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Preface

As big data advances, the significance of data science is rapidly gaining momentum, igniting

a surge of research across diverse disciplines, including mathematics, statistics, computer science,

and artificial intelligence. Data science encompasses various methodologies involving modeling,

computation, and learning processes to translate raw data into actionable insights, knowledge, and

informed decision making. However, the intricacies inherent in big data, such as missing data, high-

and ultra-high-dimensional datasets, response dependency, time series analysis, and distributed

storage, present formidable challenges to existing theories, methods, and algorithms in data analysis.

This challenge is particularly pronounced in fundamental statistical concepts, such as estimation,

hypothesis testing, confidence intervals, and variable selection, spanning frequentist and Bayesian

methodologies.

This book presents a comprehensive toolkit within the data science domain to address these

challenges head-on. It covers a wide array of topics, including strategies for handling measurement

errors or missing data, cognitive diagnosis modeling, constructing credit risk scorecards using logistic

regression models, leveraging geographically weighted regression modeling, implementing privacy

protection protocols in data mining, exploring clustering methods, and navigating the complexities

of model selection for high-dimensional datasets. Additionally, we delve into predicting sensitive

features under indirect questioning. We fervently hope these discussions provide readers with

invaluable tools and practical examples to effectively apply data science methodologies in real-world

scenarios.

As Guest Editors of this Special Issue, we extend our heartfelt gratitude to all the authors for

their exceptional contributions, which have significantly enriched the content of this publication. We

also express our sincere appreciation to the reviewers for their insightful comments and constructive

feedback, which undoubtedly enhanced the quality and rigor of the submitted manuscripts.

Additionally, we would like to acknowledge the invaluable support and assistance provided by

the administrative staff of MDPI publications, whose dedication and professionalism have been

instrumental in facilitating the completion of this project.

Special commendation is due to Ms. Caitlynn Tong, Section Managing Editor of this Special

Issue, for her exemplary collaboration and unwavering commitment. Her exceptional guidance and

expertise have played a pivotal role in steering this initiative towards fruition.

Niansheng Tang and Shen-Ming Lee

Editors
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Generalized Linear Models with Covariate Measurement Error
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Abstract: Epidemiological studies often encounter a challenge due to exposure measurement error
when estimating an exposure–disease association. A surrogate variable may be available for the
true unobserved exposure variable. However, zero-inflated data are encountered frequently in
the surrogate variables. For example, many nutrient or physical activity measures may have a
zero value (or a low detectable value) among a group of individuals. In this paper, we investigate
regression analysis when the observed surrogates may have zero values among some individuals
of the whole study cohort. A naive regression calibration without taking into account a probability
mass of the surrogate variable at 0 (or a low detectable value) will be biased. We developed a
regression calibration estimator which typically can have smaller biases than the naive regression
calibration estimator. We propose an expected estimating equation estimator which is consistent
under the zero-inflated surrogate regression model. Extensive simulations show that the proposed
estimator performs well in terms of bias correction. These methods are applied to a physical activity
intervention study.

Keywords: measurement error; surrogate; zero-inflated data

MSC: 62E20; 62F10; 62J12

1. Introduction

In biomedical research, regression analysis is an important tool to understand associa-
tions between disease outcomes and risk factors. In practice, however, a risk factor may not
be measured precisely. This problem is often called covariate measurement error [1–3]. We
consider an example when a biomarker is a risk factor for a disease outcome. In practice,
the biomarker may have seasonal, daily, or even hourly variation, and a single measure-
ment is prone to a covariate measurement error from instrumentation or human error.
Hence, an average of an infinite number of the biomarker measurements during a specified
period of time is, therefore, a more meaningful covariate variable than the average of a few
observed measurements. However, in practice it is not feasible to make such measurements,
and thus studies often rely on single measures at a specific time point with associated
measurement error.

Physical activity and nutrient intake are important risk factors for disease incidence
and mortality. However, physical activity and nutrient intake data may be measured with
errors since they are generally self-report data. This issue is important since measurement
error in diet or physical activity may have an attenuation effect on the regression coefficients
of exposures in the range of approximately 20% to 50% [4–6]. That is, an odds ratio of
1.5 from diet or physical activity may be reduced to the range of 1.22 to 1.38 due to
measurement errors in these measures. In addition, an important challenge in this research
is that some physical activity or dietary data may have a zero value, such as 0 metabolic

Mathematics 2024, 12, 309. https://doi.org/10.3390/math12020309 https://www.mdpi.com/journal/mathematics1
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equivalent (MET) hours per week from moderate or vigorous physical activity or 0 alcohol
intake. One MET is defined as the amount of oxygen consumed while at rest per kilogram
of body weight [7]. A 3 MET activity expends three times the energy used by the body
at rest. Hence, if a person does a 3 MET activity for 4 h in a week, he or she has done
12 MET hours of physical activity in a week. A naive method without taking into account
measurement error may lead to biased effect estimation in regression analysis, and the bias
is attenuation in most (but not all) cases [8]. A standard bias correction for measurement
error without taking into account a subset of individuals with zero exposure value may be
biased in the effect estimation.

One motivating example of our methodology research is covariate measurement error
associated with the measurement of physical activity in the APPEAL study (A Program
Promoting Exercise and Active Lifestyles; APPEAL: Clinicaltrials.gov NCT00668161) [9].
APPEAL was a year long randomized controlled trial of moderate-to-vigorous intensity
exercise vs. control (no exercise) among 202 healthy, sedentary adults recruited between 2001
and 2004 primarily through physician practices, and randomized to an exercise program
(n = 100) or a control group (n = 102). The trial was designed to test the effects of exercise on
biomarkers of colon cancer and other physiologic and psychosocial outcomes. Numerous
case-control and cohort studies have found an inverse association between physical activity
and risk of colon cancer [10]. Physical activities are commonly quantified by determining
the energy expenditure in kilocalories or by using the MET of the activity. A question of
interest is whether there is an association between physical activity via MET-hours/week
and c-reactive protein, a biomarker of inflammation, with elevated levels of CRP associ-
ated with risk of developing colon cancer. The true average of MET-hours/week is an
unobserved variable that is the average of an infinite number of MET-hours/week scores.
However, in practice it is not possible to obtain this measure and, thus, the true average of
MET-hours/week scores cannot be observed.

In the motivating example given above, two methodology challenges are involved.
The first challenge is regression analysis with covariate measurement error, which is
due to physical activity (MET-hours/week). The observed error-prone variable is typ-
ically called a surrogate variable for the true but unobserved exposure. The second
challenge is the zero-inflated surrogate model because some individuals may have zero
MET-hours/week. The zero-inflated surrogate issue in some similar research examples
is also called truncation of the observed surrogates. In our problem, the second chal-
lenge (zero-inflated surrogate modeling) is added to the first challenge (covariate mea-
surement error). Methods for covariate measurement error have been well developed.
For example, regression calibration (RC) for covariate measurement error is to replace an
error-prone covariate by its conditional expectation given the observed covariates [11].
In linear regression, the RC estimator is a consistent estimator for regression coefficients
(Buonaccorsi, 2010, Chapter 5) [12]. However, for logistic and Cox regression, it is known
that it is not consistent (Carroll, et al., 2006, Chapter 4) [2]. There is further research on
refinement of RC for logistic and Cox regression [13,14]. Another general approxima-
tion approach for covariate measurement error is the simulation extrapolation (SIMEX)
approach [15,16]. An advantage of SIMEX is that it has the advantage of being easy to
implement. There are methods to address the situation when the surrogate variables may
be truncated (which is in general the same as zero-inflated surrogate modeling). Tooze et al.
investigated a likelihood approach for repeated measures data with clumping at zero [17].
When the observed exposure variables are truncated by a lower limit, the estimation of the
disease–exposure association due to measurement error and truncation may not always be
attenuation [18].

As discussed above, there is relatively limited research that addresses the issue of
measurement error when some individuals may have a zero value (or lower limit) in the
observed surrogates. The main objective of the paper is to develop and apply methods to
adjust for measurement error in generalized linear models when the observed surrogates
may be truncated at a low value (such as 0) among some individuals. The paper is organized

2
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as follows: In Section 2, we describe the statistical models for the problem of interest, and
discuss the bias issue when we apply a naive RC estimator without taking into account the
zero-inflated surrogates. In Section 3, we study a regression calibration estimator for this
problem. In Section 4, we propose a maximum likelihood estimator via expected estimating
equations for this problem. In Section 5, the results from simulation studies are presented.
In Section 6, we apply the methods to the APPEAL study data. We discuss the advantages
and limitations of the proposed EEE estimator in Section 7. Concluding remarks are given
in Section 8.

2. Statistical Models and Naive RC Estimator

We assume that the total sample size of the study cohort is n. The regression model
of interest is the generalized linear model. Let Yi be the response variable, Xi be the
unobserved true covariate (dietary intake or physical activity) that cannot be precisely
measured, and Zi be the vector of covariates which is available for all individuals, i,
i = 1, . . . , n. For simplicity of presentation, the true unobserved exposure X is assumed to
be a scalar throughout this paper. The main interest is to estimate the vector of regression
coefficients β ≡ (β0, β1, β′

2)
′ in the followingregression model:

E(Yi|Xi, Zi) = g(β0 + β1Xi + β′
2Zi), (1)

where g(·) is a specified function. Model (1) contains many important regression models.
For example, g(u) = u in linear regression, while g(u) = (1 + e−u)−1 in logistic regression.
The goal of the research is to develop valid estimation methods for the regression coeffi-
cients β. For the true unobserved covariate Xi, we assume that there are ki non–negative
surrogate variables Wij, j = 1, . . . , ki such that Wij = max(c, W∗

ij), where c is a detection
limit, W∗

ij = Xi + Uij, in which Uij is an independent measurement error with E(Uij) = 0.
Let ηij be the indicator function for a positive Wij value, that is, ηij = I[Wij > c]. In a
covariate measurement error problem when the surrogates are not truncated, replicates
Wij, j = 1, . . . , ki, are used to estimate the measurement error variance where ki is the
number of replicates. We use notation W̃i for (Wi1, . . . , Wiki

), W̃∗
i for (W∗

i1, . . . , W∗
iki
), and η̃i

for (ηi1, . . . , ηiki
).

To understand the RC estimator, we consider a special linear regression case that
Yi = β0 + β1Xi + ei, where ei is a mean-zero random residual term. Assume W∗

ij =

Xi + Uij, j = 1, . . . , k, then it is easily seen that E(Yi|W̃∗
i ) = β0 + β1E(Xi|W̃i). From

this argument, it is seen that under the special linear regression case above, replacing an
unobserved true Xi with E(Xi|W̃∗

i ) will lead to a consistent estimator. This method is
often called the RC estimator [2]. In this case, E(Yi|W̃∗

i ) is the calibration function. We
may also use E(Yi|W

∗
i ), where W∗

i = ∑k
j=1 W∗

ij/k, as the calibration function to replace
the unobserved Xi. If replicates W∗

ij , j = 1, . . . , ki are from a normal distribution, then

E(Yi|W
∗
i ) = E(Yi|W̃∗

i ) [14]. Let μx and σx denote the mean and standard deviation of
any random variable X, respectively. Calculation of the conditional expectation of the
unobserved exposure given the surrogates can be obtained based on a bivariate normal
assumption such that

E(Xi|W
∗
i ) = μx + σ2

x

(
σ2

x + σ2
u/k
)−1(

W∗
i − μx

)
.

Therefore, E(Yi|W
∗
i ) = β0+ β∗

1 W∗
i , then β∗

1 = {σ2
x
(
σ2

x + σ2
u/k
)−1}β1. From this cal-

culation, a naive estimator using W∗
i as a replacement for Xi will have an attenuation effect.

When Z is in the model, a standard RC estimator is to replace Xi with E(Xi|W
∗
i , Zi). This

can be done by a multivariate-normal assumption with a conditional mean formula similar
to the formula given above. However, a more practical approach is via a semiparametric RC
approach by assuming a working regression model of E(W∗

ij |W∗
ij′ , Zi) = α0 + α1W∗

ij′ + α′
2Zi,

3
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where j �= j′ = 1, . . . , k, and (α0, α1, α′
2)

′ is the vector of regression coefficients. This semi-
parametric RC estimator does not assume a multivariate normality assumption of the
observed surrogates and covariates [19,20].

However, in our problem, the observed Wij is different from W∗
ij if W∗

ij < c. Using Wij
data will likely overestimate μx, but underestimate σx, and σu since Wij = c if W∗

ij < c. For

linear regression with truncated surrogates, standard RC may be biased because E(Xi|Wi)

will be different from E(Xi|W
∗
i ). One naive approach is to use the observed Wij as W∗

ij ,
without taking into consideration the truncated surrogates, to calculate the RC estimator.
We call this estimator a naive RC (NRC) estimator. As discussed above, the NRC estimator
is biased even when the main regression model is linear. The asymptotic variance of the
NRC estimator can be obtained by a sandwich variance estimator where the vector of
the estimating equations is obtained by stacking the estimating equations for β and the
nuisance parameters involved in the calculation of the calibration function E(Xi|W̃∗

i , Zi)
(but noting that the NRC estimator assumes W̃i is the same as W̃∗

i ). However, if there are
many covariates in the modeling of the calibration function, then it will be computationally
easier to use bootstrap variance estimation to obtain the standard errors.

3. Regression Calibration for Zero-Inflated Surrogates

The NRC estimator described in the previous section does not take into account zero
values due to truncation. Now, we consider calibration based on truncate surrogates due
to zero values. To understand the method, we first consider a linear regression model
Yi = β0 + β1Xi + β′

2Zi + ei, where ei has mean 0, and is independent of Xi and Zi. Then,
E(Yi|W̃i, Zi) = β0 + β1E(Xi|W̃i, Zi) + β′

2Zi. That is, replacing Xi with E(Xi|W̃i, Zi) in the
regression analysis may be a valid approach. Let X̂i ≡ E(X|W̃, Z). The estimating equation
for the RC estimator can be expressedas

n

∑
i=1

(1, X̂i, Z′
i)
′{Yi − (β0 + β1X̂i + β′

2Zi)} = 0. (2)

Hence, when Yi given (Xi, Zi) is linear, we have the following result:

Proposition 1. Assume the surrogate variables W∗
ij , j = 1, . . . , ki may be truncated by a lower limit,

and the truncation indicator η̃i is independent of Yi given (Xi, Zi). If Yi = β0 + β1Xi + β′
2Zi + ei,

where ei has mean 0, and is independent of Xi and Zi. Then the RC estimator solving (2) is a
consistent estimator of β.

The proof of Proposition 1 is given in Appendix A. We note that because of the
surrogate assumption, the measurement errors Uij and ei are independent, which is needed
to ensure that estimating Equation (2) is unbiased. Hence, for linear regression with zero-
inflated surrogates, the RC estimator is consistent. However, when the mean function
of Yi given Xi, Zi is not linear, the RC estimator may be biased since the expectation of
the estimating score will no longer be zero. For logistic regression, pr(Yi = 1|Xi, Zi) =
H(β0 + β1Xi + β′

2Zi), where H(u) = {1 + exp(−u)}−1 is the logistic function. Although
the RC estimator is not consistent, the RC estimator can be considered as an improved
estimator of the NRC estimator described in the last section. The calibration function can be
calculated based on the likelihood function. We use notation L(X) to denote a likelihood
function for any random variable X, and L(Y|X) to denote a conditional likelihood function
of Y given X, for any two random variables X and Y. Generally, the conditional calibration
function can be calculated by the following:

E{Xi|W̃i, Zi} =

∫
x x ∏j{L(Wij|Xi = x, Zi)}ηij{L(Wij = c|Xi = x, Zi)}1−ηijL(Zi, Xi = x)dx∫
x ∏j{L(Wij|Xi = x, Zi)}ηij{L(Wij = c|Xi = x, Zi)}1−ηijL(Zi, Xi = x)dx

. (3)

4
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In (3), we note that L(Wij = c|Xi = x, Zi) = L(Uij ≤ c − x). From the argument given
above, the RC estimator can be obtained by replacing an unobserved Xi by E{Xi|W̃i, Zi}
based on (3). The asymptotic variance of the RC estimator can be obtained by a stacked
sandwich estimator that is similar to the one for the NRC estimator described in the last
section, or by bootstrap variance estimation.

4. Expected Estimating Equation Estimator

We now develop another approach to this problem via the maximum likelihood
(ML) estimation. We first take a different viewpoint linking the ML estimation and the
conditional expectation of the full data estimating equation, namely, the estimating equation
when there is no measurement error. The full data likelihood, L(Yi|Xi, Zi), is the likelihood
function of Yi given (Xi, Zi). The full data estimating equation for β can be expressed as
∑n

i=1 φ(Yi, Xi, Zi, β) = 0, in which φ(Yi, Xi, Zi, β) is the derivative of log{L(Yi|Xi, Zi)} with
respect to β. Because the true Xi is not observed, the full data estimating equation can
not be directly applied to the data. With the observed data, the estimating score will be
from the likelihood of Yi given Zi and Wi, denoted by L(Yi|Zi, Wi). If the distribution of
(W̃i, Xi, Zi) does not involve β, then

∂

∂β
logL(Yi|W̃i, Zi) =

(∂/∂β)
∫

x L(Yi|Xi, Zi)L(W̃i|Xi = x, Zi)L(Xi = x, Zi)dx
L(Yi, W̃i, Zi)

= E{ ∂

∂β
logL(Yi|Xi = x, Zi)|Yi, W̃i, Zi}.

From the equations given above, the likelihood-based score of the observed data can
be obtained by the conditional expectation of the likelihood-based score of the full data
given the observed data. That is, the estimating score for an individual can be expressed as
E{φ(Yi, Xi, Zi, β)|Yi, W̃i, Zi}, which is the observed data estimating score. The ML estimator
can be obtained from the idea of expected estimating equations [21]. Therefore, the ML
estimator can be obtained by solving

n

∑
i=1

E{φ(Yi, Xi, Zi, β)|Yi, W̃i, Zi} = 0. (4)

In general, φ(Yi, Xi, Zi, β) does not need to be the full data likelihood-based estimating
score. It can be any estimating equation that satisfies E{φ(Yi, Xi, Zi, β)} = 0. For example,
it can be a weighted estimating equation of the ML estimator. The estimator solving (4) is
the expected estimating equation (EEE) estimator for β. Let Equation (4) be denoted by
S(β, X, Z) = 0. Let the EEE estimator be denoted by β̂eee. The asymptotic distribution of
β̂eee can be presented as the following result:

Proposition 2. Assume Yi given (Xi, Zi) follows (1), and the surrogate variables W∗
ij , j = 1, . . . , ki

may be truncated by a lower limit, and the truncation indicator η̃i is conditionally independent of Yi given
(Xi, Zi). Assume φ(Yi, Xi, Zi, β) is any estimating equation that satisfies E{φ(Yi, Xi, Zi, β)} = 0.
The EEE estimator solving (4) is consistent for β. Furthermore, n1/2(β̂eee − β) is asymptotically normal
with mean 0 and asymptotic variance given in Appendix A.

The proof of Proposition 2 is given in Appendix A. The EEE in (4) can be calculated by
the following:

E{φ(Yi, Xi, Zi, β)|Yi, W̃i, Zi}

=

∫
x φ(Yi, Xi, Zi)L(Yi|Xi = x, Zi){∏ki

j=1 L(Wij|Xi = x, Zi)}L(Zi, Xi = x)dx∫
x L(Yi|Xi = x, Zi){∏ki

j=1 L(Wij|Xi = x, Zi)}L(Zi, Xi = x)dx
,
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where L(Wij|Xi = x, Zi) = {L(Wij|Xi = x, Zi)}ηij{L(Wij = c|Xi = x, Zi)}1−ηij . The
asymptotic variance of the EEE estimator solving (4) for β can be obtained by a sandwich
variance estimator. The vector of the estimating equations is obtained by stacking two sets
of estimating equations. The first set is the estimating equations for β and the second set
is the nuisance parameters involved in the conditional distribution of Yi given (Zi, W̃i).
However, bootstrap variance estimation is another approach to obtain the standard errors
of the EEE estimator.

5. Simulation Study

We conducted a simulation study to examine the finite sample performance of the
NRC, RC, and EEE estimators with the naive estimator that used Wi for Xi. In Table 1, we
illustrate the situation when the regression model is linear and the observed surrogates may
have a zero value among some individuals. That is, the observed surrogates were truncated
at c = 0 in the simulations. In this table, each individual’s true covariate is Xi. We first
generated Xi, i = 1, . . . , n, from a normal distribution, where the sample size was n = 500,
and n = 1000, respectively. We generated two replicates W∗

i1 and W∗
i2 for the unobserved

Xi. With μx = 1.5, σx = 1, and σu = 0.707. The percent of non–zero Wij was η = 89%;
11% of Wij was truncated at 0. We also considered the situation when σu = 1, 1.5, and

√
3,

respectively, in which the percent of non-zero covariates were η = 86%, 80%, and 77%,
respectively. The outcomes were generated based on linear regression with coefficients
β0 = 0.5 and β1 = 1, and the residuals were from a standard normal distribution. In
Tables 1–4, “bias” was obtained from the average of the biases of the regression coefficients
estimates of the 500 simulation replicates, “SD” was the sample standard deviation of the
estimates, and “ASE” was the average of the estimated standard errors of the estimates.
The 95% confidence interval coverage probabilities (CP) were also obtained. The standard
errors of the estimates were obtained from sandwich variance estimation. From the result
of Table 1, the NRC estimator was not much better than the naive estimator. The reason for
limited improvement from the NRC over the naive estimator was because of truncated W
values. The RC and EEE estimators were consistent with limited biases under this setting,
and hence, they were better than the naive and NRC estimators. Under this setting, the RC
and EEE were very comparable.

Table 1. Simulation study for linear regression with truncated surrogates.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

μx = 1.5, σx = 1, σu = 0.707, η = 89%

β0 = 0.5 Bias 0.134 −0.230 −0.002 0.003 0.133 −0.228 −0.003 0.002
SD 0.093 0.117 0.103 0.103 0.064 0.080 0.072 0.071

ASE 0.093 0.117 0.106 0.106 0.066 0.083 0.075 0.074
CP 0.684 0.486 0.972 0.962 0.460 0.180 0.954 0.966

β1 = 1 Bias −0.126 0.107 0.004 0.000 −0.127 0.103 0.001 −0.002
SD 0.050 0.068 0.060 0.060 0.035 0.047 0.043 0.042

ASE 0.049 0.068 0.061 0.061 0.035 0.048 0.043 0.043
CP 0.270 0.658 0.958 0.954 0.056 0.446 0.956 0.960

μx = 1.5, σx = 1, σu = 1, η = 86%

β0 = 0.5 Bias 0.301 −0.349 −0.007 −0.006 0.299 −0.343 −0.005 −0.004
SD 0.096 0.161 0.133 0.132 0.067 0.109 0.091 0.091

ASE 0.095 0.162 0.136 0.136 0.068 0.113 0.095 0.095
CP 0.122 0.404 0.960 0.952 0.002 0.106 0.966 0.962

β1 = 1 Bias −0.252 0.154 0.006 0.006 −0.252 0.147 0.003 0.002
SD 0.050 0.096 0.080 0.079 0.035 0.066 0.056 0.056

ASE 0.049 0.096 0.082 0.082 0.035 0.067 0.057 0.057
CP 0.002 0.674 0.952 0.958 0.000 0.424 0.948 0.958
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Table 1. Cont.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

μx = 1.5, σx = 1, σu = 1.5, η = 80%

β0 = 0.5 Bias 0.556 −0.652 −0.035 0.033 0.558 −0.616 −0.018 −0.019
SD 0.101 0.341 0.244 0.241 0.070 0.217 0.156 0.157

ASE 0.098 0.325 0.230 0.229 0.069 0.220 0.157 0.158
CP 0.000 0.462 0.962 0.942 0.000 0.104 0.960 0.960

β1 = 1 Bias −0.445 0.263 0.023 0.022 −0.447 0.241 0.011 0.012
SD 0.048 0.197 0.152 0.150 0.033 0.126 0.097 0.099

ASE 0.047 0.188 0.144 0.144 0.033 0.128 0.099 0.099
CP 0.000 0.846 0.960 0.942 0.000 0.558 0.952 0.954

μx = 1.5, σx = 1, σu =
√

3, η = 77%

β0 = 0.5 Bias 0.655 −0.839 −0.057 −0.051 0.657 −0.769 −0.024 −0.025
SD 0.101 0.609 0.323 0.307 0.070 0.302 0.197 0.198

ASE 0.098 0.466 0.300 0.296 0.069 0.302 0.198 0.229
CP 0.000 0.634 0.956 0.922 0.000 0.150 0.956 0.950

β1 = 1 Bias −0.519 0.327 0.038 0.034 −0.522 0.287 0.015 0.015
SD 0.046 0.286 0.204 0.195 0.033 0.170 0.126 0.127

ASE 0.045 0.263 0.191 0.189 0.032 0.170 0.126 0.148
CP 0.000 0.972 0.956 0.918 0.000 0.716 0.948 0.930

NOTE: Naive is an estimator that uses the average of two replicates as the covariate, NRC is the naive RC
estimator described in Section 2, RC is the RC estimator that uses E(X|W̃) as the covariate, and EEE is the expected
estimating equation estimator described in Section 4.

Table 2. Simulation study for linear regression with truncated surrogates; misspecified distribution
for covariate X or measurement error.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

X is from a mixture of two normal distributions and the error is normal

μx = 1.5, σx = 1, σu = 0.707, η = 91%

β0 = 0.5 Bias 0.209 −0.096 0.041 0.036 0.204 −0.101 0.037 0.032
SD 0.081 0.099 0.097 0.097 0.061 0.074 0.073 0.073

ASE 0.084 0.105 0.103 0.103 0.060 0.074 0.072 0.073
CP 0.300 0.878 0.940 0.946 0.074 0.720 0.900 0.916

β1 = 1 Bias −0.160 0.038 −0.020 −0.018 −0.158 0.041 −0.018 −0.016
SD 0.045 0.058 0.057 0.057 0.033 0.043 0.042 0.042

ASE 0.046 0.061 0.059 0.060 0.032 0.043 0.042 0.042
CP 0.060 0.920 0.946 0.950 0.002 0.848 0.928 0.928

μx = 1.5, σx = 1, σu = 1, η = 86%

β0 = 0.5 Bias 0.341 −0.199 0.051 0.036 0.336 −0.204 0.050 0.034
SD 0.084 0.132 0.123 0.125 0.063 0.098 0.090 0.091

ASE 0.086 0.139 0.130 0.131 0.061 0.098 0.091 0.092
CP 0.024 0.734 0.928 0.946 0.000 0.460 0.902 0.920

β1 = 1 Bias −0.268 0.074 −0.024 −0.017 −0.265 0.076 −0.024 −0.017
SD 0.045 0.078 0.075 0.076 0.033 0.058 0.054 0.055

ASE 0.046 0.082 0.078 0.079 0.033 0.058 0.055 0.055
CP 0.000 0.892 0.938 0.950 0.000 0.744 0.916 0.932
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Table 2. Cont.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

X is normal and the error is from a modified chi-square distribution

μx = 1.5, σx = 1, σu = 1, η = 87%

β0 = 0.5 Bias 0.384 −0.278 0.082 0.088 0.385 −0.275 0.085 0.091
SD 0.095 0.169 0.134 0.134 0.067 0.118 0.094 0.094

ASE 0.093 0.163 0.129 0.129 0.066 0.115 0.091 0.091
CP 0.012 0.614 0.870 0.850 0.000 0.322 0.816 0.792

β1 = 1 Bias −0.295 0.125 −0.038 −0.040 −0.293 0.125 −0.038 −0.040
SD 0.052 0.101 0.081 0.081 0.036 0.070 0.056 0.056

ASE 0.050 0.097 0.078 0.078 0.036 0.069 0.055 0.055
CP 0.000 0.764 0.898 0.890 0.000 0.594 0.880 0.882

X is normal and the error is from a mixture of two normal distribution

μx = 1.5, σx = 1, σu = 1, η = 84%

β0 = 0.5 Bias 0.376 −0.431 0.024 −0.024 0.380 −0.418 −0.018 −0.018
SD 0.096 0.196 0.162 0.162 0.069 0.136 0.107 0.107

ASE 0.096 0.198 0.160 0.161 0.068 0.139 0.112 0.112
CP 0.030 0.402 0.954 0.958 0.000 0.114 0.954 0.958

β1 = 1 Bias −0.311 0.183 0.013 0.013 −0.314 0.175 0.009 0.009
SD 0.048 0.116 0.098 0.098 0.033 0.080 0.066 0.066

ASE 0.049 0.118 0.098 0.099 0.035 0.082 0.068 0.068
CP 0.000 0.724 0.950 0.950 0.000 0.430 0.954 0.956

NOTE: See the footnote of Table 1 for notation.

We considered non-normal X in Table 2 to investigate if the estimators were sensitive
to the normality assumption in the calculation. We also examined the sensitivity of the
estimators to misspecification of the measurement error distribution. On the upper portion
of Table 2, the unobserved X was generated from a mixture of two normal distributions;
one with mean 2.5 and variance 1, and the other with mean 1 and variance 0.25, and
the mixture percentages were (1/3, 2/3). The result from the upper portion of the table
was similar to that of Table 1, except that there were small biases from the RC and EEE
estimators. We found that the RC and EEE showed small biases when the unobserved
exposure had a skewed distribution, but the bias was not too large in general. Nevertheless,
the RC and EEE estimators were still better than the NRC and naive estimators under this
situation. On the lower portion of Table 2, we considered the situation when X was normal
but measurement error was from a location/scale-transformed chi-squared distribution
and a mixture of two normal distributions, respectively. The specification of the mixture of
two normal distributions was the same as the mixture of normal distributions given above.
The location/scale-transformed chi-squared distribution has mean 0 and variance σ2

u after a
chi-squared random variable was location/scale-transformed. From the sensitivity analysis,
the RC and EEE estimators were not sensitive to mild violation due to a mixture of normal
distributions since the biases were considered small. However, the biases may be sensitive
to violation of the normality assumption while the true distribution was very skewed, as
for chi-squared distributions. The biases were moderate, rather than small, when the errors
were from chi-squared distributions.
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Table 3. Simulation study for logistic regression with truncated surrogates.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

μx = 1.5, σx = 1, σu = 0.707, η = 89%

β0 = 0 Bias 0.065 −0.190 −0.010 −0.010 0.063 −0.190 −0.012 −0.012
SD 0.191 0.234 0.203 0.208 0.136 0.169 0.147 0.150

ASE 0.181 0.224 0.193 0.199 0.128 0.158 0.136 0.140
CP 0.922 0.836 0.938 0.944 0.892 0.766 0.936 0.942

β1 = ln(2) Bias −0.080 0.083 −0.008 0.007 −0.079 0.083 −0.006 0.008
SD 0.122 0.154 0.133 0.142 0.085 0.109 0.094 0.100

ASE 0.115 0.147 0.126 0.134 0.082 0.104 0.089 0.095
CP 0.868 0.914 0.928 0.930 0.788 0.874 0.936 0.944

β0 = 0 Bias 0.069 −0.340 −0.014 −0.013 0.065 −0.341 −0.018 −0.016
SD 0.207 0.266 0.219 0.232 0.148 0.189 0.159 0.169

ASE 0.197 0.254 0.210 0.223 0.139 0.179 0.148 0.156
CP 0.930 0.706 0.950 0.948 0.900 0.518 0.928 0.928

β1 = ln(3) Bias −0.116 0.146 −0.035 0.015 −0.114 0.145 −0.034 0.014
SD 0.159 0.205 0.165 0.190 0.111 0.141 0.115 0.132

ASE 0.149 0.191 0.155 0.178 0.106 0.135 0.109 0.125
CP 0.848 0.884 0.920 0.940 0.766 0.836 0.920 0.942

μx = 1.5, σ2
x = 1, σ2

u = 1, η = 86%

β0 = 0 Bias 0.175 −0.276 −0.014 −0.015 0.171 −0.277 −0.017 −0.016
SD 0.186 0.277 0.222 0.230 0.135 0.203 0.166 0.172

ASE 0.177 0.267 0.214 0.223 0.125 0.188 0.150 0.156
CP 0.824 0.800 0.938 0.948 0.700 0.672 0.934 0.940

β1 = ln(2) Bias −0.173 0.108 −0.014 0.011 −0.171 0.109 −0.012 0.012
SD 0.113 0.178 0.146 0.162 0.081 0.128 0.106 0.117

ASE 0.108 0.171 0.140 0.155 0.076 0.121 0.098 0.109
CP 0.610 0.914 0.948 0.946 0.404 0.856 0.926 0.940

β0 = 0 Bias 0.232 −0.487 −0.028 −0.023 0.225 −0.487 −0.031 −0.023
SD 0.204 0.333 0.249 0.269 0.146 0.236 0.183 0.199

ASE 0.193 0.314 0.238 0.259 0.136 0.221 0.167 0.181
CP 0.754 0.642 0.946 0.952 0.626 0.398 0.924 0.922

β1 = ln(3) Bias −0.273 0.175 −0.056 0.023 −0.270 0.174 −0.055 0.021
SD 0.148 0.240 0.183 0.227 0.104 0.166 0.129 0.162

ASE 0.138 0.222 0.171 0.213 0.098 0.156 0.120 0.148
CP 0.488 0.892 0.900 0.946 0.230 0.824 0.902 0.940

NOTE: See the footnote of Table 1 for notation.

In Table 3, the data were generated similarly to those in Table 1 but the main model
was logistic regression such that pr(Yi = 1|Xi) = H(β0 + β1Xi), where the regression
coefficients were β = (0, ln(2)) and β = (0, ln(3)), respectively. The findings were similar
to those from Table 1 for the situation when β = (0, ln(2)). The biases of the RC and EEE
estimators were very small. Although RC is not consistent, it may have limited biases if the
relative risk parameter is small to moderate, such as β1 = ln(1.5) or β1 = ln(2) when the
exposure’s standard deviation is about 1. However, when β1 = ln(3), the biases of the RC
estimator were larger than those of the EEE estimator. The reason is that the RC estimator’s
bias will increase if the relative risk parameter is large. The findings are typically similar
to those for measurement error in longitudinal data and survival analysis with covariate
measurement error [20,21].

In Table 4, we investigated the situation when both X and Z were included in a
linear regression model. We first generated Xi, i = 1, . . . , n and two replicates Wi1 and
Wi2 in the same way as those in Table 1. Covariate Zi, i = 1, . . . , n, were generated via
Zi = ρXi/σx +

√
1 − ρ2Vi/σz, where Vi were from N(0, σ2

z ) and independent from Xi,
σ2

z = 1 and ρ = 0.2. The outcomes were generated via Yi = β0 + β1Xi + β2Zi + ei, where
β0 = 0.5, β1 = 1 and β2 = −1, The residuals ei, i = 1, . . . , n, were generated from a
standard normal random variable which was independent of Xi and Zi. The findings were
mostly similar to those from Table 1. That is, the naive and NRC estimators had large biases
while the RC and EEE estimators were consistent with limited biases.
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Table 4. Simulation study for linear regression model with truncated surrogates; covariates are X
and Z.

Naive RC CRC EEE Naive RC CRC EEE

n = 500 n = 1000

μx = 1.5, σx = 1, σu = 0.707, η = 89%

β0 = 0.5 Bias 0.137 −0.225 −0.006 −0.001 0.134 −0.224 −0.001 0.005
SD 0.095 0.122 0.109 0.110 0.065 0.082 0.074 0.073

ASE 0.093 0.117 0.106 0.106 0.066 0.083 0.075 0.074
CP 0.694 0.504 0.938 0.930 0.454 0.226 0.946 0.944

β1 = 1 Bias −0.137 0.094 0.004 0.001 −0.136 0.093 0.001 −0.003
SD 0.051 0.071 0.071 0.065 0.033 0.048 0.044 0.043

ASE 0.050 0.069 0.064 0.063 0.036 0.049 0.044 0.044
CP 0.204 0.742 0.940 0.938 0.020 0.538 0.954 0.956

β2 = −1 Bias 0.042 0.042 −0.004 −0.004 0.049 0.049 0.002 0.003
SD 0.052 0.052 0.053 0.053 0.036 0.036 0.038 0.037

ASE 0.050 0.050 0.050 0.050 0.035 0.035 0.036 0.036
CP 0.852 0.852 0.938 0.938 0.704 0.704 0.942 0.942

μx = 1.5, σx = 1, σu = 1, η = 86%

β0 = 0.5 Bias 0.300 −0.347 −0.016 −0.016 0.298 −0.338 −0.005 −0.004
SD 0.098 0.170 0.142 0.143 0.067 0.114 0.095 0.094

ASE 0.095 0.162 0.136 0.136 0.067 0.113 0.095 0.094
CP 0.110 0.406 0.944 0.944 0.006 0.132 0.956 0.954

β1 = 1 Bias −0.264 0.138 0.011 0.011 −0.264 0.132 0.004 0.002
SD 0.051 0.099 0.087 0.087 0.033 0.068 0.060 0.059

ASE 0.049 0.096 0.083 0.083 0.035 0.068 0.058 0.058
CP 0.000 0.732 0.944 0.948 0.000 0.518 0.958 0.958

β2 = −1 Bias 0.070 0.070 −0.005 −0.006 0.076 0.076 0.002 0.002
SD 0.054 0.054 0.059 0.059 0.038 0.038 0.042 0.042

ASE 0.052 0.052 0.053 0.054 0.037 0.037 0.038 0.038
CP 0.736 0.736 0.934 0.938 0.464 0.464 0.922 0.920

NOTE: Naive is an estimator that uses the average of two replicates as the covariate, RC is the usual RC estimator
that uses E(X|W̃, Z) as the covariate, CRC is a conditional RC estimator that uses E(X|W̃, Z, η) as the covariate,
EEE is the expected estimating equation estimator described.

6. Analysis of APPEAL Data

The design of the APPEAL study was briefly reviewed in the Introduction. In this
section, we are interested in investigating the association between physical activity mea-
sured via MET hours per week and CRP. The outcome variable of interest is the CRP
value at baseline. In the APPEAL study, MET hours per week and other data including
biomarkers were collected at both baseline and 12 months (end of study). In the control
group who did not receive the exercise intervention, physical activity levels did not change
significantly between baseline and 12 months. Hence, it seems reasonable to assume that
the two MET-hours/week scores at baseline and 12 months in the control group (n = 102)
can be treated as replicates. The MET-hours/week data for the exercise intervention group
at 12 months were not included in the analysis as the MET-hours/week value changed sig-
nificantly for study participants randomized to the exercise intervention between baseline
and 12 months. As such, these values cannot be treated as replicates. The MET-hours/week
scores at baseline and 12 months are surrogate variables (replicates, control arm only)
for an unobserved true MET-hours/week score of an individual (unobserved underlying
average of a period of time). The true unobserved average MET-hours/week variable is a
variable to measure the actual physical activity which cannot be observed. In addition to
MET-hours/week, age at baseline was another covariate in the regression analysis.

We first investigated an association between MET-hours/week and CRP at base-
line. A scatterplot and a fitted kernel smoother of MET-hours/week and CRP at base-
line are shown in the upper portion of Figure 1. The lower portion of Figure 1 is the
scatterplot and a fitted kernel smoother of log(MET+1) and log(CRP) at baseline. We
excluded 26 individuals with missing data and outliers (defined as values larger than
median + 3× interquartile range) for CRP. Hence, a total of 176 individuals are included
in the data analysis. The percentage of non-zero log(MET+1) at baseline is 67%, and
68% at 12 month. In our regression analysis, we used the log-transformed data since the
transformed data were less skewed.
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Figure 1. Upper: CRP versus MET; Lower: log(CRP) versus log(MET+1). The lines were obtained
from fitting lowess smoothers.

In this section, the data analysis involved applying our methods to the regression
association for the effects of physical activity (MET-hours/week) and age on CRP. The data
application here is primarily for the purpose of a demonstration of our new methods. The
regression coefficients were estimated based on the naive, RC, CRC, and EEE estimators.
The results are given in Table 5. All the four estimators showed that MET was negatively
associated with the inflammatory marker CRP; but not significant.

From the naive estimator, when the log(MET+1) score increased by 1 h/week, the CRP,
on average, decreased by about 0.07 mg/L. From the NRC, RC, and EEE estimates, when
the log(MET+1) score increased by 1 h/week, the CRP, on average, decreased by about
0.1 mg/L. It was observed that the standard errors from the NRC, RC, and EEE estimates
were larger than those from the naive estimates. This was a general phenomenon of a
bias–efficiency trade-off that has been reported in the measurement error literature, and
is consistent with the findings from our simulations. Furthermore, all the four estimates
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demonstrated a significant effect of age on CRP. On average, an increase of 10 years in age
was associated with an increase of approximately 0.15 mg/L in log(CRP).

Table 5. Analysis results of data from the APPEAL study.

Naive NRC RC EEE

Intercept β0 0.259 0.345 0.299 0.282
SE 0.360 0.377 0.367 0.364

log(MET+1) β1 −0.067 −0.136 −0.107 −0.098
SE 0.045 0.098 0.071 0.062

Age β2 0.015 0.015 0.014 0.015
SE 0.006 0.006 0.007 0.007

Nuisance parameters
μx 1.258 0.925 0.927
SE 0.100 0.160 0.161
σ2

x 0.447 0.976 0.987
SE 0.145 0.337 0.330
σ2

u 0.910 1.674 1.671
SE 0.130 0.293 0.292

Note: See the footnote of Table 1 for notation. The percentages of non-zero log(1+MET) were 66.7% and 67.8% at
baseline and 12 months among the participants in the control group, respectively. The total sample size in the
analysis was 176.

7. Discussion

In the paper, we propose an EEE estimator for generalized linear models with covariate
measurement error when the surrogate variables may have zero values among a subset of
individuals. Our work is applicable to the situation for more applications when an exposure
may be truncated. Our numerical studies show that RC is better than the naive estimator
and NRC estimator in general, but it may be biased under some situations. Overall, the
EEE estimator has smaller biases. There is a trade-off between bias and efficiency. The EEE
has a larger SE due to this. One limitation of the proposed EEE estimator is that it may be
biased if the likelihood function of the exposure variable is misspecified. Our simulation
results demonstrate that the biases are moderate if the exposure distribution is not too
skewed. Future research is needed to develop a non-parametric approach that does not
require the exposure variable distribution [22].

In addition to physical activity or dietary data, biomarker measurements are important
for the early detection and monitoring of disease progression. Our methods developed
in this paper can be applied to biomarker data. When a biomarker is truncated due to a
detection limit, decisions are required concerning how to handle values at or below the
threshold in order to avoid biasing the parameter estimates. However, biomarkers are often
measured with errors for many reasons, such as imperfect laboratory conditions, analytic
variability of the assay, or temporal variability within individuals. The statistical modeling
of zero-inflated surrogates in this paper can be applied to the situation when biomarker
data are truncated due to a detection limit. Further research is needed if longitudinal
biomarker, physical activity, or dietary data, are available over time [23–25].

8. Conclusions

We have developed an EEE approach for regression analysis with covariate measure-
ment error when the surrogates may be truncated. One limitation of our proposed EEE
estimator is that it is not consistent if the covariate distribution or the measurement error
distribution is misspecified. In our simulations, the covariates and measurement errors are
from normal distributions. Our simulation results demonstrate that if the misspecification
is not too extreme, then the bias is typically small. Hence, if the covariates are skewed, then
an appropriate (such as a logarithmic) transformation of the data may reduce the skewness
of the data. Then the proposed EEE estimator may work well with likely minimal biases.

Author Contributions: Conceptualization, C.-Y.W. and A.M.; investigation, C.-Y.W. and J.d.D.T.; method-
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Appendix A. Proofs of Propositions 1 and 2

Proof of Proposition 1. Based on a standard surrogate assumption, the measurement er-
rors Uij and ei are independent. Also, the truncation indicator η̃i is independent of ei. Hence,
E(ei|W̃i, Zi) = 0. The unbiasedness of the estimating Equation (2) of the RC estimator can
be obtained by calculating the expectation of the estimating score for individual i,

E
[
(1, X̂i, Z′

i)
′{Yi − (β0 + β1X̂i + β′

2Zi)
]

= E
(
(1, X̂i, Z′

i)
′E
[
{Yi − (β0 + β1X̂i + β′

2Zi)}|W̃i, Zi

])
= 0.

Hence, for linear regression with zero-inflated surrogates, the RC estimator is consistent.

Proof of Proposition 2. We note that φ(Yi, Xi, Zi, β) is an estimating score that satisfies
E{φ(Yi, Xi, Zi, β)} = 0. We note that

E
[
E{φ(Yi, Xi, Zi, β)|Yi, W̃i, Zi}

]
= E{φ(Yi, Xi, Zi, β)} = 0.

Hence, estimating Equation (4) for the EEE estimator is unbiased. We now develop the
asymptotic distribution of the EEE estimator. Let the estimating score of the EEE estima-
tor for the ith participant E{φ(Yi, Xi, Zi, β)|Yi, W̃i, Zi} be denoted by ψ(Yi, W̃i, Zi, β). Let
G(β) = −E{∂ψ(Y, W̃, Z, β)/∂β}. By a Taylor expansion of the estimating equation at the
true β, and under some regularity conditions, it can be shown that

n1/2(β̂eee − β) = G−1(β)n−1/2
n

∑
i=1

ψ(Yi, W̃i, Zi, β) + op(1),

Hence, it is seen that n1/2(β̂eee − β) is asymptotically normal with mean 0 and variance

{G(β)}−1n−1[
n

∑
i=1

ψ(Yi, W̃i, Zi, β){ψ(Yi, W̃i, Zi, β)}′]{G−1(β)}′,
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Abstract: The cognitive diagnosis model (CDM) is an effective statistical tool for extracting the
discrete attributes of individuals based on their responses to diagnostic tests. When dealing with
cases that involve small sample sizes or highly correlated attributes, not all attribute profiles may
be present. The standard method, which accounts for all attribute profiles, not only increases the
complexity of the model but also complicates the calculation. Thus, it is important to identify the
empty attribute profiles. This paper proposes an entropy-penalized likelihood method to eliminate
the empty attribute profiles. In addition, the relation between attribute profiles and the parameter
space of item parameters is discussed, and two modified expectation–maximization (EM) algorithms
are designed to estimate the model parameters. Simulations are conducted to demonstrate the
performance of the proposed method, and a real data application based on the fraction–subtraction
data is presented to showcase the practical implications of the proposed method.

Keywords: cognitive diagnosis model; DINA model; penalized likelihood; Shannon entropy;
EM algorithm

MSC: 62P25

1. Introduction

CDMs are widely used in the field of educational and psychological assessments.
These models are used to extract the examinees’ latent binary random vectors, which
can provide rich and comprehensive information about examinees. Different CDMs are
proposed for different test scenarios. The popular CDMs include Deterministic Input, Noisy
“And” gate (DINA) model [1], Deterministic Input, Noisy “Or” gate (DINO) model [2],
Noisy Inputs, Deterministic “And” gate (NIDA) model [3], Noisy Inputs, Deterministic
“Or” gate (NIDO) model [2], Reduced Reparameterized Unified Model (RRUM) [4,5] and
Log-linear Cognitive Diagnosis Model (LCDM) [6]. The differences among the above-
mentioned CDMs are the modeling methods of the positive response probabilities. CDMs
can be summarized in more flexible frameworks such as the Generalized Noisy Inputs,
Deterministic “And” gate (GDINA) model [7] and the General Diagnostic Model (GDM) [8].
The simplicity and interpretability of the DINA model have positioned it as one of the most
popular CDMs.

The DINA model, also known as the latent classes model [9–13], is a mixture model,
so it still suffers from the drawbacks of the mixture model. Too many latent classes may
overfit the data, which means that data should have been characterized by a simpler model.
Too few latent classes cannot characterize the true underlying data structure well and yield
poor inference. In practical terms, identifying the empty latent classes will improve the
model’s interpretability and explain the data well. Chen [14] showed that the theoretical
optimal convergence rate of the mixture model with the unknown number of classes is
slower than the optimal convergence rate with the known number of classes. This means
that the inference would strongly benefit from the known number of classes. Therefore,
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from both practical and theoretical views, eliminating the empty latent classes is a crucial
issue in the DINA model.

Common reasons for empty attribute profiles include small sample sizes or highly
correlated attributes. Let us explore a few examples to illustrate further. In a scenario
where the sample size is smaller than the number of attribute profiles, it is inevitable that
some attribute profiles will be empty. In another scenario with two attributes α1 and α2, the
relation is assumed that α2 = 1 if and only if α1 = 1. Under the assumption of extremely
correlated attributes, attribute profiles (α1 = 1, α2 = 0) and (α1 = 0, α2 = 1) do not appear.
Situations with empty attribute profiles can occur in various scenarios [15].

The hierarchical diagnostic classification model [15,16] is a well-known method to
eliminate empty attribute profiles. In the literature, directed acyclic graphs are employed
to describe the relationships among the attributes, and the directions of edges impose strict
constraints on attributes. If there is a directed edge from α1 to α2, the attribute profile (01) is
forbidden. Gu and Xu [15] utilized penalized EM to select the true attribute profiles, avoid
overfitting, and learn attribute hierarchies. Wang and Lu [17] compared two exploratory
approaches of learning attribute hierarchies in the LCDM and DINA models. In essence,
the attribute hierarchy can be regarded as a specific family of correlated attributes that can
be effectively represented and described through a graph model.

The penalized methods have been widely researched in many statistical problems. In
the regression model, the least absolute shrinkage and selection operator (LASSO) and its
variants are analyzed by [18–20]. Fan and Li [21] proposed a nonconcave penalty smoothly
clipped absolute deviation (SCAD) to reduce the bias of estimators. In the Gaussian
mixture model, Ma and Wang, Huang et al. [22,23] proposed penalized likelihood methods
to determine the number of components. In CDMs, Chen et al. [10] used SCAD to obtain
the sparse item parameters and recovery Q matrix. Xu and Shang [11] applied a “L0
norm” penalty to CDM and suggested a truncated “L1 norm” penalty as the approximate
calculation.

In the hierarchical diagnostic classification model, directed acyclic graphs of attributes
often need to be specified in advance. A limitation of this model is that it is difficult to
specify a graph in real scenarios. The penalty of the penalized EM proposed by Gu and
Xu [15] involves two tuning parameters that complicate the implementation. Therefore,
we hope to propose a method that does not require specifying a directed acyclic graph in
advance and has a concise penalty term.

This paper makes two primary contributions. Firstly, it introduces an entropy-based
penalty, and secondly, it develops the corresponding algorithms to utilize this penalty. This
paper proposes a novel approach for estimating the DINA model, combining Shannon
entropy and the penalized method. In information theory, “uncertainty” can be interpreted
informally as the negative logarithm of probability, and Shannon entropy is the average
effect of the “uncertainty”. Shannon entropy can be used to characterize the distribution of
attribute profiles. By utilizing the proposed method, the empty attribute profiles can be
eliminated. We further develop the EM algorithm for the proposed method and conduct
some simulations to verify the proposed method.

The rest of the paper is organized as follows. In Section 2, we give an overview of the
DINA model and the estimation method. A definition of the feasible domain is defined
to characterize the latent classes. Section 3 introduces the entropy penalized method, and
the EM algorithm is employed to estimate the DINA model. The numerical studies of the
entropy penalized method are shown in Section 4. Section 5 presents real data analysis
based on the fractions–subtraction data. The summary of the paper and future research are
given in Section 6. The details of the EM algorithm and proof are given in Appendices A–C.

2. DINA Model

2.1. Review of DINA Model

Firstly, some useful notations are introduced. For the examinee i = 1, . . . , N, the
attribute profile αi, also known as the latent class, is a K-dimensional binary vector
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αi = (αi1, αi2, . . . , αiK)
�, and the corresponding response data to J items is a J-dimensional

binary vector yi = (yi1, yi2, . . . , yiJ)
�, where “�” is the transpose operation. Let Y and α

denote the collection of all yi and αi, respectively. The Q matrix is a J × K binary matrix,
where if item j requires the attribute k, then the element qjk is 1, otherwise, the element
qjk is 0. The j-th row vector is denoted by q�

j . Given the fixed K, there are C = 2K latent

classes. We use a multinomial distribution with the probability πΛ� P(αi = Λ) to describe
the attribute profile Λ ∈ {0, 1}K, where ∑Λ∈{0,1}K πΛ = 1, and the population parameter π
denotes the collection of probabilities for all attribute profiles.

The DINA model [1] supposes that, in an ideal scenario, the examinees with all
required attributes will provide correct answers. For examinee i and item j, the ideal
response is defined as ηj,αi = ∏K

k=1 α
qjk
ik , where 00 is defined as 1. The slipping and guess-

ing parameters are defined by conditional probabilities sj = P(yij = 0|ηj,αi = 1) and
gj = P(yij = 1|ηj,αi = 0), respectively. The parameters s and g are the collections of all sj
and gj, respectively.

In the DINA model, the positive response probability θj,αi can be constructed as

θj,αi � P(yij = 1|sj, gj, αi; qj) = (1 − sj)
ηj,αi g

1−ηj,αi
j . (1)

If both Y and α are observed, the likelihood function is

P(Y , α|s, g) =
N

∏
i=1

παi

J

∏
j=1

[
(1 − sj)

ηj,αi g
1−ηj,αi
j

]yij[
s

ηj,αi
j (1 − gj)

1−ηj,αi

]1−yij
. (2)

Given data Y and attribute profile α, the parameters s and g can be directly estimated
by the maximum likelihood estimators:

ŝj =
∑N

i=1 1(ηj,αi = 1 & yij = 0)

∑N
i=1 1(ηj,αi = 1)

, j = 1, · · · , J,

ĝj =
∑N

i=1 1(ηj,αi = 0 & yij = 1)

∑N
i=1 1(ηj,αi = 0)

, j = 1, · · · , J,

(3)

where 1(·) is the indicator function. When α is latent, by integrating out α, the marginal
likelihood is

P(Y |s, g, π) =
N

∏
i=1

⎡⎣ ∑
Λ∈{0,1}K

πΛ

J

∏
j=1

[
(1 − sj)

ηj,Λ g
1−ηj,Λ
j

]yij[
s

ηj,Λ
j (1 − gj)

1−ηj,Λ
]1−yij

⎤⎦, (4)

which is the primary focus of this paper.

2.2. Estimation Methods

EM and Markov chain Monte Carlo (MCMC) are two estimation methods for the
DINA model. De la Torre [24] discussed the marginal maximum likelihood estimation for
the DINA model, and the EM algorithm was employed where the objective function was
Equation (4). Gu and Xu [15] proposed a penalized expectation–maximization (PEM) with
the penalty

λ ∑
Λ
[1(πΛ > ρN) log πΛ + 1(πΛ ≤ ρN) log ρN ], (5)

where λ ∈ (−∞, 0) controls the sparsity of π and ρN is a small threshold parameter the
same order as N−d, the constant d ≥ 1. There are two tuning parameters λ and ρN in PEM.
Additionally, a variational EM algorithm is proposed as an alternative approach.

Culpepper [25] proposed a Bayesian formulation for the DINA model and used Gibbs
sampling to estimate parameters. The algorithm can be implemented by the R package
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“dina”. The Gibbs sampling can be extended by a sequential method in the DINA and
GDINA with many attributes [26], which provides an alternative approach to the traditional
MCMC. As the focus of this paper does not revolve around the MCMC, we refrain from
details.

2.3. The Property of DINA as Mixture Model

For a fixed K, the DINA model can be viewed as a mixture model comprising 2K latent
classes (i.e., components). In contrast to the Gaussian mixture model, where a change in
the number of components will introduce or remove the mean and covariance parameters,
the DINA model behaves differently. Specifically, a change in the number of latent classes
does not necessarily affect the presence of item parameters. This means that there are
two cases: (i) the latent classes have changed while the structure of the item parameters
does not change, and (ii) the latent classes and the structure of the item parameters change
simultaneously. To account for the two cases, a formal definition of the feasible domain of
latent classes is introduced.

Definition 1. Given F ⊆ {0, 1}K the subset of latent classes. If for any sj or gj, j = 1, . . . , J, there
exist some latent classes in F, whose response function (i.e., the distribution of response data), is
determined by sj or gj. We say that F is a feasible subset of latent classes and all feasible Fs make up
the feasible domain F .

If all Λ ∈ F ⊆ {0, 1}K, the probability of Λ /∈ F is strictly 0. There exist some subsets
F that will spoil the item parameter space. Let us see the following examples

Q �

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1
1 1 0

⎞⎟⎟⎠, F1 �
(

Λ1,1 = 000
Λ1,2 = 111

)
, F2 �

(
Λ2,1 = 001
Λ2,2 = 110

)
, F3 �

⎛⎝Λ3,1 = 100
Λ3,2 = 010
Λ3,3 = 001

⎞⎠. (6)

Assume the response vector yi = (yi1, yi2, yi3, yi4)
�. If αi is from F1, then for gj,

j = 1, 2, 3, 4, we have

P(yij|αi = Λ1,1) = g
yij
j 1 − g

1−yij
j , (7)

which means that the Λ1,1’s response function is determined by gj. For sj, j = 1, 2, 3, 4, we
have

P(yij|αi = Λ1,2) = s
1−yij
j (1 − sj)

yij , (8)

which means that the Λ1,2’s response function is determined by sj. The Equations (7) and (8)
are obtained by calculating the ideal responses. To determine the response function of Λ1,1
and Λ1,2, all item parameters sj and gj are required. Based on similar discussions, Λ2,1’s
response function is determined by g1, g2, s3, g4, and Λ2,2’s response function is determined
by s1, s2, g3, s4. To determine the response function of Λ2,1 and Λ2,2, all item parameters sj
and gj are required.

Then, a different case is presented. If αi is from F3, Λ3,1’s response function is deter-
mined by s1, g2, g3, g4, Λ3,2’s response function is determined by g1, s2, g3, g4, and Λ3,3’s
response function is determined by s1, g2, s3, g4. The item parameter s4 cannot affect the
response function of any attribute profile. Hence, s4 is called a redundant parameter. Mean-
while, this indicates that there does not exist a slipping behavior for item 4, and we can
let the redundant parameter s4 = 0. If αi is from F3, the item parameter space collapses
from 8-dimensional to 7-dimensional. It is obvious that the subset F ∈ F will not spoil
item parameter space, and the feasible domain F depends on Q. However, a lemma can be
given as follows. The proof is deferred to Appendix A.

Lemma 1. If F contains 0K and 1K, then F always lies in the feasible region F , where 0K and 1K
are K-dimensional vectors with all 0 and 1, respectively.
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3. Entropy Penalized Method

3.1. Entropy Penalty of DINA

Shannon entropy is E(π) = −∑Λ πΛ log πΛ, where the value of notation 0 log 0 is
taken to be 0 according to limx→0+x log x = 0 [27,28]. This section focuses on the case
within the feasible domain, and the entropy penalized log-likelihood function with the
constraint is

Lλ(s, g, π) = log P(Y |s, g, π)− λE(π) s.t. F ∈ F , (9)

where the penalty parameter λ ∈ (−∞, 0) whose the interpretation coincides with [15].
Analogously, the penalty parameter λ still controls the sparsity of π. The two penalties
have different scales because πΛ is not close to πΛ log πΛ. If omitting the condition F ∈ F ,
the penalty λ going to the negative infinity implies that one latent class will be randomly
selected (i.e., extremely sparse). The penalty λ going to zero implies all information comes
from observed data. Compared with PEM, the proposed method only needs one tuning
parameter.

The essential differences between the PEM and Entropy penalization methods are
emphasized. PEM utilizes the term 1(πΛ ≤ ρN) log ρN to handle the population probability
πΛ = 0, where ρN is pre-specified rather than determined by some fit indices. Hence, the
selection of ρN will affect the performance of PEM. In the Entropy penalization method,
0 log 0 is well defined, and we do not need extra parameters. The performance of the
Entropy penalization method is completely determined by the parameter λ.

Treating α as the latent data, the expected log-likelihood function is

E[Lλ] = E[log P(Y |s, g, α)P(α|π)− λE(π)] s.t. F ∈ F , (10)

where the expectation E is taken with respect to the distribution P(α|Y , s, g, π). Considering
the constraint ∑Λ πΛ = 1, the Lagrange function can be defined as

Lμ
λ = E[Lλ] + μ( ∑

Λ∈F
πΛ − 1) s.t. F ∈ F . (11)

Let the derivatives of ∂Lμ
λ

∂πΛ
and ∂Lμ

λ
∂μ be 0, for any Λ ∈ F, we obtain

N

∑
i=1

hi,Λ

πΛ
− λ(log πΛ + 1) + μ = 0,

∑
Λ

πΛ − 1 = 0,
(12)

where hi,Λ = πΛP(yi |s,g,Λ)
∑Λ∈F πΛP(yi |s,g,Λ)

is the posterior probability of the examinee i belonging to the la-

tent class Λ. The iterative formula of π
(t+1)
Λ is proportional to max{0, ∑N

i=1 h(t)i,Λ − λπ
(t)
Λ log π

(t)
Λ },

where the superscript “(t)” indicates the values coming from the t-th iteration. Based on
the iterative formula, a theorem is given to shrink the interval of λ.

Theorem 1. For the DINA model with a fixed integer K, the penalty parameter λ of the penalized
function Equation (9) should be in interval (− N

K log 2 , 0).

This theorem also indicates that λ and N have the same order, and −1
K log 2 is the rate.

This paper focuses on λ ∈ {−0.05N,−0.1N, . . . , −N
K log 2}. Algorithm 1 shows the schedules

of EM for the DINA model within the feasible domain. When to implement algorithms, the
algorithms of Gu and Xu [15] introduce an additional pre-specified constant c to update
the population parameter π

(t+1)
Λ ∝ max{c, ∑N

i=1 h(t)i,Λ + λ}, where c > 0 is a small constant.
Algorithm 1 does not rely on a pre-specified constant. In the method establishment and
algorithm implementation, the algorithms of Gu and Xu [15] involve three parameters
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λ, ρN , c, while Algorithm 1 only involves a parameter λ. We emphasize again that the
parameter λ in the two methods has different scales. The calculation and proof are omitted,
and more details are deferred to Appendix B.

Algorithm 1: EM of Entropy Penalized Method within the Feasible Domain.

Input: Observed data Y , initial values s(0), g(0), π(0), penalty parameter λ, initial
feasible set F(0) and maximum iterations T.

Output: The estimators ŝ, ĝ, π̂ and the final feasible set F̂.
while t < T and not converged do

for i ∈ 1, · · · , N and Λ ∈ F(t) do

hi,Λ =
π
(t)
Λ P(yi |s(t) ,g(t) ,Λ)

∑
Λ∈F(t)

π
(t)
Λ P(yi |s(t) ,g(t) ,Λ)

end

for Λ ∈ F(t) do

π
(t+1)
Λ ∝ max{0, ∑N

i=1 h(t)i,Λ − λπ
(t)
Λ log π

(t)
Λ }.

end

Remove the empty latent classes to obtain F(t+1).
if F(t+1) is feasible then

for i ∈ 1, · · · , J do

s(t+1)
j =

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 1 & yij = 0)

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 1)

g(t+1)
j =

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 0 & yij = 1)

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 0)

end

Set t = t + 1
end

if F(t+1) is not feasible then
Stop the algorithm and export a warning “λ is too small”.

end

end

Output: ŝ = s(t), ĝ = g(t), π̂ = π(t) and F̂ = F(t).

Chen and Chen [29] proposed the extended Bayesian information criteria (EBIC) to
conduct model selection from a large model space. The EBIC has the following form:

EBIC = −2Lλ + (2J + ||F̂|| − 1) log(N) + log
(

2K

||F̂||

)
, (13)

where ||F̂|| is the number of nonempty latent classes and (m
n) indicates the binomial

coefficient “m choose n”. The smaller EBIC indicates a preferred model. In this paper, EBIC
is used to select λ from the mentioned grid structure.

In the implementation of the EM algorithm, we assume that the initial F(0) includes all
latent classes to avoid missing important latent classes. The gaps between item parameters
are used to check the convergence. If F(t+1) are not feasible, it means that the penalty
parameter λ is too small.

3.2. Modified EM

This section considers the case that F is not necessarily feasible. In this case, some gj
or sj will disappear, which means that the observed data cannot provide any information
about gj or sj. These redundant item parameters are set to zero. We focus on the Lagrange
function without constraints as
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Lμ
λ = Lλ(s, g, π) + μ(∑

α

πα − 1). (14)

Because the space of item parameters may be collapsed, the dimension of item param-
eters needs to be recalculated. Meanwhile, EBIC will become

EBIC = −2Lλ + (||s||+ ||g||+ ||F̂|| − 1) log(N) + log
(

2K

||F̂||

)
, (15)

where ||s|| and ||g|| indicate the numbers of nonzero slipping and guessing parameters,
respectively. If all s and g exist, the summation of ||s|| and ||g|| is 2J, which implies
Equation (13).

The corresponding EM is shown in Algorithm 2, where the discussions of F(0) and
convergence are similar. However, this algorithm does not distinguish between feasible
and not. To the best of our knowledge, no algorithms have handled the case without the
feasible domain. More details are shown in Appendix B.

Algorithm 2: EM of Entropy Penalized Method without the Feasible Domain.

Input: Observed data Y , initial values s(0), g(0), π(0), penalty parameter λ, initial
set F(0) and maximum iterations T.

Output: The estimator ŝ, ĝ, π̂ and the final feasible set F̂.
while t < T and not converged do

for i ∈ 1, · · · , N and Λ ∈ F(t) do

hi,Λ =
π
(t)
Λ P(yj |s(t) ,g(t) ,Λ)

∑
Λ∈F(t)

π
(t)
Λ P(yj |s(t) ,g(t) ,Λ)

end

for Λ ∈ F(t) do

π
(t+1)
Λ ∝ max{0, ∑N

i=1 h(t)i,Λ − λπ
(t)
Λ log π

(t)
Λ }.

end

Remove the empty latent classes to obtain F(t+1).
for i ∈ 1, · · · , J do

if ∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 1) = 0 then

s(t+1)
j = 0.

end

if ∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 1) �= 0 then

s(t+1)
j =

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 1 & yij = 0)

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 1)

end

if ∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 0) = 0 then

g(t+1)
j = 0

end

if ∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 0) �= 0 then

g(t+1)
j =

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 0 & yij = 1)

∑N
i=1 ∑Λ∈F(t+1) hi,Λ · 1(ηj,Λ = 0)

end

end

Set t = t + 1
end

Output: ŝ = s(t), ĝ = g(t), π̂ = π(t) and F̂ = F(t).
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4. Simulation Studies

Three simulation studies are conducted to implement the standard EM accounting for
all latent classes as a baseline for comparison to verify the selection validity of EBIC and the
performance of the entropy penalized method, respectively. Each simulation study serves a
specific purpose and contributes to the overall assessment of the proposed approach. For
all simulation studies, we set K = 5, J = 15 and Q matrix has the following structure:

Q� �

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 1 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 1

⎞⎟⎟⎟⎟⎠. (16)

The Q matrix with two identity matrices satisfies the identifiable conditions [12,30,31].
All attributes are required by four items, and the design of the Q matrix is balanced.

4.1. Study I

In this study, the settings are N = 150, 500, 1000, and s = g = 0.2. The attribute
profiles are generated from F, and each attribute profile of F has a probability of 1/7.

F� �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 1

0 0 1 0 0 0 1

0 0 0 1 0 0 1

0 0 0 0 1 0 1

0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

For the proposed EM, the penalty parameter λ = −0.075N. The method to explore
λ will be discussed in the next simulation study. For each attribute αik, the classification
accuracy is evaluated by the posterior marginal probability as

P(αik = 1|Y , ŝ, ĝ, π̂) = ∑
{αi |αik=1}

P(αi|Y , ŝ, ĝ, π̂), (18)

where P(αi|Y , ŝ, ĝ, π̂) is the posterior probability of examinee i having attribute profile αi.
Given the posterior marginal probability, the logarithm of the posterior marginal likelihood as

N

∑
i=1

J

∑
j=1

log[P(α∗ik = 1|Y , ŝ, ĝ, π̂)α∗ik P(α∗ik = 0|Y , ŝ, ĝ, π̂)1−α∗ik ] (19)

reflects the global classification accuracy, where α∗ik denotes the true attribute during data
generation.

This study focuses on the estimators of π and the classification accuracy. The results
of π are shown in Figure 1. We observe that for both settings of N, the performance of
standard EM is poor as it fails to eliminate any irrelevant attribute profiles. When the
sample size is N, the probability 1/N can be treated as a threshold to distinguish irrelevant
attribute profiles. This method can only eliminate the partially irrelevant attribute profiles.
In fact, finding an appropriate threshold is challenging. In contrast, regardless of sample
sizes, the proposed EM can find the true attribute profiles and set the probability of all
irrelevant attribute profiles to zero. The logarithm of the posterior marginal likelihood
for the six settings, namely {150, 500, 1000} ⊗ {proposed EM, standard EM}, are −204.239,
−453.163, −508.047, −514.681, −1046.273 and −1054.014 for settings {150, 500, 1000} ⊗
{proposed EM, standard EM}, respectively. The likelihood of the proposed EM is consis-
tently larger than that of the standard EM, indicating that the proposed EM enjoys higher
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classification accuracy. The results also show that the proposed method works well for the
small sample size N = 150. Especially considering the posterior marginal likelihood, the
proposed method has obvious advantages over the standard EM. Note that the discussion
regarding the estimation of item parameters will be shown in the third simulation study.

(a)

(b)

(c)

Figure 1. The results of estimated π̂ for different sample sizes. The horizontal axis represents
attribute profiles which can be concluded as 1 � (0, 0, 0, 0, 0)�, 2 � (1,0,0,0,0)�, 3 � (0, 1, 0, 0, 0)�,
. . . , 7 � (1,1,0,0,0)�, . . . , 32 � (1,1,1,1,1)�. The rules can also apply to different Ks. (a) The results of
sample size N = 150. (b) The results of sample size N = 500. (c) The results of sample size N = 1000.
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4.2. Study II

In this study, the solution paths of π versus λ are elaborated. The running set-
tings of N, s, g and F are the same as the settings of Study I. The penalty parameter
λ ∈ {−0.2N,−0.195N, . . . ,−0.01N}. Due to the similarity of results, only the results of
the sample size N = 500 are presented. Figure 2 shows the solution paths of π, F and EBIC
versus λ.

(a) (b)

Figure 2. Solution paths of the estimated π, the number of F and EBIC versus λ. (a) Solution paths
of π. (b) Number of F and EBIC.

In Figure 2a, the colored lines indicate the true latent classes, while the black lines
indicate the irrelevant latent classes. The dotted line represents the probability is 1/7.
Based on the figure, the interval [−0.155N,−0.07N] can efficiently estimate the true π
and eliminate the empty latent classes. For the large λ, the recovery of π does not appear
to worsen much when estimating the probability of irrelevant latent classes. However,
irrelevant latent classes cannot be strictly zero. In Figure 2b, the left and right vertical axes
show results of the number of F and EBIC, respectively. The dotted line represents the
true number of F. The Figure 2b shows that when the correct number of F is selected, the
EBIC achieves the minimum. This study is an illustration of how to explore the values λ
using EBIC.

4.3. Study III

In this study, the effects of sample sizes and item parameters are evaluated. We
consider N = 500, 1000 and item parameters s = g = 0.1, 0.2, 0.3. The response data are
generated with the more complex F, and each latent class of F has the probability 1/12. In
each setting, 200 independent data are generated.

F� �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1 0 0 0 1

0 0 0 1 0 0 0 1 1 0 0 1

0 0 0 0 1 0 0 0 1 1 0 1

0 0 0 0 0 1 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)
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Firstly, the information criteria EBIC is used to select appropriate λ for each setting.
The selection precision of the latent classes and Bias, RMSE of item parameters are used to
evaluate the proposed method. The selection precision and Bias, RMSE of item parameters
are listed in Table 1. The notation “ST/AT” denotes the ratio between selected true latent
classes and all true latent classes. The notation “ST/AS” denotes the ratio between selected
true latent classes and all selected latent classes. The subscript of Bias and RMSE indicates
the type of item parameters. When the sample size N increases and s, g decreases, both
the selection precision and the performance of item parameters’ estimators will be better. If
N = 1000 and s = g = 0.1, the true F can be completely recovered. The RMSE and Bias of
the guessing parameters are lower than the slipping parameters, which is due to the DINA
model itself, as the guessing parameter is estimated from all latent groups that do not fully
master the required attributes for an item. In contrast, the slipping parameter is estimated
only for the latent group with complete mastery for that specific qj vector.

Table 1. The selection precision of the latent classes and Bias, RMSE of item parameters. The results
are based on 200 independent data.

s, g N ST/AT ST/AS Biass RMSEs Biasg RMSEg

0.1
500 1.0000 0.9950 0.0012 0.0315 −0.0003 0.0173

1000 1.0000 1.0000 0.0001 0.0220 −0.0001 0.0123

0.2
500 0.9671 0.9291 0.0028 0.0553 −0.0012 0.0279

1000 0.9933 0.9601 0.0035 0.0381 −0.0019 0.0197

0.3
500 0.7246 0.7040 0.0013 0.1138 −0.0149 0.0671

1000 0.8483 0.8054 0.0021 0.0759 −0.0045 0.0388

5. Real Data Analysis

In this section, fraction–subtraction data are analyzed. For more about the data, please
refer to the literature [7,32,33]. This data set contains responses of N = 536 middle school
students to J = 20 items, where the responses are coded as 0 or 1. The test measures K = 8
attributes, so there are 28 = 256 possible latent classes. The Q-matrix and item contents are
shown in Table 2.

Table 2. The Q-matrix and contents of the fractions–subtraction data.

Item α1 α2 α3 α4 α5 α6 α7 α8 Item α1 α2 α3 α4 α5 α6 α7 α8

5
3 − 3

4 0 0 0 1 0 1 1 0 4 1
3 − 2 4

3 0 1 0 0 1 0 1 0
3
4 − 3

8 0 0 0 1 0 0 1 0 11
8 − 1

8 0 0 0 0 0 0 1 1
5
6 − 1

9 0 0 0 1 0 0 1 0 3 3
8 − 2 6

5 0 1 0 1 1 0 1 0

3 1
2 − 2 3

2 0 1 1 0 1 0 1 0 3 4
5 − 3 2

5 0 1 0 0 0 0 1 0

4 3
5 − 3 4

10 0 1 0 1 0 0 1 1 2 − 1
3 1 0 0 0 0 0 1 0

6
7 − 4

7 0 0 0 0 0 0 1 0 4 5
7 − 1 4

7 0 1 0 0 0 0 1 0

3 − 2 1
5 1 1 0 0 0 0 1 0 7 3

5 − 2 4
5 0 1 0 0 1 0 1 0

2
3 − 2

3 0 0 0 0 0 0 1 0 4 1
10 − 2 8

10 0 1 0 0 1 1 1 0

3 7
8 − 2 0 1 0 0 0 0 0 0 4 − 1 4

3 1 1 1 0 1 0 1 0

4 4
12 − 2 7

12 0 1 0 0 1 0 1 1 4 1
3 − 1 5

3 0 1 1 0 1 0 1 0

Because the sample size N = 536 is not significantly larger than possible latent classes
2K = 256, we cannot ensure there are enough latent classes to guarantee that true F is
feasible. Algorithm 2 is suggested for analyzing the real data. Firstly, EBIC is used to select
the penalty parameter λ ∈ {−0.2N,−0.19N, . . . ,−0.01N}. The results around the optimal

25



Mathematics 2023, 11, 3993

EBIC are shown in Table 3, which is based on a stable interval of EBIC. We observe that
when λ = −0.17N, the EBIC achieves the minimum. If λ = −0.16N, the number ||F̂||
changes from 76 to 20, and two guessing parameters disappear. For λ = −0.16N, if λ
slightly increases, the model will be more complicated. Based on this fact, we discard the
λs that are not less than −0.16N.

Table 3. EBIC and exploratory results about ||F̂||, ||ĝ||, ||ŝ||.

λ −0.19N −0.18N −0.17N −0.16N −0.15N

EBIC 11,245.30 10,263.11 9807.29 10,342.25 10,173.47
||F̂|| 7 16 20 76 80
||ĝ|| 14 15 18 20 20
||ŝ|| 20 20 20 20 20

Next, the evaluation is based on Theorem 1 and estimators ŝ, ĝ, F̂. We note that
−0.19 < −1

8 log 2 does not satisfy Theorem 1, so the corresponding estimator eliminates many

classes. Figure 3 presents the estimated F̂ for different λ, and we can see that the results of
Figure 3a are consistent with the conclusion of Theorem 1. The conclusion is that the λs no
larger than −0.19N are discarded. In addition, combined with Figure 3a–c, we know that
attribute 7 is the most basic attribute. Figure 4a,b display the estimators of guessing and
slipping parameters, respectively. According to the estimated ŝ, the results of λ = −0.19N
strongly shifted on items 2, 3, 5, 9, and 16. For different λs, the behavior of estimated ĝ is
too complex, and significant differences are found in items 8, 9, and 13.

Until now, the candidate penalties are λ = −0.18N and −0.17N. The penalty
λ = −0.17N supports the criteria EBIC, and λ = −0.18N prefers a simpler model. Further-
more, a denser grid between [−0.18N,−0.16N] will give more detailed results.

(a) (b) (c) (d)

Figure 3. The estimators of item parameters s and g as the penalty parameter λ varies in the set
{−0.19N,−0.18N, · · · ,−0.15N}. (a) λ = −0.19N. (b) λ = −0.18N. (c) λ = −0.17N. (d) λ = −0.16N.

26



Mathematics 2023, 11, 3993

(a) (b)

Figure 4. The estimators of item parameters s and g as the penalty parameter λ varies in the set
{−0.19N,−0.18N, . . . ,−0.15N}. (a) Slipping parameters. (b) Guessing parameters.

6. Discussion

In this paper, we study the penalized method for the DINA model. There are two
contributions. Firstly, the entropy penalized method is proposed for the DINA model.
The feasible domain is defined to describe the relation between latent classes and the
parameter space of item parameters. This framework allows for distinguishing irrelevant
attribute profiles. Second, based on the definition of the feasible domain, two modified EM
algorithms are developed. In practice, it is recommended to perform exploratory analyses
using Algorithm 2 before proceeding further, which can provide valuable insights and
guidance to understand the data structure.

While this paper focuses on the DINA model, a natural extension would be the
application of the entropy penalized method to other CDMs. Additionally, it is worth noting
that this paper study involves situations with a maximum dimension of K = 8, which is
relatively low. In high-dimensional cases of K, improving the power and performance
of the entropy-penalized method is an interesting topic. A more challenging question is
indicating how the specification of irrelevant latent classes may affect the classification
accuracy and the estimation of the model. Those topics are left for future research.
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Appendix A. Proof of Lemma 1

Proof. Assume the response vector yi = (yi1, · · · , yiJ)
�. The vector qj cannot be 0K because

item j in the diagnostic test must measure some attribute. If αi = 0K is from F, then
ηj,0K = ∏K

k=1 0qjk = 0. For gj, j = 1, · · · , J, we have

P(yij|αi = 0K) = g
yij
j 1 − g

1−yij
j , (A1)

which means that the 0K’s response function is determined by gj. If αi = 1K is from F, then
ηj,1K = ∏K

k=1 1qjk = 1. For sj, j = 1, · · · , J, we have

P(yij|αi = 1K) = s
1−yij
j (1 − sj)

yij , (A2)

which means that the 1K’s response function is determined by sj. Hence, we only need 0K
and 1K to conclude that all item parameters gj and sj are required .

Appendix B. The Details of EM Algorithm

For Algorithm 1, the Lagrange function becomes

Lμ
λ = E[Lλ] + μ( ∑

Λ∈F
πΛ − 1)

= E[log P(Y |s, g, α)P(α|π)]− λE(π) + μ( ∑
Λ∈F

πΛ − 1)

= E

{
N

∑
i=1

∑
Λ∈F

1(αi = Λ)

[
J

∑
j=1

log P(yij|sj, gj, αi = Λ) + log P(αi = Λ|π)

]}
− λE(π) + μ( ∑

Λ∈F
πΛ − 1)

=
N

∑
i=1

∑
Λ∈F

E1(αi = Λ)

[
J

∑
j=1

log P(yij|sj, gj, αi = Λ) + log P(αi = Λ|π)

]
− λE(π) + μ( ∑

Λ∈F
πΛ − 1)

(A3)

where E1(αi = Λ) is defined as hi,Λ. Given s, g and π, the expectation E is taken with
respect to the distribution P(α|Y , s, g, π), and hi,Λ is nothing but the posterior probability
of examinee i belonging to the latent class Λ. If πΛ > 0, Equation (12) can be strictly
reduced to

N

∑
i=1

hi,Λ − λπΛ(log πΛ + 1) + μπΛ = 0,

∑
Λ

πΛ − 1 = 0.
(A4)

If πΛ = 0, the term ∑N
i=1 hi,Λ will be positive and close to zero, the equation ∑N

i=1 hi,Λ −
λπΛ(log πΛ + 1)+μπΛ ≈ 0. Equation (A4) can be treated as the alternative of Equation (12).
By taking summation over all Λ, we could obtain,

N

∑
i=1

∑
Λ

hi,Λ − λ ∑
Λ

πΛ(log πΛ + 1) + μ = 0

N + λE(π) + μ − λ = 0

N + λE(π) = λ − μ

(A5)
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According to Equations (A4) and (A5), the iterative formula is

πΛ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

N

∑
i=1

hi,Λ − λπΛ log πΛ < 0,

∑N
i=1 hi,Λ − λπΛ log πΛ

N + λE(π) + Δ
otherwise.

(A6)

where Δ = ∑Λ[(∑
N
i=1 hi,Λ − λπΛ log πΛ) · 1(∑N

i=1 hi,Λ − λπΛ log πΛ < 0)] is negative. It

implies that πΛ is proportional to max{0, ∑N
i=1 h(t)i,Λ − λπ

(t)
Λ log π

(t)
Λ }. Equation (A6) can

also be used to explain why λ should be negative. We assume that λ is non-negative. For
any Λ ∈ {Λ|π(t)

Λ �= 0}, the posterior probability h(t)i,Λ is positive and the term −π
(t)
Λ log π

(t)
Λ

with 0 < π
(t)
Λ < 1 is positive. Due to the positive λ, we obtain that ∑N

i=1 h(t)i,Λ − λπ
(t)
Λ log π

(t)
Λ

is positive, for all Λ ∈ {Λ|π(t)
Λ �= 0}. This result means that, from iteration t to iteration

t + 1, the positive λ cannot eliminate any attribute profiles. Hence, λ should be negative.

The derivatives of item parameters ∂Lμ
λ

∂sj
and ∂Lμ

λ
∂gj

are

∂Lμ
λ

∂sj
=

N

∑
i=1

hi,Λ ∑
{Λ|ηj,Λ=1}

[
yij

1 − sj
+

1 − yij

sj

]
,

∂Lμ
λ

∂gj
=

N

∑
i=1

hi,Λ ∑
{Λ|ηj,Λ=0}

[
yij

gj
+

1 − yij

1 − gj

]
.

(A7)

Therefore, the solutions of item parameters are

sj =
∑N

i=1 hi,Λ · 1(ηj,Λ = 1&yij = 0)

∑N
i=1 hi,Λ · 1(ηj,Λ = 1)

,

gj =
∑N

i=1 hi,Λ · 1(ηj,Λ = 0&yij = 1)

∑N
i=1 hi,Λ · 1(ηj,Λ = 0)

.

(A8)

Equations (A6) and (A8) imply Algorithm 1.

For Algorithm 2, if some item parameters disappear, the derivatives ∂Lμ
λ

∂sj
and ∂Lμ

λ
∂gj

make

no sense. The event is reflected in hi,Λ is that ∑N
i=1 hi,Λ · 1(ηj,Λ = 1) or ∑N

i=1 hi,Λ · 1(ηj,Λ = 1)
takes the value 0. In Algorithm 2, we should find those items and set the corresponding
item parameters to 0. This is the key difference between Algorithms 1 and 2.

Appendix C. Proof of Theorem 1

Proof of Theorem 1. The denominator of Equation (A6) must be positive, so N + λE(π) +
Δ > 0, for all E(π). Due to Δ < 0, then N + λE(π) > 0 must be positive. Noting the
discrete Shannon entropy E ∈ (0, K log 2], the conclusion λ > maxE(π){ −N

E(π)
} = −N

K log 2 can
be obtained.
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Abstract: The 21st century has witnessed a growing interest in the analysis of time series data. While
most of the literature on the topic deals with real-valued time series, ordinal time series have typically
received much less attention. However, the development of specific analytical tools for the latter
objects has substantially increased in recent years. The R package otsfeatures attempts to provide a
set of simple functions for analyzing ordinal time series. In particular, several commands allowing the
extraction of well-known statistical features and the execution of inferential tasks are available for the
user. The output of several functions can be employed to perform traditional machine learning tasks
including clustering, classification, or outlier detection. otsfeatures also incorporates two datasets
of financial time series which were used in the literature for clustering purposes, as well as three
interesting synthetic databases. The main properties of the package are described and its use is
illustrated through several examples. Researchers from a broad variety of disciplines could benefit
from the powerful tools provided by otsfeatures.

Keywords: otsfeatures; ordinal time series; feature extraction; cumulative probabilities; R package

MSC: 68N01; 62-07

1. Introduction

Time series data usually arise in a wide variety of disciplines as machine learning,
biology, geology, finance and medicine, among many other fields. Typically, most of the
works on the analysis of these objects have focused on real-valued time series, while the
study of time series with alternative ranges has been given limited attention. However,
the latter type of time series naturally appear in several fields when attempting to analyze
several phenomena. For instance, weekly counts of new infections with a specific disease
in a particular place are often modeled through integer-valued time series [1]. In some
contexts, the time series under consideration do not even take numerical values (e.g.,
temporal records of EEG sleep states for an infant after birth [2]). A comprehensive
introduction to the topic of time series with alternative ranges including classical models,
recent advances, key references, and specific application areas is provided by [3].

Categorical time series (CTS) are characterized by taking values in a qualitative range
consisting of a finite number of categories, which is called ordinal range (if the categories
exhibit a natural ordering) or nominal range otherwise. In this paper, the specific case of
an ordinal range is considered. Time series fulfilling this condition, frequently referred to
as ordinal time series (OTS), pose several challenges to the statistical practitioner. Indeed,
dealing with ordered qualitative outcomes implies that some classical analytic tools must
be properly adapted. For instance, standard measures of location, dispersion and serial
dependence cannot be defined in the same manner as in the real-valued case, but the
underlying ordering existing in the series range still allows for a meaningful definition of
the corresponding quantities in the ordinal setting. For instance, in [4], a unified approach
based on expected distances is proposed to obtain well-interpretable statistical measures
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for ordinal series. In addition, sample counterparts of the corresponding measures are
introduced and their asymptotic properties are derived.

Ordinal series arise in multiple fields. Some interesting examples include credit ratings
of different countries [4] or degree of cloud coverage in different regions [5]. In addition,
OTS appear quite naturally in psychology, since temporal measurements in such discipline
often originate from ordinal scales, such as Likert questionnaires. For instance, the so-
called mood time series of the married couple [6,7] represents the daily mood of a married
couple over a period of 144 days, which is recorded on Likert scales. Specifically, the
mood measures arise from a questionnaire with 58 items such as “Right now I feel good”,
being the momentary intensity of emotions rated with answers 1 = definitely not, 2 = not,
3 = not really, 4 = a little, 5 = very much, and 6 = extremely. Such types of time series are
naturally considered as ordinal. On the contrary, in many situations, the series under
consideration are actually real-valued, but they are treated as ordinal ones because this
provides several advantages. For instance, in [8], the gross wage of different individuals is
divided into six ordered categories according to the quintiles of the income distribution for
each year. As stated by [8], one of the advantages of considering wage categories relies on
the fact that no inflation adjustment has to be made. Another illustrative example involves
the well-known air quality index (AQI), which presents the status of daily air quality and
shows the degree of air pollution in a particular place [9]. The air quality is often classified
into six different levels which are determined according to the concentrations of several
air pollutants.

While the field of OTS data analysis is still in its early stages, there are already a
few interesting works on the topic. In one of the first papers, ref. [10] proposed robust
methods of time series analysis which use only comparisons of values and not their actual
size. As previously stated, ref. [4] developed an interesting methodology for defining
statistical features in the ordinal setting, which is based on expected distances. Later,
ref. [11] proposed a family of signed dependence measures for analyzing the behavior of
a given OTS. There are also some recent works involving machine learning tasks in the
context of ordinal series. For instance, ref. [9] considered different models to forecast the
air quality levels in 16 cities of Taiwan. Two novel distances between OTS were proposed
in [12] and used to construct effective clustering algorithms. The approaches were applied
to datasets of financial time series and interesting conclusions were reached. Previous
references highlight the remarkable growth that OTS analysis has recently undergone.

In accordance with previous comments, it is clear that the construction of software
tools specifically designed to deal with OTS is crucial. However there exist no software
packages in well-known programming languages (e.g., R version 4.1.2 [13], Python version
3.11.1 [14], etc.) aimed at dealing with ordinal series. Moreover, there are only a few
libraries focusing on the analysis of ordinal data without a temporal nature, which are
mostly written in the R language, but too often restricted to specific statistical procedures.
For instance, the package ordinal [15] implements cumulative link models for coping with
ordinal response variables. Specific functions for generating multivariate ordinal data
are provided through package MultiOrd [16]. In a purely machine learning context, an
innovative computing tool named ocapis containing classification algorithms for ordinal
data is described in [17]. In addition, the library includes two preprocessing techniques:
an instance selector and a feature selector. Note that, although their usefulness is beyond
doubt, none of the previously mentioned packages is suitable to execute simple exploratory
analyses, a task which should be usually performed before moving on to more sophisticated
procedures. In sum, there are currently no software tools allowing to compute classical
features for ordinal series.

The goal of this manuscript is to present the R package otsfeatures, which includes
several functions to compute well-known statistical features for ordinal series. As well
as giving valuable information about the behavior of the time series, the corresponding
features can be used as input for classical machine learning procedures, as clustering,
classification, and outlier detection algorithms. In addition, otsfeatures also includes
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some commands allowing to perform traditional inferential tasks. The two databases
of financial time series described in [12] are also available in the package, along with
three synthetic datasets containing OTS which were generated from different underlying
stochastic processes. These data collections allow the users to test the commands available
in otsfeatures. It is worth mentioning that some functions of the package can also be
employed to analyze ordinal data without a temporal character.

In summary, the package otsfeatures intends to integrate a set of simple but powerful
functions for the statistical analysis of OTS into a single framework. The implementation of
the package was performed by using the open-source R programming language due to the
role of R as the most used programming language for statistical computing. otsfeatures is
available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.
org/web/packages/otsfeatures/index.html (accessed on 15 May 2023).

The rest of the paper is structured as follows. A summary of relevant features to
analyze marginal properties and the serial dependence of ordinal series is presented in
Section 2. Furthermore, some novel features measuring cross-dependence between ordinal
and numerical processes are also introduced. The main functions implemented in otsfea-

tures and the available datasets are presented in Section 3 after providing some background
on ordinal series. In Section 4, the functionality of the package is illustrated through several
examples considering synthetic data and the financial databases included in otsfeatures.
In addition, the process of using the output of some functions to carry out traditional data
mining tasks is described. Some conclusions are given in Section 5.

2. Analyzing Marginal Properties and Serial Dependence of Ordinal Time Series

Let {Xt}t∈Z, Z = {. . . ,−1, 0, 1, . . .}, be a strictly stationary stochastic process having
the ordered categorical range S = {s0, . . . , sn} with s0 < s1 < . . . < sn. The process
{Xt}t∈Z is often referred to as an ordinal process, while the categories in S are frequently
called the states. Let {Ct}t∈Z be the count process with range {0, . . . , n} generating the
ordinal process {Xt}t∈Z, i.e., Xt = sCt . It is well known that the distributional properties of
{Ct}t∈Z (e.g., stationarity) are properly inherited by {Xt}t∈Z [3]. In particular, the marginal
probabilities can be expressed as

pi = P(Xt = si) = P(Ct = i), i = 0, . . . , n, (1)

while the lagged joint probabilities (for a lag l ∈ Z) are given by

pij(l) = P(Xt = sj, Xt−l = si) = P(Ct = j, Ct−l = i), i, j = 0, . . . , n. (2)

Note that both the marginal and the joint probabilities are still well defined in the
general case of a stationary stochastic process with nominal range, i.e., when no under-
lying ordering exists in S . By contrast, in an ordinal process, one can also consider the
corresponding cumulative probabilities, which are defined as

fi = P(Xt ≤ si) = P(Ct ≤ i), i = 0, . . . , n − 1,

fij(l) = P(Xt ≤ sj, Xt−l ≤ si) = P(Ct ≤ j, Ct−l ≤ i),

i, j = 0, . . . , n − 1, l ∈ Z,

(3)

for the marginal and the joint case, respectively.
In practice, the quantities pi, pij(l), fi, and fij(l) must be estimated from a T-length

realization of the ordinal process, Xt = {X1, . . . , XT}, usually referred to as ordinal time
series (OTS). Natural estimates of these probabilities are given by

p̂i =
∑T

k=1 I(Xk = si)

T
, p̂ij(l) =

∑T−l
k=1 I(Xk = si)I(Xk+l = sj)

T − l
, (4)
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f̂i =
∑T

k=1 I(Xk ≤ si)

T
, f̂ij(l) =

∑T−l
k=1 I(Xk ≤ si)I(Xk+l ≤ sj)

T − l
, (5)

where I(·) denotes the indicator function.
Probabilities pi, pij(l), fi, and fij(l) can be used to represent the process {Xt}t∈Z in

terms of marginal and serial dependence patterns. An alternative way of describing a
given ordinal process is by means of features measuring classical statistical properties
(e.g., centrality, dispersion, etc.) in the ordinal setting. A practical approach to define
these quantities consists of considering expected values of some distances between ordinal
categories [4]. Specifically, a given distance measure d defined in S ×S gives rise to specific
ordinal features. Three of the most commonly used distances are the so-called Hamming,
block, and Euclidean, which are defined as

dH(si, sj) = 1 − δij, do,1(si, sj) = |i − j| and do,2(si, sj) = (i − j)2, (6)

for a pair of states si and sj, respectively, where δij denotes the Kronecker delta. The
first six quantities in Table 1 describe the marginal behavior of the process Xt for a given
distance d. There, the notation DIVC stands for diversity coefficient, which is an approach
for measuring dispersion proposed by [18], and X1

t and X2
t refer to independent copies

of Xt. In addition, the notation Xr
t was used to define a reflected copy of Xt, that is, a

stochastic process independent of Xt such that P(Xr
t = si) = pn−i, i = 0, . . . , n. Note that

the considered location measures pertain to the ordinal set S . For the remaining marginal
features, some assumptions are needed to obtain the ranges provided in Table 1, where
dn

0 = d(s0, sn). Particularly, for these four measures, we assume that dn
0 = maxx,y∈S d(x, y),

a property which is usually referred to as maximization. In addition, for the asymmetry, we
require that (J − I)D is a positive semidefinite matrix, where I and J denote the identity and
the counteridentity matrices of order n + 1 and D = (dij)1≤i,j≤n+1, where dij = d(si−1, sj−1)
is the corresponding pairwise distance matrix. Moreover, for both the asymmetry and the
skewness to be reasonable measures, we assume that the distance d is centrosymmetric, that is,
d(si, sj) = d(sn−i, sn−j), i, j = 0, . . . , n. Note that, for a symmetric process (that is, a process
Xt such that Xt and Xr

t have the same marginal distribution), then both the asymmetry and the
skewness are expected to be zero. It is worth highlighting that, under the required assumptions,
the quantities disploc,d, dispd, asymd and skewd can be easily normalized to the interval [0, 1]
(or [−1, 1] in the case of the skewness) by dividing them by dn

0 .
Estimates of the marginal features in Table 1, denoted by means of the notation (̂·),

where (·) stands for the corresponding measure (e.g., dispd), can be obtained by considering
estimates of E[d(Xt, si)] (i = 0, . . . , n), E[d(X1

t , X2
t )] and E[d(Xt, Xr

t )] given by

Ê[d(Xt, si)] =
1
T

T

∑
t=1

d(Xt, si),

Ê[d(X1
t , X2

t )] =
n

∑
i,j=0

d(si, sj) p̂i p̂j,

Ê[d(Xt, Xr
t )] =

n

∑
i,j=0

d(si, sj) p̂i p̂n−j,

(7)

respectively. Table 1 also contains some features assessing the serial dependence in an
ordinal process. In this context, one of the most common quantities is the so-called ordinal
Cohen’s κ, which measures the relative deviation of the dispersion for dependent and
independent random variables at a given lag l ∈ Z. This quantity can take either positive
or negative values, with its upper bound being 1 and its lower bound being dependent
on the underlying distance d. A sample version of κd(l), denoted by κ̂d(l), is obtained by
using d̂ispd and the standard estimate of E[d(Xt, Xt−l)] defined as
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Ê[d(Xt, Xt−l)] =
1

T − l

T

∑
t=l+1

d(Xt, Xt−l). (8)

A detailed analysis of the marginal quantities in Table 1 plus the ordinal Cohen’s κ
is given in [4]. In particular, the asymptotic properties of the corresponding estimates are
derived and their behavior is analyzed in some simulation experiments.

