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Coefficient Bounds for Some Families of Bi-Univalent Functions with Missing Coefficients
Reprinted from: Axioms 2023, 12, 1071, doi:10.3390/axioms12121071 . . . . . . . . . . . . . . . . . 176

Madan Mohan Soren, Abbas Kareem Wanas and Luminiţa-Ioana Cotı̂rlǎ
Results of Third-Order Strong Differential Subordinations
Reprinted from: Axioms 2024, 13, 42, doi:10.3390/axioms13010042 . . . . . . . . . . . . . . . . . . 190

vi



About the Editor

Georgia Irina Oros

Georgia Irina Oros has been teaching at the University of Oradea, Romania, since 2004. She has

been associate professor at the Faculty of Informatics and Sciences, Department of Mathematics and

Computer Science, since 2013. Georgina earned her PhD in geometric function theory at Babes, -Bolyai

University, Cluj-Napoca, Romania, in 2006, and earned her habilitation defended her thesis in 2018

at Babes, -Bolyai University, Cluj-Napoca, Romania. She has published over 100 papers in the fields of

complex analysis and geometric function theory.

vii





 

Citation: Oros, G.I. New

Developments in Geometric Function

Theory II. Axioms 2024, 13, 224.

https://doi.org/10.3390/

axioms13040224

Received: 25 March 2024

Accepted: 26 March 2024

Published: 28 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Editorial

New Developments in Geometric Function Theory II
Georgia Irina Oros

Department of Mathematics and Computer Science, University of Oradea, 410087 Oradea, Romania;
georgia_oros_ro@yahoo.co.uk

1. Introduction

This Special Issue is a sequel to the successful first volume entitled “New Develop-
ments in Geometric Function Theory”. Following the same idea as the previous Special
Issue, this project aimed to gather the latest developments in research concerning complex-
valued functions in the Geometric Function Theory field.

Scholars’ contributions were accepted on topics which included but were not lim-
ited to:

• New classes of univalent and bi-univalent functions;
• Studies regarding coefficient estimates including the Fekete–Szegő functional, Hankel

determinants and Toeplitz matrices;
• Applications of different types of operators in Geometric Function Theory, including

differential, integral, fractional or quantum calculus operators;
• Differential subordination and superordination theories in their classical form, also

concerning their recent extensions, and strong and fuzzy differential subordination
and superordination theories;

• Applications of different hypergeometric functions and orthogonal polynomials in
Geometric Function Theory.

New results obtained by using any other techniques which can be applied in the
field of complex analysis and its applications were also welcome. Hopefully, new lines
of research associated with Geometric Function Theory have been highlighted and will
provide a boost in the development of this field.

2. Overview of the Published Papers

Following a comprehensive review process, 14 articles were accepted for publication
in this Special Issue.

Research by Sunday Olufemi Olatunji, Matthew Olanrewaju Oluwayemi and Georgia
Irina Oros (Contribution 1) associates the powerful numerical tool provided by Gegenbauer
polynomials with the prolific concepts of convolution and subordination. The investigation
presented in this paper concerns a new subclass of functions introduced using an operator
defined as the convolution of the generalized distribution and the error function using the
concept of subordination. The research presented here targets a current topic of interest
in Geometric Function Theory, namely coefficient-related studies. Investigations into this
subclass are considered in connection to Carathéodory functions, the modified sigmoid
function and Bell numbers to obtain coefficient estimates for the contained functions. The
initial results regarding the coefficient estimates obtained by the authors can be used for
further specific investigations regarding the coefficients of the functions from this class,
such as estimations of Hankel determinants of different orders, Toeplitz determinants or
the Fekete–Szegö problem.

Ibtisam Aldawish, Basem Frasin and Ala Amourah (Contribution 2) introduce a new
family of normalized bi-univalent functions in the open unit disk associated with the
Horadam polynomials using the concept of subordination and they estimate the second
and the third coefficients in the Taylor–Maclaurin expansions of functions belonging to
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this class. Furthermore, the Fekete–Szegö inequality is evaluated for the functions in the
newly defined family. Making use of the Bell distribution series could inspire researchers
to derive the estimates of the Taylor–Maclaurin coefficients and Fekete–Szegö functional
problems for functions belonging to new subclasses of bi-univalent functions defined by
means of the Horadam polynomials associated with this distribution series.

Rasoul Aghalary, Ali Ebadian, Nak Eun Cho and Mehri Alizadeh (Contribution 3)
present a new method of studying harmonic functions in Geometric Function Theory.
In this paper, a specified class of new log-harmonic functions is constructed taking the
convex-exponent product combination of two elements. Sufficient conditions for this class
to be starlike log-harmonic are given as a result of this study. Earlier work in the literature
is proven to be generalized by the outcome of this research, and examples connected to the
new results are presented in order to encourage future investigations.

In their research (Contribution 4), Maryam Al-Towailb and Zeinab S. I. Mansour use
quantum calculus aspects in order to introduce a q-analog of the class of completely convex
functions. This class of functions is a generalization of the class of completely convex
functions. Specific properties, including the convergence of q-Lidstone series expansions of
q-completely convex functions, are proven in the study, and it also provides a sufficient
and necessary condition for a real function to have an absolutely convergent q-Lidstone
series expansion.

The main aim of the study conducted by Abbas Kareem Wanas, Fethiye Müge Sakar
and Alina Alb Lupaş (Contribution 5) was to investigate two new classes of bi-univalent
functions described through a generalized q-calculus operator using the generator function
for the Laguerre polynomial. Initial Taylor–Maclaurin coefficient estimates for functions
of these newly introduced bi-univalent function classes are obtained, and the well-known
Fekete–Szegö inequalities are examined for each of these classes.

The study performed by Abdullah Alsoboh, Ala Amourah, Fethiye Müge Sakar,
Osama Ogilat, Gharib Mousa Gharib and Nasser Zomot (Contribution 6) provides deeper
insights into the theory and applications of bi-univalent functions. A new family of analytic
bi-univalent functions that are injective and possess analytic inverses is introduced by em-
ploying a q-analogue of the derivative operator and the concept of subordination. Moreover,
the upper bounds of the Taylor–Maclaurin coefficients of these functions are established,
which can aid in approximating the accuracy of approximations using a finite number of
terms. The upper bounds are obtained by approximating analytic functions using Faber
polynomial expansions. The results obtained in this article can be generalized in the future
using post-quantum calculus and other q-analogs of the fractional derivative operator.

The primary objective of the study published by Sercan Kazımoğlu, Erhan Deniz
and Luminit,a-Ioana Cotîrlă (Contribution 7) is to investigate the criteria for univalence
and convexity of the integral operators that employ Miller–Ross functions. Differential
inequalities related to the Miller–Ross functions and well-known lemmas are employed
in the proofs of the new results. By using Mathematica (version 8.0), some graphics are
generated that support the main results. The original results presented here could stimulate
and inspire researchers, just as all the operators introduced before in studies related to
functions of a complex variable have done. Other geometric properties related to these
operators could be investigated and they could also prove useful in introducing special
classes of functions based on these properties.

By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex
functions, Hari Mohan Srivastava, Isra Al-Shbeil, Qin Xin, Fairouz Tchier, Shahid Khan and
Sarfraz Nawaz Malik (Contribution 8) define and investigate a new subclass of normalized
analytic functions in an open unit disk employing a novel fractional differential operator.
By using the Faber polynomial expansion technique, the l-th coefficient bound for the
functions contained within this class is provided, and a further explanation for the first
few coefficients of bi-close-to-convex functions defined by the q-fractional derivative is
also given. The Fekete–Szegö problem is also considered for this class and some examples
are provided. It is also demonstrated how some previously published results could be
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improved and generalized as a result of the primary findings of this study, as well as their
corollaries and consequences.

In their research (Contribution 9), Abeer A. Al-Dohiman, Basem Aref Frasin, Naci
Taşar and Fethiye Müge Sakar discover some inclusion relations of a certain harmonic class
with other classes of harmonic analytic functions defined in an open disk by applying a
convolution operator associated with the Mittag–Leffler function. Several special cases of
the main results are also obtained as corollaries of the main results. Following this study,
one can find new inclusion relations for new harmonic classes of analytic functions using
the convolution operator presented in this study.

Mohsan Raza, Mehak Tariq, Jong-Suk Ro, Fairouz Tchier and Sarfraz Nawaz Malik
(Contribution 10) aim to introduce a class of starlike functions that are related to Bernoulli’s
numbers of the second kind using the concept of subordination. Coefficient bounds, several
radii problems, structural formulas, and inclusion relations are established, and sharp
Hankel determinant problems of this class are presented. The newly defined class can
be further investigated for determining the bounds of higher-order Hankel and Toeplitz
determinants, and the same estimates can also be derived for logarithmic coefficients and
for the coefficients of inverse functions.

Hasan Bayram, Kaliappan Vijaya, Gangadharan Murugusundaramoorthy and Sibel
Yalçın (Contribution 11) introduce two novel subclasses of bi-univalent functions by leverag-
ing generalized telephone numbers and binomial series through convolution. The analysis
of the initial Taylor–Maclaurin coefficients is performed and Fekete–Szegö inequalities are
established for these functions.

In the research presented by Sondekola Rudra Swamy and Luminita-Ioana Cotîrlă
(Contribution 12), a new pseudo-type κ-fold symmetric bi-univalent function class that
meets certain subordination conditions is introduced and studied with regard to coefficient
bounds. For functions in the newly defined class, the upper bounds are obtained for
certain coefficients that are further used for the evaluation of the Fekete–Szegö problem.
In addition, pertinent links to previous results are highlighted and a few observations
are given.

The goal of the study presented by Ebrahim Analouei Adegani, Mostafa Jafari, Teodor
Bulboacă and Paweł Zaprawa (Contribution 13) is to estimate the upper bounds of the
coefficients of the functions that belong to a set of bi-univalent functions with missing
coefficients defined by using subordination. The results improve some previous results
concerning different subclasses of bi-univalent functions that have been recently studied.
In addition, important examples of some classes of such functions are provided, which
can aid in the understanding of issues related to these functions. The authors expect that
this method can be applied to the classes of harmonic and meromorphic functions in
future work.

The notion of third-order strong differential subordination is investigated by Madan
Mohan Soren, Abbas Kareem Wanas and Luminiţa-Ioana Cotîrlǎ (Contribution 14), who
propose a new line of investigation for third-order strong differential subordination. Sev-
eral intriguing properties are given within the context of specific classes of admissible
functions. Certain definitions are extended to fit the third-order strong differential subor-
dination theory, presenting new and interesting results. Several properties of the results
of third-order strong differential subordinations for analytic functions associated with the
Srivastava–Attiya operator are given. Studies of the dual theory of third-order strong
differential superordination could be inspired by the results presented in this paper.

3. Conclusions

A book published under the same title, “New Developments in Geometric Function
Theory II”, is available and contains the 14 papers that were published in this Special Issue.
In the papers released as part of this initiative, a wide range of topics are discussed. There-
fore, this Special Issue should be of interest to researchers studying Geometric Function
Theory and its related fields.
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Coefficient Results concerning a New Class of Functions
Associated with Gegenbauer Polynomials and Convolution in
Terms of Subordination
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* Correspondence: oluwayemimatthew@gmail.com (M.O.O.); georgia_oros_ro@yahoo.co.uk (G.I.O.)

Abstract: Gegenbauer polynomials constitute a numerical tool that has attracted the interest of many
function theorists in recent times mainly due to their real-life applications in many areas of the
sciences and engineering. Their applications in geometric function theory (GFT) have also been
considered by many researchers. In this paper, this powerful tool is associated with the prolific
concepts of convolution and subordination. The main purpose of the research contained in this
paper is to introduce and study a new subclass of analytic functions. This subclass is presented using
an operator defined as the convolution of the generalized distribution and the error function and
applying the principle of subordination. Investigations into this subclass are considered in connection
to Carathéodory functions, the modified sigmoid function and Bell numbers to obtain coefficient
estimates for the contained functions.

Keywords: analytic function; starlike function; convex function; univalent function; Gegenbauer
polynomials; Bell numbers; sigmoid function

MSC: 30C45; 30C50

1. Introduction and Preliminaries

The beginning of univalent function theory is largely credited to P. Koebe’s article
published in 1907 [1]. Problems pertaining to the full class of univalent functions were
the primary focus at first. Bieberbach, who published numerous significant papers on the
theory of univalent functions in the early 1920s, was a key figure in the early development
of geometric function theory. He conjectured his well-known bounds for a normalized
univalent function’s coefficients in 1916 [2] and established the bound for the second
coefficient. It was not until 1984 [3] that the hypothesis was generally proven.

In a paper published in 1915 [4], Alexander intended to obtain sufficient conditions
for a function to map the interior of the unit disc in a one-to-one manner. As a result,
Alexander developed a number of classes of univalent functions as well as several tests that
ensured the univalence of those classes, initiating new lines of research in GFT. Alexander
first proposed the concepts of starlike functions, close-to-convex functions and functions
of bounded turning, along with other ideas and theorems that were later rediscovered,
often without awareness of Alexander’s pioneering work. In a nice review paper [5], the
authors analyze the content of Alexander’s paper emphasizing his intuitive arguments and
how those arguments were used by other researchers for further developments. Alexander
describes [4] a star-shaped region as a set whose every point may be connected to point a via
a linear segment made up only of points contained in the region. The center is designated
as point a. The region is said to be convex when any point inside the region may be picked
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as the center. In an effort to guarantee the univalence of the mapping by controlling the
shape of the boundary image, he proposed the idea of mapping the unit disc onto a starlike
or convex region. By mandating that the boundary image is a starlike or a convex domain,
univalence is achieved since overlapping or looping is avoided. Geometric characterization
states that a mapping w = w(z) is star-shaped if arg w(z) is a never-decreasing function of
θ = arg w(z) when z describes the unit circle in the counterclockwise direction, and it is a
convex function if the argument of the normal vector of the image curve is a non-decreasing
function of an increasing θ.

There are numerous intriguing uses for star-shaped bodies in various fields. For
instance, star-shaped bodies were explored in the context of compressible fluid penetration
in mechanics [6]. Computer simulations were extensively used in statistical mechanics to
study models of fluids, liquid crystals, plastic crystals and other solid-phase systems made
of hard convex bodies [7]. On the other hand, it has been demonstrated in [8] that hard
star-shaped bodies can replace hard convex bodies in computer simulations of constant
volume and constant pressure. As with other applications for star-shaped bodies, it has
been determined in elasticity theory that the stress field is uniform when m is an odd
integer for an m-pointed polygonal inclusion exposed to a uniform eigenstrain [9].

Many univalent function subclasses have captured the interest of GFT researchers.
Such subclasses are defined using functions f belonging to the class A of holomorphic
functions that have the following form:

f (z) = z +
∞

∑
n=2

anzn, z ∈ E, (1)

where E = {z : |z| < 1} with f (0) = f ′(0) − 1 = 0. The class of starlike functions is
comprised functions f ∈ A with the geometric representation Re z f ′(z)

f (z) > 0, the class of
convex functions contains functions f ∈ A with the geometric characterization given by
Re
(

1 + z f ′′(z)
f ′(z)

)
> 0 and the class of close-to-convex functions is characterized by Re z f ′(z)

g(z) >

0, with g representing a starlike function.
Recently, Babalola [10] improved on a subclass ofA called the class of starlike functions

by introducing the class Lλ(β), which is defined as the class of functions f belonging to A
that satisfies

Re
z( f ′(z))λ(z)

f (z)
> β, (2)

where β ∈ [0, 1) and λ ≥ 1 ∈ R. Since then, many authors have used different approaches
to study the class of functions introduced in [10].

Using an analytic function F(z), the starlike and convex functions were investigated
by authors such as [11–14] and extended to the class of F−starlike and F−convex functions
denoted by FS∗ and FK, respectively, which are represented by

Re
F(z) f ′(z)

f (z)
> 0 (3)

and

Re
(

1 +
F(z) f ′′(z)

f ′(z)

)
> 0, (4)

respectively, with the condition F(0) = 0. By setting F(z) = z in (3) and (4), the well-known
starlike and convex functions are obtained [11,14].

Let

g(z) = z +
∞

∑
n=2

bkzn. (5)

6
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Then, the convolution of (1) and (5) gives

( f ∗ g)(z) = z +
∞

∑
n=2

anbnzn. (6)

For details, see [15,16].
A normalized Gegenbauer polynomial has the form

G(z, m) = z +
∞

∑
n=2

cβ
n−1(m)zn, (7)

where β > − 1
2 . The first three coefficients of the forms are

cβ
0 (m) = 1, (8)

cβ
1 (m) = 2βm, (9)

cβ
2 (m) = 2β(β + 1)m2 − β, (10)

and the next coefficient is given by

cβ
3 (m) =

4β(β + 1)(β + 2)m2

3
− 2β(β + 1)m. (11)

In general, the n-th coefficient is defined by

cβ
n(m) =

2m(n + β− 1)cβ
n−1(m)− (n + 2β− 2)cβ

n−2(m)

n
. (12)

It originates from

q(z) =
∫ 1

−1
G(z, m)dµ(m),

where
G(z, m) =

z
(1− 2mz + z2)β

(13)

and µ is a probability measure on the interval [−1, 1]. The collection of such measures on
[s, t] is denoted by P[s,t].

By substituting β = 1
2 in G(z, m), the Legendre polynomial will be obtained, while by

setting β = 1 in G(z, m), the famous Chebyshev polynomial will be obtained, which are
both tools in the field. These recent results can be seen in [17,18].

Gegenbauer polynomials have been studied intensely and have proved to provide
interesting results, as seen in early studies such as [19,20]. They have wide applications
in queueing theory, as can be seen in [21], signal analysis, automatic control, scattering
theory and many others. Applications in GFT include defining the subclasses of univalent
functions [22] and bi-univalent functions [23]. Coefficient studies on the subclasses of
bi-univalent functions can be seen in very recent papers, such as [24–27].

Let D denote the sum of the convergent series of the form

D =
∞

∑
n=0

an, (14)

where an ≥ 0 for all n ∈ N. The probability mass function of the generalized discrete
probability distribution defined using (14) is given by p(n) = an

D , n = 0, 1, 2, 3, . . . . Function
p(n) is the probability mass function because p(n) ≥ 0 and ∑n p(n) = 1.

7
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Additionally, let ψ(x) = ∑∞
n=0 anxn. Then, since D = ∑∞

n=0 an is convergent, the series
ψ is convergent for |x| < 1 and x = 1. The interest of the present investigation is the power
series whose coefficients are probabilities of generalized distributions of the form

Hψ(z) = z +
∞

∑
n=2

an−1

D
zn. (15)

Details can be found in [22,28,29].
The error function is a special function that occurs in probability, statistics, material

science, partial differential equation, physics, chemistry, biology, mass flow and diffusion
for transportation phenomena. It also occurs in quantum mechanics to eliminate the
probability of observing a particle in a particular region. Barton et al. [30] introduced the
function of the form

erf(z) =
2√
π

∫ z

0
e−t2

dt =
2√
π

∞

∑
n=0

(−1)n+1z2n+1

n!(2n + 1)
. (16)

The properties and inequalities of error functions have also been considered by
Alzer [31], Cartilz [32], Coman [33], Elbert [34] and many other researchers in the field.

Ramachandran et al. [35,36] modified (16) to

Erf(z) = z +
∞

∑
n=2

(−1)n−1zn

(n− 1)!(2n− 1)
, (17)

which is analytic in the unit disk U = z : |z| < 1 and normalized by Erf(0) = 0 and
Erf′(0) = 1.

The convolution of (15) and (17) generates the following function, which will be used
to define the new subclass of functions that is investigated in this paper:

F←(z) =
(
Hψ ∗ Erf

)
(z) = z +

∞

∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
an−1

D
zn, (18)

as a power series. See [16] for details.
Let P denote the class of the Carathéodory functions of the form

p(z) = 1 +
∞

∑
n=1

pnzn, (19)

with the conditions Re p(z) > 0 and p(0) = 1.
The functions of the form

G(z) =
1

1 + e−z =
1
2
+

z
4
− z3

48
+

z5

480
− 17z7

80640
+ . . . ,

referred to as sigmoid functions, are defined in [37] by the following modified form:

γ(z) =
2

1 + e−z = 1 +
z
2
− z3

24
+

z5

240
− 17z7

40320
+ . . . . (20)

The sigmoid function has been repeatedly studied by many researchers because it
has the following properties: it outputs real numbers between 0 and 1, maps a very large
input domain to a small range of outputs, never loses information because it is a one-to-one
function, increases monotonically and is also differentiable. The sigmoid function has
useful applications in fields such as functional analysis, real analysis, algebra, topology,
differential equations and many others. It has numerous methods of evaluation but, here,
only the truncated series expansion is considered. See [38–44].

8
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The function of the form

Q(z) = eez−1 =
∞

∑
n=0

Bn
zn

n!
= 1 + z + z2 +

5
6

z3 +
5
8

z4 + . . . , z ∈ E, (21)

was investigated by Kumar et al. [45]. This function is starlike with respect to one, and
its coefficients generate the Bell numbers where B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,
B5 = 52 and B6 = 203 are the coefficients generated through binomial expansion. In recent
times, some applications of the Beta function were considered in [46–48], while Olatunji
and Altinkaya [49] used (21) to investigate the generalized distribution for the analytic
function classes associated with error functions and Bell numbers. Further information can
also be found in [49–51].

In the present work, the authors draw motivation from prior research in [15,17,29,49].
The aim of this paper is to consider applications of certain special functions in GFT. In par-
ticular, certain results are obtained in terms of subordination associated with Carathéodory
functions, the modified sigmoid function and Bell numbers for the specific class of functions
defined here and given in the next definition. The early coefficient bounds obtained are
used to establish the famous Fekete–Szegö inequalities.

The following class is defined and studied in this paper.

Definition 1. A function f ∈ A is said to be in the class GS∗Fψ(m, β), where m ∈ [−1, 1] and
β ≥ 1, if the following subordination is satisfied

Re
G
(
F ′ψ
)
(z)

Fψ(z)
≺
√

1 + z (22)

with the condition Gψ(0) = 0. The function Fψ(z), defined by (18), is a convolution of (7) and (17).
The class of functions GS∗F←(m, β), defined above, is investigated in the next section in relation

to the Carathéodory function p(z), the modified sigmoid function and Bell numbers by means of the
subordination principle, and initial coefficient estimates are obtained. Furthermore, those results are
used for investigating the Fekete–Szegö problem.

2. Main Results

The main aim of this work is to investigate the coefficient problems for the class of
functions GS∗Fψ(m, β) defined in this study. The coefficient estimates are obtained using the
Carathéodory function p(z) defined by (19), the modified sigmoid function given by (20)
and Bell numbers generated by the function given in (21) involving functions associated
with Gegenbauer polynomials. The applications of Gegenbauer polynomials (7), the error
function (17), a generalized distribution function (15), Carathéodory functions (19), the
modified sigmoid function (20), Bell numbers (21) and some other functions in GFT have
been considered by several authors in the field. In this study, the authors use combinations
of all the functions mentioned above with the purpose of investigating the coefficients of
the class of F-starlike functions GS∗Fψ(m, β) such that every function in the class satisfies the
condition seen in (22). The Gegenbauer polynomials used in this work can be found to have
some applications in queueing theory [21], signal analysis, automatic control, scattering
theory and many other areas. Gengenbauer polynomials, also known as ultraspherical
polynomials Cα

n(x), are orthogonal polynomials defined on the closed interval [−1, 1].
These polynomials are obtained as solutions of the Gengenbauer differential equation,
which reduces to the Chebyshev differential equation for α = 1.

First, we consider obtaining the coefficient bounds for the class of functions GS∗Fψ(m, β)
associated with the Carathéodory functions given by (19).

9
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Theorem 1. Let f (z) be defined by (1) and p(z) by (19). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1, if

∣∣∣ a1

s

∣∣∣ ≤
∣∣∣∣∣
3(4cβ

1 (m)− p1)

4

∣∣∣∣∣ (23)

and
∣∣∣ a2

s

∣∣∣ ≤

∣∣∣∣∣∣

5
[
8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32

(
(cβ

1 (m))2 − cβ
2 (m)

)]

32

∣∣∣∣∣∣
. (24)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] and β ≥ 1, then

G
(
F ′ψ
)
(z)

Fψ(z)
=
√

1 + ω(z). (25)

The left-hand side of (25) gives

G
(
F ′ψ
)
(z)

Fψ(z)
= 1 +

(
cβ

1 (m)− a1

3s

)
z +

(
cβ

2 (m)− cβ
1 (m)a1

3s
+

a2

5s
− a2

1
9s2

)
z2 + . . . , (26)

while the right-hand side gives
√

1 +
p(z)− 1
p(z) + 1

= 1 +
p1

4
z +

(
p2

4
− 5p2

1
32

)
z2 + . . . . (27)

Comparing the coefficients of z and z2 in (26) and (27), we obtain

a1

s
=

3(4cβ
1 (m)− p1)

4

and

a2

s
=

5
[
8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32

(
(cβ

1 (m))2 − cβ
2 (m)

)]

32
,

which completes the proof.

The next two theorems are concerned with the investigation of certain coefficient
problems for the class of functions GS∗Fψ(m, β) involving the sigmoid function given
by (20).

Theorem 2. Let f (z) be defined by (1) and γ(z) by (20). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1 if the following condition holds true

∣∣∣∣∣
a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣
9(4cβ

1 (m)− p1)
2

16

[
5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

18(4cβ
1 (m)− p1)2

− µ

]∣∣∣∣∣. (28)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] β ≥ 1 and µ ∈ R. Then

a2

2
− µ

a2
1

s2 =


5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

32
− µ

(
3(4cβ

1 (m)− p1)

4

)2

,

a2

2
− µ

a2
1

s2 =
9(4cβ

1 (m)− p1)
2

16

[
5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

18(4cβ
1 (m)− p1)2

− µ

]
,

which finally gives

10
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∣∣∣∣∣
a2

2
− µ

a2
1

s2

∣∣∣∣∣ ≤
∣∣∣∣∣
9(4cβ

1 (m)− p1)
2

16

[
5[8p2 − 7p2

1 + 16cβ
1 (m)p1 + 32((cβ

1 (m))2 − cβ
2 (m))]

18(4cβ
1 (m)− p1)2

− µ

]∣∣∣∣∣.

Theorem 3. Let f (z) be defined by (1) and γ(z) by (20). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1, if

∣∣∣ a1

s

∣∣∣ ≤
∣∣∣∣∣
3(8cβ

1 (m)− 1)
8

∣∣∣∣∣ (29)

and
∣∣∣ a2

s

∣∣∣ ≤

∣∣∣∣∣∣

5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

128

∣∣∣∣∣∣
. (30)

Proof. Let f ∈ GS∗Fψ(m, β), where m ∈ [−1, 1] and β ≥ 1. Then

G
(
F ′ψ
)
(z)

Fψ(z)
=
√

1 + ω(z).

The left-hand side of (25) gives

G
(
F ′ψ
)
(z)

Fψ(z)
= 1 +

(
cβ

1 (m)− a1

3s

)
z +

(
cβ

2 (m)− cβ
1 (m)a1

3s
+

a2

5s
− a2

1
9s2

)
z2 + . . . , (31)

while the right-hand side gives
√

1 +
γ(z)− 1
γ(z) + 1

= 1 +
1
8

z− 5
128

z2 + . . . (32)

Comparing the coefficients of z and z2 in (26) and (32), we obtain

a1

s
=

3(8cβ
1 (m)− 1)

8

and

a2

s
=

5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

128
,

which completes the proof.

Theorems 4–6 involve the investigation of certain coefficient problems of the class
GS∗Fψ(m, β) with respect to the Bell numbers (21).

Theorem 4. Let f (z) be defined by (1) and Q(z) by (21). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1 if the following condition holds true

∣∣∣∣∣
a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤

∣∣∣∣∣∣

5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

36(8cβ
1 (m)− 1)2

− µ

∣∣∣∣∣∣
. (33)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] and β ≥ 1 and µ ∈ R. Then

a2

s
− µ

a2
1

s2 =
5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

128
− µ

(
3(8cβ

1 (m)− 1)
8

)2

,

11
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a2

2
− µ

a2
1

s2 =
9(8cβ

1 (m)− 1)2

64




5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

36(8cβ
1 (m)− 1)2

− µ


,

which finally gives:

∣∣∣∣∣
a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤

∣∣∣∣∣∣

5
[
256(cβ

1 (m))2 − 128cβ
2 (m)− 48cβ

1 (m)− 3
]

36(8cβ
1 (m)− 1)2

− µ

∣∣∣∣∣∣
.

Theorem 5. Let f (z) be defined by (1) and Q(z) by (21). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1, if

∣∣∣ a1

s

∣∣∣ ≤
∣∣∣∣∣
3(4cβ

1 (m)− 1)
4

∣∣∣∣∣ (34)

and
∣∣∣ a2

s

∣∣∣ ≤

∣∣∣∣∣∣

5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

32

∣∣∣∣∣∣
. (35)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1] and β ≥ 1. Then

G
(
F ′ψ
)
(z)

Fψ(z)
=
√

1 + ω(z).

The left-hand side of (25) gives

G
(
F ′ψ
)
(z)

Fψ(z)
= 1 +

(
cβ

1 (m)− a1

3s

)
z +

(
cβ

2 (m)− cβ
1 (m)a1

3s
+

a2

5s
− a2

1
9s2

)
z2 + . . . ,

while the right-hand side gives
√

1 +
Q(z)− 1
Q(z) + 1

= 1 +
1
4

z +
3

32
z2 + . . . . (36)

When the coefficients of z and z2 in (26) and (36), are compared, the following values are
obtained:

a1

s
=

3(4cβ
1 (m)− 1)

4
and

a2

s
=

5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

32
.

Hence, the proof is completed.

In Theorem 2, the coefficient estimates were established using the Carathéodory
function p(z) given by (19). We now consider in the next theorem the coefficient estimates
for the class of functions GS∗Fψ(m, β) using the Bell numbers Q(z) as given by (21).

12
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Theorem 6. Let f (z) be defined by (1) and Q(z) by (21). Then, f ∈ GS∗Fψ(m, β) where
m ∈ [−1, 1] and β ≥ 1 if the following condition holds true

∣∣∣∣∣
a2

s
− µ

a2
1

s2

∣∣∣∣∣ ≤

∣∣∣∣∣∣
9(4cβ

1 (m)− 1)2

16




5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

18(4cβ
1 (m)− 1)2

− µ



∣∣∣∣∣∣
. (37)

Proof. Let f ∈ GS∗Fψ(m, β) where m ∈ [−1, 1], β ≥ 1 and µ ∈ R. Then

a2

2
− µ

a2
1

s2 =




5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

32
− µ

(
3(4cβ

1 (m)− 1)
4

)2

,

a2

2
− µ

a2
1

s2 =
9(4cβ

1 (m)− 1)2

16




5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

18(4cβ
1 (m)− p1)2

− µ


,

which finally gives

∣∣∣∣∣
a2

2
− µ

a2
1

s2

∣∣∣∣∣ ≤

∣∣∣∣∣∣
9(4cβ

1 (m)− 1)2

16




5
[
5 + 16cβ

1 (m) + 32
(

2(cβ
1 (m))2 − cβ

2 (m)
)]

18(4cβ
1 (m)− p1)2

− µ



∣∣∣∣∣∣
.

3. Conclusions

The investigation presented in the paper concerns a new subclass of functions denoted
by GS∗Fψ(m, β) introduced in Definition 1 by using an operator defined in (18) as the
convolution of the generalized distribution and the error function using the concept of
subordination. The new class is interesting due to the powerful tools in geometric function
theory used for introducing it, namely convolution and subordination. The main aim
of the research presented in this paper targets a topic of interest at this moment in GFT:
coefficient-related studies. The first theorem proved in Section 2, Theorem 1, provides
the coefficient estimates for functions that are part of the class GS∗Fψ(m, β) by involving
the Carathéodory function p(z) defined in (19). The next results, proved in Theorem 2
and Theorem 3, use the sigmoid function given by (20) for establishing further coefficient
estimates regarding the class GS∗Fψ(m, β). Finally, the Bell numbers given by (21) are used
in Theorems 4–6 to provide other forms of coefficient estimates concerning functions from
the new class GS∗Fψ(m, β).

The initial results regarding the coefficient estimates obtained here can be used for
further specific investigations regarding coefficients of the functions from class GS∗Fψ(m, β),
such as estimations for Hankel determinants of different orders, Toeplitz determinants or
the Fekete–Szegö problem.
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Abstract: Several different subclasses of the bi-univalent function class Σ were introduced and
studied by many authors using distribution series like Pascal distribution, Poisson distribution,
Borel distribution, the Mittag-Leffler-type Borel distribution, Miller–Ross-Type Poisson Distribution.
In the present paper, by making use of the Bell distribution, we introduce and investigate a new
family Gt

Σ(x, p, q, λ, β, γ) of normalized bi-univalent functions in the open unit disk U, which are
associated with the Horadam polynomials and estimate the second and the third coefficients in
the Taylor-Maclaurin expansions of functions belonging to this class. Furthermore, we establish
the Fekete–Szegö inequality for functions in the family Gt

Σ(x, p, q, λ, β, γ). After specializing the
parameters used in our main results, a number of new results are demonstrated to follow.

Keywords: fekete-Szegö problem; horadam polynomials; bi-univalent functions; bell distribution;
analytic functions

MSC: 30C45

1. Introduction and Preliminaries

Orthogonal polynomials [1] are commonly employed in mathematical model solv-
ing to find solutions to ordinary differential equations that satisfy model requirements.
Orthogonal polynomials are important for contemporary mathematics and have a wide
range of uses in physics and engineering. It is common knowledge that these polynomials
play a key role in approximation theory-related concerns. They can be found in differential
equation theory, mathematical statistics, interpolation, approximation theory, probability
theory, and quantum mechanics. They are also used in signal processing, image processing,
and data analysis, where they are used to model and analyze complex systems and data
sets. Their applications to automated control, quantum physics, signal analysis, scattering
theory, and axially symmetric potential theory are also widely known [2,3].

Two polynomials Sρ and Sσ, of order ρ and σ, respectively, are orthogonal if

〈Sρ, Sσ〉 =
∫ d

c
Sρ(x)Sσ(x)r(x)dx = 0, for ρ 6= σ, (1)

where r(x) is a non-negative function in the interval (c, d); therefore, all finite order polyno-
mials Sρ(x) have a well-defined integral.

Examples of well-known families of orthogonal polynomials include the Legendre
polynomials, Hermite polynomials, Chebyshev polynomials, Jacobi polynomials, and
Laguerre polynomials. Each family of orthogonal polynomials has its own weight function
and interval, and they have many useful properties and applications.

Axioms 2023, 12, 362. https://doi.org/10.3390/axioms12040362 https://www.mdpi.com/journal/axioms16
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Horadam polynomials are a family of polynomials defined by recurrence relations
that generalize the Fibonacci and Lucas polynomials. They are named after Australian
mathematician Murray S. Klamkin Horadam who introduced them in 1978.

Like the Fibonacci and Lucas polynomials, the Horadam polynomials have many inter-
esting properties and connections to other areas of mathematics, including number theory,
combinatorics, and algebraic geometry. They also satisfy various recurrence relations and
identities, which can be used to derive closed-form expressions and study their properties.

Horadam polynomials have applications in various fields of science, including physics,
engineering, and computer science. They have been used, for example, in modeling the
behavior of certain physical systems, analyzing algorithms, and designing error-correcting
codes.

The Horadam polynomials hn(x), which are provided by the recurrence relation as
follows, were studied by Horzum and Kocer in 2009 [4].

hn(x) = pxhn−1(x) + qhn−2(x), (n ∈ N \ {1, 2}), (2)

with
h1(x) = a, h2(x) = tx and h3(x) = ptx2 + aq, (3)

for some real constant a, t, p and q.

Remark 1. For particular values of a, t, p and q, the Horadam polynomials hn(x) lead to various
polynomials (see [4,5]), for example:

1. If a = t = p = q = 1, then we get the Fibonacci polynomials Fn(x);
2. If a = 2 and t = p = q = 1, then we get the Lucas polynomials Ln(x);
3. If a = t = 1, p = 2 and q = −1, then we get the Chebyshev polynomials Tn(x) of the first

kind;
4. If a = 1, t = p = 2 and q = −1, then we get the Chebyshev polynomials Un(x) of the second

kind;
5. If a = q = 1 and t = p = 2, then we get the Pell polynomials Pn(x);
6. If a = t = p = 2 and q = 1, then we get the Pell-Lucas polynomials Qn(x) of the first kind.

Numerous fields in the mathematical, physical, statistical, and engineering sciences
depend heavily on the Fibonacci, Lucas, Chebyshev, and families of orthogonal polynomials
and other special polynomials as well as their generalizations. Numerous articles have
examined these kinds of polynomials from a theoretical standpoint.

The generator of the Horadam polynomials hn(x) is as follows:

Ω(x, ξ) =
∞

∑
n=1

hn(x)ξn−1 =
a + (t− ap)xξ

1− pxξ − qξ2 . (4)

Let A be the class of functions f of the form

f (ξ) = ξ + a2ξ2 + a3ξ3 + · · · , (5)

that are analytic in the disk U = {ξ : |ξ| < 1} . Also, we represent by S the subclass of A
comprising functions of the Equation (5) which are also univalent in U.

The subordination of analytic functions f and g is denoted by f ≺ g if, for all ξ ∈ U,
there exists a Schwarz function v with v(0) = 0 and |v(ξ)| < 1, such that

f (ξ) = g(v(ξ)).

Moreover, if g is univalent in U, then

f (ξ) ≺ g(ξ), if and only if, f (0) = g(0)
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and
f (U) ⊂ g(U).

According to the Koebe one-quarter theorem [6,7], every function f ∈ S has an
inverse f−1 defined by

f−1( f (ξ)) = ξ (ξ ∈ U)

and
w = f ( f−1(w)) (|w| < r0( f ); r0( f ) ≥ 1

4
)

where

g(w) = f−1(w) = w− a2w2 + (−a3 + 2a2
2)w

3 − (a4 + 5a3
2 − 5a3a2)w4 + · · · . (6)

A function f ∈ S is said to be bi-univalent in U if both f (ξ) and f−1(ξ) are univalent in U.
Let Σ denote the class of bi-univalent functions in U given by (5). Examples in the class

Σ are

f1(ξ) =
ξ

1− ξ
, f2(ξ) = log

1
1− ξ

,

and their inverses,

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

ew − 1
ew

are in the class Σ.
However, Σ does not include the well-known Koebe function. Additional typical

instances of functions in U include

2ξ − ξ2

2
and

ξ

1− ξ2

are also not members of Σ. For interesting subclasses of functions in the class Σ, see ([8–10]).
Brannan and Taha [11] (see also [12]) introduced certain subclasses of the bi-univalent

function class Σ similar to the familiar subclasses S∗(α) and K(α) of starlike and convex
functions of order α(0 ≤ α < 1), respectively (see [13]). Thus, following Brannan and
Taha [11] (see also [12]), a function f ∈ A is in the class S∗Σ[α] of strongly bi-starlike
functions of order α(0 < α ≤ 1) if each of the following conditions is satisfied:

f ∈ Σ and
∣∣∣∣arg

(
ξ f ′(ξ)

f (ξ)

)∣∣∣∣ <
απ

2
(0 < α ≤ 1, ξ ∈ U)

and
∣∣∣∣arg

(
wg′(w)

g(w)

)∣∣∣∣ <
απ

2
(0 < α ≤ 1, w ∈ U),

where g is the extension of f−1 to U . The classes S∗Σ(α) and KΣ(α) of bi-starlike functions
of order α and bi-convex functions of order α, corresponding (respectively) to the function
classes S∗(α) and K(α), were also introduced analogously. For each of the function classes
S∗Σ(α) and KΣ(α), they found non-sharp estimates on the first two Taylor–Maclaurin
coefficients |a2| and |a3| (for details, see [11,12]). However, the coefficient problem for each
of the succeeding Taylor–Maclaurin coefficients,

|an| (n ∈ N\{1, 2})

is still an open problem (see [11–14]).
Several subclasses of the bi-univalent function class Σ were introduced, inspired by

the ground-breaking work of Srivastava et al. [15], and non-sharp estimates on the first
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two coefficients |a2| and |a3| in the Taylor-Maclaurin series expansion (5) were obtained
in ([16–28]).

Fekete and Szegö [29] proved that the estimate

∣∣∣a3 − ηa2
2

∣∣∣ ≤ 1 + 2e
(−2η

1−η

)

holds for any normalized univalent function f and η ∈ [0, 1]. This inequality is sharp for
each η (see, [29]). Recently, many authors have obtained Fekete–Szegö inequalities for
different classes of functions (see [30–34]).

In recent years, several studies have looked at crucial aspects of the geometric function
theory including coefficient estimates, inclusion relations, and requirements for belonging
to certain classes, using a variety of probability distributions, including the Poisson, Pascal,
Borel, Mittag-Leffler-type Poisson distribution, etc. (see, [35–40]).

The Bell distribution, also known as the normal mixture distribution, is a probability
distribution that arises in the context of statistical inference, signal processing, and other
fields of science. The Bell distribution is a continuous probability distribution that is a
mixture of normal distributions. In a Bell distribution, approximately 0.68 of the data falls
within one standard deviation of the mean, 0.95 falls within two standard deviations, and
0.997 falls within three standard deviations.

The Bell distribution has a symmetric bell-shaped probability density function that
resembles a normal distribution but with heavier tails. The mixing parameter p controls
the degree of asymmetry of the distribution, with p = 0.5 corresponding to a perfectly
symmetric distribution. The Bell distribution has applications in a wide range of fields,
including finance, physics, engineering, and biology. It has been used, for example, to
model the distribution of stock returns, the properties of noisy signals, and the behavior of
biological systems. The Bell curve has many important applications in statistics, such as
hypothesis testing, confidence intervals, and regression analysis. It is also used in fields
such as finance, economics, and psychology, where it is used to model the behavior of
complex systems and to make predictions based on empirical data.

In 2018, Castellares et al. [41] introduced the Bell distribution, it is improved from the
Bell numbers [42].

When a discrete random variable X follows the Bell distribution, its probability density
function can be expressed as

P(X = m) =
λmee(−λ2)+1

Bm

m!
; m = 1, 2, 3, . . . , (7)

where

Bm =
1
e

∞

∑
k=0

km

m!
(8)

is the Bell numbers, m ≥ 2, and λ > 0 .The Bell number Bm given in (8) is the mth moment
of the Poisson distribution with parameter equal to 1. The first few Bell numbers are B2 = 2,
B3 = 5, B4 = 15 and B5 = 52.

Now, we present the power series below, whose coefficients are from the Bell distribution.

B(λ, ξ) = ξ +
∞

∑
n=2

λn−1ee(−λ2)+1
Bn

(n− 1)!
ξn, ξ ∈ U, λ > 0. (9)

Consider the linear operator Pλ : A → A defined by the convolution

Pλ f (ξ) = B(λ, ξ) ∗ f (ξ) = ξ +
∞

∑
n=2

λn−1ee(−λ2)+1
Bn

(n− 1)!
anξn, ξ ∈ U. (10)
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Recently, a large number of researchers have investigated bi-univalent functions
connected to orthogonal polynomials, few to mention ([43–47]). As far as we are aware,
there hasn’t been any research on bi-univalent functions for Bell distribution subordinate
to Horadam polynomials in the literature.

The rest of this article is organized as follows. In Section 2 we introduce a new subclass
Gt

Σ(x, p, q, λ, β, γ) of Σ involving the Bell distribution linked to Horadam polynomials,
and deriving bounds for the second and the third coefficients in the Taylor-Maclaurin
expansions. Section 3 deals with the estimation of Fekete–Szegö inequality for functions in
the family Gt

Σ(x, p, q, λ, β, γ). Relevant connections of some of the special cases of the main
results are pointed out in Section 4. Section 5 closes up the paper with some conclusions.

2. Bounds of the Class Gt
Σ(x, p, q, λ, β, γ)

This section begins with a definition of a new subclass associated with the Bell distri-
bution series.

Definition 1. If the following subordinations are met, a function f ∈ Σ given by (5) is said to
belong to the class Gt

Σ(x, p, q, λ, β, γ):

(1− γ)
Pλ f (ξ)

ξ
+ γ(Pλ f (ξ))′ + βξ(Pλ f (ξ))′′ ≺ Ω(x, ξ) + 1− a (11)

and

(1− γ)
Pλ f (w)

w
+ γ(Pλ f (w))′ + βw(Pλ f (w))′′ ≺ Ω(x, w) + 1− a, (12)

where ξ, w ∈ U , γ, β ≥ 0, x ∈ R, and the function g = f−1 is given by (6).

Example 1. For β = 0, we have, Gt
Σ(x, p, q, λ, 0, γ) = Gt

Σ(x, p, q, λ, γ), in whichGt
Σ(x, p, q, λ, γ)

indicates the group of functions f ∈ Σ given by (5) and satisfying the criterion below.

(1− γ)
Pλ f (ξ)

ξ
+ γ(Pλ f (ξ))′ ≺ Ω(x, ξ) + 1− a (13)

and

(1− γ)
Pλ f (w)

w
+ γ(Pλ f (w))′ ≺ Ω(x, w) + 1− a, (14)

where ξ, w ∈ U , γ ≥ 0, x ∈ R, and the function g = f−1 is given by (6).

Example 2. For β = 0 and γ = 1, we have, Gt
Σ(x, p, q, λ, 1) = Gt

Σ(x, p, q, λ), in which
Gt

Σ(x, p, q, λ) denotes the class of functions f ∈ Σ given by (5) and satisfying the following
condition

(Pλ f (ξ))′ ≺ Ω(x, ξ) + 1− a (15)

and
(Pλ f (w))′ ≺ Ω(x, w) + 1− a, (16)

where ξ, w ∈ U , x ∈ R, and the function g = f−1 is given by (6).

Example 3. For β = 0 and γ = 0, we have, Gt
Σ(x, p, q, λ, 0, 0) = Gt

Σ(x, p, q, λ, 0), in which
Gt

Σ(x, p, q, λ, 0) indicates the group of functions f ∈ Σ given by (5) and satisfying the criterion
below.

Pλ f (ξ)
ξ

≺ Ω(x, ξ) + 1− a (17)

and
Pλ f (w)

w
≺ Ω(x, w) + 1− a, (18)
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where ξ, w ∈ U , x ∈ R, and the function g = f−1 is given by (6).

Example 4. For λ = 1, we have, Gt
Σ(x, p, q, 1, β, γ) = Gt

Σ(x, p, q, β, γ), in which Gt
Σ(x, p, q, β, γ)

indicates the group of functions f ∈ Σ given by (5) and satisfying the criterion below.

(1− γ)
P1 f (ξ)

ξ
+ γ(P1 f (ξ))′ + βξ(P1 f (ξ))′′ ≺ Ω(x, ξ) + 1− a (19)

and

(1− γ)
P1 f (w)

w
+ γ(P1 f (w))′ + βw(P1 f (w))′′ ≺ Ω(x, w) + 1− a, (20)

where ξ, w ∈ U , γ ≥ 0, x ∈ R, and the function g = f−1 is given by (6).

First, we give the coefficient estimates for the classGt
Σ(x, p, q, λ, β, γ) given in Definition 1.

Theorem 1. Let f ∈ Σ given by (5) belongs to the class Gt
Σ(x, p, q, λ, β, γ). Then

|a2| ≤
tx
√

2tx

λee
1
2 (1−λ2)

√∣∣∣
[
5(1 + 2γ + 6β)(tx)2 − 8ee(1−λ2)

(1 + γ + 2β)2(ptx2 + aq)
]∣∣∣

,

and

|a3| ≤
t2x2

4λ2(1 + γ + 2β)2e2e(1−λ2)
+

2tx

5λ2(1 + 2γ + 6β)ee(1−λ2)
.

Proof. Let f ∈ Gt
Σ(x, p, q, λ, β, γ). From Definition 1, we can write

(1− γ)
Pλ f (ξ)

ξ
+ γ(Pλ f (ξ))′ + βξ(Pλ f (ξ))′′ = Ω(x,κ(ξ)) + 1− a (21)

and

(1− γ)
Pλ f (w)

w
+ γ(Pλ f (w))′ + βw(Pλ f (w))′′ = Ω(x, τ(w)) + 1− a, (22)

where the analytical functions κ and τ have the form

κ(ξ) = c1ξ + c2ξ2 + c3ξ3 + · · · , (ξ ∈ U)

and
τ(w) = d1w + d2w2 + d3w3 + · · · , (w ∈ U),

such that κ(0) = τ(0) = 0 and |κ(ξ)| < 1, |τ(w)| < 1 for all ξ, w ∈ U.
From the equalities (21) and (22), we get

(1− γ)
Pλ f (ξ)

ξ
+ γ(Pλ f (ξ))′ + βξ(Pλ f (ξ))′′ = 1 + h2(x)c1ξ +

[
h2(x)c2 + h3(x)c2

1

]
ξ2 + · · · (23)

and

(1− γ)
Pλ f (w)

w
+ γ(Pλ f (w))′ + βw(Pλ f (w))′′ = 1 + h2(x)d1w +

[
h2(x)d2 + h3(x)d2

1

]
w2 + · · · . (24)

It is common knowledge that if

|κ(ξ)| =
∣∣∣c1ξ + c2ξ2 + c3ξ3 + · · ·

∣∣∣ < 1, (ξ ∈ U)

and
|τ(w)| =

∣∣∣d1w + d2w2 + d3w3 + · · ·
∣∣∣ < 1, (w ∈ U),
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then
|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (25)

Equating the coefficients of both sides in (23) and (24), we get

2λ(1 + γ + 2β)ee(1−λ2)
a2 = h2(x)c1, (26)

5
2

λ2(1 + 2γ + 6β)ee(1−λ2)
a3 = h2(x)c2 + h3(x)c2

1, (27)

−2λ(1 + γ + 2β)ee(1−λ2)
a2 = h2(x)d1, (28)

and
5
2

λ2(1 + 2γ + 6β)ee(1−λ2)[
2a2

2 − a3

]
= h2(x)d2 + h3(x)d2

1. (29)

It follows from (26) and (28) that

c1 = −d1 (30)

and

8λ2(1 + γ + 2β)2e2e(1−λ2)
a2

2 = [h2(x)]2
(

c2
1 + d2

1

)
. (31)

If we add (27) and (29), we get

5λ2(1 + 2γ + 6β)ee(1−λ2)
a2

2 = h2(x)(c2 + d2) + h3(x)
(

c2
1 + d2

1

)
. (32)

Replacing the value of
(
c2

1 + d2
1
)

from (31) in the right hand side of (32), we have

[
5(1 + 2γ + 6β)− 8(1 + γ + 2β)2ee(1−λ2) h3(x)

[h2(x)]2

]
λ2ee(1−λ2)

a2
2

= h2(x)(c2 + d2). (33)

Using (3), (25) and (33), we find that

|a2| ≤
tx
√

2tx

λee
1
2 (1−λ2)

√∣∣∣
[
5(1 + 2γ + 6β)[tx]2 − 8ee(1−λ2)

(1 + γ + 2β)2(ptx2 + aq)
]∣∣∣

.

Moreover, if we subtract (29) from (27), we obtain

5λ2(1 + 2γ + 6β)ee(1−λ2)(
a3 − a2

2

)
= h2(x)(c2 − d2) + h3(x)

(
c2

1 − d2
1

)
. (34)

Then, in view of (30) and (31), Equation (34) becomes

a3 =
[h2(x)]2

8λ2(1 + γ + 2β)2e2e(1−λ2)

(
c2

1 + d2
1

)

+
h2(x)

5λ2(1 + 2γ + 6β)ee(1−λ2)
(c2 − d2).
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By applying (3), we conclude that

|a3| ≤
t2x2

4λ2(1 + γ + 2β)2e2e(1−λ2)
+

2tx

5λ2(1 + 2γ + 6β)ee(1−λ2)
.

3. Fekete-Szegö Inequalities

Using the values of a2
2 and a3, we prove the functional

∣∣a3 − ηa2
2

∣∣ for class functions
Gt

Σ(x, p, q, λ, β, γ).

Theorem 2. Let f ∈ Σ given by (5) belongs to the class Gt
Σ(x, p, q, λ, β, γ). Then

∣∣a3 − ηa2
2

∣∣ ≤





2|tx|
5λ2(1+2γ+6β)ee(1−λ2)

,

2(tx)3|1−η|
λ2ee(1−λ2)

∣∣∣∣
[

5(1+2γ+6β)t2x2−8(1+γ+2β)2ee(1−λ2)
(ptx2+aq)

]∣∣∣∣
,

|η − 1| ≤ δ

|η − 1| ≥ δ,

where

δ =

∣∣∣∣∣∣
1− 8(1 + γ + 2β)2ee(1−λ2)(

ptx2 + aq
)

5(1 + 2γ + 6β)t2x2

∣∣∣∣∣∣
.

Proof. From (33) and (34)

a3 − ηa2
2

= (1− η)
[h2(x)]3(c2 + d2)

λ2ee(1−λ2)
[
5(1 + 2γ + 6β)[h2(x)]2 − 8(1 + γ + 2β)2ee(1−λ2)h3(x)

]

+
h2(x)

5λ2(1 + 2γ + 6β)ee(1−λ2)
(c2 − d2)

= h2(x)

[
h(η) +

1

5λ2(1 + 2γ + 6β)ee(1−λ2)

]
c2

+ h2(x)

[
h(η)− 1

5λ2(1 + 2γ + 6β)ee(1−λ2)

]
d2,

where

Υ(η) =
[h2(x)]2(1− η)

λ2ee(1−λ2)
[
5(1 + 2γ + 6β)[h2(x)]2 − 8(1 + γ + 2β)2ee(1−λ2)h3(x)

] ,

Then, in view of (3), we conclude that

∣∣∣a3 − ηa2
2

∣∣∣ ≤





2|h2(x)|
5λ2(1+2γ+6β)ee(1−λ2)

2|h2(x)||Υ(η)|

0 ≤ |Υ(η)| ≤ 1

5λ2(1+2γ+6β)ee(1−λ2)
,

|Υ(η)| ≥ 1

5λ2(1+2γ+6β)ee(1−λ2)
.

4. Special Cases and Consequences

By specializing the parameters β, λ and γ in the above theorems, we obtain the
following corollaries.
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Corollary 1. Let f ∈ Σ given by (5) belongs to the class Gt
Σ(x, p, q, λ, γ). Then

|a2| ≤
tx
√

2tx

λee
1
2 (1−λ2)

√∣∣∣
[
5(1 + 2γ)(tx)2 − 8ee(1−λ2)

(1 + γ)2(ptx2 + aq)
]∣∣∣

,

|a3| ≤
t2x2

4λ2(1 + γ)2e2e(1−λ2)
+

2tx

5λ2(1 + 2γ)ee(1−λ2)
,

and

∣∣a3 − ηa2
2

∣∣ ≤





2|tx|
5λ2(1+2γ)ee(1−λ2)

,

2(tx)3|1−η|
λ2ee(1−λ2)

∣∣∣∣
[

5(1+2γ)t2x2−8(1+γ)2ee(1−λ2)
(ptx2+aq)

]∣∣∣∣
,

|η − 1| ≤ Φ

|η − 1| ≥ Φ,

where

Φ =

∣∣∣∣∣∣
1− 8(1 + γ)2ee(1−λ2)(

ptx2 + aq
)

5(1 + 2γ)t2x2

∣∣∣∣∣∣
.

Corollary 2. Let f ∈ Σ given by (5) belongs to the class Gt
Σ(x, p, q, λ). Then

|a2| ≤
tx
√

2tx

λee
1
2 (1−λ2)

√∣∣∣
[
15(tx)2 − 32ee(1−λ2)

(ptx2 + aq)
]∣∣∣

,

|a3| ≤
t2x2

16λ2e2e(1−λ2)
+

2tx

15λ2ee(1−λ2)
,

and

∣∣a3 − ηa2
2

∣∣ ≤





2|tx|
15λ2ee(1−λ2)

,

2(tx)3|1−η|
λ2ee(1−λ2)

∣∣∣∣
[

15t2x2−32ee(1−λ2)
(ptx2+aq)

]∣∣∣∣
,

|η − 1| ≤

∣∣∣∣∣∣
1− 32ee(1−λ2)

(ptx2+aq)
15t2x2

∣∣∣∣∣∣

|η − 1| ≥

∣∣∣∣∣∣
1− 32ee(1−λ2)

(ptx2+aq)
15t2x2

∣∣∣∣∣∣
.

Corollary 3. Let f ∈ Σ given by (5) belongs to the class Gt
Σ(x, p, q, λ, 0). Then

|a2| ≤
tx
√

2tx

λee
1
2 (1−λ2)

√∣∣∣
[
5(tx)2 − 8ee(1−λ2)

(ptx2 + aq)
]∣∣∣

,

|a3| ≤
t2x2

4λ2e2e(1−λ2)
+

2tx

5λ2ee(1−λ2)
,

and

∣∣a3 − ηa2
2

∣∣ ≤





2|tx|
5λ2ee(1−λ2)

,

2(tx)3|1−η|
λ2ee(1−λ2)

∣∣∣∣
[

5t2x2−8ee(1−λ2)
(ptx2+aq)

]∣∣∣∣
,

|η − 1| ≤ Φ

|η − 1| ≥ Φ,
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where

Φ =

∣∣∣∣∣∣
1− 8ee(1−λ2)(

ptx2 + aq
)

5t2x2

∣∣∣∣∣∣
.

