Description

data1 399 Close range, single target, sky background
data2 599 Close range, two targets, sky background, cross flight

data3 100 Close range, single target, air-ground interface background, the target enters the field of view
again after leaving the field of view.

data4 399 Close range, two targets, sky background, cross flight
data5 3000 Long range, single target, ground background, long time
data6 399 From near to far, single target, ground background
data7 399 From near to far, single target, ground background
data8 399 From far to near, single target, ground background
data9 399 From near to far, single target, ground background
data10 401 Target from near to far, single target, ground-air interface background
data11 745 Target from far to near, single target, ground background
data12 1500 Target from far to near, single target, target mid-course maneuver, ground background
data13 763 Target from near to far, single target, dim target, ground background
data14 1462 Target from near to far, single target, ground background, target interfered by ground vehicles
data15 751 Single target, target maneuver, ground background
data16 499 Target from far to near, single target, extended target, target maneuver, ground background
data17 500 Target from near to far, single target, dim target, ground background
data18 500 Target from far to near, single target, ground background
data19 1599 Single target, target maneuver, ground background
data20 400 Single target, target maneuver, air-ground background
data21 500 Long range, single target, ground background
data22 500 Target from far to near, single target, ground background

As can be seen from the above table, data1–data 4 all have a sky background. As they
have a single background and large targets as shown by Figure 2, they are not suitable for
our set conditions and are not used.

 

Figure 2. Data1–data 4 Sequence Images.

Six sequences of data 6, data10, data13, data14, data17 and data 22 were selected from
data 5–data 22 as the sequence images of our experiment. As shown by Figure 3a–f, they
are six representative images in the six sequences of the selected six data sets, namely,
data 6, data 10, data 13, data 14, data 17, and data 22. The point-target is in the white boxes.

265



Appl. Sci. 2023, 13, 1196

Figure 3. Six Infrared Image Sequences Selected.

4.1.2. Evaluation Indicators

The performance of dim object detection methods is generally evaluated using three
criteria: background suppression, target enhancement, and detection accuracy.

(1) Background suppression factor (BSF) [9]:

The BSF is defined as follows:

BSF =
δout

δin
(30)

where δout and δin represent the local background standard deviation around the target of
the output image and the original image.

(2) Local contrast gain (LCG)

The SCRG represents the signal and noise ratios (SCR) before and after processing:

SCRG =
SCRout

SCRin
(31)

In which the SCR uses the same expression as in reference [38]:

SCR =
|μt − μb|

δb
(32)

where μt , μb and δb represent the average gray values of the targets in the image.
In this paper, both BSF and SCRG need the determination of the background range

around the target. Figure 4 shows the background around the target calculated in this
paper, where d takes 20.
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Figure 4. Local Background around the point targets in the Infrared Image.

For the reason the δb is close to zero in the Formula (32), it is difficult to evaluate the
performance as the SCR approaches infinity. Therefore, we evaluate the performance of the
target augmentation using LCG:

LCG =
LCout

LCin
(33)

LC =
|μt − μb|
μt + μb

(34)

where LCout and LCin represent the local contrast (LC) of the output image and the input
image, the μt and μb the are consistent with those in the Formula (32).

(3) Receiver operating characteristic curve (ROC)

In order to further compare the methods, the ROC curve is used to evaluate the
methods which can be used to select the best category judgment model and abandon
the sub-optimal model. When judging the category, the ROC curve can give a correct
evaluation without being limited by cost or benefit.

All the samples, which is actually the target but is wrongly judged. It is defined
as follows:

Pd =
Ntrue

Nact
(35)

Pf =
Nf alse

Nimg
(36)

where Ntrue, Nact, Nfalse and Nimg represent the number of really detected targets, the actual
targets, the falsely detected targets and the frames, respectively.

4.2. Parameter Setting

We quote the values of μ, γ, and C in reference [16], which are the penalty factor
μ = c

√
min(m, n), where c = 3, γ = 0.002, and C = 2.5, where m and n are the length and

width of patch images, respectively. References [39–41] all made a detailed analysis of the
frame number L, and we also take its value and the frame number L = 3. For details, please
refer to these references.

In order to better verify the advancement of the MNSTLA method, we will compare it
with seven advanced methods, including the Top-Hat method. Table 2 lists the parameter
settings for these methods.
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Table 2. The parameters for the 7 tested methods.

Methods Parameter Setting

Top-Hat Structure size: 3 × 3, structure shape: square
PSTNN Sliding step : 40, λ = 0.6/

√
max(n1, n2) ∗ n3, patch size: 40 × 40, ε = 1 × 10−7

IPI Patch size : 50 × 50, sliding step : 10, λ = 1/
√

min(m, n), ε = 10−7

RIPT Patch size : 30 × 30, λ = L/
√

min(m, n), sliding step: 10, L = 0.7, h = 1, ε = 10−7

WSNMSTIPT Patch size : 30 × 30, sliding step : 30 L = 6, p = 0.8, λ = 1/
√

max(n1, n2) ∗ n3

NRAM
Patch size : 50 × 50, sliding step : 10, λ = 1/

√
min(m, n), μ0 = 3

√
min(m, n),

γ = 0.002, C =
√

min(m, n)/2.5, ε = 10−7

MNSTLA Patch size : 50 × 50, sliding step : 10, γ = 0.002, μ = c
√

min(m, n) where c = 3,
L = 3. C = 2.5, ε = 1 × 10−7

4.3. Subjective Evaluation in Different Scenes

In this sub-section, we give the detection results of six infrared image sequences.
The method proposed herein is compared with six related advanced methods, namely
Top-Hat [41], IPI [9], PSTNN [22], IPT [23], WSNMSTIPT [24], and NRAM [16]. For the
convenience of observing the results, the experimental results obtained and the three-
dimensional grid diagrams generated by all the test methods in different scenarios are
given intuitively in Figures 5–10.

Figure 5. Infrared Sequence (a) Original image and Detection Results and the 3d grid diagrams.
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Figure 6. Infrared Sequence (b) Original image and Detection Results and the 3d grid diagrams.

 

Figure 7. Infrared Sequence (c) Original image and Detection Results and the 3d grid diagrams.
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Figure 8. Infrared Sequence (d) Original image and Detection Results and the 3d grid diagrams.

Figure 9. Infrared Sequence (e) Original image and Detection Results and the 3d grid diagrams.
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Figure 10. Infrared Sequence (f) Original image and Detection Results and the 3d grid diagrams.

It can be seen from Figures 5–10 that the RIPT model has the worst detection efficiency;
the Top-Hat and PSTNN methods do enhance the targets, but edges and noise are intro-
duced, which is mainly due to the assumption of fixed structural elements and a smooth
background. Undoubtedly, among all the results from the test methods, the Top-Hat and
PSTNN methods have the worst performance. This is because this contrast mechanism is
not suitable for complex backgrounds. The IPI method is slightly better than the Top-Hat
and PSTNN methods. The WSNMSTIPT models are on account of the IPI model and
refer to the spatial-temporal information. Compared with the IPI model, although their
false alarm rates are effectively reduced, not only do the images with dim targets selected
from data sets 13 and 17 (corresponding to Figures 7 and 9) lose their targets, but also the
images selected from the data sets with complex backgrounds lose their targets. Compared
with the WSNMSTIPT models, the NRAM model does not consider the spatial-temporal
information; it constructs the target-patches and background-patches according to the
sparse feature of infrared target images. It can be seen from Figures 5–10 that, compared
with the IPI model, the NRAM method not only effectively reduces the false alarm rate
but also effectively enhances the strong edges. Therefore, the potential target points are
also enhanced, and a better detection rate is achieved compared with the IPI model. The
MNSTLA model proposed herein constructs, on account of the NRAM model and the
spatial-temporal information, a spatial-temporal tensor model of infrared dim moving
targets that fully considers the correlation between the frames of infrared dim moving
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targets and can further reduce the false alarm rate and improve the detection efficiency of
infrared dim moving targets.

4.4. Objective Evaluation for Different Scenes

We evaluate the performance of the MNSTLA model using the LCG and the BSF. The
experimental results of the six actual sequences (Figures 5 and 6) are shown in Table 3. It
can be seen that the method presented here can achieve the best values.

Table 3. Average Values of BSF and LCG of the Six Infrared Sequence Images Obtained by the
Methods.

Methods
a b c d e f

BSF LCG BSF LCG BSF LCG BSF LCG BSF LCG BSF LCG

Top-Hat 7.73 5.94 3.28 6.76 7.86 1.67 9.66 7.53 10.25 3.64 7.34 3.45
PSTNN 3.85 1.23 3.86 8.20 4.16 1.18 3.67 2.43 4.14 3.16 3.14 2.99

IPI 3.35 1.70 2.30 5.65 3.45 1.06 3.19 3.18 5.61 2.37 2.02 1.94
RIPT 0.92 3.11 0.72 3.16 1.76 1.29 1.62 2.01 1.26 1.29 0.56 1.93

WSNMSTIPT 5.16 6.22 2.08 22.35 4.26 2.36 5.08 2.86 3.46 4.16 3.29 3.38
NRAM 26.45 1.235 23.74 6.39 7.08 1.68 18.16 16.18 9.31 2.17 10.67 4.86

MNSTLA 61.25 8.353 36.29 26.58 63.42 6.98 39.61 7.69 54.36 5.93 53.17 5.29

Table 3 shows the average BSF and LCG of different methods on the six infrared
image sequences. The Top-Hat and PSTNN methods have the lowest BSF and LCG values,
and the corresponding background suppression capability is the worst. The IPI, RIPT,
and WSNMSTIPT models have achieved good results in the six infrared image sequences,
among which the RIPT and WSNMSTIPT models are slightly better than the IPI models in
terms of performance; the NRAM model obtained a higher BSF value in the first sequence,
but compared with the RIPT and WSNMSTIPT model, its background suppression ability
is still not ideal; the MNSTLA model proposed herein achieved the highest BSF value on
all six infrared image sequences, which means the robustness and efficiency of background
suppression are better. In terms of LCG, this method has the highest LCG value and the
best target enhancement of the six image sequences. From the evaluation results, it can be
seen that the LCG and BSF values of the MNSTLA model proposed herein are much higher
than those of other methods, indicating that it has great advantages in object enhancement
and that the signal-to-noise ratio of images is improved effectively.

In order to compare the above optimization methods more objectively, the comparison
of the ROC curves of the sequences 1–6 is shown in Figure 11. It is found in the study
that the RIPT was the worst performer and that the Top-Hat method and the PSTNN
method are not satisfactory. The IPI model achieved good results on the six infrared
image sequences, and the WSNMSTIPT methods are slightly better than the IPI model
in terms of performance. The detection rate of the NRAM model is not as high as that
of the WSNMSTIPT models, and this is because the NRAM model does not consider the
temporal-spatial information. Finally, under the same false alarm ratio, the MNSTLA model
proposed herein achieved the highest detection probability, which means that the proposed
MNSTLA model has better performance than that of any of the other models.
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Figure 11. This is a figure. Schemes follow the same formatting. ROC curves of Six Image Sequences
(a–f) Detected by Different Methods.

5. Discussion

The non-local auto-correlation on account of the infrared background and the tar-
get’s sparsity has been extensively employed in the field of infrared tiny target detection.
When the infrared image is homogeneous, a classical IPI effectively represents low-rank
patch-background matrices using the nuclear norm. Larger solitary values really hold
more information and visual detail. In other words, the complex infrared image is too
complicated for the nuclear standard to handle, resulting in residual error and a blurry
backdrop after reconstruction because of the rich details.

Currently, the majority of approaches concentrate on the priori backdrop and target,
but this does not effectively separate the target from the background. In order to address
the residual performance issue, RIPT proposes the structure tensor. The case of a poor
signal-to-noise ratio, which leads to a lack of structure information and then target loss, is
ignored by RIPT in complicated scenes. The NRAM model, on account of the IPI model,
introduces a tighter rank proxy.

Based on the NRAM model, this article initially constrains the low-rank background
using the tensor kernel norm rather than the rank function. The proposed MNSTLA model
and other cutting-edge techniques can effectively suppress the interference caused by
dynamic background and object moving on the foreground extraction and also show good
performance in background suppression and object enhancement, according to qualitative
and quantitative comparisons.

6. Conclusions

The robustness and effectiveness of a detection method for infrared point and moving
targets are of great importance to the requirements of the early warning system. However,
it is difficult to detect infrared dim and point targets, especially the point and moving
targets. Therefore, we proposed a detection method using the minimization of a non-
convex spatial-temporal tensor low-rank approximation for infrared points and moving
targets. Our method introduces the concept of a spatial-temporal tensor on the basis of the
non-convex rank approximation method. The experimental results on the real sequence
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data sets in different scenes illustrate that this method is robust and effective in detecting
infrared points and moving targets, and is less affected by background changes and poor
image quality.

By the above discussion, while the MNSTLA model has a lower false alarm rate, the
comparison is based on single target detection. However, in the IRST system, for multi-
target detection of infrared sequence images or infrared videos, the spatial and temporal
information is extremely crucial to improve the detection rate of dim and point targets and
reduce the false alarm rate. Therefore, constructing a model that can simultaneously use the
spatial-temporal information of infrared image sequences for multi-target detection is the
focus of our further research. Therefore, we will consider combining the spatial-temporal
information with the existing method in the follow-up research in the hopes of realizing
the multi-target detection, improving the efficiency of target detection, and reducing the
false alarm rate.
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Abstract: Although the vision transformer has been used in gait recognition, its application in multi-
view gait recognition remains limited. Different views significantly affect the accuracy with which
the characteristics of gait contour are extracted and identified. To address this issue, this paper
proposes a Siamese mobile vision transformer (SMViT). This model not only focuses on the local
characteristics of the human gait space, but also considers the characteristics of long-distance attention
associations, which can extract multi-dimensional step status characteristics. In addition, it describes
how different perspectives affect the gait characteristics and generates reliable features of perspective–
relationship factors. The average recognition rate of SMViT for the CASIA B dataset reached 96.4%.
The experimental results show that SMViT can attain a state-of-the-art performance when compared
to advanced step-recognition models, such as GaitGAN, Multi_view GAN and Posegait.

Keywords: multi-view gait recognition; Siamese neural network; vision transformer; view-feature
conversion; gradual view

1. Introduction

The identification of human individuals based on their gait, alongside a range of
biological features, including facial features, fingerprints, and irises, has the benefits of
being a long-range, non-intrusive, and passive mode of identification [1]. In addition, as the
security facilities of urban and public places are gradually improved, monitoring facilities,
such as cameras are ubiquitous, facilitating the use of basic, low-resolution instruments
of which the identified target is unaware [2]. Personality traits determine one’s identity.
This has led to the widespread use of deep-learning-based gait-recognition technology
in modern society [3], particularly in criminal investigations and public security; this
technique has significant potential for future applications [4]. To sum up, the fact that
gait recognition allows for the undetectable identification of individuals means that it has
obvious advantages in anti-terrorism and in fugitive tracking. Therefore, we believe that
this research is of great significance to the long-term interests of society.

To achieve a reliable identification of people in public spaces, it is necessary to over-
come the problem of variability in pedestrian behaviors in such environments through
the collection and identification of pedestrian gait information from multiple views [5,6].
Formal gait recognition uses 90◦ gait features that provide the most salient and comprehen-
sive details of human posture as experimental data. The rationale for this method is that
the gait characteristics in other views overlap due to the perspective problems of human
physical characteristics, with the result that the contour characteristics are not effectively
rendered. This is also one of the complications of multi-view gait recognition. Moreover, in
practical terms, in order to preserve the advantages of passive identification, it is crucial
not to establish a fixed walking position and camera viewpoint for the pedestrian [7]. This
problem needs to be solved urgently.

In the task of multi-view gait recognition, when the angle of view moves from 90◦
to 0◦ and 180◦, the contour of the human body is affected by the shooting angle, and
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some of the gait feature information is lost. This significantly impacts the extraction
of the gait contour characteristics. In response to this issue, this paper uses a Siamese
neural network to calculate the posture relationship between the two views and calculate
the characteristic conversion factor. Under the premise of retaining identity information,
the useful high-dimensional intensive characteristics of the network are strengthened to
make its high-dimensional features clearer, and the effect of the loss of gait characteristics
on recognition accuracy is lessened. The SMViT model constructed using this concept
can obtain higher recognition accuracy in a non-90◦ multi-view; moreover, this model is
more robust.

In summary, this paper makes the following contributions:

(1) It designs a reasonable and novel gait-view conversion method, which can deal with
the problem of multi-view gait;

(2) It constructs the SMViT model, and uses the view characteristic relation module to
calculate the association between multi-view gait characteristics;

(3) We develop a gradually moving view-training strategy that can raise the model’s
robustness while raising the recognition rate for less precise gait-view data.

The structure of this paper is as follows. The technologies related to gait recognition
are introduced in Section 2. Then, the SMViT is constructed and the gradual-moving-view
training method is explained in Section 3. In Section 4, experimentation with the CASIA B
gait dataset [8] is employed to explore the models and methods that are presented in this
paper. Finally, in Section 5, we summarize the research contained herein and consider the
future directions of gait recognition technology.

2. Related Work

At present, there are many methods of solving the problem of multi-view gait recogni-
tion. Some researchers adopt the method of constructing a three-dimensional model and
use the close cooperation of multiple cameras to construct a three-dimensional model of
pedestrian movement, so as to weaken the influence of multiple perspectives, clothing,
and other factors. Bodor et al. proposed combining arbitrary views taken by multiple
cameras to construct appropriate images that match the training view for pedestrian gait
recognition [9]. Ariyanto et al. constructed a correlation energy map between their pro-
posed generative gait model and the data, and adopted a dynamic programming method
to select possible paths and extract gait kinematic trajectory features, proposing that the
extracted features were inherent to the 3D data [10]. In addition, Tome et al. set out
a comprehensive approach that combines the probability information related to 3D human
poses with convolutional neural networks (CNNs), and introduced a unified formula to
address the challenge of estimating 3D human poses from a single RGB image [11]. In sub-
sequent research, Weng et al. changed the extraction method of human 3D pose modeling,
and proposed a deformable pose ergodic convolution to optimize the convolution kernel of
each joint by considering context joints with different weights [12]. However, this method
of 3D pose modeling is more complicated to calculate and has high requirements regarding
the number of cameras and the shooting environment, so it is difficult to use in application
settings with ordinary cameras.

Some scholars used the view transformation model (VTM) to extract the frequency
domain features of gait contours by transforming them from different views. For instance,
Makihara et al. proposed a gait recognition method based on frequency domain features
and view transformation. First, a spatio-temporal contour set of gait characteristics was
constructed, and the periodic characteristics of gait were subjected to the Fourier analysis
to extract the frequency domain features of pedestrian gait; the multi-view training set
was used to calculate the view transformation model [13]. In this method, the Spatio-
temporal gait images in the gait cycle are usually first fused into a gait energy image (GEI),
which is a Spatio-temporal gait representation method first proposed by Han et al. [14].
Kusakunniran et al. combined the gait energy image (GEI) with the view transition model
(VTM), and used a linear discriminant analysis (LDA) to optimize the feature vectors and
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improve the performance of VTM [15]. Later, Kusakunniran et al. used a motion clustering
method to classify gaits from different views into groups according to their correlation;
within each group, a canonical correlation analysis (CCA) was used to further enhance
the linear correlation between gaits from different views [16]. In addition, researchers
have considered how to perform gait recognition from any view. Hu et al. proposed
a viewpoint invariant discriminant projection (ViDP) method to improve the discrimination
accuracy of gait features using linear projection [17]. However, most of these methods are
realized by domain transformation or singular value decomposition, and the perspective
of transformation is complicated.

Others have used an adversarial generative network to normalize multiple views
into a common perspective. Zhang et al. proposed a perspective-shifting adversarial
generative network (VT-GAN), which can transform gait views across two arbitrary views
with only one model [18]. Shi et al. designed GaitGANv1 and GaitGANv2, versions of a gait
adversarial generation network, which use GAN as a regressor to generate a standardized
side view of a normal gait; this not only prevents the falsification of gait images, but
also helps to maintain identity information, and the networks achieved good results in
cross-view gait recognition [19,20]. In addition, Wen et al. used GAN to convert gait
images with arbitrary decorations and views into normal states of 54◦, 90◦, and 126◦, so
as to extract view-invariant features and reduce the loss of feature information caused by
view transformation [21]. Focusing on the problem of limited recognition accuracy arising
from the lack of gait samples from different views, Chen et al. proposed a multi-view gait
generation ad hoc network (MvGGAN) to generate false gait samples to expand the dataset
and improve recognition accuracy [22]. However, the ability of this adversarial generative
network structure to accurately undertake recognition tasks from the same perspective is
easily affected by decorative features, such as clothes and backpacks, resulting in limited
recognition accuracy.

3. SMViT and the Gradually Moving-View Training Method

3.1. Model Structure

In order to solve the problem of multi-perspective situations, this paper uses the
Siamese neural network as a design basis and calculates the correlation between the charac-
teristics of different views and uses this as the basis for the conversion of the characteristics
of the view. When there are few specimens, a Siamese neural network can extract and
learn the links between two groups of photos [23]. ViT is advantageous for the extraction
of multi-scale features because of its robust strength and resistance to interference from
mistaken samples [24,25]. In this paper, a two-channel Siamese module (Conv and MViT,
CM Block) of convolution is constructed to extract the characteristics of multi-view gait
contour features. The specific model structure is shown in Figure 1.

Figure 1. Structure diagram of SMViT.
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In order to extract the gait information from various viewpoints, two feature extraction
networks are used in the Siamese network module described in this paper. Convolution
channels are used inside each module to obtain the contour’s high-dimensional local
features. Furthermore, we utilize the Mobile ViT channel to create high-dimensional states
that are indicative long-distance attention characteristics of the current view.

In addition, the mobile view transformation (MVT) module is used to extract the view
characteristics and tensors, meaning that the advantages of convolution and ViT are retained
in the extraction of the gait contour features. This module is based on the Mobile ViT model,
and incorporates the convolution with the transformer. Local processing is replaced with
deeper global treatment in the convolution. In an effective receiving domain, we model
long-distance non-local dependencies. The model has smaller parameters and produces
ideal experimental results. The specific details of the module are shown in Figure 2.

Figure 2. Details of the module.

As shown in Figure 2, there are two types of the conv block module (Conv Block),
N × N convolution and point-by-point convolution, according to the difference in the
convolution kernel size. This module consists of a convolution layer and a batch nor-
malization layer. Mobile Block takes MobileNet as the essential conceptual basis [26–28]
and controls the network’s depth and the number of parameters by constructing depth-
separable convolution. In addition, due to the differences in the processing methods
and content of the feature extraction between the convolution and the ViT, the format
conversion needs to be carried out before and after the transformer module in order to
control the data processing format. SiLU is used as the activation function in each module,
as shown in Equation (1), and the global average pooling layer is used in the pooling
layer, as shown in Equation (2), where x means the input matrix and xw represents the
operation area of the pooling layer:

SiLU(x) = x·Sigmoid(x) (1)

Pooling(xw) = Avg(xw) (2)

The transformer module absorbs some of the advantages of the convolutional com-
puting and retains its characteristic processing capabilities in the space-perception domain.
By dividing a large global receptive field into different patches in a non-overlapping way,
P = Wh, where w and h are the width and height of the patches, respectively. Then,
the transformer is used to encode the relationship between the patches. Specifically, the
self-attention mechanism calculates the scaled dot-product attention by constructing the
query vector Q, the value vector V, and the key vector K, as shown in Equations (3)–(5):
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f (Q, K) =
QKT
√

dk
(3)

X = softmax( f (Q, K)) (4)

Attention(X, V) = X × V (5)

In this case, the module’s computation cost of multi-head self-attention is O
(

N2Pd
)
.

Compared with the traditional ViT, the calculation cost O
(

N2d
)

is increased but its speed
in practical applications is faster [29].

3.2. Perspective Feature Conversion Block and Inverse Transformation Block

The inverse transformation block (IT block) and the perspective feature conversion
block (PFC block) are designed concurrently. The former is used to calculate the character-
istics of the two perspectives obtained by the Siamese network, and the relation tensor is
taken as the view conversion factor as shown in Formula (6). The latter is used to convert the
high-dimensional characteristics between the two views as shown in Formula (7). Among
them, x and y are two view-cornering characteristics and N is the capacity of the target
view set. The process of calculating the gait characteristics from different perspectives in
the PFC block and IT block are shown in Figure 3.

IT(x, y) = x + PFC(x, y) (6)

PFC(x, y) =
∑N

i=1(xi − yi)

N
(7)

Figure 3. PFC block and IT block.

3.3. Gradually Moving-View Training Method

To develop the multi-view gait recognition model SMViT, this article designs a brand
new, suitable, multi-view gait-recognition method; that is, the gradually moving-view
training method. The training strategy of this method differs between the perspective
feature relationship calculation module and the classification module.

In the characteristic view relationship calculation module, SMViT uses convolution
and dual-channel VIT to extract the gait characteristics. To better calculate the difference
between the 90◦- and non-90◦-perspective characteristics, the same pre-training weights
are used to calculate the characteristics tensor of the perspective. Because the purpose of
this module is to calculate the perspective characteristic tensor, not the classification, the
pre-training weight of the last two layers of the network module needs to be eliminated.
The specific training steps are shown in Algorithm 1.
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Algorithm 1: Process of training the characteristic view relationship calculation module.

