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1. Introduction

This editorial introduces the Special Issue “Effects of Environmental Organic Pollu-
tants on Environment and Human Health: The Latest Updates”. Environmental Organic
Pollutants include volatile organic compounds (VOCs) and persistent organic pollutants
(POPs). VOCs originate from motor vehicle emissions and various manufactured products,
such as building materials, paints, and cleaning agents, which often pollute the atmosphere
around us. POPs have an intrinsic resistance to natural degradation processes and are found
in polluted water, soil, atmosphere, sediment, etc. In addition, many emerging organic
pollutants are considered potentially harmful to human health [1], such as Pharmaceuticals
and Personal Care Products, and thus they are prioritized in biomonitoring surveillance.

This Special Issue presents the most recent advancements in research on VOCs and
POPs, encompassing investigations and risk assessments of environmental organic pol-
lutants, studies on the toxic mechanisms of such pollutants, as well as comprehensive
summaries and reviews of the research progress and historical developments within re-
lated fields.

2. An Overview of Published Articles

There are two articles focused on VOCs. Wang et al.’s (contribution 4) field observa-
tions of CO, NO, NO2, O3, and VOCs were conducted in Beijing, Baoding, and Shanghai.
They illustrated the pollution characteristics, source analysis, and risk assessment of VOC
in the three cities. The research results indicated that motor vehicle exhaust was the
main source of VOCs in all three cities. Acrolein was the only substance with an average
hazard quotient greater than 1, indicating a significant non-carcinogenic risk. In Beijing,
1,2-dibromoethane had an R-value of 1.1 × 10−4 and posed a definite carcinogenic risk.
Singh et al. (contribution 10) used statistical analysis to determine that anthropogenic
activities were considerable sources of emission of VOCs in industrial areas. During the
lockdown, the major factors behind the crucial decrease in TVOC levels were the complete
and partial restrictions on industrial activities, transport, and marketplace openings. Com-
paratively, the lifetime cancer risk (LCR) value for males and females was estimated to
be higher throughout the lockdown period than in the pre-and post-lockdown periods.
These findings showed that exposure to VOCs induced adverse health effects, including
carcinogenic and non-carcinogenic risks.

There are 11 articles focused on POPs. The research fields of these studies include
toxic mechanisms, epidemiology, and ecological risk.

Among them, there are two articles on the toxic mechanisms of exposure to POPs
on health. Exposure to Bisphenol A (BPA) has led to an increased risk of obesity and
nonalcoholic fatty liver diseases (NAFLDs). Li et al. (contribution 2) investigated the effects
of BPA on the hepatic lipid metabolism function and its potential mechanisms in mice

Toxics 2024, 12, 231. https://doi.org/10.3390/toxics12040231 https://www.mdpi.com/journal/toxics1
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through a comparison of the BPA exposure model and the BPA exposure + cessation of drug
treatment model. The results showed that the mice exposed to BPA manifested NAFLD
features. Importantly, BPA could significantly decrease the level of APOD protein, whereas
an extremely significant increase occurred after they stopped exposure. Meanwhile, APOD
over-expression suppressed TG accumulation in AML12 cells. In conclusion, the damage
caused by BPA can be repaired by upregulation of APOD, and it is a potentially effective
biochemical detection indicator for the treatment of obesity or NAFLDs caused by BPA
exposure. The persistent pollutants in wastewater can enter the food chain and ultimately
endanger human health [2]. Yang et al. (contribution 3) studied the cytotoxicity of the
industrial wastewater treatment. They conducted a broad evaluation of the environmental
health risks from industrial wastewater along the Yangtze River, China, using a battery
of bioassays. The toxicity tests on the wastewater samples showed that the wastewater
treatment processes were effective at lowering acetylcholinesterase (AChE) inhibition,
HepG2 cells’ cytotoxicity, the estrogenic effect in T47D-Kbluc cells, DNA damage in Euglena
gracilis, and the mutagenicity of Salmonella typhimurium. These two studies provide a good
basis for the health risk assessment of BPA and industrial wastewater, and Yang et al.’s
finding also provides a scientific reference for the optimization and operation of wastewater
treatment processes.

Furthermore, in this Special Issue, Niu et al. (contribution 11) systematically summa-
rize contemporary findings from epidemiological surveys, and they explored the mechanis-
tic correlation between exposure to emerging pollutants (including endocrine disruptors,
perfluorinated compounds, microplastics, and antibiotics) and blood glucose dysregula-
tion. Their work provides a basic reference for further research on the complex interaction
between new pollutants and diabetes.

It is clear that a poor ecological environment will damage our health. Ecological
risks are closely related to health risks. In this Special Issue, there are eight articles that
focus on the ecological risk of organic matter. Wang et al. (contribution 1) researched the
nine pesticide pollutants included in the “List of New Key Pollutants for Control (2023
Edition)” issued by the Chinese government. They analyzed the environmental exposure to
pesticide pollutants in sediments along the coast of China and derived baseline standards
for sediment quality using the balanced distribution method. They also conducted a multi-
level ecological risk assessment of pesticides in sediment. The risk quotient assessment
showed that endosulfan and DDT posed medium environmental risks to the Chinese
coastal sediment environment, and PCBs posed medium risks in some bays of the East
China Sea. The semi-probabilistic optimized evaluation and the joint probability curve
(JPC) assessments all showed that endosulfan and DDT pose a certain degree of risk to the
environment. Hong et al. (contribution 5) analyzed the spatial distribution characteristics
of nine alkylphenols (APs) in the Yongding River and Beiyun River. The differences in
the concentrations and spatial distribution patterns of the nine APs were systematically
evaluated using principal component analysis (PCA). The results demonstrated that the
APs were widely present in both rivers, and the pollution risks associated with the APs were
more severe in the Yongding River than in the Beiyun River. This study provides theoretical
data support and a basis for AP pollution risk evaluation in Yongding River and Beiyun
River. Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated
to have high toxicological potential, and it adversely affects water bodies [3]. Lu et al.
(contribution 6) addressed the adverse effects of TCS on freshwater microalgae (E. gracilis),
including morphological alterations, reduced photosynthesis, and oxidative stress. They
showed that the main toxic mechanisms of TCS exposure for E. gracilis were changes in ROS
and antioxidant enzyme activities, which stimulated algal cell damage, and the inhibition
of the TCA cycle metabolic system, including carbon metabolism, nitrogen metabolism, and
the D-glutamine and D-glutamate metabolism pathways controlled by the downregulation
of DEGs, which were further manifested as oxidative stress and photosynthesis inhibition
effects. Wang et al. (contribution 7) investigated the Yellow River Estuary region and found
that a total of 34 antibiotics, including macrolides, sulfonamides, quinolones, tetracyclines,
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and chloramphenicol, were pollutants. The results show that antibiotics were widely
present in the water bodies of the Yellow River Estuary, with 14 antibiotics detected to
varying degrees, including a high detection rate for lincomycin hydrochloride. Farming
wastewater and domestic sewage were the primary sources of antibiotics in the Yellow River
Estuary. This study provides beneficial information for the assessment of the ecological
risk presented by antibiotics in the Yellow River Estuary water bodies and a scientific basis
for future antibiotic pollution control in the Yellow River Basin. Hou et al. (contribution
9) conducted a comprehensive field investigation of Baiyangdian Lake and assessed the
ecological risk of PAEs, which can provide data support and a theoretical basis for the
formulation of water quality standards and the future prevention and control of PAE
pollution. The Water Quality Criteria (WQC) for the protection of aquatic organisms mainly
focus on the maximum threshold for pollutants that do not have harmful effects on aquatic
organisms. Feng et al. (contribution 13) systematically discussed an overview of water
biological conservation, its theoretical methods, and its research progress and detailed the
key scientific issues that need to be considered in WQC research. Combined with the specific
characteristics of emerging pollutants, some new ideas and directions for future research
on the WQC protection of aquatic organisms were proposed. Liu et al. (contribution
12) comprehensively reviewed the development process of WQC in China, focusing on
the methodological progress and challenges in selecting priority pollutants, biological
screening tests, and standardizing ecotoxicity testing protocols. They also provided critical
assessments of the necessary minimum data requirements for quality assurance measures,
data validation techniques, and ALC assessment. Moreover, in Men et al.’s (contribution 8)
study, a non-experimental approach was used to calculate the RfD values, which explored
the potential correlation between toxicity and physicochemical characteristics and the
chemical structure of pesticides. The molecular descriptors of contaminants were calculated
using T.E.S.T software from the EPA, and a prediction model was developed using a
stepwise multiple linear regression (MLR) approach. Approximately 95% and 85% of the
data points differed by less than ten-fold and five-fold between the predicted values and
true values, respectively, which improved the efficiency of the RfD calculation. The model
prediction values have certain reference values in the absence of experimental data, which
is beneficial to the advancement of contaminant health risk assessment.

3. Conclusions

The papers published in this Special Issue include investigations and the risk assess-
ments of organic pollutants in multiple regions, providing a scientific basis for governments
and businesses to formulate environmental policies and technological improvements. The
toxicity mechanism research provides a foundation and reference for subsequent research.
The review paper systematically summarizes epidemiological investigation findings and
delves into the mechanism of correlation between exposure to emerging pollutants and
blood glucose imbalance. It comprehensively reviews the development process of WQC
in China and systematically provides an overview of WQC, its theoretical methods, and
research progress for aquatic organism protection. This Special Issue provides important
references for subsequent research.
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Abstract: Although the ecological risk of emerging contaminants is currently a research hotspot in
China and abroad, few studies have investigated the ecological risk of pesticide pollutants in Chinese
coastal sediments. In this study, nine pesticide pollutants included in the “List of New Key Pollutants
for Control (2023 Edition)” issued by the Chinese government were used as the research objects,
and the environmental exposure of pesticide pollutants in China’s coastal sediments was analyzed.
The baseline sediment quality criteria were deduced using the balanced distribution method, and a
multi-level ecological risk assessment of pesticides in sediment was performed. The results showed
that the nine pesticide pollutants were widespread in Chinese coastal sediments, with concentrations
ranging from 0.01 ng·g−1 to 330 ng·g−1. The risk quotient assessment showed that endosulfan
and DDT posed medium environmental risks to the Chinese coastal sediment environment, and
PCBs posed medium risks in some bays of the East China Sea. The semi-probabilistic, optimized
semi-probability evaluation and joint probability curve (JPC) assessments all show that endosulfan
and DDT pose a certain degree of risk to the environment.

Keywords: coastal; sediment; pesticides; ecological risk assessment

1. Introduction

Persistent organic pollutants (POPs) have characteristics such as biological toxicity [1–3],
environmental persistence [4,5], and bioaccumulation [6,7]. They are widespread in the envi-
ronment and pose great risks to human health and the environment. The Chinese government
has attached great importance to the control of pollutants in recent years. In December 2022,
the Chinese government released the “List of New Pollutants for Key Control (2023 Edition)”.
The list contains 14 chlorinated hydrocarbons including chlorinated pesticides: Chlordane,
Mirex, DDTs, HCH isomers, Endosulfans, HCB, and PCBs.

Pesticide pollution is very common. For example, organochlorine and other pesticide
pollutants were detected in Cirebon [8], the East China Sea [9], and Xiangshan Bay [10] in In-
donesia, and the total concentration ranges were 10–120 ng·L−1, 183.49–1363.77 ng·L−1, and
2.88–34.72 ng·L−1, respectively. Similarly, a variety of pesticide pollutants were also found
in the sediments of the Ebro River Delta [11], the Vasai River in Mumbai [12], the iSimangal-
iso Wetland Park in South Africa [13], and the west coast of India [14], with concentration
ranges of 50.8–1912 ng·g−1, 597–1538 ng·g−1, 26.29–283 ng·g−1, and 0.39–21.16 ng·g−1,
respectively. In addition, PCBs and organochlorine pesticides were found in the sediments
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of Shantou Bay, China, with concentrations ranging from 0.54 to 55.5 ng·g−1 and 2.19 to
16.9 ng·g−1 [15]. Organochlorine pesticides were found in the sediments of areas of North
Bohai Sea, China, and concentrations of HCH and DDT in sediments ranged from below
detection (<LOD) to 1964.97 ng·g−1 and <LOD to 86.46 ng·g−1, respectively [16]. PCBs
were found in the Jiaojiang Estuary of the East China Sea, with concentrations ranging from
4.93 ng·g−1 to 108.79 ng·g−1 [17].

The ecological risk of pesticides in the aquatic environment is a topic of widespread
concern around the world. For example, Guo et al. used the risk quotient method and the
probabilistic risk assessment method to conduct an ecological risk assessment of organochlo-
rine pesticides in the surface waters of Meiliang Bay, Gonghu Bay, and Huikou Bay in
Taihu Lake [18]. The results showed that DDT, endosulfan, and hexachlorocyclohexane
(HCH) presented relatively high risks. Xu et al. used the risk quotient method to assess the
ecological risks of 35 pesticides in seven watersheds in China [19]. The results showed that
the ecological risks of each watershed were at a potential medium level, and pesticides were
the main compounds that posed risk. Hong et al. conducted an ecological risk assessment
of DDT in pond sediments in the Yangtze River–Huai River region of China, and they
found that there was a moderate to high ecological risk [20]. The results showed that the
total content of PCBs and DDT posed a moderate ecological risk [21]. Zhao et al. conducted
an ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls
in surface sediments of Tianjin Haihe Estuary based on sediment quality guidelines. The
results showed that organochlorine pesticides and PCBs have potential ecological risks [22].

In addition, the ecological risks of pesticides in the ocean have also received widespread
attention. For example, Xie et al. used the risk quotient method to assess the ecological
risk of pesticides in the coastal waters of the Liaodong Peninsula in China, and the results
showed that atrazine and acetochlor had higher risks to aquatic organisms than other pesti-
cides [23]. Wang et al. conducted an ecological risk assessment of organochlorine pesticides
in the waters of Hangzhou Bay, China, and the results showed that the potential danger of
organochlorine pesticides in sediments was worrying [24]. The above-mentioned studies
mainly conducted ecological risk assessments based on acute toxicity data, the assessment
methods were not uniform, and the areas were relatively scattered [25]. There have been
few systematic studies on the ecological risk assessment of pesticides in sediments in
China’s coastal waters.

Based on previous research, this study (1) analyzed the environmental exposure of
pesticides in China’s coastal sediments; and (2) conducted a multi-level ecological risk
assessment of pesticides in sediments based on the sediment quality criteria derived using
the phase equilibrium distribution method to provide a reference for the environmental
management of pollutants in China.

2. Materials and Methods

2.1. Evaluation and Selection of Data
2.1.1. Environmental Concentration Data of Pollutants

The nine pesticides listed in the “List of New Pollutants for Key Control (2023 Edition)”
released by China, namely chlordane, mirex, hexachlorobenzene, DDT, α-HCH, β-HCH,
lindane, endosulfan technical and its related isomers, and PCBs, were used as research
objects; the keywords “sediment”, “risk assessment”, “pollutants”, and “China” were
used to search the Web of Science and China National Knowledge Infrastructure; and we
screened them from the obtained literature on the exposure data of pesticide pollutants
in China’s coastal waters. A total of 3379 exposure data points from 47 documents were
collected. The detection time was from January 1998 to April 2023. The survey areas were
the Bohai Sea, East China Sea, Yellow Sea, and South China Sea in China’s coastal waters.
The survey areas included the key sea areas of China’s CEC control, such as the Yangtze
River Estuary, the Pearl River Estuary, and Hangzhou Bay. If the data collected in this study
contained values greater than the method detection limit, the actual measured values were
recorded. If the monitoring data were displayed in graphic form, the average concentrations
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were recorded. Given the number of studies in the literature, the mean concentration for a
location was calculated using measured values if greater than the method detection limits
(MDL), the 1/2 MDL if < MDL, or 0 if not detected.

2.1.2. Environmental Toxicity Information

According to the principles of the accuracy, relevance, and reliability of pollutant
toxicity data proposed by the US Environmental Protection Agency [26], Klimmisch [27],
Durda [28], Hobbs [29], and Moermond [30], the toxic effect data for nine pesticides were
searched in the ECOTOX database (https://cfpub.epa.gov/ecotox/search.cfm, accessed on
7 April 2022). During the toxicity data screening process, the data quality was evaluated
from the following aspects: (1) experimental design, including the testing method, experi-
mental process, and the validity and quality control of the experimental results; (2) reagent
purity (>90%); (3) the source of the tested organisms; (4) exposure conditions, including
the applicability of the test system to the test substance and the test organism, the test
concentration interval, exposure time, and biomass loading; and (5) data analysis, including
the statistical methods and concentration response curves. Toxicity data were used for
classification. In principle, the most sensitive effect indicators were selected, and the chronic
toxicity data of no observed effect concentration (NOEC) or 10% effect concentration (EC10)
were preferred, followed by the lowest observed effect concentration (LOEC) or the median
effect concentration (EC50) [31].

2.2. Derivation of Sediment Quality Benchmarks Using the Phase Equilibrium
Distribution Method

There are many methods for deriving sediment benchmarks. For non-ionic organic
compounds, the US Environmental Protection Agency recommends derivation using the
equilibrium distribution method [32]. This method assumes that benthic and overlying
aquatic organisms have the same sensitivity to the same pollutant. When the pollutants
in interstitial water reach the water quality criteria (WQC), the content of pollutants in
the sediment is the sediment quality criteria (SQC). The sediment quality benchmark
calculation formula is as follows [32]:

Kp = foc × Koc, (1)

SQC = Kp × WQC, (2)

where foc is the organic carbon content, dimensionless; the Koc organic carbon partition
coefficient can be deduced from the octanol/water partition coefficient Kow, and the unit is
L·kg−1; Kp is the partition coefficient of pollutants between the sediment phase and the
interstitial water phase, dimensionless; WQC is the reference value of water quality, ng·L−1;
and SQC is the sediment quality standard value, ng·g−1.

2.3. Ecological Risk Assessment

Multi-level ecological risk assessment (MLERA) is a method for the comprehensive
ecological risk assessment of pollutants from a low level to a high level. This study
performed an MLERA based on the ecotoxicology risk assessment framework [33,34], the
risk assessment technical guidance document [35], the NORMAN priority framework for
substances, and previous studies [36,37].

2.3.1. First Level: Quotient Value Method

The quotient value method is the most commonly used and extensive risk assessment
method. The calculation method of the risk quotient is the ratio of the average concentration
of a single chemical in the sediment to the predicted no-effect concentration (PNEC). The
formula is as follows [38]:

RQ = C/PNECsediment, (3)
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In the formula, RQ is the risk quotient, dimensionless; C is the average concentration
calculated from the measured value set of a single chemical, ng·g−1; and PNECsediment
is the predicted no-effect concentration derived by the most sensitive toxicity data with
assessment factors (Afs) of 10, 20, or 100 depending on test endpoints of NOEC or EC10,
LOEC, or EC50 [31,39].

When the RQ is less than 0.1, it is considered that there is no risk; when 0.1 ≤ RQ < 1,
the pollutant is considered to have low risk; when 1 ≤ RQ < 10, the pollutant is considered to
have medium risk; when RQ ≥ 10, it is considered that the pollutant has a high risk [31,40].
Although the quotient value method can initially reflect the relative risk of a pollutant, it
cannot explain the actual impact of the pollutant on aquatic organisms.

2.3.2. Second Level: Semi-Probability Method

The semi-probability method compares the measured ambient concentration of an
individual chemical at each sampling point with its PNEC value. Pollution concentrations
above the PNEC pose a potential risk to aquatic organisms, while concentrations below the
PNEC are considered to pose an insignificant risk. Therefore, frequencies exceeding the
PNEC can be used to prioritize pollutants. The frequency at which a target chemical exceeds
the PNEC (F) can be calculated as the number of sampling points whose concentration
exceeds the PNEC divided by the total number of sampling points. The results reveal the
proportion of sites showing potential risk potential. The formula is as follows [38]:

F = n/N × 100%, (4)

where F is the frequency exceeding PNEC, dimensionless; n is the number of sampling
stations whose concentration exceeds the PNEC; and N is the total number of stations [41].

2.3.3. Third Level: Semi-Probability Method for Optimization

The current RQ based on the average concentration in water may be biased by the
detection frequency. When screening high-risk compounds, it is a trend to consider both
the concentration and frequency, so the optimal level of risk assessment can be performed
according to the NORMAN network [37,42–44]. The product of the RQmax value and the
frequency of PNEC exceeding the standard is the priority index (PI), which can more clearly
show the pesticide pollutants that should be focused on in China’s coastal sediments. The
formula is as follows [38]:

PI = RQmax × F, (5)

In the formula, PI is the priority index, dimensionless; RQmax is the risk quotient
calculated based on the maximum concentration, dimensionless; and F is the frequency at
which the concentration exceeds the PNEC, dimensionless.

When the PI is less than 1, the risk of the pollutant is low and the pollutant does not
pose an ecological risk to the environment.

2.3.4. Fourth Level: Joint Probability Curves

There are many subjective factors in the process of formulating PNECs, which are
determined based on the effects of small concentrations reported by a limited number
of studies, and the results may not be repeatable. Joint probability curve methods can
remedy this deficiency through using the linear regression of two datasets to calculate
the probability that a concentration will adversely affect a specific proportion (%) of a
species, and classifying the risk as minimal, low, medium, or high [45–47]. The formula is
as follows [38]:

Risk product = exceedance probability × magnitude of effect, (6)

Risk < 0.25% is classified as minimal risk; risk ≥ 0.25% and <2% is classified as low risk;
risk ≥ 2% and <10% is classified as medium risk; and risk ≥ 10% is classified as high risk.
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3. Results and Discussion

3.1. Distribution of Pesticides in China’s Coastal Sediments

The nine pesticides in this study were from the “List of Emerging Contaminants for Key
Control“. Nine pesticide pollutants with relevant research data in China’s coastal sediments
were used as research objects to evaluate their risk levels in China’s coastal sediments.

A total of 3290 exposure data points of nine target chemicals were collected in the coastal
waters of China, distributed in the Bohai Sea, Yellow Sea, East China Sea, and South China
Sea (Figure 1). Among them, the South China Sea had the most types of pesticide pollutants
(nine types), followed by the Yellow Sea (eight types), the East China Sea (seven types),
and the Bohai Sea, which had had the fewest types of pesticides (four types) (Figure 2). As
shown in Figure 1, the concentration of pollutants in the Yellow Sea was the highest, and
the concentration of pollutants in most sea areas ranged from 500 to 1000 ng·g−1 dw, with
the highest concentration reaching 1188 ng·g−1. It can be seen from Figure 3 that over time,
the concentrations of organochlorine pesticides measured in China’s coastal sediments show
an increasing trend. During the five-year period from 2009 to 2013, the highest exposure
concentrations of organochlorine pesticides and PCBs were measured in coastal sediments
in China. Overall, the pollution of organochlorine pesticides and PCBs in China’s coastal
sediments is intensifying. This finding showed that there were more pesticide residues in this
sea area. In addition, the concentration of pollutants in the South China Sea was relatively
high. The concentration of pollutants in most sea areas was between 1 and 10 ng·g−1 dw,
and the concentration of pollutants in some coastal areas was between 100 and 500 ng·g−1

dw. It can be seen from Figure 2 that the most frequently reported sea area is the South
China Sea, with a total of 1238 samples reported, followed by the East China Sea, with a total
of 1205 samples reported. The main reason for this is that the Yangtze River Estuary and
the Pearl River Estuary are national key sea areas, and there are many research studies on
pesticide pollutants. Figure 4 shows the environmental concentrations of the nine compounds.
Across the country, except for mirex, other pesticide pollutants were detected at a relatively
high frequency (75–100%) in China’s coastal sediments. The most detected pollutant was
polychlorinated biphenyls, with 880 concentration data points, which were detected in the
Bohai Sea, Yellow Sea, East China Sea, and South China Sea. The pollutants α-HCH, β-HCH,
and lindane, as HCH isomers, were tested the same number of times. It is worth noting that
the research on some pesticide pollutants is relatively limited. For example, mirex was only
reported in the South China Sea, and only 58 samples were reported. Considering its detection
frequency of 72%, further research is needed.

Figure 1. Concentration gradient map of pesticide pollutants in China’s coastal waters.
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Figure 2. Total number of pesticide pollutants in China’s coastal sediments.

 

Figure 3. Temporal variation trends of pesticide pollutant concentrations in coastal sediments
of China.

 

Figure 4. Concentrations of pesticide pollutants in the offshore sediments of total sea areas in China.
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3.2. Toxic Effects of Pesticide Pollutants

In this study, available chronic toxicity data on aquatic organisms were collected
for nine pesticide-type pollutants (Table 1). The results shown in Table 1 represent the
most sensitive endpoints for the nine pesticides. The data obtained in this study con-
tained individual toxicity data for nine species. Among them, there were four vertebrates,
four invertebrates, and one primary producer. The threshold range of chronic toxicity
endpoints in vertebrates is 0.1–32,000 ng·L−1, and the threshold range of invertebrates is
1–65,000 ng·L−1. The chronic toxicity endpoint for the primary producer is 12,000 ng·L−1.
Among the nine pesticides, endosulfan, chlordane, and DDT were extremely toxic to organ-
isms, with chronic toxicity endpoints of 0.1 ng·L−1, 1 ng·L−1, and 5 ng·L−1, respectively.

Table 1. Toxicity of nine pesticides to aquatic organisms.

Chemicals Endpoint Concentration (ng·L−1) AF WQC PNECsediment

DDT NOEC 5 10 0.5 4.9
β-HCH NOEC 32,000 10 3200 27,646
HCB NOEC 96.6 10 9.66 193
α-HCH EC50 65,000 100 650 5616
Lindane NOEC 10 10 1 8.6
Endosulfan NOEC 0.1 10 0.01 0.03
Chlordane LOEC 1 20 0.05 27.5
PCBs LOEC 15 20 0.75 58.5
Mirex EC50 12,000 100 120 841,820

Note: Toxicological data of the nine pesticides were obtained from the ECOTOX knowledge base (https://cfpub.
epa.gov/ecotox/search.cfm, accessed on 7 April 2022). PNEC: predicted no-effect concentration.

3.3. Risk Characterizations
3.3.1. First Level: Quotient Value Method

First, the quotient value method was used to conduct the first-level risk assessment
of nine chlorinated hydrocarbon pollutants. Figure 5 shows the ranking of the risk values
of nine chlorinated hydrocarbon pollutants, from high to low: endosulfan, DDT, PCBs,
lindane, chlordane, HCB, α-HCH, β-HCH, and mirex. Among them, the RQ values of
endosulfan and DDT were between 1 and 10, indicating that endosulfan and DDT had
moderate environmental risks, and the other seven pesticide pollutants had low risks.
Figure 6 further shows the risk map of the top three pollutants, namely endosulfan, DDT,
and PCBs, in coastal sediments in different sea areas of China. It can be seen from Figure 6
that when evaluating each sea area separately, endosulfan has a relatively high risk in the
Bohai Sea and the South China Sea; DDT poses a medium risk around the Bohai Sea and
the South China Sea; and PCBs have low risks near the East China Sea and South China
Sea, with moderate risks in some bays of the East China Sea.

 

Figure 5. Sorting chart of the risk values of nine pesticide pollutants.
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Endosulfan DDT PCBs 

Figure 6. Risk map of three pesticide pollutants in China’s coastal sediments.

3.3.2. Second Level: Semi-Probability Method

Using the average concentration to assess the risk of pollutants produces a large error,
and it is impossible to accurately assess the actual exposure of pollutants in each area.
Therefore, the semi-probability method was used for the second-level risk assessment to
quantify the probability that the exposure concentrations of nine chlorinated hydrocarbon
pollutants in China’s coastal sediments would exceed the PNEC of aquatic organisms,
and the percentage exceeding the PNEC value was identified. The results showed that
the four chlorinated hydrocarbon pollutants of endosulfan, DDT, PCBs, and lindane had
environmental risks, and they had adverse effects on some sensitive species, while the
frequencies of other pollutants exceeding the PNEC were all zero and the environmental
risks were low. Among them, endosulfan had the highest probability of exceeding the
PNEC at 71%, followed by DDT at 25%, while lindane and PCBs each had several points
where the exposure concentration exceeded the PNEC value.

The comparison of the two methods showed that the risk of the three chlorinated
hydrocarbon pollutants (endosulfan, DDT, and PCBs) to the environment could be observed
using the quotient value method and the semi-probability method, but the quotient value
method could not evaluate the risk of lindane. For environmental risks, the semi-probability
method could further accurately detect the excess of lindane at individual points and
provide technical support for the next step of precise management.

3.3.3. Third Level: Semi-Probability Method for Optimization

The optimized semi-probability method was used to conduct the third-level risk
assessment. The prioritization indexes (PIs) of the four chlorinated hydrocarbon pollutants
of endosulfan, DDT, PCBs, and lindane were calculated, and risk characterization was
performed. The PIs of four chlorinated hydrocarbon pollutants were endosulfan at a PI
of 383, DDT at a PI of 29.7, PCBs at a PI of 2.6, and lindane at a PI of 3.1 × 10−2. The
results showed that the PI values of endosulfan, DDT, and PCBs were all greater than 1,
and therefore posed risks to the environment, whereas the PI value of lindane was less than
1, and the risk to the environment was low. It is suggested that endosulfan and DDT be
treated as the priority compounds in China’s coastal sediments for key research.

The comparison revealed that for the four pesticide pollutants, although the quotient
value method judged that both endosulfan and DDT had moderate risks, the difference
in PI between the two obtained using the optimized semi-probability method was nearly
13 times, the main reason being that for endosulfan, the PNEC was exceeded more fre-
quently (71%). In addition, although the commercial value method determined that lindane
had no risk to the environment, and the semi-probability method indicated that lindane
posed a certain risk to the environment, the evaluation using the optimized semi-probability
method showed that the risk of lindane was low and it did not pose a risk to the envi-
ronment. This result was attributed to the low frequency of PNEC exceedance in lindane
(0.5%).
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3.3.4. Joint Probability Curve Method

For the four pesticide pollutants of endosulfan, DDT, PCBs, and lindane, the joint
probability curve method was used to conduct a sophisticated fourth-level risk assessment
based on ecotoxicity data. The joint probability curves for each pollutant were obtained
by integrating the impact of China’s coastal sediment concentration distribution on the
chronic toxicity data of different species, and they were used to indicate the probability of
exceeding different levels of impact (Figure 7). As can be seen from Figure 7, endosulfan
and DDT have a low risk of chronic effects on aquatic organisms.

 
Figure 7. Joint probability curve of the toxicity of pesticide pollutants in the coastal waters of China.
Risk classification: orange: minimum risk; yellow: low risk; green: medium risk; white: high risk.

3.3.5. Comparing the Risk Assessment Results Generated Using the Four Methods

In this paper, four methods were used to conduct an MLERA of pesticide pollutants in
China’s coastal sediments. The quotient value method is often used in most quantitative or
semi-quantitative ecological risk assessments. However, this method is usually conservative
in determining exposure and selecting toxicity reference values; it provides only a rough
estimate of risk, and there are many uncertainties in the calculation. Moreover, the quotient
value method does not take into account the differences in the exposure of individuals
within the population and the differences in the chronic effects of exposed species. The
semi-probability method and the optimized semi-probability method can express the
probability of ecological risks posed by chemicals to aquatic organisms in the coastal
areas of the country. This method conducts ecological risk assessment based mainly on
the probability that the detected concentration of pollutants will exceed the PNEC. The
optimized semi-probability method considers both the environmental concentration and
frequency, and it evaluates the ecological risk of regional pollutants based on the actual
situation, which is beneficial to the management of regional pollutants. For example, after
using the semi-probability method to assess the ecological risk of lindane, it was found that
the environmental concentration of lindane exceeded the PNEC value at some points, while
the risk of lindane determined using the optimized semi-probability method indicated
that lindane posed no significant risk (PI = 3.1 × 10−2). However, lindane still has points
exceeding the PNEC in China’s coastal sediments, especially in waters where lindane poses
a potential risk to aquatic organisms, and its risk should not be completely ignored. The
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main disadvantage of the optimized semi-probability method is that in this study, the
toxicity data of the most sensitive species were used as the PNEC value, and the sediment
reference value was derived using the phase equilibrium distribution method, which did
not take into account the range of species present in the environment. Therefore, the
predicted risk needs to be confirmed using the joint probability curve. Taking endosulfan
as an example, the frequency of the PNEC exceeding the standard was 71%, and the PI was
383, but the results of the joint probability curve showed that its relative risk in sea areas
was relatively low.

4. Conclusions

This study analyzed the environmental exposure of pesticide pollutants in China’s
offshore sediments and conducted a multi-level ecological risk assessment of pesticides in
sediments. The results show the following:

(1) Nine kinds of pesticide pollutants are widespread in China’s coastal sediments, with
concentrations ranging from 0.01 ng·L−1 to 330 ng·L−1.

(2) The first-level quotient method assessment showed that the risk quotients of the nine
chlorinated hydrocarbon pollutants were ranked in descending order as endosulfan,
DDT, PCBs, lindane, chlordane, HCB, α-HCH, β-HCH, and mirex. Among these
pollutants, endosulfan and DDT posed a medium environmental risk to the sediments
in the coastal waters of China, and PCBs posed a medium risk in some bays of the East
China Sea. The second-level semi-probability assessment showed that endosulfan,
DDT, lindane, and PCBs should be considered as priority pollutants. The semi-
probability evaluation results of the third-level optimization show that the focus
should be on the ecological risks of endosulfan, DDT, PCBs, and lindane in China’s
coastal sediments, especially endosulfan and DDT. The four-level joint probability
curve method assessment shows that endosulfan and DDT have a low risk of chronic
effects on aquatic organisms.

(3) Based on the four evaluation methods, this study concludes that endosulfan and DDT
pose environmental risks to China’s coastal sediments.
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Abstract: Emerging contaminants have been increasingly recognized as critical determinants in global
public health outcomes. However, the intricate relationship between these contaminants and glucose
metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with
the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise
molecular and cellular pathways through which these contaminants potentially mediate the initiation
and progression of diabetes mellitus. A profound understanding of the epidemiological impact of
these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is
indispensable for the formulation of evidence-based policy and preventive interventions. This review
systematically aggregates contemporary findings from epidemiological investigations and delves
into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine
disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation.
A nuanced exploration is undertaken focusing on potential dietary sources and the consequential
role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational
reference for future investigations into the complex interplay between emerging contaminants and
diabetes mellitus.

Keywords: emerging contaminants diabetes mellitus; gut microbiota; dietary exposure; emerging
pollutants

1. Introduction

According to the International Diabetes Federation, the global number of individuals
with diabetes reached 425 million in 2017 [1]. Projections suggest that by 2045, the global
diabetic population will escalate to 783 million. Diabetes is understood to be a polygenic
hereditary disorder with a pronounced genetic predisposition. Approximately 60% of type
II diabetes patients have a familial history of the disease, showcasing a notable familial
aggregation [2]. Current genome-wide association studies have pinpointed over 80 suscep-
tibility loci associated with diabetes [3]. Beyond genetic predispositions, environmental
factors exert an undeniable influence on diabetes outcomes [4], with emerging pollutants
increasingly taken into consideration [5].

With the advent of modern industrial developments and the introduction of novel
chemical compounds, the spectrum of environmental pollutants has expanded. Many of
these emerging contaminants possess chemical and toxicological properties that remain
insufficiently characterized. These pollutants emanate from diverse sources, are numerous
in type, and their inherent resistance to degradation leads to their ubiquitous presence
and accumulation in environmental matrices [6,7]. Despite their often low concentrations,
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the biotoxicity of these pollutants, coupled with their persistence and bioaccumulative
potential, presents potential detrimental effects on the environment and biota [8]. As the
understanding of the environmental and health impacts of chemical substances deepens,
and as environmental detection technologies evolve, an increasing number of these pollu-
tants are being identified. However, there is a noticeable absence of regulatory frameworks
overseeing their presence and impact, leading to their collective designation as emerging
contaminants (ECs) or emerging pollutants (EPs). It is widely acknowledged that these
contaminants, even at low concentrations, can enter biological systems through ingestion,
inhalation, or dermal contact [9], with ingestion being the predominant exposure route.
Once inside an organism, they accumulate in various tissues and organs [10,11], influencing
metabolic pathways, including glucose metabolism. For instance, when mice were exposed
to 1.25 mg/kg/d PFOA for 28 days, an elevation in blood glucose levels was observed,
accompanied by a reduction in hepatic glucose and glycogen content [12]. Moreover, some
studies suggest that certain emerging pollutants might influence host glucose metabolism
by altering the composition and function of the gut microbiome. For example, Huang et al.
found that when mice fed a high-fat diet were exposed to polystyrene microplastics, there
was a marked reduction in the richness and diversity of their gut microbiota, an increase
in the relative abundance of Gram-negative bacteria, as well as elevated levels of insulin
resistance and pro-inflammatory cytokines [13].

The phenomenon of increasing attention to the impacts of emerging environmen-
tal pollutants on the incidence, progression, and complications of diabetes has been the
subject of extensive research. A survey of various databases reveals that articles have
been published reviewing the changes in glucose metabolism induced by these emerging
pollutants [14,15]. However, these articles have primarily focused on the impact of indi-
vidual pollutants on diabetes and its complications, with a comprehensive review of all
emerging pollutants, their presence in the environment, biological exposure pathways, and
effects on glucose metabolism remaining unexplored. In addition, studies on the effects of
exposure to emerging contaminants that cause disturbances in glucose metabolism through
alterations in the structure and composition of the gut microbiota have not been reviewed.
Therefore, this review summarizes the effects on glucose metabolism after exposure to the
four emerging contaminants and the possible mechanisms, especially through the alter-
ation of glucose metabolism after affecting the gut microbiota, by presenting the four new
contaminants. The objective is to furnish a foundation for future research on the influence
of these pollutants on diabetes, to enhance public awareness of their potential hazards, and
to provide empirical support and scientific underpinning for the management of emerging
pollutants and relevant environmental policies.

2. Emerging Contaminants (ECs)

Emerging contaminants (ECs) refer to environmental pollutants detectable in the envi-
ronment and natural ecosystems, posing significant health and environmental risks to both
humans and ecological systems. Yet, they remain either unregulated by laws and standards
or inadequately addressed [16,17]. When these contaminants are introduced into the envi-
ronment, their concentrations tend to be low, often rendering their short-term toxic effects
unnoticeable. However, their bioaccumulative nature and resistance to degradation result
in persistent accumulation. By the time they are detectable, these pollutants have already
accrued and posed long-term hazards [18]. The ECs in the environment carry potential
dangers to the ecosystem and all living organisms, including humans, such as chronic
toxicity, genetic harm, endocrine-disrupting effects, and the “tri-effects” (carcinogenic,
teratogenic, and mutagenic effects) [19]. These characteristics have prompted scientists to
pay increasing attention to emerging pollutants in the environment.

Surprisingly, over 3000 types of emerging pollutants have been identified globally.
Almost every country has detected the presence of these [20]. Their widespread sources and
diversity are alarming. China, being a significant producer and consumer of various chemi-
cals, faces challenges as the large-scale production, misuse, and improper management of
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these chemical substances introduce them into the environment, intensifying environmental
pollution concerns [21]. The difficulty in monitoring and the lack of adequate regulatory
measures for these contaminants, combined with their persistent and bioaccumulative
nature, make them challenging to manage once they enter the environment [18,22,23].

Pharmaceutical factories, plastics, artificial sweeteners, plasticizers, illicit drugs, clean-
ing products, cosmetics, personal care products, beverages, and packaging are primary
sources of these pollutants [24]. They primarily enter biological systems via dietary expo-
sure. Many studies hint that animal-derived food sources are major contributors to many
endocrine-disrupting agents. For instance, residues of polychlorinated biphenyl congeners
in Crassostrea tulipa (oysters) and Anadara senilis (mussels) were detected at concentra-
tions of 2.95–11.41 mg/kg wet weight and 5.55–6.37 mg/kg wet weight, respectively [25].
The likelihood of exposure to these biphenyls in bivalves is high, with median concentra-
tions exceeding FDA action levels [26]. Wang et al. [27] detected 11 types of perfluorinated
compounds in consumer products such as pork tenderloin, pork heart, pork liver, pork
kidney, chicken breast, and chicken liver. Every sample contained these compounds, with
pork liver having the highest average content of 3.438 ng/g, followed by pork kidney
(0.508 ng/g). Additionally, researchers found microplastics in various salts and bottled
waters humans consume, with the highest concentrations in sea salt (550–681 particles/kg)
and bottled water showing average concentrations of 10.4 particles/L and 325 particles/L
for microplastics with sizes >100 μm and <100 μm, respectively [28,29].

Emerging contaminants closely linked with daily human life can be categorized as
biological (e.g., resistant genes, algal toxins), chemical (e.g., novel pesticides, endocrine
disruptors, flame retardants, antibiotics, perfluorinated compounds), and physical (e.g., mi-
croplastics, nanomaterials) [22,30,31]. Based on publicly available regional or site-specific
monitoring data, typical emerging pollutants in China mainly include endocrine disruptors,
perfluorinated compounds, microplastics, and antibiotics, all of which are causing severe
pollution issues in the air, water, and soil environments [22,30]. Numerous published arti-
cles have indicated that the presence of emerging pollutants in the environment increases
the risk of diabetes in exposed populations and accelerates the onset and progression of
the disease. Moreover, it is well known that the mechanisms of type I diabetes and type II
diabetes are different. Type I diabetes is mostly related to genetic factors, while for type II
diabetes, lifestyle and exposure to emerging contaminants seem to be more important.
This article focuses on these four emerging pollutants, briefly discussing their influence
on the onset and progression of diabetes, hoping to offer a scientific foundation for the
management and prevention of emerging contaminants (Figure 1).

Figure 1. Typical emerging contaminants and representative compounds.
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3. Endocrine-Disrupting Chemicals (EDCs)

Endocrine-disrupting chemicals (EDCs) are defined as “an exogenous substance or
mixture that alters function(s) of the endocrine system and consequently causes adverse
health effects in an intact organism, or its progeny, or (sub) populations” [32]. The most
prevalent EDCs include persistent organic pollutants (POPs), phenolic compounds, insecti-
cides, and flame retardants, among others. Due to the frequent use of endocrine-disrupting
chemicals (EDCs) in daily life, they are ubiquitously present in the environment. The
detection methods for EDCs in the environment primarily include mass spectroscopy,
chromatography-based methods, and advanced sensing approaches [33–35], such as elec-
trochemical and colorimetric methods. Owing to their rapid, portable, sensitive, and
eco-friendly characteristics, sensing approaches are frequently employed to detect EDCs
in environmental and food production systems. Some EDCs are lipophilic, and once in-
gested by humans through the food chain, they accumulate in adipose tissue [36]. An
epidemiological study by Miquel Porta discovered that over 85% of study participants
had detectable levels of EDCs such as polychlorinated biphenyls (PCBs), DDE, and DDT
in their bloodstream. Additionally, the concentration of EDCs in adipose tissue ranged
between 92 ng/g and 399 ng/g [37]. Upon entering organisms, EDCs interfere with the
natural synthesis, secretion, and elimination of hormones, leading to endocrine imbalances.
Such disturbances can result in endocrine disorders, including obesity and diabetes [38]
(Table 1).

3.1. Persistent Organic Contaminants (POPs)

Persistent organic contaminants (POPs) are toxic chemicals that are highly resistant to
environmental degradation and metabolic degradation [39]. Most POPs are hydrophobic
and can accumulate continuously in the fat of animals and humans [40], causing significant
biological toxicity, such as developmental defects, metabolic diseases, cancer, and even
death [41]. The primary POPs in the environment include phthalates (PAEs), polybromi-
nated diphenyl ethers (PBDEs), polychlorinated biphenyls, and dioxins.

Phthalates (PAEs) are frequently introduced into the environment as plasticizers used
in various plastic products [42]. Given China’s role as a major producer of PAEs and its lack
of effective pollution control measures, the PAE pollution level in Chinese waters is excep-
tionally high [43]. Moreover, recent studies have shown that when PAEs enter an organism,
they can disrupt glucose metabolism and affect blood glucose levels. A case–control study
of volunteers from China found that environmental PAEs can be metabolized within the
human body, and their metabolites can be excreted in urine. There is a significant positive
correlation between these metabolites and fasting blood glucose and glycated hemoglobin
levels, thereby interfering with normal glucose metabolism and affecting the develop-
ment of type II diabetes [44]. Additionally, metabolic pathways closely related to glucose
metabolism, such as galactose metabolism, amino acid metabolism, riboflavin metabolism,
and pyridoxal metabolism, can also be affected by PAEs, changing their metabolic marker
levels. For instance, in a case–control study of volunteers in Tianjin, China, researchers
have observed that the metabolic products involved in galactose metabolism in the serum
of patients with type II diabetes were significantly elevated and showed a positive cor-
relation with serum PAE levels. Other metabolites involved in amino acid metabolism,
riboflavin metabolism, and pyridoxal metabolism also showed significant changes [45].
Similarly to type II diabetes, gestational diabetes also showed a significant correlation
with PAE metabolites [46,47]. While there are a growing number of population studies on
the relationship between PAEs and diabetes, research on their specific mechanisms is still
relatively limited. When rat insulinoma (INS-1) cells were exposed to dibutyl phthalate
(DBP), Yang found that exposure at concentrations of 60 μmol/L and 120 μmol/L led
to increased cell apoptosis, significant reductions in mitochondrial membrane potential,
increased cellular oxidative stress levels, and decreased superoxide dismutase levels. It
is speculated that DBP might reduce INS-1 cell insulin synthesis and secretion through
mitochondrial apoptosis and oxidative stress pathways [48].
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Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants. Since the
1960s, they have been used as flame retardants in commercial and household products
(44). Like PAEs, PBDEs continuously accumulate in organisms, affecting their glucose and
lipid metabolism. Data from a nested case–control study indicate a significant correlation
between brominated biphenyl ethers (BDEs) and gestational diabetes [49]. Furthermore,
BDE-153, BDE-154, and BDE-183 all have odds ratios >1, showing a significant positive and
inverted U-shaped correlation with diabetes. Similarly, Ongono and colleagues found in
a cohort study that dietary exposure to hexabromocyclododecane is positively correlated
with type II diabetes and dietary exposure to PBDEs has a positive non-linear relationship
with type II diabetes [50]. Liu used mice orally exposed to BDE-153 to explore the potential
mechanisms by which brominated flame retardants might affect glucose metabolism. He
found that mouse insulin levels showed a dose-dependent relationship with BDE-153 and
the expression of PPARγ and AMPKα was disturbed. It is speculated that BDE-153 might
interfere with the expression of adipokines and insulin secretion by affecting the expression
of PPARγ and AMPKα, leading to metabolic dysregulation [51].

In addition to PAEs and PBDEs, there are numerous other POPs present in the en-
vironment, including polychlorinated biphenyls (PCBs) and dioxins. Organisms living
within such environments, especially those on a high-fat diet or at risk for diabetes, can
experience altered glucose metabolism when exposed to these POPs. Ibrahim et al. [52] fed
C57BL/6J mice a high-fat diet containing POPs and observed that, compared to the unex-
posed group, both the high-fat-diet mice and those on a Western diet exhibited exacerbated
manifestations of insulin resistance, visceral obesity, and abnormalities in glucose tolerance.
Additionally, it was found that mice in the low-exposure group exhibited better insulin
sensitivity and glucose tolerance than those in the high-exposure group. Furthermore,
when C57BL/6J mice on a high-fat diet or those with diabetes were exposed to PCBs, they
displayed glucose metabolic abnormalities characterized by glucose intolerance, increased
gluconeogenesis, elevated tricarboxylic acid cycle flux, hyperinsulinemia, and intensified
systemic insulin resistance [41,53]. Interestingly, a study by Nicki A. Baker revealed that
while exposure to PCBs induced lipid inflammation and glucose and insulin tolerance
impairment in mice on a low-fat diet, the glycemic equilibrium in obese mice remained
unaffected unless they underwent weight reduction [54,55].

The continuous accumulation of dioxins, specifically 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), in the environment and their impact on glucose metabolism is gradually
gaining attention from scientists. When mice were exposed to environmental TCDD at a
dose of 20 ng/kg, the hyperglycemia induced by a high-fat diet and the reduction in plasma
insulin levels induced by glucose were intensified. These mice exhibited significantly
elevated blood sugar levels, substantial changes in islet endocrine and metabolic pathways,
and increased expression of mRNAs encoding the sodium–glucose transporter 1 and
glucose transporter 2 in the intestines [56,57]. Kurita’s research yielded similar conclusions:
post-TCDD exposure, there was a notable decrease in plasma insulin concentrations in
mice, with insulin secretion levels significantly reduced [58]. Furthermore, researchers
discovered that when high-fat-diet mice undergoing mating, pregnancy, or lactation were
injected with 20 ng/kg TCDD twice a week, these mice experienced accelerated weight
gain, faster onset of hyperglycemia, reduced islet levels, and islet shrinkage [59].