Table 1. Some features of an ordinal stochastic process (top) and measuring serial cross-dependence
between an ordinal and a numerical process (bottom). DIVC stands for diversity coefficient. TCC
stands for total cumulative correlation, TMCLC stands for total mixed cumulative linear correlation,
and TMCQC stands for total mixed cumulative quantile correlation.

Ordinal
Measure

Definition Range Type

Location
(standard) xloc,d = arg minx∈S E[d(Xt, x)] S Marginal

Location (with
respect to s0) x0

loc,d = arg minx∈S |E[d(Xt, s0)]− d(x, s0)| S Marginal

Dispersion
(standard) disploc,d = E[d(Xt, xloc,d)] [0, dn

0 ] Marginal

Dispersion
(DIVC) dispd = E[d(X1

t , X2
t )] [0, dn

0 ] Marginal

Asymmetry asymd = E[d(Xt, Xr
t )]− dispd [0, dn

0 ] Marginal

Skewness skewd = E[d(Xt, sn)]− E[d(Xt, s0)] [−dn
0 , dn

0 ] Marginal

Ordinal
Cohen’s κ

κd(l) =
dispd −E[d(Xt ,Xt−l)]

dispd
- Serial

TCC Ψc(l) = 1
n2 ∑n−1

i,j=0 ψij(l)2 [0, 1] Serial

Ordinal and
numerical
measure

Definition Range Type

TMCLC Ψm
1 (l) =

1
n ∑n−1

i=0 ψ∗
i (l)

2 [0, 1] Serial

TMCQC Ψm
2 (l) =

1
n ∑n−1

i=0

∫ 1
0 ψ

ρ
i (l)

2dρ [0, 1] Serial

The serial dependence of an ordinal process can be evaluated by means of alterna-
tive quantities which do not pertain to the approach based on expected distances. First,
let us define the cumulative binarization of the process Xt as the multivariate process
{Yt = (Yt,0, . . . , Yt,n−1)

�, t ∈ Z} such that Yt,i = 1 if Xt ≤ si, i = 0, . . . , n − 1. By consider-
ing pairwise correlations in the cumulative binarization and fixing a lag l ∈ Z, we obtain
the quantities

ψij(l) = Corr(Yt,i, Yt−l,j) =
fij(l)− fi f j√

fi(1 − fi) f j(1 − f j)
. (9)

i, j = 0, . . . , n − 1. The features in (9) are very convenient because they play a similar
role than the autocorrelation function of a numerical stochastic process. A measure of
dependence at lag l can be obtained by considering the sum of the squares of all features
ψij(l). In this way, we define the total cumulative correlation (TCC) as

Ψc(l) =
1
n2

n−1

∑
i,j=0

ψij(l)2. (10)
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An estimate of the previous quantity can be obtained by considering
Ψ̂c(l) = 1

n2 ∑n−1
i,j=0 ψ̂ij(l)2, where ψ̂ij(l) is the natural estimate of ψij(l) obtained by re-

placing fi, f j and fij(l) by f̂i, f̂ j and f̂ij(l) in (9) computed from the realization Xt.
Another interesting phenomenon that can be analyzed when dealing with an ordinal

process is to measure the degree of cross-dependence that the process displays with respect
to a given real-valued process. To this aim, let {Zt, t ∈ Z} be a strictly stationary real-valued
process with variance σ2 and consider the correlation

ψ∗
i (l) = Corr(Yt,i, Zt−l) =

Cov(Yt,i, Zt−l)√
fi(1 − fi)σ2

, (11)

i = 0, . . . , n − 1, which evaluates the level of linear dependence between state si of process
Xt and the process Zt at a given lag l ∈ Z. A more complete measure assessing general
types of dependence can be constructed by defining the quantity

ψ
ρ
i (l) = Corr

(
Yt,i, I(Zt−l ≤ qZt(ρ))

)
=

Cov(Yt,i, I(Zt−l ≤ qZt(ρ))√
fi(1 − fi)ρ(1 − ρ)

, (12)

i = 0, . . . , n − 1, where ρ ∈ (0, 1) is a probability level, qZt denotes the quantile function
of process Zt. Note that, by considering different values for ρ, dependence at different levels
at lag l can be evaluated between processes Xt and Zt.

The features of the form ψ∗
i (l) can be combined in a proper way to obtain a suitable

measure of the average linear correlation between an ordinal and a numerical process. In
this way, we define the total mixed cumulative linear correlation (TMCLC) at lag l as

Ψm
1 (l) =

1
n

n−1

∑
i=0

ψ∗
i (l)

2. (13)

Analogously, a measure of the average quantile correlation between both processes,
so-called the total mixed cumulative quantile correlation (TMCQC) at lag l, can be defined as

Ψm
2 (l) =

1
n

n−1

∑
i=0

∫ 1

0
ψ

ρ
i (l)

2dρ. (14)

Note that both quantities Ψm
1 (l) and Ψm

2 (l) (see the lower part of Table 1) are natu-
rally defined in the range [0, 1], with the value 0 being reached in the case of null cross-
dependence between Xt and Zt. On the contrary, larger values indicate a stronger degree
of cross-dependence between both processes.

Natural estimates of Ψm
1 (l) and Ψm

2 (l), denoted by Ψ̂m
1 (l) and Ψ̂m

2 (l), respectively, can
be obtained by considering standard estimates of ψ∗

i (l) and ψ
p
i (l), denoted by ψ̂∗

i (l) and
ψ̂

p
i (l), respectively. To compute the latter estimates, a T-length realization of the bivariate

process {(Xt, Zt), t ∈ Z}, that is (Xt, Zt) = {(X1, Z1), . . . , (XT , ZT)}, is needed. In this way,
estimates ψ̂∗

i (l) and ψ̂
p
i (l) take the form

ψ̂∗
i (l) =

Ĉov(Yt,i, Zt−l)√
f̂i(1 − f̂i)σ̂2

,

ψ̂
p
i (l) =

Ĉov(Yt,i, I(Zt−l ≤ qZt(ρ))√
f̂i(1 − f̂i)ρ(1 − ρ)

,

(15)

where Ĉov(·, ·) denotes the standard estimate of the covariance between two random
variables, and σ̂2 is the standard estimate of the variance of process Zt computed from
the realization Zt. Estimates in (15) give rise to the quantities Ψ̂m

1 (l) =
1
n ∑n−1

i=0 ψ̂∗
i (l)

2 and

Ψ̂m
2 (l) =

1
n ∑n−1

i=0

∫ 1
0 ψ̂

ρ
i (l)

2dρ.
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3. Main Functions in otsfeatures

This section is devoted to present the main content of package otsfeatures. First, the
datasets available in the package are briefly described, and then the main functions of the
package are introduced, including both graphical and analytical tools.

3.1. Available Datasets in otsfeatures

The package otsfeatures contains some OTS datasets which can be employed to com-
pute ordinal features, evaluate different data mining algorithms, or simply for illustrative
purposes. Specifically, otsfeatures includes two databases of financial time series that were
introduced by [12]. In addition, three simulated data collections which were also used
in [12] for the evaluation of clustering algorithms are provided. A description regarding
the databases which are available in otsfeatures is provided below.

• Financial datasets. The first financial dataset contains credit ratings according to
Standard & Poors (S&P) for the 27 countries of the European Union (EU) plus the
United Kingdom [4,12]. Each country is described by means of a monthly time series
with values ranging from “D” (worst rating) to “AAA” (best rating). Specifically, the
whole range consists of the n + 1 = 23 states s0, . . . , s22, given by “D”, “SD”, “R”,
“CC”, “CCC−”, “CCC”, “CCC+”, “B−”, “B”, “B+”, “BB−”, “BB”, “BB+”, “BBB−”,
“BBB”, “BBB+”, “A−”, “A”, “A+”, “AA−”, “AA”, “AA+”, and “AAA”, respectively.
The sample period spans from January 2000 to December 2017, thus resulting serial
realizations of length T = 216. The second database consists of 9402 time series for
Austrian men entering the labor market between 1975 and 1980 at an age of at most
25 years [8]. The time series represent gross wages categories in May of successive
years, which are labeled with the integers from 0 to 5. The quintiles of the income
distribution for a given year were used to define the wage categories. In this way,
category 0 represents individuals with the lowest incomes, while category 5 represents
individuals with the highest incomes. The series exhibit individual lengths ranging
from 2 to 32 years with the median length being equal to 22. Note that, as a natural
ordering exists in the set of wage categories, the corresponding time series can be
naturally treated as OTS.

• Synthetic datasets. Each one of the synthetic datasets is associated with a particular
ordinal model concerning the underlying count process of a given OTS, namely
binomial AR(p) [19], binomial INARCH(p) [20], and ordinal logit AR(1) (see Examples
7.4.6 and 7.4.8 in [3]) models for the first, second, and third database, respectively. In
all cases, the corresponding collection contains 80 series with n + 1 = 6 categories and
length T = 600, which are split into 4 groups of 20 series each. All series in a given
dataset were generated from the corresponding type of process but the coefficients
of the generating model are different between groups. The specific coefficients were
chosen by considering Scenarios 1, 2, and 3 in [12]. According to the structure of these
data objects, the existence of 4 different classes can be assumed.

It is worth highlighting that the databases available in otsfeatures were already con-
sidered in the literature for several purposes. Specifically, the dataset of credit ratings was
employed by [4] to perform data analysis of OTS, while the database of Austrian employees
was used by [8] to carry out clustering of categorical time series. Additionally, in [12],
both collections were considered for the application of clustering procedures specifically
designed to deal with OTS. Thus, it is clearly beneficial for the user to have available the
corresponding databases through otsfeatures. On the other hand, we should note that,
in each one of the synthetic datasets, the different classes can be distinguished by means
of both marginal distributions and serial dependence patterns. Hence, these data objects
are suitable to evaluate the effectiveness of the features in Table 1 for several machine
learning problems. In fact, the usefulness of these features to carry out clustering and
classification tasks (among others) in these databases is illustrated in Section 4.3. Table 2
contains a summary of the 5 datasets included in otsfeatures. Specifically, the last column
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contains the number of classes existing in a given data collection according to a context
of supervised classification. For instance, 4 different classes are assumed to exist in the
synthetic databases due to the fact that the 80 time series in each one were generated from
4 different stochastic processes. It is worth highlighting that datasets CreditRatings and
AustrianWages do not contain clearly defined classes, and thus the notation “-” was used
in the last column for these databases.

Table 2. Summary of the datasets included in otsfeatures. The notation No. Series, T, |S|, and No.
Classes stands for the number of series, the length of the series, the number of categories in the range
of the series and the number of classes existing in a given dataset.

Dataset Object No. Series T |S| No. Classes

Credit
Ratings CreditRatings 28 216 23 -

Austrian
Wages AustrianWages 9402 Variable 6 -

Synthetic I SyntheticData1 80 600 6 4
Synthetic II SyntheticData2 80 600 6 4
Synthetic III SyntheticData3 80 600 6 4

3.2. Functions for Inferential Tasks

In this section, we present some of the tools available in otsfeatures to perform
classical statistical tasks. In particular, we first describe one specific plot which can be used
to analyze the serial dependence structure of a given ordinal series. Afterwards, we give an
overview of some functions allowing to carry out hypothesis testing and the construction
of confidence intervals for the quantities introduced in Section 2.

3.2.1. Serial Dependence Plot

When analyzing a real-valued processes, the autocorrelation function is a classical tool
for describing the corresponding serial dependence structure. Note that, in the ordinal
setting, this function can still be employed by considering the underlying count process Ct
introduced in Section 2, which is indeed real-valued. However, using the autocorrelation
function in this context has several drawbacks, since one is treating the ordinal process
as a numerical process, thus ignoring the available information about the dissimilarity
between the different ordinal categories. Therefore, an alternative, more suitable tool is
required to examine the serial dependence patterns of an ordinal process. In this regard,
one interesting possibility consists of considering the quantity κd(l) in order to evaluate the
degree of dependence exhibited by the process at a given lag l ∈ Z. In fact, this quantity
takes the value of 0 for an i.i.d. process, while positive or negative values are associated
with different types of dependence structures. Clearly, in practice, one often works with the
T-length realization Xt and computes the estimated Cohen’s κ, κ̂d(l), which can be used to
describe the serial dependence patterns of the underlying ordinal process.

It is worth highlighting that the asymptotic distribution of the previous estimate is
well-known in the particular case of the distance d being the block distance. Specifically, ac-
cording to Theorem 7.2.1 in [4], the distribution of the estimate κ̂do,1(l) can be approximated

by a normal distribution with mean − 1
T and variance 4

Td̂isp
2
do,1

∑n−1
k,l=0

(
f̂min{k,l} − f̂k f̂l

)2.

The previous asymptotic result is rather useful in practice, since it can be used to test the
null hypothesis of serial independence at lag l. In particular, critical values for a given
significance level α can be computed, and these quantities do not depend on the specific
lag. Thus, a serial dependence graph analogous to the ACF-based plot in the real-valued
case can be constructed. Specifically, after setting a maximum lag of interest, L, the values
of κ̂do,1(l) for lags ranging from 1 to L are simultaneously depicted in one graph. Next,
the corresponding critical values are added to the plot by means of a horizontal lines.
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According to the asymptotic approximation for κ̂do,1(l), the critical values for an arbitrary
significance level α are given by

±
2
√

∑n−1
k,l=0

(
f̂min{k,l} − f̂k f̂l

)2z1−α/2√
Td̂ispdo,1

− 1
T

, (16)

where zτ denotes the τ-quantile of the standard normal distribution. The corresponding
graph allows one to easily identify the collection of significant lags for a given ordinal
series. Similarly to the autocorrelation plot in the numerical setting, serial dependence
plots for OTS can be used for several purposes, including model selection or identification
of regular patterns in the series among others.

The right panel of Figure 1 shows the serial dependence plot based on κ̂do,1(l) for one
of the time series in the dataset AustrianWages. A maximum lag L = 10 was considered. The
function plot_cohens_kappa() was employed to construct the graph. It is worth remarking
that, if the argument plot = FALSE is used in this function, then the output is not the serial
dependence plot but a list containing the corresponding p-values and critical values.

Figure 1. Time series plot (left panel) and serial dependence plot based on κ̂do,1
(l) (right panel) for

one of the series in dataset AustrianWages. The dashed lines indicate the critical values regarding the
null hypothesis of the corresponding quantity being zero.

3.2.2. Hypothesis Testing and Confidence Intervals

The package otsfeatures allows us to perform hypothesis tests for alternative quan-
tities in addition to κdo,1(l). In particular, there are some functions for testing that the
quantities dispdo,1

, asymdo,1
and skewdo,1 are equal to some specified values employing

the corresponding estimates. In addition, confidence intervals for these quantities can be
constructed through some commands available in the package. In both cases, the corre-
sponding implementations rely on the asymptotic results provided in Theorem 7.1.1 in [4].
It is worth highlighting that these results are valid for the general case in which dependence
between observations exist. However, when dealing with i.i.d. data, the corresponding
expressions for the asymptotic means and variances are still valid but they are simplified.
In this regard, package otsfeatures gives the user the possibility of performing hypothesis
tests and constructing confidence intervals for i.i.d. data (see Theorem 4.1 in [4]). This is
indicated to the corresponding functions by using the argument temporal = FALSE.

A summary of the main functions in otsfeatures allowing one to perform inferential
tasks is given in Table 3.

39



Mathematics 2023, 11, 2565

Table 3. Some functions for inference tasks implemented in otsfeatures.

Output Function in Otsfeatures

Serial dependence plot for κ̂do,1
(l) plot_ordinal_cohens_kappa()

Test based on κ̂do,1
(l) plot_ordinal_cohens_kappa(plot = FALSE)

Test based on d̂ispdo,1
test_ordinal_dispersion()

Test based on âsymdo,1
test_ordinal_asymmetry()

Test based on ŝkewdo,1
test_ordinal_skewness()

Confidence interval for dispdo,1
ci_ordinal_dispersion()

Confidence interval for asymdo,1
ci_ordinal_asymmetry()

Confidence interval for skewdo,1
ci_ordinal_skewness()

3.3. Functions for Feature Extraction in otsfeatures

The package otsfeatures contains several functions allowing one to compute well-
known statistical quantities for OTS measuring either marginal or serial properties. All
commands of this type are based on the estimated features presented in Section 2. A
summary of the corresponding functions is given in Table 4. In Section 4.3, the use
of several functions for feature extraction available in otsfeatures is illustrated through
several examples.

Table 4. Some functions for feature extraction implemented in otsfeatures.

Features
Function in
Otsfeatures

Features
Function in
Otsfeatures

( p̂0, . . . , p̂n) marginal_probabilities() d̂ispd ordinal_dispersion_2()(
p̂ij(l)

)
0≤i,j≤n joint_probabilities() âsymd ordinal_asymmetry()

( f̂0, . . . , f̂n−1) c_marginal_probabilities() ŝkewd ordinal_skewness()(
f̂ij(l)

)
0≤i,j≤n−1

c_joint_probabilities() κ̂d(l) ordinal_cohens_kappa()

x̂loc,d ordinal_location_1() Ψ̂c(l) total_c_cor()
x̂0

loc,d ordinal_location_2() Ψ̂m
1 (l) total_mixed_c_cor()

d̂isploc,d ordinal_dispersion_1() Ψ̂m
2 (l) total_mixed_c_qcor()

4. Using the otsfeatures Package—AnIllustration

This section is devoted to illustrate the use of package otsfeatures. First we give some
general considerations about the package and next, we provide some examples concerning
the use of several functions for data analysis and feature extraction.

4.1. Some Generalities about otsfeatures

In otsfeatures, a T-length OTS with range S = {s0, s1, . . . , sn}, Xt = {X1, . . . , XT}, is
defined through a vector of length T whose possible values are the integer numbers from 0
to n. More precisely, the realization Xt is represented by using the associated realization of
the generating count process Ct, that is, Ct = {C1, . . . , CT} such that Xj = sCj

, j = 1, . . . , T.
Note that the main advantage of this approach relies on the fact that only numerical vectors
are needed for the representation of ordinal series.

The majority of functions in the package take as input a single OTS. For instance,
functions in Table 4 return by default the corresponding estimate. Some of these func-
tions admit the argument features = TRUE. In that case, the function returns a vector
which contains the individual quantities which are considered to construct the correspond-
ing estimate. For instance, the function total_c_cor() computes by default the estimate
Ψ̂c(l). However, if we employ the argument features = TRUE, a matrix whose (i, j) entry
contains the quantity ψ̂ij(l) is returned. In fact, the extraction of the individual compo-
nents of some estimates can be very useful for several purposes. Functions ots_plot() and
plot_ordinal_cohens_kappa() with the default settings produce the corresponding time series
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plot and serial dependence graph, respectively. On the contrary, the remaining functions
and function plot_ordinal_cohens_kappa() with plot = FALSE return the results of the corre-
sponding hypothesis tests, namely the test statistic, the critical value for a given significance
level used as input, and the p-value. It is worth remarking that most commands in otsfeatures

require the corresponding states to be specified in a vector of the form (0, 1, . . . , n). This is
done by means of the argument states. In this way, several issues can be avoided. For instance,
a particular realization may not include all the underlying ordinal values. Therefore, when
analyzing such a series, one could ignore the existence of some states. This is properly solved
by using the argument states.

The databases included in otsfeatures are defined by the means of a list named as
indicated in the first column of Table 2. In the case of the synthetic databases, each list
contains two elements, which are described below.

• The element called data is a list of vectors with the ordinal series of the corresponding
collection.

• The element named classes includes a vector of class labels associated with the objects
in data.

On the other hand, the lists associated with datasets CreditRatings and AustrianWages
only include the element data, as there are no underlying class labels for these data collections.

Let us take a look at one time series in dataset AustrianWages, which represents a
specific employee of the Austrian labor market.

> library(otsfeatures)

> AustrianWages$data[[10]]

[1] 3 3 3 3 3 0 0 3 2 0 4 0 0 3 3 3 4 5 4 4 4 5

In this series, the corresponding wage categories are identified with the integers from 0
to 5 as explained in Section 3.1 (category 0 represents the lowest incomes and category 5, the
highest incomes). In this way, the previous sequence represents an individual who started
with a moderate wage (category 3), then decreased his income level and finally ended up
in the highest wage category. Note that this representation of the series by means of integer
numbers provides a simple way of quickly examining the corresponding ordinal values.

4.2. Performing Inferential Tasks

The functions described in Section 3.2 allow the user to obtain valuable information from
a given ordinal series. Let us start by analyzing one of the time series in the dataset Austrian-
Wages. Before carrying out inferential tasks, we are going to visualize the corresponding time
series as a preliminary step. To this aim, we can employ the function ots_plot(), which takes as
input the time series we want to represent and a vector containing the different states.

ots_plot(AustrianWages$data[[100]], states = 0 : 5,

labels = 0 : 5)

We also employed the argument labels = 0:5 to indicate that the states s0 to s5 are
labeled with the integers from 0 to 5, since this is the labeling used in the original dataset
(see Section 3.1). The corresponding graph is provided in the left panel of Figure 1. This
series corresponds to an individual who belonged to all income levels except for the
highest one (5). It is worth highlighting that, as the different states are located in the
y-axis in increasing order, the plot is rather intuitive. In addition, note that, for the sake
of simplicity, the different categories are treated as equidistant. Specifically, the graph is
constructed by considering the block distance do,1 between states, which is not always
suitable, since the true underlying distance often depends on the specific context. Therefore,
the graph produced by function ots_plot() should not be treated as an accurate plot of the
corresponding OTS, but as a rough representation thereof.

As stated in Section 3.2.1, function plot_ordinal_cohens_kappa() in otsfeatures allows to
construct a serial dependence plot based on the estimate κ̂do,1(l). Let us represent such plot
for the series in the left panel of Figure 1.
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> sd_plot <- plot_ordinal_cohens_kappa(series = AustrianWages$data[[100]],

states = 0 : 5)

By default, the function considers lags from 1 to 10 (argument max_lag) and a significance
level α = 0.05 for the corresponding test (argument α). The resulting graph is given in the
right panel of Figure 1. As the standard autocorrelation plot, the corresponding estimates
are displayed in a sequential order, with dashed lines indicating the critical values for the
associated test. In this case, the serial dependence plot indicates significant dependence at
lags 1 and 2. Moreover, dependence at lags 9 and 10 could also be considered significant, but
this may be due to chance, since multiple tests are simultaneously carried out. In addition to
the dependence plot, function plot_ordinal_cohens_kappa() also produces numerical outputs.
For instance, the corresponding p-values can be obtained by using the argument plot = FALSE.

> sd_plot <- plot_ordinal_cohens_kappa(series = AustrianWages$data[[100]],

states = 0 : 5, plot = FALSE)

> round(sd_plot$p_values, 2)

[1] 0.00 0.02 0.68 0.30 0.38 0.49 0.26 0.11 0.03 0.04

The p-values in the previous output corroborate that the quantity κdo,1(1) is signifi-
cantly non-null, thus confirming the existence of serial dependence at the first lag. Note that
the p-values associated with lags 2, 9 and 10 also indicate rejection of the null hypothesis at
level α = 0.05. However, the set of p-values should be properly adjusted to handle random
rejections of the null hypothesis that can arise in a multiple testing context. For instance,
the well-known Holm’s method, which controls the family-wise error rate at a pre-specified
α-level, could be applied to the p-values by executing the following command.

> p.adjust(round(sd_plot$p_values, 2), method = ‘holm’)

[1] 0.00 0.18 1.00 1.00 1.00 1.00 1.00 0.66 0.24 0.28

According to the corrected p-values, significant serial dependence still exists at lag 1, but
the null hypothesis of serial independence at lags 2, 9 and 10 cannot be now rejected.

In additon to analyzing serial dependence, hypothesis tests and confidence intervals
for classical ordinal quantities can be constructed by using otsfeatures (see Section 3.2.2).
To illustrate these tasks, we consider again the previous OTS and start by testing the
null hypothesis stating that the quantity skewdo,1 is equal to 0. To this aim, we employ
the function test_ordinal_skewness(), whose main arguments are the corresponding ordinal
series (argument series) and the assumed value for skewdo,1 (argument true_skewness), which
is set to zero in this example.

> test_os <- test_ordinal_skewness(series = AustrianWages$data[[100]],

states = 0 : 5, true_skewness = 0)

> test_os$p_value

[1] 0.4239951

The p-value of the test resulted as 0.424. Therefore, the null hypothesis cannot be
rejected at any reasonable significance level and we can assume that the series was gener-
ated from an ordinal process with 0 skewness. For illustrative purposes, let us repeat the
previous test by setting true_skewness = 2.

> test_os <- test_ordinal_skewness(series = AustrianWages$data[[100]],

states = 0 : 5, true_skewness = 2)

> test_os$p_value

[1] 0.02287435

This time, the p-value indicates that the null hypothesis should be rejected at the
standard significance level α = 0.05; that is, we could assume that the true skewness is
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different from 2 at that level. However, this is no longer the case for stricter significance
levels (e.g., α = 0.01).

The construction of a confidence interval for the quantity skewdo,1 can be easily per-
formed by using the function ci_ordinal_skewness(). By default, a confidence level of 0.95 is
considered (argument level).

> ci_os <- ci_ordinal_skewness(series = AustrianWages$data[[100]],

states = 0 : 5)

> ci_os

Lower bound Upper bound

1 -0.7547583 1.794758

The lower and upper bounds of the confidence interval are given by −0.75 and 1.79,
respectively. It is worth remarking that, as we are dealing with a rather short time series
(T = 25), the interval is quite broad. In addition, note that 0 is included in the interval,
which is coherent with the results of the first hypothesis test for skewdo,1 above. Let us now
construct a confidence interval by considering a less strict confidence level, namely 0.90.

> ci_os <- ci_ordinal_skewness(series = AustrianWages$data[[100]],

states = 0 : 5, level = 0.90)

> ci_os

Lower bound Upper bound

1 -0.5498109 1.589811

As expected, the new interval has a shorter length than the previous one.
Inferential tasks for quantities dispdo,1

, and asymdo,1
can be carried out in an analogous

way by using the corresponding functions (see Table 3). Moreover, these commands can
also be used when dealing with i.i.d. data by using the argument temporal = FALSE.

4.3. Performing Data Mining Tasks

Jointly used with external functions, otsfeatures becomes a versatile and helpful
tool to carry out different data-mining tasks involving ordinal series. In this section,
for illustrative purposes, we focus our attention on three important problems, namely
classification, clustering, and outlier detection.

4.3.1. Performing OTS Classification

Firstly, we show how the output of the functions in Table 4 can be used to perform
feature-based classification. We illustrate this approach by considering the data collection
SyntheticData1, which contains 80 series generated from 4 different stochastic processes,
each one of them giving rise to 20 OTS. The underlying processes are given by two binomial
AR(1) and two binomial AR(2) models. Thus, each series in the dataset SyntheticData1
has an associated class label determined by the corresponding generating process. Using
the necessary functions, each series is replaced by a feature vector given by the quan-
tities x̂loc,do,1 , d̂ispdo,1

, âsymdo,1
, ŝkewdo,1 , κ̂do,1(1) and κ̂do,1(2). In all cases, the argument

distance = ‘Block’ (default) is used to indicate that the block distance should be employed as
the underlying block distance between states.

> features_1 <- unlist(lapply(SyntheticData1$data,

ordinal_location_1, states = 0 : 5, distance = ‘Block’))

> features_2 <- unlist(lapply(SyntheticData1$data,

ordinal_dispersion_2, states = 0 : 5, distance = ‘Block’))

> features_3 <- unlist(lapply(SyntheticData1$data,

ordinal_asymmetry, states = 0 : 5, distance = ‘Block’))

> features_4 <- unlist(lapply(SyntheticData1$data,

ordinal_skewness, states = 0 : 5, distance = ‘Block’))
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> features_5 <- unlist(lapply(SyntheticData1$data,

ordinal_cohens_kappa, states = 0 : 5, distance = ‘Block’, lag = 1))

> features_6 <- unlist(lapply(SyntheticData1$data,

ordinal_cohens_kappa, states = 0 : 5, distance = ‘Block’, lag = 2))

> feature_dataset <- cbind(features_1, features_2, features_3,

features_4, features_5, features_6)

Note that the ith row of the object feature_dataset contains estimated values charac-
terizing the marginal and serial behavior of the ith OTS in the dataset. Therefore, several
standard classification algorithms can be applied to these matrix by means of the R package
caret [21]. Package caret requires the dataset of features to be an object of class data.frame
whose last column must provide the class labels of the elements and be named ‘Class’.
Thus, as a preliminary step, we create df_feature_dataset, a version of feature_dataset properly
arranged to be used as input to caret functions, by means of the following chunk of code.

> df_feature_dataset <- data.frame(cbind(feature_dataset,

SyntheticData1$classes))

> colnames(df_feature_dataset)[7] <- ‘Class’

> df_feature_dataset[,7] <- factor(df_feature_dataset[,7])

The function train() allows one to fit several classifiers to the corresponding dataset,
while the selected algorithm can be evaluated, for instance, by leave-one-out cross-validation
(LOOCV). A grid search in the hyperparameter space of the corresponding classifier is
performed by default. First we consider a standard classifier based on k nearest neighbours
(kNN) by using method = ‘knn’ as input parameter. By means of the command trControl(),
we define LOOCV as evaluation protocol.

> library(caret)

> train_control <- trainControl(method = ‘LOOCV’)

> model_knn <- train(Class~., data = df_feature_dataset,

trControl = train_control, method = ‘knn’)

The object model_kNN contains the fitted model and the evaluation results, among
others. The reached accuracy can be accessed as follows.

> max(model_knn$results$Accuracy)

[1] 0.95

The kNN classifier achieves an accuracy of 0.95 in the dataset SyntheticData1. Specifi-
cally, it produces only 4 misclassifications. Next, we study the performance of the random
forest and the linear discriminant analysis. To this aim, we need to set method = ‘rf’ and
method = ‘lda’, respectively.

> model_rf <- train(Class~., data = df_feature_dataset,

trControl = train_control, method = ‘rf’)

> max(model_rf$results$Accuracy)

[1] 1

> model_lda <- train(Class~., data = df_feature_dataset,

trControl = train_control, method = ‘lda’)

> max(model_lda$results$Accuracy)

[1] 1

Both approaches reach a perfect accuracy of 1, thus improving the predictive effective-
ness of the kNN classifier. For illustrative purposes, let us analyze the performance of the
previous classifiers when the Hamming distance between ordinal categories is taken into
account, which is indicated through the argument distance = ‘Hamming’.
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> features_1 <- unlist(lapply(SyntheticData1$data,

ordinal_location_1, states = 0 : 5, distance = ‘Hamming’))

> features_2 <- unlist(lapply(SyntheticData1$data,

ordinal_dispersion_2, states = 0 : 5, distance = ‘Hamming’))

> features_3 <- unlist(lapply(SyntheticData1$data,

ordinal_asymmetry, states = 0 : 5, distance = ‘Hamming’))

> features_4 <- unlist(lapply(SyntheticData1$data,

ordinal_skewness, states = 0 : 5, distance = ‘Hamming’))

> features_5 <- unlist(lapply(SyntheticData1$data,

ordinal_cohens_kappa, states = 0 : 5, distance = ‘Hamming’, lag = 1))

> features_6 <- unlist(lapply(SyntheticData1$data,

ordinal_cohens_kappa, states = 0 : 5, distance = ‘Hamming’, lag = 2))

> feature_dataset <- cbind(features_1, features_2, features_3,

features_4, features_5, features_6)

> df_feature_dataset <- data.frame(cbind(feature_dataset,

SyntheticData1$classes))

> colnames(df_feature_dataset)[7] <- ‘Class’

> df_feature_dataset[,7] <- factor(df_feature_dataset[,7])

> model_knn <- train(Class~., data = df_feature_dataset,

trControl = train_control, method = ‘knn’)

> max(model_knn$results$Accuracy)

[1] 0.975

> model_rf <- train(Class~., data = df_feature_dataset,

trControl = train_control, method = ‘rf’)

> max(model_rf$results$Accuracy)

[1] 1

> model_lda <- train(Class~., data = df_feature_dataset,

trControl = train_control, method = ‘lda’)

> max(model_lda$results$Accuracy)

[1] 0.975

By considering the distance dH, the kNN classifier slightly improves its performance
while the linear discriminant analysis shows a small decrease in predictive effectiveness.
The random forest still reaches perfect results. The classification ability of alternative sets
of features, as well as the behavior of any other classifier, can be examined in an analogous
way as above.

4.3.2. Performing OTS Clustering

The package otsfeatures also provides an excellent framework to carry out clustering
of ordinal sequences. Let us consider now the dataset SyntheticData2 and assume that
the clustering structure is governed by the similarity between underlying models. In
other terms, the ground truth is given by the 4 groups involving the 20 series from the
same generating process (a specific binomial INARCH(p) process). We wish to perform
clustering and, according to our criterion, the clustering effectiveness of each algorithm
must be measured by comparing the experimental solution with the true partition defined
by these four groups.

In cluster analysis, distances between data objects play an essential role. In our case, a
suitable metric should take low values for pairs of series coming from the same stochastic
process, and high values otherwise. A classical exploratory step to shed light on the quality
of a particular metric consists of constructing a two-dimensional scaling (2DS) based on the
corresponding pairwise distance matrix. In short, 2DS represents the pairwise distances in
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terms of Euclidean distances into a two-dimensional space preserving the original values
as much as possible (by minimizing a loss function). For instance, we are going to construct
the 2DS for dataset SyntheticData2 by using two specific distances between CTS proposed

by [12] and denoted by d̂1 and d̂PMF. More specifically, given two OTS X(1)
t and X(2)

t , the
metrics d̂1 and d̂PMF are defined as follows:

d̂1
(
X(1)

t , X(2)
t
)
=

n−1

∑
i=0

(
f̂ (1)i − f̂ (2)i

)2
+

L

∑
k=1

n−1

∑
i=0

n−1

∑
j=0

(
f̂ (1)ij (lk)− f̂ (2)ij (lk)

)2
,

d̂PMF
(
X(1)

t , X(2)
t
)
=

n

∑
i=0

(
p̂(1)i − p̂(2)i

)2
+

L

∑
k=1

n

∑
i=0

n

∑
j=0

(
p̂(1)ij (lk)− p̂(2)ij (lk)

)2
,

(17)

where L = {l1, . . . , lL} is a set of L lags which must be determined in advance and the
superscripts (1) and (2) indicate that the corresponding estimates are based on the real-

izations X(1)
t and X(2)

t , respectively. Both dissimilarities assess discrepancies between the
marginal distributions (first terms) and the serial dependence structures (last terms) of both
series. Therefore, they seem appropriate to group the CTS of a given collection in terms of
underlying stochastic processes. However, note that the distance d̂1 is based on cumulative
probabilities, thus taking into account the underlying ordering existing in the series range.

Let us first create the datasets dataset_1 and dataset_2 with the features required to
compute d̂1 and d̂PMF, respectively. As the series in SyntheticData2 were generated from
binomial INARCH(1) and binomial INARCH(2) processes, we consider only the first
two lags to construct the distance, i.e., we set L = {1, 2}. We have to use the argument
features = TRUE in the corresponding functions.

> list_marginal_1 <- lapply(SyntheticData2$data,

c_marginal_probabilities, states = 0 : 5)

> list_serial_1_1 <- lapply(SyntheticData2$data,

c_joint_probabilities, states = 0 : 5, lag = 1)

> list_serial_1_2 <- lapply(SyntheticData2$data,

c_joint_probabilities, states = 0 : 5, lag = 2)

> dataset_marginal_1 <- matrix(unlist(list_marginal_1),

nrow = 80, byrow = T)

> dataset_serial_1_1 <- matrix(unlist(list_serial_1_1),

nrow = 80, byrow = T)

> dataset_serial_1_2 <- matrix(unlist(list_serial_1_2),

nrow = 80, byrow = T)

> dataset_1 <- cbind(dataset_marginal_1, dataset_serial_1_1,

dataset_serial_1_2)

> list_marginal_2 <- lapply(SyntheticData2$data,

marginal_probabilities, states = 0 : 5)

> list_serial_2_1 <- lapply(SyntheticData2$data,

joint_probabilities, states = 0 : 5, lag = 1)

> list_serial_2_2 <- lapply(SyntheticData2$data,

joint_probabilities, states = 0 : 5, lag = 2)

> dataset_marginal_2 <- matrix(unlist(list_marginal_2),

nrow = 80, byrow = T)

> dataset_serial_2_1 <- matrix(unlist(list_serial_2_1),

nrow = 80, byrow = T)

> dataset_serial_2_2 <- matrix(unlist(list_serial_2_2),

nrow = 80, byrow = T)

> dataset_2 <- cbind(dataset_marginal_2, dataset_serial_2_1,

dataset_serial_2_2)
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The 2DS planes can be built using the function plot_2d_scaling() of the R package
mlmts [22], which takes as input a pairwise dissimilarity matrix.

> library(mlmts)

> distance_matrix_1 <- dist(dataset_1)

> plot_1 <- plot_2d_scaling(distance_matrix_1,

cluster_labels = otsfeatures::SyntheticData2$classes)$plot

> distance_matrix_2 <- dist(dataset_2)

> plot_2 <- plot_2d_scaling(distance_matrix_2,

cluster_labels = otsfeatures::SyntheticData2$classes)$plot

In the above code, the syntax otsfeatures:: was employed because package mlmts

includes a data collection which is also called SyntheticData2. The resulting plots are shown
in Figure 2. In both cases, the points were colored according to the true partition defined
by the generating models. For this, we had to include the argument cluster_labels in the
function plot_2d_scaling(). This option is indeed useful to examine whether a specific metric
is appropriate when the true class labels are known. The 2DS planes reveal that both
metrics are able to identify the underlying structure rather accurately. However, there are
two specific groups of OTS (the ones represented by red and purple points) exhibiting a
certain degree of overlap in both plots, which suggests a high level of similarity between
the corresponding generating processes.

Figure 2. Two-dimensional scaling planes based on distances d̂1 (top panel) and d̂PMF (bottom panel)
for the 80 series in the dataset SyntheticData2.

To evaluate the clustering accuracy of both metrics, we consider the popular partition-
ing around medoids (PAM) algorithm, which is implemented in R through the function
pam() of package cluster [23]. This function needs the pairwise distance matrix and the
number of clusters. The latter argument is set to 4, since the series in dataset SyntheticData2
were generated from 4 different stochastic processes.

> library(cluster)

> clustering_pam_1 <- pam(distance_matrix_1, k = 4)$clustering

> clustering_pam_2 <- pam(distance_matrix_2, k = 4)$clustering
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The vectors clustering_pam_1 and clustering_pam_2 provide the respective clustering
solutions based on both metrics. The evaluation of the quality of both partitions requires
measuring their degree of agreement with the ground truth, which can be performed by
using the Adjusted Rand Index (ARI) [24]. This index can be easily computed by means of
the function external_validation() of package ClusterR [25].

> library(ClusterR)

> external_validation(clustering_pam_1,

otsfeatures::SyntheticData2$classes)

[1] 0.6545303

> external_validation(clustering_pam_2,

otsfeatures::SyntheticData2$classes)

[1] 0.6535088

The ARI index is bounded between −1 and 1 and admits a simple interpretation: the
closer it is to 1, the better the agreement between the ground truth and the experimental
solution is. Moreover, the value of 0 is associated with a clustering partition picked at
random according to some simple hypotheses. Therefore, it can be concluded that both
metrics d̂1 and d̂PMF, respectively attain moderate scores in this dataset when used with
the PAM algorithm. In particular, both partitions are substantially similar. Note that a
nonperfect value of ARI index was already expected from the 2DS plots in Figure 2 due to
the overlapping character of Clusters 1 and 4.

The classical K-means clustering algorithm can be also executed by using otsfeatures

utilities. In this case, we need to employ a dataset of features along with the kmeans()
function of package stats [13].

set.seed(123)

clustering_kmeans_1 <- kmeans(dataset_1, c = 4)$cluster

external_validation(clustering_kmeans_1,

otsfeatures::SyntheticData2$classes)

[1] 0.6545303

> set.seed(123)

> clustering_kmeans_2 <- kmeans(dataset_2, c = 4)$cluster

> external_validation(clustering_kmeans_2,

otsfeatures::SyntheticData2$classes)

[1] 0.7237974

In the previous example, slightly better results are obtained when the d̂PMF is em-
ployed along with the K-means algorithm. Concerning d̂1, its clustering accuracy is exactly
the same as the one associated with the PAM algorithm. The performance of alternative
dissimilarities or collections of features regarding a proper identification of the underlying
clustering structure could be determined by following the same steps than in the previous
experiments.

4.3.3. Performing Outlier Detection in OTS Datasets

The topic of outlier detection has received a lot of attention in the literature, either
in the nontemporal setting (see, e.g., [26] for a review on outlier detection methods for
univariate data) or in the context of time series data (see, e.g., [27] for a review on anomaly
detection in time series data). Concerning the latter subject, it is worth noting that different
notions of outlier are considered in this context (additive outliers, innovative outliers, and
others). Here, we consider the outlying elements to be whole OTS objects. More specifically,
an anomalous OTS is assumed to be a series generated from a stochastic process different
from those generating the majority of the series in the database.

To illustrate how otsfeatures can be useful to carry out outlier identification, we
create a dataset which includes two atypical elements. For it, we consider all the series in
SyntheticData3 along with the first two series in dataset SyntheticData2.
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> data_outliers <- c(SyntheticData3$data, SyntheticData2$data[1:2])

The resulting data collection, data_outliers, contains 82 OTS. The first 80 OTS can be
split into four homogeneous groups of 20 series, but those located into positions 81 and 82
are actually anomalous elements in the collection because they come from an ordinal logit
AR(1) model (see Section 3.1).

A distance-based approach to perform anomaly detection consists of obtaining the
pairwise distance matrix and proceeding in two steps as follows.

Step 1. For each element, compute the sum of its distances from the remaining objects in
the dataset, which is expected to be large for anomalous elements.

Step 2. Sort the quantities computed in Step 1 in decreasing order and reorder the indexes
according to this order. The first indexes in this new vector correspond to the most
outlying elements, while the last ones to the least outlying elements.

We follow this approach to examine whether the outlying OTS in data_outliers can
be identified by using the distance d̂1 given in (17). First, we construct the pairwise
dissimilarity matrix based on this metric for the new dataset.

> list_outl_1 <- lapply(data_outliers, c_marginal_probabilities,

states = 0 : 5)

> list_outl_2 <- lapply(data_outliers, c_joint_probabilities,

states = 0 : 5, lag = 1)

> list_outl_3 <- lapply(data_outliers, c_joint_probabilities,

states = 0 : 5, lag = 2)

> dataset_outl_1 <- matrix(unlist(list_outl_1), nrow = 82, byrow = T)

> dataset_outl_2 <- matrix(unlist(list_outl_2), nrow = 82, byrow = T)

> dataset_outl_3 <- matrix(unlist(list_outl_3), nrow = 82, byrow = T)

> dataset_outl <- cbind(dataset_outl_1, dataset_outl_2, dataset_outl_3)

> distance_matrix_outl <- dist(dataset_outl)

Then, we apply the mentioned two-step procedure to matrix distance_matrix_outl
by running

> order(colSums(as.matrix(distance_matrix_outl)), decreasing = T)[1:2]

[1] 81 82

The previous output corroborates that d̂1 is able to properly identify the two series
generated from anamalous stochastic processes. As an illustrative exercise, let us represent
the corresponding 2DS plot for the dataset containing the two outlying OTS by using a
different color for these elements.

> library(mlmts)

> labels <- c(otsfeatures::SyntheticData2$classes, 5, 5)

> plot_2d_scaling(distance_matrix_outl, cluster_labels = labels)$plot

The corresponding graph is shown in Figure 3. The 2DS configuration contains four
groups of points which are rather well separated, plus two isolated elements representing
the anomalous series appearing on the left part of the plot. Clearly, 2DS plots can be very
useful for outlier identification purposes, since they provide a great deal of information
on both the number of potential outliers and their location with respect to the remaining
elements in the dataset.
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Figure 3. Two-dimensional scaling plane based on distance d̂1 for the dataset containing 2 anomalous
series.

In the previous example, the number of outliers was assumed to be known, which is
not realistic in practice. In fact, when dealing with real OTS databases, one usually needs
to determine whether the dataset at hand contains outliers. To that aim, it is often useful
to define a measure indicating the outlying nature of each object (see, e.g., [28,29]), i.e.,
those elements with an extremely large scoring could be identified as outliers. In order to
illustrate this approach, we consider the dataset CreditRatings and compute the pairwise
distance matrix according to distance d̂PMF.

> list_cr_1 <- lapply(CreditRatings$data,

marginal_probabilities, states = 0 : 22)

> list_cr_2 <- lapply(CreditRatings$data,

joint_probabilities, states = 0 : 22, lag = 1)

> list_cr_3 <- lapply(CreditRatings$data,

joint_probabilities, states = 0 : 22, lag = 2)

> dataset_cr_1 <- matrix(unlist(list_cr_1),

nrow = 28, byrow = T)

> dataset_cr_2 <- matrix(unlist(list_cr_2),

nrow = 28, byrow = T)

> dataset_cr_3 <- matrix(unlist(list_cr_3),

nrow = 28, byrow = T)

> dataset_cr <- cbind(dataset_cr_1, dataset_cr_2,

dataset_cr_3)

> distance_matrix_cr <- dist(dataset_cr)

As before, the sum of the distances between each series and the remaining ones
is computed.

> outlier_score <- colSums(as.matrix(distance_matrix_cr))

The vector outlier_score contains the sum of the distances for each of the 28 countries.
Since the ith element of this vector can be seen as a measure of the outlying character of the
ith series, those countries associated with extremely large values in this vector are potential
outliers. A simple way to detect these series consists of visualizing a boxplot based on the
elements of outlier_score and checking whether there are points located into the upper part
of the graph.

> boxplot(outlier_score, range = 1, col = ‘blue’)

The resulting boxplot is shown in Figure 4 and suggests the existence of one series
with an abnormally high outlying score. Hence, this country could be considered to
be anomalous and its individual properties be carefully investigated. Specifically, the
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uppermost point in Figure 4 corresponds to Belgium. Note that the prior empirical approach
provides an automatic method to determine the number of outliers. Similar analyses could
be carried out by considering alternative dissimilarity measures.

Figure 4. Boxplot of the outlying scores in dataset CreditRatings based on distance d̂PMF.

5. Conclusions and Future Work

Statistical analysis of time series has experienced significant growth during the last
50 years. Although the majority of works focus on real-valued time series, ordinal time
series have received a great deal of attention during the present century. The R pack-
age otsfeatures is fundamentally an attempt to provide different functions allowing the
calculation of well-known statistical quantities for ordinal series. As well as providing
an useful description about the behavior of the time series, the corresponding quantities
can be used as input for traditional data mining procedures, as clustering, classification,
and outlier detection algorithms. Additionally, otsfeatures includes some tools enabling
the execution of classical inferential tasks, as hypothesis tests. It is worth highlighting
that several functions of the package can also be used to analyze ordinal data without
a temporal nature. The main motivation behind the package is that, to the best of our
knowledge, no previous R packages are available for a general statistical analysis of ordinal
datasets. In fact, the few software tools designed to deal with this class of databases focus
on specific tasks (e.g., clustering or classification), application areas, or types of ordinal
models. Package otsfeatures also incorporates two databases of financial time series and
three synthetic datasets, which can be used for illustrative purposes. Although otsfeatures

is rather simple, it provides the much-needed tools for the standard analyses which are
usually performed before more complex tasks as modeling, inference, or forecasting.

A description of the functions available in otsfeatures is given in the first part of this
manuscript to make clear the details behind the software and its scope. However, the
readers particularly interested in specific tools are encouraged to check the corresponding
key references, which are also provided in the paper. In the second part of the manuscript,
the use of the package is illustrated by considering several examples involving synthetic
and real data. This can be seen as a simple overview whose goal is to make the process of
using otsfeatures as easy as possible for first-time users.

There are three main ways through which this work can be extended. First, as ots-

features is under continuous development, we expect to perform frequent updates by
incorporating functions for the computation of additional statistical features which are
introduced in the future. Second, note that the statistical quantities available in otsfea-

tures are defined for univariate time series. However, multivariate time series [29,30]
are becoming more and more common due to the advances in the storage capabilities of
everyday devices. Thus, a software package allowing the computation of statistical features
for multivariate ordinal series could be constructed in the future. Note that otsfeatures

assumes that all the values of a given time series are known. Although this assumption
is entirely reasonable, it can become too restrictive in practice, since some OTS can in-
clude missing values. In this regard, it would be interesting to implement some functions
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aimed at properly correcting these values so that the computation of ordinal features is not
negatively affected.
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Abstract: In this paper, we propose a model averaging estimation for the varying-coefficient partially
linear models with missing responses. Within this context, we construct a HRCp weight choice
criterion that exhibits asymptotic optimality under certain assumptions. Our model averaging
procedure can simultaneously address the uncertainty on which covariates to include and the
uncertainty on whether a covariate should enter the linear or nonlinear component of the model. The
simulation results in comparison with some related strategies strongly favor our proposal. A real
dataset is analyzed to illustrate the practical application as well.
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missing data
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1. Introduction

Model averaging, an alternative to model selection, addresses both model uncertainty
and estimation uncertainty by appropriately compromising over the set of candidate
models, instead of picking only one of them, and this generally leads to much smaller risk
than that encountered in model selection. Over the past decade, various model averaging
approaches, with optimal large sample properties have been actively proposed for complete
data setting, such as the following: Mallows model averaging [1,2], optimal mean squared
error averaging [3], jackknife model averaging [4–6], heteroscedasticity-robust Cp (HRCp)
model averaging [7], model averaging based on Kullback–Leibler distance [8], model
averaging in a kernel regression setup [9], and model averaging based on K-fold cross-
validation [10], among others.

In practice, many datasets in clinical trials, opinion polls and market research surveys
often contain missing values. As far as we know, compared with the large body of research
regarding model averaging for fully observed data, much less attention has been paid
to performing optimal model averaging in the presence of missing data. Reference [11]
studied a model averaging method applicable to situations in which covariates are missing
completely at random, by adapting a Mallows criterion based on the data from complete
cases. Reference [12] broadened the analysis in [11] to a fragmentary data and heteroscedas-
ticity setup. By applying the HRCp approach in [7], Reference [13] developed an optimal
model averaging method in the presence of responses missing at random (MAR). In the
context of missing response data, Reference [14] constructed a model averaging method
based on a delete-one cross-validation criterion. Reference [15] proposed a two-step model
averaging procedure for high-dimensional regression with missing responses at random.

The aforementioned model averaging methods in a missing data setting are asymp-
totically optimal in the sense of minimizing the squared error loss in a large sample case,
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but they all concentrate mainly on the simple linear regression model. In the context of
missing data, it would be interesting to study model averaging in the varying-coefficient
partially linear model (VCPLM) introduced by [16], which allows interactions between a
covariate and an unknown function through effect modifiers. Due to its flexible specifi-
cation and explanatory power, this model has received extensive attention over the past
decades. Different kinds of approaches have been raised to estimate the VCPLM, such as
the following: estimation process based on the local polynomial fitting method [17], the gen-
eral series method [18], and profile least squares estimation [19]. References [20–23] have
developed various variable selection procedures in the VCPLM. As for model averaging
in the VCPLM, only the following works have been conducted. In the measurement error
model and the missing data model, References [24,25], respectively, established the limiting
distribution of the resulting model averaging estimators of the unknown parameters of
interest under the local misspecification framework. As pointed out by [26], this framework,
which was suggested by [27], is a useful tool for asymptotic analysis, but its realism is
subject to considerable criticism. Additionally, these two works studied existing model
averaging strategies, based on the focused information criterion, but did not consider any
new model averaging method with asymptotic optimality. When all data are available,
References [26,28] developed two asymptotically optimal model averaging approaches for
the VCPLM, based on a Mallows-type criterion and a jackknife criterion, respectively.

As far as we know, there remains no optimal model averaging approach developed for
the VCPLM with missing responses. The main goal of the current paper was to fill this gap.
To the best of our knowledge, this paper is the first to study the asymptotically optimal
model averaging approach for the VCPLM in the presence of responses MAR without
the local misspecification assumption. However, existing results are difficult to directly
extend to our setup for the following two reasons. Firstly, existing optimal model averaging
approaches in the VCPLM with complete data, such as the Mallows model averaging
method proposed by [26], and the jackknife model averaging method advocated by [28],
cannot be directly applied to our problem. Secondly, in contrast with the case in linear
missing data models, studied by [13,14], our analysis is significantly complicated by two
kinds of uncertainty in the VCPLM: the uncertainty on the selection of variables, and the
uncertainty on whether a covariate should be allocated to the linear or nonlinear component
of the model. These uncertainties have not been investigated much by the VCPLM literature.
Motivated by these two challenges, we suggest a new model averaging approach for the
VCPLM with responses MAR via the HRCp criterion. This new approach was developed by
introducing a synthetic response based on an inverse probability weighted (IPW) technique.
Then, HRCp model averaging could be conducted easily. Under certain assumptions, the
weights selected by minimizing the HRCp criterion are demonstrated to be asymptotically
optimal. Furthermore, we numerically illustrate that our method is always superior to its
rivals in several designs with different kinds of model uncertainty. The detailed research
procedures and methods can be found in Figure 1.

The remainder of this article is organized as follows. We construct the model averaging
estimator and establish its asymptotic optimality in Section 2. A simulation study is
conducted in Section 3 to illustrate the finite sample performance of our strategy and a
real data example is provided in Section 4. Section 5 contains some conclusions. Detailed
proofs of the main results are relegated to the Appendix A.
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Figure 1. The flow chart of our research.

2. Model Averaging Estimation

2.1. Model and Estimators

We considered the following VCPLM:

yi = μi + εi = X′
i β + Z′

i α(ui) + εi =
∞

∑
p=1

xipβp +
∞

∑
q=1

ziqαq(ui) + εi, i = 1, . . . , n, (1)

where yi is a scalar response variable, (Xi, Zi, ui) are covariates with Xi and Zi being
countably infinite, β is an unknown coefficient vector associated with Xi, α(·) is an un-
known coefficient function vector associated with Zi, εi is a random statistical error with
E(εi|Xi, Zi, ui) = 0 and E(ε2

i |Xi, Zi, ui) = σ2. As in [26,29], we assume that the dimension
of ui is one. Model (1) is flexible enough to cover a variety of other existing models, such as
the following: the linear model that was studied by [1,4], the partially linear model that

56



Mathematics 2023, 11, 1883

was studied by [30] and the varying-coefficient model that was studied by [29]. For this
model, we focus on the case where all covariates are always fully observed while some
observations of the response variable may be missing. Specifically, we assume that yi is
MAR in the sense that:

P(δi = 1|yi, Xi, Zi, ui) = P(δi = 1|Xi, Zi, ui) ≡ π(Xi, Zi, ui), (2)

where δi = 1 if yi is completely observed, otherwise δi = 0, and the selection probability
function π(Xi, Zi, ui) is bounded away from 0.

As in most literature on model averaging, we aimed to estimate the conditional mean
of the response data Y = (y1, . . . , yn)′, i.e., μ = (μ1, . . . , μn)′, which is especially useful in
prediction. However, owing to the presence of the missing data, none of the existing optimal
model averaging estimations for complete data could be directly utilized in our setting. We
addressed this problem by introducing a synthetic response Hπ,i = δiyi/π(Xi, Zi, ui). By
the aforementioned MAR assumption and some simple calculations, it is easy to observe
that E(Hπ,i|Xi, Zi, ui) = E(yi|Xi, Zi, ui) = μi and Var(Hπ,i|Xi, Zi, ui) = σ2

π,i, where σ2
π,i =[

{π(Xi, Zi, ui)}−1 − 1
]
μ2

i + {π(Xi, Zi, ui)}−1σ2. Therefore, under Model (1) and the MAR
assumption, we have:

Hπ,i = μi + επ,i, i = 1, . . . , n, (3)

where επ,i = Hπ,i −E(yi|Xi, Zi, ui) satisfying E(επ,i|Xi, Zi, ui) = 0 and Var(επ,i|Xi, Zi, ui) =
σ2

π,i. As is apparent, in Model (3) the completely observed cases are weighted by their
corresponding inverse selection probabilities, while the missing cases are weighted by zeros.
Then, the analysis is conducted on the basis of the weighted data. By introducing the fully
observed synthetic response Hπ,i, we obtain a new Model (3) the conditional expectation
of which is equivalent to that of Model (1). Thus, the HRCp model averaging estimation
for μi, the conditional mean of Model (1), can be alternatively derived by studying the
HRCp model averaging estimation for Model (3) with the synthetic data when π(Xi, Zi, ui)
is known.

Supposing that there are M candidate VCPLMs to approximate the true data gener-
ating process of yi, which is given in (1), and the mth candidate VCPLM comprises pm
covariates in Xi and qm covariates in Zi. Accordingly, there are M candidate models to
approximate Model (3), and the mth candidate model contains the same covariates as that
of the mth candidate VCPLM for (1). Specifically, the mth candidate model is:

Hπ,i = X′
(m),iβ(m) + Z′

(m),iα(m)(ui) + e(m),i + επ,i, i = 1, . . . , n, (4)

where X(m),i is the pm-dimensional sub-vector of Xi and β(m) is the corresponding unknown
coefficient vector, Z(m),i = (z(m),i1, . . . , z(m),iqm)

′ is the qm-dimensional sub-vector of Zi
and α(m)(ui) = (α(m),1(ui), . . . , α(m),qm(ui))

′ is the corresponding unknown coefficient
function, e(m),i = μi − X′

(m),iβ(m) − Z′
(m),iα(m)(ui) denotes the approximation error of the

mth candidate model. Details of the model averaging estimation procedure in our setup
are provided below.

We employed the polynomial spline-based smoothing strategy to estimate each coeffi-
cient function first. Without loss of generality, suppose that the covariate u is distributed
on a compact interval [0, 1]. Denote the polynomial spline space of degree � on interval
[0, 1] by Ψ. We introduce a sequence of knots on the interval [0, 1]: k−� = · · · = k−1 = k0 =
0 < k1 < · · · < kJn < 1 = kJn+1 = · · · = kJn+�+1, where the number of interior knots Jn
increases with sample size n. The spline basis functions are polynomials of degree � on
all sub-intervals [kj, kj+1), j = 0, . . . , Jn − 1 and [kJn , 1], and are (� − 1)-times continuously
differentiable on [0, 1]. Let B(·) = (B−�(·), . . . , BJn(·))′ be a vector of the B-spline basis
function in space Ψ. According to B-spline theory, there exists a B′(u)θ(m),q in Ψ for some
(Jn + � + 1)-dimensional spline coefficient vector θ(m),q = (θ(m),q,−�, . . . , θ(m),q,Jn)

′ such that
maxm,q supu∈[0,1] |α(m),q(u)− B′(u)θ(m),q| = O((Jn + � + 1)−d), where α(m),q(u) is the qth
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element of α(m)(u). We would like to estimate β(m) and θ(m) = (θ′(m),1, . . . , θ′(m),qm
)′ by the

least squares method based on the criterion:

min
β(m) ,θ(m)

n

∑
i=1

{
Hπ,i − X′

(m),iβ(m) −
qm

∑
q=1

z(m),iqB′(ui)θ(m),q

}2

. (5)

Let G(m),i = (z(m),i1B′(ui), . . . , z(m),iqm B′(ui))
′ be an {qm(Jn + � + 1)}-dimensional vec-

tor. Denote Hπ = (Hπ,1, . . . , Hπ,n)′, X(m) = (X(m),1, . . . , X(m),n)
′ and G(m) = (G(m),1, . . . ,

G(m),n)
′. Here, we assume that the regressor matrix X̃(m) = (X(m), G(m)) has full column

rank lm = pm + {qm(Jn + � + 1)}. The solution to the minimization problem provided in
(5) can be expressed as:

β̂(m,π) = {X′
(m)(I − Q(m))X(m)}−1X′

(m)(I − Q(m))Hπ , (6)

θ̂(m,π) = (G′
(m)G(m))

−1G′
(m)(Hπ − X(m) β̂(m,π)), (7)

where Q(m) = G(m)(G′
(m)G(m))

−1G′
(m). Let Φ(m) = (I − Q(m))X(m), then the estimator of μ

under the mth candidate model follows:

μ̂(m,π) = X(m) β̂(m,π) + G(m) θ̂(m,π) = {Q(m) + Φ(m)(Φ
′
(m)Φ(m))

−1Φ′
(m)}Hπ . (8)

Denoting P(m) = Q(m) + Φ(m)(Φ′
(m)Φ(m))

−1Φ′
(m), we obtain μ̂(m,π) = P(m)Hπ .

To smooth estimators across all candidate models, we may define the model averaging
estimator of μ as:

μ̂π(w) =
M

∑
m=1

wmμ̂(m,π) =
M

∑
m=1

wmP(m)Hπ ≡ P(w)Hπ , (9)

where w = (w1, . . . , wM)′ is a weight vector in the set W = {w ∈ [0, 1]M : ∑M
m=1 wm = 1}.

2.2. Weight Choice Criterion and Asymptotically Optimal Property

Obviously, the weight vector w, which represents the contribution of each candidate
model in the final estimation, plays a central role in (9). Our weight choice criterion was
motivated by applying the HRCp method of [7], which is designed for the complete data
setting, and is defined as follows:

Cπ(w) = ‖Hπ − μ̂π(w)‖2 + 2
n

∑
i=1

ε̂2
π,iPii(w), (10)

where ε̂π,i is the residual from a preliminary estimation, Pii(w) is the ith diagonal element
of the matrix P(w). As suggested by [7], ε̂π,i can be obtained by a model, indexed by M∗,
which includes all the regressors in the candidate models. That is:

ε̂π =
√

n/(n − lM∗)(I − PM∗)Hπ , (11)

where lM∗ is the rank of the regressor matrix in model M∗, ε̂π = (ε̂π,1, . . . , ε̂π,n)′.
So far, we have assumed that the selection probability function is known. This is,

of course, not the case in real-world data analysis, and the proposed criterion (10) is,
hence, computationally infeasible. To obtain a feasible criterion in practice, we needed to
estimate π(Xi, Zi, ui) first. Following much of the missing data literature, and under the
MAR assumption defined above, we assume that for an unknown parameter vector η and
Ti = (X′

i , Z′
i , ui)

′ we have:
π(Xi, Zi, ui) = π(Ti, η), (12)
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for some function π(·, η), the form which is known to be a finite-dimensional parameter
η. Let η̂ be the maximum likelihood estimator (MLE) of η. Then the selection probability
function can be estimated by π(Ti, η̂). In what follows, the Greek letter indexed by π̂
denotes that it is obtained by replacing π(Xi, Zi, ui) in its equation with the estimator
π(Ti, η̂). A feasible form of the weight choice criterion based on HRCp method is, thus,
given by:

Cπ̂(w) = ‖Hπ̂ − μ̂π̂(w)‖2 + 2
n

∑
i=1

ε̂2
π̂,iPii(w), (13)

and the weight vector can be obtained by:

ŵ = arg min
w∈W

Cπ̂(w). (14)

Then, the corresponding model averaging estimator of μ can be expressed as μ̂π̂(ŵ), and
its asymptotic optimality can be developed under some regularity conditions.

Some notations and definitions are required before we list these conditions. Write
l(η) = E[δ log π(T, η) + (1 − δ) log{1 − π(T, η)}], X = (X1, . . . , Xn)′, Z = (Z1, . . . , Zn)′,
U = (u1, . . . , un)′. Define the squared error loss of μ̂π(w) and the corresponding risk
as Lπ(w) = ‖μ̂π(w) − μ‖2 and Rπ(w) = E(Lπ(w)|X, Z, U). Let ξπ = infw∈W Rπ(w),
w0

m be a M × 1 vector with the mth element being 1 and the others being 0, and let Θη

be the parameter space of η. Define r as a positive integer and τ ∈ (0, 1], such that
d = (r + τ) > 0.5. Let S be a collection of functions s on [0, 1] whose rth derivative s(r)

exists and satisfies the Lipschitz condition of order τ, i.e.,

|s(r)(t∗)− s(r)(t)| ≤ Cs|t∗ − t|τ , for 0 ≤ t∗, t ≤ 1,

where Cs is a positive constant. All limiting processes discussed throughout the paper are
under n → ∞. The conditions needed to derive asymptotic optimality are as follows:

• (Condition (C.1)) l(η) has a unique maximum at η0 in Θη , where η0 is an inner point
of Θη and Θη is compact. π(Ti, η) ≥ Cπ > 0, and π(Ti, η) is twice continuously

differentiable with respect to η, where Cπ is a constant. max1≤i≤n

∥∥∥ ∂π(Ti ,η)
∂η

∥∥∥ = Op(1)
for all η’s in a neighborhood of η0.

• (Condition (C.2)) max1≤i≤n E(ε4K
i |Xi, Zi, ui) ≤ Cε < ∞ for some integer 1 ≤ K < ∞

and for some constant Cε. There exists a constant Cμ, such that max1≤i≤n |μi| ≤ Cμ.
• (Condition (C.3)) Mξ−2K

π ∑M
m=1{Rπ(w0

m)}K → 0, where K is given in Condition (C.2).
• (Condition (C.4)) Each coefficient function αq(·) ∈ S .
• (Condition (C.5)) The density function of u, say f , is bounded away from 0 and infinity

on [0, 1].
• (Condition (C.6)) max1≤m≤M max1≤i≤n P(m),ii = O(n−1/2), where P(m),ii denotes the

ith diagonal element of P(m).
• (Condition (C.7)) n1/2/ξπ → 0.
• (Condition (C.8)) lM∗ = O(n1/2).

Condition (C.1) is from [31] and is similar to Condition (C1) of [13], which ensures the
consistency and asymptotic normality of the MLE η̂. The first part of Condition (C.2) is a
commonly used assumption of the conditional moment of the random error term in model
averaging literature; see, for example, [2,4,26]. The second part of Condition (C.2) is the same
as the assumption (C.2) of [32] that bounds the conditional expectation μi. Condition (C.3)
not only requires ξπ → ∞, but also requires that M and max1≤m≤M Rπ(w0

m) tend to infinity
slowly enough. Such a condition can be viewed as an analogous version of Assumption 2.3
in [7], in which the authors proposed the HRCp model averaging method in a complete
data setting. Conditions (C.4) and (C.5) are two general requirements that are necessary
for studies of the B-spline basis, see [29,33]. Condition (C.6), an assumption that excludes
peculiar models, is from [7]. A similar condition, which is frequently used in studies of

59



Mathematics 2023, 11, 1883

optimal model averaging based on cross-validation, can be found in assumption (5.2) of [34]
and (24) of [5]. Condition (C.7) states that ξπ approaches infinity at a rate faster than n1/2,
and is the same as Condition (C.3) of [35] and implied by (A3) of [36]. Condition (C.8) limits
the increasing rate of the number of covariates. A similar condition is used in other model
averaging studies, such as (22) in [5]. In fact, (22) in [5] can be obtained by combining our
Conditions (C.7) and (C.8).

The following theorem states the asymptotic optimality of the corresponding model
averaging estimator based on the feasible HRCp criterion.

Theorem 1. Suppose that Conditions (C.1)–(C.8) hold. Then, we have

Lπ̂(ŵ)

infw∈W Lπ̂(w)
→ 1 (15)

in probability as n → ∞.

Theorem 1 reveals that when the selection probability function is estimated by π(Ti, η̂)
and the conditions listed are satisfied, ŵ, the weight vector selected by the feasible HRCp
criterion leads to a squared error loss that is asymptotically identical to that of the infeasible
best possible weight vector. This indicates the asymptotic optimality of the resulting model
averaging estimator μ̂π̂(ŵ). The detailed proof of Theorem 1 is in Appendix A.

3. A Simulation Study

In this section, we conduct a simulation study with five designs to evaluate the
performance of the proposed method, including selection of the interior knot number and
a comparison of several model selection and model averaging procedures.

3.1. Data Generation Process

Our setup was based on the setting of [26], except that the response variable is subject
to missingness. Specifically, we generated data from the following model:

yi = μi + εi =
200

∑
p=1

xipβp +
200

∑
q=1

ziqαq(ui) + εi, (16)

where Xi = (xi1, . . . , xi200)
′ and Zi = (zi1, . . . , zi200)

′ are drawn from a multivariate
normal distribution with mean 0 and covariance matrix Λ = (λij) with λij = 0.5|i−j|,
ui ∼ Uniform(0, 1), εi ∼ N(0, ζ2(x2

i2 + 0.01)). We changed the value of ζ, so that the popu-
lation R2 = var(μi)/var(yi) varied from 0.1 to 0.9, where var(·) was the sample variance.
The coefficients of the linear part were set as βp = 1/p2, and the coefficient functions were
determined by αq(ui) = sin(2πqui)/q. Under the MAR assumption, we generated the
missingness indicator δi from the following two logistic regression models, respectively:

Case 1: logit{P(δi = 1|Xi, Zi, ui)} = 1.2 + 0.5ui + 0.5xi1;
Case 2: logit{P(δi = 1|Xi, Zi, ui)} = 0.1 + 0.7ui + 0.7xi1.

For the preceding two cases, the average missing rates (MR) were about 20% and 40%,
respectively. In this simulation, we assumed the parametric function π(Ti, η) applied in
our proposed method was correctly specified in both cases.

To investigate the performance of the methods as comprehensively as possible, the
sample sizes were taken to be n = 100 and n = 200, and five simulation designs, with
different M and covariate settings, were considered. These five designs are displayed
in Table 1, in which INT(·) returns the nearest integer from the corresponding element.
So, in Design 1 and Design 3, M = 14 and 18 for the two sample sizes. We required
every candidate model to contain at least one covariate in the linear part, leading to 25 − 1
candidate models in Designs 2 and 4. In Design 5, each candidate model included at least
one covariate of {xi1, xi2, xi3, zi1} in the linear part and one covariate of {xi1, xi2, xi3, zi1}
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in the nonparametric part, and each covariate could not exist in both parts. This led to
C1

4(2
3 − 1) + C2

4(2
2 − 1) + C3

4 = 50 candidate models. In summary, in the first four designs,
Designs 1 and 3 for the nested case and Designs 2 and 4 for the non-nested case, there was,
a priori knowledge of which covariates should enter the nonparametric part of the model,
but the specification of the linear part was uncertain. The last design incorporated two
types of uncertainty: uncertainty on the choice of variables and uncertainty on whether the
variable should be in the linear or nonparametric part given that it is already included in
the model.

Table 1. Summary of designs in simulation study.

Design M Covariate Setting

1 INT(3n1/3)

All candidate models shared a common nonparametric struc-
ture of zi1α1(ui), and their parametric parts were a set of
{xi1, xi2, · · · , xiM}, with the mth candidate model including
the first m covariates. In other words, all of the candidate
models were nested.

2 25 − 1
Identical to Design 1 except that all candidate models were
non-nested, and their linear parts were constructed by vary-
ing combinations of {xi1, xi2, · · · , xi5}.

3 INT(3n1/3) Identical to Design 1 except that all candidate models shared
a common nonparametric structure of zi1α1(ui) + zi2α2(ui).

4 25 − 1 Identical to Design 2 except that all candidate models shared
a common nonparametric structure of zi1α1(ui) + zi2α2(ui).

5 50

The covariate set included {xi1, xi2, xi3, zi1}. Each candidate
model included at least one covariate in the linear part and
one covariate in the nonparametric part, and each covariate
could not exist in both parts.

3.2. Estimation and Comparison
3.2.1. Selection of the Knot Number

We used the cubic B-splines to approximate each nonparametric function, and the
spline basis matrix was produced by the function “bs(·, df)” in the“splines” package of the
R project, where the degree of freedom df = 4 + number of knots. We assessed the effect of
the knot number on the performance of our proposal based on the following risk:

Lμ =
1

1000

1000

∑
r=1

‖μ̂π̂(ŵ)(r) − μ‖2, (17)

where 1000 was the number of simulation trials and μ̂π̂(ŵ)(r) was the model averaging
estimator of μ in the rth run.

We set ζ = 1 and n = 200 to show the impact of the number of interior knots on the
risk of our proposed procedure in the five designs. Since the simulated results produced
were similar for Designs 1 and 2, and for Designs 3 and 4, we only report the results from
Designs 1, 3 and 5, which are presented in Figure 2. This figure demonstrates the risk
against df for a variety of combinations of designs and missing rates considered. From
Figure 2, we note that, for almost all situations considered, generally the risk tended to
increase with the number of knots. In other words, the larger number of knots yielded a
more serious oversmoothing effect, and, hence, lower estimation accuracy. As suggested
by this figure, for our proposed model averaging method, we specified df = 4, which
corresponded to the smallest risk. Therefore, in this simulation, we adopted the suggestion
of applying df = 4 for all five designs. In other words, the number of knots was set to be 0
in our analysis, which resulted in a basis for ordinary polynomial regression. The number
of knots of the B-spline basis function was also set to be 0 in [29], which examined the
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influence of the knot number on the model averaging method for the varying-coefficient
model when all data were available.
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Figure 2. The curves of the risk with the number of knots over 1000 replications.

3.2.2. Alternative Methods

We conducted some simulation experiments to assess the finite sample performance
of our proposed model averaging approach, called the HRCp approach, in VCPLM with
missing data. We compared it with four alternatives, the missing data problems of which
were addressed by the IPW method discussed in Section 2. The alternatives included two
well-known model selection methods (AIC and BIC) and two widely-used model averaging
methods (SAIC and SBIC). Along the lines of [32], we defined the AIC and BIC scores
under the varying-coefficient partially linear missing data framework as:

AICm = log(σ̂2
(m,π̂)) + 2n−1tr(P(m)), (18)

and
BICm = log(σ̂2

(m,π̂)) + n−1tr(P(m)) log(n), (19)

where σ̂2
(m,π̂) = n−1‖Hπ̂ − μ̂(m,π̂)‖2. These two model selection methods select the model

corresponding to the smallest score of the information criterion. The two model averaging
methods, SAIC and SBIC, respectively, assign weights:

wAICm = exp(−AICm/2)
/ M

∑
m′=1

exp(−AICm′/2) (20)

and

wBICm = exp(−BICm/2)
/ M

∑
m′=1

exp(−BICm′/2) (21)

to the mth candidate model. As suggested by a referee, we also compared our proposal
with the Mallows model averaging approach of [29] with a complete-case analysis, which
just excluded the individuals with missingness (denoted as CC-MMA). We evaluated the
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performance of these six methods by computing their risks, and the corresponding results
for Designs 1–5 are respectively displayed in Figures 3–7. For better comparison, all risks
were normalized by the risk of the AIC model selection method.
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Figure 3. Risk comparisons for Design 1.
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Figure 4. Risk comparisons for Design 2.
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Figure 5. Risk comparisons for Design 3.
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Figure 6. Risk comparisons for Design 4.
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Figure 7. Risk comparisons for Design 5.

Besides, following an anonymous referee’s suggestion, we make a comparison of
computation time between different model selection and averaging methods. To be more
specific, we examined the resulting computation time in seconds by, respectively, employing
six methods for five designs when n = 100, R2 = 0.1 and MR = 20%. The corresponding
results are listed in Table 2.

Table 2. Averaged computation time in seconds over 3 runs, when n = 100, R2 = 0.1 and MR = 20%.

Method Design 1 Design 2 Design 3 Design 4 Design 5

AIC 0.213 0.223 0.220 0.223 0.248
BIC 0.220 0.229 0.219 0.218 0.247

SAIC 0.222 0.232 0.224 0.225 0.254
SBIC 0.224 0.229 0.222 0.222 0.249

CC-MMA 0.239 0.233 0.232 0.242 0.261
HRCp 0.251 0.242 0.246 0.254 0.284

3.3. Simulation Results
3.3.1. Risk Comparison

From these five figures, we observe that, in general, model averaging approaches
worked better than model selection approaches. As shown in most figures, the risk differ-
ence in favor of model averaging over model selection was more pronounced when R2 was
small or moderate than when R2 was large. This is hardly surprising as it is hard to identify
only one best model in the presence of much noise corresponding to a small R2, while the
model averaging method shields against selecting a very poor model by compromising
across all possible models. On the other hand, when R2 was large, model selection could
sometimes be a better strategy than model averaging. A possible reason for this is that the
small noise in the data allows the model selection strategy to select the right model with
very high frequencies.

As for the comparison of HRCp method with its rivals, we found that no matter
whether the candidate models were nested or not, our proposed model averaging method
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yielded the smallest risk in almost all combinations of simulation designs, sample sizes
and missing rates considered, although when R2 was very high, the information criterion-
based model averaging methods could sometimes be marginally preferable to ours. The
superiority of our method was more marked in Design 5, which was subject to two kinds
of uncertainty simultaneously, uncertainty in covariate inclusion and uncertainty in struc-
ture, than in Designs 1–4, which were only associated with uncertainty in the linear part
specification. This finding provided evidence that our model averaging method was most
effective when both the linear and nonlinear components of the model are uncertain, as
in most real-world applications. The good performance of our method in finite samples
can be partially explained by noting that the optimality of the HRCp estimator does not
depend on the correct specification of candidate models. As expected, it was observed that
information criterion-based model averaging methods invariably produced more accurate
estimators than their model selection counterparts. The advantage of our approach became
more noticeable as the missing rate increased.

To sum up, within the context of the VCPLM with missing responses, and when the
missing data is handled by an IPW method, our proposed HRCp model averaging method
performs better than information criterion-based model selection and averaging methods in
terms of risk, especially when the model is characterized by much noise. By and large, our
results are parallel to those of [26], which investigated model averaging in the VCPLM with
complete data. Additionally, we found evidence of our proposed IPW technique-based
model averaging method, HRCp, enjoying significantly smaller risk than a model averaging
method with complete-case analysis, CC-MMA.

3.3.2. Computation Time Comparison

According to Table 2, it was hardly surprising that model selection methods always
needed less computation time than model averaging methods in all designs. Among all
model averaging methods, two data-driven methods (CC-MMA and HRCp) spent slightly
more time than the two information criterion-based methods (SAIC and SBIC). As for the
comparison between CC-MMA and HRCp, it was expected that our method would perform
slightly more slowly than CC-MMA because of the need to approximate the unknown
propensity score function. In general, from the perspective of computation time, our
method was slightly inferior to other methods, but it greatly dominated its competitors in
terms of estimation accuracy. Thus, it is worthwhile to carry out the HRCp model averaging
method to obtain a comparatively accurate estimator, even if a little computation time has
to be sacrificed.

4. Real Data Analysis

In this section, we applied our model averaging method to analyze data including
information about aged patients from 36 for-profit nursing homes in San Diego, California,
provided in [37] and studied by [26,38]. The response variable, y, was the natural logarithm
of the days in the nursing home. The five covariates were x1, a binary variable indicat-
ing whether the patient was treated at a nursing home; x2, a binary variable indicating
whether the patient was male; x3, a binary variable indicating whether the patient was
married; x4, a health status variable, with a smaller value indicating better health condition;
u = (age − 64)/(102 − 64), the normalized age of the patients was the effect modifier, with
age ranging from 65 to 102.

We considered fitting the data by the VCPLM, but we were not sure which of x1, x2,
x3 and x4 to include, and we were uncertain whether to assign a variable in the linear or
nonparametric part. Therefore, we considered all possibilities, namely, a variable in the
linear part or in the nonparametric part or not in the model. Similar to the simulation study,
we required all candidate models to include no fewer than one linear and one nonparametric
variable. This resulted in 50 possible models. In our analysis, we ignored 332 censored
observations from the original data, and only focused on the remaining 1269 uncensored
sample points. Further, we randomly selected n0 observations from the 1269 uncensored
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observations as the training set and the remaining n1 = n − n0 observations were taken as
test set, where n0 = 700, 800, 900, 1000 and 1100. Since the data points we used could be
fully observed, to illustrate the application of our method, we artificially created missing
responses in the training data, according to the following missing data mechanism:

logit{P(δi = 1|Xi, Zi, ui)} = 1 + 0.4ui + 0.4xi1. (22)

Hence, the corresponding mean missing rate was about 20%.
We employed observations in the training set to obtain estimators of model parameters

in each candidate model, and then performed four model averaging (HRCp, CC-MMA,
SAIC and SBIC) and two model selection (AIC and BIC) procedures. We fitted each
candidate model by applying the estimation method introduced in Section 2. The cubic B-
splines were adopted to approximate each coefficient function. Following the suggestion in
the simulation study, we set the number of knots to be 0. We then evaluated the predictive
performance of these six approaches by computing their mean squared prediction error
(MSPE). As suggested by [4,26], the observations in the test set were utilized to compute
the MSPE as follows:

MSPE =
1
n1

n

∑
i=n0+1

(yi − μ̂i)
2, (23)

where μ̂i is the predicted value for the ith patient based on each approach. We repeated
the above process 500 times and calculated the mean, median and standard deviation (SD)
of the MSPEs of the six strategies across the replications. For comparison convenience,
all MSPEs were normalized by dividing the MSPE of AIC, which was referred to as the
relative MSPE (RMSPE). The results are summarized in Table 3.

Table 3. The mean, median and SD of RMSPE across 500 repetitions.

n0 Method BIC SAIC SBIC CC-MMA HRCp

700 mean 0.991 0.984 0.981 0.989 0.980
median 0.997 0.989 0.988 0.993 0.985

SD 0.624 0.660 0.573 0.622 0.619

800 mean 0.993 0.987 0.985 0.990 0.982
median 0.997 0.990 0.988 0.994 0.985

SD 0.882 0.909 0.866 0.881 0.884

900 mean 0.994 0.988 0.987 0.991 0.984
median 0.995 0.989 0.988 0.992 0.986

SD 0.827 0.861 0.792 0.847 0.836

1000 mean 0.995 0.989 0.988 0.991 0.985
median 0.997 0.989 0.989 0.992 0.986

SD 0.890 0.885 0.883 0.888 0.876

1100 mean 0.995 0.990 0.990 0.991 0.986
median 0.998 0.993 0.991 0.992 0.990

SD 0.968 0.968 0.957 0.966 0.939

The results in Table 3 show that in almost all situations, our proposed HRCp method
had the best predictive efficiency among the six approaches considered. The superiority of
our method was particularly obvious in terms of the mean and median, since the smallest
mean and median were invariably produced by our method for all training sample sizes.
The SBIC always yielded a mean and median that were second to the HRCp but the best
among the remaining five methods. As for the comparison of SD, we found evidence
that our method had an edge over other methods when n0 was not less than 1000, while
the SBIC frequently yielded the smallest SD when n0 was less than 1000. This implied
that our HRCp method outperformed the SBIC method when the size of the training set
was large. We further noted that all numbers in this table were smaller than 1, which
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implied that the AIC was the worst method among those considered, irrespective of the
performance yardstick.

We also provide the Diebold and Mariano test results for the differences in MSPE,
which are displayed in Table 4. A positive/negative test statistic in this table denotes that
the estimator in the numerator leads to a bigger/smaller MSPE than the estimator in the
denominator. The test statistics and p-values listed in columns 3, 6, 7 and 9 provide evidence
that the MSPE differences between our proposed HRCp estimator and the BIC, SAIC, AIC
and CC-MMA estimators were statistically significant for all training set sizes. Considering
the HRCp and SBIC estimators, column 8 demonstrates that the advantage of HRCp over
SBIC was statistically significant in the case with n0 = 1000 and 1100. However, the same
cannot be reported about the differences in performance between the HRCp and SBIC
estimators when n0 was less than 1000, as presented in column 8. This result reinforced
the intuition that the HRCp estimator was more reliable than the SBIC estimator when the
training set size was large. The test results shown in columns 3–7 indicate that the MSPE
differences between AIC estimator and the remaining five estimators were statistically
significant in all situations. The test results given in columns 3, 8, 9 and 10 imply the same
about the differences between the BIC and the other five estimators.

Table 4. Diebold–Mariano test results for the differences in MSPE.

n0 Method
AIC

BIC

AIC

SAIC

AIC

SBIC

AIC

CC-MMA

AIC

HRCp

BIC

SAIC

BIC

SBIC

BIC

CC-MMA

700 DM 3.622 9.693 7.738 4.147 10.528 6.196 15.908 2.165
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030

800 DM 5.345 15.916 11.589 9.472 15.832 6.216 18.979 10.863
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

900 DM 3.353 10.127 8.009 4.725 11.867 5.502 14.992 5.128
p-value 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1000 DM 2.930 9.012 7.165 4.192 12.665 7.697 17.102 3.214
p-value 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.001

1100 DM 3.550 12.475 8.565 7.291 13.101 5.299 12.739 4.395
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n0 Method
BIC

HRCp

SAIC

SBIC

SAIC

CC-MMA

SAIC

HRCp

SBIC

CC-MMA

SBIC

HRCp

CC-MMA

HRCp

700 DM 9.173 3.452 −4.682 6.001 −7.245 0.942 11.426
p-value 0.000 0.001 0.000 0.000 0.000 0.346 0.000

800 DM 12.102 3.276 −4.274 8.501 −6.835 1.827 12.183
p-value 0.000 0.001 0.000 0.000 0.000 0.068 0.000

900 DM 8.740 2.935 −1.231 7.078 −5.352 1.301 10.278
p-value 0.000 0.000 0.218 0.000 0.000 0.193 0.000

1000 DM 10.586 1.404 −2.053 8.353 −2.975 3.537 9.486
p-value 0.000 0.160 0.040 0.000 0.003 0.000 0.000

1100 DM 9.937 1.154 −0.892 7.721 −1.626 4.149 11.254
p-value 0.006 0.249 0.372 0.000 0.104 0.000 0.000

5. Conclusions

Considering model averaging estimation in the VCPLM with missing responses, we
propose a HRCp weight choice criterion and its feasible form. Our model averaging process
can jointly incorporate two layers of model uncertainty: the first concerns which covariates
to include and the second further concerns whether a covariate should be in the linear
or nonparametric component. The resultant model averaging estimator is shown to be
asymptotically optimal in the sense of achieving the lowest possible squared error loss
under certain regularity conditions. The simulation results demonstrated that, in several
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designs with different types of model uncertainty, our model averaging method always
performed much better in comparison with existing methods. The real data analysis also
reveals the superiority of the proposed strategy.

There are still many issues deserving future research. Firstly, we only considered
model averaging for the VCPLM in the context of missing response data, so it would be
worthwhile considering cases where some covariates are also subject to missingness, or
missing data arise in a more general framework, such as the generalized VCPLM which
permits a discrete response variable. Secondly, in our analysis the missing data mechanism
was MAR. The development of a model averaging procedure in a more natural, but more
complex, non-ignorable missing data case and the establishment of its asymptotic property
is still challenging and warrants future studies. Thirdly, our procedure is applicable
only when the dimension parameters pm and qm are less than the sample size n. The
consideration of an asymptotically optimal model averaging method for high dimensional
VCPLM with missing data is meaningful and, thus, merits future research.
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Appendix A

Lemma A1. If Conditions (C.1) and (C.2) hold, then there exists a positive constant Cεπ , such that:

max
1≤i≤n

E(ε4K
π,i|Xi, Zi, ui) ≤ Cεπ ,

where K is given in Condition (C.2).

Proof of Lemma A1. Note that:

|επ,i| = |Hπ,i − μi| =
∣∣∣∣ δi
π(Xi, Zi, ui)

yi − μi

∣∣∣∣ ≤ |μi|+ |εi|
π(Xi, Zi, ui)

+ |μi|

≤ |μi|+ |εi|
Cπ

+ |μi| ≤
Cμ

Cπ
+ Cμ +

|εi|
Cπ

,

where the second inequality is from Condition (C.1) and the third inequality from Condition
(C.2). Let C1 =

Cμ

Cπ
+ Cμ. By means of Cp inequality, we have:

|επ,i|4K ≤ 24K−1

(
C4K

1 +

∣∣∣∣ 1
Cπ

∣∣∣∣4K
|εi|4K

)
.

According to Condition (C.2), we obtain:

max
1≤i≤n

E(ε4K
π,i|Xi, Zi, ui) ≤ Cεπ ,
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where Cεπ = 24K−1
(

C4K
1 +

∣∣∣ 1
Cπ

∣∣∣4K
Cε

)
.

Lemma A2. Under Conditions (C.1) and (C.2), one has ‖Hπ − Hπ̂‖2 = Op(1).

Proof of Lemma A2. By Cauchy–Schwarz inequality and Taylor expansion, this lemma
could be proved, based on some arguments used in the proof of Lemma 1 of [13]. So we
omitted it here.

Proof of Theorem 1. Let λ̄(·) be the largest singular value of a matrix, P̃(w) be an n × n
diagonal matrix whose ith diagonal element is Pii(w), Ωπ be an n × n diagonal matrix
whose ith diagonal element is σ2

π,i, A(w) = I − P(w), επ = (επ,1, . . . , επ,n)′. From Lemma 1,
we obtain λ̄(Ωπ) = O(1). After some simple calculations, we know P(m) is an idempotent
matrix with λ̄(P(m)) ≤ 1, and, hence, λ̄(P(w)) ≤ ∑M

m=1 wmλ̄(P(m)) ≤ 1 for any w ∈ W .
Observe that:

Cπ̂(w) = ‖Hπ̂ − μ̂π̂(w)‖2 + 2ε̂′π̂ P̃(w)ε̂π̂

= ‖Hπ̂ − μ‖2 + Lπ̂(w) + 2bn(w) + 2dn(w),

where bn(w) = (Hπ̂ − Hπ)′{μ − μ̂π̂(w)}, dn(w) = ε′π{μ − μ̂π̂(w)} + ε̂′π̂ P̃(w)ε̂π̂ . Since
‖Hπ̂ − μ‖2 is unrelated to w, minimizing Cπ̂(w) is equivalent to minimizing Cπ̂(w) −
‖Hπ̂ − μ‖2. Therefore, to prove Theorem 1, we only need to verify that:

sup
ω∈W

∣∣∣∣ Lπ̂(w)

Rπ(w)
− 1
∣∣∣∣ = op(1), (A1)

sup
ω∈W

∣∣∣∣ bn(w)

Rπ(w)

∣∣∣∣ = op(1), (A2)

sup
ω∈W

∣∣∣∣ dn(w)

Rπ(w)

∣∣∣∣ = op(1). (A3)

By the fact that∣∣∣∣ Lπ̂(w)

Rπ(w)
− 1
∣∣∣∣ = ∣∣∣∣‖μ − μ̂π(w) + μ̂π(w)− μ̂π̂(w)‖2

Rπ(w)
− 1
∣∣∣∣

≤
∣∣∣∣ Lπ(w)

Rπ(w)
− 1
∣∣∣∣+ 2

{
Lπ(w)

Rπ(w)

}1/2 ‖μ̂π(w)− μ̂π̂(w)‖
{Rπ(w)}1/2 +

‖μ̂π(w)− μ̂π̂(w)‖2

Rπ(w)
,

and
‖μ̂π(w)− μ̂π̂(w)‖2 = ‖P(w)Hπ − P(w)Hπ̂‖2

≤ {λ̄(P(w))}2‖Hπ − Hπ̂‖2 ≤ ‖Hπ − Hπ̂‖2,

it is readily seen that the result of (A1) is valid if

sup
ω∈W

∣∣∣∣ Lπ(w)

Rπ(w)
− 1
∣∣∣∣ = op(1), (A4)

and

sup
ω∈W

‖Hπ − Hπ̂‖2

Rπ(w)
= op(1). (A5)

Note that: Lπ(w)− Rπ(w) = ‖P(w)επ‖2 − 2ε′π P′(w)A(w)μ − trace{P′(w)P(w)Ωπ},
so to prove (A4), it is sufficient to show that

sup
ω∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ = op(1), (A6)
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and

sup
ω∈W

∣∣∣∣ ε′π P′(w)A(w)μ

Rπ(w)

∣∣∣∣ = op(1). (A7)

We observe, for any ν > 0, that:

Pr

{
sup
w∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ > ν

∣∣∣∣∣X, Z, U

}

≤
M

∑
m=1

M

∑
m∗=1

Pr
{∣∣∣ε′π P′(w0

m)P(w0
m∗)επ − trace{P′(w0

m)P(w0
m∗)Ωπ}

∣∣∣ > νξπ

∣∣∣X, Z, U
}

≤ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

E
[∣∣∣ε′π P′(w0

m)P(w0
m∗)επ − trace{P′(w0

m)P(w0
m∗)Ωπ}

∣∣∣2K
∣∣∣∣X, Z, U

]

≤C2ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

∣∣∣trace
{

P(w0
m)P(w0

m∗)Ωπ P(w0
m∗)P(w0

m)Ωπ

}∣∣∣K
≤C2ν−2Kξ−2K

π {λ̄(Ωπ)}K{λ̄(P(w0
m∗))}2K M

M

∑
m=1

∣∣∣trace
{

P(w0
m)P(w0

m)Ωπ

}∣∣∣K
≤C2ν−2Kξ−2K

π {λ̄(Ωπ)}K M
M

∑
m=1

{Rπ(w0
m)}K = op(1),

where C2 is a constant, the second inequality is from Chebyshev’s inequality, the third
inequality is from Theorem 2 of [39], and the last inequality is because λ̄(P(w0

m∗)) ≤ 1 and
trace{P(w0

m)P(w0
m)Ωπ} ≤ Rπ(w0

m), and the equality is ensured by Condition (C.3). Then
(A6) holds because of the following fact:

Pr

{
sup
w∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ > ν

}

= E

[
Pr

{
sup
w∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ > ν

∣∣∣∣∣X, Z, U

}]
= op(1).