Input: CASIA B and CASIA C gait datasets.
Step 1: First, supplement the dual-channel view feature relationship calculation module as
a complete classification model and conduct pre-training in the CASIA C dataset.
Step 2: Freeze the pre-training parameters to remove the weight of the final classification layer.
Step 3: Load the parameters from step 2 to the dual-channel perspective characteristic
relationship calculation module.
Step 4: Use the module obtained in step 3 to extract the dual-channel features of 90◦ and non-90◦
CASIA B gait data.
Step 5: Calculate the relationship tensor between the two perspectives obtained in step 4 with the
PFC block.
Step 6: Store the characteristic relationship between the two views obtained in step 5, and hand it
over to the classification module.
Output: The characteristic relationship tensor between the two views.

In the classification module, the tensors of the gait characteristics of the different views
after conversion should be identified and classified. Therefore, starting with the weight of
the 90◦ model with high accuracy, training is undertaken in two directions of 0◦ and 180◦.
That is, a training weight of 90◦ is used as the initial weight of the model when training
72◦ and 108◦ gait data. When training at 54◦ and 126◦, the training weights of, respectively,
72◦ and 108◦ are loaded and so on. This part uses a cross-entropy loss function as the
method of loss calculation as shown in formula 8. The specific training steps are shown
in Algorithm 2.

Loss(output, class) = weight[class](−output[class] + log (∑
j

eoutputj)) (8)

Here, output is the prediction result, class is the actual label of this sample, and
output[class] represents the element of the class position in output, that is, the predicted
value of the real classification. Finally, weight[class] is a weight parameter.

Algorithm 2: Classification Module Training Process

Input: CASIA B gait dataset.
Step 1: First, the 90◦ gait data are transformed and recognized (at this time, there is no change in
the characteristics of the perspective), and the parameter weight is saved.
Step 2: The weight parameters obtained in step 1 are loaded to the classification module, the gait
dataset (such as 72◦ and 108◦) of the adjacent perspective is trained, and the parameter weight
is saved.
Step 3: The characteristic relationship tensor between the two perspectives is matched and the
parameter weights obtained in the previous step are loaded into the model.
Step 4: The trained perspective weight is loaded to the model, the gait dataset of adjacent non-90◦
perspectives is trained, and the weight parameters are saved.
Step 5: The classification layer and the regression layer are used to identify and classify the
characteristic tensor of the view.
Step 6: Push in two directions (90◦→0◦ and 90◦→180◦), and repeat steps 3, 4, and 5.
Output: The gait recognition model SMViT.

4. Experiment and Analysis

4.1. Experimental Data

The CASIA B dataset is a large dataset that is widely used in multi-view gait recogni-
tion tasks. It consists of 124 subjects (31 women and 93 men) [19]. The gait images of each
subject in the three different states of normal walking (NM), walking with a bag (BG), and
walking with a coat (CL) were collected [30] from 11 points of view, from 0◦ to 180◦ (with
an interval of 18◦ for close views) as shown in Figure 4.
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Figure 4. CASIA B multi-view gait dataset [8].

4.2. Experimental Design

In multi-view gait recognition tasks, due to the offset of the perspective, some human
gait contour characteristics are lost and the recognition accuracy is reduced. This exper-
iment designated 90◦ as a high-precision standard perspective. The remaining 10 views
of the gait characteristics are calculated using the standard view relationship. The mutual
verification between the perspectives is not considered; only the gait recognition accuracy
inside the perspective is calculated. Additionally, a simple perspective conversion factor
group is established to transform the view feature tensor with less feature information into
a 90◦ feature tensor with more useful and distinct feature information.

In order to compare the results with the comparison model for the same data, we
directly used the gait contour data provided by the CASIA B gait database. In addition,
this allowed us to be more attuned to the uncertainty caused by people’s attire and walking
speeds, and other aspects of practical application scenarios. From the same perspective, we
ignore slight differences in dress, walking speeds, and other personal features, and divide
the overall data into the training set and the verification set according to the 7:3 ratio. There
is no crossover between each view, in order to improve the recognition accuracy within each
view. The gait data obtained in the actual application scenario may not necessarily contain
a complete gait cycle, and the gait characteristics are random. Therefore, this experiment
does not adopt the gait-cycle group as the input data. Instead, the gait group with three
walking states is scattered at will to ensure that the model’s effect is similar to a complex
real-world environment.

Setting the initial learning rate to 1 × 10−3, with Adam as the optimizer, we used
the categorical_ The crossentropy multiclass cross-entropy loss function to calculate loss.
In this experiment, Pycharm, an efficient Python IDE, was used to write code. The code
was tested in Pytorch 1.8 and CUDA 11. The various equipment parameters used in the
calculation process are shown in Table 1.

Table 1. Experimental environment.

Environment Parameter/Version

CPU I7-10700K
GPU NVIDIA RTX 3060

CUDA 11.0
Pytorch 1.8

Operating System Win10

4.3. Experimental Results for the CASIA B Dataset

To evaluate the effectiveness of the SMViT model and the view movement method
(SMViT_T) proposed in this paper, we used the first 10,000 training loss changes of the
two intermediate views as an assessment of the convergence effect. It can be seen that,
even in the middle of the view offset, the SMViT model proposed in this paper can still
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effectively converge and stabilize under the general trend as shown by the blue line in
Figures 5 and 6. After the gradually moving-perspective training, not only is the model’s
drop in loss significantly improved, but the unstable jumping phenomenon of losses is also
suppressed to a certain extent as shown by the orange line in Figures 5 and 6.

Figure 5. Loss change when the view is 54◦.

Figure 6. Loss change when the view is 126◦.

The experiment was carried out at 10 angles, from 0 to 180 degrees, in order to
prove that the model can effectively learn gait characteristics from multiple perspectives
and overcome the problems caused by the poor learning effect and fluctuation in the
accuracy rate, which are commonplace in multi-perspective gait recognition. Figure 7
shows the effect pictures of the model trained with or without gradually moving-view
training for 10 views, but not for the 90◦ view. It can be observed that, except for the
basic model (SMViT_BASE) at a perspective of 36◦, there is a small oscillation in accuracy,
and the experimental effects for the other views steadily increased. Both the base and T
models quickly reach their peak accuracy and then stabilize as shown by the point line
in Figure 7. The model proposed in this paper (SMViT_T), with gradually moving-view
training, has a high accuracy for all the viewpoints, and there is no significant fluctuation
in the recognition rate during the training process. The recognition rate of our model is
always higher than that of the base model.
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Figure 7. Diagram of the training process for the model proposed in this paper for various views in the
CASIA B dataset (In the figure (a–j) are the experimental results of SMViT base and T in each angle).
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4.4. Comparison with the Latest Technology
4.4.1. Ablation Experiment

At present, in many gait recognition studies, walking speed, clothing, and other charac-
teristics are tested separately. As such, it can be considered an idealized experiment where
some of the complexity of the data are eliminated by manual classification. This allows
the model to obtain good results in NM classification. Other classifications, however, have
poor accuracy. We suggest that, in real-world application scenarios, human appearance is
highly uncertain. Therefore, the data obtained for different states are trained and verified
separately, and the results cannot be used as the possible results of practical applications.

We experimented with a mixture of data for various characteristics to maximize the
complexity of the gait data. In addition, our structural design focuses on improving the
accuracy of gait recognition from multiple perspectives, rather than using cross-perspective
experimental methods.

For the 11 views in the CASIA B dataset, our model (SMViT_Base) was compared
with SPAE [31], GaitGAN [19,20], Multi_View GAN [21], Slack Allocation GAN [32], GAN
based on U-Net [33], and PoseGait [34] in terms of the internal recognition rate of non-cross-
view offset views. That is, without considering cross-verification, verification experiments
only considered the multi-view perspective. Due to the limitations of the experimental
environment and equipment, we could not effectively restore the experimental results of
the multiple comparative models. Therefore, we directly used the experimental results
presented in the papers. Other model data, shown in Table 2, were taken from the average
value of the three-state gait recognition rates from the same view in the same dataset. It can
be seen that, for all the views, the model presented here showed significant improvements
when compared to the other gait recognition models. Additionally, the average upgrade
index exceeded 20 percentage points. It is verified that, in the task of multi-view recognition
with a non-crossing view, the model proposed in this paper is better than the selected
comparison model.

Table 2. Precision comparison of CASIA B with the latest technology for each view.

Comparison of Model Accuracy for Each View When Not Crossing Views

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

SPAE [31] 0.7419 0.7661 0.7150 0.6989 0.7311 0.6801 0.6854 0.7258 0.7016 0.6881 0.7231
GaitGANv1 [19] 0.6828 0.7123 0.7285 0.7339 0.6962 0.7043 0.7150 0.7285 0.7204 0.7042 0.6828
GaitGANv2 [20] 0.7258 0.7554 0.7150 0.7332 0.7527 0.707 0.6962 0.7392 0.7150 0.7311 0.6989

Multi_View GAN [21] 0.7213 0.7869 0.7814 0.7589 0.7568 0.7131 0.7322 0.7431 0.7431 0.7480 0.7513
Slack Allocation GAN [32] 0.7473 0.7258 0.7258 0.7141 0.7560 0.7336 0.6967 0.7365 0.7277 0.7243 0.7221
GAN based on U-Net [33] 0.7365 0.7715 0.7956 0.7957 0.8521 0.7822 0.8172 0.7956 0.7984 0.7419 0.7580

PoseGait [34] 0.7231 0.7365 0.7688 0.7822 0.7446 0.7473 0.7607 0.7284 0.7553 0.7365 0.6586
SMViT_Base 0.9802 0.9704 0.9318 0.9805 0.9689 0.9744 0.9668 0.9617 0.9529 0.9451 0.9831

At the same time, the average values for the 11 views of normal walking (NM), walking
with a backpack (BG), and walking while wearing a jacket (CL) were compared. For this
comparison, the training sets and verification sets of each model were taken from the same
view. The proportion of internal training sets and verification sets for each view is 7:3, and
the cross-verification of the view is not considered. From Figure 8, it can be seen that the
red model, which was proposed in this paper, significantly increased the average value of
multi-view mixed recognition rates, which increased by about 20 percentage points.
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Figure 8. Comparison of the average validation rates of the model from multiple views.

4.4.2. Validation of the Gradually Moving-View Training Strategy

As shown in Figure 7, we initially demonstrated the effectiveness of this strategy by
comparing the T model with the base model in SMViT. During the experiment, we found
that, with this training strategy, SMViT can still maximize the stability of learning for some
perspectives with low-quality data. Taking the 18◦ gait data as an example, we conducted
ablation experiments to verify the effectiveness of the gradually moving-view training
method. As shown by the square point line in Figure 9, during the first 15 rounds of
training, the SMViT_base model proposed in this paper dropped significantly in the second
and ninth rounds and there was a significant saturation of recognition rates. After the
experimental analysis, we surmised that the first decline was due to the loss of a number of
gait characteristic outlines. At the same time, this model does not use view-mobilization
training methods to convert and strengthen the gait characteristics, making the model
unable to effectively learn the characteristics, and the accuracy decreases sharply. The
second drop is due to the small number of features, which led to the abnormal situation
of gradual overfitting in the verification accuracy; this also reflects the improvement in
the model’s robustness facilitated by the view-transition training method. At around
13 rounds, the base model reaches the upper limit of saturation accuracy but is still about
one percentage point lower than the SMViT_T model’s recognition accuracy. On the whole,
due to the gradually moving-view training strategy of SMViT, the initial recognition rate is
about 70 percentage points higher than that of the basic model; our model also maintains
a relatively stable level of recognition accuracy. Although the accuracy saturation trend
also appeared quickly, the upper limit of the saturation value was about one percentage
point higher than that of the base model, and the oscillation amplitude of the validation
rate remained below one percentage point.

In this paper, we integrated the design concept of Siamese neural networks and
a variant mobile vision transformer model and built a multi-view Siamese ViT gait recog-
nition model: SMViT. At the same time, we designed a gradually moving-view training
strategy for multi-view gait recognition, referred to as SMViT_Base and SMViT_T. After
conducting a number of experiments on the CASIA B dataset, it was shown that the Siamese
feature relationship calculation method can be used to obtain the perspective characteris-
tic conversion factor, which can be used to determine the relationship between different
perspective gait characteristics; this effectively improves the accuracy of multi-perspective
gait recognition. Our experimental results show that the proposed model can significantly
improve the recognition rate when compared with the existing generative multi-view gait
recognition methods, without considering cross-view verification. We demonstrated an
increase of 20 percentage points in the hybrid recognition rate, without considering the
external attire of the pedestrians. Therefore, SMViT expands the gait recognition view
while ensuring high accuracy, improving efficient gait recognition in multi-view practical
application scenarios.

286



Appl. Sci. 2023, 13, 2273

Figure 9. Reliability verification of the gradually moving-view training method at 18◦.

Figure 10. Comparison of the initial validation rate and the maximum validation rate of the proposed
model trained with or without gradually moving-view training.

5. Conclusions and Future Prospects

In the future, a more abundant dataset can be used to verify the recognition effect,
and a more sophisticated view-feature conversion module can be used to enhance the
application scope of SMViT. Additionally, when the visible light intensity is insufficient,
the infrared thermal imaging target tracking method can be used to extract the gait contour
features, creating the possibility of dealing with more complex and variable natural envi-
ronments [35] and undertaking the tracking of more obscure gaits [36,37]. We believe that
the design of SMViT with multiple covariates will open up new methods for multi-view
gait recognition; the vision transformer can also play a role in multi-view gait recognition
tasks in complex environments.

Author Contributions: Data curation, L.Y.; investigation, R.L.; methodology, Y.Y. and L.Y.; resources,
L.Y.; supervision, L.Y. and K.W.; validation, Y.Y. and R.L.; writing—review and editing, Y.Y., L.Y. and
F.C. All authors have read and agreed to the published version of the manuscript.

287



Appl. Sci. 2023, 13, 2273

Funding: This research was funded by the Key Projects of Yunnan Applied Basic Research Plan,
grant number 2018FA033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed in the current study are available in the CA-
SIA gait database of the Chinese Academy of Sciences: http://www.cbsr.ia.ac.cn/china/Gait%20
Databases%20CH.asp (Website viewed on 16 October 2021). The data used in the experiment de-
scribed in this article come from the CASIA gait database provided by the Institute of Automation of
the Chinese Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, J.P.; Jain, S.; Arora, S.; Singh, U.P. Vision-based gait recognition: A survey. IEEE Access 2018, 6, 70497–70527. [CrossRef]
2. A survey on gait recognition. ACM Comput. Surv. (CSUR) 2018, 51, 1–35.
3. Sepas-Moghaddam, A.; Etemad, A. Deep gait recognition: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 264–284.

[CrossRef] [PubMed]
4. Fan, C.; Peng, Y.; Cao, C.; Liu, X.; Hou, S.; Chi, J.; Huang, Y.; Li, Q.; He, Z. Gaitpart: Temporal part-based model for gait

recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 14225–14233.

5. Zhu, Z.; Guo, X.; Yang, T.; Huang, J.; Deng, J.; Huang, G.; Du, D.; Lu, J.; Zhou, J. Gait recognition in the wild: A benchmark. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 11–17 October 2021; pp. 14789–14799.

6. Chao, H.; He, Y.; Zhang, J.; Feng, J. Gaitset: Regarding gait as a set for cross-view gait recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, Palo Alto, CA, USA, 22 February–1 March 2019; Volume 33, pp. 8126–8133.

7. Asif, M.; Tiwana, M.I.; Khan, U.S.; Ahmad, M.W.; Qureshi, W.S.; Iqbal, J. Human gait recognition subject to different covariate
factors in a multi-view environment. Results Eng. 2022, 15, 100556. [CrossRef]

8. Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In
Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; IEEE:
Piscataway, NJ, USA, 2006; Volume 4, pp. 441–444.

9. Bodor, R.; Drenner, A.; Fehr, D.; Masoud, O.; Papanikolopoulos, N. View-independent human motion classification using
image-based reconstruction. Image Vis. Comput. 2009, 27, 1194–1206. [CrossRef]

10. Ariyanto, G.; Nixon, M.S. Model-based 3D gait biometrics. In Proceedings of the 2011 International Joint Conference on Biometrics
(IJCB), Washington, DC, USA, 11–13 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–7.

11. Tome, D.; Russell, C.; Agapito, L. Lifting from the deep: Convolutional 3d pose estimation from a single image. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2017; pp. 2500–2509.

12. Weng, J.; Liu, M.; Jiang, X.; Yuan, G. Deformable pose traversal convolution for 3D action and gesture recognition. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 136–152.

13. Makihara, Y.; Sagawa, R.; Mukaigawa, Y.; Echigo, T.; Yagi, Y. Gait recognition using a view transformation model in the
frequency domain. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 151–163.

14. Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 316–322.
[CrossRef] [PubMed]

15. Kusakunniran, W.; Wu, Q.; Li, H.; Zhang, J. Multiple views gait recognition using view transformation model based on optimized
gait energy image. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops, Kyoto, Japan, 27 September–4 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1058–1064.

16. Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H.; Wang, L. Recognizing gaits across views through correlated motion co-clustering.
IEEE Trans. Image Process. 2013, 23, 696–709. [CrossRef] [PubMed]

17. Hu, M.; Wang, Y.; Zhang, Z.; Little, J.J.; Huang, D. View-invariant discriminative projection for multi-view gait-based human
identification. IEEE Trans. Inf. Forensics Secur. 2013, 8, 2034–2045. [CrossRef]

18. Zhang, P.; Wu, Q.; Xu, J. VT-GAN, View transformation GAN for gait recognition across views. In Proceedings of the 2019
International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 1–8.

19. Yu, S.; Chen, H.; Garcia Reyes, E.B.; Poh, N. Gaitgan: Invariant gait feature extraction using generative adversarial net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA,
21–26 July 2017; pp. 30–37.

20. Shiqi, Y.; Chen, H.; Liao, R.; An, W.; García, E.B.; Huang, Y.; Poh, N. GaitGANv2: Invariant gait feature extraction using generative
adversarial networks. Pattern Recognit 2019, 87, 179–189.

288



Appl. Sci. 2023, 13, 2273

21. Wen, J.; Shen, Y.; Yang, J. Multi-view gait recognition based on generative adversarial network. Neural Process. Lett. 2022, 54,
1855–1877. [CrossRef]

22. Chen, X.; Luo, X.; Weng, J.; Luo, W.; Li, H.; Tian, Q. Multi-view gait image generation for cross-view gait recognition. IEEE Trans.
Image Process. 2021, 30, 3041–3055. [CrossRef] [PubMed]

23. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML
Deep Learning Workshop, Lille, France, 10–11 July 2015; Volume 2.

24. Chen, X.; Yan, X.; Zheng, F.; Jiang, Y.; Xia, S.-T.; Zhao, Y.; Ji, R. One-shot adversarial attacks on visual tracking with dual attention.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 10176–10185.

25. Chen CF, R.; Fan, Q.; Panda, R. CrossViT: Cross-attention multi-scale vision transformer for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 357–366.

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2018; pp. 4510–4520.

28. Howard, A.; Sandler, M.; Chu, G.; Li, Q. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324.

29. Mehta, S.; Rastegari, M. MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021, arXiv:2110.02178.
30. Chai, T.; Li, A.; Zhang, S.; Li, Z.; Wang, Y. Lagrange Motion Analysis and View Embeddings for Improved Gait Recognition. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 20249–20258.

31. Yu, S.; Chen, H.; Wang, Q.; Shen, L.; Huang, Y. Invariant feature extraction for gait recognition using only one uniform model.
Neurocomputing 2017, 239, 81–93. [CrossRef]

32. Gao, J.; Zhang, S.; Guan, X.; Meng, X. Multiview Gait Recognition Based on Slack Allocation Generation Adversarial Network.
Wirel. Commun. Mob. Comput. 2022, 2022, 1648138. [CrossRef]

33. Alvarez IR, T.; Sahonero-Alvarez, G. Cross-view gait recognition based on u-net. In Proceedings of the 2020 International Joint
Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.

34. Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior knowledge.
Pattern Recognit. 2020, 98, 107069. [CrossRef]

35. Zhao, X.; He, Z.; Zhang, S.; Liang, D. Robust pedestrian detection in thermal infrared imagery using a shape distribution
histogram feature and modified sparse representation classification. Pattern Recognit. 2015, 48, 1947–1960. [CrossRef]

36. Li, L.; Xue, F.; Liang, D.; Chen, X. A Hard Example Mining Approach for Concealed Multi-Object Detection of Active Terahertz
Image. Appl. Sci. 2021, 11, 11241. [CrossRef]

37. Kang, B.; Liang, D.; Ding, W.; Zhou, H.; Zhu, W.-P. Grayscale-thermal tracking via inverse sparse representation-based collabora-
tive encoding. IEEE Trans. Image Process. 2019, 29, 3401–3415. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

289



Citation: Chang, K.-H. Integrating

Spherical Fuzzy Sets and the

Objective Weights Consideration of

Risk Factors for Handling

Risk-Ranking Issues. Appl. Sci. 2023,

13, 4503. https://doi.org/10.3390/

app13074503

Academic Editor: Mayank Kejriwal

Received: 12 March 2023

Revised: 25 March 2023

Accepted: 31 March 2023

Published: 2 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Integrating Spherical Fuzzy Sets and the Objective Weights
Consideration of Risk Factors for Handling Risk-Ranking
Issues

Kuei-Hu Chang

Department of Management Sciences, R.O.C. Military Academy, Kaohsiung 830, Taiwan;
evenken2002@yahoo.com.tw

Abstract: Risk assessments and risk prioritizations are crucial aspects of new product design before a
product is launched into the market. Risk-ranking issues involve the information that is considered
for the evaluation and objective weighting considerations of the evaluation factors that are presented
by the data. However, typical risk-ranking methods cannot effectively grasp a comprehensive
evaluation of this information and ignore the objective weight considerations of the risk factors,
leading to inappropriate evaluation results. For a more accurate ranking result of the failure mode
risk, this study proposes a novel, flexible risk-ranking approach that integrates spherical fuzzy sets
and the objective weight considerations of the risk factors to process the risk-ranking issues. In the
numerical case validation, a new product design risk assessment of electronic equipment was used as
a numerically validated case, and the simulation results were compared with the risk priority number
(RPN) method, improved risk priority number (IRPN) method, intuitionistic fuzzy weighted average
(IFWA) method, and spherical weighted arithmetic average (SWAA) method. The test outcomes that
were confirmed showed that the proposed novel, flexible risk-ranking approach could effectively
grasp the comprehensive evaluation information and provide a more accurate ranking of the failure
mode risk.

Keywords: spherical fuzzy sets; objective weights; risk ranking; risk priority number; artificial
intelligence

1. Introduction

Risk assessment and risk-ranking issues include multiple evaluation criteria, multiple
failure modes, and multiple experts, which can be categorized as multi-criteria decision
making (MCDM) problems. The results of the risk assessment and risk-ranking of a product
or system directly affect the product quality, profit, and market competitiveness. These
risk-ranking problems primarily involve two important issues: the method of evaluating
the information processing and the consideration of the risk factor weights. The typical
risk priority number (RPN) approach is the most widely applied method for risk assess-
ments and has been adopted by different industry standards, such as QS9000, IATF 16949,
MILSTD-1629A, ISO 9001, and IEC 60812 [1]. In the RPN method, the failure risk of the
failure mode is ranked using the RPN value, which is obtained by multiplying the three
risk factors, severity (Sev), occurrence (Occ), and detection (Det). The RPN method involves
simple calculations and, in recent years, has thus been widely applied in various areas,
such as hospital radiopharmacy management [2], semiconductor manufacturing [3], robot-
assisted rehabilitation processes [4], photovoltaic cell manufacturing [5], power transformer
equipment [6], submersible pump risk analyses [7], and high-dose-rate brachytherapy treat-
ments [8]. However, the RPN method is not able to process the uncertainty of the evaluation
information [9,10] and ignores the objective weight consideration of the risk factors [4,11],
also violating the definition of the measurement scale [12,13].
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To process the uncertainty of the evaluation information, Zadeh [14] first presented
a fuzzy set for handling the decision making issues in everyday life. The fuzzy set (FS)
method applied membership degrees (MD) and non-membership degrees (NMD) to express
the content of the evaluation information. The NMD is equal to 1 minus the MD in the
FS method. To solve the restriction of the FS, Atanassov [15] proposed an intuitionistic
FS to increase the consideration of the indeterminacy degree (ID), which required that
the sum of MD, ID, and NMD must be equal to 1. The intuitionistic FS method has the
advantage of an ID consideration; therefore, the intuitionistic FS method has recently been
used within many different fields, such as stock prediction [16], supplier selection [17],
enterprise resource planning systems [18], medical diagnoses [19], risk assessments [20],
supply chain management [21], tourist destination selection [22], and so on. Extending
the concept of the intuitionistic FS, the picture fuzzy set applied the MD, ID, NMD, and
refusal degree to express an expert’s opinion [23], and the sum of the MD, ID, and NMD
had to be less than or equal to 1. However, in the actual execution of the MCDM problems,
sometimes, the sum of the MD and NMD exceeds one. To overcome the restriction of the
MD and NMD of the intuitionistic FS, Yager [24] proposed a Pythagorean FS, allowing
the sum of the MD and NMD to be greater than 1, but restricting the sum of squares
of the MD and NMD to be less than 1. The Pythagorean FS has the advantage of being
able to consider the MD, ID, and NMD simultaneously. To fully consider all the possible
situations in a decision analysis, Mahmood et al. [25] used a three-dimensional FS mode
to propose a spherical FS. A spherical FS allows the sum of the MD, ID, and NMD to
be greater than 1, but restricts the sum of the squares of the MD, ID, and NMD to a
value of less than 1. The main difference between the spherical FS and Pythagorean FS is
that the spherical FS increases the consideration of the refusal degree. In a spherical FS,
decision makers can specify the MD, ID, and NMD values [26]. Currently, the spherical
FS is being widely used in many different areas, such as vehicle model selection [27],
the construction of Fangcang shelter hospitals [28], community epidemic prevention [29],
medical diagnoses [30], waste management [31], green supply chain management [32], and
performance evaluation [33,34].