The review identified that phthalates, polybrominated diphenyl ethers, polychlori-
nated biphenyls, and other persistent organic pollutants are widely present in the environ-
ment and can enter biological organisms, including humans, through various pathways.
Studies have found a significant positive correlation between the concentration of persistent
organic pollutants in human serum or urine and fasting blood glucose levels. This phe-
nomenon has been further substantiated in animal and cell experiments, with discussions
on potential mechanisms.
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3.2. Bisphenol A (BPA) and Its Structural Analogs

Bisphenol A (BPA) and its structural analogs (BPS, BPF, BPAF) are synthetically pro-
duced and ubiquitously present in the environment, serving as endocrine disruptors. The
omnipresence of BPA compounds means that human exposure to this contaminant is
inevitable [60]. Once introduced to the human body, BPA can instigate a myriad of detri-
mental effects, disrupting metabolic processes including lipid metabolism and glycemic
regulation [61]. To date, numerous epidemiological studies have scrutinized the associ-
ation between urinary concentrations of BPA and its metabolites and diabetes, not only
pinpointing a robust correlation between BPA and type II diabetes but also identifying it as
a risk factor for gestational diabetes. Beyond this, to elucidate the specific role of BPA in
the onset and progression of diabetes and to understand its potential mechanisms leading
to the disease, numerous animal experiments have been conducted. For instance, when
mice on a standard diet were exposed to 5, 50, 500, and 5000 μgBPA/kg for 8 months,
they manifested clear hyperglycemia and hypercholesterolemia. Male mice exposed to
5000 μg/kg/d BPA displayed pronounced insulin resistance [62]. Similarly, in mice fed a
high-fat diet, research indicated that BPA aggravates the pre-diabetic symptoms induced
by such a diet. Intriguingly, while male mice exhibited only impaired glucose tolerance,
female mice also demonstrated increased weight and elevated serum insulin levels, among
other symptoms [63]. Regarding the glucose intolerance induced by BPA, a study by Moon
et al. posits that it might be attributed to altered serum adipocytokine levels and skeletal
muscle phosphorylation, subsequently inducing glucose tolerance abnormalities [64].

Bisphenol A, as an endocrine disruptor, is prevalent in the environment. Numerous
population studies have also discovered its association with the development of diabetes,
and animal experiments have been conducted to investigate the potential mechanisms of
bisphenol A in disrupting glucose metabolism.
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4. Per- and Polyfluoroalkyl Substances (PFASs)

Per- and polyfluoroalkyl substances (PFASs) typically consist of carbon chains ranging
from 4 to 14 carbons, complemented by a few functional groups [65]. Due to their intrinsic
properties such as thermal stability, hydrophobicity, and oleophobicity, PFASs have found
extensive applications in industrial production and consumer goods [66], for instance,
non-stick cookware, grease-resistant food packaging, and personal care products [67]. Per-
and polyfluoroalkyl substances (PFASs), as novel pollutants, have not been thoroughly
researched. Due to their widespread application in consumer products, PFASs are om-
nipresent in the environment, posing potential threats to both the environment and hu-
mans. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the most
frequently detected PFASs [68], persist in the environment because of the stability of their
carbon–fluorine bonds [69]. The current method employed by the United States Environ-
mental Protection Agency for detecting PFASs in the environment relies on combinations
of liquid chromatography and mass spectroscopy [70]. However, due to the high costs and
the need for trained specialized laboratory personnel, recent research efforts have focused
on developing rapid, portable, and low-cost detection methods. The precise toxicological
profile of PFASs remains elusive, but mounting research underscores the potential health
risks they pose, inclusive of metabolic disturbances (Table 2).

4.1. Perfluorooctane Sulfonate (PFOS)

PFOS, a degradation product among many PFASs, emerges as one of the most scru-
tinized compounds in the PFAS family. Scientists have ascertained that PFOS not only
remains persistent in the environment but also has a notably long half-life of approximately
5.4 years in human serum once ingested, with serum concentrations averaging around
0.05 μg/mL [11,71]. Recently, the connection between PFOS and diabetes has gained re-
search traction.

A growing body of epidemiological evidence associates increased PFAS serum con-
centrations in humans with elevated fasting glucose, fasting insulin levels, changes in the
insulin homeostasis model, and enhanced cellular functions. This compound has been
identified not only as a risk factor for gestational diabetes but also as an augmenting agent
for type II diabetes susceptibility [72–74]. Observations from human population studies
are progressively being corroborated by animal experiments. For instance, Sant et al. [75]
exposed zebrafish embryos in the blastula stage to 16, 32, 64 Mm PFOS, noting congenital
anomalies mirroring the increased risk factors for human diabetes. The embryos and larvae
exhibited perturbed pancreatic growth, pancreatic islet malformations, and a U-shaped
dose–response relationship with respect to islet size and PFOS exposure. Qin et al. [76]
discovered through in vivo and in vitro studies that PFOS exposure stimulates the free-
fatty-acid-regulated membrane receptor G protein-coupled receptor 40 in pancreatic β-cells,
thereby heightening intracellular calcium levels and insulin secretion. Moreover, insulin
secretion was augmented in a concentration-dependent manner upon acute PFOS exposure,
with a marked increase observed at concentrations exceeding 50 μM [77]. Intriguingly,
Duan et al. [78] yielded contrary findings, indicating that prolonged PFOS exposure (48 h)
inhibits glucose-stimulated insulin secretion. Furthermore, in specific cohorts such as preg-
nant and lactating mice, research has showcased the biological effects of elevated fasting
glucose and insulin levels in both F1 juvenile and adult mice due to PFOS exposure. How-
ever, insulin resistance and glucose intolerance anomalies were conspicuously observed
only in adult mice. Notably, a high-fat diet exacerbated these effects [79].

4.2. Perfluorooctanoic Acid (PFOA)

Perfluorooctanoic acid (PFOA) is frequently employed as an emulsifier in the produc-
tion of polytetrafluoroethylene and fluorinated polymers. Ambient concentrations of PFOA
in the air typically range from 0.07–0.9 ng/m3 [80], but can spike to 0.12–0.91 μg/m3 in the
vicinity of fluoropolymer-manufacturing plants [81]. PFOA emissions during the manufac-
turing process are carried by the wind to adjacent agricultural areas, where they settle in the
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topsoil layer, eventually seeping downward to the water table [82]. Once introduced into
organisms via environmental exposure, PFOA accumulates over time. Ehresmanet reported
human serum PFOA concentrations spanning from the detection limit (5 or 10 ng/mL) to
7320 ng/mL [83]. Owing to PFOA’s crucial role in metabolic processes and its newfound
potential to influence human glucose metabolism, an escalating number of researchers are
probing its implications for diabetes and its hypothesized operational mechanisms.

Numerous epidemiological studies have identified a correlation between serum PFOA
levels and the proinsulin-to-insulin ratio, after adjusting for confounding factors. No-
tably, diabetic subjects exhibit significantly elevated lnPFOA levels compared to their
non-diabetic counterparts, and these levels can presage the onset of diabetes [84,85]. Anal-
ogous findings have emerged from animal studies concerning PFOA and diabetes. For
instance, when Zheng and colleagues administered a dose of 1.25 mg/kg/d of PFOA to
mice via gavage for 28 days, the mice in the exposed group, although unchanged in weight,
manifested conspicuously elevated fasting blood glucose levels, coupled with decreased
hepatic glycogen and glucose content [12]. Similarly, Yan et al. observed heightened insulin
sensitivity and glucose tolerance in mice exposed to 5 mg/kg/d PFOA. This was attributed
to suppressed hepatic gluconeogenesis, leading to diminished liver glycogen synthesis [86].
While mounting research is spotlighting the influence of PFOA on blood glucose levels, the
underpinning mechanisms remain only partially elucidated. In an investigation by He [87]
on the potential impact of PFOA on the functionality of pancreatic β-cells in mice, it was
discerned that at a dose of 500μM, PFOA stimulates β-cell apoptosis. Moreover, even lower
doses of PFOA resulted in diminished insulin secretion upon glucose stimulation and a
pronounced upregulation of endoplasmic-reticulum-stress-related gene expression.

The review finds that exposure to perfluorinated compounds leads to increased fasting
blood glucose levels and disrupted glucose metabolism in mice, along with alterations in
the morphology, size, and length of the islets, thereby impacting insulin secretion. However,
the underlying mechanisms of these effects have yet to be fully elucidated.
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5. Microplastics

Microplastics refer to plastic particles with a diameter of ≤5 mm. Traditional methods for
detecting microplastics in the environment include visual identification or microscopic observation,
Fourier transform infrared spectroscopy, thermal pyrolysis, and Raman spectroscopy. However,
the diverse sources and compositions of environmental microplastics, along with the presence of
numerous impurities, render these conventional detection methods inadequate for comprehensive
microplastic detection [88]. With increasing interest in the toxicity of microplastics and advance-
ments in detection technology, more sensitive and high-performance detection techniques are
being developed, such as a variety of remote sensing techniques including polarized light optical
microscopy (PLM), atomic force microscopy, and hybrid combinations of these techniques [89].
Humans and other organisms are exposed to environmental microplastics through ingestion,
inhalation, and dermal contact [90]. Furthermore, oral exposure has been reported as the pri-
mary route of microplastic exposure. Kumar et al. [91], in their review, mention seafood, beer,
table salt, bottled mineral water, and milk as the main pathways for microplastics to enter the
human body. Once internalized, microplastics accumulate within tissues and organs, leading to
histopathological alterations and cytotoxic responses [6,92]. For instance, a study by Lu et al. on
zebrafish found that exposure to microplastics first leads to accumulation in liver tissues, causing
inflammation and lipid accumulation, and disrupting lipid and energy metabolism, leading to
metabolic changes [93]. Cortés et al.’s cellular experiments also found that microplastics induce
the production of a significant amount of ROS in Caco-2 cells, thereby increasing cytotoxicity [94].
The same conclusion was reached in cell experiments with T98G and HeLa [95]. Additionally,
immune responses and changes in the structure and composition of the gut microbiota induced
by microplastic exposure have also been increasingly identified [91]. It is well-established that gut
microbiota dysbiosis, inflammatory reactions, oxidative stress, and changes in innate immune
responses—all consequences of microplastic exposure—are major pathophysiological factors for
insulin resistance. Consequently, scientists posit a strong link between microplastic exposure
and insulin resistance, necessitating comprehensive research and elucidation. However, current
investigations in this area remain limited (Table 3).

Studies have identified correlations between changes in blood glucose levels and insulin
resistance caused by microplastic exposure, specifically noting connections to gut microbiota
disruption, inflammation, and oxidative stress. Huang et al. [13] exposed mice on a high-fat
diet to polystyrene microplastics of sizes 5, 50, 100, and 200 μm. The mice displayed insulin
resistance accompanied by elevated levels of plasma lipopolysaccharides and pro-inflammatory
cytokines (tumor necrosis factor and interleukin-1β). A reduction in gut microbiota richness
and diversity was also observed, particularly with an increased relative abundance of Gram-
negative bacteria. Based on these findings, scientists hypothesize that insulin resistance triggered
by microplastics might be due to tissue accumulation and microbiota-induced inflammatory
responses, thereby inhibiting the insulin signaling pathway. Takuro Okamura also demonstrated
that mice exposed to microplastics showed elevated blood glucose levels and deposition of
microplastics in the gut mucosa, resulting in an increase in intrinsic inflammatory cells and a
reduction in anti-inflammatory cells [96]. Additionally, the insulin resistance and elevated blood
glucose levels induced by microplastics might be associated with high levels of reactive oxygen
species (ROS) in mice exposed to 5 mg/kg and 15 mg/kg, which potentially disrupt the PI3K/Art
pathway related to glucose metabolism [97]. In another study, beyond increasing oxidative
stress, glucose tolerance, and insulin resistance, 30 mg/kg/d microplastic exposure also led to
decreased phosphorylation levels of AKT and GSK3β [98]. AKT agonists can effectively alleviate
oxidative stress, elevated blood glucose levels, and insulin resistance, suggesting that part of the
diabetes mechanism induced by microplastics might be related to AKT/GSK3β phosphorylation.
Furthermore, research has identified that reduced cortisol levels in mice exposed to 55 μg/d
microplastics might interfere with insulin secretion, thereby inducing insulin resistance [99]. A
review of microplastics reveals that current research on the relationship between microplastics
and glucose metabolism is relatively scarce. Studies have found that exposure to microplastics can
affect an organism’s glucose metabolism and the development of diabetes through inflammatory
responses, oxidative stress, and disruption of the composition and structure of the gut microbiota.
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6. Antibiotics

Besides the aforementioned emerging pollutants, antibiotics have also been identi-
fied as a significant new class of pollutants, extensively present in the environment and
water bodies. By the late 1990s, antibiotics had become widely used in medicine and
established as pillars of modern medical practice. The consumption of antibiotics has seen
a steady increase, with global consumption growing by 39% between 2000 to 2015. Partic-
ularly, antibiotic consumption in low-income countries surged by 77% during the same
period [100]. In 2011, the global human utilization of antibiotics was estimated at 70 billion,
equivalent to an annual consumption rate of 10 per individual [101]. Subsequently, these
antibiotics, or their metabolites, enter the environment through human and animal urine
and feces, ultimately persisting in soil and aquatic environments [102]. Current detection
of antibiotics mainly relies on instrumental analysis, which is highly sensitive. However,
due to high costs and laborious pre-treatment, traditional instrumental analysis methods
are no longer sufficient for the growing number of samples. Therefore, the development
of rapid, high-throughput, and low-cost detection methods is essential. Current methods
for detecting antibiotic residues include the microbial method, electrochemical method,
high-performance liquid chromatography, liquid mass spectrometry, fluorescence method,
Raman spectroscopy, etc. [103]. Scientists have detected various antibiotics, such as amoxi-
cillin, clindamycin, and ciprofloxacin, in the inlet and outlet water of wastewater treatment
plants. Furthermore, the highest concentrations of triclocarban and triclosan detected in
Indian aquatic environments have reached 5860 ng/L [104], indicating the non-negligible
potential hazards of residual antibiotics in the environment. It is widely recognized that
antibiotic intake can impact the structure, composition, and function of gut microbiota.
Moreover, alterations in the gut microbiota have been closely linked with the onset and
progression of diabetes [105]. Consequently, there is mounting concern within the scientific
community regarding the relationship between antibiotic consumption and diabetes.

A significant body of research has been conducted to investigate the association be-
tween antibiotics and diabetes. For instance, several studies have shown that mice on a
high-fat diet or those modeled for diabetes, when treated with antibiotics, exhibited reduced
levels of endotoxins in plasma and inflammatory factors in adipose tissue. Healthy mice,
on the other hand, displayed beneficial effects on glucose metabolism, including reduced
fasting blood glucose and decreased area under the glucose tolerance curve [106,107]. In-
terestingly, another prospective cohort study revealed that patients treated with antibiotics
for durations ranging from twenty-five days to two months, or more than two months, saw
their risks for type II diabetes increase by 23% and 20%, respectively [108]. In light of this
intriguing observation, Fu et al. [109] studied the impact of antibiotic treatment on blood
glucose changes in db/db mice. They found that the effects of antibiotics on blood glucose
exhibit both immediate and delayed responses: compared to the control group, mice treated
with antibiotics for 12 days showed significant declines in body weight and blood glucose
levels. However, 24 days post-treatment, these mice experienced weight gains that even
surpassed those of the control group, along with elevated levels of plasma and liver total
cholesterol and an increase in liver weight. Research on the relationship between antibiotics
and diabetes is already quite abundant, with a relatively comprehensive understanding
of the relationship between antibiotics and the development of diabetes. It should not be
neglected that the timing of antibiotic exposure is also very important and should not be
overlooked, such as in pregnant mothers, infants, and adulthood. A comprehensive review
of the relationship between antibiotics and diabetes has been presented in an article by
Fenneman and will not be further elaborated upon here [110].

7. Role of Gut Microbiota

In recent years, the gut microbiota has garnered unprecedented attention. An increas-
ing corpus of evidence underscores its fundamental role in the digestion of polysaccharides,
the biosynthesis of vitamins, and other essential nutrients. This microbial community
is inextricably linked with human health [111–113]. Undoubtedly, acting as a novel or-
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gan, the gut microbiota functions optimally. However, disruptions in its composition
and structure due to external substances can have implications for disease onset and
progression [114–116]. Particularly noteworthy are recent studies highlighting how expo-
sure to emergent environmental contaminants can destabilize the gut microbiota, leading
to adverse health effects, including disorders in glucose metabolism [99,117–119] (Table 4).

The current scientific discourse is replete with research focusing on the implications of
perfluorinated compound exposure on diabetes via its perturbative effects on gut micro-
biota. Lai et al. [120] embarked on a study exploring the impacts of dietary PFOS exposure
on the gut microbiota of adult mice and scrutinized the consequent changes in induced
metabolic functions. Their findings delineated a marked increase in the abundance of
Turicibacterales and Allobaculum in the exposed group of mice, juxtaposed with a signifi-
cant decline in B. acidifaciens. Moreover, the researchers discerned that mice exposed to
3 μg/g/day PFOS exhibited a precocious decline in blood glucose levels after oral glucose
ingestion. The area under the curve manifested a conspicuous reduction, and after intraperi-
toneal insulin injection, these mice’s blood glucose levels were markedly lower than those
in the control group. Delving deeper into another emergent pollutant, microplastics, it has
been discerned that, post-exposure, it can influence the onset and trajectory of diabetes
via various mechanisms, with the resultant disruption in gut microbiota being non-trivial.
Using mice as model organisms, investigations into the aftermath of microplastics expo-
sure on the gut microbiota were conducted. The outcomes indicated that, post-exposure,
there was a perturbation in the gut–liver axis of the mice, a pronounced reduction in gut
microbiota diversity, diminished richness of Bacteroidetes and Verrucomicrobia, and an in-
creased abundance of Firmicute, Deferribacteres, and Actinobacteria. Concurrently, scientists
observed that microplastic-exposed mice presented elevated fasting blood glucose and
insulin levels [99]. These findings echo the results from Huang et al., who, in addition
to observing reduced microbial richness, also noted an increased relative abundance of
Gram-negative bacteria within the mice [13]. It is common knowledge that antibiotics
have had a longstanding history of use, targeting pathogenic strains within the microbiota.
Yet, their administration might also inadvertently impact other microbial communities,
resulting in a decrease in the host’s short-chain fatty acid content. This, in turn, might
disrupt metabolic processes and energy assimilation, potentially influencing the onset
and progression of diabetes [117,121]. Currently, articles published on the topic of new
pollutants and their impact on glucose metabolism through the influence on the structure
and composition of the gut microbiota are relatively few, with most studies focusing on
perfluorinated compounds and microplastics. Additionally, research in this area remains
significantly under-developed. The changes in the composition and structure of the gut
microbiota after exposure to new pollutants, alterations in their metabolic pathways and
metabolites, and the specific mechanisms of their impact on blood sugar still require more
in-depth investigation.
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8. Conclusions

Emerging pollutants, characteristically under-monitored and under-regulated in the
environmental sphere, harbor potential, both known and speculative, adverse implications
for ecological systems and human health. However, the corpus of research delineating
the toxicological nexus between emerging contaminants and glucose metabolic processes
remains markedly under-developed. This review aims to intricately weave together four
distinct classes of emerging pollutants with glucose metabolism. It methodically dissects
and analyzes the toxicological profiles and underlying mechanisms of persistent organic
pollutants, perfluorinated compounds, microplastics, and antibiotics, drawing upon a
synthesis of empirical evidence from animal model studies and epidemiological research
(Figure 2). Overall, EDCs, PFAS, microplastics, and antibiotics cause disturbances in glucose
metabolism and accelerate diabetes mellitus. Most of the descriptions of the mechanisms
in the currently published articles focus on the effects on glucose metabolism through
inflammatory responses, oxidative stress, and disturbances in the gut microbiota. The
elucidation provided herein seeks not only to augment the current understanding of the
deleterious effects of these emerging pollutants on glucose metabolism but also to catalyze
a paradigm shift in the toxicological examination of emerging environmental contaminants.

Figure 2. Mechanisms of glucose metabolism disturbance induced by emerging contaminants.

9. Future Research Directions

With the continual evolution of technology and the deepening understanding of con-
taminants by scientists, an increasing number of novel environmental contaminants are
being detected. The persistent accumulation of these contaminants in the environment, cou-
pled with their multifarious exposure pathways, endangers ecosystems and the organisms
residing therein, thus progressively capturing the attention of the scientific community. The
repercussions of these environmental contaminants, particularly on populations with dia-
betes or those on high-fat diets, are of heightened concern. Nonetheless, our comprehension
in this domain remains somewhat limited:

i. The majority of current epidemiological studies focus on the relationship between
the concentration of new pollutants in the serum or urine of the general population
and fasting blood sugar, insulin, and glycated hemoglobin concentrations, with some
studies involving changes in metabolic pathways related to glucose metabolism
and their metabolites. However, studies on the impact of occupational exposure on
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diabetes, the specific exposure situations of new pollutants in the diet, the correlation
with diabetes, and the impact of different geographical locations are relatively scarce.
Diet is likely to be a very important exposure, yet rarely assessed in human studies,
or when assessed, by questionnaires, often inaccurate. Quantifying the contribution
of the human diet by multitargeted metabolomics of food and microbiota-derived
metabolites may provide some clues. Therefore, more in-depth and targeted research
is still needed to explore the impact of different factors on the development of diabetes.

ii. The current research primarily focuses on the effects of novel environmental contami-
nants and their exposure on glucose metabolism in human populations, with fewer
studies being directed towards animal models. Thus, there remains a pressing need
for comprehensive studies to elucidate the specific mechanisms underlying the impact
of these contaminants on diabetic or high-fat-diet populations, as well as the potential
health outcomes from long-term low exposure.

iii. Additionally, factors influencing the toxic effects of these novel contaminants, such as
dose–response relationships, exposure frequency, gender disparities, and attributes
like the type and size of the contaminants, have yet to be thoroughly investigated.
Hence, there is an urgent need for more in-depth research into the toxicity of these
new contaminants, factors modulating their toxicity levels, and their potential hazards.
Such insights would furnish policymakers with a robust scientific foundation, aiding
in the resolution of environmental challenges and the safeguarding of human health.

iv. It is widely acknowledged that diabetes is influenced not only by genetic, environ-
mental, and lifestyle factors but also by the structure and composition of the gut
microbiota. However, current research on the interrelation between novel contam-
inants, gut microbiota, and diabetes is relatively scant. Consequently, determining
whether exposure to these new contaminants might influence glucose metabolism by
altering the gut microbiota’s structure and composition calls for relentless effort and
exploration by researchers.
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Abstract: Aquatic life criteria (ALC) serve as the scientific foundation for establishing water quality
standards, and in China, significant strides have been made in the development of freshwater ALC.
This comprehensive review traces the evolution of China’s WQC, focusing on the methodological
advancements and challenges in priority pollutants selection, test organism screening, and standard-
ized ecotoxicity testing protocols. It also provides a critical evaluation of quality assurance measures,
data validation techniques, and minimum data requirements essential for ALC assessments. The
paper highlights China’s technical guidelines for deriving ALC, and reviews the published values for
typical pollutants, assessing their impact on environmental quality standards. Emerging trends and
future research avenues are discussed, including the incorporation of molecular toxicology data and
the development of predictive models for pollutant toxicity. The review concludes by advocating
for a tiered WQC system that accommodates China’s diverse ecological regions, thereby offering a
robust scientific basis for enhanced water quality management.

Keywords: aquatic life criteria (ALC); water quality criteria (WQC); freshwater; priority pollutants;
China

1. Introduction

Water quality criteria (WQC) are essential for protecting aquatic ecosystems and
human health. These criteria cover various areas such as aquatic life water quality cri-
teria (ALC), human health water quality criteria, sediment quality criteria, and nutrient
criteria [1].

The field of ALC research was first developed in the United States during the 1960s [2].
The U.S. later formalized this research by issuing comprehensive technical guidelines in
1985 [3], which have had a significant influence globally. In parallel, the European Union
has made substantial advancements in aquatic risk assessment, with member states like
the Netherlands contributing significantly [4]. Beyond the U.S. and EU, countries such
as Canada [5], Australia, and New Zealand [6] have also conducted ALC research and
developed their own technical guidelines.

When it comes to ALC formulation, the U.S. uniquely uses a dual-value system,
incorporating both long-term and short-term ALC for each pollutant [3]. This approach
was later adopted by Australia and New Zealand in their 2018 guideline updates [7]. While
long-term ALC is used for daily water quality management, short-term ALC is designed to
handle sudden water pollution incidents. Most other developed countries focus only on
long-term ALC for daily management.

Developing ALC involves a complex process that includes careful screening of ecotoxi-
city data and choosing the right mathematical models for data analysis. The U.S. guidelines
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provide a comprehensive framework for this, covering aspects like toxicity endpoints, effect
indices, exposure conditions, and data prioritization for both acute and chronic toxicity [3].
Different countries use different mathematical models; for example, the U.S. uses a log-
triangle function model [3], the Netherlands uses a log-normal distribution model [4], and
Australia and New Zealand use the Burr III model [6].

Quality assurance is crucial in toxicity data for developing reliable ALC. Developed
countries have methods for assessing the quality of toxicity data, which can be either
qualitative or quantitative. For instance, the U.S. [8] and the E.U. [9] use qualitative methods,
while Australia and New Zealand use a quantitative approach [10]. These methods evaluate
data quality based on various factors like the properties of the test substance, species
characteristics, experimental design, exposure conditions, and statistical methods.

In terms of selecting test species, the U.S. guidelines recommend using native North
American aquatic organisms [3]. Guidelines from other countries are less specific, lack-
ing detailed recommendations or requirements about the geographical distribution of
test species.

According to U.S. evaluation methods, toxicity data are categorized into quantitative
data (used for environmental risk calculations), qualitative data (used to support environ-
mental risk assessments), and invalid data. The E.U. method considers the reliability and
relevance of the data and categorizes it into four types: unlimited reliable data, limited
reliable data, unreliable data, and uncertain data. In Australia and New Zealand, toxicity
data are scored and categorized into unacceptable, acceptable, and high-quality data based
on these scores.

In China, ALC research has seen significant progress in recent years. This paper aims
to provide a comprehensive overview of China’s ALC research, focusing on its historical
development, priority pollutants and test species, data collection, technical guidelines, and
published ALC values. This review is intended to serve as a valuable reference for the
ongoing and future development of ALC. Despite the progress, several challenges continue
to persist. These include the need for more expansive toxicity data, the development
of reliable and standardized testing protocols, and the creation of a framework that can
effectively translate scientific discoveries into actionable policies and standards.

2. The Evolution of Aquatic Life Water Quality Criteria in China

Research on water quality criteria (WQC) in China commenced in the 1980s, initially
through the translation of American WQC Red Book and European WQC guidelines
focused on fish protection. In the following years, some Chinese researchers conducted
studies that utilized toxicity data from resident species in China. However, due to the
lack of systematic research, China has largely relied on foreign WQC standards when
establishing its own water quality guidelines. A notable example is the “China Surface
Water Environmental Quality Standard” (GB 3838-2002), a cornerstone in China’s water
management policies. This standard comprises 109 water quality criteria, the majority of
which are adapted from international guidelines.

The turning point for WQC development in China came in 2005 following a significant
water pollution incident involving nitrobenzene leakage in the Songhua River Basin. The
emergency response adopted a nitrobenzene standard of 0.017 mg/L, which was based
on U.S. criteria at the time. However, its applicability for protecting Chinese bodies of
water remains a subject of debate. This incident catalyzed the advancement of WQC in
China. The same year, the State Council of China set a national goal for “scientifically
determining environmental criteria” in its “Decision on Implementing the Scientific Outlook
on Development and Strengthening Environmental Protection.” During China’s Eleventh
Five-Year Plan (2005–2010), several national projects were launched to support systematic
WQC research [11].

In 2011, the Ministry of Science and Technology established the State Key Laboratory
of Environmental Criteria and Risk Assessment, further boosting WQC research. In 2014,
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the revised “Environmental Protection Law” explicitly encouraged WQC research, marking
the first legal recognition of WQC studies in China.

By 2017, the Ministry of Environmental Protection of China (MEPC) released the
country’s inaugural batch of technical guidelines for WQC, covering freshwater ALC,
human health water quality criteria, and lake nutrient criteria [12]. In 2018, the Ministry of
Ecology and Environment of China (MEEC), formerly known as MEPC, included WQC
development as part of its regular duties. In 2020, MEEC unveiled the first set of national
ALC for substances like cadmium [13], ammonia nitrogen [14], and phenol [15], signifying
a landmark achievement in China’s ALC research (Table 1).

Table 1. Landmark events in the development of ALC in China.

Year Events Related Ministries

2005 National goal for “scientifically
determining environmental criteria” set

State Council of China

2011 State Key Laboratory of
Environmental Criteria and Risk
Assessment established

Ministry of Science and Technology
of China

2014 Encouragement of WQC research
included in the revised Environmental
Protection Law

National People’s Congress of China

2017 First batch of technical guidelines for
WQC issued

MEPC

2018 WQC development incorporated into
MEEC duties

State Commission of Public
Sectors Reform

2020 First batch of national ALC
was released

MEEC

2022 First technical guidelines for marine
organism protection issued

MEEC

3. Methodological Approaches for Priority Pollutants Screening in ALC Studies

Given the labor-intensive and time-consuming nature of environmental criteria re-
search, and considering the multitude of both individual and grouped pollutants in the
environment, prioritization is imperative. It is vital to identify not only individual pollu-
tants that pose significant risks, but also to acknowledge and prioritize groups of substances
with similar purposes and effects, such as pesticides or PFAS compounds. This nuanced
approach ensures comprehensive coverage, addressing both individual pollutants and
categories of substances warranting immediate attention, thereby facilitating more effec-
tive and encompassing environmental protection strategies. While the topic of priority
pollutants screening in water environments is widely discussed, the criteria for selecting
priority pollutants for ALC research are diverse (Figure 1). Two key conditions must be
met: first, the pollutant should be of concern in water management; second, there should
be a significant difference in species sensitivity distribution (SSD) between resident and
non-resident species. This ensures that the derived criteria values differ substantially
depending on whether resident or non-resident species data are used. If no such SSD
difference exists, national water quality standards can be temporarily based on foreign
criteria, and the pollutant is not considered a priority for ALC research.

Figure 1. Principles for ALC priority pollutants screening.
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Yan et al. [16] conducted a comprehensive study targeting 160 priority pollutants
identified by the U.S., the E.U., and China. They collected and analyzed acute toxicity data
for these pollutants in freshwater aquatic organisms. Their findings revealed that the HC5
values (Hazardous Concentration affecting 5% of species, a key metric in ALC derivation)
for certain pollutants varied significantly. As a result, 24 pollutants across six categories
were identified as priority pollutants for ALC research in China (Table 2). Pesticide com-
pounds were most prevalent, followed by metals and phenols. This distribution is also
influenced by the availability of ecotoxicity data; many pollutants could not be adequately
assessed due to insufficient data. As more toxicity data become available, it is likely that
additional pollutants will be classified as priority pollutants for ALC research.

Table 2. Chinese ALC priority pollutants [16].

No. CAS Number Pollutants Classification

1 7440-41-7 Be(II) Metal
2 7440-43-9 Cd(II) Metal
3 7440-47-3 Cr(VI) Metal
4 7440-02-0 Ni(I) Metal
5 57-74-9 Chlordane Pesticide
6 60-57-1 Dieldrin Pesticide
7 115-29-7 Endosulfan Pesticide
8 72-20-8 Endrin Pesticide
9 76-44-8 Heptachlor Pesticide
10 608-73-1 Hexachlorocyclohexane Pesticide
11 309-00-2 Aldrin Pesticide
12 8001-35-2 Toxaphene Pesticide
13 60-51-5 Dimethoate Pesticide
14 298-00-0 Parathion-methyl Pesticide
15 52-68-6 Trichlorfon Pesticide
16 1912-24-9 Atrazine Pesticide
17 470-90-6 Chlorfenvinfos Pesticide
18 1582-09-8 Trifluralin Pesticide
19 108-92-2 Phenol Phenol
20 120-83-2 2, 4–Dichlorophenol Phenol
21 51-28-5 2, 4–Dinitrophenol Phenol
22 206-44-0 Fluoranthene PAHs
23 / Tributyltin compounds Organotin
24 7664-41-7 Ammonia Common chemical

Currently, a significant challenge is the scarcity of toxicity data for a broad spectrum of
pollutants. This limitation obstructs the process of identifying priority pollutants for ALC
research in China. Furthermore, the absence of systematic research and dependence on
international WQC standards complicate the development of criteria that are meticulously
designed for the distinctive biodiversity and aquatic ecosystems present in China.

4. Criteria for the Selection of Test Organisms in Aquatic Ecotoxicology

The biodiversity of aquatic ecosystems varies significantly across different countries,
thereby influencing the target organisms for aquatic life criteria (ALC). Identifying species
that are particularly sensitive to pollutants is crucial for the development of accurate ALC.
While water quality criteria (WQC) studies have generally lacked a systematic approach
to selecting sensitive aquatic organisms, the U.S. ALC guidelines [3] provide a list of
recommended North American aquatic species. However, the sensitivity of these listed
species has not been rigorously evaluated.

Yan et al. [17] developed a method for screening ALC test organisms based on the
distribution characteristics of freshwater species in China. Utilizing species sensitivity anal-
yses, they systematically identified sensitive aquatic organisms across various categories,
including amphibians [18], fish [19], crustaceans [20], aquatic insects [21], mollusks [22],
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annelids [23], and aquatic plants [12]. In total, 46 sensitive freshwater species spanning
seven phyla were identified. These include three species of coelenterates, one species of
flatworms, three species of rotifers, two species of annelids, three species of mollusks,
13 species of arthropods, 11 species of chordates, three species of green algae, one species
of diatoms, one species of ferns, and five species of angiosperms. These species have
been recommended as test organisms for China’s ALC research and are detailed in the
supplementary materials (Table S1) of the Chinese ALC guidelines [12].

5. Standardized Ecotoxicity Testing Protocols

The development of standardized ecotoxicity testing methods is foundational for
generating reliable ecotoxicity data. Currently, China has established a range of national
standard methods for ecotoxicity testing, encompassing both acute and chronic toxicity
tests for fish, chironomids, daphnia, and algae (Table 3). However, for other freshwater
organisms like shellfish, annelids, and rotifers, China has yet to establish standard testing
protocols. In these cases, researchers rely on international standards or methods published
in scientific literature for ALC studies.

Table 3. China national standard toxicity test guidelines for freshwater organisms.

Species Group Test Guideline Guideline Number

Fish Water quality—Determination of the acute toxicity
of substances to a freshwater fish (Brachydanio rerio
Hamilton-Buchanan)

GB/T 13267-1991

Fish Chemicals—Fish acute toxicity test GB/T 27861-2011
Fish Chemicals—Fish (Oryzias latipes, d-rR medaka)

early life stage toxicity test
GBT 29764-2013

Fish Chemicals—Fish, juvenile growth test GB/T 21806-2008
Fish Testing of chemicals—Fish, short-term toxicity test

on embryo and sac-fry stages
GB/T 21807-2008

Fish Chemicals—Fish, early-life stage toxicity test GB/T 21854-2008
Fish Chemicals—Rare minnow (Gobiocypris rarus) acute

toxicity test
GB/T 29763-2013

Daphnia Method for acute toxicity test of Daphnia
magna straus

GB/T 16125-2012

Daphnia Chemicals—Daphnia magna reproduction test GB/T 21828-2008
Chironomid Chemicals—Sediment-water chironomid toxicity

test—Spiked water method
GB/T 27858-2011

Chironomid Chemicals—Sediment-water chironomid toxicity
test—Spiked sediment method

GB/T 27859-2011

Alga Chemicals—Algae growth inhibition test GB/T 21805-2008
Duckweed Chemicals—Lemna sp. growth inhibition test GB/T 35524-2017

Given that ALC development requires extensive toxicity data, including data from
non-standard test organisms, there is an urgent need to develop additional testing methods.
Existing Chinese standards do not yet cover the full spectrum of freshwater biological
groups. To address this gap, Chinese researchers are in the process of developing standard
test methods for rotifers, water worms, mollusks, planaria, and region-specific fish species.
In the interim, non-standard test methods continue to be employed for toxicity testing in
ALC research. The lack of standardized testing protocols for a variety of freshwater organ-
isms poses a significant challenge. This gap forces researchers to depend on international
standards or methods documented in scientific literature. However, these might not always
be applicable or reflective of the rich diversity of aquatic life in China.

6. Quality Assurance and Data Validation in Aquatic Ecotoxicological Studies

Ensuring the quality of toxicity data is fundamental for the development of robust
water quality standards. As early as the 1990s, Klimisch et al. [24] introduced a method for

48



Toxics 2023, 11, 862

assessing the quality of toxicity data. Subsequent studies [25–27] have expanded on this,
although the reliability of their evaluation outcomes has been questioned [28].

In 2011, the U.S. Environmental Protection Agency released guidelines specifically
aimed at quality assessment in ALC-related ecotoxicity studies. These guidelines provide a
qualitative framework for toxicity data assessment, covering aspects such as data screening,
evaluation, classification, and application [29]. Similarly, the European Union has estab-
lished the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED), which assesses
data quality based on its reliability and relevance [9]. Australia and New Zealand followed
suit, issuing their own guidelines for ecotoxicity data assessment in 2018 [30].

Drawing upon methodologies from Western countries, Chinese researchers have
proposed a quantitative approach for evaluating the quality of ecotoxicity data. This
approach considers five key aspects: data sources, chemical reagents, test organisms,
experimental procedures, and experimental outcomes. Based on the evaluation scores,
toxicity data are categorized into three levels: high-quality, acceptable, and unacceptable
for ALC development in China. These categories are further detailed in the Supplementary
Materials (Table S2).

7. Minimum Data Requirements and Data Prioritization Strategies for
ALC Development

7.1. Minimum Toxicity Data Requirements (MTDR)

MTDR serve as a cornerstone for deriving ALC values. Developed countries have
distinct MTDR frameworks; for example, the U.S. guidelines mandate data from eight
families of aquatic animals and one aquatic plant [3], whereas other nations require data
from five or six families [4,5]. In China, scholars have tailored MTDR to the nation’s
nascent ALC development stage. According to China’s ALC guideline (HJ 831-2022), the
MTDR encompasses data from five aquatic animals—specifically, one Cyprinidae fish, one
non-Cyprinidae teleost fish, one zooplankton, one mollusk or benthic crustacean, and one
amphibian or another phylum of animals—as well as one aquatic plant. Furthermore,
toxicity data for a minimum of 10 species must be collected to derive the water quality
criteria (WQC). As the volume of ecotoxicity data for native Chinese species grows, these
MTDR are expected to evolve accordingly.

7.2. Data Prioritization Strategies

Both acute and chronic toxicity data are essential for dual-value ALC studies. These
data come in various forms, with chronic toxicity indices including no observed effect
concentration (NOEC), lowest observed effect concentration (LOEC), maximum accept-
able toxic concentration (MATC), lethal concentration of 50% tested species (LC50), and
concentration for x% of maximal effect (ECX), among others. Factors such as the life stage
of the test organism, the taxonomic category of the data, the exposure methodology, and
the monitoring of pollutant concentrations can all influence toxicity test outcomes. Conse-
quently, establishing data prioritization is crucial in WQC studies. National requirements
on this issue vary; for instance, the U.S. prioritizes genus-level toxicity data and favors the
use of MATC [3], while most other countries prioritize NOEC for long-term WQC deriva-
tion [5,7,31]. Comparative studies have also been conducted to analyze the relationship
between EC10 and NOEC [32]. In the updated 2022 China Freshwater Biological Water
Quality Criteria Guidelines (HJ 831-2022), the prioritization hierarchy for chronic toxicity
indices is as follows: MATC > EC20 > EC10 = NOEC > LOEC > EC50 > LC50. Addition-
ally, data from sensitive life stages, monitored pollutant concentrations, and flow toxicity
experiments are given precedence in ALC derivation.

8. Technical Guidelines for the Development and Implementation of ALC in China

China’s inaugural technical guideline for freshwater ALC was released in 2017, adopt-
ing a dual-value system comprising both long-term and short-term ALC [33]. The guideline
outlines a structured approach to ALC development, encompassing phases such as target
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pollutant identification, data collection and screening, ALC derivation, and technical report
compilation. It specifies that test species should be those commonly found in various fresh-
water ecosystems across China. Data for acute and chronic ecotoxicity of target pollutants
are sourced from databases like Web of Science, as well as domestic and international
toxicity databases like ECOTOX, and are screened based on stringent criteria.

Four statistical models—normal, log-normal, logistic, and log-logistic—are employed
to fit the species sensitivity distribution (SSD) curve. The optimal model is selected based
on fitting parameter comparisons. The HC5 value, fundamental for ALC calculation, is
then derived using an optimal model and adjusted with a correction factor to reduce
uncertainties in real-world conditions. The factor applied depends on the available toxicity
data; a factor of two for 15 species, and a factor of three for 10 to 14 species ensures accurate
and relevant ALC calculations for China’s specific environmental contexts. Acute data
inform the short-term ALC, while chronic data are used for the long-term ALC.

In 2020, following these guidelines, the Ministry of Ecology and Environment of China
(MEEC) issued national ALC documents for cadmium [13], ammonia nitrogen [14], and
phenol [15]. In 2022, the 2017 guidelines underwent a comprehensive revision, culminating
in the release of the updated version (HJ 831-2022). This revised edition incorporates
various modifications, including changes in criteria derivation methods, the details of
which are elaborated on in a published paper [34].

9. A Review of Published ALC Values for Pollutants in Chinese Aquatic Ecosystems

Over a decade of accelerated research has yielded published ALC values for a range
of key pollutants in China, including ammonia nitrogen, metals, pesticides, endocrine
disruptors, and emerging contaminants (Table 4). These values serve as valuable criteria
for updating China’s surface water quality standards.

Table 4. Published ALC values in China.

Chemicals Short-term ALC (μg/L) Long-term ALC (μg/L) References

Ammonia nitrogen 12,000 (20 ◦C, pH 7.0)
(National criteria)

1500 (20 ◦C, pH 7.0)
(National criteria)

[14,35]

Cd(II) 4.2 (hardness = 100 mg/L)
(National criteria)

0.23 (hardness = 100 mg/L)
(National criteria)

[13]

Zn(II) 48.43 20.01 [36]
Zn(II) 230.6 / [37]
Pb(II) 90.7 (hardness = 100 mg/L) 2.1 (hardness = 100 mg/L) [38]
Cr(VI) 45.79 14.22 [36]

Cu(II)
1.391 0.495 [39]
/ 0.87–1.49 [40]

Ag(I) e1.58lnH − 8.68 * e1.58lnH − 10.28 * [41]

As
As(III) 167 42

[42]As(V) 384 44
Chloride / 187,500 [43]
Phenol 2472 316.2 [44]
Benzene 2651 530.2 [36]
Nitrobenzene 18 1 [45]
Phenanthrene 51.4 18.6 [46]
PAEs / 0.04–41.9 [47]
Pentachlorophenol 13.21 (pH = 7.8) 1.20 (pH = 7.8) [48]
Atrazine / 0.044 [49]

2,4-dichlorophenol 1250 212 [50]
/ 9–44 [51]

2,4,6-trichlorophenol 1010 226 [52]
/ 57 [53]
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Table 4. Cont.

Chemicals Short-term ALC (μg/L) Long-term ALC (μg/L) References

Dichlorvos 1.33 0.132 [54]
Glyphosate 3350 260 [55]
Malathion 0.100 0.008 [54]
DEET 21,530 520 [56]
Triphenyltin 0.396 (Sn) 0.0056 (Sn) [57]
PFOS 3780 250 [58]
PFOA 45,540 3520 [58]
Triclosan 9 2 [59]
TBBPA 147.5 12.6 [60]
HBCD 2320 128 [61]
PBDEs 49.2–239 10.3–26.7 [62]
TDCPP 877 (HC5) 0.03333 (HC5) [63]

* H: hardness of water.

In 2020, the Ministry of Ecology and Environment of China (MEEC) officially unveiled
national ALC values for cadmium and ammonia nitrogen, marking a significant milestone
in China’s ALC research landscape.

As China contemplates updates to its surface water quality standards, these published
ALC values are poised to make a constructive contribution to the revision process.

10. Future Directions and Emerging Trends in Aquatic Life Water Quality Criteria

10.1. A Milestone in Chinese ALC Research

China has made significant strides in establishing its own ALC technical methodology
and publishing national criteria. This progress underscores the remarkable advancements
in ALC research within the country. Chinese scholars are actively exploring various facets to
further refine the WQC methodology, thereby providing a more robust scientific foundation
for future developments.

10.2. Innovations in Methodology

Traditionally, international ALC methodologies have relied on individual-level tox-
icity data. However, Yang et al. [64] have pioneered a new approach that incorporates
molecular toxicology and community-level data. Specifically, they developed an ecological
threshold for ammonia nitrogen in Lake Tai based on the response of the lake’s phyto-
plankton community to ammonia concentration changes. As molecular toxicological data
continue to grow, researchers are investigating how to integrate this information into ALC
development [65].

10.3. Predictive Modeling

Chinese scholars have also focused on predictive modeling to estimate pollutant toxic-
ity. Various models have been developed, including those for heavy metal ecotoxicity [66],
endocrine-disrupting compound (EDC) reproductive toxicity [67,68], pesticide ecotoxic-
ity [69], and BTEX substances [70]. These efforts contribute to the enrichment of native
Chinese ecotoxicity data and the refinement of the country’s ALC methodology.

10.4. Bridging the Gap between WQC and Legal Standards

In China, WQC are viewed as scientifically-derived safety thresholds without legal
force, while water quality standards are legally binding and consider economic, technical,
and management factors. The challenge lies in translating WQC into actionable water
quality standards. Currently, emergency standards, which do not factor in economic costs,
are easier to establish. However, creating regular standards remains complex, and no
universally accepted approach has been proposed yet.
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Given China’s vast geographical diversity, there is active exploration into establishing
a tiered WQC system, such as a “state-basin-region” ALC system. This would support more
nuanced and region-specific water management strategies across China’s various basins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11100862/s1, Table S1. Recommended Chinese resident
freshwater test organisms for the development of ALC; Table S2. Evaluation criteria for toxicity data
in China’s aquatic life criteria (ALC) development.
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Abstract: Exposure to Bisphenol A (BPA) has led to an increased risk of obesity and nonalcoholic
fatty liver diseases (NAFLDs). However, it is as yet unclear if the damage caused by BPA is able
to be repaired sufficiently after exposure has ceased. Therefore, this project aims to investigate the
effects of BPA on the hepatic lipid metabolism function and its potential mechanisms in mice by
comparing the BPA exposure model and the BPA exposure + cessation of drug treatment model.
Herein, the male C57BL/6 mice were exposed in the dose of 50 μg/kg/day and 500 μg/kg/day BPA
for 8 weeks, and then transferred to a standard chow diet for another 8 weeks to recover. Based on
our previous RNA-seq study, we examined the expression patterns of some key genes. The results
showed that the mice exposed to BPA manifested NAFLD features. Importantly, we also found
that there was a significant expression reversion for SCD1, APOD, ANGPT4, PPARβ, LPL and G0S2
between the exposure and recovery groups, especially for SCD1 and APOD (p < 0.01). Notably, BPA
could significantly decrease the level of APOD protein (p < 0.01) whereas there was an extremely
significant increase after the exposure ceased. Meanwhile, APOD over-expression suppressed TG
accumulation in the AML12 cells. In conclusion, the damage caused by BPA is able to be repaired
by the upregulation of APOD and exposure to BPA should be carefully examined in chronic liver
metabolic disorders or diseases.

Keywords: BPA; lipid accumulation; APOD; lipid homeostasis

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and the
incidence of NAFLD has sharply increased since the 1990s. It has now become a major
public health concern worldwide [1]. A significant proportion of patients with NAFLD
may progress to nonalcoholic steatohepatitis (NASH), which is associated with disease
progression, such as fibrosis, cirrhosis, or hepatocellular carcinoma [2]. The causes of
epidemic NAFLD still remain unclear and it is evident that environmental factors also play
an important role in NAFLD [3]. Environmental exposures, including but not limited to
insecticides, pesticides, and polychlorinated biphenyls, can increase the risk of developing
NAFLD and the reason for this is that these exposures are potential fat metabolic modifiers
in the liver [2].

Bisphenol A (BPA) is one of the well-known endocrine-disrupting chemicals (EDCs) [4]
and it is now accepted as a factor contributing to the increasing incidence of obesity and
metabolic diseases, including NAFLD, insulin resistance, type 2 diabetes, and dyslipi-
demia [5,6]. Several studies have indicated that metabolic disorders were observed in
later life when they were exposed to BPA during the critical period of development [7,8].
Perinatal exposure to BPA leads to disruption of pathways related to adipogenesis and
results in increased fat mass and body weight [9,10]. Consistent with these findings, we
also observed that an early-life BPA exposure resulted in a higher body weight and fat
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percentage, a greater fat mass of white adipocytes and displayed a NAFLD-like phenotype
in male C57BL/6 mice in our previous study [11]. Therefore, BPA could be considered as
an important risk factor related to the progression of obesity and NAFLD.

