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Preface

Mountain regions are critical because of their diverse geological conditions, dynamic changes,

and the multiple natural hazards that often occur. Mountains are high-risk environments that can

experience a variety of natural hazards, since initiated hazards often trigger secondary, cascading

hazards, having a significant impact not only on the area of occurrence but often also on upstream

and downstream regions. High economic losses and human casualties are caused by geophysical

(rockfalls, earthquakes, and volcanic activities), hydrological (floods, avalanches, and dammed-lake

outbursts), and sediment-related hazards (landslides, driftwood, debris/mud flows, and surface

erosion). Under the impacts of global warming and climate change, the spatiotemporal patterns of

rainfall and other weather events have become more unevenly distributed, often with a more extreme

magnitude and/or intensity of events. The complexity of mountainous regions, in addition to the

continued changes in climate and land use, have made it more challenging to predict mountainous

hazards and their impacts on communities. Based on the countless efforts made worldwide on

natural hazards in mountain regions, tight international collaboration is strongly required to answer

questions related to the causes of disasters, the monitoring of hazardous phenomena, predicting

disasters, and the effective reduction of hazardous consequences.

The INTERPRAEVENT 2023 International Conference took place in Taichung, Taiwan, and for

the first time, in partnership with the ‘WATER’ journal, a Special Issue titled “Occurrence, Reduction,

and Restoration of Natural Disasters in Mountain Regions”, was curated, dedicated to the dissemination

of scholarly research in this domain. The conference program was comprehensive, addressing a

multitude of topics ranging from phenomenological investigations and event monitoring to risk

analysis, policy development, resilience enhancement, and strategies for disaster response and

recovery, thereby encapsulating a holistic approach to disaster preparedness.

Su-Chin Chen

Editor

xi





Citation: Chen, S.-C. Natural

Disasters Occurrence, Reduction, and

Restoration in Mountain Regions.

Water 2024, 16, 313. https://doi.org/

10.3390/w16020313

Received: 12 December 2023

Accepted: 12 January 2024

Published: 17 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Editorial

Natural Disasters Occurrence, Reduction, and Restoration in
Mountain Regions
Su-Chin Chen

Innovation and Development Centre of Sustainable Agriculture (IDCSA), National Chung Hsing University,
145 Xingda Road, Taichung 40227, Taiwan; scchen@nchu.edu.tw

1. Introduction

The Intergovernmental Panel on Climate Change’s Sixth Assessment Report [1] posits
that climate change is likely to exacerbate the severity and frequency of water- and sediment-
related disasters on a global scale. Under the impacts of global warming and climate
change, the spatiotemporal patterns of rainfall and other weather events have become
more unevenly distributed, often with a more extreme magnitude and/or intensity of
events. Empirical studies conducted within the European Alps have elucidated a suite of
mechanisms by which climate change is implicated in the exacerbation of slope instability,
with a notable escalation in meteorological and climatic conditions that predispose terrains
to the initiation of debris flows [2]. Recent decades have witnessed a correlation between
heightened debris flow activity and intensified pluvial events within this region [3,4]. In
Asia, one practical example is Typhoon Morakot, which struck southern Taiwan in August
2009 [5], which incurred unprecedented pluviometric extremes exceeding 3000 mm within
four days, culminating in the catastrophic Shiaolin landslide with over 400 fatalities. Sim-
ilarly, Japan has experienced significant losses due to slope failures, with an average of
1241 sediment disasters recorded annually from 1990 to 2019, culminating in 678 fatalities
and disappearances between 2000 and 2019 [6] (Contribution 1). The comparative ineffi-
cacy of search and rescue operations for hydro-meteorological disasters relative to seismic
events [7] highlights the compounded challenges of such disasters. Furthermore, moun-
tainous regions are particularly vulnerable to a spectrum of compound disasters, including
droughts, flash floods, forest fires, debris flows, and landslides, with the vicissitudes of
climate change amplifying the risk profile for physical, ecological, and socio-economic
systems [8,9]. Accordingly, this Special Issue endeavors to elucidate the emergent char-
acteristics of disasters concomitant with extreme rainfall events and to survey the recent
progress in state-of-the-art in situ observational technologies, early warning models, and
disaster risk-reduction strategies.

2. Review of New Advances

Mountain regions are recognized as critical areas of study due to their heterogeneous
geological conditions [10], the dynamism inherent in their environmental transformations
(Contributions 2–4), and their propensity for frequent natural hazards. High economic
losses and human casualties are caused by geophysical- (rockfalls, earthquakes, and vol-
canic activities), hydrological- (floods, avalanches, and dammed-lake outbursts), and
sediment-related hazards (landslides, driftwood, debris/mud flows, and surface erosion).
Such environments are high-risk due to the propensity of an initial hazard event to induce
subsequent and potentially more destructive secondary hazards, thus affecting not only
the immediate vicinity but also far-reaching effects on upstream and downstream areas
(Contributions 5,6). The complexity of mountain regions and the continued changes in the
climate (Contribution 7) and land use (Contributions 8,9) have made it more challenging to
predict mountainous hazards and their subsequent socio-economic impacts. Hence, the

Water 2024, 16, 313. https://doi.org/10.3390/w16020313 https://www.mdpi.com/journal/water1
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strategic management of sediment disasters, particularly those exacerbated by climatic
change, necessitates focused academic inquiry and meticulous intervention strategies.

Mitigation strategies for mountainous disasters encompass a spectrum of structural
and non-structural interventions [11,12]. Regarding structural measures, protective mea-
sures involve constructing or reinforcing embankments and levees along rivers and estab-
lishing sediment-control structures, such as check dams, which can mitigate the impact
of debris flows. In areas prone to rockfalls or landslides, retaining structures can stabilize
slopes, thereby consequently diminishing landslide incidence. Complementing structural
approaches, non-structural strategies (Contributions 10–22) engage in delineating hazard
potential zones (Contributions 16–18), wherein the probabilistic risk assessment informs
spatial planning. The advancement and deployment of disaster-detection and -monitoring
technologies are integral to this paradigm, enabling the establishment of early warning
systems essential for prompt disaster response (Contributions 19–21).

Chiang et al. (Contribution 16) applied a deep learning algorithm to ascertain the
distribution of rainfall thresholds for landslides in a potentially high-risk area. Their study
further encompassed evaluating the distribution of recurrence intervals through probability
density functions. The primary goal was to aid decision-makers in implementing early
responses to landslides and mitigating the risk of large-scale events. Complementary to
this approach, Tsai et al. (Contribution 19) gathered pertinent information from satellite
imagery, field investigations, major event reports, and seismic data spanning 2004 to 2016
in the mountainous regions of Taiwan. The aim was to establish a specific relationship
between large-scale landslides (LSL) and triggering rainfall to enhance early warning
predictions for LSL events. By integrating real-time rainfall forecasts, the dynamic variation
in statistical indicators offers trend information, contributing to an increased response time
for relevant evacuation operations.

Land-use management and ecological conservation are also vital aspects (Contribu-
tions 22,23), particularly in maintaining the vegetation of mountainous areas [13], including
trees and grasslands, to mitigate soil erosion and reduce the risks of landslides and debris
flow. Educational initiatives targeting community residents are instrumental in cultivating
an understanding of the risks associated with mountainous regions and in disseminating
knowledge regarding appropriate safety protocols during such geohazard events. More-
over, infrastructural resilience is bolstered through the strategic construction of shelters
designed to withstand natural disasters and the meticulous planning of evacuation routes.
These measures are essential in safeguarding human life by facilitating timely and orderly
evacuations in the event of a disaster (Contribution 21).

Restoration research has also been the focus of research in recent years to minimize
the impact of structures on nature (Contributions 24–26). Within this domain, Chiu et al.
(Contribution 24) pioneered the application of Nature-based Solutions (NbS) [14] within
the Huyuan Stream watershed in southern Taiwan. This initiative represents a tripartite col-
laboration between industrial sectors, governmental bodies, and academic institutions. The
project aimed to enhance ecosystem services, providing diverse aquatic habitats, leisure
sites for urban residents, and support for local agriculture. Additionally, it integrated
local culture, environmental education, and professional development. Under the aegis
of research leadership, this pilot study championed a holistic management paradigm that
engaged multiple stakeholders in addressing the dual challenges posed by urban expan-
sion and climatic fluctuations, concurrently advancing the quality of ecosystem services.
Concurrently, there has been a nascent shift in the appraisal of mountain stream facilities,
transitioning from focusing solely on safety to a broader consideration of landscape aes-
thetics and environmental congruence (Contributions 25,26). Peng et al. (Contribution 25)
have been at the forefront of this shift, employing visual language translation as a novel
methodological approach in qualitative landscape assessment. Their research has culmi-
nated in developing a model that synergizes visual harmony and aesthetic preferences,
underpinned by an extensive suite of physical indicators. Such a model promises to re-
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fine the visual impact of hydrological engineering projects and enhance the evaluative
processes thereafter.

3. International Conference

Global initiatives have increasingly underscored the necessity for rigorous interna-
tional collaboration to elucidate the etiology of natural disasters, particularly in mountain-
ous regions, and to develop robust frameworks for monitoring, predicting, and mitigating
the impacts of such hazards. From its inception in 1967, the INTERPRAEVENT Inter-
national Society, with its origins in the alpine landscapes of Austria, is esteemed for its
pivotal contributions to research on slope disasters and is a vanguard interdisciplinary body
that synergizes efforts from academia, governance, and industry. The INTERPRAEVENT
2023 International Conference [15] took place in Taichung, Taiwan, and, for the first time
in partnership with the ‘WATER’ journal, has curated a Special Issue titled “Occurrence,
Reduction, and Restoration of Natural Disasters in Mountain Regions,” dedicated to the
dissemination of scholarly research in this domain. The conference program was compre-
hensive, addressing a multitude of topics ranging from phenomenological investigations
and event monitoring to risk analysis, policy development, resilience enhancement, and
strategies for disaster response and recovery, thereby encapsulating a holistic approach to
disaster preparedness.

There has been a concerted shift in disaster governance strategies in response to
this recognition. The focus has transitioned from the traditional approach of imposing
resilience on the environment to fostering a societal ethos that seeks to thrive in synergy
with ecological systems. This approach suggests that the sustainability of human societies
is intrinsically linked to their ability to adapt and integrate within the natural dynamics of
the environment.

4. Conclusions

The Special Issue presents the necessity for a holistic and sustainable approach to
disaster governance that is transparent. It requires the establishment of a resilient infras-
tructure capable of withstanding environmental calamities and, more importantly, societal
transformation. This transformation would cultivate a culture that respects and aligns
with ecological principles, ensuring that society and the environment can sustainably pros-
per together. Such an alignment represents the optimal pathway for mitigating the risks
associated with mountain disasters in the face of climate change and human development.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Japan is a country with one of the highest incidences of sediment disasters, which will
become more severe and more frequent as a result of climate change. This paper reviews the recent
occurrence of sediment disasters caused by heavy rainfall affected by climate change in recent years,
challenges in adaptation measures, and recent policies targeting such sediment disasters in Japan. The
Ministry of Land, Infrastructure, Transport and Tourism (MLIT) has been conducting non-structural
and structural measures based on legislation. Recently, climate change has resulted in more severe
and frequent disasters along with damage caused by sediment movement phenomena that are
not covered by the present system for warning and evacuation. Efforts to establish assessment
methods concerning the risk of these phenomena are shown as examples of current challenges of
climate change.

Keywords: sediment disaster prevention; SABO; adaptation measure; climate change; Japan

1. Introduction

Globally, sediment disasters are natural disasters that cause enormous human and
property damage [1–3]. In the Intergovernmental Panel on Climate Change (IPCC) Sixth
Assessment Report, sediment disasters are treated as one of the phenomena that could
be affected by climate change and have socioeconomic impacts [4]. Climate change is
expected to cause more severe and frequent sediment disasters worldwide [5–8], and there
are concerns about the effects of such disasters in Japan, where 1241 sediment disasters
have occurred on average from 1990 to 2019, and caused 678 dead and missing from 2000
to 2019 (approximately 21% of the number of dead and missing except those caused by the
Great East Japan Earthquake) [9].

The Japanese government’s Ministry of the Environment published a report in 2020
entitled, “Assessment of Impacts of Climate Change in Japan and Future Challenges” [10],
mandated by the “Climate Change Adaptation Act” [11]. Sediment disaster is rated highest
in all evaluation categories of “Severity”, “Urgency” and “Confidence”. In 2020, the Cabinet
Office surveyed public awareness of “concerns about water-related problems due to the
effects of climate change” and “what you would like the government to focus on water-
related problems due to the effects of climate change”. According to the survey results,
“Frequent floods and sediment disasters due to climate instability” is the most worrisome
problem (percentage of respondents: 85.6%), and “Construction and improvement of
flood and sediment disaster prevention facilities” are the most desired things about which
the government focuses on outcomes, for the government to focus on (percentage of
respondents: 78.5%) [12].

Despite the high interest from both Japanese government agencies and the public, and
the increase in sediment disasters due to climate change, few reports on global climate
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change related to sediment disasters in Japan have been published [6,8]. In this review, the
characteristics of recent sediment disasters caused by heavy rainfall under the influence
of climate change in Japan are summarized, and the challenges in advancing adaptation
measures against sediment disasters are identified and reviewed.

2. Recent and Historical Background
2.1. Non-Structural and Structural Measures against Sediment Disasters in Japan

The reduction measures conducted by the Ministry of Land, Infrastructure, Transport
and Tourism (MLIT) consist of non-structural measures and structural measures [9,13]. The
non-structural measures such as disseminating sediment disaster risk information, issuing
“Sediment Disaster Alert” [14], and land use regulation and building restrictions at the
areas at risk, have been implemented to designate “Sediment Disaster Alert Areas” [15] (the
number of Sediment Disaster Alert Areas: 214,000 for debris flow, 15,691 for deep-seated
landslides and 442,728 for slope failure; as at the end of December 2021) [16] based on the
Sediment Disaster Prevention Act [17]. The structural measures were implemented based
on three laws, the SABO Act [18], Landslide Prevention Act [19] and Steep Slope Failure
Prevention Act [20], to address three types of sediment disasters: debris flows, deep-seated
landslides and steep slope failures (including rock fall); these three types of sediment
disaster are classified using the original Japanese classification method in a precautionary
approach. The SABO Act deals mainly with debris flow [21] including sediment-laden
floods [22] (also referred to as sediment and flood damage [23], flood flow with active
sediment transport [24]). The Landslide Prevention Act is designed to prevent disasters
caused by slow-moving deep-seated landslides at slopes with landslide features in order
to make the slopes available to residents for productive activities such as agriculture or
forestry. The Steep Slope Failure Prevention Act stipulates structural measures against
slope failures initiated at slopes with an angle of 30 degrees or steeper.

As an emergency response (non-structural measure) for large-scale sediment disaster
based on the Sediment Disaster Prevention Act, “Sediment Disaster Emergency Informa-
tion”, is disseminated to the governors of prefectures and municipalities, as well as the pub-
lic in the predicted affected area for evacuation of residents. Landslide dams [25,26] and de-
bris flows due to volcanic eruptions [25,27] are assessed by the MLIT and deep-seated land-
slides are assessed by the prefectural government [25,28]. Numerical simulations are used
to predict the affected area of debris flows caused by landslide dam breaks (1D riverbed
variation calculation and 2D inundation calculation) and volcanic eruptions (rainfall-runoff
analysis considering ash accumulation and 2D inundation calculation). [25,27,29,30]

2.2. Recent Major Sediment Disasters and Response

The JMA (Japan Meteorological Agency) reported that the observed changes to date
include increases in the frequency of heavy rain and short-duration intense rainfall events.
Moreover, at the end of the 21st century, the number of annual days with daily precipitation
of 200 mm or more will increase by about 1.5 times; and the frequency of 1 h precipitation
of 50 mm or more increases by about 1.6 times based on the 2 ◦C rise scenario (RCP2.6)
of IPCC [31]. Figure 1 shows the relationship between the number of sediment disasters
increasing from 1980 to 2019 with an increase in the number of days with precipitation
of 100 mm or more [32]. In recent years, the number of sediment disasters in Japan has
increased in accordance with the increase in heavy rainfall. In the torrential rains in
July 2018, the MLIT reported 2581 cases of sediment disasters over a wide area, about
2.5 times the annual average, mainly in western Japan. In the following year 2019, Typhoon
Hagibis, its heavy precipitation enhanced by historical warming [33], caused widespread
sediment disasters in the Kanto and Tohoku regions [34], where sediment disasters had
been relatively rare [35]. A total of 952 sediment disasters occurred, the highest number
recorded for a single typhoon disaster since 1982. In this disaster, human casualties resulted
from disasters that occurred in areas that were not designated as “Sediment Disaster Alert
Areas” because the topographical conditions did not meet the criteria for designation
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in municipalities where heavy rainfall exceeding the criteria for the announcement of a
JMA emergency warning was recorded [36]. Specifically, in Marumori, Miyagi Prefecture,
causalities and property damage were caused by sediment-laden floods (Figure 2a) [37],
and casualties and property damage were caused by debris flows in an area where the
valley topography was unclear in Mawarikura (Figure 2b) [38], and casualties and property
damage were caused by deep-seated landslides in an area where there was no clear deep-
seated landslide topography in Tomioka, Gunma Prefecture (Figure 2c) [39]. In addition,
these human casualties occurred in areas that did not meet the criteria for designation as
Sediment Disaster Alert Areas. This suggests that, due to the intensification of heavy rainfall
caused by climate change, the number of sediment disasters in areas where the number of
such disasters has been small in the past is increasing, and that sediment disasters caused
by sediment movement phenomena, which have been infrequent in the past, are becoming
more apparent.

Figure 1. The relationship between the number of sediment disasters increasing from 1980 to 2019
with an increase in the number of days with precipitation of 100 mm or more: (a) The numbers of
days with precipitation of 100 mm or more and 10-year running average in 51 observation stations in
Japan (based on Uchida et. al., 2017 [32]), (b) the number of sediment disasters and 10-year running
average, reported by the MLIT, from 1980 to 2019 in Japan.

Figure 2. Photos of sediment disasters caused by Typhoon Hagibis 2019: (a) sediment-laden flood,
(b) debris flows in an area where the valley topography was unclear, (c) deep-seated landslides in an
area where there was no clear deep-seated landslide topography (courtesy of Pasco Corporation).

In the inner belt of Southwest Japan (IBSJ), where granitic geology is widely dis-
tributed, sediment disasters that cause major damage are often caused by the simultaneous
occurrence of slope failures and debris flows due to torrential rains during the rainy season,
while in the Pacific side of the outer belt of Southwest Japan (OBSJ), where accretionary
geology is widely distributed, sediment disasters tend to be caused by deep-seated catas-
trophic (rapid) landslides due to typhoons [40]. Figure 3 shows 48 major sediment disasters
from April 1998 to September 2020, in which 40 disasters caused five fatalities or more
in one municipality, five deep-seated catastrophic (rapid) landslides [41–44] and three
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sediment-laden floods [45–47], in the geological structures of Northeast Japan (NJ), Fossa
Magna (FN), IBSJ and OBSJ and indicates their tendency.

Figure 3. Type of major sediment disasters from April 1998 to September 2020 in geological structure:
NJ (Northeast Japan), FN (Fossa Magna), IBSJ (the inner belt of Southwest Japan), OBSJ (the outer
belt of Southwest Japan).

In the future, as climate change progresses, the influence of both typhoons and rainy
season fronts will shift eastward and northward, which will further increase the amount
of precipitation in western Kyushu and the Chugoku region, where many torrential rains
have occurred in the past and are expected to cause torrential rains in Hokkaido, a region
that has not had much precipitation in the past (refer to Figure 4 for locations of sub-region
of Japan) [48,49].

In order to adapt to the increasing sediment disasters caused by climate change, it is
necessary to properly assess which areas will experience more frequent sediment movement
phenomena; this will become more apparent due to the changes in rainfall characteristics
caused by climate change, and it is urgent to develop a new assessment method. Based
on the relationship between future rainfall forecast data and the critical line method of
Sediment Disaster Alert in Japan [14], studies are being conducted on where the frequency
of sediment disasters will increase [50,51].

Based on the experience of recent major sediment disasters, the authors expect several
outcomes as a result of climate change in Japan as follows: (1) increasing frequency of
sediment disasters throughout Japan; (2) expansion of the damage area of sediment disaster;
(3) occurrence of sediment disasters in regions where sediment disasters had been relatively
rare; and (4) occurrence of sediment movement phenomena that would be more apparent
due to climate change (such as sediment-laden flood and deep-seated landslides with no
clear landslide topography on gentle slopes), which had been rare.

In particular, for sediment-laden floods and deep-seated landslides with no clear
landslide topography on gentle slopes that are not covered by the present system for
warning and evacuation [14,15], it is an important issue to establish a method to identify
the hazardous area. Especially, as the frequent occurrence of sediment production in
the mountainous area and the duration of flooding increases, the risk of damage caused
by sediment-laden flood might become greater. Moreover, the frequent occurrence of
simultaneous debris flows, which caused a large number of fatalities in the past due to
the increase in precipitation caused by climate change, may be of concern. Recent and
historical background and current challenges of sediment-laden floods and deep-seated
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landslides with no clear landslide topography on gentle slopes and simultaneous debris
flow, are next explained in detail.

Figure 4. Distribution of recent sediment-laden floods in Japan since 2009.

2.3. Sediment-Laden Floods and Deep-Seated Landslides with No Clear Landslide Topography on
Gentle Slope and Simultaneous Debris Flows

The affected area and damage of sediment-laden floods are more extensive than those
caused by debris flows, as they have recently occurred in urban areas with relatively gentle
slopes, such as alluvial fans and valley plains in Japan [23,52]. Sediment-laden floods have
often caused serious damage in the past in Japan. Moreover, the frequency of sediment-
laden floods has been increasing from the 2010s (Figure 4) [37,43,46,47,53–58]. Sediment-
laden floods occurred when active surface erosion and small-scale shallow landslides in
the bare mountains and hills caused sediment to be constantly produced and deposited
on slopes and streambeds due to rainfall before Japan’s rapid economic growth period
(approximately from 1954 to 1973), such as the Great Hanshin Flood (1938) [59]. Sediment-
laden floods and debris flows could also be enhanced by sediment production affected by
the temporary loss of the mechanical soil binding effect of forest root systems due to the
expansion of afforestation after World War II [60–62].

In such areas, for example, the damage caused by sediment-laden floods and debris
flows was greatly reduced during the torrential rains in July 2018, even though the amount
of precipitation around Mt. Rokko was higher than that of the Great Hanshin Flood [63].
The construction of hillside works, including afforestation, at the source of sediment
production, and SABO dams and ground sills, in the middle and lower reach of streams, are
considered to reduce erosion of hillside slopes and the discharge of sediment deposited on
stream beds, to reduce sediment transport within the watershed and to prevent damage [64].

As tree felling decreased and vegetation recovered on bare mountains and hills after
the energy revolution during Japan’s rapid economic growth period, the frequency of
surface erosion and small-scale shallow landslides at mountains and hills decreased, and
the development of forest soils and weathered bedrock layers increased in all regions
of Japan.
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As above, the sediment production patterns have changed dramatically compared to
the time when bare mountains and hills were widespread. In recent years, sediment-laden
floods that cause serious damage have been caused by the simultaneous occurrence of
slope failures and debris flows even in forested watersheds. In unprecedented torrential
rainfalls, sediment-laden floods caused by simultaneous slope failures and debris flows
might occur on forested hillslopes, even in watersheds where structural measures for
preventing sediment transport have been implemented and where there is little sediment
transport in the small and medium magnitude of precipitation. When a sediment-laden
flood occurs, slope failures and debris flow often produce large amounts of driftwood from
hillsides, which might increase the damage.

Deep-seated landslides with no clear landslide topography on gentle slopes tend
to occur where subsurface flow is prone to occur on bedrock, and are related to falling
pyroclastic deposits that can be a slip surface due to weathered pumice layer [39,65]. Re-
views of past incidents and on-site investigations are very important to understanding the
generation mechanism and flow process of deep-seated landslides with no clear landslide
topography on gentle slopes, and to establish risk assessment methods.

Simultaneous debris flows caused a large number of fatalities, especially in urban
and suburban areas of Japan [56,66,67]. In sediment disasters caused by the torrential
rains in July 2018, approximately 70% of the streams where fatalities were caused by sedi-
ment disasters were small streams with a basin area of 0.05 km2 or less. The percentage of
streams with a basin area of 0.05 km2 or less is equivalent to about 35% of the approximately
180,000 streams of “Debris Flow Prone Torrents” (not legal designations, identification of
risk against debris flow in Japan before designating the Sediment Disaster Alert Areas).
Moreover, only three streams had SABO dams before the disasters in 33 streams where
fatalities occurred. In response to this disaster, the report of the “Sediment disaster pre-
vention study committee to Ensure Effective Evacuation” [68] established by the MLIT
stated that “effective and efficient measures against debris flow in small streams should be
promoted” as one of the measures to be taken in the future.

3. Challenges for Sediment Disaster Measures against Climate Change
3.1. Current Challenges of Sediment-Laden Floods

In order to take appropriate adaptation measures against sediment-laden floods, it
is necessary to identify watersheds that produce large amounts of sediment due to slope
failures and debris flows caused by changes in rainfall characteristics associated with cli-
mate change, which are prone to being transported and deposited near residential areas in
downstream. However, it is difficult to establish a method for identifying such watersheds;
thus, (1) watersheds where sediment-laden floods have occurred in the past; and (2) wa-
tersheds that have the same characteristics as watersheds, which recently experienced
sediment-laden floods such as topography and potential sediment production, should
be considered.

In Figure 5, relationships between catchment area and volume of sediment production
of rivers that have experienced sediment-laden floods in recent years (from 2009 to 2018;
11 events in which sediment budgets in watersheds were measured by LiDAR) are shown.
Sediment-laden floods tend to occur in watersheds with a catchment area of 3 km2 or more
and more than 100,000 m3 of sediment production. In Figure 6, relationships between
characteristics of damaged houses and river gradient; the Akadani river in heavy rainfall
in northern Kyushu, 2017; the Sozu, Tenchi and Oyaokawa rivers in the torrential rains
in July 2018, and the Gofukuya river in heavy rainfall caused by Typhoon Hagibis, 2019,
are shown. At a riverbed gradient of 1/150~200 or steeper, the majority of severe damage
was caused to houses, which were washed away in some cases [69,70]. Based on these
tendencies, the MLIT published, “Draft guideline of investigation for watershed at risk of
severe damage due to sediment and flood damage (Trial version)” [71] in March 2022, for
the prefectural government as a risk assessment method against sediment-laden floods.
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Figure 5. Relationships between catchment area and volume of sediment production of rivers that
have experienced sediment-laden floods from 2009 to 2018 (cited from Sakai et al., 2021 [69]).

Figure 6. Relationships between characteristics of damaged houses and river gradient (cited from
Sakai et al., 2021 [70]).

For the planning phase of the structural measures, Technical Criteria for River and
SABO Works Basic Planning Part [25] was revised in 2019 to use planning methodologies
based on riverbed variation calculations against sediment-laden floods. In 2021, for the
MLIT projects in the Kizugawa River and the Kii mountains, which changed project plans
based on riverbed variation calculations, continued implementation of the projects was
approved by project evaluation [72,73], mainly based on cost–benefit analysis [74]. The
MLIT projects against sediment-laden floods will continue to be reviewed [75], and the
prefectural government will establish structural measure plans against sediment-laden
floods [76] using riverbed variation calculations.