Another key issue in risk assessments is the objective weight consideration of the
evaluation factors, which affects the accuracy of the risk assessment results. However,
the traditional RPN method only considers the subjective assessment of the experts in
the risk assessment process, ignoring the objectivity of the research data, which leads to
incorrect assessment results [35]. Scholars have also used different calculation methods
to deal with the objective weights of the MCDM problems. For example, Liang et al. [36]
used the structural entropy weight approach to calculate the indicator weights of the index
and then combined the fuzzy technique for order of preference with a similarity to ideal
solution (TOPSIS) model, structural entropy weight approach, and cloud inference, in order
to process the risk assessments of urban polyethylene gas pipelines. Likewise, Paramanik
et al. [37] applied the criteria importance through an intercriteria correlation (CRITIC)
approach to obtain the objective weights of the evaluation criteria, and then combined the
linear programming technique for a multidimensional analysis of preference and the best–
worst approach to process the web service selection problems. Earlier, Barukab et al. [38]
combined the spherical FS, entropy measures, and fuzzy TOPSIS methods to process the
group decision making problems for a robot selection. Recently, Chang [39] reported the
use of the combined compromise solution (CoCoSo) approach and subjective–objective
weights consideration to process the supplier selection problems.

To fully solve the limitations of these typical risk assessment methods, considering
the information and weights, a novel flexible approach that integrates the spherical FS and
objective-weight-considering factors is proposed in this study to process the risk-ranking
issues. The proposed novel, flexible risk-ranking approach uses the spherical FS to fully
grasp the fuzzy, intuitionistic fuzzy, and spherical fuzzy information that is provided by
experts. The proposed approach also uses the preference selection index (PSI) to probe the
objective weights of the evaluation factors that are presented by the data itself.

291



Appl. Sci. 2023, 13, 4503

The remainder of this paper is organized as follows. In Section 2, some of the basic
concepts, definitions, and algorithm rules of the RPN method, spherical weighted arithmetic
average (SWAA) method, and PSI method are presented and briefly reviewed. In Section 3,
a novel, flexible risk-ranking approach that integrates the SWAA and PSI methods is
proposed. Section 4 presents a risk assessment numerical example of a new electronic
equipment product design and compares the calculation results of the RPN, improved risk
priority number (IRPN) method, intuitionistic fuzzy weighted average (IFWA) method,
SWAA method, and proposed method. Section 5 presents the conclusions and future
research directions.

2. Preliminaries

Here, we briefly review some of the basic definitions, concepts, and algorithm rules of
the RPN method, SWAA method, and PSI method.

2.1. Risk Priority Number Method

At present, failure mode and effect analysis (FMEA) is the most commonly used
risk assessment method by different industries; this method originated in the aerospace
industry in the 1950s and has been widely used within different industries since [40]. The
FMEA approach uses the RPN value to rank the possible failure risks. The RPN value is
the product of three risk factors with equal weights: severity (Sev), occurrence (Occ), and
detection (Det). The RPN value is calculated using Equation (1).

RPN = Sev × Occ × Det (1)

The risk factor Sev represents the severity of the failure occurrence, Occ is the proba-
bility of the failure occurrence, and Det is the probability that a failure occurrence cannot
be detected. These risk factors, Sev, Occ, and Det, use risk assessment ratings of 1–10. The
potential failure mode (FM) has a higher RPN value, which means that this FM has a
higher risk of failure, and a higher risk priority must be given to prevent the occurrence of
such failures.

2.2. Spherical Fuzzy Set Method

The intuitionistic FS is the basis of the spherical FS. The basic principles related to the
intuitionistic FS and the calculation rules are described as follows:

Definition 1 [41]. Assuming that X is the universe of discourse. Then, an intuitionistic FS I in X
and the IFWA are expressed as follows:

I = {x, μI(x), νI(x)|x ∈ X} (2)

where μI(x) and νI(x) represent the MD and NMD, respectively, and μI(x) and νI(x) ∈
[0, 1] satisfy the condition μI(x) + νI(x) ≤ 1.

IFWA(I1, I2, . . . , In) =
(

1 − ∏n
g=1

(
1 − μg(x)

)wg , ∏n
g=1 ν

wg
g

)
(3)

where wg represents the weight of Ig, wg ∈ [0, 1] and ∑n
g=1 wg = 1.

The score value of the intuitionistic FS is defined as follows:

Score(I) = μI(x)− νI(x) (4)

Mahmood et al. [25] used a three-dimensional FS mode by extending the concepts of
the FS, intuitionistic FS, and Pythagorean FS to propose a spherical FS for processing the
MCDM problems under uncertain conditions. The basic principles related to the spherical
FS and the calculation rules are described as follows.
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Definition 2 [42]. Assuming that X is the universe of discourse, then, a spherical FS S in X is
defined as follows:

S =
{

x, μS(x), πS(x), νS(x)
∣∣x ∈ X

}
(5)

where the μS(x), πS(x), and νS(x) represent the MD, ID, and NMD, and μS(x), πS(x), and
νS(x) ∈ [0, 1] satisfy the condition 0≤ (μS(x))2 + (πS(x))2 + (νS(x))2 ≤ 1.

The refusal degree (RS(x)) can be expressed as follows:

RS(x) =
√

1 − (μS(x))2 − (πS(x))2 − (νS(x))2 (6)

Definition 3 [42,43]. Supposing that the S1 =
〈
μS1(x), πS1(x), νS1(x)

〉
and S2 =

〈
μS2(x),

πS2(x), νS2(x)
〉

are any two spherical FSs, the basic algorithm rules of the spherical FSs are
as follows:

S1 ⊕ S2 =

{√
μ2

S1 + μ2
S2 − μ2

S1·μ2
S2,
√(

1 − μ2
S2
)·π2

S1 +
(
1 − μ2

S1
)·π2

S2 − π2
S1·π2

S2, νS1·νS2

}
(7)

S1 ⊗ S2 =

{
μS1·μS2,

√(
1 − ν2

S2
)·π2

S1 +
(
1 − ν2

S1
)·π2

S2 − π2
S1·π2

S2,
√

ν2
S1 + ν2

S2 − ν2
S1·ν2

S2

}
(8)

kS1 =

{√
1 − (1 − μ2

S1
)k,
√(

1 − μ2
S1
)k − (1 − μ2

S1 − π2
S1
)k, νk

S1

}
; k > 0 (9)

S1
k =

{
μk

S1,
√(

1 − ν2
S1
)k − (1 − ν2

S1 − π2
S1
)k,
√

1 − (1 − ν2
S1
)k
}

; k > 0 (10)

Definition 4 [43]. Let Sg = 〈μS(x), πS(x), νS(x)〉 be the spherical FS and wg represent the
weights of Sg, wg ∈ [0, 1] and ∑n

g=1 wg = 1. The spherical weighted arithmetic average (SWAA) is
defined as:

SWAA(S1, S2, . . . , Sn) = ∑n
g=1 wgSg

=

(√
1 − ∏n

g=1

(
1 − μ2

g

)wg
,
√

∏n
g=1

(
1 − μ2

g

)wg − ∏n
g=1

(
1 − μ2

g − π2
g

)wg
, ∏n

g=1 ν
wg
g

)
(11)

Definition 5 [43]. Let Sg = 〈μS(x), πS(x), νS(x)〉 be the spherical FS and wg represent the
weight of Sg, wg ∈ [0, 1] and ∑n

g=1 wg = 1. The spherical weighted geometric average (SWGA) is
defined as:

SWGA(S1, S2, . . . , Sn) = ∏n
g=1 Sg

wg

=

(
∏n

g=1 μ
wg
g ,
√

∏n
g=1

(
1 − ν2

g

)wg − ∏n
g=1

(
1 − ν2

g − π2
g

)wg
,
√

1 − ∏n
g=1

(
1 − ν2

g

)wg
)

(12)

Definition 6 [28,43]. Let Sg = 〈μS(x), πS(x), νS(x)〉 be the spherical FS, μS(x), πS(x), and
νS(x) ∈ [0, 1] , then the score and accuracy values are defined as follows:

Score(S) = (μS − πS)
2 − (υS − πS)

2 (13)

Accuracy(S) = μ2
S + π2

S+ν2
S (14)
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Definition 7 [1,28]. The comparison rules of the two spherical FSs, S1 = 〈μS1(x), πS1(x), νS1(x)〉
and S2 = 〈μS2(x), πS2(x), νS2(x)〉, are defined as follows.

(1) If Score(S1) > Score(S2), then S1 > S2;
(2) if Score(S1) = Score(S2), and Accuracy(S1) > Accuracy(S2), then S1 > S2;
(3) if Score(S1) = Score(S2), and Accuracy(S1) = Accuracy(S2), then S1 = S2.

2.3. The Preference Selection Index (PSI) Method

The PSI approach was first introduced by Maniya and Bhatt [44]; in this approach,
statistical concepts are used to calculate the overall preference value of the assessment
factors and then process the material selection issues. The algorithm program of the PSI
approach is as follows:

(1) Create an initial decision matrix, xij:

The xij values represent the values of the ith alternative and jth decision criterion.
i = 1, 2, . . . , m, and j = 1, 2, . . . , n.

xij =

⎡⎢⎢⎢⎣
x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

⎤⎥⎥⎥⎦ (15)

(2) The decision matrix is normalized as, Nij:

Nij =
xij

xmax
j

, for the profit decision criteria (16)

Nij =
xmin

j

xij
, for the cost decision criteria (17)

(3) The preference variation value PVj is calculated as:

PVj = ∑m
i=1 (Nij −

−
Nj)

2
,

−
Nj =

1
m∑m

i=1 Nij (18)

(4) The overall preference value OPj is calculated as:

OPj =
1 − PVj

n − ∑n
j=1 PVj

(19)

(5) The preference selection value PSi is calculated as:

PSi = ∑n
j=1 Nij×OPj (20)

3. Proposed Novel Flexible Risk-Ranking Approach

Failure risk analysis is a crucial factor in product design and manufacturing processes.
FMEA is the most commonly and widely used risk assessment method and is used as a
different industry standard. It is a systematic, structured approach to risk assessment and
uses RPN values to rank the risks of the FM. In product or system failure risk assessment,
two main factors need to be considered: the information for the evaluation and the objective
weighting considerations of the risk factors that are presented by the data themselves.
However, the RPN method cannot process intuitionistic and spherical fuzzy information,
nor does it consider the objective weighting of the risk factors that are presented by the
data. Moreover, the calculation mode of an RPN method violates the definition of the
measurement scale. To solve the restrictions of the RPN method, this study integrated
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the spherical FS and an objective weight consideration of the risk factors to process these
risk-ranking issues. The proposed method uses the MD, ID, and NMD of the spherical
FS to represent the assessment information of the risk factors. Thus, the proposed novel,
flexible risk-ranking approach can process fuzzy, intuitionistic fuzzy, and spherical fuzzy
information simultaneously and can fully consider various types of information. The
proposed novel, flexible risk-ranking approach used the PSI approach to calculate the
objective weights of the risk factors and the SWAA method to obtain the aggregation values
of the risk factors, which solves the problem of the RPN method violating the definition of
the measurement scale.

The proposed method can be broadly divided into eight steps (as shown in Figure 1),
as follows.

The establishment of a cross-disciplinary 
risk assessment team

The identification of all the failure modes

The determination of the Sev, Occ, and 
Det values of the risk factors for the 

different failure modes

The risk analysis team members 
provided the aggregated risk factor 

assessment information

The calculation of the objective weights 
(OW) of the risk factors

The calculation of the weighted SWAA 
values for the different potential failure 

modes

The calculation of the S
S for the different 
failure modes

The failure risk ranking of the failure 
mode

 

Figure 1. The flowchart of the proposed method.

Step 1. The establishment of a cross-disciplinary risk assessment team.

This was achieved based on their respective professional backgrounds.

Step 2. The identification of all the failure modes.

The risk analysis team members had a discussion to identify all the possible potential
FMs based on the risk topic being evaluated.

Step 3. The determination of the Sev, Occ, and Det values of the risk factors for the different
failure modes.
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The risk analysis team members, according to their professional experience and back-
ground, determined the Sev, Occ, and Det values of the risk factors for the different FMs.

Step 4. The risk analysis team members provided the aggregated risk factor assessment
information.

Based on the data from Step 3, Equation (11) was used to aggregate the assessment
information of the risk factors that were provided by the risk analysis team members.

Step 5. The calculation of the objective weights (OW) of the risk factors.

Based on the data from Step 4, Equations (15)–(18) were used to calculate the preference
variation value (PVj). Then, Equation (19) was used to calculate the overall preference
value (OPj).

Based on the overall preference value (OPj), Equation (21) was used to calculate the
objective weights (OWj) of the risk factors.

OWj =

(
μj − πj

)2 − (υj − πj
)2

∑3
j=1

((
μj − πj

)2 − (υj − πj
)2
) (21)

Step 6. The calculation of the weighted SWAA values for the different potential failure modes.

Based on the data from Steps 4 and 5, Equation (11) was used to calculate the weighted
SWAA values of the different FMs.

Step 7. The calculation of the Score(S) and Accuracy(S) values for the different failure modes.

Based on the data from Step 6, Equations (13) and (14) were used to calculate the
Score(S) and Accuracy(S) values of the different FMs, respectively.

Step 8. The failure risk-ranking of the failure mode.

The failure risk of the FM was ranked according to the Score(S) and Accuracy(S)
values.

4. Numerical Example

4.1. Case Overview

The completeness of the information considerations and the rationality of the eval-
uation results of the proposed novel, flexible risk-ranking approach were verified in this
study by using the new product design of electronic equipment as a numerically validated
case (adapted from [45]). The new product design for electronic equipment requires a risk
assessment, avoiding a product failure with limited resources and instantly completing
the system design within the specification constraints specified by the customer. The risk
analysis assessment team for electronic equipment includes three domain experts (DE1,
DE2, and DE3) in engineering and electronic design. The main goal of the risk analysis
assessment team is to confirm the possible failure risk items in the product design process
of the electronic equipment, correctly sort the risk-ranking of the potential FM, and allocate
resources under the limited resources in the best possible way to prevent the occurrence of
risks. The relationship between the linguistic terms and spherical fuzzy numbers within
the new product design of an electronic equipment case is shown in Table 1, according to
which, the domain experts are given these linguistic terms based on the different potential
FMs, the results of which are shown in Table 2.
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Table 1. Relationship between the linguistic terms and spherical fuzzy numbers.

Linguistic Terms μS πS νS

Extremely high impact (EH) 0.95 0.10 0.20
Very high impact (VH) 0.85 0.20 0.30
High impact (HI) 0.75 0.30 0.40
Slightly high impact (SH) 0.65 0.40 0.50
Medium impact (MI) 0.55 0.50 0.60
Slightly low impact (SL) 0.45 0.40 0.70
Low impact (LI) 0.35 0.30 0.80
Very low impact (VL) 0.25 0.20 0.85
Extremely low impact (EL) 0.15 0.10 0.90
Extremely very low impact (EV) 0.10 0.10 0.95

Table 2. Linguistic values of potential failure items given by experts. (FM: failure mode).

Items Potential Failure Mode
Sev Occ Det

DE1 DE2 DE3 DE1 DE2 DE3 DE1 DE2 DE3

1 Extremely limited launch time (FM1) MI SL SL SL SL LI SH SL SL
2 Customer request changes (FM2) SL SL LI SL SL LI EH EH VH
3 Lack of aesthetic consideration (FM3) MI SL MI MI MI SL SH MI MI
4 Product technical failure (FM4) HI SH HI VL VL SL VL SL VL
5 Design changes at the last minute (FM5) VH EH EH SL SL SL SL SL SL
6 Poor product performance (FM6) VH HI VH MI MI SL SH MI MI
7 Manufacturing is not ready to start (FM7) SL SL LI SL LI LI SL SL LI
8 Insufficient manufacturing capacity (FM8) MI SL MI LI VL VL MI SL MI
9 Long lead times for materials (FM9) SL SL LI SL SL LI LI LI LI

10 Potential market saturation (FM10) VL VL LI SH MI MI MI LI MI
11 Failed test run (FM11) SL LI SL LI SL LI LI SL LI
12 Customer sample failed (FM12) MI SH MI MI LI MI SH MI MI
13 Insufficient stock to start (FM13) LI LI LI SL LI SL SL SL SL
14 Incorrect market analysis (FM14) VH HI VH MI MI SL VH HI VH

15 Unavailability of any new technology for
development (FM15) LI LI SL SL SL SL SL LI LI

16 Environmental compliance not considered
(FM16) LI SL LI SL LI LI LI LI SL

17 New technologies in the manufacturing
process (FM17) SH SL SL SL SL LI SL LI SL

18 Lack of experts to develop products (FM18) SL LI SL SL SL LI LI SL SL
19 Poor quality raw materials (FM19) EL VL EL EL EL LI VL EL EL

4.2. Solution with the Risk Priority Number Approach

The RPN approach [2] uses the RPN value to rank the possible failure risks. The
RPN value is the product of the three equal weighted risk factors: Sev, Occ, and Det. The
higher the RPN value that is represented, the higher the risk level of the FM, and it must be
given a higher risk prevention priority to prevent the occurrence of this FM. However, the
RPN method can only handle the MD information of the FM. As shown in Tables 1 and 2,
Equation (1) was used to calculate the RPN value of the electronic equipment new product
design failure, and the results are expressed in Table 3.
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Table 3. The RPN value of the electronic equipment new product design failure.

Items Sev Occ Det RPN Rank

1 0.483 0.417 0.517 0.104 7
2 0.417 0.417 0.917 0.159 5
3 0.517 0.517 0.583 0.156 6
4 0.717 0.317 0.317 0.072 12
5 0.917 0.450 0.450 0.186 3
6 0.817 0.517 0.583 0.246 2
7 0.417 0.383 0.417 0.067 13
8 0.517 0.283 0.517 0.076 10
9 0.417 0.417 0.350 0.061 17
10 0.283 0.583 0.483 0.080 9
11 0.417 0.383 0.383 0.061 16
12 0.583 0.483 0.583 0.164 4
13 0.350 0.417 0.450 0.066 15
14 0.817 0.517 0.817 0.345 1
15 0.383 0.450 0.383 0.066 14
16 0.383 0.383 0.383 0.056 18
17 0.517 0.417 0.417 0.090 8
18 0.417 0.417 0.417 0.072 11
19 0.183 0.217 0.183 0.007 19

4.3. Solution with the Improved Risk Priority Number Method

To solve the problem of the RPN method violating the definition of the measurement
scale, the improved risk priority number (IRPN) [46] is used as the sum of the Sev, Occ,
and Det risk factors to estimate the IRPN value. The IRPN method is the same as the RPN
approach and can only process the MD information of the FM. According to Tables 1 and 2,
the sum of Sev, Occ, and Det risk factors was used to calculate the IRPN value for the
electronic equipment new product design failure, and the results are expressed in Table 4.

Table 4. The IRPN value of the electronic equipment new product design failure.

Items Sev Occ Det IRPN Rank

1 0.483 0.417 0.517 1.417 7
2 0.417 0.417 0.917 1.750 4
3 0.517 0.517 0.583 1.617 6
4 0.717 0.317 0.317 1.350 8
5 0.917 0.450 0.450 1.817 3
6 0.817 0.517 0.583 1.917 2
7 0.417 0.383 0.417 1.217 13
8 0.517 0.283 0.517 1.317 11
9 0.417 0.417 0.350 1.183 16
10 0.283 0.583 0.483 1.350 8
11 0.417 0.383 0.383 1.183 16
12 0.583 0.483 0.583 1.650 5
13 0.350 0.417 0.450 1.217 13
14 0.817 0.517 0.817 2.150 1
15 0.383 0.450 0.383 1.217 13
16 0.383 0.383 0.383 1.150 18
17 0.517 0.417 0.417 1.350 8
18 0.417 0.417 0.417 1.250 12
19 0.183 0.217 0.183 0.583 19

4.4. Solution with the Intuitionistic Fuzzy Weighted Average Method

The intuitionistic fuzzy weighted average (IFWA) method [41] can simultaneously
consider the MD and NMD in the risk assessment problem of the new product design of
the electronic equipment. According to Tables 1 and 2, Equations (3) and (4) were used
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to calculate the IFWA and score values for the electronic equipment new product design
failure, and results are expressed in Table 5.

Table 5. The IFWA value of the electronic equipment new product design failure.

Items Sev Occ Det IFWA Score(I) Rank

1 (0.486, 0.514) (0.419, 0.581) (0.527, 0.473) (0.479, 0.521) −0.042 8
2 (0.419, 0.581) (0.419, 0.581) (0.928, 0.072) (0.710, 0.290) 0.420 3
3 (0.519, 0.481) (0.519, 0.481) (0.586, 0.414) (0.542, 0.458) 0.085 6
4 (0.720, 0.280) (0.324, 0.676) (0.324, 0.676) (0.496, 0.504) −0.008 7
5 (0.928, 0.072) (0.450, 0.550) (0.450, 0.550) (0.721, 0.279) 0.441 2
6 (0.822, 0.178) (0.519, 0.481) (0.586, 0.414) (0.672, 0.328) 0.343 4
7 (0.419, 0.581) (0.385, 0.615) (0.419, 0.581) (0.408, 0.592) −0.185 13
8 (0.519, 0.481) (0.285, 0.715) (0.519, 0.481) (0.451, 0.549) −0.098 11
9 (0.419, 0.581) (0.419, 0.581) (0.350, 0.650) (0.397, 0.603) −0.207 16

10 (0.285, 0.715) (0.586, 0.414) (0.491, 0.509) (0.468, 0.532) −0.064 9
11 (0.419, 0.581) (0.385, 0.615) (0.385, 0.615) (0.397, 0.603) −0.207 16
12 (0.586, 0.414) (0.491, 0.509) (0.586, 0.414) (0.557, 0.443) 0.113 5
13 (0.350, 0.650) (0.419, 0.581) (0.450, 0.550) (0.408, 0.582) −0.185 13
14 (0.822, 0.172) (0.519, 0.481) (0.822, 0.178) (0.752, 0.248) 0.504 1
15 (0.385, 0.615) (0.450, 0.550) (0.385, 0.615) (0.408, 0.592) −0.185 13
16 (0.385, 0.615) (0.385, 0.615) (0.385, 0.615) (0.385, 0.615) −0.230 18
17 (0.527, 0.473) (0.419, 0.581) (0.419, 0.581) (0.457, 0.543) −0.086 10
18 (0.419, 0.581) (0.419, 0.581) (0.419, 0.581) (0.419, 0.581) −0.163 12
19 (0.185, 0.815) (0.223, 0.777) (0.185, 0.815) (0.198, 0.802) −0.605 19

4.5. Solution with the Spherical Weighted Arithmetic Average Method

The spherical weighted arithmetic average (SWAA) method [43] can simultaneously
consider the MD, ID, and NMD of the new product design of the electronic equipment.
As mentioned in Tables 1 and 2, Equation (11) was used to aggregate the evaluation
opinions of the different domain experts on the risk factors Sev, Occ, and Det. Then,
Equations (11), (13) and (14) were used to calculate the SWAA, score, and accuracy values
for the electronic equipment new product design failure, and the results are expressed in
Table 6.

Table 6. The SWAA, score, and accuracy values of the electronic equipment new product design failure.