Until now, the mechanism of BPA-mediated adipogenesis and NAFLD has not been
thoroughly understood. Furthermore, it is as yet unclear if the damage caused by BPA is able
to be repaired sufficiently for a return to normal levels. Therefore, we further investigated
the changes in a series of key genes involved in TG and lipid metabolism detected by
our previous RNA-seq analysis [11] during BPA exposure and post-exposure recovery.
This provides a favorable basis for the potential mechanism that BPA exposure leads to
metabolic diseases and can also be applied to an understanding of more general mechanisms
contributing to hepatic steatosis. Therefore, the present study first investigated the effects of
drug treatment and drug withdrawal on metabolic phenotypes in mice; Second, the effects
of BPA on the expression of genes and proteins related to lipid metabolism in mouse livers
under different treatment conditions were determined by Q-PCR and Western blot (WB);
Finally, molecular interference is used to validate the function of the relevant molecules
in vitro. The aim is to identify potential molecular therapeutic targets for BPA-induced
hepatic lipid metabolism disorders.

2. Materials and Methods

2.1. Chemicals and Materials

Bisphenol A (purity ≥ 99%), ethanol and dimethyl sulfoxide (DMSO) were purchased
from Sigma-Aldrich (Sigma, St. Louis, MO, USA). Triglyceride (TG) quantification, oil red
O staining, liver TG and serum TG, total cholesterol (TCHO), high-density lipoprotein
cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) kits were supplied
by the Jiancheng Bioengineering Institute (Nanjing, Nanjing, China). Trizol isolation kits
were purchased from Invitrogen (Carlsbad, CA, USA). The total proteins lysis buffer, PVDF
membrane and a BCA protein detection kit were provided by TIANGEN (Beijing, China).
Primary polyclonal antibody APOD (ab236868, Abcam, Cambridge, MA, USA, Dilution
ratio: 1/1000) and SCD1 (ab236868, Abcam, Cambridge, MA, USA) secondary antibody
were purchased from Abcam (ab6721, Cambridge, MA, USA, Dilution ratio:1/1000). The
other analytical reagents were sourced from the Servicebio Technology Co., Ltd. (Wuhan,
Hubei, China), if not specified.

2.2. BPA Exposure and Recovery

Animal care and management were approved by the Animal Care and Use Commit-
tee of the Hefei University of Technology (approval number HFUT20210413002). Adult
(2-month-old) male and female C57BL/6 mice were purchased from the Charles River.
Mice were maintained under a constant temperature of 25 ± 2 ◦C and relative humidity of
60 ± 5% under a 12 h light/dark cycle. As perinatal mice cannot be administered by gavage,
therefore after childbirth and during breastfeeding the mother mice were exposed to DMSO
and BPA with doses of 50 or 500 μg/kg BW/day separately by gavage. Subsequently, all
3-week-old mice were randomly divided intofour groups (eight mice per group), (I) ex-
posure group: vehicle control group (control), treated with DMSO as negative control for
5 weeks; (II) exposure group: BPA exposure with dose of 50(L-BPA) or 500 μg/kg BW/day
(H-BPA) for 5 weeks; (III) recovery group: vehicle control group treated with DMSO as
negative control for 5 weeks + maintained with a standard chow diet for another 8 weeks to
recover (R-control); recovery group: BPA exposure with doses of 50 or 500 μg/kg BW/day
(BPA) for 5 weeks + maintained with a standard chow diet for another 8 weeks to recover
(R-BPA). The above administration is by gavage. The maximum exposure dose for this
topic meets the Food and Drug Administration (FDA) safety limits for BPA doses.

2.3. Cell Culture and Treatment

Normal mouse hepatocytes (alpha mouse liver 12) AML12 were cultured in a high
glucose DMEM basic medium containing 10% FBS (Gibco, Waltham, MA, USA) and a
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solution of 1% penicillin and streptomycin (PS) (Sigma, St. Louis, MO, USA). Cells were
treated with DMSO and BPA at a concentration of 30 μM for two days, respectively. Plasmid
transfection was then performed using Lip3000 liposome transfection reagent (Sigma, St.
Louis, MO, USA). After two days of continued drug treatment, the following experimental
manipulations were performed.

2.4. Measurements

Body weight and food intake of the animals were measured weekly. At the end of the
study, mice were sacrificed by CO2 inhalation after overnight fasting. The body weights
of the mice were counted after fasting, and the liver tissue and epididymal adipose tissue
were collected and counted separately. Fat to body weight is the ratio of the absolute
weight of epididymal fat to body weight. Blood was collected from the heart, and serum
was obtained by centrifugation at 3000 rpm for 20 min for subsequent analysis. Serum
total cholesterol (TCHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), alanine amioTransferase (ALT) and aspartate
Transaminase (AST) were measured by using biochemical assay kits provided by the
Jiancheng Bioengineering Institute (Nanjing, China). All assays were performed according
to the instructions supplied by the manufacturer.

2.5. Histological Analysis

Freshly harvested adipose tissue of the epididymis and liver was collected, then washed
with phosphate-buffered saline (PBS), and the tissues were immediately soaked in 4% of
paraformaldehyde for 24 h. After dehydration, the specimens were intactly embedded in
paraffin and sectioned (5 μm) for H&E staining. The morphological changes in all the slices
in the liver and adipose tissue were examined with a high-resolution CS2 slide scanner
(Leica Biosystems Inc., Buffalo Grove, IL, USA).

2.6. RT-qPCR Analysis

Total RNA Isolation Reagent was used to extract total RNA from liver tissues and
reverse-transcribed into cDNA by a reverse transcription kit (TransGen, Beijing, China). The
key genes were amplified using a SYBR-Green kit following the manufacturer’s instruction
on a LightCycler480 (Roche, Shanghai, China). The amplification procedure was as follows:
95 ◦C for 8 min; 95 ◦C for 10 s, 60 ◦C for 20 s, 72 ◦C for 20 s (36 cycles), and final extension
at 4 ◦C. All of the primers for the genes are shown in the Supplementary Table S1. The
relative expression levels of genes were normalized using 18S and the fold changes were
analyzed using the 2−ΔΔct method.

2.7. Western Blot Analyses

Total proteins of livers in different groups were harvested using RIPA buffer (Sigma-
Aldrich, St. Louis, MO, USA) supplemented with a protease/phosphatase inhibitor (Sigma-
Aldrich, St. Louis, MO, USA). Protein concentrations were then determined with the BCA
protein detection kit (Thermo Fisher Scientific, Beijing, China). A 20 μg sample of protein was
separated by 10% SDS-PAGE gels and then electrically transferred onto PVDF membranes
(Millipore, Boston, MA, USA). The membranes were then blocked for 2 h with solutions
containing 5% of non-fat milk. After washing, the membranes were incubated with a primary
antibody (Abcam, Cambridge, MA, USA) overnight at 4 ◦C and then incubated with a labeled
secondary antibody (Boster, Pleasanton, CA, USA) for 1 h at room temperature. Protein
bands were visualized via Image J software, version 6.1 (Bio-Rad, Hercules, CA, USA). The
GAPDH level was used as a loading control.

2.8. Statistical Analysis

Data shown were expressed as mean ± standard deviation of all independent experi-
ments (number of parallel ≥ 3) and one-way analysis of variance (ANOVA) with Duncan’s
multiple range tests were used to compare the different treatment mice groups through
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SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). A p value < 0.05 was considered to be
statistically significant.

3. Results

3.1. BPA Exposure Induced Obesity in Mice

The mice from the control and BPA groups were sacrificed at the age of 8 weeks (BPA
exposure) and at the age of 16 weeks (BPA exposure for 8 weeks + recovery for 8 weeks),
respectively. During the exposure period, compared with the control group, the body
weight (p < 0.05) and fat-to-body weight ratio (p < 0.01) of L-BPA and H-BPA groups were
significantly increased. During recovery, we found that there was a significant decrease in
the body weight and fat-to-body weight ratio of the male mice between the BPA group and
the control group (p < 0.05) (Figure 1A,B). Furthermore, as shown in Figure 1C, adipocytes
had a clearly larger size and volume both for BPA exposure and recovery groups than those
in the vehicle control group. Interestingly, the size and volume of adipocytes were still
larger even if at the recovery time (Figure 1D).

Figure 1. Cont.
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Figure 1. Effects of BPA exposure on the basic changes of parameters in male mice. Note: (A) Effects
of BPA exposure on the body weight of mice; (B) Effects of BPA exposure on fat-to-body weight ratio;
(C) Representative images of adipose tissue stained with H&E in mice for 8 weeks and 16 weeks
(400×); (D) Relative area statistics of cells in the adipose tissue of the epididymis for 8 weeks.
(E) Relative area statistics of cells in the adipose tissue of the epididymis for 16 weeks. Use ImageJ
software (Bio-Rad, Hercules, CA, USA). n = 8 in each group. “8W” represents the control group treated
with 2% of DMSO and the BPA group treated with BPA for 8 weeks, respectively. “16W” represents
the control group treated with 2% of DMSO for 16 weeks and the BPA group treated with BPA for
8 weeks followed by an 8-week recovery period (cessation of drug exposure). Statistical significance
was determined by one-way ANOVA. * Represents the significance at p < 0.05. ** Represents the
significance at p < 0.01. *** Represents the significance at p < 0.001. L-BPA, 50 μg/kg BW/day BPA;
H-BPA, 500 μg/kg BW/day BPA.

3.2. BPA Exposure Altered the Homeostasis of Metabolic Outcomes in Mice

After BPA treatment for 8 weeks, compared with the corresponding control groups,
serum HDL, LDL, TCHO and TG levels were not obviously reduced in the 50 μg/kg BW/day
and 500 μg/kg BW/day-exposed groups, whereas serum LDL and TG levels were only
markedly decreased in the 500 μg/kg BW/day exposed group (Figure 2A–D). Importantly,
as shown in Figure S2, compared with the corresponding control groups, serum APOD levels
for 8 weeks were higher in the BPA exposure, whereas their levels decreased rapidly for
another 8 weeks only to recover.

Figure 2. Cont.
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Figure 2. The blood biochemical indicators of mice. Note: (A) Relative serum high density lipoprotein
cholesterol (HDL-C) levels; (B) Relative serum low density lipoprotein cholesterol (LDL-C) levels;
(C) Relative serum total cholesterol (TCHO) levels; (D) Relative serum triglyceride (TG) levels. n = 6 in
each group. Statistical significance was determined by one-way ANOVA. “8W” represents the control
group treated with 2% DMSO and the BPA group treated with BPA for eight weeks, respectively.
“16W” represents the control group treated with 2% DMSO for 16 weeks and the BPA group treated
with BPA for eight weeks followed by an eight-week recovery period (cessation of drug exposure).
* Represents the significance at p < 0.05. ** Represents the significance at p < 0.01. NS represents the
significance at p > 0.05.

3.3. BPA Exposure Disrupted Hepatic Lipid Metabolism in Mice
3.3.1. BPA Exposure Induced Liver Injury

The relative liver weights were markedly decreased in male mice after exposure to
500 μg/kg BW/day compared with the control (Figure 3A); during the recovery period,
we also found that the high dose group resulted in a significant reduction in the liver
weights of the mice (Figure 3B). The data of H&E-stained liver sections revealed normal
liver histology in the control group manifesting as normal cell size, with uniform cytoplasm,
and a prominent cell nucleus. Meanwhile, liver tissue sections failed to show evidence
of lipid droplets or other aberrant changes, such as degeneration or necrosis (Figure 3C).
Conversely, the mice exposed to BPA fed on the same diet showed liver pathologies seen in
human NAFLDs, including small vacuoles, disordered hepatic cell cords, and increased
fat deposition. For the recovery groups, an evident injury was observed in the livers of
the mice in both the L-BPA and H-BPA groups. But notably, fat in the liver was mainly
observed as macrovesicular droplets in the mice exposed to low-dose BPA (Figure 3D). The
quantitative TG assay showed that BPA exposure resulted in a significant increase in TG
levels in mouse livers in both the L-BPA and H-BPA groups (Figure 3E). However, this
increase in attenuated during recovery (Figure 3F).

3.3.2. BPA Exposure Altered the Genes Expression in Male Mice

Our previous study used RNA-Seq to explore potential mechanisms of BPA-induced adi-
pogenesis in 3T3-L1 preadipocytes and a series of genes associated with de novo lipogenesis
and lipid transport were detected to be regulated by BPA [11]. Based on fold change, here we
examined the expression patterns of genes APOD, SCD1, ANGPT4, LPL, G0S2, FADS2, GNAI2,
PLIN1, ELOVL6, ACSL3, PPARα, PPARβ, PPARγ, FADS1 and SOD3 in the livers of mice for
BPA exposure and recovery groups. Importantly, we also found a significant expression
reversion for stearoyl-CoA desaturase 1 (SCD1) (p < 0.01), apolipoprotein D (APOD) (p < 0.01),
ANGPT4 (p < 0.01), PPARβ (p < 0.05), LPL (p < 0.01) and G0S2 (p < 0.01) between the exposure
and recovery groups (p < 0.05), especially for SCD1 and APOD (Figure 4A). Meanwhile,
as shown in Figure S1, BPA can also decrease the expression level of PPARα, which was
responsible for fatty acid oxidation. Besides, BPA can also increase mRNA expression levels
of genes for lipogenesis, such as FADS1, FADS2, LPL, G0S2, and ACSL3.
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Figure 3. BPA-exposed mice exhibited hepatic lipid accumulation. Note: (A) Eight-week mouse liver
weights; (B) Sixteen-week mouse liver weights; n = 8 in each group; (C,D) Representative images of
liver with H&E in mice for 8 weeks and 16 weeks (400×). (E,F) TG content in mice liver in 8w and
16w groups, respectively. “8W” represents the control group treated with 2% DMSO and the BPA
group treated with BPA for eight weeks, respectively. “16W” represents the control group treated
with 2% DMSO for 16 weeks and the BPA group treated with BPA for eight weeks followed by an
eight-week recovery period (cessation of drug exposure). Statistical significance was determined by
one-way ANOVA. * Represents the significance at p < 0.05. ** Represents the significance at p < 0.01.
*** Represents the significance at p < 0.001. NS represents the significance at p > 0.05.
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Figure 4. Effects of BPA Exposure on the of Gene Expressions in Liver. Note: (A) Effects of BPA on
the mRNA expression of genes regulating lipid metabolism. n = 5 in each group; (B) Expression of
SCD1 protein in mouse liver; (C) Expression of APOD protein in mouse liver; Quantitative analysis
of protein expression was performed using the ImageJ software (Bio-Rad, Hercules, CA, USA);
(D) Effects of BPA on the mRNA expression of genes regulating inflammatory, n = 5 in each group.
“8W” represents the control group treated with 2% DMSO and the BPA group treated with BPA for
eight weeks, respectively. “16W” represents the control group treated with 2% DMSO for 16 weeks
and the BPA group treated with BPA for eight weeks followed by an eight-week recovery period
(cessation of drug exposure). * Represents the significance at p < 0.05. ** Represents the significance
at p < 0.01. *** Represents the significance at p < 0.001. NS represents the significance at p > 0.05.
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3.3.3. BPA Exposure Induced Hepatic Inflammation

In comparison to the control group, the expression levels of liver TNF-α, IL-6 had an
obvious increase in the animals exposed to BPA (p < 0.01) (Figure 4D). Whereas, the level
of IL-1β were not increased significantly (p > 0.05). After 8 weeks of recovery, the degree
of damage gradually decreased. As shown in Figure. 4D, during the recovery period, the
expression levels of these genes returned to their initial levels except for SAA3 (p < 0.05).

3.3.4. Effects of BPA Exposure and Recovery on the Expression of SCD1 and APOD

The expression of the proteins (SCD1, and APOD) were further determined by western
blotting for the exposure and recovery groups. The results indicated that the levels of SCD1
had a significant increase in BPA groups (p < 0.05). However, during recovery, there was no
significant difference in the SCD1 protein levels between the BPA group and control group
(p > 0.05) (Figure 4B). Notably, BPA exposure groups had a lower level of APOD protein
level (p = 0.097) and accordingly, there was an extremely significant increase after stopping
exposure (Figure 4C).

3.4. Effect of APOD Over-Expression on BPA-Induced Dysregulation of Lipid Homeostasis

To assess the potential role of APOD in BPA-induced lipid disorders, we investigated
whether BPA could increase fat accumulation by regulation of APOD in AML12 cells. As
shown in Figure 5D,E, TG quantitative assay and oil red O staining results demonstrated that
BPA exposure increased TG content, while APOD over-expression suppressed TG accumula-
tion caused by BPA in the AML12 cells. These positive effects of APOD may be associated
with upregulation of PPARβ, which plays important roles in angiogenesis, metabolism, and
inflammation. These results for the first time demonstrate that APOD regulates BPA-induced
dysregulation of lipid homeostasis. In summary, as shown in Figure 5, our findings verified
that BPA aggravated lipid accumulation in hepatocytes via decreasing APOD expression
in vitro and in vivo. APOD is a potential effective agent for the treatment of obesity and
NAFLD caused by BPA exposure.

Figure 5. Cont.
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Figure 5. Effect of APOD over-expression on the TG accumulation in AML12 cells. Note: (A) Elec-
trophoresis of pcDNA3.1 (+) APOD plastimid; (B) The sequencing of recombinant plasmid DNAs
BPA exposure promoted hepatic inflammatory response in mice; (C) The expression of APOD in
AML12 cells, n = 3 in each group; (D) Relative TG content in cells, n = 4 in each group; (E) Typical
image of lipid accumulation in AML12 cells by oil red O staining. ** Represents the significance at
p < 0.01. *** Represents the significance at p < 0.001.

4. Discussion

Epidemiological and experimental studies suggested that the prevalence of NAFLDs
may be associated with BPA exposure [12,13], but the mechanism is unclear. Our data
demonstrated that the development of NAFLDs induced by BPA exposure was associated
with hepatic pro-inflammatory, abnormal lipid metabolism and lipid deposition. Consistent
with these results obtained by previous studies [14–16] our study showed that BPA induced
hepatic steatosis and fat accumulation [11] revealing that BPA resulted in dose-dependent
effects on metabolic parameters [17]. Our study shows that BPA exposure causes weight
gain and liver lipoatrophy in mice. Therefore, exposure to BPA in early life should be
carefully examined in the etiology of NAFLDs.

As is known, high or prolonged exposure to BPA during early life may exert more long-
term adverse outcomes, and increase the risk factors associated with metabolic diseases
in adult life [7]. During the exposure period, compared with the control group, the body
weight and fat-to-body weight ratio of BPA groups were significantly increased. During
the recovery process, we found that there were no significant differences between the BPA
exposure group and the control group after the removal of BPA, indicating the recovery of
the lipid metabolism. However, the size and volume of adipocytes were still larger even if
at the recovery time and the possible cause was irreparable damage to the lipid metabolism.
Meanwhile, significant changes in males in serum THCO and HDL-C levels were not found
during BPA exposure and post-exposure recovery. But it is worth noting that TG and LDL-C
were still higher in low-dose BPA groups, whether during BPA exposure or the recovery
period. Meanwhile, it is an interesting finding that fat in the liver was mainly observed
as macrovesicular droplets in the mice exposed to low-dose BPA. These data suggested
that the live function recovered faster in the high-dose BPA rather than the low-dose
BPA. The results in this study are consistent with previous studies that the mice are more
sensitive to low-dose BPA exposure as compared to higher doses, thereby contributing to
hepatic steatosis [9,14]. We cannot rule out the possibility that other mechanisms, whereas
we speculated the dysregulated autophagy by BPA may contribute to the transcriptional
impacts of low BPA doses reported here [18]. This raises further questions regarding
whether the high-dose BPA-caused impairment to the lipid metabolism mechanism in male
mice is identical to that of low-dose BPA.

Our RNA-seq analysis detected some key genes involved in TG and lipid metabolism,
including APOD, SCD1, ANGPT4, LPL, G0S2, FADS2, GNAI2, PLIN1, ELOVL6, ACSL3,
PPARα, PPARβ, PPARγ, FADS1 and SOD3 [11]. In this study, we further explored the
changes in these genes during BPA exposure and post-exposure recovery. BPA can increase
the mRNA expression levels of FADS1, FADS2, LPL, G0S2, and ACSL3, which were key
regulators of lipogenesis [19,20]. Lipid accumulation in liver could be due to the different
expression levels of these genes [21,22]. Interestingly, the mRNA expression levels of all
these genes nearly reached the control levels during the recovery process, indicating that
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the recovery speeds of these genes were similar. Meanwhile, these genes were easier to
recover in the liver and we believe that the recoveries of different genes follow a specific
order after the removal of BPA exposure. This restoration mechanism ensures the recovery
of liver function.

Importantly, we found a significant expression reversion for SCD1, APOD, ANGPT4,
PPARβ, LPL and G0S2 between the exposure and recovery groups, especially for SCD1
and APOD. The mRNA and Western blotting results indicated that the levels of SCD1
protein levels showed a remarkable increase in the liver of BPA groups while there was
no significant difference between the BPA group and control group during recovery. Our
results indicated that BPA can affect SCD1 expression and further impair the process of
murine adipogenesis [11]. The decreased expression of SCD1 showed decreased hepatic tri-
acylglycerol content and reduced body obesity, which was consistent with Zou et al. [23,24].
On the contrary, there was a significantly lower level of APOD protein in the exposure
phase. However, in the recovery phase there was an extremely significant increase after
exposure had ceased. Additionally, APOD over-expression suppressed TG accumulation in
the AML12 cells. Therefore, APOD played an important role in BPA-induced dysregulation
of lipid homeostasis and this increase may be an adaptive mechanism that ensures the
recovery of liver function.

Our results support the hypothesis that upregulation of APOD ameliorates dysregula-
tion of lipid homeostasis caused by BPA exposure in male mice. Of relevance, our results
showed that the expression of APODs was lower in the BPA group compared with control
group mice and suggested an important role for APODs in regulating lipid metabolism
caused by BPA exposure. BPA may decrease lipid translocation processes by inhibiting
APOD expression in the liver. Interestingly, an important characteristic of BPA-induced
hepatic steatosis was that compared to the control group, the trend of APOD concentration
in the serum of mice in the BPA group was opposite to the trend of the level of APOD
protein expression in the liver. This intriguing phenomenon suggests that the expression
patterns are completely different in the liver and blood. Indeed, APOD appears to be a
beneficial actor in both lipid metabolisms as it is associated with lipid uptake and inflam-
mation resorption. However, how APOD controls its expression levels remains unknown
and needs further attention.

5. Conclusions

In our study, we found that BPA caused severe steatosis in the livers of mice, which
was partially alleviated after we stopped exposure. Importantly, BPA could significantly
decrease the level of APOD protein whereas an extremely significant increase occurred after
we stopped exposure. Meanwhile, APOD over-expression suppressed TG accumulation in
AML12 cells. In conclusion, the damage caused by BPA can be repaired by upregulation of
APOD and it is a potentially effective biochemical detection indicator for the treatment of
obesity or NAFLDs caused by BPA exposure.
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Cytotoxicity of Bisphenol A Is Mediated by Increased Levels of Reactive Oxygen Species and Affects Cell Cycle Progression. J.
Agric. Food Chem. 2020, 68, 869–875. [CrossRef] [PubMed]

4. Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-
disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [CrossRef]

5. Karsauliya, K.; Bhateria, M.; Sonker, A.; Singh, S.P. Determination of Bisphenol Analogues in Infant Formula Products from India
and Evaluating the Health Risk in Infants Asssociated with Their Exposure. J. Agric. Food Chem. 2021, 69, 3932–3941. [CrossRef]
[PubMed]

6. Trasande, L.; Attina, T.M.; Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children
and adolescents. JAMA 2012, 308, 1113–1121. [CrossRef]

7. Grohs, M.N.; Reynolds, J.E.; Liu, J.; Martin, J.W.; Pollock, T.; Lebel, C.; Dewey, D. Prenatal maternal and childhood bisphenol a
exposure and brain structure and behavior of young children. Environ. Health 2019, 18, 85. [CrossRef]

8. Hu, C.Y.; Li, F.L.; Hua, X.G.; Jiang, W.; Mao, C.; Zhang, X.J. The association between prenatal bisphenol A exposure and birth
weight: A meta-analysis. Reprod. Toxicol. 2018, 79, 21–31. [CrossRef]

9. Long, Z.; Fan, J.; Wu, G.; Liu, X.; Wu, H.; Liu, J.; Chen, Y.; Su, S.; Cheng, X.; Xu, Z.; et al. Gestational bisphenol A exposure induces
fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell Biol. Toxicol.
2021, 37, 65–84. [CrossRef]

10. Rubin, B.S.; Soto, A.M. Bisphenol A: Perinatal exposure and body weight. Mol. Cell Endocrinol. 2009, 304, 55–62. [CrossRef]
11. Fang, R.; Yang, S.; Gu, X.; Li, C.; Bi, N.; Wang, H.L. Early-life exposure to bisphenol A induces dysregulation of lipid homeostasis

by the upregulation of SCD1 in male mice. Environ. Pollut. 2022, 304, 119201. [CrossRef] [PubMed]
12. Shimpi, P.C.; More, V.R.; Paranjpe, M.; Donepudi, A.C.; Goodrich, J.M.; Dolinoy, D.C.; Rubin, B.; Slitt, A.L. Hepatic Lipid

Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of
Nonalcoholic Liver Disease. Environ. Health Perspect. 2017, 125, 087005. [CrossRef] [PubMed]

13. Verstraete, S.G.; Wojcicki, J.M.; Perito, E.R.; Rosenthal, P. Bisphenol a increases risk for presumed non-alcoholic fatty liver disease
in Hispanic adolescents in NHANES 2003-2010. Environ. Health 2018, 17, 12. [CrossRef]

14. Marmugi, A.; Ducheix, S.; Lasserre, F.; Polizzi, A.; Paris, A.; Priymenko, N.; Bertrand-Michel, J.; Pineau, T.; Guillou, H.; Martin,
P.G.; et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in
adult mouse liver. Hepatology 2012, 55, 395–407. [CrossRef] [PubMed]

15. Li, Q.; Zhang, H.; Zou, J.; Mai, H.; Su, D.; Feng, X.; Feng, D. Bisphenol A exposure induces cholesterol synthesis and hepatic
steatosis in C57BL/6 mice by down-regulating the DNA methylation levels of SREBP-2. Food Chem. Toxicol. 2019, 133, 110786.
[CrossRef] [PubMed]

16. Kim, K.Y.; Lee, E.; Kim, Y. The Association between Bisphenol A Exposure and Obesity in Children-A Systematic Review with
Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2521. [CrossRef]

17. Lind, T.; Lejonklou, M.H.; Dunder, L.; Kushnir, M.M.; Öhman-Mägi, C.; Larsson, S.; Melhus, H.; Lind, P.M. Developmental
low-dose exposure to bisphenol A induces chronic inflammation, bone marrow fibrosis and reduces bone stiffness in female rat
offspring only. Environ. Res. 2019, 177, 108584. [CrossRef]

18. Yang, S.; Zhang, A.; Li, T.; Gao, R.; Peng, C.; Liu, L.; Cheng, Q.; Mei, M.; Song, Y.; Xiang, X.; et al. Dysregulated Autophagy
in Hepatocytes Promotes Bisphenol A-Induced Hepatic Lipid Accumulation in Male Mice. Endocrinology 2017, 158, 2799–2812.
[CrossRef]

19. Fan, J.G.; Zhu, J.; Li, X.J.; Chen, L.; Lu, Y.S.; Li, L.; Dai, F.; Li, F.; Chen, S.Y. Fatty liver and the metabolic syndrome among Shanghai
adults. J. Gastroenterol. Hepatol. 2005, 20, 1825–1832. [CrossRef]

67



Toxics 2023, 11, 775

20. Feng, D.; Zhang, H.; Jiang, X.; Zou, J.; Li, Q.; Mai, H.; Su, D.; Ling, W.; Feng, X. Bisphenol A exposure induces gut microbiota
dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ. Pollut. 2020, 265, 114880.
[CrossRef]

21. Vom Saal, F.S.; Nagel, S.C.; Coe, B.L.; Angle, B.M.; Taylor, J.A. The estrogenic endocrine disrupting chemical bisphenol A (BPA)
and obesity. Mol. Cell Endocrinol. 2012, 354, 74–84. [CrossRef] [PubMed]

22. Sun, L.; Ling, Y.; Jiang, J.; Wang, D.; Wang, J.; Li, J.; Wang, X.; Wang, H. Differential mechanisms regarding triclosan vs. bisphenol
A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. Chemosphere 2020, 251, 126318. [CrossRef]
[PubMed]

23. Zou, Y.; Wang, Y.N.; Ma, H.; He, Z.H.; Tang, Y.; Guo, L.; Liu, Y.; Ding, M.; Qian, S.W.; Tang, Q.Q. SCD1 promotes lipid mobilization
in subcutaneous white adipose tissue. J. Lipid Res. 2020, 61, 1589–1604. [CrossRef] [PubMed]

24. Miyazaki, M.; Flowers, M.T.; Sampath, H.; Chu, K.; Otzelberger, C.; Liu, X.; Ntambi, J.M. Hepatic stearoyl-CoA desaturase-1
deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 2007, 6, 484–496. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

68



Citation: Yang, B.; Cui, H.; Gao, J.;

Cao, J.; Klobučar, G.; Li, M. Using a

Battery of Bioassays to Assess the

Toxicity of Wastewater Treatment

Plant Effluents in Industrial Parks.

Toxics 2023, 11, 702. https://doi.org/

10.3390/toxics11080702

Academic Editors: Zhen-Guang Yan,

Zhi-Gang Li and Jinzhe Du

Received: 29 June 2023

Revised: 6 August 2023

Accepted: 10 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Using a Battery of Bioassays to Assess the Toxicity of
Wastewater Treatment Plant Effluents in Industrial Parks

Bin Yang 1, Haiyan Cui 1, Jie Gao 1, Jing Cao 1, Göran Klobučar 2 and Mei Li 1,*
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Abstract: Bioassays, as an addition to physico-chemical water quality evaluation, can provide
information on the toxic effects of pollutants present in the water. In this study, a broad evaluation of
environmental health risks from industrial wastewater along the Yangtze River, China, was conducted
using a battery of bioassays. Toxicity tests showed that the wastewater treatment processes were
effective at lowering acetylcholinesterase (AChE) inhibition, HepG2 cells’ cytotoxicity, the estrogenic
effect in T47D-Kbluc cells, DNA damage of Euglena gracilis and the mutagenicity of Salmonella
typhimurium in the analyzed wastewater samples. Polycyclic aromatic hydrocarbons (PAHs) were
identified as potential major toxic chemicals of concern in the wastewater samples of W, J and
T wastewater treatment plants; thus, the potential harm of PAHs to aquatic organisms has been
investigated. Based on the health risk assessment model, the risk index of wastewater from the
industrial parks along the Yangtze River was below one, indicating that the PAHs were less harmful
to human health through skin contact or respiratory exposure. Overall, the biological toxicity tests
used in this study provide a good basis for the health risk assessment of industrial wastewater and a
scientific reference for the optimization and operation of the treatment process.

Keywords: wastewaters; genotoxicity; bioassays; cytotoxicity

1. Introduction

The complexity of water pollution is becoming an emerging concern due to the numer-
ous pollutants that enter water bodies in China. The primary sources of water pollution
are untreated industrial and agricultural wastewater, domestic sewage and waste [1]. The
wastewater discharged from industrial parks mainly manifests in large volumes, complex
compositions and high concentrations of pollutants. The persistent pollutants in wastewa-
ter can enter the food chain and ultimately endanger human health [2]. In China, the total
national wastewater discharge in 2020 was 71.62 billion tons, of which 29% (20.53 billion
tons) was contributed from industrial wastewater discharge. Jiangsu Province in China has
58 chemical industry parks of various industrial scales. Therefore, industrial wastewater
serves as an essential source of freshwater and marine pollution [3]. This requires an elabo-
rate environmental risk assessment of industrial wastewater pollution using mandatory
biological monitoring as an addition to already existing chemical monitoring.

Bioassays are promising methods for studying these sources of pollution, since, on the
one hand, all parameters related to the exposed organisms can be controlled as in laboratory
experiments. On the other hand, work under environmentally realistic conditions considers
the interactions that occur between the chemicals in the effluent and the complexity of
the receiving environment [4]. Recent studies have shown that hematological parameters
are often used as valuable indicators for assessing fish health, and that the use of pelagic
fish data allows for comprehensive monitoring studies of effluents [5,6]. The effects of
wastewater treatment plant effluents on biological neurotoxicity, cytotoxicity, genotoxicity
and estrogenic effects have been reported in recent decades [7]. These studies of the
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impact of the effluents on specific physiological functions provide a complete assessment
of the overall health of the organism. Additionally, they provide a more comprehensive
perspective by accurately predicting the biological effects of wastewater treatment plant
effluents [8].

In 2004, the United States Environmental Protection Agency (USEPA) included the
Whole Effluent Toxicity Test (WETT) into the implementation guidelines for total wastewa-
ter toxicity. The Continental European Organization and Oceania scholars further proposed
the Whole Effluent Assessment (WEA) to evaluate the persistence, bioaccumulation and
comprehensive toxicity of discharged wastewater using a suite of acute and chronic toxicity
tests [9]. Currently, China’s monitoring of toxic substance discharge in industrial wastewa-
ter is dominated by the physical and chemical monitoring of pollutants. Such methods and
monitoring techniques for chemical industry emissions do not fully represent the possible
toxicity of industrial wastewater, which jeopardizes environmental safety and industry
development [10]. Therefore, performing and standardizing toxicity testing is one of the
critical parts of environmental risk assessment and management in China.

This study aims to combine chemical and biological analysis of industrial wastewater
before and after WWT (influent and effluent samples) along the Yangtze River in Jiangsu
Province. The basic physical and chemical properties of the wastewater samples were
measured as a basis for the ecological and health risk assessment of wastewater pollution
in these industrialized areas. Biological assays were performed at different biological
organizations to evaluate the environmental risk of wastewater from chemical industrial
parks. Genotoxicity assays were performed using two organisms, freshwater algal species
Euglena gracilis and Salmonella typhimurium. Assays were also performed on human
hepatocellular carcinoma cell line HepG2 and human breast cancer cell line T47D-Kbluc
to determine cytotoxic and estrogenic cellular responses, respectively, to wastewater pol-
lution. Enzyme activity assays were also performed to elucidate the inhibitory response
of acetylcholinesterase.

2. Materials and Methods

2.1. Sample Collection and Preparation

Sampling was performed in accordance with “Water Quality Sampling Technical
Guidance” (HJ404–2009). Sampling was conducted using a steel bucket on sunny and
rainless days between 10 April and 20 April 2018. Nine inlet and nine outlet samples of
the wastewater were collected from the wastewater treatment plants between 9 a.m. and
2 p.m. and samples only contained plant wastewater. Sampling container was sanitized
before and after collection to avoid contamination. These WWTPs (W, J and T, as shown in
Figure 1) are in the three typical industrial areas along the Yangtze River. A total of nine
samples (20 L) were stored under refrigeration at 4 ◦C for 24 h before carrying out the exper-
iments. The collected samples were processed as follows: filtration (0.7 μm glass fiber filter)
was performed to remove particles, followed by acidification at pH 2–3 with concentrated
hydrochloric acid. Samples were further processed using solid-phase extraction (Oasis
Hydrophile-Lipophile Balance cartridge) and then stored at −20 ◦C, protected from light,
for chemical analysis and bioassays, respectively. Solid-phase extraction was performed in
accordance with “Water Quality-Determination of polycyclic aromatic hydrocarbons by
liquid-liquid extraction and soild-phase extraction high performance liquid chromatog-
raphy” (HJ478-2009). The extraction procedure was the following: 10 mL methanol and
10 mL acetone/hexane (v/v:1/1) for activating the extraction column (Waters Oasis HLB),
10 mL methanol and 10 mL acetone/hexane (v/v:1/1) for eluting, 5 mL/min for solution
loading. Before and during the analysis, method blanks, instrumental blanks and solvent
blanks were implemented for each batch of samples. Spiked matrices showed 80~110%
recovery for compounds.
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Figure 1. Sampling location of three WWTPs studied in this study.

2.2. Physical and Chemical Indicators Detection

Water chemistry parameters were measured within 24 h after sampling. The analytical
method followed the national surface water environmental quality standards established
by the Chinese government (GB3838-2002). The method used for Polycyclic aromatic
hydrocarbon (PAH) analysis was from “National Environmental Protection Standards of the
People’s Republic of China” (HJ478-2009). The high-performance liquid chromatography
(HPLC) analysis steps were as follows: the mobile phase was (A) methanol and (B) water
with a ratio of 80:20 at a flow rate of 1.0 mL/min, increments of 1.2% methanol/min to
95% methanol + 5% water, hold until the peak was completed and the ultraviolet detection
wavelengths were set to 254 nm, 220 nm and 295 nm.

2.3. Bioassays
2.3.1. Acetylcholinesterase Inhibition Assay

The wastewater samples were concentrated or diluted, six concentrations (0.1×, 0.2×,
0.5×, 1×, 2× and 5×) of wastewater samples were used to generate the dose–response
curve, and the concentration for 50% of maximal effect (EC50) was calculated via linear
regression with Prism 6.0 (GraphPad Software, San Diego, CA, USA).

Methomyl was used as the positive control; the corresponding EC50 was obtained.
Briefly, water samples with different dilution ratios were sequentially added to 96-well
plates in triplicate, each 100 μL, and three wells were set to add an equal amount of phos-
phate buffer as a blank control. Then, 5, 5′-dithiobis-(2-nitrobenzoic acid), 2-(acetylthio)-N,
N, N-trimethylethylammonium iodide and electric eel AChE solution were added to each
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dilution followed by thorough mixing on a plate shaker. After 15 min, the enzymatic
reaction was measured at an OD412 nm in a plate reader (iD3, Molecular Devices, San Jose,
CA, USA). The inhibition of AChE by the water sample was calculated according to the
following formula:

E = 1 − ΔAt

ΔAc

where ΔAt is the change in absorbance of the experimental group compared with the initial
and ΔAc is the change in absorbance of the blank group compared with the initial one.

Toxicity equivalence factor (TEF) refers to the index for evaluating the relative toxicity
strength or health impact degree of a compound isomer. The toxicity of environmental
water samples can be evaluated more intuitively with TEF. The calculation method was
based on the following formula:

TEF =
EC50,positive

EC50,sample

where EC50,positive and EC50,sample are half the maximum effective concentration of positive
control group and sample group and sample groups.

2.3.2. Cytotoxicity Assay

The wastewater samples were concentrated or diluted, and six concentrations (0.25×,
0.5×, 1×, 2×, 5× and 10×) of the wastewater from the three WWTPs were selected for
testing. The human hepatocellular carcinoma cell line HepG2 was selected to detect
the cytotoxicity of influents and effluents of the chemical industry plants in this study.
The HepG2 cells obtained from KeyGen Biotech (Nanjing, China) were maintained in a
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum
(FBS). After being exposed for 24 h, the cell viability was detected using a cell counting kit-8
(CCK8) kit (Dojindo Molecular Technologies, Kumamoto city, Japan). The kit determines the
number of living cells by measuring the enzymatic reaction at an OD450 nm in a plate reader
(iD3, Molecular Devices). Cell viability was calculated according to the following formula:

Cell viability (%) = Aexperiment/Ablank × 100%

Graphpad Prism software (GraphPad Software, San Diego, CA, USA) was used to fit
the dose–effect relationship to find the EC50.

2.3.3. Estrogenic Effect Assay

The human breast cancer cell line T47D-Kbluc (American Type Culture Collection,
Rockville, MD, USA) was chosen as the indicator of estrogenic effects in wastewater
samples. Roswell park memorial institute 1640 (RPMI 1640) medium was used for cell
culture [11]. Activated carbon was added to reduce the estrogen concentration in the culture
medium. The fetal bovine serum in the culture medium was replaced with activated carbon
to adsorb the fetal bovine serum to reduce the estrogen residue in the culture medium. The
cells were exposed to the cell culture fluid with water samples for 24 h and firefly luciferase
was added after lysis. Luminescence was measured using a microplate reader (Synergy H1,
BioTek, Santa Clara, CA, USA).

The dose–effect curve was generated according to the measured water luminescence
and was used to calculate the corresponding EC50 using GraphPad Prism. β-estradiol (E2)
was used as a positive control.

2.3.4. Genotoxicity Assays

In this study, the Comet assay was used to detect the genotoxicity of wastewater sam-
ples. The Comet assay or single-cell gel electrophoresis assay can detect DNA damage and
repair at the single-cell level through qualitative and quantitative measurement of single-
strand DNA breaks, and accurately reflects the level of DNA damage and repairability. In
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this study, the Comet assay was used to detect the genotoxicity of wastewater samples.
Algae Euglena gracilis was provided by the Freshwater Algae Seed Bank (FACHB) of the
Typical Culture Collection Committee of the Institute of Hydrobiology, Chinese Academy of
Sciences. E. gracilis was cultured on Checcucci medium at 25 ◦C with a 12 h:12 h light/dark
cycle in an incubator.

A total of 1.5 mL of E. gracilis culture medium was centrifuged at 4000 rpm for
5 min and the precipitate was exposed to the wastewater for 30 min and centrifuged
again to collect the precipitated cells. Cells were embedded in 100 μL of 1% low-melting
agarose (LMA) sandwiched between 0.7% normal-melting agarose (NMA) and 1% LMA
on microscope slides. The slides were placed in a lysis solution (300 mM NaOH; 30 mM
Na2-EDTA·2H2O; 0.01% SDS; 9% DMSO; and 1% Triton X-100) for 20 min at 4 ◦C. Then, the
slides were placed in a horizontal electrophoresis unit with fresh alkaline electrophoresis
buffer (300 mM NaOH and 1 mM Na2-EDTA·2H2O, pH 13.0) added and the liquid level
was controlled to be 2 mm above the slide at 4 ◦C for 20 min to allow for DNA unwinding.
Electrophoresis was carried out using the same buffer for 20 min using 20 V (0.8 V/cm) and
300 mA at 4 ◦C. The slides were neutralized by immersing in 0.4 M Tris buffer at pH 7.5 for
5 min and stained with ethidium bromide. The slides were analyzed under a fluorescence
microscope (Nikon Eclipse 50i, Tokyo Metropolitan, Japan). Comet Assay Software Project
(CASP, University of Wroclaw, Wroclaw, Poland) image analysis software was used to
analyze DNA damage.

Umu/SOS experiments used the method of existing studies [12] and Salmonella ty-
phimurium (TA1535/pSK1002, S. typhimurium) were used to detect the genotoxicity of
wastewater influents and effluents. The specific experimental steps were as follows:
(a) Shake the bacteria with TGA medium (tryptone 10 g/L, NaCl 5 g/L, HEPES 11.9 g/L,
glucose 2 g/L; final pH adjusted to 7.0 ± 0.2) overnight for 12–16 h, dilute the bacterial
solution with fresh medium 10 times the next day and continue to culture for about 1.5 h
to OD600 = 0.2. (b) Add the diluted samples to 96-well plate A at 180 μL per well, then
add 20 μL 10× medium and 70 μL bacterial solution. Add another three wells with 153 μL
water, 27 μL 4-nitroquinoline-1-oxide (4-NQO), 20 μL TGA medium and 70 μL bacterial
solution as positive controls. Add three wells with 180 μL water, 20 μL TGA medium and
70 μL bacterial solution as negative controls, and 180 μL water, 20 μL 10× medium and
70 μL bacterial solution as blank controls. Incubate at 37 ◦C for 2 h. (c) Take new plate B,
add 270 μL TGA medium, preheat at 37 ◦C. Take 30 μL of each well in plate A and add it to
the corresponding well in plate B. Incubate for 2 h and measure the absorbance of plate
B at OD600. (d) Take new plate C, add 120 μL B buffer to each well and preheat at 28 ◦C.
Take 30 μL of each well in plate B and add it to the corresponding well in plate C. Quickly
add 30 μL of 2-Nitrophenyl β-D-galactopyranoside (ONPG), mix well and put into the
incubator. After shaking at 28 ◦C for 30 min, add 120 μL of blocking solution to each well of
plate C to stop the reaction. Measure the absorbance of plate C at OD420. Calculate bacterial
growth factor (G) and induction ratio (IR) according to the following formula [13,14]:

G =
(A600,S−A600,B)
(A600,N−A600,B)

(When G > 0.5, it can be used f or IR value calculation)

IR =
(A420,S−A420,B)
(A420,N−A420,B)

× 1
G (When IR > 2, the test result is judged to be positive)

β Galactase activity(UI) = (A420,S−A420,B)
(A600,S−A600,B)

In the formula, A600,S is the absorbance of water sample at 600 nm, A600,B is the
absorbance of blank at 600 nm and A600,N is the absorbance of negative control at 600 nm;
A420,S is the absorbance of the water sample at 420 nm, A420,B is the absorbance of the blank
at 420 nm and A420,N is the absorbance of the negative control at 420 nm.
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Comparing the measured slope of the P-galactosidase curve in the test sample with
the slope of the P-galactosidase curve of the 4-NQO sample measured simultaneously, the
4-NQO in the test sample can be obtained in an equivalent concentration (TEQ4-NQO):

TEQ4-NQO(μg/L) =
Ksample(unit/L)

K4-NQO(unit/μg)

2.4. Data Analysis
2.4.1. Statistical Analysis

All the data were expressed as the mean ± standard deviation. The data analyses
were performed using SPSS 13.0 and the graphics were generated and produced using
Microsoft Excel and GraphPad Prism 8.0 (San Diego, CA, USA). One-way analysis of
variance (one-way ANOVA) with Tukey’s post hoc test was used to assess the comparisons
between two groups and the correlation between variables. For all analyses, p < 0.05 was
considered significant, and p < 0.01 was considered highly significant. Data analysis was
repeated three times to reduce errors.

2.4.2. Health Risk Assessment

The detection adopted 16 PAH congeners listed in the “National Environmental Pro-
tection Standard of the People’s Republic of China” (HJ478-2009) as evaluation indicators.
According to the American National Academy of Sciences (NAS) health risk assessment
model, PAHs in industrial wastewater are harmful to human health through oral and skin
exposure routes (NAS, 2004). The US Environmental Protection Agency (EPA) has classi-
fied 16 PAHs as priority pollutants based on their possible human exposure and toxicity.
Most types of PAHs can diffuse through cellular membranes, resulting in toxic effects to
organisms [15]. The toxicity parameters of 11 PAHs are listed in Table S1. According to
the toxicity of the target PAHs, the human health risk assessment was based on the above
exposure routes (Text S1).

3. Results and Discussion

3.1. PAHs in Wastewater Samples

A total of ten different PAHs were detected in the six samples (Table 1), and their
monomer concentrations were between not detectable (ND) and 10.58 mg/L. Concentra-
tions of NAP in influents of plants W, J and T were relatively high, reaching 10.58 mg/L,
12.07 mg/L and 9.87 mg/L, respectively. Organic substances such as fluoranthene were
not detected in the influents. Still, there were trace concentrations present in the effluents,
indicating that in the process of biochemical treatment, both the decomposition of organic
substances and the generation of pollutants occurred. This may be a by-product of the
WWT process of decomposing organic substances through photochemical and biological
transformation. Correspondingly, the basic physical and chemical indicators of the chemical
park wastewater along the Yangtze River changed in effluent wastewater (Table S2).

3.2. Toxicity Effects
3.2.1. Neurotoxicity of Wastewater

Wastewater samples from the three wastewater treatment plants showed different
inhibitory effects on AChE (Figure 2). Among them, the influent wastewater of the J plant
showed the strongest inhibition, reaching 55%. The inhibition of AChE in plants W and T
reached 46% and 33%, respectively. Compared with the influent samples, the inhibition
rates of AChE in the effluent samples from the three water plants all decreased, indicating
that the WWT process reduced the concentrations of substances with AChE inhibition
activity in the samples. The inhibition rates of AChE are closely related to neuronal function
disorder and death [16–18]. Examples of AChE inhibitors in wastewater include some
low-level pollutants, such as heavy metals or detergents that are widely present in urban
rivers, and the AChE inhibitors present in wastewater can adversely affect humans and
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animals. The toxic equivalents of the water samples were used to evaluate the neurotoxicity
of wastewater samples more accurately. The TEF indicator can be used to analyze the
environmental level of pollutants and their potential impact [19,20]. The EC50 significantly
increased after the WWT process, while the TEF decreased (Table 2), indicating reduced
neurotoxicity of the wastewater samples. t

Table 1. Concentrations of PAHs in wastewater samples.

(mg/L) W Plant J Plant T Plant

PAH Influent Effluent Influent Effluent Influent Effluent

Naphthalene (NAP) 10.58 0.04 12.07 0.01 9.87 0.02
Acenaphthylene (ACY) 0.06 N.D. 0.14 N.D. 0.07 N.D.

Fluorene (FLU) 0.02 N.D. 0.08 N.D. 0.05 N.D.
Fluoranthene N.D. 0.11 0.08 N.D. 0.08 N.D.

Phenanthrene (PHE) 0.05 0.01 0.08 N.D. N.D. N.D.
Anthracene (ANT) 1.23 0.02 1.42 N.D. N.D. 0.02

Benzoanthracene (BaA) 0.08 N.D. 0.19 0.01 0.04 N.D.
Benzofluoranthrene 0.06 0.01 0.25 0.02 0.03 N.D.

Benzo(a)pyrene (BaP) 1.02 0.02 1.26 0.04 1.17 0.06
Benzo(g,h,i)perylene

(B(g,h,i) P) 0.05 N.D. 0.08 N.D. 0.06 N.D.