By means of similar steps, we obtain

Pr

{
sup
w∈W

∣∣∣∣ ε′π P′(w)A(w)μ

Rπ(w)

∣∣∣∣ > ν

∣∣∣∣∣X, Z, U

}

≤
M

∑
m=1

M

∑
m∗=1

Pr

{∣∣∣ε′π P′(w0
m)A(w0

m∗)μ
∣∣∣ > νξπ

∣∣∣∣∣X, Z, U

}

≤ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

E

{∣∣∣ε′π P′(w0
m)A(w0

m∗)μ
∣∣∣2K
∣∣∣∣∣X, Z, U

}

≤C3ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

∥∥∥Ω1/2
π P′(w0

m)A(w0
m∗)μ

∥∥∥2K

≤C3ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

{λ̄(P(w0
m))}2K{λ̄(Ωπ)}K

∥∥∥A(w0
m∗)μ

∥∥∥2K

≤C3ν−2Kξ−2K
π {λ̄(Ωπ)}K M

M

∑
m∗=1

{
Rπ(w0

m∗)
}K

= op(1),

where C3 is a constant, and the last inequality is due to λ̄(P(w0
m)) ≤ 1 and ‖A(w0

m∗)μ‖2 ≤
Rπ(w0

m∗). Therefore, (A7) is satisfied by previous argument, which along with (A6), implies
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(A4). On the other hand, (A5) can be easily obtained by Lemma A2 and Condition (C.7). So
(A1) is correct.

From Cauchy–Schwarz inequality, (A1), Lemma A2 and Condition (C.7), one has:

sup
ω∈W

∣∣∣∣ bn(w)

Rπ(w)

∣∣∣∣ ≤ sup
ω∈W

∣∣∣∣∣
{
‖Hπ̂ − Hπ‖2‖μ − μ̂π̂(w)‖2}1/2

Rπ(w)

∣∣∣∣∣
≤ ‖Hπ̂ − Hπ‖2 sup

ω∈W

{
Lπ̂(w)

Rπ(w)

}1/2

sup
ω∈W

{
1

Rπ(w)

}1/2
= op(1).

So, (A2) is true. In what follows, we provide the proof of (A3), which yields the desired
result of Theorem 1.

By Cauchy–Schwarz inequality and some algebraic manipulations, we obtain:

|dn(w)| =
∣∣∣ε′π{μ − μ̂π̂(w)}+ ε̂′π̂ P̃(w)ε̂π̂

∣∣∣
≤ |ε′π A(w)μ|+

∣∣ε′π P(w)επ − trace{Ωπ P(w)}
∣∣+ ‖P(w)επ‖ · ‖Hπ − Hπ̂‖

+
n

n − lM∗
λ̄(P̃(w))‖Hπ − Hπ̂‖2 +

2n
n − lM∗

λ̄(P̃(w))‖Hπ − Hπ̂‖ · ‖Hπ‖

+
∣∣∣ε̂′π P̃(w)ε̂π − trace{Ωπ P(w)}

∣∣∣.
Therefore, (A3) is implied by:

sup
ω∈W

∣∣∣∣ ε′π A(w)μ

Rπ(w)

∣∣∣∣ = op(1), (A8)

sup
ω∈W

∣∣∣∣ ε′π P(w)επ − trace{Ωπ P(w)}
Rπ(w)

∣∣∣∣ = op(1), (A9)

sup
ω∈W

∣∣∣∣∣ ε̂′π P̃(w)ε̂π − trace{Ωπ P(w)}
Rπ(w)

∣∣∣∣∣ = op(1), (A10)

sup
ω∈W

‖P(w)επ‖
Rπ(w)

= op(1), (A11)

sup
ω∈W

∣∣∣∣ n
n − lM∗

λ̄(P̃(w))
‖Hπ − Hπ̂‖2

Rπ(w)

∣∣∣∣ = op(1), (A12)

and

sup
ω∈W

∣∣∣∣ n
n − lM∗

λ̄(P̃(w))
‖Hπ‖
Rπ(w)

∣∣∣∣ = op(1). (A13)

Similar to the proof steps in (A7) and (A6), respectively, it is not difficult to obtain (A8)
and (A9). As for (A10), it is readily seen that:

sup
ω∈W

∣∣∣∣∣ ε̂′π P̃(w)ε̂π − trace{Ωπ P(w)}
Rπ(w)

∣∣∣∣∣ ≤ sup
ω∈W

∣∣∣ε̂′π P̃(w)ε̂π − trace{Ωπ P̃(w)}
∣∣∣/ξπ

≤ sup
ω∈W

∣∣∣ε̂′π P̃(w)ε̂π − ε′π P̃(w)επ

∣∣∣/ξπ + sup
ω∈W

∣∣∣ε′π P̃(w)επ − trace{Ωπ P̃(w)}
∣∣∣/ξπ .

(A14)

Following an argument similar to that used in [7], we know that both two terms in
the second line of (A14) are equal to op(1). So, (A10) is valid. We now prove (A11) and
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(A12). From Lemma A1, we find that E(ε4
π,i) = E{E(ε4

π,i|Xi, Zi, ui)} ≤ Cεπ , and, thus,
‖επ‖ = (∑n

i=1 ε2
π,i)

1/2 = Op(n1/2). Consequently, based on Condition (C.7), we have:

sup
ω∈W

‖P(w)επ‖
Rπ(w)

≤ λ̄(P(w))‖επ‖
/

ξπ ≤ Op(n1/2)
/

ξπ = op(1).

So, we establish (A11). By Condition (C.6), it is easy to show that supω∈W λ̄(P̃(w)) =

Op(n−1/2). This, together with Conditions (C.7) and (C.8), and Lemma A2, yields:

sup
ω∈W

∣∣∣∣ n
n − lM∗

λ̄(P̃(w))
‖Hπ − Hπ̂‖2

Rπ(w)

∣∣∣∣ ≤ n
n − lM∗

sup
ω∈W

λ̄(P̃(w))‖Hπ − Hπ̂‖2ξ−1
π

= O(1)Op(n−1/2)Op(1)op(n−1/2) = op(1).

So, (A12) is valid. From triangle inequality, Condition (C.2) and Lemma A1, we see
that ‖Hπ‖ ≤ ‖μ‖+ ‖επ‖ = Op(n1/2). Hence, following the step of proving (A12), (A13) is
valid. The proof of Theorem 1 is, thus, completed.
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1. Introduction

Data can be reported at different levels due to various considerations including eco-
nomic, confidentiality, and data collection difficulty. For example, the US Census Bureau
reports income at the household level. The aggregate-level data in this example are house-
hold income, which is a measure of the combined incomes of all people sharing a particular
household or place of residence. The individual-level data in this example are individuals’
incomes. The aggregate-level data are defined as data aggregated from individual-level
data by groups. Although there are risks in estimating individual-level relationships based
on aggregate-level data, such as unequal correlations between variables in aggregate-level
data and between the same variables in individual-level data [1,2], researchers continue to
use aggregate-level data because in many situations, individual-level data are not available
and valid methods for estimating individual-level relationships based on aggregate-level
data can be derived [1,3]. The terms “individual” and “aggregate” refer to the different
levels and units of analysis [1].

This article intends to solve the problem of estimating models describing an individual-
level relationship based on an aggregate-level response variable Y and individual-level
predictors X. Examples of data situations include survey data, multivariate time series,
social data, and biological data, collected and reported at different levels.

Our interest in developing methods to analyze aggregate data was motivated by
real-life examples. One example is group testing of infectious diseases in bio-statistics.
To reduce the costs, a two-stage sequential testing strategy is applied. In the first stage,
group testing is conducted. Individuals showing positive in the first stage are called
back for a follow-up individual test. With the first-stage group testing data available,
analyses can be conducted. The second example is consumer demand studies in economics.
The consumer’s characteristics data are available at the individual level, whereas the
consumer’s purchase data are available only at the aggregate level. The third example is
the analysis of multivariate time series. It is likely that different time series are reported at
different frequencies. To study the relationships between multiple time series with different
frequencies, researchers need to develop statistical methods.

Mathematics 2023, 11, 746. https://doi.org/10.3390/math11030746 https://www.mdpi.com/journal/mathematics75
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Suppose there are n observations in the sample, (Xi, Yi), i = 1, 2, . . . , n, X ∈ Rp, Y ∈ R,
aggregated into K groups, G1, G2, . . . , GK, with group sizes, respectively, of n1, n2, · · · , nK,
∑ ng = n. Denote the set of observations in Group g as Gg = {g1, g2, . . . , gng}. Aggregate-
level X and Y, i.e., (X∗

g , Y∗
g ), g = 1, 2, . . . , K are

X∗
g = ∑

i∈Gg

Xi =
ng

∑
i=1

Xgi and Y∗
g = ∑

i∈Gg

Yi =
ng

∑
i=1

Ygi. (1)

Note that Y∗
g can be any summary statistic calculated from individual-level Y in Group

g, and we study summation aggregation in this paper.
Researchers have solved this problem for linear models [4–6]. Suppose the linear

model describing individual-level data (Xi, Yi) is

Yi = XT
i β + εi, i = 1, 2, . . . , n.

Then, the corresponding model describing the aggregated data (X∗
g , Y∗

g ) is

Y∗
g = (X∗

g)
T β + ε∗g, g = 1, 2, . . . , K,

where ε∗g = ∑i∈Gg εi is the aggregate-level error so that weighted least squares (WLS) can
be applied when εi ∼ i.i.d. N(0, σ2) [4]. More estimators have been proposed for linear
regression based on aggregate data or partially aggregate data including Palm and Nijman’s
MLE estimator [5] and Rawashdeh and Obeidat’s Bayesian estimator [6].

Although the estimations of linear regression models in the above data situation have
been well studied, more studies are needed for the estimations of other regression models.
The aim of this article is to study the estimations of logistic models in the data situation
of aggregate-level Y and individual-level X. We derive the likelihoods and our estimators
with different optimization methods in Section 2, conduct simulation studies to evaluate
and compare the performances of different estimators in Section 3, illustrate the use of
different estimators in real data-based studies in Section 4, provide discussions in Section 5,
and draw conclusions in Section 6.

2. Methods

Suppose n independent observations (Xi, Yi) are modeled by a logistic model

log(
P(Yi = 1)

1 − P(Yi = 1)
) = XT

i β, i = 1, 2, . . . , n. (2)

Then, Yi ∼ Bernoulli (πi), where πi = P(Yi = 1) = exp(XT
i β)

1+exp(XT
i β)

. When individual-level

X and Y are both available, the logistic model as a general linear model can be estimated
using a range of methods including the Newton–Raphson method and Fisher’s scoring
method [7,8].

2.1. Likelihood of Aggregate-Level Y and Individual-Level X

When individual-level Y is not available, we can derive estimators based on aggregate-
level Y and individual-level X. Suppose the n observations of (Xi, Yi) are aggregated
into K groups, as described in the introduction section, with the aggregated data (X∗

g , Y∗
g ),

g = 1, . . . , K, defined in Equation (1).
Aggregate-level Y is obtained by summing all Y within each group. Thus, the dis-

tribution of the sum of multiple independent random variables is helpful for studying
data aggregation. In our logistic regression scenario, we need to calculate the sum of
multiple Bernoulli random variables. In statistics, the Poisson binomial distribution is the
distribution of a sum of independent Bernoulli random variables, which do not necessarily
have different success probabilities [9,10]. The term PoissonBinomial(n, (π1, π2, · · · , πn))
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is used to refer to the distribution of the sum of n independent Bernoulli random variables
with success probabilities π1, π2, · · · , πn [9].

Because Y∗
g is the sum of ng independent Bernoulli random variables,

Y∗
g ∼ PoissonBinomial(ng, (πg1, πg2, · · · , πgng)), (3)

where the success probability for the ith individual in Group g is

πgi = P(Ygi = 1) =
exp(XT

giβ)

1 + exp(XT
giβ)

. (4)

Denote the individual likelihood for Y∗
g as Lg(β) = P(Y∗

g ; Xg1, . . . , Xgng , β). Then, the
aggregate likelihood L(β) = ∏K

g=1 Lg(β).

2.2. Calculation and Maximization of Likelihood

Computing the likelihood function needs to calculate the probability mass func-
tion for Y∗

g ∼ PoissonBinomial(ng, (πg1, πg2, . . . , πgng)). The variable Y∗
g will reduce to

Binomial(ng, π) when πg1 = πg2 = · · · = πgng . This case can happen when aggregation is
based on the values of X and the individual-level predictors Xi are the same within each
group. This specific aggregation has been well studied in the topic of logistic regression
based on aggregate data [7,11]. We consider aggregation not based on X, i.e., allowing
different values of X in a group, in this paper.

In general, for a variable Y ∼ PoissonBinomial(n, (π1, π2, . . . , πn)), the probability
mass function is P(Y = y) = ∑A∈Fy ∏i∈A πi ∏j∈Ac(1−πj), where Fy is the set of all subsets
of y integers that can be selected from {1, 2, 3, . . . , n} and Ac is the complement of A [9].
The set Fk contains (n

k) elements so the sum over it is computationally intensive and even
infeasible for large n. Instead, more efficient ways were proposed, including the use of
a recursive formula to calculate P(Y = y) based on Pr(Y = k), k = 0, . . . , y − 1, which
is numerically unstable for large n [12], and the inverse Fourier transform method [13].
Hong [10] further developed it by proposing an algorithm that efficiently implements the
exact formula with a closed expression for the Poisson binomial distribution. We adopted
Hong’s algorithm [10] and exact formula in calculating the likelihood function L(β) since
they are more precise and numerically stable.

Commonly used optimization methods were adopted to maximize the likelihood L(θ),
including (1) Nelder and Mead’s simplex method (NM) [14], (2) the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method [15], and (3) the conjugate gradient (CG) method [16].

2.3. Large-Sample Properties of Estimators

As mentioned above, our proposed estimators are obtained by maximizing the
aggregate likelihood L(β) using different optimization methods (NM, BFGS, and CG).
The MLE β̂MLE is an estimator that maximizes the aggregate likelihood function, i.e.,
β̂MLE = argmaxβL(β). If our three optimization methods can always obtain the maximizer
of L(β), the three estimators will be equal and exactly the same as the MLEs.

In practice, the three optimization methods may not obtain the same value as the
MLE. We observed that as the sample size increases, the values obtained using the three
optimizations become closer and nearly the same for a large sample size. In discussing
large-sample properties, we refer to the scenario of an infinite number of observations and
assume that the three optimization methods can always obtain MLEs under the scenario
of large samples, i.e., the scenario of an infinite number of observations. Then, our three
estimators are identical to the MLE and have the same large-sample properties as the MLE.
We add a cautious note that if our estimators are still quite different from the MLE under
the large-sample scenario, we cannot state that our estimators have the same large-sample
properties as the MLE.
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The large-sample properties of the MLE β̂MLE [17] include (i) consistency, i.e., β̂MLE →
β in probability, and (ii) asymptotic normality, i.e., β̂MLE ∼ N(β, I(β)−1), where I(β) is the
expected information matrix, defined as the negative expectation of the second derivative
of the log-likelihood. The expected information matrix can be approximated using the
observed information matrix, which is the negative of the second derivative (the Hessian
matrix) of the log-likelihood function [17].

2.4. Software Implementation

All analyses in this paper were conducted using R software (version 4.2.0). Multiple R
packages were used as follows:

• The PoissonBiomial package. This package implements multiple exact and approxi-
mate methods to calculate Poisson binomial distributions [10]. We used this package
to calculate the Poisson binomial distributions and aggregate likelihood L(β).

• The stats package. This package contains the optim() function, which can conduct
general-purpose optimization based on multiple optimization methods, including
the Nelder–Mead, BFGS, and CG methods. We used this function to obtain our three
estimators using three optimization methods.

• The glm package. This package can be used to fit generalized linear models including
logistic regression. We used this package to conduct logistic regression.

2.5. Computational Burden

The computational burden of our method relies on three factors: (1) p, (2) aggregate-
level data sample size K, and (3) group size ng.

Our estimator for β is obtained by maximizing the aggregate likelihood L(β) =

∏K
g=1 Lg(β), β ∈ Rp using three optimization methods (NM, BFGS, and CG). The number

of evaluations of the optimization function L(β) and the derivatives will increase with
respect to an increase in p. Large p will decrease the performance. Given a small fixed
number p, the number of function evaluations is O(1). Because L(β) = ∏K

g=1 Lg(β), the
computational amount for L(β) is K times the computational amount for Lg(β).

The computation of Lg(β) includes two steps. In Step 1, the success probabilities are
calculated using Equation (4). The computational burden of Step 1 is O(ng). In Step 2,
the probability mass for a Poisson binomial random variable described in Equation (3) is
calculated. This step adopts Hong’s Algorithm A, which is an efficient implementation
of the discrete Fourier transform of the characteristic function (DFT-CF) of the Poisson
binomial distribution [10]. The computational burden of Step 2 is O(n2

g). In total, the
computational burden of our estimation method is O(1)× K × O(n2

g) = O(Kn2
g), given a

small constant p.

3. Simulation Studies

We conducted simulation studies to evaluate the performance of the five estimators. The
first estimator, named individual-LR, is the logistic regression estimator based on individual-
level X and Y. This estimator is infeasible when only aggregate Y is available. Because
aggregate-level Y contains less information compared to individual-level Y, we expect that
this infeasible estimator can provide an upper bound for the performance of feasible estimators
based on aggregate-level Y. The second estimator, named naive LR, is the logistic regression
estimator based on the mean X in each group and the aggregate Y, i.e., Y∗

g ∼ Bin(ng, X∗
g/ng),

g = 1, 2, . . . , K. This estimator can provide a rough approximate estimation.
Estimators 3 to 5 are our estimators that maximize the aggregate likelihood L(β) using

the Nelder–Mead optimization, CG optimization, and BFGS optimization, named aggregate
LR with NM, aggregate LR with CG, and aggregate LR based on BFGS, respectively.

The performances of the estimators were compared in three scenarios. In each scenario,
simulations were conducted with sample sizes (K = 300, 500, 1000), equal group sizes
(ng = 7, 30), and different parameter values. Data were generated as follows:
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• In Scenario 1, Xi1 ∼ N(0, 1), Xi = (1, Xi1)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β)),

β = (1,−2)T (Scenario 1A) or (1, 3)T (Scenario 1B).
• In Scenario 2, Xi1 ∼ N(0, 1), Xi2 ∼ t(d f = 5), Xi = (1, Xi1, Xi2)

T ,

Yi ∼ Bernoulli(eXT
i β/(1 + eXT

i β)), β = (−1, 1, 2)T (Scenario 2A) or (0,−2, 1)T

(Scenario 2B).
• In Scenario 3, (Xi1, Xi2) ∼ BivariateNormal(0, 2, 1, 4, ρ = 0.5), Xi3 ∼ Cauchy(0, 1),

Xi = (1, Xi1, Xi2, Xi3)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β)), β = (−1, 1, 0,−1)T

(Scenario 3A) or (0,−2, 1, 1)T (Scenario 3B).

The bias, variance, mean square error (MSE), and mean absolute deviation (MAD) of
each of the five estimators’ (E1 to E5) model parameters (β0, . . . , βp) were calculated. De-
note the bias, variance, MSE, and MAD of the q-th estimator of β j as Bias(β̂ j,Eq),Var(β̂ j,Eq),
MSE(β̂ j,Eq), andMAD(β̂ j,Eq). The average squared bias, variance, MSE, and MAD of the
qth estimator were calculated as

Bias2(Eq) = [(Bias2(β̂0,Eq) + · · ·+ (Bias2(β̂p,Eq)]/(p + 1),

Var(Eq) = [Var(β̂0,Eq) + · · ·+ Var(β̂p,Eq)]/(p + 1),

MSE(Eq) = [MSE(β̂0,Eq) + · · ·+ (MSE(β̂p,Eq)]/(p + 1),

MAD(Eq) = [MAD(β̂0,Eq) + · · ·+ (MAD(β̂p,Eq)]/(p + 1).

Please note that we averaged over the squared bias instead of the bias because the
positive bias and negative bias can cancel out when averaging the bias. The average across
the parameters allows us to obtain the average performance in terms of the squared bias,
variance, MSE, and MAD and still maintain the equality of the bias, variance, and MSE, i.e.,

MSE(Eq) = Bias2(Eq) + Var(Eq).

In Table 1, we report the average squared biases and variances for the five estimators
(E1 to E5) under the different scenarios, sample sizes K, and aggregation sizes ng. As
we expected, there was a relatively large bias for the naive estimator E2, which used
an approximate likelihood by conducting logistic regressions using the average X. Our
estimators (E3 to E5) had relatively small biases because these estimators were working
on the correct and exact likelihood functions. The first estimator E1 had the smallest bias
by working on individual-level X and individual-level Y. This estimator is widely used
when individual-level Y is available. However, under the scenario we intended to solve,
only aggregate-level Y was available. Thus, the E1 estimator is infeasible. We still report
the performance of E1 to provide some measurements of the possible upper bound of the
performance. Because data aggregation will discard information, we expect that estimator
E1 will generally perform better than the estimators based on aggregate Y.

Next, we check the variances of all five estimators. The variances of all five estimators
were similar in the same magnitude level. There was no estimator that performed uniformly
better or even generally better than the other estimators. The naive estimator E2 had similar
performance or even slightly better performance in the average variance compared with
the other estimators (E1, E3–E5). Our estimators (E3 to E5) were slightly worse in terms of
variance. We think the slightly worse performance of our estimators (E3–E5) was likely due
to the nonlinear optimization to find the MLE in our estimators. In comparison, the logistic
regression estimators (E1 and E2) were calculated using iteratively re-weighted least squares
(IRLS) (logistic regression ensures global concavity so that it is simpler to find the MLE), which
was numerically more stable compared to the nonlinear optimization of a general likelihood
function using (1) Nelder and Mead’s simplex method [14], (2) the BFGS method [15], and
(3) the conjugate gradient (CG) method [16].
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Table 1. Average Squared Bias and Variance of Estimators E1 to E5 in Scenarios 1A to 3B. K is the
sample size of the aggregate data. ng is the group size in the aggregation.

Average Squared Bias Average Variance

Scen. K ng E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

1A 300 7 0.001 0.281 0.001 0.001 0.001 0.027 0.025 0.077 0.077 0.077

1A 300 30 0.000 0.344 0.001 0.001 0.001 0.006 0.018 0.071 0.071 0.071

1A 500 7 0.000 0.293 0.000 0.000 0.000 0.009 0.008 0.020 0.020 0.020

1A 500 30 0.000 0.358 0.000 0.000 0.000 0.002 0.005 0.017 0.017 0.017

1A 1000 7 0.000 0.288 0.000 0.000 0.000 0.005 0.005 0.011 0.011 0.011

1A 1000 30 0.000 0.351 0.000 0.000 0.000 0.001 0.003 0.012 0.012 0.012

1B 300 7 0.001 1.176 0.002 0.002 0.002 0.050 0.025 0.108 0.108 0.108

1B 300 30 0.000 1.367 0.000 0.000 0.000 0.012 0.014 0.099 0.098 0.099

1B 500 7 0.000 1.193 0.000 0.000 0.000 0.017 0.006 0.032 0.032 0.032

1B 500 30 0.000 1.369 0.000 0.000 0.000 0.004 0.004 0.032 0.030 0.033

1B 1000 7 0.000 1.181 0.000 0.000 0.000 0.009 0.004 0.018 0.018 0.018

1B 1000 30 0.000 1.388 0.000 0.000 0.000 0.002 0.003 0.019 0.019 0.019

2A 300 7 0.000 0.471 0.002 0.002 0.002 0.031 0.023 0.073 0.073 0.073

2A 300 30 0.000 0.523 0.004 0.004 0.004 0.007 0.016 0.071 0.071 0.071

2A 500 7 0.000 0.462 0.000 0.000 0.000 0.008 0.007 0.020 0.020 0.020

2A 500 30 0.000 0.538 0.000 0.000 0.000 0.002 0.006 0.019 0.019 0.019

2A 1000 7 0.000 0.464 0.000 0.000 0.000 0.005 0.004 0.012 0.012 0.012

2A 1000 30 0.000 0.532 0.000 0.000 0.000 0.001 0.003 0.013 0.013 0.013

2B 300 7 0.000 0.291 0.000 0.000 0.000 0.025 0.018 0.059 0.059 0.059

2B 300 30 0.000 0.336 0.003 0.003 0.003 0.006 0.016 0.066 0.066 0.066

2B 500 7 0.000 0.277 0.000 0.000 0.000 0.007 0.007 0.017 0.017 0.017

2B 500 30 0.000 0.340 0.000 0.000 0.000 0.002 0.005 0.017 0.017 0.017

2B 1000 7 0.000 0.282 0.000 0.000 0.000 0.005 0.004 0.012 0.012 0.012

2B 1000 30 0.000 0.340 0.000 0.000 0.000 0.001 0.003 0.012 0.012 0.012

3A 300 7 0.000 0.332 0.001 0.000 0.000 0.018 0.020 0.045 0.052 0.055

3A 300 30 0.000 0.345 0.003 0.002 0.001 0.004 0.019 0.045 0.049 0.055

3A 500 7 0.000 0.336 0.000 0.000 0.000 0.006 0.006 0.014 0.015 0.015

3A 500 30 0.000 0.344 0.000 0.000 0.000 0.001 0.006 0.013 0.016 0.017

3A 1000 7 0.000 0.340 0.000 0.000 0.000 0.003 0.004 0.008 0.009 0.009

3A 1000 30 0.000 0.346 0.000 0.000 0.000 0.001 0.004 0.008 0.008 0.010

3B 300 7 0.000 0.567 0.002 0.001 0.001 0.025 0.020 0.056 0.064 0.068

3B 300 30 0.000 0.603 0.005 0.004 0.003 0.006 0.014 0.063 0.069 0.077

3B 500 7 0.000 0.578 0.001 0.000 0.000 0.007 0.005 0.015 0.019 0.018

3B 500 30 0.000 0.614 0.000 0.000 0.000 0.002 0.005 0.018 0.025 0.022

3B 1000 7 0.000 0.587 0.000 0.000 0.000 0.005 0.003 0.010 0.010 0.010

3B 1000 30 0.000 0.608 0.000 0.000 0.000 0.001 0.003 0.010 0.012 0.012

We point out that although the naive estimator E2 worked on an incorrect (or approx-
imate) likelihood function, which can lead to a large bias due to the incorrect likelihood
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function, the performance of the variance of E2 did not necessarily become worse. A similar
phenomenon was the under-fitting in the data analysis. Suppose the true relationship is
a quadratic function. If a linear function is used in model fitting, the estimator will have
a large bias due to model mis-specification, whereas the variance may not increase. We
note that the main disadvantage of estimator E2 was the use of an incorrect or approximate
likelihood function, which can lead to a large bias. Using the correct exact likelihood, i.e.,
our estimators (E3 to E5), can solve the issue of bias due to the slight increase in variance
from the switch in finding the MLE from iteratively reweighted least squares (IRLS) to
nonlinear optimization using the Nelder and Mead’s simplex, BFGS, and CG methods. We
compared the decrease in bias and increase in variance and think the bias reduction will
dominate the variance increase in our estimators. We calculated the overall performance in
terms of the MSE and MAD to confirm it.

Our simulation results showed that the naive estimator had a large bias due to the
use of an incorrect or approximate likelihood function, which can hurt the MSE. Thus, in
Table 2, we report the average performance of the five estimators (E1 to E5) in terms of the
MSE and MAD. Our simulation results indicated that our proposed estimators (E3 to E5)
were better than the naive LR estimator (E2). As expected, the infeasible estimator (E1)
based on individual-level Y performed better than the other four feasible estimators (E2 to
E5) based on aggregate-level Y due to the loss of information in the data aggregation. Our
estimator based on Nelder and Mead’s simplex optimization (E3) performed slightly better
than our estimator based on BFGS optimization (E4) and CG optimization (E5).

Table 2. Average MSE and MAD of Estimators E1 to E5 in Scenarios 1A to 3B. K is the sample size of
the aggregate data. ng is the group size in the aggregation.

Average MSE Average MAD

Scen. K ng E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

1A 300 7 0.027 0.307 0.078 0.078 0.078 0.129 0.504 0.198 0.198 0.198

1A 300 30 0.006 0.362 0.072 0.072 0.072 0.062 0.558 0.192 0.192 0.192

1A 500 7 0.009 0.302 0.020 0.020 0.020 0.075 0.515 0.109 0.109 0.109

1A 500 30 0.002 0.363 0.017 0.017 0.017 0.036 0.568 0.093 0.093 0.093

1A 1000 7 0.005 0.293 0.011 0.011 0.011 0.057 0.509 0.080 0.080 0.080

1A 1000 30 0.001 0.354 0.012 0.012 0.012 0.028 0.563 0.078 0.078 0.078

1B 300 7 0.051 1.200 0.109 0.109 0.109 0.173 0.970 0.235 0.235 0.235

1B 300 30 0.012 1.380 0.099 0.098 0.099 0.084 1.046 0.222 0.221 0.222

1B 500 7 0.017 1.200 0.032 0.032 0.032 0.098 0.977 0.130 0.130 0.130

1B 500 30 0.004 1.373 0.033 0.031 0.033 0.048 1.048 0.129 0.125 0.129

1B 1000 7 0.009 1.185 0.018 0.018 0.018 0.072 0.973 0.100 0.100 0.100

1B 1000 30 0.002 1.390 0.019 0.019 0.019 0.038 1.054 0.098 0.098 0.098

2A 300 7 0.031 0.494 0.075 0.075 0.075 0.138 0.627 0.204 0.204 0.204

2A 300 30 0.007 0.539 0.075 0.075 0.075 0.065 0.661 0.200 0.200 0.200

2A 500 7 0.008 0.469 0.021 0.021 0.021 0.070 0.622 0.111 0.111 0.111

2A 500 30 0.002 0.543 0.020 0.020 0.020 0.036 0.669 0.106 0.106 0.106

2A 1000 7 0.005 0.468 0.012 0.012 0.012 0.057 0.620 0.084 0.084 0.084

2A 1000 30 0.001 0.535 0.013 0.013 0.013 0.030 0.667 0.085 0.085 0.085

2B 300 7 0.025 0.309 0.059 0.059 0.059 0.124 0.445 0.182 0.182 0.182

2B 300 30 0.006 0.352 0.068 0.068 0.068 0.060 0.464 0.180 0.180 0.180

2B 500 7 0.007 0.284 0.017 0.017 0.017 0.065 0.424 0.099 0.099 0.099
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Table 2. Cont.

Average MSE Average MAD

Scen. K ng E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

2B 500 30 0.002 0.344 0.018 0.018 0.018 0.034 0.463 0.093 0.093 0.093

2B 1000 7 0.005 0.286 0.012 0.012 0.012 0.054 0.425 0.081 0.081 0.081

2B 1000 30 0.001 0.343 0.012 0.012 0.012 0.024 0.461 0.075 0.075 0.075

3A 300 7 0.018 0.352 0.046 0.052 0.055 0.104 0.486 0.162 0.168 0.170

3A 300 30 0.004 0.364 0.047 0.051 0.056 0.049 0.495 0.161 0.165 0.170

3A 500 7 0.006 0.342 0.014 0.015 0.015 0.058 0.474 0.090 0.091 0.091

3A 500 30 0.001 0.350 0.014 0.016 0.017 0.028 0.481 0.088 0.090 0.091

3A 1000 7 0.003 0.344 0.008 0.009 0.009 0.043 0.475 0.066 0.067 0.067

3A 1000 30 0.001 0.350 0.008 0.008 0.009 0.022 0.480 0.069 0.069 0.070

3B 300 7 0.025 0.587 0.058 0.065 0.069 0.119 0.645 0.178 0.184 0.188

3B 300 30 0.006 0.617 0.068 0.073 0.079 0.057 0.656 0.180 0.184 0.190

3B 500 7 0.007 0.584 0.015 0.019 0.018 0.066 0.644 0.092 0.095 0.095

3B 500 30 0.002 0.619 0.019 0.025 0.022 0.033 0.659 0.096 0.102 0.099

3B 1000 7 0.005 0.590 0.010 0.010 0.010 0.055 0.647 0.075 0.075 0.075

3B 1000 30 0.001 0.611 0.011 0.012 0.012 0.026 0.655 0.072 0.074 0.074

We found the performances of our estimators (E3, E4, E5) were slightly worse when
the group size ng = 30 compared with the performances of our estimators when the group
size ng = 7. We expect that the performance of our estimators may decrease for a large
group size ng due to rounding errors in computation.

4. Real Data-Based Studies

We used real data to illustrate the use of our estimators and compare the different
estimators. The dataset used was the “Social-Network-Ads” dataset from the Kaggle
Machine Learning Forum (https://www.kaggle.com, accessed on 12 January 2023).

The dataset has been used by statisticians and data scientists to illustrate the use of
logistic regression in categorical data analysis. We used the dataset to illustrate the use of
our method to conduct logistic regression in the presence of data aggregation.

The Social-Network-Ads dataset in Kaggle is a categorical dataset for determining
whether a user purchased a particular product. The dataset (https://www.kaggle.com/
datasets, accessed on 12 January 2023) contains 400 people/observations. The informa-
tion about the person’s purchase action (purchased with a binary variable of 1 denotes
purchased and 0 denotes not purchased), as well as the person’s age and estimated salary,
is provided. Logistic regression has been recommended in Kaggle to model the person’s
purchase action based on the person’s age and estimated salary. We intend to apply our
method to this dataset in the presence of data aggregation.

The original dataset is at the individual level, which allows us to conduct logistic regres-
sion based on individual-level Y and X. We standardized X by X∗ = (X −mean(X))/sd(X)
in data pre-processing. Standardization of X allows for better estimation and interpretation.
Standardized coefficients β∗ are obtained by logistics regression of Y on standardized data
X∗. The original slope coefficients in β can be calculated by the formula β̂ = β̂∗ × sd(X)
and then the intercept coefficient can be calculated.

We imposed data aggregation on this dataset with an aggregation size ng = 3, 5, 7. We
randomly divided the persons into groups of size ng and calculated the group aggregate of
the purchase actions Y. Due to confidentiality and the cost of collecting individual-level
data, businesses and organizations can choose to post data information at an aggregate
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level. We mimicked the data aggregation process by random grouping and calculated
the aggregate-level Y based on the individual-level Y. We repeated the data aggregation
300 times. In this way, we generated 300 datasets, with the individual-level X and aggregate-
level Y calculated.

For each dataset, we conducted logistic regression based on individual-level X and Y
and obtained our estimator E1. Since data aggregation discards information, we evaluated
the other estimators by checking whether they were close to estimator E1. Because the true
values of the coefficients in individual-level logistic regression models are not known in real
data-based studies, we used estimator E1 as a gold-standard estimator. We compared the
other estimators based on aggregate-level Y to determine which estimator was closer to our
gold-standard estimator E1. Note that E1 is an infeasible estimator when individual-level
X is not available.

The estimator E1 was calculated based on individual-level X and individual-level Y.
The estimated value of estimator E1 remained the same in our 300 generated datasets and
E1 was treated as the gold-standard estimator; thus, we denote it as (β0, β1, β2).

Denote the estimated value of βi for the j-th estimator in the k-th dataset by β̂i,Ej(Dk).
The bias, variance, MSE, and MAD of estimators E2 to E5 for β0,β1, and β2 were calculated
by the formulae

β̂i,Ej =
300

∑
k=1

β̂i,Ej(Dk)/300

Bias(β̂i,Ej) = β̂i,Ej − βi

Var(β̂i,Ej) =
300

∑
k=1

{β̂i,Ej(Dk)− β̂i,Ej}2/300

MSE(β̂i,Ej) =
300

∑
k=1

{β̂i,Ej(Dk)− βi}2/300

MAD(β̂i,Ej) =
300

∑
k=1

|β̂i,Ej(Dk)− βi|/300

For the four estimators based on aggregate-level Y and individual-level X, i.e., E2 to
E5, we report the biases and variances in Table 3. We can see that in most cases, there
are large biases in estimating β0 and β2 and relatively smaller biases in estimating β1
using the naive estimator E2. Our proposed estimators (E3 to E5) always achieved smaller
biases compared to the naive estimator E2. This is because the naive estimator E2 used
an approximate likelihood instead of an exact likelihood, which our proposed estimators
are based on. In terms of variance, the naive estimator had a relatively smaller variance
compared with our estimators E3 to E5. We point out that the calculation algorithm used in
E2, i.e., iteratively reweighted least squares (IRLS), was more numerically stable compared
with the nonlinear optimization algorithms adopted by our estimators, i.e., Nelder and
Mead’s simplex method, the BFGS method, and the conjugate gradient method.

We then checked the overall performance of the different estimators and report the
MSE and MAD in Table 4. We found that our estimators (E3 to E5) had better performance
than the naive estimator (E2) in terms of the MSE and MAD in all situations based on the
Social-Network-Ads dataset.
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Table 3. Biases and Variances of Estimators E2 to E5 based on Aggregate-Level Y and Individual-Level
X. ng is the group size in the aggregation.

Bias Variance

Coef. ng E2 E3 E4 E5 E2 E3 E4 E5

β0 3 1.580 −0.018 0.620 −0.017 0.094 0.160 0.125 0.160

β0 5 1.721 −0.054 0.877 −0.054 0.115 0.383 0.218 0.383

β0 7 1.769 −0.156 1.019 −0.156 0.194 0.721 0.319 0.721

β1 3 −0.163 0.001 −0.073 0.001 0.002 0.003 0.002 0.003

β1 5 −0.176 0.005 −0.108 0.005 0.002 0.006 0.004 0.006

β1 7 −0.180 0.016 −0.127 0.016 0.004 0.012 0.006 0.012

β2 3 −1.007 0.039 −0.195 0.039 0.025 0.062 0.026 0.062

β2 5 −1.123 0.075 −0.258 0.075 0.043 0.174 0.053 0.174

β2 7 −1.141 0.150 −0.266 0.150 0.053 0.260 0.087 0.260

Table 4. MSE and MAD of Estimators E2 to E5 based on Aggregate-Level Y and Individual-Level X.
ng is the group size in the aggregation.

MSE MAD

Coef. ng E2 E3 E4 E5 E2 E3 E4 E5

β0 3 2.591 0.160 0.509 0.160 1.580 0.317 0.644 0.317

β0 5 3.076 0.385 0.986 0.385 1.721 0.480 0.909 0.480

β0 7 3.322 0.743 1.356 0.742 1.769 0.651 1.036 0.650

β1 3 0.028 0.003 0.008 0.003 0.163 0.041 0.077 0.041

β1 5 0.033 0.006 0.016 0.006 0.176 0.060 0.112 0.060

β1 7 0.036 0.012 0.023 0.012 0.181 0.085 0.130 0.085

β2 3 1.039 0.063 0.064 0.063 1.007 0.186 0.222 0.186

β2 5 1.304 0.179 0.120 0.179 1.123 0.325 0.297 0.325

β2 7 1.356 0.282 0.157 0.282 1.141 0.409 0.331 0.409

5. Discussion

Our estimators are obtained by maximizing the nonlinear likelihood function L(β),
β ∈ Rp. Different optimization methods can influence the performance of our estimators.
Further studies can be conducted on other optimization methods such as the genetic
algorithm or using multiple starting values. The performance of optimization is expected
to decrease when p increases.

We only consider independent individual-level data, i.e., (Xi, Yi), i = 1, 2, · · · , n. The
n observations are randomly divided into groups of size ng and the aggregate-level Y
is calculated after grouping. In this paper, we only consider the situation of “grouping
completely at random”, which means that the grouping mechanism is completely random.
The values of X and Y do not influence the grouping. Further studies can be conducted
beyond this type of grouping mechanism.

Our aggregation scheme is based on independent individual-level data. There are
more aggregations schemes. For example, temporal aggregation can aggregate dependent
data, which can generate aggregated low-frequency time series based on high-frequency
time series by summing every m consecutive time points. For example, we can aggregate
daily time series into weekly time series by summing every m = 7 consecutive daily
observations. Temporal aggregation is often based on a time series model such as an
integer-valued generalized autoregressive conditional heteroskedasticity (INGARCH) [18].
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We note that the proposed methods also allow for other link functions in addition to
the logit link. For example, when a probit link function is used, we can estimate individual-
level probit models based on aggregate-level Y and individual-level X. In addition, we
only consider binary responses in this paper. A follow-up study to extend our methods to
handle responses with more than two levels are under development.

6. Conclusions

We proposed methods to estimate logistic models based on individual-level predictors
and aggregate-level responses. We conducted simulation studies to evaluate the perfor-
mance of the estimators and show the advantage of our estimators. We then used the
Social-Network-Ads dataset to illustrate the use of our estimators in the presence of data
aggregation and compared the different estimators. Both the simulation studies and real
data-based studies have shown the advantage of our estimators in estimating logistics mod-
els describing individual-level behaviors based on aggregate-level Y and individual-level
X, i.e., when there is data aggregation in the response variable.
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Abbreviations

The following abbreviations are used in this manuscript:

BFGS Broyden–Fletcher–Goldfarb–Shanno method
CF Characteristic function
CG Conjugate gradient
DFT Discrete Fourier transform
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Abstract: Diagnostic biomarkers are often measured with errors due to imperfect lab conditions
or analytic variability of the assay. The ability of a diagnostic biomarker to discriminate between
cases and controls is often measured by the area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, among others. Ignoring measurement error can cause biased estimation
of a diagnostic accuracy measure, which results in misleading interpretation of the efficacy of a
diagnostic biomarker. Existing assays available are either research grade or clinical grade. Research
assays are cost effective, often multiplex, but they may be associated with moderate measurement
errors leading to poorer diagnostic performance. In comparison, clinical assays may provide better
diagnostic ability, but with higher cost since they are usually developed by industry. Correction for
attenuation methods are often valid when biomarkers are from a normal distribution, but may be
biased with skewed biomarkers. In this paper, we develop a flexible method based on skew–normal
biomarker distributions to correct for bias in estimating diagnostic performance measures including
AUC, sensitivity, and specificity. Finite sample performance of the proposed method is examined via
extensive simulation studies. The methods are applied to a pancreatic cancer biomarker study.

Keywords: biomarkers; correction for attenuation; measurement error

MSC: 62F10; 62H30; 62J20

1. Introduction

Most biomarkers are measured with research assays that may have poorer analytical
reproducibility as compared to clinical grade assays. However clinical assay development
is expensive, and there is no resource or incentive for academic labs to develop it. Diag-
nostic companies, on the other hand, would first evaluate if a biomarker may have good
performance, before they decide whether to invest in it to develop clinical assays. There-
fore, some potentially useful biomarkers are dropped from the pipeline due to inadequate
performance, while their performance could be adequate if they were evaluated using
clinical grade assays. An important question is whether we could quantify the potential
improvement in performance between research assays and clinical assays. This will help
in making a decision regarding the development of clinical grade biomarkers. Another
motivation is that clinical assays are usually in an ELISA format which requires a larger
volume as compared to some multiplex research assay platforms such as antibody arrays.
At the discovery and triage stage, a lot of candidates are evaluated and it is not possible to
use clinical grade assays due to blood volume constraint. Therefore, it is desirable to have
a fair appraisal of these candidates under these constraints.

A motivating example for our study is biomarker development for pancreatic cancer.
Research in Early Detection Research Network (EDRN) laboratories and elsewhere has
produced several candidate biomarkers for the detection of early-stage pancreatic ductal
adenocarcinoma (PDAC) [1]. The goal is to find biomarkers that could improve upon the
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performance of the current best marker, CA19-9 for early detection of PDAC. A study aim
of an EDRN pancreatic cancer bake-off study is to compare the performance of several
candidate biomarkers for discriminating resectable PDAC from benign pancreatic disease,
both alone and in combination with CA19-9. Resectable PDAC and benign pancreatic
disease are determined either by biopsy or by adequate follow up. The study’s goal is to
find biomarkers that can distinguish them without the need for surgery biopsy or long
term follow up. Malignant lesions will progress during follow-up, and hence the clinical
need is to be able to make a decision sooner. However, most biomarkers are measured
using research assays that have poorer analytical reproducibility as compared to clinical
grade assays. Figure 1 shows the association between a clinical assay and research assay
measures. Variability due to measurement error can attenuate diagnostic efficacy. To help
decision making during the biomarker development process, we aim to estimate the loss of
diagnostic efficacy of a biomarker due to analytic variability from measurement errors.

Standard diagnostic measures to evaluate the performance of biomarkers include
sensitivity, specificity, the receiver operating characteristic (ROC) curve, area under the
ROC curve (AUC), among others. There are several criteria for the determination of the
most appropriate cutoff value in a diagnostic test with continuous values. The Youden’s
index (sensitivity + specificity − 1) would be the point to maximize the summation of
sensitivity and specificity [2]. A second common criterion to choose the cutoff point
of a biomarker is the point on the ROC curve with minimum distance from the left-
upper corner of the unit square [3]. In the presence of biomarker measurement error,
Coffin and Sukhatme developed a bias correction method for estimation of AUC using
non-parametric kernel smoothers [4]. Faraggi derived an exact relationship between the
observed AUC and the true AUC under the assumption that the biomarker is from a normal
distribution among the controls and cases, respectively, and the measurement errors are
also normal [5]. Under most situations, ignoring measurement error can typically attenuate
AUC and hence under-estimate the efficacy of a diagnostic biomarker. In the presence of
internal reliability data, White and Xie developed bias-corrected estimators for sensitivity,
specificity, and other diagnostic measures [6]. Rosner et al. developed an approximation
method to correct for measurement error in the biomarkers, but without the normality
assumption [7]. Their approximation is based on a probit–shift model, which assumes that
the distributions of cases and controls satisfy a location-shift property. When a validation
subset is available, inverse probability weighting can be applied to adjust for bias from
biomarker measurement error [8].

The methods reviewed above, in general, assume a normal distribution for the true un-
observed biomarkers and measurement errors. One challenge in the methods for biomarker
measurement error is that the existing methods often rely on a normal or symmetric dis-
tribution of the biomarkers. However, in practice biomarker data are often skewed in the
distribution. For log normal distributions, the data will have a normal distribution after
taking a log transformation. Hence, applying the existing correction for the attenuation
method to the transformed data will be a fine approach. However, for general skewed
biomarkers, there may not be a suitable transformation so that the transformed data are
normal. This is also an important reason for the development of the new method in the
paper. An important strength of our method development is that our new method is
valid for both symmetric and skewed biomarkers. In addition, in the development of the
methods, we do not need to assume availability of either a validation subset or a reliability
subset with replicates.

In this paper, we propose a flexible method based on skew-normal distributions
under general measurement error models to adjust for estimation of AUC, sensitivity, and
specificity due to measurement errors in biomarkers. The paper is organized as follows. In
Section 2, we describe the statistical models for the problem of interest. We review a few
important corrections for attenuation methods when a reliability or validation subset is
available. In Section 3, we develop statistical methods to address our research problem of
biomarker measurement error when two different assay measurements of a biomarker are

88



Mathematics 2023, 11, 549

available. To avoid a normality assumption for the biomarker distribution, in Section 4 we
propose a more general class of distributions for biomarkers than the normal distribution. In
Section 5, results from simulation studies are presented. We demonstrate that the proposed
skew-normal biomarker correction estimator works well when the biomarkers are from a
normal distribution, and it works better than a correction for attenuation estimator when
the biomarkers are skewed. In Section 6, we illustrate the proposed method with the
pancreatic cancer biomarker study described above. In Section 7, we discuss the strengths
and limitations of the methods, and potential future developments in this research. Some
concluding remarks are given in Section 8.
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Figure 1. Upper: clinical assay versus research assay; lower: density estimation of log(clinical
CA19-9 + 1)/10 based on two bandwidths (dotted curves from wider bandwidth) .
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2. Statistical Models and Correction for Attenuation

The statistical models in the following will be general enough to include not only
the situation when replicates of a biomarker are available, but also the situation with two
different test measures of the same biomarker, such as research assays and clinical assays for
CA19–9. Under this situation, the methodology development will help in understanding
the degree of improvement of a clinical assay over a research assay. In addition, the models
may be applied to the situation when two different test measures of the same biomarker
may be linearly associated. Assume the total sample size is n. Let the disease status be
denoted by Yi for individual i, i = 1, . . . , n, in which Yi = 0 or controls and Yi = 1 for cases.
Let Wi be a biomarker assay measure from individual i, and Xi be the true underlying
biomarker. Let Mi be another assay measure of the same biomarker. We assume the
following models:

Wi = Xi + Ui, E(Ui|Xi) = 0,

Mi = α0 + α1Xi + Vi, E(Vi|Xi) = 0, (1)

where Ui is the measurement error from biomarker assay Wi, Vi is the measurement error
from biomarker assay Mi, and Ui and Vi are independent. Let μx and σx be the mean
and standard deviation of any random variable X, respectively. The first application of
model (1) is for the situation when replicates are available, in which (α0, α1) = (0, 1) and
σu = σv, where σu is the standard deviation of U. The second application of model (1) is
for the situation when clinical assay measure and research assay measure are available for
a specific biomarker in which (α0, α1) = (0, 1) but σu and σv are different. If we let Wi be
the clinical assay measure from individual i and Mi be the research assay measure, then
usually σu is smaller than σv. The third application of model (1) is when Wi is an unbiased
measure of one biomarker (i.e., true X plus an error), but Mi is a biased measure of the same
biomarker such that Mi is a linear function of Xi. The third application is common since
many research assays use a different technology (e.g., mass spectrometry) from that used
for a clinical assay (e.g., ELISA).

We first study the effect of bias when using the observed error-prone biomarker data
Wi (i = 1, . . . , n) on diagnostic performance. Let μx,0 and μx,1 denote E(X|Y = 0) and
E(X|Y = 1), respectively. By convention, we assume larger values of a biomarker are
associated with disease, that is, μx,1 ≥ μx,0. For a potential cutoff point c of the continuous
biomarker, an individual is classified as diseased if Xi ≥ c or classified as non-diseased
if Xi < c. Sensitivity of biomarker X is the true positive rate, and specificity is the true
negative rate. When biomarkers are measured with errors, the cutoff point c will likely be
different from the cutoff point when the true X is available. In this paper, for simplicity, we
assume a fixed cutoff point c that has been determined in advance. Assume there are n0
controls and n1 cases (∑n

i=1 Yi = n1). Let X(0),i, i = 1, . . . , n0 be the ith X biomarker in the
controls (Y = 0), and X(1),i, i = 1, . . . , n1 be the ith X biomarker in the cases (Y = 1), U(0),i
and U(1),i be the measurement errors in both groups, respectively. Bamber showed that the
AUC of X is known to be the same as pr(X(1) > X(0)) [9]; hence it is a general measure of
how well the biomarker distinguishes between cases and controls. Let Ax denote the AUC
when X is the true biomarker, σ2

x0
and σ2

x1
be the variances of X among controls and cases,

respectively, σ2
u,0 and σ2

u,1 be the variances of U among controls and cases, respectively.
We assume that X and U are independent, which is reasonable in general applications. If
σ2

x,0 = σ2
x,1 = σ2

x , σ2
u,0 = σ2

u,1 = σ2
u , then λ2 ≡ σ2

u/σ2
x is the intra versus inter-individual

variance ratio which provides a standardized measure of the size of measurement error.
Under this situation, if X is normally distributed among the controls and among the cases,
then the AUC based on X and the AUC based on W can be expressed as

Ax = pr(X(1) > X(0)) = Φ
(

μx,1 − μx,0√
2σx

)
,Aw = pr(W(1) > W(0)) = Φ

(
μx,1 − μx,0√
2σx
√

1 + λ2)

)
,

90



Mathematics 2023, 11, 549

where Φ(·) is the cumulative distribution function of the standard normal distribution [5].
Based on the calculation given above, Faraggi (2000) showed that the AUC with the true X
can be represented as a function of the AUC with the error-prone W and the intra versus
inter-individual variance ratio

Ax = Φ{Φ−1(Aw)
√

1 + λ2}. (2)

The correction method via (2) provides a simple adjustment for AUC estimation if the
measurement error variance is known. For example, if the AUC estimate of an error-prone
biomarker is 0.75 and if σu = σx, then the AUC from the true assay without measurement
error will be 0.83. If a clinical grade is available and if it has very small measurement error
then the expected AUC will likely be about 0.83; an improvement from the AUC of 0.75 of
the research assay.

There could be situations when the biomarker variances among the controls and cases
are different. When σx,0 may be different from σx,1, and σu,0 may be different from σu,1, the
AUC based on X and the AUC based on W can be expressed as

Ax = Φ

⎛⎝ μx,1 − μx,0√
σ2

x,0 + σ2
x,1

⎞⎠, Aw = Φ

⎛⎝ μx,1 − μx,0√
σ2

x,0 + σ2
x,1

√
1 + λ2∗)

⎞⎠,

where λ2
∗ = (σ2

u,0 + σ2
u,1)/(σ

2
x,0 + σ2

x,1). Based on the calculation given above, Reiser showed
that under this situation, the correction has the same form as (2), but the λ2 should be
replaced with λ2

∗ [10]. The correction for attenuation (CFA) method via (2) can be also
called a de-attenuation method.

Let Sex and Sew denote the sensitivity of X and W, Spx and Spw denote the specificity
of X and W, respectively. If X and U among the cases (Y = 1) are normally distributed,
then the sensitivity for X and the sensitivity for W can be expressed as

Sex = 1 − Φ
(

c − μx,1

σx,1

)
, Sew = 1 − Φ

⎛⎝ c − μx,1

σx,1

√
1 + (σ2

u,1/σ2
x,1)

⎞⎠.

If X and U among the controls (Y = 0) are normally distributed, then the specificity
for X and the specificity for W can be expressed as

Spx = Φ
(

c − μx,0

σx,0

)
, Spw = Φ

⎛⎝ c − μx,0

σx,0

√
1 + (σ2

u,0/σ2
x,0)

⎞⎠.

Based on the calculation given above, White and Xie showed that approximately

Sex ≈ 1 − Φ{Φ−1(1 − Sew)
√

1 + λ2
1}, Spx ≈ Φ{Φ−1(Spw)

√
1 + λ2

0}, (3)

in which λ2
1 = σ2

u,1/σ2
x,1, and λ2

0 = σ2
u,0/σ2

x,0 [6]. The approximation in (3) is equal if the
sample size increases to infinity. Hence, under the normality assumption given above,
sensitivity and specificity of a biomarker will be attenuated if the biomarker measurement
is measured with errors. Approximation (3) provides CFA estimation for sensitivity and
specification that may work well for symmetric biomarker data.

We will investigate this in a more general measurement error model (1) that will
include the situation with two different test measures of the same biomarker, which will
address the issue of how much improvement clinical assays may obtain over research
assays. Model (1) will also include the situation when test measure W is unbiased with
an error, while test measure M is biased but linearly associated with the true biomarker.
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Hence, further developments of the methods will be needed to address practical problems
that we described in the introduction.

3. Correction for Attenuation with Two Biomarker Measures

In this section, we will apply the existing CFA methods for the situation when two
assay measures of a biomarker are available. For example, when there are two research
grade assays for the same biomarker, we develop a CFA method to make use of the two
different research assays to achieve the best AUC estimation. The composite CFA estimator
can correct for the bias of a naive estimator which does not take into account measurement
error in the estimation of sensitivity, specificity, and AUC. We assume that the available
data are based on the measurement error model (1). First, we consider the situation when
the two test measures W and M are unbiased for the same biomarker (but with random
errors), and they satisfy a special case of (1) such that

Wi = Xi + Ui, E(Ui|Xi) = 0,

Mi = Xi + Vi, E(Vi|Xi) = 0, (4)

in which σu may be different from σv. A special case of model (4) is the design with
biomarker replicates, in which σu = σv. Under this design with replicates, estimations
of σu and σx can be obtained similarly to the standard calculation of within and between
individual variations [11,12]. An important application of (4) is when Wi is the clinical
grade assay from individual i, and Mi is a corresponding research grade assay for the same
biomarker of interest, and under this situation, σu in general would be smaller than σv.
Estimation of the parameters associated with (4) can be obtained from the following result:

Proposition 1. In model (4), let X be a random variable with mean μx < ∞ and variance σ2
x < ∞,

U be a random error with mean 0 and variance σ2
u < ∞, V be a random error with mean 0 and

variance σ2
v < ∞. Assume that X, U and V are mutually independent. Then

n−1
n

∑
i=1

(Wi + Mi)/2 → μx, n−1
n

∑
i=1

Wi Mi → σ2
x + μ2

x,

n−1
n

∑
i=1

(Wi − μx)
2 → σ2

x + σ2
u , n−1

n

∑
i=1

(Mi − μx)
2 → σ2

x + σ2
v ,

where → denotes convergence in probability.

Proposition 1 can be shown by first noting that E{(W + M)/2} = μx given that
E(U) = 0 and E(V) = 0. Because X, U and V are mutually independent, E(WM) = σ2

x +μ2
x.

Similarly, by direct calculation, var(W) = σ2
x + σ2

u , and var(M) = σ2
x + σ2

v . Hence, by the
law of large numbers, Proposition 1 has been shown. The calculations given above in
Proposition 1 are based on the assumption that the measurement error variances for the
controls (Y = 0) and for the cases (Y = 1) are the same. If σu,0 is different from σu,1, then the
calculations above for the variance components can be obtained within the control group
and case group, respectively. With the correction method (2), the corrected AUC using
W can be obtained, and the corrected AUC using M can be obtained as well. Likewise,
sensitivity and specificity estimations can be obtained by the correction method (3).

If Wi is a clinical grade assay from individual i and Mi is a corresponding research
grade assay for the same biomarker of interest, then in practice Wi will be the biomarker
assay to be used for the diagnosis of the specific disease outcome. If in case the measurement
error variance for W is not too small (compared with that for M, or vice versa), then it
will be more efficient to use the best combination of M and W. That is, in addition to
adjusting for measurement error using biomarker measures W and M, respectively, we
are interested in the best combination of them. We consider a linear combination of W
and M, γW + (1 − γ)M where γ is between 0 and 1. Under this situation, we aim for an
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optimal γ such that the variance of γW + (1 − γ)M is minimized. Under (4), this is the
same as minimizing the variance of γU + (1 − γ)V. By simple calculation, the best γ is
σ2

v /(σ2
u + σ2

v ).
Now, we investigate the situation when W is unbiased for X (although with a ran-

dom error), but M is linearly associated with X, which is the biomarker of interest to
distinguish disease outcomes (Y for disease indicator). For a more general model (1),
Mi = α0 + α1Xi + Vi, the parameters in the model, cannot be identified based on the mo-
ments of W and M only. Under this situation, the parameters in (1) can be identified
by using the moments of Y, W, M. However, with the more general model for M, it is
necessary to assume that the measurement error variances are the same for the controls and
cases. That is σ2

u,0 = σ2
u,1 and σ2

v,0 = σ2
v,1. Then γ0 and γ1 can be estimated by noting that

α1 = cov(Y, M)/cov(Y, W), γ0 = E(M− α1W). Then, we may rewrite Mi = α0 + α1Xi +Vi
as M∗

i = Xi + V∗
i , where M∗

i = {(Mi − α0)/α1} and V∗
i = Vi/α1. As a result, M∗

i is also
unbiased for Xi, but with error V∗

i . Therefore, Wi and M∗
i will follow the special case (4) dis-

cussed above. The intra versus inter-individual variance ratio λ2 can be calculated within
the controls (Y = 0) and the cases (Y = 1), respectively. The correction for attenuation (2)
for AUC, and (3) for sensitivity and specificity can be obtained as well.

In general, when research grade assays and clinical assays are available for either
the study cohort or a subset, model (4) could be reasonable for the analysis to adjust for
measurement errors in both types of measures if they have the same measurement scale.
However, if two types of different assays are from different labs, then they may have
different measurement scales. Under this situation, model (1) will be more appropriate
when the two biomarker assays are linearly associated. There is no need to assume a
validation set for the biomarker of interest. Of course, if there is a validation subset available
for the biomarker of interest, then the methods given above can be further modified. To be
focused, we will not investigate the situation with a validation subset in this paper.

4. Skew-Normal Biomarker Correction Estimator

The correction for attenuation estimator described in the last section is based on
the assumption that the true biomarker data and measurement errors are both normally
distributed. From our simulations, they may still work with limited bias for symmetric data
even though there is a small violation of normality. However, the bias could be moderate
or large if the data are very skewed. From our data example, biomarkers are often skewed.
Hence, it is important to correct biomarker measurement errors without the normality
assumptions. Methods to estimate the density function of the unobserved biomarker
based on error-prone measures can be obtained by via deconvolution [13]. However, this
approach is generally technical and very challenging in data applications. Therefore, a more
practical approach is to consider a class of distributions that contain both symmetric and
skewed distributions.

Our approach to correct for estimation of sensitivity, specificity, and AUC due to mea-
surement error is to consider a flexible class of distributions for the unobserved biomarkers.
Although there are various classes of distributions for this purpose, we propose to con-
struct bias correction based on a class of skew-normal distributions. The skew-normal (SN)
distribution was introduced by Azzalini, which includes normal distributions [14]. One
main difference between the SN distribution and the normal distribution is that the SN
contains a skewness parameter. Azzalini defined the SN distribution for a random variable
Z that has the following density

g(z, α) = 2φ(z)Φ(αz), (−∞ < z < ∞),

where λ ∈ R is the skewness parameter, φ(·) and Φ denotes the standard normal den-
sity and distribution functions, respectively. Azzalini derived the following moment
generating function:

MZ(t) = 2et2/2Φ(
αt√

1 + α2
).
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By using the moment-generating function, we can obtain E(Z) =
√

2/πδ, where
δ = α/

√
1 + α2, var(Z) = 1− (2/π)δ2, andtheskewness {(4−π)/2}{δ

√
2/π}3/{var(Z)}3/2.

Let X = ξ + ωZ, which is an SN distribution with parameters (ξ, ω, α). The density of
X can be written as

f (x, ξ, ω, α) =
2
ω

φ(
x − ξ

ω
)Φ(α

x − ξ

ω
),

where ξ and ω are the location and scale parameters, respectively, and α is the skewness
parameter. When α = 0, the specific SN distribution is a normal distribution. A logarithmic
transformation for skewed data may reduce the skewness, but the transformed data may
still be skewed. Hence, the skew-normal distribution will be more flexible in fitting
the data.

If X values were available, then ξ, ω, and α could be estimated via the maximum
likelihood estimator or the method of moments. There could be more than one root for
the parameter estimation, especially when α is close to 0, i.e., normal densityHowever,
from our numerical experience, different roots by the method of moments will still lead to
the same SN distribution. Hence, when X is observed, estimation of sensitivity, specificity,
and AUC will be valid if X is from an SN distribution. Let γ3 be the third central moment
of X. We note that μx = ξ + ωδ

√
2/π, where δ = α/

√
1 + α2, σ2

x = ω2{1 − 2(δ2/π)},
and γ3 = {(4 − π)/2}{δ

√
2/π}3/{1 − 2(δ2/π)}3/2. Because biomarker measurements

are associated with errors, additional calculations will be needed to identify the parameters
involved in the observed data. If X is SN and U is from a symmetric distribution, then
we note that E(W) = E(X), var(W) = σ2

x + σ2
u , and E(W − μx)3 = E(X − μx)3. Under

this situation, the parameters of the SN distribution can be identified as long as σ2
u can be

consistently estimated. The sensitivity of X at a point c can be estimated by calculating
pr(X ≥ c|Y = 1), in which σu may be different from σv.

A special case of model (4) is the design with biomarker replicates in which σu = σv.
Under this design with replicates, estimations of σu and σx can be obtained similarly to the
standard calculation of within and between individual variations [10, 11]. An important
application of (4) is when Wi is the clinical grade assay from individual i and Mi is a
corresponding research grade assay for the same biomarker of interest, and under this
situation, σu in general would be smaller than σv. The estimation of σ2

u,1 can follow the
procedure that we discussed in Section 3, which would need to use both the W and M
data. Then, we will estimate the parameters of the SN distribution of X(1) using data
W(1),1, . . . , W(1),n1

among the W data from the n1 cases. Based on the first three moments
of W(1) given above, the (ξ, ω, α) parameters for X(1) can be estimated by the following
estimating equations:

n1

∑
i=1

{W(1),i − ξ − ωδ
√

2/π} = 0;

n1

∑
i=1

{W(1),i − ξ − ωδ
√

2/π}2 − ω2{1 − 2(δ2/π)} − σ2
u,1 = 0;

n1

∑
i=1

{W(1),i − ξ − ωδ
√

2/π}3

{ω2{1 − 2(δ2/π)}}3/2 − {(4 − π)/2}{δ
√

2/π}3

{1 − 2(δ2/π)}3/2 = 0.

Hence, using the estimated (ξ, ω, α) from the calculations given above, the cumulative
distribution of the SN distribution at point c, pr(X ≤ c|Y = 1), is obtained. Then, the
sensitivity of X at c, pr(X ≥ c|Y = 1) is obtained by using W data from the cases. Similarly,
the specificity of X at a point c can be estimated by calculating pr(X ≤ c|Y = 0). We can
apply the estimating procedure for (ξ, ω, α) given above to estimate the SN distribution of
X(0) using data W(0),1, . . . , W(0),n0

among the W data from the n0 cases. Then, the specificity
of X at c, pr(X ≤ c|Y = 0) is obtained by using W data from the contrin in which σu may
be different from σv. A special case of model (4) is the design with biomarker replicates in
which σu = σv. Under this design with replicates, estimation of σu and σx can be obtained
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similarly to the standard calculation of within and between individual variations [10, 11].
An important application of (4) is when Wi is the clinical grade assay from individual i and
Mi is a corresponding research grade assay for the same biomarker of interest, and under
this situation, σu in general would be smaller than σv.ols.

Thereafter, as described above, the sensitivity and specificity can be estimated based
on the SN distributions by calculating the conditional distributions for cases and controls,
respectively. The ROC curve can then be obtained by calculating the sensitivity and
specificity values at a sequence of cutoff points (c). After the ROC curve is obtained,
the AUC can then be obtained. The method described above is the SN biomarker correction
estimator, which is new in the literature.

5. Simulation Study

We conducted a simulation study to examine finite sample performance of our pro-
posed skew-normal biomarker correction estimator, and the correction for attenuation
methods when diagnostic biomarkers may be measured with errors. In Table 1, we
investigate the situation when the true biomarkers X for controls and cases are either
from a normal, skew-normal, or log normal distribution, respectively. We first generated
X(0) from a normal distribution with mean 3 and standard deviation 1 for the controls.
Then, we generated the biomarkers for the cases from the same distribution, except that
E(X|Y = 1) = E(X|Y = 0) + ln(3.2). The sample size was n = 300, and the disease rate
was 50%. We also generated skew-normal biomarkers based on the same process. When
we generated skew-normal biomarkers for the controls, we first generated the data with
the parameters being ξ = 0, ω = 1, and α = 6 and then we standardized the variables so
that the variables had mean 3 and standard deviation 1. For the situation with log normal
variables, the distribution of the logarithm of the controls had a normal distribution with
mean 1 and standard deviation 0.3, and the distribution of the logarithm of the cases had a
normal distribution with mean 1.5 and standard deviation 0.3. The true AUC was about
0.795 if the true X measures were normal biomarkers, and was about 0.806 if they were
skew-normal biomarkers, and was about 0.811 if they were log normal biomarkers. To
evaluate estimation of the sensitivity and specificity, the cutoff point of the biomarker was
chosen as the point on the ROC curve which has the minimum distance from the left upper
corner of the unit square (which was the point that a perfect test would pass through) [3].
The sensitivity and specificity values are given in the tables. We generated error-prone
measures W and M based on model (4), Wi = Xi + Ui and Mi = Xi + Vi, in which U and
V are normal with σu = 1 and σv = 1. Under this model, the observed measures W and M
are like research grade biomarker replicates for the unobserved X. We calculated a naive
estimator based on M measures only (Naive–M), a CFA estimator based on W measures
(CFA–W), a CFA estimator based on M measures (CFA–M), a CFA estimator based on both
W and M measures (CFA–WM), and the proposed SN correction estimator based on both
W and M measures (SN–WM). In the tables, “bias” was calculated by taking the average of
the biases of AUC estimates from the 500 simulation replicates; “SD” denoted the sample
standard deviation of the estimates; “ASE” denoted the average of the estimated standard
errors of the estimates. We also calculated the 95% confidence interval coverage probabili-
ties (CP). The standard errors of the estimates were obtained from bootstrap. When the
biomarkers were from a normal distribution, all the three CFA methods were unbiased for
AUC, sensitivity, and specificity estimation, and the CFA method based on the best linear
combination of W and M was the most efficient among the three correction estimators. The
SN correction estimator had slightly bigger biases than the CFA-WM estimates when the
biomarkers were from a normal distribution, but it was still valid since the biases were
relatively less than the SE. When the biomarkers were from a skew-normal distribution,
some of the three CFA estimates may have been biased. When the biomarkers were from a
SN distribution, the SN correction estimators were better than the CFA estimators in terms
of bias and efficiency in most cases. The bias of the SN correction estimate for sensitivity
was not smaller than the CFA estimates; this was due to finite sample performance, since
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the bias disappeared when we increased the sample size. When the biomarkers were
from a log normal distribution, the CFA estimators and SN correction estimator had small
to moderate biases. The SN correction estimator was better than the CFA estimator for
AUC estimation.

We made the choice of the parameters μx = 3 and σx = 1 in Table 1 in the controls,
since assay data are positive in general. The result will not change if we replace μx = 3
with another value. However, the result will be different if we change the variance of X
or the variance of the measurement errors. In the Appendix A, we consider the situation
similar to Table 1 but with σu = σv = 0.71 (Table A1). The biases in Table A1 were smaller
than those from Table 1 in general. In Table A2, we consider the situation similar to Table 1
but with σu = σv = 1.22. The biases in Table A2 were typically larger than those from
Table 1 due to larger measurement errors.

In Table 2, we also investigated a scenario similar to Table 1, but the measurement
error variances for W and M are σu = 0.2 and σv = 1. The scenario in this table can be
considered as the case when Wi was a clinical grade measure and Mi was a research grade
measure, if they had the same measurement scale. The result from Table 2 was slightly
different from that from Table 1. When the biomarkers were from a normal distribution,
the three CFA estimators and the SN correction estimator were unbiased. There was a
very minor difference between the CFA estimator using W data and the CFA estimator
using the best linear combination of W and M. This was reasonable since if W had a much
smaller measurement error variance than that of M, then the additional contribution of M
would be very limited. Hence, when clinical grade biomarker measures are available and
if they have very minimal measurement errors, then research grade measures in general
would not provide additional efficiency gain in AUC, sensitivity, or specificity estimation.
When the true biomarkers were from a skew-normal distribution, the CFA–M estimator
was biased due to skewed biomarkers. The biases from the CFA estimator using W or using
both W and M were small. The reason was likely because the measurement error in W
was very small (σu is much smaller than σx). Similar to Table 1, the SN correction estimator
had slightly bigger biases than the CFA-WM estimates when the biomarkers were from a
normal distribution, but it was still valid since the biases were relatively less than the SE.
With log normal biomarkers, the CFA estimators using W or the best linear combination
of W and M and SN correction estimator had small biases because the error from W was
very small. The SN correction estimator was better than the CFA estimator using M only
for AUC estimation under this scenario.

In Table 3, same as Table 1, we generated the biomarkers for the cases and controls
with the same distribution based on E(X|Y = 1) = E(X|Y = 0) + ln(3.2). The sample
size and disease rate are the same as those in Table 1. We investigated the situation
when W is unbiased for X (although with a random error) but M is linearly associated
with X such that Wi = Xi + Ui and Mi = 0.2 + 0.8Xi + Vi, in which σu = 1 and σv = 1.
The AUC values in this table are the same as those in Table 1. Similar to Tables 1 and 2,
the naive estimates were biased while the three CFA estimators were unbiased when
the biomarkers were from a normal distribution. For the CFA, de-attenuation methods
were unbiased when X was normal, but could be biased when X was skewed. The main
findings from Table 3 were mostly similar to those from Tables 1 and 2. The proposed
SN correction estimator, in general, performed better than the CFA estimators when the
underlying biomarkers were from a skew-normal distribution. When the biomarkers
were from a log normal distribution, the CFA estimators and SN correction estimator
had small to moderate biases.
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Table 1. Simulation study when σu = σv = 1 (replicates).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.075 −0.001 0.000 −0.000 0.003

(0.795) SD 0.029 0.034 0.036 0.030 0.030
ASE 0.029 0.037 0.037 0.033 0.032
CP 0.246 0.970 0.936 0.952 0.952

Sensitivity Bias −0.058 0.000 0.002 0.001 −0.010
(0.719) SD 0.040 0.049 0.053 0.043 0.039

ASE 0.038 0.053 0.052 0.048 0.045
CP 0.696 0.952 0.940 0.968 0.970

Specificity Bias −0.062 −0.001 −0.000 0.000 0.011
(0.720) SD 0.038 0.049 0.052 0.047 0.035

ASE 0.038 0.053 0.052 0.048 0.036
CP 0.652 0.964 0.948 0.954 0.932

Skew-normal biomarkers
AUC Bias −0.083 −0.007 −0.006 −0.005 0.001

(0.806) SD 0.028 0.037 0.035 0.032 0.032
ASE 0.029 0.037 0.036 0.033 0.032
CP 0.136 0.938 0.956 0.946 0.938

Sensitivity Bias −0.066 0.007 0.009 0.008 0.011
(0.771) SD 0.037 0.048 0.047 0.041 0.045

ASE 0.037 0.046 0.045 0.043 0.044
CP 0.586 0.918 0.916 0.948 0.932

Specificity Bias −0.065 −0.019 −0.019 −0.011 −0.007
(0.775) SD 0.035 0.055 0.051 0.046 0.037

ASE 0.039 0.056 0.056 0.050 0.039
CP 0.642 0.936 0.956 0.950 0.954

Log normal biomarkers
AUC Bias −0.080 −0.014 −0.013 −0.010 0.004

(0.856) SD 0.026 0.028 0.029 0.025 0.026
ASE 0.027 0.030 0.030 0.027 0.028
CP 0.112 0.954 0.936 0.952 0.942

Sensitivity Bias −0.048 −0.003 −0.003 −0.003 −0.011
(0.772) SD 0.037 0.040 0.041 0.038 0.039

ASE 0.036 0.042 0.042 0.040 0.039
CP 0.782 0.960 0.942 0.954 0.950

Specificity Bias −0.096 −0.012 −0.012 −0.007 −0.011
(0.775) SD 0.038 0.053 0.056 0.049 0.036

ASE 0.038 0.056 0.055 0.050 0.039
CP 0.292 0.966 0.922 0.940 0.946

NOTE: Naive–M is the AUC estimator using M measures directly, CFA–W is a CFA AUC estimator based on W
measures, CFA–M is a CFA AUC estimator based on M measures, CFA–WM is a CFA AUC estimator based on
both W and M measures, and SN–WM is the SN correction estimator assuming X is skew-normal using both W
and M measures.

Table 2. Simulation study when σu = 0.2 (clinical assay), σv = 1 (research assay).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.075 0.002 0.000 0.002 0.002

(0.795) SD 0.029 0.025 0.035 0.025 0.025
ASE 0.029 0.027 0.035 0.027 0.026
CP 0.246 0.954 0.924 0.950 0.956
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Table 2. Cont.

Naive–M CFA–W CFA–M CFA–WM SN–WM

Sensitivity Bias −0.058 0.005 0.001 0.005 −0.001
(0.719) SD 0.040 0.036 0.052 0.036 0.032

ASE 0.038 0.038 0.050 0.039 0.034
CP 0.696 0.952 0.932 0.956 0.956

Specificity Bias −0.062 0.000 −0.002 0.000 0.007
(0.720) SD 0.038 0.036 0.051 0.037 0.030

ASE 0.038 0.038 0.050 0.039 0.030
CP 0.652 0.960 0.942 0.960 0.940

Skew-normal biomarkers
AUC Bias −0.083 0.003 −0.007 0.003 −0.002

(0.806) SD 0.028 0.026 0.034 0.026 0.027
ASE 0.029 0.026 0.035 0.026 0.028
CP 0.136 0.922 0.952 0.922 0.942

Sensitivity Bias −0.066 0.005 0.008 0.007 0.011
(0.781) SD 0.037 0.035 0.045 0.036 0.034

ASE 0.037 0.035 0.043 0.036 0.033
CP 0.586 0.942 0.910 0.940 0.914

Specificity Bias −0.065 0.002 −0.019 0.002 −0.001
(0.679) SD 0.035 0.039 0.049 0.038 0.031

ASE 0.039 0.039 0.055 0.040 0.032
CP 0.642 0.946 0.960 0.950 0.952

Log normal biomarkers
AUC Bias −0.080 0.001 −0.013 0.001 −0.003

(0.856) SD 0.026 0.021 0.028 0.021 0.022
ASE 0.027 0.022 0.029 0.022 0.024
CP 0.112 0.954 0.934 0.952 0.960

Sensitivity Bias −0.048 0.003 −0.003 0.004 −0.009
(0.772) SD 0.037 0.033 0.041 0.034 0.035

ASE 0.036 0.035 0.041 0.036 0.033
CP 0.782 0.950 0.940 0.950 0.914

Specificity Bias −0.096 0.000 −0.014 −0.001 −0.010
(0.775) SD 0.038 0.035 0.053 0.035 0.029

ASE 0.038 0.037 0.052 0.037 0.030
CP 0.292 0.954 0.920 0.948 0.944

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.

Table 3. Simulation when Wi = Xi + U1, Mi = 0.2 + 0.8Xi + Vi, in which σu = 1 and σv = 1.

Naive–M CFA–W CFA–M CFA–WM B

Normal biomarkers
AUC Bias −0.099 −0.001 −0.001 −0.001 0.003

(0.795) SD 0.030 0.032 0.033 0.032 0.032
ASE 0.030 0.035 0.035 0.035 0.034
CP 0.086 0.956 0.944 0.952 0.938

Sensitivity Bias −0.075 0.000 0.003 0.001 −0.011
(0.780) SD 0.038 0.049 0.053 0.048 0.044

ASE 0.039 0.053 0.056 0.052 0.049
CP 0.500 0.956 0.942 0.958 0.954

Specificity Bias −0.080 −0.001 −0.002 −0.003 0.011
(0.720) SD 0.038 0.049 0.053 0.049 0.039

ASE 0.039 0.053 0.056 0.053 0.040
CP 0.482 0.956 0.946 0.960 0.946
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Table 3. Cont.

Naive–M CFA–W CFA–M CFA–WM B

Skew-normal biomarkers
AUC Bias −0.107 −0.007 −0.008 −0.006 −0.001

(0.806) SD 0.029 0.035 0.034 0.034 0.034
ASE 0.030 0.035 0.035 0.035 0.034
CP 0.036 0.946 0.950 0.946 0.944

Sensitivity Bias −0.088 0.007 0.009 0.008 0.013
(0.780) SD 0.041 0.048 0.050 0.046 0.052

ASE 0.037 0.047 0.051 0.048 0.050
CP 0.368 0.922 0.932 0.950 0.918

Specificity Bias −0.082 −0.020 −0.025 0.016 −0.010
(0.720) SD 0.038 0.054 0.054 0.050 0.043

ASE 0.040 0.056 0.061 0.056 0.044
CP 0.442 0.934 0.948 0.956 0.942

Log normal biomarkers
AUC Bias −0.106 −0.014 −0.015 −0.012 −0.005

(0.856) SD 0.028 0.026 0.027 0.027 0.028
ASE 0.028 0.029 0.029 0.029 0.030
CP 0.016 0.942 0.936 0.946 0.940

Sensitivity Bias −0.063 −0.003 −0.002 −0.002 −0.010
(0.772) SD 0.038 0.041 0.041 0.041 0.041

ASE 0.037 0.041 0.044 0.042 0.041
CP 0.622 0.958 0.950 0.950 0.946

Specificity Bias −0.122 −0.012 −0.019 −0.007 −0.013
(0.775) SD 0.036 0.053 0.057 0.053 0.039

ASE 0.039 0.057 0.061 0.056 0.043
CP 0.076 0.954 0.942 0.946 0.954

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.

6. Analysis of PDAC Data

The PDAC study has been briefly described in the introduction section. The primary
aim is to develop biomarkers for the detection of early-stage PDAC. In this section, our
purpose is to demonstrate our methods to estimate diagnostic efficacy of CA19-9 when the
assays are measured with errors. In our analysis, CA19-9 research assays from a lab and
clinical grade assays are available. Clinical grade assays, in general, still may be measured
with errors, even though the magnitude of errors is typically smaller than that from research
grade assays. There are 68 early-stage PDAC cases and 67 controls in the analysis.

From the top portion of Figure 1, we observe the association between measures from
a clinical assay and a research assay. We note that the distributions of the two assay
measures are skewed and there are some very large values. The association between the
clinical and research assays is approximately linear after taking a log transform. The lower
portion of Figure 1 shows density estimation of the clinical assays (logarithm transform
of (CA19-9 + 1) then divided by 10), with two different bandwidths for kernel density
estimation. The two bandwidths in the controls are 2σw,0n−1/3

0 and 4σw,0n−1/3
0 , in which

σw,0 is the standard deviation of W among the controls. From the simulation result of Wang
and Hsu, both bandwidths work well, but the first selection is slightly better [15]. The
two bandwidths in the cases are chosen similarly to the controls. The density estimation is
for the purpose to demonstrate that the density of logarithm transform of CA19-9 (plus 1,
then divided by 10) is still skewed. The density estimation is not for the unobserved true
CA19-9, which would involve deconvolution in nonparametric estimation. Deconvolution
for density estimation is rather technical, which is not the focus of this research.
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The clinical assays and research assays are from different techniques, and they have
different measurement scales. Hence, the models in the analysis are Wi = Xi + Ui and
Mi = α0 + α1Xi + Vi. The analysis results are given in Table 4. We present the naive
estimates using the research assay, the CFA estimates and SN estimates using both types
of assays. For sensitivity and specificity estimation, the cutoff point of the biomarker is
first chosen as the point on the ROC curve of the clinical assay which has the minimum
distance from the left upper corner of the unit square. We also consider the cutoff point of
the biomarker with the best specificity, such that the sensitivity using the clinical assay is at
least 75%. Because the distribution of CA19–9 is likely skewed (Figure 1), it is possible that
the three CFA estimators may be biased. The SN correction estimator may be more suitable
for this analysis. From these estimates, based on the CFA and SN estimates, the AUC of the
true unobserved CA19–9 is at least 0.8. In addition, based on the two cutoff points chosen,
the sensitivity and specificity estimates are close to 0.75. Nevertheless, the data analysis
based on the small sample size is only for demonstration; future research with a larger
sample size is warranted.

Table 4. Pancreatic ductal adenocarcinoma Data Analysis.

Naive–M CFA–W CFA–M CFA–WM SN–WM

cutoff point: minimum distance from the left upper corner

AUC 0.749 0.849 0.801 0.822 0.812
SE 0.037 0.039 0.045 0.040 0.036

Sensitivity 0.735 0.789 0.770 0.723 0.751
SE 0.054 0.065 0.061 0.058 0.042

Specificity 0.537 0.826 0.553 0.811 0.734
SE 0.063 0.055 0.088 0.063 0.045

cutoff point: sensitivity using W is at least 75%

AUC 0.749 0.838 0.815 0.815 0.809
SE 0.042 0.038 0.042 0.042 0.035

Sensitivity 0.735 0.776 0.716 0.690 0.733
SE 0.048 0.047 0.055 0.059 0.043

Specificity 0.537 0.821 0.600 0.821 0.756
SE 0.058 0.049 0.096 0.048 0.048

NOTE: We assume that W = X + U and M = α0 + α1X + V, where W is a clinical assay measure, M is a research
assay measure. Naive–M is the AUC estimator using M measures directly, CFA–W is a corrected AUC estimator
based on W measures, CFA–M is a corrected AUC estimator based on M measures, CFA–WM is a corrected AUC
estimator based on both W and M measures, and SN–WM is the method of moments estimator, assuming X is
skew-normal based on both W and M measures.

7. Discussion

In this paper, we mainly address the issue of adjusting for measurement error in the
biomarkers in the estimation of diagnostic accuracy. Estimation of sensitivity and specificity
with measurement error is to address the issue of estimating conditional probabilities for a
cutoff point. The estimation of AUC with measurement error means addressing the issue
of calculating pr(X1 > X0) when X is not observed. Nonparametric estimation for this
problem would involve the challenging research problem of deconvolution in the density
estimation with measurement error [13]. Hence, our proposed SN correction estimator
provides a flexible approach to address this issue. Attwood et al. proposed using the
skew exponential power (SEP) distribution to model the ROC curve and related metrics in
the presence of non-normal data [16]. The SN distribution is a particular case of the SEP
distribution. It will be a future research aim to extend the SEP distribution for diagnostic
accuracy when biomarkers are measured with errors.
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From this research, we note that it is very challenging to develop nonparametric
methods for AUC, sensitivity, or specificity when biomarkers are measured with errors.
The proposed SN distribution for biomarkers to adjust for measurement error is from the
view point of a class of skewed distributions. For example, SN distributions will be more
flexible than an exponential distribution or a normal distribution. If the true biomarker
distribution is zero-inflated, then the bias in estimating AUC, sensitivity, and specificity
will likely depend on the probability mass at 0. It will be interesting in future research to
develop a more flexible approach to correct for measurement error when the true biomarker
distribution may be skewed or zero-inflated.

Another general approximation approach that could be applied to this problem is the
simulation extrapolation (SIMEX) approach. Cook and Stefanski studied this approach
for covariate measurement error problems [17]. An advantage of SIMEX is that it has the
advantage of being easy to implement. The use of SIMEX for AUC may have limited
bias [18]. However, bias from SIMEX for estimation of sensitivity and specificity could be
large. It remains a research problem to develop a valid SIMEX estimator for this problem,
especially when the biomarkers are skewed in the distribution.

8. Conclusions

We have developed a flexible modeling approach for measurement error in the
biomarkers in the estimation of diagnostic accuracy. One limitation of our proposed
SN correction estimator is that it is not consistent for the class of all distributions. Never-
theless, with the consideration that biomarkers are often skewed in the distribution, our
proposed estimator is expected to be valid in many general applications.
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Appendix A. Additional Simulations

We consider the situation similar to Table 1 but with σu = σv = 0.71 (Table A1).
Because σu and σv are smaller than those in Table 1, the biases in Table A1 were smaller
than those from Table 1 in general. In Table A2, we consider the situation similar to Table 1
but with σu = σv = 1.22. The biases in Table A2 were larger than those from Table 1 in
general. In summary, the results of Tables A1 and A2 were similar to the findings from
Table 1 except the magnitude of biases were slightly different because of the differences in
measurement error variances.

Table A1. Simulation study when σu = σv = 0.71 (replicates).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.046 0.000 0.000 −0.001 0.002

(0.795) SD 0.027 0.029 0.030 0.027 0.027
ASE 0.028 0.032 0.031 0.029 0.029
CP 0.632 0.962 0.932 0.960 0.948
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Table A1. Cont.

Naive–M CFA–W CFA–M CFA–WM SN–WM

Sensitivity Bias −0.036 0.000 0.001 0.001 −0.006
(0.719) SD 0.039 0.043 0.046 0.040 0.034

ASE 0.038 0.045 0.045 0.042 0.038
CP 0.858 0.958 0.940 0.952 0.970

Specificity Bias −0.039 −0.001 −0.001 −0.001 0.008
(0.720) SD 0.037 0.042 0.044 0.041 0.032

ASE 0.038 0.045 0.045 0.043 0.032
CP 0.840 0.970 0.946 0.958 0.938

Skew-normal biomarkers
AUC Bias −0.051 −0.005 −0.004 −0.002 0.000

(0.806) SD 0.027 0.032 0.030 0.029 0.028
ASE 0.028 0.031 0.031 0.029 0.028
CP 0.552 0.936 0.956 0.948 0.940

Sensitivity Bias −0.037 0.006 0.009 0.007 0.009
(0.771) SD 0.036 0.040 0.041 0.037 0.038

ASE 0.035 0.040 0.039 0.039 0.037
CP 0.828 0.936 0.918 0.944 0.924

Specificity Bias −0.040 −0.009 −0.009 −0.004 −0.005
(0.775) SD 0.035 0.047 0.044 0.040 0.034

ASE 0.039 0.048 0.048 0.045 0.035
CP 0.828 0.936 0.918 0.944 0.952

Log normal biomarkers
AUC Bias −0.049 −0.010 −0.010 −0.007 −0.004

(0.856) SD 0.024 0.024 0.024 0.022 0.023
ASE 0.025 0.026 0.026 0.024 0.025
CP 0.490 0.962 0.942 0.954 0.948

Sensitivity Bias −0.027 −0.002 −0.001 −0.001 −0.012
(0.772) SD 0.036 0.038 0.037 0.034 0.036

ASE 0.035 0.038 0.038 0.038 0.035
CP 0.888 0.950 0.950 0.962 0.930

Specificity Bias −0.062 −0.008 −0.007 −0.004 −0.012
(0.775) SD 0.036 0.042 0.046 0.042 0.032

ASE 0.036 0.046 0.045 0.042 0.033
CP 0.622 0.968 0.926 0.940 0.946

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.

Table A2. Simulation study when σu = σv = 1.22 (replicates).

Naive–M CFA–W CFA–M CFA–WM SN–WM

Normal biomarkers
AUC Bias −0.060 −0.001 0.000 0.000 0.005

(0.795) SD 0.030 0.039 0.041 0.034 0.034
ASE 0.030 0.042 0.041 0.037 0.036
CP 0.092 0.964 0.934 0.956 0.948

Sensitivity Bias −0.074 0.000 0.002 0.000 −0.013
(0.719) SD 0.040 0.057 0.060 0.048 0.045

ASE 0.039 0.060 0.059 0.053 0.052
CP 0.530 0.960 0.928 0.972 0.964
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Table A2. Cont.

Naive–M CFA–W CFA–M CFA–WM SN–WM

Specificity Bias −0.077 0.001 0.000 0.000 0.015
(0.720) SD 0.039 0.055 0.060 0.052 0.039

ASE 0.039 0.060 0.059 0.053 0.040
CP 0.520 0.962 0.934 0.962 0.942

Skew-normal biomarkers
AUC Bias −0.104 −0.008 −0.007 −0.006 0.001

(0.806) SD 0.029 0.042 0.040 0.036 0.035
ASE 0.030 0.042 0.041 0.036 0.035
CP 0.050 0.936 0.948 0.942 0.942

Sensitivity Bias −0.085 0.009 0.012 0.009 0.014
(0.771) SD 0.037 0.054 0.053 0.046 0.053

ASE 0.037 0.053 0.052 0.048 0.052
CP 0.398 0.922 0.926 0.944 0.930

Specificity Bias −0.080 −0.026 −0.024 −0.015 −0.008
(0.775) SD 0.037 0.063 0.059 0.050 0.041

ASE 0.040 0.064 0.064 0.056 0.043
CP 0.462 0.922 0.948 0.948 0.956

Log normal biomarkers
AUC Bias −0.103 −0.016 −0.015 −0.012 −0.004

(0.856) SD 0.027 0.031 0.032 0.028 0.029
ASE 0.028 0.034 0.033 0.030 0.031
CP 0.022 0.950 0.934 0.954 0.944

Sensitivity Bias −0.064 −0.005 −0.004 −0.004 −0.011
(0.772) SD 0.038 0.044 0.045 0.041 0.042

ASE 0.037 0.046 0.045 0.043 0.042
CP 0.628 0.948 0.954 0.952 0.950

Specificity Bias −0.118 −0.016 −0.015 −0.008 −0.011
(0.775) SD 0.040 0.062 0.066 0.056 0.041

ASE 0.038 0.066 0.065 0.057 0.045
CP 0.118 0.950 0.920 0.952 0.952

NOTE: See the footnote of Table 1 for notation. The sample size n = 300. The results were from
500 simulation replicates.
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Abstract: Credit risk scorecards are logistic regression models, fitted to large and complex data sets,
employed by the financial industry to model the probability of default of potential customers. In
order to ensure that a scorecard remains a representative model of the population, one tests the
hypothesis of population stability; specifying that the distribution of customers’ attributes remains
constant over time. Simulating realistic data sets for this purpose is nontrivial, as these data sets are
multivariate and contain intricate dependencies. The simulation of these data sets are of practical
interest for both practitioners and for researchers; practitioners may wish to consider the effect that a
specified change in the properties of the data has on the scorecard and its usefulness from a business
perspective, while researchers may wish to test a newly developed technique in credit scoring. We
propose a simulation technique based on the specification of bad ratios, this is explained below.
Practitioners can generally not be expected to provide realistic parameter values for a scorecard; these
models are simply too complex and contain too many parameters to make such a specification viable.
However, practitioners can often confidently specify the bad ratio associated with two different levels
of a specific attribute. That is, practitioners are often comfortable with making statements such as
“on average a new customer is 1.5 times as likely to default as an existing customer with similar
attributes”. We propose a method which can be used to obtain parameter values for a scorecard based
on specified bad ratios. The proposed technique is demonstrated using a realistic example, and we
show that the simulated data sets adhere closely to the specified bad ratios. The paper provides a
link to a Github project with the R code used to generate the results.

Keywords: credit risk scorecards; hypothesis testing; population stability; simulation

MSC: 62D99; 62P20

1. Introduction and Motivation

Credit scoring is an important technique used in many financial institutions in order
to model the probability of default, or some other event of interest, of a potential client.
For example, a bank typically has access to data sets containing information pertinent to
credit risk, which may be used in order to assess the credit worthiness of potential clients.
The characteristics or covariates recorded in such a data set are referred to as attributes
throughout; these include information such as income, the total amount of outstanding
debt held and the number of recent credit enquiries. A bank may use logistic regression
to model an applicant’s probability of default as a function of their recorded attributes;
these logistic regression models are referred to as credit risk scorecards. In addition to
informing the decision as to whether or not a potential borrower is provided with credit, the
scorecard is typically used to determine the quoted interest rate. For a detailed treatment
of scorecards, see [1] as well as [2].