Driftwood brought by sediment-laden floods causes serious damage in downstream
areas as a result of heavy rainfall in northern Kyushu, 2017 [43], in which the estimated
volume of driftwoods was approximately 210,000 m3 [77]. The MLIT and Forestry Agency
started to collaborate quantitatively on structural measures against driftwood, for example
sharing the data of standing timbers surveyed by LiDAR and a measure plan [78].
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3.2. Current Challenges of Deep-Seated Landslides with No Clear Landslide Topography on
Gentle Slope

In order to establish an assessment method to clarify the risk of deep-seated landslides
with no clear landslide topography on gentle slopes, Sugimoto et al. collected literature
on 26 disasters and 71 cases of deep-seated landslides in Japan with no clear landslide
topography on gentle slopes due to rainfall [79]. In their study, first, as an analysis of rainfall
conditions for the occurrence of landslides, the ratio (hereafter R) of the maximum daily
rainfall at the time of disasters to the 100-year probable daily rainfall (using the 100-year
probable rainfall at the nearest point in the JMA website’s list [80] from the location of
landslide) was calculated. R ≥ 1 accounts for 80% of the cases (57 cases), indicating that
many of the cases occurred in rare heavy rains. In addition, as a topographical analysis of
the occurrence of landslides, whether or not the landslide topography existed before the
disaster in the literature was surveyed. The results show that 86% of the cases (61 cases)
had no description of landslide topography, suggesting that many of the cases occurred on
gentle slopes where no clear landslide topography was observed before the disaster. As an
analysis of geology and geological structure, the ratios of geology and geological structure
based on descriptions in the literature were surveyed. It was found that the number of
deep-seated landslides with no clear landslide topography on gentle slopes occurring on
slopes where pyroclastic fall deposits (Quaternary) formed dip slope was 15/71 cases
(21%) and 5/26 disasters (19%), including the landslide in Takumi, Tomioka, Gunma in this
category, and the number that occurred on slopes where marine sedimentary rocks (from
Quaternary to Cretaceous) formed dip slopes was 15/71 cases (21%) and 9/26 disasters
(35%). They reported that these two types of geology and geological structure might have
relatively high risks of deep-seated landslides with no clear landslide topography on the
gentle slopes.

3.3. Current Challenges of Simultaneous Debris Flows

Downstream of streams with small catchment areas in urban and suburban areas,
developed housing areas are often located directly below their valley outlet, and once a
debris flow occurs, it could cause extensive damage. Moreover, because narrow roads in
crowded housing areas complicate the transport of construction materials and construction
machines to build an SABO dam (check dam), it is difficult to build a conventional type of
SABO dam. Therefore, it is important to effectively and efficiently install measures to build
facilities against debris flow in such streams [81].

The MLIT published in 2022, “Technical supplement for structural measure against
debris flow in streams with small catchment area and no flowing water” [78,82] as supple-
mental material for the technical standard for planning and design of conventional SABO
dams [83,84], to promote the introduction of a simpler structure than the conventional
SABO dam. This material is to be used under the following conditions.

A stream should have two characteristics, as follows: (1) an ephemeral stream where
the flow path is unclear, there is no water flow on days with no rain, and sediment transport
is not expected under rainfall that does not cause a sediment disaster; and (2) a stream
where the riverbed slope gradient upstream of the planned SABO dam is 10◦ or steeper,
and the entire watershed of the upper stream of the point is a debris flow generation/runoff
zone. These guidelines also apply when it is difficult to construct an SABO dam based
on the conventional guidelines from the viewpoint of constructability and topographical
conditions, such as (1) when a road to the construction site is very narrow; (2) when the
size of the conventional SABO dam might be significantly larger than the size of the stream
watershed; (3) when a large amount of soil is excavated for construction of the SABO dam;
or (4) when a new road for construction cannot be prepared due to the proximity of houses,
buildings or any structures.
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4. Discussion

In Section 2.2, we indicate several expected outcomes of climate change in Japan. For
increasing frequency and expansion of the damage area of sediment disasters, and the
occurrence of sediment disasters in regions where sediment disasters had been relatively
rare (outcomes: from (1) to (3)), it may be essential to predict sediment movement phe-
nomena that will become more frequent and more apparent in each region of Japan. To
this end, it is important to analyze the dominant topographical and geological factors [40]
and rainfall indexes [14,40,85] that caused each past sediment movement phenomena (such
as simultaneous debris flows and slope failures, sediment-laden floods, and deep-seated
catastrophic (rapid) landslide), based on these results, to predict the occurrence of future
sediment movement phenomena for each region using future rainfall forecast data on a
nationwide scale. If the dominant topographical and geological factors and rainfall indexes
could be quantified, it would improve the dissemination of sediment risk information by
taking into account the effects of climate change.

For the occurrence of sediment movement phenomena that would be more apparent
due to climate change, which had been rare (outcome: (4)), especially regarding sediment-
laden floods, it is important to assess the potential source of sediment, and the tendencies
of sediment erosion and deposition in each river system, evaluated by the riverbed vari-
ation calculation [25] and connectivity of sediment transport in rivers [86], for the risk
grading of watersheds at risk of sediment-laden floods to prioritize implementation of
structural measures.

Moreover, the development and implementation of techniques for estimating sediment
production based on physical models, such as numerical simulations [87–90], should be
expedited so that the amount of sediment production in areas with inexperienced rainfall
can be appropriately estimated to implement non-structural and structural measures from
the viewpoint of the estimation of the damage area caused by each sediment movement
phenomenon and external forces required for the design of facilities. Since the establishment
of a physical model requires further validation and technological development, the use
of an empirical method to estimate the amount of sediment production according to the
predicted future rainfall based on the relationship between the amount of rainfall during
past sediment disasters and the amount of sediment production should be facilitated [91].
In the use of empirical methods, extrapolation to a range of rainfall that has not been
experienced at all is a major problem.

Because the spatial resolution of present future rainfall forecast data (for example
spatial resolution of SI-CAT DDS5TK 5 km) is often large compared to the watershed area
where structural measures are conducted against sediment-laden floods, debris flow, and
slope failure [92], quantitative evaluation of water and sediment discharge on a local scale
affected by climate change using future rainfall forecast data is also an important issue for
the planning and design of facilities.

5. Conclusions

In this review, firstly non-structural and structural measures against sediment disasters
in Japan conducted by the MLIT and the prefectural government, and the characteristics of
recent major sediment disasters caused by heavy rainfall under the influence of climate
change in Japan, mainly describing sediment disasters caused by the torrential rains in July
2018 and Typhoon Hagibis, are summarized as a recent and historical background. Secondly,
based on the characteristics, problems that need to be resolved are shown, for example,
sediment-laden floods and deep-seated landslides with no clear landslide topography on
gentle slopes, which are not covered by the present system for warning and evacuation.
Finally, current challenges to establishing advancing adaptation measures against such
sediment disasters are introduced.

To establish proper adaptation measures against sediment disasters due to climate
change, the SABO Department of the MLIT has been consulting with academic experts in
the “SABO technical panel for climate change” since 2019. The interim report of the panel
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was published in June 2020 [93]. Based on the Interim report, the MLIT plans and conducts
research and technical development to update technical standards for non-structural and
structural measures. The MLIT continues to exchange ideas with countries and areas
affected by sediment disasters due to climate change.
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Abstract: Groundwater zone formation in the soil layers of a headwater catchment is an important
factor that controls volumetric and chemical changes in streamflow; it also induces shallow landslides.
Previous studies have suggested that the groundwater zone in soil layers generally forms transiently
atop low-permeability layers in response to rainfall. This study focused on an unchanneled hollow
in a serpentine headwater catchment, where a semi-perennial to perennial groundwater zone was
observed in thin organic soil layers (OSLs) overlying thick clay mineral soil layers (CMLs), even
during dry periods. We conducted detailed observations in this catchment to clarify the formation
processes of the semi-perennial to perennial groundwater zone. The results showed that water is
supplied from the CMLs to the OSLs as unsaturated upward flow in areas where the OSLs are dry.
This water then accumulates in the downslope hollow, which sustains the groundwater zone in the
OSLs during dry periods. The frequent and long-term occurrence of upward flow can be attributed
to differences in the hydraulic properties of OSLs and CMLs. This process prevents the OSLs in the
hollow from drying, presumably causes volumetric and chemical changes in streamflow, and reduces
the stability of OSLs.

Keywords: perennial groundwater zone; organic soil layers; clay mineral soil layers; headwater
catchment; serpentine; unsaturated upward flux

1. Introduction

The groundwater zone within the soil layers of a headwater catchment has been recog-
nized as one of the most important factors controlling volumetric [1–3] and chemical [4,5]
changes in streamflow and in the induction of shallow landslides [6,7]. Clarification of the
formation process of the groundwater zone within soil layers is needed to predict changes in
streamflow and the occurrence of shallow landslides. Based on numerous studies involving
detailed field observations in various headwater catchments, including the Maimai catchment,
New Zealand [8–11]; Walker Branch watershed, U.S.A. [12]; LI1 catchment at Llyn Brianne,
Wales [13]; and Hitachi Ohta experimental watershed, Japan [14], the formation process of the
groundwater zone can be described as follows. Rainwater vertically infiltrates into permeable
soil layers. This water reaches low-permeability layers (i.e., bedrock) and flows laterally along
their surfaces, transiently forming a groundwater zone above low-permeability layers in the
downslope area. This groundwater zone shrinks through the discharge of water into streams
after rainfall has ceased; it generally disappears (especially in small catchments) during dry
periods because of the low capacity of a small headwater catchment to store water, combined
with high permeability of soil layers.

Although this formation process is widely accepted in various headwater catchments,
some studies have identified a groundwater zone within the soil layers, even during dry
periods. Frisbee et al. [15] observed groundwater table dynamics in two hillslope transects

Water 2022, 14, 3122. https://doi.org/10.3390/w14193122 https://www.mdpi.com/journal/water20



Water 2022, 14, 3122

and calculated the water balance for them. They reported that during periods of low
water table position, large-volume groundwater storage was observed in a depression
located near the base of the slope that maintained streamflow. Such depressions formed
atop less permeable layers are presumed to increase water storage, thereby preventing the
groundwater zone from drying up. Fujimoto et al. [16] conducted hydrological observa-
tions on two types of hillslopes (valley head and side slope) in a headwater catchment; they
demonstrated that the hillslope with highly convergent topography continued to sustain
wet conditions through the concentration of subsurface water during dry periods. These
studies highlighted the importance of hillslope topography in maintaining the groundwater
zone during dry periods. Moreover, although bedrock groundwater is commonly reported
to exfiltrate into channels and thus influence stream discharge and quality during baseflow
periods [17–19], some studies that included detailed hydrological, hydrochemical, and
hydrothermal observations have shown that bedrock groundwater can also exfiltrate into
soil layers, thereby generating a perennial groundwater zone in the soil layers. Uchida
et al. [20] indicated that expansion and contraction of the groundwater zone in a soil layer
at a slope base during periods of normal low flow and drought were controlled by bedrock
groundwater exfiltration. Katsura et al. [21] found that a groundwater zone was present
within the soil layers at a slope base in a headwater catchment during dry periods; they
demonstrated that the groundwater zone was maintained by bedrock groundwater exfiltra-
tion. Thus, water flow from bedrock can contribute to the formation of a groundwater zone
in the soil layer during dry periods.

In this study, we observed groundwater dynamics in a small headwater catchment
(0.068 ha) with gentle topography underlain by serpentine. In this catchment, a semi-
perennial to perennial groundwater zone forms in thin, high-permeability organic soil
layers (OSLs) in an unchanneled hollow; it remains present during dry periods. The small
catchment area, lack of a large depression, low topographic convergence, and presence of
thin OSLs with high permeability in this catchment suggest that the effects of catchment
topography cannot explain the observed semi-perennial to perennial groundwater zone in
the OSLs. A substantial contribution from bedrock groundwater exfiltration is also unlikely
due to the presence of mineral soil layers that consist of thick clay mineral layers (CMLs)
with low permeability above the bedrock, which inhibit bedrock groundwater flow into the
OSLs. Thus, the aforementioned formation processes of a groundwater zone in soil layers,
which were based on observations in catchments with no thick clay mineral layers, cannot
explain the semi-perennial to perennial groundwater zone observed in this catchment. The
groundwater zone observed in this catchment appeared to be controlled by another factor.
Using hydrometric, hydrochemical, and thermal observations, this study explored the
formation process of the semi-perennial to perennial groundwater zone observed in the
OSLs of this catchment.

2. Materials and Methods
2.1. Study Site

The study was conducted in a very small forested headwater catchment (0.068 ha;
44◦52′ N, 142◦4′ E) on Kunneshiri Mountain in Nakagawa Experimental Forest, which is
managed by Hokkaido University and located in Hokkaido, northern Japan (Figure 1). The
elevation of the catchment ranges from 241 to 257 m above sea level (Figure 1c), and a
spring is present at the catchment outlet. The region has a mean annual temperature of
5.9 ◦C (1989–2019) and precipitation of 1240 mm (1989–2019) according to data from the
nearest weather station (the Japan Meteorological Agency Automated Meteorological Data
Acquisition System [(AMeDAS) Nakagawa observation station, located approximately 5
km south-southwest of the catchment). The snowfall season in Nakagawa Experimental
Forest is from late November through late April or early May [22], and the maximum snow
depth during this season is about 1.7 ± 0.5 m [23]. The dominant tree species in Nakagawa
Experimental Forest are Abies sachalinensis, Picea glehnii, Picea jezoensis, Sorbus commixta,
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Quercus crispula, and Acer pictum [24]; the understory is densely covered with Sasa kurilensis
and Sasa senanensis [25].

Figure 1. Maps of (a) Hokkaido, (b) the Kunneshiri Mountain area in Nakagawa Experimental Forest,
and (c) the study catchment. In panel (b), black and gray contours represent intervals of 10 and 2 m,
respectively. In panel (c), the contour interval is 1 m. Dotted and dashed lines in panel (c) indicate an
unchanneled hollow in the study catchment and the catchment boundary, respectively.

The study catchment is underlain by serpentinite bedrock and features low elevation,
gentle hillslopes, and a rounded ridge with a mean gradient of 14◦. These topographic
characteristics are consistent with the characteristics of other serpentinite catchments
in Japan [26]. The surface soil type of the area underlain by serpentine is “Wet Iron
Podzol” [27]. In this catchment, OSLs are very thin, with thickness ranging from 10 to
50 cm. Mineral soil layers derived from weathering of the serpentinite bedrock consist
of clayey materials (referred to as CMLs in this study), with thickness ranging from 30 to
170 cm. Each layer is thicker in the middle of the slope and thinner in the upper and lower
parts. Whereas macropores and pipes can form within CMLs and contribute to preferential
flow in catchments with geological settings other than serpentinite [28,29], they are not
observed in the study catchment because the CMLs consist of stiff clayey materials and the
high concentration of nickel in serpentine soils inhibits root growth into the CMLs [30].

2.2. Laboratory Measurement

Figure 2 shows a flowchart of the methodology used to explore the formation process
of the semi-perennial to perennial groundwater zone observed in the OSLs of this catchment.
First, to measure the hydraulic properties of OSLs, CMLs, and the boundary layers between
them, we collected undisturbed core samples (100 cc in volume) from a trench (Figure 3)
excavated at Point S in Figure 1c. The thicknesses of the OSL and CML at this point are 10
and 33 cm, respectively. In total, three, one, and four samples were collected from the OSL,
boundary layer, and CML, respectively. We confirmed that the soil and bedrock structure
at this point is almost the same as the structure at other points (e.g., Points A, B, and T;
mentioned later). Moreover, the area of the study catchment is very small (0.068 ha). Hence,
we assumed that the collected samples were representative of each layer in the catchment.
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Figure 2. Flowchart of methodology of this study.

Figure 3. Photograph of the trench at Point S. White dotted lines indicate boundaries between the
OSLs and CMLs and between the CMLs and bedrock. Solid red circles indicate the depths at which
undisturbed core samples were collected.

We conducted water retention tests on all core samples in the laboratory. To obtain
and characterize water retention curves for each sample, we fitted a lognormal model [31]
to the observed relationship between volumetric water content, θ, and pressure head, ψ
(cm). The lognormal model was derived by applying the lognormal distribution law to the
soil pore radius distribution function, and the water retention curve is expressed as follows:

Se =
θ − θr

θs − θr
= Q

(
ln(ψ/ψm)

σ

)
(1)
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where Se represents the effective saturation; θs and θr are the saturated and residual volu-
metric water contents, respectively; ψm is the pressure head at Se = 0.5; σ is a dimensionless
parameter characterizing the width of the pore-size distribution; and Q is the complemen-
tary normal distribution function:

Q(x) =
∫ ∞

x

1√
2x

exp
(
−u2

2

)
du (2)

We determined the values of θr, ψm, and σ for each sample through minimization of
the residual sum of squares, which was obtained from the measured and calculated values
of θ at the applied ψ, with θs fixed at the measured value. Finally, the mean water retention
curves of OSLs and CMLs were obtained using the mean parameter values of core samples
collected from each layer (arithmetic means of θs, θr, and σ; geometric mean of ψm). The
water retention curve for the OSL–CML boundary zone was obtained using parameter
values determined from the OSL–CML boundary core sample.

We also measured the saturated hydraulic conductivity, Ks, for all core samples in the
laboratory. The hydraulic conductivity curve was obtained using the model proposed by
Kosugi [31]. The following functional relationship between hydraulic conductivity, K, and
ψ was obtained by combining Equation (1) with Mualem’s [32] model:

K(ψ) = KsSe
1/2
[

Q
(

ln(ψ/ψm)

σ
+ σ

)]2
(3)

Mean hydraulic conductivity curves for OSLs and CMLs were obtained using the
geometric mean value of Ks for core samples collected from each layer with the mean
parameter values of ψm and σ, which were determined as described above. The hydraulic
conductivity curve for the OSL–CML boundary was obtained using the measured value of
Ks and the parameter values of ψm and σ.

2.3. Field Observations

Temporal variations of ψ were measured at Point T (Figure 1c) at 60 min intervals from
15 May to 1 November 2019 using tensiometers. We selected this point because it is located
at the catchment boundary in the downslope area and therefore roughly represents the
average degree of wetness for the whole catchment. The OSL depth is 31 cm at this location.
The tensiometer installation depths were 30 (in the OSLs), 50, and 80 cm (in the CMLs).

To separately monitor groundwater levels and temperature in the OSLs and CMLs,
two pairs of observation wells (for OSLs and CMLs) were manually excavated at Points
A and B along an unchanneled hollow in the study catchment (Figure 1c). All wells
were constructed using 6 cm diameter polyvinyl chloride pipes perforated with numerous
5 mm diameter holes. The depths of the wells for observation of the OSLs at Points A
and B (equivalent to the depths to the CML surfaces at each point) were 41 and 38.5 cm,
respectively. The depths of the wells for the CMLs at Points A and B were 209 and 164 cm
(equivalent to the depths of the bedrock surfaces at each point), respectively. To prevent
groundwater in the OSLs from directly infiltrating into the CML wells, the upper sections
of the CML wells were unperforated. The depth of the unperforated section was 60 cm at
Point A and 43 cm at Point B; it was greater than the OSL depth at each point. A water-
level gauge with a temperature recorder was installed at the bottom of each observation
well, where it measured the groundwater level and temperature simultaneously at 60 min
intervals from 15 May to 1 November 2019.

For analysis of electrical conductivity (EC; µS cm−1), water samples were collected
at intervals of approximately 4–5 weeks from mid-May through early November 2019.
Samples of groundwater in the OSLs and CMLs were collected directly from the wells.
Rainwater samples were collected using a plastic bottle equipped with a mesh-covered
21-cm-diameter funnel located at Point R in a clearing in the study catchment (Figure 1c).
The measured EC values were converted to values at a standard temperature of 25 ◦C.
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All rainfall and air temperature data were obtained from the Japan Meteorological
Agency AMeDAS Nakagawa observation station.

3. Results
3.1. Hydraulic Properties

Figure 4 shows the water retention and hydraulic conductivity curves of the OSLs,
CMLs, and boundary layer. The parameter values are listed in Table 1. The θ value of
the OSLs is large at ψ = 0 cm (i.e., θs = 0.707); it shows a sharp and continuous decrease
(approximately 0.204) as ψ decreases to −200 cm (Figure 4a). The decrease in θ is most
prominent in the wet range of ψ > −10 cm (0.060). In contrast, θ in the CMLs is smaller at
ψ = 0 cm (θs = 0.549) than in the OSLs; it decreases less sharply (0.074) from θs as ψ decreases
to −200 cm, with no prominent decrease in the wet range. Because θs is equivalent to the
total volume of soil pores and water drains earlier from larger pores than from smaller
pores as ψ decreases, these water retention curves suggest that the OSLs contain many
pores of various sizes from very large (as indicated by the prominent change in θ in the
wet range) to small, whereas the CMLs have only a few large pores. The θ value of the
OSL–CML boundary is similar to the θ value of OSLs at ψ = 0 cm (θs = 0.718), and it shows
an intermediate rate of decrease (0.138) as ψ decreases to −200 cm.

Figure 4. (a) Water retention curves and (b) hydraulic conductivity curves of the OSLs, CMLs, and
boundary zone between the OSLs and CMLs.

Table 1. Parameter values for hydraulic properties.

Ks
cm s−1 θs θr

ψm
cm σ

OSLs 3.38 × 10−2 a 0.707 b 0.250 b −303.4 a 3.05 b

CMLs 6.76 × 10−4 a 0.549 b 0.374 b −303.2 a 2.10 b

Boundary 2.14 × 10−2 0.718 0.442 −200.3 2.67

Note(s): a Geometric mean. b Arithmetic mean.

The measured Ks values of the OSLs ranged from 1.07 × 10−2 to 6.06 × 10−2 cm s−1,
with a geometric mean of 3.38 × 10−2 cm s−1; these values were larger than the Ks of
CMLs, which ranged from 2.37 × 10−4 to 6.08 × 10−3 cm s−1, with a geometric mean of
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6.76 × 10−4 cm s−1 (Table 1). Figure 4b depicts hydraulic conductivity curves for the OSLs,
CMLs, and OSL–CML boundary; it shows that the K of the OSLs rapidly decreases from
3.38 ×10−2 cm s−1 to 2.34 × 10−5 cm s−1 as ψ decreases from 0 to −10 cm. In contrast, the
reduction in the K values of CMLs across the same ψ range is smaller (6.76× 10−4 cm s−1 to
6.58 × 10−5 cm s−1). Therefore, although OSLs have a larger Ks (K at ψ = 0 cm) than CMLs,
OSLs have a smaller K than CMLs in the range of ψ < −1.5 cm (K < 3.00 × 10−4 cm s−1).
At the OSL–CML boundary, K decreases from 2.14 × 10−2 to 7.50 × 10−5 cm s−1 as ψ
decreases from 0 to −10 cm. In the range of ψ < −10 cm, OSLs, CMLs, and the OSL–CML
boundary all show gentler changes in K than in the range of ψ > −10 cm.

3.2. Pressure Head

Figure 5 shows hourly rainfall and ψ in the OSL (30 cm depth) and CMLs (50 and 80 cm
depths) at Point T. Total precipitation during the study period was 468.5 mm. Positive and
negative ψ values indicate saturated and unsaturated conditions, respectively. The OSLs
showed a rapid increase in ψ and often reached saturation in response to rainfall, whereas
periods without rainfall resulted in ψ decreases and severe drying. Careful examination
of Figure 5b demonstrates that ψ in the OSL displayed a rapid decrease from saturation
to approximately −10 cm, followed by a gentler decrease as ψ decreased further. This
tendency can be attributed to the water retention curve of OSLs (Figure 4a). The observed
rapid decrease in ψ from saturation to ψ = −10 cm presumably reflects rapid drainage of
water through very large pores. Based on the tendencies described here, we defined wet and
dry periods in this study as periods with OSL ψ of >−10 cm and <−10 cm, respectively. The
variations of ψ are shown in Figure 5b, c for wet and dry periods, respectively. The 80 cm
sampling depth in the CMLs showed smaller ψ responses to rainfall and was constantly
saturated in both wet and dry periods. The 50 cm sampling depth in the CMLs became
saturated in response to rainfall and gradually returned to unsaturation after rainfall ceased.
The ψ fluctuated less at 50 cm than at 30 cm (in the OSLs); it remained close to saturation
even when ψ values at depths upward of 20 cm indicated severely dry conditions. These
ψ dynamics indicate wetter conditions in the CMLs than in the OSLs, especially during
dry periods.

Figure 5. (a) Rainfall and ψ in the (b) OSLs (30 cm) and (c) CMLs (50 and 80 cm). Dashed line in
panel (b) represents ψ = −10 cm.
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3.3. Groundwater Level and Temperature

Figure 6 shows hourly rainfall and the groundwater level in the OSLs and CMLs at
Points A and B. The groundwater level is presented as the depth below the ground surface,
and the OSL–CML boundary is denoted with a dashed line. In the study catchment, we
observed two distinct groundwater levels, in OSLs and CMLs (OSL groundwater and CML
groundwater, respectively). Observation data for OSL groundwater at Point A are missing
because of equipment failure from 26 May at 13:00 through 3 July at 10:00.

Figure 6. (a) Rainfall and groundwater levels at (b) Point A and (c) Point B. The groundwater level
is presented as depth below the ground surface. Dashed lines in panels (b,c) indicate the boundary
between the OSLs and CMLs.

At Point A, the OSL groundwater showed rapid fluctuations in response to rainfall; it
was present throughout the observation period except in July, when low precipitation and
high evapotranspiration during the summer drought period in Hokkaido [33] caused the
groundwater level to intermittently decrease to zero (Figure 6b). Notably, OSL groundwater
was sustained from 2 September through 17 September despite extremely low rainfall
(5.0 mm) during this period. In contrast, the CML groundwater level was less responsive
to rainfall. The CML groundwater level generally did not reach the OSL–CML boundary,
although a few rainfall events increased the CML groundwater level above the OSL–CML
boundary. Even during such periods, the CML groundwater level did not match the OSL
groundwater level, suggesting distinct groundwater zones in the OSLs and CMLs. The
minimum groundwater level in the CMLs was −0.593 m, which was observed on 22 July at
16:00 during the drought period; this level was 0.183 m below the boundary.

At Point B, the groundwater level in the OSLs was observed continuously; it showed
steep increases and decreases in response to rainfall (Figure 6c). Excluding the rapid
decrease and recovery of the groundwater level within the OSLs from 23 July at 1:00 to
14:00 during the summer drought period, the minimum groundwater level was −0.282 m
on 17 July at 16:00 (in a dry period), which was 0.103 m above the boundary; this finding
indicated that groundwater was permanently present at approximately 10 cm above the
OSL–CML boundary, even during dry periods. Conversely, the CML groundwater response
to rainfall was gentle and small. The CML groundwater level did not reach the OSL–CML
boundary throughout the observation period. The minimum groundwater level in the
CMLs was −0.492 m, which was observed on 23 July at 14:00 (in a dry period) and was
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0.107 m below the boundary. Note that the groundwater level dynamics at Points A and B
were similar to the pressure head dynamics at Point T (Figure 5), except that Points A and
B, located in the hollow, were wetter.

Figure 7 shows rainfall, air temperature, and the temperature measured at the bottom
of each observation well. Because groundwater was nearly always present in all wells,
we hereafter refer to the temperature in the wells as the groundwater temperature. The
groundwater temperature in the OSLs at Points A and B showed diurnal variations that
can be attributed to changes in air or rainwater temperature, as well as a seasonal trend
with a peak in early August. In contrast, the groundwater temperature in the CMLs at each
point was minimally affected by diurnal air temperature changes or rainwater; it showed
gentle seasonal variations with a peak in mid-September. The dynamics of groundwater
temperature did not differ between dry and wet periods.

Figure 7. (a) Rainfall and air temperature and groundwater temperature at (b) Point A and (c) Point B.

3.4. Electrical Conductivity

Figure 8 shows the EC values of water samples. Rainwater EC (ranging from 9 to
34 µS cm−1) was significantly lower than the values of other samples based on the two-
tailed t-test (p < 0.05). Two water samples from the OSLs at Point A showed EC of 147
and 180 µS cm−1. The EC of OSL groundwater at Point B ranged from 162 to 279 µS cm−1;
this overlapped the values of CML groundwater. Greater variation in groundwater EC
in the CML was observed at Point B than at Point A (from 221 to 379 µS cm−1 and from
377 to 426 µS cm−1, respectively). Overall, the OSL groundwater had significantly lower
values than the CML groundwater (p < 0.05). Figure 8 also shows that the EC values of OSL
groundwater tended to be higher during dry periods than during wet periods. No such
tendency was recognized for CML groundwater.

Figure 8. EC of collected water samples.
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4. Discussion
4.1. Sources of Groundwater

While semi-perennial to perennial groundwater zones were present in both OSLs
and CMLs within the unchanneled hollow, their fluctuation characteristics differed. The
responses of CML groundwater to rainfall were small and gentle (Figure 6), presumably
because of the hydraulic properties of CMLs, which have low permeability even under
saturated conditions and contain small numbers of large pores (Figure 4). Additionally, ψ
in the CMLs at Point T was consistently high, even during dry periods (Figure 5c), because
the large number of small pores in the CMLs prevents drainage of water stored in the
pores during dry periods. In contrast, the OSL groundwater level in the hollow and ψ
at Point T showed rapid fluctuations in response to rainfall (Figures 5b and 6). These
fluctuations during wet periods suggest rapid rainwater infiltration into and drainage
from large pores, reflecting the hydraulic properties of OSLs (Figure 4). The process of
groundwater generation in OSLs in the hollow during wet periods can be explained by the
conventional conceptual model described in the Introduction section: rainwater vertically
infiltrates into the highly permeable OSLs until it reaches the less permeable CMLs. Water
then laterally flows along the CML surface, forming a groundwater zone above CMLs in
the downslope area. The EC of OSL groundwater tended to be lower during wet periods
than during dry periods (Figure 8), suggesting that the infiltration of rainwater with low
EC (Figure 8) affected the OSL groundwater during wet periods.