Corollary 4. Let f ∈ Σ given by (5) belongs to the classGt
Σ(x, p, q, β, γ). Then

|a2| ≤
tx
√

2tx

e
√∣∣∣
[
5(1 + 2γ + 6β)(tx)2 − 8e(1 + γ + 2β)2(ptx2 + aq)

]∣∣∣
,

|a3| ≤
t2x2

4e2(1 + γ + 2β)2 +
2tx

5e(1 + 2γ + 6β)
.

and

∣∣a3 − ηa2
2

∣∣ ≤





2|tx|
5e(1+2γ+6β)

,

2(tx)3|1−η|
e|[5(1+2γ+6β)t2x2−8e(1+γ+2β)2(ptx2+aq)]| ,

|η − 1| ≤ δ

|η − 1| ≥ δ,

where

δ =

∣∣∣∣∣1−
8e(1 + γ + 2β)2(ptx2 + aq

)

5(1 + 2γ + 6β)t2x2

∣∣∣∣∣.

5. Conclusions

In this study, we introduced a new class of normalized analytics and bi-univalent
functions connected to the Bell distribution series denoted by Gt

Σ(x, p, q, λ, β, γ). We
have derived estimates for the Taylor-Maclaurin coefficients |a2| and |a3| and Fekete-
Szegö functional problems. Additionally, by appropriately specializing the parameters β
and γ, one may determine the outcomes for the subclassesGt

Σ(x, p, q, λ, γ), Gt
Σ(x, p, q, λ),

Gt
Σ(x, p, q, λ, 0) and Gt

Σ(x, p, q, β, γ) specified in Examples 1, 2, 3 and 4, respectively, and
linked to the Bell distribution series. Making use of Bell distribution series (10) could
inspire researchers to derive the estimates of the Taylor-Maclaurin coefficients |a2| and
|a3| and Fekete-Szegö functional problems for functions belonging to new subclasses of
bi-univalent functions defined by means of Horadam polynomials associated with this
distribution series.
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Abstract: In this study, we consider different types of convex-exponent products of elements of a
certain class of log-harmonic mapping and then find sufficient conditions for them to be starlike
log-harmonic functions. For instance, we show that, if f is a spirallike function, then choosing a
suitable value of γ, the log-harmonic mapping F(z) = f (z)| f (z)|2γ is α-spiralike of order ρ. Our
results generalize earlier work in the literature.

Keywords: product; log-harmonic function; convex-exponent combination; starlike and spirallike functions

MSC: 30C45; 30C80

1. Introduction

Let E be the open unit disk E = {z ∈ C : |z| < 1} andH(E) denote the linear space of
all analytic functions defined on E. Additionally, let A be a subclass consisting of f ∈ H(E)
such that f (0) = f ′(0)− 1 = 0.

A C2-function defined in E is said to be harmonic if ∆ f = 0, and a log-harmonic
function f is a solution of the nonlinear elliptic partial differential equation

f z

f
= a

fz

f
, (1)

where the second dilation function a ∈ H(E) is such that |a(z)| < 1 for all z ∈ E. In the
above formula, f z means ( fz). Observe that f is log-harmonic if log f is harmonic. The au-
thors in [1] have proven that, if f is a non-constant log-harmonic mapping that vanishes
only at z = 0, then f should be in the form

f (z) = zm|z|2mβh(z)g(z), (2)

where m is a nonnegative integer, Reβ > − 1
2 , while h and g are analytic functions inH(E)

satisfying g(0) = 1 and h(0) 6= 0. The exponent β in (2) depends only on a(0) and is
given by

β = a(0)
1 + a(0)

1− |a(0)|2 . (3)

We remark that f (0) 6= 0 if and only if m = 0 and that a univalent log-harmonic
mapping in E vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2βh(z)g(z),

Axioms 2023, 12, 409. https://doi.org/10.3390/axioms12050409 https://www.mdpi.com/journal/axioms28
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where Reβ > − 1
2 and 0 /∈ hg(E).

Recently, the class of log-harmonic functions has been extensively studied by many
authors; for instance, see [1–10].

The Jacobian of log-harmonic function f is given by

J f (z) = | fz|2(1− |a(z)|2) (4)

and is positive. Therefore, all non-constant log-harmonic mappings are sense-preserving in
the unit disk E. Let B denote the class of functions a ∈ H(E) with |a(z)| < 1 and B0 denote
a ∈ B such that a(0) = 0.

It is easy to see that, if f (z) = zh(z)g(z), then the functions h and g, and the dilation
a satisfy

zg′(z)
g(z)

= a(z)
(

1 +
zh′(z)
h(z)

)
. (5)

Definition 1. (See [2].) Let f = z|z|2βh(z)g(z) be a univalent log-harmonic mapping. We say
that f is a starlike log-harmonic mapping of order α if

∂ arg f (reiθ)

∂θ
= Re

z fz − z fz

f
> α, 0 ≤ α < 1

for all z ∈ E. Denote by STLH(α) the class of all starlike log-harmonic mappings.

By taking β = 0 and g(z) = 1 in Definition 1, we obtain the class of starlike analytic
functions in A, which we denote by S∗(α).

The following lemma shows the relationship of the classes STLH(α) and S∗(α).

Lemma 1. (See [2].) Let f (z) = z|z|2βh(z)g(z) be a log-harmonic mapping on E, 0 /∈ hg(E).
Then, f ∈ STLH(α) if and only if ϕ(z) = zh(z)

g(z) ∈ S∗(α).

In [2], the authors studied the class of α − spirallike functions and proved that, if
f (z) = z|z|2βh(z)g(z) is a log-harmonic mapping on E, 0 /∈ hg(E), then f is α− spirallike if

Re
(

e−iα z fz − z fz

f

)
> 0, 0 ≤ α < 1

for all z ∈ E. We remark that a simply connected domain Ω in C containing the origin is
said to be α− spirallike, −π

2 < α < π
2 if w exp(−teiα) ∈ Ω for all t ≥ 0 whenever w ∈ Ω

and that f is an α− spirallike function, if f (E) is an α-spiralike domain. Motivated by this,
we define the class of α− spirallike log-harmonic mappings of order ρ as follows:

Definition 2. Let f (z) = z|z|2βh(z)g(z) be a univalent log-harmonic mapping on E, with
0 /∈ hg(E). Then, we say that f is an α− spirallike log-harmonic mapping of order ρ (0 ≤ ρ < 1) if

Re
(

e−iα z fz − z fz

f (z)

)
> ρ cos α (z ∈ E)

for some real α(|α| < π
2 ). The class of these functions is denoted by Sα

LH(ρ). Furthermore, we
define Sα

LH(1) =
⋂

0≤ρ<1 Sα
LH(ρ).

Additionally, we denote by Sα(ρ) the subclass of all f ∈ A such that f is α-spiralike of
order ρ and Sα(1) =

⋂
0≤ρ<1 Sα(ρ).
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Lemma 2. ([2]) If f (z) = z|z|2βh(z)g(z) is log-harmonic on E and 0 /∈ hg(E), with Reβ > − 1
2 ,

then f ∈ Sα
LH(ρ) if and only if ψ(z) = zh(z)

g(z)e2iα ∈ Sα(ρ).

In the celebrated paper [11], the authors introduce a new way of studying harmonic
functions in Geometric Function Theory. Additionally, many authors investigated the linear
combinations of harmonic functions in a plane; see, for example, [12–14]. In Section 2 of this
paper, taking the convex-exponent product combination of two elements, a specified class
of new log-harmonic functions is constructed. Indeed, we show that, if f (z) = zh(z)ḡ(z) is
spirallike log-harmonic of order ρ, then by choosing suitable parameters of α and γ, the
function F(z) = f (z)| f (z|2γ is log-harmonic spirallike of order α. Additionally, in Section 3,
we provide some examples that are constructed from Section 2.

2. Main Results

Theorem 1. Let f (z) = zh(z)g(z) ∈ STLH(ρ), (0 ≤ ρ < 1) with respect to a ∈ B0,
φ ∈ S∗(γ), (0 ≤ γ < 1) and α, β be real numbers with α + β = 1. Then, F(z) = f (z)αK(z)β is
starlike log-harmonic mapping of order αρ + βγ with respect to a, where

K(z) = φ(z) exp
{

2Re
∫ z

0

a(s)
1− a(s)

φ′(s)
φ(s)

ds
}

.

Proof. By definition of F, we have

Fz

F
= α

fz

f
+ β

Kz

K
and

Fz

F
= α

fz

f
+ β

Kz

K
. (6)

Additionally direct computations show that

Kz

K
=

1
1− a(z)

φ′(z)
φ(z)

, and
Kz

K
=

a(z)
1− a(z)

φ′(z)
φ(z)

. (7)

Now, in view of Equations (6) and (7),

â(z) =
Fz
F
Fz
F

=
α

fz
f
+ β Kz

K

α
fz
f + β Kz

K

= a(z)
α

fz
f + β Kz

K

α
fz
f + β Kz

K

= a(z).

On the other hand,

Re
zFz − zFz

F
= Re

(
α

z fz

f
+ β

zKz

K

)
− Re

(
α

z fz

f
+ β

zKz

K

)

= αRe

(
z fz

f
− z fz

f

)
+ βRe

(
zKz

K
− zKz

K

)

> αρ + βγ.

The above relation shows that F is a log-harmonic starlike function of order αρ + βγ,
and the proof is complete.

Theorem 2. Let f (z) = zh(z)g(z) ∈ Sβ
LH(ρ) with respect to a ∈ B0 and γ be a constant with

Reγ > − 1
2 . Then, F(z) = f (z)| f (z)|2γ is an α− spirallike log-harmonic mapping of order ρ

with respect to

â(z) =
(1 + γ̄)a(z) + γ̄

1 + γ + γa(z)
,

where |β| < π
2 and α = tan−1

(
tan β+2Imγ

1+2Reγ

)
.
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Proof. By definition of F, we have

F(z) = f (z)| f (z)|2γ = z1+γzγH(z)G(z),

where
H(z) = h1+γ(z)gγ(z) and G(z) = hγ̄(z)g1+γ̄(z).

With a straightforward calculation and using Equation (5),

zFz

F
= (1 + γ)

(
1 +

zh′(z)
h(z)

)
+ γ

zg′(z)
g(z)

=

(
1 +

zh′(z)
h(z)

)
((1 + γ) + γa(z)),

and

z̄Fz̄

F
= γ

(
1 +

zh′(z)
h(z)

)
+ (1 + γ)

zg′(z)
g(z)

=

(
1 +

zh′(z)
h(z)

)
(γ + (1 + γ)a(z)).

If we consider

â(z) =

(
z̄Fz̄(z)
F(z)

)

zFz(z)
F(z)

,

then

â(z) =
γ̄ + (1 + γ̄)a(z)
(1 + γ) + γa(z)

.

Now, in view of |a(z)| < 1, it easy to see that |â(z)| < 1 provided that
∣∣∣ γ

1+γ

∣∣∣ < 1,

which evidently holds |γ|2 < |1 + γ|2 since Reγ > − 1
2 , and this means that F is a log-

harmonic function.
Additionally, by putting

ψ(z) =
zH(z)

G(z)e2iα ,

we have

ψ(z) =
zH(z)

G(z)e2iα =
zh(z)1+γg(z)γ

(hγ̄(z)g1+γ̄(z))e2iα .

Then, we obtain

e−iα zψ′(z)
ψ(z)

= e−iα + [(1 + γ)e−iα − γeiα]
zh′(z)
h(z)

− [(1 + γ)eiα − γe−iα]
zg′(z)
g(z)

= (−γe−iα + γ̄eiα) + [(1 + γ)e−iα − γeiα]

(
1 +

zh′(z)
h(z)

)

− [(1 + γ)eiα − γe−iα]
zg′(z)
g(z)

.

The condition on α ensures that

(1 + γ)e−iα − γeiα =
cos α

cos β
e−iβ and (1 + γ)eiα − γe−iα =

cos α

cos β
eiβ,

because by letting γ = γ1 + iγ2, the first equality holds true if and only if

cos β cos α− i(1 + 2γ1) sin α cos β + i2γ2 cos β cos α = cos α cos β− i cos α sin β

or, equivalently, after simplification

2γ2 cot β− (1 + 2γ1) tan α cot β = −1
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or

α = tan−1
(

tan β + 2Imγ

1 + 2Reγ

)
.

Thus, by hypothesis,

Re{e−iα zψ′(z)
ψ(z)

} = cos α

cos β
Re
(

e−iβ(1 +
zh′(z)
h(z)

)− eiβ zg′(z)
g(z)

)
> ρ cos α

and it follows that F is an α-spirallike log-harmonic mapping of order ρ in which the
dilation is â(z).

Theorem 3. Let fk(z) = zhk(z)gk(z) ∈ Sβ
LH(ρ) with k = 1, 2 and with respect to the same

a ∈ B0 and γ be a constant with Reγ > − 1
2 . Moreover, let

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then, F(z) = Fλ
1 (z)F1−λ

2 (z) is an α-spirallike log-harmonic mapping of order ρ with
respect to

â(z) =
(1 + γ̄)a(z) + γ̄

1 + γ + γa(z)
,

where |β| < π
2 and α = tan−1

(
tan β+2Imγ

1+2Reγ

)
.

Proof. According to the definitions of F1 and F2, we have

Fλ
1 (z) = ( f1(z)| f1(z)|2γ)λ

= (z|z|2γh1+γ
1 (z)gγ

1 (z)h
γ
1 (z)g1+γ

1 (z))
λ

and

F1−λ
2 (z) = ( f2(z)| f2(z)|2γ)1−λ

= (z|z|2γh1+γ
2 (z)gγ

2 (z)h
γ
2 (z)g1+γ

2 (z))
1−λ

.

Putting the values of Fλ
1 and F1−λ

2 on F, we obtain

F(z) = (z|z|2γh1+γ
1 (z)gγ

1 (z)h
γ
1 (z)g1+γ

1 (z))
λ
(z|z|2γh1+γ

2 (z)gγ
2 (z)h

γ
2 (z)g1+γ

2 (z))
1−λ

= z|z|2γH(z)G(z),

where
H(z) = h1(z)λ(1+γ)g1(z)λγh2(z)(1−λ)(1+γ)g2(z)(1−λ)γ (8)

and
G(z) = h1(z)

λγg1(z)
λ(1+γ)h2(z)

(1−λ)γg2(z)
(1−λ)(1+γ). (9)

Now, we show that the second dilation of F i.e., µ(z) satisfies the condition |µ(z)| < 1.
For this, since

µ(z) =

Fz(z)
F(z)
Fz(z)
F(z)

,
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we have

µ(z) =
λ

F1z(z)
F1(z)

+ (1− λ) F2z(z)
F2(z)

λ
F1z(z)
F1(z)

+ (1− λ) F2z(z)
F2(z)

=
λ[γ(1 + zh′1

h1
) + (1 + γ)

zg′1
g1

] + (1− λ)[γ(1 + zh′2
h2

) + (1 + γ)
zg′2
g2

]

λ[(1 + γ)(1 + zh′1
h1

) + γ
zg′1
g1

] + (1− λ)[(1 + γ)(1 + zh′2
h2

) + γ
zg′2
g2

]

=
λ(1 + zh′1

h1
)[γ + (1 + γ)a(z)] + (1− λ)(1 + zh′2

h2
)[γ + (1 + γ)a(z)]

λ(1 + zh′1
h1

)[(1 + γ) + γa(z)] + (1− λ)(1 + zh′2
h2

)[(1 + γ) + γa(z)]

=
[λ(1 + zh′1

h1
) + (1− λ)(1 + zh′2

h2
)][γ + (1 + γ)a(z)]

[λ(1 + zh′1
h1

) + (1− λ)(1 + zh′2
h2

)][(1 + γ) + γa(z)]

=
[γ + (1 + γ)a(z)]
[(1 + γ) + γa(z)]

=
(1 + γ)

(1 + γ)

a(z) + γ
1+γ

1 + a(z)γ
1+γ

,

(10)

and the condition Reγ > − 1
2 ensures that |µ(z)| < 1 in E, which implies that F is a locally

univalent log-harmonic mapping. Now, to prove

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(ρ),

we have to show that ψ(z) = zH(z)
G(z)e2iα ∈ Sα(ρ). However, a direct calculation shows that

ψ(z) =
zH(z)

G(z)e2iα =
[zhλ(1+γ)

1 (z)gλγ
1 (z)h(1−λ)(1+γ)

2 (z)g(1−λ)γ
2 (z)]

[hλγ
1 (z)gλ(1+γ)

1 (z)h(1−λ)γ
2 (z)g(1−λ)(1+γ)

2 (z)]e2iα
.

Now,

e−iα zψ′(z)
ψ(z)

= e−iα
[

1 + λ(((1 + γ)− e2iαγ)
zh′1(z)
h1(z)

− ((1 + γ)e2iα − γ)
zg′1(z)
g1(z)

)

]

+ e−iα
[
(1− λ)(((1 + γ)− e2iαγ)

zh′2(z)
h2(z)

− ((1 + γ)e2iα − γ)
zg′2(z)
g2(z)

)

]

= −γe−iα + eiαγ̄

+ λ

[
((1 + γ)e−iα − eiαγ)(1 +

zh′1(z)
h1(z)

)− ((1 + γ)eiα − γe−iα)
zg′1(z)
g1(z)

]

+ (1− λ)

[
((1 + γ)e−iα − eiαγ)(1 +

zh′2(z)
h2(z)

)− ((1 + γ)eiα − γe−iα)
zg′2(z)
g2(z)

]
.

By hypothesis, we know that

(1 + γ)e−iα − γeiα =
cos α

cos β
e−iβ and (1 + γ)eiα − γe−iα =

cos α

cos β
eiβ,
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so
Re{e−iα zψ′(z)

ψ(z)
}

= λ
cos α

cos β
Re
(

e−iβ(1 +
zh′1(z)
h1(z)

)− eiβ zg′1(z)
g1(z)

)

+ (1− λ)
cos α

cos β
Re
(

e−iβ(1 +
zh′2(z)
h2(z)

)− eiβ zg′1(z)
g1(z)

)

> ρ cos α

and the proof is completed.

Theorem 4. Let fk(z) = zhk(z)gk(z) ∈ Sβ
LH(ρ) with respect to ak ∈ B0(k = 1, 2). Moreover,

suppose that Reγ > − 1
2 ,

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

If

Re

[
(1− a1(z)a2(z))

(
1 +

zh′1(z)
h1(z)

)(
1 +

zh′2(z)
h2(z)

)]
≥ 0 ( f or any z ∈ E),

then
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(ρ),

where |β| < π
2 , 0 ≤ λ ≤ 1 and α = tan−1

(
tan β+2Imγ

1+2Reγ

)
.

Proof. Using the same argument as in Theorem 3, we have

F(z) = z|z|2γH(z)G(z),

where H(z) and G(z) are defined by Equations (8) and (9). Now, we show that the second
dilation of F, i.e., µ(z), satisfies the condition |µ(z)| < 1. For this, since

µ(z) =

Fz(z)
F(z)
Fz(z)
F(z)

,

using a similar argument to the relation Equation (10) of Theorem 3, we have

|µ(z)| =

∣∣∣∣∣∣
λ(1 + zh′1

h1
)[γ + (1 + γ)a1(z)] + (1− λ)(1 + zh′2

h2
)[γ + (1 + γ)a2(z)]

λ(1 + zh′1
h1

)[(1 + γ) + γa1(z)] + (1− λ)(1 + zh′2
h2

)[(1 + γ) + γa2(z)]

∣∣∣∣∣∣
.

However, by hypothesis, we obtain
∣∣∣∣λ(1 +

zh′1
h1

)[(1 + γ) + γa1(z)] + (1− λ)(1 +
zh′2
h2

)[(1 + γ) + γa2(z)]
∣∣∣∣
2

−
∣∣∣∣λ(1 +

zh′1
h1

)[γ + (1 + γ)a1(z)] + (1− λ)(1 +
zh′2
h2

)[γ + (1 + γ)a2(z)]
∣∣∣∣
2

= (2Reγ + 1)

(
λ2
∣∣∣∣1 +

zh′1
h1

∣∣∣∣
2

(1− |a1|2) + (1− λ)2
∣∣∣∣1 +

zh′2
h2

∣∣∣∣
2

(1− |a2|2)
)

+ (2Reγ + 1)

(
2λ(1− λ)Re[(1− a1a2)(1 +

zh′1
h1

)(1 +
zh′2
h2

)]

)
> 0.

34



Axioms 2023, 12, 409

Therefore, |µ(z)| < 1 in E, which implies that F is a locally univalent mapping.
Moreover, by following a similar proof to that in Theorem 3, we observe that

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(ρ),

and the proof is completed.

Theorem 5. Let fk(z) = zhk(z)gk(z) be univalent log-harmonic functions with respect to
ak ∈ B0(k = 1, 2) and Reγ > − 1

2 . Moreover, suppose that zhkgk = φk(z), where

φk(z) = zexp
{

2
∫ z

0

ak(t)
t(1− ak(t))

dt
}

and
F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then,
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1)

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1+2Reγ

)
.

Proof. Since zhkgk = φk(z), by definition of ak(z) and φk(z), we obtain

1 +
zh′k(z)
hk(z)

=
1

1− ak(z)
(k = 1, 2).

Let

µ(z) =

Fz(z)
F(z)
Fz(z)
F(z)

.

Using a similar argument to the relation in Equation (10) of Theorem 3, we obtain

|µ(z)| =
∣∣∣∣
λ(1− a2(z))[γ + (1 + γ)a1(z)] + (1− λ)((1− a1(z))[γ + (1 + γ)a2(z)]
λ(1− a2(z))[(1 + γ) + γa1(z)] + (1− λ)(1− a1(z))[(1 + γ) + γa2(z)]

∣∣∣∣.

Now, |µ(z)| < 1 is equivalent to

ψ(λ) := |λ(1− a2(z))[(1 + γ) + γa1(z)] + (1− λ)(1− a1(z))[(1 + γ) + γa2(z)]|2

− |λ(1− a2(z))[γ + (1 + γ)a1(z)] + (1− λ)((1− a1(z))[γ + (1 + γ)a2(z)]|2

= (2Reγ + 1)[λ2|1− a2(z)|2(1− |a1(z)|2)
+ 2λ(1− λ)Re[(1− a2(z))(1− a1(z))(1− a1(z)a2(z))]

+ (1− λ)2|1− a1(z)|2(1− |a2(z)|2)] > 0.

However, by taking the derivative of ψ(λ), we have

ψ′(λ) = 2(2Reγ + 1)
[
Re[(1− a2(z))(1− a1(z))(1− a1(z)a2(z))]− |1− a1(z)|2(1− |a2(z)|2)

]
,

which shows that ψ is a continuous monotonic function of λ in the interval [0, 1]. Since

ψ(0) = (2Reγ + 1)|1− a2(z)|2(1− |a1(z)|2) > 0

35



Axioms 2023, 12, 409

and
ψ(1) = (2Reγ + 1)|1− a1(z)|2(1− |a2(z)|2) > 0,

we deduce that ψ(λ) > 0 for all λ ∈ [0, 1], which implies that F is a locally univalent
mapping. Now, to prove

F = Fλ
1 F1−λ

2 ∈ Sα
LH (11)

we have to show that ψ(z) = zH(z)
G(z)e2iα ∈ Sα(1), where H(z) and G(z) are defined by

Equations (8) and (9). A direct computation such as that in Theorem 3 shows that

(1 + γ)e−iα − γeiα

cos α
=

(1 + γ)eiα − γe−iα

cos α
= 1.

Additionally, we note that

1 +
zh′1
h1
− zg′1

g1
= 1 +

zh′2
h2
− zg′2

g2
= 1.

Using these relation and the same argument as that made in Theorem 3, we obtain
ψ(z) = zH(z)

G(z)e2iα ∈ Sα(1), and the proof is complete.

Theorem 6. Let fk(z) = zhk(z)gk(z)(k = 1, 2) be log-harmonic functions with respect to
ak ∈ B0. Moreover, suppose that zhkgk = z and

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then,
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
(1+2Reγ)

)
.

Proof. Since zhkgk = z, by definition of ak(z), we obtain

1 +
zh′k(z)
hk(z)

=
1

1 + ak(z)
(k = 1, 2).

Using the same argument as that in Theorem 5, we obtain our result, but we omit the
details.

3. Examples

We provide several examples in this section.

Example 1. Let Reγ > − 1
2 and

f (z) = z
(1 + z)[cos β(1−ρ)eiβ−1]

(1− z)(1−ρ) cos βeiβ (1 + z)[(1−ρ) cos βeiβ−e2iβ ](1− z)(1−ρ) cos βeiβ
.

Then, it is easy to see that f is a β-spirallike log-harmonic mapping of order ρ with respect to
a(z) = −ze−2iβ. Now, Theorem 2 implies that the function F(z) = f (z)| f (z)|2γ is a α-spirallike
log-harmonic mapping of order ρ with respect to

â(z) =
−(1 + γ̄)ze−2iβ + γ̄

(1 + γ)− γe−2iβz
,
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where

α = tan−1
(

tan β + 2Imγ

1 + 2Reγ

)
.

The image in Example 1 is shown in Figure 1.

Figure 1. Image of F(z) for β = 0.5, ρ = 1, and γ = 0.25 in Example 1.

Example 2. Let Reγ > − 1
2 , 0 < a < 1, f1 be the function defined in Example 1 and

f2(z) = z
(1 + z)[cos β

(1+a−2ρ)
1+a eiβ−1]

(1− az)
(1+a−2ρ)

1+a cos βeiβ
(1 + z)[

(1+a−2ρ)
1+a cos βeiβ−e2iβ ](1− az)

(1+a−2ρ)
a(1+a) cos βeiβ

.

Then, it is easy to see that f1 and f2 are β-spirallike log-harmonic mappings of order ρ with
respect to a2(z) = a1(z) = −ze−2iβ. Additionally, suppose that

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Then, Theorem 3 shows that

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(ρ),

where 0 ≤ λ ≤ 1 and α = tan−1
(

tan β+2Imγ
(1+2Reγ)

)
.

Example 3. Let Reγ > − 1
2 ,

f1(z) =
z

|1 + z|

√
1− z̄
1− z

and
f2(z) =

z
1− z

eRe 1
1−z .

Firstly, we show that f1 and f2 are log-harmonic starlike functions of order 1/2 with respect
to a1(z) = −z and a2(z) = z

2−z , respectively. A direct computation shows that

z( f1)z

f1
=

1
1− z2 ,

(
z̄( f1)z̄

f1

)
=
−z

1− z2

z( f2)z

f2
=

2− z
2(1− z2)

,
(

z̄( f2)z̄

f2

)
=

z
2(1− z2)

.
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Therefore, we obtain

(
z̄( f1)z̄

f1

)
= a1(z)

z( f1)z

f1
and

(
z̄( f2)z̄

f2

)
= a2(z)

z( f2)z

f2
,

and this means that f1 and f2 are locally univalent log-harmonic functions. Additionally,

Re
z( f1)z − z̄( f1)z̄

f1
= Re

(
1

1− z2 +
z

1− z2

)
= Re

1
1− z

>
1
2

,

and

Re
z( f2)z − z̄( f2)z̄

f2
= Re

(
2− z

2(1− z2)
− z

2(1− z2)

)
= Re

1
1 + z

>
1
2

.

Hence, f1 and f2 are starlike log-harmonic functions of order 1/2. Additionally, let

F1(z) = f1(z)| f1(z)|2γ and F2(z) = f2(z)| f2(z)|2γ.

Since for z = reiθ ,

Re(1− a1a2)(1 +
zh′1
h1

)(1 +
zh′2
h2

)

= (1− |z|2)Re
1

(1− z̄)2
1

1− z2 =
1− |z|2
|1− z|2 Re

1
(1− z̄)(1 + z)

=
1− r2

|1− reiθ|2 (1− r2) > 0.

Theorem 4 implies that

F(z) = Fλ
1 (z)F1−λ

2 (z) ∈ Sα
LH(

1
2
),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1+2Reγ

)
.

The images in Example 2–4 are shown in Figures 2–4.

Example 4. Let Reγ > 1
2 , a1(z) = z, and h1(z) = g1(z) = 1

1−z . Moreover, let a2(z) = −z
and h2(z) = g2(z) = 1

1+z . Then, it is easy to verify that all conditions of Theorem 5 are satisfied.
Hence, according to Theorem 5, by taking

F1(z) =
z|z|2γ

(1− z)1+2γ(1− z̄)1+2γ

and

F2(z) =
z|z|2γ

(1 + z)1+2γ(1 + z̄)1+2γ
,

we have
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1−ρ+2Reγ

)
.

Example 5. Let Reγ > − 1
2 , a1(z) = −z and h1(z) = 1

1−z , g(z) = 1 − z. Moreover, let
a2(z) = z and h2(z) = 1

1+z , g2(z) = 1 + z. Then, it is easy to verify that all conditions of
Theorem 6 are satisfied. Hence, according to Theorem 6, by taking
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F1(z) =
z|z|2γ(1− z̄)

(1− z)
and F2(z) =

z|z|2γ(1 + z̄)
(1 + z)

,

we have
F(z) = Fλ

1 (z)F1−λ
2 (z) ∈ Sα

LH(1),

where 0 ≤ λ ≤ 1 and α = tan−1
(

2Imγ
1−ρ+2Reγ

)
.

Figure 2. Images of f1(z) and f2(z) in Example 3.

Figure 3. Images of F1(z) and F2(z) for γ = 1 + i in Example 3.

Figure 4. Image of F(z) for γ = 1 + i and λ = 0.5 in Example 3.
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4. Conclusions

In this paper, we have shown that, if f (z) = zh(z)ḡ(z) is spirallike log-harmonic of
order ρ, then by choosing suitable parameters of α and γ, the function F(z) = f (z)| f (z|2γ

is log-harmonic spirallike of order α. Moreover, we provide some examples for the
obtained results.
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Abstract: This paper introduces a q-analog of the class of completely convex functions. We prove
specific properties, including that q-completely convex functions have convergent q-Lidstone series
expansions. We also provide a sufficient and necessary condition for a real function to have an
absolutely convergent q-Lidstone series expansion.

Keywords: quantum calculus; q-series; q-Lidstone polynomials; completely convex functions
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1. Introduction

In 1929, Lidstone [1] introduced a generalization of Taylor’s theorem that approximates
an entire function f in a neighborhood of two points instead of one. That is

f (x) =
∞

∑
n=0

[
f (2n)(1)Λn(x) + f (2n)(0)Λn(1− x)

]
, (1)

where Λn(x) is a unique polynomial of degree 2n + 1, and called a Lidstone polynomial.
In [2], Whittaker proved that an entire function of an exponential type of less than π has a
convergent Lidstone series expansion in any compact set of the complex plane. Buckholtz
and Shaw [3] provided some conditions for (1) to hold. Other authors worked on this
problem (see, e.g., [4–10]). They presented different sufficient and necessary conditions
for the representation of functions by this series. We mention, in particular, the result of
Widder [10]. He proved that if f is a real-valued function satisfying

(−1)k f (2k)(x) ≥ 0 (k ∈ N0) (2)

in an interval of length greater than π, then it has a Lidstone series expansion (1) (such a
function is known as completely convex). Furthermore, he defined the class of minimal
completely convex functions, and then he proved that a real-valued function f (x) could be
expanded in an absolutely convergent Lidstone series if and only if it is the difference of
two minimal completely convex functions.

Recently, the Lidstone expansion theorem was generalized in quantum calculus (as
can be seen in [11–17]). The quantum calculus (Jackson calculus or q-calculus [18]) is
an extension of the traditional calculus, and it has been used by many researchers in
different branches of science and engineering (as can be seen in, e.g., [19–24]). It has a lot
of applications in different mathematical areas such as orthogonal polynomials, number
theory, hypergeometric functions, theory of finite differences, gamma function theory,
Sobolev spaces, Bernoulli and Euler polynomials, operator theory, and quantum mechanics.
For the basic definitions and notations applicable in the q-calculus, see Section 2.

Axioms 2023, 12, 412. https://doi.org/10.3390/axioms12050412 https://www.mdpi.com/journal/axioms41
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In [11], Ismail and Mansour proved the following q-analog of the Lidstone expansion
theorem.

Theorem 1. Assume that the function f (z) is an entire function of q−1-exponential growth of
order 1 and a finite type α less than ξ1, or it is an entire function of q−1-exponential growth of an
order of less than 1. Then, f (z) has a convergent q-Lidstone representation

f (z) =
∞

∑
n=0

[
D2n

q−1 f (1)An(z)− D2n
q−1 f (0)Bn(z)

]
, (3)

where (An)n and (Bn)n are the q-Lidstone polynomials defined, respectively, by the generating
functions

Eq(zw)− Eq(−zw)

Eq(w)− Eq(−w)
=

∞

∑
n=0

An(z)w2n, (4)

Eq(zw)Eq(−w)− Eq(−zw)Eq(w)

Eq(w)− Eq(−w)
=

∞

∑
n=0

Bn(z)
wn

[n]q!
. (5)

Moreover, A0(z) = z, B0(z) = 1− z, and for n ∈ N, An(z) and Bn(z) satisfy the q-difference
equation

D2
q−1 yn(z) = yn−1(z) with yn(0) = yn(1) = 0. (6)

In [16], AL-Towailb and Mansour proved that the condition

Dn
q−1 f (0) = o(ξn

1 ) as n→ ∞ (7)

is both sufficient and necessary for expanding an entire function f (z) in the q-Lidstone
series

f (1)A0(z)− f (0)B0(z) + D2
q−1 f (1)A1(z)− D2

q−1 f (0)B1(z) + . . . ,

and we noted that Condition (7) is insufficient for the convergence of the following arrange-
ment of the q-Lidstone series:

∞

∑
n=0

D2n
q−1 f (1)An(z)−

∞

∑
n=0

D2n
q−1 f (0)Bn(z),

and not necessary for the convergence of (3). This paper aimed to obtain a sufficient and
necessary condition for a real-valued function to have an absolutely convergent q-Lidstone
series expansion (3). To achieve this aim, we introduced generalizations for the class of
completely convex functions (2) on a closed interval of form [0, a] (a > 0), and the class
of minimal completely convex functions on the interval [0, 1]. This paper is organized as
follows. The following section gives the essential notions and basic definitions of q-calculus.
Section 3 contains some properties and basic results on q-Lidstone polynomials, which
we need in our investigation. In Section 4, we define a q-analog of the class of completely
convex functions for the difference operator Dq−1 . Then, we study the relation of this
class to a problem of the representation of functions by the q-Lidstone series. In Section 5,
we provide a necessary and sufficient condition for a real function to have an absolutely
convergent q-Lidstone series expansion.

2. Preliminaries

In this section, we recall some definitions, notations, and results in the q-calculus,
which we need in our investigations (see [25]).

Throughout this paper, q is a positive number less than one, and we use the following
standard notations:

N := {1, 2, 3, . . .}, N0 := {0, 1, 2, . . .} = N∪ {0}.
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The sets Aq and A∗q are defined by Aq := {qn : n ∈ N0} and A∗q := Aq ∪ {0}. For
a ∈ C, n ∈ N0,

(a; q)∞ =
∞

∏
j=0

(1− aqj), (a; q)n :=
(a; q)∞

(aqn; q)∞
,

and the q-numbers [n]q and q-factorial [n]q! are defined by

[n]q =
1− qn

1− q
, [n]q! =

n

∏
k=1

[k]q.

Let µ ∈ C. A set A ⊂ C is called µ-geometric set if µz ∈ A for any z ∈ A. If f is a
function defined on a q-geometric set A, then Jackson’s q-difference operator is defined by

Dq f (z) =





f (z)− f (qz)
(1− q)z

, z ∈ A− {0};
f ′(0), z = 0,

(8)

provided that f is differentiable at zero. Furthermore, Jackson [26] introduced the following
q-integrals for a function f defined on a q-geometric set A:

∫ b

a
f (t) dqt :=

∫ b

0
f (t)dqt−

∫ a

0
f (t) dqt (a, b ∈ R),

where ∫ z

0
f (t) dqt := (1− q)

∞

∑
n=0

zqn f (zqn),

provided that the series converges at z = a and z = b.
Jackson’s q-trigonometric functions Sinqz and Cosqz are defined by

Sinqz :=
∞

∑
n=0

(−1)n qn(2n+1)

(q; q)2n+1
(z(1− q))2n+1,

Cosqz :=
∞

∑
n=0

(−1)n qn(2n−1)

(q; q)2n
(z(1− q))2n,

(9)

where Eq(·) is one of Jackson’s q-exponential function defined by

Eq(z) =
∞

∑
n=0

q
n(n−1)

2
(z(1− q))n

(q; q)n
= (−z(1− q); q)∞ (z ∈ C). (10)

We use {ξk}k∈N to denote the positive zeros of Sinqz arranged in increasing order of
magnitude. One can verify that Sinqz has no zeroes on |z| < q−3/2, i.e., the first positive
zeros ξ1 > q−3/2.

Lemma 1. For any x ∈ [0, 1], we have

Sinqξ1x ≤ ξ1x. (11)

Proof. Let f (x) = ξ1x − Sinqξ1x, x ∈ [0, 1]. Then, Dq−1 f (x) = ξ1(1 − Cosqξ1x) ≥ 0.
Therefore, by using (8), we obtain

f (x) ≤ f (
x
q
) (x ∈ [0, 1]),

which implies f (x) ≥ lim
n→∞

f (qnx) = 0. Then, Inequality (11) holds.
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3. Some Results on q-Lidstone Polynomials

We start this section by recalling some properties of the q-Lidstone polynomials An(x)
and Bn(x) from [14,16,17], for which we need to prove the main results.

Proposition 1 ([16]). Let {ξk}k∈N be the sequence of the positive zeros of Sinq(x) and m ∈ N0.
Then,

(−1)n−1 An(x) =
2Sinq(ξ1x)

ξ2n+1
1 Sin′q(ξ1)

+O(ξ−(2n+1)
2 ); (12)

(−1)n−1Bn(x) =
Sinq(ξ1x)Cosq(ξ1)

(1− q)(ξ1)2n+1Sin′q(ξ1)
+O(ξ−2n

1 (2n)−m), (13)

for a sufficiently large n.

Proposition 2 ([17]). If f ∈ C2n
q ([0, 1]), then

f (x) =
n−1

∑
m=0

[
D2m

q−1 f (1)Am(x)− D2m
q−1 f (0)Bm(x)

]
+
∫ 1

0
Gn(x, qt)D2n

q−1 f (q2t) dqt, (14)

where

G(x, t) = G1(x, t) =
{ −qt(1− x), 0 ≤ t < x ≤ 1;
−qx (1− t), 0 ≤ x < t ≤ 1,

(15)

Gn(x, qt) =
∫ 1

0
G(x, qy) Gn−1(qy, qt) dqy (n ∈ N). (16)

Moreover, ∫ 1

0
Gn(x, qt) dqt = An(x)− Bn(x) (n ∈ N). (17)

Remark 1 ([14]). For x ∈ [0, 1] and n ∈ N0, we have

(−1)n An(x) ≥ 0 and (−1)n−1Bn(x) ≥ 0. (18)

Proposition 3. Let ξ1 be the smallest positive zero of Sinq(x). Then, there exist some constants
M1 and M2 and a positive integer n0 such that the following inequalities hold

0 ≤ (−1)n An(x) ≤ M1

ξ2n
1

; (19)

0 ≤ (−1)n−1Bn(x) ≤ M2

ξ2n
1

, (20)

for all x ∈ [0, 1] and n ≥ n0.

Proof. From (12), there is a positive real number C1 and n0 ∈ N such that

∣∣∣(−1)n−1 An(x)− 2
Sinq(ξ1x)

ξ2n+1
1 Sin′q(ξ1)

∣∣∣ ≤ C1

ξ2n
2

, (21)

for all x ∈ [0, 1] and n ≥ n0. Consequently,

0 ≤ (−1)n An(x) ≤ C1

ξ2n
2
− 2

Sinq(ξ1x)

ξ2n+1
1 Sin′q(ξ1)

. (22)
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Note that ξ1 < ξ2 and Sinq(ξ1x) is bounded on [0, 1]. Then, from (22), we obtain

0 ≤ (−1)n An(x) ≤ C1

ξ2n
1

+
2

ξ2n+1
1

∣∣∣
Sinq(ξ1x)
Sin′q(ξ1)

∣∣∣

≤ C1

ξ2n
1

+
C2

ξ2n
1

=
M1

ξ2n
1

.
(23)

Similarly, we obtain (20) from (13).

Proposition 4. There exists a constant M such that

0 ≤
∫ 1

0
(−1)n Gn(x, qt) dqt ≤ M

ξ2n
1

.

Proof. The proof follows immediately from Equation (17) and Proposition 3.

Proposition 5. For any fixed point x0 ∈ (0, 1) and sufficiently large n, there exist some constants
M1 and M2 such that

(−1)n An(x0) ≥
M1

ξ2n
1

; (24)

(−1)n−1Bn(x0) ≥
M2

ξ2n
1

. (25)

Proof. From (12), we obtain

(−1)n An(x)ξ2n+1
1 = L(x) +O(( ξ1

ξ2
)2n+1) (n→ ∞),

where L(x) = −2Sinq(ξ1x)
Sin′q(ξ1)

. Notice, for any fixed x0 ∈ (0, 1), L(x0) > 0 and

lim
n→∞

(−1)n An(x0)ξ
2n+1
1 = L(x0).

This implies that the sequence (−1)n An(x0)ξ
2n+1
1 is bounded below by a positive

number. I.e., (24) holds. Similarly, we obtain the Inequality (25) from (13).

Now, using the previous results, we prove the following theorem.

Theorem 2. If the series

S = a0 A0(x) + b0B0(x) + a1 A1(x) + b1B1(x) + . . . (26)

converges for a single value x0 ∈ (0, 1), then the series ∑∞
n=0(−1)n

[
an+bn

ξ2n
1

]
is absolutely convergent.

Proof. Since the series (26) converges for x0 ∈ (0, 1), we have

lim
n→∞

an An(x0) = 0, lim
n→∞

bnBn(x0) = 0.

Then, from the inequalities (24) and (25), we obtain

an = O(ξ2n
1 ) and bn = O(ξ2n

1 ). (27)
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From (12), (13), and (27), we conclude that the series

S1 =
∞

∑
n=0

{
an

[
An(x0) +

2(−1)nSinq(ξ1x0)

ξ2n+1
1 Sin′q(ξ1)

]
+ bn

[
Bn(x0) +

(−1)nCosqξ1Sinq(ξ1x0)

(1− q)ξ2n+1
1 Sin′q(ξ1)

]}

converges absolutely. This implies that S1 − S is also convergent. Notice that

S1 − S =
∞

∑
n=0

[2Sinq(ξ1x0)

ξ1Sin′q(ξ1)

(−1)n

ξ2n
1

an +
Cosqξ1Sinq(ξ1x0)

(1− q)ξ1Sin′q(ξ1)

(−1)n

ξ2n
1

bn

]

>
2Sinq(ξ1x0)

ξ1Sin′q(ξ1)

∞

∑
n=0

[ (−1)n

ξ2n
1

an +
(−1)n

ξ2n
1

bn

]
.

Therefore, we obtain the result.

4. A q-Analog of Completely Convex Function

In this section, by C∞
q [0, a], we mean the space of all functions defined on [0, a] such

that Dn
q−1 f (x) is defined and continuous at zero.

Definition 1. A real-valued function f , defined on the interval [0, a] (a > 0), is said to be a
q-completely convex function if f ∈ C∞

q [0, a] and

(−1)nD2n
q−1 f (aqk) ≥ 0 (for all {n, k} ⊂ N0). (28)

Example 1. The functions f (x) = Sinqξ1x, defined in (9), are q-completely convex on the interval
[0, 1]. Indeed, one can verify that

(−1)nD2n
q−1 f (x) = (−1)nD2n

q−1Sinqξ1x = ξ2n
1 Sinq(ξ1 x) > 0, (29)

for all x ∈ [0, 1] and n ∈ N0.

In the following, we prove certain properties of q-completely convex functions.

Proposition 6. If a function f ∈ C∞
q [0, a] is q-completely convex, then

(−1)nD2n
q−1 f (0) ≥ 0 (n ∈ N0). (30)

Proof. The proof follows directly by taking the limit as k→ ∞ in (28) and using that D2n
q−1 f

is continuous at zero for all n ∈ N0.

Proposition 7. Let f ∈ C∞
q (0, 1) be a q-completely convex function on [0, 1]. Then, for a suffi-

ciently large n, we have

D2n
q−1 f (0) = O(ξ2n

1 ); (31)

D2n
q−1 f (1) = O(ξ2n

1 ). (32)

Proof. From Proposition 1 and Inequality (28), every term of (14) is non-negative. Therefore,

0 ≤ An(x) D2n
q−1 f (0) ≤ f (x); (33)

0 ≤ (−Bn(x))D2n
q−1 f (1) ≤ f (x) (x ∈ [0, 1]; n ∈ N0). (34)
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Thus, by using (24) and (33), we obtain

0 ≤ (−1)nD2n
q−1 f (0) ≤ f (x0)

(−1)n An(x0)
≤ Kξ2n

1 (n→ ∞),

for some constant K > 0 and x0 ∈ (0, 1). Then, we have (31). Similarly, we obtain the
asymptotic behavior in (32).

Proposition 8. Let f be a q-completely convex function on [0, 1]. Then, there exists a positive
constant C such that for all x ∈ Aq

0 ≤ (−1)nD2n
q−1 f (x) ≤ C

(
ξ1

x

)2n
, (35)

where ξ1 is the smallest positive zero of Sinq(x).

Proof. If f is q-completely convex on [0, 1], then it is q-completely convex on [0, x] for
all x ∈ Aq. Consequently, the function f̃ (t) := f (xt) is q-completely convex on [0, 1].
Therefore, from Proposition (7), we have

0 ≤ (−1)nD2n
q−1 f̃ (1) = (−1)nx2nD2n

q−1 f (x) = O(ξ2n
1 ),

which is nothing else but (35).

Lemma 2. Let f (x) and −D2
q−1 f (x) be non-negative on A∗q , and continuous at 0. Assume that

there exists a number x0 ∈ Aq such that f (x0) ≤ α (α ∈ R). Then,

f (x) ≤ (1 + q)α
(1− q)x0

, for all x ∈ A∗q .

Proof. First, let x ∈ A∗q and x ≥ x0. Then, by using the assumption D2
q−1 f (x) ≤ 0, we have

∫ x

x0

D2
q f (

t
q2 ) dqt ≤ 0.

Therefore, Dq f (x) ≤ Dq f (x0), and

∫ x

x0

Dq f (t) dqt ≤ (x− x0)Dq f (x0) (x ∈ A∗q , x0 ≤ x). (36)

Since f (x) ≥ 0 on A∗q , from (8) and Inequality (36), we obtain

f (x) ≤ f (x0) +
(x− x0)

(1− q)x0
f (x0) =

x− x0q
(1− q)x0

f (x0) <
α

(1− q)x0
, (37)

for all x ∈ A∗q and x0 ≤ x. Similarly, if x ∈ A∗q and x < x0, then

f (x) ≤ x0 − x
(1− q)x0

f (qx0) <
f (qx0)

(1− q)x0
. (38)

On the other hand, since D2
q−1 f (x) ≤ 0, we have

(1 + q) f (qx) ≥ q f (x) + f (q2x) (x ∈ A∗q).
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Therefore, from the condition f (x) ≥ 0, we obtain

(1 + q) f (qx) ≥ q f (
x
q
) + f (qx) > f (qx) (x ∈ A∗q). (39)

So, from the inequalities (38) and (39), we obtain

f (x) <
(1 + q)α
(1− q)x0

(x ∈ A∗q , x < x0). (40)

Hence, the relations (37) and (40) yield the required result.

Corollary 1. If f ∈ C∞
q [0, 1] is a q-completely convex function, then there exists a positive constant

M such that
0 ≤ (−1)nD2n

q−1 f (x) ≤ Mξ2n
1 (n ∈ N0, x ∈ A∗q). (41)

Proof. The proof follows from Proposition 8 and Lemma 2 by taking x0 = 1 and M =
1+q
1−q C.

Lemma 3. If f ∈ C∞
q [0, 1] is a q-completely convex function on [0, 1], then there exists a constant

K > 0 such that
|Dn

q−1 f (x)| ≤ Kξn
1 (x ∈ A∗q), (42)

where ξ1 is the smallest positive zero of Sinq(z).

Proof. From Corollary 1, it suffices to prove (42) when n is an odd integer. We set g(x) =
(−1)nD2n

q−1 f (x). Since f (x) is a q-completely convex on 0 ≤ x ≤ 1, again from Corollary 1,
there exists the constant M > 0 (independent of n) such that for all x ∈ A∗q

0 ≤ g(x) ≤ Mξ2n
1 , (43)

0 ≤ −D2
q−1 g(x) ≤ Mξ2n+2

1 .

Therefore, for every x ∈ A∗q − {1}, we have

0 ≤
∫ q2

qx
−D2

q−1 g(t) dqt ≤ Mq(q− x)ξ2n+2
1 .

So, by using the fundamental theorem of the q-calculus, we obtain

0 ≤ (−1)nD2n+1
q−1 f (x)− (−1)nD2n+1

q−1 f (1) ≤ Mξ2n+2
1 ,

and hence,

(−1)nD2n+1
q−1 f (1) ≤ (−1)nD2n+1

q−1 f (x) ≤ (−1)nD2n+1
q−1 f (1) + Mξ2n+2

1 ,

for all x ∈ A∗q − {1}. Consequently,

|D2n+1
q−1 f (x)| ≤ |D2n+1

q−1 f (1)|+ Mξ2n+2
1 . (44)

On the other hand, since D2
q−1 g(x) < 0, one can verify that for all x ∈ A∗q

(1 + q)g(
x
q
) ≥ g(x) + qg(

x
q2 ),
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and then
qg(

x
q
) ≤ (1 + q)g(x)− g(qx) (x ∈ A∗q).

Thus, if x = 1, we obtain
∣∣∣∣(D2n

q−1 f )(
1
q
)

∣∣∣∣ = (−1)n(D2n
q−1 f )(

1
q
) ≤ (1 + q)

q

∣∣∣D2n
q−1 f (1)

∣∣∣. (45)

Hence, from (8), (43) and (45), we have

∣∣∣D2n+1
q−1 f (1)

∣∣∣ = |Dq−1 g(1)| ≤ |g(1)|+ |g(1/q)|
1/q− 1

≤ 2q + 1
q

Mξ2n
1 . (46)

However, ξ1 > q−3/2, this implies
∣∣∣D2n+1

q−1 f (1)
∣∣∣ ≤ √q(2q + 1)Mξ2n+1

1 . (47)

By substituting (47) in (44), we obtain

|D2n+1
q−1 f (x)| ≤ √q(2q + 1)Mξ2n+1

1 + Mξ2n+2
1 ≤ M1Mξ2n+1

1 ,

for all n ∈ N and x ∈ A∗q , where M1 =
√

q(2q + 1) + q−3/2.
Since D2n+1

q−1 f (x) is continuous at zero, then we obtain D2n+1
q−1 f (x) = O(ξ2n+1

1 ) for a
sufficiently large n. This completes the proof.

Theorem 3. Let f ∈ C∞
q [0, 1] be a q-completely convex on [0, 1]. If f is analytic at zero, then the

following q-Lidstone series expansion holds for all x ∈ [0, 1].

f (x) =
∞

∑
n=0

[
D2n

q−1 f (1)An(x)− D2n
q−1 f (0)Bn(x)

]
. (48)

Moreover, f (x) is the restriction of an entire function of q−1-exponential growth of order 1
and a finite type less than ξ1 and the expansion (48) holds for all x on the entire complex plane.

Proof. Since f is analytic at 0, there exists 0 < c < 1 and the open interval Ωc = (−c, c)
such that f (x) has the Maclaurin series expansion

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn =
∞

∑
n=0

q
n(n−1)

2
Dn

q−1 f (0)

[n]q!
xn (x ∈ Ωc). (49)

From Lemma 3, there exists a constant K such that

∣∣∣ f (x)
∣∣ ≤

∞

∑
n=0

∣∣∣q
n(n−1)

2
Dn

q−1 f (0)

[n]q!
xn
∣∣∣ ≤ K

∞

∑
n=0

q
n(n−1)

2
(ξ1x)n

[n]q!
= K Eq(ξ1x), (50)

where Eq(.) is Jackson’s q-exponential function defined in (10). Notice that, by the known
properties of Eq(.) (see [11]), Eq(x) is an entire function that has a q−1-exponential growth of
order 1, and it converges everywhere in the complex plane. Therefore, f (x) is the restriction
of an entire function of q−1-exponential growth of order 1 and a finite type less than ξ1. So,
according to Theorem 1, we obtain the result.

5. A q-Analog of Minimal Completely Convex Function

Definition 2. A real-valued function f ∈ C∞
q [0, 1] is a minimal q-completely convex on [0, 1] if it

is q-completely convex in the interval [0, 1], and if the function g(x) = f (x)− ε Sinqξ1x is not
q-completely convex for any ε > 0.
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For example, the function f (x) = Sinqx is a minimal q-completely convex in 0 ≤ x ≤ 1
while the function f (x) = Sinqξ1x is not because for any 0 < ε < 1 and x ∈ (0, 1),

(−1)nD2n
q−1

(
Sinqξ1x− ε Sinqξ1x

)
= (1− ε)ξ2n

1 Sinq(ξ1x) > 0.

Theorem 4. Let n ∈ N0, (an)n and (bn)n be two sequences of non-negative integers. Assume that
the series

∞

∑
n=0

[
(−1)nan An(x)− (−1)nbn Bn(x)

]

converges to a function f (x), 0 ≤ x ≤ 1. Then, f (x) is a minimal q-completely convex on the
interval [0, 1].

Proof. From the assumption, we have

f (x) =
∞

∑
n=0

[
(−1)nan An(x)− (−1)nbn Bn(x)

]
, 0 ≤ x ≤ 1. (51)

Taking the q−1-derivative for (51) 2k times and using (6), we obtain

(−1)kD2k
q−1 f (x) =

∞

∑
n=k

(−1)n−kan An−k(x)− (−1)n−kbn Bn−k(x)

=
∞

∑
m=0

(−1)mam+k Am(x)− (−1)mbm+k Bm(x).
(52)

From Proposition 5, since (an)n and (bn)n are positive sequences, the right-hand side
of Equation (52) is non-negative, and f (x) is q-completely convex in [0, 1]. On the other
hand, from Proposition 3 and Equation (52), there exists a constant M > 0 such that

(−1)kD2k
q−1 f (x) ≤ M

∞

∑
m=0

[
am+k + bm+k

]
ξ−2m

1 = Mξ2k
1

∞

∑
n=k

an + bn

ξ2n
1

. (53)

According to Theorem 2, the power series Tk = ∑∞
n=k

an+bn
ξ2n

1
converges to zero as

k→ ∞. Hence, for given ε > 0 and x0 ∈ Aq, there exists an integer k0 ∈ N such that

MTk − ε Sinq(ξ1x0) < 0 (k ≥ k0).

This implies from (53) that the function

(−1)kD2k
q−1

(
f (x)− ε Sinq(ξ1x)

)
= (−1)kD2k

q−1 f (x)− ε ξ2k
1 Sinq(ξ1x)

is negative at x0. Therefore, the function f is a minimal q-completely convex in [0, 1].

Theorem 5. If f (x) is a minimal q-completely convex function on [0, 1], then it can be expanded
into a convergent q-Lidstone series:

f (x) = f (1)A0(x)− f (0)B0(x) + D2
q−1 f (1)A1(x)− D2

q−1 f (0)B1(x) + . . . . (54)

Proof. We denote by Sn(x) the nth partial sum of the series (54). Then, from the hypothesis
on f (x) and Equation (14), we obtain

Sn(x) ≤ f (x) (0 ≤ x ≤ 1, n ∈ N0).
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Moreover, for each x, Sn(x) is a non-decreasing function of n. Thus, lim
n→∞

Sn(x) exists

and tends towards some function. To prove the result, we prove that

lim
n→∞

Sn(x) = f (x) (x ∈ [0, 1]).

Suppose the contrary, and assume that for some x0 ∈ [0, 1]

f (x0)− lim
n→∞

Sn(x0) = 4 > 0.

Then, by using Equation (14), we have

f (x0)− S2n(x0) =
∫ 1

0
Gn(x0, qt)D2n

q−1 f (q2t) dqt ≥ 4 (n ∈ N). (55)

Since f (x) is a minimal q-completely convex function on [0, 1], then f (x)− ε Sinqξ1x
is not q-completely convex in 0 ≤ x ≤ 1 for any ε > 0. That is, there exists n0 ∈ N and
t0 ∈ Aq,

(−1)n0 D2n0
q−1 f (t0)− ε ξ2n0

1 Sinq(ξ1t0) < 0.

From Inequality (11), we have

(−1)n0 D2n0
q−1 f (t0) < ε ξ2n0+1

1 t0.