The development of credit risk scorecards are expensive and time consuming. As a
result, once properly trained and validated, a bank may wish to keep a scorecard in use for
an extended period, provided that the model continues to be a realistic representation of
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the attributes of the applicants in the population. One way to determine whether or not a
scorecard remains a representative model is to test the hypothesis of population stability.
This hypothesis states that the distribution of the attributes remains unchanged over time
(i.e., that the distribution of the attributes at present is the same as the distribution observed
when the scorecard was developed). When the distribution of the attributes changes, it
provides the business with an early indication that the scorecard may no longer be a useful
model. Further explanations and examples regarding population stability testing can be
found in [3,4] as well as [5].

In the context of testing for population stability, performing scenario testing requires
the ability to simulate realistic data sets. To this end, this paper proposes a simple technique
for the simulation of such data sets. This enables practitioners to consider scenarios with
predefined deviations from specified distributions for the attributes, which allows them
to gauge the effects that changes in the distribution of one or more attributes have on the
predictions made using the model. Furthermore, the business may also wish to consider
the effects of a certain strategy before said strategy is implemented. As a concrete example,
consider the case where a bank markets more aggressively to younger people. In this case,
they may wish to test the effect of a shift in the distribution of the age of their clients.

The concept of population stability can be further illustrated by means of a simple
example. Consider a model that predicts whether someone is wealthy based on a single
attribute; the value of the property owned. If this attribute exceeds a specified value, the
model predicts that a person is wealthy. Due to house price inflation, the overall prices of
houses rise over time. Thus, after a substantial amount of time has passed, the data can no
longer be interpreted in the same way as before, and the hypothesis of population stability
is rejected, meaning that a new model (or perhaps just a new cut off point) is required.

Population stability metrics measure the magnitude of the change in the distribution
of the attributes over time. A number of techniques have been described in the literature,
whereby population stability may be tested; see [6,7] as well as [8]. For practical implemen-
tations of techniques for credit risk scorecards, see [9] in the statistical software R as well
as [10] in Statistical Analysis Software (SAS). The mentioned papers typically provide one
or more numerical examples illustrating the use of the proposed techniques. The data sets
upon which these techniques are used are typically protected by regulations, meaning that
including examples based on the observed data is problematic. As a result, authors often
use simulated data. However, the settings wherein these examples are to be found are often
oversimplified, stylized and not entirely realistic. This can, at least in part, be ascribed to
the difficulties associated with the simulation of realistic data sets. These difficulties arise
as a result of the complexity of the nature of the relationship between the attributes and
the response.

The data sets typically used for scorecard development have a number of features in
common. They are usually relatively large; typical ranges for the number of observations
range from one thousand observations to one hundred thousand, while a sample size of
one million observations is not unheard of. The data used are multivariate; the number of
attributes used varies according to the type of scorecard, what the scorecard will be used
for and other factors, but scorecards based on five to fifteen attributes are common. The
inclusion of attributes in a scorecard depends on the predictive power of the attribute as well
as more practical considerations. These can include the ability to obtain the required data
in the future (for example, changing legislation may, in the future, prohibit the inclusion
of certain attributes such as gender into the model) as well as the stability of the attribute
over the expected lifetime of the scorecard. Care is usually taken to include only attributes
with a low level of association with each other so as to avoid the problems associated
with multicolinearity.

This paper proposes a simple simulation technique, which may be used for the con-
struction of realistic data sets for use in credit risk scorecards. These data sets contain the
attributes of hypothetical customers as well as the associated outcomes. The constructed
data sets can be used to perform empirical investigations into the effects of changes in
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the distribution of the attributes as well as changes in the relationship between these at-
tributes and the outcome. In summary, the advantages of the newly proposed simulation
technique are:

1. It is a simple technique.
2. It allows the generation of realistic data sets.
3. These data sets can be used to perform scenario testing.

It should be noted at the outset that the proposed technique is not restricted to the
context of credit scoring, or even to the case of logistic regression, but rather has a large
number of other modeling applications. However, we restrict our attention to this important
special case for the remainder of the paper.

The idea underlying the proposed simulation technique can be summarized as follows.
When building a scorecard, practitioners cannot be expected to specify realistic values for
the parameters in the model which will ultimately be used. The large number of parameters
in the model coupled with the complex relationships between these parameters conspire to
make this task almost impossible. However, practitioners can readily be called on to have
intuition regarding the bad ratios associated with different states of an attribute. That is,
practitioners are often comfortable making statements such as “on average new customers
are 1.5 times as likely to default as existing customers with similar attributes”. It should be
noted that techniques such as the so-called Delphi method can be used in order to make
statement such as these; for a recent reference, see [11].

This paper proposes a technique that can be used to choose parameter values that
mimic these specified bad ratios. The inputs required for the proposed technique are the
overall bad rate, the specified bad ratios and the marginal distributions of the attributes. It
should be noted that the proposed technique can be used to generate data without reference
to an existing data set. As such, it is not a data augmentation technique. However, in
the event that a reference data set is available, these techniques can be implemented in
order to achieve similar goals. An example of a data augmentation technique that can
be implemented in this context is so-called generalised adversarial networks, see [12].
Another useful reference on data augmentation is [13]. We emphasize that the newly
proposed method can be used in cases where classical data augmentation techniques are
not appropriate as the new technique does not require the availability of a data set in
order to perform a simulation. As a result, classical data augmentation techniques are not
considered further in this paper.

A final noteworthy advantage of the newly proposed technique is its simplicity. Since
not all users of scorecards are trained in statistics, the simple nature of the proposed
simulation technique (i.e., specifying bad ratios and choosing parameters accordingly)
is advantageous.

The remainder of the paper is structured as follows. Section 2 shows several examples
of settings in which logistic regression is used in order to model the likelihood of an
outcome based on attributes. Here, we demonstrate the need for the proposed simulation
procedure. A realistic setting is specified in this section which is used throughout the paper.
Section 3 proposes a method that may be used to translate specified bad ratios into model
parameters emulating these bad ratios using simulation, followed by parameter estimation.
We discuss the numerical results obtained using the proposed simulation technique in
Section 4. Section 5 provides some conclusions as well as directions for future research.

2. Motivating Examples

This section outlines several examples. We begin by considering a simple model and
we show that the parameters corresponding to a single specified bad ratio can be calculated
explicitly, negating the need for the proposed simulation technique. Thereafter, we consider
slightly more complicated settings and demonstrate that, in general, no solution exists for a
specified set of bad ratios. We also highlight the difficulties encountered when attempting
to find the required parameters, should a solution exist. Finally, we consider a realistic
model, similar to what one would use in practice.
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It should be noted that we consider both discrete and continuous attributes below.
There does not seem to be general consensus between practitioners on whether or not con-
tinuous attributes should be included in the model, as these attributes are often discretized
during the modeling process (some practitioners may argue that we only need consider
discrete attributes while others argue against this discretization); for a discussion, see
pages 45 to 56 of [1]. Since the number of attributes considered simultaneously using the
proposed simulation technique is arbitrary, we may simply chose to replace any continuous
attribute by its discretized counterpart. As a result, the techniques described below are
applicable in either setting mentioned above.

2.1. A Simple Example

Let Xj be a single attribute, associated with the jth applicant, with two levels, 0 and 1.
Denote the respective frequencies with which these values occur by p and 1− p, respectively;

Xj =

{
1, with probability p,
0, with probability 1 − p,

for j ∈ {1, . . . , n}. Let Yj be the indicator of default for the jth applicant. Denote the overall
bad rate by d; meaning that the unconditional probability of default is d := P(Y = 1). Let
γ be the bad ratio of Xj = 1 relative to Xj = 0. That is, γ is the ratio of the conditional
probabilities that Yj = 1 given Xj = 1 and Xj = 0, respectively; γ := P(Yj = 1|Xj =
1)/P(Yj = 1|Xj = 0). We may call upon a practitioner to specify appropriate values for d
and γ.

Using the information above, we are able to calculate the conditional default rates
d0 := P(Yj = 1|Xj = 0) and d1 := P(Yj = 1|Xj = 1). Simple calculations yield

d0 =
d

pγ + 1 − p
, d1 =

dγ

pγ + 1 − p
.

In this setting, building a scorecard requires that the following logistic regression
model be fitted:

log

(
dj

1 − dj

)
= β0 + jβ1, j ∈ {0, 1}. (1)

Calculating the parameters of the model that give rise to the specified bad ratio requires
solving the two equations in (1) in two unknowns. The required solution is calculated to be

β0 = log
(

d0

1 − d0

)
, β1 = log

(
d1

1 − d1

)
− β0.

As a result, given the values of p, d and γ, we can find a model that perfectly mimics
the specified overall probability of default as well as the bad ratio. However, the above
example is clearly unrealistically simple.

2.2. Slightly More Complicated Settings

Consider the case where we have three discrete attributes, each with five nominal
levels. In this case, the practitioner in question would be required to specify bad ratios for
each level of each attribute. This would translate into fifteen equations in fifteen unknowns
(since the model would require fifteen parameters in this setting). Solving such a system of
equations is already a taxing task, but two points should be emphasized. First, the models
used in practice typically have substantially more parameters than fifteen, making the
proposition of finding an analytical solution very difficult. Second, there is no guarantee
that a solution will exist in this case.

Next, consider the case where a single continuous attribute, say income, is used in the
model. When the scorecard is developed, it is common practice to discretize continuous
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variables such as income into a number of so-called buckets. As a result, the practitioner
may suggest, for example, that the population be split into four categories and they may
specify a bad ratio for each of these buckets. However, the “true” model underlying the
data generates income from a continuous distribution and assigns a single parameter to this
attribute in the model. Therefore, this example results in a model with a single parameter
which needs to be chosen to satisfy four different constraints (in the form of specified
bad ratios). Algebraically, this results in an over specified system in which the number
of equations exceed the number of unknowns. In general, an over-specified system of
equations cannot be solved.

The two examples above illustrate that, even in unrealistically simple cases, we may
not be able to obtain parameters that result in the specified bad ratios.

2.3. A Realistic Setting

We now turn our attention to a realistic setting. Consider the case where ten attributes
are used; some of which are continuous while others are discrete. For the discrete case, we
distinguish between attributes measured on a nominal scale and attributes measured on
a ratio scale. An example of an attribute measured on a nominal scale is the application
method used by the applicant as the numerical value assigned to this attribute does not
allow direct interpretation. On the other hand, the number of credit cards that an applicant
has with other credit providers is measured on an ratio scale, and the numerical value of
this attribute allows direct interpretation. In the model used, we treat discrete attributes
measured on a ratio scale in the same way as continuous variables; that is, each of these
attributes are associated with a single parameter in the model.

As mentioned above, we consider a model containing ten attributes. However, since
several discrete attributes are measured on a nominal scale, the number of parameters
in the model exceeds the number of attributes. To be precise, let l denote the number of
parameters in the model and let m denote the number of attributes measured. Note that
l ≥ m, with equality holding only if no discrete attributes measured on a nominal scale are
present. Let Z j = {Zj,1, . . . , Zj,l} be the set of attributes associated with the jth applicant.
This vector contains the values of observed continuous and discrete, ratio scaled, and
attributes. Additionally, Z j includes dummy variables capturing the information contained
in the discrete, nominal scaled, attributes. Define πj = E[Yj|Zj]; the conditional probability
of default associated with the jth applicant. The model used can be expressed as

log

(
πj

1 − πj

)
= Zj

�β, (2)

where β = (β1, . . . , βl)
� is a vector of l parameters.

The names of the attributes included in the model, as well as the scales on which these
attributes are measured can be found in Table 1. Care has been taken to use attributes
which are often included in credit risk scorecards so as to provide a realistic example. For
a discussion of the selection of attributes, see pages 60 to 63 of [1]. Additionally, Table 1
reports the information value of each attribute; this value measures the ability of a specified
attribute to predict the value of the default indicator (higher information values indicate
higher levels of predictive ability). Consider a discrete attribute with k levels. Let D be the
number of defaults in the data set, let Dj be the number of defaults associated with the jth
level of this attribute and let nj be the total number of observations associated with the jth
level of this attribute. In this case, the information value of the variable in question is

IV =
k

∑
j=1

(nj − Dj

n − D
−

Dj

D

)
log

(
D(nj − Dj)

Dj(n − D)

)
.

All calculations below are performed in the statistical software R; see [14].
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Table 1. The name, measurement scale and information value of the attributes included in the model.

Name Scale Information Value

Gender Ordinal 0.499
Existing customer Ordinal 0.441
Number of enquiries Ratio 0.394
Credit cards with other providers Ratio 0.515
Province of residence Ordinal 0.284
Application method Ordinal 0.222
Age Ratio 0.164
Total amount outstanding Ratio 0.083
Income Ratio 0.182
Balance of recent defaults Ratio 0.192

For the sake of brevity, we only discuss four of the attributes in detail in the main text
of the paper. However, the details of the remaining six attributes, including the numerical
results obtained, can be found in Appendix A.

We specify the distribution of the attributes below. For each attribute, we also specify
the levels used as well as the bad ratio associated with each of these levels. Care has been
taken to use realistic distributions and bad ratios in this example. Admittedly, the process
of specifying bad rates is subjective, but we base these values on many years of practical
experience in credit scoring, and we believe that most risk practitioners will consider the
chosen values plausible. However, it should be stressed that the modeler is not bound to
the specific example used here; the proposed technique is general, and the number and
distributions of attributes are easily changed. The attributes are treated separately below.

2.4. Existing Customer

Existing customers are usually assumed to be associated with lower levels of risk
than is the case for applicants who are not existing customers. This can be due to the fact
that existing customers have already shown their ability to repay credit extended to them
in the past, or are more likely to pay the company where they have other products. We
specify that 80% of applicants are exiting customers and that the bad ratio is 2.7, meaning
that the probability of default for a new customer is, on average, 2.7 times higher than the
probability of default of an existing customer with the same remaining attributes.

2.5. Credit Cards with Other Providers

This attribute is an indication of the clients exposure to potential credit. A client could,
for example, have a low outstanding balance, but through multiple credit cards have access
to a large amount of credit. Depending on the type of product being assessed, this could
signal higher risk. Table 2 shows the assumed distribution of this attribute together with
the specified bad ratios.

Table 2. Credit cards with other providers.

Group Description Proportion Bad Ratio

0 No credit cards at another provider 50% 1.0
1 Credit card at another provider 30% 1.2
2 Credit cards at another provider 15% 1.7
3 Three or more credit cards at another provider 5% 2.5

2.6. Application Method

The method of application is often found to be a very predictive indicator in credit
scorecards. A customer actively seeking credit, especially in the unsecured credit space, is
often found to be of a higher risk than customers opting in for credit through an outbound
method like a marketing call. We distinguish four different application methods:
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• Branch—Applications done in the branch.
• Online—Application done through an online application channel.
• Phone—Applications done through a non-direct channel.
• Marketing call—Application done after being prompted by the credit provider.

Table 3 specifies the distribution of this attribute as well as the associated bad ratios.

Table 3. Application method.

Group Description Proportion Bad Ratio

0 Branch 30% 1.0
1 Online 40% 0.5
2 Phone 15% 1.5
3 Marketing Call 15% 0.4

2.7. Age

Younger applicants tend to be higher risk, with risk decreasing as the applicants
become older. We assume that the ages of applicants are uniformly distributed between 18
and 75 years. We divide these ages into seven groups, see Table 4.

Table 4. Age.

Group Proportion Bad Ratio

18–21 5% 1.00
22–25 7% 0.85
26–30 9% 0.78
31–45 26% 0.66
46–57 21% 0.50
58–63 11% 0.43
64–75 21% 0.31

As was mentioned above, the remaining attributes are discussed in Appendix A. In
the next section, we turn our attention to the proposed simulation technique.

3. Proposed Simulation Technique

Having described the details of the attributes included in the model, we turn our
attention to finding a model that results in bad ratios approximately equal to those speci-
fied. This is done by simulating a large data set, containing attributes as well as default
indicators. Thereafter, the parameters of the scorecard are estimated by fitting a logistic
regression model to the simulated data. We demonstrate in Section 4 that the resulting
parameters constitute a model that closely corresponds to the specified bad ratios and
other characteristics. The steps used to arrive at the parameters for the model as well as,
ultimately, a simulated data set are as follows:

1. Specify the global parameters.
2. Simulate each attribute separately.
3. Combine the simulated attributes.
4. Fit a logistic regression model.
5. Simulate the final default indicators.

It should be noted that the procedure detailed below assumes independence between
the attributes. We opt to incorporate this assumption because it is often made in credit
scoring in practice. However, augmenting the procedure below to incorporate dependence
between attributes is a simple matter. For example, we can drop the assumption of indepen-
dent attributes by simulating a group of attributes from a specified copula. Although we do
not pursue the use of copulas further below, the reader is referred to [15] for more details.
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3.1. Specify the Global Parameters

We specify a fixed, large sample size. It is important that the initial simulated data set
be large even in the case where the final simulated sample may be of more modest size,
as this will reduce the effect of sample variability. We also specify the overall bad rate. It
should be noted that overly small bad rates will tend to decrease the information value of
the attributes included in the model (for fixed sets of bad ratios). This is due to the difficulty
associated with predicting extremely rare events. We use a sample size of 50,000 and an
overall bad rate of 10% to obtain the numerical results shown in the next section.

3.2. Simulate Each Attribute Separately

The next step entails specifying the marginal distribution as well as the bad ratio
associated with each attribute. In the case of discrete attributes, a bad ratio is specified for
each of the levels of the attribute. In the case of continuous attributes, the attributes are
required to be discretized and a bad ratio is specified for each level of the resulting discrete
attribute. Given the marginal distribution and the bad ratios of an attribute, we explicitly
calculate the bad rate for each level of the attribute. Consider an attribute with k levels and
let δj be the average bad rate associated with the jth level of the attribute for j ∈ {1, . . . , k}.
In this case,

δj =
μjd

∑k
l=1 μl pl

, where μj =
γj pj

∑k
l=1 γl

.

We now simulate a sample of attributes from the specified marginal distribution.
Given the values of these attributes, we simulate default indicators from the conditional
distribution of these indicators. That is, given that the jth level of the specific attribute is
observed, simulate a 1 for the default indicator with probability δj.

3.3. Combine the Simulated Attributes

Upon completion of the previous step, we have a realized sample for each of the
attributes with a corresponding default indicator. Denoting the sample size by n, the
expected number of defaults for each attribute is nd. However, due to sample variation, the
number of defaults simulated for the various attributes will differ, which complicates the
process of combining the attributes to form a set of simulated attributes for a (simulated)
applicant. In order to overcome this problem, we need to ensure that the number of defaults
per attribute are equal.

For each attribute, the number of defaults follows a binomial distribution with pa-
rameters n and d. As a result, the number of defaults have an expected value nd and
variance nd(1 − d). Therefore, for large values of n, the ratio of the expected and simulated
number of defaults converges to 1 in probability. To illustrate the effect of sample variation,
consider the following example. If a sample size of n = 106 is used and the overall default
rate is set to 5%, then the expected number of defaults is 50,000 for each attribute. Due to
sample variation, the number of defaults will vary. However, this variation is small when
compared to the expected number of defaults; in fact, a 95% confidence interval for the
number of defaults is given by [49 572; 50 428]. Stated differently, the probability that the
simulated number of defaults will be within 1% of the expected number is approximately
97.8% in this case, while the probability that the realized number of defaults differ from the
expected number by more than 2% is less than 1 in 200,000.

The examples above indicate that the simulated number of defaults will generally be
close to nd, and we may assume that changing the simulated number of defaults to exactly
nd will not have a large effect on the relationships between the values of the attribute and
the default indicator. As a result, we proceed as follows. If the number of defaults exceed
nd, we arbitrarily replace 1s with 0s in the default indicator in order to reduce the simulated
number of defaults to nd. Similarly, if the number of defaults is less than nd, we replace 0s
with 1s.
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Following the previous step, the number of defaults per attribute are equal, and we
simply combine these attributes according to the default indicator. That is, in order to arrive
at the details of a simulated applicant who defaults, we arbitrarily choose one realization
of each attributed that resulted in default. The same procedure is used to combine the
attributes of applicants who do not default.

3.4. Fit a Logistic Regression Model

We now have a (large) data set containing all of the required attributes as well as
the simulated default indicators. We fit a logistic regression model to this data in order
to find a parameter set that mimics the specified bad ratios. That is, we estimate the set
of regression coefficients in (2). The required estimation is standard, and the majority of
statistical analysis packages includes a function to perform the required estimation; the
results shown below are obtained using the glm function in the Stats package of R.

3.5. Simulate the Final Default Indicators

When considering the data set constructed up to this point, the simulated values
for the individual attributes are realized from the marginal distribution specified for that
attribute. As a result, we need only concern ourselves with the distribution of the default
indicator. We now replace the initial default indicator by an indicator simulated from the
conditional distribution given the attributes (which is a simple matter since the required
parameter estimates are now available). The simulated values of the attributes together
with this default indicator constitute the final data set.

The following link contains the R code used for the simulation of a data set using the
proposed method; https://bit.ly/3FFLSpp. We emphasize that the user is not bound by
the specifications chosen in this paper, as the code is easily amended in order to change the
distributions of attributes, to specify other bad ratios and to add or remove attributes from
the data set.

4. Performance of the Fitted Model

In order to illustrate the techniques advocated for above, we use the proposed tech-
nique to simulate a number of data sets using the specifications in Section 3. Below, we
report the means (denoted “Observed bad rate”) and standard deviations (denoted “Std
dev of obs bad rate”) of the observed bad ratios obtained when generating 10,000 data sets,
each of size 50,000.

In Tables 5–8, we consider each of the four attributes discussed in the previous section
in the main text, while the results associated with the remaining attributes are considered
in Appendix B. Tables 5–8 indicate that the average observed bad ratios are remarkably
close to the nominally specified bad ratios. Furthermore, the standard deviations of the
observed bad ratios are also shown to be quite small, indicating that the proposed method
results in data sets in which the specifications provided in Section 3 are closely adhered to.

Table 5. Existing customers.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 Yes 7.46% 7.48% 0.14%
1 No 20.15% 20.09% 0.46%

Table 6. Credit cards with other providers.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 No Credit Cards 4.00% 4.70% 0.16%
1 One Credit Card 12.00% 10.43% 0.24%
2 Two Credit Cards 20.00% 19.49% 0.46%
3 Three or more Credit Cards 28.00% 31.90% 1.01%
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Table 7. Application method.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 Branch 12.74% 12.73% 0.32%
1 Online 6.37% 6.39% 0.21%
2 Phone 19.11% 19.05% 0.55%
3 Marketing Call 5.10% 5.12% 0.34%

Table 8. Age.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 18–21 17.54% 16.82% 0.77%
1 22–25 14.91% 15.19% 0.63%
2 26–30 13.68% 13.89% 0.53%
3 31–45 11.58% 11.46% 0.27%
4 46–57 8.77% 8.66% 0.28%
5 58–63 7.54% 7.28% 0.37%
6 64–75 5.44% 5.82% 0.26%

The marginal distributions of the attributes are not reported in the tables since the
average observed proportions coincide with the specified proportions up to 0.01% in all
cases. This result is not unexpected, when taking the large sample sizes used into account.

Although less common in practice, smaller sample sizes occur from time to time.
This is usually due to constraints placed on the sampling itself; for example, a high cost
associated with sampling or regulatory restrictions. When considering smaller sample
sizes, the proposed method can still be used. However, in this case the standard deviations
of the observed bad rates are increased.

5. Practical Application

The method described above provides a way to arrive at a parametric model, which
can be used for simulation purposes, via specification of bad ratios for each attribute
considered. One interesting application of this procedure is to specify a deviation from
the distribution of the attributes and default indicator and to simulate a second data set.
This deviation may, for instance, be in the form of specifying a change in the marginal
distribution associated with one or more attributes. The newly simulated data set can then
be analyzed in order to gauge the effect of the change to, for example, the overall credit
risk of the population.

In practice, a common metric used to measure the level of population stability is the
aptly named population stability index (PSI). The PSI quantifies the discrepancy between
the observed proportions per level of a given attribute in two samples. Typically, the first
data set is observed when the scorecard is developed (we refer to this data set as the base
data set) and the second is a more recent sample (referred to as the test data set). Letting k
be the number of levels of the attributes, the PSI is calculated as follows:

PSI =
k

∑
j=1

(Tj − Bj) log

(
Tj

Bj

)
, (3)

where Tj and Bj, respectively, represent the proportion of the jth level of the attribute in
question in the test and base data sets. The following rule-of-thumb for the interpretation
of PSI values is suggested in [1]; a value of less than 0.1 indicates that the population shows
no substantial changes, a PSI between 0.1 and 0.25 indicates a small change and a PSI of
more than 0.25 indicates a substantial change.
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It should be noted that the PSI is closely related to the Kullback–Leibler divergence.
Let B = (B1, . . . , Bk) and T = (T1, . . . , Tk). The Kullback–Leibler divergence between the
base and test populations is defined to be

D(B, T) =
k

∑
j=1

Bjlog

(
Bj

Tj

)
= −

k

∑
j=1

Bjlog

(
Tj

Bj

)
,

see [16] as well as [17]. Note that the Kullback–Leibler divergence is an asymmetric
discrepancy measure, meaning that the discrepancy between the base and test populations,
D(B, T), need not equal the discrepancy between the test and base populations, D(T, B).
In order to arrive at a symmetric discrepancy measure, one may simply add D(T, B) to
D(B, T);

D(B, T) + D(B, T) = −
k

∑
j=1

Bjlog

(
Tj

Bj

)
+

k

∑
j=1

Tjlog

(
Bj

Tj

)

=
k

∑
j=1

(Tj − Bj)log

(
Tj

Bj

)
,

which equals the PSI between the base and test populations. A further discussion of the
Kullback–Leibler divergence can be found in [18].

In order to illustrate the use of the PSI, consider the following setup. A single realiza-
tion of the base data set is simulated using the marginal distributions and the bad ratios
specified in Section 2 and Appendix A. We also simulate a test data set using the same
specifications, with only the following changes:

• The proportion of existing customers is changed from 80% to 57%. The new distribu-
tion is chosen such as to have a PSI value that is approximately 0.25.

• The distribution for the number of enquiries is changed from (30%, 25%, 20%, 15%,
5%, 5%) to (10%, 10%, 20%, 50%, 5%, 5%).

Following these changes, a test data sets is simulated from the distribution specified
above and the resulting PSI is calculated for each attribute. This process is repeated
1000 times in order to arrive at 1000 PSI values for each attribute.

In addition to considering the magnitude in the change of the distribution of the
attributes, we are interested in measuring the change in the overall credit risk of the
population. In order to achieve this, it is standard practice to divide the applicants into
various so-called risk buckets based on their probability of default as calculated by the
scorecard. In the example used here, we proceed as follows; at the time when the data
for the base data set is collected, the applicants may be segmented into ten risk buckets,
each containing 10% of the applicants. That is, the 10%, 20%, . . . , 90% quantiles of the
probabilities of default of the base data set are calculated. Then, given the test data set, we
calculate the proportions of applicants for whom the calculated probability of default is
between the 10(j − 1)% and 10j% quantiles of the base data set, for j ∈ {1, 2, . . . , 10}. These
proportions are then compared to those of the base data set (which are clearly 10% for each
risk bucket) in the same way as the proportions associated with the various levels of the
attributes are compared. Table 9 contains the average and standard deviations of the PSI
calculated for each of the attributes as well as for the risk buckets.
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Table 9. Population stability index.

Attribute Average PSI Standard Dev of PSI

Gender 0.0001 0.0002
Existing customer 0.2557 0.0102
Number of enquiries 0.7988 0.0178
Credit cards with other providers 0.0005 0.0004
Province of residence 0.0012 0.0005
Application method 0.0005 0.0004
Age 0.0008 0.0004
Total amount outstanding 0.0011 0.0006
Income 0.0008 0.0004
Balance of recent defaults 0.0005 0.0003
Risk buckets 0.0926 0.0061

When considering the results in Table 9, three observations are in order. First, the PSI
values calculated for the risk buckets are less than 0.1, indicating that no substantial change
in the distribution of the data is observed. Second, the PSI values for the attribute “existing
customer” are, on average, 0.2557. Based on the average PSI, the analyst would typically
conclude that the variable is unstable as the calculated average PSI value exceeds the cut-off
of 0.25. However, in 27.5% of the simulated test data sets, the PSI was calculated to be less
than 0.25. This demonstrates that the proposed simulation technique enables us to perform
sensitivity analysis in cases where a change in the distribution of the attributes results
in PSI values close to the cut-off value of 0.25. When considering the attribute “Number
of enquiries”, the PSI indicates that a substantial change has occurred. The PSI values
calculated for this attribute has an average of 0.7988 and a standard deviation of 0.0178.

6. Conclusions

We propose a simulation technique that can be used in order to generate data sets for
use with credit scoring, and we specifically demonstrated the usefulness of this technique
for testing population stability. The proposed technique is based on the simple idea of
specifying bad ratios and finding parameters that approximately adhere to the specified
bad ratios. Using a realistic example, we demonstrate that the proposed technique is able
to mimic the specified bad ratios with a high degree of accuracy.

The proposed simulation method enables one to study the properties of population
stability metrics in a systematic manner. This allows for the direct comparison of the various
measures commonly used in practice in order to identify the strengths and weaknesses of
each; research into this topic is currently underway. The proposed method also simplifies
the study of newly proposed tests for population stability. Furthermore, another direction
for future research is to generalize the proposed simulation technique to the multivariate
case; for instance, in the context of multinomial regression. Finally, future research may
include extending the proposed methodology to include dependent attributes using copula
models. An example of the use of copulas in the context of credit risk can be found in [19].
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Appendix A

Below, we specify the marginal distributions and the specified bad ratios for the
characteristics not discussed in detail in the main text of Section 2. Again, we treat each
attribute separately.

Appendix A.1. Gender

We assume that 60% of applicants are female and 40% are male, and we specify the
bad ratio of males to females to be 3.

Appendix A.2. Number of Enquiries

The number of enquiries is a measure of the client’s appetite for credit. A client
with a large credit appetite will apply for a number of loans. The number of enquiries
provides a view of both the client’s successful and unsuccessful applications. Higher
numbers of enquiries are often associated with increased levels of risk. Table A1 specifies
the distribution associated with various levels of this attribute.

Table A1. Number of enquiries.

Group Description Proportion Bad Ratio

0 No enquiries 30% 1.0
1 One enquiry 25% 1.3
2 Two enquiries 20% 1.8
3 Three enquiries 15% 1.9
4 Four enquiries 5% 2.1
5 Five or more enquiries 5% 2.7

Appendix A.3. Province of Residence

Some provinces are greater economic hubs, which may result in inhabitants with lower
levels of credit risk. Table A2 shows the marginal distribution as well as bad ratios assumed
for the 9 provinces of South Africa.

Table A2. Province of residence.

Group Description Proportion Bad Ratio

0 Gauteng 40% 1.0
1 Western Cape 30% 0.7
2 KwaZulu Natal 7% 1.8
3 Mpumalanga 5% 1.5
4 North West 5% 3.0
5 Limpopo 4% 2.5
6 Eastern Cape 4% 2.0
7 Northern Cape 3% 4.0
8 Free State 2% 1.2

Appendix A.4. Total Amount Outstanding

An applicant’s total amount outstanding is an indication of the current indebtedness
and provides a view of the client’s previous commitments. Excessively low or high levels
of this variable may be associated with higher levels of risk; i.e., a customer with no
outstanding amount could be a result of not being able to obtain credit while very high
levels of this attribute may indicate difficulty in paying current commitments. The marginal
distribution specified for this attribute is standard lognormal, rescaled by a factor of
10,000. The lognormal distribution is chosen since its shape is reminiscent of the empirical
distribution typically observed in practice, while the scaling factor is incorporated in order
to ensure that the numbers used are of a realistic magnitude. The resulting proportions and
bad ratios can be found in Table A3.
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Table A3. Total amount outstanding.

Group Grouping Proportion Bad Ratio

0 0–5000 24.4% 1.0
1 5000–10,000 25.6% 1.2
2 10,000–25,000 32.0% 2.0
3 25,000–100,000 16.9% 2.1
4 more than 100,000 1.1% 0.8

Appendix A.5. Income

Income is a strong indicator of the ability to repay debt and it is often used directly
or indirectly in the scoring process. Direct use occurs through inclusion into the scoring
model as an attribute, while indirect use can be accomplished through using income as an
entry criteria for the application. The distribution used for income is a mixture with several
local models. The associated proportions and bad ratios can be found in Table A4.

Table A4. Income.

Group Grouping Proportion Bad Ratio

0 0–5000 3.2% 3.0
1 5000–11,000 15.6% 2.5
2 11,000–20,000 20.4% 2.0
3 20,000–30,000 21.8% 1.4
4 30,000–70,000 24.0% 1.2
5 more than 70,000 15.0% 1.0

Balance of Recent Defaults

Recent defaults are an indication that a customer is no longer able to pay their debts.
This attribute specifically speaks to customers that have recently defaulted, as all customers
without defaults are grouped at zero. Table A5 specifies a distribution in which the majority
of applicants have recent defaults with a value of less than 1000 units, indicating that the
majority of applicants have not defaulted recently.

Table A5. Balance of recent defaults.

Group Grouping Proportion Bad Ratio

0 0–1000 60.0% 1.0
1 1000–3000 1.1% 1.1
2 3000–5000 2.1% 2.0
3 5000–30,000 18.9% 2.5
4 30,000–1,000,000 18.0% 3.0
5 more than 1,000,000 0.0% 3.3

Appendix B

Tables A6–A11 report the specified bad rate, the average observed bad rate as well as
the standard deviation of this bad rate for each of the attributes not treated in the main text
of Section 4.

Table A6. Gender.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 Female 5.56% 5.58% 0.16%
1 Male 16.67% 16.62% 0.27%
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Table A7. Number of enquiries.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 No Enquiries 6.62% 6.97% 0.23%
1 One Enquiry 8.61% 8.62% 0.25%
2 Two Enquiries 11.92% 10.89% 0.30%
3 Three Enquiries 12.58% 12.74% 0.39%
4 Four Enquiries 13.91% 14.96% 0.73%
5 Five or more Enquiries 17.88% 18.28% 0.84%

Table A8. Province of residence.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 Gauteng 7.78% 7.79% 0.22%
1 Western Cape 5.45% 5.47% 0.24%
2 KwaZulu Natal 14.01% 14.00% 0.74%
3 Mpumalanga 11.67% 11.67% 0.83%
4 North West 23.35% 23.27% 1.05%
5 Limpopo 19.46% 19.40% 1.11%
6 Eastern Cape 15.56% 15.51% 1.05%
7 Northern Cape 31.13% 30.98% 1.50%
8 Free State 9.34% 9.32% 1.22%

Table A9. Amount outstanding.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 0–5000 6.43% 8.52% 0.26%
1 5000–10,000 7.72% 9.01% 0.25%
2 10,000–25,000 12.86% 10.78% 0.23%
3 25,000–100,000 13.51% 11.93% 0.36%
4 more than 100,000 5.15% 12.17% 2.98%

Table A10. Income.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 0–5000 19.07% 14.51% 0.95%
1 5000–11,000 15.89% 12.65% 0.44%
2 11,000–20,000 12.71% 11.66% 0.34%
3 20,000–30,000 8.90% 10.28% 0.29%
4 30,000–70,000 7.63% 9.70% 0.30%
5 more than 70,000 6.36% 4.08% 0.44%

Table A11. Balance of recent defaults.

Group Description Specified Bad Rate Observed Bad Rate Std Dev of Obs Bad Rate

0 1000–3000 6.11% 8.41% 0.18%
1 3000–5000 6.72% 4.51% 0.91%
2 5000–30,000 12.22% 5.78% 0.75%
3 30,000–1,000,000 15.28% 8.21% 0.32%
4 more than 1,000,000 18.33% 17.99% 0.45%
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Abstract: We investigate the association of a sensitive characteristic or latent variable with observed
binary random variables by the randomized response (RR) technique of Warner in his publication
(Warner, S.L. J. Am. Stat. Assoc. 1965, 60, 63–69) and a latent class model. First, an expectation-
maximization (EM) algorithm is provided to easily estimate the parameters of the null and alterna-
tive/full models for the association between a sensitive characteristic and an observed categorical
random variable under the RR design of Warner’s paper above. The likelihood ratio test (LRT)
is utilized to identify observed categorical random variables that are significantly related to the
sensitive trait. Another EM algorithm is then presented to estimate the parameters of a latent class
model constructed through the sensitive attribute and the observed binary random variables that
are obtained from dichotomizing observed categorical random variables selected from the above
LRT. Finally, two classification criteria are conducted to predict an individual in the sensitive or
non-sensitive group. The practicality of the proposed methodology is illustrated with an actual data
set from a survey study of the sexuality of first-year students, except international students, at Feng
Chia University in Taiwan in 2016.

Keywords: bootstrap; expectation-maximization (EM) algorithm; latent class; likelihood ratio test;
maximum likelihood; randomized response; sensitive attribute
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1. Introduction

Questionnaire surveys have been widely used to gather data for studies in various
research fields, including behavioral science, education, sociology, economics, psychology,
bio-medicine, etc., via Google form, email, phone call, or face-to-face interview. The infor-
mation gathered from these surveys is utilized to estimate, compare, and forecast unknown
population proportions of sensitive characteristics of interest. However, it will be likely
to misreport the proportion of individuals who self-report some sensitive characteristic,
such as political opinions, domestic violence, discrimination, abortion, drug use, gender
identity, sexual behavior, anti-social behavior, exam fraud, plagiarism, illegal income, tax
evasion, and gambling, or to refuse to answer when asked directly a sensitive question.
This can lead to errors in analysis results and mistakes in statistical inferences. For example,
in a study conducted by [1] that involved direct interviews with unemployment benefit
recipients, 75% of the survey participants who had engaged in welfare or unemployment
benefits deception denied doing so. In addition, according to [2], if respondents were forced
to answer directly sensitive questions, the percentage of non-heterosexual participants in a
community is typically underestimated. Therefore, various indirect questioning techniques,
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such as randomized response (RR), unmatched count, and crosswise model techniques,
have been proposed to lessen potential bias due to non-response and social desirability re-
sponse and, as a result, improve the reliability of data obtained from responses to sensitive
topics to estimate better the population proportion of people bearing a sensitive attribute.
See, e.g., [3–6] for more details.

The RR technique (RRT), initially introduced by Warner [3], is one of the most famous
indirect questioning techniques and has been widely used to collect sensitive data. The main
idea of this technique is to safeguard respondents’ privacy by concealing their answers or
without disclosing their actual status by using a random device, such as spinners, a deck of
cards, dice, or random number generators. Specifically, Warner [3] suggested the related-
question RRT via a sensitive question of interest and its complement. Respondents can
feel more comfortable choosing which question to honestly answer “yes” or “no” based on
the results of running a random device because the interviewer does not know precisely
their responses. However, Warner’s RRT still has limitations, such as not working when
the probability that the sensitive question is selected to answer is 0.5. Therefore, various
extensions of Warner’s RRT have been suggested to overcome its limitations and enhance
computing effectiveness. For example, Horvitz et al. [7] and Greenberg et al. [8] proposed
an unrelated-question RR design in which the first one is a sensitive question, as in Warner’s
design, and the second one is innocuous and independent of the sensitive question. Mangat
and Singh [9] proposed a two-stage RR design that used two random devices in the
procedure. Christofides [10] suggested a generalized RRT. Huang [11] applied the two-
stage RRT to enhance the performance of Warner’s RRT. Tian and Tang [12] provided
another classification for the RRTs. The related literature can also be found in [2,5,13–21].

Data of some auxiliary variables are also gathered under direct questions when collect-
ing sensitive trait or behavior data. The effects of these auxiliary variables on the population
proportion of a sensitive characteristic are also quite essential and mentioned in many
studies. For instance, by using the RRT of [3], Maddala [22] estimated the effects of the
auxiliary variables, e.g., sex, age, and place of residence, on drug use by utilizing a logistic
regression model. Scheers and Dayton [23] obtained sensitive information through the RR
designs of [3,8], respectively. They proposed using the logistic regression model to establish
the influence model of the accompanying variables on the sensitive feature and to provide
a method for estimating the regression parameters. Hsieh et al. [14,24] proposed semipara-
metric methods of estimating the parameters of a logistic regression model when values
of some of the covariates on some subjects are missing at random to gather information
about sensitive characteristics based on the RR design of [8]. Chang et al. [17] developed
a covariate extension of the two-stage RR design of [11] by employing logistic regression
to investigate the effects of two covariates of interest on the sensitive attribute and the
truthful response to the directly asked sensitive question in the first stage for a sensitive trait
respondent to estimate the probability of a sensitive feature respondent’s honest response
in the first stage and the probability of a respondent with the sensitive feature based on
the logistic regression parameter estimates. Furthermore, in some practical applications,
in addition to using an RR design to collect data on sensitive characteristics or behaviors,
the related scale data are also frequently gathered to use as auxiliary variables. For example,
Lee et al. [19] studied students’ attitudes toward love, gender identity, and online dating
experience through the survey study of the sexuality of first-year students, except interna-
tional students, at Feng Chia University in Taiwan in 2016. They used the sum of scores of
responses to six internet dating experience statements (statements 40–45) as the auxiliary
variable for the sensitive issue, question 67: “Have you ever had a one-night stand through
a dating site or mobile app?” in which response data were gathered by the generalized RRT
of Christofides [10]. They utilized the proposed Bayesian estimation methods to estimate
the parameters of the normal independent and dependent models for the association of
the response to question 67 with the sum of scores of responses to the six internet dating
experiences. Two Bayesian model selection criteria were proposed to choose one of the two
models as an appropriate model to describe this association.
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In another approach to sample survey research, several latent variable models, which
are statistical models and relate a set of observed variables (so-called indicators/manifest
variables) to a latent variable, have been widely used in various sciences, such as the social,
economic, behavioral, and health sciences. The main types of latent variable models can be
classified based on whether the manifest and latent variables are categorical or continuous
as in (Table 7.1 [25], p. 178). See, e.g., [13,25,26] for more details. Some other extensions
of latent variable models, where the manifest variables are treated as ordinal categorical
variables, count variables, or other metrics, can be found in [27,28].

Because both the latent and indicators/manifest/observed variables are categorical,
the latent class (LC) analysis (LCA) is recommended for applications. Lazarsfeld [29]
first introduced the conceptual foundation of LCA, which was used as a tool for building
typologies based on observed dichotomous variables, in research about the ethnocentrism
of American soldiers during World War II [28,30]. Lazarsfeld and Henry [31] provided
a thorough and in-depth conceptual and mathematical treatment of the LCA, but there
was a lack of reliable parameter estimation methods. Since then, the LC model (LCM)
has been improved and applied in various science fields. For example, Goodman [32,33]
provided a relatively simple method, which was later shown to be closely related to the
expectation-maximization (EM) algorithm [34], to obtain the maximum likelihood (ML)
estimates of LCM parameters and goodness-of-fit methods for the model for fitting the
observed data. Haberman [35] demonstrated the connection between LCMs and log-
linear models for frequency tables with missing (unknown) cell counts. Dayton and
Macready [36] proposed a new development by incorporating covariates into an LCM.
Muthén and Shedden [37] improved the models that identified latent growth trajectory
class membership in longitudinal data based on individual growth trajectories and were
estimated by the EM algorithm. Stern et al. [38] applied LCA in studying the two main
temperamental types of children: inhibited and uninhibited. LCMs have been used to
investigate the initiation of substance use habits throughout adolescence, such as alcohol,
caffeine, and tobacco [39]. Vermunt [40] provided an overview of applications of LCMs in
social science research and an extension of the LCM to deal with nested data structures.
Collins and Lanza [26] presented the methodology and applications of LCA for social,
behavioral, and health sciences data. Nasiopoulou et al. [41] applied LCA to investigate the
professional profiles of Swedish preschool teachers. LCA was used to determine the cause
of occupational fatalities in the study of [42]. Wu et al. [43] used LCA to stratify the risk of
incident diabetes in Chinese adults. For other studies about LCA and its applications, see,
e.g., [26,44–48].

However, to the best of our knowledge, there has not been any research about applying
the combination of the RRT and LCM to estimate the proportion of a sensitive or latent
characteristic based on observed variables. Therefore, we are strongly motivated by the
issue to introduce the proposed models, estimation methods, likelihood ratio test (LRT),
and reality applications. This study first presents an EM algorithm for estimating the
parameters of the null and alternative/full model for the association between the sensitive
attribute and an observed categorical random variable in which the RRT of Warner [3] is
used. Note that our approaches are different from those of Lee et al. [19] in which they used
a Markov chain Monte Carlo estimation method and generalized RRT of [10]. The LRT
is then applied to assess whether there is a difference in the distribution of the observed
categorical random variable (i.e., auxiliary variable) between the sensitive and non-sensitive
groups. Finally, a combination of the RRT of [3] and LCA is introduced in which the
indicators/manifest/observed variables are binary. After collecting questions/statements
significantly related to the sensitive characteristic from the results of the LRTs, an LCM is
used to classify an individual in the sensitive or non-sensitive group.

Section 2.1 reviews the RR design of [3]. In Section 2.2, we introduce a model for
the association between a sensitive variable and an observed categorical random vari-
able, which is presented in [19], by using the RRT of [3]. The EM algorithm, called EM
algorithm 1, is applied to estimate the parameters of this model, and the LRT is used to
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evaluate whether the observed categorical random variable is significantly associated with
the sensitivity characteristic variable. Section 2.3 provides an LCM to relate observed
dichotomous random variables, obtained from dichotomizing the significant observed
categorical random variables, to a latent variable that is the sensitive attribute from the RR
design of [3]. Another EM algorithm, called EM algorithm 2, is proposed to estimate the
parameters of the LCM. A classification criterion is conducted to predict an individual in a
sensitive or non-sensitive group in this section. In Section 3, data from the survey of the
sexuality of freshmen, except international students, at Feng Chia University in Taiwan in
2016 are used to demonstrate practical applications of the proposed methodology. Another
classification criterion is proposed to forecast students in the sensitive or non-sensitive
group. Conclusions and some remarks are given in Section 4.

2. Models and Methods

2.1. Warner’s RR Design

The fundamental idea of the related-question RR design of [3] is to protect respondents’
privacy by concealing their responses via a random device, e.g., spinners and dice, a deck
of cards, etc. For example, assume that each respondent receives randomly a deck of cards
marked with question A or A as follows:

A : Have you ever had a one-night stand through a dating site or mobile app?

A : Have you never had a one-night stand through a dating site or mobile app?

Respondents report a truthful “yes” or “no” response to the question they receive
without showing the interviewer which question has been selected. The actual status of
the respondents regarding whether or not they have ever had a one-night stand through a
dating site or mobile app remains undisclosed, and, therefore, their privacy is protected
because neither the interviewer nor the researcher is even aware of the question to which
the released answer refers.

Let θ be the population proportion of persons bearing the sensitive trait having ever had
a one-night stand through a dating site or mobile app, p the probability of cards marked with
the question A, and 1 − p the probability of cards marked with the question A. Assume
that p is known. The probability of answering “yes” is then

P(yes) = p(A)P(yes|A) + P(A)P(yes|A)

= θp + (1 − θ)(1 − p)

= θ(2p − 1) + 1 − p.

Let λ̂ be the proportion of respondents who answer “yes”. Because 2p − 1 �= 0,
the estimate of θ can be obtained as follows:

θ̂w =
λ̂ − (1 − p)

2p − 1
.

However, using random devices may make a respondent report different answers
when repeating the survey twice. Yu et al. [5] pointed out that this is a repetitive phe-
nomenon and, hence, provided another design in which a respondent chooses question
A or A to answer according to her/his characteristic. For example, if a respondent were
born between August 11 and December 31, she/he chooses question A to answer and
chooses question A to answer otherwise. Therefore, if the respondent repeated the survey
twice, the results are the same. In addition, it can prevent respondents from rejecting
interviews and providing false answers and, hence, improve estimation efficiency through
this random birthday design to obtain data of responses to sensitive questions. In this study,
for simplicity, we use the birthday design of [5] for the RR design of [3] by using the data
in the study of [19] as reality analysis. By this approach, it is only necessary that specific
explanations are written in the questionnaire, and students can then answer questions by
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themselves without using a random device. The details of specific explanations are given
in Section 3.

2.2. Model for the Association between Sensitive Attribute and Categorical Variable
2.2.1. Model

Let Yi, i = 1, 2, . . . , n, denote whether the ith sample respondent has the sensitive
attribute A in which Yi = 1 if yes and Yi = 0 otherwise. Assume that Zi denotes the ith
respondent’s response to a direct inquiry, which is a categorical random variable with
values 1, 2, . . . , B or a quantitative variable.

The model for the association between Yi and Zi is considered as follows:

P(Yi = y) = θy(1 − θ)1−y,
P(Zi = z|Yi = y) = πyz, z = 1, 2, . . . , B, y = 0, 1.

(1)

From the above model, one can then obtain

P(Zi = z, Yi = y) = θy(1 − θ)1−yπyz, z = 1, 2, . . . , B, y = 0, 1. (2)

Let Y0
i be the result of using this non-random answering design as given in Table 10

of [17]. Let Y0
i = 1 denote the answer of “A” to a sensitive question and Y0

i = 0 the answer
of “B” to the sensitive question. Assume that p is the probability of respondents’ birthday
between January 1 and August 10. P(Zi = z, Y0

i = y0) can then be expressed as follows:

P(Zi = z, Y0
i = 1) = P(Zi = z, Y0

i = 1, Yi = 1) + P(Zi = z, Y0
i = 1, Yi = 0)

= P(Zi = z, Y0
i = 1|Yi = 1)P(Yi = 1) + P(Zi = z, Y0

i = 1|Yi = 0)P(Yi = 0)

= π1z pθ + π0z(1 − p)(1 − θ).

and

P(Zi = z, Y0
i = 0) = P(Zi = z, Y0

i = 0, Yi = 1) + P(Zi = z, Y0
i = 0, Yi = 0)

= P(Zi = z, Y0
i = 0|Yi = 1)P(Yi = 1) + P(Zi = z, Y0

i = 0|Yi = 0)P(Yi = 0)

= π1z(1 − p)θ + π0z p(1 − θ).

Let y0 = (y0
1, y0

2, . . . , y0
n), z = (z1, z2, . . . , zn), πy = (πy1, πy2, . . . , πyB), y = 0, 1,

and Θ = (θ, π0, π1). Because only (Y0
i , Zi), i = 1, 2, . . . , n, can be observed, the observed-

data likelihood function of Θ can then be written as

Lobs(Θ|y0, z)

=
n

∏
i=1

{[
pθπ1zi + (1 − p)(1 − θ)π0zi

]I(y0
i =1)[p(1 − θ)π0zi + (1 − p)θπ1zi

]I(y0
i =0)
}

=
n

∏
i=1

B

∏
j=1

{[
pθπ1j + (1 − p)(1 − θ)π0j

]I(y0
i =1)[p(1 − θ)π0j + (1 − p)θπ1j

]I(y0
i =0)
}I(zi=j)

=
B

∏
j=1

{[
pθπ1j + (1 − p)(1 − θ)π0j

]∑n
i=1 I(y0

i =1,zi=j)[p(1 − θ)π0j + (1 − p)θπ1j
]∑n

i=1 I(y0
i =0,zi=j)

}
.

Given an initial value for Θ, the R function optim or nlminb can then be used to obtain
the ML estimate of Θ. However, in practice, when using the R function optim or nlminb to
find the ML estimate of Θ for the RR design of [3], it may lead to encountering the problem
of non-convergence, or the estimate is not in the parameter space of Θ. Therefore, an EM
algorithm is proposed to overcome this problem in the next section.
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2.2.2. EM Algorithm 1

The EM algorithm developed by Dempster et al. [34] has been the most widely used
iterative technique for computing ML estimates from incomplete data. The EM algorithm
consists of two steps: the expectation (E)-step and maximization (M)-step. In the E-step,
the latent or unobserved data are estimated by their expectation given the observed data
and current parameter estimates. The M-step is used to maximize the expectation in the
E-step to update estimates of unknown parameters.

Let y = (y1, y2, . . . , yn). The complete-data likelihood function of Θ given (y, y0, z) is
written as follows:

Lc(Θ|y, y0, z) =
n

∏
i=1

{[
pθπ1zi

]I(y0
i =1,yi=1)[

(1 − p)θπ1zi

]I(y0
i =0,yi=1)

×
[
(1 − p)(1 − θ)π0zi

]I(y0
i =1,yi=0)[p(1 − θ)π0zi

]I(y0
i =0,yi=0)

}
=

n

∏
i=1

B

∏
j=1

{[
pθπ1j

]y0
i yi
[
(1 − p)θπ1j

](1−y0
i )yi

×
[
(1 − p)(1 − θ)π0j

]y0
i (1−yi)

[
p(1 − θ)π0j

](1−y0
i )(1−yi)

}I(zi=j)
.

The complete-data log-likelihood function of Θ given (y, y0, z) can then be expressed
as follows:

�c(Θ|y, y0, z) =
B

∑
j=1

n

∑
i=1

{
y0

i yi I(zi = j) ln (pθπ1j) + (1 − y0
i )yi I(zi = j) ln [(1 − p)θπ1j]

+ y0
i (1 − yi)I(zi = j) ln [(1 − p)(1 − θ)θπ0j]

+(1 − y0
i )(1 − yi)I(zi = j) ln [p(1 − θ)π0j]

}
. (3)

Note that although Y is a latent or unobserved variable, one can obtain P(Yi = y|Zi =
j, Y0

i = y0), y = 0, 1, y0 = 0, 1, j = 1, 2, . . . , B, as follows:

P(Yi = 1|Zi = j, Y0
i = 1) =

pθπ1j

pθπ1j + (1 − p)(1 − θ)π0j
,

P(Yi = 1|Zi = j, Y0
i = 0) =

(1 − p)θπ1j

(1 − p)θπ1j + p(1 − θ)π0j
,

P(Yi = 0|Zi = j, Y0
i = 1) =

(1 − p)(1 − θ)π0j

pθπ1j + (1 − p)(1 − θ)π0j
,

P(Yi = 0|Zi = j, Y0
i = 0) =

p(1 − θ)π0j

(1 − p)θπ1j + p(1 − θ)π0j
.

Therefore, it can yield the following results:

E
(

Yi|Zi = j, Y0
i = 1

)
= P(Yi = 1|Zi = j, Y0

i = 1)

=
pθπ1j

pθπ1j + (1 − p)(1 − θ)π0j
,

E
(

Yi|Zi = j, Y0
i = 0

)
= P(Yi = 1|Zi = j, Y0

i = 0)

=
(1 − p)θπ1j

(1 − p)θπ1j + p(1 − θ)π0j
,
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E
(
(1 − Yi)|Zi = j, Y0

i = 1
)
= P(Yi = 0|Zi = j, Y0

i = 1)

=
(1 − p)(1 − θ)π0j

pθπ1j + (1 − p)(1 − θ)π0j
,

E
(
(1 − Yi)|Zi = j, Y0

i = 0
)
= P(Yi = 0|Zi = j, Y0

i = 0)

=
p(1 − θ)π0j

(1 − p)θπ1j + p(1 − θ)π0j
.

E-step: E-step is to take the expectation of �c(Θ|y, y0, z) in (3) with respect to the condi-
tional distributions of the unobserved variables Yis given the current estimate of Θ and the

observed data (y0, z). Let Θ̂
(m)

= (θ̂(m), π̂
(m)
0 , π̂

(m)
1 ) be an estimate of Θ at the mth iteration,

where π̂
(m)
y = (π̂

(m)
y1 , π̂

(m)
y2 , . . . , π̂

(m)
yB ), y = 0, 1. θ̂(0) = max{0.001, [y0 − (1 − p)]/(2p − 1)},

where y0 = n−1 ∑n
i=1 y0

i , and π̂
(0)
1j = π̂

(0)
0j = n−1 ∑n

i=1 I(zi = j) are initial values. Given the

observed data (y0, z) and Θ̂
(m)

, by taking the expectation of �c(Θ|Y , Y0, Z) in (3), where
Y0 = (Y0

1 , Y0
2 , . . . , Y0

n), Y = (Y1, Y2, . . . , Yn), and Z = (Z1, Z2, . . . , Zn), the Q-function can
be given as follows:

Q
(

Θ|Θ̂(m)
)
= E
[
�c(Θ|Y , Y0, Z)

∣∣y0, z, Θ̂
(m)
]

=
B

∑
j=1

{[
n

∑
i=1

y0
i I(zi = j)E

(
Yi
∣∣y0, z, Θ̂

(m)
)]

ln(pθπ1j)

}

+
B

∑
j=1

{[
n

∑
i=1

(1 − y0
i )I(zi = j)E

(
Yi
∣∣y0, z, Θ̂

(m)
)]

ln[(1 − p)θπ1j]

}
(4)

+
B

∑
j=1

{[
n

∑
i=1

y0
i I(zi = j)E

(
1 − Yi

∣∣y0, z, Θ̂
(m)
)]

ln[(1 − p)(1 − θ)θπ0j]

}

+
B

∑
j=1

{[
n

∑
i=1

(1 − y0
i )I(zi = j)E

(
1 − Yi

∣∣y0, z, Θ̂
(m)
)]

ln[p(1 − θ)π0j]

}
.

Let Â(m)
y = ∑B

j=1 Â
(m)
yj , y = 0, 1, where

Â(m)
1j =

n

∑
i=1

E
{

YiY0
i I(Zi = j)

∣∣Zi = j, Y0
i = 1, Θ̂

(m)
}

=
n

∑
i=1

⎡⎣y0
i I(zi = j)

⎧⎨⎩ pθ̂(m)π̂
(m)
1j

pθ̂(m)π̂
(m)
1j + (1 − p)(1 − θ̂(m))π̂

(m)
0j

⎫⎬⎭
⎤⎦,

Â(m)
0j =

n

∑
i=1

E
{

Yi(1 − Y0
i )I(Zi = j)|Zi = j, Y0

i = 0, Θ̂
(m)
}

=
n

∑
i=1

⎡⎣(1 − y0
i )I(zi = j)

⎧⎨⎩ (1 − p)θ̂(m)π̂
(m)
1j

(1 − p)θ̂(m)π̂
(m)
1j + p(1 − θ̂(m))π̂

(m)
0j

⎫⎬⎭
⎤⎦.
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Let

K̂(m)
1j =

n

∑
i=1

E
{
(1 − Yi)Y0

i I(Zi = j)|Zi = j, Y0
i = 1, Θ̂

(m)
}

=
n

∑
i=1

⎡⎣y0
i I(zi = j)

⎧⎨⎩ (1 − p)(1 − θ̂(m))π̂
(m)
0j

pθ̂(m)π̂
(m)
1j + (1 − p)(1 − θ̂(m))π̂

(m)
0j

⎫⎬⎭
⎤⎦,

K̂(m)
0j =

n

∑
i=1

E
{
(1 − Yi)(1 − Y0

i )I(Zi = j)|Zi = j, Y0
i = 0, Θ̂

(m)
}

=
n

∑
i=1

⎡⎣(1 − y0
i )I(zi = j)

⎧⎨⎩ p(1 − θ̂(m))π̂
(m)
0j

(1 − p)θ̂(m)π̂
(m)
1j + p(1 − θ̂(m))π̂

(m)
0j

⎫⎬⎭
⎤⎦.

Note that K̂(m)
1j + Â(m)

1j = ∑n
i=1 y0

i I(zi = j) and K̂(m)
0j + Â(m)

0j = ∑n
i=1(1 − y0

i )I(zi = j).

These imply ∑B
j=1(K̂

(m)
1j + Â(m)

1j ) = ∑n
i=1 y0

i and ∑B
j=1(K̂

(m)
0j + Â(m)

0j ) = ∑n
i=1(1− y0

i ). Hence,

∑B
j=1 K̂

(m)
1j = ∑n

i=1 y0
i − Â(m)

1 and ∑B
j=1 K̂

(m)
0j = n − ∑n

i=1 y0
i − Â(m)

0 . Based on these results,
the Q-function in (4) can be re-written as follows:

Q
(

Θ|Θ̂(m)
)
=

B

∑
j=1

{
Â(m)

1j ln (pθπ1j) + Â(m)
0j ln [(1 − p)θπ1j]

+ K̂(m)
1j ln [(1 − p)(1 − θ)θπ0j] + K̂(m)

0j ln [p(1 − θ)π0j]
}

=
B

∑
j=1

{
Â(m)

1j
[
ln p + ln θ + ln π1j

]
+ Â(m)

0j
[
ln(1 − p) + ln θ + ln π1j

]
+ K̂(m)

1j
[
ln(1 − p) + ln(1 − θ) + ln π0j

]
+ K̂(m)

0j
[
ln p + ln(1 − θ) + ln π0j

]}
=

B

∑
j=1

{
(Â(m)

1j + K̂(m)
0j ) ln p + (Â(m)

0j + K̂(m)
1j ) ln(1 − p)

}
+

B

∑
j=1

{
(Â(m)

1j + Â(m)
0j ) ln θ + (K̂(m)

1j + K̂(m)
0j ) ln(1 − θ)

}
(5)

+
B

∑
j=1

{
(Â(m)

1j + Â(m)
0j ) ln π1j + (K̂(m)

1j + K̂(m)
0j ) ln π0j

}
=

B

∑
j=1

{
(Â(m)

1j + K̂(m)
0j ) ln p + (Â(m)

0j + K̂(m)
1j ) ln(1 − p)

}
+
{
(Â(m)

1 + Â(m)
0 ) ln θ + (n − Â(m)

1 + Â(m)
0 ) ln(1 − θ)

}
+

B−1

∑
j=1

{
(Â(m)

1j + Â(m)
0j ) ln π1j + (K̂(m)

1j + K̂(m)
0j ) ln π0j

}
+ (Â(m)

1B + Â(m)
0B ) ln

(
1 −

B−1

∑
j=1

π1j

)
+ (K̂(m)

1B + K̂(m)
0B ) ln

(
1 −

B−1

∑
j=1

π0j

)
.
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M-step: The M-step is to maximize Q
(
Θ|Θ̂(m))

in (5) with respect to Θ given Θ̂
(m)

to update the estimate of Θ denoted by Θ̂
(m+1)

= (θ̂(m+1), π̂
(m+1)
0 , π̂

(m+1)
1 ) by solving the

equations ∂Q
(
Θ|Θ̂(m))

/∂Θ = 0, which are expressed as follows:

θ̂(m+1) =
Â(m)

1 + Â(m)
0

n
, π̂

(m+1)
1j =

Â(m)
1j + Â(m)

0j

Â(m)
1 + Â(m)

0

, π̂
(m+1)
0j =

K̂(m)
1j + K̂(m)

0j

n − (Â(m)
1 + Â(m)

0 )
.

Iterate the E-step and M-step until
∣∣∣Θ̂(m+1) − Θ̂

(m)
∣∣∣ < ε = 5 × 10−5 in this study.

Under the null hypothesis H0 : π1z = π0z = π·z, z = 1, 2, . . . , B, the model in (1),
called an alternative/full model, is reduced to the following null model:

P(Yi = y) = θy(1 − θ)1−y,
P(Zi = z|Yi = y) = π·z, z = 1, 2, . . . , B, y = 0, 1.

(6)

Based on the above null model, P(Zi = z, Yi = y) can then be expressed as

P(Zi = z, Yi = y) = θy(1 − θ)1−yπ·z, z = 1, 2, . . . , B, y = 0, 1. (7)

P(Yi = 1|Zi = j, Y0
i = y0) can be given by

P(Yi = 1|Zi = j, Y0
i = 1) =

pθ

pθ + (1 − p)(1 − θ)
,

P(Yi = 1|Zi = j, Y0
i = 0) =

(1 − p)θ
(1 − p)θ + p(1 − θ)

,

P(Yi = 0|Zi = j, Y0
i = 1) =

(1 − p)(1 − θ)

pθ + (1 − p)(1 − θ)
,

P(Yi = 0|Zi = j, Y0
i = 0) =

p(1 − θ)

(1 − p)θ + p(1 − θ)
.

Based on the arguments similar to those in EM algorithm 1, one can obtain an estimate
of θ at the (m + 1)th iteration of the EM algorithm as follows:

θ̃(m+1) =
Ã(m)

1 + Ã(m)
0

n
,

where

Ã(m)
1 =

n

∑
i=1

[
I(y0

i = 1)

{
pθ̃(m)

pθ̃(m) + (1 − p)(1 − θ̃(m))

}]
,

Ã(m)
0 =

n

∑
i=1

[
I(y0

i = 0)

{
(1 − p)θ̃(m)

(1 − p)θ̃(m) + p(1 − θ̃(m))

}]
.

Note that the ML estimate of π·z in (6) and (7) is ∑n
i=1 I(zi = z)/n, z = 1, 2, . . . , B.

2.2.3. Likelihood Ratio Test (LRT)

The LRT of Neyman and Pearson [49] is utilized to determine which model is ap-
propriate for the association of the sensitive feature with an observed categorical random
variable by testing the following hypotheses:

H0 : π1j = π0j = π·j, for all j = 1, 2, . . . , B, (8)

H1 : π1j �= π0j, for some j = 1, 2, . . . , B.
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Let π· = (π·1, π·2, . . . , π·B). Under H0, the observed-data likelihood function of (θ, π·)
is given by

Lobs(θ, π·|y0, z)

=
n

∏
i=1

{
[pθπ·zi + (1 − p)(1 − θ)π·zi ]

I(y0
i =1)[p(1 − θ)π·zi + (1 − p)θπ·zi ]

I(y0
i =0)
}

=
n

∏
i=1

B

∏
j=1

{[
pθπ·j + (1 − p)(1 − θ)π·j

]I(y0
i =1)[p(1 − θ)π·j + (1 − p)θπ·j

]I(y0
i =0)
}I(zi=j)

=

{
n

∏
i=1

[pθ + (1 − p)(1 − θ)]I(y
0
i =1)[p(1 − θ) + (1 − p)θ]I(y

0
i =0)

}{
n

∏
i=1

B

∏
j=1

[π·j]
I(zi=j)

}

=[pθ + (1 − p)(1 − θ)]∑
n
i=1 I(y0

i =1)[p(1 − θ) + (1 − p)θ]∑
n
i=1 I(y0

i =0)
B

∏
j=1

[π·j]∑
n
i=1 I(zi=j).

Therefore, one can use the following LRT statistic

Λ = −2 log

{
supθ,π · Lobs(θ, π·|y0, z)

supθ,π0,π1
Lobs(θ, π0, π1|y0, z)

}
d−→ χ2

B−1 (9)

to determine whether to reject H0 in (8).

2.3. A Latent Class Model Incorporating Warner’s RRT
2.3.1. Model

Let {Z̃si}k
s=1 be k observed ordinal categorical random variables each with values

1, 2, . . . , B for respondent i, where Z̃si denotes the respondent’s response to the sth selected
question or statement by the LRT, which is significantly associated with the sensitive
attribute at a significance level α. Define K̃si = 1 if Z̃si ∈ {1, 2, . . . , q∗} and K̃si = 0 if
Z̃si ∈ {q∗ + 1, q∗ + 2, . . . , B}, where q∗ is smaller than B. That is, Z̃si is dichotomized based
on the criterion Z̃si ≤ q∗. Based on a latent variable model, it is assumed that under the
group to which an individual is known to belong, the corresponding observed/manifest
variables are independent. Therefore, assume that K̃1i, K̃2i, . . . , K̃ki given Yi, i = 1, 2, . . . , n,
are independent. The aims are to estimate the parameters of the following LCM

P(Yi = y|Y0
i , K̃1i, K̃2i, . . . , K̃ki), y = 0, 1, (10)

via an EM algorithm and to predict an individual in a sensitive group or not.
Define P(K̃si = 1|Yi = y) = αys, y = 0, 1, s = 1, 2, . . . , k. Under the assumption that

K̃1i, K̃2i, . . . , K̃ki given Yi are independent, one can obtain the following results:

P(Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

= P(Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki|Yi = 1)P(Yi = 1)

+ P(Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki|Yi = 0)P(Yi = 0)

= pθ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si + (1 − p)(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si (11)
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and

P(Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

= P(Y0
i = 0, K̃1i = k1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki|Yi = 1)P(Yi = 1)

+ P(Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki|Yi = 0)P(Yi = 0)

= (1 − p)θ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si + p(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si . (12)

Let Θ̃ = (θ, α0, α1), where αy = (αy1, αy2, . . . , αyk), y = 0, 1. The observed data
likelihood function of Θ̃ given (Y0, K̃1, K̃2, . . . , K̃k) is

Lobs(Θ̃|Y0, K̃1, K̃2, . . . , K̃k)

=
n

∏
i=1

{
pθ

k

∏
s=1

α
K̃si
1s (1 − α1s)

1−K̃si + (1 − p)(1 − θ)
k

∏
s=1

α
K̃si
0s (1 − α0s)

1−K̃si

}Y0
i

(13)

×
{
(1 − p)θ

k

∏
s=1

α
K̃si
1s (1 − α1s)

1−K̃si + p(1 − θ)
k

∏
s=1

α
K̃si
0s (1 − α0s)

1−K̃si

}1−Y0
i

,

where Y0 = (Y0
1 , Y0

2 , . . . , Y0
n) and K̃s = (K̃s1, K̃s2, . . . , K̃sn), s = 1, 2, . . . , k. The R function

optim or nlminb can be used to obtain the ML estimate of Θ̃ in (13), but to avoid encountering
the problem of divergence, we provide an EM algorithm in the following section to solve
this problem.

2.3.2. EM Algorithm 2

Suppose that (Yi, Y0
i , K̃1i, K̃2i, . . . , K̃ki), i = 1, 2, . . . , n, are observable. One can then

express P(Yi = y, Y0
i = y0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki), y = 0, 1, y0 = 0, 1, as follows:

P(Yi = 1, Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki) = pθ

k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si ,

P(Yi = 0, Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki) = (1 − p)(1 − θ)

k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si ,

P(Yi = 1, Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki) = (1 − p)θ

k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si ,

P(Yi = 0, Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki) = p(1 − θ)

k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si .

The complete-data likelihood function of Θ̃ given (Y , Y0, K̃1, K̃2, . . . , K̃k) can be written
as

Lc(Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k)

=
n

∏
i=1

{
pθ

k

∏
s=1

α
K̃si
1s (1 − α1s)

1−K̃si

}Y0
i Yi
{
(1 − p)(1 − θ)

k

∏
s=1

α
K̃si
0s (1 − α0s)

1−K̃si

}Y0
i (1−Yi)

×
{
(1 − p)θ

k

∏
s=1

α
K̃si
1s (1 − α1s)

1−K̃si

}(1−Y0
i )Yi
{

p(1 − θ)
k

∏
s=1

α
K̃si
0s (1 − α0s)

1−K̃si

}(1−Y0
i )(1−Yi)

.
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With a bit of algebra, Lc(Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k) can be re-expressed as

Lc(Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k)

= p∑n
i=1[Y

0
i Yi+(1−Y0

i )(1−Yi)](1 − p)∑n
i=1[Y

0
i (1−Yi)+(1−Y0

i )Yi]θ∑n
i=1 Yi (1 − θ)∑n

i=1(1−Yi)

×
k

∏
s=1

α
∑n

i=1 YiK̃si
1s (1 − α1s)

∑n
i=1 Yi(1−K̃si)

k

∏
s=1

α
∑n

i=1(1−Yi)K̃si
0s (1 − α0s)

∑n
i=1(1−Yi)(1−K̃si).

The complete-data log-likelihood of Θ̃ given (Y , Y0, K̃1, K̃2, . . . , K̃k) can then be ex-
pressed as

�c(Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k)

=
n

∑
i=1

{
[Y0

i Yi + (1 − Y0
i )(1 − Yi)] ln p + [Y0

i (1 − Yi) + (1 − Y0
i )Yi] ln(1 − p)

}
+

n

∑
i=1

{Yi ln θ + (1 − Yi) ln (1 − θ)} (14)

+
k

∑
s=1

n

∑
i=1

{
YiK̃si ln α1s + Yi(1 − K̃si) ln (1 − α1s) + (1 − Yi)K̃si ln α0s

+(1 − Yi)(1 − K̃si) ln (1 − α0s)
}

.

Yi is a latent or unobserved variable, but one can obtain P(Yi = y|Y0
i = y0, K̃1i =

k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki), y = 0, 1, y0 = 0, 1, as follows:

P(Yi = 1|Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

=

pθ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si

pθ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si + (1 − p)(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si

,

P(Yi = 0|Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

=

(1 − p)(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si

pθ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si + (1 − p)(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si

,

P(Yi = 1|Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

=

(1 − p)θ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si

(1 − p)θ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si + p(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si

,
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P(Yi = 0|Y0
i = 0, K̃1i = k1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

=

p(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si

(1 − p)θ
k

∏
s=1

α
k̃si
1s (1 − α1s)

1−k̃si + p(1 − θ)
k

∏
s=1

α
k̃si
0s (1 − α0s)

1−k̃si

.

E-step: Let ̂̃Θ(m)
= (θ̂(m), α̂

(m)
0 , α̂

(m)
1 ) be an estimate of Θ̃ at the mth iteration, where

α̂
(m)
y = (α̂

(m)
y1 , α̂

(m)
y2 , . . . , α̂

(m)
yk ), y = 0, 1. Let θ̂(0) = max{0.001, [y0 − (1 − p)]/(2p − 1)},

where y0 = n−1 ∑n
i=1 y0

i , and α̂
(0)
0s = α̂

(0)
1s = n−1 ∑n

i=1 k̃si be initial values. Given observed
data (y0, k̃1, k̃2, . . . , k̃k), by taking the expectation of �c(Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k) in (14)

given (y0, k̃1, k̃2, . . . , k̃k, ̂̃Θ(m)
), the Q-function can be given as follows:

Q
(

Θ| ̂̃Θ(m))
= E
[
�c(Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k)

∣∣y0, k̃1, k̃2, . . . , k̃k, ̂̃Θ(m)]
. (15)

Define ˜̃B(m)

1i and ˜̃B(m)

0i as follows:

˜̃B(m)

1i = E
{

Yi

∣∣∣Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki,

̂̃
Θ

(m)
}

=

I(Y0
i = 1)pθ̂(m)

k

∏
r=1

[α̂
(m)
1r ]k̃ri [1 − α̂

(m)
1r ]1−k̃ri

pθ̂(m)
k

∏
r=1

[α̂
(m)
1r ]k̃ri [1 − α̂

(m)
1r ]1−k̃ri + (1 − p)(1 − θ̂(m))

k

∏
r=1

[α̂
(m)
0r ]k̃ri [1 − α̂

(m)
0r ]1−k̃ri

,

˜̃B(m)

0i = E
{

Yi

∣∣∣Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki,

̂̃
Θ

(m)
}

=

I(Y0
i = 0)(1 − p)θ̂(m)

k

∏
r=1

[α̂
(m)
1r ]k̃ri (1 − α̂

(m)
1r )1−k̃ri

(1 − p)θ̂(m)
k

∏
r=1

[α̂
(m)
1r ]k̃ri (1 − α̂

(m)
1r )1−k̃ri + p(1 − θ̂(m))

k

∏
r=1

[α̂
(m)
0r ]k̃ri (1 − α̂

(m)
0r )1−k̃ri

.

Let ˜̃A(m)

1 = ∑n
i=1
˜̃B(m)

1i and ˜̃A(m)

0 = ∑n
i=1
˜̃B(m)

0i . Hence, one can obtain
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Q
(

Θ
∣∣∣ ̂̃Θ(m)

)
= E
[
�c

(
Θ̃|Y , Y0, K̃1, K̃2, . . . , K̃k

∣∣∣y0, k̃1, k̃2, . . . , k̃k, ̂̃Θ(m)
)]

=
n

∑
i=1

{(
Y0

i
˜̃B(m)

1i + (1 − Yi0)(1 − ˜̃B(m)

0i )

)
ln p +

(
Y0

i (1 −
˜̃B(m)

1i ) + (1 − Y0
i )
˜̃B(m)

0i

)
ln(1 − p)

}
+

n

∑
i=1

{(˜̃B(m)

1i + ˜̃B(m)

1i

)
ln θ +

[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)]
ln(1 − θ)

}

+
k

∑
s=1

n

∑
i=1

{(˜̃B(m)

1i + ˜̃B(m)

0i

)
k̃si ln α1s +

(˜̃B(m)

1i + ˜̃B(m)

0i

)
(1 − k̃si) ln(1 − α1s)

}

+
k

∑
s=1

n

∑
i=1

{[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)]
k̃si ln α0s +

[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)]
(1 − k̃si) ln(1 − α0s)

}

=

( ˜̃A(m)

1 +
n

∑
i=1

(1 − Yi0)− ˜̃A(m)

0

)
ln p +

(
n

∑
i=1

Y0
i − ˜̃A(m)

1 + ˜̃A(m)

0

)
ln(1 − p)

+

( ˜̃A(m)

1 + ˜̃A(m)

0

)
ln θ +

(
n − ˜̃A(m)

1 − ˜̃A(m)

0

)
ln(1 − θ)

+
k

∑
s=1

n

∑
i=1

{(˜̃B(m)

1i + ˜̃B(m)

0i

)
k̃si ln α1s +

(˜̃B(m)

1i + ˜̃B(m)

0i

)
(1 − k̃si) ln(1 − α1s)

}

+
k

∑
s=1

n

∑
i=1

{[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)]
k̃si ln α0s

+

[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)]
(1 − k̃si) ln(1 − α0s)

}
. (16)

M-step: Update the estimate of Θ, denoted by ̂̃Θ(m+1)
by maximizing (15), given as

follows:

θ̂(m+1) =
˜̃A(m)

1 + ˜̃A(m)

0
n

,

α̂
(m+1)
1s =

n

∑
i=1

(˜̃B(m)

1i + ˜̃B(m)

0i

)
k̃si

n

∑
i=1

(˜̃B(m)

1i + ˜̃B(m)

0i

) , α̂
(m+1)
0s =

n

∑
i=1

[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)]
k̃si

n

∑
i=1

[
1 −
(˜̃B(m)

1i + ˜̃B(m)

0i

)] , s = 1, 2, . . . , k.

The E-step and M-step are iterated until
∣∣∣ ̂̃Θ(m+1)

− ̂̃Θ(m)∣∣∣ < ε = 5 × 10−5 in this study.

Based on the estimate ̂̃Θ = (θ̂, α̂0, α̂1) of Θ̃ = (θ, α0, α1), we propose the first criterion
of classifying whether or not the ith individual belongs to the sensitive group, which is
described below. If the ith individual were with (Y0

i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)
and

P̂(Yi = 1|Y0
i = 1, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

=

pθ̂
k

∏
s=1

α̂
k̃si
1s (1 − α̂1s)

1−k̃si

pθ̂
k

∏
s=1

α̂
k̃si
1s (1 − α̂1s)

1−k̃si + (1 − p)(1 − θ̂)
k

∏
s=1

α̂
k̃si
0s (1 − α̂0s)

1−k̃si

≥ 0.5, (17)
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then she/he is predicted to belong to the sensitive group. If she/he were with (Y0
i =

0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki) and

P̂(Yi = 1|Y0
i = 0, K̃1i = k̃1i, K̃2i = k̃2i, . . . , K̃ki = k̃ki)

=

(1 − p)θ̂
k

∏
s=1

α̂
k̃si
1s (1 − α̂1s)

1−k̃si

(1 − p)θ̂
k

∏
s=1

α̂
k̃si
1s (1 − α̂1s)

1−k̃si + p(1 − θ̂)
k

∏
s=1

α̂
k̃si
0s (1 − α̂0s)

1−k̃si

≥ 0.5. (18)

then she/he is classified to be in the sensitive group.

3. Real Data Application

The proposed methodology is employed to demonstrate its practical applications by
using the survey study data of the sexuality of 3027 freshmen (1193 females, 1792 males,
29 non-binary, 13 no response), not including international students, enrolled based on
convenience sampling at Feng Chia University in Taiwan in 2016. Because 262 (8.7%)
respondents had missing data, 2765 respondents are used for the purpose. Through this
face-to-face survey, respondents answered a questionnaire of 67 statements or questions,
including three parts: demographic questions, attitude to love, and online dating experience.
This questionnaire did not collect personal information such as respondents’ name and age.
In addition, data of responses to the sensitive question, question 37: “What is your sexual
orientation?”, were collected by using the multichotomous RR design of Groenitz [50,51].
We collected data of responses to the two sensitive questions, question 38: “Have you
ever had sex?” and question 39: “Have you ever had a one-night stand through a dating
site or mobile app?”, via the design of [3] and birthday interval as a non-random device.
The generalized RR design of [10] was employed to collect data of responses to the sensitive
question, question 67: “Have you ever had a one-night stand through a dating site or mobile
app?”, which is the same question as question 39. Therefore, the privacy of respondents
was protected.

There were 27 statements in the third part about online dating experience for respon-
dents to answer. In addition, question 39: “Have you ever had a one-night stand through a
dating site or mobile app?” was designed to collect data on the sexual behavior. Because peo-
ple in eastern cultures are often shy about referring to sexual behavior or reluctant to pro-
vide correct answers, the indirect question technique of [3] was used in this study. Expressly,
two birthday intervals, January 1 to August 30 and August 11 to December 31, were set up
as a non-random device so that interviewees based on their birthday could answer “yes”
or “no” to question 39. The design detail of question 39 is as given in Table 10 of [17]. More
specifically, if a respondent whose birthday was between January 1 and August 10 had ever
had a one-night stand through a dating site or mobile app, answer “A” denoted “yes” to the
question, and answer “B” denoted “no”. If a respondent whose birthday was between Au-
gust 11 and December 31 had ever had a one-night stand through a dating site or mobile app,
answer “B” denoted “yes” to the question, and answer “A” denoted “no”. In addition, state-
ments 40–66 are direct ones about interviewees’ thoughts and evaluation on making friends
on the internet, finding a lover or sex partner, and attitude toward online dating. Each
statement had five response options, i.e., 1 = “very consistent”, 2 = “almost consistent”,
3 = “fairly consistent”, 4 = “a bit consistent”, and 5 = “very inconsistent”.

As in Section 2.2, the binary variable Yi denotes whether respondent i has ever had
a one-night stand through a dating site or mobile app in which Yi = 1 indicates yes,
and Yi = 0 otherwise. P(Yi = 1) = θ is the population proportion of the sensitive
attribute, having ever had a one-night stand through a dating site or mobile app. p = 0.6082 is the
probability of people whose birthday is between January 1 and August 10 by assuming
that birthdays are uniformly distributed. The LRT statistic in (9) is utilized to identify
which statements from statements 40–66 are significantly related to question 39 based on
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data of responses to these 27 statements and question 39 at α = 0.1. Table 1 displays the
analysis results, including estimates of the parameters of the alternative/full model in (1)
and null model in (6) for the association of this sensitive attribute with response to each
of these 27 statements under H0 and H1 in (8) and corresponding p-values of the LRTs.
As seen from these results, the p-values of the LRTs corresponding to statements 43, 45,
55, and 61 are 0.0187, 0.0836, 0.0259, and 0.0757, respectively, which imply that question
39 was significantly associated with response to each of these four statements at α = 0.1.
The selected four statements are listed below.

Q43. Finding friends on the internet can improve your social circle.

Q45. You can find people with similar interests online.

Q55. I am a homebody, so I want to make friends online.

Q61. I want to find my partner through online dating.

Let {Z̃si}4
s=1 denote the ith respondent’s response to the aforementioned four state-

ments selected by the LRTs at α = 0.1 with full probability model P(Z̃si = z|Yi = y) = π
(s)
yz ,

s = 1, 2, 3, 4, z = 1, 2, 3, 4, 5, y = 0, 1. Table 2 presents estimates of θ(s), π
(s)
0z , and π

(s)
1z with

their estimated standard errors (SEs) for the alternative/full model for the association
between the sensitive feature and each of {Z̃si}4

s=1, respectively. Note that the estimated
SEs are obtained by the bootstrap method with 200 replications. It can be seen from Table 2
that the estimated SEs of θ̂(s) are around 0.04, and the estimated SEs of π̂

(s)
0z are, respectively,

smaller than those of π̂
(s)
1z mainly because there is more sample information to estimate π

(s)
0z .

Based on θ̂(s), π̂
(s)
0z , and π̂

(s)
1z , one can estimate P(Yi = 1|Z̃si = z, Y0

i = y0) as follows:

P̂(Yi = 1|Z̃si = z, Y0
i = y0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
pθ̂(s)π̂

(s)
1z

pθ̂(s)π̂
(s)
1z + (1 − p)(1 − θ̂(s))π̂

(s)
0z

as y0 = 1,

(1 − p)θ̂(s)π̂(s)
1z

(1 − p)θ̂(s)π̂(s)
1z + p(1 − θ̂(s))π̂

(s)
0z

as y0 = 0.

According to the estimated posterior probability of Yi = 1 given Z̃si = z and Y0
i = y0,

define Csi

Csi =

{
1 when P̂(Yi = 1|Z̃si = z, Y0

i = y0) ≥ 0.5,
0 when P̂(Yi = 1|Z̃si = z, Y0

i = y0) < 0.5,
(19)

as a conditional classifier to identify whether the ith respondent has the sensitive attribute.
As a second classification criterion, the proposed classification criterion is to predict the ith
respondent in the sensitive group, i.e., she/he has ever had a one-night stand through a
dating website or mobile app, if any of the Csi, s = 1, 2, 3, 4, is 1, i.e., if

4

∑
s=1

Csi ≥ 1. (20)

By applying the proposed methodology in Section 2.3 to the real data set, we define
K̃si = 1 if Z̃si ∈ {1, 2} and K̃si = 0 if Z̃si ∈ {3, 4, 5}. {K̃si}4

s=1 and Yi are observed
binary and latent variables in the LCM, respectively. Then, P(K̃si = 1|Yi = 0) = α0s and
P(K̃si = 1|Yi = 1) = α1s, s = 1, 2, 3, 4.

Table 3 displays the estimates of θ, α0s, and α1s in the proposed LCM incorporating the
RRT of [3] with their estimated SEs. The SEs are estimated by using the bootstrap method
with 200 replications. The estimate of θ is 0.2201, and its estimated SE is 0.0127. This
estimate of θ is reasonable because this estimate is still within each of the 95% confidence
intervals (CIs) of θ̂(s), (θ̂(s) − 1.96ŜE

θ̂(s)
, θ̂(s) + 1.96ŜE

θ̂(s)
), for the selected statements 43, 45,
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55, and 61, which are (0.1412, 0.2862), (0.1343, 0.2863), (0.1261, 0.2935), and (0.1332, 0.2896),
respectively, where θ̂(s) and ŜE

θ̂(s)
, s = 1, 2, 3, 4, are given in Table 2. On the other hand,

if using the estimate of θ, 0.2201, and its estimated SE, 0.0127, to construct a 95% CI, the
95% CI (0.1952, 0.2450) also contains each of these four estimates of θ, 0.2137, 0.2103, 0.2098,
and 0.2201, in Table 2.

Table 4 shows the classifications of 2765 respondents based on the two proposed
classification criteria in (17), (18) and (20), respectively. Based on classification criterion 1,
the estimated proportion of respondents who “have ever had a one-night stand through a dating
site or mobile app” is 0.2 (553/2765), which is quite close to the estimates of θ, 0.2201, given
in Table 3, obtained from fitting the LCM in (10). By applying the second classification
criterion, 246 respondents (with estimated proportion 0.089 = 246/2765) are predicted to
have the sensitive attribute, “having ever had a one-night stand through a dating site or mobile
app”, while the estimates of θ given in Table 2 are around 0.21, which are obtained from
fitting the alternative/full model for the association of this sensitive attribute with each of
the four observed ordinal categorical variables for online dating experience corresponding
to selected statements 43, 45, 55, and 61, respectively, by the LRT at α = 0.1.

Table 1. Results of the likelihood ratio test and the null and alternative/full models for the association
between the sensitive characteristic variable from question 39: “Have you ever had a one-night
stand through a dating site or mobile app?”, and each of the 27 observed ordinal categorical random
variables for online dating experience corresponding to statements 40 to 66.

Parameter θ π01 π02 π03 π04 π05 π11 π12 π13 π14 π15 p-Value

Q40 H1 0.2106 0.1083 0.1775 0.2702 0.2445 0.1995 0.1538 0.1814 0.2236 0.1275 0.3136 0.6644
H0 0.2084 0.1180 0.1780 0.2600 0.2200 0.2240

Q41 H1 0.2144 0.0401 0.0989 0.2833 0.3089 0.2689 0.0691 0.1438 0.0433 0.3829 0.3609 0.1905
H0 0.2084 0.0460 0.1080 0.2320 0.3250 0.2890

Q42 H1 0.2105 0.0226 0.1326 0.2437 0.3439 0.2571 0.1007 0.0626 0.3316 0.2168 0.2883 0.3650
H0 0.2084 0.0390 0.1180 0.2620 0.3170 0.2640

Q43 H1 0.2137 0.0347 0.1494 0.3448 0.3156 0.1555 0.1822 0.2913 0.3848 0.0590 0.0827 0.0187
H0 0.2084 0.0660 0.1800 0.3530 0.2610 0.1400

Q44 H1 0.2098 0.0335 0.1344 0.2532 0.3433 0.2356 0.0636 0.0730 0.3340 0.3290 0.2004 0.8481
H0 0.2084 0.0400 0.1220 0.2700 0.3400 0.2280

Q45 H1 0.2103 0.0704 0.2526 0.3725 0.2018 0.1028 0.1606 0.1282 0.3657 0.2467 0.0989 0.0836
H0 0.2084 0.0890 0.2260 0.3710 0.2110 0.1020

Q46 H1 0.2108 0.0753 0.2644 0.3688 0.1905 0.1009 0.1625 0.2111 0.3143 0.2114 0.1008 0.8095
H0 0.2084 0.0940 0.2530 0.3570 0.1950 0.1010

Q47 H1 0.2095 0.0805 0.2249 0.3769 0.2054 0.1123 0.1002 0.2614 0.3092 0.2297 0.0995 1.0000
H0 0.2084 0.0850 0.2330 0.3630 0.2100 0.1100

Q48 H1 0.2107 0.1024 0.2693 0.3614 0.1716 0.0954 0.2465 0.2786 0.2871 0.1073 0.0805 0.5409
H0 0.2084 0.1330 0.2710 0.3460 0.1580 0.0920

Q49 H1 0.2101 0.0297 0.1155 0.2440 0.3280 0.2828 0.0502 0.0547 0.2857 0.3041 0.3054 1.0000
H0 0.2084 0.0340 0.1030 0.2530 0.3230 0.2880

Q50 H1 0.2095 0.0368 0.1083 0.2961 0.3547 0.2040 0.0838 0.1558 0.2878 0.2394 0.2331 0.7806
H0 0.2084 0.0470 0.1180 0.2940 0.3310 0.2100

Q51 H1 0.2097 0.0353 0.1485 0.3369 0.2945 0.1847 0.1015 0.1302 0.3531 0.2042 0.2111 0.7475
H0 0.2084 0.0490 0.1450 0.3400 0.2760 0.1900

Q52 H1 0.2237 0.0230 0.1126 0.2543 0.3377 0.2724 0.0656 0.0038 0.3335 0.3315 0.2656 0.1262
H0 0.2084 0.0330 0.0880 0.2720 0.3360 0.2710

Q53 H1 0.2104 0.0356 0.1396 0.2733 0.3128 0.2386 0.0555 0.0484 0.2411 0.3369 0.3181 0.7395
H0 0.2084 0.0400 0.1200 0.2670 0.3180 0.2550
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Table 1. Cont.

Parameter θ π01 π02 π03 π04 π05 π11 π12 π13 π14 π15 p-Value

Q54 H1 0.2099 0.0269 0.0940 0.2819 0.3636 0.2336 0.0540 0.1373 0.3190 0.2182 0.2715 1.0000
H0 0.2084 0.0330 0.1030 0.2900 0.3330 0.2420

Q55 H1 0.2098 0.0062 0.0234 0.1420 0.3001 0.5282 0.0782 0.0704 0.0960 0.1953 0.5600 0.0259
H0 0.2084 0.0210 0.0330 0.1320 0.2780 0.5350

Q56 H1 0.2101 0.0104 0.0236 0.0960 0.2575 0.6124 0.0315 0.0333 0.0383 0.1681 0.7288 1.0000
H0 0.2084 0.0150 0.0260 0.0840 0.2390 0.6370

Q57 H1 0.2113 0.0758 0.2109 0.3783 0.1956 0.1393 0.2031 0.2552 0.2960 0.1993 0.0464 0.3833
H0 0.2084 0.1030 0.2200 0.3610 0.1960 0.1200

Q58 H1 0.2093 0.0328 0.0998 0.2735 0.3070 0.2870 0.0316 0.1121 0.2024 0.4333 0.2205 0.8481
H0 0.2084 0.0330 0.1020 0.2590 0.3330 0.2730

Q59 H1 0.2111 0.0355 0.0856 0.2273 0.2875 0.3641 0.0044 0.0671 0.2078 0.4214 0.2993 0.6802
H0 0.2084 0.0290 0.0820 0.2230 0.3160 0.3500

Q60 H1 0.2088 0.0278 0.0812 0.2478 0.3212 0.3220 0.0435 0.1029 0.1609 0.3263 0.3664 0.9284
H0 0.2084 0.0310 0.0860 0.2300 0.3220 0.3310

Q61 H1 0.2114 0.0002 0.0260 0.1039 0.2794 0.5904 0.0624 0.0005 0.1599 0.2253 0.5519 0.0757
H0 0.2084 0.0130 0.0210 0.1160 0.2680 0.5820

Q62 H1 0.2052 0.0000 0.0279 0.0977 0.2705 0.6039 0.0687 0.0170 0.1611 0.2390 0.5143 0.3277
H0 0.2084 0.0140 0.0260 0.1110 0.2640 0.5860

Q63 H1 0.2078 0.0001 0.0239 0.0794 0.2823 0.6143 0.0745 0.0132 0.2108 0.1630 0.5384 0.9950
H0 0.2084 0.0160 0.0220 0.1070 0.2580 0.5990

Q64 H1 0.2099 0.0030 0.0297 0.0819 0.1839 0.7015 0.0939 0.0241 0.0432 0.0953 0.7434 0.1355
H0 0.2084 0.0220 0.0290 0.0740 0.1650 0.7100

Q65 H1 0.2108 0.0035 0.0139 0.0738 0.1903 0.7184 0.0674 0.0594 0.0926 0.0733 0.7074 0.9131
H0 0.2084 0.0170 0.0240 0.0780 0.1660 0.7160

Q66 H1 0.2097 0.0048 0.0304 0.0624 0.1278 0.7747 0.0976 0.0287 0.0632 0.0859 0.7245 0.1985
H0 0.2084 0.0240 0.0300 0.0630 0.1190 0.7640

Table 2. (Results extracted from Table 1) Summary of significant results of the alternative/full model
for the association between the sensitive characteristic variable from question 39: “Have you ever
had a one-night stand through a dating site or mobile app?”, and each of the four observed ordinal
categorical random variables for online dating experience corresponding to selected statements 43,
45, 55, and 61, respectively, by the likelihood ratio test at α = 0.1.