Surprisingly, the groundwater zone remained present for a long period of time in
the OSLs in the hollow during dry periods (Figure 6). The high permeability of the OSLs
does not allow groundwater in the OSLs to be maintained consistently during dry periods.
Additionally, because the study catchment is small, with gentle hillslopes and thin OSLs,
no large depression or convergent topography is available to provide water storage. The
EC values of OSL groundwater collected from a depth of several tens of centimeters during
dry periods were high (175 to 279 µS cm−1; Figure 8). In Japan, reported EC values in soil
layers at a few centimeters directly below leaf litter were high (>300 µS cm−1), especially
in autumn when many broadleaf trees drop their leaves; these values decreased with
infiltration into OSLs [34,35]. Sakuma and Sato [34] showed that the EC values of water
collected from OSLs overlying pyroclastic fall deposits in Hokkaido, Japan, were in the
range of approximately 30–70 µS cm−1. Miyata et al. [36] reported that, in OSLs at the depth
of 20 cm in a granitic catchment in Gifu Prefecture, Japan, the mean EC value of stored
water was 17.36 µS cm−1. In a catchment consisting of volcanic rock and sedimentary
rock in Akita, Japan, the EC of water stored at approximately 20–40-cm depth in an OSL
was 51 µS cm−1 [35]. Compared with the EC values measured in these previous studies,
the OSL groundwater EC values observed in the present study during dry periods were
surprisingly high. This comparison suggests that the high values of OSL groundwater
EC during dry periods are influenced by CML groundwater, which has high EC values
(Figure 8); moreover, CML groundwater is an important source of groundwater present in
the OSLs during dry periods.

One possible explanation for the contribution of CML groundwater to the groundwater
zone in the OSLs involves runoff of CML groundwater into the OSLs via macropores or
pipes within the CMLs. However, no such structures were observed in the study catchment.
The results of temperature observations (Figure 7) suggested that such runoff of CML
groundwater into the OSLs was unlikely; the groundwater temperature in the CMLs
showed moderate seasonal variations and minimal impact from diurnal air or rainwater
temperature, whereas water in the OSLs was sensitive to air and rainwater temperature. If
macropores or pipes had contributed to water flow, the CML groundwater temperature
would be affected by air or rainwater temperature, such that it would show sensitive
fluctuation during wet periods; during dry periods, the OSL groundwater temperature
would show moderate fluctuations driven by runoff of CML groundwater. The EC values
of CML groundwater showed no clear difference between dry and wet periods (Figure 8),
which is consistent with these inferences.
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These findings suggest that CML groundwater contributed to maintenance of the
groundwater zone in OSLs in the hollow during dry periods through a mechanism that
did not involve runoff of CML groundwater into the OSLs via macropores or pipes.

4.2. Water Flow Direction and Flux Analysis across OSL-CML Boundary
4.2.1. Flow Direction Analysis

To examine the contribution of CML groundwater to the OSL groundwater zone in the
hollow during dry periods, we analyzed the water flow direction between OSLs and CMLs
using the ψ values recorded at Point T. We focused on the flow direction between the 30
and 50 cm tensiometers, which were located immediately above and below the OSL–CML
boundary (depth: 31 cm). Figure 9 shows the temporal variations in the difference in total
head, H, defined as the sum of ψ and the elevation head, between 30 and 50 cm. We used
the ground surface as the reference level for calculating elevation head. A positive value of
H indicates upward flow from the CMLs into the OSLs, whereas a negative value indicates
downward flow from the OSLs into the CMLs. Figure 9 demonstrates that the main flow
direction during wet periods was downward.

Figure 9. (a) Rainfall and (b) the difference in total head between the depths of 30 and 50 cm at Point T.

Figure 10 shows the relationship between simultaneous ψ measurements from the
30 and 50 cm tensiometers (ψ30 and ψ50, respectively); in this plot, two groups are dis-
tinguished according to the flow direction (upward or downward). During wet periods,
downward flow was observed for 1104 h, whereas upward flow was observed for only 1 h.
Thus, downward flow from the OSLs to the CMLs occurred mainly during wet periods
including rainfall periods, indicating that a portion of the rainwater infiltrated into the
CMLs and recharged the CML groundwater. Conversely, after the cessation of rainfall,
downward flow decreased and the flow direction switched from downward to upward;
upward flow was observed during dry periods (Figure 9). Upward and downward flows
were observed during a dry period at 2296 and 662 h, respectively (Figure 10). Thus,
upward flow consistently occurred during dry periods. The OSLs, with high permeability
under saturated conditions and a large number of large pores, became unsaturated and
dried up during dry periods. The CMLs, with low permeability under saturated conditions
and no large pores, remained nearly saturated even during dry periods. The frequent and
long-term occurrence of upward flow can be attributed to these differences in hydraulic
properties between OSLs and CMLs.
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Figure 10. Relationship between simultaneous ψ30 and ψ50 observations. Dashed line represents
ψ = −10 cm.

4.2.2. Upward Flux Analysis during Dry Periods

Next, we analyzed the vertical water flux across the OSL–CML boundary at Point
T using H. According to Darcy’s Law, water flux, q, at the boundary can be calculated
as follows:

q = −Kbo(ψ31)
H
s

(4)

where Kbo is the hydraulic conductivity of the OSL–CML boundary, ψ31 is ψ at the boundary
(at 31 cm depth), and s is the distance in the direction of flow (20 cm). We computed ψ31
as follows:

ψ31 =
ψ50s30 + ψ30s50

s
(5)

where s30 and s50 are the vertical distances from the boundary to the 30 and 50 cm ten-
siometers (i.e., 1 and 19 cm), respectively. Kbo(ψ31) was calculated using the hydraulic
conductivity curve of the OSL–CML boundary shown in Figure 4b.

Figure 11b, c shows the temporal variations in upward and downward q, respectively.
Note that downward q in Figure 11c is plotted on a logarithmic scale. The maximum
upward flux during dry periods was 0.36 mm h−1, observed on 1 July at 17:00, which
was extremely small compared to the maximum downward flux during wet periods of
983 mm h−1, which was observed on 9 October at 0:00. However, the upward flux during
dry periods averaged 0.16 mm h−1 and totaled 360 mm, equivalent to three-quarters of
the total precipitation (468.5 mm). This similarity suggests that the accumulation of water
that moved upward from the CMLs into the OSLs in areas where the OSLs were dry
(ψ < −10 cm; Figure 10) contributed to the maintenance of the groundwater zone in the
OSLs along the hollow (including Points A and B) during dry periods.
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Figure 11. (a) Rainfall, (b) upward and (c) downward water flux at Point T, and (d) rate of specific
groundwater flow at the midpoint between Points A and B.

To determine whether the calculated upward q can explain the observed groundwater
level in the OSLs in the hollow during dry periods, we conducted a crude calculation
of the specific groundwater flow rate in the OSLs at the midpoint between Points A and
B. The rate of specific groundwater flow in the OSLs at the midway point, Qm, can be
approximated as follows:

Qm =
qm AC

Am
(6)

where qm is groundwater flux at the midway point, AC is the cross-sectional area of the
groundwater zone at the midway point calculated assuming a triangular area, and Am is
the catchment area at the midway point (0.056 ha). By applying Darcy’s law to saturated
groundwater flow in the OSLs between Points A and B, qm can be approximated as follows:

qm = Ks_OSLs
HAB
Ss

(7)

where Ks_OSLs is the mean saturated hydraulic conductivity of OSLs (3.38 × 10−2 cm s−1),
HAB is the difference in elevation of the groundwater table in the OSLs between Points A
and B, and Ss is the slope length from Points A to B (19.0 m).

Figure 11d shows the temporal variations of Qm (data are missing from 26 May
at 13:00 though 3 July at 10:00 due to the lack of the groundwater level data at Point
A). The maximum Qm was 0.18 mm h−1, observed on 31 August at 14:00 during a wet
period. During dry periods, Qm reached its maximum (0.072 mm h−1) on 27 July at 3:00
and averaged 0.018 mm h−1. The findings in Figure 11b,d indicate that upward q was
larger than Qm for nearly the entire observation period when upward flux was generated.
The sums of upward q and Qm during dry periods with upward flux from 1 July to 31
October were 172.5 and 9.76 mm, respectively. Kondo et al. [37] estimated that mean
transpiration in July through October in this region (including the study catchment) was
172 mm. Comparison of these values suggests that most of the upward q is consumed
by transpiration (some water that flowed only through the OSLs was presumably also
consumed by transpiration), whereas the remaining q could generate the observed saturated
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groundwater flow in the OSL in the hollow. Thus, water supplied from the CMLs to OSLs
as upward flux accumulated and contributed to the groundwater zone in the OSLs in the
hollow during dry periods.

4.3. Conceptual Model of Formation Process of OSL Groundwater Zone

Based on the discussion above, Figure 12 illustrates the formation processes of the
groundwater zone in the OSLs in the hollow of the study catchment. During wet periods
including rainfall periods (Figure 12a), rainwater vertically infiltrates into the highly perme-
able OSLs until it reaches the less permeable CMLs; it then becomes perched groundwater
above the OSL–CML boundary. The perched groundwater flows downslope along the
OSL–CML boundary as saturated lateral flow, thereby expanding or increasing the depth
of the groundwater zone in the OSLs in the hollow. In areas where the OSLs are wet
(ψ > −10 cm), a portion of this water infiltrates into the CMLs as downward flux (Figure 10)
and slowly recharges the CML groundwater.

Figure 12. Formation processes of the groundwater zone within the OSLs in the study catchment
during (a) wet periods and (b) dry periods.

In contrast, during dry periods (Figure 12b), the contribution of rainwater to the OSL
groundwater zone decreases and upward flow from the CMLs occurs mainly in areas
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where the OSLs are dry (ψ < −10 cm) (Figure 10). This water then flows downslope along
the OSL–CML boundary as unsaturated or saturated lateral flow, forming the groundwater
zone in the OSLs in the hollow of the downslope area.

4.4. Importance of Water Supply from CMLs to OSLs as Upward Flux during Dry Periods

Upward flux in a headwater catchment has been reported previously [20,38,39], and
two mechanisms of upward flux generation have been proposed. One mechanism is
unsaturated upward flux resulting from the balance of the matrix potential of soil layers
(i.e., unsaturated matrix flow), as observed in this study, which occurs as soil layers become
dry and the groundwater level decreases [39–42]. The other mechanism is saturated upward
flux, which occurs in association with the local exfiltration of bedrock groundwater into
soil layers through fissures and cracks in the bedrock [20,38,43–45]. Although saturated
upward flux is often considered as an important water supply process for soil layers,
unsaturated upward flux caused by matrix flow has attracted minimal attention because of
the small fluxes involved relative to saturated upward fluxes. Frisbee et al. [15] reported
large-volume groundwater storage in a depression located near the base of the slope in a
0.60 ha catchment during periods of low water table position. In this case, the soil thickness
of the depression was as much as approximately 4 m. From the results of this study,
unsaturated upward flux may be an important process that sustains wet soil layers during
dry periods in still smaller headwater catchments with thinner soil layers and without
saturated upward flux from bedrock.

At Point T in the study catchment, upward flux from the CMLs to the OSLs generally
occurred as unsaturated flow during dry periods. Although the maximum upward flux
was small (0.36 mm h−1), the total upward flux over the entire observation period was
large (360 mm). This continuous upward flux contributed to the maintenance of the
groundwater zone in the OSLs in the hollow of the downslope area during dry periods,
which presumably caused subsequent volumetric and chemical changes in streamflow.
Moreover, in a serpentinite catchment in Hokkaido, Japan, Aipassa [46] described the
occurrence of surface slides (a type of slope failure) with the slip surface located at the
OSL–CML boundary; such slides were reported to occur on steep slopes when rainfall is
sufficiently heavy to saturate the slip surface. Although no traces of such slides were found
in the study catchment, presumably because of the low gradient, continuous unsaturated
upward flux can influence such slides by raising the groundwater level or expanding the
groundwater zone in the OSLs of hollows during rainfall periods through the generation
of a small groundwater zone before the rainfall, which reduces the stability of the OSLs.
Thus, the present findings emphasize the important role of water supply from CMLs to
OSLs during dry periods in the formation of a groundwater zone in OSLs in hollows, in
addition to its effects on streamflow and shallow landslides.

5. Conclusions

Detailed hydrological, hydrochemical, and thermal observations in a forested ser-
pentinite headwater catchment containing mineral soil layers composed of thick clayey
materials produced by weathering of bedrock (i.e., CMLs), along with hydraulic prop-
erty measurements in the laboratory, were conducted to elucidate the formation process
of the semi-perennial to perennial groundwater zone observed in thin OSLs within an
unchanneled hollow in the study catchment, even during dry periods. The groundwater
temperature and chemistry suggested that runoff of the CML groundwater into the OSLs
via macropores or pipes is unlikely. Instead, water flux analysis across the OSL–CML
boundary revealed that unsaturated upward flow from the CMLs into OSLs occurs in areas
where the OSLs are dry (pressure head < −10 cm). Accumulation of this upward flux can
explain the groundwater zone observed in the OSLs of the hollow during dry periods. We
conclude that water infiltrates from the OSLs into CMLs during wet periods (including
rainfall periods) and then is supplied into the OSLs as upward flux during dry periods; this
upward flux contributes to the generation of a semi-perennial to perennial groundwater
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zone in the OSLs in the hollow. Land users and management organizations of catchments
underlain by thick CMLs should pay attention to volumetric and chemical changes in
streamflow and the surface slides that could be caused by the semi-perennial to perennial
groundwater zone. In future research, detailed observations of other serpentinite catch-
ments and catchments underlain by other bedrock types with thick CMLs (e.g., mudstone
and slate catchments) are needed to determine the generalizability of the present findings.
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Abstract: We conducted experiments using an experimental flume with two variable streambed
gradients in the upstream and downstream parts with various debris flows, composition sizes, and
supply flow rates. We investigated the transition processes of sediment transport modes along the
longitudinal distances from the gradient change point using the transition mode indices, ICsx, Ihx,
and IUx; these indices were calculated based on measurements of sediment transport concentrations,
flow depths, and gravel migration velocities in the debris flow’s front in the downstream part. Using
these indices, we postulated that after the debris flow passed the gradient change point, the transition
of the sediment transport modes progressed by changing the measured parameters to those in the
steady-state condition on the gradient of the downstream parts. In addition, these indices suggested
that the gravel migration velocities in the flow front interior changed most rapidly after passing
the gradient change point, and that flow depths tended to change most slowly. Finally, the indices
suggested that as the debris flow material became finer and the supplied flow rates became larger,
the longitudinal transition sections tended to be longer because the momentum needed to transport
the material was less than the total debris flow momentum.

Keywords: debris flow; sediment transport mode; transition process; changing streambed gradient;
sediment transport concentration; flow depth; gravel migration velocity; flume experiment

1. Introduction

In recent years, debris flow disasters have become more frequent in various regions
of East and Southeast Asia [1–5]. To protect lives and property from these disasters, it is
necessary to more precisely understand the characteristics of debris flows reaching flood
plains containing residential and social structures, such as alluvial fans, and to install
effective countermeasures or predict the damage caused by debris flows based on these
characteristics. The important characteristics of debris flows are the flow velocity, flow
depth, and sediment concentration. To investigate these parameters, the sediment transport
mode of debris flow during the downflow in mountain streams must be understood.

Before a debris flow reaches the flood plains, it flows down mountain streams with
continuously changing streambed gradients from steep upstream areas, such as in a valley
head, to gentle downstream areas, such as the top of an alluvial fan. Therefore, the sediment
transport mode changes stepwise during the downflow in mountain streams owing to
the continuously changing streambed gradients. If the streambed gradient is 14–15◦ or
higher, transported materials can be dispersed throughout the entire flow layer by the shear
forces of high-density materials in the flow [6–10]. We consider this sediment transport
mode the “debris flow”. However, if the streambed gradient is below 14–15◦, the materials
cannot be dispersed throughout the flow layer and tend to settle down as the vertical
downward component of gravity increases. Therefore, the flow consists of the lower layer,
which is composed of high-density materials, and the upper layer, which is composed of
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turbulent water flow with suspended loads [11–14]. We consider this sediment transport
mode the “sediment sheet flow” or “immature debris flow”. The thickness of the lower
layer with high-density materials decreases as the streambed gradient becomes gentler.
When the streambed gradient is approximately 1–2◦, the sediment transport mode changes
to individual transportation; that is, bed load transport. The thickness of the lower layer
with high-density materials in this transportation mode is approximately one to two times
the grain diameter [14]. Considering the above, the sediment transport mode of a debris
flow is a sediment sheet flow or bed load transport when the flow reaches the downstream
end of a mountain stream that connects to the top of an alluvial fan, because the streambed
gradient is often less than 15◦. However, the flow front may be considered to maintain the
“debris flow”, with the materials dispersed throughout the entire flow layer, even when
it reaches the stream outlet. Thus, to predict the damage caused by a debris flow on an
alluvial fan more accurately, it is necessary to accurately determine the characteristics of the
debris flow supplied to the fan from mountain streams based on the transition processes of
sediment transport modes owing to the changing streambed gradients.

Previous studies have clarified the sediment transport mechanisms in debris flow and
sediment sheet flow on a flume with a constant gradient [11–16]. However, except for
the recent experimental studies on the changing of the flow characteristics for a granular
sediment flow or soil mass with little moisture at the gradient change points, such as the
bottom of the failure slope [17–19], only a few studies have clarified the sediment transport
mechanisms in flumes with continuously changing gradients [20,21]. These studies focused
only on the process of debris flow generation by a surface runoff on a streambed with
steep gradients (more than 15◦), while few studies have focused on the transition of
sediment transport modes on the gradient changes within 2–15◦, where a sediment sheet
flow or bed load transport would be pronounced. The sediment flow model proposed by
Egashira et al. [10,15] enables the reproduction of various modes using their constitutive
laws for all streambed gradients. However, the experimental results used to verify their
proposed model were also based on a flume with a constant gradient; there has not been
sufficient verification of this model based on the transition processes of sediment transport
modes with changing gradients. Although these conventional constitutive laws are set in
the x-coordinate direction along the flow direction on the riverbed surface, the constitutive
law of bed load transport in the global coordinates, which is not affected by the changing
of the x-coordinate direction due to riverbed deformation, has been proposed [22,23].
These laws can estimate the sediment transport rates under non-negligible transversal
and longitudinal gradients by reducing the effects of the additional laws of the erosion
and deposition processes, considering the separation of the gravity vector component
in the flow and transversal directions. Since these proposed constitutive laws do not
deal with high-density material flow, such as debris flow, it is necessary to construct a
constitutive law based on a global coordinate system for the flow and to examine whether
the transition of sediment transport modes due to changing gradients can be expressed.
Taking a numerical approach to sediment transport mechanisms with changing gradients,
Takahama et al. [24] proposed a numerical model for a two-layer flow composed of a
turbulent water flow in the upper layer and a concentrated sediment flow in the lower
layer, while Suzuki and Hotta [25] proposed a numerical model using the moving particle
semi-implicit (MPS) method. Their models were applied to the debris flow behaviors and
depositions at changing gradient points. Since these models are based on the sediment
transport mechanisms proposed by Egashira et al. [10,15], it is necessary for these models
to sufficient verify the based mechanisms in the transition processes of sediment transport
modes with changing gradients. Few other researchers except them have attempted
numerical modeling for the transition processes of sediment transport modes.

A debris flow is composed of materials of various particle sizes, and these particles
influence each other during the downflow, resulting in the occurrence of particle size segre-
gation in the flow interior. For a stony debris flow with many boulders, the boulders become
concentrated toward the flow front during the downflow in mountain streams [4,26–31].
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Ashida et al. [14] conducted flume experiments on the transport mechanisms of sediment
mixtures with gentle flume bed gradients of 1–8◦. They clarified that although the particle
migration velocities of various sizes in the flow interior are generally consistent, finer
particles fall to the bottom of the flow. Furthermore, it is difficult for finer particles to
migrate because the coarser particles above block them from moving; thus, the coarsening
of the migrating particles becomes more pronounced. This indicates that the migrating
particle size segregation (coarsening of migrating particles) also occurs in the interior of
the sediment sheet flow. This was also evident in the flume experiments on debris flows
composed of sand and gravel mixtures conducted at constant gradients ranging from 3 to
18◦ by Wada et al. [32]. Thus, to predict the damage caused by a stony debris flow on an
alluvial fan more accurately, it is necessary to focus on the transitions of sediment transport
modes for debris flows composed of sand and gravel mixtures resulting from changing
streambed gradients.

Based on the above background, this study focused on the transition processes of
sediment transport modes for the debris flow consisting of uniform-sized and mixed-sized
gravel types resulting from changing streambed gradients from more than 15◦ to less
than 15◦. We conducted the flume experiments using an experimental flume consisting of
two variable gradients in the upstream and downstream parts. Based on these experimental
results, we calculated the transition indices of sediment transport modes and investigated
the corresponding transition processes along the longitudinal distances from the gradient
change point using these indices.

2. Materials and Methods
2.1. Experimental Setup and Conditions

Figure 1 shows the experimental flume and the measurement equipment used in
our study. The experimental flume consisted of two variable streambed gradients in the
upstream and downstream parts, with lengths of 150 cm and widths of 10 cm, with a
fixed bed part for the rectification of the supplied water at the upstream end of the flume.
The gradients of the upstream and downstream parts, θ1, θ2, were set to three types; a
gentle uniform gradient (θ1 = θ2 = 9◦), a steep uniform gradient (θ1 = θ2 = 15◦), and a
changed gradient (θ1 = 15◦, θ2 = 9◦). The connecting point of the upstream and downstream
parts was defined as the gradient change point (at +0 cm; the positive direction was the
downstream side). In addition, the length of the downstream part could be changed to
50 cm, 70 cm, or 100 cm. After the experimental materials were placed at a depth of 5 cm in
the upstream and downstream parts (the total material volume including bulks equaled
15,000 cm3), the material was eroded by the supplied water from the upstream end, resulting
in the generation of debris flow. We measured the sediment transport concentration of the
flow front, Cs, at the downstream end of each length flume (at +50, +80, +100, and +150 cm)
using a movable sediment sampler moving in the transverse direction with respect to the
flow direction. The sampler separated the debris flow front into the four boxes over the
time intervals in the range of 1.0–2.0 s. Measurements were performed to determine the
temporal changes in the sediment transport concentrations of the flow front in each sample.
We also measured the flow front depths, h, using three ultrasonic water level sensors (E4C-
DS30, OMRON Corp., Kyoto, Japan) at +10, +50, and +80 cm points, as well as the gravel
migration velocities, u, in the flow front’s interior using two high-speed video cameras
(EXILIM PRO EX-F1, CASIO COMPUTER Co., Ltd., Tokyo, Japan) at +0 and +30 cm points.

The experimental conditions combined with the particle size compositions of the
debris flow materials and inflow rates of the supplied water are listed in Table 1. The
gravel sizes and debris flow depths of these conditions were set within the gravel size and
gravel-size-to-flow-depth ratio ranges used in the previous experiments on debris flow
with sediment mixtures performed by Wada et al. [32]. Table 1 also shows the averaged
flow depth, flow velocity, Froude number, and particle Reynolds number for the “frontal
part” of the debris flow for all cases. In this study, we focused on the effects of the changing
gradient on the sediment transport mode at the “frontal part” of the debris flow, whereby
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the “frontal part” was defined as the part within 3 s from reaching the flow front at a certain
measuring point. The magnitude orders of the Froude number and particle Reynolds
number were consistent with those of the dimensionless parameters describing previous
field and experimental debris flows, as organized by Turnbull et al. [33]. This indicated
that our experiments replicated the previous field and experimental debris flows in term
of the flow characteristics. The flow velocities on the gentle gradient of the downstream
part were greater than those on the steep gradient of the upstream part in many cases. The
reason for this may be because the debris flow velocity depends on the magnitude relation
regarding the increase or decrease in the streambed gradient and sediment concentration,
as shown in Equation (1) below. Under our experimental conditions, the strongest effect on
the debris flow velocity is the decreasing sediment concentration rather than the decreasing
streambed gradient.
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Figure 1. Experimental setup.

Table 1. Experimental cases and conditions.

Case

Debris Flow
Composition Inflow

Rate 2

(cm3/s)

Flume Gradient 2

θ1, θ2 (◦) 3

Measured Representative Values of the “Frontal Part” 4

of a Debris Flow with a Changing Gradient

dL, dS
(mm) 1 PL, PS

1 Condition hf
5

(mm)
Uf

6

(mm/s) Frf
7 Re*f

8

Case 1 19.0, 7.1 20%, 80%

2000
1000

Gentle uniform
gradient

9◦, 9◦

Steep uniform
gradient
15◦, 15◦

Changed gradient
15◦, 9◦

Inflow rate; 2000 cm3/s
Upstream part (15◦) 29.767 545.45 1.028 2651.78

Downstream part (9◦) 51.300 571.43 0.811 2676.44
Inflow rate; 1000 cm3/s

Upstream part (15◦) 30.000 260.87 0.489 2662.13
Downstream part (9◦) 24.533 363.64 0.746 1850.86

Case 2 7.1, non 100%, 0%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 29.567 315.79 0.597 1979.35

Downstream part (9◦) 40.453 615.38 0.983 1780.02
Inflow rate; 1000 cm3/s

Upstream part (15◦) 27.667 321.43 0.628 1914.70
Downstream part (9◦) 29.008 387.10 0.730 1507.33

Case 3 7.1, 3.0 80%, 20%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 36.000 387.10 0.663 1931.84

Downstream part (9◦) 43.250 615.38 0.951 1627.96
Inflow rate; 1000 cm3/s

Upstream part (15◦) 24.000 285.71 0.599 1577.34
Downstream part (9◦) 30.367 390.24 0.719 1364.12
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Table 1. Cont.

Case

Debris Flow
Composition Inflow

Rate 2

(cm3/s)

Flume Gradient 2

θ1, θ2 (◦) 3

Measured Representative Values of the “Frontal Part” 4

of a Debris Flow with a Changing Gradient

dL, dS
(mm) 1 PL, PS

1 Condition hf
5

(mm)
Uf

6

(mm/s) Frf
7 Re*f

8

Case 4 19.0, 3.0 20%, 80%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 28.700 545.45 1.046 1702.92

Downstream part (9◦) 39.767 571.43 0.921 1541.15
Inflow rate; 1000 cm3/s

Upstream part (15◦) 19.867 500.00 1.152 1416.83
Downstream part (9◦) 31.167 363.64 0.662 1364.36

Case 5 7.1, 3.0 20%, 80%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 31.667 375.00 0.685 1102.11

Downstream part (9◦) 38.033 888.89 1.464 928.61
Inflow rate; 1000 cm3/s

Upstream part (15◦) 19.200 181.82 0.426 858.17
Downstream part (9◦) 31.858 545.45 0.982 849.89

Case 6 3.0, non 100%, 0%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 21.333 510.64 1.136 710.41

Downstream part (9◦) 36.747 727.27 1.219 716.84
Inflow rate; 1000 cm3/s

Upstream part (15◦) 23.100 276.92 0.592 739.24
Downstream part (9◦) 28.600 631.58 1.120 632.40

Note: 1 d1 and d2 are the diameters of coarser and finer gravel types, respectively; P1 and P2 are the initial
compositions of coarser and finer gravel types, respectively; 2 common conditions in all cases; 3 θ1 and θ2 are
the gradients of the upstream and downstream parts in the experimental flume, respectively; 4 “frontal part” is
the part within 3 s from reaching the flow front at a certain measuring point; 5 h f is the averaged flow depth
at the “frontal part” of a debris flow; 6 U f is the averaged front velocity of a debris flow in the section from
50 cm upstream from the gradient change point to 50 cm downstream from the point; 7 Frf is the Froude number,

= U f /
(

gh f cos θ
)0.5

, where g is the gravitational acceleration, 9.81 × 102 mm/s2; 8 Re*f is the particle Reynolds

number, =dm

(
gh f tan θ

)0.5
/ν, where dm is the mean diameter of the debris flow material and ν is the kinematic

viscosity coefficient, 1.00 mm2/s.