By applying Lemma 2 on the function g(x) = (−1)n0 D2n0
q−1 f (x), we obtain

(−1)n0 D2n0
q−1 f (t) ≤ 1 + q

1− q
ε ξ2n0+1

1 (t ∈ Aq).

Therefore, by choosing ε < 1−q
(1+q)ξ1 M 4, where M is the constant of Proposition 4, we

obtain

0 ≤
∫ 1

0
Gn0(x0, qt)D2n0

q−1 f (q2t) dqt < 4,

which contradicts Inequality (55), and then the result is proved.

The following theorem is the main result of this section.

Theorem 6. A real function f (x) can be represented by an absolutely convergent q-Lidstone series
if and only if it is the difference of two minimal q-completely convex functions on [0, 1].

Proof. First, assume that f (x) = g(x) − h(x), where g(x) and h(x) are both minimal
q-completely convex functions on [0, 1]. According to Theorem 5, we have

g(x) =
∞

∑
n=0

[
D2n

q−1 g(1)An(x)− D2n
q−1 g(0)Bn(x)

]
, (56)

h(x) =
∞

∑
n=0

[
D2n

q−1 h(1)An(x)− D2n
q−1 h(0)Bn(x)

]
. (57)

Notice that each series only has positive terms. Thus, by subtracting (57) from (56),
we obtain an absolutely convergent q-Lidstone series whose sum is f (x).

Conversely, assume that f (x) can be represented by an absolutely convergent q-
Lidstone series

f (x) =
∞

∑
n=0

[
D2n

q−1 f (1)An(x)− D2n
q−1 f (0)Bn(x)

]
. (58)
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Set an = D2n
q−1 f (1), bn = D2n

q−1 f (0), and

g(x) =
∞

∑
n=0

[
(−1)n{|an| − (−1)nan} An(x) + (−1)n+1{|bn| − (−1)nbn} Bn(x)

]
, (59)

h(x) =
∞

∑
n=0

[
(−1)n|an| An(x) + (−1)n+1|bn| Bn(x)

]
. (60)

Since series in (58) is absolutely convergent, then the two series in (59) and (60) both
converge. Furthermore, note that every term of these series is positive. Hence, by using
Theorem 4, g(x) and h(x) are minimal q-completely convex functions on [0, 1]. Since
f (x) = h(x)− g(x), the proof is complete.

6. Conclusions

We introduced the class of q-completely convex functions in the interval [0, a], with
the functions satisfying the inequality

(−1)nD2n
q−1 f (aqk) ≥ 0 ({n, k} ⊂ N0)).

This class of functions is a generalization of the class of completely convex functions
introduced by Widder [10]. First, we presented some properties of a q-completely convex
function, and then we proved that such a function could be expanded in a convergent
q-Lidstone series:

f (x) =
∞

∑
n=0

[
D2n

q−1 f (1)An(x)− D2n
q−1 f (0)Bn(x)

]
.

Furthermore, we obtained a necessary and sufficient condition for a function f (x)
to have an absolutely convergent q-Lidstone series expansion by introducing the class of
minimal q-completely convex functions.
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Abstract: In current manuscript, using Laguerre polynomials and (p− q)-Wanas operator, we identify
upper bounds |a2| and |a3|which are first two Taylor-Maclaurin coefficients for a specific bi-univalent
functions classes WΣ(η, δ, λ, σ, θ, α, β, p, q; h) and KΣ(ξ, ρ, σ, θ, α, β, p, q; h) which cover the convex
and starlike functions. Also, we discuss Fekete-Szegö type inequality for defined class.
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1. Introduction

Denote by A function collections that have the style:

f (z) = z +
∞

∑
n=2

anzn, z ∈ D, (1)

holomorphic in D = {z : |z| < 1} in the complex plane C.
Further, present by S the sub-set of A including of univalent functions in D fullfiling

(1). Taking account the Koebe 1
4 theorem (see [1]), each f ∈ S has an inverse f−1 with

the properties f−1( f (z)) = z, for z ∈ D and f ( f−1(w)) = w, with |w| < r0( f ), where
r0( f ) ≥ 1

4 . If f is of the style (1), then

f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · , |w| < r0( f ). (2)

When f and f−1 are univalent functions, f ∈ A is bi-univalent in D. The set of
bi-univalent functions can be expressed by Σ. The work on bi-univalent functions have
been brightened by Srivastava et al. [2] in recent years. The following functions can be
examplified for functions in the set of bi-univalent.

z
1− z

, − log(1− z) and
1
2

log
(

1 + z
1− z

)
.

Although Koebe function is not an element of bi-univalent set of functions, the Σ is not
null set.

Later, such studies continued by Ali et al. [3], Bulut et al. [4], Srivastava et al. [5] and
others (see, for example, [6–18]). However, non decisive predictions of the |a2| and |a3|
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coefficients in given by (1) were declared in different studies. Generalized inequalities on
Taylor-Maclaurin coefficients

|an| (n ∈ N; n = 3)

for f ∈ Σ has not been totally solved yet for several subfamilies of the Σ.∣∣a3 − µa2
2

∣∣ of the Fekete-Szegö function for f ∈ S is well-known in the Geometric
Function Theory.

Its origin lies in the refutation of the Littlewood-Paley conjecture by Fekete-Szegö [19].
In that case, the coefficients of odd (single-valued) univalent functions are bounded by unity.

Functions have received much attention since then, especially in the investigation of
many subclasses of the single-valued function family.

This topic has become very interesting for Geometric Function Theorists (see for
example [20–25]).

The generator function for Laguerre polynomial Lγ
n(τ) is the polynomial answer φ(τ)

of the differential equation ([26])

τφ′′ + (1 + γ− τ)φ′ + nφ = 0,

where γ > −1 and n is non-negative integers.
The generating function of generator function for Laguerre polynomial Lγ

n(τ) is ex-
pressed as below:

Hγ(τ, z) =
∞

∑
n=0

Lγ
n(τ)zn =

e−
τz

1−z

(1− z)γ+1 , (3)

where τ ∈ R and z ∈ D. The generator function for Laguerre polynomial can also be
expressed given below:

Lγ
n+1(τ) =

2n + 1 + γ− τ

n + 1
Lγ

n(τ)−
n + γ

n + 1
Lγ

n−1(τ) (n ≥ 1),

with the initial terms

Lγ
0 (τ) = 1, Lγ

1 (τ) = 1 + γ− τ and Lγ
2 (τ) =

τ2

2
− (γ + 2)τ +

(γ + 1)(γ + 2)
2

. (4)

Simply, when γ = 0 the generator function for Laguerre polynomial leads to the simply
Laguerre polynomial, L0

n(τ) = Ln(τ).
Let f and g be holomorphic in D, it is clear that f is subordinate to g, if there occurs

a holomorphic function w in D such that w(0) = 0, and |w(z)| < 1, for z ∈ D so that
f (z) = g(w(z)). This subordination is indicated by f ≺ g. Moreover, if g is univalent
in D, then we have the balance (see [27]), given by f (z) ≺ g(z) ⇐⇒ f (D) ⊂ g(D) and
f (0) = g(0).

The (p, q)-derivative operator or (p, q)-difference operator (0 < q < p ≤ 1), for a
function f is stated by

Dp,q f (z) =
f (pz)− f (qz)

(p− q)z
(z ∈ D∗ = D \ {0}),

and
Dp,q f (0) = f ′(0).

More information on the subject of (p, q)-calculus are founded in [28–33].
For f ∈ A, we conclude that

Dp,q f (z) = 1 +
∞

∑
n=2

[n]p,qanzn−1,
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where the (p, q)-bracket number or twin-basic [n]p,q is showed by

[n]p,q =
pn − qn

p− q
= pn−1 + pn−2q + pn−3q2 + · · ·+ pqn−2 + qn−1 (p 6= q),

which is a native generator number for q, namely is, we get (see [34,35])

lim
p→1−

[n]p,q = [n]q =
1− qn

1− q
.

Obviously, the impression [n]p,q is symmetric, namely,

[n]p,q = [n]q,p.

Wanas and Cotîrlǎ [36] presented Wσ,θ
α,β,p,q : A −→ A known as (p− q)-Wanas operator

showed by

Wσ,θ
α,β,p,q f (z) = z +

∞

∑
n=2

(
[Ψn(σ, α, β)]p,q

[Ψ1(σ, α, β)]p,q

)θ

anzn = z +
∞

∑
n=2

[Ψn(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
anzn,

where

Ψn(σ, α, β) =
σ

∑
τ=1

(
σ
τ

)
(−1)τ+1(ατ + nβτ), Ψ1(σ, α, β) =

σ

∑
τ=1

(
σ
τ

)
(−1)τ+1(ατ + βτ),

and

α ∈ R, β ∈ R+
0 with α + β > 0, n− 1 ∈ N, σ ∈ N, θ ∈ N0, 0 < q < p ≤ 1 and z ∈ D.

Remark 1. The operator Wσ,θ
α,β,p,q is a generalized form of several operators given in previous

researches for some values of parameters which are mentioned below.

1. For p = σ = β = 1, θ = −ν, <(ν) > 1 and α ∈ C \Z−0 , the operator Wσ,θ
α,β,p,q decreases to

the q-Srivastava Attiya operator Jν
q,α [37].

2. For p = σ = β = 1, θ = −1 and α > −1, the operator Wσ,θ
α,β,p,q decreases to the q-Bernardi

operator [38].
3. For p = σ = α = β = 1 and θ = −1, the operator Wσ,θ

α,β,p,q decreases to the q-Libera
operator [38].

4. For α = 0 and p = σ = β = 1, the operator Wσ,θ
α,β,p,q decreases to the q-Sălăgean operator [39].

5. For q −→ 1− and p = σ = 1, the operator Wσ,θ
α,β,p,q decreases to the operator Iθ

α,β was
presented and studied by Swamy [40].

6. For q −→ 1−, p = σ = β = 1, θ = −ν, <(ν) > 1 and s ∈ C \ Z−0 , the operator Wσ,θ
α,β,p,q

decreases to the operator Jν
α was presented by Srivastava and Attiya [41]. The operator Jν

s is
well-known as Srivastava-Attiya operator by researchers.

7. For q −→ 1−, p = σ = β = 1 and α > −1, the operator Wσ,θ
α,β,p,q, decreases to the operator

Iθ
α was presented by Cho and Srivastava [42].

8. For q −→ 1−, p = σ = α = β = 1, the operator Wσ,θ
α,β,p,q decreases to the operator Iθ was

presented by Uralegaddi and Somanatha [43].
9. For q −→ 1−, p = σ = α = β = 1, θ = −ξ and ξ > 0, the operator Wσ,θ

α,β,p,q decreases to

the operator Iξ was presented by Jung et al. [44]. The operator Iξ is the Jung-Kim-Srivastava
integral operator.

10. For q −→ 1−, p = σ = β = 1, θ = −1 and α > −1, the operator Wσ,θ
α,β,p,q decreases to the

Bernardi operator [45].
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11. For q −→ 1−, α = 0, p = σ = β = 1 and θ = −1, the operator Wσ,θ
α,β,p,q decreases to the

Alexander operator [46].
12. For q −→ 1−, p = σ = 1, α = 1− β and t ≥ 0, the operator Wσ,θ

α,β,p,q decreases to the

operator Dθ
β was presented by Al-Oboudi [19].

13. For q −→ 1−, p = σ = 1, α = 0 and β = 1, the operator Wσ,θ
α,β,p,q decreases to the operator

Sθ was presented by Sălăgean [47].

2. Main Results

Firstly, We start to present the classes WΣ(η, δ, λ, σ, θ, α, β, p, q; h) and KΣ(ξ, ρ, σ, θ,
α, β, p, q; h) given below:

Definition 1. Suppose that 0 ≤ η ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ δ ≤ 1 and h is analytic in D, h(0) = 1.
f ∈ Σ is in the classWΣ(η, δ, λ, σ, θ, α, β, p, q; h) if it provides the subordinations:




z
(

Wσ,θ
α,β,p,q f (z)

)′

Wσ,θ
α,β,p,q f (z)




η
(1− δ)

z
(

Wσ,θ
α,β,p,q f (z)

)′

Wσ,θ
α,β,p,q f (z)

+ δ


1 +

z
(

Wσ,θ
α,β,p,q f (z)

)′′

(
Wσ,θ

α,β,p,q f (z)
)′







λ

≺ h(z)

and



w
(

Wσ,θ
α,β,p,q f−1(w)

)′

Wσ,θ
α,β,p,q f−1(w)




η
(1− δ)

w
(

Wσ,θ
α,β,p,q f−1(w)

)′

Wσ,θ
α,β,p,q f−1(w)

+ δ


1 +

w
(

Wσ,θ
α,β,p,q f−1(w)

)′′

(
Wσ,θ

α,β,p,q f−1(w)
)′







λ

≺ h(w),

where f−1 is given by (2).

Definition 2. Suppose that 0 ≤ ξ ≤ 1, 0 ≤ ρ < 1 and h is analytic in D, h(0) = 1. f ∈ Σ is in
the class KΣ(ξ, ρ, σ, θ, α, β, p, q; h) if it provides the subordinations:

(1− ξ)
z
(

Wσ,θ
α,β,p,q f (z)

)′

(1− ρ)Wσ,θ
α,β,p,q f (z) + ρz

(
Wσ,θ

α,β,p,q f (z)
)′

+ξ




(
Wσ,θ

α,β,p,q f (z)
)′

+ z
(

Wσ,θ
α,β,p,q f (z)

)′′

(
Wσ,θ

α,β,p,q f (z)
)′

+ ρz
(

Wσ,θ
α,β,p,q f (z)

)′′


 ≺ h(z)

and

(1− ξ)
w
(

Wσ,θ
α,β,p,q f−1(w)

)′

(1− ρ)Wσ,θ
α,β,p,q f−1(w) + ρw

(
Wσ,θ

α,β,p,q f−1(w)
)′

+ξ




(
Wσ,θ

α,β,p,q f−1(w)
)′

+ w
(

Wσ,θ
α,β,p,q f−1(w)

)′′

(
Wσ,θ

α,β,p,q f−1(w)
)′

+ ρw
(

Wσ,θ
α,β,p,q f−1(w)

)′′


 ≺ h(w),

where f−1 is given by (2).

Theorem 1. Suppose that 0 ≤ η ≤ 1, 0 ≤ λ ≤ 1 and 0 ≤ δ ≤ 1. If f ∈ Σ of the style (1) be an
element of classWΣ(η, δ, λ, σ, θ, α, β, p, q; h), with h(z) = 1 + e1z + e2z2 + · · · , then

|a2| ≤
(η + λ(δ + 1))[Ψ2(σ, α, β)]θp,q|e1|

[Ψ1(σ, α, β)]θp,q
=
|e1|
Ω
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and

|a3| ≤ min

{
max

{∣∣∣ e1

∆

∣∣∣,
∣∣∣∣∣
e2

∆
− ϕe2

1
Ω2∆

∣∣∣∣∣

}
, max

{∣∣∣ e1

∆

∣∣∣,
∣∣∣∣∣
e2

∆
− (2∆ + ϕ)e2

1
Ω2∆

∣∣∣∣∣

}}
, (5)

where
Ω =

(η+λ(δ+1))[Ψ2(σ,α,β)]θp,q

[Ψ1(σ,α,β)]θp,q
,

∆ =
2(η+λ(2δ+1))[Ψ3(σ,α,β)]θp,q

[Ψ1(σ,α,β)]θp,q
,

ϕ =
[η(η−1)+λ(δ+1)(2η+(λ−1)(δ+1))−2(η+λ(3δ+1))][Ψ2(σ,α,β)]2θ

p,q

2[Ψ1(σ,α,β)]2θ
p,q

.

(6)

Proof. Assume that f ∈ WΣ(η, δ, λ, σ, θ, α, β, p, q; e1; e2). Then there consists two holomor-
phic functions φ, ψ : D −→ D showed by

φ(z) = r1z + r2z2 + r3z3 + · · · (z ∈ D) (7)

and
ψ(w) = s1w + s2w2 + s3w3 + · · · (w ∈ D), (8)

with φ(0) = ψ(0) = 0, |φ(z)| < 1, |ψ(w)| < 1, z, w ∈ D so that




z
(

Wσ,θ
α,β,p,q f (z)

)′

Wσ,θ
α,β,p,q f (z)




η
(1− δ)

z
(

Wσ,θ
α,β,p,q f (z)

)′

Wσ,θ
α,β,p,q f (z)

+ δ


1 +

z
(

Wσ,θ
α,β,p,q f (z)

)′′

(
Wσ,θ

α,β,p,q f (z)
)′







λ

= 1 + e1φ(z) + e2φ2(z) + · · · (9)

and



w
(

Wσ,θ
α,β,p,q f−1(w)

)′

Wσ,θ
α,β,p,q f−1(w)




η
(1− δ)

w
(

Wσ,θ
α,β,p,q f−1(w)

)′

Wσ,θ
α,β,p,q f−1(w)

+ δ


1 +

w
(

Wσ,θ
α,β,p,q f−1(w)

)′′

(
Wσ,θ

α,β,p,q f−1(w)
)′







λ

= 1 + e1ψ(w) + e2ψ2(w) + · · · . (10)

Unification of (7), (8), (9) and (10), yield




z
(

Wσ,θ
α,β,p,q f (z)

)′

Wσ,θ
α,β,p,q f (z)




η
(1− δ)

z
(

Wσ,θ
α,β,p,q f (z)

)′

Wσ,θ
α,β,p,q f (z)

+ δ


1 +

z
(

Wσ,θ
α,β,p,q f (z)

)′′

(
Wσ,θ

α,β,p,q f (z)
)′







λ

= 1 + e1r1z +
[
e1r2 + e2r2

1

]
z2 + · · · (11)

and



w
(

Wσ,θ
α,β,p,q f−1(w)

)′

Wσ,θ
α,β,p,q f−1(w)




η
(1− δ)

w
(

Wσ,θ
α,β,p,q f−1(w)

)′

Wσ,θ
α,β,p,q f−1(w)

+ δ


1 +

w
(

Wσ,θ
α,β,p,q f−1(w)

)′′

(
Wσ,θ

α,β,p,q f−1(w)
)′







λ

= 1 + e1s1w +
[
e1s2 + e2s2

1

]
w2 + · · · . (12)

It is clear that if |φ(z)| < 1 and |ψ(w)| < 1, z, w ∈ D, we obtain
∣∣rj
∣∣ ≤ 1 and

∣∣sj
∣∣ ≤ 1 (j ∈ N).
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Taking into account (11) and (12), after simplifying, we find that

(η + λ(δ + 1))[Ψ2(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
a2 = e1r1, (13)

2(η + λ(2δ + 1))[Ψ3(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
a3

+
[η(η − 1) + λ(δ + 1)(2η + (λ− 1)(δ + 1))− 2(η + λ(3δ + 1))][Ψ2(σ, α, β)]2θ

p,q

2[Ψ1(σ, α, β)]2θ
p,q

a2
2

= e1r2 + e2r2
1, (14)

−
(η + λ(δ + 1))[Ψ2(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
a2 = e1s1 (15)

and

2(η + λ(2δ + 1))[Ψ3(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q

(
2a2

2 − a3

)

+
[η(η − 1) + λ(δ + 1)(2η + (λ− 1)(δ + 1))− 2(η + λ(3δ + 1))][Ψ2(σ, α, β)]2θ

p,q

2[Ψ1(σ, α, β)]2θ
p,q

a2
2

= e1s2 + e2s2
1. (16)

If we implement notation (6), then (13) and (14) becomes

Ωa2 = e1r1, ∆a3 + ϕa2
2 = e1r2 + e2r2

1. (17)

This gives
∆
e1

a3 = r2 +

(
e2

e1
− ϕe1

Ω2

)
r2

1, (18)

and on using the given certain result ([48], p. 10):

|r2 − µr2
1| ≤ max{1, |µ|} (19)

for every µ ∈ C, we get ∣∣∣∣
∆
e1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣
e2

e1
− ϕe1

Ω2

∣∣∣∣
}

. (20)

In the same way, (15) and (16) becomes

−Ωa2 = e1s1, ∆(2a2
2 − a3) + ϕa2

2 = e1s2 + e2s2
1. (21)

This gives

− ∆
e1

a3 = s2 +

(
e2

e1
− (2∆ + ϕ)e1

Ω2

)
s2

1. (22)

Applying (19), we obtain
∣∣∣∣

∆
e1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣
e2

e1
− (2∆ + ϕ)e1

Ω2

∣∣∣∣
}

. (23)

Inequality (5) follows from (20) and (23).

If we take the generating function Lγ
n(τ) given by (3) common generalized Laguerre

polynomials as h(z), then from the equalities given(4), we get e1 = 1 + γ − τ and
e2 = τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2 . We obtain following corollary from Theorem 1.
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Corollary 1. If f ∈ Σ given by style (1) is in the family WΣ(η, δ, λ, σ, θ, α, β, p, q; Hγ(τ, z)),
then

|a2| ≤
(η + λ(δ + 1))[Ψ2(σ, α, β)]θp,q|1 + γ− τ|

[Ψ1(σ, α, β)]θp,q
=
|1 + γ− τ|

Ω

and

|a3| ≤ min

{
max

{∣∣∣∣
1 + γ− τ

∆

∣∣∣∣,
∣∣∣∣∣

τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

∆
− ϕ(1 + γ− τ)2

Ω2∆

∣∣∣∣∣

}
,

max

{∣∣∣∣
1 + γ− τ

∆

∣∣∣∣,
∣∣∣∣∣

τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

∆
− (2∆ + ϕ)(1 + γ− τ)2

Ω2∆

∣∣∣∣∣

}}
,

for all η, λ, δ so that 0 ≤ η ≤ 1, 0 ≤ λ ≤ 1 and 0 ≤ δ ≤ 1, where Ω, ∆, ϕ are given by (6) and
Hγ(τ, z) is given by (3).

Theorem 2. Suppose that 0 ≤ ξ ≤ 1 and 0 ≤ ρ < 1. If f ∈ Σ of the style (1) be an element of the
class KΣ(ξ, ρ, σ, θ, α, β, p, q; h), with h(z) = 1 + e1z + e2z2 + · · · , then

|a2| ≤
(ξ + 1)(1− ρ)[Ψ2(σ, α, β)]θp,q|e1|

[Ψ1(σ, α, β)]θp,q
=
|e1|
Υ

and

|a3| ≤ min

{
max

{∣∣∣ e1

Φ

∣∣∣,
∣∣∣∣∣
e2

Φ
− χe2

1
Υ2Φ

∣∣∣∣∣

}
, max

{∣∣∣ e1

Φ

∣∣∣,
∣∣∣∣∣
e2

Φ
− (2Φ + χ)e2

1
Υ2Φ

∣∣∣∣∣

}}
, (24)

where
Υ =

(ξ+1)(1−ρ)[Ψ2(σ,α,β)]θp,q

[Ψ1(σ,α,β)]θp,q
,

Φ =
2(2ξ+1)(1−ρ)[Ψ3(σ,α,β)]θp,q

[Ψ1(σ,α,β)]θp,q
,

χ =
(2ξ+1)(ρ2−1)[Ψ2(σ,α,β)]2θ

p,q

[Ψ1(σ,α,β)]2θ
p,q

.

(25)

Proof. Assume that f ∈ KΣ(ξ, ρ, σ, θ, α, β, p, q; e1; e2). Then there consists two holomorphic
functions φ, ψ : D −→ D such that

(1− ξ)
z
(

Wσ,θ
α,β,p,q f (z)

)′

(1− ρ)Wσ,θ
α,β,p,q f (z) + ρz

(
Wσ,θ

α,β,p,q f (z)
)′ + ξ




(
Wσ,θ

α,β,p,q f (z)
)′

+ z
(

Wσ,θ
α,β,p,q f (z)

)′′

(
Wσ,θ

α,β,p,q f (z)
)′

+ ρz
(

Wσ,θ
α,β,p,q f (z)

)′′




= 1 + e1φ(z) + e2φ2(z) + · · · (26)

and

(1− ξ)
w
(

Wσ,θ
α,β,p,q f−1(w)

)′

(1− ρ)Wσ,θ
α,β,p,q f−1(w) + ρw

(
Wσ,θ

α,β,p,q f−1(w)
)′ + ξ




(
Wσ,θ

α,β,p,q f−1(w)
)′

+ w
(

Wσ,θ
α,β,p,q f−1(w)

)′′

(
Wσ,θ

α,β,p,q f−1(w)
)′

+ ρw
(

Wσ,θ
α,β,p,q f−1(w)

)′′




= 1 + e1ψ(w) + e2ψ2(w) + · · · , (27)

60



Axioms 2023, 12, 430

where φ and ψ given by the style (7) and (8). Unification of (26) and (27), serve

(1− ξ)
z
(

Wσ,θ
α,β,p,q f (z)

)′

(1− ρ)Wσ,θ
α,β,p,q f (z) + ρz

(
Wσ,θ

α,β,p,q f (z)
)′ + ξ




(
Wσ,θ

α,β,p,q f (z)
)′

+ z
(

Wσ,θ
α,β,p,q f (z)

)′′

(
Wσ,θ

α,β,p,q f (z)
)′

+ ρz
(

Wσ,θ
α,β,p,q f (z)

)′′




= 1 + e1r1z +
[
e1r2 + e2r2

1

]
z2 + · · · (28)

and

(1− ξ)
w
(

Wσ,θ
α,β,p,q f−1(w)

)′

(1− ρ)Wσ,θ
α,β,p,q f−1(w) + ρw

(
Wσ,θ

α,β,p,q f−1(w)
)′ + ξ




(
Wσ,θ

α,β,p,q f−1(w)
)′

+ w
(

Wσ,θ
α,β,p,q f−1(w)

)′′

(
Wσ,θ

α,β,p,q f−1(w)
)′

+ ρw
(

Wσ,θ
α,β,p,q f−1(w)

)′′




= 1 + e1s1w +
[
e1s2 + e2s2

1

]
w2 + · · · . (29)

It is clear that if |φ(z)| < 1 and |ψ(w)| < 1, z, w ∈ D, we obtain
∣∣rj
∣∣ ≤ 1 and

∣∣sj
∣∣ ≤ 1 (j ∈ N).

Taking into account (28) and (29), after simplifying, we find that

(ξ + 1)(1− ρ)[Ψ2(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
a2 = e1r1, (30)

2(2ξ + 1)(1− ρ)[Ψ3(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
a3 +

(2ξ + 1)(ρ2 − 1)[Ψ2(σ, α, β)]2θ
p,q

[Ψ1(σ, α, β)]2θ
p,q

a2
2 = e1r2 + e2r2

1, (31)

−
(ξ + 1)(1− ρ)[Ψ2(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q
a2 = e1s1 (32)

and

2(2ξ + 1)(1− ρ)[Ψ3(σ, α, β)]θp,q

[Ψ1(σ, α, β)]θp,q

(
2a2

2 − a3

)
+

(2ξ + 1)(ρ2 − 1)[Ψ2(σ, α, β)]2θ
p,q

[Ψ1(σ, α, β)]2θ
p,q

a2
2

= e1s2 + e2s2
1. (33)

If we implement notation (25), then (30) and (31) becomes

Υa2 = e1r1, Φa3 + χa2
2 = e1r2 + e2r2

1. (34)

This gives
Φ
e1

a3 = r2 +

(
e2

e1
− χe1

Υ2

)
r2

1, (35)

and on using the given certain result ([48], p. 10):

|r2 − µr2
1| ≤ max{1, |µ|} (36)

for every µ ∈ C, we get ∣∣∣∣
Φ
e1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣
e2

e1
− χe1

Υ2

∣∣∣∣
}

. (37)

In the same way, (32) and (33) becomes

− Υa2 = e1s1, Φ(2a2
2 − a3) + χa2

2 = e1s2 + e2s2
1. (38)
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This gives

− Φ
e1

a3 = s2 +

(
e2

e1
− (2Φ + χ)e1

Υ2

)
s2

1. (39)

Applying (36), we obtain
∣∣∣∣
Φ
e1

∣∣∣∣|a3| ≤ max
{

1,
∣∣∣∣
e2

e1
− (2Φ + χ)e1

Υ2

∣∣∣∣
}

. (40)

Inequality (24) follows from (37) and (40).

If we take the generating function Lγ
n(τ) given by (3) common generalized Laguerre

polynomials as h(z), then from the equalities given(4), we get e1 = 1 + γ− τ and e2 =
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2 . We obtain following corollary from Theorem 2.

Corollary 2. If f ∈ Σ of the style (1) be an element of the class KΣ(ξ, ρ, σ, θ, α, β, p, q; Hγ(τ, z)),
then

|a2| ≤
(ξ + 1)(1− ρ)[Ψ2(σ, α, β)]θp,q|1 + γ− τ|

[Ψ1(σ, α, β)]θp,q
=
|1 + γ− τ|

Υ

and

|a3| ≤ min

{
max

{∣∣∣∣
1 + γ− τ

Φ

∣∣∣∣,
∣∣∣∣∣

τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

Φ
− χ(1 + γ− τ)2

Υ2Φ

∣∣∣∣∣

}
,

max

{∣∣∣∣
1 + γ− τ

Φ

∣∣∣∣,
∣∣∣∣∣

τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

Φ
− (2Φ + χ)(1 + γ− τ)2

Υ2Φ

∣∣∣∣∣

}}
,

for all ξ, ρ so that 0 ≤ ξ ≤ 1 and 0 ≤ ρ < 1, where Υ, Φ, χ are introduced by (25) and Hγ(τ, z) is
given by (3).

We investigate the “Fekete-Szegö Inequalities” for the familiesWΣ(η, δ, λ, σ, θ, α, β, p, q; h)
and KΣ(ξ, ρ, σ, θ, α, β, p, q; h) in next theorems.

Theorem 3. If f ∈ Σ of the style (1) be an element of familyWΣ(η, δ, λ, σ, θ, α, β, p, q; h), then

∣∣∣a3 − ζa2
2

∣∣∣ ≤ |e1|
∆

min
{

max
{

1,
∣∣∣∣
e2

e1
+

(ζ∆− ϕ)e1

Ω2

∣∣∣∣
}

, max
{

1,
∣∣∣∣
e2

e1
− (2∆ + ϕ− ζ∆)e1

Ω2

∣∣∣∣
}}

,

for all ζ, η, λ, δ such that ζ ∈ R, 0 ≤ η ≤ 1, 0 ≤ λ ≤ 1 and 0 ≤ δ ≤ 1, where Ω, ∆, ϕ are given
by (6) and e1, e2, a2 and a3 as defined in Theorem 1.

Proof. We implement the impressions from the Theorem 1’s proof. From (17) and from
(18), we get

a3 − ζa2
2 =

e1

∆

(
r2 +

(
e2

e1
+

(ζ∆− ϕ)e1

Ω2

)
r2

1

)

by using the certain result |r2 − µr2
1| ≤ max{1, |µ|}, we get

|a3 − ζa2
2| ≤

|e1|
∆

max
{

1,
∣∣∣∣
e2

e1
+

(ζ∆− ϕ)e1

Ω2

∣∣∣∣
}

.

In the same way, from (21) and from (22), we get

a3 − ζa2
2 = − e1

∆

(
s2 +

(
e2

e1
− (2∆ + ϕ− ζ∆)e1

Ω2

)
s2

1

)
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and on using |s2 − µs2
1| ≤ max{1, |µ|}, we get

|a3 − ζa2
2| ≤

|e1|
∆

max
{

1,
∣∣∣∣
e2

e1
− (2∆ + ϕ− ζ∆)e1

Ω2

∣∣∣∣
}

.

Corollary 3. If f ∈ Σ of the style (1) be an element ofWΣ(η, δ, λ, σ, θ, α, β, p, q; Hγ(τ, z)), then
∣∣∣a3 − ζa2

2

∣∣∣

≤ |1 + γ− τ|
∆

min

{
max

{
1,

∣∣∣∣∣
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
+

(ζ∆− ϕ)(1 + γ− τ)

Ω2

∣∣∣∣∣

}
,

max

{
1,

∣∣∣∣∣
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
− (2∆ + ϕ− ζ∆)(1 + γ− τ)

Ω2

∣∣∣∣∣

}}
,

for each ζ, η, λ, δ such that ζ ∈ R, 0 ≤ η ≤ 1, 0 ≤ λ ≤ 1 and 0 ≤ δ ≤ 1, where Ω, ∆, ϕ are given
by (6) and Hγ(τ, z) is presented by (3).

Theorem 4. If f ∈ Σ of the style (1) is in the family KΣ(ξ, ρ, σ, θ, α, β, p, q; h), then

∣∣∣a3 − ζa2
2

∣∣∣ ≤ |e1|
Φ

min
{

max
{

1,
∣∣∣∣
e2

e1
+

(ζΦ− χ)e1

Υ2

∣∣∣∣
}

, max
{

1,
∣∣∣∣
e2

e1
− (2Φ + χ− ζΦ)e1

Υ2

∣∣∣∣
}}

,

for all ζ, ξ, ρ such that ζ ∈ R, 0 ≤ ξ ≤ 1 and 0 ≤ ρ < 1, where Υ, Φ, χ are given by (25) and e1,
e2, a2 and a3 as defined in Theorem 2.

Proof. We implement the impressions from the Theorem 2’s proof. From (34) and from
(35), we get

a3 − ζa2
2 =

e1

Φ

(
r2 +

(
e2

e1
+

(ζΦ− χ)e1

Υ2

)
r2

1

)

by using the certain result |r2 − µr2
1| ≤ max{1, |µ|}, we get

|a3 − ζa2
2| ≤

|e1|
Φ

max
{

1,
∣∣∣∣
e2

e1
+

(ζΦ− χ)e1

Υ2

∣∣∣∣
}

.

In the same way, from (38) and from (39), we get

a3 − ζa2
2 = − e1

Φ

(
s2 +

(
e2

e1
− (2Φ + χ− ζΦ)e1

Υ2

)
s2

1

)

and on using |s2 − µs2
1| ≤ max{1, |µ|}, we get

|a3 − ζa2
2| ≤

|e1|
Φ

max
{

1,
∣∣∣∣
e2

e1
− (2Φ + χ− ζΦ)e1

Υ2

∣∣∣∣
}

.
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Corollary 4. If f ∈ Σ of the style (1) be an element of KΣ(ξ, ρ, σ, θ, α, β, p, q; Hγ(τ, z)), then
∣∣∣a3 − ζa2

2

∣∣∣

≤ |1 + γ− τ|
Φ

min

{
max

{
1,

∣∣∣∣∣
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
+

(ζΦ− χ)(1 + γ− τ)

Υ2

∣∣∣∣∣

}
,

max

{
1,

∣∣∣∣∣
τ2

2 − (γ + 2)τ + (γ+1)(γ+2)
2

1 + γ− τ
− (2Φ + χ− ζΦ)(1 + γ− τ)

Υ2

∣∣∣∣∣

}}
,

for each ζ, ξ, ρ such that ζ ∈ R, 0 ≤ ξ ≤ 1 and 0 ≤ ρ < 1, where Υ, Φ, χ are given by (25) and
Hγ(τ, z) is presented by (3).

3. Conclusions

The main aim of this study was to constitute a new classesWΣ(η, δ, λ, σ, θ, α, β, p, q; h)
and KΣ(ξ, ρ, σ, θ, α, β, p, q; h) of bi-univalent functions described through (p− q)-Wanas
operator and also utilization of the generator function for Laguerre polynomial Lγ

n(τ), pre-
sented by the equalities in (4) and the producing function Hγ(τ, z) given by (3). The initial
Taylor-Maclaurin coefficient estimates for functions of these freshly presented bi-univalent
function classes WΣ(η, δ, λ, σ, θ, α, β, p, q; h) and KΣ(ξ, ρ, σ, θ, α, β, p, q; h) were produced
and the well-known Fekete-Szegö inequalities were examined.
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8. Al-Shbeil, I.; Wanas, A.K.; Saliu, A.; Cătaş, A. Applications of beta negative binomial distribution and Laguerre polynomials on

Ozaki bi-close-to-convex functions. Axioms 2022, 11, 451. [CrossRef]
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Abstract: The paper introduces a new family of analytic bi-univalent functions that are injective and
possess analytic inverses, by employing a q-analogue of the derivative operator. Moreover, the article
establishes the upper bounds of the Taylor–Maclaurin coefficients of these functions, which can aid
in approximating the accuracy of approximations using a finite number of terms. The upper bounds
are obtained by approximating analytic functions using Faber polynomial expansions. These bounds
apply to both the initial few coefficients and all coefficients in the series, making them general and
early, respectively.

Keywords: analytic function; univalent functions; bi-univalent functions; Faber polynomial;
q-derivative operator; quantum calculus

MSC: 30C45; 30C50

1. Introduction

A Faber polynomial is a sequence of polynomials used to approximate an analytic
function on a compact set. It is named after the German mathematician Georg Faber, who
introduced the Faber polynomials in 1903 [1]. The Faber polynomial of degree n for a given
analytic function f is defined as the unique polynomial Pn(z) of degree n that interpolates
f at its first n + 1 distinct zeros, counting multiplicities, on the compact set. The sequence
of Faber polynomials is known to converge uniformly to f on the compact set, and the
convergence rate is related to the smoothness of f . Faber polynomial expansions are often
used to obtain upper bounds on the Taylor–Maclaurin coefficients of analytic functions.

Q-calculus is a branch of mathematics that generalizes and extends calculus by intro-
ducing a new parameter q, which is a complex number or a variable. Jackson [2] pioneered
and systematically developed the application of q-calculus. It has applications in various
fields of mathematics and physics, such as number theory, combinatorics, quantum mechan-
ics, and statistical mechanics. In q-calculus, basic concepts, such as derivatives, integrals,
and functions, are modified to incorporate the parameter q. For instance, the q-derivative is
defined as the difference quotient involving q-analogs of the usual derivatives. Similarly,
the q-integral is defined as the q-analog of the Riemann integral. Q-calculus also includes
q-special functions, such as q-binomial coefficients, q-factorials, and q-hypergeometric func-
tions, which play significant roles in various areas of mathematics and physics. Overall,
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q-calculus provides a powerful tool for studying and solving problems involving discrete
and quantum systems.

Fractional calculus operators have found extensive use in the description and reso-
lution of problems in applied sciences, as well as in geometric functions, as noted in [3].
Fractional q-calculus is an extension of ordinary fractional calculus and has been applied in
a range of areas, including optimal control problems, solving q-difference and q-integral
equations, and ordinary fractional calculus. To learn more about this topic, one can refer
to [4] and recent papers, such as [5–7].

2. Preliminaries

Let A denote the set of analytic functions that can be expressed in the following form

Φ(η) = η +
∞

∑
k=2

$kηk, ($k ∈ C), (1)

and are defined in the open unit disk ∇ = {η ∈ C : |η| < 1}. Within A , there is
a subfamily S that consists of univalent functions in ∇. Additionally, let P denote the
subclass of analytic functions in ∇ that satisfy the inequality Re(ϕ(η)) > 0 and are of
the form

ϕ(η) = 1 +
∞

∑
k=1

ϕkηk, (2)

where |ϕk| < 2. Caratheodory’s Lemma (refer to [8]).
In the context of analytic functions defined in the open unit disk ∇, we can define

a relationship between two of such functions, Φ1 and Φ2, known as “subordination”.
We note that Φ1 is subordinate to Φ2, denoted by Φ1 ≺ Φ2 (η ∈ ∇), if there exists a
Schwarz function:

ψ(η) =
∞

∑
k=1

mkηk, with ψ(0) = 0 and ψ(1) = 1,

such that
Φ1(η) = Φ2(ψ(η)), for (η ∈ ∇).

In other words, Φ1 can be expressed as a composition of Φ2 with a certain conformal
mapping ψ(η), where ψ(η) maps the unit disk to itself and satisfies certain conditions. This
notion of subordination is described in [9].

Koebe’s one-quarter theorem, named after Paul Koebe, is a result of the complex
analysis, which states that if a biholomorphic mapping f maps the unit disk ∇ onto a
domain D in the complex plane, then the image of each tangent disk to ∇ under f contains
a disk of radius 1

4 of the radius of the tangent disk. In other words, if z0 ∈ ∇ and r > 0 is
such that the disk B(z0, r) is tangent to ∇ at some point, then f (B(z0, r)) contains a disk of
radius 1

4 r.
It is a well-known fact that, as per Koebe’s theorem, for any Φ ∈ S , the image of the

open unit disk under Φ satisfies Φ(∇) ≥ 1
4 . Moreover, every univalent function Φ has an

inverse function Φ−1, which is defined by the following properties:

1. For η ∈ ∇, Φ−1(Φ(η)) = η.

2. For ρ ∈ D(0, r0), where r0 ≥ 1
4 is a positive constant. Then, Φ(Φ−1(ρ)) = ρ. Here,

D(0, r0) denotes the open disk centered at the origin with radius r0.

The inverse function Φ−1 can be expressed as a power series of the form:

h(ρ) = Φ−1(ρ) = ρ− $2ρ2 + (2$2
2 − $3)ρ

3 − (5$3
2 − 5$2$3 + $4)ρ

4 + . . . . (3)
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Here, $k’s are the Taylor coefficients of Φ in the power series expansion of Φ(η), which
is given by (1), and h(ρ) is the inverse function evaluated at ρ.

Netanyahu [10] improved this bound to |$2| ≤ 4
3 . On the other hand, Brannan and

Clunie [11] improved Lewin’s [12] result and they showed that |$2| ≤
√

2.
Some examples of functions in the class Σ are

Φ1($) =
η

1− η
, Φ2($) = − log(1− η) and Φ3($) =

1
2

log
(

1 + η

1− η

)
.

The inverse functions that correspond to these:

Φ−1
1 (ρ) =

ρ

1 + ρ
, Φ−1

2 (ρ) =
e2ρ − 1
e2ρ + 1

and Φ−1
3 (ρ) =

eρ − 1
eρ .

are also univalent functions. Thus, the functions Φ1($), Φ2($), and Φ3($) are bi-univalent
functions.

However, it is well-known that the Koebe function of the form

Φ(η) =
$

(1− $)2 ,

is not in the class Σ. For more details, we refer to [13].
We emphasize that, as in the class S of normalized univalent functions, the convex

combination of two functions of class Σ need not be bi-univalent. For example, the functions

ϕ1(η) =
η

1− η
and ϕ2(η) =

η

1 + iη

are bi-univalent but their sum ϕ1 + ϕ2 is not even univalent, as its derivative vanishes at
1
2 (1 + i). However, the class Σ is preserved under a number of elementary transformations.

Several subclasses of bi-univalent functions have been investigated and introduced by
various authors, including Srivastava [13]. The class of bi-univalent functions in ∇ given
by (1) is denoted by Σ. Other different subclasses of Σ have also been studied by many
authors (see, for example, [14–35].

The significance of Faber polynomials in geometric function theory was demonstrated
by Schiffer [36]. However, there are only a few articles in the literature that use the Faber
polynomial expansion to determine the early and general coefficient bounds |$k| for bi-
univalent functions. Consequently, very little is known about the general coefficient bounds
$k for k ≥ 4, due to the unpredictable nature of the coefficients of both Φ and Φ−1 when
bi-univalency is required (see, for instance, [37–44]).

The coefficient of h(ρ) = Φ−1(ρ) of the form (3), can be expressed using the Faber
polynomial expansion as:

h(ρ) = Φ−1(ρ) = ρ +
∞

∑
£=2

1
£

K−£
£−1($2, $3, $4, . . .)ρ£,

where

K−£
£−1 =

(−£)!
(−2£ + 1)!(£− 1)!

$£−1
2 +

(−£)!
[2(−£ + 1)]!(£− 3)!

$£−3
2 $3

+
(−£)!

(−2£ + 3)!(£− 4)!
$£−4

2 $4 +
(−£)!

[2(−£ + 2)]!(£− 5)!
$£−5

2 [$5 + (−£ + 2)$2
3]

+
(−£)!

(−2£ + 5)!(£− 6)!
$£−6

2 [$6 + (−2£ + 5)$3$4] +
∞

∑
ℵ≥7

$£−ℵ
2 Vℵ,

(4)
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where Vℵ denotes a function such that 7 ≤ ℵ ≤ £. It can be expressed as a homogeneous
polynomial of degree ℵ in the variables $2, $3, . . . , $£. All of the pertinent details can be
found in [41].

In particular, the first three terms of K−£
£−1 are given below:

1
2

K−2
1 = −$2

1
3

K−3
2 = 2$2

2 − $3

1
4

K−4
3 = −(5$3

2 − 5$2$3 + $4).

In general, for any £ ∈ N, an expansion of the Faber polynomial is given by [45],

K£
κ−1 = £$κ +

£(£− 1)
2

E2
κ +

£!
(£− 3)!(3)!

E3
κ + . . . +

£!
(£− κ + 1)!(κ − 1)!

Eκ−1
κ−1 (5)

where E£
κ−1 = E£

κ−1($2, $3, . . .), and by [45],

E£
κ−1($2, $3, . . . , $κ) =

∞

∑
κ=2

m!($2)
µ2($3)

µ3 . . . ($κ)µκ−1

µ1! µ2! . . . µκ−1!
, (£ ≤ κ),

while $1 = 1, the sum is taken over all nonnegative integers µ1 µ2 . . . µκ , satisfying

µ1 + µ2 + . . . + µκ = m

µ1 + 2µ2 + . . . + (κ − 1)µκ−1 = κ − 1.

Evidently,
Eκ−1

κ−1($2, $3, . . . , $κ) = $κ−1
2 ,

or, equivalently, by [46]

E£
κ($2, $3, . . . , $κ) =

∞

∑
κ=2

m!($2)
µ2($3)

µ3 . . . ($κ)µκ

µ1! µ2! . . . µκ !
, (£ ≤ κ),

while $1 = 1, the sum is taken over all nonnegative integers µ1 µ2 . . . µκ , satisfying

µ1 + µ2 + . . . + µκ = m

µ1 + 2µ2 + . . . + (κ − 1)µκ−1 + (κ)µκ = κ.

It is clear that
Eκ

κ($2, $3, . . . , $κ) = Eκ
1

where the first and last polynomials are

Eκ
κ = $κ

1 and E1
κ = $κ .

The concept of q-calculus was first introduced by Jackson in a systematic way, and
it has since been studied by many mathematicians [47–50]. In this article, we introduce
some key concepts and definitions of q-calculus, assuming 0 < q < 1. Some of these
concepts include:
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Definition 1. The [κ]q denotes the basic (or q−) number, where 0 < q < 1 is defined as follows:

[κ]q =





(1− qκ)(1− q)−1 , κ ∈ C\{0}

0 , κ = 0

qk−1 + qk−2 + · · ·+ q2 + q + 1 =
k−1
∑

i=0
qi , κ = k ∈ N.

It is obvious from Definition 1 that lim
q→1−

[k]q = lim
q→1−

1−qk
1−q = k.

Definition 2 ([51]). The q-difference operator (or q-derivative) of a function f is defined by

∂q(Φ(η)) =





Φ(η)−Φ(qη)
η−qη η ∈ C\{0}

1 η = 0.

We note that lim
q→1−

∂qΦ(η) = Φ′(η) if Φ is differentiable for all η ∈ C.

One can easily see that

∂q

{
∞

∑
k=2

$kηk
}

=
∞

∑
k=2

[k]q$kηk−1, (k ∈ N, η ∈ ∇), (6)

and

∂κ
q

{
∞

∑
k=2

$kηk
}

= ∂q

(
∂κ−1

q

{
∞

∑
k=2

$kηk
})

= $k[k]q!, (k ∈ N). (7)

In 2019, Alsoboh and Darus [48] introduced the q-derivative operator
Υ(`)

q,µ,β,γ,δ : A→ A, as:

Υ(`)
q,µ,β,γ,δΦ(η) = z +

∞

∑
k=2

Ω`
k$kηk, (8)

where

Ω`
k =

[
(γ− δ)(β− µ)([k]q − 1) + 1

]`
, (9)

and (µ, β, γ, δ ≥ 0, γ > δ, β > µ, ` ∈ N0, η ∈ ∇).

Lemma 1 ([52]). Let the Schwarz function ω(η) be given by

ω(η) = ω1η + ω2η2 + ω3η3 + . . . + ωkηk + . . . (η ∈ ∇);

then

|ω1| ≤ 1,

|ω2| ≤ 1− |ω1|2,

|ω2 − tω2
1 | ≤ 1 + (|t| − 1)|ω1|2.

(10)
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3. Class D`
Σq
(χ, δ, γ, µ;ϕ)

In this section, we define and study a new subclass of bi-univalent functions in an open
unit disk that has symmetry, using the derivative operator Υ(`)

q,µ,β,γ,δΦ(η) of the form (8)
and the principle of subordination, as follows:

Definition 3. For µ, β, γ, δ ≥ 0, γ > δ, β > µ and k ∈ N0, a bi-univalent function Φ of the
form (1) is in the class D`

Σq
(χ, δ, γ, µ; ϕ) if it satisfies the following subordination conditions:

(1− χ)
Υ(`)

q,µ,β,γ,δΦ(η)

η
+ χ∂qΥ(`)

q,µ,β,γ,δΦ(η) ≺ ϕ(η), (η ∈ ∇; χ ≥ 1), (11)

and

(1− χ)
Υ(`)

q,µ,β,γ,δh(ρ)

ρ
+ χ∂qΥ(`)

q,µ,β,γ,δh(ρ) ≺ ϕ(ρ), (ρ ∈ ∇; χ ≥ 1), (12)

where h(ρ) and Υ(`)
q,µ,β,γ,δΦ(η) are defined by (3) and (8), respectively.

Example 1. A bi-univalent function f of the form (1) is referred to as being in the class
D0

Σq
(χ, δ, γ, µ; ϕ)= DΣ(q; χ, ϕ), if the following conditions of subordination are met:

(1− χ)
Φ(η)

η
+ χ∂qΦ(η) ≺ ϕ(η), (η ∈ ∇),

and

(1− χ)
h(ρ)

ρ
+ χ∂qh(ρ) ≺ ϕ(ρ), (ρ ∈ ∇),

where h(ρ) is defined by (3). This class was introduced by Altınkaya and Yalçın [37].

Example 2. A bi-univalent function f of the form (1) is referred to as being in the class lim
q→1−

D0
Σq

(χ, δ, γ, µ; ϕ) = Rσ(χ, ϕ), if the following conditions of subordination are met:

(1− χ)
Φ(η)

η
+ χ(Φ(η))′ ≺ ϕ(η), (η ∈ ∇),

and

(1− χ)
h(ρ)

ρ
+ χ(h(ρ))′ ≺ ϕ(ρ), (ρ ∈ ∇),

where h(ρ) is defined by (3). This class was introduced by Kumar et al. [53].

4. Coefficient Bounds of the Class D`
Σq
(χ, δ, γ, µ;ϕ)

The following theorem provides an estimate of the bounds of the coefficients for
functions of class D`

Σq
(χ, δ, γ, µ; ϕ). The theorem provides an estimate of the coefficients

$k for k ≥ ` + 2 in terms of the parameters χ, δ, γ, µ, and ϕ, as well as the maximum
value of |ϕ′(t)| on the interval [0, 1]. The proof of the theorem uses a method similar
to those employed by various authors, including Hussien et al. [54] and Altınkaya and
Yalçın ([55,56]).

Theorem 1. Let Φ be given by (1). For χ ≥ 1, 0 ≤ α < 1, (µ, β, γ, δ ≥ 0), γ > δ, β > µ and
k ∈ N0. If Φ ∈ D`

Σq
(χ, δ, γ, µ; ϕ) and $m = 0; m = 2, . . . ,k− 1, then

|$k| ≤
2(1− q)∣∣∣1 + (q− qk)χ

∣∣∣
∣∣∣Ω`

k

∣∣∣
; (k = 4, 5, 6, . . .). (13)
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Proof. Since Φ ∈ D`
Σq
(χ, δ, γ, µ; ϕ) of form (1), we have:

(1− χ)
Υ(`)

q,µ,β,γ,δΦ(η)

η
+ χDqΥ(`)

q,µ,β,γ,δΦ(η) = 1 +
∞

∑
k=1

(
1− χ(1− [k]q)

)
Ω`

k$kηk−1 (14)

and for h = Φ−1, we have

(1− χ)
Υ(`)

q,µ,β,γ,δh(ρ)

ρ
+ χDqΥ(`)

q,µ,β,γ,δh(ρ) = 1 +
∞

∑
k=1

(
1− χ(1− [k]q)

)
Ω`

kbkρk−1

= 1 +
∞

∑
k=1

(
1− χ(1− [k]q)

)
Ω`

k

(
1
kK−kk−1($2, $3, . . . , $k)

)
ρk−1,

(15)

where Ω`
k and K−kk−1 are given by (4) and (9), respectively.

Since Φ, Φ−1 ∈ D`
Σq
(χ, δ, γ, µ; ϕ). Then, by using the definition of subordination, two

Schwartz functions exist,

u(η) =
∞

∑
k=1

kηkג and v(ρ) =
∞

∑
k=1

kkρk,

which are analytic in ∇, such that

ϕ(u(η)) = (1− χ)
Υ(`)

q,µ,β,γ,δΦ(η)

η
+ χDqΥ(`)

q,µ,β,γ,δΦ(η), (η ∈ ∇) (16)

ϕ(v(ρ)) = (1− χ)
Υ(`)

q,µ,β,γ,δh(ρ)

ρ
+ χDqΥ(`)

q,µ,β,γ,δh(ρ), (ρ ∈ ∇), (17)

where

ϕ(u(η)) = 1 +
∞

∑
k=1

k
∑
`=1

ϕkE`
k(1ג, ,2ג . . . , .k)ηkג (18)

and

ϕ(v(ρ)) = 1 +
∞

∑
k=1

k
∑
`=1

ϕkE`
k(k1,k2, . . . ,kk)ρ

k. (19)

From (14), (16), and (18), we have

(
1− χ(1− [k]q)

)
Ω`

k$k =
k−1

∑
`=1

ϕkE`
n−1(1ג, ,2ג . . . , (n−1ג (n ≥ 2), (20)

Similarly, from (15), (17), and (19), we have

(
1− χ(1− [k]q)

)
Ω`

kbk =
k−1

∑
`=1

ϕkE`
k−1(k1,k2, . . . ,kk−1) (k ≥ 2), (21)

by the given assumption
$m = 0, (2 ≤ m ≤ k− 1),

which is equivalent to
mג = km = 0; (1 ≤ m ≤ k− 2),
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and from Equations (20) and (21), we have bk = −$k and so





(
1− χ(1− [k]q)

)
Ω`

k$k = ϕ1גk−1,

(
1− χ(1− [k]q)

)
Ω`

k$k = −ϕ1kk−1.

(22)

Taking the absolute value for Equation (22), we obtain

|$k| ≤
|ϕ1||גk−1|(

1− χ(1− [k]q)
)

Ω`
k

=
|ϕ1||kk−1|(

1− χ(1− [k]q)
)

Ω`
k

, (n ≥ 4).
(23)

Using Caratheodory’s Lemma, we obtain

|$k| ≤
2(1− q)∣∣∣1− q + (q− qk)χ

∣∣∣
∣∣∣Ω`

k

∣∣∣
.

This completes the proof of the theorem.

In the next theorem, we estimate the initial coefficients of the functions from the
indicated class D`

Σq
(χ, δ, γ, µ; ϕ).

Theorem 2. For χ ≥ 1, 0 ≤ α < 1, (µ, β, γ, δ ≥ 0), γ > δ, β > µ and k ∈ k0, if
Φ ∈ D`

Σq
(χ, δ, γ, µ; ϕ) where Φ(η) is given by (1), then we have the following consequence

|$2| ≤ min





2
(1 + χq)Ω`

2
,

2√
(1 + χ(q2 + q))Ω`

3



,

|$3| ≤ min

{
4

(
1 + χ(2 + q)Ω`

2
)2 +

2
(1 + χ(q2 + q))Ω`

3
,

6
(1 + χ(q2 + q))Ω`

3

}
,

and

|2$2
2 − $3| ≤

4∣∣(1 + χ([3]q − 1)
)
Ω`

3

∣∣ .

Proof. Replacing k by 2 and 3 in (20) and (21), respectively, we obtain:
(
1− χ(1− [2]q)

)
Ω`

2$2 = ϕ11ג, (24)

(
1− χ(1− [3]q)

)
Ω`

3$3 = ϕ12ג + ϕ2c2
1, (25)

(
1− χ(1− [2]q)

)
Ω`

2$2 = −ϕ1k1, (26)

and
(

1− χ(1− [3]q)
)

Ω`
3(2$2

2 − $3) = ϕ1k2 + ϕ2d2
1. (27)
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From (24) and (26), we have k1 = 1ג− and

|$2| =
|ϕ11∣∣∣|1ג− χ(1− [2]q)

∣∣∣Ω`
2

=
|ϕ1k1|∣∣∣1− χ(1− [2]q)

∣∣∣Ω`
2

≤ 2
1 + χ(1 + [2]q)Ω`

2
. (28)

Now, by adding (25) and (27)

2
(

1− χ(1− [3]q)
)

Ω`
3$2

2 = ϕ1(2ג +k1) + ϕ2(c2
1 + d2

1),

or, equivalently,

|$2| ≤
2√(

1 + χ(q2 + q)
)

Ω`
3

. (29)

Next, in order to find the bounds of |$3|, subtract (25) from (27), we have

2
(

1 + χ([3]q − 1)
)

Ω`
3($3 − $2

2) = ϕ1(2ג −k2) + ϕ2(c2
1 − d2

1), (30)

or
2
(

1 + χ([3]q − 1)
)

Ω`
3($3 − $2

2) ≤ ϕ2(2ג −k2),

|$3| ≤ $2
2 +

|ϕ2(2ג −k2)|
2
∣∣∣
(

1 + χ([3]q − 1)
)

Ω`
3

∣∣∣
. (31)

Equivalent to

|$3| ≤ $2
2 +

|ϕ2(2ג −k2)|
2
∣∣∣
(

1 + χ(q2 + q)
)

Ω`
3

∣∣∣
,

Substituting the value $2 from (29) and (30) into (31), one obtains

|$3| ≤
4

(
1 + χ(2 + q)Ω`

2
)2 +

2(
1 + χ(q2 + q)

)
Ω`

3

,

and
|$3| ≤

6(
1 + χ(q2 + q)

)
Ω`

3

.