Parameter θ π01 π02 π03 π04 π05 π11 π12 π13 π14 π15

Q43 Estimate 0.2137 0.0347 0.1494 0.3448 0.3156 0.1555 0.1822 0.2913 0.3848 0.0590 0.0827
SE 0.0370 0.0142 0.0217 0.0225 0.0197 0.0173 0.0604 0.0721 0.0737 0.0556 0.0464

Q45 Estimate 0.2103 0.0704 0.2526 0.3725 0.2018 0.1028 0.1606 0.1282 0.3657 0.2467 0.0989
SE 0.0388 0.0176 0.0213 0.0320 0.0266 0.0170 0.0679 0.0642 0.1134 0.0992 0.0646

Q55 Estimate 0.2098 0.0062 0.0234 0.1420 0.3001 0.5282 0.0782 0.0704 0.0960 0.1953 0.5600
SE 0.0427 0.0064 0.0076 0.0174 0.0260 0.0233 0.0314 0.0299 0.0570 0.0943 0.0778

Q61 Estimate 0.2114 0.0002 0.0260 0.1039 0.2794 0.5904 0.0624 0.0005 0.1599 0.2253 0.5519
SE 0.0399 0.0019 0.0043 0.0156 0.0268 0.0269 0.0173 0.0058 0.0723 0.0841 0.0995
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Table 3. Estimates of parameters of the latent class model for the association between the sensitive
characteristic variable from question 39: “Have you ever had a one-night stand through a dating site
or mobile app?”, and the four observed dichotomized random variables for online dating experience
corresponding to selected statements 43, 45, 55, and 61 by the likelihood ratio test at α = 0.1.

θ α01 α02 α03 α04 α11 α12 α13 α14

Estimate 0.2201 0.0594 0.1602 0.0145 0.0052 0.9068 0.8668 0.1966 0.1361
SE 0.0127 0.0097 0.0095 0.0033 0.0019 0.0262 0.0257 0.0166 0.0142

Table 4. Comparison of results of predicting respondents to have ever had a one-night stand through
a dating site or mobile app based on classification criterion 1 in (17) and (18) and criterion 2 in (20).

Classification Criterion 1

Classification
Criterion 2

Having Ever Had a
One-Night Stand through a
Dating Site or Mobile App

Having Never Had a
One-Night Stand through a
Dating Site or Mobile App

Total

Having ever had a
one-night stand 212 34 246

through a dating site or
mobile app

Having never had a
one-night stand 341 2178 2519

through a dating site or
mobile app

Total 553 2212 2765

4. Conclusions

A combination of the RRT of [3] and an LCM has been proposed to investigate the
association between a sensitive character or latent variable and the observed binary ran-
dom variables, which were obtained from dichotomizing the observed ordinal categorical
variables selected by the LRT. The concept of the relationship between a sensitive attribute
variable and auxiliary random variables in [19] has been extended by applying the RR
design of [3] to collect sensitive characteristic information. The EM algorithm, called EM
algorithm 1, has been provided to easily estimate the parameters of the null and alternative
models for the association of the sensitive attribute variable with each of the auxiliary ordi-
nal categorical random variables. The LRT has been utilized to select ordinal categorical
random variables that are significantly associated with the sensitive attribute variable.

An LCM has been proposed to relate observed binary random variables to a sensitive
characteristic or latent variable under the RRT of [3]. The EM algorithm, called EM
algorithm 2, has been proposed to easily estimate its parameters and the population
proportion of the sensitive characteristic. Two classification criteria have been conducted to
predict the presence of the sensitive attribute in an individual. Practical applications of the
proposed methodology have been demonstrated with the survey data from the study of
the sexuality of freshmen, except international students, at Feng Chia University in Taiwan
in 2016. Finally, the proposed methodology can be generalized to other RRTs to make
inferences for a sensitive characteristic variable. This issue can also be solved by using the
Bayesian approach.
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Abstract: A three-arm non-inferiority trial including a placebo is usually utilized to assess the non-
inferiority of an experimental treatment to a reference treatment. Existing methods for assessing
non-inferiority mainly focus on the fully observed endpoints. However, in some clinical trials, treat-
ment endpoints may be subject to missingness for various reasons, such as the refusal of subjects or
their migration. To address this issue, this paper aims to develop a non-parametric approach to assess
the non-inferiority of an experimental treatment to a reference treatment in a three-arm trial with
non-ignorable missing endpoints. A logistic regression is adopted to specify a non-ignorable missing-
ness data mechanism. A semi-parametric imputation method is proposed to estimate parameters
in the considered logistic regression. Inverse probability weighting, augmented inverse probability
weighting and non-parametric methods are developed to estimate treatment efficacy for known and
unknown parameters in the considered logistic regression. Under some regularity conditions, we
show asymptotic normality of the constructed estimators for treatment efficacy. A bootstrap resam-
pling method is presented to estimate asymptotic variances of the estimated treatment efficacy. Three
Wald-type statistics are constructed to test the non-inferiority based on the asymptotic properties of
the estimated treatment efficacy. Empirical studies show that the proposed Wald-type test procedure
is robust to the misspecified missingness data mechanism, and behaves better than the complete-case
method in the sense that the type I error rates for the former are closer to the pre-given significance
level than those for the latter.

Keywords: bootstrap resampling; imputation; non-inferiority assessment; non-ignorable missing
data; three-arm trial

MSC: 62G05; 62D10

1. Introduction

Non-inferiority (NI) trials are often performed to verify that the efficacy of an experi-
mental treatment with low toxicity or small side-effects is non-inferior to that of a reference
treatment by more than a pre-given small margin [1,2]. Many methods have been presented
to assess the NI of an experimental treatment to a reference treatment via the efficacy in
a two-arm NI trial. For example, see Tang et al. [3] for a score test via relative risk in a
matched-pair NI trial; Tang et al. [4] for exact and approximate unconditional confidence
intervals for rate difference based on a score test statistic in a small-sample paired NI
trial; Wellek [5] for frequentist and Bayesian approaches to testing NI in a matched-pair
design with binary endpoints; Freitag et al. [6] for a non-parametric approach to testing
NI with censored data; Arboretti et al. [7] and Pesarin et al. [8] for a permutation test in
a non-inferiority trial, and Gamalo et al. [9] for a Bayesian method for testing NI with
normally distributed endpoints. However, it is widely recognized that there are two key
problems for two-arm NI trials [10]. The first issue is the selection of the NI margin (i.e.,
the clinically acceptable amount or a combination of statistical reasoning and clinical judge-
ment), and the second is the evaluation of assay sensitivity (i.e., the ability of a trial to
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distinguish an effective treatment from a less effective or ineffective treatment). To solve
the aforementioned problems, if ethically acceptable and practically feasible, a three-arm
trial including a placebo, which is called a three-arm NI trial, is usually conducted to assess
the NI of an experimental treatment to the active reference treatment [11].

Many methods have been developed to draw statistical inferences based on a three-arm
NI trial over the past years. For example, Pigeot et al. [12] studied an NI assessment problem
via mean difference in a three-arm trial with normally distributed endpoints; Tang and
Tang [10] proposed two asymptotic approaches to testing NI via a rate difference for binary
outcomes; Mielke and Munk [13] considered the NI testing problem for Poisson-distributed
endpoints; Lui and Chang [14] discussed the NI testing problem via a generalized odds
ratio for ordinal data; Brannath et al. [15] considered an NI adaptive testing and sample
size determination problem in a three-arm trial with normally distributed endpoints;
Tang et al. [16] developed exact and approximate unconditional, and bootstrap-resampling-
based approaches to testing NI for binary outcomes; Tang and Yu [17] presented a hybrid
approach to constructing simultaneous confidence intervals for simultaneously assessing
NI and assay sensitivity for binary endpoints; Tang and Yu [18] utilized two Bayesian
approaches (i.e., posterior variance and Bayes factor approaches) to determine the sample
size required in a three-arm NI trial with binary endpoints; Paul et al. [19] presented both
frequentist and Bayesian procedures for testing NI via the risk difference in a three-arm
trial with binary endpoints; Homma and Diamon [20] investigated the assay sensitivity
hypothesis and the sample size calculation problem for gold-standard NI trials with two
fixed margins and negative binomial endpoints; Ghosh et al. [21] presented a new method
to test NI for Poisson-distributed endpoints; Ghosh et al. [22] considered a hierarchical
testing procedure with two stages in three-arm NI trials; Scharpenberg and Brannath [23]
discussed simultaneous confidence intervals of risk differences in three-arm non-inferiority
trials; and Tang and Liang [24] constructed two simultaneous confidence intervals for
assessing NI and assay sensitivity in a three-arm trial. However, when misspecifying the
distributions of treatment endpoints, statistical inference obtained with the aforementioned
methods may be misleading or unreasonable. To this end, a number of non-parametric
methods were proposed to make statistical inference on three-arm NI trials under an
unknown distribution assumption of endpoints. For example, see Munzel [25] for a
rank-based NI test and Tseng and Hsu [26] for binomially distributed outcomes. The
aforementioned methods were developed for the fully observed endpoints in a three-
arm trial.

However, in some clinical trials, treatment endpoints may be subject to missingness
occurring for various reasons, such as unwillingness of some respondents to answer
sensitivity questions, loss of information caused by uncontrollable factors, or drop-out
from the study in clinical trials [27]. For example, for a clinical trial associated with HIV
patients in the AIDS Clinical Trial Group (ACTG) Study 193A, the primary endpoint was the
CD4 cell count, which was scheduled to be observed at baseline and eight-week intervals
during the follow-up period, potentially subject to missingness due to skipped visits and
dropouts. In this study, 1309 patients were randomly assigned to one of the following
four daily regimens: zidovudine alternating monthly with 400 mg didanosine (regarded
as “Treatment 1”), zidovudine plus 2.25 mg of zalcitabine (regarded as “Treatment 2”),
zidovudine plus 400 mg of didanosine (regarded as “Treatment 3”), zidovudine plus 400 mg
of didanosine plus 400 mg of nevirapine (regarded as “Treatment 4”). As an illustration,
we here take “Treatment 1”, “Treatment 2” and “Treatment 4” as the placebo, reference
and experiment, respectively, let the log-transformed CD4 cell counts (i.e., log(1 + CD4
cell counts at time interval (4,12])) be the treatment endpoints, and regard log(baseline
measurement + 1) as an instrument variable for skipped visits or dropouts. Because
the baseline measurements were considered before the treatments were assigned, it was
reasonable to assume that the dropouts were missing not at random (MNAR) or due to
non-ignorable missing. The average missing proportions of endpoints for the placebo,
reference and experiment treatments were 29.74%, 30.99% and 28.65%, respectively. Our
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main purpose is to test the NI of treatment 4 to treatment 2 in terms of the assay sensitivity
and the internal validity of treatment 4 in a three-arm trial with unknown distributed
endpoints in the presence of non-ignorable missing endpoints.

For the above described example, the simplest and most intuitive method for handling
missing data is the well-known complete-case (‘CC’) method, i.e., deleting subjects with
missing data. But the CC method may lead to a biased estimator of treatment efficacy
when the missingness data mechanism does not involve missing completely at random. To
this end, several alternative methods have been proposed to make statistical inferences in
two-arm trials with missing endpoints. For example, Choi and Stablein [28] considered the
problem of testing the equality of two treatments in a paired two-arm trial with missing
at random (MAR) endpoints based on large sample theory, while Tang and Tang [29]
developed unconditional exact procedures for testing the equality of two treatments in
a paired two-arm trial with MAR endpoints. In addition, some permutation tests were
proposed for endpoints with missing data in two-arm trials, for example, see Maritz [30],
Yu et al. [31], Pesarin [32], and Pesarin et al. [33]. However, the aforementioned studies
mainly focused on equivalence assessment in two-arm trials with a MAR assumption based
on two independent binomial distributions for endpoints with non-ignorable missing and
a multinomial distribution for the fully observed endpoints. Moreover, to our knowledge,
there has been little work undertaken on NI assessment in three-arm trials with unknown
distributed endpoints and non-ignorable missing data. Hence, this paper aims to develop
a non-parametric approach to testing NI in a three-arm trial with a mixed unknown
distribution of endpoints and an MNAR assumption of missing endpoints.

There are many approaches to handling non-ignorable missing data. For example, see
Robins et al. [34] for an inverse probability weighting (IPW) method, Lee and Tang [35] and
Wang and Tang [36] for Bayesian approaches combining the Gibbs sampler and Metropolis–
Hastings algorithm, Kim and Yu [37] for a semi-parametric approach to estimating mean
functions in the presence of non-ignorable missing responses, and Tang et al. [38] for
an empirical likelihood method for generalized estimating equations with non-ignorable
missing data due to certain merits of empirical likelihood, such as feasibly incorporating
auxiliary information to improve the efficiency of parameter estimation [39]. Choi and
Stablein [40] and Li et al. [41] investigated the equivalence test problem in a paired two-arm
trial with non-ignorable missing endpoints under some known distribution assumptions
for treatment endpoints. However, the aforementioned approaches cannot be directly
used to test NI in a three-arm trial with non-ignorable missing endpoints due to the
complexity of the considered test problem, including the imputation of missing endpoints,
the estimation problem of treatment efficacy under unknown distribution assumptions of
treatment endpoints, and the critical value determination of test statistics at some pre-given
significance level.

The main contributions of this paper include: (i) presentation of a logistic regression
to specify the propensity score function associated with respondent endpoints; (ii) proposal
of IPW, augmented IPW (AIPW) and non-parametric imputation methods to estimate
treatment efficacy in the presence of non-ignorable missing endpoints; (iii) development of
a semi-parametric imputation method to estimate unknown parameters in the considered
logistic regression by imputing mean score functions rather than missing endpoints using a
kernel non-parametric regression method; (iv) establishment of some asymptotic properties
of the estimated treatment efficacy; (v) refinement of a bootstrap-resampling method
to consistently estimate asymptotic variances of the estimated treatment efficacy; (vi)
construction of three Wald-type statistics to test the NI of an experimental treatment to
a reference treatment in a three-arm trial with unknown distributed and non-ignorable
missing endpoints.

The rest of this paper is organized as follows: Section 2 describes a three-arm NI trial
with MNAR endpoints. Section 3 discusses the estimation problem of treatment efficacy and
propensity score function. The asymptotic properties of the estimated treatment efficacy
and the resultant Wald-type statistics for testing NI are given in Section 4. The simulation
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studies investigating the finite sample performance of the proposed test statistics are
described in Section 5. A real example taken from the ACTG study is illustrated using the
proposed method in Section 6. Some concluding remarks are given in Section 7. Technical
details are presented in Appendix A.

2. A Three-Arm NI Trail with MNAR Endpoints

2.1. A Three-Arm NI Trial

For a three-arm randomized clinical trial with experimental (E), reference (R) and
placebo (P) treatments, we assume that their corresponding clinical endpoints YE, YR
and YP independently follow unknown distributions fE(yE|μE), fR(yR|μR) and fP(yP|μP),
respectively, where μE, μR and μP are their corresponding treatment efficacies, respec-
tively. Generally, we assume that a larger value of treatment efficacy indicates a more
favorable treatment.

Following Hida and Tango [42], to test the NI of the experimental treatment to the
reference treatment in terms of assay sensitivity in a three-arm trial, we need to simulta-
neously demonstrate (i) the superiority of the experimental treatment to placebo, (ii) the
NI of the experimental treatment to the reference treatment for a pre-specified maximal
clinically irrelevant or NI margin δ > 0, and (iii) the superiority of the reference treatment
to placebo by more than δ. That is, μE, μR and μP must satisfy the following inequali-
ties: μP < μR − δ < μE, which leads to consideration of the following hypothesis-testing
problem:

H0 : μE ≤ μR − δ versus H1 : μE > μR − δ,
K0 : μR ≤ μP + δ versus K1 : μR > μP + δ.

(1)

Clearly, simultaneously rejecting H0 and K0 at some pre-given significance level yields
the above desirable inequalities: μP < μR − δ < μE indicating the NI of the experimental
treatment to the reference treatment and assay sensitivity. Generally, the selection of the NI
margin δ should combine statistical reasoning and clinical judgement [17]. In a similar way
to many three-arm trial studies, the fraction margin approach can be used to specify δ.

Following Kieser and Friede [43], δ can be mathematically expressed as a positive frac-
tion f of the unknown efficacy difference between the reference treatment and placebo, i.e.,
δ = g(μR − μP), where g lies in the interval [0, 1]. The NI margin δ defined above indicates
that the condition of assay sensitivity holds, i.e., μR − μP > 0. Following the argument of
Ghosh et al. [44], one can take g = 1/2 or 1/3. To explain the hypotheses considered above,
we set a = 1 − g ∈ (0, 1), whose different values have different statistical meanings [12].
Under the above assumption, we only need to test H0 rather than hypothesis (1). That is,
for the NI margin δ defined above, we only need to test the following hypothesis:

H0 : μE − aμR − (1 − a)μP ≤ 0 versus H1 : μE − aμR − (1 − a)μP > 0. (2)

Rejecting H0 at some pre-given significance level indicates the NI of the experimental
treatment to the reference treatment under the condition of assay sensitivity. For simplic-
ity, we denote ψ(μ) = μE − aμR − (1 − a)μP, where μ = {μE, μR, μP}. In this case, the
hypothesis (2) can re-expressed as

H̃0 : ψ(μ) ≤ 0 versus H̃1 : ψ(μ) > 0. (3)

2.2. Missingness Data Mechanism

Let {Y�i : i = 1, . . . , n�} be the clinical observations of Y� for n� subjects randomly
assigned to treatment � for � = E, R, P. Here, we assume that Y�i’s may be subject to
missingness, let D�i be the indicator of non-missing observation Y�i, i.e., D�i = 1 if Y�i
is observed, and D�i = 0 if Y�i is missing, and define X�i as a vector of covariates for
� = E, R, P and i = 1, . . . , n�. It is also assumed that X�i’s are fully observed, D�i1 is
independent of D�i2 for i1 �= i2 ∈ {1, . . . , n�}, and D�i depends on the observed covariates
X�i and missing observation Y�i, which indicates that the considered non-missingness data
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mechanism is non-ignorable. Under the above assumption, we consider the following
non-missingness data mechanism model:

π�i(η�; X�i, Y�i) = Pr(D�i = 1|X�i, Y�i; η�), � = E, R, P, i = 1, . . . , n�,

where η� is a vector of unknown parameters to be estimated, and π�i(η�; X�i, Y�i) is usually
called the propensity score function in the missing data literature.

Many methods can be employed to specify the propensity score function π�i(η�; X�i, Y�i).
For example, see Lee and Tang [35] for a logistic regression, Kim and Yu [37] and Tang et al. [38]
for an exponential tilting model, and Wang and Tang [36] for a probit regression model.
Here, similarly to Lee and Tang [35], we consider the following logistic regression model for
π�i(η�; X�i, Y�i):

logit{π�i(η�; X�i, Y�i)} = α�0 + α��1X�i + γ�Y�i, � = E, R, P, i = 1, . . . , n�,

where logit(c) = log{c/(1 − c)}, and η� = (α�0, α��1, γ�)
�. It is well-known that, when γ�

is unknown, the above specified logistic regression model is unidentifiable. To address
this issue, we decompose X�i as X�i = (Z�

�i, U�
�i)

�, where Z�i may be associated with the
propensity score function, and U�i is a vector of instrumental variables that is not directly
associated with the propensity score function but related to observations Y�i. In this case,
we can consider the following propensity score function

logit{π�i(η�; Z�i, Y�i)} = α�0 + α��1Z�i + γ�Y�i, � = E, R, P, i = 1, . . . , n�. (4)

Clearly, when γ� = 0, the above defined missingness data mechanism reduces to MAR.

3. Estimation of Treatment Efficacy

3.1. Estimating Treatment Efficacy

When the endpoints are completely observed, treatment efficacy μ� can be consistently
estimated by its corresponding sample mean, i.e., μ̂� = n−1

� ∑n�
i=1 Y�i for � = E, R, P.

When Y�i’s are subject to missingness and the true propensity score function π�i(η�; Z�i,
Y�i) is known, the IPW method can be employed to estimate μ� for � = E, R, P. That is, μ�

can be estimated by

μ̂HT
� =

1
n�

n�

∑
i=1

D�i
π�i(η�; Z�i, Y�i)

Y�i, � = E, R, P. (5)

Note that the above defined estimator μ̂HT
� may be sensitive to the misspecification of

the propensity score function. To address this issue, an imputation technique is adopted to
construct a consistent estimator of μ� in the presence of MNAR. That is, let m0

�i(γ�; Z�i) =
E(Y�i|Z�i, D�i = 0), an imputation-based estimator of μ� has the form

μ̂RI
� =

1
n�

n�

∑
i=1

{
D�iY�i + (1 − D�i)m0

�i(γ�; Z�i)
}

, � = E, R, P. (6)

The AIPW approach can also be utilized to estimate μ� in the presence of MNAR. That is,
an AIPW-based estimator of μ� can be expressed as

μ̂AI
� =

1
n�

n�

∑
i=1

{
D�i

π�i(η�; Z�i, Y�i)
Y�i +

(
1 − D�i

π�i(η�; Z�i, Y�i)

)
m0

�i(γ�; Z�i)

}
, � = E, R, P. (7)

In many clinical trials, the cumulative distribution functions of Y�i’s are usually un-
known; thus, m0

�i(γ�; Z�i)’s are also unknown. On the other hand, π�i(η�; Z�i, Y�i) is also
unknown in the presence of MNAR. Hence, it is impossible to directly evaluate μ̂HT

� , μ̂RI
�
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and μ̂AI
� using the above defined forms. In what follows, we consider the estimation

problem of m0
�i(γ�; Z�i) and π�i(η�; Z�i, Y�i).

3.2. Estimation of Conditional Mean m0
�i(γ�; Z�i)

Here a non-parametric method given in Tang et al. [38] is adopted to estimate
m0

�i(γ�; Z�i) in the presence of MNAR.
Let f0�(y�i) and f1�(y�i) be the conditional probability densities of Y�i given D�i = 0

and D�i = 1, respectively. Following the argument of Tang et al. [38], we have

f0�(y�i) = f1�(y�i)×
O(η�; Z�i, Y�i)

E{O(η�; Z�i, y�i)|Z�i, D�i = 1} , � = E, R, P, (8)

where O(η�; Z�i, y�i) = {1 − π�i(η�; Z�i, Y�i)}/π�i(η�; Z�i, Y�i). Substituting π�i(η�; Z�i, Y�i)
defined in Equation (4) into (8) leads to

f0�(y�i) = f1�(y�i)×
exp(−γ�Y�i)

E{exp(−γ�Y�i)|Z�i, D�i = 1} , � = E, R, P, (9)

which shows that we can utilize the conditional distribution f1�(y�i) of the observed
endpoints rather than that of missing endpoints (i.e., f0�(y�i)) to make statistical inferences,
where E(·) represents the expectation taken with respect to f1�(y�i). Clearly, when γ� = 0,
we obtain f0�(y�i) = f1�(y�i).

Following the argument of Tang et al. [38], it follows from Equation (9) that

m0
�i(γ�; Z�i) =

E{D�iY�i exp(−γ�Y�i)|Z�i}
E{D�i exp(−γ�Y�i)|Z�i}

,

which implies that a non-parametric regression estimator of m0
�i(γ�; Z�i) can be

expressed as

m̂0
�i(γ�; Z�i) =

n�

∑
k=1

ωi
�k0(γ�; Z�i)Y�k, (10)

where ωi
�k0(γ�; Z�i)’s are the weights assigned to Y�k, and have the form

ωi
�k0(γ�; Z�i) =

D�kexp(−γ�Y�k)Kh�(Z�i − Z�k)

∑n�
j=1 D�jexp(−γ�Y�j)Kh�(Z�i − Z�j)

in which Kh�(v) = h−1
� K(v/h�), K(·) is the multi-dimensional kernel function, and h� = hn�

is the bandwidth.

3.3. Estimation of Propensity Score Function

Note that the above considered propensity score function has a parametric form
indexed by the parameter vector η�, which indicates that, if we can obtain the estimation of
η� (denoted as η̂�), the estimation of the propensity score function is easily evaluated by
π̂�i(η̂�; Z�i, Y�i). In the following, we discuss the estimation problem of η�.

The mean score approach of Morikawa et al. [45] is employed here to estimate η� based
on the observed data D� = {(X�i, Y�i, D�i) : i = 1, . . . , n�} for � = E, R, P. For simplicity, we
denote D�

obs = {X�, Y�
obs, D�}, where X� = {X�i : i = 1, . . . , n�}, D� = {D�i : i = 1, . . . , n�}

and Y�
obs is the observed dataset of Y�i’s.

When the density function f�(Y�i|μ�; X�i) of Y�i is known, the maximum likelihood
estimator (MLE) of η� can be obtained by maximizing the following likelihood of the
observed data D�

obs:
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Lobs(η�|D�
obs) =

n�

∏
i=1

[
π�i(η�; Z�i, Y�i) f�(Y�i|μ�; X�i)

]D�i

×
[ ∫

{1 − π�i(η�; Z�i, Y�i)} f�(Y�i|μ�; X�i)dY�i

]1−D�i
.

It follows from Morikawa et al. [45] and the mean score theorem that the MLE of η�
can be obtained by solving the following “mean score equation”:

1
n

n�

∑
i=1

[D�is(η�; D�i, Z�i, y�i) + (1 − D�i)E{s(η�; D�i, Z�i, Y�i)|Z�i, D�i = 0}] = 0,

where s(η�; D�i, Z�i, Y�i) has the form

s(η�; D�i, Z�i, Y�i) =
∂

∂η
log
[
π�i(η�; Z�i, Y�i)

D�i{1 − π�i(η�; Z�i, Y�i)}1−D�i
]

=
D�i − π�i(η�; Z�i, Y�i)

π�i(η�; Z�i, Y�i){1 − π�i(η�; Z�i, Y�i)}
π̇�i(η�; Z�i, Y�i),

and π̇�i(η�; Z�i, Y�i) = ∂π�i(η�; Z�i, Y�i)/∂η�.
Denote s�0(η�) = E{s(η�; D�i, Z�i, Y�i)|Z�i, D�i = 0}. Again, it follows from

Tang et al. [38] and Equation (9) that a non-parametric estimator of s�0(η�) is given as

ŝ�0(η�; D�i, Z�i, Y�i) =
n�

∑
k=1

ωi
�k0(γ�; Z�i)s(η�; D�k, Z�k, Y�k),

where ωi
�k0(γ�; Z�i) is defined in Equation (10). Thus, the estimated “mean score equation"

can be written as

1
n

n�

∑
i=1

{D�is(η�; D�i, Z�i, y�i) + (1 − D�i)ŝ�0(η�; D�i, Z�i, Y�i)} = 0, (11)

which shows that the MLE η̂� of η� can be obtained by solving the non-linear equation (11)
with respect to η.

Once we obtain MLE η̂� of η�, substituting η̂� into Equations (4) and (10) leads to
the estimated propensity score function π̂�i(η̂�; Z�i, Y�i) and the estimated mean functions
m̂0

�i(γ̂�, Z�i). Thus, substituting π̂�i(η̂�; Z�i, Y�i) and m̂0
�i(γ̂, Z�i) into Equations (5)–(7) yields

non-parametric estimators of treatment efficacy μ� for � = E, R, P.

3.4. Dimension Reduction

In some clinical trials, the number of covariates Z� ∈ Rd� may be large. In this case,
the kernel-based estimators of s(η�; D�i, Z�i, Y�i) and m0

�i(γ�, Z�i) may suffer from the well-
known curse of dimensionality. The dimension reduction technique of Tang et al. [38] is
used to solve this problem.

Let G� : Rd� → R be a mapping function such that G�i = G�(Z�i) is univariate. In
particular, we assume that E{s(η�; D�i, Z�i, Y�i)|G�i, D�i = 0} and E(Y�i|G�i, D�i = 0) have
the same structures as s�0(η�) = E{s(η�; D�i, Z�i, Y�i)|Z�i, D�i = 0} and m0

�i(γ�; Z�i) =
E(Y�i|Z�i, D�i = 0), except that Z�i is replaced by G�i. Given the MLE η̂� of η� obtained
with the above introduced approach, we can obtain non-parametric dimension reduction
estimators of treatment efficacy μ� for � = E, R, P.

4. Asymptotic Properties and Test Statistics

4.1. Asymptotic Properties

In the following, we investigate the consistency and asymptotic normality of the
proposed estimators μ̂HT

� , μ̂RI
� , μ̂AI

� with the known and estimated values of parameters η�.
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The notation L−→ represents convergence in distribution and N (·, ·) denotes the normal
distribution.

From Morikawa et al. [45], we obtain the following proposition.

Proposition 1. Suppose that Assumptions A1–A3 given in the Appendix A hold. The MLE η̂� of
η� satisfies

√
n�

(
η̂� − η0

�

) L−→ N (0, Ση�) as n� → ∞,

where η0
� is the true value of η�, Ση� = I−1

22�E{exp(−γ0
�Y�i)s�0(η

0
�)s�0(η

0
�)
�}I−�

22�, s�0(η
0
�) rep-

resents s�0(η�) evaluated at η� = η0
� , I22� = −E

{
s�0(η

0
�)π̇

�
�i(η

0
�)/π�i(η

0
�)
}

, and π̇�i(η�) =
π̇�i(η�; Z�i, Y�i) and π�i(η

0
�) = π�i(η

0
� ; Z�i, Y�i)) for � = E, R, P.

Proof of Proposition 1 can be found in Morikawa et al. [45]. To save space, we omit it.
Proposition 1 shows that the MLE η̂� of η� is consistent and asymptotically distributed as
the multivariate normal distribution.

Theorem 1. Suppose that Assumptions A1–A3 given in the Appendix A hold. For a known value
η0
� of η�, given the true value μ0

� of μ�, the proposed estimators μ̂HT
� , μ̂RI

� and μ̂AI
� satisfy

√
n�(μ̂

h
� − μ0

�)
L−→ N (0, σ2

� ) as n� → ∞

for h = HT, RI, AI and � = E, R, P, where σ2
� = var(τ�i) with τ�i = m0

�i(γ�; Z�i)+D�iπ
−1
�i (η

0
�){Y�i −

m0
�i(γ�; Z�i)}. In addition, σ2

� can be rewritten as σ2
� = var(Y�i)+E{[π−1

�i (η
0
�)−1][Y�i −m0

�i(γ�; Z�i)]
2}.

Theorem 1 shows that the proposed estimators of μ� are consistent and asymptotically
distributed as the normal distribution with zero mean and the same variance.

Following the argument of Kim and Yu [37], σ2
� can be consistently estimated by

σ̂2
� =

1
n�

n�

∑
i=1

τ̂2
�i −

(
1
n�

n�

∑
i=1

τ̂�i

)2

,

where τ̂�i = m̂0
�i(γ

0
� ; Z�i) + D�iπ̂

−1
�i (η0

�){Y�i − m̂0
�i(γ

0
� ; Z�i)}.

When η� is unknown, we replace η� or γ� in Equations (5)–(7) by their corresponding
consistent estimators η̂� or γ̂�, respectively. Thus, we can obtain their corresponding plug-in
estimators (denoted as μ̂SHT

� , μ̂SRI
� and μ̂SAI

� , respectively) of μ�.

Theorem 2. Suppose that Assumptions A1–A3 given in the Appendix A hold, the propensity score
function (4) is correctly specified, and Proposition 1 holds. The plug-in estimators μ̂SHT

� , μ̂SRI
� and

μ̂SAI
� of μ� satisfy

√
n�

(
μ̂h
� − μ0

�

) L−→ N (0, σ2
�,h) as n� → ∞ , h = SHT, SRI, SAI, � = E, R, P,

where σ2
�,h = var(e�,hi) with e�,hi = {D�iπ

−1
�i (η�){Y�i − m0

�i(γ�; Z�i)} + m0
�i(γ�; Z�i) − μ0

� +

I−1
22�s�i(η�)H�,h}, s�i(η�) is the ith term in Equation (11), H�,SHT = E{(π�i(η�)− 1)Y�i(1, Z�

�i,
Y�)

�}, H�,SRI = E{(1 − D�i)(0, 0�p�−1, (Y�i − m0
�i(γ�; Z�i))

2)�}, H�,SAI = H�,SHT + M�,SAI,

M�,SAI = E{(1 − π�i(η�))m
0
�i(γ�; Z�i)(1, Z�

�i, Y�i)
�}, 0p�−1 is a (p� − 1)× 1 zero vector and p�

is the number of covariate vector Z�i.

Note that the asymptotic variance σ2
�,h has a complicated form; thus, it is rather

difficult to compute the estimate of σ2
�,h. To overcome this difficulty, we utilize a bootstrap-

resampling method or empirical jack-knife method to evaluate the estimated asymp-
totic variances.
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4.2. Wald-Type Statistics for Testing H̃0

In what follows, we construct three Wald-type statistics for testing hypothesis H0 :
ψ(μ) ≤ 0 based on the asymptotic properties of three different estimators given in Theorem 2.

Based on the properties of estimator μ̂h = (μ̂h
E, μ̂h

R, μ̂h
P)

� for μ = (μE, μR, μP)
�, we

obtain that (i) ψ̂(μ̂h) = μ̂h
E − aμ̂h

R − (1 − a)μ̂h
P is a consistent estimator of ψ(μ), (ii) variance

of ψ̂(μ̂h) is var{ψ̂(μ̂h)} = var(μ̂h
E) + a2var(μ̂h

R) + (1 − a)2var(μ̂h
P), which can consistently

be estimated by v̂ar{ψ̂(μ̂h)} = σ̃2
E,h/nE + a2σ̃2

R,h/nR +(1− a)2σ̃2
P,h/nP, where σ̃2

E,h, σ̃2
R,h and

σ̃2
P,h defined in Theorem 2 are the consistent estimators of σ2

E,h, σ2
R,h and σ2

P,h, respectively, for

h = SHT, SRI, SAI; (iii) (ψ̂(μ̂h)− ψ(μ))/
√

v̂ar{ψ̂(μ̂h)} L−→ N (0, 1) as min{nE, nR, nP} →
∞. Thus, the Wald-type statistic for testing H̃0 : ψ(μ) ≤ 0 can be expressed as

Th
W =

ψ̂(μ̂h)√
v̂ar{ψ̂(μ̂h)}

=
μ̂h

E − aμ̂h
R − (1 − a)μ̂h

P√
σ̃2

E,h/nE + a2σ̃2
R,h/nR + (1 − a)2σ̃2

P,h/nP

for h = SHT, SRI, SAI, which are asymptotically distributed as the standard normal
distribution under H̃0 as min{nE, nR, nP} → ∞.

Note that the asymptotic properties of the parameter estimators and test statistics
presented above only hold as n� → ∞ (� = E, R, P). However, for the finite samples,
before using asymptotic normality of the estimators μ̂h

� (� = E, R, P) and test statistics Th
W

(h = SHT, SRI, SAI), one should utilize the concept of goodness-of-fit tests [46,47] to check
the plausibility of their normality assumption.

5. Simulation Study

In this section, simulation studies were conducted to assess the finite sample perfor-
mance of the proposed test procedures in terms of empirical type I error rates and empirical
powers under four missingness data mechanisms.

For � = E, R, P, the data {X�i : i = 1, · · · , n�} were independently generated from

the multivariate normal distribution, i.e., X�i = (Z�i, U�i)
i.i.d∼ N (ξ, Σ), and the data

{Y�i : i = 1, · · · , n�} were independently generated by Y�i = X�
�iβ� + ε�i, where ε�i’s

were independently sampled from the following normal distributions (denoted as ‘sce-
nario (A)’): εEi ∼ N (aμR + (1 − a)μP, 0.34), εRi ∼ N (μR, 0.37) and εPi ∼ N (μP, 0.2)
with a = 0.8, which was the three-arm “gold threshold" recommended in the considered
literature [18]. The true values of ξ, Σ, βE, βR, βP, μR and μP were taken as ξ = (0.0, 0.0)�,
Σ = diag(0.25, 0.25), βE = (1.0, 1.0)�, βR = (1.0, 1.1)�, βP = (0.5, 0.5)�, μR = 1.1 and
μP = 0.6, respectively, which were only chosen as an illustration of the proposed method-
ologies. For comparison with the cases used widely or always justified, we considered the
following two scenarios: (B) εEi ∼ N (aμR + (1 − a)μP, 0.8), εRi ∼ N (μR, 0.8) and εPi ∼
N (μP, 0.5); (C) εEi ∼ N (aμR + (1 − a)μP, 1.0), εRi ∼ N (μR, 1.0) and εPi ∼ N (μP, 0.5).
Under the above specified setting, we have ψ(μ) = 0, where μ = {μE, μR, μP}. That is,
the data {(X�i, Y�i) : � = E, R, P, i = 1, · · · , n�} were independently generated from the
null hypothesis H̃0, and were used to compute empirical type I error rates. To compute
empirical powers, the data {(X�i, Y�i) : � = E, R, P, i = 1, · · · , n�} were independently
generated with the above presented settings, except for a = (μE − μP)/(μR − μP) > 0.8,
which implied that the data {(X�i, Y�i) : � = E, R, P, i = 1, · · · , n�} were sampled from the
alternative hypothesis H̃1 : ψ(μ) > 0.

To create missing data for Y�i, we assumed that the missing indicators D�i’s were
independently generated from the Bernoulli distribution with the respondent probability
π�i for � = E, R, P. Here, we considered the following respondent probabilities for the
reference treatment and placebo:

logit(πRi) = 1.6 + 0.2ZRi − 0.15YRi, logit(πPi) = 1.5 + 0.15ZPi − 0.18YPi,
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which indicated that missingness data mechanisms were non-ignorable, and the following
four respondent probabilities for experimental treatment:

Case E1: logit(πEi) = αE0 + αE1ZEi, which led to a MAR missingness data mechanism,
where the true values of αE0 and αE1 were taken to be 1.3 and 0.1, respectively.

Case E2: logit(πEi) = αE0 + αE1ZEi + γEYEi, which resulted in a non-ignorable miss-
ingness data mechanism, where the true values of αE0, αE1 and γE were taken as 1.3, 0.1
and −0.1, respectively.

Case E3: logit(πEi) = αE0 + αE1sin(ZEi) + γEYEi, which yielded a non-linear non-
ignorable missingness data mechanism with respect to ZEi, where the true values of αE0,
αE1 and γE were set to be 1.3, 0.1 and 0.12, respectively.

Case E4: logit(πEi) = αE0 + αE1ZEi + γEZEiYEi, which implied a non-linear non-
ignorable missingness data mechanism with an interaction of ZEi and YEi, where the true
values of αE0, αE1 and γE were set as 1.3, 0.1 and −0.1, respectively.

The titling parameters γ� corresponding to Y�i (� = E, R, P) were set to be roughly
−0.2 for showing a moderately negative effect on the probability of the data observed,
and α�0 and α�1 were chosen so that the average missing rates were roughly 25%. Case
E1 was MAR, which was a special case of the considered missingness data mechanism
model (4) with γE = 0 and was used to show that the proposed method can still capture
missingness data characteristics even if the true missingness data mechanism was MAR;
the other three missingness data mechanisms were non-ignorable and Case E2 satisfied
the assumption of model (4), but Cases E3 and E4, which did not satisfy the assumed non-
ignorable missingness data mechanism model (4), were used to show that the proposed
test procedure was not sensitive to the assumed missingness data mechanism model (4).
Here, we consider three balanced designs, i.e., nE = nR = nP = n with n = 50, 100, 150 for
three scenarios, and the following unbalanced designs with the allocation ratios taken as
2:2:1, 3:3:1, 4:4:1, 2:1:1, 3:2:1, 4:3:1, 4:2:1, 3:1:1, 4:1:1 for Scenario (A) and 2:1:1, 2:2:1, 3:2:1
for Scenarios (B) and (C). The total sample sizes N = nE + nR + nP were set as 200 and 500
for Scenario (A) and 200, 300 and 400 for Scenarios (B) and (C), with a significance level
α = 5% for the three scenarios.

The average missing rates for the experimental, reference and placebo treatments
among the 1000 replications were roughly 23.15%, 19.23% and 21.08%, respectively.

For each of the settings described above, we generated 1000 Monte Carlo samples.
To evaluate the accuracy of the mean function estimates m̂0

�i(γ�; z�i) and the propensity
score function estimates π̂�(η�; z�i, y�i), we took the Gaussian kernel function with K(Z�) =

(2π)−1/2exp(−Z2
�/2) and set the bandwidths h� as σ̂Z�

n−1/3
� , where σ̂Z�

was the standard
deviation of observations {Z�i : i = 1, . . . , n�} for � = E, R, P. To compute the estimated
asymptotic variances of μ̂k

�, we conducted 100 bootstrap replications.
Empirical type I error rates for 1000 replications in Scenario (A) are given in Table 1

for balanced designs with the above considered four missingness data mechanisms and
Table 2 for unbalanced designs with only the missingness data mechanism E2. To save
space, we moved the corresponding results in Scenarios (B) and (C) to Tables A1 and A2
in the Appendix A. Examination of Tables 1, 2, A1 and A2 showed that (i) the proposed
three statistics for testing H̃0 have similar performance because their type I error rates
are quite close to the pre-given significance level for all the considered cases, which is
consistent with the theoretical properties presented in Theorems 1 and 2; (ii) the proposed
three statistics for testing H̃0 performed better than the CC method regardless of the sample
sizes, missingness data mechanisms, balanced and unbalanced designs, and the variances
of the treatment effects in that the type I error rates of the former were closer to the pre-
given significance level than those for the latter; (iii) the type I error rate increased as the
sample size increased for the CC method, which was consistent with the observations of
Cook and Zea [48]; (iv) empirical type I error rates were not sensitive to the balanced or
unbalanced designs.
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Table 1. Empirical type I error rates for balanced designs in the first simulation study.

n = 50 n = 100 n = 150

Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

E1 0.048 0.051 0.053 0.057 0.048 0.050 0.052 0.074 0.050 0.051 0.050 0.083
E2 0.053 0.055 0.055 0.052 0.048 0.049 0.050 0.055 0.054 0.055 0.055 0.092
E3 0.049 0.055 0.054 0.070 0.053 0.053 0.058 0.095 0.052 0.054 0.054 0.117
E4 0.051 0.053 0.052 0.061 0.048 0.050 0.053 0.086 0.047 0.051 0.049 0.088

Note: SHT, SRI, SAI and CC denote Wald-type test approaches based on IPW, regression imputation, AIPW and
CC, respectively.

Table 2. Empirical type I error rates for unbalanced designs in the first simulation study.

N = 200 N = 500

nE:nR:nP SHT SRI SAI SHT SRI SAI

2:2:1 0.046 0.048 0.048 0.049 0.050 0.051
3:3:1 0.053 0.053 0.051 0.045 0.046 0.046
4:4:1 0.053 0.054 0.058 0.045 0.047 0.050
2:1:1 0.048 0.051 0.050 0.045 0.044 0.045
3:2:1 0.055 0.059 0.060 0.047 0.049 0.046
4:3:1 0.038 0.044 0.047 0.054 0.055 0.055
4:2:1 0.048 0.051 0.053 0.063 0.064 0.059
3:1:1 0.055 0.056 0.057 0.052 0.055 0.056
4:1:1 0.050 0.057 0.058 0.051 0.052 0.054

We computed empirical powers against a = (μE − μP)/(μR − μP), the sample sizes,
the treatment effects, and the alpha and gamma parameters for missingness data mecha-
nism models E1–E4 when the null hypothesis was not true. To save space, we only present
empirical powers against the sample size in Figure 1 for balanced design and Figure 2 for
unbalanced design (i.e., nE:nR:nP = 2:1:1) under the considered four missingness data mech-
anism models. Other results are given in Figures A1–A8 in the Appendix A. Inspection of
these figures showed that (i) empirical power increases as a or the sample size n increases,
regardless of the missingness data mechanisms and balanced/unbalanced designs and the
considered four tests; (ii) empirical power slightly increased as αE1 increased regardless of
the missingness data mechanisms and balanced/unbalanced designs and the considered
SHT, SRI and SAI tests, while the empirical power for the CC method showed an increasing
tendency as αE1 increased for missingness data mechanisms E3 and E4, which might be
explained by non-linear non-ignorable missing data; (iii) the empirical powers with the
proposed three test statistics were larger than those with the CC method for non-ignorable
missing data (i.e., E2–E4), regardless of the sample sizes, a, treatment effects, αE1 and γ; (iv)
the observation that the CC method had a slightly larger empirical power than the three
tests considered might be explained by its inflated type I error.
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Figure 1. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression impu-
tation, AIPW and CC methods against the sample size n under balanced design with missingness
data mechanism models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4
(right panel) for a = 0.2.

Figure 2. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regres-
sion imputation, AIPW and CC methods against the sample size n under unbalanced design
(i.e., nE:nR:nP = 2:1:1), with missingness data mechanism models E1 (left panel), E2 (left second

panel), E3 (right second panel) and E4 (right panel) for a = 0.2.

To investigate the effect of the amount of departure from the MAR mechanism (i.e.,
the change in γE) on type I error rates under the missingness data mechanism model E2,
with the same values of αE0 and αE1 (i.e., αE0 = 1.3 and αE1 = 0.1) as those given in the
first simulation study, we conducted a second simulation study. In this simulation study,
1000 Monte Carlo datasets {(X�i, Y�i, D�i) : i = 1, · · · , n�} were independently generated,
as in the first simulation study, with γE = −0.2,−0.1,−0.05, 0, 0.05, 0.1. Empirical type
I error rates for the balanced design with the sample sizes n = 50 and 150 are given in
Table 3. Inspection of Table 3 yielded that (i) statistics with the IPW, regression imputation
and AIPW methods behaved better than those with the CC method because the type I
error rates for the former were closer to the pre-given significance level than those for the
latter, regardless of the values of γE and the sample sizes; and (ii) statistics with the IPW,
regression imputation and AIPW methods were not sensitive to γE.
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Table 3. Sensitivity analysis of the proposed test statistics in the second simulation study.

n = 50 n = 150

γE SHT SRI SAI CC SHT SRI SAI CC

−0.2 0.038 0.046 0.044 0.033 0.051 0.050 0.051 0.033
−0.1 0.053 0.055 0.055 0.052 0.054 0.055 0.055 0.092
−0.05 0.041 0.045 0.046 0.066 0.045 0.048 0.047 0.061

0.0 0.048 0.051 0.053 0.057 0.050 0.051 0.050 0.083
0.05 0.050 0.051 0.052 0.065 0.054 0.055 0.055 0.092
0.1 0.047 0.051 0.056 0.087 0.053 0.056 0.055 0.111

6. An Example

In this section, a real example described in the Introduction is used to illustrate
the proposed methodologies. In this dataset, we regarded zidovudine plus 400 mg of
didanosine plus 400 mg of nevirapine as the experimental treatment with 330 patients,
zidovudine plus 2.25 mg of zalcitabine as the reference treatment with 324 patients, and
zidovudine alternating monthly with 400 mg didanosine as the placebo with 325 patients,
respectively. CD4 counts were scheduled to be collected at baseline and eight-week intervals
during the follow-up. Due to mistimed measurements, CD4 count data were subject to
missingness, which led to unbalanced designs. There were 94 patient dropouts at the
interval (4,12] among the 330 patients, 97 patient dropouts at the interval (4,12] and two
patient dropouts at baseline among the 324 patients, and 95 patient dropouts at the interval
(4,12] and five patient dropouts at baseline among the 325 patients. As an illustration,
we took log(CD4 count at baseline + 1) as the dropout instrument variable Z, and only
considered the data at the interval (4,12], i.e., treatment endpoints were CD4 counts at the
interval (4,12], which led to nE = 328, nR = 313 and nP = 316, whose average missing
rates were 29.74%, 30.99%, and 28.65%, respectively. The dataset was obtained from the
R package “ALA”. Our main purpose was to test the NI of the experimental treatment
to the reference treatment in the considered three-arm design. To this end, we took the
fraction margin as δ = g(μR − μP) with g = 0.2, which led to a = 0.8, i.e., the experimental
treatment achieved more than 80 percent of the reference treatment compared with the
placebo to be claimed as NI.

To compute m̂0
�i(γ̂�; Z�i) and π̂�(η̂�; Z�i, Y�i), we took the Gaussian kernel function as

K(x�) = (2π)−1/2exp(−x2
�/2) and set the bandwidth h� to be σ̂X�

n−1/3
� , where σ̂X�

was
the standard deviation of X�i’s. The p-values for testing H̃0 were 0.0037, 0.0035, 0.0033
and 0.0136 for the Wald-type statistics with the IPW, regression imputation, AIPW and
CC methods, respectively, which indicated the NI of the experimental treatment to the
reference treatment was at the 5% significance level.

7. Conclusions

This paper considers the non-inferiority assessment problem of an experimental treat-
ment to a reference treatment in a three-arm trial with non-ignorable missing data. A
logistic regression was employed to specify the non-ignorable missing endpoint mecha-
nism. Three methods, including the IPW, imputation regression and AIPW methods, were
proposed to estimate the treatment efficacy for the known and unknown propensity score
functions. The asymptotic properties of estimators for treatment efficacy were established
under some regularity conditions. Based on these asymptotic properties, three Wald-type
statistics for testing the NI of the experimental treatment to the reference treatment were
constructed. Simulation studies indicated that the proposed test procedures behaved better
than those with complete-case data in terms of type I error rates and powers, i.e., the type I
error rates for the former were closer to the pre-given significance level than those for the
latter and the powers for the former were larger than those for the latter; the proposed test
procedures were not sensitive to misspecified missingness data mechanisms.
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Appendix A

Appendix A.1. Regularity Conditions

To obtain asymptotic properties of μ̂� for � = E, R, P, we need the following regularity
conditions.

Assumption A1. The true respondent model given in Equation (4) satisfies (i) that there ex-
ists a true value η0

� of η� such that E{s(η0
� ; Z�, Y�)} = 0; (ii) for η�, in a neighborhood of η0

� ,
E{||s(η0

� ; Z�, Y�)||2} < ∞ and E{∂s(η0
� ; Z�, Y�)/∂ηT

� } exists and is nonsingular.

Assumption A2. (i) The marginal probability density function f (z) of the random variable z is
bounded away from ∞ in the support of z, and the second derivative of f (z) in z is continuous and
bounded; (ii) The respondent probabilities π�i(η�; Z�i, Y�i) satisfy min1≤i≤n�

π�i(η�; Z�i, Y�i) ≥ c0
a.s. for some positive constant c0.

Assumption A3. The kernel function K�(·) satisfies (i) it is bounded and has compact support;
(ii) it is symmetric with

∫
ω2K�(ω)dω < ∞; (iii) K�(·) ≥ D� for D� > 0 in some closed interval

centered at zero; (iv) n�h� → ∞ and n�h4
� → 0 as n� → ∞.

Remark A1. Assumption A1 is used to establish asymptotic normality of η̂�. Assumption A2 is
commonly adopted in the missing data literature. Assumption A3 is a standard assumption for the
kernel regression method.

Proof of Theorem 1. By the definition of μ̂HT
� , we have the following decomposition

√
n�(μ̂

HT
� − μ0

�) =n−1/2
�

n�

∑
i=1

{
D�iY�i

π�i(η�; Z�i, Y�i)
− μ0

�

}
=n−1/2

�

n�

∑
i=1

D�i
{

Y�i − m0
�i(γ�; Z�i)

}
π�i(η�; Z�i, Y�i)

+ n−1/2
�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

}
+ n−1/2

�

n�

∑
i=1

{
D�i

π�i(η�; Z�i, Y�i)
− 1
}

m0
�i(γ�; Z�i)

�
= H1n�

+ H2n�
+ H3n�

.

By the law of large numbers, it is easily shown that H3n�
= op(1). Thus, combining

the above results leads to

√
n�(μ̂

HT
� − μ0

�) = n−1/2
�

n�

∑
i=1

D�i
{

Y�i − m0
�i(γ�; Z�i)

}
π�i(η�; Z�i, Y�i)

+ n−1/2
�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

}
+ op(1).
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Let τ�i = m0
�i(γ�; Z�i) + D�iπ

−1
�i (η0

�){y�i − m0
�i(γ�; Z�i)}. Then, we have

√
n�

(
μ̂HT
� − μ0

�

) L−→ N
(

0, σ2
�

)
as n� → ∞ , for � = E, R, P,

where σ2
� = var(τ�i). It is easily shown that E

{
D�iπ�i(η�; Z�i, Y�i)

−1{Y�i − m0
�i(γ�; Z�i)

}}
=

0, and E
{

m0
�i(γ�; Z�i)− μ0

�

}
= 0. Since m0

�i(γ�; Z�i) is independent of Y�i − m0
�i(γ�; Z�i), we

have σ2
� = E{π�i(Z�i, Y�i; η0

�)
−1

[Y�i − m0
�i(γ�; Z�i]

2}+ E
[
m0

�i(γ�; Z�i)
]2.

Next, we show the asymptotic property of μ̂RI
� . By the definition of μ̂RI

� , we obtain

√
n�(μ̂

RI
� − μ0

�) = n−1/2
�

n�

∑
i=1

{
D�iY�i + (1 − D�i)m̂0

�i(γ�; Z�i)− μ0
�

}

= n−1/2
�

n�

∑
i=1

D�i

{
Y�i − m0

�i(γ�; Z�i)
}
+ n−1/2

�

n�

∑
i=1

(1 − D�i)
{

m̂0
�i(γ�; Z�i)− m0

�i(γ�; Z�i)
}

+ n−1/2
�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

} �
= R1n�

+ R2n�
+ H2n�

.

Using the similar arguments as given in Tang et al. [38], it is easily shown that

R2n�
= n−1/2

�

n�

∑
i=1

D�i[1 − π�i(η
0
� ; Z�i, Y�i)]{Y�i − m0

�i(γ�; Z�i)}/π�i(η
0
� ; Z�i, Y�i) + op(1).

Thus, we have

√
n�(μ̂

RI
� − μ0

�) = H1n�
+ H2n�

+ op(1) =
√

n�(μ̂
HT
� − μ0

�) + op(1).

By the Slutsky Theorem and the asymptotic property of μ̂HT
� , we obtain

√
n�

(
μ̂RI
� − μ0

�

) L−→ N
(

0, σ2
�

)
as n� → ∞ , for � = E, R, P,

where σ2
� is defined in the proof of the asymptotic properties of μ̂HT

� .
Now, we prove the asymptotic properties of the estimator μ̂AI

� . By the definition of the
μ̂AI
� , we obtain

√
n�(μ̂

AI
� −μ0

�) = n−1/2
�

n�

∑
i=1

{
D�iY�i

π�i(η�; Z�i, Y�i)
+

(
1 − D�i

π�i(η�; Z�i, Y�i)

)
m̂0

�i(γ�; Z�i)− μ0
�

}

= n−1/2
�

n�

∑
i=1

D�i
π�i(η�; Z�i, Y�i)

{
Y�i − m0

�i(γ�; Z�i)
}
+n−1/2

�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

}

+ n−1/2
�

n�

∑
i=1

(
1 − D�i

π�i(η�; Z�i, Y�i)

){
m̂0

�i(γ�; Z�i)− m0
�i(γ�; Z�i)

} �
= H1n�

+ H2n�
+ An�

.

Following a similar argument as given in the proof of Theorem 4 in Zhao et al. [49],
we have An�

= op(1). Combining the above results yields

√
n�(μ̂

AI
� − μ0

�) = H1n�
+ H2n�

+ op(1) =
√

n�(μ̂
HT
� − μ0

�) + op(1).

Using the same arguments as given in the proof of the asymptotic properties for μ̂RI
� ,

we obtain √
n�

(
μ̂AI
� − μ0

�

) L−→ N
(

0, σ2
�

)
as n� → ∞ , for � = E, R, P,

where σ2
� is defined in the proof of the asymptotic properties of μ̂HT

� .
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Proof of Theorem 2. We first consider the asymptotic properties of μ̂SHT
� based on the

following form:

√
n�(μ̂

SHT
� − μ0

�) = n−1/2
�

n�

∑
i=1

{ D�iY�i
π�i(η̂�; Z�i, Y�i)

− μ0
�

}
.

Taking the Taylor expansion of π�i(η̂�; Z�i, Y�i) at η� yields

n−1/2
�

n�

∑
i=1

D�iY�i
π�i(η̂�; Z�i, Y�i)

= n−1/2
�

n�

∑
i=1

D�iY�i
π�i(η�; Z�i, Y�i)

+ n1/2
� (η̂� − η�)

� 1
n�

n�

∑
i=1

D�iY�i
∂

∂η�
π−1
�i (η�; Z�i, Y�i)

∣∣
η�=η̃�

+ op(1)

where η̃� lies in the line segment between η̂� and η�, ∂π−1
�i (η�; Z�i, Y�i)/∂η�

∣∣
η�=η̃�

= {1 −
π−1
�i (η�; Z�i, Y�i)}(1, Z�

�i, Y�i)
�. Following the arguments of the proof of Theorem 1, we get

n−1/2
�

n�

∑
i=1

{ D�iY�i
π�i(η�; Z�i, Y�i)

− μ0
�

}
= n−1/2

�

n�

∑
i=1

D�i{Y�i − m0
�i(γ�; Z�i)}

π�i(η�; Z�i, Y�i)

+n−1/2
�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

}
+ op(1).

Combining the above results yields

√
n�(μ̂

SHT
� − μ0

�) =n−1/2
�

n�

∑
i=1

D�i{Y�i − m0
�i(γ�; Z�i)}

π�i(η�; Z�i, Y�i)
+ n−1/2

�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

}
+ n1/2

� (η̂� − η�)
� 1

n�

n�

∑
i=1

D�iY�i(1 −
1

π�i(η̃�; Z�i, Y�i)
)(1, Z�

�i, Y�i)
�+ op(1)

=n−1/2
�

n�

∑
i=1

{
D�i
{

Y�i − m0
�i(γ�; Z�i)

}
π�i(η�; Z�i, Y�i)

+
{

m0
�i(γ�; Z�i)− μ0

�

}}
+ n1/2

� (η̂� − η�)
�H�,SHT + op(1)

=n−1/2
�

n�

∑
i=1

e�,SHTi + op(1),

where

e�,SHTi = {D�iπ
−1
�i (η�; Z�i, Y�i){Y�i −m0

�i(γ�; Z�i)}+m0
�i(γ�; Z�i)−μ0

� +I−1
22�s�i(η�)H�,SHT},

s�i(η�) is the ith term in Equation (11), H�,SHT = E[{π�(η�; Z�, Y�)− 1}Y�(1, Z�
� , Y�)

�]. By
the Slutsky Theorem and the asymptotic property of μ̂HT

� , it is easily shown that

√
n�

(
μ̂SHT
� − μ0

�

) L−→ N
(

0, σ2
�,SHT

)
as n� → ∞, for � = E, R, P,

where σ2
�,SHT = Var(e�,SHTi).

Now, we show the asymptotic property of μ̂SRI
� for unknown η�. By the definition of

μ̂SRI
� , we have the following form:

√
n�(μ̂

SRI
� − μ0

�) = n−1/2
�

n�

∑
i=1

{
D�iY�i + (1 − D�i)m̂0

�i(γ̂�; Z�i)− μ0
�

}
.

Taking the Taylor expansion of m̂0
�i(γ̂�; Z�i) at η� yields
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n�

∑
i=1

(1 − D�i)m̂0
�i(γ̂�; Z�i) =

n�

∑
i=1

(1 − D�i)m̂0
�i(γ�; Z�i)

+ n1/2
� (η̂� − η�)

� 1
n�

n�

∑
i=1

(1 − D�i)
∂

∂η�
m0

�i(γ�; Z�i)
∣∣∣η�=η̃�

+ op(1).

Using the conclusion given in the proof of Theorem 1, we can easily get
√

n�(μ̂
RI
� −

μ0
�) =

√
n�(μ̂

HT
� − μ0

�) + op(1). Combining the above results yields

√
n�(μ̂

SRI
� − μ0

�) =n−1/2
�

n�

∑
i=1

{
D�iY�i + (1 − D�i)m̂0

�i(γ�; Z�i)− μ0
�

}
+ n1/2

� (η̂� − η�)
� 1

n�

n�

∑
i=1

(1 − D�i)Y�i
∂

∂η�
m̂0

�i(γ�; Z�i)
∣∣∣η�=η̃�

=n−1/2
�

n�

∑
i=1

D�i
{

Y�i − m0
�i(γ�; Z�i)

}
π�i(η�; Z�i, Y�i)

+ n−1/2
�

n�

∑
i=1

{
m0

�i(γ�; Z�i)− μ0
�

}
+ n1/2

� (η̂� − η�)
�I−1

22�s�i(η�)H�,SRI + op(1)

=n−1/2
�

n�

∑
i=1

e�,SRIi + op(1),

where η̃� lies in the line segment between η̂� and η�, e�,SRIi = D�iπ
−1
�i (η�; Z�i, Y�i){Y�i −

m0
�i(γ�; Z�i)}+ m0

�i(γ�; Z�i)− μ0
� + I−1

22�s�i(η�)H�,SRI , H�,SRI = E{(1 − D�i)(0, 0�p�−1, (Y�i −
m0

�i(γ�; Z�i))
2)�} and 0p�−1 is a (p� − 1)× 1 zero vector and p� is the dimension of covariate

Z�i. By the Slutsky Theorem and the asymptotic property of μ̂SHT
� , it is easily shown that

√
n�

(
μ̂SRI
� − μ0

�

) L−→ N
(

0, σ2
�,SRI

)
as n� → ∞, for � = E, R, P,

where σ2
�,SRI = Var(e�,SRIi).

Now, we prove the asymptotic properties of μ̂SAI
� for unknown η�. Combining the

above results and taking the Taylor expansion of μ̂SAI
� at η�, we obtain

√
n�(μ̂

SAI
� − μ0

�) =n−1/2
�

n�

∑
i=1

{
D�iY�i

π�i(η�; Z�i, Y�i)
+

(
1 − D�i

π�i(η�; Z�i, Y�i)

)
m̂0

�i(γ�; Z�i)− μ0
�

}
+ n1/2

� (η̂� − η�)
� 1

n�

n�

∑
i=1

D�iY�i
∂

∂η�
π−1
�i (η�; Z�i, Y�i)

∣∣
η�=η̃�

+ n1/2
� (η̂� − η�)

� 1
n�

n�

∑
i=1

m̂0
�i(γ�; Z�i)

∂

∂η�

(
1 − D�i

π�i(η�; Z�i, Y�i)

)∣∣∣η�=η̃�

+ n1/2
� (η̂� − η�)

� 1
n�

n�

∑
i=1

(
1 − D�i

π�i(η�; Z�i, Y�i)

)
∂

∂η�
m̂0

�i(γ�; Z�i)
∣∣∣η�=η̃�

where η̃� lies in the line segment between η̂� and η�. Using the conclusion given in the
proof of Theorem 1, we have

√
n�(μ̂

AI
� − μ0

�) =
√

n�(μ̂
HT
� − μ0

�) + op(1),

1
n�

n�

∑
i=1

(
1 − D�i

π�i(η�; Z�i, Y�i)

)
∂

∂η�
m̂0

�i(γ�; Z�i)|η�=η̃�
= op(1),

1
n�

n�

∑
i=1

m̂0
�i(γ�; Z�i)

∂

∂η�

(
1 − D�i

π�i(η�; Z�i, Y�i)

)
|η�=η̃�

= M�SAI + op(1),
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where M�,SAI = E{(1 − π�i(η�; Z�i, Y�i))m0
�i(γ�; Z�i)(1, Z�

�i, Y�i)
�}. Combining the above

results leads to

√
n�(μ̂

SAI
� − μ0

�) =n−1/2
�

n�

∑
i=1

[
D�i
{

Y�i − m0
�i(γ�; Z�i)

}
π�i(η�; Z�i, Y�i)

+
{

m0
�i(γ�; Z�i)− μ0

�

}]
+ n1/2

� (η̂� − η�)
�I−1

22�s�i(η�)(H�,SHT + M�,SAI) + op(1)

=n−1/2
�

n�

∑
i=1

e�,SAIi + op(1),

where e�,SAIi = D�iπ
−1
�i (η�; Z�i, Y�i){Y�i − m0

�i(γ�; Z�i)} + m0
�i(γ�; Z�i) − μ0

� + I−1
22�s�i(η�)

H�,SRI , H�,SAI = H�,SHT + M�,SAI . By the Slutsky Theorem and the asymptotic property of
μ̂SHT
� , it is easily shown that

√
n�

(
μ̂SRI
� − μ0

�

) L−→ N
(

0, σ2
�,SAI

)
as n� → ∞, for � = E, R, P,

where σ2
�,SRI = Var(e�,SAIi).

Appendix A.2. Tables: Empirical Type I Error Rates for Scenarios (B) and (C) with Balanced and
Unbalanced Designs

Table A1. Empirical Type I error rates for Scenarios (B) and (C) with balanced designs.

n = 50 n = 100 n = 150

Scenario Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

(B) E1 0.041 0.055 0.055 0.068 0.042 0.053 0.059 0.082 0.048 0.058 0.062 0.090
E2 0.046 0.049 0.050 0.052 0.045 0.051 0.052 0.060 0.042 0.054 0.054 0.066
E3 0.045 0.045 0.044 0.051 0.037 0.053 0.054 0.060 0.046 0.056 0.058 0.060
E4 0.050 0.048 0.047 0.052 0.032 0.055 0.058 0.060 0.046 0.052 0.054 0.056

(C) E1 0.040 0.065 0.064 0.081 0.031 0.052 0.056 0.082 0.046 0.062 0.064 0.082
E2 0.030 0.052 0.043 0.057 0.046 0.053 0.052 0.063 0.044 0.050 0.056 0.068
E3 0.034 0.058 0.055 0.060 0.034 0.050 0.053 0.060 0.036 0.048 0.054 0.060
E4 0.031 0.044 0.043 0.042 0.041 0.052 0.056 0.082 0.048 0.054 0.054 0.075

Note: SHT, SRI, SAI and CC denote Wald-type test approaches based on IPW, regression imputation, AIPW and
CC, respectively.

Table A2. Empirical Type I error rates for Scenarios (B) and (C) with unbalanced designs.

N = 200 N = 300 N = 400

Scen. nE :nR :nP Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

(B) 2:1:1 E1 0.035 0.058 0.058 0.068 0.034 0.053 0.059 0.082 0.036 0.062 0.060 0.078
E2 0.042 0.052 0.046 0.062 0.042 0.053 0.050 0.064 0.046 0.052 0.050 0.070
E3 0.041 0.066 0.061 0.056 0.038 0.062 0.058 0.042 0.034 0.051 0.049 0.048
E4 0.033 0.054 0.051 0.050 0.037 0.056 0.051 0.049 0.046 0.052 0.051 0.068

2:2:1 E1 0.026 0.052 0.050 0.079 0.049 0.068 0.066 0.083 0.030 0.040 0.042 0.080
E2 0.031 0.051 0.049 0.037 0.041 0.059 0.057 0.047 0.046 0.058 0.056 0.062
E3 0.026 0.046 0.045 0.040 0.040 0.058 0.052 0.048 0.049 0.056 0.052 0.060
E4 0.029 0.044 0.042 0.042 0.031 0.046 0.045 0.035 0.030 0.044 0.038 0.044

3:2:1 E1 0.041 0.060 0.063 0.072 0.037 0.050 0.046 0.069 0.040 0.046 0.046 0.078
E2 0.032 0.055 0.057 0.054 0.035 0.046 0.043 0.049 0.034 0.044 0.042 0.042
E3 0.032 0.051 0.045 0.055 0.038 0.056 0.052 0.050 0.032 0.049 0.045 0.046
E4 0.033 0.047 0.053 0.050 0.032 0.059 0.057 0.052 0.038 0.050 0.048 0.038
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Table A2. Cont.

N = 200 N = 300 N = 400

Scen. nE :nR :nP Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

(C) 2:1:1 E1 0.033 0.067 0.064 0.077 0.029 0.054 0.050 0.069 0.032 0.062 0.054 0.082
E2 0.043 0.059 0.056 0.051 0.048 0.047 0.047 0.066 0.050 0.058 0.052 0.064
E3 0.027 0.050 0.049 0.050 0.042 0.062 0.060 0.042 0.028 0.050 0.051 0.059
E4 0.028 0.051 0.051 0.043 0.026 0.044 0.042 0.042 0.026 0.046 0.045 0.050

2:2:1 E1 0.021 0.049 0.047 0.081 0.044 0.068 0.067 0.082 0.030 0.042 0.044 0.090
E2 0.026 0.047 0.043 0.037 0.039 0.058 0.056 0.060 0.024 0.040 0.042 0.054
E3 0.026 0.046 0.045 0.040 0.058 0.052 0.048 0.049 0.049 0.056 0.052 0.060
E4 0.029 0.044 0.042 0.042 0.031 0.046 0.045 0.035 0.030 0.044 0.038 0.044

3:2:1 E1 0.039 0.069 0.069 0.082 0.036 0.051 0.048 0.074 0.034 0.046 0.044 0.082
E2 0.039 0.058 0.055 0.065 0.037 0.045 0.047 0.052 0.034 0.044 0.042 0.042
E3 0.031 0.051 0.050 0.046 0.030 0.056 0.054 0.050 0.029 0.050 0.047 0.050
E4 0.029 0.050 0.052 0.048 0.036 0.058 0.060 0.058 0.031 0.044 0.044 0.045

Note: SHT, SRI, SAI and CC denote Wald-type test approaches based on IPW, terline regression imputation, AIPW
and CC, respectively.

Appendix A.3. Figures: Powers for Scenario (A) with a, n, Treatment Effects, Parameters α and γ

Figure A1 presents empirical powers against a = (μE −μP)/(μR −μP) for missingness
data mechanism models E1–E4 under the balanced designs, with n = 50, 100 and 150.
Figure A2 presents empirical powers against a = (μE − μP)/(μR − μP) for missingness
data mechanism models E1–E4 under the unbalanced designs with nE:nR:nP = 2:1:1.

Figure A1. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against a for missingness data mechanism model E1 (left panel),
E2 (left second panel), E3 (right second panel) and E4 (right panel) for n = 50 (the first row), 100
(middle row) and 150 (the last row) under the balanced designs.
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Figure A2. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against a for missingness data mechanism models E1 (left panel),
E2 (left second panel), E3 (right second panel) and E4 (right panel) for N = 120 (the first row), 200
(middle row) and 280 (the last row) under the unbalanced designs with nE:nR:nP = 2:1:1.

Figure A3 presents empirical powers against the sample size n for missingness data
mechanism models E1–E4 under balanced design for a = 0.4 and 0.6. Figure A4 presents
empirical powers against the sample size n for missingness data mechanism models E1–E4
under unbalanced design with nE:nR:nP = 2:1:1.

Figure A3. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against the sample size n for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for a = 0.4
(upper row) and 0.6 (lower row) under balanced design.
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Figure A4. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against the sample size n for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for a = 0.4
(upper row) and 0.6 (lower row) under unbalanced design (nE:nR:nP = 2:1:1).

Figure A5 presents empirical powers against treatment effect αE1 for four missingness
data mechanism models E1–E4 under balanced design. Figure A6 presents empirical
powers against treatment effects αE1 for four missingness data mechanism models E1–E4
under unbalanced design with nE:nR:nP = 2:1:1.

Figure A5. Cont.
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Figure A5. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against treatment effect αE1 for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for
(a, n) = (0.2,80) (the first row), (0.2,120) (the second row), (0.6,80) (the third row) and (0.6,120) (the
last row) under the balanced designs.

Figure A6. Cont.
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Figure A6. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against treatment effect αE1 for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for
(a, n) = (0.2,200) (the first row), (0.2,320) (the second row), (0.6,200) (the third row), and (0.6,320) (the
last row) under the unbalanced designs with nE:nR:nP = 2:1:1.

Figure A7 presents empirical powers against the tilting parameter γ for three missing-
ness data mechanism models E2–E4 under balanced design. Figure A8 presents empirical
powers against the tilting parameter γ for three missingness data mechanism models E2–E4
under unbalanced design with nE:nR:nP = 2:1:1.

Figure A7. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against γ for missingness data mechanism models E2 (the first
row), E3 (the middle row) and E4 (the last row) together with (a, n) = (0.2,80), (0.2,120), (0.6,80) and
(0.6,120), respectively, under the balanced designs.
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Figure A8. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against γ for missingness data mechanism models E2 (the first
row), E3 (the middle row) and E4 (the last row) together with (a, n) = (0.2,200), (0.2,320), (0.6,200) and
(0.6,320), respectively, under the unbalanced designs with nE:nR:nP = 2:1:1.
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Abstract: Geographically Weighted Regression (GWR) is the development of multiple linear regres-
sion models used in spatial data. The assumption of spatial heterogeneity results in each location
having different characteristics and allows the relationships between the response variable and each
predictor variable to be unknown, hence nonparametric regression becomes one of the alternatives
that can be used. In addition, regression functions are not always the same between predictor vari-
ables. This study aims to use the Geographically Weighted Nonparametric Regression (GWNR)
model with a mixed estimator of truncated spline and Fourier series. Both estimators are expected
to overcome unknown data patterns in spatial data. The mixed GWNR model estimator is then
determined using the Weighted Maximum Likelihood Estimator (WMLE) technique. The estimator’s
characteristics are then determined. The results of the study found that the estimator of the mixed
GWNR model is an estimator that is not biased and linear to the response variable y.

Keywords: GWNR; linear estimator; mixed estimator; spatial data; unbiased
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1. Introduction

Regression analysis is a statistical method used to determine the relationship between
response variables and one or more predictor variables [1]. Regression is divided into three
types: parametric regression, nonparametric regression, and semiparametric regression.
Parametric regression is used when the shape of the regression curve is known, whether
linear, quadratic, cubic or otherwise. Whereas, nonparametric regression is used when
the shape of the regression curve is unknown. As for semiparametric regression, it is a
combination of parametric and nonparametric regression.

Nonparametric regression is a method used to model regression curves of unknown
shape [2]. This method is a more flexible approach because the data is expected to look
for the estimation form of the regression curve itself without being influenced by the
researcher’s subjectivity factor [3]. Some of the estimators used in nonparametric regression
include spline estimators, Fourier series, kernels, and local polynomials. Each estimator has
its characteristics to approach unknown regression functions. Research on nonparametric
regression has been widely conducted by single estimators [4,5] and mixed estimators [6,7].
However, its application is still limited to nonspatial data. In fact, there are many problems
related to spatial data. Spatial data is data that contains size and location information [8].
Methods used in spatial data analysis include Spatial Autocorrelation, Spatial Error Model,
Geographically weighted regression, and others.

According to [8], Geographically Weighted Regression (GWR) is a statistical method
that can analyze spatial heterogeneity. Spatial heterogeneity is one of the same predictor
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variables exerting unequal influences on different locations within a study site. The GWR
model generates an estimator of model parameters that are local to each point or location
where the data is observed. Research on GWR by [9,10] shows that the GWR model is better
than the global model that can overcome spatial heterogeneity. It was further developed
on a nonparametric GWR with a single estimator [11–13]. In addition, the relationship
between response variables and some predictor variables can vary [14]. Therefore, a
nonparametric GWR model with mixed truncated spline and Fourier series would be
developed. The truncated spline estimator in GWR is expected to overcome the changing
curve pattern at certain sub intervals [11]. In contrast, the Fourier series estimator is
expected to model the repeating data pattern [6]. This study aims to create a Geographically
Weighted Nonparametric Regression (GWNR) model with a mixed truncated spline and
Fourier series estimator, to determine the parameter estimate of the GWNR model with the
Weighted Maximum Likelihood Estimator method, and evaluate the properties the mixed
GWNR model.

The following discussion in this paper is divided into three main topics. Section 2
discusses the GWNR Model and method estimation of WMLE. Section 3 presents the
estimation parameter model GWNR; unbiased and linear estimator properties; and data
application. Section 4 is the conclusions.

2. Materials and Methods

2.1. Geographically Weighted Nonparametric Regression (GWNR)

The GWNR model is a development of GWR in nonparametric regression. Provided
paired data

(
x1i, . . . , xPi, z1i, . . . , zQi, yi

)
and assumed relationships between predictor vari-

ables
(
x1i, . . . , xPi, z1i, . . . , zQi

)
with response variables (yi) following a multivariable re-

gression model [11] are as follows:

yi = μ
(
x1i, . . . , xPi, z1i, . . . , zQi

)
+ εi, i = 1, 2, . . . , n (1)

where, yi is a response variable, μ
(
x1i, . . . , xPi, z1i, . . . , zQi

)
is a regression curve of unknown

shape, P is the predictor variables with a truncated spline function, Q is the predictor
variables approached with Fourier series functions, and n is a number of observations and
is assumed to be additive. If the function μ

(
x1i, . . . , xPi, z1i, . . . , zQi

)
is approached with

truncated spline functions and Fourier series, then Equation (1) can be written:

yi = μ
(
x1i, . . . , xPi, z1i, . . . , zQi

)
+ εi

yi =
P

∑
p=1

fp
(
xpi
)
+

Q

∑
q=1

gq
(
zqi
)
+ εi, i = 1, 2, . . . , n

where,
P
∑

p=1
fp
(
xpi
)
= f1(x1i) + . . . + fP(xPi)

= X1β1(ui, vi) + . . . + XPβP(ui, vi)

=
[

X1 . . . XP
]⎡⎢⎣ β1(ui, vi)

...
βP(ui, vi)

⎤⎥⎦
= Xβ(ui, vi)
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is a truncated spline component with P predictor variables and

Q
∑

q=1
gq
(
zqi
)
= g1(z1i) + . . . + gQ

(
zQi
)

= Z1a1(ui, vi) + . . . + ZQaQ(ui, vi)

=
[

Z1 · · · ZQ
]⎡⎢⎣ a1(ui, vi)

...
aQ(ui, vi)

⎤⎥⎦
= Za(ui, vi)

is a Fourier series component with Q other predictor variables. By matrix notation, it can
be written with:

y = Xβ(ui, vi) + Za(ui, vi) + ε (2)

where:

y =

⎡⎢⎣y1
...

yn

⎤⎥⎦, ε =

⎡⎢⎣ε1
...

εn

⎤⎥⎦
X =

[
X1

... · · ·
... XP

]
Z =

[
Z1

... · · ·
... ZQ

]
β(ui, vi) =

[
β1

T(ui, vi)
... · · ·

... βP
T(ui, vi)

]T

a(ui, vi) =
[
a1

T(ui, vi)
... · · ·

... aQ
T(ui, vi)

]T

(ui, vi)= (longitude, latitude), i = 1, 2, . . . , n

2.2. Weighted Maximum Likelihood Estimator (WMLE)

Maximum likelihood estimation from the parameters μ and σ2 with a distributed
n-sized sample yi ∼ N(μ, σ2), i = 1, 2, . . . , n can be written with:

f (y1, y2, . . . , yn) =
n

∏
i=1

1√
2πσ2

exp
(
−1

2

(
yi − μ

σ

))2

so that the likelihood function for yi, i = 1, 2, . . . , n is

L
(

μ, σ2|yi

)
= (2π)−

n
2
(

σ2
)− n

2 exp

(
− 1

2σ2

n

∑
i=1

(yi − μ)2

)
(3)

Next, by multiplying by the weighting matrix W = diag(w1i∗ , w2i∗ , . . . , wni∗), the log
likelihood function is obtained in terms of weighted function wii∗ as [15]:

ln L∗
(

μ, σ2(ui∗, vi∗)|yi

)
=

n

∑
i=1

wii∗ ln

(
1√

2πσ2(ui∗, vi∗)
exp

(
−1

2

(
yi − μ

σ(ui∗, vi∗)

)2
))

, i = 1, 2, . . . , n (4)

The role of weights in the GWNR model is very important because the weighting
values will represent the location of observational data from one another. One method
that can be used is the Gaussian Kernel function [8]. Equation (4) estimates the GWNR
parameter with the WMLE method.

Furthermore, steps are given in estimating the parameters of a mixed GWNR model
with the WMLE Method as follows:
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1. Defining a mixed GWNR model
2. Assuming distribution ε

3. Determining the distribution of y

4. Forming a likelihood function
5. Forming a weighted likelihood function
6. Specifying the first partial derivative of the likelihood function against the mixed

GWNR model parameter
7. Getting an estimate of mixed GWNR model parameters.

3. Results

3.1. Parameter Estimation

Estimation of parameters on GWNR models with mixed estimators uses Weighted
Maximum Likelihood Estimator (WMLE). The WMLE method is obtained by knowing the
distribution of the response variable yi, i = 1, 2, . . . , n in advance. Then, it is determined by
the weighting matrix for each location to i, i = 1, 2, . . . , n. The weighting used is a Fixed
Gaussian Kernel function. Next, it is given the form of a distribution of the GWNR model
that is presented on Lemma 1.

Lemma 1. Given the GWNR model in Equation (2), with εi, i = 1, 2, . . . , n is normally distributed
with mean equal to zero and variance σ2(ui, vi), hence yi, i = 1, 2, . . . , n is normally distributed
with mean

β0(ui, vi) +
P

∑
p=1

M

∑
m=1

βmp(ui, vi)xm
pi +

P

∑
p=1

R

∑
r=1

β(r+M)p(ui, vi)
(
xpi − tpp

)m
+

+
Q

∑
q=1

(
γq(ui, vi)zqi +

1
2

θ0q(ui, vi) +
H

∑
h=1

θhq(ui, vi) cos
(
hzqi
))

and variance, σ2(ui, vi).

where:

P: number of spline components
M: polynomial degree of spline
R: number of knot points
Q: number of Fourier components
H: number of oscillation parameters.

Lemma 1 has been proven in Appendix A.

Theorem 1. If given a model on Equation (2) with εi, i = 1, 2, . . . , n normally distributed with
mean zero and variance σ2(ui, vi) and the weighted likelihood function given to (4), by the MLE
method, an estimator is obtained β̂(ui, vi) and â(ui, vi) as follows:

β̂(ui, vi) = A(t, h)y

â(ui, vi) = B(t, h)y

where:
A(t, h) = R

(
XTW(ui, vi)X

)−1[
XTW(ui, vi)− XTW(ui, vi)Z(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)
]

B(t, h) = S
(
ZTW(ui, vi)Z

)−1[
ZTW(ui, vi)− ZTW(ui, vi)X(

XTW(ui, vi)X
)−1

XTW(ui, vi)
]

t = knot point for spline component
h = oscillation parameter component.
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Proof of Theorem 1. Is given to Appendix B. �

3.2. Unbiased and Linear Estimator Properties

Lemma 2. If β̂(ui, vi) is a truncated spline component parameter estimator of the GWNR model
with a mixed estimator approach that follows Equation (4), so β̂(ui, vi) is an unbiased estimator
and belongs to the class of linear estimators in observation y.

Furthermore, it can be seen in Appendix C which is the proof of Lemma 2.

Lemma 3. If â(ui, vi) is a Fourier series component parameter estimator of the GWNR model with
a mixed estimator approach that follows Equation (4), so â(ui, vi) is an unbiased estimator and
belongs to the class of linear estimators in observation y.

Lemma 3 is the last proven lemma and is described in Appendix D.

Lemma 4. If β̂(ui, vi) and â(ui, vi) are given by Theorem 1, hence the estimator for f̂, ĝ and μ̂ is
hence given by:

f̂ = Xβ̂(ui, vi)

ĝ = Zâ(ui, vi)

so that the following is obtained:

μ̂ = Xβ̂(ui, vi) + Zâ(ui, vi) = C(t, h)y

Proof. Next, to determine the function estimator f̂, ĝ and μ̂(ui, vi) are described as follows.
Based on Theorem 1, it can be substituted β̂(ui, vi) and â(ui, vi) so that it is obtained:

f̂ = Xβ̂(ui, vi)

= XA(t, h)y

and
ĝ = Zâ(ui, vi)

= ZB(t, h)y

As a result, obtained estimator μ̂ be

μ̂ = f̂ + ĝ

= Xβ̂(ui, vi) + Za(ui, vi)
= XA(t, h)y + ZB(t, h)y

= C(t, h)y

where C(t, h) = XA(t, h) + ZB(t, h) is a hat matrix containing knot points t and the param-
eter of the h oscillation on the mixed GWNR model with the approach of truncated spline
and Fourier series estimator. �

3.3. Data Application

The data used are secondary data from [16–21] with research variables, percentage
of the poor population (y), CPI (x1), TPT (x2), longitude and latitude coordinates (ui, vi),
and as many as 81 districts/cities on Sulawesi Island.

The following steps for applying the estimated parameters of the GWNR model to
poverty data on Sulawesi Island in 2020 are as follows:

1. Making a scatter plot between the variables x1 and y, as well as x2 and y
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2. Defining the initial model
3. Selecting optimum knots and oscillation parameters
4. Estimating parameters of global model with the OLS method based on the initial

model formed
5. Testing assumptions of spatial heterogeneity on residual values on global models
6. Determining the weighting matrix
7. Estimating parameters of the GWNR model with the WMLE method
8. Choosing the best model based on MSE and R2

9. Making conclusions

Based on the above step, the variable x1 as a component of the Fourier series and
the variable x2 as the spline component are obtained based on the scatter plot shown.
Furthermore, the test of spatial assumptions is obtained that the assumption of spatial
heterogeneity is met, so the global model is less suitable for use because the residual
properties are not homogeneous. One alternative model that can be used is the GWNR
model. Use of this GWNR model is expected to overcome heteroskedasticity by generating
a local model for each location. Here are some local models generated:

ŷken = 47.59 − 0.5x1 − 0.17x2 + 0.43 cos(x1) + 0.22(x2 − 8.55) (5)

ŷmks = 49.9 − 0.58x1 − 0.07x2 + 0.08 cos(x1) + 0.47(x2 − 8.55) (6)

ŷman = 44.19 − 0.46x1 − 0.15x2 + 0.11 cos(x1) + 0.19(x2 − 8.55) (7)

ŷpal = 40.79 − 0.47x1 + 0.3x2 − 0.48 cos(x1)− 0.27(x2 − 8.55) (8)

ŷgor = 44.12 − 0.3x1 − 2.25x2 − 0.05 cos(x1) + 2.38(x2 − 8.55) (9)

ŷmaj = 39.88 − 0.43x1 + 0.04x2 + 0.02 cos(x1) + 0.22(x2 − 8.55) (10)

where:

yken = estimated poverty percentage for Kendari City
ymks = estimated poverty percentage for Makassar City
yman = estimated poverty percentage for Manado City
ypal = estimated poverty percentage for Palu City
ygor = estimated poverty percentage for Gorontalo City
ymaj = estimated poverty percentage for Mamuju City.

GWNR mixed with oscillation parameters k =1 and linear spline t =1 resulted in MSE
and R2 values of 3.65 and 74.65 per cent, respectively. Based on several local models above,
it shows that poverty in Sulawesi Island is influenced by HDI and TPT, where the increasing
HDI will result in a decrease in the percentage of poverty. Conversely, an increase in TPT
will increase the percentage of poverty.

4. Conclusions

Estimation of GWNR using the truncated spline and Fourier series was successfully
formulated. It was found that:

1. The GWNR model using a mixed estimator of truncated spline and Fourier series is
y = Xβ(ui, vi) + Za(ui, vi) + ε

Where f = Xβ(ui, vi) is a truncated spline component, g = Za(ui, vi) is a component
of a Fourier series, and ε is a residual component.

2. Estimators of GWNR are β̂(ui, vi) = A(t, h)y, â(ui, vi) = B(t, h)y, and μ̂ = C(t, h)y.
The estimator is an unbiased and linear estimator to observe the response variable.
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Appendix A

From the Equation (2), it is assumed that εi ∼ N
(
0, σ2(ui, vi)

)
so that the probability

function ε1, ε2, . . . , εn written with

f (ε1, ε2, . . . , εn) =
n

∏
i=1

{
1

2πσ2(ui, vi)
exp
(
− 1

2σ2(ui, vi)
ε2

i

)}
Therefore, the likelihood function for εi, i = 1, 2, . . . , n is as follows:

L
(
β(ui, vi), a(ui, vi), σ2(ui, vi) | ε

)
=

n
∏
i=1

[
1

2πσ2(ui ,vi)
exp
[
− 1

2σ2(ui ,vi)[
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi

P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi)+

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
]]

Due to the fact that εi ∼ N
(
0, σ2(ui, vi)

)
, therefore

E(y) = E

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)
+ εi

)

= E

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))
+ E(εi)

= β0(ui, vi) +
P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)
and

var(y) = var

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))
+ var(εi)

= σ2(ui, vi)
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Consequently,

yi ∼ N

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)
, σ2(ui, vi)

) (A1)

Appendix B

Equation (A1) obtained the likelihood function of yi, i = 1, 2, . . . , n and at its location is

L
(
β(ui, vi), a(ui, vi), σ2(ui, vi) | ε

)
=

n
∏
i=1

f
(
yi | β(ui, vi), a(ui, vi), σ2(ui, vi)

)
=

n
∏
i=1

[
1

2πσ2(ui ,vi)
exp

[
− 1

2σ2(ui ,vi)

[
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi+

P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi)+

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
]]

= (2π)−
n
2
(
σ2(ui, vi)

)− n
2 exp

[
− 1

2σ2(ui ,vi)

[
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi+

P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi)+

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
]

(A2)

The geographical location factor is the weighting factor in the GWR model, so Equation (A2)
is given a weighting wi(j) to obtain the local model of GWNR, then a natural logarithm
operation is performed as follows:

L∗(β(ui, vi), a(ui, vi), σ2(ui, vi) | y
)
=

n
∏
i=1

(
f
(
yi | β(ui, vi), a(ui, vi), σ2(ui, vi)

))wi(λ)

=
n
∏
i=1

[
1

2πσ2(ui ,vi)
exp
[
− 1

2σ2(ui ,vi)
[yi − (β0(ui, vi)+

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
⎤⎦⎤⎦wi(j)

(A3)
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ln
(

L∗(β(ui, vi), a(ui, vi), σ2(ui, vi) | y
))

=

=
n
∑

i=1
wij ln

(
1

2πσ2(ui ,vi)
exp
[
− 1

2σ2(ui ,vi)
[yi − (β0(ui, vi)+

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
⎤⎦⎞⎠

=
n
∑

i=1
wi(j)

(
− 1

2

)
ln(2π)−

n
∑

i=1
wi(j)

(
1
2

)
ln
(
σ2(ui, vi)

)
− 1

2σ2(ui ,vi)

n
∑

i=1
wi(j)(

yi −
(

β0(ui, vi) +
P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)))2

=
n
∑

i=1
wi(j)

(
− 1

2

)
ln(2π)−

n
∑

i=1
wi(j)

(
1
2

)
ln
(
σ2(ui, vi)

)
− 1

2σ2(ui ,vi)
T∗

(A4)

where:

T∗ =
n
∑

i=1
wi(j)

(
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))2

= (y − Xβ(ui, vi)− Za(ui, vi))
TW(ui, vi)(y − Xβ(ui, vi)− Za(ui, vi))

Parameter estimations of β̂(ui, vi) and â(ui, vi) are obtained by maximizing ln L∗

on Equation (A3). Estimator β̂(ui, vi) is obtained by deriving the Equation (A4) against
β̂(ui, vi), which then equates to zero so that it is obtained:

∂ ln L∗
∂β(ui ,vi)

=
∂

(
n
∑

i=1
wi(j)(− 1

2 ) ln(2π)−
n
∑

i=1
wi(j)( 1

2 ) ln(σ2(ui ,vi))− 1
2σ2(ui ,vi)

T∗
)

∂β(ui ,vi)

0 = ∂(y−Xβ(ui ,vi)−Za(ui ,vi))
TW(ui ,vi)(y−Xβ(ui ,vi)−Za(ui ,vi))
∂β(ui ,vi)

0 = −2XTW(ui, vi)y + 2XTW(ui, vi)Za(ui, vi) + 2XTW(ui, vi)Xβ(ui, vi)

β̂(ui, vi) =
(
XTW(ui, vi)X

)−1(
XTW(ui, vi)y − XTW(ui, vi)Za(ui, vi)

)
Therefore, the estimation of the parameters β(ui, vi) is

β̂(ui, vi) =
(

XTW(ui, vi)X
)−1(

XTW(ui, vi)y− XTW(ui, vi)Zâ(ui, vi)
)

(A5)

Furthermore, parameter estimation is carried out for a(ui, vi). To obtain an estimator
â(ui, vi) and then derive Equation (A4) against a(ui, vi) which then equates to zero, is the
following is thus obtained:

∂ ln L∗
∂a(ui ,vi)

= ∂(y−Xβ(ui ,vi)−Za(ui ,vi))
TW(ui ,vi)(y−Xβ(ui ,vi)−Za(ui ,vi))
∂a(ui ,vi)

0 = −2ZTW(ui, vi)y + 2ZTW(ui, vi)Xβ(ui, vi) + 2ZTW(ui, vi)Za(ui, vi)

â(ui, vi) =
(
ZTW(ui, vi)Z

)−1(
ZTW(ui, vi)y − ZTW(ui, vi)Xβ(ui, vi)

)
Therefore, the estimation of the parameters a(ui, vi) is

â(ui, vi) =
(

ZTW(ui, vi)Z
)−1(

ZTW(ui, vi)y− ZTW(ui, vi)Xβ̂(ui, vi)
)

(A6)
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Estimator β̂(ui, vi) in Equation (A5) still contains an estimator â(ui, vi). Like wise,
estimators â(ui, vi) in Equation (A6) still contain an estimator β̂(ui, vi). In order to obtain
a free form of an estimator, it is necessary to make a substitution. To obtain an estimator
β̂(ui, vi), which is free from â(ui, vi), it is then substituted Equation (A6) into Equation (A5)
as follows:

β̂(ui, vi) =
(
XTW(ui, vi)X

)−1(
XTW(ui, vi)y − XTW(ui, vi)Zâ(ui, vi)

)
=
(
XTW(ui, vi)X

)−1(
XTW(ui, vi)y − XTW(ui, vi)Z(

ZTW(ui, vi)Z
)−1
(

ZTW(ui, vi)y − ZTW(ui, vi)Xβ̂(ui, vi)
))

=
(
XTW(ui, vi)X

)−1
XTW(ui, vi)y−(

XTW(ui, vi)X
)−1

XTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)y+(

XTW(ui, vi)X
)−1

XTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)Xβ̂(ui, vi)

)
Then, they are merged in the same field containing β̂(ui, vi), so that the following

is obtained:

β̂(ui, vi)−
(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z

(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)Xβ̂(ui

=
(
XTW(ui, vi)X

)−1
XTW(ui, vi)y −

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)y

β̂(ui, vi) = R
[(

XTW(ui, vi)X
)−1

XTW(ui, vi)

−
(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z

(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)

]
y

where:

R =

[
I −
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Z
(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)Xβ̂(ui, vi)
)]−1

Therefore, the following is obtained:

β̂(ui, vi) = A(t, h)y (A7)

with

A(t, h) = R
[(

XTW(ui, vi)X
)−1

XTW(ui, vi)−
(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)
]

To obtain an estimator â(ui, vi) which is free from β̂(ui, vi), it is substituted Equation (A5)
to Equation (A6) as follows:

â(ui, vi) =
(
ZTW(ui, vi)Z

)−1
(

ZTW(ui, vi)y − ZTW(ui, vi)Xβ̂(ui, vi)
)

=
(
ZTW(ui, vi)Z

)−1(
XTW(ui, vi)y − ZTW(ui, vi)X(

XTW(ui, vi)X
)−1(

XTW(ui, vi)y − XTW(ui, vi)Zâ(ui, vi)
))

=
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)y−(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1
XTW(ui, vi)y+(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1
XTW(ui, vi)Zâ(ui, vi)

)
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Then, it is merged in the same field containing â(ui, vi), so that the following is obtained:

â(ui, vi)−
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
xTW(ui, vi)Zâ(ui, vi)

)
=
(
ZTW(ui, vi)Z

)−1
zTW(ui, vi)y −

(
zTW(ui, vi)Z

)−1
ZTW(ui, vi)X(

XTW(ui, vi)X
)−1

xTW(ui, vi)y

â(ui, vi) = S
[(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)

−
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)

]
y

where:

S =

[
I −
(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)X
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Zâ(ui, vi)
)]−1

Therefore, the following is obtained:

â(ui, vi) = B(t, h)y (A8)

with

B(t, h) = S
[(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)−
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X(

XTW(ui, vi)X
)−1

XTW(ui, vi)
]

Appendix C

The unbiased nature of the parameter β̂(ui, vi) can be indicated by:

E
(
β̂(ui, vl)

)
= E(A(t, h)y)

= E
(

R
[(

XTW(ui, vl)X
)−1

XτW(ui, vl)−
(
XTW(ul , vl)X

)−1

XτW(ui, vl)Z(Z
τW(ui, vl)Z)

−1ZτW(ui, vl)
]
y
)

=
(

R
[
(XτW(ui, vi)X)

−1XτW(ui, vi)− (XτW(ui, vi)X)
−1

XτW(ui, vi)Z(Z
τW(ui, vi)Z)

−1ZτW(ui, vl)
])

E(y)

=
(

R
[
(XτW(ui, vi)X)

−1XτW(ui, vl)− (XτW(ui, vl)X)
−1

XτW(ui, vi)Z(Z
τW(ui, vi)Z)

−1ZτW(ui, vl)
])

(Xβ(ul , vi) + Za(ui, vi))

= R
(
XTW(ui, vi)X

)−1
XTW(ui, vi)Xβ(ui, vi)+

R(XτW(ui, vl)X)
−1XτW(ui, vl)Za(ui, vi)−

R(XτW(ui, vi)X)
−1XτW(ui, vi)Z(Z

τW(ui, vl)Z)
−1ZτW(ui, vl)Xβ(ui, vl)

−R(XτW(ui, vi)X)
−1XτW(ui, vi)Z(Z

τW(ui, vi)Z)
−1ZτW(ui, vl)Za(ui, vi)

= Rβ(ui, vi)− R(XτW(ui, vi)X)
−1XτW(ui, vi)Z(Z

τW(ui, vi)Z)
−1

ZτW(ui, vi)Xβ(ui, vi)

=
[
I − (XτW(ui, vl)X)

−1XτW(ui, vl)Z(Z
τW(ui, vl)Z)

−1ZτW(ui, vl)X
]

Rβ(ui, vi)

=
[
I − (XτW(ui, vl)X)

−1XτW(ui, vl)Z(Z
τW(ui, vl)Z)

−1ZτW(ul , vl)X
]

[
I −
(
xTW(ui, vi)X

)−1
xTW(ui, vi)Z

(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

]−1

β(ui, vi)
= β(ui, vi)

Since E
(
β̂(ui, vi)

)
= β(ui, vi), it can be said that β̂(ui, vi) is an unbiased estimator for

β(ui, vi). Next, it can be written that β̂(ui, vi) = A(t, h)y, and it is clearly seen that the
estimator β̂(ui, vi) is a linear estimator in observation y.
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Appendix D

The unbiased nature of the parameter â(ui, vi) can be indicated by:

E(â(ui, vi)) = E(B(t, h)y)
= E
(

S
[(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)−
(
ZTW(ui, vi)Z

)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1
XTW(ui, vi)

]
y
)

=
(

S
[(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)−
(
ZTW(ui, vi)Z

)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1
XTW(ui, vi)

])
E(y)

=
(

S
[(

ZTW(ui, vi)Z
)−1

ZTW(ui, vi)−
(
ZTW(ui, vi)Z

)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1
XTW(ui, vi)

])
(Xβ(ui, vi) + Za(ui, vi))

= S
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)Xβ(ui, vi)+

S
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)Za(ui, vi)−

S
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Xβ(ui, vi)

−S
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Za(ui, vi)

= Sa(ui, vi)− S
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1

XTW(ui, vi)Za(ui, vi)

=
[
I −
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z

]
Sa(ui, vi)

=
[
I −
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z

]
=
[
I −
(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z

]−1

a(ui, vi)
= a(ui, vi)

Due to the fact that E(â(ui, vi)) = a(ui, vi), then it can be said that â(ui, vi) is an
unbiased estimator for a(ui, vi). Next, it can be written that â(ui, vi) = B(t, h)y and hence
it is clearly seen that the estimator â(ui, vi) is linear in observation y.
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Abstract: Data at a smaller regional level has now become a necessity for local governments. The aver-
age data on household expenditure on food and non-food is designed for provincial and district/city
estimation levels. Subdistrict-level statistics are not currently available. Small area estimation (SAE)
is one method to address the problem. The Empirical Best Linear Unbiased Prediction (EBLUP)—Fay
Herriot Multivariate method estimates the average household expenditure on food and non-food at
the sub-district level in Central Java Province in 2020. Meanwhile, for the sub-districts that are not
sampled, the estimation of average household expenditure is done by adding cluster information to
the EBLUP Multivariate modeling. The K-Medoids Cluster method is used to classify sub-districts
based on their characteristics. Small area estimation using the EBLUP-FH Multivariate method can
enhance the parameter estimations obtained using the direct estimation method because it results
in a lower level of variation (RSE). For sub-districts that are not sampled, the Residual Standard
Error (RSE) value from the estimated results using the EBLUP-FH Multivariate method with cluster
information is lower than 25%, indicating that the estimate is accurate.