The particle size compositions were prepared by mixing one or two particles of the
three particles with diameters of 3.0 mm, 7.1 mm, and 19.0 mm according to the ratios
shown in Table 1. The average mass density of these gravel particles (σ) was 2.650 g/cm3,
the average concentration in the static sediment bed (C*) was 0.575, and the average internal
friction angle (φ) was 34.80◦. Here, 80% of the particles in Cases 1–3 were gravel with a
diameter of 7.1 mm, while 80% of the particles in Cases 4–6 were gravel with a diameter
of 3.0 mm. For all conditions, the inflow rates of the supplied water were set to 1000
and 2000 cm3/s. Note that in Cases 2, 5, and 6, the flow front depth measurements at
+10 and +80 cm and the measurements of gravel migration velocities in the flow front
interior at +30 cm were not taken, while in Cases 1 and 4, the measurements of sediment
transport concentrations of the flow front at +50, +80, and +100 cm were also not taken.
This was due to missing or oscillating measurement data caused by a malfunction of the
measurement equipment.

In our experiments, no significant topographic changes due to the deposition of debris
flow at the gradient change point (+0 cm) occurred during the “frontal part” passing at the
point. Therefore, the effects of topographic changes on the transition of sediment transport
modes for the “frontal part” were minor.

2.2. Transition Index of Sediment Transport Modes

Using the measurement results, the averaged sediment transport concentration, Cs,
the averaged flow depth, h, and the vertical averaged gravel migration velocity, U, at
the “frontal part” of the debris flow were calculated. Cs is calculated using the following
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equation, using the volumes of water and sediment included in the samples of debris flow
fronts obtained by the four boxes in the movable sampler:

Cs =
4

∑
i=1

(VsLi + VsSi)/
4

∑
i=1

(VsLi + VsSi + Vwi) (1)

where VsLi and VsSi are the coarser and finer sediment volumes included in the samples
obtained by the i-th boxes, respectively; Vwi is the water volume included in the samples
obtained by the i-th boxes; and i is the number of each box (i = 1–4). Note that in the cases
with the debris flow consisting of uniform-sized gravel, VsSi is zero. In the following, Cs,
h, and U in the cases of uniform gradients of 15◦ and 9◦ are denoted as Cs15◦ , Cs9◦ , h15◦ ,
h9◦ , U15◦ , and U9◦ , respectively; and Cs, h, and U in the cases of changing gradients are
denoted as Csx, hx, and Ux at x cm downstream from the gradient change point (+0 cm),
respectively. Cs15◦ , Cs9◦ , and Csx were calculated by averaging the sediment transport
concentrations of debris flows obtained by the four samplers. Here, h15◦ and h9◦ were the
theoretical debris flow depths on the uniform gradients of 15◦ and 9◦, respectively, obtained
using the theoretical averaged velocity equation for a stony debris flow as proposed
by Takahashi [6] (Equation (2)) and the continuity equation of the flow (Equation (3)).
We applied Equation (2) to the consideration of our experimental results because the
scales of our experimental conditions were equivalent to Takahashi’s experiments, which
were conducted to confirm the equation’s validity [6]. The streambed surface (i.e., the
x-coordinate direction that is the basis of Equation (2)) did not change significantly at the
gradient change point during the passing point of the “frontal part” in our experiments:

Um =
2

5dm

[
g sin θ

αi sin φ
{C∞ + (1− C∞)}

(ρm

σ

)]1/2
{(

C∗
C∞

)1/3
− 1

}
h

3/2
(2)

q = Umh (3)

where Um is the vertical averaged velocity of the debris flow, dm is the mean diameter
of the material, g is the gravitational acceleration, θ is the streambed gradient, αi is the
coefficient (= 0.042), and ρm is the mass density of the interstitial fluid (= 1.0 g/cm3). C∞
is the equilibrium sediment concentration from Equation (4), which is derived from the
equilibrium of the riverbed shear stress and the body forces of the debris flow on the
riverbed in the dynamic equilibrium state of the flow [6]:

C∞ =
ρm tan θ

(σ− ρm)(tan φ− tan θ)
(4)

where hx is the averaged measurement value of the flow front depth within 3 s from the time
at which the flow front reaches the measuring point; U15◦ and U9◦ are the averaged gravel
migration velocities within the “median depth” for the theoretical velocity distribution, as
suggested by Takahashi et al. [34], for uniform gradients of 15◦ and 9◦, respectively. We
defined the “median depth” as the vertical range from 1/3h to 2/3h in the interior of the
“frontal part”. The theoretical velocity distribution used in this study can be adopted for
the velocity distributions of both stony debris and sediment sheet flows (see [34] for details
on the theoretical distribution). Note that the internal friction angles (ø) for calculating the
theoretical distribution were adjusted according to the experimental results based on the
uniform gradients of 15◦ and 9◦. Here, Ux is the averaged measurement value within the
“median depth” of the “frontal part”.

Based on the values of the uniform gradients, Cs15◦ , Cs9◦ , h15◦ , h9◦ , U15◦ , and U9◦ , and
the measurement results for the changing gradient, Csx, hx, and Ux, the transition indices
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of sediment transport modes at x cm downstream from the gradient change point (+0 cm
point), ICsx, Ihx, and IUx, were obtained using the following equations:

ICsx =
Csx − Csθ1

Csθ2 − Csθ1
(5)

Ihx =
hx − hθ1

hθ2 − hθ1
(6)

IUx =
Ux −Uθ1

Uθ2 −Uθ1
(7)

where Csθ1, hθ1, and Uθ1 are the averaged sediment transport concentration, the theoretical
flow depth, and the averaged gravel migration velocities within the “median depth” for the
Takahashi’s theoretical velocity distribution [34] at the “frontal part” of the debris flow on a
uniform gradient of upstream parts, θ1, respectively. Similarly, Csθ2, hθ2, and Uθ2 are the
same indicators on a uniform gradient of downstream parts, θ2, respectively. Using these
indices helps us to simply estimate the transition processes of sediment transport modes
for any pattern of changed gradients from θ1 to θ2. In this study, we defined θ1 = 15◦ and
θ2 = 9◦, and the transition process of the modes on the changed gradients from 15◦ to 9◦

were discussed using these indices.

3. Results and Discussion
3.1. Transition of Sediment Transport Modes Based on Changes in Sediment Transport
Concentrations of the “Frontal Part” Resulting from Changing Streambed Gradient

Figure 2 shows the sediment transport concentrations of the “frontal part” of the debris
flow, Cs, for all gradient conditions in Cases 2, 5, and 6, respectively. The dotted lines in
these figures show the averaged value, Cs, for the sediment transport concentrations of the
debris flow obtained by the four samplers. The sediment transport concentrations in the
debris flow front, which were obtained by the first sampler, were significant for some cases.
This reason for this was that the volumes of gravel in the debris flow front increased more
than the interstitial fluid because sufficient clearance between the coarser gravel types in
the flow front’s interior was not enough to concentrate the coarser gravel types in the flow
front. In the cases with a changing gradient, as the distance between the measuring point
and the gradient change point (+0 cm) increased, the sediment transport concentrations
became closer to the uniform gradient (9◦) for the downstream part. Comparing the results
with different inflow rates for each case, although Cs+50cm decreased significantly with
both inflow rates, these rates were less changed at more than 50 cm downstream from the
+0 cm point in the cases where the inflow rates were higher. On the other hand, in the
cases where the inflow rates were lower, Cs decreased gradually as the distance from the
+0 cm point increased more, and Cs+150cm was almost consistent with Cs9◦ on the uniform
gradient of the downstream part. However, in Case 6 with the finest debris flow material,
Cs+150cm was larger than Cs9◦ , even in the case where the inflow rate was lower. Therefore,
in the cases where the inflow rates were higher and the debris flow materials were finer,
although Cs decreased significantly over a short distance from the gradient change point
(+0 cm), these rates were less changed thereafter. Conversely, in the cases where the inflow
rates were lower and the materials were coarser, Cs decreased more as the distance from
the gradient change point (+0 cm) increased and was closer to the uniform gradient for the
downstream part at +150 cm. These tendencies were confirmed by the averaged sediment
transport concentrations of the “frontal part”, Csx, for all cases, as shown in Table 2. This
indicates that when the kinetic energy of a debris flow is larger, although some of the flow
causes a sudden stoppage (sedimentation) by consuming the kinetic energy because the
flow collides with the riverbed near the gradient change point, most of the transported
sediment flows downstream because the consumed momentum is less than the total debris
flow momentum. Conversely, when the kinetic energy of a debris flow is smaller, although
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the collision of the flow with the riverbed at the gradient change point is not significant, a
firm transition in the sediment transport mode is caused because the materials are unable
to maintain their dispersion in the flow’s interior owing to the significant increase in the
downward component of gravity on the downstream part.
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Figure 2. Time variations in sediment transport concentrations of the “frontal part” of the debris flow,
Cs, for all gradient conditions in Cases 2, 5, and 6.

Table 2. Averaged sediment transport concentrations of the “frontal part” of the debris flow, Cs, for
all cases with two inflow rates.

Case Inflow Rate
(cm3/s) Cs15◦ Cs50cm Cs70cm Cs100cm Cs150cm Cs9◦

Case 1

2000

0.260 - - - 0.124 0.124
Case 2 0.275 0.156 0.144 0.154 0.124 0.096
Case 3 0.250 0.164 0.156 0.148 0.127 0.110
Case 4 0.272 - - - 0.170 0.138
Case 5 0.302 0.200 0.157 0.149 0.163 0.129
Case 6 0.261 0.163 0.159 0.158 0.158 0.132

Case 1

1000

0.256 - - - 0.013 0.060
Case 2 0.253 0.132 0.135 0.109 0.060 0.070
Case 3 0.256 0.161 0.131 0.120 0.073 0.061
Case 4 0.318 - - - 0.130 0.060
Case 5 0.310 0.222 0.183 0.176 0.135 0.136
Case 6 0.330 0.206 0.191 0.181 0.154 0.125
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Figure 3 shows the transition indices of sediment transport modes based on the
sediment transport concentrations of the “frontal part” of the debris flows, ICsx, for all cases
at the two inflow rates. Considering that ICsx = 0 represents the sediment transport mode
at the uniform gradient for the upstream part (15◦) and ICsx = 1 represents the mode at the
uniform gradient for the downstream part (9◦), it is considered that as ICsx is the closer to 1,
the transition to the mode for the downstream parts becomes more significant. The lower
the inflow rate, the larger the change in ICsx with respect to the increase in the longitudinal
distance from the gradient change point (that is, the linear slope of ICsx).

Water 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

Table 2. Averaged sediment transport concentrations of the “frontal part” of the debris flow, 𝐶�̅�, for 

all cases with two inflow rates. 

Case 

Inflow 

Rate  

(cm3/s) 

𝑪𝒔
̅̅ ̅

𝟏𝟓°
 𝑪𝒔

̅̅ ̅
𝟓𝟎𝒄𝒎

 𝑪𝒔
̅̅ ̅

𝟕𝟎𝒄𝒎
 𝑪𝒔

̅̅ ̅
𝟏𝟎𝟎𝒄𝒎

 𝑪𝒔
̅̅ ̅

𝟏𝟓𝟎𝒄𝒎
 𝑪𝒔

̅̅ ̅
𝟗°

 

Case 1 

2000 

0.260 - - - 0.124 0.124 

Case 2 0.275 0.156 0.144 0.154 0.124 0.096 

Case 3 0.250 0.164 0.156 0.148 0.127 0.110 

Case 4 0.272 - - - 0.170 0.138 

Case 5 0.302 0.200 0.157 0.149 0.163 0.129 

Case 6 0.261 0.163 0.159 0.158 0.158 0.132 

Case 1 

1000 

0.256 - - - 0.013 0.060 

Case 2 0.253 0.132 0.135 0.109 0.060 0.070 

Case 3 0.256 0.161 0.131 0.120 0.073 0.061 

Case 4 0.318 - - - 0.130 0.060 

Case 5 0.310 0.222 0.183 0.176 0.135 0.136 

Case 6 0.330 0.206 0.191 0.181 0.154 0.125 

  

Figure 3. Transition indices of sediment transport modes based on sediment transport 

concentrations of the “frontal part” of the debris flow, 𝐼𝐶𝑠̅̅ ̅𝑥, for all cases with two inflow rates. 

Thus, by using the transition indices, 𝐼𝐶𝑠̅̅ ̅𝑥 , we can explicitly describe the tendencies 

mentioned above on sediment transport concentrations of the “frontal part” of the debris 

flow. However, by using 𝐼𝐶𝑠̅̅ ̅𝑥, the similar transition tendencies for all cases (all particle 

size compositions of debris flow materials) also suggest that the effect of the particle size 

composition on the transition for sediment transport concentration is relatively small. 

3.2. Transition of Sediment Transport Mode Based on Changes in Debris Flow Depths of the 

“Frontal Part” Resulting from Changing Streambed Gradient 

Figure 4 shows the debris flow depths of the “frontal part”, ℎ, and the theoretical 

debris flow depths on the uniform gradients of 15° and 9°, ℎ̅15° and ℎ̅9°, for all gradient 

conditions in Cases 1, 3, and 4, respectively. Even though the sediment transport 

concentrations of the “frontal part” were significant, the debris flow depths of the “frontal 

part” did not show remarkable increases for all cases. This may be due to the larger gravel 

sizes relative to the debris flow depth, whereby the supplied gravel sizes from the 

subsequent part by riding over the frontal part were few. The measurements of the debris 

flow depths for several runs in Case 3 generally showed the same trend. This suggested 

that our experimental results were reproducible. 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 25 50 75 100 125 150
  

  

Longitual distance from the gradient-changed point (cm)

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6

Sediment transport mode on 9 deg.

Sediment transport mode on 15 deg.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 25 50 75 100 125 150

  
  

Longitual distance from the gradient-changed point (cm)

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6

Sediment transport mode on 15 deg.

Sediment transport mode on 9 deg.

Supplied water volume; 2000 cm3/s Supplied water volume; 1000 cm3/s

Figure 3. Transition indices of sediment transport modes based on sediment transport concentrations
of the “frontal part” of the debris flow, ICsx, for all cases with two inflow rates.

Thus, by using the transition indices, ICsx, we can explicitly describe the tendencies
mentioned above on sediment transport concentrations of the “frontal part” of the debris
flow. However, by using ICsx, the similar transition tendencies for all cases (all particle
size compositions of debris flow materials) also suggest that the effect of the particle size
composition on the transition for sediment transport concentration is relatively small.

3.2. Transition of Sediment Transport Mode Based on Changes in Debris Flow Depths of the
“Frontal Part” Resulting from Changing Streambed Gradient

Figure 4 shows the debris flow depths of the “frontal part”, h, and the theoretical debris
flow depths on the uniform gradients of 15◦ and 9◦, h15◦ and h9◦ , for all gradient conditions
in Cases 1, 3, and 4, respectively. Even though the sediment transport concentrations of the
“frontal part” were significant, the debris flow depths of the “frontal part” did not show
remarkable increases for all cases. This may be due to the larger gravel sizes relative to the
debris flow depth, whereby the supplied gravel sizes from the subsequent part by riding
over the frontal part were few. The measurements of the debris flow depths for several
runs in Case 3 generally showed the same trend. This suggested that our experimental
results were reproducible.

At 10 cm downstream of the gradient change point, h was equal to or greater than
the theoretical debris flow depth on the uniform gradient for the upstream part (15◦), h15◦ ,
with both inflow rates. More than 50 cm downstream from the point, as the distance from
the gradient change point to the measuring point increased, h was the closer to that on
the uniform gradient for the downstream part (9◦), h9◦ . Comparing h+80cm values for
different inflow rates for each case, the h+80cm values in the cases with the lower inflow
rates were closer to h9◦ than that in the cases with the higher inflow rates. In addition,
comparing h+50cm values in the cases with lower inflow rates, h+50cm in Case 1 with the
coarsest debris flow material was close to h9◦ , but the h+50cm values in other cases were
close to h15◦ . Therefore, in the cases where the inflow rates were lower and the debris
flow materials were coarser, the closeness of the debris flow depth to the theoretical depth
on the uniform gradient for the downstream part was more pronounced as the distance
from the gradient change point increased. When flowing at shorter distances from the
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gradient change point in these cases, the debris flow depths of the “frontal part” were
close to h9◦ . When the kinetic energy of a debris flow is smaller, a firm transition in
the sediment transport mode is caused for reasons similar to those for the transitions of
sediment transport concentrations by changing gradients; that is, this transition occurs
because the materials are unable to maintain their dispersion in the flow’s interior owing to
the significant increase in the downward component of gravity on the downstream part.
These tendencies were confirmed in the averaged debris flow depths of the “frontal part”,
hx, for all cases, as shown in Table 3.
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Figure 4. Time variations in debris flow depths of the “frontal part” of the debris flow, h, for all
gradient conditions in Cases 1, 3, and 4.

Table 3. Averaged debris flow depths of the “frontal part”, h, and theoretical debris flow depths on
the uniform gradients, h15◦ and h9◦ , for all cases with two inflow rates (unit; mm).

Case Inflow Rate
(cm3/s) h15◦ h10cm h50cm h80cm h9◦

Case 1

2000

46.670 48.800 51.300 35.429 33.198
Case 2 45.871 48.217 40.453 — 30.446
Case 3 44.104 50.458 43.250 41.000 29.008
Case 4 40.589 35.917 39.767 35.846 28.078
Case 5 37.428 41.100 38.033 — 23.845
Case 6 34.447 37.100 36.747 — 21.674

Case 1

1000

35.369 39.633 24.533 18.967 25.159
Case 2 34.764 40.022 29.008 — 23.074
Case 3 33.424 37.042 30.367 19.600 21.984
Case 4 30.760 35.933 31.167 18.800 21.279
Case 5 28.365 30.878 31.858 — 18.071
Case 6 26.106 31.133 28.600 — 16.426
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Figure 5 shows the transition indices of sediment transport modes based on debris
flow depths of the “frontal part”, Ihx, for all cases at the two inflow rates. The lower the
inflow rate, the larger the change in Ihx with respect to the increase in the longitudinal
distance from the gradient change point (that is, the linear slope of Ihx). In addition, in the
cases where the inflow rates were lower, as the debris flow materials became coarser, the
linear slope of Ihx had a greater positive value. Thus, by using the transition indices, Ihx, we
can explicitly determine the effect of debris flow magnitudes and particle size compositions
on the transition for debris flow depths of the “frontal part” by changing the gradient.
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Figure 5. Transition indices of sediment transport modes based on flow depths of the “frontal part”
of the debris flow, Ihx, for all cases with two inflow rates.

3.3. Transition of Sediment Transport Mode Based on Changes in Gravel Migration Velocities in
the Interior of the “Frontal Part” Resulting from Changing Streambed Gradient

Figure 6 shows the gravel migration velocity distributions in the interior of the “frontal
part” of the debris flow in the cases of changing gradients and the theoretical velocity
distributions on the uniform gradients of 15◦ and 9◦ in Case 3. The flow depths used to
obtain these theoretical velocity distributions were the averaged measurement values in the
cases of changing gradient. The main parameters used to obtain these distributions, such
as the mass density of gravel types (σ), the average concentration in the static sediment bed
(C*), and the average internal friction angle (φ), were identified by trial and error so that
the distributions were consistent with the measured distributions on the uniform gradients
of 15◦ and 9◦ in Case 2 (see Figure 7). This figure also shows the averaged measured
velocities within the “median depth” of the “frontal part”, Ux, and the averaged theoretical
velocities within the “median depth”, U15◦ and U9◦ . As the debris flows flowed over longer
distances from the gradient change point, Ux became closer to the theoretical velocities
on the uniform gradient of the downstream part, U9◦ . In the cases where the inflow rates
were lower, these tendencies were more pronounced. These trends were the similar to the
aforementioned transition trends of the sediment transport concentrations and flow depths.
Therefore, the transition mechanisms of the gravel migration velocities resulting from the
changing gradient were estimated to be similar to the aforementioned mechanism. These
tendencies were confirmed in the averaged measurement velocities within the “median
depth” of the “frontal part”, Ux, for all cases where the inflow rates were lower, as shown
in Table 4. However, in the cases where the inflow rates were higher, these tendencies
were not pronounced for all cases, and in some cases there was a significant decrease in Ux
near the gradient change point. The reason for this was the same as the aforementioned
reason for the transition of the sediment transport concentrations. In other words, these
tendencies indicated that although a part of the flow causes a sudden stop (sedimentation)
by consuming the kinetic energy when the flow collides with the riverbed near the gradient
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change point, most of the transported sediment flows downstream because the consumed
momentum is less than the total debris flow momentum.
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Figure 6. Measured gravel velocity distributions in the interior of the “frontal part” of the debris flow
in the cases involving a changing gradient and theoretical velocity distributions on uniform gradients
of 9◦and 15◦ for Case 3.

Figure 8 shows the transition indices of sediment transport modes based on the
averaged gravel migration velocities within the “median depth” of the “frontal part”, IUx,
for all cases at the two inflow rates. In the case with the lower inflow rate, the linear slope
of IUx was significantly positive. This demonstrates that as the debris flows flowed greater
distances from the gradient change point, the front velocities were closer to the theoretical
velocities on the uniform gradient of the downstream part for all cases. Conversely, in the
cases with the higher inflow rate, no clear trend common to all cases is observed because
the linear slope of IUx is not monotonic. The possible reason for this is that a part of the
flow causes a sudden stop (sedimentation) by consuming of their kinetic energy because
the flow collides with the riverbed near the gradient change point. Thus, by using the
transition indices, IUx, we can explicitly determine the effect of debris flow magnitudes on
the transition for migration velocities in the interior of the “frontal part” by changing the
gradient. However, it is necessary to confirm the validity of the transition indices for other
pattern of changed gradients, except for the changed gradients from 15◦ to 9◦.
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Figure 7. Comparison of theoretical velocity distribution as suggested by Takahashi et al. [34] and
measured migration velocities for case 2 on uniform gradients of 15◦ and 9◦. The main parameters
used to obtain the theoretical velocity distribution were the mass density of gravel (σ) = 2650 kg/m3,
internal friction angle (ø) = 32◦, and concentration in the static sediment bed (C*) = 0.650.

Table 4. Averaged gravel migration velocities within the “median depth” in the interior of the “frontal
part”, U, and theoretical migration velocities of gravel within the “median depth” on the uniform
gradients, U15◦ , U9◦ , for all cases with two supplied water rates (unit; cm/s).

Case Inflow Rate
(cm3/s)

Measuring
Point U15◦ U0cm U30cm U9◦

Case 1

2000

+0 cm
+30 cm

38.128
44.759

60.098
-

-
60.463

76.188
89.439

Case 2 +0 cm 39.877 65.593 - 79.701

Case 3 +0 cm
+30 cm

45.467
41.461

52.318
-

-
68.171

90.860
82.790

Case 4 +0 cm
+30 cm 72.187 91.512

-
-

79.083 131.031

Case 5 +0 cm 103.931 83.615 - 188.748
Case 6 +0 cm 65.018 95.179 - 118.020

Case 1

1000

+0 cm
+30 cm

22.102
55.757

38.424
-

-
42.395

15.992
40.344

Case 2 +0 cm 22.000 42.999 - 55.472

Case 3 +0 cm
+30 cm

20.534
16.269

36.847
-

-
35.514

51.802
41.021

Case 4 +0 cm
+30 cm

47.604
44.788

70.068
-

-
69.550

86.410
81.298

Case 5 +0 cm 75.530 50.318 - 18.071
Case 6 +0 cm 60.641 61.651 - 16.426
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Figure 8. Transition indices of sediment transport modes based on averaged gravel migration
velocities within the “median depth” in the interior of the “frontal part” of the debris flow, IUx, for all
cases with two inflow rates.

3.4. Estimation of Transition Processes of Sediment Transport Modes Resulting from Changing
Streambed Gradient Based on Transition Indices

Based on the transition indices at all measurement points in all cases and shown in
Section 3.1 to Section 3.3, the transition processes of sediment transport modes for all cases
were estimated, as shown in Figure 9. The transitions of sediment transport modes of the
“frontal part” occurred in the section from the gradient change point (+0 cm) to +150 cm in all
cases. In the cases where the inflow rates were higher or the debris flow materials were finer
(i.e., the kinetic energies of the debris flow were larger), the transition was not completed
at +150 cm. The materials of the debris flow with larger kinetic energy were considered to
be able to maintain their dispersion in the flow interior after passing the gradient change
point owing to sufficient debris flow momentum. Conversely, when the kinetic energies
were smaller, the transition was completed in the shorter longitudinal transition sections.
Therefore, it is important to investigate the major gravel sizes and flow magnitudes of debris
flows to understand the transition processes of sediment transport modes of debris flow with
various particle size compositions owing to the changes in gradient.

Comparing the longitudinal trends of the three transition indices based on the sediment
transport concentrations, flow depths, and gravel migration velocities of the “frontal part”,
with ICsx, Ihx, and IUx at the downstream part, it is suggested that ICsx significantly increases
immediately after passing the gradient change point. On the other hand, Ihx changes most
slowly. Therefore, it is inferred that the transition process of sediment transport modes resulting
from changing streambed gradients is as follows. First, the changing streambed gradient causes
a rapid decrease in the migration velocities for some of the gravel in the interior of the debris flow.
This leads to a decrease in the sediment transport concentration. This decreases opportunities
for collisions and decreases the friction of the debris flow materials in the flow interior, leading
to a decrease in energy dissipation; therefore, the debris flow depth decreases. These stepwise
order of the changes in hydraulic quantities is not considered in the theoretical laws of the
conventional debris flow [6–16]. Therefore, the transition indices provide important findings
regarding the transition of sediment transport modes due to changing gradients. However,
as Zordan et al. [35] suggested, the stepwise order depends on the interaction between the
changing debris flow mechanism and the streambed changes at the gradient change point.
Therefore, future studies are required that focus on this interaction at the gradient change
point using experimental measurements of the changing hydrodynamic quantities, such as the
streambed shear stress measurements [35], as well as studies on the mechanistic approaches
using the constitutive laws of the debris flow with a gradient-independent global coordinate
system [22,23] or numerical approaches with the two-layer flow model or moving particle
semi-implicit (MPS) method [24,25].

50



Water 2022, 14, 1810
Water 2022, 14, x FOR PEER REVIEW 15 of 18 
 

 

 
 

 

Figure 9. Estimated longitudinal transition processes of sediment transport modes of the “frontal 

part” of the debris flow for all cases, based on the transition indices. Red, blue, and green values in 

the figure are the transition indices of sediment transport modes at x cm downstream from the 

gradient change point for the sediment transport concentration, the averaged flow depth, and the 

vertical averaged gravel migration velocities at the “frontal part” of the debris flow, i.e., 𝐼𝐶𝑠̅̅ ̅𝑥, 𝐼ℎ̅𝑥, 

and 𝐼𝑈𝑥. 

Case 6

Case 4

Case 1

Case 3

Q=2.0 L/s

Major gravel 
diameter; 
7.1 mm

Case 2

Major gravel 
diameter; 
3.0 mm

Case 5

Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.
Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.
Sediment-transport mode on  15 deg.

Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.
Sediment-transport mode on  15 deg.

Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.

−150 cm +0 cm +10 cm +50 cm +150 cm

15 degrees

+30 cm +100 cm

Flow direction

−150 cm +0 cm +10 cm +50 cm +150 cm+30 cm +100 cm

+70 cm

+70 cm

+80 cm

+80 cm

Sediment-transport mode on 9 deg.

0.834−0.158 −0.3440.577 0.351 1.001

0.646 −0.152 0.664
0.351

0.727 0.676 0.839

−0.4210.151 0.646 0.615
0.057

0.674
0.206

0.727 0.877

0.354 0.373 0.096 0.066 0.379 0.759

−0.270−0.240 0.590
−0.045

0.841 0.889 0.800

−0.2080.569
−0.180
0.757 0.788 0.799 0.799

9 degrees

Sediment-transport mode on 9 deg.

Case 6

Case 4

Case 1

Case 3

Q=1.0 L/s

Major gravel 
diameter; 
7.1 mm

Case 2

Major gravel 
diameter; 
3.0 mm

Case 5

Sediment-transport mode on 9 deg.Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.

Sediment-transport mode on 9 deg.Sediment-transport mode on  15 deg.