Total 13.28 0.23 15.99 0.1 11.64 0.11
Note: N.D.: Below detection limit.

Figure 2. Inhibition rates of AChE in influents and effluents from three wastewater treatment plants:
(A) methomyl, (B) influents, (C) effluents.

Table 2. EC50 and TEF of influents and effluents from three wastewater treatment plants.

EC50 TEF

W plant Influent 3.06 2.43
Effluent 80.54 0.10

J plant Influent 4.04 1.84
Effluent 65.89 0.11

T plant Influent 6.88 1.08
Effluent 85.35 0.10

TEF: Toxicity equivalence factor.

3.2.2. Cytotoxicity of Wastewater

The influents from the WWTPs showed varying concentration-dependent effects on
HepG2 cells’ viability (Figure 3A). Compared with the J plant, wastewater from the W and
T plants showed relatively strong cytotoxicity. According to the Industrial Wastewater
Biological Toxicity Classification Standard, all influent samples from the three WWTPs are
classified as cytotoxic.
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Figure 3. HepG2 cell viability in influents and effluents from three wastewater treatment plants:
(A) influents, (B) effluents.

The cytotoxicity results of the effluents are shown in Figure 3B. The results showed
that the WWT decreased the cytotoxicity of the wastewater. The lowered cytotoxicity
in the effluent samples may be due to the partial oxidation of organic fractions by the
biochemical treatment process [21,22], and the specific causative agent in the wastewater of
the cytotoxicity was partially removed [23].

3.2.3. Estrogenic Effect of Wastewater

Environmental endocrine disruptors are exogenous chemicals that can cause abnor-
malities and disorders in the endocrine system [24–26]. The influent group of wastewater
samples showed significant estrogenic effects, and their equivalents reached 0.65 ng/L,
0.74 ng/L and 0.49 ng/L (Figure 4A), respectively. After WWT, the estrogenic effect in
plants W, J and T decreased in effluent wastewater by 68%, 59% and 60%, indicating the effi-
ciency of the treatment process. The average removal efficiency of the endocrine-disrupting
effect through the WWT was 58–84%. The bacterial action of the wastewater treatment
likely facilitates the degradation of endocrine disruptors [27]. Directive 2013/39/EU of
the European Parliament and Council proposed a monitoring level for 17β-estradiol (E2)
of 0.4 ng/L in the environment [28]. E2 is a compound hormone naturally synthesized in
vertebrates which plays an important role in the endocrine and reproductive systems [29].
After the biochemical treatment, the toxic equivalents of each WWTP’s effluent were lower
than this limit, indicating a low ecological risk to aquatic ecosystems (Table 3).

Figure 4. Estrogenic effect in influents and effluents from three wastewater treatment
plants: (A) toxicity equivalence factor of influents and effluents, (B) 17β-estradiol (E2) dose–
effect relationship.
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Table 3. Estrogenic effect TEF of effluent in chemical parks along the Yangtze River.

W Plant J Plant T Plant E2 Limit

Toxic equivalent factor 0.21 0.31 0.20 0.40

3.2.4. Genotoxicity of Wastewater

It is well-known that the release of genotoxic substances in the environment can
damage germinative cells and reduce the abundance and fertility of species in ecosys-
tems [30,31]. Tail length (TL), Tail DNA% (tDNA%), olive tail moment (OTM) and tail
moment (TM) were the main parameters of the Comet assay [32]. The four Comet as-
say parameters showed consistency between the influents and effluents of each sewage
treatment plant (Figure 5), and the genotoxicity of the effluent was significantly reduced
compared with that of the influents after the WWT. Among the measured parameters, OTM
simultaneously reflects the DNA content in the Comet tail and the shape of the Comet tail,
and is a commonly used indicator to quantify the degree of DNA damage [19,33]. It can be
seen from Figure 5 that the OTMs of the six wastewater samples were significantly higher
than those of the control, indicating that each sample caused significant DNA damage to the
E. gracilis [34–36]. Similarly, the study found, using the Comet assay, that organic extracts
from Taihu Lake can induce DNA damage on microalgae cells [37–39]. The genotoxicity of
the wastewater samples was J > T > W, and the effluents showed decreases in genotoxicity
by 41.06%, 36.12% and 37.15%, respectively.

Figure 5. Algae Euglena gracilis’ DNA damage in three WWTPs: (A) influent and effluent in W plant,
(B) influent and effluent in T plant, (C) influent and effluent in J plant. * p < 0.05, compared with the
influents. TL: Tail length. TM: Tail moment. OTM: Olive tail moment.

Umu/SOS results showed genotoxicity of wastewater influents, and no increase in
genotoxicity was observed in wastewater effluents (Table S4). However, both influents and
effluents caused growth inhibition and cytotoxicity of S. typhimurium (Table S3). The results
indicated that the WWT effluents still had potential genotoxicity to aquatic organisms.

3.3. Risk Assessment of PAHs in Wastewater Samples

The PAHs in the ambient air released by the wastewater not only cause strong odor, but
also cause a threat to the health of people exposed to these substances [40,41]. According
to the risk characterization model, the health risks caused by skin contact and respiratory
exposure to PAHs can be calculated. The risk of PAHs from the wastewater samples in the
industrial parks along the Yangtze River to human health through the respiratory route
was higher than that through skin contact (Tables S5 and S6). According to the findings
of the USEPA for the non-carcinogenic risk, PAHs are harmful to human health when the
risk index is greater than one. Using the health risk assessment model, the calculated PAH
risk index of industrial wastewater along the Yangtze River was below one, indicating that
the concentrations of 11 measured PAHs in wastewater were less harmful to human health
through skin contact or respiratory exposure.
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3.4. Correlation Analysis of Toxicity at Different Endpoints

The toxicity of complex pollutant mixtures in water can be reliably assessed only by
applying a suite of bioassays. In this study, five toxicity endpoints involving the use of the
HepG2 cell line, T47D-Kbluc cell, E. gracilis, S. typhimurium and electric eel AChE activity
were applied. A comprehensive assessment of the exposure toxicity of the influents and
effluents in the chemical parks along the Yangtze River was carried out through heatmaps
(Figure 6) using cytotoxicity, AChE inhibition rate, estrogenic effect, mutagenicity, and
DNA damage assessments of the influents and effluents. It is important to use different
organisms or their cells, as they can produce different reactions to pollutants present in the
wastewater [42].

Figure 6. Correlation analysis of toxicity data on different test organisms for influents and effluents
from three wastewater treatment plants.

Variations in the results may be caused by organism-specific responses to pollutants
in the wastewater, which emphasizes the need to perform a battery of bioassays using
different test organisms to perform a comprehensive toxicity and environmental risk
assessment of pollutants in wastewater. Traditional physical and chemical monitoring of
pollutants is not adequate to provide complete information on the potential toxic effects of
pollutants on living organisms, including humans [43]. To assess genotoxicity, this study
used S. typhimurium and E. gracilis as the test organisms to conduct Umu/SOS and Comet
assays, respectively. The results indicated that the WWT process reduced the inhibition
of AChE, estrogenic effects, mutagenicity and DNA damage. The Comet assay applied to
E. gracilis was applicable for genotoxicity testing of industrial wastewater. E. gracilis can
respond rapidly to various pollutants and be a bio-indicator for deteriorating water quality
conditions [44].

The specific pollutants in wastewater have the potential to have a range of toxic
effects on environmental health. There is a critical need to explore in-depth the potential
ecological impacts of specific substances in wastewater and the improvement of wastewater
technology for more efficient removal of substances with cytotoxic and genotoxic properties.

4. Conclusions

In this study, risk assessment of the wastewater from WWTPs in chemical parks
along the Yangtze River was carried out by detecting specific chemical pollutants and
using a battery of bioassays to detect their toxicity. A variety of PAHs were detected in
wastewater samples where relatively high concentrations of NAP, ANT and BaP were
detected. The bioassays used in this study showed that the WWT process of the W, J and T
plants can effectively reduce the cytotoxicity, neurotoxicity and estrogenic and genotoxic
effects of the industrial wastewater. Nevertheless, all effluent wastewater from the WWTPs
has been characterized by the bioassays as having potentially high ecotoxicity, indicating
that their discharge into the environmental water body would potentially cause harm to
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aquatic organisms. This study provides theoretical support and scientific basis for the
environmental risk assessment of industrial wastewater and the progress of wastewater
treatment technology. It is envisaged as a guide for the application and development of
future industrial wastewater risk assessment standards.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11080702/s1, Text S1: Health risk assessment through two
exposure routes; Table S1: VF, RfD and CSF values of polycyclic aromatic hydrocarbons; Table S2:
Basic physical and chemical indicators of chemical parks; Table S3: Cytotoxicity of water extracts
from the chemical parks to S. typhimurium; Table S4: Induction rate of the water extracts from the
chemical industry parks on S. typhimurium; Table S5: Health risk index of non-carcinogenic effects
of pollutants via different exposure routes according to the risk characterization model; Table S6:
Health risk index of carcinogenic effects of pollutants via different exposure routes according to the
risk characterization model [45].
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Abstract: In order to illustrate pollution characterization, source apportionment, and risk assessment
of VOCs in Beijing, Baoding, and Shanghai, field observations of CO, NO, NO2, O3, and volatile
organic compounds (VOCs) were conducted in 2019. Concentrations of VOCs were the highest in
Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb).
Concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the three seasons
tested, followed by summer (98.1 + 50.8 ppb) and autumn (75.5 + 33.4 ppb). Alkenes were the
most reactive VOC species in all cities, accounting for 56.0%, 53.7%, and 39.4% of ozone formation
potential in Beijing, Baoding, and Shanghai, respectively. Alkenes and aromatics were the reactive
species, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. Vehicular exhaust
was the principal source in all three cities, accounting for 27.0%, 30.4%, and 23.3% of VOCs in Beijing,
Baoding, and Shanghai, respectively. Industrial manufacturing was the second largest source in
Baoding (23.6%) and Shanghai (21.3%), and solvent utilization was the second largest source in
Beijing (25.1%). The empirical kinetic modeling approach showed that O3 formation was limited
by both VOCs and nitric oxides at Fangshan (the suburban site) and by VOCs at Xuhui (the urban
site). Acrolein was the only substance with an average hazard quotient greater than 1, indicating
significant non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10−4 and
posed a definite carcinogenic risk.

Keywords: VOCs; ozone; PSCF; source apportionment; EKMA; risk assessment

1. Introduction

In September 2013, the Chinese government implemented the Action Plan on Air Pol-
lution Prevention and Control, resulting in significant reductions in ambient concentrations
of CO, SO2, NO2, and fine particulate levels nationwide [1–3]. However, O3 pollution has
not decreased and appears to be worsening in China. The O3 concentration showed an
increasing trend of 1–3 ppbv/y from 2013 to 2017 in eastern China [4]. Volatile organic
compounds (VOCs) and nitrogen oxides (NOx) are the main precursors of O3. The relation-
ship between O3 and its precursors is highly nonlinear due to the complex photochemical
reactions that occur in the atmosphere [5–7]. Conditions for forming ground-level O3 can
be divided into VOC-limited, NOx-limited, and both VOC- and NOx-limited [8]. In most
developed areas of China, including the Yangtze River Delta, Jing-Jin-Ji, and Pearl River
Delta regions, O3 formation is reported to be VOC-limited [9–11]. Thus, controlling VOC
emissions is critical for reducing O3 pollution in China.

High concentrations of VOCs have adverse effects on public health by affecting the
respiratory and cardiovascular systems [12–16]. Previous studies showed that cancer

Toxics 2023, 11, 651. https://doi.org/10.3390/toxics11080651 https://www.mdpi.com/journal/toxics82



Toxics 2023, 11, 651

risk is greater in high-VOC-exposure areas than in clean areas [17,18]. Hazardous VOCs,
including non-carcinogens and carcinogens, account for 20–40% of all non-methane VOCs
in China [19]. Many VOC species, including benzene and 1,3-Butadiene, are classified as
hazardous air pollutants by the United States Environmental Protection Agency (USEPA)
and other international agencies [20–23].

The Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) regions are two
of the largest urban agglomerations in China. Numerous studies of VOCs have been
performed in BTH and YRD. Several studies have examined the general characteristics of
VOCs and discussed their spatiotemporal variations [24–28]. Other studies have focused
on the relative reactivity and ozone formation potential (OFP) of VOCs [29–32]. Several
studies have aimed to reveal the health effects of VOCs [33–38]. Additionally, the emission
inventory [39], regional transport [36,40–42], and source apportionment [26,43–46] of VOCs
have been discussed.

Beijing, the capital of China, and Baoding, one of the most air-polluted cities, are both
located in the BTH region. Shanghai is one of the most economically developed cities in
the YRD and has relatively concentrated energy consumption and pollutant emissions.
Most previous studies have been limited to a small number of sampling locations or a
short sampling period. In this study, field observations of CO, NO, NO2, O3, and VOCs
were conducted in these three megacities. The main objectives of this study were to:
(1) characterize the concentrations and spatiotemporal variations of VOCs; (2) discuss the
regional transport and source apportionment of VOCs; (3) determine the roles of VOCs
in ground-level O3 formation; (4) estimate the carcinogenic and non-carcinogenic risks of
VOCs; and (5) identify the key hazardous VOCs in the three cities.

2. Methodology

2.1. Sampling Site and Period

Ten sites in the three cities were selected for this study, among which four were in
Beijing, three were in Baoding, and three were in Shanghai (Figure 1). The sampling sites
in each city included a background site, an urban site, and a suburban site. A continuous 2-
week period in each of the four seasons was selected. However, due to the COVID-19 crisis,
sampling in the spring was terminated. Thus, the sampling periods were 15–28 August in
the summer, 13–26 October in the autumn, and 18–31 December in the winter of 2019.

Figure 1. Sites sampled in this study. MY, FP, and JD are background sites. CY, JX, and XH are urban
sites. FS, DX, QY, and SJ are suburban sites.
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2.2. Sampling and Analysis

CO, NO, NO2, and O3 were observed using a sensor-based air monitoring instrument
developed by the Chinese Research Academy of Environmental Sciences. This instrument
passed an intercomparison assessment with an instrument produced by TSI Corporations.
The correlation coefficient was 0.92, and the two instruments’ relative error was 8%. VOCs
were sampled at 16:00 at each site using a 3.2-L Summa canister (Entech Instruments Inc.,
Simi Valley, CA, USA). In total, 99 VOCs were observed, including 29 alkanes, 13 alkenes,
1 alkyne (acetylene), 16 aromatics, 32 haloalkanes, and 8 oxygenated VOCs (OVOCs).
VOC samples were analyzed using the Agilent 5973N gas chromatography–mass selective
detector flame ionization detector (Agilent Technologies, Santa Clara, CA, USA). A liquid
nitrogen primary cryogenic trap with glass beads at −160 ◦C was used to trap VOCs. Then,
the trap was heated to 10 ◦C, and target compounds were transferred to a secondary trap
at −50 ◦C. Next, the VOCs were transferred using helium to a third trap at −170 ◦C. A
DB-1 capillary column (60 m × 0.32 mm × 1.0 μm, Agilent Inc.) was used with helium as
the carrier gas. Rigorous quality assurance and quality control procedures were employed.
Periodic calibration was performed every 5 d. Calibration curve results for a given target
species with less than 10% variation relative to the actual values were considered acceptable.
Meteorological data were obtained from the China Meteorological Station Data Sharing
Service System (http://cdc.cma.gov.cn/home.do, accessed on 5 January 2021).

2.3. Determination of the Ozone Formation Potential

The OFP can be used to characterize the maximum amount of O3 production possible
from a given VOC species alone under optimal conditions. The key compounds responsible
for O3 formation can be determined from the respective OFPs [38]. The OFPs are calculated
based on the maximum incremental reactivity (MIR) of each individual species and given
by the following equation:

OFPi = VOCsi × MIRi (1)

where OFPi is the OFP of VOC species i, VOCsi is the concentration of VOC species i,
and MIRi is the O3 formation coefficient for VOC species i at the maximum incremental
reactivity of O3 [47].

2.4. Positive Matrix Factorization Receptor Model

The sources of PM2.5 were analyzed using the positive matrix factorization (PMF)
receptor model. First, the error associated with the chemical component weights of the
receptor was determined. Then, the main sources of contamination and their contribution
ratios were determined using the least squares method. PMF is a type of multivariate
factor analysis in which a mathematical method decomposes matrix X containing sample
data for a given species into two matrices: factor contributions (G) and factor spectra
(F). This method does not require the input of a source spectrum and ensures that the
decomposition factor contribution (G) and factor spectrum (F) are non-negative [48]. The
following formula represents the matrix X:

xij = ∑p
k=1 gik fkj + eij (2)

where xij is the concentration of species j in sample i, p is the number of factors, gik is the
contribution of factor k to sample i, fkj is the contribution of factor k to species j, and eij is
the error of species j in sample i.

The uncertainty of a sample was calculated from the error fraction and the method
detection limit (MDL). If the concentration was unknown, it was set to 1/2 of the geometric
mean value. If the concentration was below the MDL, it was set to 1/2 of the MDL, and the
uncertainty was set to 5/6 of the MDL. If the concentration was higher than the MDL, the
uncertainty calculation was based on the error fraction as follows:

Unc =
√
(Error Fraction × concentration)2 + (0.5 × MDL)2 (3)
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The PMF analysis depends on the objective function (Q) to minimize the residual and
uncertainty, as shown in Equation (4). The calculation of Qexp is shown in Equation (5).

Q = ∑n
i=1 ∑m

j=1

[
xij − ∑

p
k=1 gik × fkj

uij

]2

(4)

Qexp = n × m − p × (n + m) (5)

where n and m are the numbers of species and samples, respectively, and uij is the uncer-
tainty of the jth species in the ith sample.

Several aspects were considered to define a reasonable result (Liu et al., 2021) [22]:
(1) the value of Q/Qexp from PMF should be close to one; (2) the change rate of Q/Qexp
should be stable; and (3) the explored factors should be physically plausible and inter-
pretable. Ultimately, a five-factor solution was determined in this study. The Q/Qexp values
were 1.3, 1.4, and 1.4 for Beijing, Baoding, and Shanghai, respectively.

2.5. Potential Source Contribution Function

The potential source contribution function (PSCF) was employed in this study using
the software Meteoinfo (3.6.3) to identify the local and long-range transport pathways of
VOCs. The PSCF is a backward-trajectory-based method that combines pollutant concen-
trations, reflecting the potential for this area to become a source of VOC pollution [49]. The
PSCF is a position function defined by unit indexes i and j:

PSCFij =
mij

nij
Wij (6)

where nij is the number of trajectory endpoints that fall within the ijth grid cell, mij is the
number of endpoints corresponding to trajectories that exceed the threshold criterion at the
receptor site [50], and ij is the grid cell. The arbitrary weighting function Wij was applied
to reduce the uncertainty caused by small values of nij:

Wij =

⎧⎨
⎩

0.70 3nave > nij ≥ 1.5nave
0.42 1.5nave > nij ≥ nave

0.05 nave > nij

(7)

where nave is the average value of the endpoints of the trajectory through all the grids.
In this study, the nave was 1.33, 1.31, and 1.19 for Fangshan, Jiading, and Jingxiu sites,
respectively. In this study, the 24-h backward trajectory was calculated at 1-h intervals
according to Beijing local time (UTC + 8). The arrival height was set to 100 m above the
ground. Meteorological data were obtained from the National Oceanic and Atmospheric
Administration (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas0p5/, accessed on 6 Jan-
uary 2021) with a grid resolution of 0.25◦ × 0.25◦. The threshold value was the average
VOC concentration during the observation (Beijing 105.4 ppb, Baoding 97.1 ppb, Shanghai
91.1 ppb). The total number of trajectories was 1008 at each site.

2.6. Observation-Based Model

The observation-based model (OBM) was used in this study in combination with the
Master Chemical Mechanism (v3.3.1; http://mcm.leeds.ac.uk/MCM/, accessed on 10 Jan-
uary 2021), a near-explicit mechanism describing the oxidation reactions of 146 primary
VOCs and the latest inorganic chemistry data from the International Union of Pure and
Applied Chemistry evaluation [51]. The OBM has been widely used to identify photo-
chemical reactivity and photochemical products in various environments [52]. Hourly
concentrations of the observed VOCs and four trace gases (CO, NO, NO2, and SO2) and
hourly meteorological parameters (temperature and relative humidity) were used as input
data. The instantaneous concentration of VOCs was converted to hourly concentrations
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according to the linear regressions with CO, following the method by Yang et al. [53]. The
OBM assesses the sensitivity of O3 photochemical production by calculating the relative
incremental reactivity and altering the concentrations of its precursors without requiring
detailed or accurate knowledge about these emissions [54]:

RIR(X) =

[
PO3(X)− PO3(X −�X)

]
/PO3(X)

�S(X)/S(X)
(8)

where X is a precursor of O3, ΔX is the change in the concentration of X, P(O3) represents the
net O3 production rate, S(X) is the measured concentration of precursor X, and ΔS(X)/S(X)
represents the relative change in S(X), which was 20% in this study.

2.7. Human Health Risk Assessment

The USEPA proposed a method that uses the ambient mass concentration of air
pollutants as an exposure evaluation parameter. The health risk of VOCs is divided into
non-carcinogenic and carcinogenic risks, which are represented by the hazard quotient
(HQ) and the lifetime carcinogenic risk (R), respectively [55]. An HQ less than 1 indicates
no significant non-carcinogenic risk for adults, and an R-value less than 1 × 10−6 suggests
an acceptable carcinogenic risk [38]. The specific calculation is shown in the Supplemental
Material File.

3. Results and Discussion

3.1. Chemical Characteristics of Volatile Organic Compounds

The concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the
three seasons assessed, followed by summer (98.1 ± 50.8 ppb) and autumn (75.5 ± 33.4 ppb),
as shown in Figure 2. However, total VOCs were similar in the winter. In Baoding, VOC
concentrations in the winter were significantly higher than those in the summer and
autumn. VOC concentrations in the winter were 1.9 times those in the summer in Baoding.
Baoding is a city of heavy industry, and the increase in industrial and heating emissions in
the winter has led to an increase in VOC concentrations. VOC concentrations in the winter
were close to those in the summer in Beijing and Shanghai. High temperatures and high
solar radiation lead to higher solvent volatilization and plant-related VOC emissions in the
summer. VOC concentrations in the autumn were the lowest of the three seasons.

Figure 2. Concentrations and chemical characteristics of VOCs in different seasons during the
observation period.
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Alkanes were the dominant VOC species in all seasons, especially winter, exceeding
40% of the total (see Figure 3). The concentrations of haloalkanes were the second highest,
and their proportion among the other VOCs decreased in the winter. The concentrations
of alkenes were highest in the summer, and those of OVOCs and aromatics were highest
in the autumn. The concentration of alkenes was higher in Beijing, and that of OVOCs
was higher in Shanghai. The aromatic concentrations were at similar proportions in all
three cities. VOC concentrations were highest in Beijing (105.4 ± 52.1 ppb), followed
by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). The VOC concentrations
in Beijing were 1.09 and 1.16 times those in Baoding and Shanghai, respectively. There
were few differences in VOC concentrations throughout the year among the three cities.
The differences in VOCs among cities were related to air pollutant emissions, sampling
locations, and meteorological conditions.

  

 

Figure 3. Chemical characteristics of VOCs observed in the three cities.

Table 1 provides a comparison of the monitoring results from this study with previous
observations of VOC species. The ethane, ethylene, propane, and acetylene concentrations
in Shanghai were higher than those in previous reports. The concentrations of toluene
and benzene in Shanghai were lower, and those of ethane and propane in Beijing were
higher than those in previous studies. The ethylene, acetylene, and toluene concentrations
in Beijing are similar to previously reported levels. The concentrations of VOC species in
Baoding were higher than those in previous studies. Although the COVID-19 pandemic
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lockdown had a certain influence on industrial production in China, the concentration of
VOC species did not show an obvious decreasing trend.

Table 1. Comparison of the monitoring results for VOC species between the present study and
previous reports.

Reference Sampling Period
Sampling
Site

Site
Category

Monitoring
Method Ethane Ethylene Propane Acetylene Toluene Benzene

Dai et al. (2010) [33] 2007–2010 Shanghai Urban Manual — — 4.81 — 4.70 1.81
Zheng et al. (2019) [56] Autumn 2016 Shanghai Urban Online 2.22 1.52 3.59 1.17 5.04 0.70
Zheng et al. (2019) [56] Autumn 2016 Shanghai Suburban Online 3.01 0.99 4.22 0.03 0.96 0.44
Zhang et al. (2020) [7] 7 April to 25 September 2018 Shanghai Suburban Online 1.26 1.56 2.93 0.73 1.87 —
This study Summer to Winter 2019 Shanghai Urban Manual 5.98 2.60 6.87 2.89 2.28 0.93
Zhang et al. (2020) [7] Autumn 2016 Beijing Urban Online 3.42 2.13 2.85 0.68 2.00 4.74
Zhang et al. (2020) [7] Winter 2016 Beijing Urban Online 4.60 2.43 6.70 0.26 1.82 6.04
Zhang et al. (2020) [7] Spring 2017 Beijing Urban Online 1.93 0.59 2.33 0.51 1.17 5.41
Zhang et al. (2020) [7] Summer 2017 Beijing Urban Online 2.33 0.57 2.65 0.90 1.34 6.99
Shi et al. (2020) [39] December 2016 to January 2017 Beijing Urban Online — 12.07 — 8.98 3.63 3.27
This study Summer to Winter 2019 Beijing Urban Manual 7.37 2.59 7.21 2.27 1.81 1.14
Wang et al. (2021) [28] May to September 2019 Baoding Urban Online 3.98 1.51 2.19 0.37 0.58 0.31
This study Summer to Winter 2019 Baoding Urban Manual 5.01 2.16 5.85 2.27 2.61 1.94

3.2. The Ozone Formation Potential of Volatile Organic Compounds

The OFP values of VOC species at the sampling sites were calculated (see Figure 4).
Both VOCs and VOC OFP were at their maximum in Beijing. The concentrations of VOCs
in Baoding and Shanghai were similar, but the OFP values were significantly lower in
Shanghai than in Baoding. Alkenes were the most reactive species of VOCs in all cities,
accounting for 56.0%, 53.7%, and 39.4% of the OFP in Beijing, Baoding, and Shanghai,
respectively. Aromatics were the second most reactive species of VOCs, accounting for
20.7%, 21.0%, and 28.3% of the OFP in Beijing, Baoding, and Shanghai, respectively.

Figure 4. OFPs of VOC species at all sampling sites.

Notably, the OFP values of VOCs at Fangshan, a suburban site near a petrochemical
plant, were the highest in Beijing. The OFP of VOCs at the urban Jingxiu site were the
highest in Baoding. The OFPs of VOCs at Jiading, a background site, were the highest
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among sites in Shanghai. The top 10 VOC species with regard to OFP were identified and
are shown in Table 2. The most reactive species were alkenes and aromatics, particularly
ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. The emission sources of these
species should be strictly controlled.

Table 2. Top 10 VOC species with the highest OFP values in the three cities.

Cities VOCs OFP

Beijing

Ethene 32.6
Trans-2-butene 29.5

1-Butene 18.8
Propene 18.4

Cis-2-butene 17.4
1,3,5-Trimethylbenzene 13.3

1-Pentene 13.1
Isoprene 12.2
1-Hexene 10.2

m/p-xylene 9.7

Baoding

Ethene 26.5
Cis-2-pentene 16.4
1,3-Butadiene 16.1

Propene 15.1
Trans-2-butene 14.0

1-Pentene 11.6
Toluene 11.3

m/p-xylene 9.1
1,3,5-Trimethylbenzene 8.6

1-Butene 7.8

Shanghai

Ethene 24.6
m/p-xylene 12.7

Propene 12.4
Toluene 9.9

Cis-2-pentene 8.0
1-Pentene 7.5
Acrolein 7.1

1,2,3-Trimethylbenzene 6.9
1-Hexene 6.4
O-xylene 5.9

3.3. Potential Source Areas of Volatile Organic Compounds

The Fangshan, Jingxiu, and Jiading sites were selected for source area analysis due to
their high VOC concentrations and OFP values. The potential source areas of VOCs for
the three cities were simulated, as shown in Figure 5. Three main potential source areas
of VOCs for Fangshan were identified: the southeast region along the border of Beijing,
Tianjin, and Hebei; the southwest region along the Taihang Mountains; and the western
region. Two main potential source areas of VOCs were identified for Jingxiu: the northeast
region near Beijing and the southeast region in Hebei. The potential source areas of VOCs
for Jiading were located around the site and at sea. VOCs can be transported to and from
the sea via airflow and ship emissions.

3.4. Source Apportionment of Volatile Organic Compounds

We did not analyze species with a concentration below the MDL more than 50% of the
time or with a significantly low signal-to-noise ratio [2,12]. After screening, 53 compounds
in Beijing and Baoding and 47 compounds in Shanghai were selected. Five sources (vehicu-
lar exhaust, industrial manufacturing, solvent utilization, fuel combustion, and biogenic
VOCs) were identified using the PMF model. Modeled source profiles and the relative
contributions of individual sources to each species analyzed are shown in Figure 6.
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Figure 5. Potential source areas of VOCs for the Fangshan, Jingxiu, and Jiading sites, the five-pointed
star referred to the sampling sites.

In the source profiles for Beijing, the first source was characterized by significant
amounts of methyl cyclopentane, n-undecane toluene, and 2-butanone, which are repre-
sentative of industrial manufacturing [57]. The second source was characterized by high
concentrations of carbon tetrachloride, tetrachloroethylene, and acetone, which are widely
used as solvents [58]. The third source was associated with high concentrations of acetylene
and alkane, such as isopentane, n-octane, and n-dodecane, which are major species in
vehicular emissions [59]. The fourth source profile was rich in 1-butene, propane, and
2-methylhexane, tracers of fuel combustion [60]. The fifth source represented 97% of the
total isoprene, considered the most important biogenic hydrocarbon [61].

In the source profiles for Baoding, the first source was characterized by a high concen-
tration of isoprene(biogenic). The second source was characterized by significant amounts
of 3-methylpentane, trans-2-butene, and 1-butene, which are representative of fuel combus-
tion. The third source was associated with high concentrations of 1,2,4-trichlorobenzene
and acetone, widely used as solvents. The fourth source profile was rich in benzene, toluene,
n-undecane, and n-nonane, major species emitted from industrial manufacturing. The
fifth source was characterized by high concentrations of acetylene, propane, and propene,
tracers of vehicular exhaust.

In the source profiles for Shanghai, the first source was characterized by significant
amounts of acetone, n-propyl benzene, and tetrachloroethylene, which are widely used as
solvents. The second source profile was rich in dichloromethane, trichloromethane, toluene,
and n-dodecane, major species emitted from industrial manufacturing. The third source
represented 92% of the total isoprene, considered the most important biogenic hydrocarbon.
The fourth source was characterized by high concentrations of 1-butene and 1-hexene,
which are representative of fuel combustion. The fifth source was associated with high
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concentrations of methyl tertiary butyl ether, ethene, and ethane, major species emitted in
vehicular exhaust.

 

 

Figure 6. Five source profiles (bars) and contribution percentages (dots) representing each source
factor were resolved using the PMF model.
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Figure 7 illustrates the percentage source contributions during the sampling period in
the three cities. Vehicular exhaust was the largest contributor in all three cities, accounting
for 27.0%, 30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Indus-
trial manufacturing was the second largest contributor in Baoding (23.6%) and Shanghai
(21.3%), and solvent utilization was the second largest contributor in Beijing (25.1%). Fuel
combustion was the third largest contributor in Beijing (23.2%) and Shanghai (20.7%), and
solvent utilization was the third largest contributor in Baoding (20.0%). Biogenic sources
of VOCs were also important, accounting for 11.5%, 11.9%, and 18.1% of VOCs in Beijing,
Baoding, and Shanghai, respectively.

  

 

Figure 7. Source apportionment results for VOCs in the three cities.

3.5. Empirical Kinetic Modeling Approach

Meteorological data for the Fangshan and Xuhui sites were obtained from the China
Meteorological Station Data Sharing Service System. Thus, the empirical kinetic modeling
approach (EKMA) curves for those two sites in the summer period were simulated using
the OBM model, as shown in Figure 8. During the sampling period in summer, the average
temperature and relative humidity were 30.4 ◦C and 60% in Fangshan and 31.5 ◦C and
71% in Xuhui. The EKMA plot was split into two areas by a ridgeline denoting the local
maxima in the rate of O3 formation. The upper–left and lower–right areas represent O3
formation under VOC-limited and NOx-limited conditions, respectively. The base scenario
point for the Fangshan site is located near the ridgeline, indicating a VOCs- and NOx-
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limited condition. The base scenario point for the Xuhui site is located in the upper-left
area, indicating VOCs limitation. Fangshan is a suburban site, and Xuhui is an urban
site. Previous studies have reported that urban and suburban areas in China were under
VOC-limited and both VOC- and NOx-limited conditions [8,62], respectively.

(a) Fangshan in Beijing 

(b) Xuhui in Shanghai 

Figure 8. EKMA graphs for suburban Beijing and urban Shanghai. The black dot represents the
base scenario, and the gray line represents the ridgeline of the EKMA curve. The AHC represents
anthropogenic VOCs. The MDA 1 h O3 represents the daily maximum 1 h average O3 concentration.

3.6. Health Risk Assessment of Volatile Organic Compounds

Forty-four species were targeted for health risk assessment, and their non-carcinogenic
and carcinogenic risks are presented in Figure 9. The USEPA states that pollutants with
an HQ of less than 1 pose no significant non-carcinogenic risk to adults. In this study, the
average HQ values of the selected VOC species ranged from 5.3 × 10−6 to 16.9 × 10−6 in
Beijing, 4.8 × 10−6 to 8.9 × 10−6 in Baoding, and 8.8 × 10−6 to 18.3 × 10−6 in Shanghai.
Acrolein was the only substance with an average HQ value greater than 1, indicating
significant non-carcinogenic risk. VOC species with carcinogenic risks of >10−4, 10−5 to
10−4, 10−5 to 10−6, and <10−6 are classified as definite, probable, possible, and negligible
risks, respectively [63]. In this study, the average R-value for the selected VOC species
ranged from 4.7 × 10−9 to 1.1 × 10−4 in Beijing, from 6.7 × 10−9 to 6.2 × 10−5 in Baoding,
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and from 3.9 × 10−9 to 7.9 × 10−5 in Shanghai. In Beijing, 1,2-dibromoethane had an
R-value of 1.1 × 10−4, posing a definite carcinogenic risk. Five, seven, and six VOC
species posed probable carcinogenic risks in Beijing, Baoding, and Shanghai, respectively.
Six, four, and six VOC species posed possible carcinogenic risks in Beijing, Baoding, and
Shanghai, respectively. Among these species, hexachloro-1,3-butadiene, trichloromethane,
1,2-dichloroethane, and carbon tetrachloride posed high carcinogenic risks in all three cities.

 
(a) HQ values of VOC species 

 
(b) R values of VOC species 

Figure 9. Non-carcinogenic and carcinogenic risks of VOC species in the three cities.
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4. Conclusions

In this study, field observations of CO, NO, NO2, O3, and VOCs were conducted in
three megacities in China: Beijing, Baoding, and Shanghai. VOC concentrations were
highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai
(91.1 ± 41.3 ppb). VOC concentrations were highest in winter (120.3 ± 61.5 ppb) among the
three seasons assessed, followed by summer (98.1 ± 50.8 ppb) and autumn (75.5 ± 33.4 ppb).
Alkanes were the dominant species in all three cities, with concentrations exceeding 40%.

Alkenes were the most reactive VOC species in all three cities, accounting for 56.0%,
53.7%, and 39.4% of the OFP in Beijing, Baoding, and Shanghai, respectively. Aromatics were
the second most reactive VOC species in all cities, accounting for 20.7%, 21.0%, and 28.3% of
the OFP in Beijing, Baoding, and Shanghai, respectively. Most reactive species were alkenes
and aromatics, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene.

Vehicular exhaust was the largest VOC source in all three cities, accounting for 27.0%,
30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Industrial
manufacturing was the second largest contributor in Baoding (23.6%) and Shanghai (21.3%),
and solvent utilization was the second largest contributor in Beijing (25.1%). Biogenic VOCs
were also important, accounting for 11.5%, 11.9%, and 18.1% of VOCs in Beijing, Baoding,
and Shanghai, respectively.

The EKMA approach indicated that O3 formation at the Fangshan site was limited
by both VOCs and NOx, while that at the Xuhui site was limited by VOCs. Acrolein
was the only substance with an average HQ value greater than 1, indicating a significant
non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10−4, posing a
definite carcinogenic risk. Hexachloro-1,3-butadiene, trichloromethane, 1,2-dichloroethane,
and carbon tetrachloride posed high carcinogenic risks in all three cities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11080651/s1, Table S1: RfC and IUR values of selected VOC
species in this study [64].
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Abstract: In this study, the spatial distribution characteristics of nine alkylphenols (APs) in the
Yongding River and Beiyun River were analyzed. The differences in the concentrations and spatial
distribution patterns of nine APs were systematically evaluated using principal component analysis
(PCA). The relationships between the concentration distribution patterns and the risks associated with
nine APs were investigated under various categories of land use conditions in the region. The results
demonstrated that the APs were widely present in both rivers, and the pollution risks associated
with the APs were more severe in the Yongding River than in the Beiyun River. The results show that
the contamination risks associated with 4-NP were the most serious in the two rivers, with detection
percentages of 100% and 96.3%, respectively. In the Yongding River, the APs showed a tendency
of low concentration levels in the upper reaches and high levels in the middle and lower regions.
Meanwhile, the overall concentration levels of the APs in the Beiyun River were relatively high.
However, despite the differences between the upper and middle regions of the Yongding River, the
distribution pattern of the APs in the Beiyun River was basically stable. The concentration levels
and risk quotient of the APs were negatively correlated with the vegetation cover land use type and
positively correlated with the cropland and unused land use types within 500 m, 1 km, and 2 km.
The purpose of this study was to provide theoretical data support and a basis for AP pollution risk
evaluations in the Yongding River and Beiyun River.

Keywords: emerging contaminants; endocrine disrupting chemicals; alkylphenols; distribution
characteristics; ecological risks; types of land use

1. Introduction

The rivers of the world provide important ecosystems for many forms of life, as well
as valuable goods and services to humanity [1]. Regional land use analysis is the main
source of information for assessing the extent to which social, economic, and environmental
factors influence urbanization processes and spatial structures [2]. Changes in land usage
and land coverage will impact the structures and functions of ecosystems and are important
driving factors of the changes in ecosystem services. The research regarding such change
processes plays a decisive role in maintaining ecosystem services [3,4]. Urbanization levels
have been unceasingly increased with the rapid development of social economies, resulting
in surges in population. The emissions of industrial wastewater and sewage into nearby
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water resources have been steadily increasing. Unfortunately, environmental infrastruc-
ture construction has lagged, resulting in large amounts of untreated wastewater entering
rivers. River water pollution has become a serious threat to the stability of water ecological
systems [5,6]. One of the most important rivers in China is the Yongding River, also known
as the “mother river”. The Beijing-Tianjin-Hebei Region is an important headwater area
containing many ecological barriers and corridors [7–9]. However, the healthy develop-
ment of the economy and society of the Beijing-Tianjin-Hebei Region has been severely
restricted by such outstanding problems as damage to the ecosystem, excessive water re-
source development, and the environmental bearing capacity [10]. The Beiyun River is the
largest river system in the Beijing Plain Basin. The Beiyun River is mainly replenished by
unconventional water sources, such as effluent from the municipal sewage treatment plant.
The sewage discharge volume of the entire river basin is approximately 3 million m3/d,
making it the most seriously polluted river among the five major river systems in Beijing,
with high risk of pathogenic microorganisms [11]. Therefore, it is of major significance to
strengthen the management and governance of the rivers to improve water quality and
fully enhance the utilization rates of the water resources. Such improvements will have
beneficial impacts on the ecosystems and the maintenance of ecological stability, as well as
protecting the health of the population and increasing life satisfaction.

Alkylphenols (APs) are typical endocrine-disrupting chemicals (EDCs). APs are exten-
sively used as feedstock for alkylphenol polyoxyethylene ethers (APEOs). They are used
in the production of phenolic resins, heat stabilizers, antioxidants, and hardeners [12–14].
APs in a water environment are mainly produced by the biodegradation of long-chain
ethoxylates. Those ethoxylates can be removed by conventional wastewater treatment
technologies [15,16], but APs may be more persistent, lipophilic, and toxic than their pre-
cursors [14]. They tend to be present in higher concentrations in the environment compared
with other EDCs [17,18]. APs have been continuously detected in river water and sediment,
usually at the concentration levels of ng/L or ng/g. The results of the study conducted by
Lei et al. [19] confirmed that nonylphenol (NP), octylphenol (OP), and bisphenol A (BPA)
could be detected in 100% of the urban rivers in Beijing, Tianjin, and Hebei, with concentra-
tion levels between 23 and 255 ng/L. Cheng et al. [20] showed that the concentrations of
NP, OP, and BPA in the Yongjiang River Basin were 140–3948, 6–828, and 15–1415 ng/L,
respectively. Li et al. [21] determined that the concentrations of three phenolics (NP, OP,
and BPA) in the Pearl River sediment varied from 204.4 to 12,604.3, 32.6 to 297.3, and 12.8
to 298.4 ng/g, respectively. In the river sediment of the Duliujian River, the concentration
levels of those same substances ranged from 153.5 to 3614.9 ng/g, 90.7 to 990.0 ng/g,
and 83.5 to 913.3 ng/g, respectively. Although the above-mentioned concentration levels
of APs will not cause serious acute toxicity to aquatic organisms, they will potentially
damage their endocrine systems, which has become especially evident in fish sampled
from the region [21,22] APs can enter the body in many ways, including through diet and
respiration, and they can cause diseases in the human reproductive, cardiovascular, and
immune systems [23].

However, the previous research in the Yongding River and Beiyun River has focused
on the degrees of heavy metal pollution in the water bodies and the sediment of the
rivers [24]. In addition, the water ecological carrying capacities, river restorations, and
evaluations [8]; persistent organic pollutants and microplastics [9]; distributions of plank-
ton and microorganisms [11]; and the monitoring of water quality indicators have all
been major concerns. To effectively protect the environment and human health, it is also
important to determine the pollution levels and characteristics of the distribution patterns
of APs in the water environment of the Yongding River and Beiyun River. In this study,
35 water samples were obtained from the Yongding River and Beiyun River (Beijing sec-
tion). The concentration characteristics of the APs in the river water were analyzed, and the
relationships between the concentration distribution pattern and risk potential of the APs
and the various land use types in the region were investigated. The aim was to provide a
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scientific foundation for the study and management of pollution and improve the water
quality, as well as protecting aquatic life in the Yongding River and Beiyun River.

2. Materials and Methods

2.1. Chemicals and Reagents

The basic chemical information data are detailed in Table S1. The 4-EP, 2-PPP, 4-t-BP,
2-n-BP, 4-PTP, 4-HXP, 4-HTP, 4-OP, 4-NP, BPA, 4-t-OP, 4-n-NP, and the internal standards
(4-EP-d4, 4-t-OP-13C6, and 4-n-NP-d4) were obtained from TRC (Toronto, ON, Canada).
The HPLC-grade methanol (MeOH), acetonitrile (ACN), and ethyl acetate (ACETATE)
were acquired from Fisher Scientific (USA). The hydroxide (NH4OH, 14 M) used in this
study was supplied by Sigma Aldrich (USA). The ultra-pure water (>18.2 MΩ/cm) was
obtained using the Milli-Q Advantage Purification System (Millipore, USA). Stock solutions
of each compound and the internal standards were taken at a concentration of 1000 mg/L
in MeOH and stored in amber brown bottles at −18 ◦C under dark conditions before use.
The working standard solutions (10 mg/L) were obtained by serial dilution prepared from
the stock solution and renewed monthly to eliminate destabilizing effects. In addition,
calibration standards with gradient concentrations (0, 5, 10, 50, and 100 μg/L) of analytes
and 50 μg/L internal standard solutions were also prepared.

2.2. Sample Collection and Preparation

The study targets were the Yongding River and the Beiyun River (Figure 1). Thirty-
five samples (27 from the Yongding River and 8 from the Beiyun River) were collected
in January of 2022. Pretreatment of the collected samples was performed according to
previous methods [21,25,26].

Figure 1. Sampling locations in the Yongding River and the Beiyun River.

2.3. Sample Analysis

Ultra-Performance Liquid Chromatography (UPLC) separation was performed using
a Waters ACQUITY UPLC device (Waters, USA). The instrumental conditions were as
follows. The column temperature was set at 40 ◦C, and the sampling volume was 2 μL. MQ
water with 0.01% NH4OH (Solvent A) and MeOH (Solvent B) were used as the flowing
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phase, with a flow rate of 0.2 mL/min. All of the analytes were identified according to
their retention times and targeted ion pairs as per the standards. The optimized parameters
of the mass spectrometry for the analytes are listed in Table S1. Quantification of these
chemicals was performed using the internal standard method.

2.4. Quality Assurance and Control Measures

It was found that the calibration curves for the selected chemicals showed strong
uniformity over a broad range of levels (R2 > 0.99). As shown in Table S1, the method
detection limit (MDL) and method quantification limit (MQL) for the surface water samples
ranged from 0.05 to 0.15 ng/L and 0.2 to 1.8 ng/L, respectively. The results of the study
showed that the sample recoveries of the target analytical analytes in the two rivers were
from 74% to 88%, 72% to 78%, and 71% to 87% at the water-spiked levels of 10, 50, and
100 ng/L, respectively. The instrumental quantification limit (IQL) was 10 times that of the
signal-to-noise (S/N) ratios, and the MDL and MQL were 3 and 10 times that of the S/N
ratios, respectively.

2.5. Principal Component and Difference Analyses

The relationships between the distribution characteristics of the APs in the two rivers
were explored in this study. Reductions were made to the data dimensions since correlations
may have existed between multiple variables, which increased the difficulty and complexity
of the analysis process. This resulted in moderate reductions in the number of indicators
to be analyzed. The possibility of loss of information included in the original metrics
was minimized to achieve a well-rounded analysis of the gathered data [27]. Principal
component analysis (PCA) was used to map the N-dimensional characteristics to k (2–3)
dimensions. The obtained feature represented a new orthogonal feature, also called the
principal component, which was a reconstruction of the k-dimensional characteristics
anchored on the original N-dimensional characteristics [27]. In this study, PCA was used
to fit the corresponding functional relationships between the content of nine AP species
and the main ranking axis. The results showed the spatial allocation characteristics of the
APs in the two examined rivers. PCA dimensionality reduction analysis was completed
using Canoco 5 software, and the sample grouping results were verified by ANOVA in
R software.

2.6. Spatial Analysis

The geospatial parameters, such as the spatial distances to the outlets and the topologi-
cal distances between all sites, were obtained using the network analysis tool in ArcGIS soft-
ware version 10.2 [28]. The digital height model data (250 m resolution) obtained from the
Shuttle Radar Topography Mission (SRTM) V4.1 dataset were used to define the watershed
basin boundaries and watercourse features with the hydrology tool in ArcGIS software [29].
The category system in CNLUCC (http://www.resdc.cn/data.aspx?DATAID=264, accessed
on 11 January 2023) was also referenced in this study. The patterns of the land usage were
classified into six first-class types as follows: cropland (paddy fields and dry land areas);
forested land; grassland; water areas (rivers, pools, and reservoirs); impervious areas (resi-
dential, industrial, and mining cover areas); and unutilized land (desert, marshland, and
bare land areas) [28]. Three buffer regions were the focus within a 500 m, 1 km, and 2 km
radius, respectively, for the upstream area of each site. The percentages for the six land use
types were calculated, and they are detailed in Tables S2 and S3. The range used in this
study describes a contiguous continuum of human activity from the local to the regional
scale. The buffering tool in ArcGIS software was utilized to extract the land use parameters
within the aforementioned buffers [28]
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3. Results and Discussion

3.1. Distribution Characteristics of the Concentration Levels of the APs

The detected concentration and frequency values of the APs in the two examined
rivers are summarized in Table 1. As can be seen from the table, 4-HXP was not detected at
all points in the Yongding River. However, the other eight APs were all detected, among
which 4-NP and 4-OP had the highest detection rates at 100% and 88.9%, respectively. The
detection rates of 2-PPP and 4-t-BP were over 70%. It was also found that 2-PPP, 4-t-BP,
and 4-PTP were detected at all the sampling points, but 4-EP, 4-HXP, and 4-HTP were not.
The detection rate of 4-NP was as high as 96.3%, indicating that AP pollution was widely
present in the Yongding River and Beiyun River. The concentration levels of the APs were
at the ng/L level. AP pollution risks in the Yongding River were more serious than those
in the Beiyun River, with the 4-NP pollution found to be the most severe.

Table 1. Concentration and frequency values of the APs detected in the Yongding River and Beiyun
River (ng/L).

APs
Yongding River Beiyun River

MAX MIN MED AVE Detected No. MAX MIN MED AVE Detected No.