Items Sev Occ Det SWAA Score(S) Accuracy(S) Rank

1 (0.487, 0.443, 0.665) (0.420, 0.373, 0.732) (0.533, 0.403, 0.626) (0.484, 0.409, 0.673) −0.064 0.854 8
2 (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.928, 0.127, 0.229) (0.739, 0.263, 0.497) 0.172 0.862 3
3 (0.520, 0.475, 0.632) (0.520, 0.475, 0.632) (0.587, 0.467, 0.565) (0.544, 0.473, 0.608) −0.013 0.890 6
4 (0.721, 0.332, 0.431) (0.334, 0.296, 0.797) (0.334, 0.296, 0.797) (0.526, 0.324, 0.649) −0.065 0.803 9
5 (0.928, 0.127, 0.229) (0.450, 0.400, 0.700) (0.450, 0.400, 0.700) (0.745, 0.278, 0.482) 0.177 0.865 2
6 (0.823, 0.231, 0.330) (0.520, 0.475, 0.632) (0.587, 0.467, 0.565) (0.681, 0.382, 0.490) 0.078 0.850 4
7 (0.420, 0.373, 0.732) (0.387, 0.341, 0.765) (0.420, 0.373, 0.732) (0.410, 0.363, 0.743) −0.142 0.851 13
8 (0.520, 0.475, 0.632) (0.288, 0.240, 0.833) (0.520, 0.475, 0.632) (0.461, 0.431, 0.693) −0.068 0.878 10
9 (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.350, 0.300, 0.800) (0.399, 0.352, 0.754) −0.159 0.851 16

10 (0.288, 0.240, 0.833) (0.587, 0.467, 0.565) (0.497, 0.461, 0.660) (0.482, 0.424, 0.677) −0.061 0.871 7
11 (0.420, 0.373, 0.732) (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) (0.399, 0.352, 0.754) −0.159 0.851 16
12 (0.587, 0.467, 0.565) (0.497, 0.461, 0.660) (0.587, 0.467, 0.565) (0.560, 0.466, 0.595) −0.008 0.885 5
13 (0.350, 0.300, 0.800) (0.420, 0.373, 0.732) (0.450, 0.400, 0.700) (0.410, 0.363, 0.743) −0.142 0.851 13
14 (0.823, 0.231, 0.330) (0.520, 0.475, 0.632) (0.823, 0.231, 0.330) (0.759, 0.303, 0.410) 0.197 0.836 1
15 (0.387, 0.341, 0.765) (0.450, 0.400, 0.700) (0.387, 0.341, 0.765) (0.410, 0.363, 0.743) −0.142 0.851 13
16 (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) −0.178 0.852 18
17 (0.533, 0.403, 0.626) (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.463, 0.385, 0.695) −0.090 0.845 11
18 (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) −0.126 0.852 12
19 (0.190, 0.143, 0.883) (0.239, 0.199, 0.865) (0.190, 0.143, 0.883) (0.208, 0.164, 0.877) −0.506 0.839 19

4.6. Solution with the Proposed Novel Flexible Risk-Ranking Approach

To solve the restrictions of the typical risk assessment approach in its information
processing and objective weighting considerations, the proposed method integrates the
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spherical FS and considers the objective weights of the risk factors to process the risk-
ranking issues. The proposed novel, flexible approach is implemented in eight distinct steps,
as described below. The process first must establish a cross-disciplinary risk assessment
team, identify all the potential FMs, and determine the Ser, Occ, and Det values of the risk
factors for the different potential FMs (Steps 1–3).

Step 4. The risk analysis team members provided the aggregated risk factor assessment
information.

Based on Tables 1 and 2, Equation (11) was used to aggregate the evaluation opinions
of the different domain experts on the risk factors Sev, Occ, and Det, and the results are
expressed in Table 7.

Table 7. The weighted SWAA, score, and accuracy values of the proposed method.

Items Sev Occ Det Weighted SWAA Score(S) Accuracy(S) Rank

1 (0.487, 0.443, 0.665) (0.420, 0.373, 0.732) (0.533, 0.403, 0.626) (0.450, 0.403, 0.704) −0.088 0.860 9
2 (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.928, 0.127, 0.229) (0.476, 0.360, 0.703) −0.104 0.850 10
3 (0.520, 0.475, 0.632) (0.520, 0.475, 0.632) (0.587, 0.467, 0.565) (0.523, 0.475, 0.629) −0.021 0.895 5
4 (0.721, 0.332, 0.431) (0.334, 0.296, 0.797) (0.334, 0.296, 0.797) (0.534, 0.325, 0.641) −0.056 0.802 7
5 (0.928, 0.127, 0.229) (0.450, 0.400, 0.700) (0.450, 0.400, 0.700) (0.755, 0.272, 0.472) 0.194 0.867 1
6 (0.823, 0.231, 0.330) (0.520, 0.475, 0.632) (0.587, 0.467, 0.565) (0.675, 0.378, 0.500) 0.073 0.849 3
7 (0.420, 0.373, 0.732) (0.387, 0.341, 0.765) (0.420, 0.373, 0.732) (0.401, 0.354, 0.752) −0.156 0.851 15
8 (0.520, 0.475, 0.632) (0.288, 0.240, 0.833) (0.520, 0.475, 0.632) (0.401, 0.375, 0.748) −0.138 0.861 14
9 (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.350, 0.300, 0.800) (0.418, 0.371, 0.734) −0.130 0.852 13

10 (0.288, 0.240, 0.833) (0.587, 0.467, 0.565) (0.497, 0.461, 0.660) (0.509, 0.427, 0.651) −0.044 0.865 6
11 (0.420, 0.373, 0.732) (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) (0.399, 0.353, 0.753) −0.158 0.851 16
12 (0.587, 0.467, 0.565) (0.497, 0.461, 0.660) (0.587, 0.467, 0.565) (0.535, 0.464, 0.621) −0.020 0.888 4
13 (0.350, 0.300, 0.800) (0.420, 0.373, 0.732) (0.450, 0.400, 0.700) (0.399, 0.352, 0.754) −0.159 0.851 17
14 (0.823, 0.231, 0.330) (0.520, 0.475, 0.632) (0.823, 0.231, 0.330) (0.684, 0.370, 0.491) 0.084 0.846 2
15 (0.387, 0.341, 0.765) (0.450, 0.400, 0.700) (0.387, 0.341, 0.765) (0.427, 0.380, 0.725) −0.117 0.852 11
16 (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) (0.387, 0.341, 0.765) −0.178 0.852 18
17 (0.533, 0.403, 0.626) (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.465, 0.386, 0.692) −0.088 0.845 8
18 (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) (0.420, 0.373, 0.732) −0.126 0.852 12
19 (0.190, 0.143, 0.883) (0.239, 0.199, 0.865) (0.190, 0.143, 0.883) (0.221, 0.180, 0.872) −0.478 0.842 19

Step 5. The calculation of the objective weights (OW) of the risk factors.

Based on the data from Step 4, Equations (15)–(18) were used to calculate the preference
variation value (PVj), as given below:

PVSev = (0.670, 0.192, 0.607); PVOcc = (0.126, 0.106, 0.099); PVDet = (0.517, 0.190, 0.464)

According to the preference variation value (PVj), Equation (19) was used to calculate
the overall preference value (OPj), as given below:

OPSev = (0.196, 0.322, 0.215); OPOcc = (0.518, 0.356, 0.492); OPDet = (0.286, 0.322, 0.293)

According to the overall preference value (OPj), Equation (21) was used to calculate
the objective weights (OWj) of the risk factors, as given below:

OWSev = 0.353; OWOcc = 0.612; OWDet = 0.035

Step 6. The weighted SWAA values for the different potential failure modes were calculated.

Based on the data from Steps 4 and 5, Equation (11) was used to calculate the weighted
SWAA values of the different potential FMs; the results are expressed in Table 7.

Step 7. The calculation of the Score(S) and Accuracy(S) values for the different failure modes.

Based on the data from Step 6, Equations (13) and (14) were used to calculate the
Score(S) and Accuracy(S) values of the different potential FMs, respectively, and the results
are expressed in Table 7.

Step 8. The failure risk-ranking of the failure mode.
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According to the Score(S) and Accuracy(S) values, the comparison rules of the spher-
ical FS (Definition 7) were applied to the failure risk-ranking of the potential FM, and the
results are expressed in Table 7.

4.7. Comparison between Different Methods

In order to verify the comprehensiveness and effectiveness of the proposed novel,
flexible risk-ranking approach in the information processing and weight processing of the
risk-ranking problem, Section 4 adopts a risk assessment case of the new product design of
electronic equipment to verify and compare its calculation results with the RPN method,
IRPN method, IFWA method, and SWAA method. These five calculation methods were
calculated using the same input data (Tables 1 and 2). After the calculation, the risk-ranking
results of the different calculation methods for the potential FMs are expressed in Table 8
and Figure 2. The main differences in the factors considered by the five different calculation
approaches are expressed in Table 9.

Table 8. The risk-ranking results of different calculation methods for potential failure mode.

Items
RPN Method [2] IRPN Method [46] IFWA Method [41] SWAA Method [43] Proposed Method

RPN Rank IRPN Rank Score(I) Rank Score(S) Accuracy(S) Rank Score(S) Accuracy(S) Rank

1 0.104 7 1.417 7 −0.042 8 −0.064 0.854 8 −0.088 0.860 9
2 0.159 5 1.750 4 0.420 3 0.172 0.862 3 −0.104 0.850 10
3 0.156 6 1.617 6 0.085 6 −0.013 0.890 6 −0.021 0.895 5
4 0.072 12 1.350 8 −0.008 7 −0.065 0.803 9 −0.056 0.802 7
5 0.186 3 1.817 3 0.441 2 0.177 0.865 2 0.194 0.867 1
6 0.246 2 1.917 2 0.343 4 0.078 0.850 4 0.073 0.849 3
7 0.067 13 1.217 13 −0.185 13 −0.142 0.851 13 −0.156 0.851 15
8 0.076 10 1.317 11 −0.098 11 −0.068 0.878 10 −0.138 0.861 14
9 0.061 17 1.183 16 −0.207 16 −0.159 0.851 16 −0.130 0.852 13

10 0.080 9 1.350 8 −0.064 9 −0.061 0.871 7 −0.044 0.865 6
11 0.061 16 1.183 16 −0.207 16 −0.159 0.851 16 −0.158 0.851 16
12 0.164 4 1.650 5 0.113 5 −0.008 0.885 5 −0.020 0.888 4
13 0.066 15 1.217 13 −0.185 13 −0.142 0.851 13 −0.159 0.851 17
14 0.345 1 2.150 1 0.504 1 0.197 0.836 1 0.084 0.846 2
15 0.066 14 1.217 13 −0.185 13 −0.142 0.851 13 −0.117 0.852 11
16 0.056 18 1.150 18 −0.230 18 −0.178 0.852 18 −0.178 0.852 18
17 0.090 8 1.350 8 −0.086 10 −0.090 0.845 11 −0.088 0.845 8
18 0.072 11 1.250 12 −0.163 12 −0.126 0.852 12 −0.126 0.852 12
19 0.007 19 0.583 19 −0.605 19 −0.506 0.839 19 −0.478 0.842 19
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Figure 2. The risk-ranking results of different calculation methods.
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Table 9. The main differences in factors considered by different calculation methods.

Information Consideration
Measurement Scale

Consideration
Objective Weight

ConsiderationIntuitionistic Fuzzy
Information

Spherical Fuzzy
Information

RPN method [2] No No No No
IRPN method [46] No No Yes No
IFWA method [41] Yes No Yes No
SWAA method [43] Yes Yes Yes No
Proposed method Yes Yes Yes Yes

According to the contents of Tables 3–9, the primary advantages of the proposed novel,
flexible risk-ranking approach over the other calculation methods are as follows. Firstly,
its information consideration is an advantage; both the RPN method and IRPN method
can only process the MD information of a potential FM, and cannot handle the ID and
refusal degree information, while the IFWA method can effectively grasp the intuitionistic
fuzzy information that is provided by the experts on the risk factors (MD, ID, and NMD
information of a potential FM). However, the IFWA method still cannot effectively deal
with the spherical fuzzy information (MD, ID, NMD, and refusal degree information of a
potential FM) that is provided by the experts on the risk factors. The SWAA method and
the proposed method can simultaneously process the MD, ID, NMD, and refusal degree
information of a potential FM and can fully consider various types of information.

Secondly, its measurement scale consideration is also advantageous. The attributes of
the data distinguish the different measurement scales. The measurement scale includes the
nominal scale, ordinal scale, interval scale, and ratio scale. The data attributes of the risk
factors belong to the ordinal scale, and the geometric mean cannot be used for calculation.
The RPN method uses the concept of the Ser, Occ, and Det risk factor products for its
calculation; this violates the definition of the measurement scale and leads to biased risk-
ranking results. The IRPN, IFWA, SWAA, and the proposed novel, flexible risk-ranking
approach can fully consider the definition of the data attribute measurement scale and
apply a more reasonable calculation mode.

The other advantage is its objective weight consideration. The RPN, IRPN, IFWA,
and SWAA methods ignore the objective weighting considerations of the risk factors that
are presented by the data, which may lead to distortion of the risk-ranking results. The
proposed novel approach used the PSI technique to calculate the objective weights of the
different risk factors to truly reflect the significance of the data.

5. Conclusions

For any industry, risk analysis and risk prioritization are key issues. Maximizing
the yield rate of products under limited resources will ensure the profitability of the
company and the overall customer satisfaction. Risk analysis and risk ranking must be
considered as the processing modes of the information evaluation and the relative weight
of the risk factors. The lack of a comprehensive evaluation information consideration
or ignoring the objective weighting of the risk factors can lead to incorrect evaluation
results. However, most of the risk-ranking methods cannot simultaneously handle the
comprehensive evaluation information consideration, measurement scale consideration,
and relative weight of the risk factors, which causes biased risk-ranking results. This study
proposed a novel, flexible risk-ranking approach to obtain rigorous and correct risk-ranking
results; here, the spherical FS and objective weight considerations of the risk factors are
integrated to process the risk-ranking issues.

The contributions of the proposed novel, flexible risk-ranking method are as follows:

(1) The proposed novel, flexible risk-ranking method can grasp the information on the
intuitionistic fuzzy evaluation of the risk factors,

(2) The proposed novel, flexible risk-ranking method can grasp the information on the
spherical fuzzy evaluation of the risk factors,
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(3) The proposed novel, flexible risk-ranking method considers the measurement scale of
the data,

(4) The proposed novel, flexible risk-ranking method considers the relative weights of
the risk factors,

(5) The IRPN, IFWA, and SWAA methods are special examples of the proposed novel,
flexible risk-ranking method.

In the future, researchers can extend the concept of the proposed method to process
different decision making problems such as performance evaluation, supplier selection,
reliability evaluation, green energy planning, resource allocation, big data processing, and
project management. In addition, future researchers can probe the impact of different
subjective and objective weight combinations on their risk-ranking results.
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Abstract: Transformers are models that implement a mechanism of self-attention, individually
weighting the importance of each part of the input data. Their use in image classification tasks is still
somewhat limited since researchers have so far chosen Convolutional Neural Networks for image
classification and transformers were more targeted to Natural Language Processing (NLP) tasks.
Therefore, this paper presents a literature review that shows the differences between Vision Transform-
ers (ViT) and Convolutional Neural Networks. The state of the art that used the two architectures
for image classification was reviewed and an attempt was made to understand what factors may
influence the performance of the two deep learning architectures based on the datasets used, image
size, number of target classes (for the classification problems), hardware, and evaluated architectures
and top results. The objective of this work is to identify which of the architectures is the best for
image classification and under what conditions. This paper also describes the importance of the
Multi-Head Attention mechanism for improving the performance of ViT in image classification.

Keywords: transformers; Vision Transformers (ViT); convolutional neural networks; multi-head
attention; image classification

1. Introduction

Nowadays, transformers have become the preferred models for performing Natural
Language Processing (NLP) tasks. They offer scalability and computational efficiency,
allowing models to be trained with more than a hundred billion parameters without
saturating model performance. Inspired by the success of the transformers applied to
NLP and assuming that the self-attention mechanism could also be beneficial for image
classification tasks, it was proposed to use the same architecture, with few modifications, to
perform image classification [1]. The author’s proposal was an architecture, called Vision
Transformers (ViT), which consists of breaking the image into 2D patches and providing
this linear sequence of patches as input to the model. Figure 1 presents the architecture
proposed by the authors.

In contrast to this deep learning architecture, there is another very popular tool for
processing large volumes of data called Convolutional Neural Networks (CNN). The CNN
is an architecture that consists of multiple layers and has demonstrated good performance
in various computer vision tasks such as object detection or image segmentation, as well as
NLP problems [2]. The typical CNN architecture starts with convolutional layers that pass
through the kernels or filters, from left to right of the image, extracting computationally
interpretable features. The first layer extracts low-level features (e.g., colours, gradient
orientation, edges, etc.), and subsequent layers extract high-level features. Next, the pooling
layers reduce the information extracted by the convolutional layers, preserving the most
important features. Finally, the fully-connected layers are fed with the flattened output
of the convolutional and pooling layers and perform the classification. Its architecture is
shown in Figure 2.

Appl. Sci. 2023, 13, 5521. https://doi.org/10.3390/app13095521 https://www.mdpi.com/journal/applsci306



Appl. Sci. 2023, 13, 5521

 
Figure 1. Example of an architecture of the ViT, based on [1].

Figure 2. Example of an architecture of a CNN, based on [2].

With the increasing interest in Vision Transformers as a novel architecture for image
recognition tasks, and the established success of CNNs in image classification, this work
aims to review the state of the art in comparing Vision Transformers (ViT) and Convolu-
tional Neural Networks (CNN) for image classification. Transformers offer advantages
such as the ability to model long-range dependencies, adapt to different input sizes, and the
potential for parallel processing, making them suitable for image tasks. However, Vision
Transformers also face challenges such as computational complexity, model size, scalability
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to large datasets, interpretability, robustness to adversarial attacks, and generalization
performance. These points highlight the importance of comparing ViTs with older and
established CNN models.

The overall goal of this work is to understand what conditions have the most influence
on the performance of the two Deep Learning architectures, and what characteristics differ
between the two architectures, that allow them to perform differently for the same objective.
Some of the aspects that will be compared include datasets considerations, robustness,
performance, evaluation, interpretability, and architecture. Specifically, we aim to answer
the following research questions:

RQ1—Can the ViT architecture have a better performance than the CNN architecture,
regardless of the characteristics of the dataset?
RQ2—What influences CNNs that do not to perform as well as ViTs?
RQ3—How does the Multi-Head Attention mechanism, which is a key component of ViTs,
influence the performance of these models in image classification?

In order to address these research questions, a literature review was conducted by
searching various databases such as Google Scholar, Scopus, Web of Science, ACM Digital
Library, and Science Direct using specific search terms. This paper presents the results of
this review and analyses the methodologies and findings from the selected papers.

The rest of this paper is structured as follows. Section 2 describes the research method-
ology and search results. Section 3 presents the knowledge, methodology, and results found
in the selected documents. Section 4 provides a brief overview of the reviewed papers and
attempts to answer the three research questions. Section 5 discusses threats to the validity
of the research. Section 6 overviews the strengths and weaknesses of each architecture
and suggests future research directions, and Section 7 presents the main conclusions of
this work.

2. Research Methodology

The purpose of a literature review is to evaluate, analyse and summarize the existing
literature on a specific research topic, in order to facilitate the emergence of theoretical
frameworks [3]. In this literature review, the aim is to synthesize the knowledge base,
critically evaluate the methods used and analyze the results obtained in order to identify
the shortcomings and improve the two aforementioned deep learning architectures for
image classification. The methodology for conducting this literature review is based on the
guidelines presented in [3,4].

2.1. Data Sources

ACM Digital Library, Google Scholar, Science Direct, Scopus, and Web of Science, were
chosen as the data sources to extract the primary studies. The number of results found after
searching papers in each of the data sources is shown in Table 1.

Table 1. Data sources and the number of obtained results.

Data Source Number of Results Number of Selected Papers

ACM Digital Library 19,159 1
Google Scholar 10,700 10
Science Direct 1437 3

Scopus 55 2
Web of Science 90 1

2.2. Search String

The research questions developed for this paper served as the basis for the search
strings utilized in each of the data sources. Table 2 provides a list of the search strings used
in each electronic database.
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Table 2. Data sources and used search string.

Data Source Search String

ACM Digital Library ((Vision Transformers) AND (convolutional neural networks) AND (images classification) AND (comparing))

Google Scholar ((ViT) AND (CNN) AND (Images Classification) OR (Comparing) OR (Vision Transformers) OR (convolutional neural
networks) OR (differences))

Science Direct ((Vision Transformers) AND (convolutional neural networks) AND (images classification) AND (comparing))
Scopus ((ViT) AND (CNN) AND (comparing))

Web of Science ((ViT) AND (CNN) AND (comparing))

2.3. Inclusion Criteria

The inclusion criteria set to select the papers were that the studies were recent, had
been written in English, and were published between January 2021 and December 2022.
This choice of publication dates is based on the fact that ViTs were not proposed until the end
of 2020 [1]. In addition, the studies had to demonstrate a comparison between CNNs and
ViTs for image classification and could use any pre-trained model of the two architectures.
Studies that presented a proposal for a hybrid architecture, where they combined the two
architectures into one, were also considered. The dataset used during the studies did not
have to be a specific one, but it had to be a dataset of images that allowed classification
using both deep learning architectures.

2.4. Exclusion Criteria

Studies that oriented their research on using only one of the two deep learning ar-
chitectures (i.e., Vision Transforms, or Convolutional Neural Networks) were excluded.
Additionally, papers that were discovered to be redundant when searches were conducted
throughout the chosen databases were eliminated. It was also defined that one of the
exclusion criteria will be that the papers would have more than seven citations.

In summary, with the application of these criteria, 10,690 papers were excluded from
the Google Scholar database, 89 papers from Web of Science, 53 papers from Scopus,
19,158 papers from ACM Digital Library, and 1434 papers from Science Direct.

2.5. Results

After applying the inclusion and exclusion criteria to the papers obtained in each
of the electronic databases, seventeen (17) papers were selected for the literature review.
Table 3 lists all the papers selected for this work, the year of publication and the type
of publication.

Table 3. List of selected studies.

Ref. Title Year Type

[5] Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs 2021 Conference
[6] Are Transformers More Robust Than CNNs? 2021 Conference
[7] Detecting Pneumonia using Vision Transformer and comparing with other techniques 2021 Conference
[8] Do Vision Transformers See Like Convolutional Neural Networks? 2021 Conference
[9] Vision Transformer for Classification of Breast Ultrasound Images 2021 Conference
[10] ConvNets vs. Transformers: Whose Visual Representations are More Transferable? 2021 Conference
[11] A vision transformer for emphysema classification using CT images 2021 Journal
[12] Comparing Vision Transformers and Convolutional Nets for Safety Critical Systems 2022 Conference
[13] Convolutional Nets Versus Vision Transformers for Diabetic Foot Ulcer Classification 2022 Conference
[14] Convolutional Neural Network (CNN) vs Vision Transformer (ViT) for Digital Holography 2022 Conference
[15] Cross-Forgery Analysis of Vision Transformers and CNNs for Deepfake Image Detection 2022 Conference
[16] Traffic Sign Recognition with Vision Transformers 2022 Conference
[17] An improved transformer network for skin cancer classification 2022 Journal
[18] CNN and transformer framework for insect pest classification 2022 Journal
[19] Single-layer Vision Transformers for more accurate early exits with less overhead 2022 Journal
[20] Vision transformer-based autonomous crack detection on asphalt and concrete surfaces 2022 Journal
[21] Vision Transformers for Weeds and Crops Classification of High-Resolution UAV Images 2022 Journal
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Figure 3 shows the distribution of the selected papers by year of publication.

Figure 3. Distribution of the selected studies by years.

Figure 4 shows the distribution of the selected studies by application area. In the
figure, most of the papers are generic in their application area. In these papers without
a specific application area, the authors try to better understand the characteristics of
the two architectures. For example, between CNNs and ViTs, the authors have tried to
understand which of the architectures is more transferable. If architectures based on
transformers are more robust than CNNs. And if the ViT will be able to see the same
information as CNN with a different architecture. Within the health domain, some studies
have been developed in different sub-areas, such as breast cancer, to show that ViT can be
better than CNNs. The figure also shows that some work has been done, albeit to a lesser
extent, in other application areas. Agriculture stands out with two papers comparing ViTs
with CNNs.

Figure 4. Distribution of the selected studies by application area.

3. Findings

An overview of the studies selected through the research methodology is shown
in Table 4. This information summarizes the authors’ approach, the findings, and other
architectures that were used to build a comparative study. Therefore, to address the research
questions, this section will offer an overview of the data found in the collected papers.

In the study developed in [12], the authors aimed to compare the two architectures
(i.e., ViT and CNN), as well as the creation of a hybrid model that corresponded to the
combination of the two. The experiment was conducted using the ImageNet dataset and
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perturbations were applied to the dataset images. It was concluded that ViT can perform
better and be more resilient on images with natural or adverse disturbances than CNN. It
was also found in this work that the combination of the two architectures results in a 10%
improvement in accuracy (Acc).

The work done in [14] aimed to compare Vision Transformers (ViT) with Convolu-
tional Neural Networks (CNN) for digital holography, where the goal was to reconstruct
amplitude and phase by extracting the distance of the object from the hologram. In this
work, DenseNet201, DenseNet169, EfficientNetB4, EfficientNetB7, ViT-B/16, ViT-B32 and
ViT-L/16 architectures were compared with a total of 3400 images. They were divided into
four datasets, original images with or without filters, and negative images with or without
filters. The authors concluded that ViT despite having an accuracy like CNN, was more
robust because, due to the self-attention mechanism, it can learn the entire hologram rather
than a specific area.