Sediment-transport mode on 9 deg.
Sediment-transport mode on  15 deg.

−150 cm +0 cm +10 cm +50 cm +150 cm

15 degrees

+30 cm +100 cm

9 degrees

Flow direction
+70 cm

−150 cm +0 cm +10 cm +50 cm +150 cm+30 cm +100 cm+70 cm

+80 cm

+80 cm

0.485
−0.418

Sediment-transport mode 
on  15 deg.

1.084 1.061 1.607 1.240

−0.4500.627
0.492
0.661 0.645 0.786 1.054

0. 522 −0.316 0.484
0.267

0.777 0.642
1.208

0.697 0.935

0.579 −0.546 0.678 −0.043 1.261 0.979

−0.409 −0.244 0.504
−0.339

0.729 0.771 1.002

0.020 −0.258
−0.519
0.606 0.676 0.727 0.856

Ihx IuxIcsx Blue values; Green values; Red values; 

Figure 9. Estimated longitudinal transition processes of sediment transport modes of the “frontal part”
of the debris flow for all cases, based on the transition indices. Red, blue, and green values in the figure
are the transition indices of sediment transport modes at x cm downstream from the gradient change
point for the sediment transport concentration, the averaged flow depth, and the vertical averaged
gravel migration velocities at the “frontal part” of the debris flow, i.e., ICsx, Ihx, and IUx.
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4. Conclusions

In this study, using an experimental flume with two variable gradients in the upstream
and downstream parts, we investigated the transition processes of sediment transport
modes in debris flows composed of materials of various particle sizes owing to the changes
in streambed gradients. In our discussion of the transition processes along the longitudinal
distances from the gradient change point, the transition indices ICsx, Ihx, and IUx were used.
These were calculated based on measurements of sediment transport concentrations, flow
depths, and gravel migration velocities in debris flow fronts in the downstream part. The
findings of this study are as follows:

1. After a debris flow passes the gradient change point, the transition of the sediment
transport modes progresses by changing the sediment transport concentrations, flow
depths, and gravel migration velocities to those in the steady-state condition on the
gradient of the downstream part;

2. In the cases where the debris flow magnitudes are higher and the materials are finer—
that is, the kinetic energies are larger—a part of the flow will cause a sudden stop
(sedimentation) because the flow will collide with the riverbed near the gradient
change point. However, the transition of the sediment transport modes is less pro-
nounced because the dispersion of the debris flow material in the flow interior is
maintained after passing the gradient change point owing to the sufficient debris
flow momentum. Conversely, in the cases where the inflow rates are lower and the
materials are coarser, the transition is more pronounced when flowing at shorter
distances from the gradient change point. Therefore, it is important to investigate the
major gravel sizes and flow magnitudes of debris flows to understand the transition
processes caused by the changing streambed gradient;

3. By using the three transition indices, ICsx, Ihx, and IUx, we can explicitly determine the
effects of debris flow magnitudes and their particle size compositions on the transition
processes by changing the gradient. However, it is necessary to confirm the validity of
the transition indices for other patterns of changed gradients, except for the gradients
that change from 15◦ to 9◦;

4. ICsx increases significantly immediately after passing the gradient change point. In
contrast, Ihx changes most slowly. Therefore, the transition process of sediment trans-
port modes resulting from changing streambed gradients occurs as follows. First, the
changed streambed gradient causes a rapid decrease in the migration velocities of
some gravel types in the interior of the debris flow. This leads to a decrease in the
sediment transport concentration. This decreases opportunities for collisions and
decreases the friction of the debris flow materials in the flow interior, leading to a
decrease in energy dissipation. Therefore, the debris flow depth decreases.

Our future tasks include applying the proposed concept and indices for the transition
of the modes under the various conditions in terms of gradient change patterns, the flow
magnitudes, and the particle size compositions of the debris flow to investigate the validity
of the three transition indices, as well as to consider a general transition index that is
suitable for assessing the transition under various conditions.
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Abstract: This study developed an efficient discharge measurement method that can be applied to
estimate the streamflow of natural streams and artificial channels. The conventional methods that
apply current meters to measure discharge are costly, time-consuming, and labor-intensive. Owing
to a shortage of observers in streamflow measurement and for the safety of hydrologists and with
advances in measurement techniques, many have strongly suggested the use of non-contact methods
when determining streamflow. The non-contact methods that use floats or surface velocity radar to
determine the streamflow are becoming more and more popular especially during periods of high
water. However, it is not easy to estimate the surface velocity coefficient of each vertical directly for
determining the mean velocity in each subsection. As the relationship between the mean surface
velocity and mean velocity of a stream cross-section is constant, an efficient and accurate non-contact
method of streamflow measurement could be further developed. Thus, streamflow can be estimated
by the constant, the mean surface velocity, and cross-sectional area of a stream. The mean velocity of
a cross-section, used for parameter calibration, is usually obtained from the discharge made based
on the velocity-area principle and cross-sectional area. The surface velocity was measured at the
vertical that is then used to estimate mean velocity of a subsection. Once the parameter is determined,
streamflow can be obtained from the surface velocity. This approach was further applied to a natural
stream and an artificial channel. Measurements were made to verify the reliability and accuracy of the
proposed approach. The results show that the relationship between mean channel velocity and mean
surface velocity is very stable in both a natural stream and an artificial channel because the streamflow
differences, given by the proposed and the conventional method, are relatively insignificant. As
a result, mean surface velocity can be used to determine the streamflow quickly and provides for
a reliable and accurate measurement of streamflow.

Keywords: discharge measurement; mean surface velocity; non-contact measurement; acoustic
doppler flowmeter; magnetic-inductive current meter

1. Introduction

Conventional methods of river discharge measurement apply the velocity-area prin-
ciple [1] for field measurements while the mid-section method [2] is used to calculate the
streamflow. The conventional method involves dividing a river cross-section into several
subsections. In each subsection, the mean velocity and water depth are measured along
the vertical to obtain the discharge of the subsection. The streamflow is the sum of the
discharge measurements of all subsections. The conventional method is usually a contact
method, requiring a current meter, a sounding weight, and hydrologists on site making
this method costly, time-consuming, and labor-intensive. This method is not suitable for
tidal streams and during the high water.

Many instruments have been invented with the goal of improving conventional meth-
ods, allowing for the rapid and accurate measurement of flow velocity and water depth.
An acoustic Doppler current profiler (ADCP) which applies the Doppler effect is a relatively
new instrument and has been widely considered as a method used to replace mechanical
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current meters for velocity measurement. Simpson [3] used a broad-band ADCP that
is much faster for accurately measuring tidally affected flow than conventional meth-
ods. Boiten [4] applied ADCPs to measure discharges in open channels, according to the
velocity-area principle. Costa et al. [5,6] used a boat-mounted ADCP to measure discharge
for converting surface-velocity to mean velocity. Muste et al. [7] analyzed velocity profiles
collected by ADCPs to propose complementary software for better support of hydraulic in-
vestigation requirements. Chauhan et al. [8] showed that the relative error of the discharge
measurement is very small with the ADCP compared to the conventional method. Oberg
and Mueller [9] showed that ADCP streamflow measurements are unbiased when com-
pared to the discharges obtained by current meter, stable rating curves, salt-dilution, and
acoustic velocity meter. Flener et al. [10] used the multidimensional spatial flow patterns
measured by an ADCP installed on a remotely-controlled boat to monitor a spring flood.
Ground penetration radar [11,12], lidar [13], pressure sensors, and sonar systems [14,15]
have been developed to replace the conventional sounding weights during water depth
measurement. Although these modern instruments are costlier, they can be applied to
provide data when conventional instruments cannot, with the extra benefits of reducing
the overall cost and time required [10,16].

It is better to not put hydrologists and equipment in contact with the water, given
concerns for personal safety and efficiency. The US Geological Survey [16] has also sug-
gested that in the future gaging stations can use remote sensing outside the flow of water
to measure water stages, cross-section, and velocity, and so on. In the past and currently,
floats are most often used for surface velocity measurements. The principal sources of error
inherent in determining surface velocity in this way are wind and flow conditions. With the
recent development of new technology, non-contact instruments [5,6] used for measuring
surface flow velocity and to estimate discharge have gradually been developed, among
which, surface velocity radar (SVR, [17–20]) and particle image velocimetry (PIV, [21]) are
the main ones. The most important issue when applying surface velocity to estimate dis-
charge is the choice of a surface-velocity coefficient. In a natural channel a surface-velocity
coefficient of 0.85 or 0.86 is typically used to compute mean flow velocity [2]. However, the
surface-velocity coefficient varies with the positions of the verticals from the river bank.
Generally, the closer to the bank, the larger the surface-velocity coefficient. In addition,
with higher water flow the maximum velocity will occur below the water surface, so the
surface-velocity coefficient will also become larger. The velocity distributions can be used
to determine the surface-velocity coefficient. The logarithmic distribution [22,23] and prob-
abilistic velocity distribution [24] are commonly used to determine the surface-velocity
coefficient. The mean velocity of the vertical can be estimated by the surface-velocity
coefficient and surface velocity, and then the velocity-area principle can be used to estimate
streamflow.

Although using surface velocity to estimate river discharge is quite efficient, it is
still necessary to select surface-velocity coefficients for all verticals to accurately estimate
the streamflow; however, it is always a difficult task to determine the best coefficients.
Therefore, this study proposes a method which uses the average surface velocity and only
one surface velocity coefficient to efficiently and accurately estimate streamflow.

2. Materials and Methods
2.1. Relation between Mean Velocity and Mean Surface Velocity

The mid-section method is often used to calculate streamflow. Figure 1 illustrates
that in the mid-section method the mean velocity on the vertical represents the mean
velocity in a subsection. The subsection area extends laterally from half the distances from
the preceding vertical to half the distance to the next as shown by the hatched area in
Figure 1. bn-1 in the Figure 1 is the distance from initial point to the n-1th vertical; dn-1 is the
water depth at vertical n-1; un−1 is the mean velocity of the n-1th vertical. Therefore, each
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subsection is rectangular. The subsectional discharge qi and the subsection area ai were
calculated using (1) and (2), respectively:

qi = ui

(
bi−1 + bi+1

2

)
di (1)

ai =

(
bi−1 + bi+1

2

)
di (2)

where bi is the distance from the initial point to vertical i; di is the depth of flow at vertical i;
and ui is mean velocity at vertical i. The observed discharge (Qobs) and cross-sectional area
(Aobs) can be represented as (3) and (4), respectively:

Qobs =
n

∑
i=1

qi (3)

Aobs =
n

∑
i=1

ai (4)
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Thus, the observed mean velocity (uobs) was calculated using (5):

uobs =
Qobs
Aobs

(5)

The subsectional discharge can be obtained using (6):

qsi = usi

(
bi−1 + bi+1

2

)
di (6)

where usi is the surface velocity on vertical i. If the cross-section of a stream is a rectangle
or close to a rectangle, and the intervals between the verticals are equal; then the area of
each subsection will be equal as shown in (7):

qsi = usia (7)

where a is the area of a subsection when the width and depth of the subsection are the same.
The subsection discharge is given by (8):

Qs = ∑ usia = a ∑ usi = anus = us Aobs (8)

57



Water 2022, 14, 2370

where Qs is discharge estimated by surface velocity; and us is the mean surface velocity.
However, (8) is not valid for estimating stream discharge. A surface-velocity coefficient
must be applied to (8) to relate the data to the actual discharge amount as shown in (9):

Qobs = αQs (9)

where α is surface-velocity coefficient. Thus:

α =
Qobs
Qs

=
uAobs
us Aobs

=
u
us

(10)

(10) reveals that the relationship of mean cross-sectional velocity and mean surface velocity
is a straight line going through the origin.

2.2. Estimation of Surface Velocity with Velocity Distribution Based on Probability

The surface velocity can be measured directly by SVR in most conditions. However,
when the channel width is not enough for accommodating the instrument, one can measure
the velocity profile on each vertical and use the velocity distribution equation to estimate
the surface velocity. This study applied the probabilistic velocity distribution to estimate
the surface velocity [24], which is shown in (11):

u
umax

=
1
M

ln
[

l +
(

eM − 1
) ξ − ξ0

ξmax − ξ0

]
(11)

where umax is the max velocity; M is a parameter; ξ is the isovel in Figure 2 [25]; u is the
velocity at ξ; ξmax and ξ0 are the values of ξ at which u = umax and u = 0, respectively. In
addition, a η − ξ coordinate system can be used to describe the velocity field with a set
of isovels, in which ξ and u has a one-to-one relationship, meaning that the velocities are
the same on ξ, unlike the Cartesian coordinate system where the same velocity values can
occur in difference locations. The ξ on the vertical line is shown in (12):

ξ =
y

D − h
exp
(

1 − y
D − h

)
(12)

where y is the vertical distance from the channel bottom; D is the water depth; and
h indicates the location where the max velocity occurs. When h ≤ 0, the max velocity
occurs on the surface; when h ≥ 0, the max velocity occurs below water surface h. Using the
velocity profile and (11), nonlinear regression can be employed to estimate the parameter
in (11) and the surface velocity for each vertical.
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2.3. Estimation of Cross Section Area and Discharge

In practice, there are many approaches for cross-sectional area estimation under
different conditions. For a fixed artificial channel, the water stage is consistent enough
that it can be used for estimating the cross-sectional area. For a stable channel bed without
obvious erosion and sediment deposition, the relationship between the water stage and
the cross-sectional area can be used to estimate the cross-sectional area of the river. For
an unstable channel bed, the cross-sectional area can be estimated from the water depth of
the verticals [26] using (13):

Aest = b(d − c)e (13)

where Aest is the cross-sectional area estimated by water depth; d is the water depth of a
vertical; and b, c, and e are coefficients.

Once α and Aest are obtained, then the streamflow can be promptly evaluated from the
surface velocities of the verticals.

Qest = αus Aest (14)

where Qest is the streamflow estimated by mean surface velocity.
The proposed approach only requires a SVR to obtain the mean surface velocity for

the discharge (Qest) measurement. If the bed does not change too much the cross-sectional
area (Aest) estimated by water depth may remain feasible. If not, one may also need an
efficient and non-contact method, such as the GPR method [12], for fast cross-sectional
measurement to update the Aest function. As for the conventional approach (mid-section
method), it requires obtaining the area and mean velocity of each subsection in order to
obtain the subsectional discharge (qi) and the observational discharge Qobs.
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3. Case Study: Study Sites and Data Collection Methods

This study applied field data collected in a natural river and an artificial channel to verify
the proposed approach. The study sites are located along Nankang River at Guanyin Bridge
in central Taiwan and along Longen Channel in Hsinchu, northern Taiwan (Figure 3).
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Figure 3. Study sites for discharge measurement.

The Nangang Creek serves as the main tributary of the Wu River, with a length of
about 37.4 km and a catchment area of about 438.14 km2. It originates from the western
foothills of the Hehuan Mountain at an elevation of 3417 m. Wu River is one of the most
important rivers in Taiwan, providing vast amounts of water for industrial, agricultural
and domestic uses. Thus, the Third River Management Office set up a gauge station at the
Guanyin Bridge for the purposes of water resources and flood management.

The Nangang Creek at the Guanyin Bridge, where the measurements were taken, is
located near the geographical center of Taiwan, with water flowing from east to west. The
channel of Nangang Creek near the Guanyin Bridge is divided into left and right channels.
As shown in Figure 4, both the two channels are considered rectangular in cross-section,
particularly during the periods of high water, while the left channel is narrower in width
and shallower in depth. The collision of tectonic plates has uplifted the terrain of Tai-
wan over time, while floods brought by typhoons always wash the riverbeds, causing
riverbeds to become unstable and change shape frequently. An electromagnetic current me-
ter was used to estimate the water discharge at the Guanyin Bridge. The distance between
two successive verticals was 3 m. The velocity observations were made based on the water
depth of each vertical. When the water depth was greater than 0.6 m, the two-point method
was used, while when the water depth was less than 0.6 m, the six-tenths depth method
was used. This study also used a vehicle-mounted SVR unit to measure the surface velocity
at each vertical (Figure 5a). A total 23 discharge measurements were made in 2018.

The water in Longen Channel comes from Longen Weir in the middle reach of the
Touqian River. Its main function is to divert water from the Touqian River for irrigation
and domestic use purposes. The measurement location in Longen Channel was about
1 km downstream from the water intake location. The channel at this location was formed
by a box culvert with no place for mounting instruments. Therefore, the top of the box
culvert was opened about 1 m wide to allow for discharge measurements. The cross-
section of Lungen Channel is rectangular with a width of 2.6 m. Due to the narrow width,
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the SVR unit can be easily affected by the side walls. With slow water flow, the water
surface is very calm, which also makes the SVR unit unable to measure the surface velocity.
Therefore, an Argonaut SW acoustic Doppler Flowmeter (Sontek, San Diego, CA, USA)
was used to measure the velocity profile, and then a probabilistic velocity distribution
equation was used to estimate the surface velocity. The SW Flowmeter was a pulsed
Doppler Current profiling system designed for measuring water velocity profiles using
three acoustic beams (Figure 5b). The slanted beams, Beams 1 and 2, measure the water
velocity in two dimensions, and the down-looking beam measures water depth. An SW
Flowmeter is usually mounted in a channel bottom. In this study, the SW Flowmeter was
installed under the sounding weight, so that the velocity profile was measured from top
to bottom. The velocity observation locations in Longen Channel are shown in Figure 6.
The velocity distribution was measured on eight vertical lines, the distance between the
verticals was 0.3 m, and the velocity was measured at ten points on each vertical. Table 1
shows the discharge and water depth measurements of eight runs during different water
stages having covered the upper and lower water supply capability of Longen Channel.
Based on Figure 6, the velocity measurements of Run 4 in Table 1 are shown in Figure 7.
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Table 1. Discharge measurement of the Longen Channel.

Run Date Depth (m) Qobs (Observed Discharge m3/s)

1 22 February 2019 0.87 0.43
2 6 March 2019 0.98 0.92
3 8 March 2019 1.47 3.80
4 14 March 2019 1.43 4.24
5 20 March 2019 1.15 2.04
6 25 March 2019 1.31 3.16
7 3 May 2019 1.52 3.79
8 23 May 2019 1.48 4.35
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4. Results and Discussion

The discharge measurement in the natural channel at the Guanyin Bridge was taken
by the conventional two-point method for the water depth and the mean vertical velocity.
Meanwhile, owing to the limitations caused by the channel width, the discharge measure-
ment at the Longen Channel was taken from the vertical velocity profile for the mean
velocity. The mid-section method was then applied to both the natural and the artificial
channels. The mean cross-sectional velocity can be observed by the discharge divided by
the cross-sectional area. Figure 7 shows the vertical velocity profile of the Longen Channel
on 8 March 2019 when the discharge was 3.80 m3/s. The flow pattern of the Longen
Channel was quite similar to a large-scale hydraulic flume in a laboratory. In Figure 7,
it is obvious that the flow patterns of Longen Channel were very different from those of
natural rivers. Most of the maximum velocities on the verticals occurred at a depth of about
1/4 water depth from the water surface, while the surface velocity was relatively small. It
also shows that the maximum velocities of the verticals excluding verticals (e) and (f) did
not occur on the water surface. Experimental studies have been shown from considerations
of momentum transfer that the velocity in an open channel should decrease toward the
channel bed. In a very wide channel the velocity decreases toward the bed and walls,
and theoretically the maximum occurs at the water surface. The Longen Channel is a
small artificial flume; therefore, depression of the maximum velocities below the water
surface was observed. The flow pattern cannot be described by a logarithmic distribution.
The circle in Figure 7 is the actual velocity measurement on each vertical, and the line is
the velocity distributions based on (11) indicating that vertical maximum velocity does
not always occur on the water surface. It also shows that the velocity profile data of the
Longen Channel is difficult to describe using conventional velocity distribution theories,
such as logarithm velocity distribution. However, (11) can simulate velocity profiles effec-
tively, regardless of whether the maximal velocity occurs on or below the water surface.
Therefore, the surface velocities on the verticals could also obtained precisely by using (11).
In addition, using the nonlinear regression method, M, h and umax can also be obtained from
(11) with the vertical velocity and water depth. Thus, the mean vertical velocity (ui in [1])
on each vertical can be estimated. Therefore (11) can be used to accurately estimating the
mean velocity of the vertical for obtaining reliable discharge.

Figure 8 shows the relationship of the mean surface velocity and mean velocity of
Nankang River at Guanyin Bridge and at Longen Channel. The surface velocity of the
natural river was directly measured by SVR, while surface velocities of artificial channels
were estimated by the probabilistic velocity distribution equation. All the points, including
those in the left and right channels, distribute closely on the two sides of the regression.
The relationships of the mean surface velocity and the mean velocity of the cross section in
the left and right channels in Figure 8a do not show much difference.

When all the points were combined, all the points fall on the periphery of the re-
gression line, and when the mean surface velocity increases, the data tends to approach
the regression line. This means that as the water depth increases, the width of the cross-
section increases even more making the shape of the cross-section approach the shape
of a rectangle. Hence, the relationship between the mean surface velocity and the mean
velocity was stable. Figure 8b shows an artificial rectangular channel with all the points
falling near the regression line. This means that the relationship between us and uobs of the
artificial rectangular channel is very stable. It reveals that the mean cross-sectional velocity
and mean surface velocity in both the natural and the artificial channels have correlation
coefficients of 0.92 and 0.99, respectively. As the artificial channel is confined with the
concrete bed and walls, the velocity is less affected by natural factors; and thus, it performs
better than the natural channel. Figure 8 demonstrates that the relationship between the
mean surface velocity and the mean velocity of natural rivers and artificial channels is quite
stable, forming a linear relationship through the origin.
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Nangang Creek is a mountain river at Guanyin Bridge, with steep slopes and continu-
ous erosion and sediment deposition. When a flood occurs, the river course will initially be
deepened, although the river course will be silted back in as the water recedes. However,
the data from 2018 show that the water stage did not change much during the study; never-
theless, the flow and cross-sectional area of the river have changed greatly over time due to
erosion and deposition along the river. Thus, it is impossible to estimate the water cross-
sectional area based on the water stage. In order to quickly estimate the cross-sectional area,
the water depths of the left and right channels at 30 m and 91 m from the initial point were
used to establish the relationship between water depth and cross-sectional area (Figure 9).
The points (dots and open circles) in the figure represent observed data in the right and
left channels, respectively, while the lines represent the depth-cross-sectional area rating
curves obtained by nonlinear regression. The nonlinear regression method was applied
to relate the water depth and the cross-sectional area with the coefficients given from the
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observations. The points did not deviate too far from the regression lines. The correlation
coefficients of the left and right channels were 0.94 and 0.90, respectively, suggesting that
the regression equations are quite useful for making estimations of cross-sectional area by
using depths.
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Figure 9. Relation between gage height and cross section area at the Guanyin Bridge.

As the shape of the artificial channel is rectangular, the cross-sectional area can be
obtained easily from the water depth and the width of the channel. Therefore, the cross-
sectional area of the Longen Canal can be quickly and accurately estimated by the water
depth of each run and the width of the channel.

After the two relationships: (1) between mean cross section and mean surface velocity,
and (2) between water depth and cross-sectional area were established, the estimated
discharge could be quickly obtained with mean surface velocity and water depth. The
estimated discharge with the mean surface velocity and water depth were:

Qest = 13.77us(D − 1.35)0.78 for the left channel of the Nangang River (15)

Qest = 9.48us(D − 0.02)1.31 for the right channel of the Nangang River (16)

Qest = 1.74usD for the Longen Canal (17)

Figure 10 illustrates the accuracy of the discharge measurement using the mean surface
velocity. The x- and y-axes represent the discharge measured by the mean surface velocity
and the conventional method, respectively. This figure also shows that the natural channel
cross-section was close to a rectangle; however, the estimation of the cross-sectional area
of the natural channel was not as accurate as that of the artificial channel. As a result,
the measurement of the artificial channel was better than that of the natural channel, but
all points fall on the 45-degree agreement line, which demonstrates that the streamflow
measured by both the conventional and the proposed methods were close to each other
with less than 1% error on average.

A strong correlation (R2 > 0.97) between the above two methods demonstrates the
accuracy and reliability of using the mean surface velocity method for discharge measure-
ment in both the natural rivers and artificial channels. Therefore, the authors concluded
the measurement of river discharge can be obtained promptly and accurately using the
proposed approach, which only requires one to measure the surface velocity to obtain the
mean surface velocity, and estimate the cross-sectional area based on the water depth (or
water stage).
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Figure 10. Accuracy of discharge measurement by surface mean velocity; (a) the Nankang River at
the Guanyin Bridge; (b) the Longen Channel.

5. Conclusions

The conventional methods for discharge measurement consume more labor and time
than the proposed approach. Particularly, it is more risky when taking discharge measure-
ment during the high water. The proposed approach applies the relationship between the
mean cross-sectional velocity and the mean surface velocity as a constant in each cross
section if the cross section does not change too much. Once the constant of the relationship
is found, the discharge can be easily estimated based on the constant, the mean surface
velocity, and the cross-sectional area. The mean surface velocity can be obtained through
the SVR or other means; and the cross-sectional area can be estimated by water depth (or
stage) or other means. Nowadays, the surface velocity radar (SVR) has become a popular
instrument, which makes the surface velocity measurement easy, reliable and accurate.
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The data collection from a natural stream and an artificial channel was used to demon-
strate the proposed approach. Two case studies were conducted at two locations with many
session runs at different times with low to intermediate flows. Both conventional and the
proposed methods were conducted for flow measurements. The results show the feasibility
of measuring streamflow with an accuracy of less than 1% difference on average comparing
the proposed and the conventional methods. Moreover, the strong correlation coefficient
(>0.97) of the observed discharge and the estimated discharge suggests the reliability of the
proposed approach for streamflow measurement in both the natural and artificial channels.
In previous studies, the conventional methods required extra coefficients (velocity profile
or surface velocity coefficient) of each subsection for determining the mean velocity in
each subsection, involving more time and labor cost. In this study, we proposed that the
mean surface velocity to estimate streamflow can provide an opportunity to improve the
conventional methods in streamflow measurement and maintain the accuracy of discharge
measurement.

This approach can substantially reduce the uncertainty involved in determining sur-
face velocity coefficients that are employed in conventional methods, while maintaining
the accuracy of discharge measurement. Compared with the conventional methods, the
proposed approach saves more labor and time cost. As it is a non-contact method, it can
also reduce the risk to human life and measuring instruments when taking measurements
in the natural environment. The proposed approach can be applied in both natural and
artificial channels for flow measurement. Based on the measurement sessions implemented
in this study, we conclude that the proposed approach can provide reliable and accurate
streamflow measurement from low to intermediate flows. The constancy of the relationship
between the mean cross-sectional velocity and the mean surface velocity suggests that this
approach might also be applied for high water conditions, which would need further tests
in the future.
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Abstract: Risk of landslide hazards strongly depends on how far landslide sediment travels, known
as landslide mobility. Previous studies mentioned enhanced mobility of earthquake-induced land-
slides in volcanic deposits compared to those from other geologic/soil settings. A flume apparatus
constructed at a 1:300 scale was used to examine the mobility of landslides with pumice. Four pumice
samples were collected from landslides induced by the 2018 Eastern Iburi earthquake, Hokkaido,
Japan. Laboratory tests confirmed the unique low specific gravity of the pumice (1.29–1.33), indicat-
ing numerous voids within pumice particles. These voids allowed pumice to absorb a substantial
amount of water (95–143%), about 9–15 times higher than other coarse-grained soils. Our flume
experiments using various saturation levels (0–1) confirmed the influence of this inner-particle water
absorption on pumice mobility. Because a low value of specific gravity indicates a low strength of soil,
grain crushing may occur on the pumice layer, causing water from the internal voids to discharge
and fluidize the transported landslide mass. Our findings indicate that such earthquake-induced
landslides can be as mobile as those induced by rainfall, depending on the initial water content of the
pumice layers. These conditions might be associated with water accumulation from previous rainfall
events and the water-holding capability on pumice layers.

Keywords: earthquake-induced landslides; landslide mobility; pumice; flume experiment

1. Introduction

Landslides are common natural hazards that occur in hilly and mountainous terrain
due to intense rainfall and earthquakes [1]. Landslide impacts strongly depend on how
far landslide sediment travels, widely known as landslide mobility [2]. With increasing
mobility, landslides are more likely to affect community life systems [3]. For instance, the
2005 La Conchita landslide destroyed 13 houses within the 350 m landslide mobility path,
causing more than 10 fatalities in California [4]. The 2006 Leyte landslide with a 3800 m
travel distance destroyed more than 500 houses and caused 1126 fatalities on Leyte Island,
Philippines [5]. The 2014 Oso earthquake-induced landslide crossed the entire 1-km-wide
floodplain of the North Fork Stillaguamish River, causing more than 42 fatalities in Oso,
Washington [2].