4-EP 322.9 ND ND 14.4 6 ND ND ND ND 0
2-PPP 305.4 ND 31.6 57.6 19 125.5 59.0 86.7 86.5 8
4-t-BP 340.6 ND 71.7 88.0 19 271.6 52.4 135.2 151.2 8
4-PTP 5.6 ND ND 0.8 9 21.1 3.2 11.2 10.8 8
4-HXP ND ND ND ND 0 ND ND ND ND 0
4-HTP 1.7 ND ND 0.1 1 ND ND ND ND 0
4-OP 99.9 ND 18.4 22.5 24 24.8 ND ND 3.1 1
4-NP 580.8 31.4 93.7 133.0 27 306.3 ND 63.1 108.0 7
BPA 5.3 ND ND 1.2 11 1.3 ND ND 0.2 1

The detection rates of 4-NP were high in both examined rivers, which was consistent
with the results of earlier studies [19]. This was determined to be due to the presence
of synthesized nonylphenol polyoxyethylene ether (NPEO), the world’s second most
abundantly used non-ionic surface-active agent. NPEO is widely used in the pulp and
paper making, textile manufacturing, agriculture, metal and plastic manufacturing, and
oil refining industries. Products containing NP include detergents, emulsifiers, wetting
and dispersing agents, antistatic and emulsifying agents, and solubilizers, which are used
in a wide range of industrial, institutional, commercial, and domestic applications [30].
NPEO, as an important component of the product, enters water bodies in various ways.
It is easily degraded to NP, with a more stable chemical structure under the combined
actions of various environmental factors. Due to recent rapid urbanization, modernization,
and industrialization, large amounts of NP have entered rivers, lakes, and reservoirs. It is
estimated that approximately 60% of the NP (and its derivatives) produced in the world
has been introduced into water resources [22]. Theoretically speaking, there are more than
100 types of NP structural isomers, of which 4-NP accounts for approximately 90% of them.
Sewage treatment plants are unable to effectively degrade parts of NP using traditional
methods [22]. This study observed that there were many urban residential areas, hospitals,
factories, sewage plants, etc. located along the banks of the Yongding River and Beiyun
River. The high concentration levels and detection rates of NP in the rivers were related to
the large quantities of nondegraded NP in the discharged sewage and wastewater.

3.2. Spatial Distribution of the Concentrations of APs

In this study, the Yongding River was divided into upstream (Points YD1–YD9),
middle stream (Points YD10–YD18), and downstream (Points YD19–YD27) sections. The
concentration distribution patterns of the APs at each sampling point along the Yongding
River and Beiyun River are shown in Figure 2. The concentration distribution of the APs in
the Yongding River generally presented a trend of lower concentrations in the upstream
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region and higher concentrations in the middle and lower regions. The middle section
of the Yongding River was found to have high concentration values of APs, with a total
concentration above 200 ng/L. This was attributed to the middle section passing through
the Mentougou District, Shijingshan District, and Fengtai District, which were characterized
by high population densities and a variety of residential communities, hotels, hospitals,
sewage plants, and so on. The relatively high concentration levels of APs at the middle
section’s sampling points were due to the abundant use of APs in the production and
living activities of those areas. Point YD20 in the downstream section was determined to
be the point with the highest total concentration of APs, possibly due to the location of
the tributary of the Yongding River: the Yongding River Main Canal. At that particular
sampling point, the river passed through many residential areas and received large amounts
of sewage discharge, with very poor water quality and a certain smell detected.

Figure 2. Concentration distribution patterns of the APs at various sampling points in the Yongding
River and Beiyun River. Note: In the figure, the concentration levels of each of the nine APs are
shown in different colors. Column heights of the stacking plots indicate the total concentration of all
APs at those points.

The downstream sampling points revealed that the AP concentrations were lower in
those areas. The majority of the points were located in swamps or wetland parks (such as
Points YD19 and YD21) or in forested parks and green dam areas upstream (such as Century
Park), which were relatively free of pollutants due to water purification and adsorption.
In addition, Point YD24 in the upstream section was in an area where the river flowed
through various golf clubs and country parks, with lower population densities and scenic
environmental conditions, resulting in relatively low concentration levels of APs in the
water samples. However, the downstream section also passed through densely populated
villages with many agricultural activities, leading to increases in the concentration levels
of the APs in those sections. The sampling results also revealed several points along the
Beiyun River where the total concentration of APs was relatively high. This was related
to the Beiyun River’s water distribution in the Beijing Tongzhou District deputy center
downstream plains, which accommodates 90% of the central city drainage task [31]. The
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many tributaries which participate in the Beiyun River’s drainage of rain and sewage may
have also had influencing effects on the sampling results. Since the drainage water mainly
comes from recycled water, the river has both typical and unconventional water sources.
The river sediment becomes silted with the discharge of pollutants, resulting in high levels
of AP pollution [32]. The pollutants in the river sediment are then rereleased into the water
bodies over time.

3.3. Spatial Distribution Differences in the APs

PCA was performed on the distribution of all APs at 27 points along the Yongding
River and 8 points along the Beiyun River in order to have a better comprehension of the
differences in the spatial distribution patterns. The results are shown in Figure 3. The PCA
and regional significance analysis focused on nine sampling sites in the upper reaches of
the Yongding River (Points YD1–YD9); the middle section of the Yongding River (Points
YD10–YD18); the lower reaches of the Yongding River (Points YD19–YD27); and the Beiyun
River, and significant differences were observed (ANOVA, R = 0.186, p = 0.005 < 0.05).
The sampling sites of the Yongding River were roughly divided into three sections: upper,
middle, and lower sections. The upper reaches of the sampling points were basically
assessed together, as were the downstream sampling points. It was confirmed that the
levels of AP concentrations in the middle and downstream segments were higher than
those in the upstream segments. However, there were also some abnormal sampling results
observed. With the exception of Point BY5, all the sampling points of the Beiyun River
were clustered together, which verified that the water sources were mainly unconventional
(wastewater treatment plant return water, agricultural irrigation return water, etc.), and the
pollutant concentration levels were basically stable throughout the Beiyun River [32].

Figure 3. Principal component analysis diagram of the sampling points in the Yongding River and
the Beiyun River.

The differences in the distribution patterns of the AP concentrations in the Yongding
River and Beiyun River sampling sites were further analyzed to examine the distribution
differences in the AP concentration levels at the different sampling sites, as detailed in
Figure 4. Sampling Points YD20 and YD26 were in the lower reaches of the Yongding River,
with many residential areas, hospitals, and sewage plants nearby. The generated sewage
discharge was considered to be one of the important sources of the high concentrations of
APs [33]. However, Sampling Point YD6 was located in the upper reaches of the Yongding
River, with no serious sources of pollution nearby. As can be seen in Figures 2 and 4b, the
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sampling results revealed that 4-OP, 4-NP, and BPA displayed high values at Sampling
Points BY5, BY1, and BY3 in the Beiyun River. Sampling Point BY1 was located in the upper
reaches of the Beiyun River and Wenyu River, with many schools, residential communities,
and hospitals nearby. Sewage containing 4-NP may have been discharged into the river at
that location, resulting in the observed higher AP concentration values in that section.

Figure 4. Analysis of the distribution differences of the AP concentrations at different sampling
points in the (a) Yongding River and (b) Beiyun River.

As can be seen in Figure 3, the PCA and sampling site difference analysis results
indicated that detection differences existed between the upper and lower reaches of the
Yongding River. The high urbanization rates and high proportions of industrial and
domestic land in the middle and lower reaches of the Yongding River resulted in higher AP
values, while the upper reaches were in mountainous areas with less pollution. However,
the distribution patterns of the APs in the Beiyun River remained generally stable. The
research results obtained by Yu et al. [34] showed that there are certain correlations between
the water quality and types of land use. The effects of new pollutants with different spatial
distributions were observed in other research conducted in the area, and the types of land
use were determined to be the main influencing factors [35,36]. However, it was considered
that in addition to the types of land use, the distribution patterns of the APs and other new
pollutants could also be related to the plant cover density, population density, proportion
of farmland, and the economic living standards in different regions [37]. Therefore, this
study further analyzed the influencing effects and weight correlations of each factor based
on relevant data.

3.4. Relationships between the Types of Land Use and the Concentrations and Risk Quotient of
the APs

The extent to which land use affects the ecological risks of pollutants may vary from
region to region. Therefore, the relationships between the potential risks of new pollutants,
as well as the management of buffer landscapes and land use scales in different watersheds,
require further consideration. This process can provide a scientific basis for maintaining or
improving living standards and formulating land management policies. In our previous
studies [26], the ecological risks of AP pollution in the Yongding River and Beiyun River
were reported in detail (Figure 5). In this investigation, three buffer zones at each site
(500 m, 1 km, and 2 km) were the focus in the upstream areas, and the percentages of the
six main land use types (cropland, forested land, grassland, water areas, impervious areas,
and unutilized land) were calculated, as detailed in Tables S2 and S3. The relationships
between the land use types and the concentration levels and risk quotient of the APs were
examined, as shown in Figure 6.

Figure 6 shows that the concentration levels and risk quotient of the APs were neg-
atively correlated with the forested land use type within 500 m, 1 km, and 2 km, which
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indicates that forested land use may reduce the concentrations and risk quotient of APs.
Moreover, the concentration levels and risk quotient of the APs were found to be positively
correlated with the cropland and unutilized land use types within 500 m, 1 km, and 2
km, indicating that the cropland areas were important sources of APs in the water. Other
sources of APs were not represented, such as industrial, medical, and other land use types,
and may have been unutilized land.

Land use types are major factors influencing the exposure and distribution of new
contaminants. Land use types associated with human activities, such as croplands and
impervious surfaces, may increase pollutant concentrations. On a global scale, the inten-
sification and expansion of anthropogenic land use types are the most important drivers
of water quality degradation [38,39]. The higher the proportion of urban areas among the
land use types, the higher the potential for pollution by APs [40]. It has been determined
that agricultural land and urban sewage are the largest sources of diffuse pollution in fresh-
water systems [41]. In addition, pollutant concentrations are significantly and negatively
correlated with vegetation cover, such as forests and grasslands [40]. On one hand, forests
and grasslands promote the uptake of pollutants and play important roles in improving
water quality and reducing pollution by APs [41,42]. On the other hand, vegetation cover
provides a buffer zone which slows down the diffusion of pollutants to some extent.

 

Figure 5. Heat plot of the ecotoxicological risks (represented by chronic RQs) of each AP (y axis) for
aquatic organisms in the Yongding River and Beiyun River sampling sites (x axis).

 

Figure 6. Cont.
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Figure 6. Relationships between the land use patterns and the concentration levels and risk quotient
of the APs. (a–c) Relationships between the land use modes and concentration distributions of the
APs within 500 m, 1 km, and 2 km, respectively. (d–f) Relationships between the land use modes
and the risk quotient of the APs within 500 m, 1 km, and 2 km, respectively. Note: In the figure, the
blue circles indicate positive correlations, and red circles indicate negative correlations. The larger
the circle, the greater the correlation. * p < 0.05. ** p < 0.01. *** p < 0.001.

In general, agricultural land and built-up areas are major sources of nutrients and
pollutants in surface water, which increases their chemical risks to various species [43]. As
the proportion of cropland increases, biodiversity decreases, and habitats change [44]. In
addition, runoff increases as urban or agricultural land cover expands and decreases as
vegetated land increases, and the loss of forested areas increases erosion and sedimentation,
alters water flow and thermal conditions, and affects carbon and nutrient cycling, which
may impact the chemical risks in aquatic ecosystems [45].

4. Conclusions

This study’s research results confirmed that alkylphenols (APs) are widely present
in the Yongding River and Beiyun River. The concentration levels of AP pollution in
the Yongding River were determined to be more serious than those in the Beiyun River.
Among the nine examined APs, 4-NP pollution was the most severe in the two rivers, with
detection rates of 100% and 96.3%, respectively. Based on this study’s findings, it will be
necessary to examine effective measures for the reduction of AP pollution, especially 4-NP
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pollution, in order to promote the normal growth and reproduction of aquatic organisms,
avoid damaging the normal structures and functions of aquatic ecosystems, and ensure the
sustainability of the future use of river water resources.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/toxics11070579/s1: Table S1: Basic information of target analytes and
parameters for mass spectrometry optimization. Table S2: The relationship between six land-use
types and concentration at three buffer regions interpreted from Landsat 8 remote-sensing images.
Table S3: The relationship between six land-use types and risk quotient at three buffer regions
interpreted from Landsat 8 remote-sensing images.
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Abstract: Water quality criteria (WQC) for the protection of aquatic organisms mainly focus on the
maximum threshold values of the pollutants that do not have harmful effects on aquatic organisms.
The WQC value is the result obtained based on scientific experiments in the laboratory and data
fitting extrapolation and is the limit of the threshold value of pollutants or other harmful factors in
the water environment. Until now, many studies have been carried out on WQC for the protection of
aquatic organisms internationally, and several countries have also issued their own relevant technical
guidelines. Thus, the WQC method for the protection of aquatic organisms has been basically
formed, with species sensitivity distribution (SSD) as the main method and the assessment factor
(AF) as the auxiliary method. In addition, in terms of the case studies on WQC, many scholars
have conducted relevant case studies on various pollutants. At the national level, several countries
have also released WQC values for typical pollutants. This study systematically discusses the
general situation, theoretical methodology and research progress of WQC for the protection of
aquatic organisms, and deeply analyzes the key scientific issues that need to be considered in the
research of WQC. Furthermore, combined with the specific characteristics of the emerging pollutants,
some new ideas and directions for future WQC research for the protection of aquatic organisms are
also proposed.

Keywords: water quality criteria (WQC); species sensitivity distribution (SSD); assessment factor;
aquatic organisms; model prediction; emerging pollutants

1. Introduction

Water quality criteria (WQC) refers to the maximum concentration or level at which
pollutants or environmental factors in water environments do not have harmful effects
on human health or water ecosystems [1–3]. WQC is the scientific basis for water quality
standards and plays an important role in environmental protection and management.
According to the different protective receptors, WQC can be roughly divided into the
protection of aquatic organisms and the protection of human health. The most important
factors affecting the WQC for aquatic organisms are the toxic effects of pollutants, biota
differences, water quality parameter and the extrapolation methods of the WQC. There are
differences in biota in different countries/regions, which leads to different WQC values
even for the same pollutant [4–6]. WQC studies in different countries are carried out on the
basis of their own regional environment. The environmental behavior and bioavailability
of pollutants in different regions may be different; thus, WQC values are also obviously
regional [7,8]. Some countries have issued corresponding guidelines for the protection of
aquatic life WQC and technical documents for several pollutants.

Currently, the two mainstream WQC research systems internationally are based on
those of the United States and the European Union (EU). The United States puts forward
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the toxicity percentage ranking method, which is a two-value criteria system [9]. It pointed
out that the toxicity data used to derive WQC should cover at least three phyla and
eight families of organisms and provide adequate protection for most biological species
(more than 95%). In recent years, WQC methods have been improved, and the species
sensitivity distribution (SSD) method has been gradually adopted to extrapolate the WQC.
Some countries or organizations represented by the EU adopted the SSD method as the
extrapolation method of WQC [10]. With the deepening of research, data screening and
model optimization have been developed and improved [11]. In terms of the expressions
of WQC value, they can be expressed numerically and narratively according to different
indicator categories and extrapolation methods of WQC. Most of the numerical values are
expressed as the concentrations of pollutants in water environments. For those criteria that
cannot give specific numerical indicators, such as color and turbidity, narrative criteria are
often used [12,13].

Various relevant factors are comprehensively considered in the derivation process of
WQC, and the determination of criteria values is influenced by many water environmental
factors, such as water hardness, temperature, pH and dissolved organic matter, and so
on [14–17]. Especially in the WQC studies of heavy metals, many countries will calibrate
the toxicity values with water environment parameters. At present, the common correction
methods for specific regional WQC in different countries and regions include single water
quality parameter correction (i.e., hardness correction or pH correction), dual water quality
parameter correction, and multiple water quality parameter correction [18–20]. In the 1980s,
when it was fully realized that the toxicity of metals is determined by their interactions
with other components in the water, the US EPA began to derive the WQC of metals
based on a function of hardness [21,22]. This is a big improvement over the previous
methods, but the method does not take into account the effects of other factors such as
temperature, pH, dissolved organic carbon, sulfides, and alkalinity on metal toxicity. The
WQC of pentachlorophenol in the United States takes pH as an important consideration,
and the WQC is finally expressed as a function of pH. The most representative case of two-
parameter correction is Canada. When formulating long-term WQC for manganese, Canada
has conducted hardness correction for fish and invertebrate toxicity data and pH correction
for plant toxicity data [23]. The most representative method for multiple water quality
parameter correction is the biological ligand model (BLM) [24,25]. At present, Cu-BLM is
the most mature BLM applied to heavy metals in freshwater environments. In addition,
BLM models for heavy metals such as silver, cadmium, zinc, nickel, cobalt, and lead are
also being established and developed. The criteria for copper published in the United
States are derived using the BLM [26]. Meanwhile, some studies have also used multiple
linear regression methods to study the toxicity and WQC of heavy metals [17,27,28].

Based on the mentioned above, the main purpose of the present study is to systemati-
cally summarize and integrate the current technical methods of WQC, deeply analyze the
key issues and technical systems of WQC research methods and summarize the current case
studies of WQC. Finally, some new ideas of the derivation method of WQC for emerging
pollutants are also explored and prospected.

2. Interpretation of WQC Guidelines for the Protection of Aquatic Organisms in
Different Countries

The pioneering study on WQC began in the early 20th century. The United States was
the earliest country to conduct WQC research. The development process of water quality
standards is presented in the form of a series of WQC papers, reports, and monographs.
Additionally, the United States finally issued its national water quality guideline for the
protection of aquatic organisms in 1985. In addition, the European Union, the Netherlands,
Canada, Australia and New Zealand, Japan, China, and other countries have also formu-
lated their own relevant technical guidelines for WQC and established their own WQC and
ecological risk assessment research systems. With the deepening of WQC research, many
countries have revised, improved, and updated their guidelines in recent years (Table 1).
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For example, the technical guidance of the United States was issued in 1985 [9], and
the main method used is the toxicity percentage ranking method. The main core of this
method is to arrange the average toxicity values of the species from small to large, to select
the four most sensitive genera, and to use a series of formulas to calculate the final criteria
values. The criteria values obtained by use of this method include the criteria maximum
concentration (CMC) and criteria continuous concentration (CCC). CMC considers the
acute toxic effect of pollutants on aquatic animals, which is equal to half of the final acute
value; CCC considers the chronic toxic effect of pollutants on aquatic animals, which is
equal to the minimum of final chronic value, final plant value and final residual value.

The European Union promulgated the Water Framework Directive (WFD) in 2000,
which played an important role in developing and promoting the setting of water environ-
mental quality standards. The WFD is a legal framework designed to protect freshwater
and marine ecosystems from the adverse effects of pollutants and to protect human health.
The European Union (EU) uses environmental risk assessment technology to derive the
predicted no-effect concentration (PNEC) of pollutants as water quality protective objec-
tives for environmental management and issued the “Technical Guidance Document for Risk
Assessment” (TGD) in 2003 [8]. In 2004, at the request of the European Commission for
the Environment, the Fraunhofer Institute (FHI), based on TGD Guidelines, prepared a
technical guidance manual on the establishment of WQC for priority pollutants of the
WFD. In 2007, under the framework of the EU’s WFD, the expert group on environmental
quality criteria conducted the compiling work of environmental quality criteria in the field
of water environments. The event is led and organized by the United Kingdom and the
joint research center with support from a working group of experts from EU member states.
In 2011, the EU issued the technical guidelines for the derivation of environmental quality
criteria, which were updated in 2018 [29]. This is also a programmatic document that has
been used to guide WQC research.

In addition to the two mainstream countries of the United States and the European
Union, some other countries and organizations have also conducted relevant research on
WQC. For example, the Organization for Economic Cooperation and Development (OECD)
issued the Guidance Document for Aquatic Effects Assessment in 1995 to evaluate the hazardous
effect of pollutants on water environments [30]. In 1999, the Canadian Council of Ministers
of the Environment (CCME) first published “A protocol for the derivation of water quality
guidelines for the protection of aquatic life” [31], which was revised and improved in 2007 [32].
The Australian and New Zealand Environmental Protection Council and Agriculture
and Resource Management Council (ANZECC/ARMCANZ) issued “Australian and New
Zealand guidelines for fresh and marine water quality” in 2000 [33], which was revised and
updated in 2018 [34]. The National Institute of Public Health and the Environment (RIVM)
of the Netherlands published the Guidance document on deriving environmental risk limits in
2001 [35], which was revised and improved in 2007 [36]. The Ministry of Environment of
Japan published Environmental Quality Standards for Water Pollution in 1971 [37], which was
revised and improved in 2021 [38].

The research on WQC in China started relatively late, dating back to the 1980s. The
initial research was only the collection and collation of relative references and data and
integrated the research methods of WQC in different countries and organizations. Subse-
quently, on the basis of a large number of theoretical explorations and WQC case studies,
some monographs and books related to WQC were published one after another [4,5,39].
The technical guide document at the national level is “Technical guideline for deriving WQC
for freshwater organisms”, which was first released by the Ministry of Ecology and Envi-
ronment in 2017 [40]. It is also the first technical guideline in the field of environmental
criteria in China. In 2022, some details of the guidelines were improved and revised for the
first time [3]. The methodology of China’s WQC guideline is to fully absorb and refer to
the latest international WQC research methods, and recommend the SSD method as the
extrapolation method of WQC. Meanwhile, a supporting national standardization software
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named “EEC-SSD” was also developed for WQC derivation [41], which is also an important
innovation and highlight in China’s research on WQC.

3. Key Points of Theoretical Methodology of WQC for the Protection of
Aquatic Organisms

There are many key steps involved in the extrapolation of WQC for the protection
of aquatic organisms. In general, the factors affecting WQC mainly include the reliability
of basic data, standardization of toxicity data and the scientificity of statistical analysis
methods. All these elements play a very important role in the study of WQC.

Firstly, in terms of species selection, the selection of regional native species is crucial
for WQC. Many studies have shown that, for the same pollutant, biota differences will lead
to the ultimate difference in the WQC value of the pollutant, which further highlights the
importance of site-specific or native species [4,42,43]. Therefore, the desired species need to
be selected according to regional characteristics and differences in biota. Different countries
have defined the quantity requirements for species selection. For example, the US EPA, the
European Union, Canada, Australia and New Zealand have requirements on the number of
species selected, including at least three trophic levels of fish, invertebrates and plants, and
at least five species before subsequent data fitting and WQC extrapolation [11]. After the
completion of a species screening process, the acquisition and screening of species toxicity
data are also important parts. The quality of the obtained data should also be evaluated
according to the reliability and relevance of the data. Klimisch et al. [44] divided toxicity
data into four levels according to reliability, correlation and appropriateness and generally
screened the data of level 1 and level 2 for WQC research. For example, the European Union
evaluates the quality of data according to the principles of reliability and relevance [10],
while the UK, the Netherlands, Canada, Australia, New Zealand and China all adopted
similar data screening principles [5,11,32,33,36].

Secondly, in terms of WQC derivation methods, the derivation system based on the
SSD method and supplemented by the assessment factor (AF) method has been basically
formed in the world at present. The main steps of WQC derivation mainly include data
collection, data screening and evaluation, and WQC derivation (Figure 1). The basic idea
of the AF method is to divide the most sensitive toxicity data of the pollutant by the
assessment factor to obtain the WQC value of the pollutant. The AF method requires less
basic data, and the calculation method is simple. The disadvantage is that this method is
empirical and depends on the toxicity value of sensitive organisms, with high uncertainty.
In addition, the AF method does not consider the relationship between species and the
biological enrichment effect of pollutants. Therefore, it is only used when the data are
difficult to obtain or for comparative verification. In contrast, the advantage of the SSD
method is that it makes full use of the toxicity data available for all species and assumes
that a limited number of species are randomly sampled from the ecosystem and can be
representative of the entire ecosystem. It uses all the toxicity data of known pollutants to
fit the sensitivity distribution curve of species and then extrapolates the WQC value. The
criteria value is the concentration corresponding to a specified percentage point on the
curve, usually expressed as HC5, which is the concentration at which 5% of species are at
risk [3,45,46]. In terms of the scope of use, when the toxicity data of pollutants are relatively
sufficient, the SSD method is used to fit the model and extrapolate the criteria, which will
statistically reduce the uncertainty. It can be seen that the SSD method has become the
international trend of WQC methods and will also be the main method of WQC research
in the future. The guidelines for WQC issued by most countries are mainly based on the
SSD method. Only the guidelines issued by Canada in 1999 [31] only used the AF method
for WQC derivation. However, after the revision in 2007 [32], the SSD method was added.
In addition, the principle of giving priority to the SSD followed by the AF method was
also proposed.
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Figure 1. The main process and method of water quality criteria derivation.

The SSD method is an international mainstream method used to establish ecological
environment criteria. Model selection is the core and key of this method. When building
SSD models, the commonly used derivation methods according to the amount of toxic-
ity data include the normal distribution model, logistic distribution model, etc., and the
mainstream trend is to use the best-fit curve to derive the final WQC value [47–49]. Some
mathematical statistics software, such as Origin, Matlab, Sigmaplot and other software
commonly used in mathematical statistics are mostly used. The fitting results of different
models and different statistical software will have certain differences, which may lead to
differences in model selection and calculation results of different scholars [50]. In order to
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solve this problem, some countries have developed or stipulated their own national envi-
ronmental criteria calculation software. For example, the Netherlands recommended using
EcoToX software. Burrlioz software was recommended in Australia and New Zealand [34].
The United States has developed an SSD toolbox for fitting SSD using Fortran language
programming [51]. Based on the experience of other countries and combined with em-
pirical data, China developed and first released national ecological environment criteria
calculation software–species sensitivity distribution method, EEC-SSD in 2022 [41], which
provided standardized technical support for the setting of national ecological and envi-
ronmental criteria. The release of standardized software at the national level mentioned
above provides a guarantee for the fine management of the environmental criteria. With
the continuous deepening of model research methods, some relatively mature models
have gradually been recommended by WQC researchers and recommended as mainstream
derivation models, such as the Burr III model [34].

Thirdly, in terms of the description and value of the WQC for specific pollutants, the
double-value criteria system is mainly used internationally at present. The United States,
Canada, China, and other countries adopt double-value criteria. Double-value criteria
generally refer to long-term criteria and short-term criteria (or chronic criteria and acute
criteria). Long-term criteria (chronic criteria) are designed to protect aquatic life (all species
and their life stages) from the negative effects caused by the indefinite long-term effects of
pollutants. In contrast, short-term criteria are designed to protect aquatic organisms from
serious negative effects (such as death) caused by short-term effects. Some countries and
organizations also use single-value criteria such as the European Union [8]. There are also
countries where the criteria value is neither double-value nor single-value but is classified
according to the different protection levels. For example, in Australia and New Zealand,
the WQC were divided into four level criteria, i.e., 99%, 95%, 90% and 80% of the criteria
values according to the scope of the protected objects (Table 1). In addition, there are also
several differences in the description or naming of WQC. For example, in the United States,
they were named CMC and CCC. In China, the WQC were divided into short-term WQC
for aquatic organisms (SWQC) and long-term WQC for aquatic organisms (LWQC). In
Canada, they were used as water quality guidelines (WQG) for the protection of aquatic
life, which were divided into long-term concentration and short-term concentration. The
European Union directly uses PNEC to represent its WQC. Additionally, in Australia and
New Zealand, they were termed trigger values (TVs) in the 2000 Guidelines [33] and named
water quality guideline values (GVs) in the updated 2018 Guidelines [34].

4. Research Progress of Case Studies of WQC for Environmental Pollutants

4.1. Bibliometric Analysis of WQC Research

In recent years, great progress has been made in international research focusing on
WQC. Many scholars have carried out a large number of WQC case studies of typical
pollutants and published a series of research papers, monographs, etc. These studies not
only summarized and explored the theoretical methodology of WQC for the protection
of aquatic organisms but also provided case studies on WQC, including conventional
pollutants, some physical and chemical parameters of water bodies, and new emerging
pollutants [4,5,11,16,39,45,52]. Bibliometrics uses statistical methods to conduct quanti-
tative analysis of scientific papers, which can describe the research status and emerging
trends in this field and explore future research hotspots and directions [53]. CiteSpace is
a citation visualization analysis software based on scientific metrology data and informa-
tion visualization technology for analyzing potential information in the literature [54,55].
This software can not only analyze the co-citation of literature and mining clustering
information, but also analyze the cooperation information of authors, institutions, and
countries/regions. Based on this, bibliometrics was used to statistically analyze the previ-
ously published papers. The retrieval deadline was September 2022. With the theme of
“WQC”, “water quality guidelines” and “water quality standards”, relevant articles were
retrieved on Web of Science (WoS) and China National Knowledge Infrastructure (CNKI),
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respectively. The results showed that a total of 501 and 203 relevant articles (704 articles
in total) were retrieved on WoS and CNKI, respectively (Figure 2). The first article on
WQC was published in 1953 and was retrieved in WoS [56]. Since then, the annual average
number of documents issued has been less than 10. Since 2010, the number of articles
related to WQC has increased rapidly, reaching a peak in 2015. The research on WQC in
CNKI started late. The first article related to WQC was published in 1984 [57], and the
number of articles published gradually increased from 2010 but showed a downward trend
in recent years.

Figure 2. Schematic diagram of the trend of the annual average number of articles published by
WoS and CNKI on water quality criteria (Note: WoS is Web of Science; CNKI is China National
Knowledge Infrastructure).

At the same time, the countries and organizations studying WQC were screened, and
it was found that China and the United States were significantly ahead of other countries
in terms of the number of publications on WQC, with 284 and 134 publications (41% and
19% of the total, respectively). In China, the Chinese research academy of environmental
sciences published the most articles, and its secondary institution, the state key laboratory
of environmental criteria and risk assessment, contributed more than 118 articles. The
top five countries in terms of the number of articles issued were China, the United States,
Canada, the United Kingdom, and Italy. Additionally, the number of WQC articles issued
by these five countries accounted for 60% of all the published articles (Figure 3).
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Figure 3. Number of articles published on water quality criteria in different countries.

4.2. WQC Values of Toxic Substances Published at the National Level

In terms of the WQC values of toxic substances published at the national level, some
countries have also published WQC for the protection of aquatic organisms for some toxic
substances at the national level. For example, since the release of the guidelines for WQC
in the United States, a number of WQC for toxic substances have been published, and the
WQC are updated almost every 2–3 years in combination with the latest research. EPA’s
compilation of nationally recommended WQC is presented as a summary table containing
recommended WQC for the protection of aquatic life and human health in surface waters.
These criteria are published pursuant to the Clean Water Act and provide guidance for
states and tribes to use to establish water quality standards and ultimately provide a basis
for controlling discharges or releases of pollutants. At present, the latest WQC published
by the US EPA contains 186 indicators [21,22], including 61 indicators to protect aquatic
life (including 31 indicators of organic matter, 21 indicators of inorganic matter and 9 other
indicators, such as pH, temperature, dissolved oxygen, etc.) and 125 indicators to protect
human health (Table 2).

In addition to the United States, Australia and New Zealand [58], Canada [59],
Japan [60] and China [61–63] have also published WQC for some toxic substances at
the national level. Based on the water quality guideline, Australia and New Zealand also
published the default guideline values (DGVs) of the pollutants in fresh water and seawater,
which were updated in 2023. DGVs were derived using toxicity data for at least three
species from at least three taxonomic groups. The listed criteria indicators included a total
of 159 freshwater WQC. The WQC value published by Canada contains 194 toxic substance
items. In Japan, there are only three indicators in the criteria for the protection of aquatic
life. That is, total zinc, nonylphenol and straight-chain alkylbenzene sulfonate, and their
criteria values are determined according to the type of water and the type of organism. Up
to now, China has only published WQC for toxic substances, namely cadmium, ammonia
nitrogen and phenol, and all of them were published in 2020 [61–63].
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5. Exploration of New Theories and Methods of WQC Research

5.1. Exploration of WQC Research Methods Based on Model Prediction

The acquisition of toxicity data is the key issue of WQC research. Different types
of pollutants have different influencing factors in the study of WQC. For example, the
toxic effect of organic matter on organisms is relatively complex, so the endpoint of the
toxic effect of organic pollutants on organisms should be clarified in the WQC study, and
then the criteria are deduced. The toxic effects of heavy metals are greatly influenced by
environmental factors. Another problem encountered in WQC studies is the lack of data on
the toxicity of the selected pollutants. The toxicity data could not meet the requirements of
fitting the SSD curve, nor could they meet the requirements of the AF method. However,
when environmental management is in urgent need, it is necessary to predict the toxicity
data of pollutants by means of model prediction. Model prediction includes the following
levels. First, how to use laboratory experiments to predict actual toxicity effects in the field?
The Biotic Ligand Models (BLM) approach can be used. The BLM is a mechanistic approach
that greatly improves our ability to generate site-specific ambient water quality criteria for
metals in the natural environment [26]. Water environmental factors (such as hardness,
organic matter content, pH, etc.) have a great influence on metal toxicity. The BLM allows
metal–organism interactions to be taken into account and given site-specific information
on actual water chemistry to evaluate the dissolved metal concentration associated with
a critical level of metal accumulation that is toxic to an organism. It serves as a powerful
tool for predicting metal toxicity because it accounts for the concurrent influences of
several environmental factors that alter site-specific metal bioavailability in an organism.
In contrast to full BLMs, which require the input of field data on upwards of 10 parameters,
simplified BLMs integrate data on dissolved metal concentrations, pH, DOC, and calcium
concentrations to predict the amount of metal available for uptake by organisms on a
site-specific basis, such as Cu, Zn, Ni, Pb (BIO-MET, M-BAT and PNEC-pro) and Mn
(M-BAT). At present, most toxicity data are based on laboratory toxicity tests, which mainly
consider the total concentration of metal and do not reflect the concept of bioavailability.
In fact, the toxicity of metals is closely related to the form of metals, on the one hand,
and also closely related to water environmental factors such as organic matter content,
hardness, pH value and so on. That is, the concentration of the effective state can better
reflect the actual toxicity of the metal. Therefore, the impact of water environmental factors
on their bioavailability should be taken into consideration when studying the criteria of
such pollutants [4,64,65]. For example, in the WQC for the protection of aquatic organisms
published in the United States [26], the copper criteria adopted the method of BLM method,
which fully considered the impact of water environmental conditions on acute copper
toxicity and its criteria. The European Union (EU) has launched a European Union Water
Framework Directive. WQC for copper and other metals that have been developed for use
within this regulatory framework are typically based on site-specific effect levels that are
evaluated by means of chronic BLMs. In addition to the above-mentioned models, there are
also some Multiple Linear Regression (MLR) models [17,66,67], normalized SSD models,
etc., which some scholars are trying to adopt for the study of WQC. Second, how to use
the toxicity of known species to predict the toxicity of unknown species? Some scholars
proposed the use of Interspecies Correlation Estimation (ICE) models and verified the
applicability of this model through case studies [68,69]. ICE was first developed by the US
EPA, with the surrogate species toxicity data to predict the toxicity data of other unknown
species [70]. The basic principle is that there is a linear relationship between the toxicity of
the replacement species and the predicted species so that the toxicity of other species can
be predicted based on the known toxicity data of the replacement species. At present, it is
only used to predict acute toxicity. Thus, the purpose of supplementing the toxicity data of
unknown species and then deriving the WQC can be realized. Third, how can the chemical
structure of a pollutant be used to predict its toxic effects? Quantitative structural activity
correlation (QSAR) models can be used for experiments, and it has been shown that metal
toxicity and WQC can also be derived using QSAR models [16,71].
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5.2. New Ideas on WQC Research for Emerging Pollutants

Emerging pollutants refer to the pollutants produced in production, construction
or other activities, which are caused by human activities, that clearly exist but have not
been regulated by laws, regulations and standards and harm the living and ecological
environment. With the continuous detection of emerging pollutants in the environment,
they are gradually receiving widespread attention [72–74]. The first characteristic of emerg-
ing pollutants is that they are “new”. There are many kinds of emerging pollutants. At
present, there are more than 20 categories of emerging pollutants of global concern, and
each category contains dozens or hundreds of chemical substances. This mainly includes
persistent organic pollutants (POPs), endocrine-disrupting chemicals (EDCs), antibiotics
and microplastic, etc. The second characteristic is “high environmental risk”, which is
mainly reflected in the severity of the hazard, the hidden risk, the persistence of the envi-
ronment, the extensive source, and the complexity of the management. Therefore, it is very
important to study the WQC and risk assessment of emerging pollutants.

Compared with conventional pollutants, emerging pollutants have the following
differences. Taking EDC as an example, first, the dose–response relationship of conventional
pollutants generally follows the principle of “low dose, low toxicity”, and its toxicity value
has a certain threshold. While for EDCs, it is also toxic at low doses, with the characteristics
of “low dose, high toxicity”. In addition, EDCs may exhibit certain biological effects,
including delayed and multigenerational effects, and may exhibit non-monotonic dose–
response relationships [75,76]. Secondly, in terms of the selection of sensitive species, the
requirements for the derivation of conventional pollutant WQC include fish, amphibians,
invertebrates, aquatic plants, algae, etc. However, aquatic plants, algae and some lower
invertebrates do not have endocrine systems, which is not suitable for the derivation of
WQC for EDCs. Therefore, toxicity data of aquatic plants, algae and lower invertebrates
should not be considered when deriving WQC for EDCs [43,55]. Moreover, the toxic effects
of conventional pollutants are generally growth and death. While, for EDCs, their toxic
effects are complex and changeable, including delayed effect, non-monotonic effect, and
more generation effect, which has a great deal of uncertainty. It is necessary to identify its
sensitive toxic effect endpoint and select the most sensitive toxic effect endpoint suitable for
such substances, such as development, reproduction, and other sensitive effects, to derive
the WQC.

Furthermore, in terms of WQC values, when deriving WQC for conventional pol-
lutants, double criteria values, such as short-term criteria values and long-term criteria
values, are generally formulated. Nonetheless, EDCs in a short time exposure generally
will not cause serious toxicity on aquatic organisms, while, under trace concentrations, will
have irreversible toxicity effects on aquatic organisms. The acute-to-chronic ratio of EDCs is
generally large; the largest may reach 10,000 or 100,000 times. Therefore, it is recommended
to use single-value criteria when deriving WQC for EDCs, and only the values obtained
from chronic toxicity are used to derive the long-term criteria value. In addition, it is also
important to establish an effective correlation between toxic effects and endpoints [77].
Many effects, from the molecular level to the individual level, are used to evaluate the
endocrine mechanism of different groups, but the relationship between these effects and
the group-level endpoint is often unclear. If new methods are applied, such as adverse
outcome pathways (AOPs) and population modeling, the relationship between EDCs at
the level of low-level biological tissues and adverse endpoints at the population level can
be better understood. An AOP framework should be built by fully utilizing the existing
toxicity data of EDCs based on in vivo and in vitro to completely and deeply understand
their toxic mechanisms. Through molecular initiation events (MIEs), key events (KEs) and
adverse outcomes (AOs), AOP can organically arrange the existing pollutants’ toxic effect
mechanisms and toxicity endpoints and provide a theoretical basis for WQC research and
predict the toxicity of new pollutants in the near future [74]. At present, most of the toxicity
data of chemical pollutants are based on single-species toxicity tests at the individual or
organizational level. However, the safety threshold derived from individual-level toxicity
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testing cannot guarantee population safety. The ecological threshold based on popula-
tion modeling is of great significance for the protection of aquatic biodiversity and the
structure and function of the entire aquatic ecosystem [78]. In Japan, population modeling
approaches that have been applied to the threshold of some high-priority chemicals such
as nonylphenol, polychlorinated biphenyls, and tributyltin included the derivation of the
predicted-no-effect concentration (PNEC) for medaka population-level impact based on
population growth rate, as well as the lowest observed-effect concentration (LOEC), the no-
observed-effect concentration (NOEC), and the maximum-acceptable-toxic concentration
(MATC) [79].

In addition, a non-monotonic dose–effect relationship may appear in both in vitro
and short-term in vivo studies of the EDCs, but it might not be able to widely predict the
toxicity endpoint in long-term in vivo studies. In the absence of the toxicity threshold of
EDCs, probabilistic methods should be used to predict the threshold, which is also a new
idea for the future study of WQC of emerging pollutants.
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Abstract: Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated to
have high toxicological potential and adversely affects the water bodies. Since algae are one of the
most significant primary producers on the planet, understanding the toxicological processes of TCS
is critical for determining its risk in aquatic ecosystems and managing the water environment. The
physiological and transcriptome changes in Euglena gracilis were studied in this study after 7 days of
TCS treatment. A distinct inhibition ratio for the photosynthetic pigment content in E. gracilis was
observed from 2.64% to 37.42% at 0.3–1.2 mg/L, with TCS inhibiting photosynthesis and growth of the
algae by up to 38.62%. Superoxide dismutase and glutathione reductase significantly changed after
exposure to TCS, compared to the control, indicating that the cellular antioxidant defense responses
were induced. Based on transcriptomics, the differentially expressed genes were mainly enriched
in biological processes involved in metabolism pathways and microbial metabolism in diverse
environments. Integrating transcriptomics and biochemical indicators found that changed reactive
oxygen species and antioxidant enzyme activities stimulating algal cell damage and the inhibition of
metabolic pathways controlled by the down-regulation of differentially expressed genes were the
main toxic mechanisms of TCS exposure to E. gracilis. These findings establish the groundwork for
future research into the molecular toxicity to microalgae induced by aquatic pollutants, as well as
provide fundamental data and recommendations for TCS ecological risk assessment.

Keywords: triclosan; Euglena gracilis; oxidative stress; photosynthetic pigment; molecular toxicity

1. Introduction

Water environmental management issues resulting from the increased wastewater
generation associated with antimicrobial agents are a major challenge for countries [1].
Triclosan (TCS), an effective polychlorinated aromatic antibacterial agent, is broadly added
to many medical and personal care products to achieve concentrations of 0.1 to 0.3%. In the
last few decades, its use has grown exponentially in many products, such as TCS-coated
antibacterial sutures, TCS-contained composite materials, hand sanitizer and detergent,
and cosmetics [2–4]. TCS pollution is widely monitored around the world, due to mass
consumption of these and other products. Research shows that TCS continuously enters
the aquatic environment, consequently accumulating in water bodies, especially freshwater
environments [4,5]. A United States Geological Survey (USGS) report indicates that TCS is
one of the top 10 river pollutants in the United States [6]. The global maximum measured
TCS concentrations in water are as high as 86 μg/L, 5.3 μg/L, 40μg/L, and 0.1 μg/L
for influent, wastewater, surface water, and seawater, respectively [7]. Additionally, the
concentration ranges of TCS in the tributary of the Yangtze River, Nanjing, China reached
0.25–0.43 μg/L [8]. More seriously, TCS has been found in urine, breast milk, and blood
samples. Specifically, the reported TCS concentration in the urine of Chinese children
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ranged from none detectable to 681.38 μg/L, and the concentration in blood samples
was 0.126–0.161 μg/L [3,8,9]. Considering its potential risk to human health, TCS has
been banned in human hygiene products, including household soaps in the United States,
since 2017 [10,11]. However, TCS is still widely used in many countries, resulting in high
residual levels in aquatic environments, which is potentially harmful for the health of
aquatic organisms [4].

As a typical hydrophobic organic compound, TCS exhibits further environmental persis-
tence, based on its high octanol water partition coefficient (logKnow = 4.8) and long
half-life [12,13]. Compared to TCS, a variety of conversion products of TCS are more per-
sistent, due to its higher hydrophobicity and lower potential for photodegradation, such as
chlorophenols, methyl-triclosan, and dioxins [14]. Research found evidence that an abun-
dance of TCS and its degradation products exist in the environment, especially in the aquatic
environment [15,16]. Due to its hydrophobicity, TCS shows high bioaccumulation in organs
far exceeding its environmental water concentration [17], which may cause strong toxicity to
aquatic organisms, such as algae [4], protozoa [18], insects ([19], crustaceans [20], fish [21,22],
and amphibians [23]. Among these aquatic organisms, there are many related studies on
the 96 h half-lethal concentration (LC50) values of TCS for fish and microalgae. For fish, the
LC50–96 h was 600.0 μg/L for Poecilia vivipara and 1700.0 μg/L for Oryzias latipes [24]. For
microalgae, TCS induced the median effective concentrations (EC50) of 27.1 and 93 μg/L for
Pseudokirchneriella subcapitata and Dunaliella tertiolecta, respectively, while freshwater algae are
more sensitive than marine algae and bacteria [25]. Toxicity studies for different algae (excluding
P. subcapitata) at TCS concentrations ranging from 20.0 to 4000.0 μg/L report that this biocide
promotes a reduction in the chlorophyll concentration [26], increases cell membrane activity and
permeability [8,27], and interferes with photosynthesis [28].

However, most of the current assessments addressing the toxic effects of TCS focus on the
typical phenotypic-based endpoints, such as growth, antioxidant activity, and other indicators.
Little information is available on the algal responses to TCS on the molecular level [29,30].
Recently, the transcriptomic has often been used to explore the mechanism of toxic effects
by detecting the whole gene expression of organisms and providing insight into the cellular
biochemistry. Currently, transcriptomic analysis is used to reveal the toxicity mechanisms
of nanoparticles, heavy metals, and organic pollutants in algae [31–33]. This technique is
being used to comprehensively analyze transcriptomic changes and reveal the molecular
mechanism caused by TCS toxicity in organisms. Transcriptomics and biochemical research
in Labeo rohita indicated that TCS caused liver and kidney damage, abnormal metabolic
processes, and digestive system disorders [34,35]. Transcriptome analysis of zebrafish
revealed the role of the liver as a target organ for TCS toxicity, with liver steatosis mainly
resulting from increased fatty acid synthetase activity, and the uptake and suppression of
β-oxidation [8]. Moreover, in the green alga Raphidocelis subcapitata, TCS suppressed molec-
ular signaling pathways, including porphyrin and chlorophyll metabolism, photosynthesis–
antenna proteins, and photosynthesis [36].

Euglena gracilis, a secondary green alga that mostly lives in fresh water, has the dual
characteristics of flora and fauna [37]. Meanwhile, due to its lack of cell wall and sensitivity
to environmental pressure, it is often used as a model organism to evaluate the ecotoxicity
of various chemicals [38–40]. The purpose of this study was to investigate the harmful
effects of various TCS concentrations on E. gracilis. The broad transcriptome and metabolic
pathway alterations in E. gracilis generated by TCS were studied to better understand the
underlying toxicological processes. The major genes and molecular pathways reacting
to TCS were screened using the enrichment analysis of biological functions and signal
pathways. As a result, the alterations in metabolism and gene information processing
caused by TCS exposure were explained. These findings contribute to a better understand-
ing of the toxic mechanism of TCS on E. gracilis and give new insight into future aquatic
environmental toxicological investigations and assessments.
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2. Materials and Methods

2.1. Triclosan and Euglena Gracilis Cultivation

TCS (purity > 97%) was purchased from Aladdin Reagent Co., Ltd. (Shanghai, China).
Euglena gracilis was obtained from the Freshwater Algae Culture Collection at the Institute
of Hydrobiology (FACHB-Collection, Wuhan, China). Checcucci culture medium was
used to cultivate the microalgae at 25 ± 1 ◦C under a 12 h/12 h light/dark cycle, with an
illumination intensity of 3000 lux and three replicates [41]. The conical flasks were shaken,
and their positions were randomly changed every day to reduce differences in growth
among different algal flasks.

2.2. Triclosan Exposure

The pretreatment of algae was conducted as per our previous research [39]. The algal
inoculum was resuspended 3 days prior to the toxicity tests. The supernatant was removed
after centrifugation at 3500× g for 15 min. Then, 5 mL of phosphate buffer solution (PBS,
Sevier, Wuhan, China) was used to resuspend the algal cells while ensuring that the original
microalgal density was in the exponential growth phase at approximately 1 × 105 cells/mL.
Briefly, to calculate EC50, E. gracilis was exposed to different concentrations of TCS (0.3, 0.6,
0.9, and 1.2 mg/L), and blank and acetone solvent control groups (0.15%) were performed.
The cell density was measured every 24 h at a wavelength of 680 nm, which had a linear
correlation with the cell number, according to our previous study using Multiscan spectroscopy
(INFINITE M200, Beijing, China), allowing the establishment of a 96 h growth curve for
E. gracilis [39]. To further explore the toxicity mechanism, 0.30 mg/L (minimum effective
concentration, TCS-E) and 1.20 mg/L (maximum effective concentration, TCS-H) TCS were
selected for subsequent transmission electron microscopy (TEM) and transcriptome analysis
after 96 h of exposure.

2.3. Transmission Electron Microscopy Analysis

After 96 h of exposure, 15 mL of algal solution (>107 cells/mL) from the TCS-E and TCS-
H treatments and the acetone solvent control group were centrifuged at 3500× g for 15 min
in a 1.5 mL centrifuge tube. Subsequently, 1 mL of room temperature 2.5% glutaraldehyde
(Aladdin Reagent Co., Ltd., Shanghai, China) was added to the pellet. The cells were fixed at
room temperature for 2 h in the dark and then stored at 4 ◦C prior to analysis. Ultrastructure
images were taken by TEM (HITACHI HT7700, Tokyo, Japan).