The authors in [7] studied the performance of ViT in comparison with other architec-
tures to detect pneumonia, through chest X-ray images. Therefore, a ViT model, a CNN
network developed by the authors and the VGG-16 network were used for the study which
focussed on a dataset with 5856 images. After the experiments performed, the authors
concluded that ViT was better than CNN with 96.45% accuracy, 86.38% validation accuracy,
10.8% loss and 18.25% validation loss. In this work, it was highlighted that ViT has a self-
attention mechanism that allows splitting the image into small patches that are trainable,
and each part of the image can be given an importance. However, the attention mechanism
as opposed to the convolutional layers makes ViT’s performance saturate fast when the
goal is scalability.

In the study [21] the goal was to compare ViT with state-of-art CNN networks to
classify UAV images to monitor crops and weeds. The authors compared the influence
of the size of the training dataset on the performance of the architectures and found
that ViT performed better with fewer images than CNN networks in terms of F1-Score.
They concluded that ViT-B/16 was the best model to do crop and weed monitoring. In
comparison with CNN networks, ViT could better learn the patterns of images in small
datasets due to the self-attention mechanism.

In the scope of lung diseases, the authors in [11] investigated the performance of
ViT models to automatically classify emphysema subtypes through Computed Tomog-
raphy (CT) images in comparison with CNN networks. In this study, they performed a
comparative study between the two architectures using a dataset collected by the authors
(3192 patches) and a public dataset of 168 patches taken from 115 HRCT slides. In addition
to this, they also verified the importance of pre-trained models. They concluded that
ViT failed to generalize when trained with fewer images, because when comparing the
pre-training accuracy with 91.27% on the training and 70.59% on the test.

In the work in [9], a comparison between state-of-the-art CNNs and ViT models
for Breast ultrasound image classification was developed. The study was performed
with two different datasets: the first containing 780 images and the second containing
163 images. The following architectures were selected for the study: ResNet50, VGG-16,
Inception, NASNET, ViT-S/32, ViT-B/32, ViT-Ti/16, R + ViT-Ti/16 and R26 + ViT-S/16. ViT
models were found to perform better than CNN networks for image classification. The
authors also highlighted that ViT models could perform better when they were trained
with a small dataset, because via the attention mechanism, it was possible to collect more
information from different patches, instead of collecting information from the image.

Benz et al., in [5], compared ViT models, with the MLP-Mixer architecture and with
CNNs. The goal was to evaluate which architecture was more robust in image classification.
The study consisted of generating perturbations and adverse examples in the images and
understanding which of the architectures was most robust. However, this study did not
aim to analyse the causes. Therefore, the authors concluded that ViT were more robust than
CNNs to adversarial attacks and from a features perspective CNN networks were more
sensitive to high-frequency features. It was also described that the shift-variance property

311



Appl. Sci. 2023, 13, 5521

of convolutional layers may be at the origin of the lack of robustness of the network in the
classification of images that have been transformed.

The authors in [15] performed an analysis between ViT and CNN models aimed at
detecting deepfake images. The experiment consisted in using the ForgeryNet dataset with
2.9 million images and 220 thousand video clips, together with three different image manip-
ulation techniques, where they tried to train the models with real and manipulated images.
By training the ViT-B model and the EfficientNetV2 network the authors demonstrated that
the CNN network could generalize better and obtain higher training accuracy. However,
ViT could have better generalization, reducing the bias in the identification of anomalies
introduced by one or more different techniques to introduce anomalies.

Chao Xin et al. [17] aimed to compare their ViT model with CNN networks and with
another ViT model to perform image classification to detect skin cancer. The experiment
conducted by the authors used a public HAM10000 dataset with dermatoscopic skin cancer
images and a clinical dataset collected through dermoscopy. In this study, a multi-scale
image and the overlapping sliding window were used to serialize the images. They
also used contrastive learning to improve the similarity of different labels and minimize
the similarity in the same label. Thus, the ViT model developed was better for skin
cancer classification using these techniques. However, the authors also demonstrated the
effectiveness of balancing the dataset on the model performance, but they did not present
the F1-Score values before the dataset is balanced to verify the improvement.

The authors in [19] aimed to study if ViT models could be an alternative to CNNs
in time-critical applications. That is, for edge computing instances and IoT networks,
applications using deep learning models consume multiple computational resources. The
experiment used pre-trained networks such as ResNet152, DenseNet201, InceptionV3,
and SL-ViT with three different datasets in the scope of images, audio, and video. They
concluded that the ViT model introduced less overhead and performed better than the
architectures used. It was also shown that increasing the kernel size of convolutional layers
and using dilated convolutional caused a reduction in the accuracy of a CNN network.

In a study carried out in [20], the authors tried to find in ViTs an alternative solution to
CNN networks for asphalt and concrete crack detection. The authors concluded that ViTs,
due to the self-attention mechanism, had better performance in crack detection images
with intense noise. CNN networks in the same images suffered from a high number of false
negative rates, as well as the presence of biases in image classification.

Haolan Wang in [16] aimed to analyse eight different Vision Transformers and compare
them with the performance of a pre-trained CNN network and without the pre-trained
parameters to perform traffic signal recognition in autonomous driving systems. In this
study, three different datasets with images of real-world traffic signals were used. This
allowed the authors to conclude that the pre-trained DenseNet161 network had a higher
accuracy than the ViT models to do traffic sign recognition. However, it was found in
this work that ViT models performed better than the DenseNet161 network without the
pre-trained parameters. From this work, it was also possible to conclude that the ViT
models with a total number of parameters equal to or greater than the CNN networks, used
during the experiment, had a shorter training time.

The work done in [13] compared CNN networks with Vision Transformers models for
the classification of Diabetic Foot Ulcer images. For the study, the authors decided to use the
following architectures: Big Image Transfer (BiT), EfficientNet, ViT-base and Data-efficient
Image Transformers (DeIT) upon a dataset composed of 15,683 images. A further aim of
this study to compare the performance of deep learning models using Stochastic Gradient
Descent (SGD) [22] with Sharpness-Aware Optimization (SAM) [23,24]. These two tools are
optimizers that seek to minimize the value of the loss function, improving the generalization
ability of the model. However, SAM minimizes the value of the loss function and the
sharpness loss, looking for parameters in the neighbourhood with a low loss. Therefore,
this work concluded that the SAM optimizer originated an improvement in the values of
F1-Score, AUC, Recall and Precision in all the architectures used. However, the authors did
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not present the training and test values that allow for evaluating the improvement in the
generalization of the models. Therefore, the BiT-ResNetX50 model with the SAM optimizer
obtained the best performance for the classification of Diabetic Foot Ulcer images with
F1-Score = 57.71%, AUC = 87.68%, Recall = 61.88%, and Precision = 57.74%.

The authors in [18] performed a comparative study between ViT models and CNN
networks used in the state of the art with a model developed by them, where they combined
CNN and transformers to perform insect pest recognition to protect agriculture worldwide.
This study involved three public datasets: the IP102 dataset, the D0 dataset and Li’s dataset.
The algorithm created by the authors consisted of using the sequence of inputs formed by
the CNN feature maps to make the model more efficient, and a flexible attention-based
classification head was implemented to use the spatial information. Comparing the results
obtained, the proposed model obtained a better performance in insect pest recognition with
an accuracy of 74.897%. This work demonstrated that fine-tuning worked better on Vision
Transformers than CNN, but on the other hand, this caused the number of parameters,
the size, and the inference time of the model to increase significantly with respect to CNN
networks. Through their experiments, the authors also demonstrated the advantage of
using decoder layers in the proposed model to perform image classification. The greater
the number of decoder layers, the greater the accuracy value of the model. However, this
increase in the number of decoder layers increased the number of parameters, the size, and
the inference time of the model. In other words, the architecture to process the images
consumes far greater computational resources, which may not compensate for the increase
in accuracy value with few layers. In the case of this study, the increase from one layer to
three decoder layers represented only an increase of 0.478% in the accuracy value.

Several authors in [6,8,10] went deeper into the investigation and aimed to understand
how the learning process of Vision Transformers works if ViT could be more transferable
and better understand if the transform-based architecture were more robust than CNNs.
In this sense, the authors in [8] intended to analyse the internal representations of ViT
and CNN structures in image classification benchmarks and found differences between
them. One of the differences was that ViT has greater similarity between high and low
layers, while CNN architecture needs more low layers to compute similar representations in
smaller datasets. This is due to the self-attention layers implemented in ViT, which allows
it to aggregate information from other spatial locations, vastly different from the fixed field
sizes in CNNs. They also observed that ViTs in the lower, self-attention layers can access
information from local heads (small distances) and global heads (large distances). Whereas
CNNs have access to information locally in the lower layers. On the other hand, the authors
in [10] systematically analysed the transfer learning capacity in the two architectures. The
study was conducted by comparing the performance of the two architectures on single-
task and multi-task learning problems, using the ImageNet dataset. Through this study,
the authors concluded that the transform-based architecture contained more transferable
representations compared to convolutional networks for fine-tuning, presenting better
performance and robustness in multi-task learning problems.

In another study carried out in [6], the goal was to prove if ViT were more robust than
CNN as the most recent studies have shown. The authors developed their work comparing
the robustness of the two architectures using two different types of perturbations: adversar-
ial samples, which consists in evaluating the robustness of deep learning architectures in
images with human-caused perturbations (i.e., data augmentation) and out-of-distribution
samples, which consists in evaluating the robustness of the architectures in benchmarks of
classification images. Through this experiment, it was demonstrated that by replacing the
activation function ReLU by the activation function of transformer-based architecture (i.e.,
GELU) the CNN network was more robust than ViT in adversarial samples. In this study,
it was also demonstrated that CNN networks were more robust than ViT in patch-based
attacks. However, the authors concluded that the self-attention mechanism was the key to
the robustness of the transformer-based architecture in most of the experiments performed.
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4. Discussion

The results can be summarized as follows. In [12], ViTs were found to perform
better and be more resilient to images with natural or adverse disturbances compared
to CNNs. Another study [14] concluded that ViTs are more robust in digital holography
because they can access the entire hologram rather than just a specific area, giving them an
advantage. ViTs have also been found to outperform CNNs in detecting pneumonia in chest
X-ray images [7] and in classifying UAV images for crop and weed monitoring with small
datasets [21]. However, it has been noted that ViT performance may saturate if scalability
is the goal [7]. In a study on classifying emphysema subtypes in CT images [11], ViTs were
found to struggle with generalization when trained on fewer images. Nevertheless, ViTs
were found to outperform CNNs in breast ultrasound image classification, especially with
small datasets [9]. Another study [5] found that ViTs are more robust to adversarial attacks
and that CNNs are more sensitive to high-frequency features. The authors in [15] found that
CNNs had higher training accuracy and better generalization, but ViTs showed potential to
reduce bias in anomaly detection. In [17], the authors claimed that the ViT model showed
better performance for skin cancer classification. ViTs have also been shown to introduce
less overhead and perform better for time-critical applications in edge computing and IoT
networks [19]. In [20], the authors investigated the use of ViTs for asphalt and concrete
crack detection and found that ViTs performed better due to the self-attention mechanism,
especially in images with intense noise and biases. Wang [16] found that a pre-trained CNN
network had higher accuracy, but the ViT models performed better than the non-pre-trained
CNN network and had a shorter training time. The authors in [13] used several models for
diabetic foot ulcer image classification and compared SGD and SAM optimizers, concluding
that the SAM optimizer improved several evaluation metrics. In [18], the authors showed
that fine-tuning performed better on ViT models than CNNs for insect pest recognition.

Therefore, based on the information gathered from the selected papers, we attempt to
answer the research questions posed in Section 1:

RQ1—Can the ViT architecture have a better performance than the CNN architecture,
regardless of the characteristics of the dataset?

The literature review shows that ViT in image processing can be more efficient in
smaller datasets due to the increase of relations created between images through the self-
attention mechanism. However, it is also shown that if ViT trained with little data will have
less generalization ability and worse performance compared to CNN’s.

RQ2—What influences the CNNs that do not allow them to perform as well as the ViTs?

Shift-invariance is a limitation of CNN that makes the same architecture not have a sat-
isfactory performance because the introduction of noise in the input images makes the same
architecture unable to get the maximum information from the central pixels. However, the
authors in [27] propose the addition of an anti-aliasing filter which combines blurring with
subsampling in the Convolutional, MaxPooling and AveragePooling layers. Demonstrating
through the experiment carried out that the application of this filter originates a greater
generalization capacity and an increase in the accuracy of CNN. Furthermore, increasing
the kernel size in convolutional layers and using dilated convolution have been shown as
limitations that deteriorate the performance of CNNs against ViTs.

RQ3—How does the Multi-Head Attention mechanism, which is a key component of ViTs,
influence the performance of these models in image classification?

The Attention mechanism is described as the mapping of a query and a set of key-
value pairs to an output, the output being the result of a weighted sum of the values,
in which the weight given is calculated, through the query with the corresponding key
by a compatibility function. Multi-head Attention mechanism instead of performing a
single attention function will perform multiple projections of attention functions [28]. This
mechanism improves the ViT architecture because it allows it to extract more information
from each pixel of the images that have been placed inside the embedding. In addition, this
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mechanism can have better performance if the images have more secondary elements that
illustrate the central element. And since this mechanism performs several computations in
parallel, it reduces the computational cost [29].

Overall, ViTs have shown promising performance compared to CNNs in various
applications, but there are limitations and factors that can affect their performance, such as
dataset size, scalability, and pre-training accuracy.

5. Threats to Validity

This section discusses internal and external validity threats. The validity of the entire
process performed in this study is demonstrated and how the results of this study can be
replicated in other future experiments.

In this literature review, different search strings were used in each of the selected data
sources, resulting in different results from each source. This approach may introduce a
bias into the validation of the study, as it makes it difficult to draw conclusions about the
diversity of studies obtained by replicating the same search. In addition, the maturity of
the work was identified as an internal threat to validity, as the ViT architecture is relatively
new and only a limited number of research projects have been conducted using it. In order
to draw more comprehensive conclusions about the robustness of ViT compared to CNN, it
is imperative that this architecture is further disseminated and deployed, thereby making
more research available for analysis.

In addition to these threats, this study did not use methods that would allow to quan-
titatively and qualitatively analyse the results obtained in the selected papers. This may
bias the validity of this review in demonstrating which of the deep learning architectures is
more efficient in image processing.

The findings obtained in this study could be replicated in other future research in
image classification. However, the results obtained may not be the same as those described
by the selected papers because it has been proven that for different problems and different
methodologies used, the results are different. In addition, the authors do not describe
in sufficient detail all the methodologies they used, nor the conditions under which the
experiment was performed.

6. Strengths, Limitations, and Future Research Directions

The review made it possible to identify not only the strengths of each architecture
(outlined in Section 6.1), but also their potential for improvement (described in Section 6.2).
Future research directions were also derived from this and are presented in Section 6.3.

6.1. Strengths

Both CNNs and ViTs have their own advantages, and some common ones. This
section will explore these in more detail, including considerations on the Datasets, Ro-
bustness, Performance optimization, Evaluation, Explainability and Interpretability, and
Architectures.

6.1.1. Dataset Considerations

CNNs have been widely used and extensively studied for image-related tasks, result-
ing in a rich literature, established architectures, and pre-trained models, making them
accessible and convenient for many datasets. On the other hand, ViTs can process patches
in parallel, which can lead to efficient computation, especially for large-scale datasets, and
allow faster training and inference. ViTs can also handle images of different sizes and aspect
ratios without losing resolution, making them more scalable and adaptable to different
datasets and applications.

6.1.2. Robustness

CNNs are inherently translation-invariant, making them robust to small changes in
object position or orientation within an image. The main advantage of ViTs is their ability
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to effectively capture global contextual information through the self-attention mechanism,
enabling them to model long-range dependencies and contextual relationships, which
can improve robustness in tasks that require understanding global context. ViTs can also
adaptively adjust the receptive fields of the self-attention mechanism based on input data,
allowing them to better capture both local and global features, making them more robust
to changes in scale, rotation, or perspective of objects.

Both architectures can be trained using data augmentation techniques, such as random
cropping, flipping, and rotation, which can help improve robustness to changes in input
data and reduce overfitting. Another technique is known as adversarial training, where they
are trained on adversarial examples: perturbed images designed to confuse the model, to
improve its ability to handle input data with adversarial perturbations. Combining models,
using ensemble methods, such as bagging or boosting, can also improve robustness by
exploiting the diversity of multiple models, which can help mitigate the effects of individual
model weaknesses.

6.1.3. Performance Optimization

CNNs can be effectively compressed using techniques such as pruning, quantization,
and knowledge distillation, reducing model size and improving inference efficiency with-
out significant loss of performance. They are also well-suited for hardware optimization,
with specialized hardware accelerators (e.g., GPUs, TPUs) designed to perform convo-
lutional operations efficiently, leading to optimized performance in terms of speed and
energy consumption.

ViTs can efficiently scale to handle high-resolution images or large-scale datasets
because they operate on the entire image at once and do not require processing of local
receptive fields at multiple spatial scales, potentially resulting in improved performance in
terms of scalability.

Transfer Learning for pre-train on large-scale datasets and fine-tune on smaller datasets
can potentially lead to improved performance with limited available data and can be used
with both architectures.

6.1.4. Evaluation

CNNs have been widely used in image classification tasks for many years, resulting in
well-established benchmarks and evaluation metrics that allow meaningful comparison
and evaluation of model performance. The standardized evaluation protocols, such as cross-
validation or hold-out validation, which provide a consistent framework for evaluating
and comparing model performance across different datasets and tasks, are applicable for
both architectures.

6.1.5. Explainability and Interpretability

CNNs produce feature maps that can be visualized, making it possible to interpret
the behaviour of the model by visualizing the learned features or activations in different
layers. They capture local features in images, such as edges or textures, which can lead to
interpretable features that are visually meaningful and can provide insight into how the
model is processing the input images. ViTs, on the other hand, are designed to capture
global contextual information, making them potentially more interpretable in tasks that
require an understanding of long-range dependencies or global context. They have a
hierarchical structure with self-attention heads that can be visualized and interpreted
individually, providing insights into how different heads attend to different features or
regions in the input images.

6.1.6. Architecture

CNNs have a wide range of established architecture variants, such as VGG, ResNet,
and Inception, with proven effectiveness in various image classification tasks. These
architectures are well-tested and widely used in the deep learning community. ViTs can be
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easily modified to accommodate different input sizes, patch sizes, and depth, providing
flexibility in architecture design and optimization.

6.2. Limitations

Despite their many advantages and the breakthroughs made over the years. There are
still some drawbacks to the architectures studied. This section focuses on these.

6.2.1. Dataset Considerations

CNNs can be susceptible to biases present in training datasets, such as biased sampling
or label noise, which can affect the validity of training results. They typically operate on
fixed input spatial resolutions, which may not be optimal for images of varying size or
aspect ratio, resulting in information loss or distortion. While pre-trained models for CNNs
are well-established, pre-trained models for ViT are (still) less common for some datasets,
which may affect the ease of use in some situations.

6.2.2. Robustness

CNNs may struggle to capture long-range contextual information, as they focus
primarily on local feature extraction, which may limit the ability to understand global
context, leading to reduced robustness in tasks that require global context, such as scene
understanding, image captioning or fine-grained recognition.

Both architectures can be prone to overfitting, especially when the training data is
limited or noisy, which can lead to reduced robustness to input data outside the training
distribution. Adversarial attacks can also pose a challenge to the robustness of both
architectures. In particular, ViTs do not have an inherent spatial inductive bias like CNNs,
which are specifically designed to exploit the spatial locality of images. This can make them
more vulnerable to certain types of adversarial attacks that rely on spatial information,
such as spatially transformed adversarial examples.

6.2.3. Performance Optimization

CNNs can suffer from reduced performance and increased memory consumption
when applied to high-resolution images or large-scale datasets, as they require processing
of local receptive fields at multiple spatial scales, leading to increased computational
requirements. Compared to CNNs, ViTs are computationally expensive, especially as
the image size increases or model depth increases, which may limit their use in certain
resource-constrained environments. Reduced computational complexity can sometimes
result in decreased robustness, as models may not have the ability to learn complex features
that can help generalize well to adversarial examples.

6.2.4. Evaluation

As mentioned above, CNNs are primarily designed for local feature extraction and
may struggle to capture long-range contextual dependencies, which can limit the eval-
uation performance in tasks that require understanding of global context or long-term
dependencies. ViTs are relatively newer than CNNs, and as such, may lack well-established
benchmarks or evaluation metrics for specific tasks or datasets, which can make perfor-
mance evaluation difficult and less standardized.

6.2.5. Explainability and Interpretability

Despite well-established methods for model interpretation, CNNs still lack full in-
terpretability because the complex interactions between layers and neurons can make it
difficult to fully understand the model’s decision-making process, particularly in deeper
layers of the network.

While ViTs produce attention maps for interpretability, the complex interactions be-
tween self-attention heads can still present challenges in accurately interpreting the model’s
behaviour. ViTs can have multiple heads attending to different regions, which can make it
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difficult to interpret the interactions between different attention heads and to understand
the reasoning behind model predictions.

6.2.6. Architecture

CNNs typically have fixed, predefined model architectures, which may limit the flex-
ibility to adapt to specific task requirements or incorporate domain-specific knowledge,
potentially affecting performance optimization. For ViTs, the availability of established ar-
chitecture variants is still limited, which may require more experimentation and exploration
to find optimal architectures for specific tasks.

6.3. Future Research Directions

As future research, meta-analysis or systematic reviews should be conducted within
the scope of this review to provide the scientific community with more detail on which
of the architectures is more effective at image classification, in addition to specifying
under what conditions a particular architecture stands out from the others. It is therefore
necessary to facilitate the choice of the deep learning architecture to be used in future
image classification problems. This section aims to provide guidelines for future research
in this area.

6.3.1. Dataset Considerations

The datasets used in most studies may not be representative of real-world scenarios.
Future research should consider using more diverse datasets that better reflect the complex-
ity and variability of real-world images. As an example, it would be interesting to study the
impact that image resolution might have on the performance of deep learning architectures.
That is, it would be important to find out in which of the architectures (i.e., ViT, CNN, and
MLP-Mixer) the resolution of the images will influence their performance, as well as what
impact it will have on the processing time of the deep learning architectures.

6.3.2. Robustness

As documented in [5], deep learning models are typically vulnerable to adversarial
attacks, where small perturbations to an input image can cause the model to misclassify it.
Future research should focus on developing architectures that are more robust to adversarial
attacks (for example by further augmenting the robustness of ViTs), as well as exploring
ways to detect and defend against these attacks.

Beyond that, most studies (as the ones reviewed in this work) have focused on the
performance of deep learning architectures on image classification tasks, but there are many
other image processing tasks (such as object detection, segmentation, and captioning) that
could benefit from the use of these architectures. Future research should further explore
the effectiveness of these architectures on these tasks.

6.3.3. Performance Optimization

Deep learning architectures require substantial amounts of labelled data to achieve
high performance. However, labelling data is time-consuming and expensive. Future
research should explore ways to improve the efficiency of deep learning models, such as
developing semi-supervised learning methods or transfer learning (following up on the
finding in [10]) that can leverage pre-trained models.

In addition, the necessity of large amounts of labelled data requires significant compu-
tational resources, which limits the deployment on resource-constrained devices. Future
research should focus on developing architectures that are optimized for deployment
on these devices, as well as exploring ways to reduce the computational cost of existing
architectures. It should explore the advantages of the implementation of the knowledge
distillation of deep learning architectures to reduce computational resources.
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6.3.4. Evaluation

The adequacy of the metrics to the task and problem at hand is also another suggested
line of future research. Most studies have used standard performance metrics (such as
accuracy and F1-score) to evaluate the performance of deep learning architectures. Future
research should consider using more diverse metrics that better capture the strengths and
weaknesses of different architectures.

6.3.5. Explainability and Interpretability

Deep learning models are often considered as black boxes because they do not provide
insight into the decision-making process. This may prevent the usage of the models in
certain areas such as justice and healthcare [30], among others. Future research should
focus on making these models more interpretable and explainable. For example, by de-
signing transformer architectures that provide visual explanations of their decisions or by
developing methods for extracting features that are easily interpretable.

6.3.6. Architecture

In future investigations, it will be necessary to study the impact of the MLP-Mixer
deep learning architecture in image processing, what are the characteristics that allow it to
have a performance superior to CNNs, but inferior to the performance obtained by the ViT
architecture [5]. Future research should also focus on developing novel architectures that
can achieve high performance with fewer parameters or that are more efficient in terms of
computation and memory usage.

7. Conclusions

This work has reviewed recent studies done in image processing to give more infor-
mation about the performance of the two architectures and what distinguishes them. A
common feature across all papers is that transformer-based architecture or the combination
of ViTs with CNN allows for better accuracy compared to CNN networks. It has also been
shown that this new architecture, even with hyperparameters fine-tuning, can be lighter
than the CNN, consuming fewer computational resources and taking less training time as
demonstrated in the works [16,19].