Finally, from (30), by applying the Caratheodory Lemma, we obtain

|2$2
2 − $3| =

|ϕ1k2 + ϕ2d2
1|∣∣∣

(
1− χ(1− [3]q)

)
Ω`

3

∣∣∣
≤ 4∣∣∣

(
1 + χ([3]q − 1)

)
Ω`

3

∣∣∣
. (32)

This completes the proof of Theorem 2.

5. Corollaries

The following corollaries, which roughly match Examples 1 and 2, are produced by
Theorems 1 and 2.

By putting ` = 0 in Theorem 1, we obtain the following corollary.

Corollary 1 ([37]). Let χ ≥ 1. A bi-univalent function Φ given by (1) belongs to the class
DΣ(q, χ; ϕ) (χ ≥ 1). If $m = 0; m = 2, . . . ,k− 1. Then

|$k| ≤
2(1− q)

1− q + (q− qk)χ
(n ≥ 4).
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Applying the limit q → 1− in Theorem 1 and considering the case when ` = 0, we
obtain the following corollary.

Corollary 2 ([37]). Let χ ≥ 1. A bi-univalent function Φ given by (1) belongs to the class
Rσ(χ, ϕ)(χ ≥ 1). If $m = 0; m = 2, . . . ,k− 1. Then

|$k| ≤
2

1 + χ(k− 1)
(n ≥ 4).

For k = 0 in Theorem 2, we obtain the following corollary.

Corollary 3 ([37]). Let χ ≥ 1. A bi-univalent function Φ given by (1) belongs to the class
DΣ(q; χ, ϕ). Then

(1) |$2| ≤ 2
1+qχ ,

(2) |$3| ≤ 4
(1+qχ)2 +

2
1+(q2+q)χ ,

(3) |2$2
2 − $3| ≤ 4

1+(q2+q)χ .

For k = 0 and q→ 1− in Theorem 2, we obtain the following corollary.

Corollary 4. A bi-univalent function Φ given by (1) belongs to the class Rσ(χ, ϕ)(χ ≥ 1). Then

(1) |$2| ≤ 2
1+χ ,

(2) |$3| ≤ 4
(1+3χ)2 +

2
1+2χ .

6. Conclusions

This article investigated a novel subclass of bi-univalent functions, D`Σq(χ, δ, γ, µ; ϕ),
on the symmetry disk ∇. For functions belonging to each of these three classes of bi-
univalent functions, we calculated estimates for the upper bound of the Taylor–Maclaurin
coefficients of these functions in the aforementioned subset. By concentrating on the
variables employed in our primary findings, several additional novel findings were made.

The study of bi-univalent functions is an important and active area of research in
complex analysis and its applications. The investigation of this subclass provides deeper
insights into the theory and applications of bi-univalent functions. The results obtained in
this article can be generalized in the future using post-quantum calculus and other q-analogs
of the fractional derivative operator. Additionally, further analysis can be conducted to
explore additional subclasses and their characteristics.

Overall, this article contributes to the ongoing research in the field of complex analysis
by providing a detailed study of three important subclasses of bi-univalent functions.
Further research can be conducted to investigate more subclasses and their properties to
enhance our understanding of the theory and applications of bi-univalent functions.
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Citation: Kazımoğlu, S.; Deniz, E.;

Cotirla, L.-I. Geometric Properties of

Generalized Integral Operators

Related to The Miller–Ross Function.

Axioms 2023, 12, 563. https://

doi.org/10.3390/axioms12060563

Academic Editor: Georgia Irina Oros

Received: 16 May 2023

Revised: 31 May 2023

Accepted: 1 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Geometric Properties of Generalized Integral Operators Related
to The Miller–Ross Function
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Abstract: It is very well-known that the special functions and integral operators play a vital role
in the research of applied and mathematical sciences. In this paper, our aim is to present sufficient
conditions for the families of integral operators containing the normalized forms of the Miller–Ross
functions such that they can be univalent in the open unit disk. Moreover, we find the convexity
order of these operators. In proof of results, we use some differential inequalities related with
Miller–Ross functions and well-known lemmas. The various results, which are established in this
paper, are presumably new, and their importance is illustrated by several interesting consequences
and examples.

Keywords: analytic functions; Miller–Ross functions; univalence; convexity; special functions;
univalent functions; integral operators

MSC: 30C45; 33C10

1. Introduction

Special functions are mathematical functions that lack a precise formal definition, yet
they hold significant importance in various fields such as mathematical analysis, physics,
functional analysis, and other branches of applied science. Despite their lack of a rigid defi-
nition, these functions are widely utilized due to their valuable properties and widespread
applicability. Many elementary functions, such as exponential, trigonometric, and hy-
perbolic functions, are also treated as special functions. The theory of special functions
has earned the attention of many researchers throughout the nineteenth century and has
been involved in many emerging fields. Indeed, numerous special functions, including
the generalized hypergeometric functions, have emerged as a result of solving specific
differential equations. These functions have proven to be instrumental in addressing
complex mathematical problems, showcasing their remarkable utility in various domains.
The geometric properties such as univalence and convexity of special functions and their
integral operators are important in complex analysis. Several researchers have dedicated
their efforts to investigating integral operators that incorporate special functions such as
the Bessel, Lommel, Struve, Wright, and Mittag–Leffler functions. These studies have
focused on examining the geometric properties of these operators within various classes of
univalent functions. By exploring the interplay between these integral operators and special
functions, researchers have deepened our understanding of the behavior and characteristics
of univalent functions in different contexts. It is noteworthy that contemporary researchers
in the field are actively pursuing the development of novel theoretical methodologies and
techniques that combine observational results with various practical applications. There-
fore, the primary objective of this paper is to investigate the criteria for univalence and
convexity of integral operators that employ Miller–Ross functions.

Axioms 2023, 12, 563. https://doi.org/10.3390/axioms12060563 https://www.mdpi.com/journal/axioms79
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Let A denote the class of analytic functions h̄ of the form

h̄(ρ) = ρ +
∞

∑
v=2

avρv

in the open unit disk D = {ρ : |ρ| < 1, ρ ∈ C} and satisfy the standard normalization
condition:

h̄(0) = 0, h̄′(0) = 1.

We denote by S the subclass of A which are also univalent in D. A function h̄ ∈ S is
convex of order δ(0 ≤ δ < 1) if the following condition holds:

<
(

1 +
ρh̄′′(ρ)
h̄′(ρ)

)
> δ.

For n ∈ N := {1, 2, 3, . . .}, define

An := {(h̄1, h̄2, · · · , h̄n) : h̄v ∈ A, v = 1, 2, . . . , n}.

For h̄v ∈ A (v = 1, 2, . . . , n), the parameters ηv, ζv ∈ C (v = 1, 2, . . . , n) and γ ∈ C, we
define the following three integral operators:

Jη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ : An −→ A,

Kη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n : An −→ A
and

Lη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ : An −→ A
by

Jη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ[h̄1, h̄2, . . . , h̄n](ρ) :=

[
γ
∫ ρ

0
tγ−1

n

∏
v=1

(
h̄′v(t)

)ηv

(
h̄v(t)

t

)ζv

dt

]1/γ

, (1)

Kη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n[h̄1, h̄2, . . . , h̄n](ρ) :=

[(
1 +

n

∑
v=1

ηv

) ∫ ρ

0

n

∏
v=1

(h̄v(t))
ην
(

eh̄v(t)
)ζv

dt

]1/(1+∑n
v=1 ηv)

(2)

and

Lη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ[h̄1, h̄2, . . . , h̄n](ρ) :=

[
γ
∫ ρ

0
tγ−1

n

∏
v=1

(
h̄′v(t)

)ηv
(

eh̄v(t)
)ζv

dt

]1/γ

. (3)

Here, we need to note that, many authors have studied the integral operators (1), (2)
and (3) for some specific parameters as follows:

(1) J0,0,...,0;ζ1,ζ2,...,ζn ;n;γ[h̄1, h̄2, . . . , h̄n] ≡ F1/ζ1,1/ζ2,...,1/ζn ;γ (Seenivasagan and Breaz [1]; see
also [2,3]);

(2) Jη1,η2,...,ηn ;0,0,...,0;n;γ[h̄1, h̄2, . . . , h̄n] ≡ Lη1,η2,...,ηn ;0,0,...,0;n;γ[h̄1, h̄2, . . . , h̄n] ≡ Hη1,η2,...,ηn ;γ
(Breaz and Breaz [4]);

(3) Jη1,η2,...,ηn ;0,0,...,0;n;1[h̄1, h̄2, . . . , h̄n] ≡ Lη1,η2,...,ηn ;0,0,...,0;n;1[h̄1, h̄2, . . . , h̄n] ≡ Hη1,η2,...,ηn

(Breaz et al. [5]);
(4) Jη;0;1;1[h̄] ≡ Hη (Kim and Merkes [6]; see also Pfaltzgraff [7]);
(5) L0;ζ;1;γ[h̄] ≡ Qζ (Pescar [8]);
(6) Kη,η,...,η;0,0,...,0;n[h̄1, h̄2, . . . , h̄n] ≡ Gn,η [h̄1, h̄2, . . . , h̄n] (Breaz and Breaz [9]; see also [10]);
(7) Kη;0;1[h̄] ≡ G1,η [h̄] (Moldoveanu and Pascu [11]).

Furthermore, the specific integral operators via an obvious parametric changes of
the classical Bessel function Jν(ρ) of order ν and of the first kind by Deniz et al. [12]
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were introduced and they worked on the univalence condition of the related integral
operators. In addition, the starlikeness, convexity and uniform convexity of integral
operators containing these equivalent forms of Jν(ρ) were discussed by Raza et al. [13] and
Deniz [14]. Recently, some sufficient conditions for univalence of various linear fractional
derivative operators containing the normalized forms of the similar parametric variation
of Jν(ρ) were investigated by Al-Khrasani et al. [15]. Moreover, the theory of derivatives
and integrals of an arbitrary complex or real order has been utilized not only in complex
analysis, but also in the mathematical analysis and modeling of real-world problems in
applied sciences (see, for example, [16,17]).

Inspired by the studies mentioned above, in the present paper, we work on some
mappings and univalence and convexity conditions for the integral operators given by (1),
(2) and (3), related to the following Miller–Ross function Eξ,$, defined by

Eξ,$(ρ) = ρξ e$ργ∗(ξ, $ρ),

where γ∗ is the incomplete gamma function (see [18]).
Eξ,$(ρ) a solution of the following ordinary differential equation

Dy− $y =
ρξ−1

Γ(ξ)
, ξ > 0.

With the help of the gamma function we obtain the following series form of Eξ,$(ρ):

Eξ,$(ρ) = ρξ
∞

∑
v=0

($ρ)v

Γ(ξ + v + 1)
,

where $, ρ ∈ C.
The function Eξ,$(ρ) does not belong to the class A. The normalization form of the

function Eξ,$ is written as

Eξ,$(ρ) = Γ(ξ + 1)ρ1−ξ Eξ,$(ρ) =
∞

∑
v=0

$vΓ(ξ + 1)
Γ(ξ + v + 1)

ρv+1, (4)

where ξ > −1 and $ > 0.
Recently, Eker and Ece [19] and Şeker et al. [20] studied geometric and characteristic

properties of this function, respectively. Also, some problems as partial sums, coefficient
inequalities, inclusion relations and neighborhoods for Miller-Ross function were studied
by Kazımoğlu [21,22].

We note that by choosing particular values for ξ and $, we obtain the following
functions

E1,1/2(ρ) = 2eρ/2 − 2,E3,1(ρ) =
6eρ − 3ρ2 − 6ρ− 6

ρ2

and

E 1
2 ,1(ρ) =

1
2

eρ/5
√

5π
√

ρErf
√

ρ

5
,E2,1/2(ρ) =

4
(

2eρ/2 − ρ− 2
)

ρ
,

where Erf
√

ρ is the error function.
Let ξv > −1 for v = 1, 2, . . . , n and $ > 0. Consider the functions Eξv ,$ defined by

Eξv ,$(ρ) = Γ(ξv + 1)ρ1−ξv Eξv ,$(ρ).
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Using the functions Eξv ,$ and the integral operators given by (1), (2) and (3), we define

J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ, Kξ1,ξ2,...,ξn ;$

η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n and Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ : D −→ C as follows:

J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ(ρ) := Jη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ

[
Eξ1,$,Eξ2,$, . . . ,Eξn ,$

]
(ρ)

=

[
γ
∫ ρ

0
tγ−1

n

∏
v=1

(
E′ξv ,$(t)

)ηv
(Eξv ,$(t)

t

)ζv

dt

]1/γ

, (5)

Kξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n(ρ) := Kη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n

[
Eξ1,$,Eξ2,$, . . . ,Eξn ,$

]
(ρ)

=

[(
1 +

n

∑
v=1

ηv

) ∫ ρ

0

n

∏
v=1

(
Eξv ,$(t)

)ηv
(

eEξv ,$(t)
)ζv

dt

]1/(1+∑n
v=1 ηv)

(6)

and

Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ(ρ) := Lη1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ

[
Eξ1,$,Eξ2,$, . . . ,Eξn ,$

]
(ρ)

=

[
γ
∫ z

0
tγ−1

n

∏
v=1

(
E′ξv ,$(t)

)ηv(
eEξv ,$(t)

)ζv
dt

]1/γ

. (7)

An extensive literature in geometric function theory dealing with the geometric prop-
erties of the integral operators using different types of special functions can be found.
In 2010, some integral operators containing Bessel functions were studied by Baricz and
Frasin [2]. They obtained some sufficient conditions for univalence of these operators. The
convexity and strongly convexity of the integral operators given in [2] were investigated
by Arif and Raza [23] and Frasin [24]. Deniz [14] and Deniz et al. [12] gave convexity and
univalence conditions for integral operators involving generalized Bessel Functions, re-
spectively. Between 2018 and 2020, Mahmood et al. [25], Mahmood and his co-authors [26]
and Din and Yalçın [27] investigated the certain geometric properties such as univalence,
convexity, strongly starlikeness and strongly convexity of integral operators involving
Struve functions. Recently, Din and Yalçın [28] obtained some sufficients condidions on
starlikeness, convexity and uniformly close-to-convexity of the modified Lommel func-
tion. Park et al. [29] investigated univalence and convexity conditions for certain integral
operators involving the Lommel function. Srivastava and his co-authors [30] studied
sufficient conditions for univalence of certain integral operators involving the normal-
ized Mittag–Leffler functions. Oros [31] studied geometric properties of certain classes
of univalent functions using the classical Bernardi and Libera integral operators and the
confluent (or Kummer) hypergeometric function. Very recently, Raza et al. [32] obtained
the necessary conditions for the univalence of integral operators containing the generalized
Bessel function. Studies on this subject are still ongoing.

Motivated by the these works, we obtain some sufficient conditions for the operators
(5), (6) and (7), in order to be univalent in D. Moreover, we determine the order of the
convexity of these integral operators. By using Mathematica (version 8.0), we give some
graphics that support the main results.

2. A Set of Lemmas

The following lemmas will be required in our current research.

Lemma 1 (see Pescar [33]). Let α and β be complex number such that

<(α) > 0 and |β| 5 1(β 6= −1).
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If the function h ∈ A satisfies the following inequality:
∣∣∣∣β|ρ|

2α +
(

1− |ρ|2α
)ρh′′(ρ)

αh′(ρ)

∣∣∣∣ 5 1

for all ρ ∈ D, then the function Fα ∈ A defined by

Fα(ρ) =

(
α
∫ ρ

0
tα−1h′(t)dt

)
)1/α (8)

is in the class S .

Lemma 2 (see Pascu [34]). Let v ∈ C such that <(v) > 0. If h ∈ A satisfies the following
inequality: (

1− |ρ|2<(v)

<(v)

)∣∣∣∣
ρh′′(ρ)
h′(ρ)

∣∣∣∣ 5 1

for all ρ ∈ D. Then, for all α ∈ C such that

<(α) = <(v),

the function Fα defined by (8) is in the class S .

Lemma 3. Let ξ > −1 and $ > 0. Then, for ∀ρ ∈ D, the function Eξ,$ defined by (4) provides the
following inequalities:

∣∣∣∣E′ξ,$(ρ)−
Eξ,$(ρ)

ρ

∣∣∣∣ 5
$(ξ + 1)

(ξ − $ + 1)2 ($− 1 < ξ), (9)

∣∣∣∣∣
ρE′ξ,$(ρ)

Eξ,$(ρ)
− 1

∣∣∣∣∣ 5
$(ξ + 1)

(ξ − $ + 1)(ξ − 2$ + 1)
(2$− 1 < ξ), (10)

∣∣∣ρE′ξ,$(ρ)
∣∣∣ 5

(
ξ + 1

ξ − $ + 1

)2

($− 1 < ξ), (11)

∣∣∣∣∣
ρE′ξ,$(ρ)

Eξ,$(ρ)

∣∣∣∣∣ 5
(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
(2$− 1 < ξ) (12)

and ∣∣∣∣∣
ρE′′ξ,$(ρ)

E′ξ,$(ρ)

∣∣∣∣∣ 5
(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)

((
2 +
√

2
)

$− 1 < ξ
)

. (13)

Proof. The inequalities (9) and (10) were proved by Eker and Ece [19]. On the other hand,
by using the triangle inequality and the following inequality (see [19])

Γ(ξ + 1)
Γ(ξ + v)

≤ 1

(ξ + 1)v−1 , (14)

we have ∣∣∣∣
Eξ,$(ρ)

ρ

∣∣∣∣ ≤
ξ − 2$ + 1
ξ − $ + 1

(2$− 1 < ξ) (15)
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and

∣∣∣ρE′ξ,$(ρ)
∣∣∣ =

∣∣∣∣∣ρ +
∞

∑
v=2

vΓ(ξ + 1)$v−1

Γ(ξ + v)
ρv

∣∣∣∣∣

≤ 1 +
∞

∑
v=2

vΓ(ξ + 1)$v−1

Γ(ξ + v)
(16)

≤ 1 +
∞

∑
v=2

v
(

$

ξ + 1

)v−1
=

(
ξ + 1

ξ − $ + 1

)2

($− 1 < ξ).

Thus, from (15) and (16), we obtain
∣∣∣∣∣
ρE′ξ,$(ρ)

Eξ,$(ρ)

∣∣∣∣∣ 5
(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
(2$− 1 < ξ).

Using the inequality (14), it follows that

∣∣∣ρE′′ξ,$(ρ)
∣∣∣ =

∣∣∣∣∣
∞

∑
v=2

v(v− 1)Γ(ξ + 1)$v−1

Γ(ξ + v)
ρv−1

∣∣∣∣∣

≤
∞

∑
v=2

v(v− 1)Γ(ξ + 1)$v−1

Γ(ξ + v)

≤ 1 +
∞

∑
v=2

v(v− 1)
(

$

ξ + 1

)v−1
=

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)3 (17)

for $− 1 < ξ. Finally, applying reverse triangle inequality, we conclude that

∣∣∣E′ξ,$(ρ)
∣∣∣ =

∣∣∣∣∣1 +
∞

∑
v=2

vΓ(ξ + 1)$v−1

Γ(ξ + v)
ρv−1

∣∣∣∣∣

≥ 1−
∞

∑
v=2

vΓ(ξ + 1)$v−1

Γ(ξ + v)

≥ 1−
∞

∑
v=2

v
(

$

ξ + 1

)v−1
=

(ξ − $ + 1)2 − 2ξ$− 2$ + $2

(ξ − $ + 1)2 (18)

for
(

2 +
√

2
)

$− 1 < ξ. Next, by combining the inequalities (17) with (18), we can easily
see that

∣∣∣∣∣
ρE′′ξ,$(ρ)

E′ξ,$(ρ)

∣∣∣∣∣ 5
(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)

((
2 +
√

2
)

$− 1 < ξ
)

.

This completes the proof.

3. Univalence and Convexity Conditions for the Integral Operator in (5)

Firstly, we take into account the integral operator defined by (5).

Theorem 1. Let v = 1, 2, . . . , n, ξv > −1, $ > 0 and
(

2 +
√

2
)

$− 1 < ξv. Also, let γ, β, ηv

and ζv be in C such that
<(γ) > 0, |β| ≤ 1(β 6= −1).

Assume that these numbers satisfy the following inequality:
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|β|+ 1
|γ|

(
(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)

n

∑
v=1
|ηv|+

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

n

∑
v=1
|ζv|
)

5 1,

where ξ = min{ξ1, ξ2, . . . , ξn}. Then the function J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ defined by (5) is in the

class S .

Proof. Let us define the function ϕ as follows:

ϕ(ρ) = J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;1(ρ) =

∫ ρ

0

n

∏
v=1

(
E′ξv ,$(t)

)ηv
(Eξv ,$(t)

t

)ζv

dt. (19)

First of all, we observe that ϕ(ρ) = ϕ′(ρ)− 1 = 0, since Eξv ,$ ∈ A for all v = 1, 2, . . . , n.
However, we also have

ϕ′(ρ) =
n

∏
v=1

(
E′ξv ,$(ρ)

)ηv
(Eξv ,$(ρ)

ρ

)ζv

. (20)

Taking the logarithmic derivative of both sides of (20), we get

ρϕ′′(ρ)
ϕ′(ρ)

=
n

∑
v=1

ηv
ρE′′ξv ,$(ρ)

E′ξv ,$(ρ)
+

n

∑
v=1

ζv

(
ρE′ξv ,$(ρ)

Eξv ,$(ρ)
− 1

)
(21)

and, from (10) and (13), we have

∣∣∣∣
ρϕ′′(ρ)
ϕ′(ρ)

∣∣∣∣ 5
n

∑
v=1

(
|ηv|

∣∣∣∣∣
ρE′′ξv ,$(ρ)

E′ξv ,$(ρ)

∣∣∣∣∣+ |ζv|
∣∣∣∣∣
ρE′ξv ,$(ρ)

Eξv ,$(ρ)
− 1

∣∣∣∣∣

)

5
n

∑
v=1

(
|ηv|

(ξv − $ + 1)3 + 2$(ξv + 1)2

(ξv − $ + 1)2 + ($− 1)2 − (2ξv$ + 1)
+ |ζv|

$(ξv + 1)
(ξv − $ + 1)(ξv − 2$ + 1)

)
(22)

5
n

∑
v=1

(
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+ |ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

)
,

(
ρ ∈ D;

(
2 +
√

2
)

$− 1 < ξ, ξv < $0, (v = 1, 2, . . . , n)
)

where $0 = 1
3

[
−3 + $

(
7 + 49

(370−3
√

2139)
1/3 +

(
370− 3

√
2139

)1/3
)]

. Here, we have also used the

fact that the functions
Θ1, Θ2 :

((
2 +
√

2
)

$− 1, $0

)
−→ R,

defined by

Θ1(x) =
(x− $ + 1)3 + 2$(x + 1)2

(x− $ + 1)2 + ($− 1)2 − (2x$ + 1)
and Θ2(x) =

$(x + 1)
(x− $ + 1)(x− 2$ + 1)

,

are decreasing and, consequently, we have

(ξv − $ + 1)3 + 2$(ξv + 1)2

(ξv − $ + 1)2 + ($− 1)2 − (2ξv$ + 1)
<

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
(23)

and
$(ξv + 1)

(ξv − $ + 1)(ξv − 2$ + 1)
<

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

.
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Therefore, from hypothesis of theorem we obtain
∣∣∣∣β|ρ|

2γ +
(

1− |ρ|2γ
) ρϕ′′(ρ)

γϕ′(ρ)

∣∣∣∣

5 |β|+ 1
|γ|

(
(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)

n

∑
v=1
|ηv|+

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

n

∑
v=1
|ζv|

)

5 1,

which imply that the function J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ ∈ S by Lemma 1.

Theorem 2. Let the parameters $, γ, ηv, ξv and ζv (v = 1, 2, . . . , n) be as in Theorem 1. Suppose
that ξ = min{ξ1, ξ2, . . . , ξn} and that the following inequality holds true:

<(γ) =
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

.

Then the function J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ defined by (5) is in the class S .

Proof. Let us consider the function ϕ as in (19). From (22) and hypothesis of theorem, we get

1− |ρ|2<(γ)
<(γ)

∣∣∣∣
ρϕ′′(ρ)
ϕ′(ρ)

∣∣∣∣

5 1− |ρ|2<(γ)
<(γ)

n

∑
v=1

(
|ηv|

(ξv − $ + 1)3 + 2$(ξv + 1)2

(ξv − $ + 1)2 + ($− 1)2 − (2ξv$ + 1)
+ |ζv|

$(ξv + 1)
(ξv − $ + 1)(ξv − 2$ + 1)

)

5 1
<(γ)

n

∑
v=1

(
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+ |ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

)
(24)

≤ 1.

By Lemma 2, the inequality (24) imply that the function J ξ1,ξ2,...,ξn;$
η1,η2,...,ηn;ζ1,ζ2,...,ζn;n;γ ∈ S.

Theorem 3. Let the parameters $, ηv, ξv and ζv (v = 1, 2, . . . , n) be as in Theorem 1. Suppose
that ξ = min{ξ1, ξ2, . . . , ξn} and that the following inequality holds true:

0 <
n

∑
v=1

(
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+ |ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

)
5 1.

Then the function J ξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;1 defined by (5) with γ = 1 is convex of order δ given by

δ = 1−
n

∑
v=1

(
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+ |ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

)
.

Proof. The inequality (22) and hypothesis of theorem show that
∣∣∣∣
ρϕ′′(ρ)
ϕ′(ρ)

∣∣∣∣ 5
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

= 1− δ.

As a result, the function ϕ is convex of order

δ = 1−
n

∑
v=1

(
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+ |ζv|

$(ξ + 1)
(ξ − $ + 1)(ξ − 2$ + 1)

)
.

In Theorem 1 with n = 1, ξ1 = 1 and $ = 1/2, we can write the following corollary.
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Corollary 1. Let γ, β, η and ζ be in C such that <(γ) > 0 and |β| ≤ 1(β 6= −1). If the inequality

|β|+ 1
|γ|

(
59
4
|η|+ 2

3
|ζ|
)
5 1

holds true, then the function

[
γ
∫ ρ

0
t−ζ+γ−1

(
et/2

)η(
2et/2 − 2

)ζ
dt
]1/γ

is in the class S .

Example 1.

f1(ρ) =
∫ ρ

0
t−1
(

et/200
)(

2et/2 − 2
)

dt ∈ S .

Normally, it is almost impossible to find the geometric properties (univalent, convex,
starlike, etc.) of a complex function and especially integral operators with classical methods.
However, from Corollary 1 (also from Figure 1) with γ = ζ = 1 and η = 0.01, we can see
that the function f1 belongs to the class S .

-0.8 -0.6 -0.4 -0.2

-1.0

-0.5

0.5

1.0

Figure 1. Image of D under f1.

Setting n = 1, ξ1 = 3 and $ = 1 in the Theorem 1, we can get result below.

Corollary 2. Let γ, β, η and ζ be in C such that <(γ) > 0 and |β| ≤ 1(β 6= −1). If the inequality

|β|+ 1
|γ|

(
59
2
|η|+ 2

3
|ζ|
)
5 1

holds, then the function

[
6η3ζγ

∫ ρ

0
t−3η−3ζ+γ−1(tet − 2et + t + 2

)η
(

2et − t2 − 2t− 2
)ζ

dt
]1/γ

is in the class S .

From Theorem 3 with n = 1, ξ1 = 1 and $ = 1/2, we can get result below.
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Corollary 3. Let η and ζ be complex numbers such that

59
4
|η|+ 2

3
|ζ| 5 1.

Then the function ∫ ρ

0
t−ζ
(

et/2
)η(

2et/2 − 2
)ζ

dt

is convex of order δ given by

δ = 1− 59
4
|η| − 2

3
|ζ|.

Let n = 1, ξ1 = 3 and $ = 1 in the Theorem 3, then we get following result.

Corollary 4. Let η and ζ be complex numbers such that

0 <
59
2
|η|+ 2

3
|ζ| 5 1.

Then the function

6η3ζ
∫ ρ

0
t−3η−3ζ

(
tet − 2et + t + 2

)η
(

2et − t2 − 2t− 2
)ζ

dt

is convex of order δ given by

δ = 1− 59
2
|η| − 2

3
|ζ|.

4. Univalence and Convexity Conditions for the Integral Operator in (6)

In this section, we investigate the univalence and convexity properties for the integral
operator defined by (6).

Theorem 4. Let v = 1, 2, . . . , n, ξv > −1, $ > 0 and 2$− 1 < ξv. Also, let β, ηv and ζv be in C
such that

|β| ≤ 1(β 6= −1) and <
(

1 +
n

∑
v=1

ηv

)
> 0.

Assume that these numbers satisfy the following inequality:

|β|+ 1
|1 + ∑n

v=1 ηv|
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]
5 1,

where ξ = min{ξ1, ξ2, . . . , ξn}. Then the function Kξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n defined by (6) is in the

class S .

Proof. Let us define the functions ψ by

ψ(ρ) =
∫ ρ

0

n

∏
v=1

(
Eξv ,$v(t)

)ηv
(

eEξv ,$v (t)
)ζv

dt. (25)

Then ψ(0) = ψ′(0)− 1 = 0. Differentiating both sides of (25) logarithmically, we get

ρψ′′(ρ)
ψ′(ρ)

=
n

∑
v=1

ηv

(
ρE′ξv ,$(ρ)

Eξv ,$(ρ)

)
+

n

∑
v=1

ζv

(
ρE′ξv ,$(ρ)

)
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and, from (11) and (12) in Lemma 3, we obtain

∣∣∣∣
ρψ′′(ρ)
ψ′(ρ)

∣∣∣∣ 5
n

∑
v=1

(
|ηv|

∣∣∣∣∣
ρE′ξv ,$(ρ)

Eξv ,$(ρ)

∣∣∣∣∣+ |ζv|
∣∣∣ρE′ξv ,$(ρ)

∣∣∣
)

5
n

∑
v=1

[
|ηv|

(ξv + 1)2

(ξv − $ + 1)(ξv − 2$ + 1)
+ |ζv|

(
ξv + 1

ξv − $ + 1

)2
]

(26)

5
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

.

(ρ ∈ D; ξ, ξv > 2$− 1, (v = 1, 2, . . . , n)).

Here, since the functions

Θ3, Θ4 : (2$− 1, ∞) −→ R,

defined by

Θ3(x) =
(x + 1)2

(x− $ + 1)(x− 2$ + 1)
and Θ4(x) =

(
x + 1

x− $ + 1

)2
,

are decreasing, the inequalities

(ξv + 1)2

(ξv − $ + 1)(ξv − 2$ + 1)
<

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)

and (
ξv + 1

ξv − $ + 1

)2
<

(
ξ + 1

ξ − $ + 1

)2
(27)

holds. Thus, we have
∣∣∣∣β|ρ|

2(1+∑n
v=1 ηv) +

(
1− |ρ|2(1+∑n

v=1 ηv)
) ρψ′′(ρ)
(1 + ∑n

v=1 ηv)ψ′(ρ)

∣∣∣∣

≤ |β|+
∣∣∣∣

ρψ′′(ρ)
(1 + ∑n

v=1 ηv)ψ′(ρ)

∣∣∣∣ (28)

≤ |β|+ 1
|1 + ∑n

v=1 ηv|
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

≤ 1.

Using Lemma 1 with

α = 1 +
n

∑
v=1

ηv,

the inequality (28) imply that the function Kξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n ∈ S .

Theorem 5. Let the parameters $, ηv, ξv and ζv (v = 1, 2, . . . , n) be as in Theorem 4. Suppose
that ξ = min{ξ1, ξ2, . . . , ξn} and that the following inequality holds true:

n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]
5 1.

Then the function Kξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n defined by (6) is in the normalized univalent function

class S .
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Proof. Let us consider the function ψ as in (25). Therefore, from (26) and hypothesis of
theorem we can easily see that

(
1− |ρ|2

)∣∣∣∣
ρψ′′(ρ)
ψ′(ρ)

∣∣∣∣

5
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

(29)

≤ 1.

By Lemma 2, with v = 1 and α = 1 + ∑n
v=1 ηv, the inequality (29) imply that the

function Kξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n ∈ S .

Theorem 6. Let v = 1, 2, . . . , n, ξv > −1, $ > 0 and 2$− 1 < ξv. Also, let ηv and ζv be in C
such that

<
(

1 +
n

∑
v=1

ηv

)
> 0.

Moreover, suppose that the following inequality holds true:

0 <
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]
5 1,

where ξ = min{ξ1, ξ2, . . . , ξn}. Then the function Kξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n defined by (6), is convex

of order δ given by

δ = 1−
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

.

Proof. By using (26) we conclude that

∣∣∣∣
ρψ′′(ρ)
ψ′(ρ)

∣∣∣∣ 5
n

∑
v=1

[
|ηv|

∣∣∣∣∣
ρE′ξv ,$(ρ)

Eξv ,$(ρ)

∣∣∣∣∣+ |ζv|
∣∣∣zE′ξv ,$(ρ)

∣∣∣
]

5
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

= 1− δ.

This show that, the function ψ is convex of order

δ = 1−
n

∑
v=1

[
|ηv|

(ξ + 1)2

(ξ − $ + 1)(ξ − 2$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

.

From Theorem 4 with n = 1, ξ1 = 2 and $ = 1/2, we can get the following result.

Corollary 5. Let β, η and ζ be in C such that <(1 + η) > 0 and |β| ≤ 1(β 6= −1). If these
numbers satisfy the inequality:

|β|+ 1
|1 + η|

(
9
5
|η|+ 36

25
|ζ|
)
5 1,
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then the function


2η(1 + η)

∫ ρ

0




4
(

2et/2 − t− 2
)

t




η

e
4ζ(2et/2−t−2)

t dt




1/(1+η)

(30)

is in the class S .

Example 2. From Corollary 5 with η = 1 and ζ = 1/8, we have

h̄2(ρ) = 4

[∫ ρ

0

(
2et/2 − t− 2

t

)
e

2et/2−t−2
2t dt

]1/2

∈ S .

In reality, by a simple calculation, we get

1 +
ρh̄′′2 (ρ)
h̄′2(ρ)

+
ρh̄′2(ρ)
h̄2(ρ)

= 1 +
2eρ(ρ− 2) + eρ/2(ρ2 − 4ρ + 8

)
+ 2ρ− 4

2ρ
(
2eρ/2 − ρ− 2

) = g(ρ).

It also holds true that<(g(ρ)) > 0 for all ρ ∈ D (see Figure 2). Therefore, h̄2 is a 1/2−convex
function [[35], Vol. I, p. 142]. Thus it follows from [[35], Vol. I, p. 142] that h̄2 belongs to the class S .

0.5 1.0 1.5 2.0

-0.3

-0.2

-0.1

0.1

0.2

0.3

Figure 2. Image of D under g.

From Theorem 4 with n = 1, ξ1 = 3 and $ = 1, we can get result below.

Corollary 6. Let β, η and ζ be in C such that <(1 + η) > 0 and |β| ≤ 1(β 6= −1). If these
numbers satisfy the follwing inequality

|β|+ 1
|1 + η|

(
8
3
|η|+ 16

9
|ζ|
)
5 1,

then the function

[
3η(1 + η)

∫ ρ

0

(
2et − t2 − 2t− 2

t2

)η

eζ
(

6et−3t2−6t−6
t2

)
dt

]1/(1+η)

(31)

is in the class S .

From Theorem 6 with n = 1, ξ1 = 2 and $ = 1/2, we can get the following result.

Corollary 7. Let η and ζ be a complex numbers such that

<(1 + η) > 0 and 0 <
9
5
|η|+ 36

25
|ζ| 5 1.
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Then the function defined by (30) is convex of order δ given by

δ = 1− 9
5
|η| − 36

25
|ζ|.

From Theorem 6 with n = 1, ξ1 = 3 and $ = 1, we can get the following result.

Corollary 8. Let η and ζ be a complex numbers such that

<(1 + η) > 0 and 0 <
8
3
|η|+ 16

9
|ζ| 5 1.

Then the function defined by (31) is convex of order δ given by

δ = 1− 8
3
|η| − 16

9
|ζ|.

5. Univalence and Convexity Conditions for the Integral Operator in (7)

In this section, we derive the univalence and convexity results for the integral operator
defined by (7).

Theorem 7. Let v = 1, 2, . . . , n, ξv > −1, $ > 0 and
(

2 +
√

2
)

$− 1 < ξv. Also, let γ, β, ηv

and ζv be in C such that
<(γ) > 0, |β| ≤ 1(β 6= −1).

Assume that these numbers satisfy the following inequality:

|β|+ 1
|γ|

{
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
}

5 1,

where ξ = min{ξ1, ξ2, . . . , ξn}. Then the function Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ defined by (7) is in the

class S .

Proof. Let us define the function φ by

φ(ρ) := Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;1(ρ) =

∫ ρ

0

n

∏
v=1

(
E′ξv ,$(t)

)ηv(
eEξv ,$(t)

)ζv
dt, (32)

so that, obviously,

φ′(ρ) =
n

∏
v=1

(
E′ξv ,$(ρ)

)ηv(
eEξv ,$(ρ)

)ζv
(33)

and φ(ρ) = φ′(ρ)− 1 = 0.
Now we differentiate (33) logarithmically and multiply by ρ, we obtain

ρφ′′(ρ)
φ′(ρ)

=
n

∑
v=1

ηv
ρE′′ξv ,$(ρ)

E′ξv ,$(ρ)
+

n

∑
v=1

ζvρE′ξv ,$(ρ).

Furthermore, by (11), (13), (23) and (27) we obtain
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∣∣∣∣
ρφ′′(ρ)
φ′(ρ)

∣∣∣∣ 5
n

∑
v=1

(
|ηv|

∣∣∣∣∣
ρE′′ξv ,$(ρ)

E′ξv ,$(ρ)

∣∣∣∣∣+ |ζv|
∣∣∣ρE′ξv ,$(ρ)

∣∣∣
)

5
n

∑
v=1

[
|ηv|

(ξv − $ + 1)3 + 2$(ξv + 1)2

(ξv − $ + 1)2 + ($− 1)2 − (2ξv$ + 1)
+ |ζv|

(
ξv + 1

ξv − $ + 1

)2
]

(34)

5
n

∑
v=1

[
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+ |ζv|

(
ξ + 1

ξ − $ + 1

)2
]

.

Hence, from (34) we have
∣∣∣∣β|ρ|

2γ +
(

1− |ρ|2γ
)ρφ′′(ρ)

γφ′(ρ)

∣∣∣∣

5 |β|+
∣∣∣∣
ρφ′′(ρ)
φ′(ρ)

∣∣∣∣

5 |β|+ 1
|γ|

{
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
}

5 1,

which, in view of Lemma 1, implies that Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ ∈ S .

Theorem 8. Let the parameters $, γ, ηv, ξv and ζv (v = 1, 2, . . . , n) be as in Theorem 7. Suppose
that ξ = min{ξ1, ξ2, . . . , ξn} and that the following inequality holds true:

<(γ) =
{

n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
}

.

Then the function Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ defined by (7) is in the class S .

Proof. By using (34) we obtain

1− |ρ|2<(γ)
<(γ)

∣∣∣∣
ρφ′′(ρ)
φ′(ρ)

∣∣∣∣

5 1− |ρ|2<(γ)
<(γ)

{
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
}

5 1
<(γ)

{
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
}

5 1,

which, in view of Lemma 2, implies that Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;γ ∈ S .

Theorem 9. Let v = 1, 2, . . . , n, ξv > −1, $ > 0 and
(

2 +
√

2
)

$− 1 < ξv. Also, let γ, ηv and
ζv be in C such that <(γ) > 0. Assume that these numbers satisfy the following inequality:

0 <
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
5 1,
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where ξ = min{ξ1, ξ2, . . . , ξn}. Then the function Lξ1,ξ2,...,ξn ;$
η1,η2,...,ηn ;ζ1,ζ2,...,ζn ;n;1, defined by (7) with

γ = 1, is convex of order δ given by

δ = 1−
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
−

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2
.

Proof. From (34) and hypothesis of theorem, we obtain

∣∣∣∣
ρφ′′(ρ)
φ′(ρ)

∣∣∣∣ 5
n

∑
v=1
|ηv|

(ξ − $ + 1)3 + 2$(ξ + 1)2

(ξ − $ + 1)2 + ($− 1)2 − (2ξ$ + 1)
+

n

∑
v=1
|ζv|
(

ξ + 1
ξ − $ + 1

)2

= 1− δ.

Therefore, the function φ is convex of order δ.

From Theorem 7 with n = 1, ξ1 = 1 and $ = 1/2, we can get following result.

Corollary 9. Let γ, β, η and ζ be in C such that <(γ) > 0, |β| ≤ 1(β 6= −1). If these numbers
satisfy the inequality:

|β|+ 1
|γ|

(
59
4
|η|+ 16

9
|ζ|
)
5 1

then the function [
γ
∫ ρ

0
tγ−1

(
et/2

)η(
e2et/2−2

)ζ
dt
]1/γ

is in the normalized univalent function class S .

Example 3. From Corollary 9 with β = 0, γ = 1, η = 0.01 and ζ = 0.1, we obtain

h̄3(ρ) =
∫ ρ

0

(
et/200

)(
e

et/2−1
5

)
dt ∈ S .

From Theorem 7 with n = 1, ξ1 = 3 and $ = 1, we can get result below.

Corollary 10. Let γ, β, η and ζ be in C such that <(γ) > 0 and β 6= −1. If these numbers satisfy
the inequality

|β|+ 1
|γ|

(
59
2
|η|+ 16

9
|ζ|
)
5 1

then the function

[
6ηγ

∫ ρ

0
t−3η+γ−1(tet − 2et + t + 2

)ηe3ζ
(

2et−t2−2t−2
t2

)
dt
]1/γ

is in the normalized univalent function class S .

From Theorem 9 with n = 1, ξ1 = 1 and $ = 1/2, we have following result.

Corollary 11. Let η and ζ be complex numbers such that

59
4
|η|+ 16

9
|ζ| 5 1.

Then the function ∫ ρ

0

(
et/2

)η(
e2et/2−2

)ζ
dt

94



Axioms 2023, 12, 563

is convex of order δ given by

δ = 1− 59
4
|η| − 16

9
|ζ|.

From Theorem 9 with n = 1, ξ1 = 3 and $ = 1, we have following result.

Corollary 12. Let η and ζ be complex numbers such that

59
2
|η|+ 16

9
|ζ| 5 1.

Then the function

6η
∫ ρ

0
t−3η

(
tet − 2et + t + 2

)ηe3ζ
(

2et−t2−2t−2
t2

)
dt

is convex of order δ given by

δ = 1− 59
2
|η| − 16

9
|ζ|.

Example 4. From Corollary 12 with η = 0.01 and ζ = 0.1, we get

h̄4(ρ) = 61/100
∫ ρ

0
t−3/100(tet − 2et + t + 2

)1/100e3
(

2et−t2−2t−2
10t2

)
dt

is convex of order δ = 949/1800.

6. Conclusions

In the present investigation, we first introduced certain families of integral operators
by using the Miller–Ross function which, in particular, plays a very important role in the
study of pure and applied mathematical sciences. Therefore, it is important to know the
geometric properties of special functions and their integral operators. For this reason, we
aim to study the criteria for the univalence and convexity of these integral operators that
are defined by using Miller–Ross functions. The various results, which we established in
this paper, are believed to be new, and their importance is illustrated by several interesting
consequences and examples together with the associated graphical illustrations.

Hopefully, the original results contained here would stimulate researchers’ imagination
and inspire them, just as all the operators introduced before in studies related to functions
of a complex variable have done. Other geometric properties related to them could be
investigated, and also they could prove useful in introducing special classes of functions
based on those properties.
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Abstract: By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex
functions, we define a new subclass ofA, where the classA contains normalized analytic functions in
the open unit disk E and is invariant or symmetric under rotation. First, using the Faber polynomial
expansion (FPE) technique, we determine the lth coefficient bound for the functions contained within
this class. We provide a further explanation for the first few coefficients of bi-close-to-convex functions
defined by the q-fractional derivative. We also emphasize upon a few well-known outcomes of the
major findings in this article.

Keywords: quantum (or q-) calculus; analytic functions; q-derivative operator; bi-univalent functions;
Faber polynomial expansions

1. Introduction, Definitions and Motivation

Alexander [1] established the first integral operator in 1915, which he successfully
applied in the investigation of analytical functions. This area of study of analytic functions,
encompassing derivative and fractional derivative operators, has been a focus of ongoing
research in geometric function theory of complex analysis. Several combinations of such
operators are continually being developed [2,3]. Recent publications such as [4] provide
an example of how important differential and integral fractional operators are in research.
Recent research on differential and integral operators from a variety of angles, including
quantum (or q-) calculus, has produced intriguing findings that have applications in other
branches of physics and mathematics. Further investigation may reveal that such operators
play a role in providing solutions to partial differential equations, since they have a role in
the investigation of differential equations using functional analysis and operator theory. In
his survey-cum-expository review study, Srivastava [5] highlights the intriguing operator
applications that are emerging from such a methodology.
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Many applications of the q-calculus can be found in both the field of mathematics
and in other scientific disciplines such as numerical analysis, fractional calculus, special
polynomials, analytic number theory and quantum group theory. Mathematicians and
physicists are becoming interested in the large field of fractional calculus. The theory of
analytical functions has been integrated with the theory of fractional calculus. The fractional
differential equations are used in numerous mathematical models. In fact, nonlinear
differential equations are considered to be a rival to fractional differential equations as a
model (see, for example, Refs. [6–9]).

Researchers, who have created and examined a significant number of new analytic func-
tion subclasses in the field of geometric function theory (GFT), have extensively used the
q-calculus. In the year 1909, Jackson [10,11] is to be acknowledged for the formal beginning
of q-calculus because he provided the first definitions of the q-integrals and the q-derivatives.
He proposed the q-calculus operator and the q-difference operator (Dq), which are extensions
of the derivative and integral operators. Several mathematical and scientific disciplines, in-
cluding mechanics, the theory of relativity, control theory, basic hypergeometric functions,
combinatorics, number theory, and statistics, use the q-calculus. Ismail et al. [12] established
the generalized version of the starlike functions, which was one of the very first contributions
of the use of q-calculus in GFT. They gave this newly created class the name “class of q-starlike
functions” because they defined it by using q-derivatives. It took a while for this area of
research to advance, but the recent works of Anastassiu and Gal [13,14] based upon their
complex operators research with their separate q-generalizations happen to provide a fine
addition. Those were termed as q-Gauss–Weierstrass and q-Picard singular integral operators,
respectively (see also the work of Mason [15] on the solution of linear q-difference equations
with entire-function coefficients). By utilizing fundamental q-hypergeometric functions, Srivas-
tava [5] built a solid foundation for the use of the q-calculus in GFT. Aral and Gupta [16–18]
provided a further set of contributions by using q-beta functions. Aldweby et al. [19,20]
established the q-analogue of certain operators by utilizing the convolution techniques for
analytic functions. Additionally, they explored the composition of q-operators in the context
of analytic functions that involve the q-version of hypergeometric functions. The subject of
q-calculus has drawn the interest of several researchers in recent years, and the papers [21–23]
contain a variety of new observations. Further current details on convex and starlike functions
with regard to their symmetric points can be found in [24,25] and the references therein. As
a consequence of ongoing research on differential and integral operators, we in this study
present a novel fractional differential operator. With the aid of this operator, we intend to
introduce a new family of analytic functions which are geometrically close-to-convex.

The class A contains all functions h which are analytic in E and which also satisfy the
normalization condition given by

h(0) = 0 and h′(0) = 1,

where
E = {z : z ∈ C and |z| < 1},

C being the set of complex numbers. Thus, clearly, each function h ∈ A can be expressed
as follows:

h(z) =
∞

∑
l=1

alzl (z ∈ E; a1 := 1). (1)

Let the class S ⊂ A consist of univalent functions in E. The commonly known
subclasses of S are the classes of convex, starlike and close-to-convex functions, which are
denoted by and defined, respectively, as follows:

C :=





h : h ∈ S and <




(
zh
′
(z)
)′

h′(z)


 > 0





(z ∈ E),
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S∗ :=

{
h : h ∈ S and <

(
zh
′
(z)

h(z)

)
> 0

}
(z ∈ E)

and

K :=

{
h : h ∈ S , g ∈ S∗ and <

(
zh
′
(z)

g(z)

)
> 0

}
(z ∈ E)

or, equivalently,

K :=

{
h : h ∈ A, g ∈ C and <

(
h
′
(z)

g′(z)

)
> 0

}
(z ∈ E)

For h1, h2 ∈ A, h1 is said to be subordinate to h2 in E, denoted by

h1(z) ≺ h2(z) (z ∈ E),

if we have a Schwarz function ` in E such that ` ∈ A, |`(z)| < 1 and `(0) = 0, and

h1(z) = h2
(
`(z)

)
(z ∈ E).

The image of E under every h ∈ A contains a disk of radius 1
4 and each function h ∈ S has

an inverse h−1 = γ given by

γ
(
h(z)

)
= z (z ∈ E)

and
h
(
γ(ϑ)

)
= ϑ

(
|ϑ| < r0(h)

)
,

where r0(h) is the radius of the disk with r0(h) = 1
4 . The inverse function γ(ϑ) has the

following series expansion:

γ(ϑ) = ϑ− a2ϑ2 + (2a2
2 − a3)ϑ

3 − (5a3
2 − 5a2a3 + a4)ϑ

4 + · · · . (2)

If both h and h−1 are in the univalent function class S , then the function h is called
bi-univalent in E. The set of bi-univalent functions in E is denoted by Σ. In GFT, the issue
of finding bounds on the coefficients has always been important. Many characteristics of
analytic functions, such as univalency, rate of growth and distortion, can be affected by the
size of their coefficients. The pioneering work, which actually revived the study of analytic
and bi-univalent functions, was presented in the year 2010 by Srivastava et al. [26]. In 1914,
for 0 5 α < 1, Hamidi and Jahangiri [27] defined the class of bi-close-to-convex functions
and investigated some useful results by using the Faber polynomial expansion technique.
To overcome some the aforementioned problems, several researchers employed various
other techniques. Finding coefficient estimates of functions belonging to Σ had already
attracted a lot of interest, just like for univalent functions. For h ∈ Σ, Levin [28] demon-
strated that |a2| < 1.51 and after that, Branan and Clunie [29] contributed the improvement
of |a2| and demonstrated that |a2| 5

√
2. Furthermore, for h ∈ Σ, Netanyahu [30] proved

that (see, for details, Refs. [31,32])

max|a2| =
4
3

.

In many of these efforts, only non-sharp estimates of the initial coefficients were
derived. In [33], Alharbi et al. investigated two new subclasses of Σ by using the Sălăgean-
Erdélyi-Kober operator and problems related to coefficients, such as the Fekete-Szegä
problem, were also investigated. Recently, Oros et al. [34] defined some new subfamilies of
bi-univalent functions and found the coefficient estimates for these subfamilies.

Our current work is primarily driven by the discovery of numerous intriguing and
productive applications of special polynomials in GFT. One of these is the well-known
Faber polynomial that has recently gained immense importance in the study of mathe-
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matics and other scientific disciplines. Faber [35] introduced Faber polynomials and these
polynomials have important uses in many areas of mathematics, especially in GFT of
Complex Analysis. Schiffer [36] discussed the applications of the Faber polynomials in 1948
(see also [37]). Following that, Pommerenke [38–40] significantly added to the facts that
were already known about the structure of the Faber polynomial expansion (FPE). By using
the FPE technique and defining subclasses of the bi-univalent function class Σ, Hamidi and
Jahangiri [27,41] found some new coefficient bounds. Furthermore, many authors (see, for
example, Refs. [42–51]) applied the technique of Faber polynomials and determined some
interesting results for bi-univalent functions (see, for details, Ref. [44]).

For understanding the concepts of this article, it is now necessary to review certain
fundamental definitions and notions relevant to the q-calculus.

Definition 1. The q-shifted factorial (κ; q)l is presented as

(κ; q)l =
l−1

∏
j=0

(
1−κqj

)
(l ∈ N; κ, q ∈ C), (3)

where, as usual, C is the set of complex numbers. If κ 6= q−m (m ∈ N0 := {0, 1, 2, 3, · · · }), then

(κ; q)∞ =
∞

∏
j=0

(
1−κqj

)
(κ ∈ C; |q| < 1). (4)

In the case when κ 6= 0 and q = 1, (κ; q)∞ diverges. Therefore, when we take (κ; q)∞, then we
will assume that |q| < 1.

Remark 1. For q→ 1− in (κ; q)l , we have

(κ; q)l = (κ)l =
l−1

∏
j=0

(κ + j) (l ∈ N).

The q-factorial [l]q! is defined by

[n]q! =
n

∏
l=1

[l]q (l ∈ N), (5)

where the q-number [l]q is given below:

[l]q =
1− ql

1− q
(l ∈ N).

If l = 0, then [l]q! = 1.

Definition 2. The (κ; q)l in (3) can be given more precisely in the form of the q-gamma function
as follows:

Γq(κ) =
(1− q)1−α(q; q)∞

(qa; q)∞
(0 < q < 1),

or

(qκ ; q)l =

(
1− ql

)
Γq(κ + l)

Γq(κ)
(l ∈ N).

Definition 3 (Jackson [10]). For h ∈ A, the q-difference operator is defined by

Dqh(z) =
h(z)− h(qz)

z(1− q)
(z ∈ E).
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We recall that for l ∈ N and z ∈ E, we have

Dq(zl) = [l]qzl−1 and Dq

(
∞

∑
l=1

alzl

)
=

∞

∑
l=1

[l]qalzl−1,

where the q-number [l]q is already given along with (5).
The q-generalized Pochhammer symbol is expressed as follows:

[κ]q,l =
Γq(κ + l)

Γq(κ)
(l ∈ N; κ ∈ C).

Remark 2. If q→ 1−, then

[κ]q,l = (κ)l =
Γ(κ + l)

Γ(κ) .

Definition 4 (see [52]). For $ > 0, the fractional q-integral operator is defined by

I$
q,zh(z) =

1
Γq($)

∫ z

0
(z− tq)$−1 h(t) dq(t), (6)

where (z− tq)$−1 is given by

(z− tq)$−1 = z$−1
1Φ0

(
q−$+1; ; q,

tq$

z

)
.

The representation of the q-binomial series 1Φ0 is given by

1Φ0(a; ; q, z) = 1 +
∞

∑
l=1

(a, q)l
(q, q)l

zl (|q| < 1; |z| < 1).

Definition 5 (see, for example, [53,54]). For an analytic function h, the fractional q-derivative
operator Dq of order $ is described by

Dqh(z) = Dq I1−$
q,z h(z)

=
1

Γq(1− $)
Dq

∫ z

0
(z− tq)−$h(t)dq(t) (0 5 $ < 1).

In Geometric Function Theory, linear operators (both derivative and integral oper-
ators) are extensively utilized. The most important aspect of this study is that we are
simultaneously examining the characteristics of many classes of analytic functions under
a certain linear operator. Taking the aforementioned importance of linear operators into
consideration, we now define the operator below.

Definition 6. The extended fractional q-derivative D$
q of order $ is specified as follows:

D
$
qh(z) = Dm

q Im−$
q,z h(z), (7)

where m is assumed to be the smallest integer. We find from (7) that

D
$
qzl =

Γq(l + 1)
Γq(l + 1− $)

zl−$ (0 5 $; l > −1).

Remark 3. For −∞ < $ < 0, D$
q denotes a fractional q-integral of h of order $. Additionally, for

0 5 $ < 2, D$
q denotes a q-derivative of h of order $.
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Definition 7. Following the work of Selvakumaran et al. [55], we introduce the ($, q)-differintegral
operator Ω

$
q : A → A, which they defined as follows:

Ω
$
qh(z) =

Γq(2− $)

Γq(2)
z$D

$
qh(z)

= z +
∞

∑
l=2

Γq(2− $)Γq(l + 1)
Γq(2)Γq(l + 1− $)

alzl (z ∈ E), (8)

where 0 5 $ < 2 and 0 < q < 1.

Each of the following properties of the ($, q)-differintegral operator Ω
$
qh are worthy

of note.

Property 1.
lim
$→1

Ω
$
qh(z) = Ω

$
qh(z) = zDqh(z).

Property 2.

Ω
$
q

(
Ωδ

qh(z)
)
= Ωδ

q

(
Ω

$
qh(z)

)
= z +

∞

∑
l=2

Γq(2− $)Γq(2− δ)
(
Γq(l + 1)

)2

Γq(2)Γq(l + 1− $)Γq(l + 1− δ)
alzl .