2.4. Pigments Content

After 96 h of exposure to TCS, 1 mL of microalgal suspension from each treatment
group was centrifuged at 3500× g for 15 min. The supernatant was removed; 1 mL of
80% acetone(Aladdin Reagent Co., Ltd., Shanghai, China) was added to samples and mixed
well, and the suspension was then placed at room temperature in the dark for 24 h. After
extracting the pigments, the mixture was centrifuged again at 3500× g for 15 min, and
80% acetone was used for the control group. The collected supernatant was subjected to
Multiscan spectrum analysis at wavelengths of 663, 645, and 470 nm. Chlorophyll a (Chl a),
chlorophyll b (Chl b), and carotenoid (CAR) contents and the inhibition rate were calculated
according to the following equations [42]:

Chl a = 12.21A663 − A645 (1)

Chl b = 20.13A645 − 5.03A663 (2)

CAR = (1000A470 − 3.27Chl a − 104Chl b)/229 (3)

The inhibition rate =
Sample value − Control value

Control value
× 100% (4)
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A663, A645, and A470 are the fluorescence values at wavelengths of 663, 645, and
470 nm measured by the microplate reader (Synergy H1, Bio Tek, Winooski, VT, USA).

2.5. Oxidative Stress

After 96 h of exposure to TCS, algal cells were centrifuged and rinsed three times with
phosphate buffer saline (PBS). The activities of superoxide dismutase (SOD, No. A001-3),
glutathione (GSH, No. A006-2), and reactive oxygen species (ROS, No. E004-1) were determined
using commercial kits (Jiancheng Bioeng. Inst., Nanjing, China) for the estimation of oxidative
stress [43]. The protein content (No. A045-4) was measured by the Coomassie brilliant blue
method using a kit (Jiancheng, Nanjing, China) to standardize the enzyme activities. All
enzyme activity results were expressed by fluorescence values directly or after calculation via
the instructions.

2.6. RNA Extraction and Sequencing

After 96 h of exposure to TCS-E and TCS-H, total RNA was extracted from 10 mL of
algal cultures (>5 × 106 cells) via TRIzol extraction (Takara, Maebashi, Japan). A NanoDrop
instrument was used to determine the RNA concentration, while the RNA integrity was
checked by automated electrophoresis on an Agilent 4150 Tapestation system. After meeting
the requirements of sequencing and library construction, the library was constructed.

2.7. De Novo Transcriptome Assembly

Clean reads were assembled using Trinity software v2.13.2 (Broad Institute and the
Hebrew University of Jerusalem, Jerusalem, Israel, 2022), and unigenes were generated by
TGICL purification [44]. The assembled unigenes were annotated by comparing the five
functional databases, namely the RefSeq nonredundant protein (ftp://ftp.ncbi.nlm.nih.gov/
blast/db (accessed on 15 August 2022)) (NR), Pfam (http://pfam.xfam.org/ (accessed on
15 August 2022)), Gene Ontology (GO), Kyoto Encyclopedia of Gene Genotype (KEGG),
and SwissProt (http://ftp.ebi.ac.uk/pub/databases/swissprot (accessed on 15 August 2022))
databases. Subsequently, the unigenes were annotated to the corresponding classification by
NCBI BLAST 2.6.0 + software [45] to obtain the corresponding functional annotation. GO and
KEGG analyses were used to determine the gene function and key biological pathways.

2.8. Differential Gene Expression

The FPKM (fragments per kilobase of exon model per million mapped fragments)
value of each gene in each sample was calculated by featureCounts software v2.0.3 (Shi
Lab, Austin, Australia, 2021) to compare the differential gene expression between samples.
Using the read-out data as the input data for horizontal analysis, the differentially expressed
genes (DEGs) were analyzed according to DEseq2 (|log2foldchange| ≥ 1, p value ≤ 0.05).
According to the differential gene detection, this experiment classified and enriched the
gene ontology (GO) function and analyzed the KEGG biological pathways and enrichment
of the obtained DEGs.

2.9. Statistical Analysis

Statistical analysis considered the mean value ± standard deviation (mean ± SD)
and employed one-way analysis of variance (ANOVA) using SPSS 24.0 software (IBM,
Armonk, NY, USA). Statistical differences between treatments were considered significant
at p < 0.05. The FPKM value of gene expression in the samples was calculated using
the featureCounts software, and the DEGs between groups were analyzed using Deseq2
(p < 0.05 and |log2foldchange| > 1). All samples were performed in triplicate.

3. Results

3.1. Dose–Effect Relationship between Triclosan and Euglena Gracilis Growth

The effects on E. gracilis growth were explored under exposure to different concentrations
of TCS (0, 0.3, 0.6, 0.9, and 1.2 mg/L). During the 96 h exposure, the E. gracilis cell density
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began to decline, compared with the controls (Figure 1a). With prolonged TCS exposure, the
algal cell density in all treatments showed an upwards trend within 24 h, except for the highest
concentration group. After 96 h of exposure, a dramatic decrease in the algal growth rate was
observed with the incremental TCS concentrations. The growth inhibition rate of algae exposed
to 0.6, 0.9, and 1.2 mg/L TCS for 96 h decreased to 11.52%, 24.11%, and 38.62%, respectively, of
the control (Figure 1b). The higher the TCS concentration, the more severe the E. gracilis growth
inhibition, forming a significant dose–effect relationship (Figure 1b). According to the linear
interpolation, the 96 h EC50 value was calculated to be 1.82 mg/L. The acute toxicity to E. gracilis
due to TCS exposure was moderately toxic (0.3 mg/L < EC50 ≤ 3.0 mg/L), according to the
toxicity classification of aquatic organisms (GB/T 31270.14-2014).

Figure 1. Effect of triclosan (TCS) on the growth of Euglena gracilis. (a) Cell density; (b) growth
inhibition rate.

3.2. Effects on Cell Morphology and Ultrastructure

After 96 h of exposure, the morphology of the algae was observed under a 40× optical
microscope. The results implied that the algae gradually tended to become distorted, and
there was an increasing number of deformed algae with an increasing TCS concentration
(Figure 2a–e). All E. gracilis cells after exposure to TCS had morphological deformities.
TEM images were used to observe the microalgal ultrastructure after TCS exposure for
96 h (Figure 2f–h). After exposure to TCS, the number of vacuoles in the E. gracilis cells
increased notably. Morphological changes in the algal cells were observed after treatment
with TCS, including the fragmentation of cells around the chloroplasts. Compared with the
control, the chloroplast membranes of E. gracilis cells exposed to 0.3 and 1.2 mg/L TCS were
slightly abnormal and loosely arranged, which was consistent with the optical microscopy
observations. This implies that the growth of E. gracilis may be inhibited through toxicity
caused by the exposure of chloroplasts to TCS.
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Figure 2. Observations of algal cell morphology. Optical microscope image of the control group
(a), 0.3 mg/L (b), 0.6 mg/L (c), 0.9 mg/L (d), and 1.2 mg/L (e) TCS: the morphology changes in
E. gracilis; TEM images of the control group (f), 0.3 mg/L (g), and 1.2 mg/L (h) TCS: the ultrastructure
of E. gracilis, such as the number of vacuoles and chloroplast arrangement and damage.

3.3. Physiological Index Changes Induced by Triclosan Exposure

The photosynthetic pigment content is an important toxicological index of algae and
is widely used to indicate the effects of pollutants on photosynthesis. For E. gracilis, all
photosynthetic pigment indices (Chl-a, Chl-b and CAR) significantly decreased at high
TCS concentrations (1.2 mg/L), compared to the control (p < 0.01) (Figure 3a), and the
inhibition rates reached 37.42%, 32.23%, and 35.80%, respectively, for Chl-a, Chl-b, and
CAR. Subsequently, the activities of SOD and GSH, which are essential enzymes of the
antioxidative system, were determined. TCS generally changed the activities of SOD
and GSH in a concentration-independent manner. SOD activity was inhibited by 24% at
1.2 mg/L TCS (Figure 3b). In contrast, the activities of the GSH level were significantly
higher than those of the control (Figure 3c), reaching 303.47%, which indicates that oxidative
damage occurred in the algae exposed to a high TCS concentration. Meanwhile, the ROS
level declined with the increasing concentration of TCS, although it increased at 1.2 mg/L
(Figure 3d). Thus, 1.2 mg/L was considered the critical TCS concentration for algae, after
which the ROS levels might exceed its own regulation/detoxification ability. These findings
show that exposure to high concentrations of TCS (1.2 mg/L) can induce oxidative stress
and reduce photosynthetic pigment in the microalgae, leading to an increase in GSH and
ROS production and a decrease in SOD activity.
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Figure 3. Changes in physiological indicators induced by triclosan (TCS). (a) Photosynthetic pigment
content; (b) the activities of superoxide dismutase (SOD); (c) the activities of glutathione (GSH);
and (d) the activities of relative fluorescence intensity. * p < 0.05, *** p < 0.001, compared with the
control group.

3.4. Transcriptome Analysis

To explore the molecular toxicity mechanism of TCS to E. gracilis, TCS-E and TCS-H
(Figure 3) were selected for transcriptomics analysis, according to their toxic effects. A total of
285,020 unigenes were obtained from the E. gracilis cells. Among the Venn diagrams (Figure 4a),
63 DEGs were shared among all TCS treatments. The histogram showed 87 and 406 DEGs in
the TCS-E and TCS-H exposures, respectively, compared to the control (Figure 4c), suggesting
that TCS-H induced more severe transcriptional changes. These results were further supported
by the principal component analysis (PCA) loading plot (Figure 4b), which exhibited a clear
separation between the control and contaminant treatments, especially for the TCS-H exposure.
Furthermore, the hierarchical clustering heat map showing the abundances of the top 20 DEGs
for TCS-E and TCS-H exhibited downward response trends, with 11 shared DEGs (Figure 4d,e),
indicating that the transcriptome response patterns were similar. Compared to TCS-E, there
were 65 DEGs in TCS-H, with the top 20 DEGs significantly decreased (Figure 4f). The adverse
effect of TCS-H exposure on E. gracilis might be greater from the perspective of the transcriptome,
and TCS exposure mainly interfered with its growth viability by inhibiting gene expression.

According to the GO functional analysis, biological processes were the most abundant
functional gene-encoding products, followed by cellular components and molecular functions
(Figure 5a). Cellular and metabolic processes were significantly affected within the biological
processes. A total of 10,963 unigenes were annotated into 128 KEGG pathways. Among
them, the most significant 34 pathways were enriched (Figure 5b) and divided into 5 KEGG
classifications, including metabolism (43.53%) and organic systems (20.99%). Thus, TCS
exposure mainly altered the metabolic processes of E. gracilis.
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Figure 4. (a) Venn diagram of differentially expressed genes (DEGs); (b) principal component analysis
(PCA) for Euglena gracilis; (c) differentially expressed gene (DEG) numbers due to triclosan (TCS) exposure
(FDR < 0.05); clustering heat map of the top 20 DEGs between groups; (d) TCS-E (0.3 mg/L) vs. control;
(e) TCS-H (1.2 mg/L) vs. control; and (f) TCS-H (1.2 mg/L) vs. TCS-E (0.3 mg/L).
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Figure 5. (a) Gene classification of E. gracilis according to the GO database; (b) gene pathway classifica-
tion of E. gracilis according to the KEGG database.

The top 20 pathways were selected by functional analysis of DEGs in the secondary KEGG
pathways (Figure 6a,b), with 19 pathways shared between TCS-E and TCS-H. Almost all
significantly altered pathways were shared, such as metabolic pathways, microbial metabolism
in diverse environments, carbon metabolism, and biosynthesis of secondary metabolites. This
demonstrates the similar toxic mechanism over the range of TCS concentrations (0.3–1.2 mg/L),
while TCS-H had more DEGs in the KEGG-enriched pathways, which indicates its greater
toxicity. Furthermore, the KEGG pathway showed that carbon and nitrogen metabolism
in algae were significantly altered, which is important for the growth and development of
E. gracilis, especially the carbon fixation of this photosynthetic organism [46].
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Figure 6. KEGG pathway analysis of Euglena gracilis induced by triclosan (TCS). (a) TCS-E; (b) TCS-H;
(c) schematic of the proposed metabolic pathways of Euglena gracilis.

As shown in Figure 6c, the tricarboxylic acid (TCA) cycle is a pathway related to energy
and metabolism, and DEGs cause damage to the related pathway and affect the up- and
down-regulations of metabolites, ultimately resulting in metabolization-related toxicity to
algae. All DEGs were down-regulated in the KEGG-enriched pathways of the glyoxylate and
dicarboxylate metabolisms; pyruvate metabolism; carbon fixation in photosynthetic organisms;
2-oxocarboxylic acid metabolism; D-glutamine and D-glutamate metabolism; and nitrogen
metabolism. The metabolic and carbon metabolism pathways, representing 7 and 4 DEGs,
respectively, exhibited more disturbances than other pathways. Each DEG could control
multiple metabolic pathways, indicating that these metabolic pathways were interrelated. For
example, carbon fixation in photosynthetic organisms and carbon metabolism shared two
DEGs (TRINITY_DN29669_c0_g1, TRINITY_DN77191_c0_g1) that were significantly down-
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regulated, resulting in the significant inhibition of photosynthesis in E. gracilis, and all the
other enrichment pathways shared genes with metabolic pathways.

4. Discussion

In order to explore the toxic effect and mechanism of TCS on E. gracilis, an acute toxicity
test was carried out. The results showed that TCS concentration formed a significant dose–effect
relationship with the growth inhibition rate of E. gracilis (Figure 1b), which is consistent with
the study of Chlamydomonas reinhardtii [26]. The sensitivity of different types of algae to TCS
was variable. Compared with the EC50–96 h values of the green algae Microcystis aeruginosa
(9.2 μg/L) and Scenedesmus subspicatus (2.8 μg/L) and the EC50–72 h value of the diatom
Navicula sp. (145.6 μg/L), E. gracilis (1820 μg/L) displayed stronger tolerance to TCS. This
phenomenon may be related to the nutrients, water quality, and algal morphology required for
the growth of the different algae. In addition, as a heterotroph, E. gracilis can survive in the dark,
indicating that it may still survive after chloroplast damage, which may be the reason for the
high resistance of E. gracilis to TCS, compared with other algae [47].

Electron microscope and TEM images were used to observe the microalgal cell damage
after TCS exposure for 96 h (Figure 2a–h). In the results, an increased TCS dose induced the
morphology of the algae to be more spherical, rather than a slender strip, due to enhanced
osmotic stress, indicating algal adaptation to external pressure [48,49]. All E. gracilis cells after
exposure to TCS had morphological deformities, which may be related to the occurrence of
cell pellicule rupture and degradation [50]. After exposure to TCS, the number of vacuoles in
the E. gracilis cells increased notably, indicating that toxic substances in the algal cell may be
transferred into the vacuoles, where antioxidant molecules, such as glutathione S-transferase
(GST), can protect or detoxify the algae [51]. Compared with the control, the chloroplast
membranes of E. gracilis cells exposed to 0.3 and 1.2 mg/L TCS were slightly abnormal and
loosely arranged, indicating that the growth of E. gracilis may be inhibited through toxicity
caused by the exposure of chloroplasts to TCS.

Photosynthetic pigment content is an important toxicological test index of algae and
is widely used to indicate the effect of pollutants on photosynthesis [42]. As shown in
Figure 3a, a decline in the algal photosynthetic pigment content after exposure to TCS
caused a reduction in photosynthetic activity. Meanwhile, research shows that the exposure
of P. subcapitata to TCS also induced a reduction in photosynthetic pigments Chl a, Chl b,
and photosynthetic activity [4]. Combined with the conclusions in Figure 2, it was shown
that TCS exposure caused cell damage and chloroplast damage in E. gracilis, resulting
in the hindrance of chlorophyll synthesis, which is the main reason for the reduction in
photosynthetic pigments and the inhibition of photosynthesis.

Furthermore, the oxidative stress response of E. gracilis under TCS stress was studied
to further understand its tolerance and adaptability to TCS stress. The activities of SOD
and GSH, which are essential enzymes of the antioxidative system, were determined. An
increase in SOD levels and an increase in GSH levels were caused by the elimination of excess
oxygen free radicals and hydrogen peroxide in cells [52]. Meanwhile, the ROS level increased
at 1.2 mg/L (Figure 3d). To avoid oxidative damage caused by excessive ROS, the balance
between the production and elimination of ROS by enzymatic antioxidants is critical for
microalgae [53]. Moreover, lipid peroxidation and membrane structure damage of algal cells
exposed to high concentrations of TCS may be one of the explanations for the hindrance of
chlorophyll synthesis, which results in cell photosynthesis and growth inhibition. Dioxins, one
of the transformation products of TCS, significantly enhances the oxidative stress response
of organisms, thereby causing irreversible oxidative damage to organisms, indicating that
dioxins produced by TCS transformation may also cause oxidative damage in E. gracilis [54].
In conclusion, the exposure of TCS and its transformation products resulted in oxidative stress,
triggering cell structure damage and the impairment of cell function in E. gracilis, which can
further threaten the growth and reproduction of the population.

From the perspective of the transcriptome, the higher number of DEGs from TCS-H ex-
posure suggested that the adverse effect of high TCS exposure on E. gracilis might be greater
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(Figure 4a), indicating that TCS-H induced more severe transcriptional changes. To reflect
an in-depth understanding of the toxicity mechanism, analyses were performed on the
GO- and KEGG-enriched pathways. The enrichment results of GO verified that metabolic
processes were the most affected, which are closely related to the growth, development,
and reproduction of the population. In addition, there were enriched pathways related to
oxidative stress. This is because ROS, such as superoxide (O2−), hydroxyl radicals (OH•),
and hydrogen peroxide (H2O2), are generated in cells when exposed to chemical stresses,
such as metals, nanomaterials, and organic chemicals [51]. This result suggests that TCS
exposure caused serious damage to the antioxidant system of E. gracilis, which is related to
the changes in the antioxidant enzyme activity, and in addition, ROS production stimulated
enriched pathways related to oxidative stress, which is the main mechanism of the toxic
effects of TCS exposure in E. gracilis. In addition, through KEGG secondary pathway
function and enrichment analysis, it was shown that both TCS-E and TCS-H exposure
affected genes related to E. gracilis metabolism, suggesting that the metabolic mechanism
of algae was blocked under greater toxicity, resulting in a corresponding stress response.
This result was consistent with Liao et al. (2020) [42], who found that the combined ex-
posure group of cadmium and microplastics mainly enriched the DEGs of E. gracilis in
the gene pathways related to metabolism, suggesting that the metabolic mechanism of
algae was blocked under the action of greater toxicity, resulting in a corresponding stress
response. Studies have shown that organochlorines can induce inflammatory processes
in organisms, stimulate oxidative stress responses, and have a bidirectional relationship
with endocrine disorders, eventually leading to a variety of metabolic diseases [55]. As a
ubiquitous organochlorine, TCS also has the potential to cause metabolic disorders. The
KEGG pathway showed that highly coordinated carbon and nitrogen metabolism in the
unicellular algae was significantly altered and resulted in the significant inhibition of algal
photosynthesis [46]. A greater carbon source was required for nitrogen metabolism in the
TCS-H group to enhance the D-glutamine and D-glutamate metabolism cycles, which may
be the main reason for the difference in the carbon fixation pathway, compared to TCS-E.
Herein, TCS exposure may further affect metabolic pathways by stimulating oxidative
stress responses, thereby inhibiting the growth and development of E. gracilis, especially
the inhibition of photosynthesis by carbon and nitrogen metabolism.

The TCA cycle is a central pathway of primary metabolism for energy production [56], as
shown in Figure 6c; it is difficult to speculate which metabolic processes are most influenced
by it. The TCA cycle likely serves to make carbon available from amino acids, fatty acids, and
other carbon-containing molecules for energy generation [57]. When genes involved in the
TCA cycle are suppressed, a reduction in energy-consuming sugar biosynthesis is expected,
resulting in photosynthesis inhibition. Meanwhile, algal cells exposed to pollutants require
more essential nutrients to survive because the pollutants can accumulate in the algal cell,
impeding the absorption/uptake of essential nutrients, thereby inhibiting growth. When
exposed to environmental pollutants, the balance between endogenous and exogenous ROS
and antioxidant enzyme activity in organisms may be interrupted, and the change in them
can subsequently result in oxidative damage to and metabolic disorders in organisms [58].
In Figure 6c, ROS production damaged the antioxidant system; it caused the change in the
metabolite glutamate, affected the D-glutamine and D-glutamate metabolism pathways, and
down-regulated related the genes in TRINITY_DN96150_c0_g1 existing in multiple pathways
(ko00220, ko00250, ko00471, and so on), which could lead to the disorder of the TCA cycle
metabolic system, including carbon and nitrogen metabolism. Herein, the down-regulation
of metabolic pathways, as indicated by DEGs, and the change in ROS and the antioxidant
enzyme activity mainly caused oxidative stress and photosynthesis inhibition in E. gracilis.

Based on the observed responses of physiological biomarkers and transcriptomic
analysis, E. gracilis exposed to TCS exhibited an inhibition of population growth, with
oxidative damage and metabolic pathways significantly altered. As the primary producer,
the pollutants consumed by microalgae are easily transferred to larger organisms along
the food chain, such as zooplankton, and is potentially harmful to the entire ecological
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environment and humans [59]. The inhibition of microalgal population growth indicates an
increasing ecological risk to other aquatic species, which may lead to a population decline
for higher organisms. Furthermore, TCS has a high adsorption potential, allowing it to
adsorb to sedimented sewage sludge and migrate to the soil environment [12], which may
cause similar ecological risks to the soil environment, thereby affecting soil microorganisms,
plants, and animals. Therefore, exploring the toxic mechanism of TCS on E. gracilis not
only brings more attention to the harm of pollutants in daily necessities, it also lays the
foundation for adequate water environment management and studying the toxic effects of
pollutants on other aquatic and terrestrial organisms.

5. Conclusions

In this study, the adverse effects of TCS on freshwater microalgae (E. gracilis), including
morphological alterations, reduced photosynthesis, and oxidative stress, were investigated.
Additionally, the cell’s own capacity for detoxification was surpassed by the ongoing
stress of greater TCS concentrations (1.2 mg/L). It was shown that TCS, to some extent,
interfered with the metabolism and gene information processing of E. gracilis, leading
to neuronal death brought on by oxidative stress damage from functional analysis of
DEGs utilizing the GO and KEGG pathways. Therefore, the main toxic mechanisms of
TCS exposure to E. gracilis were the changes in ROS and antioxidant enzyme activities to
stimulate algal cell damage and the inhibition of the TCA cycle metabolic system, including
carbon metabolism, nitrogen metabolism, and D-glutamine and D-glutamate metabolism
pathways controlled by the down-regulation of DEGs, which were further manifested as
oxidative stress and photosynthesis inhibition effects. These results serve as a starting
point for further investigation into the specific molecular pathways in microalgae that are
affected negatively by the toxic effects of aquatic pollutants. At the same time, it provides
theoretical guidance for the application of antibacterial agents in aquatic environments and
promotes water environment management.
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38. Zakryś, B.; Milanowski, R.; Karnkowska, A. Evolutionary origin of Euglena. Adv. Exp. Med. Biol. 2017, 979. [CrossRef]
39. Yu, S.-P.; Cole, M.; Chan, B. Review: Effects of microplastic on zooplankton survival and sublethal responses. Oceanogr. Mar. Biol.

2020, 58, 351–394.
40. He, J.-Y.; Liu, C.-C.; Du, M.-Z.; Zhou, X.-Y.; Hu, Z.-L.; Lei, A. Metabolic responses of a model green microalga Euglena gracilis to

different environmental stresses. Front. Bioeng. Biotechnol. 2021, 9, 662655. [CrossRef]
41. Li, M.; Gao, X.-Y.; Wu, B.; Qian, X.; Giesy, J.-P.; Cui, Y.-B. Microalga Euglena as a bioindicator for testing genotoxic potentials of

organic pollutants in Taihu Lake China. Ecotoxicology 2014, 23, 633–640. [CrossRef] [PubMed]
42. Liao, Y.-C.; Jiang, X.-F.; Xiao, Y. Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: Perspective

from the physiological and transcriptional responses. Aquat. Toxicol. 2020, 228, 105650. [CrossRef]
43. Deng, X.-Y.; Cheng, J.; Hu, X.-L.; Wang, L.; Li, D.; Gao, K. Biological effects of TiO2 and CeO2 nanoparticles on the growth

photosynthetic activity and cellular components of a marine diatom Phaeodactylum tricornutum. Sci. Total Environ. 2017, 575, 87–96.
[CrossRef]

44. Pertea, G.; Huang, X.-Q.; Liang, F.; Antonescu, V.; Sultana, R.; Karamycheva, S. TIGR Gene Indices clustering tools (TGICL): A
software system for fast clustering of large EST datasets. Bioinformatics 2003, 19, 651–652. [CrossRef] [PubMed]

45. Altschul, S.-F.; Gish, W.; Miller, W.; Myers, E.-W.; Lipman, D.-J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
[CrossRef] [PubMed]

46. Prado, R.; Rioboo, C.; Herrero, C. The herbicide paraquat induces alterations in the elemental and biochemical composition of
nontarget microalgal species. Chemosphere 2009, 76, 1440–1444. [CrossRef] [PubMed]

47. Wang, Y.-M.; Seppänen-Laakso, T.; Rischer, H.; Wiebe, M.a.-G. Euglena gracilis growth and cell composition under different
temperature, light and trophic conditions. PLoS ONE 2018, 13, e0195329. [CrossRef] [PubMed]

48. Azizullah, A.; Richter, P.; Haeder, D.-P. Comparative toxicity of the pesticides carbofuran and malathion to the freshwater
flagellate Euglena gracilis. Ecotoxicology 2011, 20, 1442–1454. [CrossRef]

49. Mao, Y.; Ai, H.; Chen, Y. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period.
Chemosphere 2018, 208, 59–68. [CrossRef]

50. Xin, X.; Huang, G.; An, C.; Feng, R. Interactive toxicity of triclosan and nanoTiO2 to green alga Eremosphaera viridis in Lake Erie: A
new perspective based on Fourier Transform Infrared spectromicroscopy and synchrotron-based X-ray fluorescence imaging.
Environ. Sci. Technol. 2019, 53, 9884–9894. [CrossRef]

51. Kim, H.; Wang, H.; Ki, J.-S. Chloroacetanilides inhibit photosynthesis and disrupt the thylakoid membranes of the dinoflagellate
Prorocentrum minimum as revealed with metazachlor treatment. Ecotoxicol. Environ. Saf. 2021, 211, 111928. [CrossRef]

52. Peng, D.-L.; Wang, W.-J.; Liu, A.-R.; Zhang, Y.; Li, X.-Z.; Wang, G. Comparative transcriptome combined with transgenic analysis
reveal the involvement of salicylic acid pathway in the response of Nicotiana tabacum to triclosan stress. Chemosphere 2021, 270,
129456. [CrossRef]

53. Caverzan, A.; Casassola, A.; Brammer, S.-P. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 2016, 39, 1–6.
[CrossRef]

54. VanEtten, S.-L.; Bonner, M.-R.; Ren, X.-F.; Birnbaum, L.-S.; Kostyniak, P.-J.; Wang, J.; Olson, J.-R. Effect of Exposure to 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD) and Polychlorinated Biphenyls (PCBs) on Mitochondrial DNA (mtDNA) Copy Number in
Rats. Toxicology 2021, 454, 152744. [CrossRef] [PubMed]

55. Peinado, F.-M.; Artacho-Cordón, F.; Barrios-Rodríguez, R.; Arrebola, J.-P. Influence of polychlorinated biphenyls and organochlo-
rine pesticides on the inflammatory milieu. A systematic review of in vitro, in vivo and epidemiological studies. Environ. Res.
2020, 186, 109561. [CrossRef]

56. Du, C.-L.; Zhang, B.; He, Y.-L.; Hu, C.-Y. Biological effect of aqueous C 60 aggregates on Scenedesmus obliquus revealed by
transcriptomics and non-targeted metabolomics. J. Hazard. Mater. 2017, 324, 221–229. [CrossRef]

57. Matthijs, M.; Fabris, M.; Obata, T.; Foubert, I. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum
tricornutum. EMBO J. 2017, 36, 1559–1576. [CrossRef]

142



Toxics 2023, 11, 414

58. Jin, Y.-X.; Zheng, S.-S.; Fu, Z.-W. Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio).
Fish. Shellfish. Immunol. 2011, 30, 1049–1054. [CrossRef]

59. Chae, Y.; Kim, D.; Kim, S.-W.; An, Y. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater
food chain. Sci. Rep. 2018, 8, 284. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

143



Citation: Wang, J.; Yan, Z.; Qiao, Y.;

Liu, D.; Feng, C.; Bai, Y. Distribution

and Characterization of Typical

Antibiotics in Water Bodies of the

Yellow River Estuary and Their

Ecological Risks. Toxics 2023, 11, 400.

https://doi.org/10.3390/

toxics11050400

Academic Editor: Antonia

Concetta Elia

Received: 28 February 2023

Revised: 15 April 2023

Accepted: 18 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Distribution and Characterization of Typical Antibiotics in
Water Bodies of the Yellow River Estuary and Their
Ecological Risks

Jindong Wang 1, Zhenfei Yan 1, Yu Qiao 1, Daqing Liu 1,2, Chenglian Feng 1,* and Yingchen Bai 1

1 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of
Environmental Sciences, Beijing 100012, China

2 College of Water Science, Beijing Normal University, No. 19, Outer Street, Xinjiekou, Beijing 100875, China
* Correspondence: fengcl@craes.org.cn

Abstract: A total of 34 antibiotics from five major classes of antibiotics, including macrolides, sulfon-
amides, quinolones, tetracyclines and chloramphenicol, were considered as contaminants, considering
the Yellow River Estuary as the study area. The distribution, sources and ecological risks of typical
antibiotics in the Yellow River Estuary were investigated using an optimized solid-phase extrac-
tion pre-treatment and an Agilent 6410B tandem triple-quadrupole liquid chromatography–mass
spectrometer for antibiotic detection. The results show that antibiotics were widely present in the
water bodies of the Yellow River Estuary, with 14 antibiotics detected to varying degrees, including
a high detection rate for lincomycin hydrochloride. Farming wastewater and domestic sewage
were the primary sources of antibiotics in the Yellow River Estuary. The distribution characteristics
of antibiotics in the study area were linked to the development of farming and social activities.
The ecological risk evaluation of 14 antibiotics in the Yellow River Estuary watershed showed that
clarithromycin and doxycycline hydrochloride were present at medium-risk levels, and lincomycin
hydrochloride, sulfamethoxazole, methomyl, oxifloxacin, enrofloxacin, sulfadiazine, roxithromycin,
sulfapyridine, sulfadiazine and ciprofloxacin were present at low-risk levels in the samples collected
from water bodies of the Yellow River Estuary. This study provides novel, beneficial information
for the assessment of the ecological risk presented by antibiotics in the Yellow River Estuary water
bodies and provides a scientific basis for future antibiotic pollution control in the Yellow River Basin.

Keywords: antibiotics; Yellow River Estuary; ecological risk assessment

1. Introduction

The Yellow River is the mother river of the Chinese nation. As the second largest river
in China, it plays an essential role as the country’s northern drinking water supply and
feeds the agricultural system, but it also receives natural or treated effluent from urban
centers. A large amount of wastewater (up to 4.4 billion tonnes/year) is generated from
industrial production, livestock farming and agricultural surface sources. Introducing
effluent from multiple sources has led to a deterioration of the Yellow River’s water quality
in localized sections, with large amounts of antibiotics detected frequently. In the 18th Party
Congress, a national strategy was formed to promote the ecological protection and high
quality of water in the Yellow River Basin [1]. In 2019, the proportion of Class I-II surface
water quality sections in the Yellow River Basin was on the rise, and the balance between IV
and poor V categories of water quality was on the decline. However, poor V sections still
account for 8.8%, and water pollution in tributaries is still relatively severe [2]. In October
2021, the Ministry of Ecology and Environment issued the “Action Plan for the Treatment
of New Pollutants (Draft for Public Comments)”, proposing specific targets and visions for
the treatment of new pollutants [3]. In September 2022, the General Office of the Ministry
of Ecology and the Environment issued the “List of New Pollutants for Priority Control
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(2022 Version) (Draft for Public Comments)”, proposing that antibiotic residues should be
managed following hazardous waste protocols, and that the battle against pollution should
be fought head on [4].

Antibiotics are organic substances synthesized naturally by microorganisms through
secondary metabolism or synthesized artificially by industry. They can inhibit the growth
or metabolic activity of other microorganisms and can even cause their metabolism and
death [5,6]. As a new contaminant, antibiotics are used by humans and animals. Further-
more, due to incomplete intestinal absorption and incomplete metabolism, antibiotics can
be excreted through feces and urine and enter water bodies [7], soil [8] and sediments [9].
Antibiotics have played an essential role in the development of modern medicine. Still,
with their extensive clinical use, over 50,000 tonnes of antibiotic residues are “released”
into the water environment each year [10], making many rivers major reservoirs of these
pollutants [11,12]. Antibiotic contamination not only poses a severe risk to aquatic ecosys-
tems [13,14], but can also induce microbial resistance, posing a severe threat to public
health [15].

According to statistics, in 1999, 65% of the 13,216 tons of antibiotics used in Germany
were applied to treat human diseases, and in Denmark, 20.8%, 27.4% and 51.8% were used
for human, veterinary and growth purposes. The annual use of antibiotics in the United
States is stipulated as 22,700 tons, 50% for humans and 50% for animals, agriculture and
aquaculture [16]. China produces 75% of the total antibiotics, and the abuse of antibiotics is
a serious situation. In recent years, most studies on antibiotic pollution in the Yellow River
basin have focused on the Jinan section of the lower Yellow River [17], the Yellow River
delta wetlands [18,19] and the lower Yellow River [20], and relevant studies on the Yellow
River Estuary basin are still insufficient.

In the present study, typical antibiotics were detected in the surface waters of the
Yellow River Estuary, and the distribution and characterization of antibiotics were also
analyzed. At the same time, the ecological risks of antibiotics were assessed via the use of
risk quotient methods (RQs). This study deepens the understanding of the concentration
levels of antibiotics in the water bodies of the Yellow River Estuary, provides theoretical
support for environmental protection of the water in the basin and provides a reference
for maintaining the health of the ecosystem and drinking water safety in the Yellow
River Estuary.

2. Materials and Methods

2.1. Sample Collection

The Yellow River Estuary is located in Dongying, Shandong Province, which is close
to Bohai Bay and Laizhou Bay. It forms the fan-shaped accumulation plain of the modern-
day Yellow River Estuary. The terrain is low in elevation with an average altitude below
15 m, and the range is between 37◦34′–37◦53′ N and 118◦53′–119◦21′ E (Figure 1). It
has a temperate continental monsoon climate, four distinct seasons, an average yearly
temperature of 12.1 ◦C, an average yearly precipitation of 530–630 mm with concurrent
high rain and humidity.

Combined with field investigation and a review of relevant data, eight water samples
were collected at eight points in the Yellow River Estuary in September 2022, as shown in
Figure 1.

A total of 2 L of water was collected in a brown glass bottle, and the growth of
bacteria in the water sample was inhibited by adding 50 mL of methanol to slow down the
degradation of antibiotics by microorganisms. To improve antibiotic recovery, 100 μL of
concentrated H2SO4 was added to the water sample, and the pH was adjusted to around 3.
The sample was stored at a low temperature and transported back to the laboratory, where
the samples were processed within 24 h.
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Figure 1. Sample points in the study area of the Yellow River.

2.2. Advanced Analysis Instruments and Reagents

An Agilent 6410B triple-quadrupole liquid chromatography–mass spectrometer (1290-
6460, Agilent Technologies, USA); Extend-C18 Column (2.1 mm × 100 mm × 3.5 μm,
Agilent Technologies, USA); Vortex (UVS-3, Beijing Yousheng United Technology Co., Ltd.,
China); electronic balance (AR224CN, OHAUS Instruments (Changzhou Co., Ltd., China);
and CNC ultrasonic cleaner (KQ-250DE, Kunshan Ultrasonic Instrument Co., Ltd., China)
were the main advanced analysis instruments employed.

A total of 34 antibiotic standards were grouped into five categories, i.e., (1) macrolides, in-
cluding erythromycin, roxithromycin, hythromycin, azithromycin and tylosycin, clindamycin;
(2) sulfonamides, including sulfaacetic amide, sulfaclodazine, sulfadimethoxypyrimidine,
sulfapyridine, sulfathiazole, sulfamethiodiazole, sulfadiazine, sulfamethazine, sulfamethox-
azole, sulfadimethazole, sulfadimethylpyrimidine, trimethoprim and sulfaquinoxaline;
(3) quinolones, including ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, salafloxacin,
lomefloxacin, flurofloxacin and difloxacin; (4) tetracyclines, including doxycycline hy-
drochloride, tetracycline (hydrochloride), oxytetracycline (oxytetracycline) and chlortetra-
cycline (chlortetracycline); (5) chloramphenicol, including chloramphenicol, florfenicol,
thiamphenicol and rifampicin. The above reagents were imported from the German com-
pany Dr. Ehrenstorfer.

Four internal standards, sulfamerazine-D4 (SMR-D4), ciprofloxacin-D8 (CIPROFLOXACIN-
D8, CIP-D8), normeclocycline (DTC) and erythromycin-13C, D3 (erythromycin-13C, D3,
ERY-13C, D3), were imported from Dr. Ehrenstorfer in Germany.

A Water Oasis HLB (6 mL, 200 mg) solid-phase extraction cartridge, methanol, ace-
tonitrile, hydrochloric acid, Na2EDTA, ethyl acetate, dichloromethane, ammonium acetate,
formic acid, disodium hydrogen phosphate and citric acid were purchased from Shanghai
Anpu Experimental Technology Co., Ltd., and a 0.7μm (70 mm) GF/F filter membrane was
purchased from Whatman Company in the United Kingdom.

2.3. Sample Treatment

The water sample was filtered through a 0.45 μm pore glass-fiber membrane, and
weighed 1.0 L of water accurately. Eight samples were taken in two replicates for a total of
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sixteen samples. An amount of 0.2 g of Na2EDTA was added to reduce the chelation of
antibiotics and metal ions in the water sample, about 300 μL of hydrochloric acid was added
to the water sample to adjust the pH of the water sample to 3.0~4.0, 25 ng of antibiotic
internal standard was added, and then the cartridge was extracted using solid-phase
Oasis HLB (200 mg/6 cc) at a rate of 5 mL/min. The HLB cartridge was activated with
10 mL of methanol, 10 mL of purified water and 10 mL of pure water with a pH of 4.0.
After the sampling, the column was cleaned with 10 mL of pure water, drained, dried
under the protection of nitrogen for 30 min, eluted in 3 times using 6 mL of methanol,
nitrogen-blown until nearly dry and reconstituted with the initial mobile phase (0.1%
formic acid–ammonium formate aqueous solution/acetonitrile) to be measured.

2.4. Instrumental Analysis

The HPLC-MS/MS used the Agilent 6410B tandem triple-quadrupole LC-MS/MS,
Waters Xterra C18 separation column (100 mm × 2.1 mm, 3.5 μm) ESI ionization source.
Mobile phase: A phase, 0.1% formic acid–ammonium formate; B: acetonitrile. Linear
gradient: 0 min, 5% B; 0.1~10 min, 10~60% B; 10~12 min, 60%; 12.1~22 min 10% B. The
flow rate was 0.25 mL/min. The column temperature was maintained at 25 ◦C and the
injection volume was 200 μL. MS conditions: gas temperature of 350 ◦C, gas flow rate of
8 mL, nebulizer pressure of 25 psi, capillary voltage of 4000 V.

2.5. Ecological Risk Assessment

Risk quotient methods (RQs) are one of the most effective methods for assessing the
environmental risks of aquatic biochemicals [21]. This study used data on the antibiotic
concentrations in the water of the Yellow River Estuary for ecological risk assessment.
According to the methodology for environmental risk assessment presented in the EU’s
technical guidance document, ecological risks can be assessed using the risk quotient (RQ).

The RQ is calculated as follows:

RQ =
MEC

PNEC
(1)

PNEC =
EC50(LC50)

AF
(2)

where MEC represents the measured environmental concentration and PNEC indicates
the predicted non-effect concentration for each contaminant. PNEC is the quotient of
the toxicological relevant concentration with an appropriate assessment factor (AF). LC50
represents the median lethal concentration and EC50 represents the half maximal effective
concentration. LC50 or EC50 represent the lowest maximal effective concentration value
according to the available literature. According to the RQ, it can be divided into three risk
levels: high risk (RQ > 1), medium risk (0.1 < RQ < 1) and low risk (RQ < 0.1) [22].

2.6. Data Analysis

The sampling sites were mapped using ArcGIS software and Bigemap Gis Office
software. OriginPro 2023 software was also used to produce box plots and bar charts to
visualize and clearly show the distribution of antibiotics in the Yellow River Estuary waters
at the eight sampling sites.

3. Results and Discussion

3.1. Concentration Levels of Antibiotics in the Water Bodies of the Yellow River Estuary

The results of the antibiotic monitoring experiment in the Yellow River Estuary are
shown in Figure 2, with the maximum, 75th percentile, mean, median, 25th percentile and
minimum values shown in order from highest to lowest in the box plot.
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Figure 2. Box plots of measured concentrations of twelve antibiotics in water samples from the Yellow
River Estuary.

Sulfonamides had the highest average concentration in the waters of the Yellow River
Estuary, including all sulfonamide derivatives and sulfa analogs based on the chemical
synthesis of p-aminobenzenesulfonamide, whose structures are connected to a free amino
and sulfonamide group in the para-position of the benzene ring. These are broad-spectrum
synthetic antibacterial agents with the advantages of low price, stable performance and
good therapeutic effect. They are commonly used in the medical, agricultural, aquacul-
ture and livestock industries for the prevention and treatment of bacterial and protozoan
infections [23]. Their average concentration in the water bodies of the Yellow River Es-
tuary reached 11.80 ng·L−1; this was followed by macrolides at 8.40 ng·L−1, quinolones
at 4.40 ng·L−1, tetracyclines at 1.37 ng·L−1 and chloramphenicol at the lowest level, that
is, not detected. The highest concentration detected at any site was 83.31 ng·L−1, found
at sampling site H2. As a macrolide, lincomycin hydrochloride has similar effects to ery-
thromycin and has a better impact on Gram-positive cocci. The antibiotics with the highest
mean concentrations seen at each site were, in descending order, lincomycin hydrochlo-
ride (8.36 ng·L−1), sulfamethoxazole (8.91 ng·L−1), ofloxacin (5.08 ng·L−1), methicillin
(4.27 ng·L−1), sulfamonomethoxazole (3.54 ng·L−1) and sulfadiazine (2.85 ng·L−1), with
the rest of the antibiotics having mean concentrations below 1.7 ng·L−1.

Sulfonamides accounted for 45.47% of the antibiotics detected in the water sam-
ples, with a detection rate of 50%. The average concentration of sulfamethoxazole was
8.91 ng·L−1, which is much higher than that detected for any other sulfonamide. The
proportion of macrolides was 32.34%, of which lincomycin hydrochloride had the high-
est detection rate of 93.75% with an average concentration of 8.36 ng·L−1. Quinolones
accounted for 16.93% of detected antibiotics, of which ofloxacin had the highest detection
rate of 68.75% with an average concentration of 5.08 ng·L−1. Norfloxacin, salafloxacin,
lomefloxacin, fleroxacin and diflufenacin were all detected. This is due to the fact that most
of the quinolone antibiotics have a strong adsorption capacity and are better able to adsorb
sediment or suspended matter in rivers, making their detection rate low [24]. The propor-
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tion of tetracyclines was 5.26%, and their concentration in the sediment was relatively high
due to the strong adsorption of hygromycin [25]. Chloramphenicol antibiotics were not
detected at any of the eight sampling sites.

Comparing the Yellow River Estuary with other sections of the Yellow River Basin,
a total of 14 antibiotics were detected in the Yellow River Estuary, as shown in Table 1,
with concentrations starting from ND~415.53 ng·L−1 and the average concentration of the
34 antibiotics being 25.97 ng·L−1. In the Jinan section of the lower Yellow River [17], a total
of 36 of the target antibiotics were detected in 35 sampling locations, and the concentrations
of detected antibiotics starting from ND~13.462 ng·L−1, with an average concentration of
373.94 ng·L−1. Sulfonamides and macrolides were seen at a high rate; the total concentra-
tion of antibiotics seen in the Yellow River Delta section [18] during an abundant water
period was ND~256.6 ng·L−1, with an average concentration of 15.09 ng·L−1; the total
concentration of antibiotics detected in the intertidal zone of the Yellow River Delta [19] was
ND~82.94 ng·L−1 with an average concentration of 10.37 ng·L−1; the total antibiotic con-
centration in surface waters such as canals, rivers and fish ponds in Kaifeng [20], a key city
in the lower reaches of the Yellow River, Henan Province, was ND~12,224.99 ng·L−1, with
an average concentration of 815.00 ng·L−1; meanwhile the total concentration of antibiotics
in the Wei River [26], the largest tributary of the Yellow River Basin, was ND~573.26 ng·L−1

with an average concentration of 13.98 ng·L−1. In summary, the current level of antibiotic
concentrations in the Yellow River Estuary is moderate.

Table 1. Comparison of antibiotic concentration levels in surface water in the Yellow River Estuary
and other sections of the Yellow River Basin 1© ng·L−1.

Lakes
(Year of Survey)

Antibiotic Concentration Average Concentration

Yellow River Estuary (2022) ND~415.53 25.97
Jinan section of the lower Yellow River (2022) ND~13,462 373.94

Yellow River Delta Section (2019) ND~256.6 15.09
Yellow River Delta intertidal zone (2016) ND~82.94 10.37

Canal in Kaifeng, Henan, a key city on the lower reaches of the
Yellow River (2022) ND~12,224.99 815.00

Weihe River (2018) ND~573.26 13.98

Note: 1© ND stands for not detected.

3.2. Spatial Distribution of Antibiotics

The point distribution of antibiotics in the Yellow River Estuary is shown in Figure 3.
As can be seen, the total number of antibiotics detected was highest at points H2 and H8
and lowest at points H3 and H5. Two substances were detected at all sampling locations,
including one macrolide and one quinolone. Erythromycin, roxithromycin, telithromycin,
sulfadimethoxypyrimidine, sulfathiazole, sulfamethoxazole, sulfamethoxypyrimidine, sul-
fadimethoxypyrimidine, sulfoquinoxaline, norfloxacin, salafloxacin, lomefloxacin, fleroxacin,
difluoxacin, tetracycline, oxytetracycline, chlortetracycline, chloramphenicol, fluphenazole,
methomycin and rifampicin were not detected at any of the eight sampling locations. Lin-
comycin hydrochloride had the highest detected mass concentration of 83.31 ng·L−1 at
site H2 and doxycycline hydrochloride had the highest detected mass concentration of
21.86 ng·L−1 at site H6; sulfamethoxazole’s highest mass concentration was 11.32 ng·L−1,
at site H8.

149



Toxics 2023, 11, 400

Figure 3. Distribution of antibiotic concentrations at the eight sampling sites.

Overall, more than half of the eight sampling sites had higher concentrations of
sulphonamide antibiotics than the other four categories, which are widely used in medical,
agricultural, aquatic and livestock industries for the prevention and treatment of bacterial
and protozoal infections because of their broad-spectrum antibacterial strength, low price,
stable performance and sound therapeutic effects [26]. Sulfadiazine and sulfamethoxazole
are commonly used to treat human diseases such as urinary tract infections and respi-
ratory tract infections, and are the most widely used classes of sulfonamide antibiotics.
Sulfamethoxazole is frequently used in farming to promote animal growth and increase
production, while sulfadiazine is highly toxic. Sulfamethoxazole is quickly oxidized when
exposed to light and is often used to suppress intestinal and soft skin tissue infections
caused by sensitive bacteria, among other things. Sulphonamide antibiotics have a stable
structure, degrade slowly in the environment and persist in the aqueous environment for an
extended period of time. The sampling period coincided with the rainy season, with many
cloudy days, which weakened natural degradation processes such as photodegradation,
thus making the concentration of sulfonamide antibiotics significantly higher. Point H8 is
the Lijin Hydrological Station, with a section width of 598 m. The main channel is 355 m
wide and the beach area is 243 m wide. The beach is full of crops, which has a specific
deterrent effect on the flooding of the beach. The Lijin Hydrological Station is part of the
Yellow River Delta National Nature Reserve. Point H2 and point H3 are ecological tourist
zones in the Yellow River Estuary. The general flow direction of rivers in China is from
west to east; as point H2 is to the east of point H3, the water flows from point H3 to point
H2, so the concentration of antibiotics at point H2 is higher than at point H3. Point H5 is
the Feiyan Beach, which is one of the best areas in the Yellow River Estuary in terms of
water quality due to the low level of human activities in the area.

3.3. Ecological Risk Assessment

To better evaluate the risk level of antibiotics in the waters of the Yellow River Es-
tuary, this study used the risk quotient method to perform a preliminary analysis of the
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14 antibiotic-like substances detected. Toxicity data for each compound were screened
from the literature, and the PNEC values (Table 2), as well as the risk quotient values
(Figure 4), were calculated using the evaluation factor method. Of the 14 compounds
detected, azithromycin and sulphonamide acetate were not evaluated here for ecological
risk due to the lack of toxicity data from which to derive PNEC values.