In summary, the ViT architecture is more robust than CNN networks for images that
have noise or are augmented. It manages to perform better compared to CNN due to the
self-attention mechanism because it makes the overall image information accessible from
the highest to the lowest layers [12]. On the other hand, CNN’s can generalize better with
smaller datasets and get better accuracy than ViTs, but in contrast, ViTs have the advantage
of learning information better with fewer images. This is because the images are divided
into small patches, so there is a greater diversity of relationships between them.
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Abstract: Social Complex Networks in communication networks are pivotal for comprehending
the impact of human-like interactions on information flow and communication efficiency. These
networks replicate social behavior patterns in the digital realm by modeling device interactions,
considering friendship, influence, and information-sharing frequency. A key challenge in communi-
cation networks is their dynamic topologies, driven by dynamic user behaviors, fluctuating traffic
patterns, and scalability needs. Analyzing these changes is essential for optimizing routing and
enhancing the user experience. This paper introduces a network model tailored for Opportunistic
Networks, characterized by intermittent device connections and disconnections, resulting in spo-
radic connectivity. The model analyzes node behavior, extracts vital properties, and ranks nodes by
influence. Furthermore, it explores the evolution of node connections over time, gaining insights
into changing roles and their impact on data exchange. Real-world datasets validate the model’s
effectiveness. Applying it enables the development of refined routing protocols based on dynamic
influence rankings. This approach fosters more efficient, adaptive communication systems that
dynamically respond to evolving network conditions and user behaviors.

Keywords: dynamic complex networks; opportunistic social mobility patterns; device-to-device data
routing; spray and wait routing; quality of service

1. Introduction

The vast increase in autonomous and heterogeneous wireless devices poses challenges
for the future of communication systems due to the complexity of their interconnection,
which involves multiple networking technologies and a wide range of device capabilities.
According to statistics provided by Statista [1], the global number of smartphones reached
nearly 6.6 billion in 2022 and is projected to surpass 7.8 billion by 2028. In other words, a
world of pervasive mobile devices is being built that has vast processing capabilities and
allows for smooth communication among them, enabling greater connectedness. Each node
or gadget in a mobile communication network is a connecting point that is innately con-
nected to a person who is moving and takes part in the network’s data exchange. Moreover,
Mobile Social Networks (MSNs) leverage wireless devices and function as a communica-
tion infrastructure designed for point-to-point and short-range communications, seeking
increased data exchange efficiency by adapting to the typical movements and behaviors of
individuals using mobile devices [2–5]. In this regard, opportunistic networks emerge as a
classification of wireless networks characterized by sporadic, unreliable, or constrained
user-to-user ad hoc connections [6]. In such networks, conventional routing algorithms
often depend on the “storage-carry-and-forward” approach, whereby a node forwards mes-
sages to a varying number of neighboring nodes it encounters based on the specific routing
algorithm employed. Nevertheless, this flooding strategy can result in a proliferation of
message duplicates, potentially leading to network and device congestion [7].
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Within such a context, a Dynamic Social Complex Network (DSCN) can be defined as
a network that leverages human social behavior, such as daily routines, mobility patterns,
and interests, to facilitate message routing and data sharing over time. In these networks,
nodes (users with mobile devices) can form on-the-fly social networks to communicate
with each other. Considering users’ social routines when determining whether a node
should retransmit a message to another node can reduce transmission delay and routing
overhead [8]. Consequently, minimizing routing overhead will decrease the average
number of hops that message routes traverse before reaching their destination.

The search for the most influential or important nodes is a critical component of
analyzing and comprehending the network topology dynamics due to its intrinsic role in
determining the network’s overall structure or efficiency [9–11]. Influential devices often
act as key hubs for data exchange and efficient communication pathways and, depending
on the objective, the significance of a node can vary. There are several metrics of node im-
portance, such as degree centrality, closeness centrality, or social centrality. The first refers
to the number of its direct connections to other nodes and analyzes its level of activity in the
network’s topology compared to others. Closeness centrality measures a node’s proximity
to other nodes and indicates how efficiently it can access or distribute information within
the network. Finally, social centrality aims to capture the extent to which certain nodes
in the network hold influential positions in terms of data forwarding or control over the
network’s social dynamics. Social centrality metrics take into account factors such as con-
nectivity, interactions, and relationships among nodes to assess their relative significance
in the social behavior of the network.

However, conventional centrality metrics used in traditional networks are not useful
in DSCNs, as they rely on a static network model where there are multiple connections
and disconnections over time that are usually aggregated into a single binary network.
As a result, traditional metrics have been extended to work with weighted or dynamic
topologies [12–15]. The authors of [16] considered the number of connections as link
weights and redefined the centrality metrics to consider both the number of links and their
weights in the graphs. On the other hand, the authors of [17] proposed time-based measures
that leverage the temporal patterns of changing topologies. Furthermore, individuals have
inherent social tendencies, and their behavioral patterns, which are substantially influenced
by the patterns of interaction among individuals, are not random [18,19]. Thus, when
identifying hub nodes in the network, mobility patterns, spatiotemporal connections, and
social behavior must also be considered.

In examining the current landscape of detecting influential nodes, several notable
works have delved into incorporating both non-social and social attributes associated with
network nodes. The research conducted by the authors of [20] focuses on centrality metrics,
which help identify important nodes in a network, crucial for understanding network
structures and behaviors. Static and dynamic centrality metrics are discussed, including
their relevance in weighted networks. The study highlights challenges, proposes new cen-
trality metrics, and emphasizes the importance of considering temporal aspects in network
analysis. It also explores network resilience and the impact of centrality on fault tolerance.
However, the authors do not explore a broader range of centrality measures or compare this
measure with other existing centrality measures comprehensively. The research conducted
by the authors of [21] delves into online information propagation within complex networks,
emphasizing the critical role of influential nodes in network structure and operation. The
paper classifies centrality measures into global, local, and semi-local types, exploring their
effectiveness in identifying influential nodes. It introduces a novel centrality measure,
‘centripetal centrality,’ and presents an algorithm, ‘seeds exclusion,’ to enhance information
propagation. The work demonstrates the effectiveness of ‘centripetal centrality’ in identi-
fying key nodes and improving propagation effects. The authors assume that identifying
influential spreaders is essential for maximizing information coverage. However, this
assumption might not always hold true, especially in scenarios where the objective differs
from maximizing information spread. For instance, in communication networks, it is crucial
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to minimize overhead rather than increase it. The authors of [22] address the prediction of
social network dynamics and evolution, distinguishing between short-term dynamics and
long-term changes. The proposed methodology, MONDE, utilizes hidden Markov models
and a genetic algorithm to predict individual, group, and network dynamics. The approach
aims to provide a comprehensive view of network evolution and dynamics, benefiting
fields such as marketing and public security by aiding decision-making and strategy plan-
ning. However, the accuracy and effectiveness of MONDE heavily depend on the quality
and availability of data, especially the posting activities and comments used for feature
extraction. Incomplete or inaccurate data could lead to less reliable predictions, particularly
in the case of low-density networks where empty or discontinuous samples may exist in
the data. The study carried out by the author of [23] explores critical node detection and
introduces a novel centrality measure, known as isolating centrality, to identify nodes that
significantly impact network connectedness. The paper emphasizes the importance of
accurately identifying critical nodes for ensuring network reliability and provides a com-
parative analysis of centrality measures’ performance. It also investigates the correlation
between leverage centrality and critical nodes, showcasing the effectiveness of the proposed
centrality measure. However, it is worth noting that the effectiveness of this proposed
measure is influenced by the structure of the nodes’ neighborhood, especially in detecting
critical nodes that segregate the network into connected components. This dependency
might limit its effectiveness in certain low-density topologies. The authors of [24] focus
on seed node selection in online social networks (OSNs) for information propagation and
influence maximization. The study explores various centrality measures, such as clustering
coefficients and node degree, to identify influential seed nodes. It considers Twitter as
a platform for opinion generation and discusses the relevance of centrality measures as
seed nodes in large-scale networks. The study also conducts a comparative analysis using
benchmark similarity measures to assess the effectiveness of different centrality measures in
seed node selection. The study acknowledges that the effectiveness of seed node selection
is influenced by the network’s structure. Certain propagation approaches, like Random
Walk, are affected by local clustering. This sensitivity to network structure implies that the
effectiveness of the proposed approach could vary significantly in network topologies with
insufficient connections.

In summary, these works propose or utilize specific centrality measures to assess the
importance of nodes in a network, hence their focus on identifying influential or critical
nodes within the network as shown in Table 1. These nodes are deemed essential for
information propagation and can play a crucial role in maximizing information coverage
within the network. However, the objective is not always to maximize the pathways
through which information circulates. In communication networks, it is preferable to
maintain low overhead values to avoid unnecessary consumption of memory resources
in intermediary devices forwarding data to their destinations. Furthermore, these works
exhibit a certain dependence on network topology, implying that effectiveness could vary
in cases of low connection density, as observed in opportunistic networks.

Based on the aforementioned concerns, this research paper aims to identify and rank
hub nodes using a dynamic network model to analyze how device connections evolve over
time. For that, the behavior of a DSCN is gathered by a progression of graphs as the devices
connect and disconnect throughout the network operation. First, we introduce a novel
local centrality metric, Dynamic Degree centrality, as we believe that both the number of
neighbors and the frequency of connections with them serve as valuable cues of a node’s
importance in the network.

This metric seamlessly integrates both factors, effectively gauging the node’s centrality
based on the progression of its connections and contact frequency with neighboring nodes.
Furthermore, we have developed a closeness centrality measure to address the potential im-
pact of longer forwarding delays on storage capacity utilization (network overhead) and its
subsequent influence on data forwarding likelihood. To quantify a device’s global centrality,
we propose the Dynamic Closeness centrality based on the temporal evolution network
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model, which considers forwarding overhead. We also propose the Social-based Closeness
Centrality Metric, which considers social relations to provide an effective centrality metric
to ensure that data are carried and forwarded by relay devices with a high likelihood of
reaching the destination host. This is because social relations and behaviors among wireless
users are typically long-term characteristics and less fluctuating than device mobility. Thus,
to assess the usefulness of our suggested centrality metrics and to examine the properties
of the centrality distribution applied to various Quality of Service (QoS) measurements, we
evaluate the results of experiments run on real-world datasets.

Table 1. Comparison of related works on the detection of the most influential nodes in a network.

Study Objective Methodology Key Findings

[20] Detection of influential nodes in
dynamic weighted networks.

Time-ordered weighted graph
models with Opshal’s algorithms,

considering temporal aspects.

New hybrid centrality measure:
Temporal Closeness-Closeness measure.

[21] Identification of
influential spreaders.

Integrate degree, constraint
coefficient, and k-shell for a

comprehensive assessment of
node importance.

Centripetal centrality as an effective
measure to identify influential nodes.

[22]
Prediction of the dynamics and

evolution of a
social network.

Two-layer HMM to model
individual and group dynamics.

MONDE, demonstrating prediction
accuracy rates for dynamics and

evolution in social networks.

[23] Detection of critical nodes of
networks.

Compare centrality
measures’ effectiveness.

Isolating centrality as an effective
measure for identifying critical nodes.

[24] Correlation between seed node
detection and information flow.

Investigate different centrality
measures for seed node detection.

Emphasize the impact of network
structure on seed node selection.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the dynamic network model used. The proposed local and global influence metrics are
described in detail in Section 3. In Section 4, we present the experimental results of all
the proposed centrality metrics, including a comparative analysis of different QoS metrics.
Finally, we offer conclusions in Section 5.

2. Model and Method

In this part, we first use the dynamic network model to show how the topological
structures of DSCNs are constantly evolving. Using this model as a guide, we look at peo-
ple’s social connections and movement patterns to create new interpretations of traditional
influence measurements that are based on the network’s dynamic.

A graph G is made up of a limited number of nodes (V) and edges (E). Since there
cannot be an empty set of nodes, V 
= ∅, and thus V = {v1, v2, . . . , vn}. Pairs of nodes(
vi, vj

)
that represent some sort of connection pattern between nodes make up the collection

of edges E. The terms nearby and neighboring are used to describe two nodes connected
by an edge. The network is referred to as undirected if the edges are unordered, where(
vi, vj

)
=
(
vj, vi

)
.

If there is a relationship between the nodes vi, vj, then an adjacency matrix M with
elements mij = 1 and 0 otherwise can be used to fully describe network G. Unweighted
or binary networks are examples of this. In general, G is characterized using an adjacency
matrix, where mij ≥ 1 if there is an edge between nodes vi, vj, and 0 otherwise, where the
edges contain a numerical value measuring a feature of the edge. A network G is also
considered to be connected if, for every pair of distinct nodes vi, vj, there is a route from vi
to vj; otherwise, it is said to be unconnected [25]. However, complex networks are a special
kind of graph in which the nodes and edges have complicated organizational structures
and non-trivial topological properties. Since these networks contain complicated patterns
and features, the interactions between the pieces in this situation are not clear-cut or simple.
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Dynamic Model of a Complex Network

A Dynamic Complex Network (DCN) is made up of several nodes, which stand in for
individual devices, and edges, which represent the connections or temporal interactions
between them. Traditional static complex network models cannot adequately capture such
dynamic evolution since the topology and device placements coevolve over time. The
time-ordered network was suggested by the authors of [17] to transform a dynamic network
into a static network with directed flows. The authors of [26] analyzed the uniformity of
device behavior over time. We build upon their work and propose a dynamic network
model that captures the evolving nature of a DCN. Our objective is to predict the behavioral
trends of devices in the network and measure their QoS parameters. The authors of [26]
rely on Shannon entropy to verify the uniformity of device behavior, whereas we go further
by conducting regression studies to analyze not only uniformity but also the trend of
node behavior and directly apply it to QoS metrics in opportunistic networks with low
connection density.

By considering the temporal sequence, length, and correlations between connections
or devices happening at various moments in time, our model seeks to give a clear and
thorough framework for understanding the evolutionary patterns of the network. Our
model illustrates the evolution of interactions between devices in a DCN over a certain time
period by using a series of snapshots. We shall outline the basic concepts of the dynamic
network model in the parts below:

Define a finite set of devices V (nodes) and a set of connections E (edges) between
these devices. The connections between devices are assumed to take place over a time span
T. We use L to denote the duration of each spatial snapshot (or time window size), and
FT = T

L represents the number of spatial snapshots during the time span T. The dynamics
of the network can be subsequently described by GT = (VT , ET , MT),

where

VT ⊆ V is the collection of all networked devices throughout the duration of T.
ET ⊆ E is the set of edges that stands for connections between devices throughout the

course of time T.
MT is a sequence of connectivity matrices that record contact events of devices during

the time span T.
A discretized collection of static complex networks, GT =

{
G1, G2, . . . , GFT

}
, can

be used to simulate a DCN. In this model, the edges in each connection matrix are not
binary as they are in the adjacency matrix of an unweighted graph. The connectivity
matrix’s edge weights, which range from 0 to FT , indicate how frequently points of
contact occur.

For the sake of clarity, we provide the following example in Figure 1, where the
network’s aggregated view is represented by GT . In this scenario, two devices are said to
be connected if they have made contact within a time interval ti. The network snapshots
are denoted as {G1, G2, . . . , G10}. All information from both geographical and temporal
data is included in this network’s representation. Figure 2 displays the connection matrixes
in order.

The connectivity matrix is symmetric since each snapshot is an undirected graph with
a connection between devices denoting the presence of a contact link in both directions.
For instance, the weight of MAC in M1 is 0, indicating that device A and device C did not
make contact during time unit t1. One link between device A and device C was represented
by the weight of MAC in M8, which is 1, during the time unit t8.

The costs of the routes between a source and a destination in the domain GT can
be represented as a function of delay,

{
δijxij

}
tij

, if the objective is to minimize the mes-

sage delivery delay, or as a function of load,
{

λxij
}

tij
, if the objective is to minimize

the overhead.
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Figure 1. Example of a dynamic network model.

 

Figure 2. Sequence of connectivity matrixes of the dynamic network model in Figure 1.

The Delay matrix (D) of existing routes between a source device s and a destination
device d in the domain GT can be obtained as follows:

D(s, d) =
|V|−1

∑
i=1

|V|
∑
j=2

{
δijxij

}
tij

(1)

The Load matrix (L) of all existing routes between a source device s and a destination
device d in the domain GT can be obtained as follows:

L(s, d) =
|V|−1

∑
i=1

|V|
∑
j=2

{
λxij
}

tij
+ λ (2)

where

δij represents the forwarding delay from device i to device j.
λ represents the message size.
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xij = 1 if devices {i, j} contact at any time and that link is used in a route between the
source device s and the destination d (i.e., device i decides to forward a copy of the message
to device j).
xij = 0 if devices {i, j} do not connect or if the link is not used in any route between the
source device s and destination d.
tij represents the encounter time of device i and device j.

We suggest the Dynamic Shortest Path Method, drawing on the aforementioned
factors. This approach aims to achieve a compromise between decreasing communication
costs, guaranteeing equitable load distribution, and obtaining the ideal delivery delay. To
do this, we employ a tuning parameter α that enables the three factors to be considered
when determining the optimum route between source and destination nodes. The variables
{α1, α2, α3} can also be changed depending on the analysis to give the three variables
different relative weights. Next, we list the equations that describe the dynamic shortest
path approach that is suggested:

- Delivery Delay:

α1min(D(s, d)) = α1min

(|V|−1

∑
i=1

|V|
∑
j=2

{
δijxij

}
tij

)
(3)

- Load Balancing:

α2min

⎛⎜⎝ 1

∑
|V|−1
i=1 ∑

|V|
j=2 xij

|V|−1

∑
i=1

|V|
∑
j=2

⎛⎝{δijxij

}
tij
− 1

∑
|V|−1
i=1 ∑

|V|
j=2 xij

|V|−1

∑
i=1

|V|
∑
j=2

{
δijxij

}
tij

⎞⎠2
⎞⎟⎠

1/2

(4)

- Communication Overhead:

α3min(L(s, d)) = α3min

(|V|−1

∑
i=1

|V|
∑
j=2

({
λxij
}

tij

)
+ λ

)
(5)

subject to the following restrictions:

δij > 0, ∀i, j ∈ V
λ > 0
xij ∈ {0, 1}, ∀i, j ∈ V

∑
|V|
j=2 x1j = 1 (the shortest path only uses one link from the source device).

∑
|V|−1
i=1 xi|V| = 1 (the shortest path only uses one link to the destination device).

∑
|V|−1
i=1 xik = ∑

|V|
j=2 xkj, ∀ k ∈ {2, 3, . . . |V| − 1} (in the shortest path, if a link arriving at

device k is used, then a single link leaving k will be used).
t1,2 ≤ t2,3 ≤ . . . ≤ t(T−1),T ≤ (represents the connections of intermediary devices based on
the time order).

The example of Figure 3 lists the values of the three variables for the four pathways
(in different colors) from device A to device B depending on the time order to demonstrate
the efficacy of the suggested strategy.
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Figure 3. Illustration of the paths from device A to device B based on the time order in Figure 2.

- Number of Paths between devices A and B is p(A, B) = ∑
|V|−1
i=1 Mi

T(A, B) = 4.

- Delay matrix: D(A, B) = ∑
|V|−1
i=1 ∑

|V|
j=2

{
δijxij

}
tij
=

{A, B} ⇒ δABxAB = 10t seconds
{A, C, B} ⇒ δACxAC + δCBxCB = 3t + 4t = 7t seconds
{A, D, B} ⇒ δADxAD + δDBxDB = 2t + 5t = 7t seconds

{A, E, F, B} ⇒ δAExAE + δEFxEF + δFBxFB = 4t + 2t + t = 7t seconds

- Load balancing (LB):

{A, B} ⇒ LB =
(

1
1

(
(10t − 10t)2

))1/2

= 0t seconds

{A, C, B} ⇒ LB =
(

1
2

(
(3t − 3.5t)2 + (4t − 3.5t)2

))1/2

= 0.5t seconds

{A, D, B} ⇒ LB =
(

1
2

(
(2t − 3.5t)2 + (5t − 3.5t)2

))1/2

= 1.5t seconds

{A, E, F, B} ⇒ LB =
(

1
3

(
(4t − 2.33t)2 + (2t − 2.33t)2 + (1t − 2.33t)2

))1/2

=

= 1.5764t seconds

- Load matrix: L(A, B) = ∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij

)
+ λ =

{A, B} ⇒ load = λxAB + λ = 2λ bytes

{A, C, B} ⇒ load = λxAC + λxCB + λ = 3λ bytes

{A, D, B} ⇒ load = λxAD + λxDB + λ = 3λ bytes

{A, E, F, B} ⇒ load = λxAE + λxEF + λxFB + λ = 4λ bytes

As shown in Table 2 considering the influence of delivery delay, communication
overhead, and load balancing on routing performances, we observe that there are three
paths with the shortest delivery delay (7t) from device A to device B: {A, C, B}, {A, D, B}
and {A, E, F, B}. However, the length of paths {A, C, B} and {A, D, B} is shorter than that of
path {A, E, F, B}. Moreover, the longest forwarding delay of the path {A, C, B} is three time
periods, from t = 4 to t = 6 (load balancing = 0.5t), which is shorter than that of path {A, D,
B}, with four time periods, from t = 3 to t = 6 (load balancing = 1.5t), so {A, C, B} have better
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load balancing. Finally, we observe that path {A, B} has the shortest hop number but the
longest delivery delay (10t). In summary, path {A, C, B} is the best path from device A to
device B considering the trade-off between delivery delay, communication overhead, and
load balancing.

Table 2. Dynamic shortest path identification from device A to device B.

Title 1 Latency Load Balancing Overhead

{A, B} 10t 0t 2λ
{A, C, B} 7t 0.5t 3λ
{A, D, B} 7t 1.5t 3λ

{A, E, F, B} 7t 1.5764t 4λ

Using flooding or epidemic routing, device B should receive 4 copies of the message.
One from device A at time t = 10 and three copies from C, D and F at t = 7, assuming a

total load of CO − pABλ + λ = ∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij
+ λ

)
− pABλ + λ = 12λ − 4λ +

λ = 9λ bytes.
However, by selecting the best route, overhead improvement can be obtained as

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij
+ λ

)
− pABλ + λ − min

(
∑
|V|−1
i=1 ∑

|V|
j=2

{
λxij
}

tij
+ λ

)
= 6λ bytes,

which is an improvement of 33%.

3. Influence Metrics

Node centrality or impact is the process of classifying nodes or devices in a network
according to their importance or effect. This statistic evaluates a device’s significance or
effect on the network as a whole. There are several ways to determine device centrality, and
each one takes a different strategy to pinpoint the most important nodes. These methods
are intended to identify the importance and function of each device inside the network.
Our goal is to order the network nodes according to their impact, allowing for the creation
of new routing protocols that improve the QoS of the network. We can increase QoS levels
by using just the most powerful nodes for data forwarding.

Degree and Closeness are two conventionally used common centrality measurements.
While the Closeness metric considers the global topological information, Degree centrality
is based on local topological information and assesses the node’s local importance in the
network. These influence measures are defined as follows for a network G = (V, E):

3.1. Local Influence

To determine a node’s local influence, it is straightforward to assess the centrality
of the node within the network. The quantity of direct connections a node has to other
nodes determines its degree of centrality. The following is the mathematical formula for
determining the degree centrality of a given node j:

1. If it is an unweighted and undirected network,

D(j) =
|V|
∑

i
xij (6)

where xij = xji = 1 if and only if nodes i and j are connected; xij = xji = 0 otherwise.

2. If it is a weighted and undirected network,

D(j) =
|V|
∑

i
ωijxij (7)

where
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ωij = ωji = 1 is the cost of the link (i, j).
xij = xji = 1 if and only if nodes i and j are connected; xij = xji = 0 otherwise.

Dynamic Degree Metric

Since nodes in static binary networks may only be either linked or disconnected, the
traditional degree centrality statistic was initially created for those types of networks. The
interactions between nodes in DSCN networks are not binary, though, and the topology of
these networks is continually changing. Individuals in DSCNs often have a small number
of regular connections in addition to sporadic encounters. Connections made often have
a tendency to be stronger than those made infrequently. As a result, if a person interacts
with their neighbors regularly and has a larger number of neighbors, they are more likely
to be able to engage with new individuals. Therefore, it is crucial to consider the following
three behavioral traits in DSCNs in order to effectively evaluate a device’s local influence:
a large number of neighbors, a high number of neighbor contact instances, and a positive
evolution in the frequency of neighbor contact over time.

Regression analysis is a commonly used method for investigating data distribution
patterns in the fields of information science and statistical modeling [27,28]. This theory
has been used by us to investigate the connections between the temporal changes in the
connection time distributions among devices.