Property 3.

Dq

(
Ω

$
qh(z)

)

Ω
$
qh(z)

=





zDqh(z)
h(z)

($ = 0)

1 + z
Dq(Dqh(z))

Dqh(z) ($ = 1).

Considering the operator Ω
$
q defined in Definition 7 and inspired by the work given

in [27], a new subclass of the class Σ is introduced by means of this operator. The next
section will provide proofs of the original findings by using the Faber polynomial method
and one lemma.

Definition 8. Let the function h be of the form (1). Then, h is referred to as $-fractional bi-close-to-
convex function in E if a suitable function g ∈ S∗ exists such that

<



Dq

(
Ω

$
qh(z)

)

g(z)


 > α

and

<



Dq

(
Ω

$
qα(ϑ)

)

δ(ϑ)


 > α,

where 0 5 α < 1, 0 5 $ < 2 and z, ϑ ∈ E. All such functions are symbolized by KΣ(q, α, $).

Remark 4. If we let q → 1− and $ = 0, then KΣ(q, α, $) reduces to the class introduced by
Hamidi and Jahangiri in [27].

Remark 5. If q→ 1− and α = 0, then KΣ(q, α, $) reduces to the class introduced by Sakar and
Güney in [56].
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2. The Faber Polynomial Expansion Method and Its Applications

The coefficients of the inverse mapping γ = h−1 can be expressed by using the Faber
polynomial method for analytic functions h and as follows (see [43,57]):

γ(ϑ) = h−1(ϑ) = ϑ +
∞

∑
l=2

1
l
ql

l−1(a2, a3, · · · , al)ϑ
l ,

where

q−l
l−1 =

(−l)!
(−2l + 1)!(l − 1)!

al−1
2 +

(−l)!
[2(−l + 1)]!(l − 3)!

al−3
2 a3

+
(−l)!

(−2l + 3)!(l − 4)!
al−4

2 a4

+
(−l)!

[2(−l + 2)]!(l − 5)!
al−5

2

[
a5 + (−l + 2)a2

3

]

+
(−l)!

(−2l + 5)!(l − 6)!
al−6

2 [a6 + (−2l + 5)a3a4]

+ ∑
i=7

al−i
2 Si

and a homogeneous polynomial in a2, a3, · · · , al is denoted by Si for 7 5 i 5 l. Especially,
the first three terms of q−l

l−1 are given below:

1
2
q−2

1 = −a2,

1
3
q−3

2 = 2a2
2 − a3

and
1
4
q−4

3 +−(5a3
2 − 5a2a3 + a4).

Generally, an extension of qr
l of the following type is used for r ∈ Z (Z := 0,±1,±2, · · · )

and l = 2:

qr
l = ral +

r(r− 1)
2

V2
l +

r!
(r− 3)!3!

V3
l + · · ·+ r!

(r− l)! (l)!
V l

l ,

where
V r

l = V r
l (a2, a3, · · · )

and, by using [57], we have

Vv
l (a2, · · · , al) =

∞

∑
l=1

v!(a2)
µ1 · · · (al)

µl

µ1!, · · · , µl !
(a1 = 1; v 5 l).

Clearly, upon adding all non-negative integers µ1, · · · , µl , which satisfy

µ1 + µ2 + · · ·+ µl = v and µ1 + 2µ2 + · · ·+ lµl = l,

we find that
V l

l (a1, · · · , al) = V l
1
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and that the first and last polynomials are given by

V l
l = al

1 and V1
l = al .

Lemma 1 (see [58]). If p is a function with a positive real part and

p(z) = 1 +
∞

∑
l=1

clzl ,

then
|cl | 5 2.

The problem of finding bounds for the coefficients has always been a key concern
in geometric function theory. The size of their coefficients can determine a number of
properties of analytic functions, including univalency, rate of growth and distortion. Many
scholars have used a variety of methods to overcome the aforementioned issues. Similar
to univalent functions, bi-univalent function coefficient estimation has received a lot of
interest lately. As a result of the significance of studying the coefficient problems described
above, in this section, we utilize the (varrho, q)-fractional derivative operator and the Fabor
polynomial technique to obtain coefficient estimates for |al | and discuss the unpredictable
behavior of the initial coefficient bounds for |a2| and |a3|. We also investigate the Fekete–
Szegö problem and give some examples. We also demonstrate how some of the previously
published results would be improved and generalized as a result of our primary findings
as well as their corollaries and consequences.

3. Main Results

Our first main result is asserted by Theorem 1 below.

Theorem 1. If h has the series representation stated in (1) and belongs to the class KΣ(q, α, $), and
if ai = 0 and 2 5 i 5 l − 1, then

|al | 5
Γq(2)Γq(l + 1− $)(2(1− α) + l)

[l]qΓq(2− $)Γq(l + 1)
(l = 3).

Proof. For h ∈ KΣ(q, α, $), there exists a function g. The FPE for
Dq(Ω

$
q h(z))

g(z) is given by

Dq

(
Ω

$
qh(z)

)

g(z)
= 1 +

∞

∑
l=2




(
[l]q

Γq(2−$)Γq(l+1)
Γq(2)Γq(l+1−$)

al − bl

) l−2
∑

l=1
q−1

l (b2, b3, · · · , bl+1)

·
((

[l]q − l
) Γq(2−$)Γq(l+1)

Γq(2)Γq(l+1−$)
al−l − bl−l

)


zl−1. (9)

Additionally, regarding the inverse maps γ = h−1 and δ = g−1, we obtain

Dq

(
Ω

$
qα(ϑ)

)

δ(ϑ)
= 1 +

∞

∑
l=2




(
[l]q

Γq(2−$)Γq(l+1)
Γq(2)Γq(l+1−$)

Al − Bl

) l−2
∑

l=1
q−1

l (B2, B3, · · · , Bl+1)

·
((

[l]q − l
) Γq(2−$)Γq(l+1)

Γq(2)Γq(l+1−$)
Al−l − Bl−l

)


ϑl−1. (10)

As opposed to that, since

<



Dq

(
Ω

$
qh(z)

)

g(z)


 > α (z ∈ E),
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there must exist a function p(z) given by

p(z) = 1 +
∞

∑
l=1

clzl

such that

Dq

(
Ω

$
qh(z)

)

g(z)
= 1 + (1− α)p(z)

= 1 + (1− α)
∞

∑
l=1

clzl . (11)

Similarly, since

<



Dq

(
Ω

$
qγ(ϑ)

)

δ(ϑ)


 > α (0 5 α < 1; z ∈ E),

there must exist a function r given by

r(ϑ) = 1 +
∞

∑
l=1

dlϑ
l

such that

Dq

(
Ω

$
qγ(ϑ)

)

δ(ϑ)
= 1 + (1− α)q(ϑ)

= 1 + (1− α)
∞

∑
l=1

dlϑ
l . (12)

For each l = 2, evaluating the coefficients of the Equations (9) and (11), we obtain





(
[l]q

Γq(2−$)Γq(l+1)
Γq(2)Γq(l+1−$)

al − bl

) l−2
∑

l=1
q−1

l (b2, b3, · · · , bl+1)

·
((

[l]q − l
) Γq(2−$)Γq(l+1)

Γq(2)Γq(l+1−$)
al−l − bl−l

)





= (1− α)cl−1. (13)

Additionally, by evaluating the coefficients of the Equations (10) and (12), for any
l = 2, we have





(
[l]q

Γq(2−$)Γq(l+1)
Γq(2)Γq(l+1−$)

Al − Bl

) l−2
∑

l=1
q−1

l (B2, B3, · · · , Bl+1)

·
((

[l]q − l
) Γq(2−$)Γq(l+1)

Γq(2)Γq(l+1−$)
Al−l − Bl−l

)





= (1− α)dl−1. (14)

Using the Equations (13) and (14), we derive the following for the particular case when
l = 2:

[2]qΓq(2− $)Γq(3)
Γq(2)Γq(3− $)

a2 − b2 = (1− α)c1

[2]qΓq(2− $)Γq(3)
Γq(2)Γq(3− $)

A2 − B2 = (1− α)d1
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and

a2 =
Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)
((1− α)c1 + b2)

A2 =
Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)
((1− α)d1 + B2).

We now solve for al and apply Lemma 1 and the moduli, so that

|a2| 5
2[Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)
(2− α).

However, assuming that 2 5 k 5 l − 1 and ak = 0 are true, the following results are ob-
tained.

Al = −al

and

[l]qΓq(2− $)Γq(l + 1)
Γq(2)Γq(l + 1− $)

al − bl = (1− α)cl−1,

− [l]qΓq(2− $)Γq(l + 1)
Γq(2)Γq(l + 1− $)

al − Bl = (1− α)dl−1

and

al =
Γq(2)Γq(l + 1− $)

[l]qΓq(2− $)Γq(l + 1)
((1− α)cl−1 + bl)

−al =
Γq(2)Γq(l + 1− $)

[l]qΓq(2− $)Γq(l + 1)
((1− α)dl−1 + Bl)

By solving for al and using Lemma 1 and the moduli, we can derive

|al | 5
Γq(2)Γq(l + 1− $)(2(1− α) + l)

[l]qΓq(2− $)Γq(l + 1)
,

upon noticing that
|bl | 5 l and |Bl | 5 l.

This completes the proof of Theorem 1.

The following corollaries can be obtained by putting different values of the parame-
ters involved.

Corollary 1. If the function h has the series representation stated in (1) and belongs to the class
KΣ(q, 0, 1), and if

ai = 0 (2 5 i 5 l − 1),

then

|al | 5
Γq(2)Γq(l)(2 + l)

[l]qΓq(l + 1)
(l = 3).

Corollary 2. If the function h has the series representation stated in (1) and belongs to KΣ(q, α, 1),
and if ai = 0 (2 5 i 5 l − 1), then

|al | 5
Γq(2)Γq(l)(2(1− α) + l)

[l]qΓq(l + 1)
(l = 3).
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Corollary 3. If the function h has the series representation stated in (1) and belongs to the class
KΣ(q→ 1−, α, $), and if ai = 0 (2 5 i 5 l − 1), then

|al | 5
Γ(2)Γ(l + 1− $)(2(1− α) + l)

lΓ(2− $)Γ(l + 1)
(l = 3).

Corollary 4. If the h has the series representation stated in (1) and belongs to the class KΣ(q→
1−, α, 1), and if ai = 0 (2 5 i 5 l − 1), then

|al | 5
Γ(2)Γ(l)(2(1− α) + l)

lΓ(l + 1)
(l = 3).

The following known consequence of Theorem 1 for $ = 0 and q→ 1− was demon-
strated in [27].

Corollary 5 (see [27]). Let h ∈ KΣ(α). If ai+1 = 0 (1 5 i 5 l), then

|al | 5 1 +
2(1− α)

l
(l = 3).

Corollary 6 (see [56]). If the function h has the series representation stated in (1) and belongs to
the class KΣ(q→ 1−, 0, $), and if ai = 0 (2 5 i 5 l − 1), then

|al | 5
(2 + l)Γ(l + 1− $)

lΓ(2− $)Γ(l + 1)
(l = 3).

As a special form of Theorem 1, our next result (Theorem 2 below) provides estimates
for the initial coefficients |a2| and |a3|, and also for the Fekete–Szegö-type functional
involved in

∣∣a3 − a2
2

∣∣ for functions in the class KΣ(m, α, q).

Theorem 2. Let the function h ∈ KΣ(q, α, $) be given by (1). Then,

|a2| 5





√√√√
2Γq(2)Γq(3− $)Γq(4− $)(1− α)

Γq(2− $)
(
[3]qΓq(4)Γq(3− $)− [2]qΓq(3)Γq(4− $)

)

(
0 5 α < 1− φ(q, $)

)

2Γq(2)Γq(3− $)(1− α)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)(
1− φ(q, $) 5 α < 1

)

and

|a3| 5
2Γq(2)Γq(4− $)(1− α)

[3]qΓq(4)Γq(2− $)− Γq(2)Γq(4− $)

·
[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $) + 2(1− α)Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)
,

where

φ(q, $) :=
Γq(2)Γq(4− $)

{
[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)

}2

2Γq(3− $)Γq(2)
(
[3]qΓq(4)Γq(2− $)Γq(3− $)− [2]qΓq(3)Γq(2− $)Γq(4− $)

) .

Furthermore, it is asserted that
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∣∣∣a3 − a2
2

∣∣∣ 5
2Γq(2)Γq(4− $)(1− α)

[3]qΓq(2− $)Γq(4)− Γq(2)Γq(4− $)
.

Proof. Taking a function g(z) = Ω
$
qh(z) in the proof of Theorem 1, we obtain al = −bl . For

l = 2, the Equations (13) and (14), respectively, yield

a2

(
[2]qΓq(2− $)Γq(3)

Γq(2)Γq(3− $)
− 1
)
= (1− α)c1,

a2

(−[2]qΓq(2− $)Γq(3)
Γq(2)Γq(3− $)

+ 1
)
= (1− α)d1;

and

a2 =
Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)
(1− α)c1,

−a2 =
Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)
(1− α)d1.

If we use moduli of either of these two equations, we obtain

|a2| 5
2Γq(2)Γq(3− $)(1− α)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)
.

For l = 3, the Equations (13) and (14), respectively, yield

(
[3]qΓq(2− $)Γq(4)

Γq(2)Γq(4− $)
− 1
)

a3 −
(
[2]qΓq(2− $)Γq(3)

Γq(2)Γq(3− $)
− 1
)

a2
2 = (1− α)c2 (15)

and

(
2a2

2 − a3

)( [3]qΓq(2− $)Γq(4)
Γq(2)Γq(4− $)

− 1
)
−
(
[2]qΓq(2− $)Γq(3)

Γq(2)Γq(3− $)
− 1
)

a2
2 = (1− α)d2. (16)

By combining the two equations mentioned above, we obtain

2a2
2

(
[3]qΓq(2− $)Γq(4)

Γq(2)Γq(4− $)
− 1
)
− 2
(
[2]qΓq(2− $)Γq(3)

Γq(2)Γq(3− $)
− 1
)

a2
2 = (1− α)(c2 + d2),

2a2
2

(
[3]qΓq(2− $)Γq(4)

Γq(2)Γq(4− $)
− [2]qΓq(2− $)Γq(3)

Γq(2)Γq(3− $)

)
= (1− α)(c2 + d2)

or

2a2
2 =

[3]qΓq(3− $)Γq(2− $)Γq(4)− [2]qΓq(4− $)Γq(2− $)Γq(3)
Γq(2)Γq(3− $)Γq(4− $)

= (1− α)(c2 + d2)

Now, by finding |a2|, we arrive at

∣∣∣a2
2

∣∣∣ =
Γq(2)Γq(3− $)Γq(4− $)(1− α)|d2 + c2|

2Γq(2− $)
{
[3]qΓq(4)Γq(3− $)− [2]qΓq(3)Γq(4− $)

} .

Additionally, by applying Lemma 1, we obtain

|a2| 5
√

2Γq(2)Γq(3− $)Γq(4− $)(1− α)

Γq(2− $)
(
[3]qΓq(4)Γq(3− $)− [2]qΓq(3)Γq(4− $)

) .
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As a result, we obtain the following estimate:
√√√√ 2Γq(2)Γq(3− $)Γq(4− $)(1− α)

Γq(2− $)
(
[3]qΓq(4)Γq(3− $)− [2]qΓq(3)Γq(4− $)

)

<
2Γq(2)Γq(3− $)Γq(4− $)(1− α)

Γq(2− $)
(
[3]qΓq(4)Γq(3− $)− [2]qΓq(3)Γq(4− $)

) .

Upon substituting

a2 =
c1(1− α)Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)

into (15), we have

a3 =
Γq(2)Γq(4− $)(1− α)

[3]qΓq(4)Γq(2− $)− Γq(2)Γq(4− $)

·
(

c2 +
(1− α)Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)
c2

1

)
.

Taking the moduli on both sides, we find that

|a3| 5
Γq(2)Γq(4− $)(1− α)

[3]qΓq(4)Γq(2− $)− Γq(2)Γq(4− $)

·
(
|c2|+

(1− α)Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)

∣∣∣c2
1

∣∣∣
)

.

Applying Lemma 1, we obtain

|a3| 5
Γq(2)Γq(4− $)(1− α)

[3]qΓq(4)Γq(2− $)− Γq(2)Γq(4− $)

·
(

2 +
4(1− α)Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)

)
,

that is,

|a3| 5
2Γq(2)Γq(4− $)(1− α)

[3]qΓq(4)Γq(2− $)− Γq(2)Γq(4− $)

·
(
[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $) + 2(1− α)Γq(2)Γq(3− $)

[2]qΓq(2− $)Γq(3)− Γq(2)Γq(3− $)

)
.

Lastly, upon subtracting Equation (15) from Equation (16), we have

∣∣∣a3 − a2
2

∣∣∣ 5
2Γq(2)Γq(4− $)(1− α)

[3]qΓq(2− $)Γq(4)− Γq(2)Γq(4− $)
.

Our proof of Theorem 2 is thus completed.

Several corollaries and consequences of Theorem 2 are presented below.
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Corollary 7. Let the function h ∈ KΣ(q, α, 1) be given by (1). Then,

|a2| 5





√
2Γq(2)Γq(2)Γq(3)(1− α)(

[3]qΓq(4)Γq(2)− [2]qΓq(3)Γq(3)
)

(
0 5 α < 1− ϕ1(q)

)

2Γq(2)Γq(2)(1− α)

[2]qΓq(3)− Γq(2)Γq(2)(
1− ϕ1(q) 5 α < 1

)
,

|a3| 5
2Γq(2)Γq(3)(1− α)

[3]qΓq(4)− Γq(2)Γq(3)

·
(
[2]qΓq(3)− Γq(2)Γq(2) + 2(1− α)Γq(2)Γq(2)

[2]qΓq(3)− Γq(2)Γq(2)

)

and ∣∣∣a3 − a2
2

∣∣∣ 5
2Γq(2)Γq(3)(1− α)

[3]qΓq(4)− Γq(2)Γq(3)
,

where

ϕ1(q) =
Γq(2)Γq(3)

(
[2]qΓq(3)− Γq(2)Γq(2)

)2

2Γq(2)Γq(2)
(
[3]qΓq(4)Γq(2)− [2]qΓq(3)Γq(3)

) .

Corollary 8. Let h ∈ KΣ(q, 0, 1) be given by (1). Then,

|a2| 5





√
2Γq(2)Γq(2)Γq(3)

[3]qΓq(4)Γq(2)− [2]qΓq(3)Γq(3)(
0 5 α < 1− ϕ2(q)

)

2Γq(2)Γq(2)
[2]qΓq(3)− Γq(2)Γq(2)

(
1− ϕ2(q) 5 α < 1

)
,

|a3| 5
2Γq(2)Γq(3)

[3]qΓq(4)− Γq(2)Γq(3)

·
[2]qΓq(3)− Γq(2)Γq(2) + Γq(2)Γq(2)

[2]qΓq(3)− Γq(2)Γq(2)

and ∣∣∣a3 − a2
2

∣∣∣ 5
2Γq(2)Γq(3)

[3]qΓq(4)− Γq(2)Γq(3)
,

where

ϕ2(q) =
Γq(2)Γq(3)

{
[2]qΓq(3)− Γq(2)Γq(2)

}2

2Γq(2)Γq(2)
{
[3]qΓq(4)Γq(2)− [2]qΓq(3)Γq(3)

} .
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Corollary 9. Let h ∈ KΣ(q→ 1−, α, $) be given by (1). Then,

|a2| 5





√
2Γ(2)Γ(3− $)Γ(4− $)(1− α)

Γ(2− $){3Γ(4)Γ(3− $)− 2Γ(3)Γ(4− $)}(
0 5 α < 1− ϕ3($)

)

2Γ(2)Γ(3− $)(1− α)

2Γ(2− $)Γ(3)− Γ(2)Γ(3− $)(
1− ϕ3($) 5 α < 1

)
,

|a3| 5
2Γ(2)Γ(4− $)(1− α)

3Γ(4)Γ(2− $)− Γ(2)Γ(4− $)

· 2Γ(2− $)Γ(3)− Γ(2)Γ(3− $) + 2(1− α)Γ(2)Υ(3− $)

2Γ(2− $)Γ(3)− Γ(2)Γ(3− $)

and ∣∣∣a3 − a2
2

∣∣∣ 5 2Γ(2)Γ(4− $)(1− α)

3Γ(2− $)Γ(4)− Γ(2)Γ(4− $)
,

where

ϕ3($) =
Γ(2)Γ(4− $){2Υ(2− $)Γ(3)− Γ(2)Γ(3− $)}2

2Γ(3− $)Γ(2){3Γ(4)Γ(2− $)Γ(3− $)− 2Γ(3)Γ(2− $)Γ(4− $)} .

As another application of Theorem 2 for $ = 4 and q→ 1−, we obtain the result given
in [27].

Corollary 10 (see [27]). Let h ∈ KΣ(q→ 1−, α, 0). Then,

|a2| 5





√
2(1− α)

(
0 5 α < 1

2

)

2(1− α)
(

1
2 5 α < 1

)

and

|a3| 5





2(1− α)
(

0 5 α < 1
2

)

(1− α)(3− 2α)
(

1
2 5 α < 1

)
.

Corollary 11 (see [56]). Let h ∈ KΣ(q→ 1−, 0, $) be given by (1). Then,

|a2| 5 min




√
2Γ(3− $)Γ(4− $)

Γ(2− $){3Γ(4)Γ(3− $)− 2Γ(3)Γ(4− $)} ,

2Γ(2)Γ(3− $)

2Γ(2− $)Γ(3)− Γ(2)Γ(3− $)




,

|a3| 5
2Γq(4− $)

3Γ(4)Γ(2− $)− Γ(4− $)

·
(

2Γ(2− $)Γ(3)− Γ(3− $) + 2Γ(3− $)

2Γ(2− $)Γ(3)− Γ(3− $)

)
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and ∣∣∣a3 − a2
2

∣∣∣ 5 2Γ(2)Γ(4− $)

3Γ(2− $)Γ(4)− Γ(4− $)
.

Example 1. For l = 3, we will demonstrate that h(z) given by

h(z) = z +
1− α

l − 1
zl

is a bi-close-to-convex function of order α, where α ∈ [0, 1) in E. Indeed, since the function

g(z) = z− 1− α

l − α
zl

is starlike in E, we have

DqΩ
$
qh(z)

g(z)
=

1 +
(

Ψl(q,$)[l]q(1−α)
l−1

)
zl−1

1−
(

1−α
l−α

)
zl−1

= 1 +
∞

∑
j=1

(
(1− α)j

(l − α)j +
Ψl(q, $)[l]q(1− α)j

(l − 1)(l − α)j−1

)
z(l−1)k,

where

Ψl(q, $) =
Γq(2− $)Γq(l + 1)
Γq(2)Γq(l + 1− $)

.

Therefore, we obtain

DqΩ
$
q h(z)

g(z) − α

1− α
= 1 +

∞

∑
j=1

(
l
(
Ψl(q, $)[l]q + 1

)
−Ψl(q, $)[l]qα− 1

(l − 1)(l − α)

)

·
(

1− α

l − α

)j−1
z(l−1)j.

Obviously, we also have

<
(

DqΩ
$
qh(z)

g(z)

)
− α > 0 (z ∈ E).

For γ = h−1 and δ = g−1, it is easily seen that

γ(ϑ) = ϑ− 1− α

l − 1
ϑl ,

and if we set

δ(ϑ) = ϑ +
1− α

l − α
ϑl

which is starlike in E. As a result, we have

DqΩ
$
q γ(ϑ)

δ(z) − α

1− α
= 1 +

∞

∑
j=1

(−1)j

(
l
(
Ψl(q, $)[l]q + 1

)
−Ψl(q, $)[l]qα− 1

(l − 1)(l − α)

)

·
(

1− α

l − α

)j−1
ϑ(l−1)j.
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Thus, clearly, we find that

<
(

DqΩ
$
qγ(ϑ)

δ(ϑ)
− α

)
> 0 (z ∈ E).

4. Conclusions

In this article, we have used the notions of the q-fractional derivative, bi-univalent
functions and FPE to define some new subfamilies of Σ. We investigated lth coefficient
bounds and the Fekete–Szegö functional for these newly defined classes. Our study has also
demonstrated how the results are enhanced and expanded by appropriate specialization of
the parameters, including some recently released findings.

This article is composed of three sections. We briefly reviewed some fundamental
geometric function theory ideas in Section 1 because they were important to deriving our
main findings. All of these components are well-known, and we have correctly cited them.
In Section 2, we provide the Faber polynomial approach and its applications and some
initial lemmas. In Section 3, we present our key findings.

For future studies, researchers can use other extended q-operators instead of the
($; q)-differintegral operator and define a number of new subclasses of the bi-univalent
function class Σ. Furthermore, by using the Faber polynomial technique, the interested
researchers can discuss the behavior of coefficient estimates for different types of newly
defined subclasses of bi-univalent functions. Researchers may also investigate a variety
of methods, depending on how inspired they are by the knowledge gained in this subject.
Fractional derivative operators have made it possible to study differential equations from
the perspectives of functional analysis and operator theory. Using the operator method
for resolving differential equations, various properties fractional derivative operator are
used extensively.

It is a clearly presented fact that the transition from our q-results to the corresponding
(p, q)-results is a rather trivial exercise because the additional forced-in parameter p is
obviously redundant (see, for details, ([5], p. 340) and ([54], Section 5, pp. 1511–1512); see
also [59–62]).
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34. Oros, G.I.; Cotîrlă, L.-I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent

functions. Mathematics 2022, 10, 129. [CrossRef]
35. Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [CrossRef]
36. Schiffer, M. Faber polynomials in the theory of univalent functions. Bull. Am. Soc. 1948, 54, 503–517. [CrossRef]
37. Gong, S. The Bieberbach Conjecture: AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA,

1999; Volume 12.
38. Pommerenke, C. Über die Faberschen Polynome schlichter Funktionen. Math. Z. 1964, 85, 197–208. [CrossRef]
39. Pommerenke, C. Konform Abbildung und Fekete-Punkte. Math. Z. 1965, 89, 422–438. [CrossRef]
40. Pommerenke, C. Über die Verteilung der Fekete-Punkte. Math. Ann. 1967, 168, 111–127. [CrossRef]
41. Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull.

Iran. Math. Soc. 2015, 41, 1103–1119.
42. Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456.

114



Axioms 2023, 12, 585

43. Attiya, A.A.; Lashin, A.M.; Ali, E.E.; Agarwal, P. Coefficient bounds for certain classes of analytic functions associated with Faber
polynomial. Symmetry 2021, 13, 302. [CrossRef]
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B.A.; Taşar, N.; Sakar, F.M. Classes of

Harmonic Functions Related to

Mittag-Leffler Function. Axioms 2023,

12, 714. https://doi.org/10.3390/

axioms12070714

Academic Editor: Georgia Irina Oros

Received: 25 June 2023

Revised: 20 July 2023

Accepted: 21 July 2023

Published: 23 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Classes of Harmonic Functions Related to Mittag-Leffler Function
Abeer A. Al-Dohiman 1, Basem Aref Frasin 2,*, Naci Taşar 3 and Fethiye Müge Sakar 3
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Abstract: The purpose of this paper is to find new inclusion relations of the harmonic classHF ($, γ)
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the main results are also obtained.
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1. Introduction

Harmonic functions play important roles in many problem in applied mathematics
and they are also famous for their use in the study of minimal surfaces. Several differential
geometers such as Choquest [1], Kneser [2], Lewy [3] and Rado [4] studied the harmonic
functions. In 1984, Clunie and Sheil-Small [5] developed the basic theory of complex
harmonic univalent functions = defined in the open unit disk Ξ = {ξ : |ξ| < 1} for which
=(0) = =ξ(0)− 1 = 0.

LetHF be the family of all harmonic functions of the form = = φ + ψ, where

φ(ξ) = ξ +
∞

∑
ν=2

aνξν, ψ(ξ) =
∞

∑
ν=1

bνξν, |b1| < 1. (1)

are analytic in the open unit disk Ξ. Furthermore, let SHF denote the family of functions
= = φ + ψ that are harmonic univalent and sense preserving in Ξ. Note that the family
SHF = S if ψ is zero.

We also let the subclass S0
HF of SHF as

S0
HF =

{
= = φ + ψ ∈ SHF : ψ′(0) = b1 = 0

}
.

The classes S0
HF and SHF were first studied in [5].

A sense-preserving harmonic mapping = ∈ S0
HF is in the class SHF if the range =(Ξ)

is starlike with respect to the origin. The function = ∈ S∗HF is called a harmonic starlike
mapping in Ξ. Also, the function = defined in Ξ belongs to the class KHF if = ∈ S0

HF
and if =(Ξ) is a convex domain. The function = ∈ KHF is called harmonic convex in Ξ.
Analytically, we have

= ∈ S∗HF iff arg
(

∂

∂θ
=
(

reiθ
))
≥ 0,
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and

= ∈ KHF iff
∂

∂θ

{
arg
(

arg
(

∂

∂θ
=
(

reiθ
)))}

≥ 0,

ξ = reiθ ∈ Ξ, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1.

For definitions and properties of these classes, one may refer to [6] and for other
subclasses of harmonic functions one can see [7–17].

Let THF be the class of functions in SHF that may be expressed as = = φ + ψ, where

φ(ξ) = ξ −
∞

∑
ν=2
|aν|ξν, (2)

ψ(ξ) =
∞

∑
ν=1
|bν|ξν |b1| < 1.

For 0 ≤ τ < 1, let

NHF (τ) =
{
= ∈ HF : Re

(=′(ξ)
ξ ′

)
≥ τ, ξ = reiθ ∈ Ξ

}
,

and

RHF (τ) =
{
= ∈ HF : Re

(=′′(ξ)
ξ ′′

)
≥ τ, ξ = reiθ ∈ Ξ

}

where

ξ ′ =
∂

∂θ

(
ξ = reiθ

)
, ξ ′′ =

∂

∂θ

(
ξ ′
)
,=′(ξ) = ∂

∂θ
=
(

reiθ
)

,=′′ = ∂

∂θ

(
=′(ξ)

)
.

Define

T NHF (τ) = NHF (τ) ∩ THF and T RHF (τ) = RHF (τ) ∩ THF .

For more details about the classes THF , NHF (τ), T NHF (τ), RHF (τ) and T RHF (τ)
see [13,18].

In [19] Sokòl et al., introduced the classHF ($, γ) of functions = ∈ HF that satisfy

Re
{

φ′(ξ) + ψ′(ξ) + 3$ξ(φ′′(ξ) + ψ′′(ξ)) + $ξ3(φ′′′(ξ) + ψ′′′(ξ))
}
> γ,

for some $ ≥ 0 and 0 ≤ γ < 1. For $ = 0, we obtain the classHF (γ) which satisfy

Re
{

φ′(ξ) + ψ′(ξ)
}
> γ.

2. Mittag-Leffler Function

The two-parameter Mittag-Leffler Eρ,ε(ξ) (also known as the Wiman function [20])
was given by

Eρ,ε(ξ) =
∞

∑
ν=0

ξν

Γ(ρν + ε)
, (ξ, ρ, ε ∈ C, with Reρ > 0, Reε > 0), (3)

while in 1903, the one-parameter Mittag-Leffler Eρ(ξ) was introduced for ε = 1, and
given by

Eρ(ξ) =
∞

∑
ν=0

ξν

Γ(ρν + 1)
, (ξ, ρ ∈ C, with Reρ > 0).

As its special case, the function Eρ,ε(ξ) has many well known functions for example,

E0,0(ξ) = ∑∞
ν=0 ξν, E1,1(ξ) = eξ , E1,2(ξ) = eξ−1

ξ , E2,1(ξ
2) = coshξ, E2,1(−ξ2) = cosξ,
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E2,2(ξ2) = sinhξ
ξ , E2,2(−ξ2) = sinξ

ξ , E4(ξ) = 1
2 [cosξ

1
4 + coshξ

1
4 ] and E3(ξ) = 1

2 [e
ξ

1
3 +

2e−
1
2 ξ

1
3 cos(

√
3

2 ξ
1
3 )].

Putting ρ = 1
2 and ε = 1, we get

E 1
2 ,1(ξ) = eξ2

.er f c(−ξ) = eξ2

(
1 +

2√
π

∞

∑
ν=0

(−1)ν

ν!(2ν + 1)
ξ2ν+1

)
.

Numerous properties of the one-parameter Mittag-LefflerEρ(ξ) and the two-parameter
Mittag-Leffler Eρ,ε(ξ) can be found e.g., in [21–24].

It is clear that the two-parameter Mittag-Leffler function Eρ,ε(ξ) /∈ A. Thus, we have
the following normalization due to Bansal and Prajapat [22]:

χρ,ε(ξ) = ξΓ(ε)Eρ,ε(ξ) = ξ +
∞

∑
ν=2

Γ(ε)
Γ(ρ(ν− 1) + ε)

ξν,

where ρ,ε,ξ ∈ C, with Reρ > 0 and Reε > 0. In this study, we let ρ, ε to be real numbers
and ξ ∈ Ξ .

The study of operators plays an important role in the geometric function theory. Many
differential and integral operators can be written in terms of convolution of certain analytic
functions, (see [25–29]).

Very recently, and for the functions

χρ,ε(ξ) = ξ +
∞

∑
ν=2

Γ(ε)
Γ(ρ(ν− 1) + ε)

ξν, and χη,δ(ξ) =
∞

∑
ν=1

Γ(δ)
Γ(η(ν− 1) + δ)

ξν. (4)

Murugusundaramoorthy et al. [30] defined the following convolution operator Θ(=)
given by

F(ξ) = Θ=(ξ) = φ(ξ) ∗ χρ,ε(ξ) + ψ(ξ) ∗ χη,δ(ξ)

= ξ +
∞

∑
ν=2

Γ(ε)
Γ(ρ(ν− 1) + ε)

aνξν +
∞

∑
ν=1

Γ(δ)
Γ(η(ν− 1) + δ)

bνξν, (5)

where ρ, η, ε, δ are real with ρ, η, ε, δ 6∈ Z−0 = {0,−1,−2, . . .} ∪ {0}.
Inclusion relations between different subclasses of analytic and univalent functions

by using hypergeometric functions [10,31], generalized Bessel function [32–34] and by the
recent investigations related with distribution series [35–41], were studied in the literature.
Very recently, several authors have investigated mapping properties and inclusion results
for the families of harmonic univalent functions, including various linear and nonlinear
operators (see [42–48]).

The paper is organized as follows. In Section 3, we recall some lemmas, which will
be useful to prove the main results. Section 4 is devoted to establishing some inclusion
relations of the harmonic classHF ($, γ) the classes S∗HF , KHF , NHF (τ), and RHF (τ) by
applying the convolution operator Θ related with Mittag-Leffler function following the
work performed in [30]. Finally, in Section 5, several special cases of the main results are
also obtained when $ = 0.

3. Preliminary Lemmas

We shall use the following lemmas in our proofs.

118



Axioms 2023, 12, 714

Lemma 1 ([19]). Let = = φ + ψ where φ and ψ are given by (1) and suppose that $ ≥ 0,
0 ≤ γ < 1 and

∞

∑
ν=2

ν[1 + $
(

ν2 − 1
)
]|aν|+

∞

∑
ν=1

ν[1 + $
(

ν2 − 1
)
]|bν| ≤ 1− γ. (6)

then = is harmonic, sense-preserving univalent functions in Ξ and = ∈ HF ($, γ).
Moreover, if = ∈ HF ($, γ), then

|aν| ≤
1− γ

ν[1 + $(ν2 − 1)]
, ν ≥ 2, (7)

and
|bν| ≤

1− γ

ν[1 + $(ν2 − 1)]
, ν ≥ 1. (8)

Lemma 2 ([6]). Let = = φ + ψ where φ and ψ are given by (2) and suppose that 0 ≤ τ < 1. Then
= ∈ T NHF (τ) if and only if

∞

∑
ν=2

ν|aν|+
∞

∑
ν=1

ν|bν| ≤ 1− τ. (9)

Moreover, if = ∈ T NHF (τ), then

|aν| ≤
1− τ

ν
, ν ≥ 2, (10)

and
|bν| ≤

1− τ

ν
, ν ≥ 1. (11)

Lemma 3 ([18]). Let = = φ + ψ where φ and ψ are given by (2), and suppose that 0 ≤ τ < 1.
Then = ∈ T RHF (τ) if and only if

∞

∑
ν=2

ν2|aν|+
∞

∑
ν=1

ν2|bν| ≤ 1− τ. (12)

Moreover, if = ∈ T RHF (τ), then

|aν| ≤
1− τ

ν2 , ν ≥ 2 (13)

and
|bν| ≤

1− τ

ν2 , ν ≥ 1. (14)

Lemma 4 ([5]). If = = φ + ψ ∈ S∗HF where φ and ψ are given by (1) with b1 = 0, then

|aν| ≤
(2ν + 1)(ν + 1)

6
and |bν| ≤

(2ν− 1)(ν− 1)
6

. (15)

Lemma 5 ([5]). If = = φ + ψ ∈ KHF where φ and ψ are given by (1) with b1 = 0, then

|aν| ≤
ν + 1

2
and |bν| ≤

ν− 1
2

. (16)
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Throughout the sequence, we use the following:

χρ,ε(ξ) = ξ +
∞

∑
ν=2

Γ(ε)
Γ(ρ(ν− 1) + ε)

ξν; χρ,ε(1) = 1 +
∞

∑
ν=2

Γ(ε)
Γ(ρ(ν− 1) + ε)

, (17)

χ′ρ,ε(ξ) = 1 +
∞

∑
ν=2

νΓ(ε)
Γ(ρ(ν− 1) + ε)

ξν−1; χ′ρ,ε(1)− 1 =
∞

∑
ν=2

νΓ(ε)
Γ(ρ(ν− 1) + ε)

, (18)

χ
′′
ρ,ε(1) =

∞

∑
ν=2

ν(ν− 1)Γ(ε)
Γ(ρ(ν− 1) + ε)

, (19)

χ
′′′
ρ,ε(1) =

∞

∑
ν=2

ν(ν− 1)(ν− 2)Γ(ε)
Γ(ρ(ν− 1) + ε)

, (20)

and in general, we have

χ
(j)

ρ,ε(1) =
∞

∑
ν=2

ν(ν− 1)(ν− 2) · · · (ν− (j− 1))Γ(ε)
Γ(ρ(ν− 1) + ε)

, j = 1, 2, . . . (21)

4. Inclusion Relations of the Class HF($, γ)

In this section we shall prove that Θ(S∗HF ) ⊂ HF ($, γ) and Θ(KHF ) ⊂ HF ($, γ).

Theorem 1. Let $ ≥ 0, γ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If
[
2$
(

χ
(5)

ρ,ε(1) + χ
(5)

η,ε(1)
)
+ 23$χ

(4)

ρ,ε(1) + (67$ + 2)χ
(3)

ρ,ε(1)

+ (45$ + 9)χ
(2)

ρ,ε(1) + 6χ
′
ρ,ε(1)

+17$χ
(4)

η,ε(1) + (31$ + 2)χ
(3)

η,ε(1) + (9$ + 3)χ
(2)

η,ε(1)
]

≤ 6(1− γ), (22)

then
Θ(S∗HF ) ⊂ HF ($, γ).

Proof. Let = = φ + ψ ∈ S∗HF where φ and ψ are of the form (1) with b1 = 0. We need to
show that Θ(=) = F(ξ) ∈ HF ($, γ), which given by (5) with b1 = 0. In view of Lemma 1,
we need to prove that

Q($, ε, δ, η) ≤ 1− γ,

where

Q($, ε, δ, η) =
∞

∑
ν=2

ν
(

1 + $
(

ν2 − 1
))∣∣∣∣

Γ(ε)
Γ(ρ(ν− 1) + ε)

aν

∣∣∣∣

+
∞

∑
ν=2

ν
(

1 + $
(

ν2 − 1
))∣∣∣∣

Γ(δ)
Γ(η(ν− 1) + δ)

bν

∣∣∣∣. (23)
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Using the inequalities (15) of Lemma 4, we get

Q($, ε, δ, η)

≤ 1
6

[
∞

∑
ν=2

(2ν + 1)(ν + 1)
(

ν + $ν
(

ν2 − 1
)) Γ(ε)

Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

(2ν− 1)(ν− 1)
(

ν + $ν
(

ν2 − 1
)) Γ(δ)

Γ(η(ν− 1) + δ)

]

=
1
6

[
∞

∑
ν=2

[
2$ν5 + 3$ν4 + (2− $)ν3 + (3− 3$)ν2 + (1− $)ν

] Γ(ε)
Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

[
2$ν5 − 3$ν4 + (2− $)ν3 + (3$− 3)ν2 + (1− $)ν

] Γ(δ)
Γ(η(ν− 1) + δ)

]
(24)

Writing
ν2 = ν(ν− 1) + ν, (25)

ν3 = ν(ν− 1)(ν− 2) + 3ν(ν− 1) + ν, (26)

ν4 = ν(ν− 1)(ν− 2)(ν− 3) + 6ν(ν− 1)(ν− 2) + 7ν(ν− 1) + ν, (27)

and

ν5 = ν(ν− 1)(ν− 2)(ν− 3)(ν− 4) + 10ν(ν− 1)(ν− 2)(ν− 3) + 25ν(ν− 1)(ν− 2)

+ 15ν(ν− 1) + ν, (28)

in (24), we have

Q($, ε, δ, η)

≤ 1
6

[
∞

∑
ν=2

[2$ν(ν− 1)(ν− 2)(ν− 3)(ν− 4) + 23$ν(ν− 1)(ν− 2)(ν− 3)

+ (67$ + 2)ν(ν− 1)(ν− 2) + (45$ + 9)ν(ν− 1)

+ 6ν]
Γ(ε)

Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

[2$ν(ν− 1)(ν− 2)(ν− 3)(ν− 4) + 17$ν(ν− 1)(ν− 2)(ν− 3)

+(31$ + 2)ν(ν− 1)(ν− 2) + (9$ + 3)ν(ν− 1)]
Γ(δ)

Γ(η(ν− 1) + δ)

]

=
1
6

[
2$χ

(5)

ρ,ε(1) + 23$χ
(4)

ρ,ε(1) + (67$ + 2)χ
(3)

ρ,ε(1)

+ (45$ + 9)χ
(2)

ρ,ε(1) + 6χ
′
ρ,ε(1)

+2$χ
(5)

η,ε(1) + 17$χ
(4)

η,ε(1) + (31$ + 2)χ
(3)

η,ε(1) + (9$ + 3)χ
(2)

η,ε(1)
]
.

Now Q($, ε, δ, η) ≤ 1− γ if (22) holds.
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Theorem 2. Let $ ≥ 0, γ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

[$χ
(4)

ρ,ε(1) + 7$χ
(3)

ρ,ε(1) + (9$ + 1)χ
(2)

ρ,ε(1) + 2χ′ρ,ε(1) + $χ
(4)

η,ε + 5$χ
(3)

η,ε(1)

+ (5$− 1)χ
(2)

η,ε + 2($− 1)χ′η,ε(1)].

≤ 2(1− γ), (29)

then
Θ(KHF ) ⊂ HF ($, γ).

Proof. Let = = φ + ψ ∈ KHF where φ and ψ are of the form (2) with b1 = 0. We need to
show that Θ(=) = F(ξ) ∈ HF ($, γ) which given by (5) with b1 = 0. In view of Lemma 1,
we need to prove thatQ($, ε, δ, η)

Q($, ε, δ, η) ≤ 1− γ,

where Q($, ε, δ, η) as given in (23). Using the inequalities (16) of Lemma 5, we get

Q($, ε, δ, η) ≤ 1
2

[
∞

∑
ν=2

(ν + 1)
(

ν + $ν
(

ν2 − 1
)) Γε)

Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

(ν− 1)
(

ν + $ν
(

ν2 − 1
)) Γ(δ)

Γ(η(ν− 1) + δ)

]

=
1
2

[
∞

∑
ν=2

[
$ν4 + $ν3 + (1− $)ν2 + (1− $)ν

] Γ(ε)
Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

[
$ν4 − $ν3 + (1− $)ν2 + ($− 1)ν

] Γ(δ)
Γ(η(ν− 1) + δ)

]
.

Using the Equations (25)–(27), we have

Q($, ε, δ, η) ≤ 1
2

[
∞

∑
ν=2

[$ν(ν− 1)(ν− 2)(ν− 3) + 7$ν(ν− 1)(ν− 2)

+(9$ + 1)ν(ν− 1) + 2ν]
Γ(ε)

Γ(ρ(ν− 1) + ε)

]

+
1
2

∞

∑
ν=2

[$ν(ν− 1)(ν− 2)(ν− 3) + 5$ν(ν− 1)(ν− 2) + (5$− 1)ν(ν− 1)

2($− 1)ν]
Γ(δ)

Γ(η(ν− 1) + δ)

=
1
2
[$χ

(4)

ρ,ε(1) + 7$χ
(3)

ρ,ε(1) + (9$ + 1)χ
(2)

ρ,ε(1) + 2χ′ρ,ε(1) + $χ
(4)

η,ε + 5$χ
(3)

η,ε(1) + (5$− 1)χ
(2)

η,ε

+ 2($− 1)χ′η,ε(1)].

Now Q($, ε, δ, η) ≤ 1− γ if (29) holds.

The connection between T NHF (τ) andHF ($, γ) is given below in the next theorem.

Theorem 3. Let $ ≥ 0, γ, τ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

(1− τ)
[
$
(

χ
(2)

ρ,ε(1) + χ
(2)

η,ε(1)
)
+ $
(

χ′ρ,ε(1) + χ
′
η,ε(1)

)
+ (1− $)

(
χρ,ε(1) + χη,ε(1)− 2

)]

≤ 1− γ− |b1|,
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then
Θ(T NHF (τ)) ⊂ HF ($, γ).

Proof. Let = = φ + ψ ∈ T NHF (τ) where φ and ψ are given by (2). In view of Lemma 1, it
is enough to show that P($, ε, δ, η) ≤ 1− γ, where

P($, ε, δ, η) =
∞

∑
ν=2

(
ν + $ν

(
ν2 − 1

))∣∣∣∣
Γ(ε)

Γ(ρ(ν− 1) + ε)
aν

∣∣∣∣

+ |b1|+
∞

∑
ν=2

(
ν + $ν

(
ν2 − 1

))∣∣∣∣
Γ(δ)

Γ(η(ν− 1) + δ)
bν

∣∣∣∣. (30)

Using the inequalities (10) and (11) of Lemma 2, it follows that

P($, ε, δ, η) ≤ (1− τ)

[
∞

∑
ν=2

(
$ν2 + 1− $

) Γ(ε)
Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

(
$ν2 + 1− $

) Γ(δ)
Γ(η(ν− 1) + δ)

]
+ |b1|

= (1− τ)

[
∞

∑
ν=2

[$ν(ν− 1) + $ν + 1− $]
Γ(ε)

Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

[$ν(ν− 1) + $ν + 1− $]
Γ(δ)

Γ(η(ν− 1) + δ)

]
+ |b1|

= (1− τ)
[
$χ

(2)

ρ,ε(1) + $χ′ρ,ε(1) + (1− $)
(
χρ,ε(1)− 1

)

+$χ
(2)

η,ε(1) + $χ
′
η,ε(1) + (1− $)

(
χη,ε(1)− 1

)]
+ |b1|

≤ 1− γ,

by the given hypothesis.

Below we prove that Θ(T RHF (τ)) ⊂ HF ($, γ).

Theorem 4. Let $ ≥ 0, γ, τ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

(1− τ)


$
(

χ′ρ,ε(1) + χ′η,ε(1)
)
+

1∫

0

χρ,ε(s)
s

ds +
1∫

0

χη,ε(s)
s

ds




≤ 1− δ− |b1|,

then
Θ(T RHF (τ)) ⊂ HF ($, γ).
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Proof. Making use of Lemma 1, we need only to prove that P($, ε, δ, η) ≤ 1− γ, where
P($, ε, δ, η) as given in (30). Using the inequalities (13) and (14) of Lemma 3, it follows that

P($, ε, δ, η) =
∞

∑
ν=2

(
ν + $ν

(
ν2 − 1

))∣∣∣∣
Γ(ε)

Γ(ρ(ν− 1) + ε)
aν

∣∣∣∣

+ |b1|+
∞

∑
ν=2

(
ν + $ν

(
ν2 − 1

))∣∣∣∣
Γ(δ)

Γ(η(ν− 1) + δ)
bν

∣∣∣∣

≤ (1− τ)

[
∞

∑
ν=2

(
$ν +

1− $

ν

)
Γ(ε)

Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

(
$ν +

1− $

ν

)
Γ(δ)

Γ(η(ν− 1) + δ)

]

= (1− τ)


$χ′ρ,ε(1) +

1∫

0

χρ,ε(s)
s

dt + $χ′η,ε(1) +
1∫

0

χη,ε(s)
s

ds


+ |b1|

≤ 1− γ,

by given hypothesis.

Theorem 5. Let $ ≥ 0, γ, τ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

χρ,ε(1) + χη,ε(1) ≤ 3− |b1|
1− γ

then
Θ(HF ($, γ)) ⊂ HF ($, γ).

Proof. Using Lemma 1 and the inequalities (7) and (8) of Lemma 1, we obtain

P($, ε, δ, η) ≤ (1− γ)

[
∞

∑
ν=2

Γ(ε)
Γ(ρ(ν− 1) + ε)

+
∞

∑
ν=2

Γ(δ)
Γ(η(ν− 1) + δ)

]
+ |b1|

= (1− γ)
[
(χρ,ε(1)− 1) + (χη,ε(1)− 1)

]
+ |b1|

= (1− γ)[χρ,ε(1) + χη,ε(1)− 2] + |b1|
≤ 1− γ,

by the given condition and this completes the proof of the theorem.

5. Special Cases

Putting $ = 0 in Theorems 1–4, we obtain the following results.

Corollary 1. Let γ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

2
(

χ
(3)

ρ,ε(1) + χ
(3)

η,ε(1)
)
+ 9χ

(2)

ρ,ε(1) + 6χ
′
ρ,ε(1) + 3χ

(2)

η,ε(1) ≤ 6(1− γ),

then
Θ(S∗HF ) ⊂ HF (γ).

Corollary 2. Let γ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

[χ
(2)

ρ,ε(1)− χ
(2)

η,ε(1) + 2
(

χ′ρ,ε(1)− χ′η,ε(1)
)
]

≤ 2(1− γ), (31)
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then
Θ(KHF ) ⊂ HF (γ).

Corollary 3. Let γ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

(1− τ)
[(

χρ,ε(1) + χη,ε(1)
)
− 2
]
≤ 1− γ− |b1|,

then
Θ(T NHF (τ)) ⊂ HF (γ).

Corollary 4. Let γ ∈ [0, 1) and ρ, ε, η, δ 6∈ Z−0 . If

(1− τ)




1∫

0

χρ,ε(s)
s

dt +
1∫

0

χη,ε(s)
s

dt


 ≤ 1− γ− |b1|,

then
Θ(T RHF (τ)) ⊂ HF (γ).

6. Conclusions

Making use of the of the operator Θ given in (5) related with Mittag-Leffler function,
we found some inclusion relations of the harmonic class HF ($, δ) with other classes of
harmonic analytic function defined in the open disk. Further, and for $ = 0, several results
of the main results are given. Following this study, one can find new inclusion relations for
new harmonic classes of analytic functions using the operator Θ.
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Abstract: The aim of this paper is to introduce a class of starlike functions that are related to Bernoulli’s

numbers of the second kind. Let ϕBS(ξ) =
(

ξ
eξ−1

)2
= ∑∞

n=0
ξn B2

n
n! , where the coefficients of B2

n are
Bernoulli numbers of the second kind. Then, we introduce a subclass of starlike functions z such that
ξz′(ξ)
z(ξ)

≺ ϕBS(ξ). We found out the coefficient bounds, several radii problems, structural formulas,
and inclusion relations. We also found sharp Hankel determinant problems of this class.

Keywords: starlike functions; subordination; Bernoulli’s number of second kind; radii problems;
inclusion results; coefficient bounds; Hankel determinants

MSC: 30C45; 30C50

1. Introduction and Preliminaries

The Bernoulli numbers first appeared in the posthumous publications of Jakob Bernoulli
in (1713), and they were independently discovered by the Japanese mathematician Seki
Takakazu in 1712 [1]. We define the Bernoulli numbers of the k kind as follows:

ϕBS(ξ) =

(
ξ

eξ − 1

)k
=

∞

∑
n=0

ξnBk
n

n!
. (1)

Bernoulli numbers of the k kind are denoted by Bk
n. The function defined in (1) for k = 1 is

known as the Bernoulli function. The convexity of the function ϕBS given in (1), as well as
its reciprocal function

(
eξ − 1

)
/ξ are studied in [2,3]; see also [4].

Let H denote a class of analytic functions in E = [ξ ∈ C : |ξ| < 1]. Let An ⊂ H
represent the functions z having the series expansion z(ξ) = ξ + dn+1ξn+1 + dn+2ξn+2 +
· · · in E. The class A1 = A represents the function z with a power series representation:

z(ξ) = ξ +
∞

∑
n=2

dnξn, ξ ∈ E. (2)

The class S ⊂ A contains the univalent function z (i.e., z(ξ1) = z(ξ2), which implies
that ξ1 = ξ2 in E). Let z ∈ A. Then, z is in the S∗ of univalent starlike functions if, and
only if

Re
{

ξz′(ξ)
z(ξ)

}
> 0, ξ ∈ E.
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Let B ⊂ H represent a class of self maps v (Schwarz functions) in E with v(0) = 0.
Assume that z and g are analytic (holomorphic) in E. Then, z ≺ g and reads as z, which
is subordinated by g such that z(ξ) = g(v(ξ)) for ξ ∈ E and v ∈ B if the subordinating
function g is univalent. Then,

z(0) = g(0)⇔ z(E) ⊆ g(E).

In [5], the authors have introduced a subclass of S∗ defined by

S∗(ϕ) =

{
z ∈ A :

ξz′(ξ)
z(ξ)

≺ ϕ(ξ)

}
.

The function ϕ is one-to-one in E, and maps E onto a starlike domain with respect to
ϕ(0) = 1, with ϕ′(0) > 0 being symmetric about the real axis . We obtain subclasses of
S∗ by taking particular ϕ. The functions in class S∗[a, b] := S∗((1 + aξ)/(1 + bξ)) are
Janowski starlike functions [6]. Furthermore, S∗(λ) := S∗[1− 2λ,−1] represents starlike
functions of order λ ∈ [0, 1), whereas S∗(0) = S∗. The class

SS∗(β) := S∗[(1 + ξ)/(1− ξ)]β =
{
z ∈ A :

∣∣arg
(
ξz′(ξ)/z(ξ)

)∣∣ < βπ/2
}

, β ∈ (0, 1]

represents strongly starlike functions in E. The class SL∗ := S∗
(√

1 + ξ
)

contains starlike
functions related with a lemniscate of the Bernoulli; see [7]. The classes

S∗RL := S∗
(√

2−
(√

2− 1
)(

(1− ξ)/
(

1 + 2
(√

2− 1
)

ξ
))1/2

)

and S∗e := S∗(eξ) were studied in [8,9]. The class S∗C := S∗
(
1 + 4ξ/3 + 2ξ2/3

)
repre-

sents starlike functions related with a cardioid [10]. The classes S∗s := S∗(1 + sin ξ) and
S∗cos := S∗(cos ξ) are related with sine and cosine functions, respecitvely; see [11] and [12]
respectively. The class S∗∆ = S∗

(
ξ +

√
1 + ξ2

)
is related with the lune, see [13], whereas

the class BS∗(λ) := S∗
(
1 + ξ/

(
1− λξ2)), λ ∈ [0, 1] is related with the Booth lemniscate;

see [14]. The class S∗B := S∗(eeξ − 1) is related to the Bell numbers; see [15]. The class

S∗T = S∗(e(ξ+µ ξ2
2 )) is related to telephone numbers; see [16]. The class S∗BF = S∗

(
ξ/eξ − 1

)

contains starlike functions related with Bernoulli functions’ see [17].
For some recent work, we refer to [18–23] and the references therein.
We now define the class S∗BS associated with the Bernoulli numbers of the second kind.

Definition 1. Let z ∈ A. Then, z ∈ S∗BS if and only if

ξz′(ξ)
z(ξ)

≺
(

ξ

eξ − 1

)2
= ϕBS(ξ), ξ ∈ E.

In other words, a function z ∈ S∗BS can be written as

z(ξ) = ξ exp
(∫ ξ

0

ϕ(s)− 1
s

ds
)

, (3)

where ϕ is analytic and satisfies ϕ(ξ) ≺ ϕBS(ξ) = ( ξ
eξ−1 )

2 (ξ ∈ E).
To give some examples of functions in the class S∗BS, consider

ϕ1(ξ) = 1 +
ξ

4
, ϕ2(ξ) =

5 + 2ξ

5 + ξ
, ϕ3(ξ) =

3 + ξeξ

3
, ϕ4(ξ) = 1 +

ξ cos(ξ)
4

.
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The function ϕ0(ξ) = ( ξ
eξ−1 )

2 is univalent in E, ϕi(0) = ϕ0(0) (i = 1, 2, 3, 4) and ϕi(E) ⊂
ϕ0(E); it is easy to conclude that ϕi(ξ) ≺ ϕ0(ξ). The functions zi ∈ S∗BS corresponding to
every ϕi. respectively, are given as follows:

z1(ξ) = ξeξ/4, z2(ξ) = ξ

(
1 +

ξ

5

)
,

z3(ξ) = ξ exp
(

eξ − 1
3

)
, z4(ξ) = ξ exp

(
sin(ξ)

4

)
.