Table 2. PNEC for common antibiotics ng·L−1.

Antibiotics PNEC References

Ofloxacin 21~17,400 [27–29]
Ciprofloxacin 2~30,000 [30,31]
Enrofloxacin 28.8~49 [32,33]

Roxithromycinid 4.3~10,000 [34]
Clarithromycin 2 [22,35]

Lincomycin Hydrochloride 50~50,000 [28,29,36]
Doxycycline hyclate 131 [37]
Sulfachlorpyridazie 2330~1,720,000 [38,39]

Sulfapyridine 460~5280 [38,39]
Sulfadiazine 107.394~135 [28,29,38,40]

Sulfamethoxazole 27~4674 [28,29,38,40]
Trimethoprim 29~255.516 [28,29,38,40]

Figure 4. Risk quotient (RQ) values for antibiotics in water bodies of the Yellow River Estuary.
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4. Conclusions

The following conclusions were drawn from a survey of the pollution status and
ecological risk assessment of 34 antibiotics at eight sites in the Yellow River Estuary. A
total of 14 antibiotics were detected, with concentrations in the following descending order:
sulphonamides, macrolides, quinolones, tetracyclines and chloramphenicol. The detec-
tion rate of sulfa antibiotics reached 45.47%, and the highest concentration detected at a
single site was for lincomycin hydrochloride, with a concentration of 83.31 ng·L−1; the
concentration levels of antibiotics at sites near villages, fishing grounds and hospitals were
significantly higher than those around scenic areas, confirming that the concentrations of
antibiotics in urban water bodies are closely related to human activities. The ecological
risk assessment of the detected antibiotics using the risk quotient method showed that
clarithromycin and doxycycline hydrochloride pose a medium risk, while lincomycin
hydrochloride, sulfamethoxazole, meperidine, ofloxacin, enrofloxacin, sulfadiazine, rox-
ithromycin, sulfapyridine, sulfadiazine and ciprofloxacin pose a low risk according to their
concentrations in the water bodies of the Yellow River Estuary.
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Abstract: Oral reference dose (RfD) is a key parameter for deriving the human health ambient water
quality criteria (AWQC) for non-carcinogenic substances. In this study, a non-experimental approach
was used to calculate the RfD values, which explore the potential correlation between toxicity and
physicochemical characteristics and the chemical structure of pesticides. The molecular descriptors
of contaminants were calculated using T.E.S.T software from EPA, and a prediction model was
developed using a stepwise multiple linear regression (MLR) approaches. Approximately 95% and
85% of the data points differ by less than 10-fold and 5-fold between predicted values and true values,
respectively, which improves the efficiency of RfD calculation. The model prediction values have
certain reference values in the absence of experimental data, which is beneficial to the advancement
of contaminant health risk assessment. In addition, using the prediction model constructed in this
manuscript, the RfD values of two pesticide substances in the list of priority pollutants are calculated
to derive human health water quality criteria. Furthermore, an initial assessment of the health risk
was performed by the quotient value method based on the human health water quality criteria
calculated by the prediction model.

Keywords: reference dose; molecular descriptor; multiple liner stepwise regression; ambient water
quality criteria; health risk assessment

1. Introduction

Water environmental quality criteria are the maximum dose or level of pollutants
or harmful factors in the water environment that do not have harmful effects on human
health and water ecosystems [1]. The oral reference dose (RfD) is an evaluation metric
presented by the US Environmental Protection Agency (EPA) to evaluate the risk of non-
carcinogens [2]. It is the estimate of the mean daily dose of exogenous compounds, which is
commonly defined as the amount of a chemical to which a person can be exposed on a daily
basis over an extended period of time (usually a lifetime) without suffering a deleterious
effect. It is an important component of the risk characterization of chemical substances and
is also one of the important parameters for the development of water quality criteria for
the non-carcinogenic effects of pollutants. RfD was first proposed in a report published by
the US Environmental Protection Agency (EPA) in 1988, before which the acceptable daily
intake (ADI) was more widely used in the field of toxicology and risk management [3].
Since ADI has some limitations in the field of risk assessment and control, the concept of
RfD was introduced to promote consistency in the risk assessment of non-carcinogenic
chemicals. The threshold of toxicological concern (TTC) is another important parameter in
the field of chemical substance risk assessment. However, the TTC method is not suitable
for assessing the safety of chemicals for which toxicological data are required [4].
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RfD is an estimate of the average daily exposure dose of exogenous chemicals in
environmental media. The two main traditional methods for calculating RfD are the
NOAEL/LOAEL method and the benchmark dose method (BMDL) [5,6], and the RfD value
is derived by the uncertainty factor UF and the correction factor MF by these traditional
methods [7]. These derivation methods require a large investment of time for exposure
experiments on mammals [8–10]. Since the U.S. EPA issued risk assessment guidelines in
the 1980s, RfD values have been obtained for only a few hundred chemical substances [2],
so the traditional methods for obtaining RfD are inefficient and constrain the health risk
assessment studies of chemical substances. Additionally, the National Science Board
proposed in its 2007 report that the study of hazards and risks of contaminants in the
environment should make greater use of modern scientific tools and systematic data
integration, replacing traditional toxicological methods based on animal experiments [11].

In recent years, a number of studies have used modeling approaches to predict the
toxic effects of contaminants [12,13], watershed-scale ecological sensitivity [14], and to
achieve toxicity extrapolation among congeners to assess the risk of environmental con-
taminants [15]. Among these model-building methods, the quantitative structure–activity
relationship method is a modeling approach based on the correlation between biological
activity and molecular structure, which is widely recognized in the field of toxicology and
pharmaceutical research [16–18].

In previous studies, NOAEL prediction using chemical SMILES structures, considering
only a single kind of descriptors, may ignore the role of certain dominant descriptors [19–21].
Toropova built prediction models for NOAEL by SMILES [20]. The R2 of the six models
ranged between 0.52~0.78. This indicates that these models have poor predictive perfor-
mance. Moreover, the prediction models developed in some studies only describe the toxic
effects of chemicals on some organs, which has some limitations in prediction effects [22].
In addition, when calculating RfD values indirectly by the predicted values of NOAEL and
LOAEL, it is difficult to fix the values of uncertainty factors generated by exposure time
and experimental animals [23], and the critical endpoints are difficult to define. Although
the benchmark dose method makes specific improvements to the NOAEL-based method, it
does not address the problems related to non-carcinogenic risk evaluation [24]. Therefore,
in the present study, a non-experimental method was considered for the derivation of
reference dose values for pesticide-class substances. The toxicity of organic pesticides is
closely related to the type and number of functional groups carried by their molecules, in
this case, quantitative structure–activity relationship methods may be more effective in the
prediction of the physicochemical properties of such substances.

Pesticide poisoning poses a serious threat to aquatic ecosystems. Many of these
organisms are highly toxic even at very low concentrations [25]. In China, the rapid
development of agriculture and the massive production of pesticides has resulted in the
release of large quantities of pesticides into the environment, which are very dangerous due
to their extreme toxicity, persistence, and bioaccumulation, posing a major challenge to the
safety of ecosystems [26]. Even at concentrations below established lethal thresholds, some
pesticides can cause fish kills [27]. For some species, such as carp and salmon, exposure
to sublethal concentrations of pesticides can lead to abnormal behavior [27]. In addition,
aquatic plants can be endangered or even die under the action of high concentrations of
herbicides [28]. Various types of pesticides are currently detected in various environmental
media such as water, soil, air, and in animals and humans, and their effects on human
health cannot be overlooked [29]. Therefore, pesticide risk assessment and control in China
now appear warranted, and the development of local water quality standards for pesticides
is urgent.

In order to address the limitations of traditional methods and avoid the interference
of uncertainty factors and critical values, this study uses a non-experimental method for
predicting the RfD of pesticides directly. The data were collected from a public database
called Integrated Risk Information System (IRIS, https://cfpub.epa.gov/ncea/iris/search/
(accessed on 27 July 2022)) and molecular descriptors were calculated based on molecular
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similarity [30,31]. It fills the data gap of RfD values of chemicals and explores the potential
association between toxicity and physicochemical characteristics and chemical structure of
pesticides. In addition, the predictive model constructed in this study is used to calculate the
RfD values of priority pesticides. The exposure parameters, bioaccumulation coefficients,
and other relevant indigenous parameters used to derive the indigenous human health
water quality criteria values were determined through the survey data.

2. Materials and Methods

2.1. Dataset

Quantitative structure–activity relationship models could establish a quantitative
relationship between chemical structures and their properties [32]. These computational
models are used to predict physicochemical properties of similar compounds that currently
lack of experimental data. In this study, the negative log of the reference dose was chosen
as the model response value. The source data sets used in this study originate from IRIS,
which contains risk information on the cancer and noncancer effects of chemicals, including
oral reference dose which depends on the exposure pathway. There are 109 species of
pesticide class chemicals that have been included in IRIS which have defined RfD.

The key to obtaining an ideal prediction model is reasonable molecular descriptors.
The molecular descriptors of these pesticides were calculated with T.E.S.T. software men-
tioned by EPA’s official website. This has resulted in 797 descriptors corresponding to
12 descriptor classes. In addition, the screen of the molecular descriptors above was per-
formed by following principles: (1) deleting the descriptors that a variance of 0; (2) deleting
the descriptors that have a number of non-zero values less than 10%; (3) deleting one of two
descriptors that the correlation coefficients greater than 0.90. After the above pre-processing,
372 descriptors remained for the prediction analysis.

2.2. Model Building

The preprocessed set of molecular descriptors was used as the independent variable
X, and the negative log of the reference dose RfD value (−logRfD) was used as the de-
pendent variable Y. The multivariate stepwise linear regression method in SPSS software
(version 26.0, IBM Inc. Chicago, IL, USA) was applied to establish the regression model
between molecular descriptors and −logRfD. Moreover, the variance inflation factor (VIP)
was used to verify whether there was multicollinearity among the descriptors in the model,
and Durbin–Watson values (D-W) were used to test the model autocorrelation. In the total
data set, 70~80% were randomly selected for the training set and 20~30% for the test set.
Internal validation and external validation were used to verify the predictive ability and
robustness of the model. The model was also used to predict the RfD of EPA-released
priority pesticides lacking RfD values.

2.3. Derivation of Human Health Water Quality Criteria

This study focuses on the non-carcinogenic effects of p-p’DDE and α-HCH, and the
human health water quality criteria are derived according to the Technical Guideline for
Deriving Water Quality Criteria for the Protection of Human Health [33]. The human health
ambient water quality criteria (AWQC) for non-carcinogenic effect is calculated according
to the following equation:

AWQC = RfD·RSC·
(

BW
DI + ∑4

i=2(FIi·BAFi)

)
(1)

where RfD is the reference dose (mg · kg−1 · d−1) for non-carcinogenic effects; RSC is the
relative source contribution to account for non-source exposures; BW is body weight (kg);
DI is drinking water intake (L · d−1); FIi is intake of aquatic products (kg · d−1) for each
trophic levels (i = 2, 3, 4); BAFi is the bioaccumulation factor (L · kg−1) for each trophic
level (i = 2, 3, 4).
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The RfD values were adopted from the predicted values of the predictive model con-
structed in this study, and the rest of the relevant parameters required for the derivation of
water quality criteria for human health were referred to the relevant data in the Exposure
Factors Handbook of Chinese Population (Adult Volume) [34] and the Nutrition and Dietary
Guidelines for Chinese Residents [35]. In addition, both p-p’DDE and α-HCH are non-ionic
organics, and the bioaccumulation factors were determined by using laboratory BCF and
food chain multiplication factors with reference to the derivation method of bioaccumula-
tion factors in the technical guideline and the framework of derivation method selection in
human health methodology [6]. The baseline BAF level final trophic level BAF is calculated
as follows:

BLBAF = FCM·
(

BCF
ffd

− 1
)
· 1
fl

(2)

FBAF = (BL_BAF·fl + 1)·ffd (3)

where BCF is the bioconcentration factor (L · kg−1); FCM is the food chain multiplication
factor; fl is the fraction of lipids in biological tissues; and ffd is the fraction of free dissolved
state of the chemical in the aqueous environment, which is calculated as follows:

ffd =
1

1 + POC·Kow + DOC·0.08Kow
(4)

where POC is the concentration of particulate organic carbon in water (kg · L−1); DOC is
the concentration of dissolved organic carbon in water (kg · L−1); Kow is the octanol-water
partition coefficient of the chemical.

2.4. Health Risk Assessment

The quotient method was used in this study to evaluate the health risks of p-p’DDE
and α-HCH in the aqueous environment with the following equations:

HQ = EEC/AWQC (5)

where EEC is the environmental exposure concentration in the water environment; AWQC
is the human health water quality criteria. According to the size of the HQ value, the
potential risk of pollutants can be divided into the following levels: HQ < 0.1000, no risk;
0.1000 ≤ HQ ≤ 1.000, there is a low risk; 1.000 ≤ HQ ≤ 10.00, there is an intermediate risk;
HQ > 10.00, there is a high risk.

3. Results and Discussion

3.1. Prediction Models for Pesticide Class Chemicals

The 109 molecules were randomly divided into a training set and a test set contain-
ing 80 and 29 molecules, respectively. The predictor variables were selected among the
remaining 372 molecular descriptors after the primary screening, and multiple stepwise
regression analysis was performed to build a model for the training set, and the test set
was used as an external validation to evaluate the predictive ability of the model. Figure
S1 shows the relationship between Radj

2 and the number of molecular descriptors used to
determine the number of descriptors in the model to prevent model overfitting.

The optimal MLR model and the descriptor obtained are shown in the following
equation:

LogRfD = 1.468  0.483 × Ui + 0.361 × ATS1m  0.195 × MAXDP + 0.265 × xp9  0.312 
× SdssC_acnt + 1.516 × ssi  0.108 × SHHBd  0.559 × MATS8e  1.162 × MATS2m + 

0.76 × MATS2e + 0.097 × SsssCH_acnt + 0.108 × piPC08 

 

The meaning of each descriptor is shown in Table 1.
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Table 1. The concept of different descriptors included in model.

No Descriptor Description

1 Ui Unsaturation index

2 ATS1m Broto–Moreau autocorrelation of a topological structure—lag
1/weighted by atomic masses

3 MAXDP Maximal electrotopological positive variation
4 xp9 Simple 9th order path chi index
5 SdssC_acnt Count of (=C<)

6 ssi Standardized Shannon Information or standardized
information content

7 SHHBd Sum of E-State indices for hydrogen bond donors

8 MATS8e Moran autocorrelation—lag 8/weighted by atomic Sanderson
electronegativities

9 MATS2m Moran autocorrelation—lag 2/weighted by atomic masses

10 MATS2e Moran autocorrelation—lag 2/weighted by atomic Sanderson
electronegativities

11 SsssCH_acnt Count of (>CH–)
12 piPC08 Molecular multiple path count of order 08

Based on the results of the t-test, it is clear that the descriptor Ui contributes the most
to the model and is the most important molecular descriptor associated with pesticide
RfD. The VIP values of all independent variables in the model were less than 5, indicating
low autocorrelation among the respective variables, and therefore the descriptors were
chosen reasonably. As can be seen from the information in Figure 1 all data points are
relatively evenly distributed around the diagonal line for both the training set samples and
the test set samples, with no particularly obvious outliers, indicating that the model has a
good fitting estimation ability for the training samples and good prediction ability for the
external compounds.
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Figure 1. Graphical representation of predicted −logRfD versus observed −logRfD. The squares
refer to data in training set and the dots are data in test set. The actual and predicted values of the
negative logarithm of RfD are the abscissa and ordinate, respectively.

The statistical parameters of the MLR model are shown in Table 2. The results of
Rtra

2 = 0.762, and p < 0.05, indicate that the model built by the selected descriptors has
a good fit. Additionally, the Durbin–Watson test (D-W test) is the most commonly used
method to test the autocorrelation of the model [36]. The closer the DW value is to 2, the
less autocorrelation there is in the model, and the model is acceptable when 1.5 < DW < 2.5.
In this study, the DW value (1.952) indicates that the correlation between the descriptors
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and the model is good. As indicated by the external validation results, Rtes
2 = 0.683 and

RMSEP = 0.434, which indicates that the model has good stability and good external pre-
diction ability. The cross-validation could be used for describing the fitting effect on the
training set, and cross-validation correlation coefficients (q2) are expected to be greater than
0.5. The dataset modeled in this paper contains only 109 compounds, so it is not suitable
to divide the independent validation set. Consequently, the hold-out cross-validation
method was chosen to evaluate the validity of the model performance. To further verify the
reliability of the model, the validation method proposed by Roy for external testers is used,
and k = 0.983 > 0.88 and k’ = 1.016 < 1.15 are obtained, which satisfy the corresponding val-
idation requirements [37]. This indicates that there is no systematic error in the model itself
that would cause the prediction results to deviate in a particular direction. The combination
of the above results indicates that the predictive ability of the model is acceptable.

Table 2. The description and statistical information of the predictive model.

N Rtra
2 Rtes

2 RMSEP p D-W q2 k k’

12 0.762 0.683 0.434 <0.05 1.952 0.648 0.983 1.016

The relationship between the predicted and actual values of −log RfD obtained from
the MLR model is shown in Figure 1. Comparing the actual RfD values with those predicted
by the model (Figure 2), it can be seen that for the vast majority of pollutants (>95%), the
difference between the true and predicted values is within a factor of 10, and for most
(>85%) pollutants the difference between the actual and predicted values is within a factor
of 5. Consequently, the consistency between predicted and actual values also proved the
accuracy of the predictive models.
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Figure 2. Comparison of observed and MLR-predicted RfD. The squares refer to data in training
set and the dots are data in test set. The solid line represents the 1:1 line, while dot-dash lines and
short-dashed lines represent a 5-fold and 10-fold difference, respectively, between these values.

The predicted RfD values of the two pesticides mentioned are 0.01271 mg · kg−1 · d−1

and 0.0002124 mg · kg−1 · d−1, respectively, which are obtained by the above equation
with the corresponding molecular parameters. From the biological conception, the RfD
values of these pesticides in this manuscript are identified as 0.01 mg · kg−1 · d−1 and
0.0002 mg · kg−1 · d−1.
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3.2. Determination of Other Water Quality Criteria Parameters

The lipid fraction values were calculated using the average value of lipids of each
species as the default value. The lgKow value of p-p’DDE is 6.76 and the lgKow value
of α-HCH is 3.69, which obtained from the data disclosed on the official website of EPA.
From Equation (4), the free dissolved state of p-p’DDE and α-HCH are 0.0319 and 0.9753,
respectively.

According to the derivation steps of non-ionic organic compound bioaccumulation
factors in the technical guideline, the baseline bioaccumulation factors and final trophic
level bioaccumulation factors were calculated for different trophic levels, and the required
parameter values and calculation results are shown in Table 3.

Table 3. Bioaccumulation factor parameters and calculated values.

Trophic
Levels

fl Compounds FCM BL-BAF F-BAF

2 0.019
p-p’DDE 1.000 5.33 × 107 3.24 × 104

α-HCH 1.000 1.97 × 104 365

3 0.026
p-p’DDE 13.30 5.18 × 108 4.30 × 105

α-HCH 24.70 3.55 × 105 9.00 × 103

4 0.030
p-p’DDE 1.128 3.81 × 107 3.65 × 104

α-HCH 1.003 1.25 × 104 366

In the water quality criteria derivation formula, the human body weight BW and
daily water intake DI refer to the handbook mentioned above published by the Ministry
of Environmental Protection in 2013. The average body weight of adults over 18 years
old in China is 60.6 kg, and the daily water intake is 1.85 L · d−1. Moreover, the intake of
water products at each trophic level refers to the recommended values in the Nutrition and
Dietary Guidelines for Chinese Residents [35]. The relative source contribution rate was
taken with reference to the exposure decision tree method in the technical guidelines, and
finally, the 20% default value was used as the RSC value in this study. The RfD value was
the predicted value of the model constructed in this manuscript. The localized parameters
required to calculate the human health water quality criteria were shown in Table 4. After
calculating by Eq 1, the human health water quality criteria of p-p’DDE and α-HCH are
0.03 μg · L−1 and 0.02 μg · L−1, respectively.

Table 4. Statistical table of human health water quality parameters.

Compounds
RfD BW DI FIi/kg · d−1 BAF/L · kg−1

mg · kg−1 · d−1 kg L · d−1 FI2 FI3 FI4 2 3 4

p-p’DDE 0.01
60.60 1.850 0.0126 0.0100 0.0075

3.24 × 104 4.30 × 105 3.65 × 104

α-HCH 0.0002 365 9.00 × 103 366

3.3. Health Risk Assessment

Organochlorine pesticides are highly fat-soluble and can enter the human body and
animals through the food chain and can accumulate in the visceral tissues. Therefore,
the health risk caused by organochlorine pesticides is of concern. In this study, the risk
assessment of p-p’DDE and α-HCH in a domestic water environment was performed by
the Hazard Quotient method (HQ) of Equation (5). The exposure concentrations used
are the publicly released survey data in recent years, involving 192 and 254 sampling
locations, respectively. In addition, the specific information is shown in Supplementary
Table S1. The exposure concentration of p-p’DDE at the sampling sites ranged from 0.002
to 139 ng/L, with 49% of the sites having HQ values less than 0.1000; 18% of the sites
had HQ values between 0.1000 and 1.000; and 33% of the sites had HQ values between
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1.000 and 10.00. The exposure concentration of α-HCH at each sampling site ranged from
0.0151 to 297 ng/L, 60% of the sites had HQ values less than 0.1000; 36% of the sites had
HQ values between 0.1000 and 1.000; and 4% of the sites had HQ values between 1.000
and 10.00. The median values of the monitored concentrations were used to represent
the exposure levels of pollutants in the domestic water environment, and the HQ values
of the two pollutants were calculated to be 0.13 and 0.08, respectively. The results show
that at the current exposure levels, α-HCH basically poses no health risk to the residents
around the watershed, and p-p’DDE poses a lower health risk to the residents. Based on
the potential human health risks of organochlorine pesticides, it is necessary to control the
pollution problems in the corresponding areas to ensure the water safety of the residents in
these areas.

4. Conclusions

Currently, the development of water quality criteria and risk assessment of pesticide
compounds is an issue of concern. Moreover, RfD is a key parameter of water quality
criteria derivation. In this paper, through a non-experimental method, the RfD prediction
model was constructed using molecular descriptors for the derivation of human health
water quality criteria values. In the absence of experimental data, the predicted value of the
model has a certain reference value, which is conducive to the advancement of pollutant
health risk assessment.

The model obtained in this paper has good model stability in terms of statistics
(Rtra2 = 0.762, Rtes2 = 0.683, RMSEP = 0.434). In a previous study, Mazzatorta used
MLR to build prediction models for LOAEL [21], which had 15 descriptors (R2 = 0.50,
RMSE = 0.727). Consequently, the predictive model for RfD inheres has higher reliability.
In addition, some researchers used the QSAR approach to model the extrapolation of
toxicity between BETX [15], and 81% of the species had a prediction error of 10 times
or less. In this study, for the vast majority of pollutants (>95%), the difference between
the true and predicted values is within a factor of 10, and for most (>85%) pollutants the
difference between the actual and predicted values is within a factor of 5. In summary, the
RfD prediction model in this paper has higher reliability.

The human health water quality criteria of p-p’DDE and α-HCH based on localized
parameters are 0.03 μg · L−1 and 0.02 μg · L−1, respectively. Moreover, the quotient method
was used to make a preliminary evaluation of the health risks of p-p’DDE and α-HCH in
the water environment. The results demonstrated that, under the current exposure level,
p-p’DDE is basically no health risk to the residents around the watershed, and α-HCH
produces a lower health risk to the residents. This result may be due to the fact that p-
p’DDE has a higher bioaccumulation factor and is therefore potentially more hazardous to
human health.

Although there are important discoveries revealed by these studies, there are also
limitations. Since there are only about 300 compounds with clearly defined RfD values in
the IRIS system, even fewer pollutants meet the requirements of this study. Consequently,
the dataset used in this paper contains only 109 compounds, which is a limited sample size.
Therefore, if more compounds are added to the IRIS system in the future, this study should
increase the sample size to optimize the model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11040318/s1, Figure S1: The relationship between Radj

2 and
the number of molecular descriptors; Table S1: Parameters of health risk assessment in water
environmental. References [38–43] are cited in the Supplementary Materials.
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Abstract: Phthalate esters (PAEs) are frequently tracked in water environments worldwide. As
a typical class of endocrine disruptor chemicals (EDCs), PAEs posed adverse effects on aquatic
organisms at low concentration. Thus, they have attracted wide attention in recent years. In the
present study, the concentrations of seven typical PAEs from 30 sampling sites in Baiyangdian Lake
were measured, and the environmental exposure data of PAEs were gathered in typical rivers in
China. Then, based on the aquatic life criteria (ALCs) derived from the reproductive toxicity data of
aquatic organisms, two risk assessment methods, including hazard quotient (HQ) and probabilistic
ecological risk assessment (PERA), were adopted to evaluate the ecological risks of PAEs in water.
The sediment quality criteria (SQCs) of DEHP, DBP, BBP, DIBP and DEP were deduced based on
the equilibrium partitioning method. Combined with the gathered environmental exposure data of
seven PAEs in sediments from typical rivers in China, the ecological risk assessments of five PAEs in
sediment were conducted only by the HQ method. The results of ecological risk assessment showed
that in terms of water, DBP and DIBP posed low risk, while the risk of DEHP in Baiyangdian Lake
cannot be ignored and should receive attention. In typical rivers in China, BBP and DEP posed no
risk, while DIBP and DBP posed potential risk. Meanwhile, DEHP posed a high ecological risk. As
far as sediment is concerned, DBP posed a high risk in some typical rivers in China, and the other
rivers had medium risk. DEHP posed a high risk only in a few rivers and low to medium risk in
others. This study provides an important reference for the protection of aquatic organisms and the
risk management of PAEs in China.

Keywords: phthalate esters; reproductive toxicity; aquatic life criteria; sediment quality criteria;
ecological risk assessment

1. Introduction

Phthalate esters (PAEs), also known as phenolic acid ester, are intensively applied
in plastic products as plasticizers to improve their elasticity, toughness and durability. In
addition, PAEs are widely used in the production of paints, pesticides, fertilizers, herbicides,
pesticides, solvents and cosmetics. It is reported that in 2014, PAEs accounted for 70% of
the 8.4 million tons of plasticizers produced worldwide, and they will continue to grow
at a high rate of 3.9% over the next 5 years [1]. Li et al. found that the total amount of
PAEs consumed in China reached 2.2 million tons in 2011 alone [2]. Since PAEs do not
chemically bond with polymer molecules of plastic products, they are easy to dissociate
from the above products and leach into the environment under certain conditions [3,4].
After the mass production, use and disposal of substances containing PAEs, their pollution
is distributed in various environments around the world, including air, soil, sediment,
landfill leachate, urban runoff and natural water [5–7]. PAEs mainly enter the water
environment through the discharge of domestic sewage and industrial wastewater, the
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input of surface runoff from agricultural and urban areas, and the dry and wet settlement of
the atmosphere [8–10]. Then, they settle in the bottom sediment with particulate matter and
accumulate continuously. Therefore, the concentrations of PAEs are relatively high in the
sediments [11]. With the migration and transformation of PAEs in different environments
and the long-distance transport in the global scale, PAEs has become a kind of global
organic pollutant that is widely detected in rivers, lakes, reservoirs and their sediments
around the world. For example, Vietnamese scholar Le et al. conducted a survey in six lakes
including Tien Quang Lake in Vietnam and found that the highest concentration of PAEs
reached 127 μg/L [12]. The highest concentration of PAEs was 4.64 μg/L in the Kaveri River
in India [13]. Liu et al. investigated di (2-ethylhexyl) phthalate (DEHP) in 31 surface waters
of seven major river basins in China, and the results showed that the concentration of DEHP
ranged from 0.01000 to 2634 μg/L, among which the pollution of PAEs in Xuanwu Lake and
Anshan Urban Rivers were the most serious, and the concentration was as high as 1.3 × 103

and 1.3 × 104 μg/L, respectively [14]. Li et al. studied the PAEs in the sediments of urban
rivers in northeast China and found that the total concentration of PAEs in the sediment of
Xi River, a tributary of Liao River, ranged from 22.4 to 369 μg/g dw, and the pollution of
PAEs in the sediment was more serious [2]. Since PAEs are difficult to be degraded and
have a high degree of bioaccumulation, they can produce reproductive, developmental
and neurotoxic effects on aquatic organisms after entering the aquatic environment [15].
Otherwise, they can enter the human body through different exposure pathways, causing
reproductive and developmental toxicity and even carcinogenesis [16,17]. The United States
Environmental Protection Agency (EPA) has listed six PAEs including dimethyl phthalate
(DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl-benzyl phthalate (BBP),
di-n-octyl phthalate (DOP) and DEHP in the 129 environmental priority pollutants field [18].
China also listed DBP, DMP and DOP as environmental priority pollutants [19].

ALC refers to the maximum concentration of pollutants that do not cause short-
term or long-term adverse effects and harm to aquatic organisms [20]. Species sensitivity
distribution (SSD) is an important extrapolation method, which can be used to derive
ALCs from toxicological data of pollutants and extrapolate the corresponding pollutants
concentration (HCx) for a target percentage of species affected [21]. Lethal effect is usually
taken as the toxicity endpoint to construct SSD when deriving ALCs of conventional
pollutants such as ammonia nitrogen and heavy metals, while PAEs as a typical class of
EDCs that generally affect the reproduction of organisms at low concentrations [22,23].
Thus, ALCs derived from PAEs based on a lethal toxicity endpoint cannot provide sufficient
protection for aquatic organisms. Previous studies have shown that reproductive toxicity
endpoints were the most sensitive for EDCs [24,25], and reproductive toxicity includes
fertility, fertilization rate, hatchability, gonadal index that lasts for multiple generations,
and the synthesis of vitellogenin (VTG) [26]. Therefore, reproduction was the most suitable
endpoint for deriving the ALCs of PAEs.

For the derivation of PAEs sediment quality criteria (SQC), considering that there
are few studies on sediment benthic and the toxicity data are not enough to construct
SSD, the equilibrium partitioning method recommended in the European Union Technical
Guidelines for Risk Assessment (TGD) is referred. The equilibrium distribution method is
applicable to nonionic organic compounds with lgKow (logarithm of octanol–water partition
coefficient) > 3. This method is based on the following assumptions: (1) the organisms
living in the sediment environment and in water have the same sensitivity to pollutants;
(2) the concentrations of pollutants in sediment, interstitial water and benthic organisms
are in thermodynamic equilibrium, and the equilibrium partition coefficient can be used to
predict the concentration of pollutants in any phase.

Ecological risk assessment (ERA) refers to the assessment of the possibility of adverse
ecological consequences after the ecosystem is affected by one or more stress factors [27].
The hazard quotient (HQ) is a point estimate method of ecological risk, which has the ad-
vantages of simplicity and low data requirement. However, the magnitude and probability
of occurrence of ecological risk of pollutants cannot be evaluated by the HQ method, and it
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is only applicable to preliminary risk assessment [28,29]. Probabilistic ecological risk as-
sessment (PERA) is a higher level ecological risk assessment method [28]. Joint probability
curve (JPC) is one of the commonly used methods of probabilistic risk assessment. This
curve is fitted based on the toxicity data and exposure data, which reflects the probability
that the exposure concentration exceeds the corresponding critical concentration at different
damage levels, that is, the risk degree of pollutants in the environment to aquatic organisms
at different damage levels, and the probability of adverse effects concentration (HCx) of
pollutants in water on a target percentage of aquatic organisms can be obtained [25,30]. The
closer the joint probability curve is to the x axis, the less the aquatic organisms are affected
by pollutants, and the less the occurrence probability of ecological risk of water. Each point
on the JPC represents the probability that a target percentage of organisms being affected
(events) will occur in the target water (the evaluation object).

As a global organic pollutant, PAEs are clearly harmful to the environment. However,
a large number of PAEs are still used every year and are constantly released into the
environment from production and living activities, affecting and endangering biosecurity
and even ecosystem stability. Baiyangdian Lake is the largest freshwater lake in the
North China Plain and Xiongan; the new area attaches great importance to the water
environment. This study conducted a comprehensive field investigation on Baiyangdian
Lake and assessed the ecological risk of PAEs, which can effectively control the pollution of
PAEs and provide data support and a theoretical basis for the formulation of water quality
standards and the prevention and control of PAEs pollution in the future.

2. Material and Methods

2.1. Solvents and Chemical Standards

DEHP, DBP, BBP, DEP, DMP, DOP and DIBP were investigated in this work, and their
characteristics are summarized in Table S1. Methanol (pesticide grade) was purchased from
J.T. Baker Co. USA. Hydrochloric acid, ethyl acetate and dichloromethane (pesticide grade)
were purchased from Bailingwei Company (Beijing, China). A mixed standard solution of
the 6 PAEs was used. Benzyl benzoate (BBZ) was used as the internal standard, and these
substances were all obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Sample Collection and Preparation

Sampling sites were set based on the Baiyangdian Lake entrance, the interchange, the
farmland area, the living area, etc., and a total of 15 sites were arranged on 8 rivers which
entering the Baiyangdian Lake. Then, according to the national control monitoring sites
and 40 lakes in Baiyangdian Lake, 15 sites were arranged, so 30 sites in total were arranged
in Baiyangdian Lake. The sites distribution and the concentration of PAEs at each site are
shown in Figure 1. In April 2019, water samples were collected in 2 L brown glass bottles.
The sample bottles were cleaned with tap water, distilled water and methanol, respectively,
in the laboratory for 3 times in advance, and then, they were moistened and washed with
on-site water 3 times. After the samples were collected, the pH was adjusted to 2.0 with
4 mol·L−1 hydrochloric acid (to inhibit microbial activity), and the samples were stored in
a refrigerator and transported back to the laboratory for pretreatment within 24 h.

The preparation of the water samples prepared for gas chromatography mass spec-
trometry (GC-MS) was performed. Firstly, 0.45 μm glass fiber filters (GF/F, Whatman, UK)
were pre-burned for 4 h in a muffle furnace at 400 ◦C, and then, 1 L water samples were
filtered using the filters. Secondly, solid phase extraction was performed. Before concen-
trating and enriching the sample, C18 solid phase extraction columns (BOJIN SPE Column
C18) were activated with 5 mL dichloromethane, 5 mL ethyl acetate, 1 mL methanol and
10 mL ultrapure water, respectively. The controlled flow rate of the C18 SPE Columns
was 3 mL·min−1. The sample bottles were cleaned with 5 mL ethyl acetate and entered
into the collection bottle through the C18 SPE columns; then, they were cleaned with
5 mL dichloromethane and entered into the same collection bottle through the C18 SPE
columns. Finally, the sample extracts were blown to nearly dry with nitrogen at 45 ◦C and
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reconstituted to 1 mL by adding 5 μL BBZ and ethyl acetate, after which they were sealed
and stored at 4 ◦C before GC/MS analysis. After extraction, the C18 SPE columns were
rinsed with 10 mL ultrapure water and then blown with nitrogen for 5 min to remove water.

Figure 1. Location of sampling sites and PAEs concentration in Baiyangdian Lake.

2.3. Chemical Analysis

The analysis of sample extracts was conducted by a GC-MS system (Aglient7890-
5975 C) with a DB-5 capillary column (30 m × 0.25 mm × 0.25 μm) (Agilent Technologies,
Santa Clara, CA, USA). The oven temperature starts at 70 ◦C and was maintained for 2 min;
then, it increased to 180 ◦C at 40 ◦C/min and was maintained for 2 min, and finally, it
increased to 280 ◦C at 10 ◦C/min for 2 min. The samples were injected in splitless mode
with helium as the carrier gas at a flow rate of 1 mL/min. The transfer line, quadrupole
and ion source were 290 ◦C, 150 ◦C and 230 ◦C, respectively. The system was operated in
electron impact (EI) and scan modes.

The instrument required for testing should be recalibrated daily according to the
calibration standard before use, and the sample should also be processed with the program
blank in order to improve the accuracy of data [31]. The recoveries of the PAEs in the water
samples were 85.60–116.7%. The PAEs were calibrated with BBZ and recoveries of 94.8% in
the water. The detection limits (signal to noise ratio = 3) for the PAEs were 0.060–0.84 ng/L
for water.

2.4. Collection of Data

(1) Toxicity data

The toxicity data of PAEs were obtained from the ECOTOX database (https://cfpub.
epa.gov/ecotox, accessed on 1 September 2021), the Web of Science database, the CNKI
database and other published literature. However, the screening of toxicity data was only
based on reproductive-related endpoints, such as fertility, fertilization rate, hatchability, go-
nadal index that lasts for multiple generations, and the synthesis of vitellogenin (VTG). The
screening principles for toxicity data must be followed. No observed effect concentration
(NOEC) was selected as the preferred toxicity endpoint data. The maximum acceptable
toxicant concentration (MATC) was used when NOEC was not available. If neither NOEC
nor MATC were available, the lowest observed effect concentration (LOEC) or 10% effec-
tive concentration (EC10) value was used. The toxicity data of four PAEs are shown in
Tables S2 and S3. In order to avoid possible data bias due to similar species and observed
duration, the geometric mean value was adopted [32].
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(2) Exposure data

In order to compare with the PAEs pollution in Baiyangdian Lake, the exposure data
of PAEs in freshwater such as rivers, lakes and reservoirs and their sediments in China were
also collected from the Web of Science database, the CNKI database and other published
literature from 2007 to 2019.

2.5. Deriving of ALCs and SQCs for PAEs

(1) Deriving of ALCs

To construct SSDs based on the method of technical guideline [33].
For the chronic toxicity data collected, the MATC of reproductive toxicity of a species

was calculated by the following formula:

MATCi,z =
√

NOECi,z × LOECi,z (1)

where:
MATC = maximum acceptable toxicant concentration, mg/L or μg/L;
NOEC = no observed effect concentration, mg/L or μg/L;
LOEC = lowest observed effect concentration, mg/L or μg/L;
i = a certain species, dimensionless;
z = a toxic effect, dimensionless.
Then, chronic toxicity data (MATC, EC10, EC20, NOEC, LOEC, EC50 and LC50) were

used as growth or reproductive CTV, and LC50 was used as survival CTV, which were
substituted into Formula (3) to calculate the growth CVE, reproductive CVE and survival
CVE of each species. This study calculated the reproductive CVE of each species.

CVEi,j = n
√

CTVi,j,1 × CTVi,j,2 × . . . × CTVi,j,n (2)

where
CVE = chronic value for the same effect, μg/L or mg/L;
i = a certain species, dimensionless;
j = types of chronic toxic effects, generally classified as growth, survival and reproduc-

tion, dimensionless;
CTV = chronic toxicity value, mg/L or μg/L;
n = the number of CTV.
Arrange lgCVE from small to large, determine its rank R, and adopt Formula (3) to

calculate the chronic cumulative frequency FR of species.

FR =
∑R

1 f
N + 1

× 100% (3)

where
FR = cumulative frequency, %;
R = the rank of toxicity value, dimensionless;
f = frequency, refers to the number of species corresponding to the rank of

toxicity value;
N = the sum of all the frequencies.
In addition, with lgCVE as independent variable x, and the corresponding cumulative

frequency FR as dependent variable y, the SSD model was fitted by the log-logistic distribu-
tion, which was a good-fitting model for SSD (Figure 2) [21]. The hazardous concentration
for 5% species affected (HC5) was calculated from the SSD curves.
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Figure 2. Species sensitivity distribution curves of PAEs.

Then, ALC is calculated as the HC5 divided by an assessment factor of 3, because
the number of species included in effective toxicity data was less than or equal to 15. The
results are shown in Table 1. Since the amount of toxicity data of DIBP does not meet the
minimum data requirements of SSD, the ALC of DIBP obtained by the assessment factor
method was 0.90000 μg/L, and the AF value of 1000 was taken into account as the “worst
case” in the ecological risk assessment [34].

Table 1. Parameters of SSDs for four PAEs (exclude DIBP).

PAEs N Mean HC5 (μg/L) ALC (μg/L) SQC (μg/g dw)

DEHP 12 223.44 0.87000 0.29000 0.77604
DBP 14 3009.4 2.8100 0.93667 0.76115
BBP 7 7427.7 2.9700 0.99000 0.88773
DEP 8 10,862 15.830 5.2767 4.1376
DIBP - - - 0.90000 0.050000

-: No data. N: Number.

(2) Deriving of SQCs

The SQCs measured by wet mass were derived using the equilibrium partitioning
method [35], and the formulas are as follows:

SQCwet mass =
Ksusp-water

RHOsusp
× ALC × 1000 (4)

RHOsusp = Fsolidsusp × RHOsolid + Fwatersusp × RHOwater (5)

Ksusp-water = Fwatersusp + Fsolidsusp × Focsusp × Koc

1000
× RHOsolid (6)

where
SQCwet mass = sediment quality criteria measured by wet mass, mg/kg;
RHOsusp = bulk density of (wet) suspended matter, kg/m3;
Ksusp-water = partitioning coefficient in suspended matter and water, m3/m3;

170



Toxics 2023, 11, 180

Fsolidsusp = ϕ (solid matter) in suspended matter, which was defined as 0.1 m3/m3;
RHOsolid = bulk density of solid matter, which was defined as 2500 kg/m3;
Fwatersusp = ϕ(H2O) in suspended matter, which was defined as 0.9 m3/m3;
RHOwater = water density, which was defined as 1000 kg/m3;
Focsusp = organic carbon fraction of solid matter in suspended matter, 0.1 kg/kg in

this study;
Koc = pollutant organic carbon—water partitioning coefficient, L/kg, that is, the ratio

of the concentration of PAEs in sediment organic carbon and water.

2.6. Ecological Risk Assessment

In this study, two ecological risk assessment methods were used to evaluate the
ecological risks of PAEs in Baiyangdian Lake and typical rivers in China, including the
low-level HQ method and the high-level PERA method. However, only the HQ method
was used to evaluate the ecological risks of PAEs in sediments from typical rivers in China.

(1) Hazard quotient (HQ)

HQ was calculated by the Equation (7):

HQ =
EEC
ALC

or
EEC
SQC

(7)

where EEC = environmental exposure concentration, μg/L or mg/kg.
The value obtained by the HQ method can be classified into the following 4 levels to

evaluate the ecological risk [36]:
HQ ≤ 0.1, no risk;
HQ = 0.1–1.0, there is low risk;
HQ = 1.1–10, medium risk;
HQ ≥ 10, high risk.
The ecological risk assessments of PAEs in sediment also adopt the HQ method, but

the risk classification is different from water: there was high risk when HQ > 1 (the lgKow
of PAE congener was between 3 and 5) and high risk when HQ < 10 (lgKow > 5) [37]. For
PAEs with lgKow < 3, their risk to aquatic organisms was not considered, because they are
not easily adsorbed in sediment [34].

(2) Probabilistic ecological risk assessment (PERA)

Compared with the HQ method, PERA is an improved and higher ecological risk
assessment method, because it can better describe the possibility that the concentration
of a certain pollutant in water exceeds the toxic effect threshold and the risk of adverse
effects [28]. Matlab software was used to draw JPCs to evaluate the ecological risks of PAEs.
Firstly, log-normal distribution test was conducted on the exposure data of some PAEs
in Baiyangdian Lake and typical rivers in China and the chronic toxicity data of aquatic
organisms based on the endpoint of reproductive toxicity test. After that, the cumulative
function of chronic toxicity data and the anti-cumulative function of PAEs exposure data
were plotted to obtain the JPCs of PAEs [38,39].

3. Results

3.1. Occurrence and Composition of PAEs in Baiyangdian Lake

Through investigation and previous research [40], Baiyangdian Lake was divided into
five functional areas: primitive area, tourism area, living area, breeding area and inflow
area; each functional area had its own characteristics. The sampling sites were set in five
functional areas and the concentrations of PAEs in the water at each sampling site are
shown in Figure 1 and Table S4. The concentrations of seven typical PAEs were detected,
including DMP, DEP, BBP, DBP, DEHP, DOP and DIBP. The results showed that DMP, DEP,
BBP and DOP were not detected at all sampling sites, while DBP, DEHP and DIBP were
100% detected. It can be seen from Table S4 that the exposure concentrations of DBP and
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DEHP were relatively high. The highest concentration of ∑3PAEs was at sampling site 22
at a concentration of 1.3 μg/L. In addition, the concentration of ∑3PAEs at sampling sites
in the inflow rivers and inflow area were relatively high. The main reason might be that a
large number of high-water-consuming and heavily polluting industrial enterprises such as
chemical fiber, papermaking, and batteries were gathered in the upper reaches of the rivers,
resulting in a lot of industrial sewage. The inflow rivers mixed with the water in the inflow
area, which reduced the pollution concentration of ∑3PAEs. Due to the influence of human
activities, including tourism, domestic sewage discharge, and unreasonable application of
pesticides and fertilizers, the ∑3PAEs concentration of aquaculture, living areas and tourist
areas was secondary. The lowest concentration was located in the primitive area, because it
is an undeveloped area with less human intervention. Therefore, in general, the pollution
of PAEs in the inflow area was the most serious. Meanwhile, DBP and DEHP were the
most widely used PAEs, which had higher concentration in water [41].

3.2. The Ecological Risk Assessments of PAEs in Baiyangdian Lake

The ALCs of typical PAEs in this study are listed in Table 1. These values were obtained
through SSD, which were constructed based on reproductive toxicity endpoints. Because
the reproductive toxicity endpoints were more sensitive than the lethal toxicity effect
endpoint, the obtained ALCs of PAEs can avoid the adverse effect to aquatic organisms
due to long-term exposure at low concentration and can better protect aquatic organisms.

The HQs of DIBP, DBP and DEHP are shown in Table S4 and Figure 3. Obviously, the
HQs of DBP at all sampling sites were in the range of 0.1–1.0, indicating that DBP posed a
low ecological risk in Baiyangdian Lake. Moreover, in view of the DIBP, the HQs at about
86.7% of the sampling sites were also in the range of 0.1–1.0, showing that 86.7% of the
sampling sites in Baiyangdian Lake had low risk, and the HQs at other sampling sites were
less than 0.1, so the rest of the sampling had no risk. However, the HQs of DEHP were
greater than 1.1 at most sampling sites, and the HQs of the remaining sampling sites were
also in the range of 0.1–1.0, manifesting that DEHP had low or medium ecological risk.
In contrast, the ecological risks of DBP and DIBP were much lower than DEHP, but their
potential ecological risk cannot be ignored.

Figure 3. Ecological risk assessments of ∑3PAEs in Baiyangdian Lake.

Compared with the HQ method, the PERA method can better describe the ecological
risks of PAEs. JPC is one of the commonly used risk assessment methods in the process
of the PERA method. The results of the PERA method in Baiyangdian Lake are shown in
Figure 4a,b. It can be seen from the figure that the JPC of DBP was closer to the x-axis than
that of DEHP, indicating that the potential ecological risk of DBP was higher than that of
DEHP. The results of PERAs in Baiyangdian Lake showed that the probabilities of DEHP
and DBP affecting 5% aquatic organisms by JPCs were 3.97% and 0.20%, respectively.
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Figure 4. Joint probability curves for ecological risks of PAEs. (a) Joint probability curve of DEHP;
(b) Joint probability curve of DBP; (c) Joint probability curve of BBP; (d) Joint probability curve
of DEP).

3.3. The Ecological Risk Assessments of PAEs in Typical Rivers

In this study, the exposure concentrations of DBP, DEHP, DMP, DEP, BBP, DOP and
DIBP in different typical rivers in China were collected from the published literature and
listed in Table 2. The data were the average values of PAEs exposure concentrations
except for the Zhenjiang section of the Yangtze River, which were the maximum exposure
concentrations of PAEs.

The ecological risk assessments of PAEs in typical rivers in China were carried out by
the HQ method. The results are shown in Table S5 and Figure 5. For the BBP, the HQs of
Taihu Lake, Guanting Reservoir, Shichahai and Songhua River were in the range of 0.1–1.0,
so these rivers had low risk, and the rest had no risk because their HQs were less than 0.1.
Similarly, DEP had low risk in Taihu Lake and Songhua River; in addition, it also had a
low risk in Zhenjiang, and its HQ was slightly higher than that of Taihu Lake and Songhua
River. The risk posed by DBP was high at the Zhenjiang section of the Yangtze River and
the middle and lower reaches of the Yellow River, while the rest had medium or low risk.
In view of DEHP, about 21.1% of rivers had high risk, 10.5% had no risk, and others had
medium or low risk. DIBP posed high risk in the Zhenjiang section of the Yangtze River
and Pu River, a tributary of Liao River, and it posed medium risk in the Xi River and
Jiulong River, while the rest had medium or low risk. DEHP mainly came from plastics
and heavy chemical industry as well as domestic waste. DBP was widely used in cosmetics
and personal care products, while DIBP has been widely used as a substitute for DBP in
recent years. Therefore, with the extensive use of plastics and the development of urban
industrialization, a large number of DEHP, DBP and DIBP were produced. The exposure
concentrations of DEHP, DBP and DIBP in freshwater in China were higher due to surface
runoff or atmospheric wet deposition.
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Table 2. Exposure data of PAEs in typical rivers in China (μg/L).