Keywords: clustering; correlation; REML; multivariate linear mixed models

MSC: 62F10

1. Introduction

Unquestionably, the current era of economic disruption has a negative side that is
particularly felt by middle- to low-income individuals. Disruptions to the economy can
eliminate the economic growth momentum generated by demographic bonuses. Numerous
jobs previously performed by humans are being replaced by technological innovation
and various forms of artificial intelligence. It will lead to new inequality issues as a
result of labour reduction, ultimately affecting the welfare of the community. In order
to prevent economic disruption from aggravating existing welfare issues in Indonesia,
particularly for vulnerable communities and households, the government must implement
optimal policies.

The welfare of the population in an area can be described through several indicators,
one of which is household consumption expenditure (Sekhampu and Niyimbanira [1];
Irawan et al. [2]). The presentation of household consumption expenditure data produced
by the Central Bureau of Statistics (BPS) via the National Socio-Economic Survey (Susenas)
must be expanded in order to estimate population parameters at the national, provincial,
and district/city levels. It is not designed to estimate population parameters in smaller
areas, such as sub-districts or villages, because the sample size is insufficient. The gov-
ernment now requires data presented at a more detailed and accurate regional level in
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order to conduct development planning and evaluation as well as address population
welfare and inequality issues in a targeted and effective manner. Due to a lack of informa-
tion at the subregional level, policymaking and implementation by local governments are
less optimized.

In addition, the sustainable development goals (SDGs) targeted by the United Nations
(UN) must be provided by each member country, including Indonesia. Obviously, the
fulfillment of the SDGs target requires an estimation level at smaller geographical areas
such as districts/cities, sub-districts, and even at the village level. However, the limited
number of samples in surveys conducted by BPS will result in inadequate precision for
estimation values or parameter estimation in small areas due to the large variance of the
resulting estimates. The provision of more budget to increase the number of samples and
the number of survey officers is one effort that can be made so that the existing survey
design is able to provide a direct estimation of statistical output in small areas with adequate
precision, one of which is for the estimation of average household expenditure.

This data is one of the key components required in calculating the poverty rate of a
region. The estimation of average household expenditure data up to the sub-district level
can later be used as an indicator in grouping sub-districts in a region based on expenditure
groups. In addition, the estimated data can be used as an indicator to rank regions to
obtain regions that will be the target of poverty alleviation programs or community welfare
improvement programs by the regional government. The importance of the need for
information down to the small-area level and the limitations of existing resources make
it necessary for BPS to apply a statistical method capable of handling these problems.
According to Notodiputro and Kurnia [3], one possible solution is the indirect estimator,
known as small area estimation (SAE).

Rao and Molina [4] explained that the application of SAE is conducted by borrowing
strength from the information of auxiliary variables associated with the response variable
or the estimated variable. This condition allows SAE to be employed to improve the effec-
tiveness of survey sample collection at BPS. Several estimation methods can be conducted
in SAE, including Best Linear Unbiased Prediction (BLUP), Empirical Best Linear Unbiased
Prediction (EBLUP), Hierarchical Bayes (HB), and Empirical Bayes (EB). In general, the
selection criteria for these estimation methods are determined based on the type of data
on the response variable. EB and HB methods are generally used on response variables
that are binary or enumerated, while BLUP and EBLUP methods are more appropriate
for continuous response variables (Rao and Molina [4]). The EBLUP method is a form
of General Linear Mix Model (GLMM) when the parameter variance is unknown and is
considered to have several advantages over other models (Ghosh and Rao [5]). Fay and
Herriot [6] initiated using the EBLUP estimation method in area-level SAE to estimate the
logarithm of the per capita income of the United States population. Therefore, this model is
known as the Fay–Herriot model.

Many research variables, including variables generated from BPS surveys, have strong
correlations. One example is the correlation between average household food expenditure
and average household non-food expenditure (Nurizza [7]). These strongly correlated
variables can be estimated together using the Multivariate EBLUP SAE method and are
expected to have a more efficient estimation value than Univariate EBLUP SAE (Datta, Fay,
and Ghosh, [8]). The Multivariate Fay–Herriot or Multivariate EBLUP model was then
developed by Benavent and Morales [9] by presenting four different estimation models
based on the structure of the covariance matrix.

Based on the condition of the March 2020 National Socio-Economic Survey (Susenas)
data for Central Java Province, out of a total of 576 sub-districts, 573 sub-districts were
included as samples. There were three sub-districts that were not selected as Susenas sam-
ples (BPS [10]). Because not all sub-districts were selected as Susenas samples, the problem
is how to estimate the parameters for unsampled sub-districts. In estimating EBLUP for
unsampled areas, a global synthetic model is usually used. Rao [11] stated that a synthetic
estimator is an unbiased estimator in a large area that is used to obtain an indirect estimator
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in a small area, assuming that the small area has the same characteristics as the large area.
The synthetic estimator model will ignore the random area effect since the random area
effect information does not exist in the unsampled area (Saei and Chambers [12]), so that
the estimation in unsampled subdistricts may be biased.

Some studies with the EBLUP method utilize the addition of cluster information in
estimating unsampled areas. Ginanjar [13] researched some of them, who estimated per
capita expenditure at the sub-district level in Jambi Province in unsampled sub-districts
using the univariate EBLUP method with the addition of cluster information. With the same
method, Anisa et al. [14] also added the mean value of the random area effect estimator in
each cluster to the prediction model to estimate the unsampled area. Meanwhile, with the
Fay–Herriot Multivariate model, Nuryadin [15] applied cluster information to predict the
average per capita expenditure per village for food and non-food in unsampled villages.
These studies conclude that models that are first clustered turn out to provide better
predictions than models without clustering. There has been no research on the EBLUP-FH
Multivariate method with K-Medoids Cluster information for actual data compared with
the direct estimation method.

The clustering technique commonly used by researchers is K-Means Cluster. However,
K-Means Cluster is highly sensitive to large data containing outliers, so the K-Medoids
Cluster technique is a better alternative in this condition because it is more robust to outliers
(Patel and Singh [16]; Sangga [17]). Based on this explanation, this study compares the
direct estimation method and the EBLUP-FH Multivariate method in estimating the average
household expenditure on food and non-food at the sub-district level in Central Java
Province. In addition, this research also estimates the average household expenditure on
food and non-food in non-sampled areas (sub-districts) using the EBLUP-FH Multivariate
method by applying K-Medoids Cluster information. The K-Medoids cluster technique is
based on considering a large amount of data and the presence of outliers in the auxiliary
variables used.

2. Materials and Methods

Table 1 below presents a summary of the materials and methods used in this research.
The detailed explanation will be presented in the following subsections.

2.1. Average of Household Expenditures

BPS [10] defines average household expenditure as the monthly costs incurred for
all household members’ consumption, divided by the number of households. Household
consumption can be divided into food and non-food consumption and is restricted to
spending on household necessities only, without consideration of sources. The forms of
consumption expenditures include purchases, gifts, and items generated by the household
(excluding expenditures used for business purposes or those given to other parties).

The calculation of average household expenditure in the i-th area can be mathemati-
cally formulated as follows:

yi =
Expendi

nRT
, i = 1, 2, . . . , m

where:

yi: average monthly household expenditure in the i-th area (rupiah)
Expendi: total household expenditure in a month in the i-th area (rupiah)
nRT : number of households
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Table 1. Summary of Research Materials and Methods.

No Material Method Description

(1) (2) (3) (4)

1 Estimation of Average Household Expenditure on food and non-food for the sampled sub-districts

Average of Household
expenditures on food (Y1) and
on non-food (Y2)

1. Direct Estimation Method
(based on the sampling design of
March 2020 Susenas)

This study compares the direct estimation and
EBLUP-FH Multivariate methods based on the
RSE value.2. Indirect Estimation Method

(EBLUP-FH Multivariate Method)

Selection of auxiliary variables
for Y1 Stepwise Selection Method

1. The auxiliary variables used in SAE must be
related to the response variable.

Selection of auxiliary variables
for Y2

2. Selection of auxiliary variables in this study
used the stepwise selection method.

2 Estimation of Average Household Expenditure on food and non-food for the non-sampled sub-districts

Average of household
Expenditures on food (Y1)
and on non-food (Y2)

EBLUP-FH Multivariate Method
with K-Medoids Cluster
Information

1. The sampled and non-sampled sub-districts
will be grouped based on the auxiliary variables
so that the cluster for each sub-district can be
identified.
2. In the sampled area, the known random area
effects components are averaged in each cluster.
3. The average of the random area effect per
cluster will be entered into the prediction model
as the estimator of the random area effect.
4. The average random effect area is used as
additional information in areas with no samples
in the corresponding cluster using the
EBLUP-FH Multivariate method.

Clustering of the
auxiliary variables for Y1

K-Medoids Cluster

1. The auxiliary variables used are selected
variables that have met the assumptions of
sample adequacy (KMO value) and
non-multicollinearity (VIF value) first.Clustering of the

auxiliary variables for Y2 2. Standardization is first carried out using the
Z-Score method for each auxiliary variable used
in clustering.

2.2. Related Research on Determining Auxiliary Variables

Rao [18] states that in conducting indirect estimation, the choice of auxiliary variables
is very significant in determining the accuracy of the resulting estimates. Estimation of per
capita expenditure variables using small area estimation, or SAE, has been done quite a lot
in Indonesia. Desiyanti et al. [19] use the EBLUP Univariate method to estimate average
per capita expenditure at the sub-district level in West Sumatra. However, estimation
of unsampled sub-districts still uses synthetic estimators. Auxiliary variables used in
indirect estimation are the number of non-electricity user families, the number of non-
PLN electricity user families, the number of polyclinics/medical centers, the number of
minimarkets/supermarkets, the number of SD/MI, and the number of doctor’s practices.

In Amaliana and Lestari’s research [20] on the application of the EBLUP Univariate
method to the Fay–Herriot SAE model, the auxiliary variables used including the percent-
age of agricultural households, the number of Insurance for the Indigence recipients, State
Electricity Company (PLN) electricity users, the number of Elementary School (SD)-Junior
High School (SMP)-High School (SMA)- University (PT), the number of families living
in slums, the number of Certificate of Indigence (SKTM) owners, the number of educa-
tional institutions and skills, and the number of Indonesian migrant workers (TKI) have a
significant effect in indirectly estimating per capita expenditure in the Jember District.

Furthermore, Nurizza and Ubaidillah [21] used the SAE multivariate approach in
estimating food and non-food per capita expenditure in Indonesia. Their results shows
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that in estimating indirect per capita food expenditure, the variables of the number of
non-PLN electricity users, the number of riverbank settlements, the number of migrant
workers, elementary schools, vocational schools, universities, auxiliary health centers,
polyclinics, doctor’s offices, village maternity clinics, integrated health posts, medium and
small industries (IMK), restaurants and inns had a significant effect. Meanwhile, for the
indirect estimation of non-food per capita expenditure in Indonesia, the variables that
have a significant effect are the number of PLN electricity users, non-PLN users, migrant
workers, elementary schools, midwife practice sites, doctor practice sites, village maternity
clinics, integrated health posts, community health centers without inpatient care, auxiliary
community health centers, polyclinics, pharmacies, and restaurants.

Small-area estimation of per capita expenditure at the subdistrict level was also con-
ducted by Ginanjar [13] using the EBLUP method in Jambi Province. In this study, there
were eight auxiliary variables or predictor variables that significantly influenced per capita
expenditure at the subdistrict level in Jambi Province, namely population, number of
universities, the ratio of school facilities, number of polyclinics/health centers, coverage
of doctors, coverage of health workers, coverage of people with disabilities, and the ratio
of midwives.

2.3. Small Area Estimation

An area is considered large if the sample drawn from it is large enough to yield a
direct estimate with sufficient precision. Conversely, an area or domain is considered
small if the domain-specific sample is not large enough to support direct estimation with
sufficient precision or accuracy (Rao and Molina [4]). Small area estimation (SAE) is an
indirect estimation technique in small areas that is conducted by borrowing strengths from
related areas and/or periods to increase the effectiveness of the sample size and decrease
the standard error, allowing the estimation results to have sufficient precision (Rao and
Molina [4]).

The main problems in SAE are how to produce reasonably good parameter estimates
in an area with a relatively small sample size and how to estimate the mean square error
(MSE) of the resulting parameter estimates (Pfeffermann [22]). Both of these main points
can be generated by borrowing additional information from within the area, outside the
area, or outside the survey (auxiliary variables), which can usually be obtained from census
or administrative data.

Based on the availability of auxiliary variables, SAE can be classified into two types
(Rao dan Molina [4]).

2.3.1. Basic Unit-Level Model

The unit-based small area estimation model is an SAE model with available auxiliary
variables corresponding to response variables observed up to the unit level. Assumed aux-
iliary variables are available for every j-th element in the i-th area. xij =

(
xij1,xij2, . . . , xijp

)T

available for each j-th element in the i-th area. The variables of interest are yij assumed to
have a relationship with xij through the following equation:

yij = xij
T β + vi + eij ; j = 1, 2, . . . , ni ; i = 1, 2, . . . , m

Area random effects are denoted by vi, a random variable that is assumed to be
independent and identically distributed. While for eij = kij ẽij with kij a known constant
and ẽij are random variables that are mutually independent and identically distributed
with respect to vi. In other words, vi and ẽij are generally assumed to have a normal
probability distribution.

2.3.2. Area-Level Model (Basic Area-Level)

The area-based SAE model introduced by Fay and Herriot in 1979 is part of the
General Linear Mixed Model (GLMM). This GLMM model is built based on the availability
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of predictor variables and direct estimation at a certain area level. Suppose there are a
number of small areas as many as m (i = 1, . . . , m) with auxiliary variable data available
for each i-th small area being xi = (x1i, x2i,..., xpi, )

T , with the parameters to be estimated
being θi. The θi is assumed to be linearly related to xi through the following equation
(Ubaidillah [23]):

θi = xT
i β + biui , i = 1, . . . , m (1)

By:

β =
(

β1, β2, . . . , βp
)T is a vector of regression coefficients of size p × 1

bi: known positive constant
ui: small area random effects, with ui assumed to be independent and identically distributed
(iid) with E(ui) = 0 and V(ui) = σ2

u .

If assumed ŷi is an unbiased direct estimator for θi, where the estimator θi contains the
error of the sample draw, namely ei, then the sampling model can be formulated as follows:

θ̂i = g(ŷi) = θi + ei → , i = 1, . . . , m (2)

where ei is a sampling error that is assumed to be independent of each other with its
variance assumed to be known (ψi) or E(ei) = 0 and V(ei) = ψi.

Combining Equations (1) and (2) will result in a General Linear Mixed Model of
area-based small area estimation known as the Fay–Herriot model, namely:

θ̂i = xT
i β + biui + ei , i = 1, . . . , m (3)

In the model Equation (3) above, the variation of the response variable in a small
area is assumed to be explained by the relationship between the response variable and
the auxiliary variables, which is called the fixed effect model. In addition, this model also
contains a small area random effect component, which is a small area-specific variation
component that cannot be explained by the auxiliary variables. The combination of these
two assumptions (the fixed effect model and the random effect model) forms a linear
mixed model.

2.4. Multivariate Fay–Herriot Models

The Multivariate Fay–Herriot model is a development of the Univariate Fay–Herriot
model that can be used for more than one response variable (Ubaidillah [23]). Suppose
the population is partitioned into m area. Let μd = (μ1d, . . . , μmd)

T be a vector of the d-th
variable of interest, with d = 1, . . . , D. Meanwhile, the vector of d-th direct estimators of μd
is denoted by yd = (y1d, . . . , ymD)

T . As for μd, it is assumed to be related to pd area-specific
auxiliary variables Xd = (X1, . . . , XD)

T through a linear model (Ubaidillah, 2017):

μd = Xd βd + ud , ud ∼ iid N(0, Vud) , d = 1, . . . , D (4)

where:

ud = (u1d, . . . , umD)
T : vector of area random effects

Vud = diag1≤d≤D

(
σ2

ud

)
: covariance matrix of area random effects of size D × D

Xd = (X1, . . . , XD)
T: d-th matrix of area-specific auxiliary variables of size m × pd with

p = ∑ D
d=1 pd

β =
(

βT
1 , . . . , βT

d
)T

p×1: vector of regression coefficients, with βd =
(

βd1, . . . , βdpd

)
pd×1

The sampling model can be formulated as follows:

yd = μd + ed , ed ∼ iid N
(
0, Ved

)
, d = 1, . . . , D (5)
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where ed is the vector of sampling errors and Ved is a known covariance matrix of size m×m.
By combining Equations (4) and (5), the Multivariate Fay–Herriot model is generated
as follows:

yd = Xd βd + ud + ed, d = 1, . . . , D (6)

where ud and ed are independent.
The model in Equation (6) can be written in matrix form as follows (Benavent and

Morales, 2016):
y = Xβ+ Zu + e , u ∼ N(0, G) , e ∼ N(0, R) (7)

where u = col1≤d≤D(ud) and e = col1≤d≤D(ed) are mutually independent. Z is a matrix of
random effect constants that are assumed to be known. The matrix X = diag1≤d≤D(Xd) with
Xd = col1≤i≤m(xid) is a matrix of auxiliary variables with xid =

(
xi1, . . . , xipd

)T . The vector
y = col1≤d≤D(yd) is the Dm × 1 vector of variables of interest with yd = (y1d, . . . , ymd)

T .
The col operator means stacking matrix by column. The matrix G = Vu

⊗
Im is the

covariance matrix of the random effects area where Im is the identity matrix of size m × m,
and

⊗
denotes a Kronecker product. While R is a sampling covariance matrix of size

Dm × Dm which is assumed to be known and obtained from sampling error in the survey.

Empirical Best Linear Unbiased Prediction (EBLUP) Multivariate

Under the model in Equation (7), it holds that E(y) = Xβ and var(y) = ZGZT +
R = Ω. The best linear unbiased prediction (BLUP) of μ = col1≤d≤D(μd) where μd =

(μ1d, . . . , μmd)
T is:

μ̃ = Xβ̃ + ZGZTΩ−1(y − Xβ̃) (8)

where β̃ =
(

XTΩ−1X
)−1

XTΩ−1y is the best linear unbiased estimator (BLUE) of β.
Since the value of the random effect variance component, δ, is unknown, it must be

determined from empirical data when modeling parameters using the EBLUP-Fay–Herriot
approach. There are several estimation methods that can be performed on the random effect
variance component, such as the Maximum Likelihood (ML) and Restricted Maximum
Likelihood (REML) methods based on normal likelihood (Patterson and Thompson [24]).

As stated earlier, the multivariate BLUP estimator (8) depends on the variance param-
eter δ of G(δ) where δ =

(
δ2

u1, . . . , δ2
uq

)
. The variance parameter, δ, cannot be known and

is estimated using the REML approach. Restricted log-likelihood of the joint probability
density of y∗ which is expressed as a function of δ is given as follows (Benavent and
Morales [9]):

lR( δ) = −Dm − p
2

log(2π) +
1
2

log
∣∣∣XTX

∣∣∣− 1
2

log|Ω| − 1
2

log
∣∣∣XTΩX

∣∣∣− 1
2

yTPy (9)

where P = Ω−1 −Ω−1X
(

XTΩ−1X
)−1

XΩ−1. By taking the partial derivative of Equation (9)
with respect to δ with k-th element, where k = 1, . . . , q, then the score vector is obtained
s(δ) =

(
s1(δ), . . . , sq(δ)

)
where:

sk(δ) =
∂lR( δ)

∂δk
= −1

2
tr
(

PΩ(k)

)
+

1
2

yTPΩ(k)Py, k = 1, . . . , q

where Ω(k) = ∂Ω/∂δk is the partial derivative of Ω with respect to k-th element of δ.
By taking the second order partial derivative of Equation (9) with respect to δ with kl-th
element, changing sign and taking expectations, then the Fisher Information matrix is
obtained as follows:

Jkl(δ) =
1
2

tr
(

PΩ(l)PΩ(k)

)
, k, l = 1, . . . , q
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The iterative a of Fisher-scoring algorithm for REML estimation of δ is:

δ̂(a+1) = δ̂(a) + J−1
kl

(
δ̂(a)
)

s
(

δ̂(a)
)

(10)

Furthermore, the Empirical Best Linear Unbiased Prediction (EBLUP) estimator for
the Multivariate Fay–Herriot model is obtained by plugging δ̂ in G and Ω of Equation (8)
as follows:

^
μ = X

^
β+ ZĜZT

^
Ω

−1(
y − X

^
β

)
(11)

where
^
β = (XT

^
Ω

−1

X)−1XT
^
Ω

−1

y is the Best Linear Unbiased Estimator (BLUE) for β with

covariance matrix cov(
^
β) = (XT

^
Ω

−1

X)−1.

2.5. Direct Estimation

Estimation of population parameters in a region based only on sample data from
that region is said to be direct estimation (Rao and Molina [4]). This direct estimation
method is design-based or depends on the sampling design used. The March 2020 National
Socio-Economic Survey (Susenas) results were used in this study to directly estimate the
response variable on average household expenditure on food and non-food.

2.6. Selection of Auxiliary Variables

The auxiliary variables used in SAE must be related to the response variable. The
auxiliary variables used in this study were taken from the variables used in related studies
and then grouped into variable groups with the following details:

a. Population
b. Education
c. Health
d. Economy (industry)
e. Economy (other than industry)
f. Economy (financial inclusiveness)

There are methods we can use to select auxiliary variables, including forward, back-
ward, and stepwise methods. The stepwise selection method combines the forward and
backward selection methods. The stepwise method modifies the forward selection method.
When a new variable is added, all candidate variables in the model are checked again to
see if they are still significant. If there is a variable that becomes insignificant based on
the specified significance level, then the variable is removed (backward). In this stepwise
method, there are two levels of significance: adding variables and removing variables from
the model.

2.7. Multivariate EBLUP Method with Added Cluster Information

The EBLUP method is generally used to estimate an area that contains a sample.
Unsampled areas can usually be estimated using a synthetic model. The problem with
the synthetic model is that it does not consider the random effect area because it does
not have enough information about the area that was not sampled. It can lead to an
estimated value with a large bias (. Therefore, adding cluster information to the EBLUP
method should improve estimates for unsampled areas. Clustering is conducted based
on auxiliary variables so that all areas will be included in certain clusters, both with and
without samples.

The addition of cluster information is based on the assumption that an area has a
pattern of close relationships with other areas. The random area effect has a similarity
pattern between areas, allowing it to be analyzed using cluster techniques from the auxiliary
variables in each small area. In estimating an unsampled area, the random area effect is
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often ignored due to the absence of such information. The EBLUP estimator for unsampled
areas can be modeled as follows:

μ̂i∗ = xT
i∗ β̂

with i∗ are the unsampled subdistricts in this study (Padureso sub-district, Batuwarno
sub-district, and Lebakbarang sub-district).

The sampled and unsampled sub-districts will be grouped based on the auxiliary
variables so that the cluster for each sub-district can be identified. The auxiliary variables
used are selected variables that have met the assumptions of sample adequacy and non-
multicollinearity first. The next step to be done in the sampled sub-districts is to average
the random area effects per known cluster. Then the average of the random area effect per
cluster will be entered into the prediction model as the estimator of the random area effect.
The average random area effect per cluster is formulated in the following equation:

^
uc =

1
mc

∑ mc
i=1

^
ui (12)

with

mc: number of sub-districts sampled in the c-th cluster
^
uc: the average random effect area in the c-th cluster
^
ui: random effect area in the i-th sample

The average random effect area is used as additional information in areas where there
are no samples in the corresponding cluster. Thus, the EBLUP estimator for unsampled
areas can be formulated as follows:

μ̂i∗c = xT
i∗c

^
β+

^
uc (13)

with i ∗ c are the unsampled subdistricts in the c-th cluster and
^
uc is the average of random

effect area in the c-th cluster.
The quality of the resulting estimates can be evaluated based on the Relative Standard

Error (RSE) value. The RSE value for the Multivariate EBLUP method is obtained by
comparing the square root value of the MSE to the estimated value of the response variable,
expressed as a percentage, according to the following formula:

RSE(θi) =

√
MSE(θi)

θi
× 100%, i = 1, . . . , m (14)

According to BPS (2020), decisions regarding the accuracy of an estimate with RSE con-
ditions ≤25% the resulting data is accurate (and can be used), condition 25%< RSE ≤ 50%
needs to be careful if the data will be used, and the condition RSE > 50% data is considered
inaccurate. The greater the RSE value, the more the estimator value differs significantly
from the real parameter value.

2.8. Research Stages

The stages of research using the Multivariate EBLUP method and with the addition of
cluster information are as follows:

1. Prepare response variable data from National Socio-Economic Survey (Susenas) March
2020 data and auxiliary variable data from Village Potential Podes 2020 data for each
sub-district in Central Java Province.

2. Prepare the direct estimation results for the response variable of average household
food and non-food expenditures that have been obtained from the results of the March
2020 National Socio-Economic Survey (Susenas) processing, namely 573 sub-districts
out of a total of 576 sub-districts in Central Java Province.
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3. Test the correlation between the response variables average household expenditure
on food and average household expenditure on non-food with Pearson Correlation.

The Pearson Correlation test hypothesis is as follows:

H0 : ρ = 0 (no correlation)
H1 : ρ �= 0 (there is a correlation)

with the Pearson correlation coefficient formula as follows:

r =
m ∑m

i=1 y1i y2i − (∑m
i=1 y1i)(∑m

i=1 y2i)√
m ∑m

i=1 y2
1i − (∑m

i=1 y1i)
2
√

m ∑m
i=1 y2

2i − (∑m
i=1 y2i)

2
(15)

To test the significance of the correlation, the t-test is used with the following formula:

t =
r
√

m − 2√
1 − r2

(16)

where:

m = sample size
r = the computed correlation coefficient being tested for significance.

The t-distribution formula for obtaining the appropriate t-value for testing the sig-
nificance of the correlation coefficient r is given by Equation (16). Then, the results of
Equation (16) are compared to the t-table values with degrees of freedom (m − 2). If
t ≥ t table, then H0 will be rejected or if the p-value is less than α which is set at 0.05.

4. In the sampled area, the SAE area-level model was built to estimate parameters
through the Multivariate EBLUP method, namely by:

a. Estimating the variance component δ using the REML method through the
Fisher scoring iteration procedure, according to Equation (10). The estimation
process was conducted with the help of open-source R software version 4.1.3,
using the package “msaeDB”.

b. Estimating
^
β where

^
β = (XT

^
Ω

−1

X)−1XT
^
Ω

−1

y

c. Perform the selection of auxiliary variables using the stepwise method

d. Estimating the average household expenditure on food and non-food (
^
μ) in

each sampled sub-district using the selected auxiliary variables according to
Equation (11)

e. Calculate the RSE values of EBLUP-FH Multivariate on the average of house-
hold expenditure on food and non-food for each sub-district according to
Equation (14)

5. Perform the estimation process on non-sampled sub-districts using the Multivari-
ate EBLUP method by adding cluster information with the K-Medoids technique,
preceded by the following steps:

a. Checking the assumption of sample adequacy (KMO value) and detecting
multicollinearity.

b. Apply the Z-Score approach to standardize the auxiliary variables used in the
clustering procedure.

c. Determination of the optimum number of clusters using the silhouette method.

d. In the sampled area, the known components
^
ui are averaged in each cluster

according to Equation (12).
e. Estimating the average household expenditure on food and non-food in the

non-sampled area using the EBLUP-FH Multivariate method by adding cluster
information (μ̂i∗c) according to Equation (13). The estimation process uses R
software with the “msaeDB” package and “msaefhns” function.
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6. Analyzing the results of estimating the average household expenditure on food and
non-food at the sub-district level in Central Java Province.

2.9. Data Source

This research uses secondary data from the Central Bureau of Statistics (BPS) as follows:

1. Average monthly household expenditure on food and non-food data for 573 sub-
districts in Central Java Province, sourced from the March 2020 National Socio-
Economic Survey (Susenas) raw data using the direct estimation method. This data is
used as response variables.

2. Data on facilities, infrastructure, and other auxiliary variables available in each sub-
district in Central Java Province were sourced from processing Village Potential
(Podes) 2020 raw data.

This research is a case study for all sub-districts (576 sub-districts) in the districts/cities
of Central Java Province in 2020. The National Socio-Economic Survey (Susenas) and Podes
data used are aggregated data for each sub-district in Central Java Province. The processing
in this study was carried out using the open-source software R version 4.1.3.

2.10. Research Variables

The variables used in this study include response variables and auxiliary variables.
The response variable used is the average monthly food and non-food consumption expen-
diture of households in the i-th sub-districts, sourced from the March 2020 National Socio-
Economic Survey (SUSENAS) data. Meanwhile, auxiliary variables in each sub-district
are obtained from PODES data in the 2020 Central Java Province. The determination of
the auxiliary variables in this study is based on factors that affect the average household
food and non-food consumption expenditure. The 40 candidates for auxiliary variables are
shown in Appendix A, Table A1. Meanwhile, the significant auxiliary variables included in
the model are presented in Table 2.

Table 2. Selected Significant Auxiliary Variables.

Variables Names of Variables Source

(1) (2) (3)

Y1 Average household expenditure on food (IDR) Susenas March 2020

Y2
Average household expenditure on non-food items
(IDR) Susenas March 2020

X1
Number of families using electricity (PLN and
Non-PLN) PODES 2020

X3
Number of elementary school/islamic elementary
school PODES 2020

X4
Number of junior high school/islamic junior high
school PODES 2020

X7 Number of academies/colleges PODES 2020
X12 Number of polyclinics/treatment centers PODES 2020
X13 Number of physician practices PODES 2020
X15 Number of midwife practices PODES 2020
X16 Number of village health posts PODES 2020
X23 Number of fabric/weaving micro and small industries PODES 2020

X26
Number of food and beverage micro and small
industries PODES 2020

X27 Number of other small micro industries PODES 2020
X29 Number of markets with permanent buildings PODES 2020
X30 Number of markets with semi-permanent buildings PODES 2020
X32 Number of minimarket/supermarket PODES 2020
X34 Number of restaurants/restaurants PODES 2020
X37 Number of lodgings PODES 2020
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3. Results

In Section 3, the study’s results are introduced along with a general overview of
welfare problems in Central Java Province, Indonesia. For both the sub-districts sampled
for the March 2020 Susenas and those not sampled, the findings from the estimation of
the average household expenditure on food and non-food items will be provided. Maps
of distribution, graphs, and boxplots of RSE values will be used to compare the results
between the direct estimation and the EBLUP-FH Multivariate method for the 573 sampled
sub-districts. In addition, the EBLUP-FH Multivariate method’s findings for the estimation
of non-sampled sub-districts are shown in this section.

3.1. Overview of Central Java Province

In 2020, Central Java had an economic share of 8.55 percent (Figure 1), which was the
fourth largest contributor to the national economy, after DKI Jakarta (17.55 percent), East
Java (14.58 percent), and West Java (13.22 percent). However, all levels of society did not
equally enjoy a high share of Central Java’s economy. It was reflected in the percentage
of poverty which ranked as the second highest in Java after Yogyakarta, or ranked 13th
nationally, with a poverty, percentage of 11.41 percent.

 

Figure 1. Share of the economy in Indonesia in 2020. Source: Central Bureau of Statistics.

When the poverty rate is broken down by district/city, 23 out of 29 districts in Central
Java have a poverty rate above the national rate (Figure 2). Meanwhile, the poverty rates
in the six cities in Central Java are far below the national rate. The calculation of poverty
cannot be separated from the indicator of average household expenditure on both food and
non-food items.

 

Figure 2. Poverty Percentage in Central Java Province by District/City in 2020. Source: Central
Bureau of Statistics.
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3.2. Direct Estimation

The March 2020 National Socio-Economic Survey sampling design was used to get
the direct estimates for the average household expenditure on food and non-food items.
According to the sampling plan in Appendix B Table A2, parameters are estimated at the
district or city level using a two-stage, one-phase sampling method. Direct estimation
of average household expenditure on food and non-food can only be conducted in areas
sampled in the March 2020 National Socio-Economic Survey (Susenas). In total, Central
Java has 576 sub-districts. Out of these sub-districts, only 573 sub-districts were sampled
in the March 2020 National Socio-Economic Survey (Susenas). The results of the direct
estimation calculation were not obtained for the Padureso sub-district in the Kebumen
district, the Batuwarno sub-district in the Wonogiri district, and the Lebakbarang sub-
district in the Pekalongan district because these three sub-districts were not sampled in the
March 2020 National Socio-Economic Survey (Susenas).

Using the direct estimation method to estimate the average household expenditure
on food at the subdistrict level, the difference in expenditure figures between sub-districts
is significant. Figure 3 shows the map of the estimated results for the average household
expenditure on food per sub-district based on the direct estimation method. Wonogiri
District’s Paranggupito Subdistrict has the lowest average household food expenditure of
IDR 796,888. The sub-district of Banyumanik in the city of Semarang has the highest average
household expenditures on food, at IDR 3,324,899. The median of average household food
expenditure is IDR 1,668,801, indicating that 50 percent of sub-districts have average
household food expenditures that are less than or equal to IDR 1,668,801.

 
Figure 3. Map of Estimation of Average Household Expenditure on Food at the Subdistrict Level in
Central Java Province using the Direct Estimation Method.

The average household expenditure on non-food items varies greatly across subdis-
tricts, according to direct estimates (Figure 4). Geyer sub-district in Grobogan District has
the lowest average household expenditure on non-food items at IDR 486,601. In line with
food expenditure, the sub-district of Banyumanik in Semarang City has the highest average
value of non-food household expenditure at IDR 7,680,844.
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Figure 4. Map of Estimation of Average Household Expenditure on Non-Food at the Subdistrict
Level in Central Java Province using the Direct Estimation Method.

It can be seen from Figures 3 and 4 that sub-districts with high average household
food expenditure also tend to have high average household non-food expenditure. It
demonstrates a correlation between the average household’s food expenditure and other
expenditures.

3.3. Multivariate Empirical Best Linear Unbiased Prediction (EBLUP) Modeling
3.3.1. Correlation Test of Response Variables

According to the results of the Pearson Correlation test in Equations (15) and (16), the
p-value is less than 0.05, indicating that there is a correlation between the two response
variables employed in the study. The correlation coefficient between the two response
variables is 0.6216, which falls within the strong correlation range (De Vaus [25]). Therefore,
the Multivariate Fay–Herriot EBLUP model can be applied to the variable that represents
the average household expenditures for food and non-food in 2020 in Central Java.

3.3.2. Selection of Auxiliary Variables

After obtaining the results of the direct estimation of household expenditure at the
sub-district level, estimation is carried out using the EBLUP-FH method. However, before
estimating EBLUP-FH, the selection of auxiliary variables is first carried out based on the
correlation value and its significance to the direct estimation. The selection of auxiliary
variables was carried out using the stepwise method with a significance level of five percent.
From the initial 40 candidate auxiliary variables, 13 significant auxiliary variables were
generated for Multivariate EBLUP modeling of average household expenditure data for
food (Y1), the number of families using electricity (X1), number of elementary/islamic
elementary school (X3), number of junior high school / Islamic junior high school (X4),
number of polyclinics/medical centers (X12), number of doctor’s offices (X13), number of
midwife practice sites (X15), number of village health posts (X16), number of small medium
industry (IMK) from fabric/weaving (X23), total IMK of food and beverages (X26), number
of other of small medium industry (X27), number of markets with permanent buildings
(X29), number of markets with semi-permanent buildings (X30), and number of inns (X37).

Meanwhile, for Multivariate EBLUP modeling of average household expenditure data
for non-food (Y2), eight significant auxiliary variables were generated, namely the number
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of families using electricity (X1), the number of junior high schools/Islamic junior high
schools (X4), number of universities/colleges (X7), number of polyclinics/medical centers
(X12), number of doctor’s offices (X13), number of markets with permanent buildings (X29),
number of minimarkets/supermarkets (X32), and number of restaurants/eateries (X34).

3.3.3. Fay–Herriot EBLUP Estimation for the Sampled Area

The results of estimating the regression coefficients of 13 auxiliary variables and 8
selected auxiliary variables can be seen in Tables 3 and 4. The results of the modeling of
the average household expenditure data for food and non-food in Tables 3 and 4 are then
used to estimate the small area of the average household expenditure variables for food
and non-food in all sampled sub-districts of the National Socio-Economic Survey (Susenas)
in March 2020.

Table 3. Modeling Results of Average Household Expenditure on Food Data Using Multivariate EBLUP.

Estimator Value of Coefficient t-Value p-Value

(1) (2) (3) (4)

β̂0 1.774 × 106 34.7640 0.0000 *
β̂1 1.068 × 101 3.0020 0.0028 *
β̂3 −6.817 × 103 −3.0360 0.0025 *
β̂4 −1.041 × 104 −4.1980 0.0000 *
β̂12 1.879 × 104 2.6870 0.0074 *
β̂13 1.042 × 104 4.3360 0.0000 *
β̂15 8.603 × 103 3.3290 0.0009 *
β̂16 −7.513 × 103 −2.1250 0.0340 *
β̂23 1.493 × 102 2.9280 0.0035 *
β̂26 6.808 × 101 2.6260 0.0089 *
β̂27 −7.358 × 101 −2.1930 0.0287 *
β̂29 −2.940 × 104 −3.2270 0.0013 *
β̂30 −2.465 × 104 −3.0150 0.0027 *
β̂37 2.183 × 103 2.2320 0.0260 *

* Indicates that the variable is significant in the model.

Table 4. Modeling Results of Average Household Expenditure on Non-Food Using Multivariate EBLUP.

Estimator Value of Coefficient t-Value p-Value

(1) (2) (3) (4)

β̂0 1.827 × 106 22.4620 0.0000 *
β̂1 1.328 × 101 2.2190 0.0269 *
β̂4 −1.900 × 104 −4.6490 0.0000 *
β̂7 −3.573 × 104 −3.2110 0.0014 *
β̂12 3.600 × 104 2.8400 0.0047 *
β̂13 1.887 × 104 3.8800 0.0001 *
β̂29 −3.893 × 104 −2.4420 0.0149 *
β̂32 1.087 × 104 2.9080 0.0038 *
β̂34 7.059 × 103 3.7660 0.0002 *

* Indicates that the variable is significant in the model.

Figures 5 and 6 below show a comparison of the results of direct estimation and the
results of Multivariate EBLUP estimation for each variable of average household expendi-
ture on food and non-food. Figures 5 and 6 show that the results of estimating the average
household expenditure on food and non-food using the Multivariate EBLUP method tend
to be lower than the results of the direct estimate for the 573 sampled sub-districts.
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Figure 5. Estimation of Average Household Expenditure on Food at the Subdistrict Level in Central
Java Province Using the Direct Estimation Method and the Multivariate EBLUP Method.

 

Figure 6. Estimation of Average Household Expenditure on Non-Food at the Subdistrict Level in
Central Java Province Using the Direct Estimation Method and the Multivariate EBLUP Method.

After estimating the regression coefficients, the RSE values of the direct and indirect
estimate results (EBLUP-FH Multivariate) were compared. Figures 7 and 8 show the
RSE values of the direct estimator and the EBLUP-FH Multivariate estimate for average
household expenditure on food and non-food in the sampled sub-districts of Central Java.

Figure 7 demonstrates that the Multivariate EBLUP model provides a lower RSE value
for the average household expenditure variable for food and non-food than the direct
estimation. The RSE value of the Multivariate EBLUP model is less than 25 percent in all
Central Java sub-districts.

Based on the boxplot in Figure 8, we can see that the results of the direct estimation of
the average household expenditure variable for food and non-food at the sub-district level
have a wider RSE range than the Multivariate EBLUP method. Although there are still
outliers in the RSE value of the direct estimation and the Multivariate EBLUP model on
the average household expenditure variable for non-food, the outliers in the Multivariate
EBLUP model are significantly fewer in number and close to the tail of the boxplot. It can
be concluded that the Multivariate EBLUP method produces a smaller level of diversity
than the direct estimation method.
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(a) (b) 

Figure 7. RSE (%) of Direct Estimation and Multivariate EBLUP Model for Average Household
Expenditure Variables at Subdistrict Level in Central Java: (a) for food; (b) for non-food.

 

(a) (b) 

Figure 8. Boxplot of RSE (%) of Direct Estimation and Multivariate EBLUP Model for Average District
Level Household Expenditure Variables in Central Java: (a) for food; (b) for non-food.

3.3.4. Estimation of Non-Sampled Subdistricts

The estimation of average household expenditure on food and non-food in non-
sampled sub-districts of the National Socio-Economic Survey (Susenas) March 2020, was
carried out by utilizing non-hierarchical clustering information using the K-Medoids cluster
technique. This clustering process uses selected auxiliary variables for each response
variable so that later clusters will be formed for modeling average household expenditure
on food and clusters for modeling average household expenditure on non-food. Before
further analysis is carried out using the K-Medoids cluster method, standardization is first
carried out using the Z-Score method for each auxiliary variable used in clustering.

The next step is to check the assumption of sample adequacy by calculating the Kaiser-
Meyer-Olkin (KMO) value. The processing results produced a KMO value of 0.72 and 0.82
for each auxiliary variable used in modeling average household expenditure on food and
non-food, respectively. It can be concluded that the number of samples is sufficient or has
adequately represented the population, allowing for further analysis.

Detection of multicollinearity is also carried out on auxiliary variables using the
Variance Inflation Factor (VIF) value. The VIF values of thirteen auxiliary variables for the
average household expenditure on food (Y1) and eight auxiliary variables for the average
household expenditure on non-food (Y2) are shown in Tables 5 and 6 below.
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Table 5. VIF Values of Thirteen Auxiliary Variables for Average Household Expenditure on Food.

Variables Value of VIF

(1) (2)

X1 5.5327
X3 1.2035
X4 3.8324
X12 2.7109
X13 2.8847
X15 2.6079
X16 1.6935
X23 1.0362
X26 1.0561
X27 1.0496
X29 1.4295
X30 1.1257
X37 1.0251

Table 6. VIF Values of the Eight Auxiliary Variables for Average Household Expenditure
on Non-Food.

Variables Value of VIF

(1) (2)

X1 5.0259
X4 3.3379
X7 1.4979
X12 2.8600
X13 3.7910
X29 1.4054
X32 2.5572
X34 2.3163

Based on the results in Tables 5 and 6, the VIF value of the selected auxiliary variables
for each average household expenditure response variable is less than 10. This means
that there is no multicollinearity between the auxiliary variables. After the two cluster
assumptions are met, the two groups of auxiliary variables will be used in cluster formation
using the K-Medoids Cluster technique. The clustering process was carried out on all
576 sub-districts in Central Java for each group of auxiliary variables. The determination
of the number of clusters in K-Medoids is based on the average silhouette method shown
in Figure 9.

Based on Figure 9, it can be seen that the highest average silhouette value is in the
number of clusters of two clusters, both for the average food and non-food expenditure.
As a result, this study will employ up to two clusters in grouping sub-districts using the
K-Medoids Cluster method. In the average household expenditure group for food, cluster
1 consists of 380 sub-districts, and cluster 2 consists of 196 sub-districts. Meanwhile, cluster
1 in the non-food average household expenditure group consists of 260 sub-districts, and
cluster 2 consists of 316 sub-districts. The characteristics of cluster 2 are generally those
sub-districts with greater education and health infrastructure than cluster 1.

After the sub-district clusters are formed, the next step is to use the known components
of random area effects per cluster and then average them per cluster. Then the average of
the random area effects per cluster will be entered into the Multivariate EBLUP model as
an estimator of the random area effects of the non-sampled sub-districts in the March 2020
National Socio-Economic Survey (Susenas). Estimates of average household expenditure
on food and non-food in unsampled sub-districts resulting from Multivariate EBLUP
modeling with the addition of cluster information are shown in Tables 7 and 8.
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Figure 9. Determination of the Optimal Number of Clusters by the Average Silhouette Method
(a) Optimal number of Clusters for Average Food Expenditure (b) Optimal number of Clusters for
Average Non-Food Expenditure.

Table 7. Average household expenditure on food in non-sampled sub-districts.

Sub-Districts
Average Value of Household

Expenditure on Food in
Non-Sampled Sub-Districts (IDR)

Cluster

(1) (2) (3)

Padureso 1,550,241 1
Batuwarno 1,574,599 1

Lebakbarang 1,540,425 1

Table 8. Average household Expenditure on non-food in non-sampled sub-districts.

Sub-Districts
Average Value of Household
Expenditure on Non-Food in

Non-Sampled Sub-Districts (IDR)
Cluster

(1) (2) (3)

Padureso 1,470,115 2
Batuwarno 1,455,223 2

Lebakbarang 1,416,978 1

3.4. Mapping of Estimates of Average Subdistrict Level Household Expenditure from Multivariate
EBLUP Modeling Results

The mapping of the estimation of the average household expenditure per sub-district is
conducted based on the results of the estimation of the average sub-district level household
expenditure obtained from the Multivariate EBLUP modeling with the addition of cluster
information for sampled and non-sampled sub-districts. Based on Figure 10, it can be seen
that the color gradation reflects the high and low average household expenditure on food in
each sub-district in Central Java. Sub-districts with high average household expenditure on
food include Laweyan, Pasar Kliwon, Jebres, and Banjarsari in Surakarta City; Argomulyo,
Tingkir, and Sidomukti in Salatiga City; West Pekalongan, East Pekalongan, South Pekalon-
gan, and North Pekalongan in Pekalongan City; South Tegal, East Tegal, West Tegal, and
Margadana in Tegal City; Talun, Doro, Bojong, Wonopringgo, Kedungwuni, Buaran, Tirto,
and Wiradesa in Pekalongan District; Patikraja, Purwokerto Selatan, West Purwokerto
Barat, East Purwokerto, and North Purwokerto in Banyumas District; Bumijawa, Bojong,
Balapulang, Slawi, Talang, and Kramat in Tegal District; and almost all sub-districts in
Semarang City.
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Figure 10. Map of Estimation of Average Household Expenditure on Food at Subdistrict Level in
Central Java using the Multivariate EBLUP Method.

Figure 10 also shows sub-districts with low average household expenditure on food,
including sub-districts Paranggupito, Giritontro, Karangtengah, Tirtomoyo, Baturetno,
Eromoko, Manyaran, Kismantoro, Bulukerto, and Jatipurno in Wonogiri Regency; Ke-
dungjati, Geyer, Kradenan, Ngaringan, and Tanggungharjo in Grobogan Regency; Kayen,
Pucakwangi, Tlogowungu, and Dukuhseti in Pati Regency; and Bulu, Tlogomulyo, Kaloran,
Ngadirejo, Jumo, Candiroto, Bejen, Tretep, and Wonoboyo in Temanggung Regency.

Sub-districts with high average household expenditure on non-food items are gen-
erally located in urban areas, including South Magelang, Central Magelang, and North
Magelang in Magelang city; Laweyan, Serengan, Pasar Kliwon, Jebres, and Banjarsari
in Surakarta city; Argomulyo, Tingkir, Sidomukti, and Sidorejo sub-districts in Salatiga
city; West Pekalongan, East Pekalongan, and North Pekalongan in Pekalongan city; South
Tegal, East Tegal, and West Tegal in Tegal city; and almost all sub-districts in Semarang city
(Figure 11). Meanwhile, sub-districts with low average food expenditure also tend to have
low average non-food expenditure.

 

Figure 11. Map of Estimation of Average Household Expenditure on Non-Food at the Sub-district
Level in Central Java using the Multivariate EBLUP Method.
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4. Discussion

The results of the estimation of the average household expenditure on food and non-
food at the sub-district level in Central Java from the EBLUP-Fay–Herriot Multivariate
model produced a better level of diversity than the direct estimation results. It can be
seen from the comparison between the Relative Standard Error (RSE) value between direct
estimation and the EBLUP Multivariate model for each sub-district in Central Java. Many
outliers are still found in the box plot of the direct estimation results RSE value, and the
RSE value is greater than 25 percent. Meanwhile, the EBLUP-Fay–Herriot Multivariate SAE
results can significantly reduce the number of outliers in the RSE value. There are not even
outliers at all in the RSE value of the EBLUP Multivariate estimation results for the average
household expenditure variable for food in each sub-district. This result is in line with
studies about EBLUP Multivariate that show the effectiveness of the EBLUP Multivariate
method in producing estimates down to the smallest area level (sub-district). The EBLUP
multivariate method outperforms direct estimation based on the survey design.

For the three sub-districts that were not sampled in the March 2020 National Socio-
Economic Survey (Susenas), the average household expenditure on food and non-food was
estimated by adding cluster information to the EBLUP-Fay–Herriot Multivariate. Table 6
shows that the estimated average household expenditure on food in Padureso sub-district
is IDR 1,550,241, in Batuwarno sub-district it is IDR 1,574,599, and in Lebakbarang sub-
district it is IDR 1,540,425. These three sub-districts are all members of cluster 1 for the
average food expenditure variable group. Meanwhile, the estimated average household
expenditure on non-food items in the three non-sampled sub-districts is lower than the
value of food expenditure, namely IDR 1,470,115 in Padureso, IDR 1,455,223 in Batuwarno,
and IDR 1,416,978 in Lebakbarang.

The Multivariate EBLUP estimation with the addition of cluster information can be
used to estimate average household expenditure data down to the sub-district level, which
can then be used as an indicator to categorize sub-districts in a region based on expenditure
groupings. The estimated data can also be used as an indication or a reference in identifying
priority regions to get targeted locations in programs for reducing poverty or improving
community welfare. Through direct estimation of the survey design, it is impossible to
collect statistics on average household expenditures down to the sub-district level. It is
because the BPS survey has a limited budget and people to survey. This issue can be
solved by using small area estimation using the EBLUP Multivariate approach and adding
cluster information for areas not sampled in the survey. As a result, local government’s
activities are more effective and focused since data is available down to the small area
(subdistrict) level.

For future research, the use of the EBLUP Fay–Herriot Multivariate model can be
applied to other data that has a strong correlation. If the research is conducted in areas that
have different geographical characteristics, researchers can also develop the Fay–Herriot
Multivariate model by adding spatial and time aspects. The auxiliary variables used can
be differentiated in each research area because the influence of variables can be different
in different areas, so it is expected that the estimation model formed will be better and
more accurate. In addition, other clustering methods can also be used as alternatives in
estimating unsampled areas, such as the Fuzzy K-Means non-hierarchical cluster method,
Fuzzy K-Medoids, or hierarchical cluster methods.

5. Conclusions

The EBLUP-Fay–Herriot Multivariate method can improve the parameter estimates
generated by the direct estimation method since it yields lower levels of variance (RSE)
when estimating average household expenditure on food and non-food at the sub-district
level for the sampled sub-districts in Central Java Province, Indonesia. For the sub-districts
in Central Java Province that were not sampled from the March 2020 Susenas, the appli-
cation of the EBLUP-Fay–Herriot multivariate method with the addition of K-Medoids
cluster information can be done to estimate the average household expenditure for food
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and non-food at the sub-district level. The RSE value of all sub-districts from the EBLUP-
Fay–Herriot Multivariate estimation is also below 25 percent, so the estimation results are
reliable and provide a good level of diversity.

This research is expected to contribute significantly to multivariate modeling of the
small area estimation level area. Additionally, it is envisaged that regional governments
will use the information on average household expenditure at the sub-district level that
results from the estimation using the Multivariate EBLUP-FH approach to design and
implement programs relating to welfare and poverty. Because of the limited number of
samples and budget, BPS, as the official statistics provider, is unable to provide this data
down to the sub-district level.
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Appendix A

Table A1. All Candidate Auxiliary Variables that Will Be Selected for EBLUP Multivariate Model.

No.
Variable
Notation

Data Source

(1) (2) (3) (4)

Response Variable

1 Y1
Average household food consumption
expenditure at sub-district level (IDR)

SUSENAS March
2020

2 Y2
Average household non-food consumption
expenditure at sub-district level (IDR)

SUSENAS March
2020

Auxiliary variables

Population

3 X1
Number of families using electricity (PLN and
Non-PLN) PODES 2020

4 X2 Number of house buildings in slums PODES 2020

Education

5 X3
Number of elementary/islamic elementary
Schools PODES 2020

6 X4
Number of junior high/islamic junior high
Schools PODES 2020

7 X5 Number of high schools/islamic high schools PODES 2020

8 X6 Number of vocational schools PODES 2020

9 X7 Number of universities/colleges PODES 2020

Health

10 X8 Number of maternity hospitals PODES 2020

11 X9 Number of health centers with inpatient care PODES 2020

12 X10 Number of health centers without inpatient care PODES 2020
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Table A1. Cont.

No.
Variable
Notation

Data Source

(1) (2) (3) (4)

13 X11 Number of auxiliary health centers PODES 2020

14 X12 Number of polyclinics/treatment centers PODES 2020

15 X13 Number of doctor’s offices PODES 2020

16 X14 Number of maternity homes PODES 2020

17 X15 Number of midwife practice sites PODES 2020

18 X16 Number of village health posts (poskesdes) PODES 2020

19 X17 Number of village maternity clinics (Polindes) PODES 2020

20 X18 Number of pharmacies PODES 2020

21 X19 Number of specialty medicine/herbal shops PODES 2020

Economy (Industry)

22 X20
Number of small and medium industries (IMK)
of leather PODES 2020

23 X21
Number of small and medium industries (IMK)
of wood PODES 2020

24 X22
Number of small and medium industries (IMK)
of precious metals or metal materials PODES 2020

25 X23
Number of small and medium industries (IMK)
of fabric/weaving PODES 2020

26 X24
Number of small and medium industries (IMK)
of pottery/ceramics/stone PODES 2020

27 X25
Number of small and medium industries (IMK)
from rattan/bamboo, grass, pandanus, etc. PODES 2020

28 X26
Number of small and medium industries (IMK)
of food and beverages PODES 2020

29 X27
Number of other small and medium industries
(IMK) PODES 2020

Economy (Other than Industry)

30 X28 Number of shop groups PODES 2020

31 X29 Number of markets with permanent buildings PODES 2020

32 X30
Number of markets with semi-permanent
buildings PODES 2020

33 X31 Number of markets without buildings PODES 2020

34 X32 Number of minimarkets/supermarkets PODES 2020

35 X33 Number of shops/grocery stores PODES 2020

36 X34 Number of restaurants/dining houses PODES 2020

37 X35 Number of food and beverage stalls PODES 2020

38 X36 Number of hotels PODES 2020

39 X37 Number of lodgings PODES 2020

Economy (Financial Inclusiveness)

40 X38 Number of state-owned commercial banks PODES 2020

41 X39 Number of private commercial banks PODES 2020

42 X40 Number of rural banks PODES 2020
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Appendix B

Table A2. Two Stage One Phase Sampling for March 2020 National Socio-Economic Survey.

Phase Unit
The Number of Units of the-h

Strata Sampling
Method

Possibilities
for Sample
Selection

Sampling
Fraction

Population Sample

1 Census Block
Vth v′th

PPS-with
replacement

Nth f
Nth

v′th
Nth f
Nth

v′th vth Systematic 1
v′th

vth
v′th

2 Household Nup
th f n Systematic 1

Nup
th f

n
Nup

th f

with:

Vth : number of census blocks in the h-th strata of the t-th district
v′th : 40% of the total census block in the h-th strata of the t-th district
vth : number of samples of the March Susenas census blocks in the h-th strata of the t-th
district
Nth: total household load of the h-th strata of the t-th district SP2020 data
Nth f : total load of households in the f -th census block, h-th stratum, t-th district SP2020
Nup

th f : the number of household contents in the f -th updated census block, h-th stratum,
t-th district
n: number of household samples in each census block

If there are M sub-districts in a population and m sub-districts are sampled randomly,
and household expenditure yij is available for each j-th household in i sub-district, then
the average household expenditure of a sub-district is calculated by the formula:

yi =
∑ni

j=i wijyij

∑ni
j=i wij

, i = 1, . . . , m ; j = 1, . . . , ni

with:

yi: the average expenditure of households in the i-th sub-district
yij : total expenditure of the j-th household in the i-th sub-district
wij: the weighting factor of the j-th household in the i-th sub-district obtained from the
March Susenas sampling design
ni: the number of households in the i-th sub-district
m: number of the sub-districts
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Abstract: In the age of data, data mining provides feasible tools with which to handle large datasets
consisting of data from multiple sources. However, there is limited research on retrieving statistical
information from data when data are confidential and cannot be shared directly. In this paper,
we address this problem and propose a framework for performing data analysis using data from
multiple sources without revealing true values for privacy purposes. The proposed framework
includes three steps. First, data custodians individually mask data before publishing; then, the
masked data collection is used to reconstruct the density function of the original dataset, from which
resampled values are generated; last, existing data mining techniques are applied directly to the
resampled data. This framework utilises the technique of reconstructing an original density function
from noise-masked data using the moment-based density estimation method, which plays an essential
role. Simulation studies show that the proposed framework performs well; analysis results from the
resampled data are comparable to those of the original data when the density of the original data
is estimated well. The proposed framework is demonstrated in data clustering analysis using the
example of a real-life Australian soybean dataset. Results from the k-means algorithms with two
and three fitted clusters are presented to show that cluster analysis using resampled data can well
replicate that of the original data.

Keywords: data masking; multiplicative noise; data mining; sample size calculation

MSC: 68P27; 92B15

1. Introduction

With the explosive evolution of information technology and computer science, it is
easier and less expensive to collect and store data, and the databases containing this in-
formation are often massive. While technological evolution makes access to voluminous
data feasible, it also brings many challenges in how to turn big data into big knowledge.
Data mining is a key component in big data analytics. It is an inductive process for extract-
ing hidden and potentially useful patterns and information without a priori hypotheses,
where traditional hypothesis-driven methods, such as online analytic processing and most
statistical methods, fall short [1]. This feature makes data mining techniques ideal when
hypotheses are difficult to determine or define.

Given its nature, big data can consist of data from multiple sources, and require a
sophisticated information systems for storage and access, often being stored off-site or in
systems managed by a third party (e.g., cloud storage). When the control of data access is
no longer in the hands of the data owners, there are potential threats to data security. In
practice, data access control protocols are implemented to secure data privacy [2]. One of
the more extreme ways is to indiscriminately restrict public access to data. This method is
often chosen by the data owners for data containing sensitive commercial values. Access
restriction provides reasonable data security in this case, as it solely relies on the safekeeping
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of datasets [3]. However, data access restriction is usually not an optimal solution, as it is
restrictive for general data use and data sharing.

The main interest in data privacy research is to develop methods for protecting data pri-
vacy that also allow the preservation of statistical information. This topic has been studied
separately in the fields of statistics (statistical disclosure) and computer science (privacy-
preserving data mining and privacy-enhancing technologies) [4]. Torra and Navarro-
Abrribas [5] provided an overview of the existing data privacy methods, categorised by
the types of data and the types of analyses applied to these data. They summarised that
when data are published for a general purpose, masking (statistics) and anonymisation
(computer science) are the two available methods which can be used to protect the privacy
of the data values. Masking and anonymisation methods systematically transform datasets
prior to release. They can be classified into three categories: perturbative, non-perturbative
and synthetic data generators. Perturbative methods alter data values by introducing pre-
determined errors, including noise addition or multiplication, substitution, rank swapping,
etc. Non-perturbative methods generally refer to data generalisation and suppression,
which make data less detailed. Synthetic data generators replace original data with values
generated from an underlying model, ideally retaining the desired statistical information
of the original data.

Data privacy simultaneously requires that data values are well protected from disclo-
sure and that statistical inference is accurate about the population of interest [4]. Figure 1
demonstrates these two processes for a set of data published for a general purpose. (i) Data
protecting techniques are used by data providers to protect original data values to ensure a
certain level of privacy protection before publicly releasing datasets. (ii) Once the protected
data are available to the general public, suitable procedures are then performed to retrieve
the statistical information of the unpublished, original data.

Figure 1. Overview of the data privacy process. The grey area is unavailable to the public for privacy
purposes. Information regarding the data masking process performed by data providers can be made
partially available to the public.

Current data privacy research focuses on developing methods of ensuring a desirable
amount of disclosure with some guarantee on the utility loss for a given statistic (process (i)
in Figure 1). An overview of practical privacy protection methods and their applications
can be found in [6]. However, there is very limited work on investigating the statistical in-
formation retrieval process ((ii) in Figure 1), i.e., how to apply various statistical techniques
to a privacy-protected dataset to obtain inferential results other than that considered by
the utility loss. Consider the following scenario. Data collection consists of data collected
independently from K institutions. Due to the issue of data sensitivity, all institutions
require a guarantee of a certain level of privacy protection upon releasing data. Meanwhile,
all of them are interested in the statistical inference given by the clustering analysis using
the entire data collection. To the best of our knowledge, there is no literature on discussing
how to apply existing data mining techniques, particularly clustering analysis, directly to
published protected data from multiple data sources when the original data values are not
accessible. This topic is the focus of this paper.

Note that there exists a strand of research within the data mining community that
addresses privacy issues, namely, privacy-preserving data mining. Privacy-preserving
data mining involves modifying existing data mining algorithms to ensure the privacy
of the outcomes of algorithms. Reference [7] gives a detailed review of these methods
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and discusses developments in this area. The focus of privacy-preserving data mining is
on the protection of the outcomes of algorithms, not the data themselves [8], which is a
fundamentally different situation from the confidentiality-related privacy issues discussed
in this paper. Furthermore, privacy-preserving data mining methods generally require
access to original data and need to be customised depending on the analysis. This is
different from the problem of the original data being inaccessible, which is discussed in
this paper; therefore, we will not consider these privacy-preserving data mining methods.

This paper proposes a framework for data clustering analysis, assuming that the
underlying true data are confidential and that it is impossible to directly share data between
multiple data sources. In this framework, confidential quantitative data are firstly protected
using the noise-multiplicative masking method. Then, the density function of the original
data are reconstructed from the noise-protected data using the moment-based density
estimation method. Resampled values are then drawn from the reconstructed density and
analysed directly for modelling and inferential results.

The paper is organised as follows. In Section 2, we introduce the multiplicative noise
masking method for data value protection and the moment-based density function re-
construction for statistical information retrieval. We also introduce an application of the
Kolmogorov–Smirnov test for determining the sample size in the context of the recon-
structed density function. This is the basic knowledge required for the clustering analysis
discussed in this paper. The proposed framework and its performance evaluation through
simulations are presented in Section 3. In Section 4, we present the application of the
framework to a real-life dataset and evaluate it empirically.

2. Data Publishing and Information Retrieval

Let X be a random variable. Sometimes, we also call it the data population. Assume
that there are K institutions. Each of them independently and randomly draws a sample
from the population X. Denote x(k) = {x(k)i }Nk

i=1, as the data collected by the kth institution,
where Nk is the size of sample and k = 1, · · · , K. We merge those datasets and form a large
sample from the population X. This paper assumes that the K institutions want to carry
out clustering analysis based on the large sample. However, all institutions consider their
data confidential and do not wish to share them with others without any privacy protection
measures in place.

In current data privacy literature, information retrieval is often treated as a part of the
data masking strategy. Depending on the parameters of interest and the methods used for
data analysis, a specific data masking method is chosen not only for data value protection
but also for obtaining reasonable estimates for the parameters. For example, in differential
privacy [9], which is a widely-used data privacy mechanism, a zero-mean Laplace noise is
used to ensure the unbiased estimation of a group sum, and the infinity divisibility property
of the Laplace distribution is utilised to achieve a certain level of privacy when running
queries [9–12]. A differential privacy mechanism ensures that no single observation is
identifiable from differentiating queries. However, in practice, the level of perturbation
needed to ensure a statistically level of privacy protection often is high, which leads to a
low statistical utility. Additionally, when the parameter of interest is no longer the sum, the
masking techniques or noise distributions must be customised accordingly [13]. Currently,
there is no discussion on how to retrieve the accurate statistical information beyond simple
statistics in the differential privacy framework, when a dataset is masked and published
for general use and the intended analyses are unspecified. Simply applying cluster analysis
to masked data protected by a differential privacy mechanism cannot guarantee the results
from masked values represent those from the original values.

In this section, we propose a general framework for perturbing data values for privacy,
then retrieving relevant statistical information by reconstructing the density function
of original data. The basic idea is motivated by Fisher’s likelihood principle, which is
arguably one of his greatest contributions to the foundation of statistical science. It states
that the likelihood function contains all the evidence in a data sample relevant to model
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parameters [14]. The likelihood principle implies that statistical information is fully stored
in the density function, and data are a representation of the density function. If we
can reconstruct the original density function from masked data, we can generate a new
dataset from the reconstructed density function, and this new dataset will contain the same
statistical information as the original data. Here we discuss the details relevant to the two
data privacy processes described in Figure 1, specifically for the general framework for
masking and analysing data from multiple data sources.

2.1. Data Masking and Reconstructing the Density Function
2.1.1. Data Masking at Publishing

Data masking protects data by altering values at the individual observation level.
Given that data mining techniques are traditionally performed at the individual data
level, we only consider the data masking methods that allow for releasing the protected
individual data. In particular, we propose to use the multiplicative noise method in this
framework, which has desirable properties for masking a wild range of datasets. The
multiplicative noise method can be applied to both numerical and categorical data. In
addition, the multiplicative noise method provides uniform protection in terms of the
coefficient of variation of the noise. This means that the required variation of noise to
achieve a desirable level of certainty in estimation does not depend on the values of data,
providing an effective way of using small variance for noise distribution to significantly
alter large-value data, especially in datasets with large spreads [15].

To protect the values of x(k) for k = 1, · · · , NK, firstly, data owners agree on an
appropriate random noise C, which is independent of X. Then, each data owner selects
a random sample {c(k)i } from the noise population C; a new dataset x∗(k) = {x∗(k)i } =

{x(k)i c(k)i } is calculated for the kth institution and can be released to others.
Note that all data owners are required to use the same random noise C to mask their

data. Data owners often choose to release certain characteristics of the noise distribution, C,
i.e., the shape of the distribution or moment information, etc. (shown as the dashed line
around (i) data masking process in Figure 1). When this partial information about the noise
distribution is known to the public, the values of {x(k)i } will still be well protected and

unable to be recovered from {x∗(k)i }. For the relevant discussion, see [15].

2.1.2. Reconstructing Density Function

After masked data are publicly available, we use the masked data to reconstruct the
density function of the original data in order to accurately obtain the data’s statistical
information. In practice, there is often no additional information about the underlying
distribution beyond actual observations. A robust estimation method with less prior
information on reference density is preferred, even though it may be computationally
expensive. References [16–18] were the first to independently introduce the fundamental
methods for estimating the density function of original data from masked data for a
single variable. Lin and Krivitsky [19] gave a detailed review and pointed out that the
algorithms proposed in the first three papers have several technical problems, including
non-convergence and slow computation. These problems are pronounced in skewed
data. Lin [18] exclusively discussed density estimation using a moment-based polynomial
approach for noise-multiplied data. This research showed that, for a random variable X
with a density function defined on a finite interval [a, b], the density function of X can be
approximated by

fX,P(x) =
P

∑
p=0

ap(x)
μX∗(p)
μC(p)

,

with an appropriate integer P, where X∗ = XC is the masked random variable, noise C is
the independent multiplicative random variable, μX∗(p) = E(X∗p), and μC(p) = E(Cp).
ap(x) is a continuous polynomial function of x.
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Lin [18] also pointed out that, given the noise-multiplied data {x∗i }N
i=1 and sample

moments’ information on the multiplicative noise C, fX,P(x) can be empirically approxi-
mated by

fX,P|{x∗i ,ci}(x) =
P

∑
p=0

ap(x)
(X∗)p

Cp
, (1)

where (X∗)p = ∑N
i=1(x∗i )

p/N and Cp = ∑N
i=1 cp

i /N are the empirical pth moment for
masked data X∗ and noise distribution C, respectively. This means that we can use the
moment information about the masked data and the noise distribution to reconstruct the
density function of the original data. Lin [20] subsequently developed a computational
algorithm and built an R package called MaskDensityBM using the moment-based density
estimation method. In this study, we used the method proposed by Lin [18] and utilised
the existing software packages for density reconstruction. After reconstructing the density
function, we can generate resamples to perform analysis.

2.2. Determining Sample Size for Resampled Data

Since the original data are confidential, we cannot directly use the data for cluster-
ing analysis. Our approach uses a sample drawn from the constructed density function
(sometimes called the simulated data or resampled data below) to replace the original
data to avoid this problem. Based on the approach we propose, the quality of clustering
analysis will rely on two factors. One factor is the closeness of the reconstructed density
function to the actual density function. We applied the R package MaskDensityBM [20] to
determine the reconstructed density function. The other factor is the size of the sample
drawn from the reconstructed density function, which ensures the statistical information of
the reconstructed density can be well retrieved.

We assume that the reconstructed density function captures the main characterises
of the density function of the original data. Even under a perfect scenario, the outputs of
data analysis given by the original data and those of the simulated data are likely different
if the size of the simulated data is small. The main reason is that when the size of the
resamples is too small, the information on certain characteristics of the distribution may
be missing from the simulated samples, especially in the two tail-end regions. Even if the
size of the simulated data is the same as that of the original data, due to randomness in
data generating process, there is no guarantee that the set of simulated data has a similar
density to the original data.

We suggest an analytic solution to determine an appropriate data size through a
sequence of Kolmogorov–Smirnov tests. Denote {xi}N

i=1 as the set of the underlying
original data with a sample size of N; f̂X,N is the estimated smoothed density function
determined by the original data. Let {x̃i}M

i=1 be a set of resampled data with a size of M.
Verifying if the smoothed density function given by {x̃i}M

i=1 is statistically equivalent to
f̂X,N is the same as checking whether the empirical cumulative probability distribution
function given by {x̃i}M

i=1 is close to the cumulative probability distribution determined by
f̂X,N . The hypotheses are defined as:

H0 : F̂X̃ = F̂X,N

and
H1 : F̂X̃ �= F̂X,N ,

where F̂X̃ is the empirical cumulative function given by the simulated data {x̃i}M
i=1 and

F̂X,N is the cumulative distribution related to f̂X,N . The test statistic is

DM = max
1≤i≤M

{∣∣∣∣F̂X,N(x̃(i))−
i − 1

M

∣∣∣∣} , (2)
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where x̃(i) represents the ith ordered values in the dataset {x̃i}M
i=1. A small DM suggests

similarity between the smoothed density function of the original data and the empirical
density of the resamples. We considered 0.007 as a critical value for this test and solved for
M.

Example 1. We generated 1000 data from a random variable X following a mixture of normal
distributions with density function

fX = 0.25 × N(0, 12) + 0.75 × N(4, 22) . (3)

Using Criterion (2), the resampled data with a size of 37,000 has a sufficiently small
DM (=0.0056), and the smoothed density function of the resampled data is shown to be a
reasonable estimation of the density of the original data (Figure 2).

Figure 2. The plots of the smoothed density functions given by {xi} (solid line) for i = 1, . . . , 1000
and a set of resampled values {x̃i} determined by DM < 0.007 (dash line).

Figure 3 illustrates the relationship between sample size and the information lost,
measured by DM. We generated 500 samples of 1000 data from the model in (3); then
we calculated DM for the resampled data with various sizes of 300, 700, 1000, 3000, 6000,
and 12,000. The larger size of resampled data preserves the information of the cumulative
distribution of the density function in (3) better with a smaller mean of DM. It also
shows that the variations of the test statistics are much larger in the resampled data with
smaller sizes.

Figure 3. Relationship between DM and the size of the resampled data for M = 300, 700, 1000, 3000,
6000, and 12,000. The bars extend to one standard deviation above and below the average DM values
from 500 simulation samples.

3. Proposing a Framework and Simulation Studies

In this section, we propose a general framework for publishing data for general use
and retrieving statistical information by generating resamples using reconstructed density
functions. We consider all data from the K institutions as a whole. Let ∑K

k=1 Nk = N be the
total number of observations from the K institutions and x = {x(1), . . . , x(K)} = {xj} for
j = 1, . . . , N be a collection of N original data from the K institutions.
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Framework for publishing and mining data from multiple data sources:

(i) Publishing data masking:

(a) Data owners across the K institutions agree on an appropriate noise distri-
bution C. Then, information about the noise distribution and parameter
values are released to the public;

(b) For the kth institution, independently generate a sample {c(k)i }Nk
i=1 from C,

and produce a masked dataset x∗(k) = {x(k)i c(k)i };
(c) Each institution publishes the masked data x∗(k) separately. Considering

x∗ = {x∗(1), . . . , x∗(K)}, this new collection x∗ with sample size of N is the
masked data of the original collection x.

(ii) Generating simulated samples:

(a) Calculate the moments of the masked data x∗ and the noise C;
(b) Reconstruct the density function of the original data x based on the masked

data collection x∗ using the moment-based estimation method implemented
in the R package MaskDensityBM;

(c) Generate a large set of resampled data x̃ = {x̃i} from the reconstructed
density function. Use these data to replace the original data x for retrieving
the statistical information of X. The size of the simulated data M can be
determined iteratively and must satisfy the DM < 0.007 criterion (2).

(iii) Analysing resampled data:
Apply a data mining technique directly to the resampled data x̃ to obtain statistical
information about the original data.

This framework covers several possible practical scenarios. If data owners want to
combine their data with those of others to perform data analysis, they will need to follow
all three steps, starting with masking their data (i). If a data owner is only interested
in publishing his data but still wants to allow others to perform analysis, only Step (i)
needs to be followed to release the masked data and the relevant information on the
noise distribution. If a masked data collection x and relevant information about the
noise distribution are already available, data users can start from the resampled data
generation (ii).

3.1. Simulation Study

To evaluate the performance of the proposed framework, we conducted a simula-
tion study under four different scenarios for cluster analysis, each representing different
compositions of locations of means and proportions of samples. First, we present a short
introduction to clustering. Cluster analysis or clustering is the task of grouping a set of
objects so that objects in the same group (called a “cluster”) are more similar to each other
than to those in other groups. K-means, introduced by MacQueen [21], is a classic and
still-popular algorithm for clustering analysis in data mining.

The K-means algorithm is a special case of the expectation-maximization (EM) algo-
rithm for Gaussian mixture analysis, which decides cluster assignment based on posterior
probabilities. Bishop [22] demonstrated that in the limit, the EM algorithm for the Gaussian
mixture reduces to the K-mean result. In general, mixture model analysis aims to identify
individual base distributions, which are used to form a mixture distribution for the under-
lying mixture model. Those individual base distributions are usually unimodal probability
distributions. If the centres of those unimodal probability distributions can be identified
with statistical significance, these centres are considered to be the centres of clusters. In
other words, if we can sufficiently estimate the mixture distribution of data, we can use the
EM algorithm for the clustering exercises using the mixture distribution. In this study, we
used the commonly used R software mclust [23] (k-means clustering analysis tool) to carry
out clustering analysis.
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The simulation settings considered in this paper represent factors relevant to cluster
analysis, which are how close the means are to each other and the proportions of the sizes
of clusters. Let X be the random variable of the sample data; the four simulation settings
are given as follows.

Setting 1. Two-group unequal proportions with a large difference in means: fX =
0.25 × N(0, 12) + 0.75 × N(6, 22).
Setting 2. Two-group equal proportions with a large difference in means: fX = 0.5 ×
N(0, 12) + 0.5 × N(6, 22).
Setting 3. Two-group equal proportions with close means: fX = 0.5 × N(0, 12) + 0.5 ×
N(4, 22).
Setting 4. Three-group equal proportions with two close means and one large mean:
fX = 1/3 × N(0, 12) + 1/3 × N(6, 22) + 1/3 × N(10, 22) .

We generated 400 Monte Carlo simulations for each simulation setting; each simulation
sample contained 900 data. For each simulation, we reconstructed the density function
then generated M = 18, 000 resampled data. We ensured that the sample size criterion
DM < 0.007 (2) was satisfied in all simulations so that the density of the resampled data
was close to that of the original data. Both sample data and resampled data were then
analysed using the R function kmeans for the cluster analysis results.

The performance of the proposed framework was evaluated in terms of estimation
accuracy and variation for cluster analysis, under the condition that the cumulative density
of resampled sample estimates that of the original sample well. For estimation accuracy,
we examined the sampling bias, which is the average value of the differences in cluster
means between the resampled data and sample data. To examine the estimation variability,
we considered two measures, the sampling standard deviation (s.d.) and the coefficient of
variation (CV). Sampling standard deviation is the standard deviation of the cluster means
of the resamples, and CV measures the dispersion of the estimation by taking the ratio of
the sampling standard deviation and sampling cluster means. We also included the root
mean-square error (RMSE), which is the root average of the sum of the square of differences
in cluster means between resampled values and sample data. RMSE can be used to directly
compare the performance of the proposed method under different simulation settings.

Table 1 shows the results from the Monte Carlo simulations for different simulation
settings, with various compositions of mean locations and cluster sizes. In terms of es-
timation accuracy, average biases were relatively small for all simulation settings, and
better performance was achieved from the settings with equal proportions between clusters
(Settings 2 and 3). Setting 4, with a smaller cluster size, is slightly more biased than others,
possibly due to the reduced quality of fit from a smaller cluster size.

Estimation variability was relatively stable across different simulation settings. The
slightly larger sampling standard deviation in Setting 4 indicates that estimation variations
elevated when the original cluster sizes are small. Coefficients of variations are generally
larger for smaller clusters with low means. This is consistent with the stable sampling
standard deviation results, as the CV is the ratio between standard deviation and means;
i.e., when the standard deviations are similar, smaller CVs are caused by smaller means.

Results of RMSE, which measures the dispersion of cluster means between resampled
values and original sample data, can be used directly to compare the performance of the
proposed framework for the four different settings. The most ideal scenario, Setting 2,
with two groups of equal cluster sizes and a large difference in cluster means, has the
smallest RMSE. This means that the dispersion is smallest and the proposed framework’s
performance was best in Setting 2. Equal cluster size and larger clusters also contribute
to low dispersion (smaller RMSE). Dispersion was elevated in the case of smaller cluster
sizes (Setting 4), which is consistent with the conclusion observed from the measure for
estimation accuracy.
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Table 1. Monte Carlo simulation results comparing the cluster analysis results from the resampled
data to those of the sample data under four simulation settings, including average bias, sampling
standard deviation (s.d.), coefficient of variation (CV), and root mean-square error of the estimation
differences (RMSE).

Average
Bias

Sampling
s.d.

CV RMSE

Setting 1 Cluster 1 mean = 0 0.044 0.105 0.162 0.873
Cluster 2 mean = 6 0.037 0.083 0.013 0.733

Setting 2 Cluster 1 mean = 0 -0.009 0.056 0.325 0.182
Cluster 2 mean = 6 0.019 0.093 0.015 0.386

Setting 3 Cluster 1 mean = 0 -0.026 0.055 0.268 0.525
Cluster 2 mean = 4 0.015 0.108 0.023 0.298

Setting 4
Cluster 1 mean = 0 -0.034 0.073 0.330 0.682
Cluster 2 mean = 4 0.050 0.173 0.035 1.003
Cluster 3 mean = 10 0.061 0.138 0.013 1.221

4. Real-Life Data Application

This section illustrates how to implement the framework proposed in Section 2.1 for
data clustering and apply it to a real dataset. We applied the proposed framework to the
Australian soybean dataset (more information on the study design and the data download
link are available at http://three-mode.leidenuniv.nl/, accessed on 1 October 2021) [24],
which contains data for 58 different genotypes of soybeans collected from eight experiments
for six different soybean attributes. In the dataset, the 58 different lines (genotypes) of
soybeans are 43 Australian lines and 15 other lines, of which 12 are from the US. Line 1–40
are local Australian selections from Mamloxi (CPI 172) and Avoyelles (CPI 15939).

In this example, we considered that each genotype of soybean is owned by a data
provider and clustered the soybean genotypes based on the attribute seed size. The total
number of data providers was 58, and there were 8 data points from each of the providers
(genotype). The total number of observations for seed-size data N is 58 × 8 = 464. Each
provider wants to know which cluster his/her data belongs to, when there is no access to
the actual values of data from other providers. In particular, they are interested in which
clusters their data can be classified into if there are two or three clusters.

Following the framework proposed in Section 3, all 58 data providers first agree on a
noise distribution C. Assume that the probability density function of C is

fC = 0.6 × Uni(2, 5) + 0.4 × Uni(4, 6).

Then, the data providers independently mask their raw seed-size data using the
multiplicative noises C and publish their own masked values to create a collection of
masked data for see size from 58 data providers. Figure 4 plots the masked data of seed size
against the original values, showing the effectiveness of data masking. A given masked
value corresponds to a large range of possible values of original data. This indicates that it
is hard to accurately estimate the values of the original data from the masked values.

The second step is to reconstruct the density function of the original data based on the
masked data and the information of the noise distribution C to generate resampled data.
We applied the R package MaskDensityBM to the masked data collection and obtained the
estimated density function associated with the set of the original seed-size data. The density
function of the original seed size and its reconstructed density function are presented in
Figure 5, which shows that the reconstructed density function preserves the two-mode
feature and follows the pattern of the original density reasonably well. Then, the resampled
data were generated from the reconstructed density function. The sample size required to
satisfy the DM < 0.007 criterion is 1856, approximately four times the original sample size
of 464.
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Figure 4. The scatter plot of the masked values and the original values for seed size.

Figure 5. The plot of smoothed original density function (solid line) and reconstructed density
function from 1856 simulated samples (dotted line).

We fitted both datasets—the resampled soybean seed-size data and the original data—
using the k-means clustering analysis tool in R. We obtained the outputs of clustering
analysis for k = 2 and 3 clusters. The outputs are given in Table 2. For k = 2, centres
from the two datasets are similar to each other, having similar standard deviations. A
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higher cluster mean in the resampled data was observed, though the difference in means
was not statistically significant. This is consistent with what we observe in Figure 5; the
reconstructed density for the resampled data has a second mode at larger seed-size values.
A similar conclusion can be drawn for the k = 3 output, except that the larger mean
only occurs in the last cluster of the resampled dataset, and there are two groups with a
significant difference in means. However, this is not a surprise, as the density plot suggests
that the original data are more likely to have two clusters (not three), so the k-means with
k = 3 clusters may not fit the data well. Furthermore, the clusters show similar allocation
(in proportion) between the two datasets for both k = 2 clusters, but not as good of a fit for
k = 3 clusters.

Table 2. Comparison of outputs of the clustering analysis from the resampled dataset and original dataset. Here,
the results include cluster mean, cluster standard deviation (s.d.), cluster size, and its corresponding proportion.

Number of Clusters k = 2

Resampled data Original data

Cluster centre (s.d.) 8.882 (2.111 #) 8.686 (1.837)
17.631 (2.709) 17.503 (2.530)

Cluster size (proportion) 1412 (76.1%) 335 (72.2%)
444 (23.9%) 129 (27.8%)

Number of Clusters k = 3

Resampled data Original data

Cluster centre (s.d.) 7.650 * (1.235) 7.901 (1.253)
11.896 (1.457) 12.016 (1.526)

18.942 * (1.949) 18.476 (1.980)

Cluster size (proportion) 902 (48.6%) 256 (55.2%)
633 (34.1%) 108 (23.3%)
321 (17.3%) 100 (21.6%)

* Sample means are statistically different between groups at the 5% significance level. # Sample standard deviations
are statistically different between groups at the 5% significance level. Details of statistics and associated p values
for comparing group means and variances in given in Table A1 in Appendix A.

We conclude that the resamples generated from reconstructed density can produce
statistically equivalent results of the original data. However, this may not be guaranteed
when the model fit is not appropriate. The analysis results from resampled data must be
used with caution, as they depend not only on the quality of the reconstructed density, but
also on the appropriate use of a data analysis technique for making inferences about the
population parameter of interest.

5. Closing Remarks

The issues of data privacy are currently receiving widespread and significant attention.
In general, methods for the statistical analysis of confidential data should be different
from traditional methods. This paper proposes a data clustering analysis method for
scenarios where data are independently collected from various data sources. These data are
confidential and cannot be shared across data sources directly. The approach proposed is
supported by the technique of reconstructing density functions based on noise-multiplied
data. The method ensures that an original density function can be closely approached by the
reconstructed density function. Therefore, we can retrieve accurate statistical information
of the original data from the samples generated from its reconstructed density function.
We detailed the application of the approach to a real-life dataset, assuming that the data
have privacy issues.

The proposed framework is feasible in practice. Few traditional data analysis R tools
can be directly applied for confidential data analysis due to privacy issues. The sample
generated from the reconstructed density function plays the role of a “bridge”, linking the
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confidential data and the existing R tools. The proposed approach brings great convenience
to realistic data analysis practices when data privacy is of concern, avoiding the need to
develop special R tools for data analysis.

The framework developed in this paper is not limited to cluster analysis. Its applica-
tions extend to a broad range of data mining analyses. This paper only focuses on univariate
data. However, we can apply the framework of the approach to multivariate data once a
technique of reconstructing joint density function based on multivariate masked data is
available. This technique for multivariate density estimation is under development and
will be introduced soon in another paper.
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Appendix A

It is important to evaluate the accuracy of the clustering analysis results from the
resampled values. We compared the analysis outcomes to examine whether the clustering
groups in the resampled and original data have statistically equal means and variances.
We firstly tested the spread of the data from each allocated group using a F test of equal
variance between the resampled data and original data groups. Depending on the F test
result, either a pooled or unpooled t test was then used to test whether group means
between the resampled data and the original data are statistically equivalent; for the
groups with statistically different variance (p values from F test less than 0.05), an unpaired
unpooled t test was performed to test the difference in group means, assuming a difference
in group variances. Otherwise, an unpaired pooled t test was performed for the groups
with statistically equivalent variance (p > 0.05 in F test of equal variance) in the resampled
data and in the original data.

Table A1. Test statistics and associated p values for comparing the cluster means (t-tests) and cluster
standard deviations (F tests) between the resampled and original Australian soybean data.

F Tests for Equal Variance t Tests for Equal Means

F Statistic p T Statistic p

Number of clusters k = 2 1.3206 0.0018 1.7041 0.0889
1.1465 0.3554 0.4793 0.6318

Number of clusters k = 3
0.9684 0.734 −2.8607 0.004
0.9116 0.5046 −0.7856 0.4324
0.9689 0.8236 2.0799 0.03814

Table A1 includes the test statistics and p values from the relevant F tests and t-tests
to compare the cluster variances and cluster means between the resampled and original
Australian soybean data. The equal-variance tests (F tests) show that the allocated groups
in the resampled and original data have nonsignificant difference (similar) variances, except
for the first group in the cluster analysis with two clusters. The equal-mean tests (t tests)
for the cluster analysis with two clusters are non-significant, suggesting that the resampled
data and the original data produce the same groups means. However, when the model
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fit is less appropriate (cluster analysis with three clusters), two groups show a significant
difference in cluster means between the resamples and the original data.
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Abstract: In ultrahigh dimensional data analysis, to keep computational performance well and good
statistical properties still working, nonparametric additive models face increasing challenges. To
overcome them, we introduce a methodology of model selection for high dimensional nonparametric
additive models. Our approach is to propose a novel group screening procedure via nonparametric
smoothing ridge estimation (GRIE) to find the importance of each covariate. It is then combined
with the sure screening property of GRIE and the model selection property of extended Bayesian
information criteria (EBIC) to select the suitable sub-models in nonparametric additive models.
Theoretically, we establish the strong consistency of model selection for the proposed method. Extensive
simulations and two real datasets illustrate the outstanding performance of the GRIE-EBIC method.

Keywords: model selection; nonparametric additive models; nonparametric smoothing; ridge estimation
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1. Introduction

With the advances in information technology, high-dimensional data exists in various
fields such as biology, chemistry, economics, finance, genetics, neuroscience, etc. A common
assumption of sparse is that only a few features are truly related to the response. Following
that, plenty of variable selection approaches based on regularized M-estimation have been
developed, which include but are not limited to Lasso by [1], SCAD by [2], Dantzig selector
by [3], and MCP by [4]. However, there always exist two limitations in the above-penalized
methods. One is the big burden for computation, and the other is the unstable performance
for variable selection in high-dimensional situations [5].

To avoid the mentioned limitations, correlation ranking becomes one of the most popular
ways to rapidly reduce the dimensionality of feature space. Fan and Lv [6] proposed the
sure independence screening (SIS) by utilizing the marginal Pearson correlation between
predictor and response for gaussian linear regression. Fan et al. [7] extended the idea of
Pearson correlation ranking to marginal smooth estimation strength ranking and proposed
the nonparametric independence screening (NIS) method. Meanwhile, Zhu et al. [8] consid-
ered the marginal correlation between the predictor and the conditional cumulative density
function of response and developed the model-free screening method. However, in practice,
there exist strong correlations between the predictors, which may lead to important predictors
being jointly correlated to the response. Hence, the marginal correlation ranking process may
miss some important variables. To decrease the effect of correlation between the predictors,
some forward variable screening methods based on the prediction rankings were introduced.
Wang [9] ranked the residuals of the predictor and proposed the forward regression (FR)
algorithm. Cheng et al. [10] applied the forward regression to high dimensional varying
coefficient models and proposed the forward-BIC screening method. Zhong et al. [11] further
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extended the forward regression to ultrahigh-dimensional nonparametric additive models.
Based on the cumulative divergence (CD), Zhou et al. [12] proposed a forward screening
procedure that considered the joint effects among covariates in the feature screening process.