Considering a device v which has ∑
|V|
k=1,k 
=v{xvk}T connections with neighbors during

the time span T, ∑
|V|
k=1,k 
=v{xvk}ti

is the number of neighbors of v during the snapshot ti and

∑
|V|
k=1,k 
=v{ϕvkxvk}T is the frequency of contact times between device v and its neighbors

during the time span T. Then, the evolution trend of connections of device v during the
time span T is defined as follows:

τD(v) =
FT∑T

i=1

(
ti∑

|V|
k=1,k 
=v{xvk}ti

)
− ∑T

i=1 ti∑T
i=1

(
∑
|V|
k=1,k 
=v{xvk}ti

)
FT∑T

i=1 t2
i −
(

∑T
i=1 ti

)2 (8)

The device tends to increase the frequency of interaction with its neighbors over the
time period T if the value of τT(v) is positive. An equitable distribution of contact frequency
with a specific node’s neighbors is indicated by a value of 0, while a negative value denotes
a reduction in contact frequency over time. Therefore, devices will have a more favorable
contact dynamic if they have more neighbors and increased contact probabilities with those
neighbors. For that, we propose the Dynamic Degree metric of a device v (DTE(v)), which
takes into account the following properties, as more interactions with neighbors lead to
stronger links with them:

DTE(v) = ατD(v) + (1 − α)
FT

∑
i=1

∑FT
i=1{xvk}ti

− F−1
T ∑FT

k=1,k 
=v{ϕvkxvk}T(
F−1

T ∑FT
i=1

(
∑
|V|
k=1,k 
=v{xvk}tj

− F−1
T ∑

|V|
k=1,k 
=v{ϕvkxvk}T

)2
)1/2

(9)

The user-defined parameter value α ∈ [0, 1] regulates the importance or weight of
connection evolution and the frequency of contact moments. Please note that this value
adheres to a zero-sum condition, meaning that increasing the weight of one element would
inherently decrease the weight of the other factor. If significant patterns of growth or decline
in the metric’s values are observed, then α → 1 . If the data show uniform distributions
across time, α → 0 .

3.2. Global Influence

A typical global centrality metric known as ‘Closeness’ uses the shortest routes to
calculate distances between each node and every other node in the network. However, due
to the specific characteristics of DSCNs, this statistic often results in inaccurate estimates.
To address these issues, we have developed a unique approach to calculating the shortest
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paths that more accurately represents the information propagation patterns within DSCNs
over time. With this approach, we subsequently formulated a refined definition of the
global influence measure, accounting for these distinctive qualities of DSCNs.

The frequent partitioning of topologies and intermittent connections that characterize
DSCNs often lead to higher storage capacity utilization. The constrained storage space on
a device can present a hurdle for efficient routing, particularly if it receives messages more
quickly than it can transmit them to the next relay device. This situation can result in uneven
load balancing, which significantly impacts the overall routing efficiency within DSCNs.
Furthermore, employing an excessive number of devices as relays for a message can
introduce unnecessary communication overhead, exacerbating routing performance issues.
Hence, achieving a balance between delivery delay, load distribution, and communication
overhead becomes imperative when making routing decisions in DSCNs.

3.2.1. Dynamic Closeness Metric

One centrality measure that relies on distance is Closeness. It is determined by
averaging the shortest distances (involving the fewest nodes, thus minimizing overhead)
from a specific node to all other nodes in the network. This is equivalent to summing the
shortest distances (dshort) and dividing by the number of nodes (referred to as the network
order, denoted as |V|), minus one, as node j itself is excluded from this calculation:

Average path lengths(v) =
∑
|V|−1
k=1,k 
=v min(D(v,k))

|V|−1 =

=
∑
|V|−1
k=1,k 
=v min

(
∑
|V|−1
i=1 ∑

|V|
j=2

(
{λxij}tij

)
+λ

)
|V|−1

(10)

where xij = 1 if the link {i, j} is used in a route between the source node v and the destination
node k and xij = 0 otherwise.

The lower the above value, the closer a node is to the center of the network. For this
reason, closeness is defined as the reciprocal of Equation (10), so that the more centered a
node v is in the network, the higher its closeness metric is:

CCLO(v) =
|V| − 1

∑
|V|−1
k=1,k 
=v min

(
∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij

)
+ λ

) (11)

The Closeness measure in the network is strongly related to the rate of information
propagation between devices as well as the timeframes at which messages are transmitted
over the network. This metric offers a means to evaluate how accessible a device is within
the network.

Let us examine an example calculation for the connected devices {A, B, C, D, F} during
G7, as shown in Figure 4.

 

Figure 4. Network connections during instant G7, based on the example of Figure 1.
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CCLO(A) =
6 − 1

λ(2 + 3 + 1 + 3) + λ
=

5
10λ

CCLO(B) =
6 − 1

λ(2 + 1 + 1 + 1) + λ
=

5
6λ

CCLO(C) =
6 − 1

λ(3 + 1 + 2 + 1) + λ
=

5
8λ

CCLO(D) =
6 − 1

λ(1 + 1 + 2 + 2) + λ
=

5
7λ

CCLO(F) =
6 − 1

λ(3 + 1 + 1 + 2) + λ
=

5
8λ

Therefore, the ranking of nodes according to their closeness index is as follows:

Ranking = {B, D, C, F, A} (12)

Regrettably, calculating the Closeness metric (as indicated in Equation (11)) for each
node in a network requires knowledge of the distances between all pairs of vertices. In dis-
connected networks, where nodes belong to distinct components or subnetworks that lack
any larger linked subnetwork, the distance between two nodes is traditionally considered
infinite, as depicted in the example shown in Figure 1, rendering Closeness inapplicable.
As a result, the reciprocal becomes 0, and the sum in the equation (Equation (11)) diverges.
Devices often belong to various components, rendering Closeness values irrelevant for all
devices in the network except those within the largest component. Consequently, the com-
putation of the Closeness metric must exclude devices that are part of smaller components.

Through the utilization of dynamic shortest paths, we can overcome the limitation of
the conventional Closeness metric in disconnected networks. By employing a method that
accumulates the reciprocal of path costs instead of the reciprocal of the total path cost, we
can redefine the Closeness metric. This approach takes into consideration communication
costs or overhead. As a result, the Dynamic Closeness metric is defined as the sum of the
reciprocals of distances, rather than the reciprocal of the sum of distances:

CCLO(v) =
|V|
∑

k=1,k 
=v

⎛⎜⎜⎝ 1

min
(

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij

)
+ λ

)
⎞⎟⎟⎠ (13)

The adoption of the Dynamic Closeness measure prevents situations where an infinite
distance dominates over other distances. Additionally, this measure can be standardized
by considering that in a network with a star topology, the maximum value is achieved by
the central node, which is equal to |V| − 1 (the longest distance possible in a network
with |V| nodes is |V| − 1, i.e., in a chain-connected network). The standardized value of
the central node in a star network is 1, while the value for the leaf nodes is

1
|V| − 1

(
1
1
+ (|V| − 2)

1
2

)
=

|V|
2(|V| − 1)

(14)

Thus, the centrality index is now defined by

CCLO(v) =
1

|V| − 1

|V|
∑

k=1,k 
=v

⎛⎜⎜⎝ 1

min
(

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij

)
+ λ

)
⎞⎟⎟⎠, (15)
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subject to tk,k+1 ≤ tk+1,k+2 ≤ . . . ≤ t|V|−1,|V|.

Thus, considering (|V| − 1)−1∑
|V|
k=1,k 
=v

(
min
(

∑
|V|−1
i=1 ∑

|V|
j=2

({
λxij
}

tij

)
+ λ

))−1
, the

closeness evolution of device v during the time span T is defined as

τC(v) =
FT∑T

l=1

(
tl(|V|−1)−1∑

|V|
k=1,k 
=v

(
min
(

∑
|V|−1
i=1 ∑

|V|
j=2

(
{λxij}tl

)
+λ

))−1
)

FT∑T
l=1 t2

l −(∑T
l=1 tl)

2

−
∑T

l=1 tl∑
T
l=1

(
(|V|−1)−1∑

|V|
k=1,k 
=v

(
min
(

∑
|V|−1
i=1 ∑

|V|
j=2

(
{λxij}tl

)
+λ

))−1
)

FT∑T
l=1 t2

l −(∑T
l=1 tl)

2

(16)

In conclusion, we put forward the Dynamic Closeness for device v (CTE(v)), which
takes into account the fluctuations in the Closeness measure, as defined:

CTE(v) = ατC(v) + (1 − α)
1
FT

FT

∑
l=1

⎛⎝ 1
|V| − 1

|V|
∑

k=1,k 
=v

⎛⎝ 1

min
(

∑|V|−1
i=1 ∑|V|

j=2

({
λxij
}

tl

)
+ λ
)
⎞⎠⎞⎠ (17)

where xij = 1 if the link {i, j} is used in any route between nodes v and k and xij = 0
otherwise.

3.2.2. Social Closeness Metric

Human social relationships typically display greater stability than transmission links
between mobile devices due to the complex network conditions present, for instance, in
Opportunistic Mobile Social Networks (OppMSNs), characterized by intermittent connec-
tivity that results in unstable end-to-end paths between devices. As a result, OppMSN
routing decisions may be made more efficient using social indicators.

It is noticed that people keep both regular and sporadic interactions within their social
surroundings. Information propagation greatly depends on the degree of contact between
nodes. If the sender often communicates with the destination device, the sender may be
aware of the times when they are most likely to run across the destination or nodes that
are very likely to cross paths with the destination in the future [29,30]. Conversely, the
likelihood of two devices knowing one another improves if they have a greater number of
friends in common.

We examine the devices’ past contacts in order to develop the Opportunistic Relation-
ship Index (ORI), a social metric that is derived from important structural characteristics
of a complex network, specifically the contact durations between devices, their shared
neighbors, and distances [31]. In order to reflect the possibility of establishing a connection
between devices v and k, the score is calculated as shown in Equation (17) for each pair of
unconnected devices v and k. In this equation, ∑T

i=1{ϕvkxvk}ti
represents the frequency of

contact occurrences between devices v and k within the time span T, and ∑
|V|−1
i=1 ∑

|V|
j=2 xij

denotes the distance matrix of existing paths between the two devices:

ORIT(v, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

T
∑

i=1
{ϕvkxvk}ti

) |Γ(v)∩Γ(k)|+1
2

if Γ(v) ∩ Γ(K) 
= 0(
T
∑

i=1
{ϕvkxvk}ti

) 1

min(∑
|V|−1
i=1 ∑

|V|
j=2 xij) otherwise,

(18)

where Γ(v) = ∑T
i=1 ∑

|V|
l=1,l 
=v{xvl}ti

and Γ(k) = ∑T
i=1 ∑

|V|
l=1,l 
=k{xkl}ti

represent the respective
sets of neighbors for devices v and k, respectively, over the time span T.

Figure 5 in this context shows the subnetwork created from Appendix A Figure A1,
only showing the four current routes connecting device A and device B, with the weights
denoting the calculated ORI.
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Figure 5. Illustration of the paths from device A to device B of example in Figure 1, where the weights
represent the ORI.

Then, we present the shortest path based on opportunistic relationships, which include
both opportunistic relationships and communication costs. We invert the weights to find the
path with the lowest weight since the weight denotes the ORI. We use a tuning parameter
to ensure that the ORI and the number of intermediary devices affect the choice of the best
path, incorporating both communication cost and ORI. The following is the social measure
used in Equation (18) to determine the opportunistic cost (Costopp) of a path between a
source device (s) and a destination device (d):

Costopp(s, s + 1, . . . , d) =
d−1

∑
i=s

(
1

ORIT(i, i + 1)

)α

, (19)

subject to ts,s+1 ≤ ts+1,s+2 ≤ · · · ≤ td−1,d.
The ORI between devices i and j before their interaction with the next relay device is

indicated by the symbol ORIT in Equation (18). The moment at which device i and device j
first made contact is represented by ti,j, and the sequence in which connections between
intermediary devices are made is indicated by ts,s+1 ≤ ts+1,s+2 ≤ · · · ≤ td−1,d.

We further normalize the series by dividing the geometric mean of ORIT by the highest
ORIT , as the routing choice may not function effectively with a low ORIT value across
devices. The tuning parameter is this normalized value, which enables us to gauge the
degree of dispersion between low and high ORIT values. As a result, the following is how
the definition of α is stated:

αs,s+1,...d =

(
∏d−1

i=s ORIT(i, i + 1)
) 1

|{s,d}|

max(ORIT(s, s + 1), ORIT(s + 1, s + 2), . . . , ORIT(d − 1, d))
, (20)

where |{s, d}| represents the number of hops in the path from the source device s to the
destination device d.

By adding considerations of the shortest pathways, social interactions between nodes,
and communication cost, we use the opportunistic-based shortest path approach to expand
the Closeness measure in this way. The Social Closeness metric (CLOopp) is calculated in
the manner described in the following:

CLOopp(v) = 1
|V|−1

|V|
∑

k=1,k 
=v

(
1

min(Costopp(v,k))

)
=

= 1
|V|−1

|V|
∑

k=1,k 
=v

(
1

min
(

∑k−1
i=v

(
1

ORIT (i,i+1)

)α)
)

,
(21)
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subject to tv,v+1 ≤ tv+1,v+2 ≤ . . . ≤ tk−1,k, in which min
(
Costopp(v, k)

)
first computes all

the paths between v and k, then calculates the Costopp of each path, and finally selects the
minimum Costopp among all.

Hence, taking into consideration the expression

(|V| − 1)−1∑
|V|
k=1,k 
=v

(
min
(

∑k−1
i=v

(
1

{ORIT(i,i+1)}ti

)α))−1

, we can evaluate a device v’s

social closeness at the specified snapshot tl . As a result, Equation (22) describes how the
social closeness of device v changed throughout time T:

τopp(v) =
FT ∑T

l=1

(
tl (|V|−1)−1∑

|V|
k=1,k 
=v

(
min
(

∑k−1
i=v

(
1

{ORI(i,i+1)}tl

)α)−1))
FT ∑T

l=1 t2
l −(∑T

l=1 tl)
2

−
∑T

l=1 tl ∑
T
l=1

(
(|V|−1)−1∑

|V|
k=1,k 
=v

(
min
(

∑k−1
i=v

(
1

{ORI(i,i+1)}tl

)α)−1))
FT ∑T

l=1 t2
l −(∑T

l=1 tl)
2

(22)

In conclusion, we provide the definition of the Social Closeness metric of a node v
(CTEopp(v)), which combines the dynamics of the Social Closeness metric in:

CTEopp(v) = τopp(v)α +
1

FT

FT

∑
l=1

⎛⎜⎜⎝ 1
|V| − 1

|V|
∑

k=1,k 
=v

⎛⎜⎜⎝ 1

min
(

∑k−1
i=v

(
1

{ORI(i,i+1)}tl

)α)
⎞⎟⎟⎠
⎞⎟⎟⎠, (23)

subject to tv,v+1 ≤ tv+1,v+2 ≤ · · · ≤ tk−1,k.

4. Results and Discussion

Our goal is primarily to discuss the dataset used to assess various QoS measures
and the analytical process once we have shown the production of rankings with the most
significant nodes based on different centrality metrics. We will next go through how we
integrated these rankings into message routing.

Using a collection of Reality Mining datasets [32], the recommended algorithm’s
efficacy has been evaluated. These datasets embody a complex social system by capturing
data from 100 mobile phones over a span of 9 months. The authors demonstrate how
common Bluetooth-enabled mobile phones can be used to measure information access
and utilization in a variety of settings, detect social patterns in users’ daily activities, infer
relationships, identify socially significant locations, and model organizational patterns.

However, it is worth noting that we utilize a modified version of the Reality dataset
provided by the authors of [33]. As stated in the same reference, there is no significant
activity before and after the timestamp ranges 1,094,545,041 and 1,111,526,856. Therefore,
the simulations presented in this paper exclusively employ the data within that time
interval, as shown in Table 3.

Table 3. Characteristics of the dataset.

Feature Value

Number of devices 97
Environment Campus

Dataset duration 246 days
Dataset duration used 196 days

Encounter prob. 1st 1/4 day 0.0003
Encounter prob. 2nd 1/4 day 0.0011
Encounter prob. 3rd 1/4 day 0.0019
Encounter prob. 4th 1/4 day 0.0012

Percentage of dataset duration for the Training Graph (GT) 75%
Percentage of dataset duration for the Probe Graph (GP) 25%

Network density <0.5%
Number of contacts of the top 20 devices 4–9
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Regarding the methodology for analyzing the dataset, it has undergone processing
using a similar approach employed when implementing Machine Learning models. In this
manner, the dataset is partitioned into two distinct non-overlapping graphs known as the
training (GT) and probe (GP) graphs. The Training Graph (GT) is constructed by selecting a
subset that represents the initial 75% of node interactions within the dataset. The remaining
edges, not included in GT, constitute the Probe Graph (GP). Likewise, the edges included
in GT are denoted as ET, while those in GP are referred to as EP, i.e., E = ET + EP. It should
be noted that ET and EP are mutually exclusive; however, there may be overlapping nodes
between GT and GP. For our experiments, we have allocated 75% of the edges to ET and
the remaining 25% to EP.

The simulations have been conducted by simulating the GP (Probe Graph) with
an implementation of a total of five routing algorithms. On one hand, we include the
conventional ones typically used to evaluate QoS in OppNets, that is Spray and Wait
(S&W), Prophet versions 1 and 2, and Epidemic (four algorithms). On the other hand, we
incorporate a modified version of the S&W algorithm, which is evaluated three times based
on a parameterized ranking of the most significant nodes according to the metrics described
in the previous sections (Dynamic Degree, Dynamic Closeness, and Social Closeness), which
sums a total of five routing algorithms. The results of the simulations will be presented in
Sections 4.3.4–4.3.6.

The algorithms have been developed using The ONE (Opportunistic Network En-
vironment) simulator [34] and can be accessed from a public repository located at https:
//github.com/sito25/pubtesis.git, (accessed on 21 September 2023) under the GNU Lesser
General Public License v.3.0. This simulator is specifically designed for opportunistic
networks and was initially developed at Aalto University in 2009. The ONE provides a
wide range of capabilities, including the generation of node movements using various
models, replication of message traffic and routing, cache management, and visualization of
both mobility and message transmission through its graphical user interface. Additionally,
it offers diverse reporting options, such as node movements, message transmission, and
general statistics. Currently, it is collaboratively maintained by Aalto University and Tech-
nische Universität München, boasting a robust user community. The version utilized in our
research is 1.6.0, implemented in Java.

4.1. Network Density

As mentioned earlier, opportunistic networks are a type of low-density networks that
traditionally focus on self-organized and ad hoc mobile networks. These networks often
experience frequent disruptions, delays, and intermittent connectivity, leading to a lack
of end-to-end connections within the environment. In such scenarios, wireless devices
can temporarily store information and forward it to other devices that are more likely
to be within communication range of the intended destination when an opportunity for
connection arises.

The density of an opportunistic network is determined by the ratio of edges present
in a graph to the maximum number of edges the graph can contain. This ratio provides
a conceptual idea of the network’s connectivity in terms of link density. Specifically,
network density is defined as the ratio of the number of connections to the maximum
possible connections.

A network is considered dense when the number of links is close to the maximum
possible, where every pair of devices is connected by a single link. Conversely, a network
with few links is considered sparse. This concept provides an understanding of the level of
connectivity and density within the network [35,36]. Therefore, to determine the maximum
number of connections in the network, we can derive it as follows:

MaxConn =
|V|(|V| − 1)

2
(24)
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Let us now introduce the formula for calculating network density. The network density
is calculated by dividing the total number of connections existing in the network G(V, E)
by the maximum possible number of connections that could potentially exist within the
network. Let us examine the formula in detail:

Density =

|E|
|V|(|V|−1)

2
=

2|E|
|V|(|V| − 1)

(25)

In our study, Figure 6 displays the likelihood of the presence of complete pathways,
which is linked to the density of connections within the Reality Mining datasets. This
likelihood, denoted as P(EE), can be defined as the ratio of the number of established
end-to-end routes to the total number of possible connections.

P(EE) =

(|V|−1

∑
s=1

|V|−1

∑
d=1

|V|−1

∑
i=1

Mi
T(s, d)

)( |V|(|V| − 1)
2

)−1
(26)

Figure 6. End-to-end paths probability in the datasets as a function of the connection density.

Figure 6 illustrates the network structure of the used dataset, which is characterized
as a sparsely connected network with a consistent connection density among devices that
does not exceed 8.5% throughout its dynamic nature. The majority of density values are
below 1%. As a result, the upper limit for the probability of end-to-end connections remains
below 55%, with a significant concentration below 0.5%. Therefore, it is imperative to
consider that the utilized datasets define an opportunistic network with a very low density
of connections.

4.2. Effectiveness Analysis of the Proposed Metrics

We may examine how successfully suggested metrics capture and quantify the in-
tended attributes or characteristics of network devices by evaluating their efficacy. It
enables us to assess how well these metrics capture the underlying ideas of ranking, con-
nection, or social impact. As a result, we can evaluate their effectiveness and decide which
metrics are more appropriate for achieving our study goals. Based on their capacity to
capture the necessary elements of device centrality, these analyses aid in the selection of
the most suitable centrality metrics. We can also establish whether these metrics provide
useful information and can be relied upon when making network design decisions. For
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performance evaluation, comparative analysis, hypothesis validation, and determining
their practical relevance, evaluating the efficacy of local and global centrality measures in
the network is essential.

4.2.1. Local Metrics

We compared Dynamic Degree during the studies to two benchmark measures, namely,
Degree and Weighted Degree. Figure 7 uses the Reality Mining datasets to show the
outcomes of these studies. The top-N devices are sorted according to their Weighted Degree
and Dynamic Degree, and Figure 7a shows the plotted curves reflecting the average number
of nearby devices among those devices.

  
(a) (b) 

Figure 7. Effectiveness of local metrics: (a) Number of neighboring devices among the top-N devices;
(b) average number of contacts among the top-N devices.

An effective local impact metric in Figure 7a should show a diminishing trend since
a node with strong local influence often shows a high number of nearby nodes. The
curves for the two measures shown in the picture, however, are rather near to one another.
This resemblance could result from certain traits or distinctive qualities that the dataset
itself possesses.

Figure 7b shows the plotted curves for the top-N devices ordered by their Degree and
Dynamic Degree, which reflect the average number of connections. In light of the fact that
a device with a strong local effect should interact with its neighbors often, the Dynamic
Degree curve has a smoother downward slope and performs better than the Degree metric.
Therefore, of the three influence measures, the Dynamic Degree meter performs the best
since it establishes a balance between the number of nearby devices and the frequency
of encounters.

4.2.2. Global Metrics

Using real-world datasets, we analyzed the distribution properties of suggested global
influence indicators. Figure 8 displays the Complementary Cumulative Distribution Func-
tions (CCDF) for the suggested global centralities, with the horizontal axis denoting the
order of device effect. Here, it is clear that the distributions of the Closeness measure are
not uniform when taking into account various centrality techniques. This suggests that the
selection of the centrality approach affects the measures’ distributions. These results help
us determine the best tools to increase the effectiveness of data transmission in OppMSNs.
These features can be used by routing algorithms to choose the most reliable device as a
relay. As a result, the impact measures suggest various possible contributions of the same
device to information propagation when combined with various centrality approaches.
This connection between device impact and route design, in our opinion, is a key element
in enabling effective information propagation inside OppMSNs.
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Figure 8. Illustration of Complementary Cumulative Distribution Function of proposed global
centrality metrics.

4.2.3. Correlation Analysis between Local and Global Metrics

Our goal is to study the probable association between the ranking of global influ-
ence and the ranking of local impact through time and to address the consequences of
anticipating global influence by looking at the consistency and predictability of human
social qualities.

A statistical metric used to quantify the strength of the association between the relative
changes of two variables is the correlation coefficient. It includes values between −1 and
1. A complete negative correlation is represented by a correlation coefficient of −1, and a
perfect positive correlation is represented by a correlation coefficient of 1. The absence of a
linear link between the changes in the two variables is shown by a correlation value of 0.

A statistical metric used to quantify the degree of linear association between two variables
is the Pearson correlation coefficient. This coefficient reveals the nature and strength of the
relationship, given that a change in one variable leads to a proportionate change in the other.
When there is no apparent association, the Pearson coefficient returns a value of 0.

Another correlation statistic used to assess rank correlation, which indicates the
statistical dependence between the ranks of two variables, is Spearman’s rank correlation
coefficient. The Spearman coefficient measures the extent to which the relationship between
variables can be characterized by a monotonic function, in contrast to a linear relationship
where the rate of increase or decrease is constant. Without necessarily adhering to a
consistent rate of change, it assesses how well the data align monotonically. The Spearman
correlation evaluates the monotonic relationship between two variables, whether they are
continuous or ordinal in nature, by considering the ranked values of each variable rather
than the raw data. In a monotonic relationship, one of the following is true:

• As one variable increases, the value of the other variable decreases; or
• Conversely, as one variable increases, the value of the other variable also increases.

The methods employed by the two correlation coefficients are fundamentally distinct.
While the Spearman coefficient considers both linear and monotonic correlations, the Pear-
son coefficient focuses exclusively on linear relationships between variables. Furthermore,
Spearman utilizes rank-ordered variables, whereas Pearson employs the raw data values of
the variables.

It is advisable to employ the Spearman coefficient instead of the Pearson coefficient
when a scatterplot reveals a potential link that could be either monotonic or linear. Using
the Spearman coefficient does not cause any harm, even if the data eventually demonstrate
a perfect linear relationship. Nevertheless, choosing Pearson’s coefficient might lead to
missing crucial insights that Spearman could provide in cases where the connection is not
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exactly linear. Therefore, as illustrated in Figure 9, we utilize the Spearman correlation
coefficient to analyze the relationship between the ranks of Closeness and Degree through-
out their dynamics. By establishing a consistent relative order of observations within
each variable (e.g., first, second, third, and so on), it is intuitively understandable that the
Spearman correlation between two variables becomes strong when observations possess
similar (or identical, resulting in a correlation of 1) ranks. Conversely, the correlation is low
when observations exhibit disparate ranks across the two variables (or entirely opposite
rankings, leading to a correlation of −1).