In particular, if ϕ0(ξ) =
(

ξ
eξ−1

)2
, then (3) takes the form

z0(ξ) = ξ exp
(∫ ξ

0

ϕ0(s)− 1
s

ds
)
= ξ − ξ2 +

17ξ3

24
− 29ξ4

72

+
377ξ5

1920
− 11ξ6

120
+ · · · . (4)

The above function acts as an extremal function for S∗BS.
The following theorem gives the sharp estimates for ϕBS:

Lemma 1. The function ϕBS(ξ) =
(

ξ
eξ−1

)2
satisfies

min
|ξ|=`

Re ϕBS(ξ) = ϕBS(`) = min
|ξ|=`
|ϕBS(ξ)|

max
|ξ|=`

Re ϕBS(ξ) = ϕBS(−`) = max
|ξ|=`
|ϕBS(ξ)|,

whenever `∈ (0, 1).

2. Inclusion and Radius Problems

Theorem 1. The class S∗BS satisfies the following inclusion relations:

1. If 0 ≤ λ ≤ 1
(e−1)2 , then S∗BS ⊂ S∗(λ).

2. If β ≥ ( e
e−1 )

2, then S∗BS ⊂ RS∗(1/β) ⊂ M(β).
3. S∗BS ⊂ SS∗(β), where β0 ≤ β ≤ 1, wherein β0 = 2h(y2)/π ≈ 0.6454469651m and h is

defined in (5).

Proof. (1) If z ∈ S∗BS, then ξz′(ξ)
z(ξ)

≺ ( ξ
eξ−1 )

2. According to Lemma 1, we have

min
|ξ|=1

Re
(

ξ

eξ − 1

)2
< Re

ξz′(ξ)
z(ξ)

< max
|ξ|=1

Re
(

ξ

eξ − 1

)2
;

therefore,

Re
ξz′(ξ)
z(ξ)

>
1

(e− 1)2 .

(2) Similarly,

Re
ξz′(ξ)
z(ξ)

<
e2

(e− 1)2 .

Thus, z ∈ S∗
(

1
(e−1)2

)
∩M

(
e2

(e−1)2

)
. Now, we have the following:

Re
z(ξ)

ξz′(ξ) >

(
e− 1

e

)2
.
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This implies that z ∈ RS∗(β) for β ≤
(

e−1
e

)2
. Identically, z ∈ RS∗(1/β) for β ≥

( e
e−1
)2.

Also, z ∈ RS∗(1/β) if and only if
∣∣∣∣
ξz′(ξ)
z(ξ)

− β

2

∣∣∣∣ <
β

2
,

which leads to Re(ξz′(ξ)/z(ξ)) < β. Therefore, S∗BS ⊂ RS∗(1/β) ⊂ M(β) whenever
β ≥

( e
e−1
)2.

(3) If z ∈ S∗BS, then

∣∣∣∣arg
ξz′(ξ)
z(ξ)

∣∣∣∣ < max
|ξ|=1

arg
(

ξ

eξ − 1

)2

= max
0≤y<2π

arctan
(

V
U

)
.

Let

h(y) = arctan
(

V
U

)
, (5)

where U and V are given as

U = cos(2y)




(
ecos(y)

)2
(cos(sin(y)))2 − 2 ecos(y) cos(sin(y)) + 1

−
(

ecos(y)
)2

(sin(sin(y)))2




+ sin(2y)
(

2
(

ecos(y)
)2

cos(sin(y)) sin(sin(y))− 2 ecos(y) sin(sin(y))
)

,

V = sin(2y)




(
ecos(y)

)2
(cos(sin(y)))2 − 2ecos(y) cos(sin(y)) + 1

−
(

ecos(y)
)2

(sin(sin(y)))2




− cos(2y)
(

2
(

ecos(y)
)2

cos(sin(y)) sin(sin(y))− 2ecos(y) sin(sin(y))
)

.

Here, h′(y) = 0 has y1 ≈ 1.409746460 and y2 ≈ 4.873438847 roots in [0, 2π]. In addition,
h′′(y2) ≈ −1.0988577. Hence, max0≤y<2π h(y) = h(y2) ≈ 1.013865722, and

∣∣∣arg ξz′(ξ)
z(ξ)

∣∣∣ ≤
πβ
2 ; that is, β ≥ 0.645186552. This implies that S∗BS ⊂ SS∗β.

Now, we discuss some radii problems for the class S∗BS. The following definitions and
lemmas are needed to establish the results. The class P represents the functions p of the
form

p(ξ) = 1 +
∞

∑
n=1

pnξn (6)

that are analytic in E such that Rep(ξ) > 0, ξ ∈ E. Let

Pn[a, b] :=

{
p(ξ) = 1 +

∞

∑
k=n

cnξn : p(ξ) ≺ 1 + aξ

1 + bξ
, −1 ≤ b < a ≤ 1

}
.

In particular, Pn(λ) := Pn[1− 2λ,−1] , and Pn := Pn(0). Let S∗n[a, b] = An ∩ S∗[a, b], and
S∗n(λ) := S∗n[1− 2λ,−1]. Also, let

S∗BS,n := An ∩ S∗BS, S∗n(λ) := An ∩ S∗(λ), S∗L,n := An ∩ S∗L.

Additionally,
Sn := {z ∈ An : z(ξ)/ξ ∈ Pn},
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and

CSn(λ) :=
{
z ∈ An :

z(ξ)

g(ξ)
∈ Pn, g ∈ S∗n(λ)

}
;

see [24].

Lemma 2 ([25]). If p ∈ Pn(λ), then for |ξ| = `,
∣∣∣∣
ξ p′(ξ)
p(ξ)

∣∣∣∣ ≤
2(1− λ)n`n

(1− `n)(1 + (1− 2λ)`n)
.

Lemma 3 ([26]). Let p ∈ P. Then,

|jp3
1 − kp1 p2 + lp3| ≤ 2|j|+ 2|k− 2j|+ 2|j− k + l|.

Lemma 4 ([27]). If p ∈ Pn[a, b], then for |ξ| = `,
∣∣∣∣p(ξ)−

1− ab`2n

1− b2`2n

∣∣∣∣ ≤
(a− b)`n

1− b2`2n .

If p ∈ Pn(λ), then for |ξ| = `,
∣∣∣∣p(ξ)−

(1 + (1− 2λ))`2n

1− `2n

∣∣∣∣ ≤
2(1− λ)`n

1− `2n .

In the following lemmas, we find disks centered at (ν, 0) and (1, 0) of the largest and
the smallest radii, respectively, such that fBS := ϕBS(E) lies in the disk with the smallest
radius and contains the largest disk.

Lemma 5. Let
(

1
e−1

)2
≤ ν ≤

( e
e−1
)2. Then,

{w ∈ C : |w− ν| < `ν} ⊂ fBS ⊂
{

w ∈ C : |w− 1| <
(

e
e− 1

)2
}

,

where

`ν =





ν−
(

1
e−1

)2
, 1

(e−1)2 ≤ ν ≤ e2+1
2(e−1)2 ,

( e
e−1
)2 − ν, e2+1

2(e−1)2 ≤ ν ≤
( e

e−1
)2.

Proof. Let cos(y) = $ and sin(y) = ς. Then, the square of the distance from the boundary
fBS to the point (ν, 0) is given by

ψ(y) =
(

A
(1− 2e$cos(ς) + (e$)2)2 − ν

)2
+

(
B

(1− 2e$cos(ς) + (e$)2)2

)2
,

where

A = cos(2y)
{

1− 2e$ cos(ς) + (e$)2 cos(2ς)
}
+ 2e${e$ cos(ς)− 1} sin(ς) sin(2y),

B = sin(2y)
{

1− 2e$ cos(ς) + (e$)2 cos(2ς)
}
− 2e${e$ cos(ς)− 1} sin(ς) cos(2y).

To show that |w− ν| <`ν is largest disk contained in fBS, it is enough to show that
the min

0≤≤2π
ψ(y) = `ν. Since ψ(y) = ψ(−y), it is enough to take the range 0 ≤ y ≤ π.
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Case 1: When 1
(e−1)2 ≤ ν < e2

(2e2−8e+9)(e−1)2 , then ψ′(y) = 0 has 0 and π roots. In

addition, ψ′(y) > 0 for y ∈ (0, π). Thus,

min
0≤`≤π

ψ(y) = min{ψ(0), ψ(π)} = ψ(0).

Hence,

`ν = min
0≤y≤π

√
ψ(y) =

√
ψ(0) =

1
(e− 1)2 − ν.

Case 2: When e2

(2e2−8e+9)(e−1)2 < ν ≤ e2

(e−1)2 , then ψ′(y) = 0 has 0, yν, and π roots, where

yν depends on ν. In addition, ψ′(y) > 0 for y ∈ (0, yν), and ψ′(y) < 0 when y ∈ (yν, π).
Therefore, ψ(y) has minima at 0 or π. We also see that ψ(0) < ψ(π) for e2

(2e2−8e+9)(e−1)2 <

ν ≤ e2+1
2(e−1)2 and ψ(0) > ψ(π) for e2+1

2(e−1)2 < ν ≤
( e

e−1
)2.

Thus, the first part of the proof is completed.
Now, for the smallest disc that contains fBS, the function ψ(y) for ν = 1 attains its

maximum value at π. Thus, the disk with the smallest radius that contains fBS has a radius
of
( e

e−1
)2.

Theorem 2. The sharp RS∗BS,n
for Sn is

RS∗BS,n
(Sn) =

(
e2 − 2e√

n2(e− 1)4 + (e2 − 2e) + n(e− 1)2

)1/n

.

Proof. Consider a function h̄(ξ) ∈ Pn such that h̄(ξ) = z(ξ)/ξ. Now, we have the
following:

ξz′(ξ)
z(ξ)

− 1 =
ξ h̄′(ξ)
h̄(ξ)

.

From Lemma 2, we have
∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ =

∣∣∣∣
ξ h̄′(ξ)
h̄(ξ)

∣∣∣∣ ≤
2n`n

1− `2n .

From Lemma 4, the map of |ξ| ≤` under ξz′/z lies in the fBS if the following is satisfied:

2n`n

1− `2n ≤ 1− 1
(e− 1)2 .

This is equivalently written as

((e− 1)2 − 1)`2n + 2n(e− 1)2`n + 1− (e− 1)2 ≤ 0.

Thus, the S∗BS,n-radius of the Sn is the root ` ∈(0, 1) of

((e− 1)2 − 1)`2n + 2n(e− 1)2`n + 1− (e− 1)2 = 0;

that is,

RS∗BS,n
(Sn) =

(
e(e− 2)

n(e− 1)2 +
√

1 + (n2 + 1)(e− 1)4 − 2(e− 1)2

)1/n

.

Consider z0(ξ) = ξ(1+ ξn)/1− ξn. Then, h̄0(ξ) = z0(ξ)/ξ = (1+ ξn)/(1− ξn) > 0.
Thus, z0 ∈ Sn, and ξz′0(ξ)/z0(ξ) = 1 + 2nξn/(1− ξ2n). This is beacuse at ξ = RS∗BS,n

, we
have

ξz′0(ξ)
z0(ξ)

− 1 =
2nξn

1− ξ2n = 1− 1
(e− 1)2 .
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Therefore, z0 gives a sharp result. Hence, the proof is completed.

Theorem 3. Let

R1 =

(
4e− e2 − 1

2(e− 1)2(1− 2λ) + e2 + 1

) 1
2n

,

R2 =

(
(e− 1)2 − 1

(1 + n− λ)(e− 1)2 +
√

1 + (2n(1− λ) + λ2 + n2)(e− 1)4 − 2(e− 1)2λ

) 1
n

,

R3 =

(
e2

(1 + n− λ)(e− 1)2 +
√

1 + (1 + n− λ)2(e− 1)4 − (1− 2λ)e4

) 1
n

.

Then, a sharp S∗BS,n-radius for the class CSn(λ) is

RS∗BS,n
(CSn(λ)) =

{
R2, i f R2 ≤ R1,
R3, i f R2 > R1.

Proof. Define a function h̄(ξ) = z(ξ)/g(ξ), where g ∈ S∗n(λ). Then, h̄ ∈ Pn, and
ξg′(ξ)/g(ξ)∈ Pn(λ). From the definition of h̄, we have

ξz′(ξ)
z(ξ)

=
ξg′(ξ)
g(ξ)

+
ξ h̄′(ξ)
h̄(ξ)

.

From Lemmas 2 and 3, we see that
∣∣∣∣
ξz′(ξ)
z(ξ)

− 1 + (1− 2λ)`2n

1− `2n

∣∣∣∣ ≤
2(1 + n− λ)`n

1− `2n . (7)

Now, we find the values R1, R2 and R3 for 0 < ` < 1 and 0 ≤ λ < 1. Firstly, we find
R1. For ` ≤ R1, this can be found if and only if

1 + (1− 2λ)`2n

1− `2n ≤ e2 + 1

2(e− 1)2 .

This implies that

` ≤
(

4e− e2 − 1

2(e− 1)2(1− 2λ) + e2 + 1

) 1
2n

.

Now, we obtain R2. For this, we must have

2(1 + n− λ)`n

1− `2n ≤ 1 + (1− 2λ)`2n

1− `2n − 1
(e− 1)2 .

This implies that

` ≤ (e− 1)2 − 1
(1 + n− λ)(e− 1)2 +

√
1 + (−2nλ + λ2 + 2n + n2)(e− 1)4 − 2(e− 1)2λ

.

For R3, we have
2(1 + n− λ)`n

1− `2n ≤
(

e
e− 1

)2
− 1 + (1− 2λ)`2n

1− `2n .

This implies that

` ≤ e2

(1 + n− λ)(e− 1)2 +
√

1 + (1 + n− λ)2(e− 1)4 − (1− 2λ)e4
.
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Theorem 4. The S∗BS,n-radius for S∗n[a, b] is

RS∗BS,n
(S∗n[a, b]) =

{
min{1; `1}, −1 ≤ b ≤ 0 < a ≤ 1,
min{1; `2}, 0 < b < a ≤ 1,

where

`1 =

(
2e− 1

(e− 1)2a− be2

)1/n

,

and

`2 =

(
e(e− 2)

a(e− 1)2 − b

)1/n
.

Proof. Let z ∈ S∗n[a, b]. Then, from Lemma 3, we can write
∣∣∣∣
ξz′(ξ)
z(ξ)

− C
∣∣∣∣ ≤

(a− b)`n

1− b2`2n , (8)

where

C =
1− ab`2n

1− b2`2n , |ξ| = `.

For b < 0, we see that C ≥ 1. Also by using Lemma 4, z ∈ S∗BS,n if

1 + (a− b)`n − ab`2n

1− b2`2n ≤ e2

(e− 1)2 ,

which is equivalent to

` ≤
(

2e− 1

(e− 1)2a− be2

)1/n

= `1.

Furthermore, if b = 0, then C = 1. From (8), we have
∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤ a`n, (0 < a ≤ 1).

By using Lemma 4 with a = 1, this gives ` ≤
(

e(e−2)
a(e−1)2

)1/n
for z ∈ S∗BS,n. We see that

C < 1 for 0 < b < a ≤ 1. Thus, from Lemma 4 and (8), we have z ∈ S∗BS,n if

(a− b)`n

1− b2`2n ≤
1− ab`2n

1− b2`2n −
1

(e− 1)2 ,

or, equivalently, if

` ≤
(

e(e− 2)
a(e− 1)2 − b

)1/n
= `2.

This completes the result.

Theorem 5. Let −1 < b < a ≤ 1. If either

(a) (1− b) ≤ (e− 1)2(1− a) and 2(1− b2) ≤ (1− ab)(e− 1)2 < (1− b2)(1 + e2) or if
(b) (a + 1)(e − 1)2 ≤ e2(1 + b) and (1− b2)

(
1 + e2) ≤ 2(1− ab)(e − 1)2 ≤ 2e2(1− b2)

hold, then S∗n[a, b] ⊂ S∗BS,n.
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Proof. (a) Let p(ξ) = ξz′(ξ)/z(ξ). From Lemma 3, z ∈ S∗n[a, b] if
∣∣∣∣p(ξ)−

1− ab
1− b2

∣∣∣∣ ≤
a− b

1− b2 .

In connection with Lemma 4, z ∈ S∗n[a, b] if

a− b
1− b2 ≤

1− ab
1− b2 −

1
(e− 1)2 ,

and
1

(e− 1)2 ≤
1− ab
1− b2 ≤

1
2

1 + e2

(e− 1)2 ,

which, upon simplification, reduce to (a).
(b) Let p(ξ) = ξz′(ξ)/z(ξ). Since z ∈ S∗n[a, b], thus, in the view of Lemma 3,

∣∣∣∣p(ξ)−
1− ab
1− b2

∣∣∣∣ ≤
a− b

1− b2 .

By using Lemma 4, we note that z ∈ S∗n[a, b] if the following is satisfied:

a− b
1− b2 ≤

e2

(e− 1)2 −
1− ab
1− b2 ,

and
1
2

(
1 + e2

(e− 1)2

)
≤ 1− ab

1− b2 ≤
e2

(e− 1)2 ,

which reduced to the conditions (b).

Theorem 6. The sharp radii for S∗L, S∗RL, S∗e , and S∗lim are

RS∗BS
(S∗L) =

(e−1)4−1
(e−1)4 ≈ 0.889,

RS∗BS
(S∗RL) =

(5+4
√

2)(e−1)4+(−6
√

2−8)(e−1)2+3+2
√

2
(5+4

√
2)(e−1)4+(8+4

√
2)(e−1)2+2+2

√
2
≈ 0.87193,

RS∗BS
(S∗e) = 2− 2 ln(e− 1) ≈ 0.917350,

RS∗BS
(S∗lim) =

√
2(e−2)
e−1 ≈ 0.591174.

Proof. (1) For z ∈ S∗L, we have

ξz′(ξ)
z(ξ)

=
√

1 + v(ξ).

By the Schwarz Lemma |v(ξ)| ≤ |ξ|, we thus have
∣∣∣
√

1 + v(ξ)− 1
∣∣∣ ≤ 1−

√
1− `. Thus,

for |ξ| = `, we have ∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤ 1−

√
1− `.

By Lemma 4, we have 1−
√

1− ` ≤ 1− 1
(e−1)2 . Consider z0(ξ) =

4ξ exp{2(√1+ξ−1)}
(1+
√

1+ξ)2 , which

is in S∗L and ξz′0(ξ)
z0(ξ)

=
√

1 + ξ = 1
(e−1)2 at RS∗BS

(S∗L). Hence, the sharpness is verified.
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(2) Let z ∈ S∗RL. Then, for |ξ| =`, we have

∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤ 1−

√
2 + (

√
2− 1)

√
1 + `

1− 2(
√

2− 1)`

≤ 1− 1
(e− 1)2

provided that

` ≤ (5 + 4
√

2)(e− 1)4 + (−6
√

2− 8)(e− 1)2 + 3 + 2
√

2
(5 + 4

√
2)(e− 1)4 + (8 + 4

√
2)(e− 1)2 + 2 + 2

√
2

= RS∗BS
(S∗RL).

Consider the function z1 defined by

z1(ξ) = ξ exp
(∫ ξ

0

ϕ0(t)− 1
t

dt
)

,

where

ϕ0(ξ) =
√

2− (
√

2− 1)

√
1− ξ

1 + 2(
√

2− 1)ξ
.

At ξ = RS∗BS
(S∗RL), we have

ξz′1(ξ)
z1(ξ)

=
√

2− (
√

2− 1)

√
1− ξ

1 + 2(
√

2− 1)ξ
=

1
(e− 1)2 .

Hence, the sharpness is verified.
(3) z ∈ S∗e , so we have

∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤ eξ − 1 ≤ e2

(e− 1)2 − 1.

The result is sharp for z2 such that ξz′2(ξ)
z2(ξ)

= eξ .

(4) Suppose that z ∈ (S∗lim); then ξz′(ξ)
z(ξ)

≺ 1 +
√

2ξ + ξ2

2 . Thus, for |ξ| =`, we can it
write as ∣∣∣∣

ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ =

∣∣∣∣1 +
√

2ξ +
ξ2

2
− 1
∣∣∣∣ ≤
√

2`− `2

2
≤ 1− 1

(e− 1)2 ,

which is satisfied for ` ≤
√

2(e−2)
e−1 . Consider

z3(ξ) = ξ exp
4
√

2ξ + ξ2

4
.

Since ξz′3(ξ)
z3(ξ)

= 1+
√

2ξ + ξ2

2 , it follows that z3 ∈ (S∗lim) and at ξ = RS∗BS
(S∗lim), so we have

ξz′3(ξ)
z3(ξ)

= 1
(e−1)2 .

Consider the families:

F1 :=
{
z ∈ An : Re

(
z(ξ)

g(ξ)

)
> 0 and Re

(
g(ξ)

ξ

)
> 0, g ∈ An

}
,

F2 :=
{
z ∈ An : Re

(
z(ξ)

g(ξ)

)
> 0 and Re

(
g(ξ)

ξ

)
> 1/2, g ∈ An

}
,
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and

F3 :=
{
z ∈ An :

∣∣∣∣
z(ξ)

g(ξ)
− 1
∣∣∣∣ < 1 and Re

(
g(ξ)

ξ

)
> 0, g ∈ An

}
.

Theorem 7. The sharp radii for functions in the families F1, F2, and F3 respectively, are:

RS∗BS,n
(F1) =

(
e(e−2)

2n(e−1)2+
√

1+(4n2+1)(e−1)4−2(e−1)2

)1/n
,

RS∗BS,n
(F2) =

(
2e(e−2)

3n(e−1)2+
√

(9n2+4n+4)(e−1)4−4(n+2)(e−1)2+4

)1/n
,

RS∗BS,n
(F3) =

(
2e(e−2)

3n(e−1)2+
√

(9n2+4n+4)(e−1)4−4(n+2)(e−1)2+4

)1/n
.

Proof. (1) Let z ∈ F1 and define p, h̄ : E → C by p(ξ) = g(ξ)
ξ and h̄(ξ) = z(ξ)

g(ξ) . Then,
clearly, p, h̄ ∈ Pn, since z(ξ) = ξ p(ξ)h̄(ξ). By Lemma 2, and by combining the above
inequalities, we have

∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤

4n`n

1− `2n ≤ 1− 1
(e− 1)2 .

After some simplification, we arrive at

` ≤
(

e(e− 2)
2n(e− 1)2 +

√
1 + (4n2 + 1)(e− 1)4 − 2(e− 1)2

)1/n

= RS∗BS,n
(F1).

To verify the sharpness of result, consider the functions defined by

z4(ξ) = ξ

(
1 + ξn

1− ξn

)2
and g0(ξ) = ξ

(
1 + ξn

1− ξn

)
.

Then, clearly Re
(
z4(ξ)
g0(ξ)

)
> 0, and Re

(
g0(ξ)

ξ

)
> 0. Hence, z0 ∈ F1. We see that at

ξ = RS∗BS,n
(F1)eiπ/n as follows:

ξz′4(ξ)
z4(ξ)

= 1 +
4nξn

1− ξ2n =
1

(e− 1)2 .

Hence, the sharpness is satisfied.
(2) Let z ∈ F2. Define p, h̄ : E → C by p(ξ) = g(ξ)

ξ and h̄(ξ) = z(ξ)
g(ξ) . Then, p ∈ Pn,

and h̄ ∈ Pn(1/2). Since z(ξ) = ξ p(ξ)h̄(ξ), then according to Lemma 2, we have

∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤

3n`n + n`2n

1− `2n ≤ 1− 1
(e− 1)2 ,

which implies that

` ≤
(

2e(e− 2)
3n(e− 1)2 +

√
9n2(e− 1)4 + 4[(n + 1)(e− 1)2 − 1][e(e− 2)]

)1/n

= RS∗BS,n
(F2).

Thus, z ∈ S∗BS,n for ` ≤ RS∗BS,n
(F2).

For sharpness, consider the following:

z5(ξ) =
ξ(1 + ξn)

(1− ξn)2 and g1(ξ) =
ξ

1− ξn .
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Then clearly Re
(
z5(ξ)
g1(ξ)

)
> 0, and Re

(
g1(ξ)

ξ

)
> 1

2 . Hence, z ∈ F2. Now, at ξ = RS∗BS,n
(F2)

ξz′5(ξ)
z5(ξ)

= 1 +
3nξn + nξ2n

1− ξ2n =
1

(e− 1)2 .

Hence, the sharpness is satisfied.
(3) Let z ∈ F3. Define p, h̄ : E→ C by p(ξ) = g(ξ)

ξ and h̄(ξ) = g(ξ)
z(ξ)

. Then, p ∈ Pn and

∣∣∣∣
1

h̄(ξ)
− 1
∣∣∣∣ < 1 ⇐⇒ Re(h̄(ξ)) > 1/2;

therefore, h̄ ∈ Pn(1/2). Since z(ξ)h̄(ξ) = ξ p(ξ), then according to Lemma 2, we have

∣∣∣∣
ξz′(ξ)
z(ξ)

− 1
∣∣∣∣ ≤

3n`n + n`2n

1− `2n ≤ 1− 1
(e− 1)2 .

This implies that

` ≤
(

2e(e− 2)
3n(e− 1)2 +

√
(9n2 + 4n + 4)(e− 1)4 − 4(n + 2)(e− 1)2 + 4

)1/n

= RS∗BS,n
(F3).

Thus, z ∈ S∗BS,n for ` ≤ RS∗BS,n
(F3). For sharpness, consider the following:

z6(ξ) =
ξ(1 + ξn)2

1− ξn and g2(ξ) =
ξ(1 + ξn)

1− ξn .

We see that

Re
(

g2(ξ)

z6(ξ)

)
= Re

(
1

1 + ξn

)
>

1
2

,

and

Re
(
z6(ξ)

ξ

)
= Re

(
1 + ξn

1− ξn

)
> 0.

Therefore, z6 ∈ F3. A computation shows that at ξ = RS∗BS,n
(F3)eiπ/n, which comes

out to
ξz′6(ξ)
z6(ξ)

− 1 =
3nξn + nξ2n

1− ξ2n = 1− 1
(e− 1)2 .

Hence, the sharpness is satisfied.

3. Coefficient and Hankel Determinant Problems for the Class S∗BS

Pommerenke [28] was the first to introduce the qth Hankel determinant for analytic
functions, and it is stated as follows:

Hq,n(z) :=

∣∣∣∣∣∣∣∣∣

dn dn+1 . . . dn+q−1
dn+1 dn+2 . . . dn+q
...

... . . .
...

dn+q−1 dn+q . . . dn+2q−2

∣∣∣∣∣∣∣∣∣
, (9)

where n, q ∈ N. We note that

H2,1(z) = d3 − d2
2, H2,2(z) = d2d4 − d2

3.

In this section, we focus on obtaining sharp coefficient bounds and bounds on H2,1(z)
and H2,2(z).

We will use the following results related to the class P.
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Lemma 6 ([5]). Let p ∈ P and be of the form (6). Then for v, a complex number

|p2 − vp2
1| ≤ 2 max(1, |2v− 1|).

Lemma 7 ([29,30]). Let p ∈ P and be of the form (6) such that |ρ| ≤ 1, and |η| ≤ 1. Then,

2p2 = p2
1 + ρ(4− p2

1), (10)

4p3 = p3
1 + 2(4− p2

1)p1ρ− (4− p2
1)p2

1ρ + 2(4− p2
1)(1− |ρ|2)η, (11)

Lemma 8 ([31]). Let v ∈ B be given by v(z) =
∞
∑

n=0
cnξn, and thus

ψ(u, v) =
∣∣∣c3 + µ1c1c2 + µ2c3

1

∣∣∣.

Then, ψ(u, v) ≤ |ν| if (u, v) ∈ D6, where

D6 =

{
(u, v) : 2 ≤ |µ| ≤ 4, ν ≥ 1

12

(
µ2 + 8

)}
.

Lemma 9 ([32]). Let E := {ρ ∈ C : |ρ| ≤ 1}, and, for j, k, and l ∈ R, let

Y(j, k, l) := max
{
|j + kρ + lρ2|+ 1− |ρ|2 : ρ ∈ E

}
. (12)

If jl ≥ 0, then

Y(j, k, l) =




|j|+ |k|+ |l|, |k| ≥ 2(1− |l|),
1 + |j|+ k2

4(1− |l|) , |k| < 2(1− |l|).

If jl < 0, then

Y(j, k, l) =





1− |j|+ k2

4(1− |l|) , −4jl
(
l−2 − 1

)
≤ k2 ∧ |k| < 2(1− |l|),

1 + |j|+ k2

4(1 + |l|) , k2 < min
{

4(1 + |l|)2,−4jl
(
l−2 − 1

)}
.

R(j, k, l), otherwise.

In such as case,

R(j, k, l) =





|j|+ |k| − |l|, |l|(|k|+ 4|j|) ≤ |jk|,
1 + |j|+ k2

4(1 + |l|) , |jk| < |l|(|k| − 4|j|) ≤ |jk|.

|l|+ |j|
√

1− k2

4jl
, otherwise.

Theorem 8. Let z ∈ S∗BS and be of the form (2). Then,

|d2| ≤ 1, |d3| ≤
17
24

, |d4| ≤
29
72

.

These bounds are the best possible.

Proof. If z ∈ S∗BS, then
ξz′(ξ)
z(ξ)

=

(
v(ξ)

ev(ξ) − 1

)2

,
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where v ∈ B. The class B consists of Schwarz functions v that are analytic in E, with
v(0) = 0, and |v(ξ)| ≤ |ξ|. Let p be of the form (6). Then,

v(ξ) =
p(ξ)− 1
p(ξ) + 1

.

Now by using (2), we can write out the following:

ξz′(ξ)
z(ξ)

= 1 + d2ξ + (2d3 − d2
2)ξ

2 + (3d4 − 3d2d3 + d3
2)ξ

3

+(4d5 − 2d2
3 − 4d2d4 + 4d2

2d3 − d4
2)ξ

4 + · · · . (13)

In addition,

(
µ(ξ)

eµ(ξ) − 1

)2

= 1− 1
2

p1ξ +

(
29
96

p2
1 −

1
4

p2

)
ξ2 +

(−109
576

p3
1 +

13
36

p1 p2 −
1
6

p3

)
ξ3

+

(
11011
92160

p4
1 −

215
576

p2 p2
1 +

25
96

p1 p3 +
23

192
p2

2 −
1
8

p4

)
ξ4 + · · · . (14)

From (13) and (14), we obtain

d2 =
1
2

p1, (15)

d3 =
29
96

p2
1 −

1
4

p2, (16)

d4 =
−109
576

p3
1 +

13
36

p1 p2 −
1
6

p3. (17)

From (15), we have |d2| = 1
2 |p1| ≤ 1. From (16), we can write out the following:

|d3| =
1
4

∣∣∣∣p2 −
29
24

p2
1

∣∣∣∣.

An application of Lemma 6 for v = 29
24 gives the required bound.

The function v ∈ B can be written as a power series:

v(z) =
∞

∑
n=1

cnzn, z ∈ E. (18)

Since p ∈ P, therefore,

p(z) =
1 + v(z)
1−v(z)

.

By comparing the coefficients at powers of z in

[1−v(z)]p(z) = 1 + v(z),

we obtain
p1 = 2c1, p2 = 2c2 + 2c2

1, p3 = 2c3 + 4c1c2 + 2c3
1.

By putting these values in (17), we obtain

d4 = −1
3

(
c3 + µ1c1c2 + µ2c3

1

)
,
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where µ1 = − 7
3 , and µ2 = 29

24 . Now, by using Lemma 8, we have 2 ≤ |µ1| ≤ 4, and
µ1 − 1

12 (µ2 + 8) = 19
216 ; therefore,

|d4| ≤
1
3
|µ2| =

29
72

.

The equalities in each coefficient |d2|, |d3|, and |d4| are respectively obtained by taking the
following:

z1(ξ) = ξ exp

(∫ ξ

0

( t
et−1 )

2 − 1

t
dt

)
= ξ − ξ2 +

17
24

ξ3 − 29
72

ξ4 + · · · . (19)

Theorem 9. Let z ∈ S∗BS and have the series representation given in (2). Then,

|d3 − d2
2| ≤

1
2

. (20)

Theorem 10. Let z ∈ S∗BS and have the series representation given in (2). Then,

H2,2(z) = |d2d4 − d2
3| ≤

521
576

. (21)

The equality is obtained by the z1 given in (19).

Proof. Using (15)–(17), we obtain

H2,2(z) = d2d4 − d2
3 = − 571

3072
p4

1 +
191
576

p2
1 p2 −

1
12

p1 p3 −
1

16
p2

2. (22)

As we can see that the functional H2,2(z) and the class S∗BS are rotationally invariant, we
may therefore take p := p1 such that p ∈ [0, 2]. Then, by using Lemma 7, and after some
computations, we may write out the following:

H2,2(z) = − 571
9216

p4 +
107
1152

p2(4− p2)ρ− 1
192

(4− p2)
(

12− 7p2
)

ρ2

− 1
24

p(4− p2)
(

1− |ρ|2
)

η,

where ρ and η satisfy the relation |ρ| ≤ 1 and |η| ≤ 1.

Firstly, we consider the case when p = 0. Then, |H2,2(z)| =
∣∣∣− 1

4 ρ2
∣∣∣ ≤ 1

4 . Next, we

assume that p = 2; then, |H2,2(z)| = 521
576 . Now suppose that p ∈ (0, 2); then,

|H2,2(z)| ≤ 1
24

p(4− p2)Φ(j, k, l),

where
Φ(j, k, l) =

∣∣∣j + kρ + lρ2
∣∣∣+ 1− |ρ|2, ρ ∈ E,

with j =
521p3

384(4− p2)
, k = − 107p

48 , and l =
(
12− 7p2)

8p
; then clearly,

jl =
521p2(12− 7p2)

3072(4− p2)
≥ 0, for p ∈

[√
12
7

, 2

)
. (23)

142



Axioms 2023, 12, 764

In addition,

|k| − 2(1− |l|) = 23p2 − 96p + 144
48p

> 0 p ∈
[√

12
7

, 2

)

so that |k| > 2(1− |l|), and by applying Lemma 9, we can obtain

|H2,2(z)| ≤ 1
24

p(4− p2)(|j|+ |k|+ |l|) = g(p),

where
g(p) =

1
9216

p4 +
24
288

p2 +
1
4

. (24)

Clearly, g′(p) > 0, and so

max g(p) = g(2) =
521
576

.

We also see from (23) that

jl =
521p2(12− 7p2)

3072(4− p2)
< 0, for p ∈

(
0,

√
12
7

)
.

Thus,

k2 − 4jl
(

l−2 − 1
)
=

1
576

p2(889p2 − 20280)
7p2 − 12

< 0, p ∈
(

0,

√
12
7

)
.

This shows that −4jl
(
l−2 − 1

)
≤ k2 ∧ |k| < 2(1− |l|). In addition,

Φ(p) = 4(1 + |l|)2 + 4jl
(

l−2 − 1
)

=
(7p− 6)

(
1295p5 − 4266p4 + 2688p3 + 2073p2 + 2304p− 13824

)

p2(12− 7p2)
.

We see that Φ(p) > 0 for p ∈ (0, 0.76032) ∪
(

6
7 ,
√

12
7

)
, and Φ(p) < 0 for p ∈

(
0.76032, 6

7
)
.

Hence, we conclude that

min
{

4(1 + |l|)2,−4jl
(

l−2 − 1
)}

=




−4jl

(
l−2 − 1

)
, p ∈ (0, 0.76032) ∪

(
6
7 ,
√

12
7

)
,

4(1 + |l|)2 (
0.76032, 6

7
)
.

As a result,

k2 − 4(1 + |l|)2 =

(
23p2 − 96p + 144

)(
191p2 + 96p− 144

)

2304
> 0 for

(
0.76032,

6
7

)
.

In addition,

k2 + 4(1 + |l|)2 =
p2(78365p2 − 96828

)

1152(7p2 − 12)
< 0 for

(√
96828
78365

,

√
12
7

)
.

This shows that k2 < min
{

4(1 + |l|)2,−4jl
(
l−2 − 1

)}
hold for p ∈

(√
96828
78365 ,

√
12
7

)
. By

applying Lemma 9, we arrive at the following:

|H2,2(z)| ≤ 1
24

p(4− p2)

(
1 + |j|+ k2

4(1 + |l|)

)
= g1(p),
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where

g1(p) =
p
(
127p4 − 1364p3 − 1728p2 − 8064p + 6912

)

6912(6− 7p)
.

This attains its maxima at p =
√

12
7 . Hence,

|H2,2(z)| ≤
√

21
(
−4413 + 3034

√
21
)

−148176 + 49392
√

21
<

521
576

.

We are left with the case p ∈
(

0,
√

96828
78365

)
. We also see that

|l|(|k|+ 4|j|)− |jk| = 4171p4 − 55392p2 + 246528
18432(p2 − 4)

< 0 p ∈
(

0,

√
96828
78365

)
.

We conclude that |l|(|k|+ 4|j|) < |jk|. By applying Lemma 9, we arrive at the following:

|H2,2(z)| ≤ 1
24

p(4− p2)(|j|+ |k| − |l|) = g(p),

where g is given in (24), this giving us the required result. The function given in (19)
belongs to the S∗BS, as d2 = −1, d4 = −29/72, and d3 = 17/24, which yields the sharpness
of (21). Hence, the proof is done.

4. Conclusions

We have introduced a subclass of S∗ associated with Bernoulli numbers of the second
kind and studied some geometrical properties of the introduced class. These results include
radii problems, inclusion problems, coefficient bounds, and Hankel determinants. The new
defined class can further be studied for determining the bounds of Hankel and Toeplitz
determinants, and the same can also be found for logarithmic coefficients and for the
coefficients of inverse functions.
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Abstract: This paper introduces two novel subclasses of the function class Σ for bi-univalent func-
tions, leveraging generalized telephone numbers and Binomial series through convolution. The
exploration is conducted within the domain of the open unit disk. We delve into the analysis of initial
Taylor-Maclaurin coefficients |a2| and |a3|, deriving insights and findings for functions belonging
to these new subclasses. Additionally, Fekete-Szegö inequalities are established for these functions.
Furthermore, the study unveils a range of new subclasses of Σ, some of which are special cases,
yet have not been previously explored in conjunction with telephone numbers. These subclasses
emerge as a result of hybrid-type convolution operators. Concluding from our results, we present
several corollaries, which stand as fresh contributions in the domain of involution numbers involving
hybrid-type convolution operators.

Keywords: univalent functions; analytic functions; bi-univalent functions; binomial series;
convolution operator; involution numbers; coefficient bounds

MSC: 30C45; 30C50; 30C55

1. Introduction

In this article, we will study Bi-Univalent Functions Based on Binomial Series-Type
Convolution Operator Related with Telephone Numbers. For this purpose, we will first
give the basic definitions and theorems we need. Let A represent the class of functions that
can be written as:

f (z) = z +
∞

∑
n=2

anzn, (1)

these functions are analytic in the unit disk which defined below and here an represents the
coefficients,

U := {z : z ∈ C and |z| < 1}.
Let S be the class made up of all functions that are univalent on the open unit disk

and taken from class A. The most well-known and important subclasses of this class are
the starlike and convex classes. Two conversant subclasses of A are correspondingly the
class of starlike functions and convex functions of order α (0 ≤ α < 1). These classes are
familiarised by Robertson [1] and are defined with their analytical description as

S∗(α) :=
{

h ∈ A : <
(

zh′(z)
h(z)

)
> α, z ∈ U

}

and

C(α) :=
{

h ∈ A : <
(

1 +
zh′′(z)
h′(z)

)
> α, z ∈ U

}
.
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It is well known that S∗(α) ⊂ S and C(α) ⊂ S . In the interpretation of Alexander’s
relation, h ∈ C(α) if and only if zh′(z) for z ∈ U, belongs to S∗(α) for each 0 ≤ α < 1.

For α = 0 the class S∗ := S∗(0) condenses to the well-known class of normalized star-
like univalent functions and C := C(0) reduces to the normalized convex univalent functions.

The classes formed by the starlike and convex functions and the subclasses of these
classes have been studied a lot in the past and still maintain their popularity today.

With the f function of type (1) and h(z) = z +
∞
∑

n=2
bnzn, the Hadamard Product of

these functions is denoted by f ∗ h and defined as

( f ∗ h)(z) = z +
∞

∑
n=2

anbnzn. (2)

Let the functions f and g be analytic, the subordination of the f function to the g
function is denoted by f (z) ≺ g(z). The important thing here is to prove the existence
of an analytic function v that satisfies the conditions v(0) = 0 and |v(z)| < 1 when
f (z) = g(v(z)) is defined on the open unit disk. Lately Ma and Minda [2] amalgamated
various subclasses of starlike and convex functions for which either of the quantity z f ′(z)

f (z) or
(z f ′(z))′

f ′(z) is subordinate to a more general superordinate function Υ(z) = 1 + M1z + M2z2 +

M3z3 + · · · , M1 > 0. For f ∈ A, the class of Ma-Minda starlike functions is given by
z f ′(z)

f (z) ≺ Υ(z) and Ma-Minda convex functions is by (z f ′(z))′
f ′(z) ≺ Υ(z). They concentrated on

some results, such as covering theorems, growth theorems, and distortion bounds. Several
subfamilies of the collection S have been looked at as specific options for the class S∗(Υ(z))
throughout the past few years. In the study that has lately been examined, the families
mentioned below are particularly noteworthy.

(i). S∗L ≡ S∗(
√

1 + z) [3], S∗exp ≡ S∗(exp(z)) [4], S∗tanh ≡ S∗(1 + tanh(z)) [5],

(ii). S∗cos ≡ S∗(cos(z)) [6], S∗pet ≡ S∗
(

1 + sinh−1 z
)

[7], S∗cosh ≡ S∗(cosh(z)) [8],

(iii). S∗sin ≡ S∗(1 + sin(z)) [9], S∗car ≡ S∗
(

1 + z + 1
2 z2
)

[10],

(iv). S∗(n−1)L ≡ S∗(Ψn−1(z)) [11] with Ψn−1(z) = 1 + n
n+1 z + 1

n+1 zn for n ≥ 2.

Main idea of this article, we made an attempt to define two new subclasses of the
function class of bi-univalent functions defined in the open unit disk, involving Binomial
series by convolution and find the initial Taylor coefficient estimate |a2| and |a3|, relating
with generalized telephone numbers. Therefore, before moving on to our general section
on Coefficient Bounds, we need to give some general definitions, theorems and examples
for detailed examination.

1.1. Integral Operator

Fractional calculus was first studied in the late 17th century. Fractional calculus has
a wide range of applications, for example, fluid flow models, electrochemical analysis,
groundwater flow problems, structural damping models, acoustic wave equations for
complex media, quantum theory, economy, finance, biology, human sciences, etc. Since its
application area is very wide, it is a multidisciplinary subject and will increase its popularity
and importance even more today and in the near future. References [12–16] can be consulted
for some studies. Fractional derivative operator is a field that grows day by day and new
studies are made. Many operators have been defined recently, which is clear proof of
how important the subject is. Some of these operators are defined via a fractional integral.
Thanks to these operators, we can process and analyze data in many different disciplines.
Some common fractional derivatives operators are: Riemann–Liouville, Hadamard, Caputo
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and Erdélyi–Kober fractional operators, which have been proposed and implemented. We
recall the operator Lσ

κ : U→ U, studied by Babalola [17], is defined by

Lσ
κ f (z) :=

(
ρσ ∗ ρ−1

σ,κ ∗ f
)
(z), (3)

where
ρσ,κ(z) =

z

(1− z)σ−κ+1 , σ− κ + 1 > 0, and ρσ = ρσ,0.

and ρ−1
σ,κ is given by

(
ρσ,κ ∗ ρ−1

σ,κ

)
(z) =

z
1− z

(σ, κ ∈ N := {1, 2, 3, · · · }).

If the function f is defined in type (1) and belongs to class A, the Equation (3) can be
written as follows

Lσ
κ f (z) = z +

∞

∑
n=2

(
Γ(σ + n)
Γ(σ + 1)

· (σ− κ)!
(σ + n− κ − 1)!

)
an zn (z ∈ U).

Using the binomial series, we have:

(1− δ)j =
j

∑
`=0

(
j
`

)
(−δ)` where j ∈ N0 := N∪ {0} = {0, 1, 2, · · · }.

For a function f belonging to the class A, Srivastava and Sheza M. El-Deeb [18]
introduced the linear derivative operator as follows:

Dσ,0
n,δ,κ f (z) = f (z),

Dσ,1
n,δ,κ f (z) = Dσ

n,δ,κ f (z)

= (1− δ)nLσ
κ f (z) +

[
1− (1− δ)n]z(Lσ

κ f )
′
(z)

= z +
∞

∑
j=2

[1 + (j− 1)cn(δ)]

(
Γ(σ + j)
Γ(σ + 1)

· (σ− κ)!
(σ + j− κ − 1)!

)
aj zj,

and, in general,

Dσ,m
j,δ,κ f (z) = Dσ

j,δ,κ

(
Dσ,m−1

j,δ,κ f (z)
)

= (1− δ)jDσ,m−1
j,δ,κ f (z) +

[
1− (1− δ)j

]
z
(
Dσ,m−1

j,δ,κ f (z)
)′

= z +
∞

∑
n=2

[
1 + (n− 1)cj(δ)

]m
(

Γ(σ + n)
Γ(σ + 1)

· (σ− κ)!
(σ + n− κ − 1)!

)
an zn

= z +
∞

∑
n=2
Vn an zn (δ > 0; j, σ, κ ∈ N; m ∈ N0 := N∪ {0}), (4)

where

Vn =
[
1 + (n− 1)cj(δ)

]m
(

Γ(σ + n)
Γ(σ + 1)

· (σ− κ)!
(σ + n− κ − 1)!

)
(5)

and

cj(δ) = −
j

∑
`=1

(
j
`

)
(−δ)` (j ∈ N).
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It follows from (4) that

cj(δ) z
(
Dσ,m

j,δ,κ f (z)
)′

= Dσ,m+1
j,δ,κ f (z)−

[
1− cj(δ)

]
Dσ,m

j,δ,κ f (z). (6)

1.2. Generalized Telephone Numbers (GTN)

The usual involution numbers, also used in definition telephone numbers, are assumed
by the recurrence relation

Q(n) = Q(n− 1) + (n− 1)Q(n− 2) f or n ≥ 2

here the following initial condition is provided

Q(0) = Q(1) = 1

first published in 1800 by Heinrich August Rothe by which they may easily be calculated [19].
One way to explain this recurrence is to partition the Q(n) connection patterns of the n
subscribers to a telephone system into the patterns in which the first person is not calling
anyone else and the patterns in which the first person is making a call. There are Q(n− 1)
connection patterns in which the first person is disconnected, explaining the first term of the
recurrence. If the first person is connected to someone, there are n− 1 choices for that person,
and Q(n− 2) patterns of connection for the remaining n− 2 people, explaining the second
term of the recurrence [20]. Q(n) is the number of involutions (self-inverse permutations) in
the symmetric group (see, for example, [19,20]). Relation between involution numbers and
symmetric groups were first studied in the 1800s. Since involutions correspond to standard
Young tableaux, it is clear that the nth involution number is also the number of Young
tableaux on the set 1, 2, . . . , n (for more information, see [21]). According to John Riordan,
the above recurrence relation, in fact, produces the number of connection patterns in a
telephone system with n subscribers (see [22]). In 2017, Wlochand Wolowiec-Musial [23]
introduced generalized telephone numbers Q(℘, n) defined for integers n ≥ 0and ℘ ≥ 1
by the following recursion:

Q(℘, n) = ℘Q(℘, n− 1) + (n− 1)Q(℘, n− 2)

here the following initial conditions are provided

Q(℘, 0) = 1,Q(℘, 1) = ℘,

and studied some features. In 2019, Bednarz et al. [24] introduced a new generalization of
telephone numbers by

Q℘(n) = Q℘(n− 1) + ℘(n− 1)Q℘(n− 2); n ≥ 2,℘ ≥ 1

here the following initial conditions are provided

Q℘(0) = Q℘(1) = 1.

They examined and researched the main features of this class that they introduced.
Moreover, they investigated the connections of these numbers with the congruences and
gave some proofs. Lately, they derived the exponential generating function and they gave
the definiton of the summation formula for Q℘(n)

ex+℘ x2
2 =

∞

∑
n=0
Q℘(n)

xn

n!
(℘ ≥ 1).

It is clear that Q(n) will be obtained when ℘ = 1. In addition, the following equations
are obtained for different values of n:
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1. Q℘(0) = Q℘ = 1
2. Q℘(2) = 1 + ℘
3. Q℘(3) = 1 + 3℘
4. Q℘(4) = 1 + 6℘+ 3℘2

5. Q℘(5) = 1 + 10℘+ 15℘2

6. Q℘(6) = 1 + 15℘+ 45℘2 + 15℘3.

and due to Deniz [25], now we consider the following analytic function

Ξ(z) := e(z+℘ z2
2 ) =

1 + z + 1+℘
2 z2 +

1 + 3℘
6

z3 +
3℘2 + 6℘+ 1

24
z4 +

1 + 10℘+ 15℘2

120
z5 + · · · . (7)

for z ∈ U. Here, the Ξ function defined in U is chosen as an analytic function with a
positive real part and Ξ satisfies the conditions Ξ(0) = 1, Ξ′(0) > 0, and Ξ maps open
unit disk onto a region starlike with respect to 1 and symmetric with respect to the real
axis. In recent years, researchers who have focused their studies on Generalized Telephone
Numbers have defined a new class and presented appropriate solutions by addressing
problems such as coefficient relations, Fekete-Szegö inequalities of this class. Based on these
studies, similar results were obtained for f−1. In addition, with the help of convolution
products for analytic functions normalized in U, different applications and special cases
of Fekete-Szegö inequality are examined and some important problems and applications
are examined in [26]. In the light of this information, similar discussions can be made for
bi-univalent functions.

Now we recall and define a new subclass of bi-univalent functions in the following
section.

1.3. Bi-Univalent Functions Σ

Let f belongs of class S . In this case, we know that the function f has an inverse f−1,
and this inverse function is defined as follows:

f−1( f (z)) = z (z ∈ U)

and

f ( f−1(w)) = w
(
|w| < r0( f ); r0( f ) ≥ 1

4

)
,

where

g(w) = f−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (8)

A function f ∈ A is said to be bi-univalent in U if both f (z) and f−1(z) are univalent in
U. Let Σ denote the class of bi-univalent functions in U given by (1). Note that the functions

f1(z) =
z

1− z
, f2(z) =

1
2

log
1 + z
1− z

, f3(z) = − log(1− z)

with their corresponding inverses

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

, f−1
3 (w) =

ew − 1
ew

are elements of Σ. In the past years, Srivastava et al.’s reference article [27] has been a
pioneer for many researchers and the importance of the subject has been better understood
after this article. Afterwards, different studies on this subject were carried out by many
researchers. Recently there has been triggering interest to study bi-univalent function class
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Σ and obtained non-sharp coefficient estimates on the first two coefficients |a2| and |a3|
of (1). But the coefficient problem for each of the following Taylor-Maclaurin coefficients:

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · }

is still an open problem (for more detail see [28–33]). By using the hybrid-type convolution
operator Dσ,m

n,δ,λ and motivated by certain recent study on bi-univalent functions which
still remain popular today [34–39]. We define a subclass in association with generalized
telephone numbers (GTN) [25,26].

Definition 1. The f function belonging to the class Σ in type (1) is said to belong to the class
Bσ,m;℘

j,δ,Σ (λ, z) if f satisfies the following inequalities :


 z1−λ(Dσ,m−1

j,δ,κ f (z))′

[Dσ,m−1
j,δ,κ f (z)]1−λ


 ≺ Ξ(z) (9)

and 
w1−λ(Dσ,m−1

j,δ,κ g(w))′

[Dσ,m−1
j,δ,κ g(w)]1−λ


 ≺ Ξ(w), (10)

here 0 ≤ λ ≤ 1; z, w ∈ U and it is assumed that the g function is as in (8).

The new subclasses of the Σ class created by the special selection of the parameters in
this definition can be defined as in the following two examples.

Example 1. For λ = 0, the f function belonging to the class Σ in type (1) is said to belong to the
class Sσ,m;℘

j,δ,Σ if f satisfies the following inequalities:

 z(Dσ,m−1

j,δ,κ f (z))′

Dσ,m−1
j,δ,κ f (z)


 ≺ Ξ(z) (11)

and 
w(Dσ,m−1

j,δ,κ g(w))′

Dσ,m−1
j,δ,κ g(w)


 ≺ Ξ(w) (12)

in here z, w ∈ U and it is assumed that the g function is as in (8).

Example 2. For λ = 1, the f function belonging to the class Σ in type (1) is said to belong to the
classRσ,m;℘

j,δ,Σ if f satisfies the following inequalities:

(
Dσ,m−1

j,δ,κ f (z))′
)
≺ Ξ(z) (13)

and (
(Dσ,m−1

j,δ,κ g(w))′
)
≺ Ξ(w) (14)

in here z, w ∈ U and it is assumed that the g function is as in (8).

In [40], Obradovic et al. gave some criteria for univalence expressing by <( f ′(z)) > 0,
for the linear combinations

τ

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− τ)

1
f ′(z)

> 0, (τ ≥ 1, z ∈ U).
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According to the above definitions, Lashin [41] defined the new subclasses of
bi-univalent function.

Definition 2. A function f belonging to the class Σ in type (1) is considered to be in the class
Mσ,m;℘

j,δ,Σ (τ, Ξ) if f satisfies the following inequalities:

τ


1 +

z(Dσ,m−1
j,δ,κ f (z))′′

(Dσ,m−1
j,δ,κ f (z))′


+ (1− τ)

1

(Dσ,m−1
j,δ,κ f (z))′

≺ Ξ(z) (15)

and

τ


1 +

w(Dσ,m−1
j,δ,κ g(w))′′

(Dσ,m−1
j,δ,κ g(w))′


+ (1− τ)

1

(Dσ,m−1
j,δ,κ g(w))′

≺ Ξ(w) (16)

where z, w ∈ U, τ ≥ 1, and it is assumed that the function g is as defined in (8).

Example 3. A function f belonging to the class Σ in type (1) is considered to be in the class
Mσ,m;℘

j,δ,Σ (1, Ξ) ≡ Kσ,m;℘
j,δ,Σ (Ξ) if f satisfies the following inequalities:


1 +

z(Dσ,m−1
j,δ,κ f (z))′′

(Dσ,m−1
j,δ,κ f (z))′


 ≺ Ξ(z) and


1 +

w(Dσ,m−1
j,δ,κ g(w))′′

(Dσ,m−1
j,δ,κ g(w))′


 ≺ Ξ(w)

where z, w ∈ U, and it is assumed that the function g is as defined in (8).

2. Coefficient Bounds

To establish our main results, we require the following lemma.

Lemma 1 (see [42]). If h ∈ P , then |ck| ≤ 2 for each k, where P is the family of all functions h,
analytic in U, for which

<{h(z)} > 0 (z ∈ U),

where
h(z) = 1 + c1z + c2z2 + · · · (z ∈ U).

We begin by estimating the coefficients |a2| and |a3| for functions in the class
Bσ,m;℘

j,δ,Σ (λ, Ξ). Let P(z) be defined by

P(z) : =
1 + v(z)
1−v(z)

= 1 + c1z + c2z2 + · · · .

It is evident that

v(z) =
P(z)− 1
P(z) + 1

=
1
2

[
c1z +

(
c2 −

c2
1

2

)
z2 +

(
c3 − c1c2 +

c3
1

4

)
z3 + · · ·

]
. (17)

Since v(z) is a Schwarz function, it follows that<(p1(z)) > 0 and p1(0) = 1. Therefore,

Ψ(v(z)) = e


 P(z)−1

P(z)+1+κ

[
P(z)−1
P(z)+1

]2

2




= 1 +
c1

2
z +

(
c2

2
+

(℘− 1)c2
1

8

)
z2 +

(
c3

2
+ (℘− 1)

c1c2

4
+

(1− 3℘)
48

c3
1

)
z3 + . . . (18)
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Define the functions p(z) and q(z) as follows:

p(z) :=
1 + u(z)
1− u(z)

= 1 + p1z + p2z2 + · · ·

and

q(z) :=
1 + v(z)
1− v(z)

= 1 + q1z + q2z2 + · · ·

or, equivalently,

u(z) :=
p(z)− 1
p(z) + 1

=
1
2

[
p1z +

(
p2 −

p2
1

2

)
z2 + · · ·

]

and

v(z) :=
q(z)− 1
q(z) + 1

=
1
2

[
q1z +

(
q2 −

q2
1

2

)
z2 + · · ·

]
.