Next, let us turn to the specific model. In this paper, we are interested in the model
of nonlinear regression. It is well known that if there exists extensive nonlinear indepen-
dence between response and predictors, traditional (partial) linear models can not detect
nonlinear independence. Although the nonlinear regression could capture the nonlinear
independence accurately, the nonlinear regression suffers from the curse of dimensionality
and heavy computational burden in high dimensions. To model them simplify, here, we
consider the nonparametric additive models. The nonparametric additive models were
introduced by Hastie and Tibshirani [13], which are defined as follows,

y =
pn

∑
j=1

mj(xj) + ε, (1)

where y is the response variable, xj is the covariate, mj is an unknown function with
j = 1, . . . , pn, and ε is the random error. Obviously, this additive combination of univariate
functions could detect the nonlinear independence easily, but their good statistical properties
and high computational performance only belong to low dimensions. For ultrahigh dimen-
sions, to keep them working well, one of the most popular methods is the two-stage approach.
Its main idea is to perform model selection in a fast and efficient way while retaining all
the important features in the reduced feature space and then refitting the reduced models.
In the following paper, we focus on the methodology of model selection for ultrahigh non-
parametric additive models. In that field, the last decade has seen a growing trend toward
smooth-group penalized methods, see [14–17]. Whereas the above methods may involve
some tuning parameters, which bring a heavy computational burden and unstable results
in high dimensions. A forward feature selection procedure, proposed by [11] for ultrahigh
dimensional nonparametric additive models, does not involve any initial parameters. In addi-
tion, model-free methods have been developed recently. Based on the cumulative divergence
(CD), Zhou et al. [12] proposed a forward screening procedure that considered the joint effects
among covariates in the feature screening process. These two above methods screen the
remaining candidate indexes into the sub-models through forwarding procedures. This kind
of forward-searching algorithm also leads to a high computational burden. Furthermore,
under previous studies’ correlation assumption, they ignored that the predictors are often
correlated for high-dimensional feature space. In detail, the unimportant covariate x� corre-
sponding to m� ≡ 0 in the nonparametric additive models (1) may have a strong correlation
with the residual y − ∑j∈M mj(xj) given index set M ⊆ {1, . . . , pn}, which implies that their
methodologies may screen quite a few unimportant features into the sub-models.

To improve these limitations, first, our approach is to propose a group screening pro-
cedure via nonparametric smoothing ridge estimation (GRIE), motivated by the theoretical
property and outstanding simulation performance of the ridge estimator in [18]. The core idea
of GRIE is to get the importance of each covariate by combining the ridge estimator and group
contribution. Its details are as follows. We begin with fitting the ridge regression by B-spline
smoothing and then treating the spline basis corresponding to each covariate as a group.
Next, we evaluate the group contribution of covariates by the magnitude of group estimators.
Lastly, we sort the importance of the covariates by the group contribution in descending order.
To further conduct model selection, we propose the refined GRIE-EBIC method mixing GRIE
and the extended Bayesian information criteria (EBIC) in [19]. The GRIE-EBIC method is
used to search for the predictor with the most group contributions by EBIC.

Compared with other feature selection methods for nonparametric additive models,
the GRIE-EBIC method has the following advantages: (1) the joint correlation among covariates
is considered, and the strong marginal correlation assumption between response and important
predictors is relaxed; (2) simple calculation with lower computational complexity; (3) strong
consistency for feature screening, and it implies that the true features can be extracted accurately
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with probability tending to one, which does not exist in other stepwise feature screening
methods, such as forward additive regression in [11], forward screening in [12], etc.

The rest of the paper is organized as follows. In Section 2, we introduce the GRIE
screening procedure, the GRIE-EBIC method, and its algorithm. In Section 3, we establish
the sure screening property of the GRIE screening procedure and the strong consistency
of screening by the GRIE-EBIC. In Section 4, we present the performance of our proposed
algorithm through simulation studies. In Section 5, we apply our methodology to fit two
real datasets to further illustrate the performance of our proposed method. The first is
based on Boston housing, while the second is related to Arabidopsis thaliana gene data. A
conclusion is given in Section 6. The proofs are in Appendix A.

Notation. Let A be m by l matrix, M be any subset of {1, 2, . . . , l} with any positive integers of m
and l, and then AM be the submatrix of A formed by column indexes in M. We write λmin(A) and
λmax(A) to denote the minimum and maximum eigenvalues of a symmetric matrix A, separately. We
write Im as the identity matrix. We defined Pλ,A = A(A�A + λIm)−1A�, where λ is some positive
constant, A� represents the transpose of matrix A, and here A is the column full rank l × m matrix
with m ≤ l. When λ = 0, PA = A(A�A)−1A�, which is the projection onto column space of A.
Otherwise, ei = (0, . . . , 0, 1, 0, . . . , 0)� is the unit vector, which has zeros everywhere, except in the
ith position. For vector a ∈ Rn, the L2 norm of a = (a1, a2, . . . , an)� is captured by ‖a‖2 =

√
a�a.

2. Methodology

Suppose we have the random sample
{
(yi, xi,1, . . . , xi,pn) : i = 1, . . . , n

}
, which is

generated from the population model (1). Then the nonparametric additive model can be
rewritten as:

yi =
pn

∑
j=1

mj(xi,j) + εi, i = 1, . . . , n. (2)

Without loss generality, we assume that the mean response is zero. For identification of
the model, we further assume the mean of each additive function is zero, i.e., Emj(xi,j) = 0
for j = 1, . . . , pn. We note that all of the response variables are centralized to satisfy the
above assumption during a real application. Here, the variance of the additive function
Var(mj(xj)) is used to distinguish the importance of the covariate. Thus, we let xj be the
important predictor if Var(mj(xj)) > 0; otherwise xj is the redundant predictor. Then we
define the index set of the important predictors as S = {j : Var(mj(xj)) > 0, j = 1, . . . , pn}.

Next, we use B-spline basis functions to approximate mj(·). Let us assume xj ∈
[0, 1] for j = 1, . . . , pn, φ̄ = {φk}q

k=0 be a knot sequence such that 0 = φ0 < φ1 < . . . <
φq = 1, and S(�, φ̄) are the space of polynomial splines of order � with knot sequence
φ̄. S(�, φ̄) is a κn–dimensional linear space with κn = q + �. For any mj(xj), j = 1, . . . , pn,
there exists the unique vector θ∗

j to satisfy

mj(xj) ≈
κn

∑
t=1

θjtBt(xj) = B(xj)
�θ∗j , (3)

where B(xj) = (B1(xj), . . . , Bκn(xj))
� and θ∗j = (θ∗j1, . . . , θ∗jκn

)�. Let wi = (w�
i,1, . . . , w�

i,pn
)�

with wi,j = B(xi,j), W = (w1, . . . , wn)� and Y = (y1, . . . , yn)�. Based on the approximation
of (3), model (2) becomes

yi = w�
i θ∗ + ε∗i , i = 1, . . . , n, (4)

where θ∗ = (θ∗1
�, . . . , θ∗pn

�)� and ε∗i = ∑
pn
j=1 mj(xi,j) − w�

i θ∗ + εi. Under model (4),
the ridge estimator minimizes the following loss

‖Y − Wθ‖2
2 + λ‖θ‖2

2,

where λ is a positive constant. Then θ̂ admits

θ̂ = W�(WW� + λIn)
−1Y, (5)
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where In is the n × n identity matrix. For linear regression, Wang and Leng [18] considered
the effect of each entry of θ, and showed that the ridge estimator achieves screening
consistency. Notice that Var(mj(xj)) ≈ θ∗j

�E(wjw
�
j )θ

∗
j . Different from linear regression,

we need to consider the group contribution of θ∗j . By the boundedness of E(wi,jw
�
i,j) from

assumption A4(i), we use ‖θ∗j ‖2 to evaluate the group contribution. Similar to the results
in [18], the ridge estimator θ̂ provides the ranking order of the group contribution in θ∗

with P
(
‖θ̂j‖2 > ‖θ̂k‖2

)
→ 1 if j ∈ S, k ∈ Sc (see Theorem 1).

One natural screening method is to sort {‖θ̂j‖2
2} in decreasing order, and select its

top m indexes, denoted as Fm = {i1, i2, i3, . . . , im}, 1 ≤ m ≤ pn. This screening process
is referred to as the “GRIE” screening procedure. We define G =

{
Fm : m = 1, . . . , pn

}
,

A =
{

m : S ⊆ Fm, 1 ≤ m ≤ pn
}

. Further, to get a more accurate result of model selection,
i.e., searching dn, which is the minimum item in the set A. At that time, Fdn is a set with
the shortest length in G that contains important variable set S. With the definition of G, we
have S ⊆ Fpn . Then Fdn is not an empty set. In summary, we want to find Fdn from G.

It is well known that the extended Bayesian information criteria (EBIC) have appeal-
ing theoretical properties and outstanding numerical performance for model selection.
Let WT = (Wj, j ∈ T ) for any subset of T ⊂ {1, . . . , pn}. The formula of the EBIC for the
sub-model (Y, WT ) is given by

EBIC(T ) = log(RSS(T )/n) +
{

κn|T | log(n) + 2γ log f (|T |)
}

/n, (6)

where γ is the preset positive constant, RSS(T ) =
∥∥Y − WT θ̂T

∥∥2
2 is the sum of squared

residuals (RSS), and f (|T |) = C|T |κn
pnκn is the combination number.

For a linear model, Wang [9] showed that EBIC(Fm) < EBIC(Fm−1) if im ∈ S. Based
on this property of EBIC and the preserving rank property of GRIE screening procedure
(see Theorem 1), we propose the following Algorithm 1 for the model selection of (1).

Algorithm 1 GRIE-EBIC algorithm.

Initialization: Input (W, Y), RSS0 = ‖Y‖2
2, n, pn, λ, κn, γ, L.

Step (i): Compute the GRIE screening procedure

1: Calculate ridge estimator θ̂ = W�(WW� + λIn)−1Y;
2: Sort {‖θ̂j‖2, j = 1, . . . , pn} in decreasing order and select the top n index set
which is denoted by Fn = {i1, i2, i3, . . . , in};

Step (ii): Direct decreasing solution path
3: For k = 1, . . . , n, do

3.1: Let Ŝk = {i1, . . . , ik} and compute the sum of squared residuals
RSSk = ‖Y − WŜk

(W�
Ŝk

WŜk
)−1W�

Ŝk
Y‖2

2 ;
3.2: Compute EBIC: EBICk = log(RSSk/n) + {κnk log(n) + 2γ log f (k)}/n;
3.3: If k ≥ L + 1 and EBICk > · · · > EBICk−L, compute K = k − L and stop;

4: Compute the difference of the EBIC to obtain the decreasing solution path
I = {k : EBICk − EBICk−1 < 0, k = 1, 2, . . . , K};

5: Find the decreasing index set Ŝ∗ = {ik : k ∈ I};
Step (iii): Forward decreasing solution path

6: Compute RSS∗ = ‖Y − WŜ∗(W
�
Ŝ∗

WŜ∗)
−1W�

Ŝ∗
Y‖2

2 and
EBIC∗ = log(RSS∗/n) + {κn|Ŝ∗| log(n) + 2γ log f (|Ŝ∗|)}/n;

7: For � ∈ Fn\Ŝ∗, do
Let Ŝ∗� = Ŝ∗ ∪ {�}, compute RSS∗� = ‖Y − WŜ∗�

(W�
Ŝ∗�

WŜ∗�
)−1W�

Ŝ∗�
Y‖2

2 and

EBIC∗� = log(RSS∗�/n) + {κn|Ŝ∗�| log(n) + 2γ log f (|Ŝ∗�|)}/n;
8: Find decreasing solution path Ŝ = Ŝ∗ ∪ {� : EBIC∗� − EBIC∗ < 0, � ∈ Fn\Ŝ∗};

Output final index set Ŝ.

In step (ii) of the GRIE-EBIC algorithm, we search the important covariates from the top
n predictor space Fn. Based on Theorem 1, GRIE has the consistency of preserving order in
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sorting. The higher the index position of the variable in Fpn , the more likely it is to be an
important variable. To speed up the calculation, we set a stopping rule for screening when the
EBIC value increases for L times continuously. To improve the robustness of the GRIE-EBIC
algorithm, in step (iii), we add the further forward screening process.

3. Asymptotic Properties

3.1. Assumptions

To establish the asymptotic properties of our proposed method, we give the following
notations and assumptions. Let Σ = E(ww�), Z = WΣ−1/2, z = Σ−1/2w, and tn = pnκn,
where w = (w�

1 , . . . , w�
pn)

� with wj = B(xj). We use ΣT = E(n−1W�
T WT ). Hr denotes

a space of functions whose d-th order derivative is Hölder continuous of order v, i.e.,
Hr = {h(z) : |h(d)(a′) − h(d)(a)| ≤ C|a′ − a|v, a, a′ ∈ [0, 1]}, where h(d)(·) is the d-th
derivative of h(·) and r = d + v. If v = 1, h(d)(·) is Lipschitz continuous. Let sn be the
cardinality of S. The following assumptions are required:

A1 Assume z has a spherically symmetric distribution, and there exists some positive c1
and C1 such that

P
(
λmin(tn

−1ZZ�) ≤ c−1
1 or λmax(tn

−1ZZ�) > c1
)
≤ 2 exp(−C1n).

A2 Assume there exists some positive constant C∗ such that, for any a ∈ R,

max
i=1,...,n

E
{

exp(aεi)
∣∣xi
}
≤ exp(C∗a2/2).

A3 Assume that (i) there exists some r ≥ 2 such that mj ∈ Hr and κn = O(n1/(2r+1)) for
any j ∈ S; (ii) ∑j∈S E|mj(xj)|2 ≤ c2sn; (iii) λmax(Σ)/λmin(Σ) ≤ c3nτ , where c2, c3 are
some positive constants and τ ≥ 0.

A4 (i) c−1
4 κ−1

n ≤ λmin(E(B(xj)B(xj)
�)) ≤ λmax(E(B(xj)B(xj)

�)) ≤ c4κ−1
n for some posi-

tive constant c4; (ii) minj∈S{E|mj(xj)|2}1/2 ≥ dn for some positive sequence dn → 0;

(iii) κr−1/2
n dn

n2τsn
√

log n
→ ∞, log(tn) = o

( d2
nn1−4τ

κ2
ns2

n log n

)
.

A5 (i) Var(y1) = O(κns2
nn3τ log(n)); (ii) For any integer N with sn < N ≤ sn log n, there

exists positive constant c6 > 0 such that

c6n−τ

κn
≤ λmin(ΣT ) (7)

holds uniformly in T ⊂ Fn satisfying |T | ≤ N and S ⊂ T .

Assumptions A1 and A3(iii) are like Assumptions 1 and 3 of [18]. Assumption A2
is the same as Assumption A3 of [11], which means that the random error follows the
sub-Gaussian distribution. Assumption A3(i) is a common assumption in the literature for
the polynomial spline basis, A3(ii) gives the upper bound of all signals, and A3(iii) gives
the upper bound of the condition number. In addition, Assumption A3(ii)–(iii) are implied
by Assumption A2 in [11]. Assumption A4(i) and a stronger assumption Var(y1) = O(1)
than A5(i), which is also imposed in [11] for achieving the consistency of variable selection.
They also assumed A5(ii) holds. Assumptions A4(ii) and (iii) give the lower bound and
upper bound of the minimal signal and dimensionality of the design matrix W.

3.2. Main Theorems

Theorem 1. If Assumptions A1–A4 hold, then

P
(

min
j∈S

‖θ̂j‖2 > max
j∈Sc

‖θ̂j‖2
)
→ 1.
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Alternatively, we can choose a sub-model Fdn with dn = O(nι) for some 0 < ι < 1 such that

P
(
S ⊂ Fdn

)
→ 1.

Theorem 1 states the consistency of preserving order in sorting, i.e., θ̂ could totally
separate the unimportant and important variables with a probability tending to 1. For the
linear models, Theorem 1 is in line with Theorem 2 in [18], which is the special case of
our theorem.

Theorem 2. If Assumptions A1–A5 hold, then

P
(
Ŝ = S

)
→ 1.

The screening methods in [7,11,12] adopted a forward selection algorithm, which
means the later results are affected by the results of the previous steps. This not only
brings a heavy computation burden but also results in overfitting results for screening with
P(S ⊆ Ŝ) → 1. Compared with this result, Theorem 2 gives strong consistency of screening
with P

(
Ŝ = S

)
→ 1.

4. Simulations

In this section, we investigate the finite sample performance of our proposed method
and compare our method with the following two procedures: forward additive regression
(FAR) in [11] and cumulative divergence-based forward regression (C-FS) in [12]. We
choose λ = 1, L = 5 (suggested by [10]), γ = 0.5 (suggested by [20]), and κn = �n1/5�+ 2
(suggested by [11]) for the GRIE-EBIC algorithm, where κn is the dimension of B-spline
basis space and �n1/5� is the greatest integer less than n1/5.

Three specific criteria are adopted to evaluate the performance of variable selection
for the additive model (1). True positive (TP) is the number of the true variables that are
considered true variables in the selected model, and false positive (FP) is the number of the
noise variables that are misclassified as true variables in the selected model. Combining TP
and FP, they reflect the accuracy of variable selection methods in the selected sub-models.
In addition, we select time as the third criterion to reflect the efficiency of variable selection
by different methods. It is easy to find that our proposed method, GRIE, is more efficient
than FAR and C-FS in computation since their complexities of calculation are O(n2 pnκn),
O(n3 pn), and O(Tn3 pn), respectively, where T is the number of repetitions for the bootstrap
procedure in the C-FS method. The comparison of computation complexities highlights the
time efficiency of GRIE in the calculation, which will be further demonstrated by simulation
results in Tables 1 and 2.

The following examples perform the effect from different dimensions and correlations
between any two covariates with each other by the above three procedures. Given two
different dimensions and three different correlations between any two predictors with each
other, the considered error followed the standard normal N(0, 1) and Chi-square 0.5χ2

2.
In each example, we generate 100 random samples, each consisting of n = 300. The data
generation procedures are implemented by the R package “MASS” generating the random
covariates, errors, and response variables. The details are as follows: (1) “rnorm”: simulated
from a multivariate normal distribution; (2) “mvrnorm”: simulated from a multivariate
normal distribution; (3) “rchisqure”: simulated from a multi Chi-square distribution; (4)
“runif”: simulated from a uniform distribution.

Example 1. We generated n samples from the following nonparametric additive model:

y = m1(x1) + m2(x2) + m3(x3) + m4(x4) + ε,

where m1(x) = 0.75 exp(x), m2(x) = x2, m3(x) = 3 sin(x), m4(x) = 2x, and
(x1, x2, . . . , xpn)

� follows a multinormal distribution N(0, Σ). In this example, given Σ =
(
σij
)
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under the following two cases: (1) Autoregressive (AR) structure, σij = ρ|i−j|; (2) Compound
symmetry (CS) structure, namely, if i �= j, σij = ρ, else σij = 1. Here, we set the parameter ρ used
to control the strength of correlation between any two predictors with each other at different values
of 0.3, 0.6, and 0.9.

Table 1. Average number of true positive (TP), false positive (FP), and calculation time over 100 repe-
titions and their robust standard deviations (in parentheses) of Example 1 with ε ∼ N(0, 1).

ρ Approach
pn = 500 pn = 1000

TP FP Time (s) TP FP Time (s)

AR Structure

0.3
FAR 4.00 (0.00) 0.00 (0.00) 83.19 (9.80) 4.00 (0.00) 0.00 (0.00) 166.26 (18.65)
C-FS 3.20 (0.40) 5.21 (2.96) 16.18 (5.38) 3.34 (0.48) 11.44 (5.38) 39.64 (14.35)
GRIE 4.00 (0.00) 0.00 (0.00) 2.37 (0.28) 3.99 (0.10) 0.01 (0.10) 3.56 (0.77)

0.6
FAR 4.00 (0.00) 0.00 (0.00) 82.06 (9.77) 4.00 (0.00) 0.00 (0.00) 168.16 (20.51)
C-FS 3.71 (0.46) 4.81 (2.39) 16.57 (4.28) 3.70 (0.46) 9.33 (4.88) 34.61 (12.24)
GRIE 3.99 (0.10) 0.00 (0.00) 2.40 (0.35) 3.98 (0.14) 0.03 (0.30) 3.43 (0.72)

0.9
FAR 3.17 (0.60) 0.00 (0.00) 81.34 (9.48) 3.09 (0.60) 0.00 (0.00) 168.70 (18.62)
C-FS 3.14 (0.51) 2.44 (1.72) 10.63 (3.01) 3.14 (0.53) 4.43 (2.96) 19.14 (6.78)
GRIE 3.71 (0.46) 0.20 (0.40) 2.22 (0.40) 3.70 (0.46) 0.21 (0.43) 3.45 (0.76)

CS Structure

0.3
FAR 4.00 (0.00) 0.00 (0.00) 83.60 (10.17) 4.00 (0.00) 0.00 (0.00) 165.38 (19.00)
C-FS 3.45 (0.52) 4.96 (2.97) 16.11 (5.23) 3.33 (0.47) 11.69 (6.24) 39.98 (16.38)
GRIE 4.00 (0.00) 0.09 (0.90) 2.30 (0.39) 4.00 (0.00) 0.02 (0.20) 3.57 (0.72)

0.6
FAR 4.00 (0.00) 0.00 (0.00) 84.24 (10.26) 4.00 (0.00) 0.01 (0.10) 166.92 (18.64)
C-FS 3.74 (0.44) 5.05 (2.98) 16.82 (5.26) 3.61 (0.55) 10.26 (5.25) 36.73 (13.38)
GRIE 4.00 (0.00) 0.23 (2.30) 2.35 (0.37) 4.00 (0.00) 0.11 (0.62) 3.41 (0.74)

0.9
FAR 3.03 (0.67) 0.00 (0.00) 85.57 (11.01) 2.79 (0.70) 0.00 (0.00) 166.02 (18.65)
C-FS 2.63 (0.65) 4.48 (3.47) 13.35 (6.08) 2.56 (0.67) 9.70 (5.93) 32.23 (15.07)
GRIE 3.89 (0.31) 1.47 (7.62) 2.21 (0.35) 3.79 (0.41) 3.16 (17.90) 3.44 (0.77)

Table 2. Average numbers of true positive (TP), false positive (FP), and calculation time over
100 repetitions and their robust standard deviations (in parentheses) of Example 1 with ε ∼ 0.5χ2

2.

ρ Approach
pn = 500 pn = 1000

TP FP Time (s) TP FP Time (s)

AR Structure

0.3
FAR 4.00 (0.00) 0.00 (0.00) 79.30 (11.14) 4.00 (0.00) 0.00 (0.00) 165.38 (22.09)
C-FS 3.27 (0.45) 5.38 (3.00) 16.43 (5.40) 3.33 (0.47) 11.24 (4.85) 39.44 (12.59)
GRIE 4.00 (0.00) 0.00 (0.00) 2.40 (0.36) 3.99 (0.10) 0.00 (0.00) 3.33 (0.68)

0.6
FAR 4.00 (0.00) 0.00 (0.00) 79.19 (12.07) 4.00 (0.00) 0.00 (0.00) 163.64 (23.37)
C-FS 3.70 (0.46) 4.42 (2.53) 15.60 (4.49) 3.77 (0.42) 9.56 (4.29) 35.74 (11.14)
GRIE 3.99 (0.10) 0.01 (0.10) 2.31 (0.33) 3.98 (0.14) 0.03 (0.30) 3.42 (0.67)

0.9
FAR 3.09 (0.68) 0.00 (0.00) 80.28 (10.89) 3.01 (0.72) 0.00 (0.00) 163.88 (22.78)
C-FS 3.10 (0.48) 2.28 (1.56) 10.15 (2.86) 3.15 (0.50) 4.26 (2.20) 19.12 (5.44)
GRIE 3.71 (0.46) 0.23 (0.51) 2.28 (0.32) 3.78 (0.42) 0.16 (0.39) 3.33 (0.67)

CS Structure

0.3
FAR 4.00 (0.00) 0.00 (0.00) 80.28 (9.59) 4.00 (0.00) 0.00 (0.00) 164.25 (19.31)
C-FS 3.51 (0.52) 5.10 (2.99) 16.50 (5.68) 3.36 (0.48) 10.87 (4.98) 37.91 (13.02)
GRIE 4.00 (0.00) 0.00 (0.00) 2.31 (0.34) 3.98 (0.14) 0.34 (3.30) 3.38 (0.66)

0.6
FAR 4.00 (0.00) 0.00 (0.00) 80.12 (11.56) 4.00 (0.00) 0.01 (0.10) 165.41 (20.04)
C-FS 3.72 (0.49) 4.71 (2.57) 16.04 (4.68) 3.68 (0.49) 9.79 (5.39) 36.12 (14.41)
GRIE 3.99 (0.10) 0.00 (0.00) 2.31 (0.29) 4.00 (0.00) 0.11 (0.65) 3.40 (0.70)
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Table 2. Cont.

ρ Approach
pn = 500 pn = 1000

TP FP Time (s ) TP FP Time (s)

0.9
FAR 3.00 (0.79) 0.03 (0.17) 79.62 (11.60) 2.85 (0.78) 0.02 (0.14) 164.90 (19.25)
C-FS 2.73 (0.66) 4.40 (2.81) 13.56 (4.91) 2.69 (0.63) 10.82 (5.99) 35.72 (15.68)
GRIE 3.94 (0.24) 3.13 (16.94) 2.28 (0.35) 3.82 (0.39) 3.63 (18.13) 3.30 (0.72)

Tables 1–4 summarize the results for the additive model in Example 1. Under the
setting of ρ = 0.3 and 0.6, except for C-FS, our proposed method and FAR method could
identify all important features and keep the FP value close to zero in both AR and CS
structures. Even so, the FAR method has the longest calculation time among the three
methods. Furthermore, when there exists strong correlations between covariates (ρ = 0.9),
the performances of all three methods are worse at identifying important variables, es-
pecially for FAR and C-FS methods. Under this situation, compared with the other two
methods, our method has the highest TP and shortest cost time. To perform the stability
of our model, we report the empirical probabilities of each important covariate and all
important covariates are retained for 100 replications in Tables 3 and 4, where Pj and Pall
are the empirical probabilities of each important covariate and all important covariates
being retained in the selected sub-model, respectively. Following Tables 3 and 4, Pall is
below 0.3 for FAR and C-FS, while the Pall of GRIE is at least 0.70. In addition, the Pj’s
of our method is the best among the three methods in high-dimensional settings. Hence,
we conclude that our proposed GRIE method performs robustly in the model selection of
nonparametric additive models under high-dimension settings.

Table 3. The empirical probabilities of each important covariate and all important covariates being
retained for 100 replications in Example 1 with ε ∼ N(0, 1).

ρ Approach
pn = 500 pn = 1000

P1 P2 P3 P4 Pall P1 P2 P3 P4 Pall

AR Structure

0.3
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 1.00 0.20 1.00 1.00 0.20 1.00 0.34 1.00 1.00 0.34
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99

0.6
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 1.00 0.71 1.00 1.00 0.71 0.98 0.72 1.00 1.00 0.70
GRIE 1.00 0.99 1.00 1.00 0.99 1.00 0.98 1.00 1.00 0.98

0.9
FAR 0.80 0.49 0.97 0.91 0.28 0.82 0.42 0.98 0.87 0.23
C-FS 0.50 0.67 0.97 1.00 0.21 0.50 0.67 0.97 1.00 0.22
GRIE 0.83 0.88 1.00 1.00 0.71 0.79 0.91 1.00 1.00 0.70

CS Structure

0.3
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 0.99 0.46 1.00 1.00 0.46 1.00 0.33 1.00 1.00 0.33
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.6
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 0.93 0.81 1.00 1.00 0.74 0.88 0.73 1.00 1.00 0.64
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.9
FAR 0.63 0.57 0.98 0.85 0.24 0.58 0.49 0.91 0.81 0.16
C-FS 0.11 0.62 0.97 0.93 0.05 0.12 0.53 0.97 0.94 0.07
GRIE 0.93 0.96 1.00 1.00 0.89 0.87 0.92 1.00 1.00 0.79

226



Mathematics 2022, 10, 4551

Table 4. The empirical probabilities of each important covariate and all important covariates being
retained for 100 replications in Example 1 with ε ∼ 0.5χ2

2.

ρ Approach
pn = 500 pn = 1000

P1 P2 P3 P4 Pall P1 P2 P3 P4 Pall

AR Structure

0.3
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 1.00 0.27 1.00 1.00 0.27 1.00 0.33 1.00 1.00 0.33
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99

0.6
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 1.00 0.70 1.00 1.00 0.70 0.99 0.78 1.00 1.00 0.77
GRIE 1.00 0.99 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.98

0.9
FAR 0.81 0.47 0.95 0.86 0.28 0.82 0.45 0.94 0.80 0.26
C-FS 0.42 0.70 0.98 1.00 0.17 0.53 0.65 0.97 1.00 0.21
GRIE 0.82 0.89 1.00 1.00 0.71 0.84 0.94 1.00 1.00 0.78

CS Structure

0.3
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 0.99 0.52 1.00 1.00 0.52 0.99 0.37 1.00 1.00 0.36
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.98

0.6
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C-FS 0.93 0.79 1.00 1.00 0.74 0.92 0.76 1.00 1.00 0.69
GRIE 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0.9
FAR 0.54 0.65 0.97 0.84 0.28 0.55 0.55 0.94 0.81 0.24
C-FS 0.12 0.66 0.97 0.98 0.09 0.14 0.61 0.97 0.97 0.08
GRIE 0.97 0.97 1.00 1.00 0.94 0.88 0.94 1.00 1.00 0.82

Example 2. In this example, we consider a linear model with a group structure given by

y =
pn

∑
i=1

βixi + ε

with the predictors being generated by the following process⎧⎪⎨⎪⎩
xi = z1 + z + wi, ∀ i = 1, 3,
xi = z2 + z + wi, ∀ i = 2, 4,

x5, . . . , xpn
i.i.d∼ N(0, 1),

where w1, . . . , w4
i.i.d∼ U(0, 1), z1, z2

i.i.d∼ U(0, 1) and the common component z ∼ N
(
0, δ2).

The variance parameter δ is set at different values of 0.4, 0.6, and 0.8 to control the strength of the
group structure. The true value of the coefficients are βi = 3 with i = 1, . . . , 4 and βi = 0 with
i = 5, . . . , pn.

We also conducted simulations with the normal errors and chi-square errors for
Example 2 and found that the performances of the two errors in this example were very
close. Therefore, we omitted the results of chi-square errors to save space. In the following,
we only report the results from the normal errors in Tables 5 and 6. We find that the FAR’s
performance is the worst for identifying important features with the increase in correlations
between groups, the performances of C-FS and our method GRIE also become worse when
δ is over 0.6, while GRIE performs better even if there exists a strong correlation among
covariates. The above phenomena can be further explained by Table 6. When δ is over 0.6,
there is no longer an overwhelming empirical probability of screening important covariates
for FAR and C-FS, which results in a decrease in TP and Pall values. However, our proposed
method is still relatively robust to different values of δ in terms of TP and Pall.
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Table 5. Average numbers of true positive (TP), false positive (FP), and calculation time over
100 repetitions and their robust standard deviations (in parentheses) of Example 2 with ε ∼ N(0, 1).

δ Approach
pn = 500 pn = 1000

TP FP Time (s) TP FP Time (s)

0.4
FAR 4.00 (0.00) 0.59 (0.51) 81.85 (10.28) 3.98 (0.20) 0.57 (0.50) 168.16 (20.16)
C-FS 4.00 (0.00) 5.32 (2.97) 18.74 (5.35) 4.00 (0.00) 11.40 (5.37) 42.87 (15.18)
GRIE 4.00 (0.00) 0.04 (0.24) 2.41 (0.36) 4.00 (0.00) 0.06 (0.34) 3.59 (0.64)

0.6
FAR 3.94 (0.28) 1.09 (0.49) 80.25 (9.06) 3.86 (0.49) 1.07 (0.48) 164.35 (18.90)
C-FS 4.00 (0.00) 6.05 (2.88) 19.32 (5.19) 4.00 (0.00) 12.11 (5.37) 43.61 (14.17)
GRIE 4.00 (0.00) 0.17 (0.49) 2.33 (0.34) 4.00 (0.00) 0.18 (0.54) 3.43 (0.63)

0.8
FAR 3.66 (0.73) 1.26 (0.50) 80.04 (9.10) 3.68 (0.72) 1.22 (0.54) 164.05 (18.76)
C-FS 3.81 (0.42) 5.88 (2.82) 18.62 (5.41) 3.85 (0.36) 12.13 (5.18) 42.92 (13.12)
GRIE 3.95 (0.22) 0.38 (0.72) 2.37 (0.34) 3.89 (0.31) 0.27 (0.63) 3.45 (0.75)

Table 6. The empirical probabilities of each important covariate and all important covariates being
retained for 100 replications in Example 2 with ε ∼ N(0, 1).

δ Approach
pn = 500 pn = 1000

P1 P2 P3 P4 Pall P1 P2 P3 P4 Pall

0.4
FAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.6
FAR 0.99 0.99 0.98 0.98 0.95 0.96 0.98 0.97 0.95 0.92
C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GRIE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.8
FAR 0.92 0.91 0.91 0.92 0.81 0.90 0.92 0.93 0.93 0.83
C-FS 0.93 0.97 0.96 0.95 0.82 0.94 0.97 0.97 0.97 0.85
GRIE 1.00 1.00 0.97 0.98 0.95 0.97 1.00 0.95 0.97 0.89

5. Real Data

5.1. Boston Housing Data

We use the Boston housing dataset to further illustrate the performance of our pro-
posed method. The dataset contains the MEDV (median value of owner-occupied homes)
in 506 U.S. census tracts of Boston from the 1970 census and 13 other variables that explain
the variation in housing value. The 13 explaining variables are RM (average number of
rooms per dwelling), AGE (proportion of owner-occupied units built prior to 1940), RAD
(index of accessibility to radial highways), TAX (full-value property-tax rate per 10,000),
PTRATIO (pupil-teacher ratio by town), B (1000(Bk − 0.63)2, Bk is the proportion of blacks
by town), LSTAT (lower status of the population), CRIM (per capita crime rate by town),
ZN (proportion of residential land zoned for lots over 25,000 square footage), INDUS
(proportion of non-retail business acres per town), CHAS (Charles River dummy variable),
NOX (nitric oxides concentration parts per 10 million), and DIS (weighted distances to five
Boston employment centers). To simplify notation, we denote the covariates RM, AGE,
RAD, TAX, PTRATIO, B, LSTAT, CRIM, ZN, INDUS, CHAS, NOX, and DIS as x1, . . . , x13.
To study the relationship between MEDV and the above 13 variables, we consider the
following nonparametric addition models:

y =
13

∑
j=1

mj(xj) + ε, (8)

where y is the log(MEDV). In order to extend the above model to the setting of high-
dimensional data, followed by [21], we generate artificial variables xj to add noise variables,
which is defined as follows.
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xj =
Zj + 2W

3
,

for j = 14, . . . , 1000 into (8), where Z14, . . . , Z1000
i.i.d∼ N(0, 1), and W∼U(0, 1).

We use FAR, C-FS, and GRIE to identify important variables in the above additive
model (8) with the full dataset. The results are as follows.

(i) Under FAR, 3 covariates {x1, x7, x8} are selected, denoted by “model (A1)”.
(ii) Under GRIE, we receive 6 covariates {x1, x5, x6, x7, x8, x12}, denoted by “model (B1)”.
(iii) Under C-FS, there are 15 covariates chosen. They are {x1, x2, x3, x4, x5, x6, x7, x8,

x9, x12, x13, x156, x377, x737, x859}, denoted by “model (C1)”.

The above three sub-models have such a nest relation with A1 ⊆ B1 ⊆ C1, and we
want to investigate which model is best for fitting this dataset. The nondegenerative Vuong
test in [22] is considered here to compare two nested models, and its null hypothesis is
that the two models are equivalent. We first compare model (A1) with model (B1) by the
Vuong test, and its p-value = 0.001, which leads to the rejection of the null hypothesis. This
indicates model (B1) is better than model (A1) since (A1) is nested in (B1). We also compare
model (B1) with model (C1), and its corresponding p-value of the Vuong test equals 0.981,
which indicates models (B1) and (C1) are equivalent since the null hypothesis is not rejected
in this situation. However, model (B1) has a smaller model size than model (C1). Therefore,
model (B1) is more suitable than model (C1) for fitting the Boston housing dataset to be
the best working model, which indicates that GRIE performs the best in identifying the
important variables among the above three variable selection methods.

To further demonstrate our results, we compare FAR, C-FS, and GRIE through their
prediction errors. Toward this end, we randomly select 100 validation sets, with each of which
the full sample is randomly partitioned into the training and validation sets with the size ratio
4 : 1. The training sets are for variable section, and the validation sets are for the estimation
of the prediction error. We centralize the response variable y and choose the cubic splines
κn = 3 to approximate the additive function. The average numbers of model size, the number
of selected noise variables (SNV), and adjusted mean prediction errors (A-PE) are used to
evaluate the performance of the three methods. All the results are reported in Table 7.

Table 7. Average numbers of model size, the number of SNV, and A-PE over 100 repetitions and
their robust standard deviations (in parentheses) of Boston Housing Data.

Approach Model Size SNV A-PE

FAR 2.10 (0.30) 0.00 (0.00) 0.052 (0.011)
C-FS 19.26 (5.39) 8.71 (5.10) 0.047 (0.012)
GRIE 5.07 (0.95) 0.00 (0.00) 0.043 (0.010)

From Table 7, we have that: (1) The model sizes of our method, GRIE, and FAR are
both smaller than C-FS, but the A-PE of FAR is the largest among the three methods, which
means that FAR may fail to identify some important variables. To verify it, we report the
frequency for 13 real covariates being selected over 100 replications in Table 8. Table 8
shows that RM and LSTAT are selected by all methods in each repetition. Except for the FAR
method, PTRATIO, B, and CRIM can be selected by GRIE and C-FS with high frequency.
It is seen that the pupil–teacher ratio, the proportion of blacks, and the per capita crime
rate are the key factors affecting housing prices. However, FAR misses the above important
variables. (2) For the value of SNV, both our method, GRIE, and FAR are 0, which means
that they can successfully exclude all artificial variables.

In summary, compared with C-FS and FAR, our method has the smallest A-PE,
the smallest SNV, and a simple model, which implies our method has better performance
in feature screening under high-dimensional settings.
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Table 8. The frequency for 13 real covariates being selected over 100 replications for Boston Hous-
ing Data.

Variable FAR C-FS GRIE

RM 100 100 100
AGE 0 99 0
RAD 0 60 6
TAX 0 59 7

PTRATIO 0 100 68
B 0 92 99

LSTAT 100 100 100
CRIM 10 100 80

ZN 0 97 0
INDUS 0 22 0
CHAS 0 26 0
NOX 0 100 47
DIS 0 100 0

5.2. Arabidopsis thaliana Gene Data

We now turn to Arabidopsis thaliana gene data to illustrate the screening performance of
our method. This dataset was developed by Wille et al. (2004) [23], who detected modules
of closely connected isoprenoid genes in Arabidopsis thaliana. It is available on the website
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783 (accessed on 16 November 2022),
which is composed of 834 genes from 58 different pathways in 118 samples. Chen et al. [24]
found that GGPPS11 played an essential role in the generation of GGPP, which is the common
precursor of several biologically important compounds (such as carotenoids, chlorophylls,
and gibberellins), in Arabidopsis. Our goal is to identify the remaining 833 genes’ effects on
the expression value of gene GGPPS11.

Followed by Wille et al. [23], the downloaded data R = {y, x1, . . . , x833} were con-
verted to permille data by taking 1000R. To get the original dataset, we model 0.001R here
and consider the corresponding nonparametric additive models:

y =
833

∑
j=1

mj(xj) + ε, (9)

where y is the expression value of gene GGPPS11, and {x1, . . . , x833} are the expression values
of the remaining 833 genes. Next, we adopt the above additive model on the full dataset
to identify the important variables by the three mentioned methods. The results are given
as follows:

(i) Under FAR, we get one gene {x72}, denoted by“model (A2)”;
(ii) Under GRIE, three genes {x140, x571, x560} are chosen, denoted by “model (B2)”;
(iii) Under C-FS, there nine genes were chosen, which are {x72, x105, x191, x476, x510, x517,

x554, x658, x800}, and it is denoted by “model (C2)”.

Again, using the nondegenerative Vuong test from Liao and Shi [22], we compare
models (A2) and (B2). The corresponding p-value of the test is 0.012, indicating that the
above two models are not equivalent at the 5% significance level. Then, we also compare
models (B2) with (C2), and the p-value is 0. Hence, models (B2) and (C2) are not equivalent
at the 5% significance level.

Lastly, similarly to the first real data case, we compare FAR, C-FS, and GRIE through
their prediction errors. Again, we randomly divide the full dataset into the training and
validation sets with a ratio of 4:1 and repeat this process 100 times. Here, we also centralize
the response variable y and set κn = 3. For this real data, we consider the average numbers
of model size and A-PE to evaluate the performance of the three models. The results are
shown in Table 9. Thus, we conclude that our proposed method has the smallest model
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size with the strongest ability for prediction and outstanding performance in identifying
important covariates compared with the other two methods.

Table 9. Average numbers of model size, A-PE over 100 repetitions, and their robust standard
deviations (in parentheses) of Arabidopsis thaliana gene data.

Approach Model Size A-PE

FAR 1.00 (0.00) 0.289 (0.099)
C-FS 10.15 (3.34) 0.282 (0.181)
GRIE 1.76 (1.18) 0.276 (0.093)

6. Conclusions

In this paper, we propose a novel variable screening screener (GRIE) for high-dimensional
nonparametric additive models, which is a combination of the nonparametric smoothing
ridge estimation and the group information. We note that our paper is one of the first
to focus on the free marginal correlation assumption. Without the marginal correlation
assumption, the proposed screener can totally separate the unimportant and important
variables with a probability tending to one. Compared with iterative sure independence
screening and forward screening, the proposed screener could essentially eliminate the
computational burden and achieve strong, sure screening consistency. Furthermore, it
allows the covariates to be strongly correlated and performs better than its alternative
competitors. For these reasons, combining the strong, sure screening property of GRIE
with the model selection property of EBIC, we propose the GRIE-EBIC method to further
eliminate the noise variables and improve the accuracy of model selection. Theoretically,
we establish the strong consistency of model selection for the GRIE-EBIC method, which
reveals that our proposed method achieves the ideal model selection results.

We conclude this paper with a discussion of directions for future research. One
direction to consider is nonparametric additive models with interaction effects between
covariates, which are defined as

E(y | x) = ∑
1≤j<k≤pn

mj,k(xj, xk),

where xj is the jth element of x. They are the generalization of linear models with two-
way interaction effects [25] that are more flexible for capturing the intersection between
covariates. One potential approach may be to use the tensor splines bases to approximate
each nonparametric function mj,k(·, ·). The other direction is to study how to apply our
methodology in the nonparametric generalized additive models [26,27]. The nonparametric
generalized additive models admits

G{E(y | x)} =
pn

∑
j=1

mj(xj),

where xj is the jth elements of x, and G(·) is the link function. Since the nonparamet-
ric smoothing ridge estimation has outstanding performance in nonparametric additive
models, its performance in generalized additive models may be worth investigating.

Author Contributions: Conceptualization, X.J. and J.L.; methodology, H.W. and X.J.; software, H.W.
and H.J.; resources, J.L.; data curation, H.J.; writing—original draft preparation, H.W.; supervision,
X.J.; funding acquisition, X.J. and J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The work of Jiang is partially supported by the National Natural Science Foundation
of China (11871263), and the Shenzhen Sci-Tech Fund No. JCYJ20210324104803010. The work of
Li was partially supported by the NSF of China No. 11971221, Guangdong NSF Major Fund No.
2021ZDZX1001, the Shenzhen Sci-Tech Fund No. RCJC20200714114556020.

231



Mathematics 2022, 10, 4551

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Boston housing dataset is available in the R package “MASS”.
Arabidopsis thaliana gene data are available on the website https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC545783 (accessed on 16 November 2022).

Acknowledgments: We would like to acknowledge the editor and four referees for their valuable
comments and suggestions which leads to a substantial improvement of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Now we give technical proofs of our theorems. To streamline our arguments, we introduce
some notations and technical lemmas. Define v = (v1, . . . , vn)� with vi = ∑

pn
j=1 mj(xi,j)−w�

i θ∗.

Denoted by ξi = e�i W�(WW�)−1Wθ∗, ηi = e�i W�(WW� + λIn)−1ε with ε = (ε1, . . . , εn)�,
and ζi = e�i W�(WW� + λIn)−1v.

Lemma A1. UnderAssumptions A1 and A3, the following conclusions hold

(i) for C > 0 and any fixed vector b with ‖b‖2 = 1, there exists constants c′1 and c′2 with
0 < c′1 < 1 < c′2 such that

P
(
b�Pλ,W�b < c′1

n1−τ

tn
or b�Pλ,W�b > c′2

n1+τ

tn

)
≤ 4 exp(−Cn);

(ii) for any C > 0, there exists positive constant M > 0 such that

P
(
|e�i Pλ,W�ej| >

Mn1+τ−α

tn
√

log n

)
= O

{
exp
(
− C

n1−2α

2 log n
)}

holds for any 0 ≤ α < 1/2 and 1 ≤ i �= j ≤ tn;
(iii) for any 1 ≤ i ≤ tn, the following inequality

P
(
‖(WW� + λIn)

−1Wei‖2
2 > c′2c1c3κnn1+2τt−2

n
)
≤ 3 exp(−C1n)

holds.

Proof of Lemma A1. Similar to proof of Theorem 3 in [18], we can show that Lemma A1
holds.

Lemma A2. Under Assumptions A1–A4, the following conclusions hold

(i) dnκr
n → ∞ and dnn1/2−2τ/

√
log n → ∞;

(ii) ‖v‖2 ≤ cnsnn1/2κ−r
n for some cn > 0, ‖θ∗j ‖2 ≥ 0.5c−1/2

4 κ1/2
n minj∈S{E|mj(xj)|2}1/2,

and ∑j∈S ‖θ∗j ‖2
2 ≤ 3c2c4snκn;

(iii) P
(
|ηi| ≥

√
c′2c1c3C∗dn(log n)−1/2n1−τt−1

n
)
≤ 2 exp(−c0κ−1

n d2
nn1−4τ/ log n) for some

constant c0 > 0;
(iv) P

(
|ζi| ≥

√
c′2c1c3cnsnκ1/2−r

n n1+τt−1
n
)
≤ 3 exp(−C1n).

Proof of Lemma A2. (i) It follows that Lemma A2(i) holds by Assumptions A3 and A4.
(ii) By Assumption A3 (i) and Corollary 6.21 of [28], we can obtain

sup
x,j

|mj(x)− B(x)�θ∗j | ≤ cnκ−r
n , (A1)
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and ∣∣{E|B(xj)
�θ∗j |2}1/2 − {E|mj(xj)|2}1/2∣∣

=

∣∣E|B(xj)
�θ∗j |2 − E|mj(xj)|2

∣∣
{E|B(xj)�θ∗j |2}1/2 + {E|mj(xj)|2}1/2

≤
supx,j |mj(x)− B(x)�θ∗j |{E|mj(xj)|+ E|B(xj)

�θ∗j |}
{E|B(xj)�θ∗j |2}1/2 + {E|mj(xj)|2}1/2 = O(κ−r

n ).

This combined with minj∈S{E|mj(xj)|2}1/2 ≥ dn, dnκr
n → ∞ in Lemma A2(i), and

‖θ∗j ‖2
2 ≥ λ−1

max(E(B(xj)B(xj)
�))E|B(xj)

�θ∗j |2 ≥ c−1
4 κn(E|B(xj)

�θ∗j |2)

by noticing λmax(E(B(xj)B(xj)
�)) ≤ c4κ−1

n , yields that

‖v‖2 = O(snn1/2κ−r
n ) and ‖θ∗j ‖2 ≥ 0.5c−1/2

4 κ1/2
n {E|mj(xj)|2}1/2

for any j ∈ S. By (A1) and λmin(E(B(xj)B(xj)
�)) ≥ c−1

4 κ−1
n , we have

‖θ∗j ‖2
2 ≤ λ−1

min(E(B(xj)B(xj)
�))E|B(xj)

�θ∗j |2

≤ 2c4κn{E|B(xj)
�θ∗j − mj(xj)|2 + E|mj(xj)|2}

= O(κ1−2r
n ) + 2c4κnE|mj(xj)|2.

It follows from assumption A3(i)-(ii) that

∑
j∈S

‖θ∗j ‖2
2 ≤ O(snκ1−2r

n ) + 2c4κn ∑
j∈S

E|mj(xj)|2 ≤ 3c2c4snκn.

(iii) It is noticed that

ηi = e�i W�(WW� + λIn)
−1ε = ‖(WW� + λIn)

−1Wei‖2a�ε, (A2)

where
a = (WW� + λIn)

−1Wei/‖(WW� + λIn)
−1Wei‖2.

Using Lemma A1, for some C1 > 0, we have

P
(
a�Pλ,W�a > c′2

n1+τ

tn

)
≤ 4 exp(−C1n)

and

P
(
‖(WW� + λIn)

−1Wei‖2
2 > c′2c1c3κnn1+2τt−2

n
)
≤ 3 exp(−C1n). (A3)

By Assumption A2 and Proposition 3 of [4], we obtain

P
(
‖Paε‖2

2 > C∗h(t)
)
≤ (1 + t)1/2 exp(−t/2)

for any t > 2, where

h(t) =
(1 + t)

{1 − 2/(exp(t/2)
√

1 + t − 1)}2
.

Let χn = 0.9κ−1
n d2

nn1−4τ/ log n. We have h(χn) ≤ κ−1
n d2

nn1−4τ/ log n for sufficient
large n since dnκ−1/2

n n1/2−2τ/
√

log n → ∞. Therefore, there exists some positive constant
c0 < 0.45 such that
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P
(
|a�ε| > C1/2

∗ dnκ−1/2
n n1/2−2τ/

√
log n

)
= P

(
‖Paε‖2

2 > C∗κ−1
n d2

nn1−4τ/ log n
)

≤ P
(
‖Paε‖2

2 > C∗h(χn)
)

≤ (1 + χn)
1/2 exp(−χn/2)

≤ exp(−c0κ−1
n d2

nn1−4τ/ log n)

for sufficient large n. This, combined with (A2) and (A3), leads to

P
(
|ηi| ≥

√
c′2c1C∗c3dn(log n)−1/2n1−τt−1

n
)
≤ 2 exp(−c0κ−1

n d2
nn1−4τ/ log n).

(iv) From Lemmas A2(ii) and (A3), we have

P
(
|ζi| ≥

√
c′2c1c3cnκ1/2−r

n n1+τt−1
n sn

)
≤ 3 exp(−C1n).

This completes the proof of Lemma A2.

Proof of Theorem 1. From the definition of θ̂j in (5), we have

θ̂j = W�
j (WW� + λIn)

−1Y

= W�
j (WW� + λIn)

−1Wθ∗ + W�
j (WW�)−1v + W�

j (WW� + λIn)
−1ε

≡ θ̃j + E1,j + E2,j.

Next, we divide the proof into four parts.
Part (I): In this part, we establish the upper bound of maxj∈Sc ‖E1,j + E2,j‖2.
By noticing ‖E2,j‖2 ≤ κ1/2

n max1≤i≤tn |ηi|, we have

P
(

max
1≤j≤pn

‖E2,j‖2 ≥ cκ1/2
n dnn1−τ

tn
√

log n

)
≤ P

(
max

1≤i≤tn
|ηi| ≥

cdnn1−τ

tn
√

log n

)
≤

tn

∑
i=1

P
(
|ηi| ≥

cdnn1−τ

tn
√

log n

)
.

It follows from Lemma A2 that, for some constants c and c0,

P
(

max
1≤j≤pn

‖E2,j‖2 ≥ cκ1/2
n dnn1−τ

tn
√

log n

)
≤ 2tn exp(−c0κ−1

n d2
nn1−4τ(log n)−1)

≤ exp(−0.5c0κ−1
n d2

nn1−4τ(log n)−1),

where the last inequality holds due to log(tn) = o(κ−1
n d2

nn1−4τ(log n)−1). Similarly, by
Lemma A2, ‖E1,j‖2 ≤ κ1/2

n max1≤i≤tn |ζi|, and Bonferroni’s inequality, there exists some
constant c∗ such that

P
(

max
1≤j≤pn

‖E1,j‖2 ≥ c∗κ1−r
n n1+τsn

tn

)
≤ 3tn exp(−C1n) ≤ 3 exp(−0.5C1n).

By noticing κr−1/2
n dn/(n2τsn

√
log n) → ∞, we obtain

P
(

max
1≤j≤pn

‖E1,j + E2,j‖2 ≥ (c + c∗)κ1/2
n dnn1−τ

tn
√

log n

)
≤ 2 exp(−0.5c0κ−1

n d2
nn1−4τ(log n)−1). (A4)

Part (II): In this part, we establish the upper bound of maxj∈Sc ‖θ̃j‖2. For 1 ≤ j ≤ tn,
there exists index set Mj ⊆ {1, . . . , tn} such that θj = θMj , where θMj is the sub-vector
of θ formed by all components with indexes in Mj. Denoted by M = ∪j∈SMj and
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θ = (θ1, . . . , θtn)
� with tn = pnκn. By Cauchy–Schwarz’s inequality, Lemma A2(ii), and

Assumption A4(ii), we obtain that

‖θ̃j‖2 ≤ √
κn max

i∈Mj
| ∑

k∈M
e�i Pλ,W�ekθ∗k |

≤
√

snκ2
n‖θ∗‖2 max

1≤i �=k≤tn
|e�i Pλ,W�ek|

≤
√

3c2c4s2
nκ3

n max
1≤i �=k≤tn

|e�i Pλ,W�ek|

for j ∈ Sc, where c2 and c4 are defined in Assumptions A3 and A4. It follows from
Lemma A1 and Bonferroni inequalities that, for some constants M, C1 > 0,

P
(

max
1≤i �=k≤tn

|e�i Pλ,W�ek| >
Mn1+τ−α

tn
√

log n

)
≤ ∑

1≤i �=k≤tn

P
(
|e�i Pλ,W�ek| >

Mn1+τ−α

tn
√

log n

)
= O

{
exp
(
2 log tn − C1

n1−2α

2 log n
)}

,

holds for any 0 ≤ α < 1/2. By taking nα = d−1
n κnsnn2τ and assumption log(tn) =

o
( d2

nn1−4τ

κ2
ns2

n log n

)
in A4 (iii), we can obtain

P
(

max
j∈Sc

‖θ̃j‖2 >

√
3c2c4κn Mn1−τdn

tn
√

log n

)
≤ O

{
exp
(
2 log tn − C1

d2
nn1−4τ

2κ2
ns2

n log n
)}

= O
{

exp
(
− C1

d2
nn1−4τ

3κ2
ns2

n log n
)}

. (A5)

Part (III): In this part, we establish the lower bound of minj∈S ‖θ̃j‖2.
From the triangle inequality, we have

min
j∈S

‖θ̃j‖2

= min
j∈S

‖W�
j (WW� + λIn)

−1Wjθ
∗
j + ∑

k �=j,k∈S

W�
j (WW� + λIn)

−1Wkθ∗k‖2

≥ min
j∈S

‖W�
j (WW� + λIn)

−1Wjθ
∗
j ‖2 − max

j∈S
‖ ∑

k �=j,k∈S

W�
j (WW� + λIn)

−1Wkθ∗k‖2

≡ In,1 − In,2.

With the same arguments as (A5), we can establish that

P
(

In,2 >

√
3c2c4κn Mn1−τdn

tn
√

log n

)
= O

{
exp
(
− C1

d2
nn1−4τ

3κ2
ns2

n log n
)}

. (A6)

Applying equality (a + b)2 ≥ a2/2 − b2 and Jensen’s inequality, we can obtain

‖Wj(WW� + λIn)
−1Wjθ

∗
j ‖2

2

= ∑
i∈Mj

(
∑

k∈Mj

e�i Pλ,W�ekθ∗k )
2

≥ ∑
i∈Mj

(e�i Pλ,W�ei)
2|θ∗i |2/2 − ∑

i∈Mj

(
∑

k∈Mj ,k �=i
e�i Pλ,W�ekθ∗k )

2

≥ min
i∈Mj

(e�i Pλ,W�ei)
2‖θ∗j ‖2

2/2 − κn ∑
i∈Mj

∑
k∈Mj ,k �=i

(e�i Pλ,W�ek)
2|θ∗k |2

≥ min
i∈Mj

(e�i Pλ,W�ei)
2‖θ∗j ‖2

2/2 − κ2
n‖θ∗j ‖2

2 max
i,k∈Mj ,i �=k

(e�i Pλ,W�ek)
2.
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Thus,

I2
n,1 ≥ min

j∈S
‖θj‖2

2
{

min
i∈M

(e�i Pλ,W�ei)
2/2 − κ2

n max
i,k∈M,i �=k

(e�i Pλ,W�ek)
2}.

Lemma A1, snκn = o(n) and Bonferroni inequalities give that, for some constants
c′1, M, α and C1 > 0,

P
(

min
i∈M

e�i Pλ,W�ei ≤
c′1n1−τ

tn

)
≤ ∑

i∈M
P
(
e�i Pλ,W�ei ≤

c′1n1−τ

tn

)
≤ 4n exp(−C1n)

and

P
(

max
i,k∈M,i �=k

|e�i Pλ,W�ek| ≥
Mn1+τ−α

tn
√

log n

)
≤ ∑

i,k∈M,i �=k
P
(
e�i Pλ,W�ek ≥

Mn1+τ−α

tn
√

log n

)
≤ O

{
n exp

(
− C1

n1−2α

2 log n
)}

holds for any 0 ≤ α < 1/2. Denoted by

A1 =
{

min
i∈M

e�i Pλ,W�ei ≤
c′1n1−τ

tn

}
, A2 =

{
max

i,k∈M,i �=k
|e�i Pλ,W�ek| ≥

Mn1+τ−α

tn
√

log n

}
,

and

A3 =
{

min
i∈M

(e�i Pλ,W�ei)
2/2 − κ2

n max
i,k∈M,i �=k

(e�i Pλ,W�ek)
2 >

|c′1|2n2−2τ

3t2
n

}
.

By taking α = 2τ + logn(κn), we have

P(A3) ≥ P(Ac
1 ∩ Ac

2) ≥ 1 − P(A1)− P(A2) = 1 − O
{

n exp
(
− C1

n1−2τ

2κ2
n log n

)}
. (A7)

It is obvious that minj∈S ‖θj‖2
2 ≥ 0.25c−1

4 κnd2
n from Lemma A2(ii) and

Assumption A4(ii). This, combined with (A7), yields that

P
(

I2
n,1 ≥ |c′1|2c−1

4 κnd2
nn2−2τ

12t2
n

)
≥ 1 − O

{
n exp

(
− C1

n1−2τ

2κ2
n log n

)}
. (A8)

Similar to (A7), we can obtain

P
(

min
j∈S

‖θ̃j‖2 ≥ c′1c−1/2
4 κ1/2

n dnn1−τ

12tn

)
≥ 1 − O

{
exp
(
− C1

d2
nn1−4τ

3κ2
ns2

n log n
)}

(A9)

by combing (A6) and (A8).
Part (IV): In this part, we show that

P
(

min
j∈S

‖θ̂j‖2 > max
j∈Sc

‖θ̂j‖2
)
→ 1. (A10)

Similar to (A7), by θ̂j = θ̃j + E1,j + E2,j, (A4) and (A9), we can show that

P
(

min
j∈S

‖θ̂j‖2 ≥ c′1c−1/2
4 κ1/2

n dnn1−τ

13tn

)
≥ P
(

min
j∈S

‖θ̃j‖2 − max
1≤j≤pn

‖E1,j + E2,j‖2 ≥ c′1c−1/2
4 κ1/2

n dnn1−τ

14tn

)
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≥ 1 − O
{

exp
(
− C1

d2
nn1−4τ

3κ2
ns2

n log n
)
+ exp

(
− c0d2

nn1−4τ

2κn log n
)}

. (A11)

Denote by A4 =
{

max1≤j≤pn ‖E1,j +E2,j‖2 ≥ (c+c∗)κ1/2
n dnn1−τ

tn
√

log n

}
, A5 =

{
maxj∈Sc ‖θ̃j‖2 >

√
3c2c4κnMn1−τdn

tn
√

log n

}
, and

A6 =
{

max
1≤j≤pn

‖E1,j + E2,j‖2 + max
j∈Sc

‖θ̃j‖2 ≥ (c + c∗ +
√

3c2c4)κ
1/2
n dnn1−τ

tn
√

log n

}
.

Since A6 ∩ Ac
5 ⊆ A4, by (A4) and (A5), we have

P(A6) = P(A6 ∩ A5) + P(A6 ∩ Ac
5)

≤ P(A5) + P(A4)

= O
{

exp
(
− c0d2

nn1−4τ

2κn log n
)
+ exp

(
− C1

d2
nn1−4τ

3κ2
ns2

n log n
)}

.

Using maxj∈Sc ‖θ̂j‖2 ≤ max1≤j≤pn ‖E1,j + E2,j‖2 + maxj∈Sc ‖θ̃j‖2, we obtain that

P
(

max
j∈Sc

‖θ̂j‖2 <
(c + c∗ +

√
3c2c4)κ

1/2
n dnn1−τ

tn
√

log n

)
≥ P
(

max
j∈Sc

‖θ̃j‖2 + max
1≤j≤pn

‖E1,j + E2,j‖2 <
(c + c∗ +

√
3c2c4)κ

1/2
n dnn1−τ

tn
√

log n

)
≥ 1 − O

{
exp
(
− c0d2

nn1−4τ

2κn log n
)
+ exp

(
− C1

d2
nn1−4τ

3κ2
ns2

n log n
)}

. (A12)

Notice that d2
nn1−4τ

κ2
ns2

n log n
→ ∞ and (c + c∗ +

√
3c2c4)/

√
log n � c′1c−1

4 /13 for sufficient
large n. This, combined with (A11) and (A12), establishes (A10). The proof is completed.

Proof of Theorem 2. We divide the proof into two parts.
Part (I) to show that P(Ŝ∗ = S) → 1; Part (II) to show that P(Ŝ = Ŝ∗) → 1.
Part (I): Step (i) It is noticed that Y = WSθ∗S + v + ε and PWŜk

− PWŜk−1
= PW̃ik

with

W̃ik = (In − PWŜk−1
)Wik . For ik ∈ S, we obtain that

RSSk−1 − RSSk = Y�(In − PWŜk−1
)Y − Y�(In − PWŜk

)Y

= ‖PW̃ik
(WSθ∗S + v + ε)‖2

2

≥ ‖PW̃ik
WSθ∗S‖2

2/2 − ‖PW̃ik
(v + ε)‖2

2. (A13)

Next, let us deal with the above two terms separately. Denoted by Tk = (S ∪ Ŝk−1) \
{ik}. We have

‖PW̃ik
WSθ∗S‖2

2 = ‖(PWŜk
− PWŜk−1

)WSθ∗S‖2
2

≥ inf
t
‖PWŜk

WSθ∗S − WŜk−1
t‖2

2

≥ inf
a
‖PWŜk

Wik θ∗ik − WTk a‖2
2.
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From PWŜk
Wik = Wik , Lemma A2, Assumption A4(ii), and ik ∈ S, we can obtain

min
ik∈S

‖PW̃ik
WSθ∗S‖2

2 ≥ min
ik∈S

‖θ∗ik‖
2
2‖(In − PWTk

)Wik‖2
2

≥ 0.25c−1
4 κnd2

n min
ik∈S

‖(In − PWTk
)Wik‖2

2. (A14)

From Theorem 1, we have conclusion |Tk ∪ {ik}| = O(sn) holding for ∀ ik ∈ S with
probability tending to one. This, combined with Assumption A5, yields that

λmin(n−1W�
T WT ) ≥ 0.5c6n−τκ−1

n (A15)

with probability going to one, where WT = (WTk , Wik ). It follows from λmax{(W�
ik

Wik )
−1}

≤ λmax{W�
T WT } and (A15) that

min
ik∈S

‖PW̃ik
WSθ∗S‖2

2 ≥ 2μ0d2
nn1−τ (A16)

with μ0 = 0.0625c−1
4 c6.

Following Lemma A2, we have that

‖PW̃ik
(v + ε)‖2

2 = 2‖PW̃ik
v‖2

2 + 2‖PW̃ik
ε‖2

2

≤ 2‖v‖2
2 + 2‖PW̃ik

ε‖2
2

= O(nκ−2r
n ) + 2‖PW̃ik

ε‖2
2.

From Assumption A2 and Proposition 3 of [4], we have

P
(
‖PW̃ik

ε‖2
2 >

κnC∗(1 + t)
{1 − 2/(exp(t/2)

√
1 + t − 1)}2

)
. ≤ (1 + t)1/2 exp(−κnt/2)

By taking t = log pn + log n − 1 and applying Bonferroni inequalities, we can obtain

P
(

max
ik∈S

‖PW̃ik
ε‖2

2 > βn
)

≤ ∑
ik∈S

P
(
‖PW̃ik

ε‖2
2 > βn

)
≤ ∑

ik∈S

√
log pn + log n exp{−κn(log pn + log n − 1)/2}

= O(sn
√

log pn) exp{−κn(log pn + log n − 1)/2}
→ 0,

where

βn =
κnC∗(log pn + log n − 1)

{1 − 2/(exp((log pn + log n − 1)/2)
√

log pn + log n − 1)}2
.

Therefore, we establish that

max
ik∈S

‖PW̃ik
ε‖2

2 = oP{κn(log pn + log n)}. (A17)

By κr−1/2
n dn/n2τ → ∞ and log(tn) = o

( d2
nn1−4τ

κ2
ns2

n log n

)
in Assumption A4(ii), we obtain

‖PW̃ik
(v + ε)‖2

2 = oP(d2
nn1−τ).
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This, combined with (A13) and (A16), yields that

min
ik∈S

{RSSk−1 − RSSk} ≥ μ0d2
nn1−τ

with probability going to one. Applying the inequality log(1 + x) ≥ min{log 2, 0.5x} for
x > 0, we obtain that

log(RSSk−1)− log(RSSk) = log{1 + (RSSk−1 − RSSk)/RSSk}
≥ 0.5(RSSk−1 − RSSk)/RSSk

≥ 0.5μ0d2
nn1−τ/RSSk,

This combined with n−1RSSk ≤ n−1‖Y − Ȳn‖2
2 → Var(y1) with Ȳn = n−1 ∑n

i=1 yi,
leads to

min
ik∈S

{log(RSSk−1)− log(RSSk)} ≥ 0.4μ0d2
nn−τ/Var(y1).

Noticing that log(tn) = o
( d2

nn1−4τ

κ2
ns2

n log n

)
and Var(y1) = O(κns2

nn3τ log(n)) and

log( f (k + 1))− log( f (k)) = O{κn log(pn)}, we can obtain

EBICk−1 − EBICk ≥ 0.4μ0d2
nn−τ/Var(y1)− n−1[ log(n) + γ

{
log( f (k + 1)− log( f (k))

}]
≥ 0.4μ0d2

nn−τ/Var(y1)− n−1O{log(n) + γκn log(pn)}
> 0.

Therefore, for ik ∈ S, the conclusion

EBICk < EBICk−1 (A18)

holds uniformly with probability going to one.
Step (ii): Let k0 be an integer satisfying S �⊂ Ŝk0−1 and S ⊂ Ŝk0 . We prove that

min
1≤j≤L

{EBICk0+j − EBICk0+j−1} > 0,

By log(1 + x) ≤ x and log
{ f (k0+j)

f (k0+j−1)

}
= O{κn log(pn)}, we have

EBICk0+j−1 − EBICk0+j ≤
RSSk0+j−1 − RSSk0+j

RSSk0+j
−
[
κn log n + γκn log(pn)

]
/n.

With the same arguments as (A17), we can show that

max
1≤j≤L

(RSSk0+j−1 − RSSk0+j) = max
1≤j≤L

‖(PWŜk0+j
− PWŜk0+j−1

)ε‖2
2 = oP{κn(log pn + log n)}.

From (26) in [10], we have n−1RSSk0+l = Eε2
1 + oP(1). Furthermore, Eε2

1 = O(1) from
assumption A2. Thus

P( max
1≤j≤L

{EBICk0+j−1 − EBICk0+j} < 0) → 1. (A19)

Combination of (A18) and (A19) leads to P(Ŝ∗ = S) → 1.
Part (II): Similar to step (ii) in Part (I), we can show that

min
l∈F\Ŝ∗�

{EBIC∗� − EBIC∗} > 0,

with probability tending to one. This leads to P(Ŝ = Ŝ∗) → 1. The proof is completed.
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Abstract: The sine and cosine algorithm is a new simple and effective population optimization
method proposed in recent years that has been studied in many works of literature. Based on the
basic principle of the sine and cosine algorithm, this paper fully studies the main parameters affecting
the performance of the sine and cosine algorithm, integrates the reverse learning algorithm, adds an
elite opposition solution and forms the hybrid sine and cosine algorithm (hybrid SCA). Combined
with the fuzzy k-nearest neighbor method and the hybrid SCA, this paper numerically simulates two-
class datasets and multi-class datasets, obtains a large number of numerical results and analyzes the
results. The hybrid SCA FKNN proposed in this paper has achieved good accuracy in classification
and prediction results under 10 different types of data sets. Compared with SCA FKNN, LSCA
FKNN, BA FKNN, PSO FKNN and SSA FKNN, the prediction accuracy is significantly improved. In
the Wilcoxon signed rank test with SCA FKNN and LSCA FKNN, the zero hypothesis (significance
level 0.05) is rejected and the two classifiers have a significantly different accuracy.

Keywords: meta learning; data classification; hybrid sine and cosine algorithm; Wilcoxon signed
rank test; multiple application scenario datasets

MSC: 68T07; 68T27; 68T20

1. Introduction

The swarm intelligence algorithm (SI) has gained attention from many researchers in
various field of sciences. SI is currently being used to provide solutions to various optimiza-
tion problems. Several applications of swarm intelligence include material technology [1–3],
biological system modeling [3], train assembly, high-performance graphics card [4], path
planning [5] and robot control [6,7]. SI is based on the collective behavior of the elements
that self-organize in order to get exposed with the solution of the optimization problem.
Examples of popular SI algorithms include particle swarm optimization (PSO) [8], artificial
bee colony (ABC) [9], gravitational search algorithm (GSA) [10] and whale optimization
algorithm (WOA) [11]. One of the main challenges in SI is the lack of profound theoretical
analysis, which requires a solid mathematical foundation that includes a proper analy-
sis that assesses the robustness, computational complexity and parameter setting. All of
these analyses are required to ensure that SI can avoid converging to a local minimum
solution. Note that the local minimum solution will affect the optimality of the solution to
the respective optimization problem.

The sine cosine algorithm (SCA) [12] is a new SI algorithm proposed by Mirjalili in
2016. SCA was inspired by a mathematical model of the sine cosine function used to
make the oscillation of the solution converge towards the optimal solution. The random
and adaptive parameters in the algorithm have the ability to balance both exploration
and exploitation during solution searching. Several advantages of SCA include very few
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parameters, easy implementation, a simple structure, a fast convergence speed, strong
parallelism and universality and a better performance in practical applications. Therefore,
it has attracted extensive attention from scholars in recent years.

In [13], a SCA with nonlinear decreasing conversion parameters was proposed. The
change in parameter r1 is controlled by a parabolic function and exponential function,
respectively. The experimental results show that the adjustment of parameter r1 by the
exponential function can better balance the global and local exploration of the solution. The
study in [14] proposed a method of combining quantum computing with SCA by using
quantum bits, rotating gates and a non-gate, where each gate has their own specialization
in exploring the solution. The proposed SCA was reported to be very effective and accurate.
The study in [15] introduces the method of reverse learning to generate reverse solutions for
the current individual, which expands the exploration of solution space. The study in [16]
proposed a hybrid gray wolf with SCA that uses the sine cosine update formula to improve
the moving direction and speed of the head wolf. By combining the benefit of SCA, the
hybrid algorithm improves drastically in terms of exploration and exploitation. Another
interesting work by [17] was carried out, where SCA was combined with a differential
evolution algorithm (DEA). In this context, SCA was reported to help DEA jump out
from the local optimal solution region. However, the application of the SCA in the above
literature failed to classify a more general dataset. The test of the robust metaheuristics
depends on the ability of the algorithm to classify non-bias datasets.

In 2017, Rizk M and Rizk-Allah [18] proposed a sine cosine algorithm (MOSCA) based
on a multi-orthogonal search strategy to solve engineering design problems. The proposed
MOSCA improves the defects of unbalanced exploration and premature convergence of
the conventional SCA. MOSCA utilizes SCA during the exploration phase and uses a
multi-orthogonal search strategy to find the optimal solution in the search space. MOSCA
was reported to obtain a better speed of convergence with a higher solution accuracy. In
another development, Elaziz et al. [15] proposed SCA based on reverse learning (OBSCA).
A reverse learning strategy is an important method used to enhance the performance of
the stochastic optimization algorithm. By selecting the value of the objective function
according to greedy selection at the current solution and reverse solution, OBSCA enhances
the diversity of the population and improves the ability of the algorithm to approach the
global optimal solution. This experiment highlights the robustness of OBSCA in terms
of convergence.

In 2017, Songjin and Wen [19] proposed an improved SCA (ISCA) for solving high-
dimensional optimization problems. Inspired by PSO, the ISCA algorithm introduces inertia
weight to improve the convergence accuracy and increase the convergence speed of the
SCA. At the same time, it adopts a reverse learning strategy to generate initial individuals to
improve the diversity and reconciliation quality of the population. The experimental results
showed that, compared with the basic SCA, ISCA has a better optimization performance
in a high-dimensional test function. In 2018, Nenavath and Jatoth [20] proposed a hybrid
SCA-DE algorithm based on differential evolution to solve optimization problems and
target tracking problems. The experimental results show that the hybrid SCA-DE algorithm
has a higher convergence accuracy and faster convergence speed than basic SCA. In 2021,
Wu et al. [21] proposed a LSCA method and FKNN method to solve biomedical problems.
Compared with other methods, the proposed LSCA obtained acceptable results but the
accuracy of this method still requires improvement.

In this paper, we capitalize on the mathematical properties of the SCA to balance the
global and local exploration of the algorithm during the searching process. This can be
achieved by adaptively changing the amplitude of the sine function and cosine function
until the SCA converges towards the global optimal solution. In addition, reverse learning
will be used to provide a jump mechanism to the SCA so that it can avoid a potential
unwanted local solution. Both methods will be integrated into a fuzzy k-nearest neighbor
(FKNN) that has the capability to classify real life datasets. Thus, the contributions of this
paper are as follows:
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1. In this paper, reverse learning will be implemented into an SCA model to form a
hybrid SCA. In this context, the adaptive weight coupled with the reverse learning
alter the position of the solution towards the global solution.

2. The proposed hybrid SCA will be implemented into a fuzzy k-nearest neighbor
(SCA-FKNN). In this context, the proposed SCA-FKNN has the ability to avoid local
convergence by jumping out of the current non-optimal solution.

3. The performance of the proposed SCA-FKNN will be tested using various real life
datasets. SCA-FKNN will be evaluated according to the various performance metrics,
such as accuracy, precision, sensitivity, specificity, Mathews correlation coefficient and
Wilcoxon signed rank test. In addition, the proposed SCA-FKNN will be compared
with the existing conventional state-of-the-art classifier.

The rest of this paper is organized as follows. Section 2 introduces in detail the
content of the SCA model and FKNN classifier. Section 3 presents in detail the process of
forming the hybrid SCA FKNN model based on the SCA model and FKNN classifier by
adding a parameter adjustment and reverse learning mechanism. Section 4 introduces and
analyzes 10 different data sets and evaluation indicators. Section 5 shows the prediction and
classification results of 10 types of data sets under five models with extensive comparison
analysis. Section 6 describes conclusions and further research.

2. Background

2.1. Sine Cosine Algorithm

The sine cosine algorithm is an algorithm based on the mathematical characteristics of
sin and cos. It updates individuals through the changes in sine and cosine functions. In
SCA, it is assumed that, in j-dimensional space, the population size is n, and that, in each
iteration, the location update mode of the i-th individual is

Xj
i(t + 1) =

⎧⎨⎩ Xj
i(t) + r1 × sin(r2)×

∣∣∣r3Xj
best − Xj

i(t)
∣∣∣ r4 < 0.5

Xj
i(t) + r1 × cos(r2)×

∣∣∣r3Xj
best − Xj

i(t)
∣∣∣ r4 ≥ 0.5

(1)

where Xj
i is the position of the i-th individual in the j dimension of the t iteration; Xbest,j is

the optimal position in the j dimension of the position Xi of the i-th individual; r2, r3 and r4
are random numbers subject to uniform distribution, r2 ∈ [0, 2π], r3 ∈ [0, 2] and r4 ∈ [0, 1];
r1 is the control parameter.

r1 = a ∗ (1 − t
MaxFEs

) (2)

where MaxFEs represents the maximum number of iterations and a is a constant number
and is equal to 2.

The fluctuation amplitude of r1 × sin(r2) and r1 × cos(r2) (sine and cosine parameters)
gradually attenuates with the increase in iteration times. Its values are in the range of
(1, 2] and [−2,−1). The algorithm performs a global search in the solution space, and the
algorithm performs a local development in the range of [−1, 1]. The SCA algorithm flow is
shown in Figure 1.
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Figure 1. The flow chart of SCA.

2.2. Fuzzy K-Nearest Neighbors (FKNN)

As one of the simplest classifiers, KNN mainly infers the class of the sample according
to the classes of the K training samples closest to the sample to be classified. The default of
this method is that each of the k samples have the same weight, which is not the case. The
KNN algorithm (nearest neighbor method) was first proposed by Covcr and Hart in 1967.
Many researchers have conducted in-depth theoretical research and development due to
the low error rate of the nearest neighbor method, which makes it one of the important
methods of pattern classification.

The FKNN algorithm (fuzzy k-nearest neighbor algorithm) was proposed by Keller et al.
in 1985 [22]. He assigned different weighting coefficients to k-nearest neighbors, and
then used the fuzzy decision-making method to calculate the class label with the largest
coefficient as the category of test data. Because the weight coefficient based on distance
is used, the recognition effect is improved. Nevertheless, the selection of fuzzy k-nearest
neighbor parameter K has a great impact on the recognition effect. Choosing appropriate
parameters plays an important role in improving the accuracy of the classification.

A fuzzy KNN algorithm is proposed based on the KNN algorithm. This method
has the advantages of a high calculation accuracy and no data input assumption. It is a
relatively mature classifier. For data sets, the membership of each member data to each
class is calculated by Equation (3).

Ui,k =

{
0.51 +

( nk
K
)
· 0.49, k = Yk( nk

K
)
· 0.49, k �= Yk

(3)

where i = 1, 2, 3 . . . N represents the i-th training sample and N represents the number of
all training samples. k = 1, 2, 3 . . . M, where k represents the k-th class, and M denotes
the number of classes. Ui,k represents the member level of the i-th sample to the k-th
class. K represents the present number of nearest neighbors, Yk represents the class of the
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i-th training sample and nk represents the number of the i-th training sample’s neighbors
belonging to the k-class among the nearest K neighbors. Note that membership should
meet the following:

Uk(x) =
∑K

j−1 UIj ,k

(
x − xIj

) 2
m−1

∑K
j−1

(
x − xIj

) 2
m−1

(4)

where x stands for the test sample, Uk(x) represents the test sample weight to the k-
class, j = 1, 2, . . . K represents the test sample’s j-th nearest neighbor, Ij represents the
i index corresponding to the j-th nearest neighbor in the training samples, UIj ,k is the
membership degree, which is calculated by Equation (3), and x − xIj represents the distance
measurement. m stands for fuzzy strength, which is used to control the weight of each
neighbor in the membership calculation, and its range is [1, ∞].

C(x) = arg max
k

Uk(x) (5)

The calculation steps of FKNN are as follows in Figure 2.

Figure 2. The flow chart of FKNN.

The above FKNN solved the problem of multivariate classification and distance weight,
and the SCA will deal with the problem of a low search efficiency of the optimal solution
after the distance weight.

3. The Proposed Method

At the end of the iteration, SCA will conduct a small neighborhood search near the
current global optimal location and constantly try to update the optimal solution. If the
search process is far from the theoretical optimal solution, it is difficult for the algorithm
to converge to the global optimal solution in a short time. Therefore, the current research
papers are roughly divided into two ways to improve the convergence speed and accuracy
of SCA. One way is to improve the convergence speed of SCA by changing Equation (1).
The other is to improve the accuracy of SCA by adding reverse learning.

In the parameter adjustment mechanism, reference [23] has introduced the adaptive
weight coefficient parameter adjustment mechanism, and this mechanism has achieved
good results in solving the problem of jumping out of local convergence. Based on the
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parameter adjustment mechanism and combined with reverse learning, this paper forms
an improved version of the sine and cosine algorithm with multiple strategies.

The combination of the swarm intelligence algorithm, lion swarm algorithm and
reverse learning strategy further expands the search scope of the group, thus improving
the problems of a slow convergence speed and insufficient accuracy of the group.

3.1. The Weight Factor

In this part, an adaptive weight w is used, which makes the individual position have
a great impact on the individual moving direction and distance in the algorithm and
effectively improves the ability of algorithm development. The value of wt+1 in the latter
iteration is 100 times that of the previous iteration wt, with an obvious step search. The
mathematical model [23] of w is

w = μ × sinh (1 − 20 t
MaxFEs )

8 (6)

where μ is the weight factor; in most cases, the value of μ is 0.5. Adding the weight
parameter w to the sine cosine algorithm in Equation (1), we obtain:

Xj
i(t + 1) =

⎧⎨⎩ w(Xj
i(t) + r1 × sin(r2)×

∣∣∣r3Xj
best − Xj

i(t)
∣∣∣) r4 < 0.5

w(Xj
i(t) + r1 × cos(r2)×

∣∣∣r3Xj
best − Xj

i(t)
∣∣∣) r4 ≥ 0.5

(7)

3.2. Reverse Learning

In SCA, the individuals of the population only rely on the current optimal solution to
update their own state, so the algorithm is likely to fall into the local optimal state, resulting
in the algorithm being unable to find a satisfactory solution. At this time, it is necessary to
carry out a local mutation operation on the individual, and the individual reflects on the
previous learning situation with the current learning results so as to increase the probability
of escaping from the local area. The formula of reflective learning is

X∗
i = Xs

i + ω ⊗ (Xs
i − Xt

i ) (8)

where Xs
i represents the position of individual i in the t-th iteration; X∗

i represents the
position after executing Equation (7); X∗

i represents the new position generated through the
reflection process; ω represents a learning factor, ω ∈ [−1, 1]; ⊗ indicates dot multiplication.

In order to prevent too much randomness in the process of reflection, the learning
factor was compared with ω. At the same time, in order to avoid the degradation of the
learning ability and enhance the convergence of the algorithm, greedy learning was used
to select the best algorithm according to the learning status before and after reflection.

ω = C(−t/MaxFEs) × cos(r5) (9)

where r5 is a random number on [0, π]; C is a constant, and the effect is better when C = 100.
In order to reduce the possibility of the algorithm deviating from the global optimal

position, the evaluation of excellent algorithms is strengthened. It is very necessary to
search the space around the volume, and this improvement can improve the efficiency of
the algorithm and the ability to explore new solutions. This paper integrates the strategy of
elite reverse learning into SCA. The information of the elite population was used to search
the space of elite individuals and their reverse solutions.

The specific operations [24] were as follows:

1. The individuals in the population were arranged after the implementation of for-
mula f itness, where 10% of the excellent individuals were selected to form the elite
population Xbest;

2. Individual Xi
best ∈ Xbest boundary [lbi

j, ubi
j] and the dynamic boundary [min(lbi

j),

max(ubi
j)] were calculated;
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3. The dynamic elite reverse population X′
best of individual Xi

best was generated accord-
ing to Equation (10);

4. If the reverse population X′
best exceeded the limit of dynamic boundary [min(lbi

j),

max(ubi
j)], it was replaced by a new individual randomly generated in the boundary;

5. The top 50% from [Xbest,X′
best] was selected for the next generation according to f itness;

6. Steps 2 and 5 were cycled until the stop condition was reached, and the algorithm ended.

The elite inverse solution was set in d-dimensional space. X′
best =

(
x′1, x′2, · · · , x′D

)
is

the inverse solution of the elite individual. Xbest = (x1, x2, · · · , xD) is the inverse solution
of the current population. The inverse solution is defined as

x′i = k(lbi + ubi)− xi (10)

where k ∈ [0, 1] is a random number subject to uniform distribution. Multiple inverse
solutions of the elite individual can be generated by using this coefficient.

The generated elite inverse solution increases the useful information of the population
converging to the global optimum, strengthens the exploration of the neighborhoods
around the optimal individual and improves the local development ability of the algorithm.

3.3. The Proposed Hybrid SCA FKNN Model

In this paper, the Fitnessi is equal to ACC. ACC represents the accuracy of FKNN
classification, which is obtained by k-cross-validation. In this paper, five-fold validation
was used. After combining hybrid SCA and FKNN, the pseudocode of the hybrid SCA
FKNN is shown in Algorithm 1. Figures 3 and 4 show the operation flow of the whole
hybrid SCA FKNN method in detail.

Algorithm 1 The hybrid SCA-FKNN.

while t < MaxFEs do
update r1, r2, r3, r4
wt = μ ∗ sinh(1 − 20 t

MaxFEs )
8

if r4 < 0.5 then
Xs

i = wt(Xi(t) + r1 × sin(r2)× |r3Xbest − Xi(t)|)
X∗

i = Xs
i + ω ⊗ (Xs

i − Xt
i )

if f (Xs
i ) > BF then

if f (Xs
i ) < f (X∗

i ) then

Xt+1
i = X∗

i
Xbest = Xt+1

i
BF = f (X∗

i )
else

Xt+1
i = Xs

i
Xbest = Xt+1

i
BF = f (X∗

i )
end if

end if
for i=1 to SupN do

generate random k, X′
i(t + 1) = k(lb + ub)− Xi(t + 1)

end for
put all X′

i into train dataset as elite opposition solutions
else

Xs
i = wt(Xi(t) + r1 × cos(r2)× |r3Xbest − Xi(t)|)

As the up,the same progress
end if

end while
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Figure 3. The flow chart of the hybrid SCA FKNN.
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Figure 4. Numerical simulation diagram of the whole process.

4. Experiment and Discussion

4.1. Experiment Setup

In this section, the components of the experiment will be described in detail. The
purpose of this experiment is to illustrate that the hybrid SCA FKNN method proposed in
this paper can be used in two or more types of data sets and can achieve good numerical
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results, with strong adaptability and accuracy. In order to ensure the reproducibility of the
experiment, the experimental setup will be shown below.

4.2. Benchmark Datasets

The datasets used in this paper were all open source datasets; for details of the datasets
used in this paper, please visit this website: https://archive.ics.uci.edu/ml/index.php
(accessed on 30 April 2022). For all datasets, the feature was normalized to [−1, 1] using
maximum and minimum normalization. In order to better show the numerical results of
the method proposed in this paper, this paper focused on the numerical experiments on
two-class data sets and multi-class data sets.

In order to reflect the wide adaptability of the methods proposed in this paper, this
paper selected 10 kinds of data sets from different application scenarios and different
data types. The 10 kinds of data sets involve a variety of use scenarios with practical
life significance, such as medical treatment, daily necessities, automobiles, etc. From
Tables 1 and 2, it can be seen that the sample size, characteristics and categories of the
10 types of data sets cover different levels. This paper verifies the effectiveness of the
method proposed in this paper from various angles according to different conditions and
different use scenarios of the data sets.

Table 1. The two-class-dataset-related information.

Categories Samples Features Positive Negative

Bupa 2 345 6 145 200
Hepatitis 2 155 19 32 123

SPECT 2 267 22 212 55

Table 2. The multi-class-dataset-related information.

Datasets Categories Samples Feartures Positive Negative

Caesarian section
classification dataset 2 80 4 34 46

Indian liver patient
dataset (ILPD) 2 583 10 415 167

Glass identification
dataset 7 214 9 69

(class 1)

145
(other classes

except positive)

User knowledge
modeling dataset 4 403 5 102

(class 1)

301
(other classes

except positive)

Breast tissue dataset 6 106 9 20
(class 1)

86
(other classes

except positive)

Car dataset 4 1728 6 1209
(class 1)

519
(other classes

except positive)

QCM sensor alcohol
dataset 5 125 15 24

(class 3)

101
(other classes

except positive)

For two-class data sets, this paper considered the following three data sets. The basic
situation of these three data sets is shown in Table 1. Table 1 describes the indicators, such
as the number of data label categories, data scale and data feature quantity, of the following
three datasets.

For multi-classes datasets, in order to further verify the effectiveness of the method
proposed in this paper, this paper retrieved the following eight types of data sets on the
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open data platform of the University of California for numerical experiments. The contents
of the relevant data sets are described in Table 2. These data sets involve multiple areas of
life, which is more convincing for verifying the effectiveness of the method. The relevant
data categories range from the least to the most, and the diversity of data features ranges
from small sample data to large sample data.

Table 2 describes the basic information of seven multi-category data sets, including the
category, sample number, feature number and number of positive samples and negative
samples. For example, the caesarian section classification dataset, Indian liver patient
dataset (ILPD), glass identification dataset, user knowledge modeling dataset, car dataset
and QCM sensor alcohol dataset. The content of data sets covers all aspects of real life,
with a wider range and more complex data types. There are both large sample data sets
and small sample data sets, and both multi-feature data sets and a small number of feature
data sets.

4.3. Performance Metrics

The evaluation indicators used in numerical experiments include the classification
accuracy (ACC), sensitivity, precision, specificity and Matthews correlation coefficient
(MCC). Sensitivity refers to the ability of the model to identify positive examples. Precision
indicates samples with positive prediction results. These are positive cases. The specificity
measurement model is the ability to identify negative examples. The measurement range
of MCC is [−1, 1], and the other is [0, 1]. The larger the evaluation indicator is, the better
the performance of the model under this indicator.

For multi-class datasets, the corresponding concerned data categories are taken as
positive categories and other categories are taken as negative categories. The data sets
were calculated to obtain the values of relevant evaluation indicators, such as the accuracy
(ACC), sensitivity, precision, specificity and Matthews correlation coefficient (MCC).

Standard classification indicators, such as the accuracy (ACC), sensitivity, precision,
specificity and Matthews correlation coefficient (MCC), were used in the experiment. Ac-
cording to [25–27], the true positive (TP) is the number of positive instances of correct
classification, the false negative (FN) is the number of positive instances of incorrect classi-
fication, the true negative (TN) is the number of negative instances of correct classification
and the false positive (FP) is the number of positive instances of incorrect classification.
The basic configuration matrix of TP, FN, TN and FP is shown in Table 3.

Table 3. The Basic Confusion Matrix.

Basic Confusion Matrix
Predicted Class

Positive Negative

Actual Class
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

By referring to the papers [25–27], this paper lists the evaluation indicators of accu-
racy (ACC), sensitivity, precision, specificity and Matthews correlation coefficient (MCC)
as follows:

ACC =
TP + TN

TP + TN + FN + FP
(11)

Precision =
TP

TP + FP
(12)

Sensitivity =
TP

TP + FN
(13)

Speci f icity =
TN

FP + TN
(14)
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MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

The above evaluation indicators can comprehensively evaluate the performance of the
proposed model.

4.4. Baseline Methods

In order to verify the hybrid SCA FKNN model, a large number of data experiments
were conducted to verify the effectiveness of the proposed method. Firstly, in the first
part, this paper tested two classes of data sets, and made a numerical comparison of nine
metaheuristic-based algorithms (LSCA [21], SCA [12], PSO [28], SSA [29], SA [30], BA [31],
CGSCA [32], mSCA [33] and CESCA [34]), fixing their M = 2 and K = 3 to verify the
advantages of execution data results, respectively. In order to ensure the fairness of the
numerical experiment, the experiment was repeated five times on the same machine. Based
on the repeated experiment, the average value and standard deviation of the model were
analyzed. Each experiment included five cross validation results. The average value of five
cross validations was taken for performance evaluation.

4.5. Experimental Design

All numerical experiments were calculated by MATLAB 2017. All experiments were
conducted on the same equipment, and 8 GB ram Intel Core i5 (Intel) equipped with
windows 11 (Microsoft, Redmond, WA, USA) was used as a workstation to avoid the
impact of experimental hardware during the simulation process.

5. Results and Discussion

5.1. Numerical Results for Two-Classes Datasets

For the following three types of two-class datasets, the hybrid SCA FKNN method
proposed in this paper will be compared and analyzed with eight metaheuristic algorithms.
The superior performance of hybrid SCA FKNN in the evaluation metrics fully shows the
advantages of the proposed method, and further verifies the effectiveness of the method.

5.1.1. Experimental Results on the Bupa Dataset

The numerical results of the hybrid SCA FKNN compared with other models in
the Bupa dataset are shown in Table 4. This paper carried out 10 repeated numerical
experiments, and the average value and standard deviation of the 10 repeated experiments
are listed in Table 4. It can be seen that the hybrid SCA FKNN model proposed in this paper
achieves the best results among the four evaluation indicators. The hybrid SCA FKNN
model proposed in this paper observes better results on ACC, which are approximately
8.4–25.1% higher than the comparison models. Although the standard deviation of LSCA-
FKNN is lower than that of hybrid SCA FKNN in most cases, the numerical results of
hybrid SCA FKNN are significantly better than LSCA FKNN in terms of average evaluation
index values.