Let (x1, y1), (x2, y2), . . ., (xn, yn) represent a collection of composite rankings from two
distinct ranking lists, X and Y. The n raw scores (xi, yi are converted to ranks ( (xi), (yi)),
and rs is derived as follows:

rs = ρ( (X), (Y)) =
cov
(

(X), (Y)
)

σ
(

(X)
)

σ
(

(Y)
) =

=
(2n2)
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)(
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)
(

1
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(
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i=1 (xi)

)2
) 1

2
(

1
n ∑n

i=1

(
(yi)− 1

n ∑n
i=1 (yi)

)2
) 1

2
,

(27)

where

ρ represents the application of the Pearson correlation coefficient to the rank-transformed
variables.
cov( (X), (Y)) is the covariance of the rank variables.
σ( (X)) and σ( (Y)) represent the standard deviations of the rank-transformed variables.

With mean and standard deviation statistical significances (p-values) of 0.0035 and
0.0381, respectively, the majority of Spearman’s rank correlation coefficients for the prox-
imity measure in Figure 9 exhibit values near 0.75. This observation underscores the
strong relationship between this measure and the Dynamic Degree. As the window period
lengthens, the curve remains largely stable despite minor fluctuations in the correlation
coefficients. Given that the Degree measure influences the Closeness metric in the dynamic
context, it becomes conceivable to formulate an approximation of Closeness metric values
through a combination of social-based and dynamic-based methods. These characteristics
offer opportunities to enhance the accuracy of our closeness prediction strategies and to
devise more effective forwarding algorithms in OppMSNs.

Figure 9. Ranking of Spearman correlations by varying snapshots during the time span.
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4.3. Quality of Service Metrics Analysis

Latency, overhead, or hop count are QoS metrics that allow us to assess the perfor-
mance and efficiency of the network. By quantifying the latency, we can determine how
quickly data or messages are transmitted from the source to the destination. An over-
head calculation helps assess the additional resources or data required to support the
communication process. By quantifying overhead, we can identify potential inefficiencies
or resource-intensive aspects of the network. This information is valuable for optimizing
network performance and ensuring efficient resource utilization.

On the other hand, a hop count calculation helps evaluate the number of network
devices or “hops” required for data to travel from the source to the destination. Lower
hop counts generally imply a more direct and efficient routing path, resulting in reduced
latency and improved overall network performance.

Overall, accurate calculation and analysis of latency, overhead, and hop count are
crucial for performance evaluation, resource optimization, reliability assessment, routing
efficiency analysis, identifying areas for improvement, and making informed decisions
regarding network design and configuration.

In summary, precise calculations and analyses of latency, overhead, and hop count
are pivotal for performance evaluation, resource optimization, reliability assessment, and
routing efficiency analysis. To fulfill these requirements, we have implemented a set of
algorithms to evaluate these QoS metrics and incorporate our proposals into The ONE—an
opportunistic network simulator that is well-suited for simulating and studying such
networks, as mentioned earlier.

4.3.1. Updating Training Matrix on Contact

The analysis for the used dataset involves simulating data analysis with a similar
methodology to the one that is used to train Machine Learning models. This simulation
includes dividing the data into a training subset and a test subset. As mentioned earlier, we
allocate 75% of the simulation data to train a set of adjacency matrices. In these matrices, we
simply increment the counter for each connection between pairs of nodes (device, another
host). Algorithm 1 generates adjacency matrices that not only indicate connected nodes
but also capture the connectivity capacity of nodes, making them likely to be chosen as
message transporters to other nodes.

It is important to note that matrices are calculated with a specific frequency to ensure
that different adjacency matrices are collected, reflecting the evolving connectivity of
the nodes.

Algorithm 1. Updating training matrix on contact

 Input:     TM (Training Matrix), N1 and N2 (new contact between two nodes) 
 Output:  TM (a new version of Training Matrix) 

1 begin 
2    if TM[N1, N2] == null then 
3   TM[N1, N2] = 0; 
4    if TM[N2, N1] == null then 
5   TM[N2, N1] = 0; TM[N1, N2] +=1; 
6    TM[N1, N2] +=1; 
7    TM[N1, N2] +=1; 
8 return TM 

Computational complexity analysis allows us to evaluate the efficiency of an algorithm
in terms of resource usage, such as time and memory [37]. By understanding the complexity,
we can estimate how the algorithm will respond to varying input sizes. In the case of
Algorithm 1, the complexity is simply O(1) because when two nodes meet each other, the
corresponding cells of the adjacency matrix (TM[N1, N2] and TM[N2, N1]) are updated,
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indicating how many times those nodes have been found throughout the considered period.
The spatial complexity, on the other hand, is determined by the need to store contact
information in an N × N matrix, where N is the number of nodes in the topology. However,
since we also store M matrices to reflect the evolution of the adjacency matrix between
nodes, the spatial complexity turns out to be O(M × N2).

For each matrix, we generate an intermediate ranking of nodes with good connectivity.
These rankings are then combined to obtain a final ranking, as described in Section 3,
Influence Metrics, depending on the metric used. The rankings assist the routing algorithm
in determining whether to forward a new copy of the package to the identified node.

4.3.2. Calculation of Friends Nodes upon Contact

In our proposal, the concept of a friend refers to a node that has connected with
another node and is likely to reconnect within a relatively short time, based on the principle
of temporal locality. To implement this idea of temporal locality, we introduce the friend
concept, which involves setting a timer for each pair of connecting devices. This timer is
activated after the nodes establish a connection. If they reconnect before the timer expires,
we consider them friends who frequently connect. On the other hand, if the timer has
expired by the time they encounter each other again, they are still friends but do not
connect frequently.

The concept of a friend represents a list of nodes to which the given node has previously
connected. This list is closely related to the adjacency matrices described in Algorithm 1,
as both implementations rely on node connections. However, unlike the adjacency matri-
ces, the friends list is not reset with each new matrix. Instead, it is continually updated
throughout the simulation as the node forms new connections.

It is important to note that the friends list is not utilized during the training phase
(when running Algorithm 2). Instead, it is used during testing, which will be explained
further in Algorithm 3.

Moreover, the concept of a friend can be utilized to assess the extent to which these
friends adhere to the notion of temporal locality. For instance, a connection counter between
them can be employed within the context of their unexpired timer. In these simulations,
we use the concept of friends as a list of nodes to which a specific node has connected
throughout the entire simulation.

Algorithm 2. Calculation of Friend Nodes on contact

 Input:     N1 LNF (List of N1 friends), N1 and N2 (new contact between two nodes) 
 Output:  N1 LNF (a new version of N1 friends), T(N1,N2) (timeout between N1 and N2) 

and TL(N1,N2) (temporal locality between L1 and L2) 
1 begin 
2   MAX_TIMEOUT  = 20,000; 
3   if N2 in N1 LNF then 
4    elapsed_time = (current_time - T(N1,N2)); 
5    if elapsed_time < MAX_TIMEOUT then 
6     TL(N1, N2) +=1; 
7   else 
8   add N2 to N1 LNF; 
9    T(N1, N2) = current_time; 

10 return N1 LNF, T(N1,N2), TL(N1,N2) 
11 repeat with the input: N2 LNF, N1 and N2 

The complexity is also O(1) because this algorithm simply updates the list of friends
(LNF) of a node and vice versa when it connects to another. The space complexity is O(N2)
because the friend list of each node is not renewed during the simulation, as is the case
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with TM adjacency matrices during training. Instead, a friend is added to each contact in
case they both meet and connect for the first time.

4.3.3. Routing Decision on Contact

The main objective of Algorithm 3 is to determine whether node A, given the connec-
tion between nodes A and B, should send a copy of the messages it carries to node B. This
decision aims to minimize overhead. Instead of sending copies to every encountered node
B, it is preferable to choose a node with better connectivity. Such a node is more likely to
have greater access to a larger network.

Algorithm 3. Routing decision on contact

 Input:     N1 and N2 (new contact between two nodes), R (best nodes ranking), N1 LNF 
 Output:  N2 messages queue 
1 begin 
2   for each message in N1 queue do 
3   N3 = obtain message destination; 
4   is_one_of_best_nodes = (N2 in R); 
5   are_friends = (N3 in N1 LNF); 
6   arrived_to_destination = (N2 == N3); 
7   if is_one_of_best_nodes or are_friends or arrived_to_destination then 
8    forward message to N2 queue; 
9  end for 

10 return N2 messages queue 

This algorithm requires the use of different data structures to determine whether node
N1 forwards the messages in its queue to N2. Therefore, these data structures are accessed
in a single loop, where the processing of each one is decided. The time complexity is O(N).
In terms of spatial complexity, we need a list M for each node N to act as a message buffer,
and a unique list to store the ranking of nodes. Consequently, the spatial complexity is
O(N × M).

This approach restricts the generation of message copies by node A (a finite number in
the case of S&W or unlimited in the case of Epidemic) to specific connections where node B
exhibits one of the following three characteristics:

• Node B ranks among the top positions in the ranking obtained through Algorithm
1. Being a node with good connectivity, it is more likely to successfully deliver
the packet to the intended recipient or another node that can assist in reaching the
message’s destination;

• The source and destination nodes of the message are friends. This indicates that they
have previously connected and are likely to reconnect. Therefore, node A, carrying the
message, is allowed to deliver a copy to node B;

• Node B is the intended destination of the message. In this scenario, it is logical for
node A to deliver the message to node B.

4.3.4. Packet Latency

Based on Figure 10, it becomes apparent that our algorithms achieve a decreased
average packet delay in comparison to the original Spray and Wait protocol, with an
average reduction of approximately 2% with respect to S&W and more than 10% with
respect to Epidemic or Prophets v1 and v2 protocols. By integrating equivalent buffer sizes,
minimizing overhead, and intelligent packet forwarding selection (unlike S&W, which
disseminates packets to all encountered nodes), our approach facilitates expedited packet
delivery to their intended destination.
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(a) (b) 

Figure 10. Average latency for different routing protocols, depending on the buffer size, normalized
with respect to the results of the S&W routing protocol: (a) comparison among all the analyzed
routing protocols; (b) comparison of the proposed metrics and S&W.

4.3.5. Path Length

As illustrated in Figure 11, the average number of hops taken by packets is influenced
by the node selection procedure. While this effect may not be readily apparent from the
graph, our algorithms have exhibited a slight decrease in the number of hops, surpassing
S&W by more than 3%, and significantly outperforming the Epidemic or Prophet v1 and
v2 routing protocols. This reduction in hops is accomplished through our meticulous
node selection process and the principles we employ to determine packet forwarding.
Consequently, the packets take fewer diversions along their routing path.

  
(a) (b) 

Figure 11. Hop count of delivered packets for different routing protocols, depending on the buffer
size, normalized with respect to the results of the S&W routing protocol: (a) comparison among all
the analyzed routing protocols; (b) comparison of the proposed metrics and S&W.

4.3.6. Route Overhead

The execution of Algorithm 3 within the proposed routing protocol determines the
quality of the connection between the source device and destination node. This leads to a
more restricted packet transmission approach compared to S&W, Epidemic, and Prophet v1
and v2 protocols, resulting in a great reduction in overhead (more than 32% less), as shown
in Figure 12. Although the proposed algorithm retains the same number of message copies,
they are no longer forwarded to all nodes but only to those that satisfy the conditions
specified in Algorithm 3.
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(a) (b) 

Figure 12. Overhead comparison of different routing protocols based on buffer size relative to the
results of the S&W routing protocol: (a) comparison among all the analyzed routing protocols;
(b) comparison of the proposed metrics and S&W.

4.3.7. Discussion of the Results

In the realm of networking protocols and QoS optimization, effective data transmission
and low-latency routing are of utmost importance. This study deeply delves into the
evaluation and refinement of routing algorithms to address these critical aspects, specifically
comparing the performance of our proposed algorithms against well-established ones such
as Spray and Wait, Epidemic, Prophet v1, and Prophet v2. The comparative analysis
encompasses essential metrics, including packet latency, the number of hops, and overhead.
It sheds light on the superior efficiency and effectiveness achieved by our meticulously
designed algorithms. Subsequently, the discussion encapsulates noteworthy findings
and implications of our research, illuminating the promising advancements in network
optimization and reliability.

Concerning packet latency, our algorithms significantly reduce average packet delay
compared to the original Spray and Wait protocol, with an average reduction of approx-
imately 2% compared to Spray and Wait, and more than 10% compared to Epidemic or
Prophets v1 and v2 protocols. Additionally, our algorithms demonstrate a reduction in the
number of hops, surpassing Spray and Wait by more than 3%, and significantly outper-
forming the Epidemic or Prophet v1 and v2 routing protocols. This reduction in hops is
achieved through our meticulous node selection process and the principles we employ to
determine packet forwarding. Regarding overhead, our algorithms adopt a more restricted
approach to packet transmission compared to Spray and Wait, Epidemic, and Prophet v1
and v2 protocols, resulting in a substantial reduction in overhead (more than 32% less).

In summary, our study highlights the remarkable performance enhancements achieved
by our proposed algorithms. The reductions in packet latency, number of hops, and
overhead represent significant advancements over established protocols like Spray and
Wait, Epidemic, Prophet v1, and Prophet v2. These improvements are attributed to our
meticulous node selection process and refined packet forwarding principles. The results
underscore the potential impact of our algorithms in optimizing QoS for routing in var-
ious network scenarios, emphasizing their significance in advancing network efficiency
and reliability.

5. Conclusions and Future Work

The extraction of the most influential nodes in a Complex Network is crucial for
seeking more efficient data transmission within the network, evaluating its resilience,
making better routing decisions, and gaining a deeper understanding of its dynamics. Our
study arises from the need to find metrics that measure the influence of nodes in a DSCN,
aiming to enhance the network’s QoS metrics.

Initially, we employed a network model that transformed the operation of OppMSN
over time into a discretized time series of CSNs, to analyze the network’s dynamic topology
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and the pattern of connections among devices. This approach provides a more accurate
framework to analyze the evolution of these patterns, based on regression analysis, rather
than using a single static aggregated network. In fact, the connections between devices
have been analyzed from the perspective of dynamic centrality metrics, as well as from the
perspective of a social complex network, extracting relationship patterns to detect the most
influential devices over others throughout the network’s operation.

In this study, real datasets have been used for validation to showcase the effectiveness
of the conducted experiments. The efficacy of different metrics employed on the datasets
and potential correlations between them have been verified. Finally, based on influence
dynamic rankings, our algorithms have facilitated better decision-making regarding the
selection of nodes most suitable for routing data toward their destination in the datasets,
leading to enhancements in standard QoS metrics.

Moving forward, our future work involves analyzing the evolutionary characteristics
of influence distribution using additional real datasets with more devices and enhanced
connectivity among them. Furthermore, we will explore other combinations of central-
ity metrics and similarity indices to enhance the accuracy of classifying devices in an
importance ranking. Additionally, we aim to investigate the concept of “friend” as a mea-
sure of temporal locality between each pair of nodes, evaluating its relationship with the
connection capacity of a node with others.
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Appendix A

We quantify the Dynamic Degree of the devices in the example presented in Figure 1
for clarity. The conclusions are drawn from Figure A1, where edge weights represent
contact times, and α = 0.5 is employed to give equal relative weight to the evolutionary
trend of connections and the frequency of contact times.

Figure A1. Aggregated network derived from contact frequency of Figure 1.

DTET(A) = 0.5·0.0364 + (1 − 0.5)
(5 + 1 + 7 + 3)

10
= 0.0182 + 0.8 = 0.8182
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DTET(B) = 0.5·(−0.0788) + (1 − 0.5)
(4 + 1 + 2 + 4)

10
= (−0.0394) + 0.55 = 0.5106

DTET(C) = 0.5·0.1151 + (1 − 0.5)
(5 + 3 + 3 + 2 + 4)

10
= 0.05755 + 0.85 = 0.90755

DTET(D) = 0.5·(−0.0788) + (1 − 0.5)
(7 + 3 + 2)

10
= (−0.0394) + 0.6 = 0.5606

DTET(E) = 0.5·(−0.0182) + (1 − 0.5)
(3 + 3 + 5)

10
= (−0.0091) + 0.55 = 0.5409

DTET(F) = 0.5·(−0.0545) + (1 − 0.5)
(5 + 2 + 4)

10
= (−0.02725) + 0.55 = 0.52275

For instance, based on the following details, a preliminary ranking of nodes can be
established: Device A interacts with its neighbors more frequently than device B, despite
both having the same three neighbors. As a result, device A displays a higher Dynamic
Degree than device B. Similar to the previous example, device E receives a better score due
to its greater trend of contact development, even if device D contacts its neighbors more
frequently. Device C achieves a higher Dynamic Degree than Device A due to having more
neighbors and a faster rate of contact development. Consequently, the nodes are ranked as
follows according to their Dynamic Degree index: RankingDTE = {C, A, D, E, F, B}.

Let us examine now an example calculation in Figure A2, showcasing an unconnected
network during G2.

 

Figure A2. Network connections during instant G2, based on the example of Figure 1.

CCLO(A) = lim
x→∞

(
1

6 − 1

(
1
x
+

1
x
+

1
2λ

+
1
x
+

1
x

))
=

1
10λ

CCLO(B) = lim
x→∞

(
1

6 − 1

(
1
x
+

1
2λ

+
1
x
+

1
x
+

1
2λ

))
=

1
5λ

CCLO(C) = lim
x→∞

(
1

6 − 1

(
1
x
+

1
2λ

+
1
x
+

1
x
+

1
3λ

))
=

1
6λ

CCLO(D) = lim
x→∞

(
1

6 − 1

(
1

2λ
+

1
x
+

1
x
+

1
x
+

1
x

))
=

1
10λ

CCLO(E) = lim
x→∞

(
1

6 − 1

(
1
x
+

1
x
+

1
x
+

1
x
+

1
x

))
= 0

CCLO(F) = lim
x→∞

(
1

6 − 1

(
1
x
+

1
2λ

+
1

3λ
+

1
x
+

1
x

))
=

1
6λ

349



Appl. Sci. 2023, 13, 10766

Upon analyzing this small example, it becomes apparent that when computed on an
unconnected network, the Closeness metric tends to result in lower values, indicating the
difficulty of communication between devices belonging to different components. Addition-
ally, the devices within the same component experience an increase in their centrality, as all
values are non-zero in the calculation. Consequently, the metric places greater emphasis on
nodes that are well-connected.

Let us see the same example of calculation as before for connected devices {A, B, C, D,
F}, from G7 as shown in Figure 4, but now using the new closeness equation (Equation (15)):
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The new ranking of devices based on their closeness index, which is determined by
using the sum of reciprocal distances instead of the reciprocal sum of distances, is in line
with the ranking obtained by using the traditional equation (Equation (11)) on a network
that is well-connected (Equation (12)):

Ranking = {B, D, C, F, A}

To maintain clarity in the example illustrated in Figure 1, we opt for a value of 0.5
when assessing the closeness of the devices. This choice ensures that the Closeness measure
and its dynamics carry equal relative weight.

CTET(A) = 0.5·0.0174 + (1 − 0.5)
2.0667

(
λ−1)

10
= 0.1167λ−1

CTET(B) = 0.5·(−0.0026) + (1 − 0.5)
1.43344

(
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10
= 0.0704λ−1

CTET(C) = 0.5·0.0056 + (1 − 0.5)
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10
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10
= 0.0931λ−1

CTET(E) = 0.5·(−0.0001) + (1 − 0.5)
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(
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10
= 0.0908λ−1

CTET(F) = 0.5·(−0.0065) + (1 − 0.5)
1.7667

(
λ−1)

10
= 0.0851λ−1
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The new ranking of nodes according to their Dynamic Closeness index is as follows:

Ranking = {C, A, D, E, F}
The best path from device A to device B in Figure 5 is then determined using the

opportunistic-based shortest path method. Table A1 presents the findings of this investigation.
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=

(
5

1+1
2 ·4 1+1

2

) 1
2

5
1+1

2

= 0.8944

αA,D,B =
(ORIT(A, D)·ORIT(D, B))

1
2

max(ORIT(A, D), ORIT(D, B))
=

(
7

1+1
2 ·2 1+1

2

) 1
2

7
1+1

2

= 0.5345

αA,E,F,B = (ORIT(A,E)·ORIT(E,F)·ORIT(F,B))
1
3

max(ORIT(A,E), ORIT(E,F), ORIT(F,B)) =

(
3

1
3 ·5 1

5 ·4 1
4

) 1
3

3
1
3

= 0.9789

Costopp(A, B) =
(

1

1
1+1

2

)1
= 1

Costopp(A, C, B) =
(

1

5
1+1

2

)0.8944
+

(
1

4
1+1

2

)0.8944
= 0.5226

Costopp(A, D, B) =
(

1

7
1+1

2

)0.5345
+

(
1

2
1+1

2

)0.5345
= 1.0437

Costopp(A, E, F, B) =
(

1

3
1
3

)0.9789
+

(
1

5
1
5

)0.9789
+

(
1

4
1
4

)0.9789
= 2.1408
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Table A1. Results of the opportunistic social shortest path method to identify the best path from
device A to device B.

Path Latency
Load

Balancing
Overhead ORIT

ORIT
Balancing

Costopp

{A, B} 10t 0t 2λ 12/2 0 1
{A, C, B} 7t 0.5t 3λ 52/2, 42/2 4.5 0.5226
{A, D, B} 7t 1.t 3λ 72/2, 22/2 4.5 1.0437

{A, E, F, B} 7t 1.5764t 4λ 31/3, 51/5, 41/4 1.5087 2.1408

The path {A, B} represents the shortest distance, but it possesses the lowest ORIT(A, B)
value among all routes. On the other hand, the path {A, E, F, B} has the longest path dis-
tance with a ORIT(A, E, F, B) value of 4.2362 (the sum of the three ORIT), which is the
second lowest. Comparatively, both the paths {A, C, B} and {A, D, B} share the same
path distance, with ORIT(A, C, B) = ORIT(A, D, B) = 9. However, Costopp(A, C, B) is
lower than Costopp(A, D, B). As a consequence, when both social relationships (ORIT) and
communication costs are taken into consideration, the path {A, C, B} is shown to be the
best option for moving from device A to device B.

Therefore, to obtain the ranking based on CLOopp, one must compute the CLOopp of
each node with respect to the rest:

CLOopp(A) = 1
6−1

(
1

min(Costopp(A,B))
+ 1

min(Costopp(A,C))
+ 1

min(Costopp(A,D))

+ 1
min(Costopp(A,E))

+ 1
min(Costopp(A,F))

)
= 1

6−1

(
1

0.5264 + 1
0.2 + 1

0.1429 + 1
0.6934 + 1

1.4289

)
= 3.5343

CLOopp(B) = 1
6−1

(
1

min(Costopp(B,A))
+ 1

min(Costopp(B,C))
+ 1

min(Costopp(B,D))

+ 1
min(Costopp(B,E))

+ 1
min(Costopp(B,F))

)
= 1

6−1

(
1

0.5264 + 1
0.25 + 1

0.5 + 1
0.4378 + 1

0.7071

)
= 2.0019

CLOopp(C) = 1
6−1

(
1

min(Costopp(C,A))
+ 1

min(Costopp(C,B))
+ 1

min(Costopp(C,D))

+ 1
min(Costopp(C,E))

+ 1
min(Costopp(C,F))

)
= 1

6−1

(
1

0.2 + 1
0.25 + 1

0.4497 + 1
1.2428 + 1

1.2523

)
= 2.5654

CLOopp(D) = 1
6−1

(
1

min(Costopp(D,A))
+ 1

min(Costopp(D,B))
+ 1

min(Costopp(D,C))

+ 1
min(Costopp(D,E))

+ 1
min(Costopp(D,F))

)
= 1

6−1

(
1

0.1429 + 1
0.5 + 1

0.4497 + 1
1.2603 + 1

1.3055

)
= 2.5562

CLOopp(E) = 1
6−1

(
1

min(Costopp(E,A))
+ 1

min(Costopp(E,B))
+ 1

min(Costopp(E,C))

+ 1
min(Costopp(E,D))

+ 1
min(Costopp(E,F))

)
= 1

6−1

(
1

0.6394 + 1
1.4378 + 1

1.2428 + 1
1.2603 + 1

0.7248

)
= 1.0474

CLOopp(F) = 1
6−1

(
1

min(Costopp(F,A))
+ 1

min(Costopp(F,B))
+ 1

min(Costopp(F,C))

+ 1
min(Costopp(F,D))

+ 1
min(Costopp(F,E))

)
= 1

6−1

(
1

1.4289 + 1
0.7071 + 1

1.2523 + 1
1.3055 + 1

0.7248

)
= 1.0116

So, the new ordered ranking of nodes based on their Social Closeness index is
as follows:

RankingCLO_opp = {A, C, D, B, F, E}
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