Subsequently, p(z) and q(z) are analytic in U with p(0) = 1 = q(0). Furthermore,
since both u and v map from U to U, the functions p(z) and q(z) exhibit a positive real part
in U, and they satisfy the inequalities:

|pi| ≤ 2 and |qi| ≤ 2. (19)

For the scope of our study, we introduce the notation:

V2 = V a,c
ϑ,m(2) =

[
1 + cj(δ)

]m
(

Γ(σ + 2)
Γ(σ + 1)

· (σ− λ)!
(σ + 1− λ)!

)
, (20)

V3 =
[
1 + 2cj(δ)

]m
(

Γ(σ + 3)
Γ(σ + 1)

· (σ− λ)!
(σ + 2− λ)!

)
. (21)

In the subsequent theorem, we embark on the initial exploration of the Taylor-Maclaurin
coefficients |a2| and |a3| for functions belonging to this novel subclass Bσ,m;℘

j,δ,Σ (λ, Ξ).

Theorem 1. Let assume that the f function is as in (1) and in the class Bσ,m;℘
j,δ,Σ (λ, Ξ). Then

|a2| ≤ min





1
(λ+1)V2

,√
2

|{(λ−1)(λ+2)−(℘−1)(λ+1)2}V2
2+2(λ+2)V3|

(22)

and

|a3| ≤ min





1
(λ+1)2V2

2
+ 1

(2+λ)V3
,

2
{(λ−1)(λ+2)−(℘−1)(λ+1)2}V2

2+2(λ+2)V3
+ 1

(2+λ)V3
.

(23)

Proof. It follows from (9) and (10) that

 z1−λ(Dσ,m−1

j,δ,κ f (z))′

[Dσ,m−1
j,δ,κ f (z)]1−λ


 = Ξ(u(z)) (24)

and 
w1−λ(Dσ,m−1

j,δ,κ g(w))′

[Dσ,m−1
j,δ,κ g(w)]1−λ


 = Ξ(v(w)), (25)

153



Axioms 2023, 12, 951

where p(z) and q(w) in P and have the following forms:

Ξ(u(z)) = 1 +
1
2

p1z +
( p2

2
+

(℘− 1)p2
1

8

)
z2 + · · · (26)

and

Ξ(v(w)) = 1 +
1
2

q1w +
( q2

2
+

(℘− 1)q2
1

8

)
w2 + · · · , (27)

respectively. Now, by equating the coefficients in (24) and (25), we have

(1 + λ)V2a2 =
1
2

p1, (28)

[
(λ− 1)(λ + 2)

2
V2

2 a2
2 + (λ + 2)V3a3

]
=

p2

2
+

(℘− 1)p2
1

8
, (29)

−(λ + 1)V2a2 =
1
2

q1 (30)

and
[(

2(λ + 2)V3 +
(λ− 1)(λ + 2)

2
V2

2

)
a2

2 − (λ + 2)V3a3

]
=

q2

2
+

(℘− 1)q2
1

8
. (31)

From (28) and (30), we can determine that

a2 =
p1

2(1 + λ)V2
=

−q1

2(1 + λ)V2
, (32)

which implies
p1 = −q1 (33)

and
8(λ + 1)2V2

2 a2
2 = p2

1 + q2
1. (34)

Thus we have

a2
2 =

p2
1 + q2

1
8(λ + 1)2V2

2
(35)

and

(λ + 1)2V2
2 a2

2 =
p2

1 + q2
1

8
. (36)

By adding (29) and (31), and utilizing (32) as well as (33), we get

[
(λ− 1)(λ + 2)V2

2 + 2(λ + 2)V3

]
a2

2 =
p2 + q2

2
+

(℘− 1)
8

(p2
1 + q2

1). (37)

Thus, by using (36)

a2
2 =

p2 + q2

2
[
{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2

2 + 2(λ + 2)V3
] (38)

Applying Lemma 1 to the coefficients p2 and q2, yields the immediate result

|a2|2 ≤
2

|{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2
2 + 2(λ + 2)V3|

. (39)

Hence,
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|a2| ≤
√

2
|{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2

2 + 2(λ + 2)V3|
.

This yields the bound on |a2| as stated in (22). To establish the bound on |a3|, we subtract (31)
from (29), resulting in

[
2(λ + 2)V3a3 − 2(λ + 2)V3a2

2

]
=

1
2
(p2 − q2) +

℘− 1
8

(p2
1 − q2

1). (40)

Using (32), (33) and (40) we can deduce that

a3 = a2
2 +

p2 − q2

4(2 + λ)V3
(41)

=
p2

1 + q2
1

8(λ + 1)2V2
2
+

p2 − q2

4(2 + λ)V3
.

Applying Lemma 1 once more to for the coefficients p2, q2, we immediately obtain

|a3| ≤
1

(λ + 1)2V2
2
+

1
(2 + λ)V3

also,

|a3| ≤
2

|{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2
2 + 2(λ + 2)V3|

+
1

(2 + λ)V3
.

This completes the proof of Theorem 1.

As a consequence of our results, by appropriately setting the parameter, we present the
following corollaries, which are novel and have not been studied for the case of involution
numbers involving hybrid-type convolution operators.

When we fix λ = 0 in Theorem 1, the following corollary emerges.

Corollary 1. Let assume that the f function is as in (1) and in the class Sσ,m;℘
j,δ,Σ (Ξ). Then

|a2| ≤ min

{ 1
V2

,√
2

|4V3−(℘+1)V2
2 |

(42)

and

|a3| ≤ min





1
V2

2
+ 1

2V3
,

2
|−(1+℘)V2

2+4V3|
+ 1

2V3
.

(43)

Fixing λ = 1 in Theorem 1, we have the following corollary.

Corollary 2. Let assume that the f function is as in (1) and in the classRσ,m;℘
j,δ,Σ (Ξ). Then

|a2| ≤ min

{ 1
2V2

,√
1

3V3−2(℘−1)V2
2

(44)

and

|a3| ≤ min





1
4V2

2
+ 1

3V3
2

|−4(℘−1)V2
2+6V3|

+ 1
3V3

.
(45)

In the subsequent theorem, we are embarking on the initial exploration of the Taylor-
Maclaurin coefficients |a2| and |a3| for functions within this novel subclassMσ,m;℘

j,δ,Σ (τ, Ξ).
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Theorem 2. Let assume that the f function is as in (1) and f ∈ Mσ,m;℘
j,δ,Σ (τ, Ξ), τ ≥ 1. Then

|a2| ≤ min





1
2(2τ−1)V2

,
1√

|(1+τ)−2(2τ−1)2(℘−1)|V2
2

(46)

and

|a3| ≤ min





2
3(3τ−1)V3

+ 1
4(2τ−1)2V2

2
,

2
3(3τ−1)V3

+ 1
|(1+τ)−2(2τ−1)2(℘−1)|V2

2
.

(47)

Proof. It follows from (15) and (16) that

τ


1 +

(zDσ,m−1
j,δ,κ f (z))′′

(Dσ,m−1
j,δ,κ f (z))′


+ (1− τ)

1

(Dσ,m−1
j,δ,κ f (z))′

= Ξ(u(z)) (48)

and

τ


1 +

w(Dσ,m−1
j,δ,κ g(w))′′

(Dσ,m−1
j,δ,κ g(w))′


+ (1− τ)

1

(Dσ,m−1
j,δ,κ g(w))′

= Ξ(v(w)). (49)

From (48) and (49), we have

1 + 2(2τ − 1)V2a2z +
[
3(3τ − 1)V3a3 + 4(1− 2τ)V2

2 a2
2

]
z2 + · · ·

= 1 +
1
2

p1z +
( p2

2
+

(℘− 1)p2
1

8

)
z2 + · · · ,

and

1− 2(2τ − 1)V2a2w +
(

2(5τ − 1)V2
2 a2

2 − 3(3τ − 1)V3a3

)
w2 − · · ·

= 1 +
1
2

q1w +
( q2

2
+

(℘− 1)q2
1

8

)
w2 + · · · .

By equating the coefficients, we obtain

2(2τ − 1)V2a2 =
1
2

p1, (50)

3(3τ − 1)V3a3 + 4(1− 2τ)V2
2 a2

2 =
p2

2
+

(℘− 1)p2
1

8
, (51)

−2(2τ − 1)V2a2 =
1
2

q1, (52)

and

2(5τ − 1)V2
2 a2

2 − 3(3τ − 1)V3a3 =
q2

2
+

(℘− 1)q2
1

8
. (53)

Using (50) and (52), we obtain
p1 = −q1 (54)

From (50) by using (19),

|a2| ≤
1

2(2τ − 1)V2
. (55)

Also
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32(2τ − 1)2V2
2 a2

2 = p2
1 + q2

1

a2
2 =

p2
1 + q2

1
32(2τ − 1)2V2

2
. (56)

Thus by (19), we get

|a2| ≤
1

4(2τ − 1)V2
=

1
4(2τ − 1)V2

. (57)

Now from (51), (53) and using (56), we obtain

(
2(1 + τ)− 4(2τ − 1)2(℘− 1)

)
V2

2 a2
2 =

p2 + q2

2
. (58)

Thus, by (58) we obtain

a2
2 =

p2 + q2

4[(1 + τ)− 2(2τ − 1)2(℘− 1)]V2
2

|a2| ≤
1√

|(1 + τ)− 2(2τ − 1)2(℘− 1)|V2
2

.

By using (51) and (53), and then substituting (54), we get

a3 =
p2 − q2

6(3τ − 1)V3
+ a2

2. (59)

Taking the modulus of both sides, we obtain

|a3| ≤
2

3(3τ − 1)V3
+ |a2

2|. (60)

Using (55) and (57), we get

|a3| ≤
2

3(3τ − 1)V3
+

1
4(2τ − 1)2V2

2
.

Now by using (58) in (60),

|a3| ≤
2

3(3τ − 1)V3
+ |a2

2|

=
2

3(3τ − 1)V3
+

1
|(1 + τ)− 2(2τ − 1)2(℘− 1)|V2

2
.

Corollary 3. Let assume that the f function is as in (1) and f ∈ Kσ,m;℘
j,δ,Σ (Ξ). Then

|a2| ≤ min

{ 1
2V2

,
1√

|2−2(℘−1)|V2
2

(61)

and

|a3| ≤ min





2
6V3

+ 1
4V2

2
,

2
6V3

+ 1
|2−2(℘−1)|V2

2
.

(62)

3. Fekete-Szegö Inequalities

For f ∈ A, Fekete and Szegö [43] introduced the generalized functional |a3 − ℵa2
2|,

where ℵ is some real number. In [44] Zaprawa provided the Fekete and Szegö results
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for f ∈ Σ . We prove Fekete-Szegö inequalities for functions f in the new subclasses
Bσ,m;℘

j,δ,Σ (λ, Ξ) andMσ,m;℘
j,δ,Σ (τ, Ξ) using the following lemmas proven by Zaprawa [44].

Lemma 2 ([44]). Let k ∈ R and z1, z2 ∈ C. If |z1| < R and |z2| < R then

|(k + 1)z1 + (k− 1)z2| ≤





2|k|R, |k| ≥ 1

2R |k| ≤ 1.
(63)

Lemma 3 ([44]). Let k, l ∈ R and z1, z2 ∈ C. If |z1| < R and |z2| < R then

|(k + l)z1 + (k− l)z2| ≤





2|k|R, |k| ≥ |l|

2|l|R |k| ≤ |l|.
(64)

Now, we obtain Fekete-Szegö inequalities for f ∈ Bσ,m;℘
j,δ,Σ (λ, Ξ) :

Theorem 3. For ℵ ∈ R, let assume that the f function is as in (1) and f ∈ Bσ,m;℘
j,δ,Σ (λ, Ξ), then

∣∣∣a3 − ℵa2
2

∣∣∣ ≤
{ 1

(2+λ)V3
; 0 ≤ |h(ℵ)| ≤ 1

4(2+λ)V3

4|h(ℵ)| ; |h(ℵ)| ≥ 1
4(2+λ)V3

where

h(ℵ) = 1− ℵ
2
[
{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2

2 + 2(λ + 2)V3
] . (65)

Proof. From (41), we have

a3 − ℵa2
2 =

p2 − q2

4(2 + λ)V3
+ (1− ν)a2

2. (66)

By substituting (38) in (66), we have

a3 − ℵa2
2 =

p2 − q2

4(2 + λ)V3

+
(1− ℵ)(p2 + q2)

2
[
{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2

2 + 2(λ + 2)V3
]

=

(
h(ℵ) + 1

4(2 + λ)V3

)
p2 +

(
h(ν)− 1

4(2 + λ)V3

)
q2, (67)

where

h(ℵ) = 1− ℵ
2
[
{(λ− 1)(λ + 2)− (℘− 1)(λ + 1)2}V2

2 + 2(λ + 2)V3
] .

Thus by taking modulus of (67), we conclude that

∣∣∣a3 − ℵa2
2

∣∣∣ ≤
{ 1

(2+λ)V3
; 0 ≤ |h(ℵ)| ≤ 1

4(2+λ)V3

4|h(ℵ)| ; |h(ℵ)| ≥ 1
4(2+λ)V3

(68)

where h(ℵ) is given by (65).

By taking ℵ = 1 in above Theorem one can easily state the following:
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Remark 1. Let the function f be assumed by (1) and f ∈ Bσ,m;℘
j,δ,Σ (λ, Ξ). Then

∣∣∣a3 − a2
2

∣∣∣ ≤ 1
(2 + λ)V3

.

By taking λ = 0 and λ = 1, we can state the following:

Corollary 4. For ℵ ∈ R, let assume that the f function is as in (1) and f ∈ Sσ,m;℘
j,δ,Σ (Ξ), then

∣∣∣a3 − ℵa2
2

∣∣∣ ≤
{

1
2V3

; 0 ≤ |h(ℵ)| ≤ 1
8V3

4|h(ℵ)| ; |h(ℵ)| ≥ 1
8V3

where h(ℵ) = 1−ℵ
2[4V3−(℘+1)V2

2 ]
.

Corollary 5. For ℵ ∈ R, let assume that the f function is as in (1) and f ∈ Rσ,m;℘
j,δ,Σ (Ξ), then

∣∣∣a3 − ℵa2
2

∣∣∣ ≤
{

1
3V3

; 0 ≤ |h(ℵ)| ≤ 1
12V3

4|h(ℵ)| ; |h(ℵ)| ≥ 1
12V3

where h(ℵ) = 1−ℵ
2[6V3−4(℘−1)V2

2 ]
.

Now, we prove Fekete-Szegö inequalities for f ∈ Mσ,m;℘
j,δ,Σ (τ, Ξ).

Theorem 4. For ν ∈ R, let assume that the f function is as in (1) and f ∈ Mσ,m;℘
j,δ,Σ (τ, Ξ), then

∣∣∣a3 − νa2
2

∣∣∣ ≤





2
3(3τ − 1)V3

; 0 ≤ |h(ν)| ≤ 1
6(3τ − 1)V3

4|h(ν)| ; |h(ν)| ≥ 1
6(3τ − 1)V3

where

h(ν) =
1− ν

4[(1 + τ)− 2(2τ − 1)2(℘− 1)]V2
2

.

Proof. From (59), we have

a3 − νa2
2 =

p2 − q2

6(3τ − 1)V3
++(1− ν)a2

2. (69)

By substituting (58) in (69), we have

a3 − νa2
2 =

p2 − q2

6(3τ − 1)V3
+ a2

2 +
(p2 + q2)(1− ν)

4[(1 + τ)− 2(2τ − 1)2(℘− 1)]V2
2

=

(
h(ν) +

1
6(3τ − 1)V3

)
p2 +

(
h(ν)− 1

6(3τ − 1)V3

)
q2, (70)

where

h(ν) =
1− ν

4[(1 + τ)− 2(2τ − 1)2(℘− 1)]V2
2

. (71)
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Thus by taking modulus of (70), we get

∣∣∣a3 − νa2
2

∣∣∣ ≤





2
3(3τ − 1)V3

; 0 ≤ |h(ν)| ≤ 1
6(3τ − 1)V3

4|h(ν)| ; |h(ν)| ≥ 1
6(3τ − 1)V3

(72)

where h(ν) is given by (71).

By taking ν = 1 in above theorem, we can easily state the following:

Remark 2. Let assume that the f function is as in (1) and f ∈ Ma,b,c
Σ (τ, Ξ). Then

∣∣∣a3 − a2
2

∣∣∣ ≤ 2
3(3τ − 1)V3

.

Corollary 6. For ν ∈ R, let assume that the f function is as in (1) and f ∈ Kσ,m;℘
j,δ,Σ (Ξ), then

∣∣∣a3 − νa2
2

∣∣∣ ≤





2
6V3

; 0 ≤ |h(ν)| ≤ 1
12V3

4|h(ν)| ; |h(ν)| ≥ 1
12V3

where h(ν) = 1−ν
4[2−2(℘−1)]V2

2
.

4. Discussion

The research presented in this paper follows the same path as the previous studies
that introduced new classes of bi-univalent functions, building upon the pioneering article
by Srivastava et al. [27], which involves generalized telephone numbers. We then extended
this approach to define a new function class and derived results concerning the initial
Taylor coefficients for this class.

Furthermore, by specific parameter choices, our newly defined subclasses Bσ,m;℘
j,δ,Σ (λ, Ξ)

and Mσ,m;℘
j,δ,Σ (τ, Ξ) give rise to various other subclasses of analytic functions, such as

Sσ,m;℘
j,δ,Σ (Ξ),Rσ,m;℘

j,δ,Σ (Ξ), and Kσ,m;℘
j,δ,Σ (Ξ). These subclasses have not been previously explored

in connection with telephone numbers. Furthermore, by tailoring the parameters, we’ve
attempted to discretize the new results, presenting novel discussions in this direction.

The main contributions of our work lie in providing new and improved results for the
initial Taylor-Maclaurin coefficients |a2| and |a3|, which further enhances the understanding
of the discussed classes.

5. Conclusions

Our motivation in this study is to unlock a plethora of interesting and valuable appli-
cations of a diverse array of telephone numbers within the realm of Geometric Function
Theory. We firmly believe that this research will serve as a catalyst, inspiring numerous re-
searchers to expand upon this concept by delving into meromorphic bi-univalent functions.
Additionally, new classes could be formulated based on specific hybrid-type convolution
operators, incorporating Poisson, Borel, and Pascal distribution series. Another avenue to
explore is subordination with Gegenbauer and Legendre polynomials, as seen in recent
studies [35–39,45] within the context of the Σ class.

By defining subclasses akin to starlike functions concerning the symmetric points of Σ
in relation to telephone numbers, we could potentially unify and extend various classes
of analytic bi-univalent functions. This approach could pave the way for comprehensive
discussions on new extensions and detailed examinations of enhanced improvements to
initial Taylor-Maclaurin coefficients |a2| and |a3|.
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Moreover, our future plans include delving into second Hankel determinant and
Toeplitz determinant inequality results, as previously explored in [45,46].
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Abstract: We introduce and study a new pseudo-type κ-fold symmetric bi-univalent function class
that meets certain subordination conditions in this article. For functions in the newly formed class,
the initial coefficient bounds are obtained. For members in this class, the Fekete–Szegö issue is also
estimated. In addition, we uncover pertinent links to previous results and give a few observations.
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1. Preliminaries

Let {ς ∈ C : |ς| < 1} = D, where C is the set of all complex numbers. Let A denote
the class of all regular functions of the type

s(ς) = ς +
∞

∑
j=2

djς
j (1)

with s(0) = s′(0)− 1 = 0 , ς ∈ D and S denote the subfamily of functions ∈ A which are
univalent in D. For τ ≥ 1, the class of τ-pseudo-convex functions is defined as

Kτ =

{
s ∈ A : R

({(ςs′(ς))′}τ

s(ς)

)
> 0, ς ∈ D

}
,

the class of τ-pseudo-starlike functions is given by

Sτ =

{
s ∈ A : R

(
ς{s′(ς)}τ

s(ς)

)
> 0, ς ∈ D

}

and the class of τ-pseudo-bounded turning is introduced as

Rτ =
{

s ∈ A : R(s′(ς))τ > 0,
}

, (ς ∈ D),

The class Kτ was explored by Guney and Murugusundaramoorthy [1] and the class
Sτ was examined in [2]. We note that S1 = S . Al-Amiri and Reade [3] presented the class
M(ν) (ν < 1) of functions s ∈ A with s′(ς) 6= 0 in D which satisfy

R

(
ν
(ςs′(ς))′

s′(ς)
+ (1− ν)s′(ς)

)
> 0, (ς ∈ D).
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Axioms 2023, 12, 953

In [4], Sukhjit Singh and Sushma Gupta gave certain criteria for univalence by proving
<(s′(ς)) > 0, whenever

R

(
ν
(ςs′(ς))′

s′(ς)
+ (1− ν)s′(ς)

)
> ξ, (0 ≤ ν < 1, 0 ≤ ξ < 1, ς ∈ D).

The Koebe theorem (see [5]) ensures that s(D), s ∈ S , contains a disc of radius 1/4.
Thus, any function s admits an inverse g = s−1 defined by g(s(ς)) = ς, and s(g(κ)) =
κ, |κ| < r0(s), r0(s) ≥ 1/4, ς ∈ D,κ ∈ D, where

g(κ) = κ − d2κ2 + (2d2
2 − d3)κ3 − (5d3

2 − 5d2d3 + d4)κ4 + · · · (2)

If s ∈ S and s−1 ∈ S , then a member s of A given by (1) is called bi-univalent in D

and the collection of such functions in D is symbolized by σ. For a brief study, and to know
some interesting properties of the family σ, see [6]. Some subfamilies of the family σ that
are comparable to the well-known subfamilies of the family S have been introduced by
Tan [7], Brannan and Taha [8], and Srivastava et al. [9]. In fact, as sequels to the above
subfamilies of σ, a number of different subfamilies of σ have since then been explored by
many authors (see, for example, [10–14]). Most of these works are devoted to the study of
the Fekete–Szegö issue of functions in various subfamilies of σ.

Let N = {1, 2, 3, · · · } and R = (−∞,+∞).
If, for κ ∈ N, s(e

2πi
κ ς) = e

2πi
κ s(ς), ς ∈ D, then a regular function s is called a κ-fold

symmetric (κ-FS). The function s, defined by s(ς) = ( f (ςκ))1/κ , κ ∈ N, f ∈ S , is univalent
and maps D into a κ-fold symmetry region. We indicate by Sκ the class of κ-fold symmetric
univalent (κ-FSU) functions in D. A function s ∈ Sκ has the following form:

s(ς) = ς +
∞

∑
j=1

dκ j+1 · ςκ j+1 (κ ∈ N; ς ∈ D). (3)

Clearly S1 = S .
Similar to the idea of Sκ , Srivastava et al. [15] investigated the class σκ of κ-fold

symmetric bi-univalent (κ-FSBU) functions. A few intriguing findings were made, including
the series

s−1(κ) = κ − dκ+1κκ+1 + [(1 + κ)d2
κ+1 − d2κ+1]κ2κ+1

−
[

1
2 (1 + κ)(2 + 3κ)d3

κ+1 − (2 + 3κ)dκ+1d2κ+1 + d3κ+1

]
κ3κ+1 + · · · .

(4)

when s ∈ σκ .
Note that the functions

s1(ς) =

(
1
2

log
(

1 + ςκ

1− ςκ

))1/κ

, s2(ς) =

(
ςκ

1− ςκ

)1/κ

, s3(ς) = (−log(1− ςκ))1/κ , · · · .

with the corresponding inverses

g1(κ) =
(

e2κκ − 1
e2κκ − 1

)1/κ

, g2(κ) =
(

κκ

1 +κκ

)1/κ

, g3(κ) =
(

eκ
κ − 1
eκκ

)1/m

, · · · .

are elements of σκ . We obtain (2) from (4) on taking κ = 1.
The focus on the initial coefficients of functions in some subfamilies of σκ is an inter-

esting topic and this opened an area for many developments. New subfamilies of σκ were
introduced and examined in depth by many researchers (see, for example, [16–19]). We
mention here some recent works on this topic. Initial coefficient bounds for new subfamilies
of σκ were determined in [20]. The Fekete–Szegö (FS) issue |d2m+1− δd2

m+1|, δ ∈ R (see [21])
for certain special families of σκ was examined by Swamy et al. [22,23]; and another spe-
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cial family of σκ satisfying certain subordination conditions was examined by Aldawish
et al. [24]; initial coefficients estimates for elements belonging to certain new families of σκ

were obtained by Breaz and Cotîrlă in [25] (see [26–28]), indicating the developments in
this domain.

For functions s1 and s2 regular in D, s1 is said to subordinate s2, if there is a Schwarz
function ψ in D, such that ψ(0) = 0 , |ψ(z)| < 1 and s1(z) = s2(ψ(z)), z ∈ D. This
subordination is indicated as s1 ≺ s2. If s2 ∈ S , then s1(z) ≺ s2(z) is equivalent to
s1(0) = s2(0) and s1(D) ⊂ s2(D).

Inspired by the efforts of Al-Amiri [3] and the authors of [19], we introduce a new
class Pτ

σκ
(η, ν, ϕ), η ∈ C∗ = C − {0}, 0 ≤ ν ≤ 1, and ϕ(ς) is a regular function, such

that R(ϕ(ς)) > 0, ϕ′(0) > 0, ϕ(0) = 1, ϕ(D) is symmetric with respect to the real
axis. In Section 2, we estimate the upper bounds of |dκ+1|, |d2κ+1| and |d2κ+1 − δd2

κ+1|
(δ ∈ R), for functions that belong to the class Pτ

σκ
(η, ν, ϕ). We consider two special cases

Q
$
σκ
(η, ν, τ) = Pτ

σκ
(η, ν,

(
1+ς
1−ς

)$
), 0 < $ ≤ 1 and X

ξ
σκ
(η, ν, τ) = Pτ

σκ
(η, ν, 1+(1−2ξ)ς

1−ς ),
0 ≤ ξ < 1, in Section 3 and Section 4, respectively. We also identify connections to
existing results and present a few new observations.

2. The Class Pτ
σκ
(η, ν, ϕ)

Throughout this paper, s−1(κ) = g(κ) is as in (4), η ∈ C∗ = C\{0}, ς ∈ D,κ ∈ D

and ϕ(ς) will be a regular function such that R(ϕ(ς)) > 0, ϕ′(0) > 0, ϕ(0) = 1, and ϕ(D)
is symmetric with respect to the real axis. An expansion of ϕ(ς) has the form:

ϕ(ς) = 1 + B1ς + B2ς2 + B3ς3 + · · · (B1 > 0). (5)

Let P be the class of regular functions of the type p(ς) = 1 + p1ς + p2ς2 + p3ς3 + · · · ,
R(p(ς)) > 0. A κ-FS function pκ ∈ P is of the form pκ(ς) = 1+ pκςκ + p2κς2κ + p3κς3κ + · · ·
(see [29]).

Let h(ς) and p(κ) be regular in D with max{|h(ς)|, |p(κ)|}< 1 and h(0) = 0 = p(0) . We
suppose that h(ς) = hκςκ + h2κς2κ + h3κς3κ + · · · and p(κ) = pκκκ + p2κκ2κ + p3κκ3κ +
· · · . Also, we assume that

|hκ | < 1; |h2κ | ≤ 1− |hκ |2; |pκ | < 1; |p2κ | ≤ 1− |pκ |2. (6)

After simple computations, using (5), we have

ϕ(h(ς)) = 1 + B1hκςκ + (B1h2κ + B2h2
κ)ς

2κ + ... (7)

and
ϕ(p(κ)) = 1 + B1 pκκκ + (B1 p2κ + B2 p2

κ)κ2κ + ... . (8)

Definition 1. A function s ∈ σκ of the form (3) is said to be in the class Pτ
σκ
(η, ν, ϕ) if

1
η

(
ν
{(ςs′(ς))′}τ

s′(ς)
+ (1− ν)(s′(ς))τ − 1

)
+ 1 ≺ ϕ(ς)

and
1
η

(
ν
{(κg′(κ))′}τ

g′(κ) + (1− ν)(g′(κ))τ − 1
)
+ 1 ≺ ϕ(κ),

where g = s−1, τ ≥ 1, η ∈ C∗, and 0 ≤ ν < 1.

Remark 1. (i) The subclass Pτ
σκ
(η, 0, ϕ) ≡H τ

σκ
(η, ϕ), and was explored in [24].

(ii) P1
σκ
(η, ν, ϕ) ≡ Iσκ (η, ν, ϕ) is the subclass of functions s ∈ σκ satisfying

1
η

(
ν
(ςs′(ς))′

s′(ς)
+ (1− ν)s′(ς)− 1

)
+ 1 ≺ ϕ(ς)
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and its inverse g = s−1 satisfies

1
η

(
ν
(κg′(κ))′

g′(κ) + (1− ν)g′(κ)− 1
)
+ 1 ≺ ϕ(κ),

where η ∈ C∗ and 0 ≤ ν < 1.

Theorem 1. If the function s given by (3) belongs to the family Pτ
σκ
(η, ν, ϕ) and δ ∈ R, then

|dκ+1| ≤
|η|B1

√
2B1√

|{M(1+κ)+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}ηB2
1−2L2B2|+2L2B1

, (9)

|d2κ+1| ≤



B1|η|
M ; 0 < B1 < 2L2

|η|M(1+κ)
B1|η|

M +
(

1+κ
2 − L2

|η|B1 M

)
2η2B3

1
|{M(1+κ)+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}ηB2

1−2L2B2|+2L2B1

; B1 ≥ 2L2

|η|M(1+κ)
,

(10)

and

|d2κ+1 − δd2
κ+1| ≤





B1|η|
M ; |1 + κ − 2δ| < J

|η|2B3
1 |κ−2δ+1|

|{M(1+κ)+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}ηB2
1−2L2B2|

; |1 + κ − 2δ| ≥ J,
(11)

where

J =

∣∣∣∣∣
{M(1 + κ) + [Nτ(τ − 1) + 2ν(1− (1 + κ)τ)](1 + κ)2}ηB2

1 − 2L2B2

ηMB2
1

∣∣∣∣∣. (12)

L = (1 + κ)(τ(1 + νκ)− ν), (13)

M = (τ(1 + 2νκ)− ν)(1 + 2κ) (14)

and
N = 1 + νκ(2 + κ). (15)

Proof. Let the function s of the form (3) belong to the family Pτ
σκ
(η, ν, ϕ). Then, we have

regular functions h, p : D −→ D, h(0) = p(0) = 0 satisfying

1
η

(
ν
{(ςs′(ς))′}τ

s′(ς)
+ (1− ν)(s′(ς))τ − 1

)
+ 1 = ϕ(h(ς)), (16)

and
1
η

(
ν
{(κg′(κ))′}τ

g′(κ) + (1− ν)(g′(κ))τ − 1
)
+ 1 = ϕ(p(κ)). (17)

Using (3) in (16) and (17) we obtain:

1
η

(
ν
[{(ςs′(ς))′}τ

s′(ς)
+ (1− ν)(s′(ς))τ − 1

)
+ 1 =
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1
η
{Ldκ+1ςκ + [ Md2κ+1+

(1 + κ)2
(

Nτ(τ − 1)
2

+ ν(1− (1 + κ)τ)

)
d2

κ+1

]
ς2κ + · · ·

}
+ 1 (18)

and
1
η

(
ν
{(κg′(κ))′}τ

g′(κ) + (1− ν)(g′(κ))τ − 1
)
+ 1 =

1
η

{
−Ldκ+1κκ +

[
M((1 + κ)d2

κ+1 − d2κ+1)+

(1 + κ)2
(

Nτ(τ − 1)
2

+ ν(1− (1 + κ)τ)

)
d2

κ+1

]
κ2κ + · · ·

}
+ 1, (19)

where L, M, and N are as in (13), (14), and (15), respectively.
Comparing (7) and (18), we obtain

Ldκ+1 = ηB1hκ (20)

and

Md2κ+1 +

(
Nτ(τ − 1)

2
+ ν(1− (1 + κ)τ)

)
(1 + κ)2d2

κ+1 = η[B1h2κ + B2h2
κ ] . (21)

Comparing (8) and (19), we obtain

−Ldκ+1 = ηB1 pκ (22)

and

M((κ + 1)d2
κ+1 − d2κ+1) +

(
Nτ(τ−1)

2 + ν(1− (1 + κ)τ)
)
(1 + κ)2d2

κ+1

= η[B1 p2κ + B2 p2
κ ] ,

(23)

From (20) and (22), we obtain
hκ = −pκ (24)

and
2L2d2

κ+1 = η2B2
1(h

2
κ + p2

κ). (25)

We add (21) and (23) and then use (25) to obtain

[{M(1 + κ) + [Nτ(τ − 1) + (1− (1 + κ)τ)2ν](1 + κ)2}ηB2
1 − 2L2B2]d2

κ+1
= η2B3

1(h2κ + p2κ)
(26)

By using (6) and (20) in (26) for the coefficients h2κ and p2κ , we obtain

[|{M(1 + κ) + [Nτ(τ − 1) + (1− (1 + κ)τ)2ν](1 + κ)2}ηB2
1 − 2L2B2|+ 2L2B1]|dκ+1|2

≤ 2η2B3
1,

(27)

which implies (9).
We subtract (23) from (21) to find the bound on |d2κ+1|:

d2κ+1 =
ηB1(h2κ − p2κ)

2M
+

(
1 + κ

2

)
d2

κ+1. (28)
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In view of (20), (24), (28) and applying (6), we obtain

|d2κ+1| ≤
|η|B1

M
+

(
1 + κ

2
− L2

|η|B1M

)
× (29)

× 2η2B3
1

|{M(1 + κ) + [Nτ(τ − 1) + (1− (1 + κ)τ)2ν](1 + κ)2}ηB2
1 − 2L2B2|+ 2L2B1

,

which obtains (10), the desired assessment.
From (26) and (28), for δ ∈ R, we obtain

d2κ+1 − δd2
κ+1 =

ηB1

2

[(
Y(δ) +

1
M

)
h2κ +

(
Y(δ)− 1

M

)
p2κ

]
,

where

Y(δ) =
ηB2

1(κ − 2δ + 1)
{M(1 + κ) + [Nτ(τ − 1) + (1− (1 + κ)τ)2ν](κ + 1)2}ηB2

1 − 2L2B2
.

In view of (6), we conclude that

|d2κ+1 − δd2
κ+1| ≤

{ |η|B1
M ; 0 ≤ |Y(δ)| < 1

M
|η|B1|Y(δ)| ; |Y(δ)| ≥ 1

M ,

form which we obtain (11) with J as in (12). So the proof is completed.

Remark 2. We obtain Corollary 1 of [24] if ν = 0 in Theorem 1.

Choosing τ = 1 in Pτ
σκ
(η, ν, ϕ), we have the corollary given below:

Corollary 1. Let δ ∈ R and let the function s given by (3) be in the family Iσκ (η, ν, ϕ). Then,

|dκ+1| ≤ |η|B1
√

2B1√
|{(1+κ)M1−2νκ(1+κ)2}ηB2

1−2L2
1B2|+2L2

1B1
,

|d2κ+1| ≤



|η|B1
M1

; 0 < B1 <
2L2

1
(1+κ)M1|η|

|η|B1
M1

+

(
1+κ

2 −
L2

1
B1 M1|η|

)
2η2B3

1
|{(1+κ)M1−2νκ(1+κ)2}ηB2

1−2L2
1B2|+2L2

1B1
; B1 ≥ 2L2

1
(1+κ)M1|η|

and

|d2κ+1 − δd2
κ+1| ≤





|η|B1
M1

; |κ − 2δ + 1| < J1
B3

1 |κ−2δ+1||η|2
|{(κ+1)M1−2νκ(κ+1)2}ηB2

1−2L2
1B2|

; |κ − 2δ + 1| ≥ J1,

where

J1 =

∣∣∣∣∣
{(1 + κ)M1 − 2νκ(1 + κ)2}ηB2

1 − 2L2
1B2

M1B2
1η

∣∣∣∣∣,

L1 = (1 + κ)((κ − 1)ν + 1) (30)

and
M1 = (1 + 2κ)((2κ − 1)ν + 1), (31)

Remark 3. If ν = 0 and η = 1 in Corollary 1 are allowed, then the first and second theorems of
Tang et al. [19] are obtained.

Choosing κ = 1 in Theorem 1, we have
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Corollary 2. If s ∈ Pτ
σ1
(η, ν, ϕ) is given by (1) and δ ∈ R, then

|d2| ≤ |η|B1
√

B1√
|{M2+2(N2τ(τ−1)+2ν(1−2τ))}ηB2

1−L2
2B2|+L2

2B1
,

|d3| ≤





|η|B1
M2

; 0 < B1 <
L2

2
|η|M2

|η|B1
M2

+

(
1− L2

2
|η|B1 M2

)
η2B3

1
|{M2+2(N2τ(τ−1)+2ν(1−2τ))}ηB2

1−L2
2B2|+L2

2B1
; B1 ≥ L2

2
|η|M2

,

and

|d3 − δd2
2| ≤





|η|B1
M2

; |1− δ| < J2
|η|2B3

1 |1−δ|
|{M2+2(N2τ(τ−1)+2ν(1−2τ))}ηB2

1−L2
2B2|

; |1− δ| ≥ J2,

where

J2 =

∣∣∣∣∣
{M2 + 2(N2τ(τ − 1) + 2ν(1− 2τ))}ηB2

1 − L2
2B2

ηM2B2
1

∣∣∣∣∣,

L2 = 2((1 + ν)τ − ν), (32)

M2 = 3((1 + 2ν)τ − ν) (33)

and
N2 = 3ν + 1. (34)

Setting η = τ = 1 in Corollary 2, we obtain the following.

Corollary 3. If s ∈ P1
σ1
(1, ν, ϕ) is given by (1) and δ ∈ R, then

|d2| ≤ B1
√

B1√
|(3−ν)B2

1−4B2|+4B1
,

|d3| ≤





B1
3(ν+1) ; 0 < B1 < 4

3(ν+1)
B1

3(ν+1) +
(

1− 4
3(ν+1)B1

)
B3

1
|(3−ν)B2

1−4B2|+4B1
; B1 ≥ 4

3(ν+1) ,

and

|d3 − δd2
2| ≤





B1
3(ν+1) ; |1− δ| <

∣∣∣∣
(3−ν)B2

1−4B2
3(ν+1)B2

1

∣∣∣∣
B3

1 |1−δ|
|(3−ν)B2

1−4B2|
; |1− δ| ≥

∣∣∣∣
(3−ν)B2

1−4B2
3(ν+1)B2

1

∣∣∣∣.

Remark 4. When ν = 0 is selected in Corollary 3, we obtain Corollaries 1 and 4 of Tang
et al. [19] (also see [30]).

3. The Class Q
τ

σκ
(η, ν, $)

Let ϕ(ς) = 1+ 2$ς+ 2$2ς2 + · · · =
(

1+ς
1−ς

)$
in Definition 1. Then, we have the subclass

of all s ∈ σκ satisfying
∣∣∣∣arg

[
1
η

(
ν
{(ςs′(ς))′}τ

s′(ς)
+ (1− ν)(s′(ς))τ − 1

)
+ 1
]∣∣∣∣ <

$π

2

and ∣∣∣∣arg
[

1
η

(
ν
{(κg′(κ))′}τ

g′(κ) + (1− ν)(g′(κ))τ − 1
)
+ 1
]∣∣∣∣ <

$π

2
,

where g = s−1, 0 < $ ≤ 1, η ∈ C∗, τ ≥ 1, and 0 ≤ ν < 1. We denote this class by

Q
τ

σκ
(η, ν, $) = Pτ

σκ
(η, ν,

(
1+ς
1−ς

)$
).
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Remark 5. (i) The family Qτ
σκ
(η, 0, $) ≡ Bτ

σκ
(η, $), and was explored in [24], where η ∈ C∗,

τ ≥ 1 and 0 < $ ≤ 1.
ii) Q1

σκ
(η, ν, $) ≡ Dσκ (η, ν, $) is the subfamily of all s ∈ σκ satisfying

∣∣∣∣arg
[

1
η

(
ν
(ςs′(ς))′

s′(ς)
+ (1− ν)s′(ς)− 1

)
+ 1
]∣∣∣∣ <

$π

2

and its inverse g = s−1 satisfies
∣∣∣∣arg

[
1
η

(
ν
(κg′(κ))′

g′(κ) + (1− ν)g′(κ)− 1
)
+ 1
]∣∣∣∣ <

$π

2
,

where 0 < $ ≤ 1, η ∈ C∗ and 0 ≤ ν < 1.

Taking ϕ(ς) =
(

1+ς
1−ς

)$
in Theorem 1, we obtain

Corollary 4. If the function s given by (3) belongs to the family ∈ Qτ
σκ
(η, ν, $) and δ ∈ R, then

|dκ+1| ≤ 2$|η|√
$|{M(1+κ)+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}η−L2|+L2

,

|d2κ+1| ≤



2$|η|
M ; 0 < $ < L2

M(1+κ)|η|
2$|η|

M +
(

1 + κ − L2

$M|η|
)

2$2η2

$|{(1+κ)M+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}η−L2|+L2 ; $ ≥ L2

M(1+κ)|η| ,

and

|d2κ+1 − δd2
κ+1| ≤





2$|η|
M ; |κ − 2δ + 1| < J3

2$|κ−2δ+1||η|2
|{(1+κ)M+[τ(τ−1)N+(1−(κ+1)τ)2ν](κ+1)2}η−L2| ; |κ − 2δ + 1| ≥ J3,

where

J3 =

∣∣∣∣
{M(1 + κ) + [Nτ(τ − 1) + (1− (1 + κ)τ)2ν](1 + κ)2}η − L2

ηM

∣∣∣∣,

L, M, and N are as in (13), (14), and (15), respectively.

Remark 6. For ν = 0 in Corollary 4, we obtain Corollary 4 in [24].

Choosing τ = 1 in Qτ
σκ
(η, ν, ϕ), we obtain the corollary given below:

Corollary 5. If the function s given by (3) belongs to the family Dσκ (η, ν, $) and δ ∈ R, then

|dκ+1| ≤ 2$|η|√
$|{M1(1+κ)−2νκ(1+κ)2}η−L2

1|+L2
1
,

|d2κ+1| ≤



2$|η|
M1

; 0 < $ <
L2

1
M1(1+κ)|η|

2$|η|
M1

+

(
1 + κ − L2

1
$M1|η|

)
2$2η2

$|{M1(1+κ)−2νκ(1+κ)2}η−L2
1|+L2 ; $ ≥ L2

1
(1+κ)M1|η|

and

|d2κ+1 − δd2
κ+1| ≤





2$|η|
M1

; |κ − 2δ + 1| < J4
2$|κ−2δ+1||η|2

|{M1(κ+1)−2νκ(κ+1)2}η−L2
1|

; |κ − 2δ + 1| ≥ J4,

where

J4 =

∣∣∣∣∣
{M1(1 + κ)− 2νκ(1 + κ)2}η − L2

1
ηM1

∣∣∣∣∣,
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L1 and M1 are as in (30) and (31), respectively.

Corollary 4 yields the following if κ = 1:

Corollary 6. If s ∈ Qτ
σ1
(η, ν, $) is given by (1) and δ ∈ R, then

|d2| ≤ 2|η|$√
$|{2M2+4(N2τ(τ−1)+2ν(1−2τ))}η−L2

2|+L2
2
,

|d3| ≤





2|η|$
M2

; 0 < $ <
L2

2
2|η|M2

2|η|$
M2

+

(
2− L2

2
|η|$M2

)
2η2$2

$|{2M2+4(N2τ(τ−1)+2ν(1−2τ))}η−L2
2|+L2

2
; $ ≥ L2

2
2|η|M2

,

and

|d3 − δd2
2| ≤





2|η|$
M2

; |1− δ| < J5
2|η|2$|1−δ|

|{2M2+4(N2τ(τ−1)+2ν(1−2τ))}η−L2
2|

; |1− δ| ≥ J5,

where

J5 =

∣∣∣∣∣
{2M2 + 4(N2τ(τ − 1) + 2ν(1− 2τ))}η − L2

2
2ηM2

∣∣∣∣∣,

L2, M2, and N2 are as in (32), (33), and (34), respectively.

Corollary 6 would yield the following if η = τ = 1.

Corollary 7. If the function s of the form (1) ∈ Q1
σ1
(1, ν, ϕ) and δ ∈ R, then

|d2| ≤ $
√

2√
$(1−ν)+2

,

|d3| ≤





2$
3(ν+1) ; 0 < $ < 2

3(ν+1)
2$

3(ν+1) +
(

1− 2
3$(ν+1)

)
2$2

$(1−ν)+2 ; $ ≥ 2
3(ν+1) ,

and

|d3 − δd2
2| ≤





2$
3(ν+1) ; |1− δ| < 1−ν

3(ν+1)
$|1−δ|

1−ν ; |1− δ| ≥ 1−ν
3(ν+1) .

Remark 7. Letting ν = 0 in Corollary 7, we obtain Corollary 2 of Tang et al. [19]. The estimate
obtained here for |d3| is more accurate when compared to that in Theorem 2 of Srivastava et al. [9].

4. The Class Xτ
σκ
(η, ν, ξ)

If ϕ(ς) = 1 + 2(1− ξ)ς + 2(1− ξ)ς2 + · · · = 1+(1−2ξ)ς
1−ς in Definition 1, then we have

the subset of all s ∈ σκ satisfying

R

[(
ν
{(ςs′(ς))′}τ

s′(ς)
+ (1− ν)(s′(ς))τ − 1

)
1
η
+ 1
]
> ξ

and

R

[(
ν
{(κg′(κ))′}τ

g′(κ) + (1− ν)(g′(κ))τ − 1
)

1
η
+ 1
]
> ξ,

where g = s−1, η ∈ C∗, 0 ≤ ξ < 1, τ ≥ 1, and 0 ≤ ν < 1. We denote this set by
Xτ

σκ
(η, ν, ξ) = Pτ

σκ
(η, ν,

(
1+(1−2ξ)ς

1−ς

)
.
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Remark 8. (i). The family Xτ
σκ
(η, 0, ξ) ≡ E τ

σκ
(η, ξ), τ ≥ 1, 0 ≤ ξ < 1, and was studied in [24].

(ii). X1
σκ
(η, ν, ξ) ≡ Fσκ (η, ν, ξ) is a set of all s ∈ σκ satisfying

R

[(
ν
(ςs′(ς))′

s′(ς)
+ (1− ν)s′(ς)− 1

)
1
η
+ 1
]
> ξ

and its inverse g = s−1 satisfies

R

[(
ν
(κg′(κ))′

g′(κ) + (1− ν)g′(κ)− 1
)

1
η
+ 1
]
> ξ,

where η ∈ C∗, 0 ≤ ξ < 1, and 0 ≤ ν < 1.

Allowing ϕ(ς) = 1+(1−2ξ)ς
1−ς , 0 ≤ ξ < 1, in Theorem 1, we obtain

Corollary 8. Let the function s of the form (3) belong to the class Xτ
σκ
(η, ν, ξ) and δ ∈ R. Then,

|dκ+1| ≤
(1− ξ)2|η|√

|{(1 + κ)M + (1 + κ)2[Nτ(τ − 1) + (1− (1 + κ)τ)2ν]}(1− ξ)η − L2|+ L2
,

|d2κ+1| ≤




(1−ξ)2|η|
M ; 1− L2

(1+κ)M|η| < ξ < 1
(1−ξ)2|η|

M +
(

1 + κ − L2

(1−ξ)M|η|
)

2(1−ξ)2|η|2
|{(1+κ)M+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}(1−ξ)η−L2|+L2

; 0 ≤ ξ ≤ 1− L2

(1+κ)M|η|

and

|d2κ+1 − δd2
κ+1| ≤





(1−ξ)2|η|
M ; |κ − 2δ + 1| < J6

2(1−ξ)2|η|2|κ−2δ+1|
|{(1+κ)M+[Nτ(τ−1)+(1−(1+κ)τ)2ν](1+κ)2}(1−ξ)η−L2| ; |κ − 2δ + 1| ≥ J6,

where

J6 =

∣∣∣∣
{(1 + κ)M + (1 + κ)2[Nτ(τ − 1) + (1− (1 + κ)τ)2ν]}(1− ξ)η − L2

M(1− ξ)η

∣∣∣∣.

L, M, and N are as in (13), (14), and (15), respectively.

Remark 9. We obtain Corollary 7 of Aldawish et al. [24] if ν = 0 in Corollary 8. In addition, we
obtain Corollary 11 of Swamy et al. [22] when η = τ = 1.

Corollary 9. Let the function s of the form (3) belong to the class F τ
σκ
(η, ν, ξ) and δ ∈ R. Then,

|dκ+1| ≤ (1−ξ)2|η|√
|{(1+κ)M1−2νκ(1+κ)2}(1−ξ)η−L2

1|+L2
1
,

|d2κ+1| ≤



(1−ξ)2|η|
M1

; 1− L2
1

(κ+1)M1|η| < ξ < 1

(1−ξ)2|η|
M1

+

(
1 + κ − L2

1
(1−ξ)M1|η|

)
2(1−ξ)2|η|2

|{(1+κ)M1−2νκ(1+κ)2}η(1−ξ)−L2
1|+L2

1

; 0 ≤ ξ ≤ 1− L2
1

(1+κ)M1|η|

and

|d2κ+1 − δd2
κ+1| ≤





2|η|(1−ξ)
M1

; |κ − 2δ + 1| < J7
2|η|2(1−ξ)2|κ−2δ+1|

|{(1+κ)M1−2νκ(1+κ)2}(1−ξ)η−L2
1|

; |κ − 2δ + 1| ≥ J7,
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where

J7 =

∣∣∣∣∣
{(1 + κ)M1 − 2νκ(1 + κ)2}(1− ξ)η − L2

1
M1(1− ξ)η

∣∣∣∣∣,

L1 and M1 are as in (30) and (31), respectively.

If we let κ = 1 in Corollary 8, then we have

Corollary 10. Let the function s of the form (1) belong to the class Xτ
σ1
(η, ν, ξ) and δ ∈ R. Then,

|d2| ≤ 2(1−ξ)|η|√
|{2M2+4(N2τ(τ−1)+2ν(1−2τ))}(1−ξ)η−L2

2|+L2
2
,

|d3| ≤





2(1−ξ)|η|
M2

; 1− L2
2

2M2|η| < ξ < 1

2(1−ξ)|η|
M2

+

(
2− L2

2
(1−ξ)M2|η|

)
2(1−ξ)2|η|2

|{2M2+4(Nτ(τ−1)+2ν(1−2τ))}(1−ξ)η−L2
2|+L2

2

; 0 ≤ ξ ≤ 1− L2
2

2M2|η|

and

|d3 − δd2
2| ≤





2(1−ξ)|η|
3(ν+1) ; |1− δ| < J8

2(1−ξ)2|η|2|1−δ|
|{2M2+4(N2τ(τ−1)+2ν(1−2τ))}(1−ξ)η−L2

2|
; |1− δ| ≥ J8,

where

J8 =

∣∣∣∣∣
{2M2 + 4(Nτ(τ − 1) + 2ν(1− 2τ))}(1− ξ)η − L2

2
2M2(1− ξ)η

∣∣∣∣∣,

L2, M2, and N2 are as in (32), (33), and (34), respectively.

If η = τ = 1 in Corollary 10, then we obtain

Corollary 11. If s ∈ X1
σ1
(1, ν, ϕ) is of the form (1) and δ ∈ R, then

|d2| ≤
√

2(1−ξ)√
|(3−ν)(1−ξ)−2|+2

,

|d3| ≤





2(1−ξ)
3(1+ν)

; 3ν+1
3(1+ν)

< ξ < 1
2(1−ξ)
3(1+ν)

+
(

1− 2
3(1−ξ)(1+ν)

)
2(1−ξ)2

|(1−ξ)(3−ν)−2|+2 ; 0 ≤ ξ ≤ 3ν+1
3(1+ν)

,

and

|d3 − δd2
2| ≤





2(1−ξ)
3(1+ν)

; |1− δ| <
∣∣∣ (1−ξ)(3−ν)−2

3(1−ξ)(1+ν)

∣∣∣
2|1−δ|(1−ξ)2

|(1−ξ)(3−ν)−2| ; |1− δ| ≥
∣∣∣ (3−ν)(1−ξ)−2

3(1−ξ)(1+ν)

∣∣∣,

Remark 10. Putting ν = 0 in Corollary 11, we obtain Corollary 3 of Tang et al. [19]. The estimates
obtained here for |d2| and |d3| are more accurate when compared to those estimates of Theorem 2
in [9].

5. Conclusions

In this paper, a new class Pτ
σκ
(η, ν, ϕ) is explored and the upper bounds of |dκ+1|,

|d2κ+1|, and |d2κ+1 − δd2
κ+1| δ ∈ <, are estimated for elements in Pτ

σκ
(η, ν, ϕ). Two special

cases Q
$
σκ
(η, ν, τ) = Pτ

σκ
(η, ν,

(
1+ς
1−ς

)$
), 0 < $ ≤ 1 and X

ξ
σκ
(η, ν, τ) = Pτ

σκ
(η, ν, 1+(1−2ξ)ς

1−ς ),
0 ≤ ξ < 1, have been considered. In addition, we have uncovered pertinent links to
previous results and given a few observations. This paper could inspire researchers to-
wards further investigations using the (i) integro-differential operator [31], (ii) q-differential
operator [32], (iii) q-integral operator [33], and (iv) Hohlov operator [34].

173



Axioms 2023, 12, 953

Author Contributions: S.R.S. and L.-I.C.: implementation and original draft; S.R.S.: analysis, method-
ology, software, and conceptualization; L.-I.C.: validation, resources, and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are appreciative of the reviewers who provided insightful criticism,
suggestions, and counsel that helped them to modify and enhance the paper’s final version.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guney, H.O.; Murugusundaramoorthy, G. New classes of pseudo-type bi-univalent fumctions. Rev. Real Acad. Cienc. Exactas, Fis.

Nat. Ser. A Mat. 2020, 114, 65. [CrossRef]
2. Babalola, K.O. On λ-pseudo-starlke functions. J. Class. Anal. 2012, 3, 137–147.
3. Al-Amiri, H.S.; Reade, M.O. On a linear combination of some expressions in the theory of univalent functions. Monatsh. Math.

1975, 80, 257–264. [CrossRef]
4. Sukhjit, S.; Sushma, G. On a problem of H. S. Almiri and M. O. Reade. Demonstr. Math. 2005, 38, 303–311.
5. Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983.
6. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [CrossRef]
7. Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568.
8. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Appl. 1985, 3, 18–21.
9. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23,

1188–1192. [CrossRef]
10. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some general subclasses of analytic and bi-univalent functions.

Afr. Mat. 2017, 28, 693–706. [CrossRef]
11. Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functons. Appl. Math. Lett. 2011, 24, 1569–1573. [CrossRef]
12. Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [CrossRef]
13. Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 317, 10.

[CrossRef]
14. Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [CrossRef]
15. Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficients estimate for some subclasses of m-fold symmetric

bi-univalent functions. Tbilisi Math J. 2014, 7, 1–10. [CrossRef]
16. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficients estimate for some subclasses of m-fold symmetric bi-univalent

functions. Acta Math. Sci. Ser. B. 2016, 36, 863–971. [CrossRef]
17. Srivastava, H.M.; Zireh, A.; Hajiparvaneh, S. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions.

Filomat 2018, 32, 3143–3153. [CrossRef]
18. Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficients bounds for new subclasses of m-fold symmetric bi-univalent functions

defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503.
19. Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. Fekete-Szegö functional problems of m-fold symmetric bi-univalent

functions. J. Math. Ineq. 2016, 10, 1063–1092. [CrossRef]
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Abstract: A branch of complex analysis with a rich history is geometric function theory, which first
appeared in the early 20th century. The function theory deals with a variety of analytical tools to study
the geometric features of complex-valued functions. The main purpose of this paper is to estimate
more accurate bounds for the coefficient |an| of the functions that belong to a class of bi-univalent
functions with missing coefficients that are defined by using the subordination. The significance of
our present results consists of improvements to some previous results concerning different recent
subclasses of bi-univalent functions, and the aim of this paper is to improve the results of previous
outcomes. In addition, important examples of some classes of such functions are provided, which
can help to understand the issues related to these functions.
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1. Introduction

The study of univalent functions is traditional, and it is categorized under geometric
function theory (GFT) since numerous noteworthy characteristics of univalent functions can
be found in the basic geometrical properties. In 1851 [1], the Reimann mapping theorem led
to the development of GFT. Nevertheless, it helps to discover new results in a wide range
of topics, including contemporary mathematical physics and more established branches
of physics, like fluid dynamics, nonlinear integrable systems theory, and the theory of
partial differential equations. One of the most fascinating areas of geometric function
theory is the theory of univalent functions, which is a well-known classical topic of complex
analytic functions. Around the 20th century, many geometric aspects of analytical functions
were introduced and studied, like starlikeness, convexity, close-to-convexity, typically real
functions, etc.

Let D := {z ∈ C : |z| < 1} denote the open unit disk in the complex plane C, and let
A be the class of functions f analytic in D that has the following representation:

f (z) = z +
∞

∑
k=2

akzk, z ∈ D. (1)
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Denote S as the subclass of all functions of A that are univalent in D. The study of the
characteristics of normalized univalent functions that fall under the class and are defined
in the open unit disk D is the main focus of the geometry theory of functions.