In order to show the overall benchmarking analysis results of each model, Figure 5
draws a bar graph of the performance of each model, draws the average value of 10 repeated
experiments of each model and adds the standard deviation of repeated experiments as
the error line. Figure 5 is a visual display of Table 4. As shown in Figure 5, except for
precision, good results have been achieved in sensitivity, specificity and MCC. It can be
clearly seen from the figure that the hybrid SCA FKNN method has better numerical results
and stronger stability.
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Table 4. Results of the hybrid FKNN and comparison models on the Bupa dataset. (Bold indicates
the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.7799 0.7015 0.6412 0.8791 0.4728
Hybrid SCA-FKNN std 0.0143 0.0284 0.0299 0.0283 0.0303

avg 0.6232 0.6674 0.5687 0.8393 0.2465
LSCA-FKNN std 0.0199 0.0338 0.0175 0.0177 0.0367

avg 0.6175 0.5494 0.4645 0.7968 0.2946
SCA-FKNN std 0.0383 0.0439 0.0487 0.0178 0.0546

avg 0.6686 0.6531 0.4851 0.8047 0.3105
PSO-FKNN std 0.0266 0.0344 0.0379 0.0231 0.0472

avg 0.6056 0.5600 0.4693 0.7121 0.1920
BA-FKNN std 0.0292 0.0479 0.0423 0.0292 0.0694

avg 0.6377 0.5862 0.5667 0.6923 0.2601
SSA-FKNN std 0.0586 0.0069 0.1233 0.0327 0.0895

avg 0.6721 0.6444 0.4511 0.8087 0.3131
SA-FKNN std 0.0142 0.0340 0.0128 0.0415 0.0279

avg 0.6600 0.6486 0.4711 0.7981 0.2939
CGSCA-FKNN std 0.0193 0.0356 0.0195 0.0308 0.0382

Figure 5. Classification performance of each model on the Bupa dataset.

5.1.2. Experimental Results on the Hepatitis Dataset

As reflected in the above table on the Bupa dataset, Table 5 shows the benchmarking
results between the hepatitis dataset and other model methods. It can be seen that the
hybrid SCA FKNN model proposed in this paper achieves the best results among the three
evaluation indicators.In terms of sensitivity and precision, the hybrid SCA FKNN performs
worse than BA FKNN and CGSCA FKNN, but significantly better than their numerical
results in terms of ACC, specificity and MCC. The hybrid SCA FKNN model proposed
in this paper observes better results on ACC, which are approximately 15.2–19.6% higher
than the comparison models.

Similarly, in order to further visualize the comparison of the five types of evaluation
indicators, Figure 6 shows the performance of each model more intuitively. For this data set,
the data size of the positive samples is small, at only 32 data, so it has a great impact on the
sensitivity and MCC. In general, the hybrid SCA FKNN model has competitive advantages.
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Table 5. Results of the hybrid-FKNN and comparison models on the hepatitis dataset. (Bold indicates
the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.9465 0.3638 0.4072 0.9392 0.4342
Hybrid SCA-FKNN std 0.0569 0.0937 0.0845 0.0312 0.0945

avg 0.8191 0.4566 0.3760 0.9192 0.3276
LSCA-FKNN std 0.0296 0.0874 0.0676 0.0303 0.0648

avg 0.8051 0.4236 0.3512 0.9167 0.3009
SCA-FKNN std 0.0323 0.1061 0.0745 0.0301 0.0875

avg 0.7742 0.4641 0.3376 0.9217 0.3118
PSO-FKNN std 0.0378 0.0969 0.0727 0.0230 0.0788

avg 0.8172 0.4333 0.4692 0.8305 0.3593
BA-FKNN std 0.0233 0.0702 0.0903 0.0267 0.0812

avg 0.8750 0.2975 0.3333 0.9333 0.3846
SSA-FKNN std 0.0432 0.0379 0.1925 0.0087 0.0098

avg 0.8076 0.4115 0.3280 0.9097 0.2771
SA-FKNN std 0.0242 0.0913 0.0751 0.0266 0.0797

avg 0.8033 0.5533 0.3944 0.9067 0.3744
CGSCA-FKNN std 0.0199 0.0740 0.0666 0.0266 0.0582

Figure 6. Classification performance of each model on the hepatitis dataset.

ACC is an index used to describe the accuracy of the model. The higher the value of
ACC, the better the prediction result of the model. For the current hepatitis dataset, Table 5
is obtained according to the comparison with the numerical results in paper [21]. As shown
in Table 5 and Figure 6, the hybrid-FKNN model proposed in this paper obtains better
results in ACC, which are approximately 15.2–19.6% higher than the comparison model.
However, its variance is high and its stability is poor. The data results are greatly affected
by random data sampling.

5.1.3. Experimental Results on the SPECT Dataset

Similarly, Table 6 shows the benchmarking results of the SPECT dataset and other
model methods on the evaluation indicators of ACC, sensitivity, precision and MCC.
In terms of sensitivity and precision, the hybrid SCA FKNN performs worse than BA
FKNN and LSCA FKNN. BA FKNN has a high sensitivity and low specificity, and there
is a significant difference in its ability to recognize positive cases and negative cases.
However, in terms of ACC, specification and MCC, it is significantly better than their
numerical results.
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Table 6. Results of the hybrid-FKNN and comparison models on the SPECT dataset. (Bold indicates
the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.8936 0.8620 0.7157 0.5220 0.4436
Hybrid SCA-FKNN std 0.0195 0.0845 0.0610 0.0227 0.0605

avg 0.7593 0.8538 0.8730 0.4094 0.2588
LSCA-FKNN std 0.0191 0.0187 0.0357 0.0561 0.0656

avg 0.7297 0.7953 0.8601 0.3427 0.1759
SCA-FKNN std 0.0449 0.0283 0.0278 0.0707 0.0718

avg 0.7615 0.8405 0.8541 0.3866 0.2079
PSO-FKNN std 0.0351 0.0216 0.0308 0.0637 0.0975

avg 0.7585 0.7098 0.9270 0.1049 0.0259
BA-FKNN std 0.0287 0.0064 0.0164 0.0493 0.0702

avg 0.6471 0.5455 0.8571 0.4443 0.3228
SSA-FKNN std 0.0899 0.0951 0.0825 0.0673 0.0943

avg 0.7658 0.8195 0.8920 0.2891 0.1031
SA-FKNN std 0.0164 0.0176 0.0234 0.1013 0.0637

avg 0.7546 0.8497 0.8330 0.4308 0.2034
CGSCA-FKNN std 0.0229 0.0140 0.0238 0.0587 0.0709

Figure 7 vividly shows the performance of various models on different evaluation
indicators. It can be seen from the figure that the sensitivity, specificity and MCC indicators
of the model vary greatly, which may be due to the small number of negative samples, at
only 55 negative samples. Cross validation has a great impact on the sensitivity and MCC.
It can be seen from the figure that the hybrid SCA FKNN method is quite competitive in
obtaining numerical results on SPECT data sets.

Figure 7. Classification performance of each model on the SPECT dataset.

For the current SPECT dataset, Table 6 is also obtained by the hybrid SCA FKNN.
As shown in Table 6, the hybrid-FKNN model obtains better results in ACC, which are
approximately 12.1–14.3% higher than the comparison models. As shown in Figure 7,
except for sensitivity and precision, the best results were also achieved in specificity and
MCC. However, satisfactory results have been achieved in sensitivity and precision. The
numerical results are quite competitive.

In order to further verify the effectiveness of the proposed method, the standard is
attached in Appendix A, which concerns the experimental results obtained in hepatitis,
Bupa and SPECT datasets under the conditions of different maximum cycle test times and
different cross validation numbers for researchers’ reference.
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5.2. Numerical Results for Multi-Classes Datasets

For the above seven different application scenarios and different types of data sets, the
following data results are obtained in this paper. As shown in Table 7, for multi-class datasets,
the data prediction accuracy is between 0.65–0.90, and the hybrid-SCA FKNN method can
still achieve good results. It has good data prediction results for datasets with multiple or few
characteristics, and multiple or few samples. This method is more adaptable.

Table 7. Results of the hybrid-FKNN on multi-class datasets.

Datasets Metric ACC Precision Sensitive Specificity MCC

Caesarian section
classification dataset

Avg 0.7026 0.7197 0.8336 0.7049 0.4694
Std 0.0901 0.0500 0.0160 0.0927 0.0747

Indian Liver Patient
Dataset (ILPD)

Avg 0.7953 0.7876 0.8255 0.3788 0.1621
Std 0.0342 0.0379 0.0853 0.0541 0.0437

Glass Identification
Dataset

Avg 0.7827 0.9016 0.9526 0.8347 0.4734
Std 0.0355 0.0501 0.0376 0.0751 0.1037

User Knowledge
Modeling Dataset

Avg 0.8606 0.9545 0.9709 0.9185 0.9042
Std 0.0267 0.0408 0.0163 0.0864 0.0319

Breast Tissue Dataset Avg 0.6554 0.9667 0.8883 0.9770 0.6969
Std 0.0727 0.0577 0.0459 0.1443 0.1163

Car Dataset Avg 0.8807 0.9188 0.9973 0.9823 0.8312
Std 0.0916 0.0612 0.0716 0.0982 0.1616

QCM sensor Alcohol
Dataset

Avg 0.9043 0.8501 0.8568 0.8477 0.8562
Std 0.0939 0.0838 0.0719 0.0973 0.1008

In order to better demonstrate the effectiveness of the method proposed in this pa-
per, this paper compares the numerical results of the above seven different data sets
calculated by the LSCA FKNN [21], SCA FKNN [12], PSO FKNN [28], BA FKNN [31]
and SSA FKNN [29] methods. The relevant numerical comparison results are shown in
Tables 8–14. From the five evaluation indicators, the hybrid SCA FKNN method proposed
in this paper achieved good numerical results under seven datasets.

For the current caesarian section classification dataset, Table 8 is also obtained from
hybrid SCA FKNN. As shown in Table 8, the hybrid SCA FKNN model achieved better
results in ACC, sensitivity and MCC, which were approximately 5.2–21.7% higher than the
comparison model in ACC.

For the Indian liver patient dataset (ILPD), Table 9 shows the data results obtained
by the hybrid SCA FKNN method and other numerical models. As shown in Table 9, the
hybrid SCA FKNN model achieved better results in ACC, precision, specificity and MCC,
which were approximately 10.9–23.2% higher than the comparison model in ACC.

Table 8. Results of the hybrid-FKNN and comparison models on the caesarian section classification
dataset. (Bold indicates the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.7026 0.7197 0.8336 0.7049 0.4694
Hybrid SCA-FKNN std 0.0901 0.0500 0.0160 0.0927 0.0747

avg 0.6677 0.8148 0.5741 0.7095 0.3923
LSCA-FKNN std 0.0955 0.1197 0.0986 0.0965 0.1295

avg 0.6667 0.6766 0.6349 0.7333 0.3626
SCA-FKNN std 0.0722 0.2384 0.0755 0.0882 0.0414

avg 0.6675 0.8194 0.7505 0.7250 0.4045
PSO-FKNN std 0.0701 0.1138 0.1220 0.0992 0.0939

avg 0.5625 0.5361 0.7424 0.2500 0.2655
BA-FKNN std 0.0625 0.0804 0.0957 0.0443 0.0995

avg 0.5775 0.6528 0.5370 0.5952 0.2381
SSA-FKNN std 0.0523 0.0241 0.0656 0.0591 0.0817
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Table 9. Results of the hybrid-FKNN and comparison models on the Indian liver patient dataset
(ILPD). (Bold indicates the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.7953 0.7876 0.8255 0.3788 0.1621
Hybrid SCA-FKNN std 0.0342 0.0379 0.0853 0.0541 0.0437

avg 0.6912 0.6961 0.9856 0.1078 0.0712
LSCA-FKNN std 0.0191 0.0123 0.0220 0.0309 0.0257

avg 0.6455 0.7440 0.8882 0.2058 0.1038
SCA-FKNN std 0.0222 0.0732 0.0964 0.0821 0.0674

avg 0.7173 0.7187 0.9967 0.0963 0.0953
PSO-FKNN std 0.0139 0.0162 0.0058 0.0107 0.0641

avg 0.7108 0.7209 0.9534 0.0865 0.0532
BA-FKNN std 0.0085 0.0076 0.0034 0.0012 0.0125

avg 0.7092 0.7215 0.9695 0.0502 0.0644
SSA-FKNN std 0.0028 0.0140 0.0277 0.0457 0.0112

Table 10. Results of the hybrid-FKNN and comparison models on the glass dataset. (Bold indicates
the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.7827 0.9016 0.9526 0.8347 0.4734
Hybrid SCA-FKNN std 0.0355 0.0501 0.0376 0.0751 0.1037

avg 0.6589 0.5961 0.6759 0.7618 0.4242
LSCA-FKNN std 0.0355 0.2470 0.1530 0.0546 0.1972

avg 0.6654 0.6078 0.8614 0.7028 0.5339
SCA-FKNN std 0.0355 0.0453 0.0558 0.0337 0.0394

avg 0.6047 0.6429 0.6923 0.7727 0.4587
PSO-FKNN std 0.0968 0.0415 0.0994 0.0646 0.0950

avg 0.5349 0.3333 0.5000 0.6429 0.3187
BA-FKNN std 0.1005 0.0907 0.0874 0.0707 0.0587

avg 0.7209 0.7778 0.9091 0.6875 0.6209
SSA-FKNN std 0.0880 0.0128 0.1905 0.1168 0.2040

Table 11. Results of the hybrid-FKNN and comparison models on the user modeling dataset hamdi
tolga dataset. (Bold indicates the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.8606 0.9545 0.9709 0.9185 0.9042
Hybrid SCA-FKNN std 0.0267 0.0408 0.0163 0.0864 0.0319

avg 0.7901 0.9286 0.9286 0.9808 0.9093
LSCA-FKNN std 0.0317 0.0299 0.0469 0.0127 0.0388

avg 0.7977 0.9107 0.9639 0.9678 0.9143
SCA-FKNN std 0.0744 0.0233 0.0313 0.0138 0.0400

avg 0.7713 0.8860 0.9434 0.9444 0.8876
PSO-FKNN std 0.0681 0.0218 0.0246 0.0059 0.0395

avg 0.5179 0.6324 0.5404 0.8189 0.3828
BA-FKNN std 0.0890 0.1101 0.3625 0.1877 0.2242

avg 0.8025 0.9437 0.7593 0.9541 0.7018
SSA-FKNN std 0.0377 0.0150 0.0590 0.0153 0.0629
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Table 12. Results of the hybrid-FKNN and comparison models on the breast tissues dataset. (Bold
indicates the best in comparison method).

Algorithm Metric ACC Precision Sensitivty Specificity MCC

avg 0.6554 0.9667 0.8883 0.9770 0.6969
Hybrid SCA-FKNN std 0.0727 0.0577 0.0459 0.1443 0.1163

avg 0.5397 0.8667 0.6389 0.9333 0.6154
LSCA-FKNN std 0.0727 0.2309 0.1273 0.1155 0.2682

avg 0.5373 0.7500 0.8167 0.9024 0.6471
SCA-FKNN std 0.0550 0.0012 0.1243 0.0117 0.0937

avg 0.5238 0.6583 0.8333 0.7500 0.5677
PSO-FKNN std 0.0991 0.0366 0.0787 0.0605 0.0879

avg 0.4928 0.5843 0.6875 0.6742 0.4731
BA-FKNN std 0.0727 0.0473 0.0887 0.0751 0.0949

avg 0.6667 0.9487 0.8196 0.6667 0.5657
SSA-FKNN std 0.0825 0.0888 0.0239 0.0774 0.0865

Table 13. Resultsof the hybrid-FKNN and comparison models on the car dataset. (Bold indicates the
best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.8807 0.9188 0.9973 0.9823 0.8312
Hybrid SCA-FKNN std 0.0916 0.0612 0.0716 0.0982 0.1616

avg 0.8691 0.9450 0.9467 0.8388 0.7922
LSCA-FKNN std 0.0161 0.0372 0.0289 0.1106 0.0454

avg 0.8168 0.8789 0.9559 0.9428 0.7818
SCA-FKNN std 0.0134 0.0095 0.0057 0.0271 0.0110

avg 0.7645 0.7718 0.9977 0.3179 0.4601
PSO-FKNN std 0.0159 0.0964 0.0434 0.0530 0.0064

avg 0.7107 0.7342 0.9468 0.6591 0.6596
BA-FKNN std 0.0859 0.1090 0.0350 0.1100 0.1226

avg 0.8618 0.9461 0.8816 0.8307 0.6653
SSA-FKNN std 0.0854 0.0939 0.0269 0.0819 0.0945

Table 14. Results of the hybrid-FKNN and comparison models on the QCM sensor alcohol dataset.
(Bold indicates the best in comparison method).

Algorithm Metric ACC Precision Sensitivity Specificity MCC

avg 0.9043 0.8501 0.8568 0.8477 0.8562
Hybrid SCA-FKNN std 0.0939 0.0838 0.0719 0.0973 0.1008

avg 0.7600 0.7917 0.8327 0.8189 0.7269
LSCA-FKNN std 0.0367 0.0908 0.0823 0.0925 0.1415

avg 0.7702 0.7333 0.7333 0.8841 0.7479
SCA-FKNN std 0.0693 0.0887 0.1082 0.0275 0.1270

avg 0.4400 0.5095 0.6656 0.6794 0.2208
PSO-FKNN std 0.0400 0.0744 0.0672 0.0531 0.0580

avg 0.3067 0.6567 0.2611 0.7804 0.3568
BA-FKNN std 0.0231 0.0333 0.0674 0.0756 0.0632

avg 0.8133 0.6640 0.7714 0.8682 0.6117
SSA-FKNN std 0.1007 0.0856 0.0960 0.0304 0.1126

For the glass dataset, Table 10 shows the data results obtained by the hybrid SCA
FKNN method and other numerical models. As shown in Table 10, the hybrid SCA FKNN
model achieved better results in ACC, precision, sensitivity specificity and MCC, which
were approximately 8.6–46.3% higher than the comparison model in ACC.

For the user modeling dataset hamdi tolga dataset, Table 11 shows the data results
obtained by the hybrid SCA FKNN method and other numerical models. As shown in
Table 11, the hybrid SCA FKNN model achieved better results in ACC, precision, sensitivity
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and specificity, which were approximately 7.2–66.2% higher than the comparison model
in ACC.

For the breast tissues dataset, Table 12 shows the data results obtained by the hybrid
SCA FKNN method and other numerical models. As shown in Table 12, the hybrid SCA
FKNN model achieved better results in precision, sensitivity specificity and MCC, which
were slightly lower than SSA-FKNN and higher than the comparison model in ACC.

For the car dataset, Table 13 shows the data results obtained by the hybrid SCA FKNN
method and other numerical models. As shown in Table 13, the hybrid SCA FKNN model
achieved better results in ACC, specificity and MCC, which were approximately 1.3–8.6%
higher than the comparison model in ACC.

For the QCM sensor alcohol dataset, Table 14 shows the data results obtained by the
hybrid SCA FKNN method and other numerical models. As shown in Table 14, the hybrid
SCA FKNN model achieved better results in ACC, precision, sensitivity and MCC, which
were twice as large as the results of PSO FKNN and BA FKNN in ACC.

In order to better verify the method proposed in this paper, this paper analyzed
the operation process of the five data sets. The change in best fitness can analyze the
convergence of the data running process. If the best fitness does not change during the
cycle, the data prediction results do not change in general. If a few cycles are used, the best
fitness will not change, indicating that the method has a faster convergence speed.

From Figure 8, it can be seen that the optimal fitness will start to be in a stable state at
approximately 12–23 iterations; that is, in the next cycle, the data of the training set will not
be optimized, and the method will be in a convergent state. As shown in Figure 8, after the
first iteration, the best fitness of the current training set will be obtained, and the current
best fitness will not be equal to 0. The value of this best fitness gradually stabilizes with the
increase in the number of iterations, but it does not start from 0. For the car dataset, QCM
sensor alcohol dataset and glass identification dataset, the best fitness converges quickly
and converges to a stable value at approximately the 10th iteration. For the ILPD and the
breast tissue dataset, it also converges to a stable value at approximately the 15th iteration.

With the increase in the number of iterations, the best fitness gradually increases
on the car dataset. When the number of iterations reaches 15, the best fitness gradually
stabilizes to 0.8543. With the update and optimization of the car training dataset, the data
prediction result of the car test set reaches 0.8514. For the QCM sensor alcohol dataset,
when the number of iterations reaches 10, the optimal fitness reaches a stable state at 0.8400,
and the data prediction result of the QCM sensor alcohol test set reaches 0.8520. For the
glass identification dataset, when the number of iterations reaches 12, the optimal fitness
reaches a stable state at 0.7256, and the data prediction result of the glass identification
test set reaches 0.7364. The classification accuracies of the above three data sets in the
cycle process, best fitness and test data sets are roughly the same, which shows that this
method can find convergent data points in the simulation process effectively and obtain
more accurate results.

For the ILPD, when the number of iterations reaches 20, the optimal fitness reaches
a stable state at 0.7256, and the data prediction result of the ILPD test set reaches 0.6609.
For the breast tissue dataset, when the number of iterations reaches 15, the optimal fitness
reaches a stable state at 0.7256, and the data prediction result of the breast tissue test set
reaches 0.6475. For the above two datasets, although the accuracy of the method is slightly
lower than that of best fitness, the method achieves better results in precision and stability.

According to Figure 8, it can be clearly seen that the method proposed in this paper
has a good convergence effect and achieves the purpose of prediction results when fewer
cycles are required.

For further experiments, and to compare the results of LSCA-FKNN and SCA-FKNN
for all 10 datasets, this paper will run Wilcoxon signed rank test hybrid SCA FKNN. The
null hypothesis is that there is no difference between the accuracy of the two classifiers. As
shown in the accuracy results of this paper, we reject the null hypothesis (significance level
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0.05), and accept that the two classifiers have significantly different accuracies. This result
confirms the advantages of hybrid SCA FKNN.

Figure 8. The process of best fitness change with increasing number of iterations on multi-class dataset.

6. Conclusions

The hybrid SCA FKNN algorithm is proposed in this paper based on the improved
SCA algorithm combined with reverse learning and an FKNN classifier. It is a further
combination of the swarm intelligence algorithm and classifier. This method is a multi-
strategy hybrid algorithm that further optimizes the sine cosine algorithm, makes it easier to
jump out of local convergence and obtains more accurate numerical solutions. In the process
of implementing hybrid SCA into FKNN, this paper mainly uses the FKNN classifier to
calculate the prediction accuracy by cross validation as the current best fitness to iteratively
optimize the training dataset in order to obtain a more accurate classification. This way,
the training set population can be optimized until the training set cannot be optimized any
more and the numerical value converges, which can greatly improve the the accuracy of
the numerical results. After comparing the numerical results of the hybrid SCA FKNN
method with five other methods in 10 data sets, and through the Wilcoxon signed rank test
with SCA-FKNN and LSCA-FKNN, the numerical results were significantly improved.

In the next step, we will further consider logic mining to improve the method [27,35–38]
and integrate multiple patterns to optimize swarm intelligence algorithms and obtain a
more efficient method. In the process of using FKNN to calculate fitness, this method
repeatedly calculates the location distance, requires a lot of numerical calculations and
takes a large amount of time. The next step is to consider a more efficient classifier to reduce
the time cost. In the next step, we will further optimize the model in combination with
spiritual Gaussian mutation [39] to improve the accuracy.
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Abbreviations

Notation Explanation
Hybrid SCA The hybrid algorithm proposed based on the sine cosine algorithm and reverse learning
SCA Sine cosine algorithm
LSCA The linear population size reduction sine and cosine algorithm
PSO Particle swarm optimization
BA Bat algorithm
SSA Sparrow search algorithm
SA Salp swarm algorithm
CGSCA Cauchy and Gaussian sine cosine optimization
FKNN Fuzzy k-nearest neighbor

Appendix A

Table A1. Numerical results for three two-class datasets in different MaxFEs when K = 5-fold
cross-validation.

MaxFEs Datasets Metric ACC Precision Sensitive Specificity MCC

avg 0.8280 0.5417 0.2142 0.9583 0.2426Hepatitis dataset std 0.0660 0.1021 0.1241 0.0417 0.1102
avg 0.6663 0.6245 0.4947 0.7913 0.2985Bupa dataset std 0.0366 0.0625 0.0949 0.0367 0.0738
avg 0.5934 0.5667 0.7164 0.4515 0.1978

5

SPECT dataset std 0.1287 0.1115 0.2763 0.1400 0.2842
avg 0.8017 0.6667 0.2564 0.9420 0.2785Hepatitis dataset std 0.0501 0.0946 0.0943 0.1004 0.0954
avg 0.6979 0.7000 0.5122 0.8364 0.372Bupa dataset std 0.0483 0.0486 0.0643 0.0303 0.0514
avg 0.5934 0.5515 0.7655 0.4344 0.2248

10

SPECT dataset std 0.1077 0.0973 0.1998 0.1534 0.2218
avg 0.8526 0.5833 0.4500 0.9472 0.4149Hepatitis dataset std 0.0412 0.0174 0.0500 0.0273 0.0540
avg 0.7576 0.6500 0.5909 0.8409 0.4429Bupa dataset std 0.0582 0.0284 0.0299 0.0283 0.0303
avg 0.6127 0.5681 0.7524 0.4601 0.2353

20

SPECT dataset std 0.1038 0.0951 0.0999 0.0706 0.0937
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Table A2. Numerical results for three two-class datasets in different-fold cross-validation when
MaxFEs = 5.

Fold Cross-
Validation

Datasets Metric ACC Precision Sensitive Specificity MCC

avg 0.8065 0.5000 0.2001 0.9872 0.2418Hepatitis dataset std 0.0559 0.1421 0.0854 0.0222 0.1120
avg 0.6338 0.6775 0.5295 0.8276 0.3751Bupa dataset std 0.0692 0.1268 0.1104 0.0599 0.1517
avg 0.6617 0.6553 0.7456 0.5931 0.3701

K = 3

SPECT dataset std 0.1165 0.0998 0.2663 0.1623 0.2376
avg 0.7957 0.5222 0.2762 0.9338 0.2673Hepatitis dataset std 0.0186 0.1347 0.1288 0.0426 0.0877
avg 0.6663 0.6245 0.495 0.7913 0.2985Bupa dataset std 0.0366 0.0625 0.0949 0.0367 0.0738
avg 0.5934 0.5667 0.7164 0.4515 0.1978

K = 5

SPECT dataset std 0.1287 0.1115 0.2763 0.1400 0.2842
avg 0.8065 0.7222 0.2050 0.9725 0.3000Hepatitis dataset std 0.0645 0.2546 0.0556 0.0242 0.0343
avg 0.6717 0.6310 0.4786 0.8075 0.3033Bupa dataset std 0.0544 0.0938 0.0879 0.0456 0.1204
avg 0.5826 0.5176 0.8714 0.4172 0.3164

K = 8

SPECT dataset std 0.1134 0.2038 0.1384 0.2307 0.1509
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Abstract: The randomized response technique is one of the most commonly used indirect question-
ing methods to collect data on sensitive characteristics in survey research covering a wide variety of
statistical applications including, e.g., behavioral science, socio-economic, psychological, epidemiol-
ogy, biomedical, and public health research disciplines. After nearly six decades since the technique
was invented, many improvements of the randomized response techniques have appeared in the
literature. This work provides several different aspects of improvements of the original randomized
response work of Warner, as well as statistical methods used in the RR problems.
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1. Introduction to Randomized Response Techniques

Sample surveys are commonly used to collect data for studies in a wide range of
statistical applications such as behavioral science, socio-economic, psychological, epidemio-
logical, biomedical, and public health research disciplines. Mail surveys, telephone surveys,
and personal interviews (face-to-face interviews) are the commonly used traditional data-
collection methods; see, e.g., [1]. The data collected from these surveys are used to estimate
and make statistical inferences about the unknown population parameters of interest,
e.g., the population proportion of individuals with a certain property appearing in most
related research, the population honest response rate [2,3], and the sensitivity level of a
question of interest; in other words, the population proportion of individuals considering
the question of interest to be sensitive [4–6]. Because of that, researchers and practitioners
are particularly interested in the reliability of collected data (e.g., non-response rate and
dishonest answer rate) in studies using sample surveys, but more so while the topics of
investigation involve, e.g., threatening, embarrassing, stigmatizing, highly personal, and
even incriminating issues. The aforementioned issues are collectively referred to as sensi-
tive characteristics (attributes, behaviors, features, traits). For example, people consider
abortion behavior, cheating on examinations, discrimination, domestic violence, drug use,
gambling, illegal income, plagiarism, political opinions, sexual behavior, tax evasion, and
other illicit behaviors to be sensitive. Refer to [7] for a more detailed classification of the
three types of sensitive questions.

Research on sensitive issues is increasingly receiving the attention of many researchers,
practitioners, and social organizations. For instance, in the study by Krumpal and Voss [8],
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the General Social Survey (Allgemeine Beölkerungsumfrage der Sozialwissenschaften—
ALLBUS) in Germany asked respondents whether they have committed tax evasion and
shoplifting, dodged fares, or driven drunk. In the United States, the National Survey on Drug
Use and Health (NSDUH) and the General Social Survey (GSS) routinely require surveyees to
self-report on sensitive issues, e.g., sexual habits or drug use. The Taiwan Social Change Survey
(TSCS) conducted face-to-face interviews about sexual orientation [9,10], the presidential
election [11], monthly income [12], and extramarital relationships [13,14]. Estimating the
prevalence of such sensitive features is of great importance in helping researchers to build
scientific knowledge and recommend necessary strategies to the authorities.

It is widely accepted that most survey participants consider the aforementioned issues
to be secret, shameful, and even illegal. Then, when participating in surveys that use
traditional data-collection methods including, e.g., computer-assisted self-interviewing
or telephone interviewing and self-administered questionnaires with paper and pencil,
to avoid being stigmatized by society or punished by the government, and to leave a
good impression on others, survey respondents tend to ignore sensitive questions, which
causes a non-response bias problem, or they answer these sensitive questions according to
socially desirable behaviors and attitudes, which causes a social desirability bias problem.
See, e.g., [7,15,16]. For example, a student is directly asked a question about a socially
undesirable behavior: “Have you ever cheated on examinations?”. Naturally, regardless
of whether she/he has ever cheated on examinations or not, it is more likely she/he may
deny it. Refer to [17] for more information on this sensitive topic. Or, in a validation study
by Preisendörfer and Wolter [18], where the researchers knew the true answers in advance,
42 percent (face-to-face interviews) and 33 percent (mail survey) of respondents did not
admit that they had been convicted. Likewise, van der Heijden et al. [19] conducted a face-
to-face interview, and 75 percent of respondents who committed welfare or unemployment
benefits fraud denied doing so. As another real example, Hsieh and Perri [20] pointed
out that the proportion of non-heterosexual subjects present in a community is generally
underestimated if respondents have to answer sensitive questions directly. In contrast,
respondents tend to present themselves positively by displaying behaviors and attitudes
that conform to social norms, such as engaging in charitable activities, volunteering, and
eating healthily. See, e.g., [1]. In general, socially desirable attributes are over-reported
while socially undesirable attributes are under-reported when data are collected by direct
interrogation methods. Therefore, the quality of data collected through direct questions on
such topics is not guaranteed. As a result, collected data may produce inaccurate estimated
results and invalid inferences about the sensitive behavior under investigation.

In an effort to reduce potential bias due to social desirability response and non-
response and thereby improve the reliability of data gathered from responses to sensitive
questions for better estimation of the population proportion of individuals who have a
sensitive characteristic, various indirect questioning techniques (IQTs) have been proposed
by, e.g., [21–24]. Among them, some commonly used techniques are the randomized
response (RR) technique (RRT) [25], the unmatched count technique—also called the
item count technique—unmatched block design, or block total response [26,27], and the
triangular model (TRM) and crosswise model (CWM) [28], which are two of the non-
randomized response (NRR) techniques (NRRTs). These techniques have been developed
to ensure anonymity as well as minimize the feelings of jeopardy for survey respondents
when answering sensitive questions. That is what motivates them to answer honestly
sensitive questions.

Blair et al. [29] provided an excellent review of the RRTs and classified them into
mirrored question, forced response, disguised response, and unrelated question techniques.
Among these techniques, Sungkawichai et al. [30] extended the classical forced RRT by
using an arbitrary random variable. Tian and Tang [31] also presented another classification
for the RRTs. Interested readers may also refer to the monographs on the RRTs and other
alternative IQTs by [21,32–37] for comprehensive reviews. Tian and Tang [31] contributed
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an excellent monograph to the NRRT until 2013. Next, we present a review of RRTs from
the work of Warner [25] to the present.

2. Warner’s Randomized Response Design and Some Direct Extensions

The first version of the RRT, conceived by Warner [25] in 1965, is to increase the
response rate and eliminate dishonest responses for the estimation of the proportion of
individuals in a population bearing some sensitive attribute. The main idea of the RRT is to
add random noise to respondents’ answers for the protection of their privacy. Specifically,
according to the idea of Warner [25], two questions were designed: a sensitive question
of interest and its complementary question. That is why the original design of [25] is also
known as a “related-question RR design”. For example,

A : Have you ever had a one-night stand through a dating website or mobile app
(with probability p of selecting this question).

A : Have you never had a one-night stand through a dating website or mobile app
(with probability 1 − p of selecting this question).

Suppose we wish to estimate the proportion θ of people belonging to a sensitive group,
called group A. A simple random sample of size n is selected from the population. Each
surveyee uses the outcome generated by a randomization device, e.g., spinners, dice, or
random number generators, which is not observed by the interviewer, to determine which
question to honestly answer “Yes” or “No” to. The interviewee responds to statements
A and A with probabilities p and 1 − p, respectively. Let n1 be the number of individu-
als responding “Yes”. The parameter θ is estimated based on the indirect responses of
all individuals via the maximum likelihood (ML) estimator θ̂W = p−1

2p−1 + n1
n(2p−1) with

Var(θ̂W) = θ(1−θ)
n + p(1−p)

n(2p−1)2 as long as p �= 0.5. θ̂W is then an unbiased estimator of θ

and used to replace θ to obtain an estimator of Var(θ̂W). See Appendix A.1. Because
the surveyor does not know which question has been answered by the interviewee, the
respondent can feel more comfortable with answering sensitive questions without fear of
personal privacy being revealed. It makes the respondent more likely to give an honest
response to the sensitive question in case she/he carries that sensitive characteristic. In fact,
a validation study by Lensvelt-Mulders et al. [38] showed that, for sensitive questions, the
RRT yields a more valid estimation of prevalence in comparison to other methods.

Despite solving many of the problems posed earlier, the original RR design of Warner [25]
has certain limitations. For example, Warner’s model does not work for p = 0.5. However,
the inefficiency of Warner’s model is its most serious limitation when compared with the
design of direct questioning (DQ), which is clearly demonstrated in Tian and Tang [31]. The
variance of the estimator θ̂ of θ by the DQ design is Var(θ̂) = θ(1−θ)

n , based on the binomial
distribution with parameters n and θ. Using the RR design of Warner [25] induces the extra
variance, p(1−p)

n(2p−1)2 , which is the variance due to the randomization device, compared to Var(θ̂).

Accordingly, θ̂W is less efficient than θ̂. During nearly six decades of efforts to overcome these
limitations and improve computational efficiency, quite a few alternative RR models have
been proposed and empirically applied. For instance, just to name a few, Horvitz et al. [39]
and Greenberg et al. [40] combined a sensitive question of interest and another question that
is innocuous and completely unrelated to the sensitive topic to propose an unrelated-question
RR design. Chaudhuri and Mukerjee [41] introduced optional RRTs. Bhargava and Singh [42]
introduced a modified randomization device for the RR design of [25]. Kim and Warde [43]
proposed a stratified RR design of [25].

Abbasi et al. [44] proposed a partial RRT to gather reliable sensitive data for the esti-
mation of the proportion of a population in a ranked set sampling scheme using auxiliary
information. The authors provided respondents the option of both “direct“ and “random-
ized” responses for the sensitive question in order to increase their confidence/co-operation.
Zapata et al. [45] proposed an electronic randomization device, which is able to directly
produce a response when utilized by a respondent. The proposed randomization device
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builds upon the model of Warner [25] by utilizing a variation on the spinner approach.
However, instead of a physical spinner, they have developed a model, which utilizes the
Python programming language to electronically replicate the functionality of a spinner
with the selection of a button, with the user simply being requested to choose either a “Red”
or “Green” button depending on his/her status of possessing a sensitive characteristic.

3. Some Aspects Extended from Warner’s Randomized Response Design

3.1. Unrelated-Question Randomized Response Design

Motivated by the case where the model of Warner [25] does not work when p = 0.5,
Horvitz et al. [39] and Greenberg et al. [40] modified Warner’s method by incorporating
a non-sensitive question within a sensitive question. Along with that, some respondents
find the questions in the design of [25] sensitive or uncomfortable to answer even if a
randomization device is used. Two questions in the unrelated-question design, for example,
are given as follows:

A : Have you ever had a one-night stand through a dating website or mobile app
(with probability p of selecting this question).

C : Were you born between January and September
(with probability 1 − p of selecting this question).

Again, each respondent selected in the sample uses a device such as a deck of cards
to determine the question to which she/he responds. Let c0 be the true proportion of
individuals with non-sensitive characteristic. If c0 is known, [39,40] proposed the unbiased
estimator θ̂U1 = n1/n−(1−p)c0

p for θ. In the case where c0 is unknown, they considered two
independent samples of sizes n∗

1 and n∗
2 with n = n∗

1 + n∗
2. In each sample, the above

procedure is carried out. Assume that the probabilities of selecting the designed sensitive
question in the samples of sizes n∗

1 and n∗
2 are p1 and p2, respectively, with p1 �= p2.

They proposed the unbiased estimator θ̂U2 =
(1−p2)m1/n∗

1−(1−p1)m2/n∗
2

p1−p2
for θ, where m1 and

m2 are the numbers of respondents who answer “Yes” in the first and second samples,
respectively. Because the modified method boosts the degree of privacy, it may receive
greater cooperation from respondents. According to Edgell et al. [46], compared to the RRT
of Warner [25], the unrelated-question RRT is much more statistically efficient and becomes
even more so when the population parameters of the non-sensitive question are known. To
assess whether respondents would honestly respond to the non-sensitive question, even if
it could be interpreted as socially undesirable when paired with a sensitive question, the
researchers conducted a study using an unrelated-question RRT. Shaw and Chaudhuri [47]
utilized the approach of the inverse hypergeometric trial to improve the revised unrelated
characteristics model device of Chaudhuri and Shaw [48]. Lee et al. [14] introduced a
data-collection method for survey on sensitive issues in which both the unrelated-question
RRT and the DQ design are combined. They proposed two new methods for estimating the
proportion of respondents possessing the sensitive attribute under a missing data setup.

3.2. Some Kind of Two-Stage Randomized Response Design

In 1990, Mangat and Singh [49] proposed a two-stage RR procedure in which two
randomization devices, R1 and R2, are used. In the first stage, each survey participant is
asked to use the randomization device R1, such as a well-shuffled deck of cards, to select
one from the following two statements:

A : I belong to group A.

C : go to the randomization device R2.

The two statements are selected with probabilities p0 and 1 − p0, respectively. In the
second stage, the design of Warner [25] is used. An unbiased estimator of θ is shown as
θ̂MS = n1/n−(1−p0)(1−p)

2p−1+2p0(1−p) with Var(θ̂MS) =
θ(1−θ)

n + (1−p)(1−p0){1−(1−p)(1−p0)}
n{2p−1+2p0(1−p)}2 . It is shown

that compared to the RR design of Warner [25], the two-stage RR design is more efficient.
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Mangat [50] proposed another RR model in which each interviewee is asked to respond
“Yes” if she/he were in the sensitive group; she/he is guided to utilize the device of
Warner [25] otherwise. It is shown that the RR design of Mangat [50] is more efficient in
comparison to the RR designs of Warner [25] and Mangat and Singh [49]. Specially, for
this RR design, an unbiased estimator of θ and its variance are given by θ̂M = n1/n−(1−p)

p

with Var(θ̂M) = λM(1−λM)
np2 , respectively, where, λM = θ + (1 − p)(1 − θ). According to the

unrelated-question model of Horvitz et al. [39] and the model of Mangat and Singh [49],
Chang and Liang [51] conducted a new two-stage unrelated RR design. Gjestvang and
Singh [52] adjusted the parameters of the randomization device to propose a more efficient
RR model than the models of [25,49,50] to refine the two-stage randomization. Huang [3]
used the two-stage RR procedure to improve efficiency of the RR procedure of [25]. Recently,
Chang et al. [2] utilized logistic regression to estimate the prevalence of a sensitive feature
with a categorical or quantitative explanatory variable.

A new two-stage unrelated RR model was proposed by Vishwakarma et al. [53] to
estimate the mean number of individuals in a given population who have a rare sensitive
attribute by using Poisson probability distribution, when the proportion of rare non-
sensitive unrelated attribute is known and unknown.

3.3. The Generalized Randomized Response Design of Christofides and Some Direct Extensions

In 2003, Christofides [54] provided the generalized RR (GRR) design of a single
sensitive question to let respondents have more than two response options and be more
protective toward their privacy. It is shown that the GRR design is more efficient in
comparison to the RR design of Warner [25]. Let a respondent have one of the sensitive
and non-sensitive attributes. If the respondent had the sensitive attribute, let her/him
remember the number L + 1; otherwise, let her/him remember the number 0. Next, she/he
utilizes a randomization device to generate a random integer from 1 to L with probability
distribution P = (P1, P2, . . . , PL), where ∑L

j=1 Pj = 1. This number is not reported directly
to the surveyor. If the respondent had the sensitive attribute, she/he only provides the
answer how far this number is away from L + 1; otherwise, provide the answer how far
this number is away from 0.

Assume that Yi, i = 1, 2, . . . , n, is respondent i taking the value L + 1 if having the
sensitive attribute and 0 otherwise. Ti is a random integer generated by respondent i
using the randomization device to obtain the value j with probability Pj = P(Ti = j),
j = 1, 2, . . . , L. Assume that θ is the population proportion of the sensitive trait. Yi has the
Bernoulli distribution with probability θ = P(Yi = L + 1) and probability 1 − θ = P(Yi =
0), denoted by Yi ∼ (L + 1) × B(1, θ), where B(1, θ) denotes the Bernoulli distribution
of a random variable taking the value 1 with probability θ and 0 with probability 1 − θ.
See Figure 1 of Lee et al. [55] for illustration of the probability mass functions (pmfs) for
Yi and Ti, respectively. From the GRR design of Christofides [54], the ith respondent
reports how far Yi is away from Ti. Thus, this respondent only provides the value of Di =
|Yi − Ti|, whose pmf is P(Di = d) = (1 − θ)Pd + θPL+1−d, i = 1, 2, . . . , n, d = 1, 2, . . . , L.
Christofides [54] obtained the expectation of Di, E(Di) = E(Ti) + θ(L + 1 − 2E(Ti)), and
took D = ∑n

j=1 Dj/n to replace E(Di). Because the expectation of Ti is known, θ̂C =

D−E(Ti)

L+1−2E(Ti)
is used as an estimator of θ. Similarly, it is easy to verify the variance of

Di as Var(Di) = Var(Ti) + θ(1 − θ)(L + 1 − 2E(Ti))
2. Hence, Christofides [54] showed

Var(θ̂C) =
θ(1−θ)

n + Var(Ti)

n(L+1−2E(Ti))2 . See Appendix A.2. θ can be replaced by θ̂C to obtain

an estimator of Var(θ̂C). The first and second terms of Var(θ̂C) are the variance because
of random sampling and the variance due to the randomization procedure, respectively.

If choosing suitable values for P1, P2, . . . , PL such that Var(Ti)

n(L+1−2E(Ti))2 < p(1−p)
n(2p−1)2 , then θ̂C

is more efficient than θ̂W . When n → ∞, θ̂C is asymptotically normally distributed, and,
hence, interval estimation can be performed. When L = 2, P1 = p (and P2 = 1 − p) and,
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hence, this GRR model is reduced to the RR model of Warner [25]. Furthermore, when
L ≥ 3, the mean squared error of θ̂C is smaller in comparison to that of θ̂W [54].

Christofides [54] also showed that Var(θ̂C) can be reduced by multiple use of the
randomization device. In this instance, individual i is asked to use the randomization
device mi times. The mi repetitions of the procedure must be independent of each other.
Let Tij be the number produced by individual i using the randomization device at the jth

time. Suppose that Dij = |Yi − Tij| is the reported number. Define θ̂m. =
Dm.−E(T)

L+1−2E(T)
, where

Dm. = (∑n
i=1 mi)

−1 ∑n
i=1 ∑mi

j=1 Dij. Assume that T has the same distribution as the Tij’s,

j = 1, 2, . . . , mi, i = 1, 2, . . . , n. θ̂m. is shown to be an unbiased estimator of θ with

Var(θ̂m.) =
∑n

i=1 mi
2

(∑n
i=1 mi)

2 θ(1 − θ) +
1

∑n
i=1 mi

Var(T)

[L + 1 − 2E(T)]2
.

In the special case where when mi = m, i = 1, 2, . . . , n, i.e., each respondent is asked to
use the randomization device m times,

Var(θ̂m.) =
θ(1 − θ)

n
+

Var(T)

mn[L + 1 − 2E(T)]2
.

Thus, when mi = m, i = 1, 2, . . . , n, Var(θ̂m.) is then smaller via multiple use of the random-

ization device in comparison to Var(θ̂C) =
θ(1−θ)

n + Var(T)
n[L+1−2E(T)]

2 in Christofides [54].

Christofides [54] proposed an improved modification of the RR design of Warner [25]
to estimate an unknown proportion of population bearing a sensitive characteristic in a
given community. Chaudhuri [56] presented methods to estimate an unknown population
proportion of a sensitive attribute when RR data of Christofides [57] are available from
unequal probability samples. Christofides [58] extended the GRR model of Christofides [54]
to the case of stratified sampling. Christofides [57] extended the GRR model of [54] by
proposing an RRTthat allows for estimation of the population proportion of subjects
with two sensitive attributes simultaneously. Lee et al. [59] proposed a special model
of the GRR version of Christofides [57], called a simple model. They also proposed a
so-called crossed model that is more efficient compared to the simple model. Perri et al. [60]
applied the crossed model to investigate the phenomena of the induced abortion and illegal
immigration simultaneously in Calabria, Italy and also attested to the fact that the crossed
model is more efficient.

3.4. Sensitive Characteristics with More Than One Category

It is in the RR model of Warner [25] supposed that every individual in a population
is in either the sensitive group or the non-sensitive group, and the population proportion
of subjects in the sensitive group is estimated by a survey. Abul-Ela et al. [61] improved
the RR design of Warner [25] for the trichotomous population with at least one sensitive
group. Hsieh et al. [9] extended the GRR design [54] to the case where there are more
than two categories and estimated the proportion of each category by employing the ML
method. Hsieh and Lukusa [10] used the ML method and Bayesian approach to estimate
the proportion of each group in a trichotomous population. The population with � (� ≥ 3)
related mutually exclusive groups, with at least one and at most � − 1 of them being
sensitive, was also extended by, e.g., Hsieh et al. [9] and Liu and Chow [62]. Recently, Hsieh
et al. [12] provided the two-stage multilevel RRT based on an extension of the GRR design
in [9] to collect the monthly income data.

3.5. Simultaneous Study of Multiple Sensitive Characteristics

Some works have estimated the population proportion of two sensitive features simul-
taneously. Barksdale [63] proposed some RRTs to collect data for analysis to investigate
two sensitive dichotomous traits. Drane [64] explored the problem of testing independence
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between two sensitive dichotomous characteristics by utilizing repeated applications of
various RRTs for single attribute. Fox and Tracy [65] estimated the correlation between
two sensitive traits. Christofides [57] introduced an RRT to estimate the proportion of
subjects with two sensitive attributes simultaneously. Lee et al. [59] extended the RR design
in [25] to capture two sensitive characteristics. Afterwards, Ewemooje [66] improved the
procedure to estimate the population proportion of two sensitive features at a time by
utilizing equal probabilities of protection on the randomization devices. It has been shown
that the proposed model is more efficient compared to the model of Lee et al. [59] in some
cases. Ewemooje and Amahia [67,68] extended the work of Mangat [50] to propose new
and more efficient estimators of the population proportion of respondents bearing two
related sensitive traits in survey sampling. Batool and Shabbir [69] considered the problem
of estimating the several proportions of two inter-dependent sensitive attributes prevailing
in a given population. Xu et al. [70] proposed a new, unique unrelated-question RR model,
where each card contains two questions, either both questions on the sensitive characteris-
tics or both questions on the unrelated characteristics. Chung et al. [71] implemented the
RRT with multiple sensitive traits and utilized a Bayesian approach to estimate covariance
matrices with incomplete information. Chu et al. [72] proposed a new statistical method
to combine the RRT, probit modeling, and Bayesian analysis to analyze large-scale online
surveys of multiple binary RRs. Recently, Hsieh and Perri [20] provided a logistic regression
extension for the RR simple and crossed models to discuss two related sensitive attributes
in [59].

3.6. Randomized Response Techniques for Quantitative Sensitive Data

Greenberg et al. [73] extended the RRT of reducing respondent bias in obtaining an-
swers to sensitive questions from a situation where the response is categorical to that in
which the response is quantitative. Gupta et al. [74] estimated the expected mean of the
stigmatized variable by using an optional RR sampling. By using double sampling, Grewal
et al. [75] estimated the expected mean of a sensitive quantitative variable. Hussain and
Shabbir [76] provided an unbiased estimator of the population mean of a sensitive quanti-
tative variable based on multiple selections of numbers from a scrambling distribution to
confound the actual response on a sensitive variable with some unrelated variable. Hsieh
et al. [12] estimated the personal monthly mean income by using a two-stage multilevel
RRT with proportional odds (PO) models.

Hussain et al. [77] proposed a new RR model to estimate the population total of a
sensitive variable of quantitative nature. To achieve the objective, they introduced additive
scrambling mechanism when sample is drawn through probability proportional to size
sampling scheme. Gupta et al. [78] proposed an optional enhanced trust (OET) quantitative
RRT model to mitigates the effect of respondents’ lack of trust by allowing them who do not
trust the traditional additive RRT model to use an alternative scrambling technique. They
utilized a combined measure of respondent privacy and model efficiency to demonstrate
both theoretically and empirically that the proposed OET model is superior to the traditional
model of Warner [79].

3.7. Applications of Randomized Response Techniques to Real Data

Applications of RRTs to real data related to sensitive topics can be found in various
works, such as illegitimacy of offspring [40], drug use [72,80–82], incidence of induced abor-
tions [60,62,83,84], fraudulent acts [19,85–88], racism [89,90], sexual behavior [2,9,10,20,55,91–93],
cheating in examinations [94], monthly income [12], illegal immigration [95], and conserva-
tion [23,24]. In recent years, many researchers have been attracted to using RRTs to collect
data on fraudulent behaviors during the COVID-19 pandemic. For example, Mieth et al. [96]
used indirect questions to provide prevalence estimates for personal hygiene behavior during
the early stages of the COVID-19 pandemic in Germany in 2020. Reiber et al. [97] conducted
a survey on intimate partner violence during the COVID-19 pandemic, along with various
other studies.
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Striegel et al. [98] estimated the prevalence of doping and illicit drug abuse. They used
a two-sided z-test to compare the anonymous standardized questionnaire and RRT results
with the respective official German National Anti-Doping Agency data on the prevalence
of doping. Christiansen et al. [99] measured the prevalence of doping in recreational sport
by using the RRT. Mielecka-Kubień and Toniszewski [100] estimated the prevalence of
illicit drug use among high school students living in the Silesian voivodship (Poland) by
using either the RRTs of forced response design or the Liu-Chow method [101]. Burgstaller
et al. [102] argued that the RRT and list experiments would validate and improve prevalence
estimates of undeclared work that is defined as a taxable and essentially legal economic
activity, but that is not intentionally reported to the relevant authority. They considered
an undeclared work case in Germany to demonstrate the strengths and weaknesses of
conventional surveys. Furthermore, readers can refer to [22,32] for more studies using IQT
for real data.

3.8. Statistical Methods for Randomized Response Data

The two well-known estimation methods, frequentist and Bayesian, in statistics have
been applied by several authors RR data.

3.8.1. Frequentist Methods

After collecting data through RR designs, estimation and statistical inference of un-
known population parameters of interest, such as the proportion of sensitive characteristics,
honest response rate, and sensitivity level of questions, can be carried out. In the fre-
quentist approach, the commonly used classical methods are the ML method and method
of moments (MM). A common problem with these two methods is that the estimated
parameter value may be out of the true parameter space. For example, the estimate of the
proportion of a sensitive feature may fall outside the interval [0, 1]; see, e.g., [20,33,103].
In addition, the calculation of ML estimates is sometimes more complicated and requires
numerical methods. The expectation–maximization (EM) method [104] can be used to
address this issue; see, e.g., [22,105–107]. Specifically, Bourke and Moran [105] presented
the particular applicability of the EM algorithm in obtaining ML estimates of proportions
where the sensitive data are collected by using an RR design. They considered two kinds
of RR designs: related-question [25] and unrelated-question [40] designs. van den Hout
and Kooiman [107] developed a fast and straightforward EM algorithm to obtain ML
estimates of the parameters of a linear regression model with categorical covariates subject
to RR. Groenitz [22] derived a general EM algorithm to obtain general ML estimates of
the parameters of a logistic regression model. Recently, to obtain an efficient estimator of
the proportion of a sensitive characteristic and to investigate the association between the
sensitive characteristic or latent variable and an observed binary variable, Lee et al. [106]
proposed a combination of Warner’s RRT [25] and a latent class model. An EM algorithm
is proposed to estimate the model parameters. However, the EM method also has its own
weaknesses, such as its tendency to fail to converge to the true value; see, e.g., [108].

3.8.2. Bayesian Method

Some authors have suggested using the Bayesian method to deal with the weaknesses
and improve the efficiency of previous estimation methods in cases where some prior
information on parameters is available. The major references on the RRT in the Bayesian
framework are listed below. Winkler and Franklin [84] proposed a seminal work in which
the Bayesian approach was used to analyze RR data. Hussain et al. [109], Migon and
Tachibana [110], and a bunch of other authors then used the Bayesian method to estimate
the population proportion of a sensitive trait in Warner’s RR design [25]. Pitz [111] used
a Bayesian analysis of the model of Fidler and Kleiknecht [112] to give a more useful
estimation when the sample size is not large or the response proportions are extreme.
O’hagan [113] employed a non-parametric approach to derive Bayes linear estimators.

271



Mathematics 2023, 11, 1718

Oh [114] and Unnikrishnan and Kunte [115] used the Bayesian method through a
Gibbs sampling algorithm to estimate parameters of interest by introducing latent variables
to an RR model. Bar-lev et al. [103] presented a common conjugate prior structure for some
RR models. Hussain and Shabbir [116] used a stratified random sampling protocol and
the Bayesian method to estimate the population proportion of a sensitive feature. Song
and Kim [117] addressed the Bayesian formulation of two types of Poisson regression
models for RR sum score variables under the self-protection assumption. Adepetun and
Adewara [118] utilized both Kumaraswamy and generalised beta prior distributions to
propose the Bayesian estimators of the population proportion of a stigmatized characteristic
when data were obtained via the RRT of Kim and Warde [43]. Groenitz [119] proposed a
design method for multiple-choice sensitive features and provided the Bayesian method
combined with Gibbs sampling and Markov chain Monte Carlo (MCMC) to estimate
the population proportions of multichotomous sensitive features. Song and Kim [120]
employed the RRT to propose a Bayesian estimation of the rate of a rare sensitive trait.
Mehta and Aggarwal [4] and Narjis and Shabbir [5] provided Bayesian estimation of a
sensitivity level and the population proportion of a sensitive attribute of optional unrelated-
question RR models.

Recently, Nandram and Yu [108] introduced a Bayesian analysis of spare counts
gathered from the unrelated-question design. More recently, Hsieh and Lukusa [10] im-
plemented a Bayesian framework for multilevel RR data and compared the Bayesian
method with the ML method for estimating the population proportion of individuals aged
18–54 years who self-reported as bisexual and homosexual among Taiwanese. Hsieh and
Perri [20] proposed a Gibbs sampling algorithm to estimate the population proportion of the
sensitive characteristic θ. They compared, in connection with the GRR data-collection model
of [54], the MM, ML, and Bayesian methods for the estimation of the population proportion
of non-heterosexuals aged 20 years or older for the Taiwanese population, gender groups, and
age groups. Specifically, suppose that {(Di, Yi) : i = 1, 2, . . . , n} are available. The joint pmf of

(Di, Yi) is given by P(Di = di, Yi = yi) =
(

PL+1−di
θ
)I(yi=L+1)(Pdi

(1 − θ)
)I(yi=0), where I(·)

is an indicator function. Given D∗ = {(di, yi) : i = 1, 2, . . . , n}, the likelihood function can
be obtained as L∗(θ|D∗) = θ∑n

i=1 I(yi=L+1)(1 − θ)∑n
i=1 I(yi=0) ∏n

i=1 PI(yi=L+1)
L+1−di

PI(yi=0)
di

. Thus,
given that a beta prior distribution with parameters α1 and α2, denoted by θ ∼ Beta(α1, α2),
is assigned to θ, [20] derived the conditional posterior distribution of θ given D∗ as θ|D∗ ∼
Beta(α1 + ∑n

i=1 I(yi = L + 1), α2 + ∑n
i=1 I(yi = 0)). However, in practice, through the GRR

design of [54], only d = (d1, d2, . . . , dn) can be obtained, so, [20] treated Y = (Y1, Y2, . . . , Yn) as
latent variables to derive the conditional distribution of Yi given θ and Di = di. The probability

of Yi = L + 1 given θ and Di = di is p(θ, di) = P
(
Yi = L + 1|θ, Di = di

)
=

PL+1−di
θ

PL+1−di
θ+Pdi

(1−θ)
,

i = 1, 2, . . . , n. The conditional distribution of Yi given θ and Di = di is then a Bernoulli
distribution with probability p(θ, di) of Yi = L + 1 and probability 1 − p(θ, di) of Yi = 0,
denoted by Yi|θ, Di = di ∼ (L + 1)× B(1, p(θ, di)), i = 1, 2, . . . , n.

Chung et al. [71] used a Bayesian approach to estimate covariance matrices with
incomplete information in a population with multiple sensitive characteristics. According
to the idea of Hsieh and Perri [20], Lee et al. [55] used the Bayesian estimation method
through data augmentation and MCMC to estimate the prevalence of the population
possessing the sensitive attribute and the distribution of a categorical or quantitative
variable in each of the non-sensitive and sensitive groups. The deviance information
criterion and marginal likelihood are employed to select a suitable model to describe the
association of the sensitive characteristic with the auxiliary random variable in this work.
Chu et al. [72] combined the RRT, probit modeling, and Bayesian approach to analyze
large-scale online surveys of multiple binary RRs.

In 2023, Ewemooje et al. [82] proposed a new Bayesian estimation method for Alterna-
tive Tripartite RRTs to gain the proportion of individuals belonging to a sensitive character.
The proposed Bayesian estimators used the Kumaraswamy and the generalized beta prior
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distributions. A comparison of the classical technique and Bayesian method is provided
in [82].

3.9. Use of Auxiliary Information in Randomized Response Problems
3.9.1. Regression Models for Randomized Response Data

In sample surveys on sensitive topics, besides sensitive information of interest collected
by IQTs, information on some auxiliary variables is also obtained. The data of these auxiliary
variables are collected by using direct questioning techniques (DQTs). Using these auxiliary
variables reasonably to improve computational efficiency is an important issue that has
received the attention of several authors. The following is a brief summary of the use of
auxiliary variables in sensitive variable research.

In 1983, Maddala [81] employed a logit model to investigate the relationships be-
tween auxiliary variables and randomized response survey data through the RR design
of Warner [25]. The author obtained ML model parameter estimates using the Newton–
Raphson iterative procedure. An estimate of the asymptotic covariance matrix was shown.
This logit model was then illustrated for the first time in real data by Kerkvliet [121] in
the study of college students’ cocaine use at two public universities in the United States
that were surveyed in 1989. Scheers and Dayton [94] established a theory for an extension
of the RR design of [25] and a covariate extension of the unrelated-question RR design of
Greenberg et al. [40]. They showed that if the relationship between the covariates and the
sensitive population proportions is correctly specified, the covariate RR model is relatively
more efficient. In 1996, van der Heijden and van Gils [87] presented the model where the
response variable is subject to the RR design of Boruch [122] or Kuk [123]. van den Hout
et al. [88] discussed univariate and multivariate logistic regression where response variables
are subject to RR.

van den Hout and Kooiman [107] derived the likelihood of the linear regression model
with categorical covariates subject to RR. They developed a fast and straightforward EM
algorithm to obtain ML estimates of the regression parameters. Cruyff et al. [124] provided
a review of regression procedures for RR data, including the univariate and multivariate
logistic regression models, PO regression model, item response model, and self-protective
responses. Blair et al. [29] presented how their developed multivariate logistic regression
techniques were employed to analyze data collected from the four RR designs: mirrored
question, forced response, disguised response, and unrelated question. Hsieh et al. [85,86]
and recently Chang et al. [2] estimated the prevalence of a sensitive characteristic with a
categorical or quantitative explanatory variable by fitting logistic regression.

Let Y be the answer to a sensitive question, Z a vector of covariates that are always
observed, and X another covariate vector that may be missing on some subjects. Assume
that W is a surrogate for X and independent of Y given X and Z. Let Y = 1 and Y = 0
denote answering “Yes” and “No”, respectively, to the sensitive question. Now consider
the following logistic regression model:

P(Y = 1|X, Z, W) = H(β0 + βT
1 X + βT

2 Z) = H(βTX ),

where H(u) = 1/(1 + exp(−u)) and β = (β0, βT
1 , βT

2 )
T is a vector of unknown parameters

for X = (1, XT , ZT)T . Under the RRT, Y is not observable. Let Y0 denote the binary
response to the sensitive question based on some RRT, such as [25,40,42,49]. The probability
of Y0 given X and Z can then be expressed as follows:

P(Y0 = 1|X, Z) = kH(βTX ) + s, (1)

where k and s are known constants in different RRTs. For example, k = 2p− 1 and s = 1− p
in Warner’s RRT [25]; k = p and s = (1 − p)c in the RRT proposed by Greenberg et al. [40],
where p is the probability of selecting the sensitive question and c is the probability of
selecting the innocuous question to answer “Yes”.
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Most recently, Groenitz [22] used logistic regression for the analysis of direct data
on the covariates and indirect data on the sensitive variable. The author derived a gen-
eral algorithm for the ML estimation and a general procedure for variance estimation.
Ronning [125] analyzed effects of RR with respect to some binary dependent variable on
the estimation of the probit model. Hsieh and Perri [95] proposed a logistic regression
extension for analyzing the factors that influence two sensitive variables when data are
collected by the RR simple and crossed models.

3.9.2. Missing Data in Randomized Response Problems

Most works on RR data assume that the data are observable. That means the data used
in these works are assumed to be fully observed. This assumption is sometimes difficult to
achieve in practice. Hsieh et al. [85] developed two semiparametric approaches to estimate
the parameters of logistic regression for RR data with missing covariates. After that, Hsieh
et al. [86] utilized a logistic regression model for analyzing RR data with covariates missing
at random (MAR). Hsieh et al. [13] combined the unrelated-question RRT of Greenberg
et al. [40] and the related-question RRT of Warner [25] to address the issue of an innocuous
question in the unrelated-question RR design. They utilized logistic regression with missing
data to estimate the prevalence of the sensitive characteristic. Lee et al. [14] combined both
the unrelated-question RRT of [40] and the DQT under a missing data setting to propose a
data-collection method for surveys of sensitive issues. Recently, Hsieh et al. [12] employed
PO regression on the two-stage multilevel RRT of [9] to investigate the monthly income
when some covariates are MAR.

Let δ indicate whether X is observed (δ = 1) or not (δ = 0). Assume that W is a
possible surrogate of X such that W is dependent on X and independent of Y0 given
X and Z. Hsieh et al. [85,86] assumed that the missing mechanism is missing at ran-
dom (MAR) [126], i.e., the probability of X being observed, the selection probability
P(δ = 1|Y0, X, Z, W) = π(Y0, Z, W), depends on (Y0, Z, W), but not on X. The valida-
tion data set consists of {(Y0

i , Xi, Zi, Wi, δi = 1) : i = 1, 2, . . . , n}, and the non-validation
data set includes {(Y0

i , Zi, Wi, δi = 0) : i = 1, 2, . . . , n}. Let v1, v2, . . . , vg denote the distinct
values of the Vi’s, where Vi = (Zi, Wi). For v ∈ {v1, v2, . . . , vg} and y0 = 0, 1, π(y0, v) is
estimated by

π̂(y0, v) =
∑n

i=1 δi I(Y0
i = y0, Vi = v)

∑n
i=1 I(Y0

i = y0, Vi = v)
.

To estimate β, Hsieh et al. [86] proposed the Horvitz and Thompson-type weighted
estimating equations [127] as follows:

Uw(β, π̂) =
1√
n

n

∑
i=1

{
δi

π̂(Y0
i , Vi)

Xi Ai(β)
[
Y0

i − [kH(βTXi) + s]
]}

= 0,

where π̂ = (π̂(Y0
1 , V1), π̂(Y0

2 , V2), . . . , π̂(Y0
n , Vn)),

Ai(β) =
kH(βTXi)[1 − H(βTXi)]

(kH(βTXi) + s)(1 − kH(βTXi)− s)
. (2)

Hsieh et al. [86] also proposed to model π(Y0
i , Vi) with logistic regression with known

parameters or unknown parameters to discuss the efficiency problem.
Multiple imputation (MI) is another statistical technique to deal with the missing data.

Lee et al. [128] and Stoklosa et al. [129] proposed generating imputed data by applying
the MI scheme developed by Wang and Chen [130] in different areas. One can estimate
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the parameters of the RR regression model in (1) by utilizing the empirical conditional
distribution function (CDF) as follows:

F̂(x|Y0
i , Vi) =

n

∑
r=1

{
δr I(Y0

r = Y0
i , Vr = Vi)

∑n
j=1 I(Y0

j = Y0
i , Vj = Vi)

}
I(Xr ≤ x). (3)

A unified estimate for the MI procedure proposed by Rubin [131] is the average of
estimates obtained from all imputed data sets. Given the number of imputations M, the MI
approach is summarized as follows:

Step 1. For missing Xi (δi = 0), generate X̃vi from the empirical CDF F̂(x|Y0
i , Vi) in (3),

v = 1, 2, . . . , M.
Step 2. Let β̂v denote the solution to the following estimating equations:

Uv(β) =
1√
n

n

∑
i=1

{
δiXi Ai(β)

[
Y0

i − [kH(βTXi) + s]
]

+ (1 − δi)X̃vi Ãvi(β)
[
Y0

i − [kH(βTX̃vi) + s]
]}

= 0, (4)

where X̃vi = (1, XT
vi, ZT

i )
T and is used to replace Xi in Ai(β) in (2) to denote Ãvi(β).

Step 3. The MI estimate of β is β̂m1 = ∑M
v=1 β̂v/M.

Lee et al. [128] provided the second MI-type method as in Fay [132] to estimate β. In
step 2, one can define the following estimating function:

Um2(β) =
1
M

M

∑
v=1

Uv(β).

Let β̂m2 denote the solution to the estimating equations Um2(β) = 0. The asymptotic
properties of the two MI estimators, β̂m1 and β̂m2, and their corresponding asymptotic
variance estimators still need to be established.

In the above discussion, we considered all the elements of X to be missing simulta-
neously. In practice, the elements of X may be missing simultaneously or separately in
the RR regression model. Now consider Xi = (XT

1i, X
T
2i)

T , where X1i and X2i may be missing
simultaneously or separately.

Define the missingness statuses of the data as follows. For i = 1, 2, . . . , n, δi1 = 1 if
both X1i and X2i are observed; 0 otherwise. δi2 = 1 if X1i is missing and X2i is observed; 0
otherwise. δi3 = 1 if X1i is observed and X2i is missing; 0 otherwise. δi4 = 1 if both X1i and
X2i are missing; 0 otherwise. Assume that W1 and W2 are the possible surrogates of X1 and X2,
respectively, such that W1 and W2 are dependent on X1 and X2 and independent of Y0 given
X and Z. Let W = (WT

1 , WT
2 )

T . Under the assumption of MAR mechanism [126] of X1 and X2,
the selection probability model is assumed as follows:

P(δij = 1|Y0
i , X1i, X2i, Zi, Wi) = πj(Y0

i , Vi), j = 1, 2, 3, 4, (5)

where Vi = (ZT
i , W T

i )T and ∑4
j=1 πj(Y0

i , Vi) = 1. πj(Y0
i , Vi)’s are the nuisance parameters

and unknown, although it may be specified at design stage in some applications.
Lee et al. [133] proposed two different types of MI methods for the estimation of

the parameters of the logistic regression model with covariates missing separately or
simultaneously. Their approaches, which are based on the ideas of [130,132], involve a two-
step procedure instead of the three-step procedure as in the traditional MI approaches, in
order to reduce the computing time, and are more efficient in estimation. These estimation
methods can also be applied to the RRT. For example, one can use the first approach of [133]
in the RRT below.
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Consider the following empirical CDFs of X1i, given (X2i, Y0
i , Vi), X2i, given (X1i, Y0

i , Vi),
and Xi given (Y0

i , Vi):

F̃X1i (x1|X2i, Y0
i , Vi) =

n

∑
k=1

(
δk1 I(Y0

k = Y0
i , X2k = X2i, Vk = Vi)

∑n
s=1 δs1 I(Y0

s = Y0
i , X2s = X2i, Vs = Vi)

)
I(X1k ≤ x1),

F̃X2i (x2|X1i, Y0
i , Vi) =

n

∑
k=1

(
δk1 I(Y0

k = Y0
i , X1k = X1i, Vk = Vi)

∑n
s=1 δs1 I(Y0

s = Y0
i , X1s = X1i, Vs = Vi)

)
I(X2k ≤ x2),

F̃Xi (x|Y0
i , Vi) =

n

∑
k=1

(
δk1 I(Y0

k = Y0
i , Vk = Vi)

∑n
s=1 δs1 I(Y0

s = Y0
i , Vs = Vi)

)
I(Xk ≤ x),

respectively. The two steps of the MI method are given as follows:

Step 1. Imputation: Generate the vth imputed (“completed”) data set, v = 1, 2, . . . , M,
based on the missingness status of Xi = (XT

1i, X
T
2i)

T , i = 1, 2, . . . , n.

(i) If δi1 = 1, keep the values of X1i and X2i, and define Xi = (1, XT
1i, X

T
2i, ZT

i )
T for all v.

(ii) If δi2 = 1, keep the value of X2i, and generate X̃1iv from F̃X1i (x1|X2i, Y0
i , Vi) to

impute the missing value of X1i, and define X̃2iv = (1, X̃T
1iv, XT

2i, ZT
i )

T .
(iii) If δi3 = 1, keep the value of X1i, and generate F̃X2i (x2|X1i, Y0

i , Vi) to impute the

missing value of X2i, and define X̃3iv = (1, XT
1i, X̃

T
2iv, ZT

i )
T .

(iv) If δi4 = 1, generate X̃1iv and X̃2iv from F̃Xi (x|Y0
i , Vi) to impute the missing values

of X1i and X2i, and define X̃4iv = (1, X̃T
1iv, X̃T

2iv, ZT
i )

T .

Step 2. Analysis: Solve the following estimating equations:

UM(β) =
1√
n

n

∑
i=1

{
δi1Xi Ai(β)

(
Y0

i − [kH(βTXi) + s]
)

+
1
M

4

∑
j=2

M

∑
v=1

δijX̃jiv Ãjiv(β)
(

Y0
i − [kH(βTX̃jiv) + s]

)}
= 0,

to obtain the MI estimate of β, where

Ai(β) =
kH(1)(βTXi)

[kH(βTXi) + s][1 − kH(βTXi)− s]
,

Ãjiv(β) =
kH(1)(βTX̃jiv)

[kH(βTX̃jiv) + s][1 − kH(βTX̃jiv)− s]
,

with H(1)(·) = H(·)[1 − H(·)]. In Step 1, the aforementioned empirical CDFs are uti-
lized to generate imputed data sets by using the complete-case data. δijs are employed
to identify exactly the partitioned covariate vector without missing observations that
are used as the information for the empirical CDFs. More specifically, when δi2 = 1
(δi3 = 1), one can employ the condition from the observed X2i (X1i), Y0

i , and Vi to
generate a set of values to impute the missing values of X1i (X2i). When δi4 = 1, i.e., X1i
and X2i missing simultaneously, the condition from Y0

i and Vi is utilized to generate
a set of values to impute the missing values of X1i and X2i. Therefore, the estimation
is more efficient. The estimation method can reduce computing time because it only
uses two steps to solve the estimating equations once. The asymptotic properties of
the MI estimators need to be established, along with the estimation of their variances.

3.9.3. Investigation of Influence of a Sensitive Trait on a Non-Sensitive Variable

In general, the aforementioned studies evaluate the influences of auxiliary variables
on sensitive variables of interest. However, there has not been any work evaluating the
association of a sensitive variable with auxiliary variables of interest, i.e., whether or not
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some random variable of interest on the research subjects depends on the sensitive char-
acteristic. Therefore, motivated by the issue, Lee et al. [55] proposed mixture models for
assessing the dependency relationship. Auxiliary information includes a univariate cate-
gorical variable, a univariate quantitative variable, and a multivariate quantitative variable
to examine in turn. They proposed the Bayesian method through data augmentation and
MCMC to estimate the prevalence of the population possessing the sensitive feature and
the distribution of a categorical or quantitative variable in each of the non-sensitive and
sensitive groups. Moreover, they employed three Bayesian model selection criteria to
choose the most suitable one among the proposed models to explore the association of the
sensitive variable with a multivariate auxiliary variable in simulation studies. Finally, the
two Bayesian model selection criteria, deviance information criterion [134], and marginal
likelihood [135] were utilized to choose a more suitable model for the univariate auxiliary
variable case.

It is difficult to study empirically sexual behaviors due to their sensitive nature.
Accurate estimation of the prevalence and frequency of sexual behaviors is difficult using
standard techniques, refer to, e.g., [20,92]. There are various works analyzing the efficacy
of the RRT, and more generally IQTs, to accomplish honest self-reporting about sexual
behaviors, compared to traditional survey techniques. Refer to, e.g., [92], for more detailed
discussions. The sensitive issue of a one-night stand was also mentioned in some materials,
including, e.g., Wentland and Reissing [136] and Kaspar et al. [137]. However, the number of
research works on this behavior is quite modest. A study on this topic can help researchers,
managers, and society have a more complete view of this sexual behavior of young people.
Lee et al. [55] applied their proposed methodology to study the influence of the response
to the sensitive question, “Have you ever had a one-night stand through a dating site
or mobile app?”, on each of the response to the statement, “I am considering finding a
one-night stand through a dating site or mobile app”, the response to the question, “How
many significant others have you had?”, and “the sum of scores of responses to six internet
dating experience questions” by using the data set collected from the survey study of
sexuality of freshmen at Feng Chia University in Taiwan in 2016.

Recently, Lee et al. [106] proposed a combination of Warner’s RRT [25] and a latent class
model to provide a more efficient estimation of the proportion of a sensitive characteristic
and to investigate the association between the sensitive characteristic or latent variable
and an observed binary variable. The concept of the relationship between the sensitive
characteristic variable and other variables in [55] was extended by employing the RR
design of [25] to collect sensitive characteristic information. Let Y be the answer to the
sensitive question and Z an observed vector of k dichotomous variables with values 0
and 1. In Warner’s RRT [25], p is the probability of selecting the sensitive question and
Y0 is a binary outcome, where Y0 = 1 and Y0 = 0 denote answering “Yes” and “No”,
respectively. Based on a latent variable model, it is assumed that under the group to
which an individual is known to belong, the corresponding observed/manifest variables
are independent. Therefore, assume that Z1, Z2, . . . , Zk given Y are independent. Let
P(Y = 1) = θ and P(Zs = 1|Y = y) = αys, y = 0, 1, s = 1, 2, . . . , k. Lee et al. [106] provided
the joint probability distribution of Y0, Z1, Z2, . . . , Zk as follows:

P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk)

= P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 1)P(Y = 1)

+ P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 0)P(Y = 0)

= pθ
k

∏
s=1

αzs
1s(1 − α1s)

1−zs + (1 − p)(1 − θ)
k

∏
s=1

αzs
0s(1 − α0s)

1−zs
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and

P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk)

= P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 1)P(Y = 1)

+ P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 0)P(Y = 0)

= (1 − p)θ
k

∏
s=1

αzs
1s(1 − α1s)

1−zs + p(1 − θ)
k

∏
s=1

αzs
0s(1 − α0s)

1−zs .

For obtaining the RR data and k-variate dichotomous data of responses to DQ,
Ref. [106] proposed an EM algorithm to estimate θ, α1s, and α0s, s = 1, 2, . . . , k. They
estimated the variances of estimators using the bootstrap method. An analytic expression
for the asymptotic variance still needs to be established. However, the k-variate data of
response to DQ are often not dichotomous. For example, “I think online dating is very
new/modern” is DQ, and there are five response options: “very consistent”, “almost
consistent”, “fairly consistent”, “a bit consistent” and “very inconsistent”. Therefore, one
can extend the case of k-variate dichotomous responses to DQ in [106] to the case of k-
variate multiple responses to DQ. Define P(Zs = r|Y = y) = αys,r, r = 1, 2, . . . , Bs, with
∑Bs

r=1 αys,r = 1, where y = 0, 1. Under the assumption that Z1, Z2, . . . , Zk given Y are inde-
pendent, one can express the joint probability distribution of Y0, Z1, Z2, . . . , Zk as follows:

P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk) = pθ
k

∏
s=1

Bs

∏
r=1

α
I(zs=r)
1s,r + (1 − p)(1 − θ)

k

∏
s=1

Bs

∏
r=1

α
I(zs=r)
0s,r

and

P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk) = (1 − p)θ
k

∏
s=1

Bs

∏
r=1

α
I(zs=r)
1s,r + p(1 − θ)

k

∏
s=1

Bs

∏
s=1

α
I(zs=r)
0s,r .

To estimate these parameters θ, α1s,r, and α0s,r, s = 1, 2, . . . , k, r = 1, 2, . . . , Bs, a pro-
cedure must be developed. One can consider an EM algorithm or the Newton–Raphson
method to solve unbiased estimating equations for these parameters and, hence, estimate
the variances of their estimators. Another way to estimate these parameters is to use the
Bayesian approach, which involves combining the MCMC/Gibbs sampler to generate
samples from the posterior distribution of these parameters.

3.10. Statistical Software: Packages and Modules for Randomized Response Data

Some authors have used statistical software to perform analysis of data from random-
ized surveys. For instance, Hox and Lensvelt-Mulders [138] presented a way to analyze
the relations between RR estimates and explanatory variables by using standard structural
equation modeling software, Mplus. Sehra [139] provided SAS code to perform analysis
of data gathered from a two-stage additive optional RR model. Jann [140] presented the
Stata module rrlogit to fit logistic regression to RR data. R software is also commonly
used in RR data analysis. Tian and Tang [31] provided numerous R programs to illus-
trate their analysis in a monograph. Moreover, some other researchers have developed R

packages for estimation with RR surveys. Some of them are mentioned as follows. Blair
et al. [29] developed the R package rr to perform regression analyses of sensitive data
under some standard RR designs. They also provided tools to conduct power analysis
for designing RR items. Heck and Moshagen [141] developed the R package RRreg to
conduct correlation and regression analysis of RR data, simple univariate analysis, bivariate
correlations including RR variables, logistic regression with an RR variable, and linear
regression with RR variables as predictors. Rueda et al. [142] developed the R package
RRTCS to perform point and interval estimation of linear parameters with data collected
from RR surveys under complex sampling designs. Fox et al. [143] extended the existing
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implementations by providing generalized regression tools for multiple-group RR designs
in the R package GLMMRR.

3.11. Non-Randomized Response Techniques

In RR surveys, respondents use a randomization device such as a coin or a deck of cards
to generate an outcome that influences the required scrambled answer. However, running
a random experiment can be cumbersome and expensive. This has led to the development
of NRRTs in recent years. In contrast to RR surveys, in NRR surveys, respondents use an
independent non-sensitive question such as their birthday in the questionnaire to obtain
their answer to a sensitive question indirectly. In NRR surveys, respondents are expected
to give the same response to the questions that are repeated. Some of the more common
NRRTs are reviewed below.

3.11.1. Some Common Non-Randomized Response Models

Hidden sensitivity model (HSM): In 2007, Tian et al. [144] proposed a non-randomized
HSM to investigate the association between two sensitive binary questions. For example,
they considered two variables X1, X2 ∈ {0, 1}, where X1 = 1 if using drugs and X2 = 1 if
having AIDS. This technique is called the HSM because the truthful sensitive attributes
of all respondents are hidden. Before Tian et al. [144], for example, Fox and Tracy [65]
estimated the correlation between two sensitive questions. Christofides [57] provided an
RRT for two sensitive characteristics simultaneously. However, all of these models require
the use of randomization devices.

CWM and TRM: In 2008, Yu et al. [28] introduced two NRRTs—the CWM and TRM—
for a single sensitive question with binary options. Of which, the CWM can be viewed as a
non-randomized version of the original RR model of Warner [25]. However, compared to
the original Warner’s RR model, the CWM has several advantages, including, e.g., better
reproducibility of results and increased cooperation from respondents due to its perceived
lower invasiveness. Let X be the sensitive attribute. In these models, X has two categories.
For instance, X ∈ {1, 0} with X = 1 if having sensitive characteristics and X = 0 otherwise.
In 2009, Tan et al. [145] showed that the non-randomized TRM has higher relative efficiency
and better degree of privacy protection compared to the Warner’s RR model [25]. In 2020,
Hoffmann et al. [146] conducted a study to compare directly the validity of the CWM and
TRM and contrast their performance with a conventional DQ approach.

Multi-category response model (MCRM): In 2009, Tang et al. [147] developed a non-
randomized MCRM for surveys with a single categorical sensitive question. This model is
suitable for the case of the sensitive variable X with k categories: X ∈ {1, 2, . . . , k}, k ≥ 2.
For example, let X ∈ {1, 2, 3} with X = 1 if having never violated traffic laws; X = 2 if
having ever violated traffic laws once or twice; and X = 3 if having violated traffic laws
three or more times. A requirement for this model is that at least one value of X, say X = 1,
is non-sensitive.

Diagonal model (DM): In 2014, Groenitz [148] proposed a survey technique, called a
DM, for multi-categorical sensitive variables. The DM is an NRR method to avoid using
any randomization device and, hence, reduce the complexity and costs of surveys. That
at least one category of the sensitive variable be non-sensitive is not required in the DM.
Consequently, one can even apply the DM to attributes, such as income, which are sensitive
as a whole.

Parallel model (PM): In 2014, Tian [149] introduced another NRRT, the PM that is a
non-randomized version of the randomized unrelated-question model. He explored the
asymptotic properties of the ML estimator and its modified version for the proportion
of interest. Theoretical comparisons have shown that the PM is generally more efficient
than the CWM and TRM for most possible parameter ranges. Additionally, he developed
Bayesian methods to analyze survey data gathered from the PM.

By using direct and indirect questions, Perri et al. [150] proposed a procedure to detect
the presence of liars in sensitive surveys that allows researchers to evaluate the impact
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of untruthful responses on the estimation of the prevalence of a sensitive attribute. They
first introduced the theoretical framework, then applied the proposal to the RR method of
Warner [25], the unrelated question model [40], the item count technique, the CWM, and
the TRM.

3.11.2. Statistical Methods for Non-Randomized Response Models

In 2009, Tian et al. [151] proposed the Bayesian NRR models for surveys including one
and two sensitive questions. They derived the exact posterior distributions and their explicit
posterior moments, as well as posterior modes via the EM algorithm. They also presented
an approach to generate independent and identically-distributed posterior samples for
the CWM and TRM, respectively. For the HSM, Tian et al. [144] presented the Bayesian
analysis under a conjugate Dirichlet prior as well as some other prior structures. In 2011,
Tian et al. [152] developed the formula for determining the sample size required for the non-
randomized TRM. This formula was designed to help researchers determine the optimal
sample size for a given survey design and level of desired precision.

In 2014, Tang et al. [93] considered a non-randomized TRM to test the equality of the
proportions of individuals with a sensitive feature between two independent populations.
They derived the Wald, score, and likelihood ratio (LR) tests. They also developed the
formulae for determining the sample size. In 2015, Groenitz [119] introduced Bayesian
estimation for the DM in [148]. In 2019, Tian et al. [153] developed hidden logistic regression
according to the non-randomized PM in Tian [149] to study the relationships between non-
sensitive covariates and a sensitive binary response variable. Groenitz [22] developed a
general approach for logistic regression analysis with direct data on the covariates and
indirect data on the sensitive variable that covers many NRRTs to generate the indirect data.
Groenitz [22] derived a general algorithm for the ML estimation and a general procedure
for variance estimation.

3.11.3. Real Data with Non-Randomized Response Models

Various applications of NRR designs have appeared in the literature. For instance,
Tian et al. [144] described how the non-randomized HSM can be utilized to assess the
association between “sex exchange for drugs or money” and “HIV status”. Tang et al. [147]
illustrated how their NRR method is used to estimate the distribution of the attribute,
“number of sex partners”, in the population of Korean adolescents. Tang et al. [93] applied
a TRM to conduct a simple questionnaire survey to test whether the proportions of college
students who had homosexual experience were equal for men and women. The equality
of the proportions of college students who had homosexual experience for males and
females were examined by the Wald, score, and LR tests. Hoffmann et al. [146] conducted
an experimental comparison of the CWM and TRM.

Hoffmann et al. [146] conducted a study on Xenophobia and opposition to reception of
refugees in Germany. In a paper-pencil survey of 1,382 students, they estimated prevalence
of the two sensitive features, xenophobia and rejection of further refugee admissions, and
one non-sensitive control trait with a known prevalence (the first letter of respondents’
surnames). They showed that NRRTs provide more valid prevalence estimates for socially
undesirable characteristics compared to conventional DQ. The CWM was particularly able
to successfully control for the influence of social desirability bias, and outperformed the
TRM, presumably because of the favorable influence of the response symmetry found in the
CWM but not the TRM. They also found that the sensitivity of two questions was contingent
on respondents’ political orientation, and that the CWM provided the most valid estimates
for respondents for whom these questions were most sensitive. According to these results,
they recommended the use of the CWM over the TRM or DQ for highly sensitive topics
in a survey’s target population. Recently, Chang et al. [2] and Lee et al. [55] studied the
experience of one-night stands among freshmen at Feng Chia University in Taiwan in 2016.
They used an NRR design via the concept of Warner’s RR model [25] and Christofides GRR
model [54], respectively. Groenitz [22] re-presented real data on the sales of gas stations in
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Germany with the sensitive characteristic sales (with categories low, medium and high) to
demonstrate the applicability of the developed general framework. Perri et al. [150] used
the CWM and the TM to collect the data and to investigate the problem of racism among
students at the University of Calabria, Italy, in 2016, and the phenomenon of workplace
mobbing. They showed the estimates for the prevalence of the sensitive attributes under
study and evaluated the impact of the liars on the reliability of the final results.

3.11.4. Some Extensions of the Non-Randomized Response Models

Extended crosswise model (ECRM): In the CRM, the sample is not split into multiple
groups. Heck et al. [154] introduced the ECRM, where respondents are randomly assigned
to two groups. The ECRM not only guarantees the same statistical efficiency as the CRM
but also can enable researchers to detect respondents’ non-compliance with instructions.

Dual NRR model and alternating NRR model: Wu and Tang [155] proposed the dual
NRRT and the alternating NRRT to actively account for deception in the TRM. In the former,
the sample is split into two groups, with two different non-sensitive questions. In the latter,
although the sample is also split into two groups, only one non-sensitive question is used.
Both the two methods have been argued to provide more accurate estimates than the TRM.

Cheating detection triangular model (CDTM): To improve upon the previous IQTs,
Meisters et al. [156] proposed the new CDTM. Similar to the cheating detection model
of Clark and Desharnais [157], it includes a mechanism for detecting instruction non-
adherence and, similar to the TRM, it utilizes simplified instructions to improve respon-
dents’ understanding of the procedure. Based on their results, the CDTM appears to be the
best choice among the investigated IQTs.

4. Conclusions

We have systematically reviewed the RRT-related works, from the pioneering work of
Warner (1965) [25] to the present, according to their respective aspects and to the best of our
knowledge. It includes several developments in RR designs as well as statistical methods
used in the problems of interest in this field. In each respect, instead of introducing all
related works, we re-introduced typical and pioneering works. A more complete view of
the evolution of the RRT can be found in the monographs listed in the References.
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Appendix A

Appendix A.1. Expectation and Variance of θ̂W in the Model of Warner [25]

Let λ denote the probability of answering “Yes”. Then, λ = P(Yes) = P(A)P(Yes|A) +
P(A)P(Yes|A) = θp + (1 − θ)(1 − p). Let n1 be the number of individuals responding
“Yes”. n1 then follows the binomial distribution with parameters n and λ. Its expectation
and variance are given by

E(n1) = n(θp + (1 − θ)(1 − p)),

Var(n1) = n(θp + (1 − θ)(1 − p))[1 − (θp + (1 − θ)(1 − p))]

= n
(
−θ2(2p − 1)2 + θ(2p − 1)2 + p(1 − p)

)
.
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θ̂W = p−1
2p−1 + n1

(2p−1)n is then an unbiased estimator of θ because

E(θ̂W) =
p − 1

2p − 1
+

E(n1)

(2p − 1)n

=
p − 1

2p − 1
+

n(θp + (1 − θ)(1 − p))
(2p − 1)n

=
p − 1

2p − 1
+

1 − p + θ(2p − 1)
2p − 1

= θ.

Moreover, we can get

Var(θ̂W) =
Var(n1)

(2p − 1)2n2

=
n
(
−θ2(2p − 1)2 + θ(2p − 1)2 + p(1 − p)

)
(2p − 1)2n2

=
−θ2(2p − 1)2 + θ(2p − 1)2 + p(1 − p)

(2p − 1)2n

=
θ(1 − θ)

n
+

1
4n

[
1

(2p − 1)2 − 1
]

=
θ(1 − θ)

n
+

p(1 − p)
n(2p − 1)2 .

Appendix A.2. Expectation and Variance of θ̂C in the Model of Christofides [54]

Now, each sampled person is provided with a randomization device that is used to
generate the integers 1, 2, . . . , L with probabilities P1, P2, . . . , PL, respectively. Using the
randomization device, the individual generates one of these L numbers and reports how
far the generated number is away from L + 1 if she/he had the sensitive characteristic or
from 0 otherwise.

Let Yi take on the value L + 1 if individual i had the sensitive characteristic and the
value 0 if not. Clearly P(Yi = L + 1) = θ and P(Yi = 0) = 1 − θ. Let Ti be the integer
produced by individual i using the randomization device. The reported number is then
Di = |Yi − Ti| whose pmf is given by

P(Di = d) = (1 − θ)Pd + θPL+1−d, d = 1, 2, . . . , L.

Direct calculation shows that

E(Di) =
L

∑
d=1

dP(Di = d)

=
L

∑
d=1

d[(1 − θ)Pd + θPL+1−d]

=
L

∑
d=1

dPd + θ
L

∑
d=1

d(PL+1−d − Pd).

Because
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L

∑
d=1

d(PL+1−d − Pd) = (PL − P1) + 2(PL−1 − P2) + · · ·+ L(P1 − PL)

= (L − 1)P1 + (L − 3)P2 + (L − 5)P3 + · · ·+ (L − (2L − 1))PL

= (L + 1 − 2)P1 + (L + 1 − 4)P2 + (L + 1 − 6)P3 + · · ·+ (L + 1 − (2L))PL

= (L + 1)
L

∑
d=1

Pd − 2P1 − 4P2 − · · · − 2LPL

= (L + 1)× 1 − 2(P1 + 2P2 + · · ·+ LPL)

= L + 1 − 2
L

∑
d=1

dPd,

it can yield

E(Di) =
L

∑
d=1

dPd + θ

(
L + 1 − 2

L

∑
d=1

dPd

)
= E(Ti) + θ(L + 1 − 2E(Ti)).

Similarly, one can obtain

E(D2
i ) =

L

∑
d=1

d2P(Di = d)

=
L

∑
d=1

d2((1 − θ)Pd + θPL+1−d)

=
L

∑
d=1

d2Pd + θ
L

∑
d=1

d2(PL+1−d − Pd).

We have

L

∑
d=1

d2(PL+1−d − Pd)

= (PL − P1) + 22(PL−1 − P2) + · · ·+ L2(P1 − PL)

= (L2 − 1)P1 + ((L − 1)2 − 22)P2 + ((L − 2)2 − 32)P3 + · · ·+ ((L − (L − 1))2 − L2)PL

= (L + 1)(L − 1)P1 + (L + 1)(L − 3)P2 + (L + 1)(L − 5)P3 + · · ·+ (L + 1)(L − (2L − 1))PL

= (L + 1)[(L − 1)P1 + (L − 3)P2 + (L − 5)P3 + · · ·+ (L − (2L − 1))PL]

= (L + 1)[(L + 1 − 2)P1 + (L + 1 − 4)P2 + (L + 1 − 6)P3 + · · ·+ (L + 1 − 2L)PL]

= (L + 1)

[
(L + 1)

L

∑
d=1

Pd − 2P1 − 4P2 − 6P3 − · · · − 2LPL

]

= (L + 1)

[
L + 1 − 2

L

∑
d=1

dPd

]
.
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Thus,

E(D2
i ) =

L

∑
d=1

d2Pd + θ
L

∑
d=1

d2(PL+1−d − Pd)

=
L

∑
d=1

d2Pd + θ

{
(L + 1)

[
L + 1 − 2

L

∑
d=1

dPd

]}
= E(T2

i ) + θ{(L + 1)[L + 1 − 2E(Ti)]}.

Accordingly,

Var(Di)

= E(D2
i )− (E(Di))

2

= E(T2
i ) + θ{(L + 1)[L + 1 − 2E(Ti)]} − {E(Ti) + θ[L + 1 − 2E(Ti)]}2

= Var(Ti) + θ{(L + 1)[L + 1 − 2E(Ti)]} − 2E(Ti)θ[L + 1 − 2E(Ti)]− {θ[L + 1 − 2E(Ti)]}2

= Var(Ti) + θ(1 − θ)[L + 1 − 2E(Ti)]
2.

Let D = 1
n ∑n

i=1 Di and define the estimator

θ̂C =
D − E(Ti)

L + 1 − 2E(Ti)
,

provided that L + 1 − 2E(Ti) �= 0. Then,

E(θ̂C) =
E(D)− E(Ti)

L + 1 − 2E(Ti)

=
E(Di)− E(Ti)

L + 1 − 2E(Ti)

=
E(Ti) + θ[L + 1 − 2E(Ti)]− E(Ti)

L + 1 − 2E(Ti)

= θ,

and

Var(θ̂C) =
Var(D)

[L + 1 − 2E(Ti)]2

=
Var(Di)

n[L + 1 − 2E(Ti)]2

=
Var(Ti) + θ(1 − θ)[L + 1 − 2E(Ti)]

2

n[L + 1 − 2E(Ti)]2

=
θ(1 − θ)

n
+

Var(Ti)

n[L + 1 − 2E(Ti)]2
.
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