Landslide mobility is largely affected by topographic factors as these parameters
alter landslide momentum. GIS analysis on 33 deep-seated landslides in Kii Peninsula,
Japan, noted high variability in landslide mobility that depended on tributary junction
angle and stream gradient [6]. A small-scale laboratory experiment confirmed this finding
and suggested that a tributary junction angle of >60◦ had a high risk of landslide dam

Water 2022, 14, 3083. https://doi.org/10.3390/w14193083 https://www.mdpi.com/journal/water70



Water 2022, 14, 3083

formation, whereas junction angles < 30◦ potentially generate debris flows [7]. Field
investigation and GIS analysis reported that the 46 landslides caused by the 2008 Wenchuan
earthquake traveled 347–4170 m depending on slope gradient [8]. Because landslide
momentum depends strongly on landslide mass, previous studies suggested volume-
dependent landslide mobility, which is widely viewed as a key mechanism for landslide
sediment movement in the Earth and other planetary bodies [9–11].

In addition to topographic factors, landslide mobility is strongly controlled by soil
water condition during landslide initiation [12]. Here, water facilitates the downslope
fluidization of the collapsed landslide mass [13], where higher soil water content causes
greater landslide mobility [14]. For instance, a numerical simulation of landslide mobility
in Yining, China, suggested that landslides with saturation levels > 85.7% travelled 25%
longer than those with lower water contents [15]. A flume experiment showed that a 40%
increase in water content elevated landslide travel distance 2-fold due to the reduction of
soil strength [16]. Similarly, a laboratory experiment showed that landslides transformed
into debris flows at water contents exceeding saturated condition [7].

The mobility of rainfall and earthquake-induced landslides may differ because of the
diverse triggering mechanisms, leading to a dissimilar soil-water contents during landslide
initiation. In general, rainfall drives water pressure within a slope to a critical level, signifi-
cantly reducing the shear resistance of slope materials [17]. In contrast, earthquakes initiate
landslides by altering gravitational forces on slopes, which surpass the critical stability
threshold [18]. Thus, landslides induced by earthquakes are typically less mobile than those
induced by rainfall because they are less influenced by soil-water fluxes. Indeed, previous
studies showed that 95% of landslides (of similar volume) induced by the 2015 Gorkha
earthquake had 1.5–2 times lower mobility compared to those induced by the September
2011 Typhoon Talas [3,6,19]. Only a few of these earthquake-induced landslides in the
Himalaya were as mobile as rainfall-induced landslides because of the steep topography [3].
Hence, the mobility of earthquake-induced landslides has been neglected or not strongly
considered in many landslide studies.

Nevertheless, some earlier studies found exceptional mobility of earthquake-induced
landslides, particularly those in volcanic deposits. For instance, landslides triggered
by the 1968 Tokachi-Oki earthquake occurred in pumice and volcanic ash soils with
1.3–3 times greater mobility compared to other landslides around the globe of similar vol-
ume (e.g., [10,19,20]). This pattern also occurred in landslides during the 2001 El Salvador
earthquake, transporting > 106 m3 of pumice and volcanic ash [21]. A global investigation
of 132 non-volcanic and 50 volcanic landslides triggered by rainfall and earthquakes sug-
gested much higher mobility of landslides in volcanic deposits compared to those in other
geologic settings [10]. Such a high mobility of these earthquake-induced landslides might
be associated with water content in volcanic deposit layers [20,21].

Volcanic areas are typically covered by tephra-volcanic ejecta that contains vari-
ous silicates with different sizes [22,23]. Among tephra, pumice has a vesicular texture
formed due to the rapid cooling of ejected volcanic rock [22]. Pumice typically has lower
density (0.2–0.9 g/cm3) and higher porosity (50–90%) compared to non-volcanic soils
(density > 0.9 g/cm3, porosity < 60%) [22–24]. This uniqueness is associated with voids
inside pumice particles [25]. These voids may also allow pumice to hold a substantial
amount of water, depending on pore size and connectivity [22,23]. Because water content
is one of the most influential factors for mobility [12], such unique pumice characteristics
may influence landslide mobility. Thus, the presence of pumice may control the mobility of
earthquake-induced landslides that failed in volcanic deposits. Nevertheless, the effect of
pumice on landslide mobility has not been systematically investigated.

Numerous landslides with a density of 326 landslides/km2 occurred during the East-
ern Iburi earthquake, Hokkaido, on 6 September 2018 [26]. Approximately 6000 landslides
and debris flow were reported; mobilized distances ranged from 20 to 450 m [27]. The
mean distance of transported landslide sediments was 154 m, while the distances varied
significantly depending on locations [28]. For instance, a 170 × 85 m2 landslide in the Towa
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River catchment travelled from 20 to 30 m [29], whereas a larger landslide (850 × 400 m2)
in the Hidaka-horonai River catchment travelled 350 m forming a landslide dam [30].
Sliding surfaces of landslides occurred along volcanic deposit layers that originated from
the eruption of Mt. Tarumae (Ta-d: 9 ka) and Mt. Eniwa (En: 20 ka) [28]. Hence, materials
transported by these landslides consisted primarily of volcanic deposits, i.e., pumice and
volcanic ash.

Field and remote sensing studies of the influence of pumice on landslide mobility
are difficult due to complex topography and other variable site factors. As such, flume
experiment can be effective to consider the range of factors affecting landslide mobility
within a simplified configuration. Indeed, a previous study mentioned the effectiveness
of flume experiments in demonstrating landslide dam and debris flow formation for
various geologic (i.e., soil types) and hydrologic (i.e., water contents) conditions (e.g., [7]).
Therefore, the objectives of this study are to: (1) investigate physical characteristics affecting
water content of pumice within hillslopes impacted by the Eastern Iburi earthquake and
(2) examine the influence of pumice physical characteristics on landslide mobility using a
flume experiment. Based on the findings of this study, we then discuss possible mechanisms
controlling the mobility of landslides in pumice. This study provides insights to improve
landslide risk assessment in volcanic areas.

2. Methodology
2.1. Soil Sampling

Soil samples were collected from three landslide locations in Yosino and Tomisato areas
of Atsuma Town, Hokkaido, where a maximum seismic intensity of 7 was recorded (Japan
Meteorological Agency scale). These sites are 5 km west of Atsuma Town (Figure 1a,b).
Mean annual precipitation and temperature recorded in Atsuma Town is 997 mm and
6.7 ◦C, respectively (AMeDAS Atsuma based on data from 1976 to 2019). The topography
of these sites is hilly with altitudes ranging from 100 to 200 m. Dominant vegetation cover
is secondary deciduous forest (e.g., Betula platyphylla, Quercus mongolica) and mixed-conifer
plantations, such as larch (Larix kaempferi) and Todo fir (Abies sachalinensis).

These landslide sites are surrounded by a well-developed fault system (Figure 1c).
The eastern boundary fault zone is located in the Ishikari lowland that originates at Bibai
and terminates at Yufutsu, located 7 km northwest and 67 km north of Atsuma town,
respectively. Within this fault zone, two active faults (Yusufu and Maoi) strike from
NNE/SSW to NNW/SSE [31]. Another active fault, the Karumai fault, is located southwest
of the epicenter of the Iburi earthquake (Figure 1c). Two major faults (Atsuma and Biratori)
are located 7 km west and next to landslide sites generating a NNW/SSE trend [31].

Thirteen geological units were identified based on a 1:200,000 geological map pub-
lished by the Geological Survey of Japan (Table 1). The basement complex of these landslide
sites is mainly composed of sandstone, mudstone, conglomerate, and sandstone (with tuff)
from the middle to late Pliocene periods. This geology is covered by pyroclastic fall de-
posits, originated from the eruption of Mt. Eniwa (20 ka) and Mt. Tarumae (9 ka) [27].
Tarumae (Ta) is the most recent pyroclastic fall deposit, consisting of Ta-a (1739 A.D.), Ta-b
(1667 A.D.), Ta-c (2.5 ka), and Ta-d (8.7–9.2 ka) [30]. Among all Tarumae deposits, Ta-d
consists of dark red pumice with a coarse-grained texture and numerous vesicles, whereas
other tephra has various size ranges. In all landslide sites, volcanic ash soil was formed
between Tarumae deposits creating alternate soil layers. Total depth of surface geology
(including soil) is approximately 4–5 m [32].
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Figure 1. (a) Distribution of seismic intensity during the 2018 Eastern Iburi earthquake, Hokkaido,
Japan (Modified from Japan Meteorological Agency [33]); (b) Landslide distribution provided by
the Geospatial Authority of Japan; (c) Geological settings within the area affected by landslides
derived from a 1:200,000 geological map published by the Geological Survey of Japan (adapted with
permission from Ref. [31]. 2019, Shuai Zhang et al.). Geological units are described in (Table 1). Red
dotted box in (b,c) indicates location where soil samples were collected.
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Table 1. Geological unit classification.

Codes Lithology Age

N2sn Sandstone, mudstone, conglomerate, and sandstone (with tuff) Middle to Late Miocene
N3sn Diatomaceous siltstone with sandstone and conglomerate Late Miocene to Pliocene
N1sr Mudstone, sandstone, and conglomerate (with tuff) Early Miocene to Middle Miocene
Q2th Mud, sand, gravel, and peat Middle Pleistocene
Q2sr Mud, sand, gravel, and peat Middle Pleistocene
Q3tl Mud, sand, gravel, peat, and volcanic materials Late Pleistocene
Q3vp Rhyolite pumice block, lapilli, and ash Late Pleistocene
Q3sr Sand and volcanic ash sand Late Pleistocene
PG2sr Sandstone, mudstone, and conglomerate (with coal and tuff) Middle Eocene
PG3sr Tuffaceous siltstone with sandstone and conglomerate Late Eocene to Early Oligocene
Hfn Fan deposits gravel, sand, and mud (with peat and volcanic ash) Late Pleistocene to Holocene
Hsr Clay, silt, sand, gravel, and peat Late Pleistocene to Holocene
K22ms Marine sandstone Late Cretaceous

Field investigations showed that Ta-d (hereafter referred to as pumice) became the
major slip surface of landslides [28,30]. Therefore, we collected pumice from our landslide
sites. Four disturbed (400 cc volume) and two bulk (disturbed, volume unmeasured)
pumice samples were collected in two periods. The first samples were collected at lo-
cations 1 and 2 on 3–4 November 2018 (Figure 2). The 30 days antecedent precipitation
index (API30), representing the catchment wetness based on the rainfall that occurred
over 30 preceding days, was about 104 mm during this sampling dates (measured from
AMeDAS Atsuma). At location 1, we collected disturbed and bulk pumice samples at a
depth of 130 cm in the landslide scarp (S1) (Figure 2b). Disturbed and bulk pumice samples
were also collected from the 60 cm depth in the landslide depositional zone at location 2
(S2) (Figure 2c). The second soil sampling was conducted on 14 June 2019 (API30 = 64 mm).
During this time, two disturbed samples were collected from depths of 125 and 175 cm in
the landslide scarp (location 3; S3 and S4, respectively) (Figure 2d). Since soil surfaces that
were exposed after the landslides might be vulnerable to soil erosion, it is possible that the
surface soil properties could change between the first and second sampling periods. Thus,
the upper 20 cm of exposed surface soil was removed when collecting samples, and soil
samples were also collected from excavated trenches.

Disturbed samples were collected using 400 cc stainless tubes; 11.3 cm diameter and
4 cm long. These samples were used for analyzing water content, density, particle size
distribution, specific gravity, porosity, and water absorption limit of pumice. Bulk samples
were collected in a 650 × 850 mm plastic bag for laboratory experiments. All collected
samples were stored in closed containers to minimize the change in soil properties due
to direct solar radiation. The samples were then tested one week after sampling dates,
12–16 November 2018 and 24–30 June 2019 for those collected during the first and second
sampling periods, respectively. Bulk samples were oven-dried at 105 ◦C for 24 h and then
stored in sealed plastic bags for later use in laboratory experiments.

2.2. Soil Characterization

Laboratory tests were conducted according to American Standard for Testing Materials
(ASTM). Dry density and water content were examined using ASTM D7263-09 and ASTM
D4643-17 by oven-drying the specimen at 105–110 ◦C for 24 h. Dry density was estimated
based on the ratio of dry weight divided by the volume, while the gravimetric water content
was based on the weight of water divided by dry sediment weight.
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Figure 2. (a) General location of soil sampling. Landslide and soil conditions at (b) sampling location
1, (c) sampling location 2, and (d) sampling location 3. Ta is the Tarumae deposit that consists of Ta-a
(1739 A.D.), Ta-b (1667 A.D.), Ta-c (2.5 ka), and Ta-d (8.7–9.2 ka). “A” represents volcanic ash soil.
The white-dashed circle indicates the location where soil samples were collected.

Particle size distribution was analyzed based on ASTM D6913-04 using sieve opening
sizes of 19 mm, 9.5 mm, 4.75 mm, 2 mm, 0.85 mm, 0.425 mm, 0.25 mm, 106 µm, and 75 µm.
Dry soils were placed into sieves and then vibrated using a FRITSCH automatic sieve
shaker for 10 min. The number of particles retained in each sieve was then weighed. For
particles smaller than 75 µm, particle size distribution was analyzed by a laser diffrac-
tion particle size analyzer SALD-2300. The soil was classified based on ASTM D2487-06
and USCS Classification. The coefficient of curvature (Cc) and coefficient of uniformity
(Cu) representing soil gradation were calculated based on the cumulative percentages of
particle size distribution. The coefficient of curvature and coefficient of uniformity were
estimated as:

Cc =
(D30)

2

D10 × D60
(1)

Cu =
D60

D10
(2)

where D10, D30, and D50 indicate particle diameters finer than 10%, 30%, and 60% of the
total mass, respectively.

Specific gravity (Gs), representing particle density, was estimated based on ASTM
D854-05 for particles finer than 4.75 mm and ASTM C127-07 for particles larger than
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4.75 mm. This test was conducted without crushing pumice particles to maintain their
original characteristics. The average specific gravity was estimated based on ASTM C127-
07. Porosity (n) and saturated water content (wSr) were calculated from specific gravity.
Porosity represents total voids in the soil, whereas saturated water content represents
the water content when all voids are filled with water. Because pumice may contain
unconnected voids [23], which could prevent water diffusion [25], we estimated the water
absorption limit (WA) based on the maximum absorbed water that generates a constant
mass of pumice particles.

Since specific gravity (Gs) was measured without crushing pumice particles, the
volume used in our Gs calculation includes dead-end pores (Vvd) and solid fraction of
pumice (Vs). We then measured the specific gravity of crushed pumice particles (Gsc) to
estimate the volume of solid fraction (Vs). By assuming that all active pores can effectively
store the water, we estimated the volume of active pores (Vva) from the water absorption
limit (WA). Thus, the dead-end to active pore ratio (Rv), representing pore connectivity
within pumice, is estimated as follows:

Rv =

(
1

Gs
− 1

Gsc

)
1

WA
(3)

2.3. Laboratory Experiment for Examining Landslide Mobility

A flume constructed at a 1:300 scale was used to examine the mobility of landslides
with pumice. The flume consisted of two segments that represent landslide initiation and
deposition (Figure 3a,b). All segments were 10 cm wide, 15 cm high, and constructed with
1-cm thick acrylic material. The primary segment was set to 45◦ with a total length of 50 cm.
This condition represented a 45◦ slope with a length of 150 m. Because most landslides
occurred on slopes between 25◦ and 30◦ [26], we focused on a relatively steeper slope, e.g.,
in headwater catchment. The secondary segment had an inclination of 10◦ and a total
length of 130 cm. This represents a valley; 30 m wide, 390 m long, and a 10◦ gradient. A
bucket was placed at the end of the secondary channel to collect transported sediment. To
quantify mobility, we divided the flume into four segments, i.e., A (20 cm), B (65 cm), C (65
cm), and D (Outlet) (Figure 3c,d).

We used pumice collected from the landslide at location 2 in the experiment to repre-
sent sediment characteristics during transport and deposition. Transported materials by
the 2018 Eastern Iburi earthquake may consist not only of pumice but also other tephra
and volcanic ash with different physical properties. Despite various types of soil trans-
ported during the slope failures, we assumed that soil at the landslide slip surface has the
most influence on landslide mobility because it controls basal friction resistance. Because
landslides occurred mostly at pumice layers [31], we used pumice to represent landslide
mobility during the Eastern Iburi earthquake. The sample volume of pumice that we used
was 500 cc, representing a large landslide (13,500 m3) based on our 300× scaling. Since the
Eastern Iburi earthquake generated > 6000 landslides with total sediment production of
30 million m3 [31,34], the mean landslide volume was about 5000 m3.

Because water content is an influential factor for landslide mobility [12], we applied
eight saturation levels (S = 0.0, 0.15, 0.3, 0.45, 0.6, 0.7, 0.8, and 1.0), where S = 0 represents
completely dry conditions and S = 1 represents saturated conditions. These different satu-
ration levels represent the variability of initial water content during earthquake-induced
landslides. We situated the water-sediment mixture 20 cm upstream of the channel junction
behind an acrylic gate (Figure 3c). The gate was then abruptly opened to allow the sediment
to flow downstream. Such an abrupt gate opening represents a condition where the slope
already collapsed, and movement was mainly driven by gravity. This experimental process
was also intended to lessen the variability of initial mobility, similar to a study examining
the mobility of debris flows in a large-scale flume [35].
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Figure 3. (a) Schematic illustration of the experimental setting; (b) Flume apparatus; (c) Flume
segments (top); (d) Flume segments (side).

After the movement of sediment stopped, we estimated the L/H ratio based on the
total travel distance (L) and total drop height (H) of sediment. This parameter is widely
used to quantify the mobility of landslide sediment [3,9,10,20]. L/H is derived from the law
of energy conservation by assuming a constant moving mass without a progressive mass
loss [9]. We then collected the sediment from all segments. All collected sediment samples
were oven-dried at 105 ◦C for 24 h and weighed. The same procedure was repeated four
times for each level of saturation. A total of 32 experiments were conducted during this
study, from 26 March 2019 to 13 April 2019.

3. Results
3.1. Physical Characteristics of Pumice

Dry density, water content, and specific gravity of the four pumice samples varied by
sampling locations (Table 2). Dry density ranged from 0.33 to 0.45 g/cm3; lowest in S2 and
highest in S3. Gravimetric water content was highest in S2 (172%), followed by S4 (160%),
S1 (147%), and S3 (139%). Specific gravity ranged from 1.29 to 1.33, with the lowest value in
S1 and the highest in S3. Similar to the previously mentioned parameters, the particle size
of pumice differed depending on sampling locations. The mean diameter of particle size
distribution (D50) ranged between 1.7 to 6.3 mm, with the lowest in S3 and the highest in
S1. Since more than 50% of pumice was retained on the 75 µm sieve, pumice was classified
as coarse-grained soil according to ASTM D2487-06. S1 and S2 were classified as gravel,
whereas S3 and S4 were classified as sand because more than 50% of their particles passed
through the 4.75 µm but were retained on the 75 µm sieves. All samples except S3 were
poorly graded with a narrow size range; Cu ranged from 4.8 to 6.3, whereas Cc ranged from
0.4 to 7. S3 was classified as well-graded with Cu > 6 and 1 < Cc < 3.
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Table 2. Physical characteristics of pumice.

Physical Characteristics
Sample

S1 S2 * S3 S4

Dry density (ρ, g/cm3) 0.33 0.3 0.41 0.35
Water content (w, %) 147 172 139 160
Specific gravity (Gs) 1.29 1.3 1.33 1.19
Mean particle size (D50, mm) 6.3 4.8 1.7 4.5
Coefficient of uniformity (Cc) 6.3 4.8 6.1 5.2
Coefficient of curvature (Cu) 7.0 6.1 1.2 0.4
Void ratio (e) 2.9 3.3 2.2 2.4
Porosity (n, %) 75 77 70 74
Saturated water content (wSr, %) 221 256 167 200
Water absorption limit (WA, %) 113 143 95 118
Dead-end to active pore ratio (Rv, %) 34.0 26.5 38.0 38.1
Soil classification GP GP SW SP

Notes: * Sample used for flume experiment, GP is poorly graded gavel, SP is poorly-graded sand, and SW is
well-graded sand.

Because soil particle size affects soil physical properties [36], void ratio, porosity,
saturated water content, and water absorption limit of the four pumice samples differed
depending on particle size distributions, yet followed a similar pattern. In general, S2 had
the highest values of these parameters (e = 3.3, n = 77%, wSr = 256%, WA = 143%), whereas
the lowest ones were for S3 (e = 2.2, n = 70%, wSr = 167%, WA = 95%). In contrast, the
dead-end to active pores ratio (Rv) was the highest for S4 and the lowest for S2 (Table 2).

3.2. Characteristics of Mobility

The L/H varied depending on the saturation level (S) (Figure 4). For dry soil (S = 0), L/H
ranged between 2–2.2 (mean = 2.1; SD = 0.07). As pumice became wetter, L/H progressively
decreased up to S = 0.6. Then L/H began to increase above S = 0.6 and peaked at S = 1
(mean = 3.2; SD = 0). Thus, S = 0.6 marks the threshold for landslide mobility change; the
lowest L/H among all conditions, ranging between 1.6 and 1.8 (mean = 1.7; SD = 0.1). Never-
theless, because the sediment entered the bucket (segment D) during the S = 1 experiment,
the actual travel distance for this condition could not be measured. Hence, the L/H under
S = 1 conditions was the same in all four repetitions (L/H = 3.2) and underestimates mobility.
Therefore, we projected the slope of the mean L/H value at S = 0.6–0.8 to S = 0.8–0.1 to predict
the mobility under saturated conditions (S = 1) (Figure 4).

3.3. Characteristics of Sediment Deposition

Sediment deposition in all segments differed depending on the saturation level
(Figure 5). For all dry sediments (S = 0), deposition was highest in segment B, followed
by segment A, and no sediment reached segments C and D. With increasing saturation
(up to S = 0.6), sediment deposition increased in segment A and decreased in segment
B. For S > 0.6, sediment deposition occurred in downstream segments C and D. Fur-
ther increases in the saturation level caused a gradual increase in sediment deposition in
segments C and D, whereas deposition in segments A and B gradually decreased. This
increasing pattern of sediment deposition in segments C and D indicates greater sediment
movement downslope.
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Figure 5. Sediment deposition in all flume segments. X-axis shows saturation levels, where S = 0
represents completely dry conditions and S = 1 represents completely saturated conditions. Y-axis
shows the percentage of sediment deposition in all flume segments (%). Segments A, B, C, and D
represent the initiation, upper deposition, lower deposition, and outlet segments, respectively.
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4. Discussion
4.1. Uniqueness of Pumice

Pumice is characterized by a low specific gravity, representing particle density. The
specific gravity of soils typically ranges between 2.6 and 2.8 [37], whereas that in the
four pumice samples we collected was 1.29–1.33. Since particle density influences soil
strength [38], such a low specific gravity indicates a low strength of pumice. Indeed,
changes in particle size distribution after triaxial tests indicated a low shear strength of
pumice [39], and grain crushing due to overburden pressure [31]. The low specific gravity of
pumice might be associated with numerous voids inside these volcanic particles (e.g., [25]).

Internal voids within pumice greatly influence pumice density because soil is a
three-phase material consisting of solids, voids, and water. The four pumice samples
had a dry bulk densities of 0.3–0.41 g/cm3, lower than that of typical non-volcanic soils
(>0.9 g/cm3) [22–24]. Our findings were similar to those derived from the Plinian deposit
of the Minoan eruption of Santorini, Greece (0.19–0.32 g/cm3 pumice bulk density) [22].
Similarly, pumice derived from the 79 AD Mount Vesuvius eruption had a low dry bulk
density, ranging from 0.6 to 0.7 g/cm3 [23].

The presence of internal voids in pumice also enhances porosity compared to non-
volcanic soils. The porosity of the four pumice samples was 70–75%, whereas for non-
volcanic soils, porosity values are typically <60% [22–24]. Our porosity values agreed
with previous studies in Santa Maria, Guatemala and Medicine Lake, California (63–73%
porosity) [25]. Moreover, the internal voids in pumice may result in a high matric potential
(suction) [23]. Such a condition enables pumice to absorb and possibly hold a substantial
amount of water. Indeed, the inner-particle water absorption limit for pumice was 95–143%,
which is 9–15 times higher than that suggested by ASTM C127, with the absorption limit
ranging between 8–10% for typical coarse-grained soils. Such a high-water absorption limit
on pumice was also found in previous studies (e.g., [23]), ranging from 67 to 70%.

This high-water absorption limit on pumice might also be associated with its pore
connectivity. Dead-end to active pore ratios (Rv) among four pumice samples ranged from
26.5% to 38.1%, indicating that voids inside pumice particles are composed of 72.4–79.1%
active pores and 20.9–27.6% dead-end pores. Our finding of a predominance of active
versus dead-end pores is similar to findings of pumice originating from the eruption of
Montagne Pele’e volcano in France, i.e., >75% active pores inside pumice particles [40].
Previous studies at the mountaintop lake of Changbaishan, China, and Mount Mazama,
USA similarly reported >80% of interconnected porosity in pumice [41,42].

4.2. Landslide Mobility among Various Water Content

The presence of water within soil particle contacts strongly influences soil strength [43],
affecting the mobility of geophysical gravitational flows [44]. For sand-sized particles, a
significant increase in cohesion occurred at water contents < 5% because of the formation
of a liquid bridge at soil particle contacts [45]. Similarly, a laboratory experiment indicated
that water surface tension was the highest at a water content of <20% for particles < 110 µm,
attributed to inter-particle cohesion [43]. This liquid cohesion weakened when particle size
exceeded 150 µm because the effect of gravitational forces was larger than water surface
tension [46]. Moreover, most studies confirmed a significant reduction of shear strength
at high water content (e.g., saturated conditions) because of high pore-water pressure
(e.g., [10,12,43,45,47]).

Similar to previous studies (e.g., [7,15,44]), the variability of sediment mobility in
our experiment might be associated with the availability of water at soil particle contacts.
Indeed, completely dry conditions generated the highest L/H for conditions under S ≤ 0.6
because lightweight materials with no liquid cohesion between particles promoted indi-
vidual mobility for granular materials (e.g., [48]). The continuous decrease in L/H for
0 < S ≤ 0.6 might be associated with the liquid bridge that was generated by inter-particle
cohesion [45]. Nearly saturated conditions caused much sediment transport to the outlet
because of high pore-water pressure [47].
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4.3. The Effect of Soil Characteristics on Landslide Mobility

Soil porosity is an important geotechnical factor for landslide mobility [2,7], because it
defines water storage on soils [49]. A numerical simulation suggested that a 2% increase in
soil porosity may elevate the travel distance of the 2014 Oso landslide because the porous,
water-saturated media potentially liquefied during transport. A laboratory experiment
confirmed this finding and found that sediment with the highest porosity generated the
greatest sediment transport downstream in saturated conditions [7].

Although the porosity of pumice samples was high, the inner-particle absorption
of water in these samples was also high, affecting inter-particle water availability. Com-
pared to a previous study in the same flume configuration [7], pumice in our study had
higher porosity and generated greater sediment transport to the outlet (7–18%) than their
sediments under saturated conditions (used in [7]). However, this pumice is less mobile
compared to weathered sedimentary rock (mean sediment transport to outlet = 61.3%) de-
spite having 28% larger porosity. Because inner-particle water absorption (WA) on pumice
was equal to S = 0.56, only about 44% of saturated water was retained in inter-particle
voids. Although pumice had high porosity, since their WA is also high, the inter-particle
water availability might be less than that in weathered sedimentary rock. Such conditions
imply that higher porosity does not always represent higher mobility.

Water absorption within pumice particles also controls the pattern of L/H (Figure 6a).
Indeed, since the water absorption limit for pumice corresponded to S = 0.56, water less
than S < 0.56 may be absorbed by the internal voids with little water on particle contacts.
Such a condition enhances inter-particle cohesion and thereby reduces L/H. Hence, S = 0.6
became the threshold of L/H, and S > 0.6 generated much higher sediment transport
because water exceeding water absorption limit may weaken particle contacts (Figure 6b).
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on pumice. Water absorption limit (WA, %) is converted to the saturation level (S) by dividing WA

(%) by the saturated water content (wSr, %).