Rivers Sites
Concentration (μg/L)

DBP DEHP DMP DEP BBP DOP DIBP Reference

Baiyangdian
Lake 0.26 0.42 ND ND ND ND 0.16 This study

Pearl River 8.5 5.6 2.4 0.046 ND ND ND [42]
Jiulong River 0.67 1.7 0.088 0.085 ND ND 3.4 [34]

Songhua River 5.1 0.20 2.5 2.4 2.5 2.4 ND [43]
Chaohu Lake 3.2 0.20 0.42 0.14 0.071 0.035 ND [44]

Yangtze River

Middle reaches of Jiangsu section 0.21 0.010 0.025 0.057 0.010 0.010 ND [45]
Lower jiangsu section 0.11 0.010 0.013 0.060 0.010 0.010 ND [45]

Zhenjiang 13 10 1.5 2.6 ND 1.1 13 [46]
Nanjing 0.19 1.1 0.010 0.14 0.010 0.020 ND [45]
Suzhou ND ND 0.015 0.012 ND 0.034 ND [47]

Yangcheng Lake 7.2 17 0.13 0.086 0.072 0.34 ND [47]
Taihu Lake 1.6 1.3 0.71 0.72 0.50 0.16 ND [48]

Yellow River
Lanzhou 0.80 0.83 0.64 0.46 ND 0.0020 0.48 [49]

Middle and lower reaches 14 17 0.24 0.36 ND 1.9 ND [9]

Haihe River
Summer Palace 0.34 0.26 0.062 0.0060 0.0060 0.019 0.26 [50]

Guanting reservoir 0.30 0.087 0.056 ND 0.48 0.017 0.31 [50]
Shichahai 0.066 0.24 0.081 0.0090 0.19 0.019 0.18 [50]

Liao River
Pu River 1.2 1.0 0.66 0.16 ND ND 11 [51]
Xi River 2.2 0.70 0.46 0.49 ND ND 3.1 [51]

ND: Not Detected.

Figure 5. The preliminary ecological risks of ∑5PAEs in typical rivers in China (in water).

The PERA method was used to evaluate the ecological risks of PAEs in typical rivers,
and the JPCs are shown in Figure 4. It can be seen from the figure that the JPCs of BBP
and DEP were closer to the x-axis than the DEHP and DBP, indicating that the potential
ecological risks of DEHP and DBP were higher than BBP and DEP, which also indicated
that aquatic organisms were affected by DEHP and DBP obviously, and they led to a higher
probability of ecological risk. The results of PERAs in typical rivers in China showed that
the probabilities of DEHP, DBP and BBP affecting 5% aquatic organisms by JPCs were
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44.2%, 8.6% and 3.0%, respectively, while DEP was 0, meaning they affect less than 5% of
the aquatic organisms.

3.4. The Ecological Risk Assessments of PAEs in Sediments

SQCs derived by the equilibrium partitioning method based on the ALCs of PAEs and
the exposure data of DBP, DEHP, DMP, DEP, BBP, DOP and DIBP in sediments are listed in
Tables 1 and 3 respectively. The exposure data were all the maximum values of PAEs.

Table 3. Part of PAEs in sediments from typical rivers in China (μg/gdw).

Rivers
Concentration (μg/L)

DMP DEP DBP BBP DEHP DOP DIBP Reference

Songhua River 0.00300 0.0170 0.852 0.00500 6.56 0.0420 ND [32]
Jiulong River 0.00400 0.00600 0.230 ND 1.28 ND 0.140 [34]
Taihu Lake 3.50 2.29 1.75 1.30 4.77 16.2 ND [45]

Tongding River 0.0210 0.0540 0.165 ND 1.09 0.0200 0.750 [52]
Yellow River 1.04 1.12 72.2 ND 258 ND ND [9]

Yangtze River 2.24 1.24 246 ND 221 ND ND [53]
JiangHan Plain 0.238 1.87 0.290 0.0820 0.596 ND 0.639 [54]
Qiantang River 0.179 0.218 0.241 0.0210 6.24 0.0190 0.769 [55]

Pearl River 1.75 0.180 4.66 0.160 8.53 0.310 ND [49]
Taiwan river ND 1.10 30.3 1.80 23.9 ND ND [56]

Taiwan’s rivers ND ND 1.30 3.10 46.5 ND ND [57]
Kaohsiung Harbor,

Taiwan ND ND 1.31 ND 34.8 0.600 ND [58]

Xi river 0.266 0.197 2.43 ND 8.30 4.35 11.2 [2]
Pu river 0.0530 0.0600 0.304 ND 44.5 1.47 0.404 [2]

ND: Not Detected.

For example, the content of DMP in sediments from Taihu Lake Basin was as high as
3.50 μg/gdw, which was hundreds of times higher compared with Baiyangdian Lake. The
maximum content of DMP, DEP and DOP appeared in Taihu Lake. The concentrations of
DMP and DEP were similar and in an order of magnitude, while the concentration of DOP
is relatively high, reaching 16.2 μg/gdw.

The ecological risk assessments of PAEs in sediments from typical rivers in China
were carried out only by the HQ method. The HQs of each river are shown in Table S6.
Among them, BBP pose low risk in sediments from Taihu Lake, and its HQ was 1.47, which
was inconsistent with previous study [45]. The reason may be that the ALC obtained in
this study based on the reproductive toxicity endpoint was stricter than that based on the
non-lethal toxicity endpoint in previous studies. Meanwhile, there was a medium risk in
sediments from Taiwan’s rivers, and the other rivers had low or no risk. As a result of the
lgKow of DEP being 2.38, less than 3, and its hydrophobicity being weak, it is not easy to
be adsorbed in sediment, so its risk to benthic organisms is not considered. For the DBP,
about 35.7% of the rivers posed low risk, 42.9% of the rivers posed medium risk, and only
21.4% posed high risk. Risk posed by DEHP was high at 57.1% rivers, except for the
JiangHan Plain, while other rivers posed a medium risk. DIBP posed a low risk in most
rivers, and their HQs were within the range of 0.1–1, and only the Kaohsiung Harbor in
Taiwan posed a medium risk. The preliminary ecological risks of ∑5PAEs in sediments
from typical rivers in China by HQ method are shown in Figure 6.
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Figure 6. The preliminary ecological risks of ∑5PAEs in typical rivers in China (in sediments).

4. Discussion

Compared with other typical rivers in Table 2, only DBP, DEHP and DIBP were
detected in Baiyangdian Lake. Among them, the exposure concentration of DBP in Baiyang-
dian Lake was much lower than that in the Zhenjiang section of the Yangtze River basin,
Yangcheng Lake, the middle and lower reaches of the Yellow River and the Pearl River,
and there was an order of magnitude difference. It was equivalent to the exposure con-
centrations in the middle and lower reaches of the Jiangsu section of the Yangtze River,
Nanjing section of the Yangtze River, Summer Palace and Guanting Reservoir. Only Shicha-
hai exposure concentration was lower than the DBP in Baiyangdian Lake. In conclusion,
the exposure concentration of DBP in Baiyangdian Lake was at a medium to low level
compared with other typical rivers in China. Similar to DBP, the exposure concentration
of DEHP in Baiyangdian Lake was also much lower than that in the Zhenjiang section of
the Yangtze River, Yangcheng Lake and the middle and lower reaches of the Yellow River.
In addition, the exposure concentration was similar to those in the Lanzhou section of the
Yellow River, Summer Palace, Shichahai and Xi River. However, different from DBP, the
exposure concentrations of DEHP in the middle and lower reaches of the Jiangsu section of
the Yangtze River, Guanting Reservoir and Chao Lake were lower than that in Baiyangdian
Lake, indicating that the concentration of DEHP in Baiyangdian Lake was at a medium
to low level. Therefore, the pollution degree of PAEs is at a lower level in Baiyangdian
Lake compared with other domestic water bodies, and the main pollutant is DEHP, which
is followed by DBP. This result is consistent with the study of Taihu, which shows that
DBP and DEHP were the most abundant PAE congeners in surface water [45], and DBP
and DEHP have a certain homology. Although the concentration of DIBP was detected in
Baiyangdian Lake, the concentration was very low.

For the rivers near or passing through industrial cities, such as the Zhenjiang section
of the Yangtze River and Pu River, a tributary of the Liao River, the exposure concentrations
of DIBP were relatively high, while in other rivers they were relatively low, and it was even
not detected in a few rivers. A large number of DBP, DEHP and DIBP entered the water
with surface runoff or atmospheric wet deposition. Because of their strong hydrophobicity,
they often combine with particulate matter, settle in the bottom sediment and accumulate
continuously, resulting in the high content of DBP, DEHP and DIBP in typical rivers
sediments in China. The highest concentrations of DBP and DEHP occurred in the Yangtze
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River and the Yellow River, respectively, and their concentrations can be as high as several
hundred μg/gdw. DIBP has also been widely used as a substitute for DBP in recent years,
which had increased the content in sediment. According to previous studies, the highest
concentration appears in the Xihe River [59]. Although the production and consumption of
these PAEs in daily life were very low, due to the developed agriculture around Taihu Lake,
a large amount of agricultural runoff flowed into the lake, resulting in the high content of
PAEs in sediment.

The ecological risk assessments of DEHP and DBP in Baiyangdian Lake were carried
out by HQ and PERA. The results of the two methods were consistent, indicating that DEHP
and DBP in Baiyangdian Lake water had potential ecological risk to aquatic organisms
and regional ecosystem. However, the ecological risks of DEHP and DBP are evaluated
based on Chinese environmental quality standards for surface water (the WQS of DEHP
was 8 μg/L and DBP was 3 μg/L), the range of HQs were 0.0240–0.104 and 0.0400–0.153,
respectively, indicating that there were no ecological risks of DEHP and DBP in most
sampling sites of Baiyangdian Lake, and only a few sampling sites had low risk. Therefore,
according to the Chinese current environmental quality standards, the ecological risks of
PAEs in some rivers would be underestimated. The HQ method and PERA method were
adopted for DEHP and DBP, and the results were consistent. In other words, both DEHP
and DBP posed potential ecological risk in typical rivers. It is consistent with the results of
the Liao River, and the study show that the ecological risk of DEHP in Liao River should be
paid more attention [59]. So, it was necessary to strengthen the management and control of
these two PAEs. DEHP values of 80.95 of the sediment samples of Songhua river exceeded
the low effects range [32], and DEHP posed high ecological risk in typical river sediments,
which was followed by DBP and DIBP. These studies have similar results, indicating that
PAEs are potentially harmful to the aquatic environment.

5. Conclusions

The exposure concentrations of typical PAEs in Baiyangdian Lake were measured by
field sampling in this study, and the results showed that the detection rates of DBP, DEHP
and DIBP were higher. The PAEs exposure data in typical rivers and their sediments in
China were obtained through published literature. Subsequently, according to the ALCs of
typical PAEs derived from reproduction toxicity endpoints, the ecological risks of typical
PAEs in Baiyangdian Lake water and typical rivers were evaluated by the HQ method and
PERA method. Based on SQCs, which were derived using the equilibrium partitioning
method by the ALCs of PAEs, only the HQ method was used to evaluate the ecological
risks of typical PAEs in sediments from typical rivers. The results of the HQ method and
PERA method showed that in terms of water, DBP and DIBP posed low risk in Baiyangdian
Lake, but the risk of DEHP was slightly higher and cannot be ignored. Different from
Baiyangdian Lake, in addition to the high ecological risk of DEHP in typical rivers in China,
the risks of DBP and DIBP also cannot be ignored. Furthermore, the HQ method was
used to evaluate the sediment risk about PAEs, and the results showed that DEHP posed a
high ecological risk in typical rivers sediments, which was followed by DBP and DIBP. In
conclusion, the ALCs of DEHP and DBP obtained in this study can be used to evaluate the
ecological risks of Baiyangdian Lake and typical rivers more accurately. Meanwhile, in this
study, the pollution status of PAEs in Baiyangdian was investigated, the pollution level,
spatial distribution characteristics and sources of PAEs in typical lake were explored, and
the ecological risks under their exposure levels were measured, so as to provide technical
support for pollution prevention and environmental risk management in typical lakes
worldwide.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11020180/s1, Table S1: Characterization of 7 PAEs inves-
tigated; Table S2: Reproductive toxicity data used to construct SSDs of DEHP, BBP, DEP, and DBP;
Table S3: The average chronic toxicity value and cumulative frequency of DEHP, BBP, DEP, and
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DBP; Table S4: Exposure concentrations and HQ values of ∑3 PAEs in Baiyangdian Lake; Table S5:
Summary of HQ values in water; Table S6: Summary of HQ values in sediments.
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Abstract: During the COVID-19 pandemic, governments in many countries worldwide, including
India, imposed several restriction measures, including lockdowns, to prevent the spread of the
infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air.
In the present study, we investigated the substantial changes in selected volatile organic compounds
(VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments
in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the
Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before,
during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15,
37.19 ± 37.19, and 32.81 ± 32.81 μg/m3 for 2019, 2020, and 2021, respectively. As a result, the
TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC
levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared
with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG)
to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic
sources during the pre-pandemic period. The present findings indicated that TVOC levels had
positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118,
0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with
correlation coefficients (r) of −0.168 and −0.150, respectively. The lifetime cancer risk (LCR) value for
benzene was reported to be higher in children, followed by females and males, for the pre-pandemic,
pandemic, and post-pandemic periods. A nationwide scale-up of this study’s findings might be
useful in formulating future air pollution reduction policies associated with a reduction in health risk
factors. Furthermore, the present study provides baseline data for future studies on the impacts of
anthropogenic activities on the air quality of a region.

Keywords: TVOCs; pandemic; T/B ratio; meteorological parameters; LCR
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1. Introduction

Coronavirus disease (COVID-19) is a disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), and was first reported in Wuhan, China, in late
December 2019 [1]. It rapidly spread across the world in a short time span, and the World
Health Organization declared it a pandemic on 11 March 2020 [2]. The WHO and other
agencies reported that, as of 5 January 2023, COVID-19 infected more than 66 million
people, with more than 6.7 million deaths globally (including in India) [3]. The United
States of America (USA) was the most adversely affected country, followed by India, the
second most afflicted country in the world, with more than 10 million COVID cases and
more than 1.1 million deaths reported as of 5 January 2023 [4].

Few studies have reported a relationship between air pollution and infectious disease
transmission [5,6]. Several early pieces of evidence suggest that the link between prolonged
exposure to air pollution and the impact of COVID-19 might increase the probability of
severe outcomes [7–10]. Many researchers suggested that air pollutants may influence the
severity of COVID-19 associated with respiratory infection [11], cardiovascular disease [12],
as well as morbidity and mortality [13,14]. Among the air pollutants, volatile organic
compounds (VOCs) are considered principal components and are often designated as
specific hazardous or toxic air pollutants [15,16]. These VOCs also play a crucial role in
forming tropospheric ozone and secondary pollutants through photochemical smog [17–20].
In many cities worldwide, significant reductions in atmospheric pollutant concentrations
were observed during the lockdown periods of COVID-19 due to the complete or partial
closures of industries, as well as transport and construction works [21–23]. It is very
difficult to assess the air quality with respect to the contributions of different pollutants, and
changes in individual pollutant levels are difficult to link to overall air pollution; therefore,
it is difficult to compare their impacts on human health associated with concentrations
of different pollutants [24,25]. Volatile organic compounds (VOCs) and nitrogen oxides
(NOx) are the two main forerunners to tropospheric O3 formation, with complex chemical
mechanisms found in them [26,27]. The photochemical process depends upon the VOC to
NOx ratio in the atmosphere, which has a pivotal role in O3 formation [28].

Up to 60% of non-methane VOCs (NMVOCs) released into the atmosphere are
BTEX [28]), and changes in BTEX ratios can be used as effective tools for investigating the
causes of different photochemical processes that occur in the environment [17,29]. Traffic-
related VOCs and VOCs released by industries as well as changes in VOC levels from many
individual sources have been investigated to estimate the impact of the COVID-19 lock-
down on the environment. Additionally, in some particular compounds, such as benzene,
toluene, ethyl benzene, and xylene (represented by the acronym BTEX), some harmful
effects of VOCs have been shown via short- and long-term adverse health effects. Further-
more, VOCs that are released into the ambient environment from various sources, such as
oil and gas, play very crucial and important roles in petrochemical activities [16]. BTEX
compounds are considered to be the main components of gasoline, and, due to their high
evaporation rate, they can enter the ambient air environment from outer exhausts, vehicle
carburetor engines, and petroleum product distribution stations [30]. Emission intensities
of pollution sources and meteorological conditions play important roles in varying VOC
levels, while in the present scenario, meteorological conditions significantly influence the
chemical transformations involved in the production of O3 concentrations [27]. During
COVID-19, there were many studies under highly unusual conditions of partial or total
internment and, therefore, vital information could be acquired for designing policies and
strategies to prevent and control air pollution through evaluations of the effects of reduced
emission sources on the local urban air quality [21–23,31].

Changes in atmospheric pollutants during the COVID-19 lockdown periods have
been widely investigated; researchers have reported significant reductions in nitrogen
dioxide (NO2), particulate matter (PM), and carbon monoxide (CO) levels in many different
cities across the world [10,23,24]. Subali et al. (2021) revealed a potential VOC-based
breath analysis associated with high sensitivity and promising specificity for COVID-
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19 screening [32]. Another study conducted in Maharashtra (India) reported that total
VOC levels decreased during the lockdown periods in the corresponding year, 2019 [33].
However, due to shallower boundary layer depths, higher concentrations of aromatic
volatile organic compounds (VOCs) and CO were found in the wintertime and transported
from the polluted Indo-Gangetic Plain region. Relatively high loadings of benzene (~30%),
toluene (45%), and CO (32%), respectively, were observed in vehicle exhaust by using the
positive matrix factorization analysis method [34].

According to Ghaffari et al. (2021), the most toxic BTEX compound is benzene, which
has been categorized as a Group 1 and class A human carcinogenic by the International
Agency for Research on Cancer (IARC) and the United States Environmental Protection
Agency (U.S. EPA), respectively [35]. Several studies have reported that individual VOCs
are significantly associated with the adverse effects of cardiovascular and respiratory
diseases [36,37] asthma [38], and chronic obstructive pulmonary disorder [39], and could
possibly increase the chances of leukemia and aplastic [40]. Several studies have claimed
that a considerably high concentration of benzene was associated with a high cancer risk
for lifetime exposure in an ambient environment [41,42].

Changes in VOC levels due to particle and gaseous contaminants, in particular, have
received more attention and several studies of various cities in India have revealed that
the air quality improved significantly during the pandemic period [23–25]. Nevertheless,
only a few studies have discussed links between BTEX compounds and health. In addition,
there is a paucity of thorough research on BTEX compounds as well as the pandemic’s
health risks, and BTEX compounds during lockdown periods in North India have not been
examined in any prior study. The key aims of the present study are: (i) to evaluate the
spatiotemporal variations in TVOC levels, (ii) to identify the sources of BTEX, and (iii) to
calculate the health risks associated with BTEX across various age groups.

2. Methodology

Study Area

The National Capital Territory of Delhi, India, has coordinates of 28.70◦ N and
77.10◦ E. It is situated on the Indo-Gangetic Plain of the northern region of India [24,25].
One report suggests that the National Capital Territory has subtropical and semi-arid
climatic conditions. The area experiences all seasons, including summer, monsoon, and
winter from April to June, from July to October, and from November to February, respec-
tively. The climate of Delhi is humid and is greatly impacted by the annual monsoon. The
average temperature from May to June is 35–40 ◦C, and from November to February it is
5–7 ◦C. The humidity is mostly felt during the months of July and August. Usually, there is
a northeastern breeze in Delhi, but during the late summers, it is replaced by a southeastern
wind. The sampling locations for all monitoring sites are presented in Figure 1.

Delhi is among the most polluted cities in India according to the index of global
pollution [43]. Delhi is also one of the most populated cities in India, with 13.4 million
registered vehicles on the roads [44]. In addition, Delhi’s Metropolitan area has a huge
number of public and private transportation vehicles compared with other Indian cities.
Therefore, industrial areas play crucial roles in enhancing the level of pollution. In addition,
automobiles, construction, and other anthropogenic activities are important key factors.
All of these factors lead to the emissions of various compounds, including carcinogenic
volatile organic compounds (VOCs). In the present study, selected monitoring stations in
Delhi are presented in Table 1.
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Figure 1. Sampling stations for all monitoring sites at Delhi.

Table 1. Different monitoring stations with latitude, longitude, and population census at Delhi.

S. No.
Monitoring

Stations
Latitude (0 E)

Longitude (0
N)

Population Density
(2021 Census)

(Km−2)

1. Alipur (AL) 77.1331 28.7972 6369

2 Bawana (BW) 77.0483 28.7932 6660

3 Mundaka (MD) 77.0349 28.6823 10,275

4 Najafgarh (NG) 76.9855 28.6090 5213

5 Narela (NL) 77.0892 28.8549 3071

6 Okhala (OKH) 77.2914 28.5626 31,087

7 Patparganj (PG) 77.3046 28.6347 22,088

8 Shadipur (SP) 77.1582 28.6516 23,942

9 SoniaVihar (SON) 77.2496 28.7332 5662

10 Wazirpur (WA) 77.1604 28.6975 24,908

3. Data and Sources

In the present study, hourly and daily data of volatile organic compounds, especially
benzene, toluene, ethylene, and xylene (BTEX), were collected from the Central Pollution
Control Board (CPCB) website (https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/
caaqm-landing, accessed on 5 January 2022). The measurements and technical specifications
of the instruments can be found elsewhere [45].

Several previous studies have reported that the CPCB provides data quality assurance
and quality control (QA/QC) programs and detection limits of each BTEX compound
through rigorous sampling, analysis, and calibration procedures [35].

In the present study, data were procured from 1 January 2019 to 31 December 2021, to
identify percentage changes in the VOC levels (https://app.cpcbccr.com/ccr/#/caaqm-
dashboard-all/caaqm-landing, accessed on 5 January 2023). The data were procured
in three time periods before, during, and after COVID-19. To examine the relative and
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temporal changes in VOC levels in the ambient atmosphere, the time period between
1 January 2019 and 31 December 2019 represented the pre-pandemic period, the time
period between 1 January 2020 and 31 December 2020 represented, the pandemic period,
and the time period between 1 January 2021, and 31 December 2021, represented the
post-pandemic period. All 10 industrial air quality monitoring stations in Delhi that were
selected for this study, with their latitudes, longitudes, and population census data, are
presented in Table 1. The monitoring stations are Alipur (AL), Bawana (BW), Mundka
(MD), Najafgarh (NG), Narela (NL), Okhla (OKH), Patparganj (PG), Shadipur (SP), Sonia
Vihar (SON), and Wazirpur (WA). Meteorological parameters, such as solar radiation (SR in
kWh/m2), pressure (BP in kg/ms2), atmospheric temperature (AT in Celsius), rainfall (RF
in mm), wind speed (WS in km/h), and wind direction (WD in degree/cardinal direction)
were observed on an hourly basis at all 10 monitoring sites.

4. Human Health Risk Assessment

A human health risk assessment (HHRA) can be performed to assess the nature and
probability of different pollutants in a population based on acute and chronic exposure.

4.1. Hazard Identification

The pollutants that cause major impacts on human health are considered hazardous. In
this current study, VOCs such as BTEX are hazardous to human health and can
cause cancer.

4.2. Exposure Assessment

An exposure assessment (EA) was performed to examine the duration and magnitude
of the pollutants based on different parameters. In the present study, inhalation was the
major route of exposure for the identified pollutants. We estimated the daily and annual
readings of normal and acute exposure periods for different age groups, namely males
(70 years), females (60 years), and children (36 years) [46]. The values of the parameters
used in the health risk assessment model are presented in Table 2.
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ILCR = CDI × SF (4)

where EC (μg/m3) represents the exposure concentration, defined as the number of TVOCs
present per cubic meter; CA (μg/m3) = VOC, the average concentrations of benzene,
toluene, ethylene, and xylene; ET (h/d) is the exposure time, the total time duration per day
in which exposure to TVOCs takes place; EF (d/y) represents exposure frequency, defined
as the number of exposures taking place in a day;
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Table 2. Correlation between the different monitoring stations for the pre-pandemic period.

AL BW MD NG NL OKH PG SP SON WA

AL 1
BW 0.003 1
MW 0.306 ** 0.306 ** 1
NG 0.234 ** 0.302 ** 0.734 ** 1
NL −0.006 0.434 ** 0.286 ** 0.448 ** 1

OKH 0.062 0.153 ** 0.296 ** 0.351 ** 0.178 ** 1
PG −0.140 ** 0.081 0.116 * 0.019 0.116 * 0.094 1
SP 0.192 ** 0.206 ** 0.441 ** 0.317 ** 0.325 ** 0.139 ** 0.310 ** 1

SON 0.227 ** 0.148 ** 0.545 ** 0.337 ** 0.036 0.167 ** 0.222 ** 0.106 * 1
WA −0.081 0.044 −0.005 −0.207 ** 0.022 −0.109 * 0.236 ** 0.301 ** 0.048 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

ED (y) represents the exposed length of working, the difference of the average
age of exposure and the average age at the beginning; AT (h) is the average exposure
time, during the carcinogenic assessment, the average lifetime (per capita life expectancy
× 365 d/y × 24 h/d) was adopted, and during the non-carcinogenic assessment, the aver-
age period of exposure cycle (ED × 365 d/y × 24 h/d) was adopted; HQ (μg/m3) is the
hazard quotient, the ratio of exposure to chemicals and the measure at which no defined
results can occur; RfC is the reference concentration of inhalation toxicity, which refers
to continuous exposure to the human population without any cancerous health risks; SF
(kg d mg−1) represents the carcinogenic slope factor, defined as an upper bound, approxi-
mating a 95% confidence limit in the escalated cancer crisis from the lifetime exposure to a
chemical [23]; ILCR (incremental lifetime cancer risk) refers to increasing the chances of
any person having cancer due to exposure to a pollutant during his/her lifetime.

5. Results and Discussion

5.1. Total VOC Levels for 2019–2021

The current study focused on establishing the significant changes in air pollutants in
different industrial zones, especially the total volatile organic compound (TVOC) levels,
from 2019 to 2021, in Delhi, India. At all monitoring stations, the mean TVOC levels
were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 μg/m3 for 2019, 2020, and 2021,
respectively (Figure 2). The results show that the TVOC levels gradually deteriorated over
successive years due to the pandemic in India. The main aspects behind the significant
decrease in TVOC levels during the lockdown were complete and partial restrictions on
transport, industrial activities, and marketplace openings. The annual mean TVOC levels
at all monitoring stations ranged from 6.70 ± 4.71 to 103.86 ± 80.37, from 3.65 ± 7.36 to
97.57 ± 68.39, and from 5.21 ± 5.12 to 128.56 ± 74.43 μg/m3, for 2019, 2020, and 2021,
respectively. The trend of annual mean TVOC levels was observed to be BW > MD > NL
> SON > WA > OKH > SP > AL > NG > PG for 2019, whereas the trend was NL > BW >
OKH > SP > MD > SON > NG > AL > PG for 2020, and NL > OKH > SP > MD > BW > AL
SON > WA > PG > NG for 2021.

The maximum TVOC levels were 347.27 μg/m3 (BW), 408.91 μg/m3 (NL), and
467.30 μg/m3 (NL) for 2019, 2020, and 2021, respectively. The maximum TVOC levels at all
stations varied from 23.40 μg/m3 (PG) to 347.27 μg/m3 (BW), from 75.06 μg/m3 (SON) to
408.91 μg/m3 (NL), and from 37.18 μg/m3 (PG) to 467.30 μg/m3 (NL) for 2019, 2020, and
2021, respectively.
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Figure 2. Box plot for TVOCs for different monitoring stations in Delhi for the years 2019, 2020,
and 2021.

5.2. Identification of VOC Characteristic Pollutants for 2019

The BTEX concentrations for 2019–2021 at all selected monitoring regions are pre-
sented in Figure 2. The mean values for individual VOCs were 3.48 ± 2.43, 48.33 ± 22.86,
3.68 ± 12.29, and 3.7 ± 3.64 μg/m3 for benzene, toluene, eth-benzene, and mp-xylene, re-
spectively, for 2019. The average concentration values for benzene at all monitoring stations
varied from 1.26 (AL) to 5.43 (SP) μg/m3, whereas, for toluene, the average concentration
values varied from 4.58 (PG) to 74.22 (MD) μg/m3. The trend of the mean benzene value
was observed to be SP > OKH > MD > SON > WA > NL > PG > NG > AL; the trend of the
mean toluene value was NL > MD > SON > WA > OKH > SP > AL > NG > PG.

5.3. Identification of VOC Characteristic Pollutants for 2020

The mean values of benzene, toluene, eth-benzene, and mp-xylene at all monitoring sta-
tions were calculated to be 12.85 ± 9.42, 30.42 ± 19.06, 4.06 ± 7.06, and 8.60 ± 13.71 μg/m3,
respectively, for 2020–2021. The standard deviation value was high, indicating large varia-
tions in emission sources at various monitoring stations. The average benzene values at
the monitoring stations ranged from 1.47 (AL) to 98.42 (NL) μg/m3, whereas the average
toluene values ranged from 2.39 (NG) to 145.22 (BW) μg/m3, respectively. The maximum
mean values among all monitoring stations were reported at Narela (benzene) and Bawana
(toluene) monitoring stations, which are hubs of industrial zones in Delhi. Most plastic
industries in BW operated during the pandemic period due to their association with the
production of sanitizing bottles. These industries might have contributed more benzene
and toluene compound emissions. Considering all of the selected monitoring stations, the
trend for the average benzene values was NL > NG > SP > WA > SON > OKH > MD > AL
> PG > BW, and the trend for the average toluene values was BW > OKH > MD > WA > SP
> SON > AL > PG > NL > NG.

5.4. Identification of VOC Characteristic Pollutants for 2021

The mean values for individual VOCs at all monitoring stations were 2.89 ± 2.66,
43.01 ± 22.26, 505 ± 5.01, and 6.23 ± 8.14 μg/m3 for benzene, toluene, eth-benzene, and
mp-xylene, respectively, for 2021–2022. The average values for benzene at the monitoring
stations ranged from 5.26 (SP) to 0.55 (PG), whereas the average values for toluene ranged
between 164.91 (BW) and 0.91 (NG) μg/m3. Considering all of the selected monitoring
stations, the trend of average benzene values was SP > OKH > MD > SON > NL > WA >
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AL NG > PG > PG, and the trend for average toluene values was BW > NL > OKH > SP >
MD > AL > SON > WA PG > NG.

5.5. Comparative Analysis of Pre-Pandemic, Pandemic, and Post-Pandemic Periods

The average TVOC values at all of the monitoring stations declined from 9 to 61%
during the pandemic period compared with those of the pre-pandemic period. The highest
decline was observed at the SON monitoring station (−61%) and the lowest decline was
at the NG monitoring station (−9%); the reason could be that the SON monitoring station
was observed to restrict measures during the pandemic period, which caused significant
changes in TVOC values compared with the pre-pandemic period (Figure 3). However,
the NG monitoring station is considered to be India’s second most pollutant cluster, with
air and water in the critical category. On the one hand, most industrial activities were per-
formed during the pandemic period, and there were insignificant changes in TVOC values
compared with those of the pre-pandemic period. On the other hand, increased TVOC
values were reported at OKH (24%) and NL (15%) monitoring stations during the pandemic
period. The location of the OKH monitoring station is considered to be an industrial zone
(waste-to-energy plant) where municipal solid wastes (generated from households) are
used as fuel, which continued during the pandemic period [24,25]. Therefore, the increase
in the level of VOCs reported by the OKH monitoring station was attributed to waste
burning. Several previous studies have reported that higher source emissions could be
attributed to local source emissions from burning waste and construction activities near a
monitoring station [47].

Figure 3. A comparative analysis of TVOCs at all sampling sites for the years 2019, 2020, and 2021.

The average TVOC values continued to decline even during the post-pandemic period
due to restricted measures in a few of the monitoring stations. The government declared
restricted measures for the post-pandemic period, under which schools, colleges, cinemas,
and gyms were to remain closed, shops dealing in non-essential items were opened only
on an odd–even basis, and metro trains and buses in the city ran at 50% seating capacity.

The decreases in TVOC levels varied from −77% (BW) to −22% (PG), whereas there
were significant increases in TVOC levels with changes at 64%, 62%, and 11% at the NL,
OKH, and SP monitoring stations. The highest increase in TVOC levels was reported
at the NL monitoring station because the NL monitoring station is located near plastic
industries for making shoe soles and other plastic goods, such as Rexine, adhesives, and
other highly inflammable items, which could be a significant source of emissions during the
reopening of industrial activities. Similarly, the OKH monitoring station witnessed a further
increase in the amount of waste generated from domestic and industrial sectors, from BTEX
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pollutant sources that included plastics, paints, resins, rubber, adhesives, lubricants, and
detergents [30].

A study in Maharashtra reported that TVOC levels declined by 84% during the
lockdown period as compared with those of the previous year [23]. The average TOVC
value at the PG monitoring station declined by 46% and 22% during the pandemic and
post-pandemic periods, respectively, as compared with that of the pre-pandemic period.
Various industrial sectors, such as paper, scraps of leather, and polythene, were located near
the PG monitoring station, which attributed to source emissions. The decline in the average
TVOC levels was higher during the pandemic (46%) compared with the post-pandemic
period due to the reopening of these industrial activities. Additionally, the PG monitoring
station is located near the Ghazipur landfill site, which further contributed to higher VOC
levels in this monitoring station.

5.6. Source Identification

Identification and estimation of VOC emission sources can be assessed using diag-
nostic ratios. The toluene/benzene ratio can be used to evaluate the impact of traffic and
non-traffic sources [23]. The ratio of toluene/benzene (T/B) is frequently used to inspect
the relative importance of vehicular exhaust, industrial emissions, and combustion sources
and to provide crucial insight into the vicinity of vehicular discharge sources and photo-
chemically aged air masses [48]. A T/B ratio that is less than 2 indicates that vehicular
emissions have a significant influence on aromatic VOC emissions. Several studies have
reported that T/B ratios close to or more than 2 refer to non-traffic sources, and ratios
higher than 10 indicate industrial activity as a considerable factor [23,48,49].

In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), indi-
cating that the major VOC contributors were the traffic and non-traffic sources during the
pre-pandemic period. The calculated T/B ratios at some monitoring stations, such as the
WZ, SON, AL, MD, and NL monitoring stations, were reported to be 10.44, 11.39, 12.00,
16.49, and 26.38, respectively, indicating the activities of industries and factories were the
primary causes of VOC emissions (Figure 4). During 2020, the T/B ratios ranged from
0.03 (NL) to 13.47 (OKH), indicating that the major VOC contributors were traffic and
non-traffic sources. Narela and Najafgarh had ratios of 0.03 and 0.21, respectively, stipu-
lating that vehicular emissions were the main sources of VOC emissions. The T/B ratio
during 2021 ranged from 3.54 (NG) to 42.10 (NL), where high ratios indicated non-traffic
sources and much higher ratios indicated industries, factories, and petrol pumps as the
predominant VOC contributors. The calculated T/B ratios at OKH and NL monitoring
stations were 13.81 and 42.10, respectively, indicating that the activities of industries and
factories were the predominant sources of VOC emissions.

Figure 4. T/B ratio at all industrial monitoring stations for years 2019, 2020, and 2021.
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5.7. Correlations among the Monitoring Stations

Correlations among VOC levels can help one to understand the source of origin of the
different constituents. If the correlation between different pollutants is similar, it depicts
that their source of origin might be the same. The correlation value was found by using the
Pearson correlation coefficient for the mean VOC levels on a daily basis. These correlation
data were classified into various categories depending on the coefficient value (from −1 to
1). A coefficient value from 0.8 to 1.0 indicated a very strong correlation, a coefficient value
from 0.6 to 0.8 indicated a strong correlation, a coefficient value from 0.4 to 0.6 indicated
a moderate correlation, a coefficient value from 0.2 to 0.4 indicated a weak correlation,
and a coefficient value from 0 to 0.2 indicated irrelevant data [50]. In the present study, a
very strong positive correlation was observed between the NG and MD monitoring sta-
tions (0.734) during the pre-pandemic period, whereas other monitoring stations reported
moderate to low correlations. In a similar study in Maharashtra, the authors reported a
significantly strong correlation between the Thane and Bandra monitoring stations (0.73) in
the pre-lockdown period [19]. The correlations among the different monitoring stations are
presented in Tables 2–4.

Table 3. Correlation between the different monitoring stations during the pandemic period.

AL BW MW NG NL OKH PG SP SON WA

AL 1
BW 0.255 ** 1
MW 0.300 ** 0.360 ** 1
NG 0.343 ** 0.440 ** 0.575 ** 1
NL 0.454 ** 0.499 ** 0.413 ** 0.665 ** 1

OKH 0.554 ** 0.343 ** 0.373 ** 0.598 ** 0.628 ** 1
PG 0.141 ** 0.107 * 0.129 * 0.139 ** 0.066 0.092 1
SP 0.736 ** 0.340 ** 0.422 ** 0.550 ** 0.547 ** 0.619 ** 0.173 ** 1

SON 0.468 ** 0.356 ** 0.515 ** 0.536 ** 0.347 ** 0.434 ** 0.194 ** 0.530 ** 1
WA 0.080 0.187 ** 0.096 −0.013 0.077 0.023 −0.067 0.041 −0.038 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 4. Correlation between the different monitoring stations for the post-pandemic period.

AL BW MW NG NL OKH PG SP SON WA

AL 1
BW 0.497 ** 1
MW −0.021 −0.076 1
NG 0.349 ** 0.646 ** 0.021 1
NL 0.130 * 0.157 ** 0.119 * 0.273 ** 1

OKH 0.219 ** 0.176 ** 0.197 ** 0.309 ** 0.571 ** 1
PG 0.240 ** −0.004 0.094 0.094 0.354 ** 0.725 ** 1
SP 0.654 ** 0.553 ** 0.027 0.426 ** 0.254 ** 0.287 ** 0.292 ** 1

SON 0.565 ** 0.513 ** 0.054 0.546 ** 0.377 ** 0.612 ** 0.534 ** 0.617 ** 1
WA 0.572 ** 0.813 ** 0.016 0.648 ** 0.112 * 0.255 ** 0.105 * 0.587 ** 0.618 ** 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

During the pandemic period, there was a strong positive correlation between the SP
and AL monitoring stations (0.736) and between the SP and OKH monitoring stations
(0.619). For the post-pandemic period, strong positive correlations were shown for the
BW and WA (0.813), BW and NG (0.646), PG and OKH (0.725), SP and AL (0.654), OKH
and SON (0.612), SON and SP (0.617), and WZ and NG (0.648) monitoring stations. Apart
from this, various monitoring stations showed moderate correlations, such as WA and AL
(0.572), and WA and SP (0.587) monitoring stations.
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5.8. Correlations between the TVOC Levels and Meteorological Parameters

In the present study, we investigated the correlations between total VOC (TVOC) levels
and meteorological parameters during the period from 2019 to 2021. Table 5 shows the
correlation statistics of the TVOC significant levels (p = 0.05) with solar radiation, pressure,
atmospheric temperature, rainfall, wind speed, and wind direction.

Table 5. The correlation coefficient between TVOCs and meteorological parameters for the year
2019–2021.

Parameters TVOCs SR BP AT RF WS WD

TVOCs 1
SR 0.034 1
BP 0.118 −0.176 1
AT −0.168 0.146 0.169 1
RF 0.012 0.059 −0.992 ** −0.070 1
WS −0.150 0.123 0.077 −0.137 −0.047 1
WD 0.007 −0.355 0.102 0.100 −0.061 −0.308 1

** Correlation is significant at the 0.01 level (2-tailed).

Our results indicated that TVOC level had positive but low correlations with SR, BP,
RF, and WD with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively,
whereas negative correlations were observed with AT and WS with correlation coefficients
(r) of −0.168 and −0.150, respectively. These observations indicated that VOC levels were
lower during high AT and WS, possibly due to photodegradation and wind dispersion,
which played crucial roles in the VOC levels. Similarly, RF showed a strong negative
correlation with BP (−0.992) and a lesser correlation with AT (−0.070). A similar study
in Delhi reported variations in pollutant concentrations associated with meteorological
parameters [51–53].

5.9. Health Risk Assessment
Hazard Quotient (HQ)

The hazard quotient (HQ) defines the ratio of the exposure concentration for the
specific VOC species to an acute reference concentration (RfC) of non-carcinogenic com-
pounds [54,55]. An HQ value of less than 1 indicates a minor or insignificant non-
carcinogenic effect, whereas higher values indicate greater non-carcinogenic risks resulting
in significant adverse effects on human health [56–58]. The current study estimated the
total HQ values for benzene for the years 2019, 2020, and 2021 to be 0.11, 0.43, and 0.09 for
males, 0.13, 0.51, and 0.11 for females, and 0.23, 0.85, and 0.19 for children at all industrial
sites, respectively. All HQ values were reported to be below 1, indicating negligible human
health risks [59]. A similar study conducted in industrial regions reported the HQ values
to be less than 0.1 in Tehran, Iran [59] and Rayong Province, East Thailand [58]. According
to Baberi et al. (2022), during the lockdown, people spent more than 80% of their sched-
ules in enclosed areas that were associated with hazardous pollutants (benzene), which
helped lower the load of disease and thereby reduced national healthcare costs [60]. For
the pre-pandemic, pandemic, and post-pandemic periods, for all monitoring regions, in
the present study, we estimated the LCR values for benzene in all age groups for males,
females, and children, as shown in Figure 5.
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Figure 5. Lifetime cancer risk value for different gender for the years 2019, 2020, and 2021.

For males, the total LCR values for benzene at all monitoring stations were calculated
as 1.49 × 10−5, 5.51 x 10−5, and 1.24 × 10−5, whereas the values for toluene were calculated
as 1.5 × 10−4, 1.57 × 10−4, and 1.5 × 10−4, for 2019, 2020, and 2021, respectively. The
LCR values for benzene at all monitoring stations varied from 5.41 × 10−6 to 2.32 × 10−5,
from 1.24 × 10−6 to 4.22 × 10−4, and from 2.36 × 10−6 to 2.26 × 10−5 for 2019, 2020, and
2021, respectively. The LCR values for benzene at all monitoring stations were estimated as
the lowest for AL and the highest for SP in 2019, while in 2020 they were the lowest for
BW and the highest for NL, and in 2021 they were the lowest for PG and the highest for
SP. The results indicated that LCR values were higher during the pandemic period than
those in the pre- and post-pandemic periods. For benzene, some monitoring stations had
LCR values that exceeded the standard LCR value as prescribed by the CPCB (1.0 × 10−6),
such as values of 1.23 × 10−5, 1.78 × 10−5, 1.92 × 10−5, 1.93 × 10−5, 1.93 × 10−5, and
2.33 × 10−5 for NL, WZ, SON, MD, OKH, and SP, respectively, in 2019; 1.08 × 10−5,
1.27 × 10−5, 1.35 × 10−5, 1.35 × 10−5, and 1.99 × 10−5 for MD, OKH, SON, WZ, and SP,
respectively, in 2020; 1.11 × 10−5, 1.28 × 10−5, 1.55 × 10−5, 1.69 × 10−5, 1.73 × 10−5, and
2.26 × 10−5 for WZ, NL, SON, MD, OKH, and SP, respectively, in 2021.

For females, the totals of LCR values for benzene at all monitoring stations were
calculated to be 1.73 × 10−5, 6.42 × 10−5, and 1.44 × 10−5, whereas the values for toluene
were calculated to be 1.82 × 10−4, 1.82 × 10−4, and 1.82 × 10−4 in 2019, 2020, and 2021,
respectively. The LCR values for benzene at all of the monitoring stations varied from
6.31 × 10−6 to 2.71 × 10−5, from 1.45 × 10−6 to 4.92 × 10−4, and from 2.76 × 10−6 to
2.63 × 10−5 for 2019, 2020, and 2021, respectively. The LCR values for benzene, at all of the
monitoring stations, were estimated as the lowest for AL and the highest for SP in 2019,
while they were the lowest for BW and the highest for Narela in 2020, and the lowest for
PG and the highest for SP in 2021.

For benzene, some monitoring stations had LCR values that exceeded the stan-
dard LCR value as prescribed by the CPCB, such as values of 1.06 × 10−5, 1.43 × 10−5,
2.07 × 10−5, 2.24 × 10−5, 2.25 × 10−5, 2.25 × 10−5, and 2.71 × 10−5 for PG, NL, WZ,
SON, MD, OKH, and SP, respectively, in 2019; 1.26 × 10−5, 1.48 × 10−5, 1.57 × 10−5,
1.58 × 10−5, 2.32 × 10−5. 5.69 × 10−5, and 4.92 × 10−4 for MD, OKH, SON, WZ, SP,
NG, and NL, respectively, in 2020; 1.06 × 10−5, 1.29 × 10−5, 1.49 × 10−5, 1.81 × 10−5,
1.98 × 10−5, 2.02 × 10−5, and 2.63 × 10−5 for AL, WZ, NL, SON, MD, OKH, and SP,
respectively, in 2021. For the pre-lockdown period, a value of LCR was established to be
similar to 2.15 × 10−5 and 2.05 × 10−5 for male and female residents, respectively, in China,
which showed discernibly higher carcinogenic risks for male and female residents [61].

For children, the total LCR values for benzene at all of the monitoring stations were
calculated to be 2.89 × 10−5, 1.07 × 10−4, and 2.41 × 10−5, whereas the values for toluene
were calculated to be 3.05 × 10−4, 3.05 × 10−4, and 3.05 × 10−4, for 2019, 2020, and
2021, respectively. The LCR values for benzene for children ranged from 1.05 × 10−6 to
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4.52 × 10−5, from 2.42 × 10−6 to 8.21 × 10−4, and from 4.59 × 10−6 to 4.39 × 10−5 in 2019,
2020, and 2021, respectively. The LCR values for benzene were estimated for all of the
monitoring stations with the lowest LCR value for AL and the highest LCR value for SP
in 2019, while in 2020, the lowest LCR value was for BW and the highest LCR value was
for NL, and in 2021, the lowest LCR value was for PG and the highest LCR value was for
SP. For benzene, some monitoring stations had LCR values that exceeded the standard
LCR value as prescribed by the CPCB, such as in 2019; all stations exceeded the LCR value
ranging from 1.05 × 10−5 for AL to 4.52 × 10−5 for SP; in 2020, the LCR values were
1.22 × 10−5, 2.10 × 10−5, 2.46 × 10−5, 2.61 × 10−5, 2.63 × 10−5, 3.86 × 10−5, 9.49 × 10−5,
and 8.20 × 10−4 for AL, MD, OKH, SON, WZ, SP, NG, and NL, respectively; in 2021,
the LCR values were 1.77 × 10−5, 2.16 × 10−5, 2.49 × 10−5, 3.01 × 10−5, 3.29 × 10−5,
3.36 × 10−5, and 4.39 × 10−5 for AL, WZ, NL, SON, MD, OKH, and SP, respectively. For
all monitoring stations, the LCR values for benzene, for the pre-lockdown, lockdown, and
post-lockdown periods, were higher than the authorized value (1 × 10−6), except during
the lockdown period, which is a guideline limit value in some circumstances [62].

6. Conclusions

The quantifications of the selected volatile organic compounds (VOCs) were executed
in various industrial areas in Delhi, India, from 2019 to 2021. The VOC data from 2019
to 2021 were acquired from the Central Pollution Control Board (CPCB) website, with
reference to the pre-pandemic, pandemic, and post-pandemic periods. Using statistical
analysis, the current study concluded that anthropogenic activities were considerable
sources of emission for VOCs in industrial areas. At all monitoring stations, the mean VOC
levels were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 μg/m3 for 2019, 2020, and 2021,
respectively. As a result, the level of TVOCs gradually deteriorated over consecutive years
due to the pandemic. During the lockdown, the major factors behind the crucial decrease in
TVOC levels were complete and partial restrictions on industrial activities, transport, and
marketplace openings. The average TVOC values at all the monitoring stations declined
from 9 to 61% throughout the pandemic period in contrast to the pre-pandemic period.
The change in TVOC levels was reported to be the highest in NL, because NL is renowned
for plastic manufacturing industries that create shoe soles and other additional plastic
goods, such as adhesive, Rexine, and other tremendously explosive items, which could
be significant sources of emissions during the reopening of industrial activities. During
2020, the T/B ratio was estimated in the range of 0.03–13.47, indicating that the major
contributors were traffic and non-traffic sources, whereas, during 2021, it ranged from
3.54 to 42.10, where high ratios stipulated non-traffic sources and much higher ratios
indicated industries, factories, and petrol pumps as the predominant contributors. The
correlation results revealed that TVOC levels had negative relationships with wind speed
and atmospheric temperature, which might play a significant role in the dispersion of
TVOCs. Comparatively, the lifetime cancer risk (LCR) value for males and females was
estimated to be higher throughout the lockdown period than in the pre- and post-lockdown
periods. The reason could be the longer exposure time to increase the production of plastic
and resin manufacturing units during the pandemic period. Further, the present study
aims to increase the scientific accuracy of research on VOCs.
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