Furthermore, let B represent the category of all analytic functions v in D that fulfil
the criteria v(0) = 0 and |v(z)| < 1 for all z ∈ D. If the image of the open unit disk by
a univalent function has some geometrical characteristics, it may be of interest to find an
analytic characterization of such functions. The best example of a domain with desirable
features is a convex domain and a starlike one with regard to a point. Many subclasses of
those analytic univalent functions that map onto these above-mentioned domains were
introduced and thoroughly studied, such as the well-known classes K and S∗ of convex
and starlike functions, respectively.

In geometric function theory, determining the bounds for the coefficients |an| is a
crucial task since it reveals details about the geometric characteristics of these functions.
For instance, the growth and distortion bounds, as well as the covering theorems, are given
by the bound for the second coefficient |a2| of functions f ∈ S .

Every function f ∈ S has an inverse f−1, which is defined by

f−1( f (z)) = z (z ∈ D) and f
(

f−1(w)
)
= w

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
,

with the expansion of the power series

f−1(w) = w +
∞

∑
k=2

bkwk = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . .

A function f ∈ A is said to be bi-univalent in D if f is univalent in D and f−1 has a univalent
analytic extension in D. For brevity, we will denote this analytic extension by g := f−1.
The studies of the class of bi-univalent functions in D was initiated by Levin [2], who
proved that

|a2| < 1.51.

Following these studies, Branan and Clunie [3] improved Levin’s result by the subsequent
variant

|a2| ≤
√

2.

Furthermore, Netanyahu [4] showed that for the bi-univalent functions,

max |a2| =
3
4

.

The fact that the following functions are bi-univalent must be mentioned:

f1(z) =
z

1− z
, f2(z) = log

(
1

1− z

)
.

And, these correspond to the inverse functions of

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

ew − 1
ew .

Let Σ denote the family of bi-univalent functions in D. The study of Srivastava et al. [5]
provides a brief historical review of the roles in the family Σ along with a few examples.
Regarding [5], the class Σ of bi-univalent functions has numerous subfamilies, each of
which has a different set of analytic features, and many authors have attempted to explore
these families, for example, [6–13]. In a few of these articles, the authors studied some
subclasses of bi-univalent functions connected with the Faber and Laguerre polynomials,
determined estimates for coefficients and Hankel determinants for different subclasses of
bi-univalent functions associated with Hohlov operator and Horadam polynomials, and
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gave some estimates for the Fekete–Szegő functional. Other related issues can be found
in [14–16], while, in general, it is still difficult to determine the extremal functions for
bi-univalent functions.

The Faber polynomials expansion method was first described by Faber [17], and he
used this method to study the coefficient boundaries of |am| for m ≥ 3. In the mathematical
sciences, notably in the field of geometric function theory, these Faber polynomials are
crucial. In this regard, in order to obtain the optimal bounds of |an| for the coefficients of
bi-univalent functions, some researchers used the Faber polynomial expansions [18–23].

Let f and F be two analytic functions in D; the function f is considered subordinate
to F, denoted by f (ζ) ≺ F(ζ), if there exists a function ω : D → D analytic in D with
ω(0) = 0, such that f = F ◦ω. The above function ω is considered a subordination function
(see [24], p. 125). If f (ζ) ≺ F(ζ), then f (0) = F(0) and f (D) ⊂ F(D), and with the
additional assumption that F is univalent in D, the subordination f (ζ) ≺ F(ζ) is equivalent
to f (0) = F(0) and f (D) ⊂ F(D) (see [25], p. 15).

The conceptual underpinnings of the current research problem and important research-
related issues are shown in this section. A review of comparable studies sheds some light
on the advantages and shortcomings of the earlier investigations.

Let h be an analytic function with positive real part in D and the power series expansion

h(z) = 1 + B1z + B2z2 + B3z3 + . . . , z ∈ D, with B1 6= 0.

With the help of the aforementioned type of function, we define a subclass of A that
is a generalization of Definition 1 from [20], assuming the weaker assumption λ ≥ 0
as follows:

Definition 1. A function f ∈ Σ is said to be in the class NΣ(λ, δ, h) for λ ≥ 0 and δ ≥ 0 if

Iλ,δ[ f ](z) := (1− λ)
f (z)

z
+ λ f ′(z) + δz f ′′(z) ≺ h(z), and

Iλ,δ[g](w) := (1− λ)
g(w)

w
+ λg′(w) + δwg′′(w) ≺ h(w), g = f−1.

Here, we present an example that helps prove that this class is nonempty and contains
functions other than the identity one.

Remark 1. (i) We emphasize that the class NΣ(λ, δ, h) is not empty for appropriate choices of the
parameters. Thus, letting

h∗(z) = 1 + 0.35z + 0.1z2,

like we may see in Figure 1a made using the MAPLE™ computer software, we have

Re h∗(z) > 0, z ∈ D, B1 = 0.35 = h′∗(0) 6= 0, B2 = 0.1,

and
Bn = 0 for n ≥ 3.

It is easy to show that

Re
zh′∗(z)

h∗(z)− 1
= Re

2z + 3.5
z + 3.5

> 0.6 > 0, z ∈ D.

Hence, h∗ is a starlike (univalent) function in D with respect to the point z0 = 1.
The function

f∗(z) =
z

1 + 0.2z
∈ S

and its inverse
g∗(w) = f−1

∗ (w) =
w

1− 0.2w
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are analytic in D; Hence, f∗ ∈ Σ.
Also, for λ = 0.2 and δ = 0.1, a simple computation shows that

I0.2,0.1[ f∗](z) =
1

0.2z + 1
− 0.04z

(0.2z + 1)2 + 0.1z
(
− 0.4
(0.2z + 1)2 +

0.08z
(0.2z + 1)3

)
and

I0.2,0.1[g∗](w) =
1

−0.2w + 1
+

0.04w
(−0.2w + 1)2 + 0.1w

(
0.4

(−0.2w + 1)2 +
0.08w

(−0.2w + 1)3

)
.

Since h∗ is univalent in D, using the inclusions

I0.2,0.1[ f∗](D) ⊂ h(D) and I0.2,0.1[g∗](D) ⊂ h(D)

that follow from Figure 1b and Figure 1c, respectively, also made using MAPLE™, we conclude that

I0.2,0.1[ f∗](z) ≺ h∗(z) and I0.2,0.1[g∗](w) ≺ h∗(w).

Therefore, f∗ ∈ NΣ(0.2, 0.1, h∗). Therefore, there exists values of the parameters λ, δ, and functions
h, such that

NΣ(λ, δ, h) \ {Id} 6= ∅,

where Id denotes the identity function. To not lengthen the paper unnecessarily, we omit the
MAPLE™ codes for the figures we used throughout the article.

(a) The image h(D) (b) The inclusion
I0.2,0.1[ f∗](D) ⊂ h∗(D)

(c) The inclusion
I0.2,0.1[g∗](D) ⊂ h∗(D)

Figure 1. Figures for Remark 1.

(ii) If, in the above example, the values of |λ| and |δ| decrease to 0, then the behavior of the

functions Iλ,δ[ f∗] and Iλ,δ[g∗] becomes very similar to that of the functions
f∗(z)

z
and

g∗(z)
z

. In
some examples we made using MAPLE™ software, we saw that the above set inclusions hold. Hence,
these new functions belong to the classes of Definition 1. These indicate a consequence of the general
fact that

lim
(λ,δ)→(0,0)

Iλ,δ[ f∗](z) =
f∗(z)

z
and lim

(λ,δ)→(0,0)
Iλ,δ[g∗](z) =

f∗(z)
z

, z ∈ D;

that is,

NΣ(0, 0, h) = NΣ

(
0, 0,

f (z)
z

)
for all f ∈ Σ.

(iii) If, in similar examples, the values of |λ| and |δ| increase, then there are some cases when
the subordinations of Definition 1 do or do not hold, as follows (to not lengthen the paper, we omit
the corresponding graphical representations):
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(a) f̃ (z) =
z

1 + 0.1z
∈ NΣ(1.1, 0.3, h∗);

(b) f∗(z) =
z

1 + 0.2z
/∈ NΣ(1.1, 0.3, h∗), if h∗(z) = 1 + 0.35z + 0.1z2.

In a similar way, the authors of [26] defined the following family of analytic functions:

S (ν, ρ; h) =
{

f ∈ A : 1 +
1
ρ

(
z f ′(z) + νz2 f ′′(z)

(1− ν) f (z) + νz f ′(z)
− 1
)
≺ h(z), 0 ≤ ν ≤ 1, ρ ∈ C \ {0}

}

and obtained a bound for the general coefficients of the bi-univalent functions of this class
by using the Faber polynomials subject to a series of assumptions.

In our paper, we replace the assumptions for the function h from [26] with some
weaker ones as stated above (i.e., omitting the conditions that h(D) is symmetric with
respect of the real axis and B1 > 0).

Here, we present an example that helps to better understand the above explanation
for the function h and proves that this family is nonempty, containing other functions than
the identity one.

Remark 2. In the below example, we consider a case when h(D) is not symmetric with respect
of the real axis and B1 6= 0, as we assumed in Definition 1. We show that for some values of the
parameters, the class S (ν, ρ; h) is not empty. Taking

ĥ(z) = 1 + 0.35(1 + i)z + 0.1z2,

since ĥ(z) 6= ĥ(z) for all z ∈ D, it follows that the domain ĥ(D) is not symmetric with respect of
the real axis and

B1 = 0.35(1 + i) = ĥ′(0) 6= 0.

Like we may see in Figure 2a, we have Re ĥ(z) > 0, z ∈ D, and Figure 2b, also made with
MAPLE™ software, shows that

Re J(z) := Re
zĥ′(z)

ĥ(z)− 1
= Re

3.5(1 + i) + 2z
3.5(1 + i) + z

> 0.7 > 0, z ∈ D.

Hence, ĥ is a starlike (univalent) function with respect to the point z0 = 1. Denoting

Lν,ρ[ f ](z) := 1 +
1
ρ

(
z f ′(z) + νz2 f ′′(z)

(1− ν) f (z) + νz f ′(z)
− 1
)

,

with the same notation as in Remark 1, we have (see Figure 2c)

L0.5,4[ f∗](D) ⊂ ĥ(D).

Using the fact that h̃ is univalent in D, the above inclusion shows that

L4,0.5[ f∗](z) ≺ ĥ(z), i.e. f∗ ∈ S
(

0.5, 4; h̃
)

.

In conclusion, for the above choices of functions and the corresponding parameters, we have

S (ν, ρ; h) \ {Id} 6= ∅.
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(a) The image ĥ(D)
(b) The inclusion

J(D) ⊂
{w ∈ C : Re w > 0}

(c) The inclusion
L0.5,4[ f∗](D) ⊂ ĥ(D)

Figure 2. Figures for Remark 2.

In [18], the researchers proved the following result for analytic functions of the family
S (ν, ρ; h):

Theorem ([18] Theorem 4). Let f (z) = z +
∞
∑

k=n
akzk (n ≥ 2) and its inverse map g = f−1 be

in S (ν, ρ; h) with |B2| ≤ B1. Then,

(i)

|an| ≤ min

{
|ρ|B1

(n− 1)[1 + ν(n− 1)]
;

√
2|ρ|B1

n(2n− 2)[1 + ν(2n− 2)]

}
,

(ii)
∣∣∣na2

n − a2n−1

∣∣∣ ≤ |ρ|B1

(2n− 2)[1 + ν(2n− 2)]
.

The goal of the current study is to estimate upper bounds for the coefficients |an| for
those functions that belong to the set of bi-univalent functions with missing coefficients
and defined by theNΣ(λ, δ, h). This paper aims to improve some of the results from [18,27].
Additionally, connections to some previously obtained results are made.

The below lemmas are required to prove our results.

Lemma 1 ([28,29]). Let f ∈ S be given by (1). Then, the coefficients of its inverse map g = f−1

are given in terms of the Faber polynomials of f with

g(w) = f−1(w) = w +
∞

∑
n=2

1
n

K−n
n−1(a2, a3, . . . , an)wn,

where

K−n
n−1 =

(−n)!
(−2n + 1)!(n− 1)!

an−1
2 +

(−n)!(
2(−n + 1)

)
!(n− 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)!(n− 4)!
an−4

2 a4 +
(−n)!(

2(−n + 2)
)
!(n− 5)!

an−5
2

[
a5 + (−n + 2)a2

3

]

+
(−n)!

(−2n + 5)!(n− 6)!
an−6

2 [a6 + (−2n + 5)a3a4] + ∑
j≥7

an−j
2 Vj,

such that Vj (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an and the
expressions such as (for example) (−m)! are to be interpreted symbolically by

(−m)! ≡ Γ(1−m) := (−m)(−m− 1)(−m− 2) . . . , m ∈ N0 := N∪ {0}, N := {1, 2, . . . }.
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We see that the initial three terms of K−n
n−1 are given by

K−2
1 = −2a2, K−3

2 = 3
(

2a2
2 − a3

)
, and K−4

3 = −4
(

5a3
2 − 5a2a3 + a4

)
.

Typically, for every real number p, the expansion of Kp
n is given below (see [28] for

details; see also [29], p. 349):

Kp
n = pan+1 +

p(p− 1)
2

D2
n +

p!
(p− 3)!3!

D3
n + . . . +

p!
(p− n)!n!

Dn
n .

Lemma 2 ([30]). Let f (z) = z +
∞
∑

k=n
akzk, n ≥ 2 be a univalent function in D and

f−1(w) = w +
∞

∑
k=n

bkwk
(
|w| < r0( f ), r0( f ) ≥ 1

4

)
.

Then,
b2n−1 = na2

n − a2n−1, and bk = −ak for n ≤ k ≤ 2n− 2.

Lemma 3 ([31] Exercise 9, p. 172). Assume that v(z) =
∞
∑

j=1
pjzj ∈ B. Then,

|pn| ≤ 1, n ≥ 2.

This lemma represents a special case of the result in [31] [Exercise 9, p. 172] obtained
from this exercise for p0 = 0.

2. Main Results

First, we prove the next lemma.

Lemma 4. Let u(z) = u1z + u2z2 + u3z3 + · · · ∈ B and s be a complex number. Then, for all
n ∈ N, the following inequality holds:

∣∣∣u2n − su2
n

∣∣∣ ≤ 1 + (|s| − 1)
∣∣∣u2

n

∣∣∣ ≤ max{1; |s|}.

Moreover, the functions u(z) = z and u(z) = z2 prove that the above inequality is sharp for |s| ≥ 1
and for |s| < 1, respectively.

Proof. For u(z) = u1z + u2z2 + u3z3 + · · · ∈ B and a fixed n ∈ N, let

εk := e2kπi/n, k ∈ {1, 2, . . . , n}

be the nth order complex roots of the unit. If we define the function v : D→ C by

v(z) :=
1
n

n

∑
k=1

u(εkz), z ∈ D, (2)

using the well-known relation

n

∑
k=1

εm
k =

{
0, if m ∈ N is not a multiple of n,
n, if m ∈ N is a multiple of n,

it follows that
v(z) = unzn + u2nz2n + . . . , z ∈ D. (3)
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Since u is an analytic function in D, from Definition (2), it follows that v ia also analytic in
D and v(0) = 0. Moreover, since u ∈ B, we have

|v(z)| ≤ 1
n

n

∑
k=1

∣∣∣u
(

e−2ikπ/nz
)∣∣∣ < n

n
= 1, z ∈ D.

Therefore, v ∈ B.
Because the function χ(z) := zn is a surjective endomorphism of the unit disk D, set-

ting ζ := zn in (3) and using the fact that v ∈ B, we deduce that the function ψ : D→ C by

ψ(ζ) := unζ + u2nζ2 + u3nζ3 + . . . , ζ ∈ D

belongs to the class B. Now, using [32] (page 10, inequality (7)) for the function ψ ∈ B, we
obtain the desired outcome with the aforementioned power series expansion.

We now prove the following main theorem using the aforementioned lemmas and a
new method.

Theorem 1. Let the function f (z) = z +
∞
∑

k=n0

akzk ∈ NΣ(λ, δ, h), n0 ≥ 2. Then,

|an0 | ≤ min





|B1|
1 + (n0 − 1)(λ + n0δ)

;

√√√√ 2|B1|max
{

1;
∣∣∣ B2

B1

∣∣∣
}

n0
(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

)





, (4)

and
∣∣∣n0a2

n0
− a2n0−1

∣∣∣ ≤
|B1|max

{
1;
∣∣∣ B2

B1

∣∣∣
}

1 + (2n0 − 2)[λ + (2n0 − 1)δ]
. (5)

Proof. If f (z) = z +
∞
∑

k=n0

akzk ∈ NΣ(λ, δ, h), then there are two functions as defined by the

quasi-subordination u, v ∈ B of the form

u(z) =
∞

∑
k=1

ukzn and v(z) =
∞

∑
k=1

vkzk,

satisfying

(1− λ)
f (z)

z
+ λ f ′(z) + δz f ′′(z) = 1 +

∞

∑
k=n0

[1 + (k− 1)(λ + kδ)]akzk−1 = h(u(z)) (6)

and

(1− λ)
g(w)

w
+ λg′(w) + δwg′′(w) = 1 +

∞

∑
k=2

[1 + (k− 1)(λ + kδ)]bkwk−1 = h(v(w)), (7)

respectively, where, according to Lemma 1,

bk =
1
k

K−k
n−1(a2, a3, . . . , ak), k ≥ 2. (8)

We have

h(u(z)) = 1 + B1

(
u1z + u2z2 + . . .

)
+ B2

(
u1z + u2z2 + . . .

)2
+ . . . , (9)

and, according to (6) and (9), the corresponding coefficients of the power expansions are
equal. Hence, we equate these coefficients step by step.

183



Axioms 2023, 12, 1071

First, from (6), we have ak = 0 for 2 ≤ k ≤ n0 − 1. Thus, the term containing “z” in (9)
is equal to zero, that is, B1u1 = 0. Using the fact that B1 6= 0, it follows u1 = 0. Therefore,
(9) becomes

h(u(z)) = 1 + B1

(
u2z2 + . . .

)
+ B2

(
u2z2 + . . .

)2
+ . . . . (10)

Secondly, since, in (6), the term containing “z2” is zero, it follows that, for the corre-
sponding term of (10), we have B1u2 = 0. Since B1 6= 0, it follows that u2 = 0. Hence, (10)
becomes

h(u(z)) = 1 + B1

(
u3z3 + . . .

)
+ B2

(
u3z3 + . . .

)2
+ . . . .

We repeat the same method n0 − 2 times and take into account that from the “n0 − 3”
step we obtain

h(u(z)) = 1 + B1

(
un0−2zn0−2 + . . .

)
+ B2

(
un0−2zn0−2 + . . .

)2
+ . . . . (11)

Since the coefficient of term containing “zn0−2” in (6) is zero, we obtain that the relevant
coefficient in (11) is B1un0−2 = 0. Thus, the assumption B1 6= 0 implies un0−2 = 0. Hence,
(11) becomes

h(u(z)) = 1 + B1

(
un0−1zn0−1 + . . .

)
+ B2

(
un0−1zn0−1 + . . .

)2
+ . . . . (12)

Now, by comparing the terms in “zn0−1” in (6) and (12), we obtain that

B1un0−1 = [1 + (n0 − 1)(λ + n0δ)]an0 ,

that is,

an0 =
B1un0−1

1 + (n0 − 1)(λ + n0δ)
. (13)

On the other hand, since ak = 0 for 2 ≤ k ≤ n0 − 1, from (8), we obtain bk = 0 for
2 ≤ k ≤ n0 − 1, and from (8), we have

bn0 =
1
n0

K−n0
n0−1(0, 0, . . . , 0, an0) = −an0 .

Furthermore, similar to the method described above, from the relation (7), we obtain that
the term containing “wn0−1” is given by

B1vn0−1 = −[1 + (n0 − 1)(λ + n0δ)]an0 ,

that is,

an0 = − B1vn0−1

1 + (n0 − 1)(λ + n0δ)
. (14)

From (13) and (14), using Lemma 3 and considering the previous reasons, we obtain

|an0 | = |bn0 | ≤
|B1|

1 + (n0 − 1)(λ + n0δ)
. (15)

Also, equating the terms that contain “z2n0−2” from (6) for k = 2n0 − 1 and those
of (12), we obtain

(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

)
a2n0−1 = B1u2n0−2 + B2u2

n0−1 = B1

(
u2n0−2 +

B2

B1
u2

n0−1

)
.
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Thus, based on the previous equality and according to the Lemma 4, it follows that

(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

)∣∣a2n0−1
∣∣ ≤ |B1|max

{
1;
∣∣∣∣
B2

B1

∣∣∣∣
}

.

Hence,

|a2n0−1| ≤
|B1|max

{
1;
∣∣∣ B2

B1

∣∣∣
}

1 + (2n0 − 2)[λ + (2n0 − 1)δ]
. (16)

From Definition 1, because f ∈ NΣ(λ, δ, h) implies g ∈ NΣ(λ, δ, h) and using the
above method of proof, we have

(1− λ)
g(w)

w
+ λg′(w) + δwg′′(w) = 1 +

∞

∑
k=n0

[1 + (k− 1)(λ + kδ)]bkwk−1 = h(v(w)).

Hence, we obtain

|b2n0−1| ≤
|B1|max

{
1;
∣∣ B2

B1

∣∣
}

1 + (2n0 − 2)[λ + (2n0 − 1)δ]
. (17)

Furthermore, in view of Lemma 2, using the relations (16) and (17), we deduce that

|an0 | ≤
√
|a2n0−1|+ |b2n0−1|

n0
≤

√√√√ 2|B1|max
{

1;
∣∣∣ B2

B1

∣∣∣
}

n0
(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

) , (18)

and from (15) and (18), we obtain the inequality (4).
In addition, using (17) and Lemma 2, it follows that

|n0a2
n0
− a2n0−1| = |b2n0−1| ≤

|B1|max
{

1;
∣∣∣ B2

B1

∣∣∣
}

1 + (2n0 − 2)[λ + (2n0 − 1)δ]
,

which completes our proof.

Next, this study shows why this theorem improves and generalizes some previous
ones by a suitable choice of parameters.

Remark 3. By choosing λ, δ, and h properly, we obtain from Theorem 1 the bounds that are better,
in some ranges of the parameters, than the estimates obtained before.

1. If

h(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1,

then the bounds are better than those in [20, Theorem 2];
2. If

h(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1,

and δ = 0 or λ = 1, then the bounds are better than those in [20] [Corollary 3] and [20] [Corollary 4],
respectively;

3. If δ = 0, then the bounds are better than those in [33] [Theorems 3.1] in the case of
subordination.

In the following part, we emphasize the significance of our present results that improve
some previous results concerning different recent subclasses of bi-univalent functions.
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Remark 4. In the proof of Theorem 4 of [18], assume for convenience that ρ = 1, ϑ = 0 with

f (z) = z +
∞
∑

k=n
akzk ∈ S (0, 1; h). By the definition of the subordination, there exist two functions

u, v ∈ B with

u(z) =
∞

∑
k=1

ukzn and v(z) =
∞

∑
k=1

vkzk,

satisfying
z f ′(z)

f (z)
= h(u(z)) and

wg′(w)

g(w)
= h(v(w)),

respectively.
Since

z f ′(z)
f (z)

∣∣∣∣
z=0

= 1,

it follows that
z f ′(z)

f (z)
= 1 + β1z + . . . + βnzn + . . . , z ∈ D, (19)

that is,
z + nanzn + . . . = (z + anzn + . . . )

(
1 + β1z + β2z2 + . . .

)
, z ∈ D.

Equating the corresponding coefficients of the above relation, we obtain

β1 = β2 = · · · = βn−2 = 0,

βn−1 = (n− 1)an,

and from (19), it follows that

z f ′(z)
f (z)

= 1 + (n− 1)anzn−1 + . . . , z ∈ D.

Let us consider again, for convenience, that n = 3. Thus,

f (z) = z + a3z3 + a4z4 + . . . ,

then
z f ′(z)

f (z)
= 1 + β2z2 + β3z3 + . . . ,

where
β2 = 2a3, β3 = 3a4, β4 = 4a5 − 2a2

3.

Consequently, if f has the above form, then it is impossible that β2 = 2a3 and β4 = 4a5 at the
same time. We have β4 = 4a5 while n0 = 5, but in this case, β2 = 0. Therefore, the relation (2.11)
of [18] and the Theorem 4 of [18] are not correct. Similarly, for the same reason, Theorem 2.6 of [27]
is not correct.

Example 1. As an example of Theorem 1, if we consider the analytic function in D defined by

f (z) :=
1
`

log
(

1
1− `z

)
= z +

`z2

2
+

`2z3

3
+ . . . , z ∈ D, with 0 < |`| ≤ 1,

then f ∈ A and its inverse is f−1(w) =
e`w − 1
`e`w , which have an analytic extension in D denoted

as g(z) =
e`z − 1
`e`z .

Letting
h(z) := 1 + 0.35z + 0.1z2 + 0.1z3, z ∈ D, (20)
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like we may see in Figure 3a made with MAPLE™ computer software, we have

Re h(z) > 0, z ∈ D, B1 = 0.35 = h′(0) 6= 0, B2 = 0.1, B3 = 0.1,

and
Bn = 0 for n ≥ 4.

Also, we see that

Re
zh′(z)

h(z)− 1
= Re

3z2 + 2z + 3.5
z2 + z + 3.5

> 0.1 > 0, z ∈ D.

Hence, h is a starlike (univalent) function in D with respect to the point z0 = 1. For some “very
small” values of the parameter |`| (i.e., close to zero), we have f ∈ NΣ(1.1, 0.15, h) with h given
by (20) since the ranges f (D) and g(D) with small neighborhoods of the point w0 = 1 are included
in h(D). According to Theorem 1, the inequalities (4) and (5) reduce to

|`| ≤ 0.5843487098 . . . and |`| ≤ 0.7156780854 . . . ,

respectively. Hence,
0 < |`| ≤ 0.5843487098 . . . . (21)

(i) Unfortunately, the upper bound of (21) represents a necessary but not sufficient condition
for f ∈ NΣ(1.1, 0.15, h) with h given by (20). Let us consider λ = 1.1 and δ = 0.15. Thus, for
` = 0.5843487098 from Figure 3b,c, we see that

I1.1,0.15[ f ](D) 6⊂ h(D) and I1.1,0.15[g](D) 6⊂ h(D),

but the reverse inclusions are true. Hence, for ` = 0.5843487098, we have f /∈ NΣ(1.1, 0.15, h).

(a) The image h(D) (b) The inclusion
h(D) ⊂ I1.1,0.15[ f ](D)

(c) The inclusion
h(D) ⊂ I1.1,0.15[g](D)

Figure 3. Figures for Example 1(i).

(ii) As we see in Figure 4a,b, for λ = 1.1, δ = 0.15, and, for example, ` = 0.201, we have the
inclusions

I1.1,0.15[ f ](D) ⊂ h(D) and I1.1,0.15[g](D) ⊂ h(D),

and from the fact that h is univalent in D, it follows that both of the subordinations of Definition 1
hold, i.e., f ∈ NΣ(1.1, 0.15, h).
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(a) The inclusion
I1.1,0.15[ f ](D) ⊂ h(D)

(b) The inclusion
I1.1,0.15[g](D) ⊂ h(D)

Figure 4. Figures for Example 1(ii).

3. Conclusions

The present studies have been extensively made in order to make conclusions that
support the justification for the current research, taking into account the aims, methodol-
ogy, conclusions, and results of the investigations. The coefficient boundaries of analytic
functions can be found with the use of the Faber polynomial expansion approach, which
has been proven to be effective.

We have defined a new subclass of bi-univalent functions in this article, along with sev-
eral useful examples. In the concluding part, we underline that by utilizing subordination,
we were able to determine the bounds for the coefficient |an| for the class of bi-univalent
functions with missing coefficients, emphasizing the novelty of the methods used for the
proofs and comments.

Moreover, by applying Lemma 4, the inequalities of Theorem 1 for these function
classes represent an improvement of a few results for some ranges of the parameters.

We expect that this method can be applied to the classes of harmonic and meromorphic
functions in some future works.
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15. Hameed Mohammed, N.; Adegani, E.A.; Bulboacă, T.; Cho, N.E. A family of holomorphic functions defined by differential
inequality. Math. Inequal. Appl. 2022, 25, 27–39. [CrossRef]
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Abstract: In this paper, we present and investigate the notion of third-order strong differential
subordinations, unveiling several intriguing properties within the context of specific classes of
admissible functions. Furthermore, we extend certain definitions, presenting novel and fascinating
results. We also derive several interesting properties of the results of third-order strong differential
subordinations for analytic functions associated with the Srivastava–Attiya operator.

Keywords: admissible function; analytic function; strong differential subordination; dominants;
multivalent function
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1. Introduction and Definitions

Differential subordination is a fundamental technique in geometric function theory
of complex analysis used by many authors in investigations to obtain interesting new
results. The notion of strong differential subordination was first used by Antonino and
Romaguera [1] (see [2]) to study Briot–Bouquet’s strong differential subordination. They
introduced this concept as an extension of the classical notion of differential subordination,
due to Miller and Mocanu [3] (see [4]). The concept was beautifully developed for the
theory of strong differential subordination in 2009 [5], where the authors extended the
concepts familiar to the established theory of differential subordination [4]. There have
been many interesting and fruitful usages of a wide variety of first-order and second-order
strong differential subordinations for analytic functions. Recently, many researchers have
worked in this direction and proved several significant results that can be seen in [6–8].
Various strong differential subordinations were established by linking different types of
operators to the study. The Sălăgean differential operator was employed for introducing
a new class of analytic functions in [9], and the Ruscheweyh differential operator in [10]
for defining a new class of univalent functions and for studying strong differential sub-
ordinations. The Sălăgean and Ruscheweyh operators were used together in the study
presented in [11], and a multiplier transformation provided new strong differential subor-
dinations in [12–14]. The Komatu integral operator was applied for obtaining new strong
differential subordinations results [15,16], and other differential operators proved effective
for studying strong differential subordinations [17]. The fractional derivative operator
was used in [18], and the fractional integral of the extended Dziok–Srivastava operator
was used in [19]. Multivalent meromorphic functions and the Liu–Srivastava operator
were involved in obtaining strong differential subordinations in [20]. The topic remains of
interest at present, as proven by recently published works (see, for details, [21–23]). Thus,
in this current paper, we introduced and investigated the concept of third-order strong
differential subordinations, unveiling several intriguing properties within the context of
specific classes of admissible functions.
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Let N denote the set of positive integers. Suppose H = H(U ) denotes the class of
analytic functions in the open unit disc

U = {z : z ∈ C and |z| < 1},

where C is the set of complex numbers. For n ∈ N, b ∈ C, define the class of functions

H[b, n] :=
{

f : f ∈ H; f (z) = b + bnzn + bn+1zn+1 + . . .
}

.

Given f , F ∈ H. The function f is subordinate to F, denoted by f (z) ≺ F(z), if there
exists an analytic function ω in U satisfying the conditions ω(0) = 0 and |ω(z)| < 1 so
that f (z) = F(ω(z)) (z ∈ U ). Further, if the function F is univalent in U , then (see [3,4])
f ≺ F ⇐⇒ f (0) = F(0) and f (U ) ⊂ F(U ). Suppose that F (z, ζ) is analytic in U × U and
f (z) is analytic and univalent in U . We say that F (z, ζ) is strongly subordinate to f (z).
Simply write

F (z, ζ) ≺≺ f (z),

if F (z, ζ) (ζ ∈ U ) as a function of z is subordinate to f (z). Here, also observe that
(cf. [2,5,24])

F (z, ζ) ≺≺ f (z)⇐⇒ F (0, ζ) = f (0) and F (U × U ) ⊂ f (U ).

For p ∈ N, we denote A(p) as the class of analytic functions defined by

f (z) = zp +
∞

∑
k=1

ak+pzk+p. (1)

Mishra and Gochhayat [25] introduced and studied the fractional differintegral operator. For
f ∈ A(p), the transform

Iλ
p,δ : A(p) −→ A(p)

is expressed by

Iλ
p,δ f (z) := zp +

∞

∑
k=1

(
p + δ

p + k + δ

)λ

ap+kzp+k (2)

(p + δ ∈ C \Z−0 ; Z−0 := {0,−1,−2, . . . }; λ ∈ C).

The operator Iλ
p,δ can be seen as a generalization of the Srivastava–Attiya operator [26]

(see [27–29]); it is also popularly known as the Srivastava–Attiya operator for multivalent
functions (see, for example, [30–32]). Furthermore, Iλ

p,δ generalizes several previously
studied familiar differential operators as well as integral operators by Bernardi [33], Cho
and Kim [34], Jung et al. [35], Libera [36], Sǎlǎgean [37] and Uralegaddi and Somanatha [38].
For a detailed discussion [25], also see [39–41].

They [25] derived from (2) the relation

z
(
Iλ

p,δ f (z)
)′

= (p + δ)Iλ−1
p,δ f (z)− δIλ

p,δ f (z). (3)

In terms of the third order, there have been only three articles [1,42–44] for the correspond-
ing third-order implication connected to a special case. Let Π and ∆ be sets in C. Suppose
p is an analytic function in U and

Ξ(r1, s1, t1, u1; z, ζ) : C4 ×U × U −→ C.

We have determined properties of the function p that imply the following inequality holds:
{

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)
}
⊂ Π =⇒ p(U ) ⊂ ∆. (4)
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A natural question arises as to what conditions on Ξ, Π and ∆ are needed so that the
implication (4) holds.
In this present article, we consider conditions on Π, ∆ and Ξ so that the inequality (4) holds.
We see that there are three different cases to consider in analyzing this inequality’s truth:
Problem 1. Given Π and ∆, we find Ξ so that (4) holds, and Ξ is an admissible function.
Problem 2. Given Ξ and Π, we find the ’smallest’ ∆ that satisfies (4).
Problem 3. Given Ξ and ∆, we find the Π that satisfies (4). Furthermore, we find the
’largest’ such Π.

The relation (4) can be rephrased in strong subordination terms, when either Π or ∆
is a simply connected domain. If ∆ is a simply connected domain with ∆ 6= C, and p(z)
is analytic in U , then a conformal mapping q(z) of U onto ∆ can be performed so that
q(0) = p(0). In such case, (4) can be written as follows:

{
Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)

}
⊂ Π =⇒ p ≺ q. (5)

Similarly, if Π is a simply connected domain, then there is a conformal mapping h of
U onto Π so that h(0) = Ξ(p(0), 0, 0, 0; 0, 0). If

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)

is analytic in U , then (5) can be reduced to
{

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)
}
≺≺ h(z) =⇒ p ≺ q. (6)

There are three key ingredients in a differential implication of the form of (5): the Ξ, the
set Π and the dominating function q. If two of these entities were given, one would hope
to find conditions on the third so that (6) would be satisfied. In this present article, we
start with a given set Π and a given q, and determine a set of admissible operators Ξ so
that inequality (4) holds. This leads to some of the definitions that will be used in our
main results.

Definition 1. Suppose Ξ : C4 × U × U −→ C and h is univalent in U . If p ∈ H and satisfies
the third-order strong differential subordination

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ≺≺ h(z), (7)

then p is said to be a solution of the strong differential subordination. Moreover, if p ≺ q for
all p satisfying (7), then the univalent function q is a dominant of the solutions for the strong
differential subordination. A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (7) is the best
dominant of (7).

For Π ⊂ C, with Ξ and p given in Definition 1, relation (7) can be written as follows:
{

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)
}
⊂ Π. (8)

Condition (8) will also be referred to as strong differential subordination, and can be
further extended to the definitions of the solution, dominant and best dominant.

Definition 2 ([1]). Let Q denote the collection of all injective and analytic functions q on U\E(q),
where

E(q) =
{

ξ : ξ ∈ ∂U and lim
z→ξ

q(z) = ∞
}

,

and min |q′(ξ)| = ρ > 0 (ξ ∈ ∂U\E(q)). Also, Q(b) is the class of functions q with q(0) = b.
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We will use the following lemmas from the third-order differential subordinations to
find dominants of strong differential subordinations.

Lemma 1 ([1]). Let Ur0 = {z : |z| < r0}, with 0 < r0 < 1. Let p(z) = b + bnzn + bn+1zn+1 +
. . . be analytic in U with n ≥ 2 and p(z) 6≡ b, and let q ∈ Q(b). If there exist points z0 = r0eiθ0 ∈ U
and ξ0 ∈ ∂U\E(q) such that p(z0) = q(ξ0), p(U r0) ⊂ q(U ),

< ξ0q′′(ξ0)

q′(ξ0)
≥ 0, and (9)

∣∣∣∣
zp′(z)
q′(ξ)

∣∣∣∣ ≤ n (10)

where z ∈ U r0 and ξ ∈ ∂U\E(q), then there exists a real constant k ≥ n ≥ 2 such that

z0p′(z0) = nξ0q′(ξ0), (11)

<
(

z0p′′(z0)

p′(z0)
+ 1
)
≥ n

[
< ξ0q′′(ξ0)

q′(ξ0)
+ 1
]

, (12)

<
(

z2
0p
′′′(z0)

p′(z0)
+ 1

)
≥ n2

[
< ξ2

0q
′′′(ξ0)

q′(ξ0)

]
+ 1,

or

<
(

z2
0p
′′′(z0)

p′(z0)

)
≥ n2

[
< ξ2

0q
′′′(ξ0)

q′(ξ0)

]
. (13)

Consider a special case when q is univalent in Lemma 1. If

q(w) = M
Mw + b
M + b̄w

, (14)

with |b| < M, then q(U ) = UM, q(0) = b and E(q) = φ.

Lemma 2 ([1]). Let Ur0 = {z : |z| < r0}, with 0 < r0 < 1. Suppose q given in (14) and
p(z) = b + bnzn + bn+1zn+1 + . . . is analytic in U with n ≥ 2 and p(z) 6≡ b . If there exist
points z0 = r0eiθ0 ∈ UM and w0 ∈ ∂U such that p(z0) = q(w0), p(Ur0) ⊂ UM and

|zp′(z)||[M + b̄eiθ ]|2 ≤ nM[M2 − |b|2] (15)

when z ∈ U r0 and θ ∈ [0, 2π], then

z0p′(z0) = nq(w0)
|q(w0)− b|2
|q(w0)|2 − |b|2

,

<
(

z0p′′(z0)

p′(z0)
+ 1
)
≥ n

( |q(w0)− b|2
|q(w0)|2 − |b|2

)
, and

<
(

z2
0p
′′′(z0)

p′(z0)

)
≥ 6n2

[
|q(w0)− b|2

]2

[|q(w0)|2 − |b|2]2
.

Our main objective in this article is to systematically investigate several potentially
useful results that are based upon third-order strong differential subordinations and their
applications in geometric function theory of complex analysis. Our results give interesting
new properties and, together with other papers that appeared in recent years, could
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emphasize the perspective of the importance of third-order strong differential subordination
theory and the generalized Srivastava–Attiya operator.

The organization of this article is as follows. In Section 2 below, we derive the no-
tion of third-order strong differential subordination, some definitions and the interesting
main results. We consider some suitable classes of admissible functions and investigate
several third-order strong differential subordination properties of multivalent functions
involving the Srivastava–Attiya operator defined by (2) in Section 3. Some corollaries and
consequences of our main results are also presented in Sections 2 and 3. Finally, in the last
Section 4, some potential directions for related further research are presented.

2. Main Results

Unless indicated otherwise, we assume throughout the sequel that p ≥ 2, z ∈ U and
ζ ∈ U . We establish the third-order strong differential subordinations theorem. In this
connection, we state the following definition.

Definition 3. Suppose Π ∈ C and q ∈ Q. The class of admissible functions Ξn[Π, q] consists of
those functions

Ξ : C4 ×U × U −→ C

that fulfill the following admissibility condition:

Ξ(r1, s1, t1, u1; z, ζ) /∈ Π (16)

whenever r1 = q(ξ), s1 = nξq′(ξ),

<
(

t1

s1
+ 1
)
≥ n

[
< ξq′′(ξ)

q′(ξ)
+ 1
]

and

<
(

u1

s1

)
≥ n2

[
< ξ2q′′′(ξ)

q′(ξ)

]
,

for ξ ∈ ∂U\E(q).

Here, Ξ1[Π,q] is denoted as Ξ[Π,q]. We refer to two special subcases of this definition. If
Ξ : C3 ×U × U −→ C, then (16) becomes Ξ(r1, s1, t1; z, ζ) /∈ Π when r1 = q(ξ), s1 = nξq′(ξ)
and

<
(

t1

s1
+ 1
)
≥ n

[
< ξq′′(ξ)

q′(ξ)
+ 1
]

, for ξ ∈ ∂U\E(q).

If Ξ : C2 × U × U −→ C, then (16) becomes Ξ(q(ξ), nξq′(ξ); z, ζ) /∈ Π when ξ ∈ ∂U\E(q).
We also deduce from Definition 3 the inclusion relations Ξn[Π′, q] ⊂ Ξn[Π, q] if Π′ ⊂ Π.

The following theorem is a key result in the notion of third-order strong differential
subordination.

Theorem 1. Consider p ∈ H[b, n] and q ∈ Q(b) fulfills

< ξq′′(ξ)
q′(ξ)

≥ 0 and
∣∣∣∣
zp′(z)
q′(ξ)

∣∣∣∣ ≤ n, (17)

where ξ ∈ ∂U\E(q). If Π is a set in C, Ξ ∈ Ξn[Π, q] and

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ⊂ Π, (18)

then
p(z) ≺ q(z).
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Proof. If we assume that p 6≺ q, then there exist points z0 = r0eiθ0 ∈ U and ξ0 ∈ ∂U\E(q)
such that p(z0) = q(ξ0) and p(U r0) ⊂ q(U ). From (17), we see that (9) and (10) of Lemma 1
are satisfied when z ∈ U and ξ ∈ ∂U\E(q). The conditions of that lemma are satisfied;
we conclude that (11)–(13) also follow. Using these conditions with r1 = p(z0), s1 =
z0p′(z0), t1 = z2

0p
′′(z0), u1 = z3

0p
′′′(z0) and z = z0 in Definition 3 leads to

Ξ(p(z0), z0p′(z0), z2
0p
′′(z0), z3

0p
′′′(z0); z, ζ) 6∈ Π,

which contradicts (18); thus, we have

p(z) ≺ q(z).

In Theorem 1, inequalities (17) and (18) are the most necessary for solving third-
order differential subordination. If third-order terms in (18) are missing, then they are not
required to satisfy (17).

The next result is a special case where the behavior of q on ∂U is not known in Theorem 1.

Corollary 1. Suppose q is univalent in U , q(0) = b and set qρ(z) ≡ q(ρz) for ρ ∈ (0, 1).
Consider that p ∈ H[b, n] and qρ fulfill

<
ξq′′ρ (ξ)

q′ρ(ξ)
≥ 0 and

∣∣∣∣∣
zp′(z)
q′ρ(ξ)

∣∣∣∣∣ ≤ n,

when ξ ∈ ∂U\E(q). If Π is a set in C and Ξ ∈ Ξn[Π, qρ], then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ⊂ Π

implies
p(z) ≺ q(z).

Proof. Given qρ is univalent in ∂U , and hence E(qρ) = φ and qρ ∈ Q(b). Since the class
Ξn[Π, qρ] is an admissible functions and from Theorem 1 we obtain p ≺ qρ. Since qρ ≺ q,
here we conclude that p ≺ q.

In Definition 3, there are no specific conditions on Π. When Π 6= C is a simply
connected domain and there is a conformal mapping h of U onto Π, we denote the class
Ξn[h(U ), q] by Ξn[h, q]. The next two results are directly from Theorem 1 and Corollary 1.

Theorem 2. Consider p ∈ H[b, n] and q ∈ Q(b) and that they fulfill

< ξq′′(ξ)
q′(ξ)

≥ 0 and
∣∣∣∣
zp′(z)
q′(ξ)

∣∣∣∣ ≤ n,

where ξ ∈ ∂U\E(q). If Ξ ∈ Ξn[h, q] and Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) is analytic in U ,
then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ≺≺ h(z)

implies
p(z) ≺ q(z).

Corollary 2. Suppose q is univalent in U , with q(0) = b, and set qρ(z) ≡ q(ρz) for ρ ∈ (0, 1).
Consider that p ∈ H[b, n] and qρ fulfill

<
ξq′′ρ (ξ)

q′ρ(ξ)
≥ 0 and

∣∣∣∣∣
zp′(z)
q′ρ(ξ)

∣∣∣∣∣ ≤ n
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where ξ ∈ ∂U\E(q). If Ξ ∈ Ξn[h, qρ] and Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) is analytic in
U , then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ≺≺ h(z)

implies
p(z) ≺ q(z).

We next specify the connection between the best dominant of a strong differential
subordination and the solution of a corresponding differential equation.

Theorem 3. Consider p ∈ H[b, n], Ξ : C4 ×U × U −→ C and that

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)

is analytic in U . Suppose h is univalent in U and the differential equation

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) = h(z) (19)

has a solution q ∈ Q(b) and

< ξq′′(ξ)
q′(ξ)

≥ 0 and
∣∣∣∣
zp′(z)
q′(ξ)

∣∣∣∣ ≤ n,

where ξ ∈ ∂U\E(q). If Ξ ∈ Ξn[h, q], then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ≺≺ h(z) (20)

implies that
p(z) ≺ q(z)

and q is the best dominant.

Proof. From Theorem 1, we have that q is a dominant of (20). Again, q fulfills (19) and it is
a solution of (20). Thus, q will be dominated by all dominants of (20). Therefore, q is the
best dominant.

We further pursue the family of admissible functions and theorems, when q(U ) is a
disc. Since q is given by (14), the class denoted by Ξn[Π, M, b]. When Π = ∆, the class
denoted by Ξn[M, b]. Since q(w) = Meiθ with 0 ≤ θ ≤ 2π when |w| = 1, from Lemma 2
we derived the following.

Definition 4. Consider q to be given by (14), n ≥ 2, and Π is a set in C. For θ ∈ [0, 2π], the class
Ξn[Π, M, b] which consists of those functions

Ξ : C4 ×U × U −→ C

that fulfill the following admissibility condition

Ξ(r1, s1, t1, u1; z, ζ) /∈ Π

whenever r1 = Meiθ , s1 = nM |M−b̄eiθ |2
M2−|b|2 eiθ
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< t1

s1
+ 1 ≥ n

|M− b̄eiθ |2
M2 − |b|2 and

<u1

s1
≥ 6n2<

[
b̄M− |b|2

]2

[M2 − |b|2]2
,

for z ∈ U , ζ ∈ U . (21)

When b = 0, 0 ≤ θ ≤ 2π, we see from (21) that Ξn[Π, M, 0] consists of those functions

Ξ : C4 ×U × U −→ C

that fulfill
Ξ(Meiθ , nMeiθ , L, N; z, ζ) /∈ Π

when

<(Le−iθ) ≥ (n2 − n)M and <(Ne−iθ) ≥ 0. (22)

The following result is the immediate consequence.

Theorem 4. Consider that the q given in (14) and p ∈ H[b, n] satisfy

|zp′(z)||M + b̄eiθ |2 ≤ Mn
[

M2 − |b|2
]
,

where z ∈ U and 0 ≤ θ ≤ 2π. If Ξ ∈ Ξn[Π, M, b], then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ⊂ Π

implies
p(z) ≺ q(z).

Next, we obtain the following corollary when b = 0 in Theorem 4.

Corollary 3. Consider that q(w) = Mw and p ∈ H[0, n] fulfill

|zp′(z)| ≤ Mn

when z ∈ U . If Π is a set in C and Ξ ∈ Ξn[Π, M, 0] as characterized by (22), then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ⊂ Π

implies
p(z) ≺ Mz.

In this particular case, Theorem 4 becomes

Theorem 5. Consider that the q given in (14) and p ∈ H[b, n] satisfy (17). If Π is a set in C and
(i) Ξ ∈ Ξn[Π, M, b], then

Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ) ⊂ Π =⇒ |p(z)| < M.

(ii) If Ξ ∈ Ξn[M, b], then

|Ξ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z, ζ)| < M =⇒ |p(z)| < M.
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3. Applications with the Operator

By using the operator Iλ
p,δ, we establish the family of admissible functions to discuss

the strong subordination properties.

Definition 5. Suppose Π is a set in C and q ∈ Q. The family of admissible functions ΘI [Π, q]
consists of functions

Θ : C4 ×U × U −→ C

fulfilling the admissibility
Θ(α, β, γ, η; z, ζ) /∈ Π

when α = q(ξ), β = kξq′(ξ)+δq(ξ)
p+δ ,

<
(
(p + δ)2γ− δ2α

(p + δ)β− δα
− 2δ

)
≥ k

[
< ξq′′(ξ)

q′(ξ)
+ 1
]

and

<
(
(p + δ)2(η(p + δ)− 3γ(1 + δ)) + (3 + 2δ)δ2α

(p + δ)β− δα
+ 2 + 3(2 + δ)δ

)
≥ k2

[
< ξ2q′′′(ξ)

q′(ξ)

]
,

for ξ ∈ ∂U\E(q) and k ≥ p.

Theorem 6. Consider Iλ
p,δ f (z) ∈ H[0, p] with p ≥ 2, q ∈ Q(0) and that they satisfy

< ξq′′(ξ)
q′(ξ)

≥ 0 and

∣∣∣∣∣
z(Iλ

p,δ f (z))′

q′(ξ)

∣∣∣∣∣ ≤ k, (23)

when ξ ∈ ∂U\E(q) and k ≥ p. If Π is a set in C, Θ ∈ ΘI [Π, q] and f (z) ∈ A(p) satisfies

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ⊂ Π, (24)

then
Iλ

p,δ f (z) ≺ q(z).

Proof. Let
g(z) := Iλ

p,δ f (z). (25)

Differentiating (25) with respect to z, and using the identity (3), we obtain

Iλ−1
p,δ f (z) =

zg′(z) + δg(z)
p + δ

. (26)

Again, by differentiating (26), we have

Iλ−2
p,δ f (z) =

z2g′′(z) + (1 + 2δ)zg′(z) + δ2g(z)
(p + δ)2 . (27)

Further computations show that

Iλ−3
p,δ f (z) =

z3g′′′(z) + 3(1 + δ)z2g′′(z) + (1 + 3δ + 3δ2)zg′(z) + δ3g(z)
(p + δ)3 . (28)
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Set the transformations from C4 to C by

α = r1, β =
s1 + δr1

p + δ
, γ =

t1 + (1 + 2δ)s1 + δ2r1

(p + δ)2 ,

η =
u1 + 3(1 + δ)t1 + (1 + 3δ + 3δ2)s1 + δ3r1

(p + δ)3 . (29)

Let

Ξ(r1, s1, t1, u1; z, ζ) = Θ(α, β, γ, η; z, ζ)

= Θ
(

r1,
s1 + δr1

p + δ
,

t1 + (1 + 2δ)s1 + δ2r1

(p + δ)2 ,
u1 + 3(1 + δ)t1 + (1 + 3δ + 3δ2)s1 + δ3r1

(p + δ)3 ; z, ζ

)
. (30)

Using Equations (25)–(28), and from (30), we obtain

Ξ(g(z), zg′(z), z2g′′(z), z3g′′′(z); z, ζ) = Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ).

Therefore, the inclusion (24) leads to

Ξ(g(z), zg′(z), z2g′′(z), z3g′′′(z); z, ζ) ∈ Π.

Now,
t1

s1
+ 1 =

(p + δ)2γ− δ2α

(p + δ)β− δα
− 2δ

and
u1

s1
=

(p + δ)2(η(p + δ)− 3γ(1 + δ)) + (3 + 2δ)δ2α

(p + δ)β− δα
+ 2 + 3(2 + δ)δ.

Hence, the admissibility condition in Definition 5 for Θ ∈ ΘI [Π,q] is equivalent to Definition 3.
Thus, by use of (23) and applying Theorem 1, we obtain

g(z) ≺ q(z)

or
Iλ

p,δ f (z) ≺ q(z).

The hypothesis of Theorem 6 requires that the behavior of q on the boundary is not known.

Corollary 4. Consider q to be univalent in U , with q(0) = 0, and set qρ(z) ≡ q(ρz) for
ρ ∈ (0, 1). Let Iλ

p,δ f (z) ∈ H[0, p] for p ≥ 2 and let Iλ
p,δ f (z) and qρ satisfy (23). If Π is a set in

C and Θ ∈ ΘI [Π, qρ] and f (z) ∈ A(p) fulfill

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ⊂ Π,

then
Iλ

p,δ f (z) ≺ q(z).

Proof. Proof of the corollary is an immediate consequence of using Theorem 6, and we obtain

Iλ
p,δ f (z) ≺ qρ(z).

Since qρ ≺ q, we conclude that
Iλ

p,δ f (z) ≺ q(z).
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In Definition 5, there are no special conditions on Π . When Π 6= C, then there is some
conformal mapping h of U onto Π. Let it be denoted by ΘI [h, q]. We then obtain the results
that are an immediate consequence of Theorem 6 and Corollary 4.

Theorem 7. Consider that Iλ
p,δ f (z) ∈ H[0, p] with p ≥ 2 and q ∈ Q(0) and that they satisfy

(23). If Π is a set in C, Θ ∈ ΘI [Π, q], f (z) ∈ A(p) and

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ)

is analytic in U , then

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ≺≺ h(z)

implies
Iλ

p,δ f (z) ≺ q(z).

Corollary 5. Consider q to be univalent in U , with q(0) = 0, and set qρ(z) ≡ q(ρz) for
ρ ∈ (0, 1). Let Iλ

p,δ f (z) ∈ H[0, p] for p ≥ 2 and let Iλ
p,δ f (z) and qρ satisfy (23). If Π is a set in

C, Θ ∈ ΘI [Π, qρ] , f (z) ∈ A(p) and

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ)

is analytic in U , then

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ≺≺ h(z)

implies
Iλ

p,δ f (z) ≺ q(z).

We next indicate the connection between the best dominant and the solution of a
strong differential subordination.

Theorem 8. Consider that Iλ
p,δ f (z) ∈ H[0, p] with p ≥ 2, Θ : C4 ×U × U −→ C and that

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ)

is analytic in U . Suppose h is univalent in U and q ∈ Q(0) is a solution of the following differential
equation

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) = h(z) (31)

and satisfies (23). If Π is a set in C, Θ ∈ ΘI [h, q] and f (z) ∈ A(p) fulfills

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ≺≺ h(z), (32)

then
Iλ

p,δ f (z) ≺ q(z)

and q is the best dominant.

Proof. From Theorem 6, we conclude that q is a dominant of (32). Since q satisfies (31), q is
a solution of (32). Thus, q is dominated by all dominants of (32). Therefore, q is the best
dominant.

Our next outcomes are for the specialized case of q being a disc, where q is given
by (14) and the class ΘI [Π, M, b]. Also, we denote the class ΘI [M, b], when Π = ∆. And

200



Axioms 2024, 13, 42

q(w) = Meiθ with 0 ≤ θ ≤ 2π when |w| = 1. Notably, the case q(z) = Mz, M > 0 denotes
the admissible functions class ΘI [Π, M].

Definition 6. If Π is a set in C, M > 0 and p ≥ 2. The admissible functions class ΘI [Π, M]
consists of those functions

Θ : C4 ×U × U −→ C

such that

Θ
(

Meiθ ,
k + δ

p + δ
Meiθ ,

L + ((1 + 2δ)k + δ2)Meiθ

(p + δ)2 ,
N + 3(1 + δ)L + ((1 + 3δ + 3δ2)k + δ3)Meiθ

(p + δ)2 ; z, ζ

)

/∈ Π

whenever

<Le−iθ ≥ (k2 − k)M, <Ne−iθ ≥ 0

for0 ≤ θ ≤ 2π and k ≥ p.

Corollary 6. Consider q(z) = Mz and Iλ
p,δ f (z) ∈ H[0, p] with p ≥ 2 to satisfy

|z(Iλ
p,δ f (z))′| ≤ Mk,

when z ∈ U and k ≥ p. If Θ ∈ ΘI [Π, M], f (z) ∈ A(p) satisfies

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ⊂ Π,

then
Iλ

p,δ f (z) ≺ q(z).

Corollary 7. Consider q(z) = Mz and Iλ
p,δ f (z) ∈ H[0, p] with p ≥ 2. If Π is a set in C and (i)

Θ ∈ ΘI [Π, M] , f (z) ∈ A(p) satisfies

Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ) ⊂ Π =⇒ |p(z)| < M.

(ii) If f (z) ∈ A(p) and Θ ∈ ΘI [M], it satisfies

|Θ(Iλ
p,δ f (z), Iλ−1

p,δ f (z), Iλ−2
p,δ f (z), Iλ−3

p,δ f (z); z, ζ)| < M =⇒ |p(z)| < M.

4. Conclusions

This paper is intended to propose a new line of investigation for third-order strong
differential subordination theories using some specific classes of admissible functions. In
each theorem, the dominant and the best dominant, respectively, are established, replacing
the functions considered as the dominant and the best dominant from the theorems with
remarkable functions and using the properties which produce interesting corollaries. Using
the operator, strong subordination results are obtained. The third-order strong differential
subordination outcomes such as those here may serve as inspiration for future research on
this subject, and in the theory of differential subordinations and superordinations of the
third and higher orders as well. Here, we only used and explored the third-order strong
differential subordinations.
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