81



Water 2022, 14, 3083

Thus, we concur with previous studies that porosity is influential in landslide mobility
(e.g., [2,7]). However, we highlight that inner-particle water absorption is also a key factor
that controls mobility.

4.4. The Mobility of Landslides in Pumice

The water content of our four pumice samples was high, with saturation level (S)
ranging between 0.5 and 0.6. Based on our experiments, values of L/H using S = 0.6
were 1.6–1.8, with a scaled-up volume of 13,500 m3. These values of L/H were low
compared to those from field investigations in the same area that ranged from 4.2 to 5.2 for
volumes of 10,000–15,000 m3 [30]. Similarly, GIS analysis of landslides triggered during the
1968 Tokachi-Oki earthquake had higher values of L/H for landslides in pumice, ranging
between 2.7–7 for similar ranges of volume [20]. This condition implies that the actual
landslides were more mobile than those in our experiment, which may indicate a higher
water content in the field during the actual landslides. These differences in water content
might be associated with water accumulation from previous rainfall events. Indeed, API30
on the date when landslides occurred was 230 mm (measured from AMeDAS Atsuma),
which was 2.2–3.6 times larger than that during field investigations.

These differences in L/H might also be associated with scaling effects. A previous
study suggested that small-scale experiments generated much larger effects of shear re-
sistance from liquid cohesion and smaller effects of pore-water pressure compared to the
actual phenomena, which is proportional to h3, where h represents landslide thickness [50].
As such, small scale experiments with much smaller h compared to the full-scale natu-
ral events potentially underestimate landslide mobility. Additionally, since overburden
pressure depends strongly on h, the actual landslides may generate much larger over-
burden pressure than those in small-scale experiments, potentially crushing soil particles
during transport. As soil particles are crushed, more soil mass occupies the same soil
volume, elevating pore-water pressure, which consequently fluidizes the landslide mass,
thus enhancing landslide mobility (L/H) [51]. Previous studies mentioned that this grain-
crushing-induced fluidization not only occurs in completely saturated conditions [52], but
also in partially saturated soils [53].

Although we did not observe any grain crushing in our experiments, which may be
attributed to the much smaller h compared to actual landslides, our findings indicate that
such unique pumice characteristics can facilitate landslide fluidization. Since a low value
of specific gravity indicates a low soil strength [38], pumice can be easily crushed during
transport. Indeed, the change in particle size distribution after triaxial testing indicates
crushability of pumice under overburden pressure [39]. Field investigation confirmed that
grain crushing occurred on landslides in pumice [21,31]. Because internal voids in pumice
can absorb and possibly hold a substantial amount of water, such grain crushing may allow
water to escape from internal voids thereby fluidizing the landslide mass during transport.

Therefore, our findings concur with previous studies that water content is a key factor
controlling the mobility of landslides in pumice (e.g., [20]). Gravimetric water contents
of pumice samples based on laboratory tests were high, ranging between 95 and 143%.
However, we highlight that unique pumice characteristics such as high water absorption
may facilitate water fluidization in pumice layers, enhancing landslide mobility. Variability
of mobility might be associated with the variability of initial water content in pumice layers
influenced by topography and water-holding capability.

5. Conclusions

We conducted a flume experiment to examine the mobility of earthquake-induced
landslides in pumice soils. Pumice used in this experiment was derived from landslides
induced by the 2018 Eastern Iburi Earthquake, Japan. This pumice was unique because
of the low specific gravity compared to non-volcanic soils, which indicated a low soil
strength [38]. Since this low value of specific gravity might be associated with numerous
voids inside pumice particles, pumice can absorb and possibly hold a substantial amount
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of water; 9–15 times higher than for typical coarse-grained soils. Using various saturation
levels, our flume experiment confirmed that this inner-particle water absorption influences
pumice mobility (L/H ratio).

Since grain crushing may occur on landslides in pumice [21,31], our findings indicated
that unique pumice characteristics (i.e., high water absorption) potentially enhance their mo-
bility. Therefore, although the initiation of earthquake-induced landslides is less influenced
by soil-water conditions, they can be as mobile as those induced by rainfall, depending on
the initial water content of pumice layers. Since pumice can absorb a substantial amount
of water, this initial water content can be influenced by topography and water-holding
capability in pumice layers, as well as water accumulation during antecedent rainfall. We
believe that these findings provide insights for improving landslide risk assessment in
catchments underlain by volcanic deposits.
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Abstract: This study uses the cognitive factor of “visual harmony” to assess the visual quality of
stream engineering in a mountainous region. Images of engineering structures such as revetments
and submerged dams in the mountain streams of Taiwan were collected. Three image groups with
different structures invaded by vegetation were used for a questionnaire survey, which yielded 154 valid
samples. We used statistical analysis to develop a model of visual harmony H with respect to the
percentage of visible greenery GR, that is, the perceived curve of vegetation change. A comparison
of our data with the literature determined the upper and lower bound curves of the relationship
between H and GR. We found that the physical elements of “softscape” and “hardscape”—namely,
percentage of visible water WR, visible structure IR, and visible natural material on the structure
NR—affected this relationship. Results show that H is equivalent to visual preference P, and both can
be improved by better green visibility (increasing GR and GR < 50%), avoiding low water visibility
(WR < 10%), or increasing the amount of visible natural material (NR > 0.9). High visibility of the
structures (IR > 0.3) may decrease H and P. We ultimately propose a visual harmony or preference
model concerning a combined physical indicator that comprises GR, WR, IR and NR. Results of this
study could be helpful to improve or access the aesthetics of stream engineering design.

Keywords: harmony; preference; cognitive factors; physical elements; questionnaire survey

1. Introduction

The concept of harmony is an essential focus of attention in engineering, management,
art, and design. One such example is the harmony sought to balance safety (for humans),
ecology, and landscape in ecological engineering within the more extensive study of soil
and water conservation [1]. Other examples include human–water harmony when devel-
oping evaluation models in hydraulic engineering and water resources management [2–4],
harmony in human-river encounter sites [5], harmony in ecosystem service [6], and many
studies concerns about colour harmony in colour combinations [7,8], art and design [9],
and urban spaces [10,11].

1.1. Visual Harmony

There are many definitions of harmony in different study fields. In colour harmony,
key words associated with harmony include “completeness”, “complementary/analogous”,
“order”, “balance”, “unambiguous”, and “pleasing” [12,13]. “Harmony” and “preference”
are often used interchangeably and are regarded equivalent in early previous analyses [13].
However, some studies showed that two terms of “preference” for and “harmony” of
colour combinations may produce confusing results [8,13].
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Within the study of visual landscape, harmony reflects unity and balance, or the
pleasant “arrangement” of landscape attributes [14]. It is closely related to coherence [15]
or unity. Harmony, coherence and unity are interchangeable terms [16]. Harmony or co-
herence has been associated with water features [16–18] and land-use suitability [16,19,20].
It is an important cognitive indicator [21] and may be associated with landscape physical
elements. Thus, harmony was selected as an indicator in this work to investigate changes
of proportions of water and vegetation, and property of engineering structures (scale
and texture) in mountainous stream landscape. Visual harmony in this paper describes
the perceived balance of landscape attributes to form a coherent, unified whole. Visual
preference focuses on people’s preference or aversion to the landscape. Visual preference
and harmony were regarded as different terms in this work. They are important cognitive
processes in aesthetic assessment.

1.2. Aesthetic Assessments of Rivers

Defining aesthetics has been addressed by [13]. Ideally, it refers to the study of
human minds and emotions in relation to the sense of beauty. However, aesthetics, such
as we usually talk about (the beauty or ugliness of an object or a scene), is subjective,
and it depends on personal aesthetic experiences. Thus, the terms public perception or
preference were generally used by researchers to investigate aesthetic quality or aesthetic
assessment. Visual preferences reflect the degree to which people experience it as beautiful
(or ugly). It is a cognitive process and a product of perception that should be considered
in studies involving people’s aesthetic judgments and selectivity, including perceptions
of the environment [22]. Research on the aesthetic assessments or visual quality of rivers
has often been addressed in many studies, such as river restoration measures [23], river
with recreation infrastructures [24,25], wood in rivers [26,27], water quality [28], and
engineering structures in mountainous streams [21,29]. There are a few soils and water
conservation studies on the visual quality of sediment control structures in mountain
streams written from the perspective of perception [21,29]. The goal of stream engineering
design is safety and functionality. Yet, with more excellent environmental quality and
growing public interest in landscape beauty, visual preference and visual harmony has
become a part of engineering design. Chen et al. [21] proposed a model of visual preference
associated with cognitive factors, such as harmony, naturalness, vividness, and closeness,
in sediment control structure in mountainous streams. The property of softscape elements,
i.e., the visible body of water and vegetation, associated with cognitive indicators were
also presented. However, the model was developed based on cognitive factors. Studies on
how visual harmony (H) and visual preference (P) are affected by the structure’s texture
and its proportion (namely, hardscape elements in this work), and how they are associated
with softscape elements, are still lacking. Particularly, an evaluation model using softscape
and hardscape elements may be more interesting to a hydraulic or landscape designer
and manager than applying cognitive factors. Softscape and hardscape are direct and
the designer or manager can try to adjust the physical environment elements to prompt
aesthetic quality.

1.3. Objectives of This Study

Engineering structures allow for self-design by nature and considering their harmony
with nature is a design norm. For examples, a stone revetment, groundsill, or dam with
stone lining has voids between stones at the surface that allow vegetation to invade,
increasing greenery and, thus, visual beauty [30]. However, overgrown greenery can
destroy the harmony of the stream’s landscape and sediment control structures [21]. Such
invasion of vegetation in stone revetments and other sediment control structures is well
documented in the literature [21,29]. However, a lack of study determines the impact curve
nor evaluation model of visual harmony nor preference with respect to visual greenery
for application. If such a model were established, the visual quality of engineering design,
management, and maintenance could be improved. There also exists some evidence of an
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evaluation model of visual preference that discusses the influence of softscapes (water and
greenery) on cognitive factors [21], but it ignores hardscapes, despite such elements being
vital in design.

Visual harmony is a cognitive process resulting from a sense of visual order, unify,
and coherence between and among the landform, water, vegetation, or structures visible.
It allows the human eye to connect the “softscapes” and “hardscapes” easily—that is,
physical elements—through engineering design. Harmony may increase scenic beauty and
public acceptance [21,22,29] and it should be seriously considered in assessment visual
quality of engineering structures in mountain stream [21]. This paper focuses on visual
harmony of engineering structures in a mountain stream, particularly vegetation invading
engineering structures. Emphasis is on how visual harmony and preference are affected
by vegetation after engineering structures were completed, and how to develop a model
of visual harmony with respect to the physical elements, such as the percentage of visible
water, visible structure, and visible natural material on the structure. The visual harmony
influenced by the proportions of water, vegetation, and engineering structures, and struc-
ture texture were studied. Visual harmony associated with preference is also presented.
Understanding the visual harmony of physical elements may improve the aesthetics of
stream engineering design and may help scholars develop a model for assessing visual
quality.

2. Overview of Gungfunnan, Chotengkeng, and Tungsikun Creeks

Taiwan is a mountainous island. Hills cover seventy percent of its total landmass. The
rivers in mountainous regions have steep slopes and flow at rapid velocities, necessitating
the need for sediment control engineering to stabilize the streambed and prevent hazards
related to sediment and water flow. In 2001, the Soil and Water Conservation Bureau
(SWCB) in Taiwan began to promote innovation in ecological engineering [1]. Currently, the
typical engineering structures in Taiwan include stone revetments, groundsills, submerged
dams, and check dams.

We chose a location upstream of the Gungfunnan creek in Yilan Country and Chotengkeng
creek in Taichung City in the Taiwanese mountains (see Figure 1 and Table 1). The Gung-
funnan creek has a watershed area of 866 ha and a main stream length of 5.5 km. In
1997, Typhoon Sinlaku caused landslides and floods in the watershed, leading to massive
sediment deposition downstream. The Chotengkeng creek has a watershed area of 1320 ha
and a main stream length of 8 km. It experienced floods, landslides, and massive debris
flow during Typhoon Mindulle in July 2004. Subsequently, the SWCB has constructed a
series of stone groundsills, stone revetments, and submerged dams in the two creeks to
control sediment flow. The stones for such ecological structures were sourced from on-site
streambeds or stream sides to utilise the natural resource and increase the flow area of the
creeks. Groundsills can stabilize streambeds and the toe of the slopes, but they also tend to
raise the streambed, leading to vegetation invasion. Stone revetments mainly protect the
toe of the streambank to avoid erosion. In these structures, the voids between the stones
allow vegetation to proliferate compared with concrete revetments.

Figure 1 shows three observation points, namely, P1, P2, and P3, and their viewing
scenes in the study area. The viewing scenes at P1 and P2 were taken upstream of Gung-
funnan creek. Figure 1b,c show the stone revetment, groundsill works, and submerged
dam. P3 (see Figure 1d) was taken from Chung-Ho bridge downstream of Chotengkeng
creek, showing a declined groundsill with stone lining. Figure 1b–d were collected from
the SWCB in the early stages after engineering works were completed. All images were
captured from either river banks or on a bridge. They were easily viewable with the naked
eye such that aerial, long-range, and panoramic shots were not necessary. These images
were used to investigate the changes in vegetation on the riversides and riverbeds.
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Figure 1. Study area and observation sites in the Gungfunnan creek in Yilan Country and Chotengkeng creek in Taichung
city, Taiwan. Note. Figure 1b–d were collected from SWCB in the early stage after the engineering works were completed,
and they were used to investigate the changes in vegetation on the riversides and riverbeds. (a) Maps showing the study
area and observation sites P1, P2, and P3; (b) Viewing scene at P1(SWCB, November 2012); (c) Viewing scene at P2 (SWCB,
September 2012); (d) Viewing scene at P3 (SWCB, September 2008).

Table 1. Watershed characteristics of Gungfunnan (upstream) and Chotengkeng creeks.

Location Watershed
Area (ha)

Mainstream
Length (km)

Stream
Width (m) Average Riverbed Slope Engineering Structures

Gungfunnan creek 866 5.5 6–15 Mainstream: 7.07%;
Tributary: 15–17%

Stone revetments, stone
groundsills, and
submerged dam

Chotengkeng creek 1320 8.0 10–20 Mainstream: 2.7%;
Tributary: 10–16%

Declined groundsill with
stone lining

3. Methods

First, field images were collected, followed by image processing. Secondly, the physical
elements of each image were calculated. Thirdly, a questionnaire survey was conducted.
Participants were asked to rate selected images for their visual preferences and visual
harmony. The mean value of the visual preference and harmony in each image was
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determined through statistical analysis. Finally, a visual harmony and preference model
that includes a combined physical indicator was proposed.

3.1. Image Collection and Processing

Images were simulated using Adobe® Photoshop® CC in 2015 version. All simulated
images had the same background (sky, mountain, and water); and only the vegetation on
the riverbed and riversides differed. Figure 2 shows the changes of the riverside landscape
in the upstream section of Gungfunnan creek. Five images C1–1, C1–2 were collected from
SWCB, C1–4 from field investigation, and C1–3 and C1–5 images from image processing,
referred to as images C1–2 and/or C1–4. Image C1–3 simulates the vegetation invasion
in the stage between November 2012 (Image C1–2) and July 2018 (Image C1–4). After
engineering was completed, six years (Image C1–4), vegetation started to naturally invade
riverbanks and riverbed, compared to Image C1–2. However, excessive vegetation on
banks and riverbed increased flow resistance and led to overflow. Image C1–5, simulation
based on C1—2 and C1–4 images, simulates vegetation removed from riverbed after July
2018 for management requirements. This followed the background of image C1–2, and
merging the vegetation on river banks of image C1–4.

Figure 2. Cont.
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Figure 2. Changes in the riverside landscape from engineering works, vegetation invasion, and human maintenance in the
up-stream section of Gungfunnan creek. These images were collected between 2011 and 2018. The field images include the
river landscape before engineering (C1–1) and after engineering treatment (C1–2 to C1–4). Image C1–3 shows increasing
vegetation after Image C1–2, and Image C1–5 shows no riverbed vegetation after Image C1–4. C1–1: Prior to engineering,
with visible greenery, GR, at 66% (SWCB, September 2011). C1–2: Early stage after the engineering complete, with visible
greenery, GR, at 24% (SWCB, November 2012). C1–3: Vegetation invasion, with visible greenery, GR, at 31% (Simulation
based on C1–2 and C1–4 images). C1–4: Vegetation invasion, with visible greenery, GR, at 76% (July 2018). C1–5: No
riverbed vegetation, with visible greenery, GR, at 60% (Simulation based on C1–2 and C1–4 images).

Figure 3 shows four images (C2–1, C2–2, C2–3, and C2–4) with different vegetation
growing over the revetment in the upstream section of Gungfunnan creek. Image C2–1
were collected from SWCB in 2012 and Image C2–4 were taken from field investigation in
2018. Images C2–2 and C2–3 were generated by image processing to simulate the changes
of vegetation invasion on revetment. The simulated vegetation elements referred to the
real images of C2–1 and C2–4. All images in Figure 3 showed the early stage of complete
engineering (C2–1), and gradual invasion of vegetation after engineering (C2–2 to C2–4).

Figure 4 includes three images (C3–1, C3–2, and C3–3) showing changes in the
riverbed vegetation at Chung-Ho bridge in the downstream section of Chotengkeng
creek. Image C3–1 was collected from SWCB in 2008, and C3–2 and C3–3 images are
from image processing. C3–3 is a merged image that combined the real vegetation on
the riverbed from field investigation in 2018 and the background of Image C3–1. Twelve
images (see Figures 2–4 ) were used to investigate the changes in vegetation.

Figure 3. Cont.
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Figure 3. Changes in the revetment vegetation in the upstream section of Gungfunnan creek. Showing the early stage of
complete engineering (C2–1), and the gradual invasion of vegetation after engineering (C2–2 to C2–4). Images C2–1 and
C2–4 were collected from the field, respectively from SWCB in 2012 and in 2018. Images C2–2 and C2–3 were generated by
image processing to simulate the changes of vegetation invasion on the revetment. C2–1: Engineering complete, with visible
greenery, GR, at 8% (SWCB, September 2012). C2–2: Vegetation invasions on revetment, with visible greenery, GR, at 25%
(Simulation). C2–3: Vegetation invasions on revetment, with visible greenery, GR, at 41% (Simulation). C2–4: Vegetation
invasions on revetment, with visible greenery, GR, at 60% (July 2018).
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Figure 4. Changes in the riverbed vegetation at Chung-Ho bridge, at the downstream section of Chotengkeng creek. Image
C3–1 was collected SWCB in 2008, and C3–2 and C3–3 are from images processing. C3–3 is a merged image that combined
the real vegetation on riverbed from field investigation in 2018 and the background of Image C3–1. C3–1: Engineering
complete, with visible greenery, GR, at 19% (SWCB, September 2008). C3–2: Simulation based on Image C3–1, with visible
greenery, GR, at 30%. C3–3: Merged image of Image C3–1 and field image on July 2018, with visible greenery, GR, at 45%.
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3.2. Calculating the Physical Elements Using the Four Visible Indicators

All images were adjusted to the dimension of 72.25 × 54.19 cm (2048 × 1536 pixels) in
Adobe® Photoshop®. Four visible indicators, namely, the percentages of visible greenery
(GR), visible water (WR), visible structure (IR), and visible natural material on the structure
(NR) in each image were determined as follows:

GR = G/T (1)

WR = W/T (2)

IR = I/T (3)

NR = N/I (4)

In all equations, T is the total number of pixels of an image. G, W, and I are the
numbers of pixels of green vegetation, water, and engineering facilities, respectively, in
the image. Engineering facilities here refer to structures of stream engineering, such as
dam, groundsill, and/or revetment. A few images contain part of the road. Visible natural
material, N, is the number of pixels of natural material in the engineering facilities. The
natural materials in an image are all from on-site stones or boulders. For each image, pixels
of green vegetation, water, engineering facilities, and natural material were judged by the
naked eye, and the number of pixels were determined in Adobe® Photoshop®.

3.3. Questionnaire Survey

Visual preference is a cognitive process and a product of perception that is important
for analysing people’s aesthetic judgments and selectivity, including perceptions of the
environment [22]. It is generally regarded as a critical index for evaluating the overall
landscape quality accepted by the public. It can be affected by many cognitive factors, such
as naturalness, harmony, openness or closeness, vividness, and complexity [31,32]. Visual
preference positively correlates with harmony, naturalness, and vividness but negatively
with openness or closeness for a landscape with sediment control structures in mountain
streams. Among the four cognitive factors, visual harmony has the most substantial effect
on visual preference [21]. Thus, we selected two cognitive factors, namely, visual harmony
and visual preference in this study.

In the literature, questionnaire surveys are the most widely used for studying the vi-
sual perception of a landscape. An online questionnaire survey was accordingly distributed
using cloud based SurveyCake to licensed engineers, academic researchers, consultant
companies, and the general public through email and social media channels such as LINE,
WeChat, and Facebook, who were then asked to further disseminate the questionnaire
among their peers. Respondents provided their gender, age, and professional background
under complete anonymity and rated their visual preferences and visual harmony for each
image.

Twelve images were divided into three groups, C1, C2 and C3, as shown in
Figures 2 and 4, and rated using a five-point Likert scale. That is, each image had five
responses for visual preference or harmony. That is, each image had five responses for
visual preference or harmony: “very high (1)” , “high (0.8)” , “normal (0.6)”, “low (0.4)”
and “very low (0.2)”. For example, if the image scores 1, the respondent’s visual preference
for it is very high, and a score of 0.2 means low preference. All questionnaire samples were
divided into two groups: general public and experts. An expert in this work is defined as a
person with a master’s degree or career experience over two years in hydraulic engineer-
ing, civil engineering, soil and water conservation, or landscape architecture. There were
154 valid respondents: 67 for experts and 87 for the general public, 8% aged under 20 years,
71% aged 20–30 years, 16% aged 30–40 years, and 5% aged 30–40 years. The scores on
visual preference and visual harmony for each image were statistically analysed using
Microsoft Excel and Golden Software Grapher ver 12.
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3.4. Results Presentation

There are 12 images with different degrees of visible greenery in the upstream section
of Gungfunnan creek (groups C1 and C2 in Figures 2 and 3 showing the changes to the
riverside and revetment), and in Chotengkeng creek (group C3 in Figure 4). All images
were used for the questionnaire survey. The mean value of the visual preference and
harmony was determined through statistical analysis of the scores of each image. Finally,
we present our results as follows:

First, the visual quality of stream engineering, given the invasion of vegetation was
investigated to determine the perceived curve of vegetation changes (VCC) based on the
relationship between visual harmony (or preference) and visible greenery. Secondly, the
observed data from this study were compared with previous data [21,30,33], as summarized
in Table 2, to determine if VCC is a reasonable measure in our study’s context. Third, we
discussed the relationship between visual harmony (or preference) and visible greenery,
and their relationship with the softscape and hardscape (e.g., water and the textures of
each structure). Finally, we proposed a visual harmony model that includes a combined
physical indicator.

Table 2. Studies on visual quality of stream engineering in mountainous regions.

Researchers Perceived Factors Source of Images Groups in
Questionnaire Rates in Questionnaire

Ho et al.
[30]

Visual preference
and naturalness

Field images show changes to
stream landscape from vegetation
invasion on stone revetments in
the Nan-Shi-Ken stream, Northern
Taiwan; includes four images,
A–17 to A–20 as shown in
Figure A1, at a fixed site at
different times after the
stream remediation

No specific
classification

The values of visual preference
and naturalness were divided
into eight intervals from zero
to one

Jiang [33]

Visual preference,
naturalness, harmony,
closeness, vividness,
continuity, and mystery

Changes to stream landscape from
vegetation invasion on riversides
in Northern Taiwan; includes four
images, A–21 to A–24 as shown in
Figure A1, at a fixed site using
image simulation

No specific
classification

Five-point Likert scale from 5
(highest) to 1 (lowest); the
scores are normalized (divided
by 5) to 1, 0.8, 0.6, 0.4, and 0.2
in this study for comparison

Chen et al.
[21]

Visual preference,
naturalness, harmony,
closeness, and vividness

Sediment control structures
including revetments, grade
control structures, submerged
dams, and check dams constructed
by the Soil and Water
Conservation Bureau, Taiwan, in
mountain streams; includes
sixteen images, A–1 to A–16 as
shown in Figure A1, collected
from different sites

Expert and
general public

4. Results and Discussions
4.1. Harmony

Figure 5 shows the relationship between the harmony and percentage of visible
greenery in the data for groups C1, C2, and C3. A comparison between the two samples
from the general public and experts is presented. There are many data points overlapping
among the groups, and the samples from the general public and experts are consistent for
the relationship between visual harmony and visible greenery. Overall, visual harmony
increases with the increase in visible greenery at the approximate value of <40% but slightly
decreases for GR > 60%. That is, it exhibits an opposite trend at a critical value of GR. The

94



Water 2021, 13, 3324

approximate critical value of visible greenery may be between 40% and 60%, consistent
with previous studies [21,33], as shown in Figure 6. Optimal harmony can be achieved
when visible greenery is between 0.4 and 0.6.

As indicated by red and black circles, data from previous studies are more scattered
than the current data, as indicated by red and black solid dots. This may be because
most images collected from previous studies were taken from different locations and their
characteristics are diverse, including different landforms and sediment control structures.
Sixteen images, all from different locations and those with different scenes and engineering
structures, were collected [21]. We studied only three locations and focused on changes to
vegetation in the same image background.

Figure 5. Relationship between the harmony H and percentage of visible greenery GR in the current
data for groups C1, C2, and C3, and comparison between the two samples for the general public and
experts.
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4.1.1. Visual Harmony and Visible Greenery

The fit line between visual harmony and visible greenery based on current data
(Groups C1, C2, and C3) is shown in Figure 6. The fit equation (the solid line in the figure)
with the correlation coefficient of r = 0.78 can be expressed as follows:

H = −1.45(GR − 0.5)2 + 0.7 (5)

In Equation (5), harmony is maximum, at H = 0.7 when GR = 0.5; that is, there is a
moderate increase in the amount of vegetation. For example, when GR < 0.5, the perception
of harmony increased. This equation was developed based on changes in vegetation from
stream engineering under the following conditions: 0.2 < GR < 0.8, 10% < WR < 30%,
IR < 60%, and 0.1 < NR < 1.0. These conditions almost cover the ranges of previous studies.
Thus, data from previous studies, but mostly not from vegetation variations, except [33],
are scattered compared with current data. The upper and lower bounds of all data show
trend similar to that in Equation (5), that is, approximately 1.25 times and 0.75 times that of
Equation (5), as shown below:

H = −1.81(GR − 0.5)2 + 0.88 for upper bound curve (6)

H = −1.09(GR − 0.5)2 + 0.53 for lower bound curve (7)

Equation (5) was obtained from the fit curve of vegetation changes, or VCC. The VCC
(Equation (5)) is located at the centre between the upper bound (Equation (6)) and lower
bound (Equation (7))) curves. The three curves were used to discuss the changes of the
visual harmony and visible greenery relationship between the two bounds, the effect on
the relationship of harmony with visible greenery, and visual perception, respectively.

4.1.2. Factors Affecting the Harmony and Visible Greenery Relationship

Harmony refers to the unity and balance of the entire landscape in the visual effect. It
can be enhanced or diminished by introducing or combining similar or dissimilar land-
scape elements and spatial arrangements [21]. Harmony, in this study, can be affected
by landscape elements such as vegetation and water amount, size, form and colour of
the structure, texture or material of the structure’s surface, and the spatial arrangements
thereof. The effect of water amount, visual proportion of structure, and materials on the
structure’s surface on the relationship between harmony and visible greenery are discussed
as follows.

(1) Water amount

We find that a moderate amount of vegetation can improve harmony, but excessive
vegetation could be detrimental to harmony. The reason may be that excess vegetation
harms the overall unity of the stream landscape at GR > 50%, thereby reducing harmony.
Besides vegetation, water is an important softscape element in stream landscape. Water
features in the literature are related to coherence or harmony of the scene [17] and it is
helpful to add the sense of orderliness in a landscape [18].

Figure 7a shows that harmony varies with the percentage of visible greenery and
water amount. Three fitting curves based on various values of WR: 20% < WR < 30%
with r = 0.85, 10% < WR < 20% with r = 0.65, and WR < 10% with r = 0.58, show direct
proportionality between harmony and visible water, similar to GR. For example, H = 0.65
with WR = 20–30% is higher than H = 0.55 with WR = 10–20% and H = 0.45 with WR < 10%
when GR = 30%. The softscape elements of visible greenery and visible water may also affect
each other. An image with larger visible greenery may limit the space of water and reduce
WR, while an image with smaller visible greenery may promote more WR. We find that
most images with higher visible water are at GR < 50% in Figure 7a. Generally, WR < 10% is
mainly distributed near the lower bound curve or GR > 50%, which is unfavourable to
harmony. Most of the data collected show that visible water is less than 30%. Two data
points with WR = 42%—samples from the general public and experts in Image A-2 in
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Figure A1 of Appendix A—show that the value of visual harmony is smaller than visual
harmony with WR = 30% (Image A-13). Excessive water amount may thus destroy the
balance or unity of an image and reduce harmony [21]. However, our collected data are
limited to WR < 30%. We recommend more studies to investigate the critical value of WR.

(2) Proportion of structure

The proportion of the structure in the image affects the harmony. Figure 7b shows
the relationship between visual harmony and visible greenery at various percentages of
visible structure (IR). The values of visual harmony with IR > 0.3 are concentered between
VCC and the lower bound curve, occupying 73% of the total. Visual harmony values with
IR < 0.3 are mostly distributed between the upper bound curve and VCC at GR < 50%,
occupying 78% of the total. That is, visual harmony with IR < 30% is higher than that
with IR > 30%. Thus, harmony will be low if the proportion of the structure in the image
is extremely large. In visual, relatively large artificial structures in stream or river may
reduce the naturalness of the landscape, affect the unity and coordination of the overall
environment, and reduce the harmony.

(3) Materials on the surface

In the past, the surface of structure was often smoothed with cement. Advances
in ecology and aesthetics now demands the surface of such structures to be roughened,
encouraging the use of local materials, such as boulders and stones. A structure with local
stone surfaces can also save cost and resources and improve the ecological function of the
structure. However, the stone is conducive to plant invasion because of its porous nature
and the voids between stones. Thus, the surface of the structure gradually begins to green
from vegetation invasion.

The materials of structure’s surface were classified into near-natural, unnatural, and
other types using the index NR, the percentage of natural material on the structure that
is visible. On-site stones or boulders are commonly used natural materials in mountain
stream engineering. A structure with NR > 0.9 is classified as “natural type,” NR < 0.1 is an
“unnatural type,” and 0.1 < NR < 0.9 is “other.” Images attributed to the unnatural type
used concrete with an artificially smoothed or rough texture on the surface. Most data
showing NR > 0.9 are concentrated between the upper bound curve and VCC, occupied 77%
of the total, and all data near the lower bound curve show NR < 0.1. That is, most images
showing natural materials on the structure’s surface elicit higher harmony, while those
with unnatural ones elicit lower harmony. Harmony can be regarded as visually unifying
and balancing for all the hardscape elements (e.g., form, colour, texture or materials)
and softscape elements (e.g., water and vegetation). Thus, engineering structures that use
natural materials, such as stone revetments, are more easily integrated with the surrounding
environment than materials not found in nature [21]; and it will be helpful to increase
visual harmony.
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4.2. Visual Preference
4.2.1. Relationship between Visual Preference and Harmony

The visual preference associated with visual harmony for samples of the general
public and experts are shown in Figure 8. Two examples from the general public and expert
are not different between visual preference and H.

Figure 8 shows that visual harmony is highly correlated to visual preference either
for present or previous studies. The variations in visual harmony were approximately
equivalent to the variations in P; the relationship between visual preference and visual
harmony can be expressed as:

P = H (8)

This result implies that visual harmony is an important indicator to evaluate visual
preference and this aligns with the previous findings that P and H are often used inter-
changeably [13]. Chen et al. [21] also suggested that harmony has a high weighting factor
on visual preferences, and it should be seriously considered for assessment of visual quality
of sediment control structures in mountain streams. When visual harmony is replaced with
visual preference in Equations (5)–(7), that is, P = H, the middle (VCC), upper bound, and
lower bound curves between visual preference and visible greenery can be determined
(see Figure 9, which also shows data from current and previous findings).

98



Water 2021, 13, 3324

4.2.2. Factors Affecting the Visual Preference and Visible Greenery Relationship

Because visual preference is highly correlated to harmony, we expect similar results
for visual preference in Figure 10. However, data for visible water, structure, and natural
material for the relationship between visual preference and visible greenery are slightly
scattered compared with the visual harmony and visible greenery relationship. Visual
preference increases with increasing visible greenery (GR at 50%) but decreases when
GR > 50%. The relation between preference and visible greenery is also affected by the
visibility of water, structures, and natural material. Most data points showed that higher
visual preferences between the upper bound curve and VCC, usually have the following
characteristics: 0.1 < WR < 0.3 (72% in Figure 10a); IR < 0.3 (70% in Figure 10b); and
NR > 0.9 (occupied 70% in Figure 10c). Most data were close to the lower bound curve,
implying lower visual preference, have excessive amount of greenery (GR > 0.5), much less
water (WR < 0.1), excess of structures (IR > 0.3 and GR < 0.5), or use of unnatural materials
(NR < 0.1). Visual preference can also be increased at WR < 0.3 and GR < 0.5.

Vegetation and water are important softscape elements in stream landscape. The
common hardscape elements include the structure’s surface materials, scale, and form.
Harmony and visual preference can be altered by adjusting the softscape and hardscape
elements, as follows: (1) setting GR < 50% by managing and maintaining the vegetation on
streambeds and revetments; (2) constructing, for example, a weir or groundsill, to raise
the water level for WR < 10%; (3) using natural materials for the structures’ surface, and
(4) ensuring the structure is not too large (IR < 30%) as seen from a viewpoint. These
suggestions will be helpful in designing new stream structures in mountainous regions
and in maintaining existing ones.
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ture in visibility (NR). 

4.3. Model Using the Combined Physical Indicator M 
The pixels of an image in this study are composed of visible greenery amount (GR), 

water (𝑊 ), infrastructure (𝐼 ) and other visuals (𝑂 ). 𝑂  is the percentage of pixels in an 
image excluding GR, 𝑊  and 𝐼 , that is, OR = 1 − GR − WR − IR; it is mainly occupied by the 
sky and/or sediment (soil or rock). 𝑁 𝐼  is the percentage of infrastructure or the struc-
ture’s surface covered by natural material. A combined physical indicator 𝑀 comprising 
all visible indicators was used to analyze the relationship between visual harmony (or 
preference) and 𝑀. We assume that all physical elements, GR, 𝑊 , 𝑁 𝐼 , and 𝑂 , are lin-
early correlated to M, and can be expressed as follows: 𝑀 = 𝛽 𝐺 + 𝛽 𝑊 + 𝛽 𝑁 𝐼 + 𝛽 𝑂 − 𝜀  (9) 

In Equation (9), 𝛽 , 𝛽 , 𝛽 , and 𝛽  are the weighting coefficients for GR, 𝑊 , 𝑁 𝐼  
and 𝑂 , respectively. 𝛽 + 𝛽 + 𝛽 + 𝛽 = 1. 𝜀  is the modified term owing to excessive 
green amount (𝐺  > 0.5). Assume that 𝜀  is linearly correlated to the term of (GR − 0.5) 

Figure 10. Visual preference P and percentage of visible greenery GR at various values of water
amount, proportion of structure, and material used. (a) Various percentages of visible water (WR);
(b) various percentages of visible structure (IR); (c) various percentages of natural material on
structure in visibility (NR).

4.3. Model Using the Combined Physical Indicator M

The pixels of an image in this study are composed of visible greenery amount (GR),
water (WR), infrastructure (IR) and other visuals (OR). OR is the percentage of pixels in
an image excluding GR, WR and IR, that is, OR = 1 − GR − WR − IR; it is mainly occupied
by the sky and/or sediment (soil or rock). NR IR is the percentage of infrastructure or
the structure’s surface covered by natural material. A combined physical indicator M
comprising all visible indicators was used to analyze the relationship between visual
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harmony (or preference) and M. We assume that all physical elements, GR, WR, NR IR, and
OR, are linearly correlated to M, and can be expressed as follows:

M = β1GR + β2WR + β3NR IR + β4OR − εm (9)

In Equation (9), β1, β2, β3, and β4 are the weighting coefficients for GR, WR, NR IR and
OR, respectively. β1 + β2 + β3 + β4 = 1. εm is the modified term owing to excessive green
amount (GR > 0.5). Assume that εm is linearly correlated to the term of (GR − 0.5) and
expressed by εm = α(GR − 0.5) in which α = 0 when GR ≤ 0.5. The empirical coefficients
for β1, β2, β3, β4 and α were determined by trial and errors method to check the correlation
between visual harmony or visual preference and M. With β1 = 0.45, β2 = 0.25, β3 = 0.2,
β4 = 0.1, and α = 0.5 in Equation (9), we obtain:

M = 0.45GR + 0.25WR + 0.2NR IR + 0.1OR − εm (10)

where εm = 0.5(GR − 0.5) when GR > 0.5 and εm= 0 when GR ≤ 0.5.
Figures 11 and 12 showed that visual harmony and visual preference are positively

correlated to M. The fit equations between visual harmony or visual preference and M
with correlation coefficient r = 0.70 and r = 0.65, respectively, shown in the solid line in
Figures 11 and 12, can be expressed as:

H = 1.815M + 0.178 (11)

P = 1.716M + 0.198 (12)

Two dash lines, apart from the above equations with ±s and standard deviation
s = 0.095 and 0.098 for visual harmony and preference, respectively, are also shown in
Figures 11 and 12. This result implies that M can be used as an indicator to evaluate visual
harmony or visual preference when GR, WR, NR, and IR are provided.
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A model of visual preference associated with cognitive factors (harmony, natural-
ness, closeness, and vividness)—a psychological based model—was proposed by [21] to
evaluate the visual preference for sediment control structures in mountain streams. It
was predicted using all perceived or cognitive factors. It had high correlation coefficient
with r = 0.81. Generally, this model has higher predicated results than physical-based
model because visual preference is a perceived parameter. However, the physical-based
model (Equations (11) and (12)) is convenient when evaluating visual harmony (or prefer-
ence) because all hardscape and softscape elements, such as GR, WR, NR, and IR, can be
taken more easily from a field by an image; and harmony or preference can be achieved by
ensuring that all landscape elements are considered holistically [21]. Our findings could
be helpful for those who design a landscape in mountainous streams with engineering
structures, which can be preferred by the public or harmonious with the surrounding
environment.
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5. Conclusions

This study evaluated the visual harmony of engineering structures in mountain
streams. The results are as follows:

• Visual harmony H is highly correlated to visual preference P for a landscape of stream
engineering in mountainous regions. The perceived curve of vegetation change (VCC)
that responds to variations of visual harmony and preference owing to vegetation
changes were determined. We found that 1.25 and 0.75 times of VCC can be used to
describe the upper and lower bound curves for the stream landscape.

• Vegetation invasion can improve visual quality but may decrease with excess plant
growth (visible greenery GR > 50%) without management and maintenance. Both H
and P can be improved by cleaning excess vegetation in riverbeds or riverbanks. The
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model for the relationship between H (or P) and GR proposed herein can be used as
reference for the maintenance of streams structures in mountainous regions.

• H and P can be altered by adjusting the softscape and hardscape. Both GR and visible
water WR need to be increased to improve H and P, if GR < 50%. Generally, WR < 10%
is unfavorable to visual harmony and may reduce preference. Hardscape elements
also have a positive effect if the visibility of engineering structures (IR) is below 30%
and the proportion of natural materials on structure (NR) is over 0.9.

• The model of H (or P) and the combined physical indicator M was developed. This
model is composed of visible indicators, GR, WR, NR, and IR, that can be taken by an
image. It is convenient for the designer or manager to determine a stream landscape
with engineering structures, which can be preferred by the public or harmonious with
the surrounding environment. Results of this study could improve the visual beauty
for stream engineering and environment design.

• Images analysed in this study were limited to a landscape with engineering structures
in Taiwan’s mountain streams. The model of visual harmony (or preference) was
developed under the following conditions: stream width of 5 m to 20 m; stream
gradient of 5–40%; an image showing a view with both sides of river visible at an
accessible height; and the physical visual indicators in the ranges of 5% < GR < 85%,
WR < 42%, IR < 80%, and NR < 1.0. However, other factors such as color (seasonal
changes in vegetation) and arrangement of landscape elements, such as water form
and landform, were not included and should be explored in future studies.
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Figure A1. Images collected from previous studies on mountain streams in Taiwan. Note. Images A–1 to A–16 show various
sediment control structures at different locations from [21]; Images A–17 to A–20 [30] and Images A–21 to A–24 [33] are
from revetments with vegetation invasion at a fixed location.
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Abstract: This study evaluates droughts in the Mekong River Basin (MKB) based on a multidisci-
plinary method, mainly using the Standardized Precipitation Index (SPI) and Mann–Kendall (MK)
test. Precipitation data corresponding to the seasonality of the regional climate were retrieved from
Integrated Multi-satellitE Retrievals for Global Precipitation Measurement from 2001 to 2020, at a
monthly temporal scale and 0.1 degree spatial resolution. Drought events and their average interval,
duration, and severity were determined based on Run theory. Our results revealed the most extreme
drought period was in January 2014, at the time the lowest precipitation occurred. Spatial extreme
drought results indicated that Zone 2 in the upstream MKB has the highest frequency of drought,
with 44 events observed during 19 years, and experiences the most severe droughts, whereas Zone
24 in the downstream MKB has the most prolonged drought duration of seven months. The periods
and locations of extreme drought were identified using the SPI, corresponding to historic droughts of
the MKB. Furthermore, the MK test shows an increasing trend of droughts in the lower MKB and the
cluster analysis identified six clusters of times series. Overall, our study provides essential findings
for international and national water resource stakeholders in identifying trends of extreme drought
in the MKB.

Keywords: extreme drought; Mekong; SPI; Mann–Kendall; time series clustering; integrated multi-
satellite retrievals (IMERG)

1. Introduction

Drought is among those natural disasters that have caused severe damage to hu-
manity, society, economy, and environment [1–6]. In the three recent decades, droughts
have occurred in many countries across the world, such as the United States [7], Brazil [8],
China [9], and Vietnam [10]. Drought has affected the socio-economy by reducing crop
productivity, cultivated area, and crop yield. As a result, drought has increased agricul-
tural production costs and decreased the income of agricultural labor. Furthermore, the
prices of food could be highly influenced by droughts. Severe drought can have complex
effects, ranging beyond the direct impacts on crops and livestock to an array of indirect
impacts associated with sanitation, nutrition, loss of livelihood, displaced populations, and
international disputes [5].

The Mekong River flows through China, Myanmar, Thailand, Laos, Cambodia, and
Vietnam and its catchment basin covers an area of 797,000 km2 with more than 60 million
people. The river begins in the Lasagongma Spring in the plateaus of Tibet and flows
about 4350 km southeast to the East Sea of Vietnam. The Mekong River basin is divided
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into two parts according to topography. The upstream is 1000 m above mean sea level,
mainly in the south of China, and is the so-called upper part of the Mekong. The lower
part, or the downstream, is less than 300 m compared to the mean sea level, extending
from the south of Chinese-Lao border to Myanmar, Cambodia, and Vietnam. The average
annual discharge of the Mekong River is about 15,000 km3/year. The Mekong is one of the
most biologically diverse areas globally, with hundreds of types of fish and river dolphins,
crocodiles, and otters. Fishing is an essential activity on the river. However, the Mekong
River is also used extensively for navigation. According to statistics from the World Food
Organization, more than 60% of the population in the region lives mainly on agriculture
and fisheries and depends on hydroelectricity [11]. The climate of the Mekong River Basin
(MKB) varies by topography, from a temperate seasonal climate in the upstream, to a
tropical monsoon climate in the downstream area. The rainy season usually lasts from
June to November, while the dry season usually lasts from December to May. The average
annual rainfall of the MKB ranges from 600 to 1700 mm [12].

Along with economic development, increasing electricity demand has led to the
construction of a series of hydroelectric projects in the upper Mekong. Consequently, there
are noticeable changes in climate, soil, and the hydraulic regime of sediment in the area.
Pokhrel et al. [12] reviewed studies on the effects of climate change, land-use change,
hydropower dam construction, and hydrological regime on the Mekong River. The study
emphasizes the need to consider human factors, climate change, hydrological regime, and
farming factors and at the same time find solutions for sustainable development for the
region. While seeking real solutions to solve the problems caused by upstream hydropower
reservoirs, climate change, and agricultural changes, assessing rainfall distribution for the
area is an urgent issue. A practical assessment and forecasting of rainfall distribution will
help water resource managers to develop appropriate coping strategies and solutions for
damage mitigation.

Due to the extensive study catchment, metering station data is often challenging to
complete. The use of satellite imagery is suitable for rain assessment for the area. Nigam,
Ruiz-Barradas, and Chafik [13] used satellite imagery developed by NASA and Japan, the
Tropical Rainfall Measurement Mission (TRMM), to assess hydro-meteorological changes
for the entire region. Wang et al. [14] used rainfall data taken from the Tropic Rainfall
Measurement Mission (TRMM 3B42V7) satellite and monitoring station data from the
Mekong River Commission to build a distributed hydrological model that aims to assess
hydrological processes for the area. However, recent studies have shown rain data from the
Integrated Multi-satellitE Retrievals (IMERG) satellite models are more accurate [14–18]
than those taken from TRMM, CHIRPS, and PERSIANN-CCS satellites.

This study aims to address the abovementioned knowledge gap. We used IMERG
satellite images taken during the past two decades (2001–2020) to evaluate the rainfall
distribution for the entire MKB. We hypothesized that extreme droughts are increasing
in many regions of the MKB. We tested our hypothesis using satellite data over the years
2001 to 2020. These data were analyzed based on the run theory and a multidisciplinary
approach using the Standardized Precipitation Index (SPI), the Zonal Statistic Model, and
the Mann–Kendal test. According to Wanders and Wada [19] and Dai, Zhao, and Chen [20],
drought is impacted by climate change, which affects drought characteristics, including
drought severity, drought duration, and drought area. The area affected by drought is
large. Therefore, the observation is difficult to obtain with gauge measurement methods.
Especially in developing countries, it is insufficient to investigate climatic environmental
observations. This leads to the risk of uncertainty in predicting natural disasters such as
drought. Therefore, our findings are valuable for supporting international and national
water resource stakeholders in determining appropriate solutions for regional development
in the MKB.
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2. Data Availability and Methods

This study follows an integrated framework including the three main steps presented
in Figure 1. In the first step, we created an automatic program to retrieve precipitation
data from IMERG (retrieved from https://gpm.nasa.gov/, accessed date: 5 May 2021).
The program requires determining the spatial coverages or areas of interest and the range
of temporal interest or duration of data. It also requires a temporal interval step for data
retrieval. In the second step, we computed the SPI for meteorological drought estimation.
The last step is to extract the characteristics of drought corresponding to each eco-watershed
of the Mekong River, using zonal statistics with drought properties determined by the
run theory. After that, we estimated drought characteristics and drought trends to get the
comprehensive drought properties by applying the Mann–Kendall test. In these steps, the
extreme droughts based on time series clustering and the monthly drought trends detected
by the Mann–Kendall test are the most important results.

Figure 1. Methodology framework with the three main steps.

2.1. Study Area and Satellite Precipitation Data from IMERG

The study area covers the Mekong River Basin (MKB) with a latitude of 8.3–33.9 North
and a longitude of 93.8–108.9 East (Figure 2). From its source on the Tibetan Plateau in China
to the Mekong Delta, the main river goes throughout Myanmar, Thailand, Laos, Cambodia,
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and Vietnam, and is considered one of the world’s great rivers. Natural disasters have
caused a large number of negative influences on many people’s lives in the region; of those,
floods and droughts are the two most frequent phenomena that have increasing happened
in recent decades. Therefore, many countries and organizations have been concerned with
this river basin and finding sustainable solutions for socio-economic development.

Figure 2. Study area of the Mekong River Basin.

The Mekong River Commission (MRC) annual report indicated that severe drought in
the Lower Mekong River (LMB) has caused significant economic losses [21]. The report
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details the severe droughts in the downstream areas that cause heavy damage to crops,
impacted the environment, and affected people’s lives. In addition, the report also cites that
the drought in 2016 caused severe economic losses in Thailand, estimated at $1.7 billion
US. The MKB has been at high risk of droughts and the increasing trend continues to
exacerbate the risk, as evidenced by the increasing intensity and duration of the droughts
that occurred in the past two decades. This is further confirmed by the findings of several
climate change studies by the MRC and other organizations, showing the LMB is likely
to see more severe droughts in the next 30 to 90 years due to less precipitation, high air
temperatures, and high evapotranspiration combined with increasing demand for water as
a result of the growing population in the basin.

In our study, monthly precipitation was retrieved from Integrated Multi-satellitE
Retrievals (IMERG). The IMERG products include early multi-satellite, late multi-satellite,
and final satellite-gauge products with spatial and temporal resolutions of 1/10◦ and
30 min. This system used the unified U.S.-developed algorithm that provides the day-1
multi-satellite precipitation product for the U.S. [22].

The study area was divided into 28 zones as ecology catchments and colored by the
six MKB countries, following Gassert et al. [23]. We numbered zones following the latitude,
identified from 1 to 28. Detailed zonal characteristics are described in Figure 2 and Table 1.

Table 1. Mekong zones classified by ecological characteristics by Gassert et al. [23].

Sub-Name Main-Name Country Area (km2) Zonal ID

Za Qu Mekong China 45,083 1
Ngom Qu Mekong China 29,981 2

Qingshuilang Shah Mekong China 68,623 3
Weiyuan Jiang Mekong China 64,201 4

Nam Loi Mekong China 17,551 5
Nam Pho/Nam Ngaou Mekong Laos 12,481 6

Nam Mae Ing Mekong China 52,569 7
Nam Mae Kok Mekong Myanmar 16,654 8

Nam Beng/Nam Ngeun Mekong Laos 26,321 9
Nam Nhiep/Nam Sane Mekong Laos 12,759 10
Nam Beng/Nam Ngeun Mekong Laos 52,977 11

Nam Cadinh Mekong Laos 16,378 12
Songkhram Mekong Laos 16,513 13

Huai Luang/Nam
Phoung/Nam Mekong Laos 9601 14

Nam Kam/Nam
Hinboun/Huai Mekong Laos 11,708 15

Nam Kam/Nam
Hinboun/Huai Mekong Laos 39,733 16

Nam Chi Mekong Thailand 53,461 17
Se Bang Nouan Mekong Cambodia 88,451 18

Se Kong Mekong Cambodia 50,831 19
Upper Tonle Sap Mekong Cambodia 49,903 20

Huai Tomo/Tonle
Repon Mekong Cambodia 45,589 21

St. Sen Mekong Cambodia 29,546 22
Siem Bok Mekong Cambodia 41,001 23

Lagna Da Rgna Viet Nam, Coast Vietnam 9920 24
Dong Nai Viet Nam, Coast Cambodia 8746 25

Lagna Da Rgna Viet Nam, Coast Vietnam 42,359 26
Song Be Delta Viet Nam, Coast Vietnam 1873 27

Saigon Viet Nam, Coast Cambodia 74,097 28

2.2. Standardize Precipitation Index (SPI)

We calculated the Standardized Precipitation Index (SPI) using the methods derived
from a concept by McKee et al. [24]. In this concept, drought is initiated by a decrease
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in precipitation that causes a water shortage compared to water demand. The index
is developed assuming that precipitation directly impacts hydrological variables (e.g.,
river discharge, groundwater, and soil moisture). The SPI has commonly been used to
estimate the occurrence of meteorological drought due to its simplicity for calculation and
applicability for various durations. The classification of drought levels based on the SPI
referenced from Tsakiris and Vangelis [25] is presented in Table 2.

Table 2. Classification of SPI values.

Drought Category Probability (%) Values

Extreme wet 2.30 2.00 ≤ SPI
Very wet 4.40 1.99 ~ 1.50

Moderately wet 9.20 1.49 ~ 1.00
Near normal 68.20 0.99 ~ −0.99

Moderate drought 9.20 −1.00 ~ −1.49
Severe drought 4.40 −1.50 ~ −1.99

Extreme drought 2.30 −2.00 ≥ SPI
Source: Tsakiris and Vangelis (2004).

After computing several temporal scales, 1-month, 3-month, and 6-month, we pro-
posed using 3 months (SPI3) as a typical drought index for later analyses.

2.3. Zonal Statistic Model

Zonal statistic methods were used to summarize and aggregate the raster values
intersecting a vector geometry. For instance, zonal statistics provide the mean precipitation
or maximum elevation of an administrative unit. Additionally, functions are provided
to query a raster and get an interpolated value rather than the simple nearest pixel. The
values within the zone were assumed to be normalized. The percentile was computed
based on mean and standard deviation. For the extreme value of zone, the percentile
method Q1 from Hyndman and Fan [26] was used for a query. The extreme drought values
are determined when the non-linear integrated drought index (NDI) equals or is below
the 10th percentile or corresponds to zscore = −1.282. The mean (µ), standard deviation (σ),
zscore and percentile values of zone (xp) were computed following Equations (1)–(4) below:

µ =
1
N

N

∑
i

xi (1)

σ =

√√√√ 1
N

N

∑
i
(x i −µ)2 (2)

zscore =
x − µ
σ

(3)

xp= zscore×σ+ µ (4)

In the next steps, the Mann–Kendall test, the empirical decomposition model, Moran’s
I statistic, and the Gi* statistic are used to estimate tempo-spatial trends of extreme drought.

2.4. Drought Properties

Drought events and drought characteristics are determined using the run theory [27],
presented in Figure 3. Drought events begin when the SPI value is lower than the threshold
(−1 means moderate drought, and −2 means extreme drought) and continue until it is
higher than the threshold. Drought severity (DS) is defined by the total value of the SPI [28].
Drought duration (DD) is defined by the number of months in the event [29]. Drought
interval is the time between the beginning of a drought event and the beginning of the next
drought event [30].
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Figure 3. Drought characteristic based on the run theory.

2.5. Mann–Kendall Test

The Mann–Kendall test was used to detect the trends of historical droughts in the MKB.
This method considers data distribution and can cope with outliers [31]. The processing of
Mann–Kendall tests follows Equations (5) to (9) below:

ZR =
R − 2N1N2

N1+N2
+1

√
2N1N2(2N1N2−N)

N2(N−1)

(5)

where ZR is run homogeneous test result, R is run number, N1 is the number of values
lower than medium, and N2 is the number of values higher than the median.

If ZR value corresponds to 5% significance level or below, then the data is non-
homogenous. Only homogeneous data are used to determine trend conditions [32].

The Mann–Kendall test is computed following Equations (6)–(9) below.

ZMK =





S −1
V(S) for S > 0
0 for S = 0

S+1
V(S) for S < 0





(6)

V(S) =
n(n − 1)(2n + 5)

18
(7)

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(x j − xk

)
(8)

sgn(x j − xk) =





+1 if (x j − xk) > 0
0 if (x j − xk) = 0

−1 if (x j − xk) < 0





(9)

The ZMK having a positive value means an increasing trend, a negative value means a
decreasing trend, and a zero value means no trend. V(S) is the variance and S is the Kendall
sum statistic. The difference between each consecutive value is computed as positive (+1),
negative (−1), and neural (0). xj and xk are value of time series at time j among n obser-
vational values. The trend is considered significant if ZMK is higher than the significant
levels. For instance, a confidence level of 90% has α = 10% (ZMK ≥ Zα/2 = ±1.645).
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2.6. Time Series Clustering

We used K-Means and Hierarchical Clustering algorithms to group the dataset. K-
Means clustering is a method that aims to partition n observation into k clusters. The
cluster is built to follow the nearest mean (cluster centers or cluster centroid). K-Means
clustering minimizes within-cluster variances (squared Euclidean distances). The term
“K-Means” was first used in study [33]. The theory of the K-Means clustering method
lets (Ω, A) be a probability space. Suppose we have a sequence of independent copies
Z1 Z2, .. Zn of random vector Z. The aim is to partition Ω into a finite number k of clusters
Ω1, . . . Ωk .

3. Results
3.1. Retrieved Precipitation IMERG Data

Based on the precipitation data retrieved from IMERG, we determined spatial dis-
tribution for precipitation in the MKB from 2001 to 2020 (Figure 4). Overall, the IMERG
data performed well for the precipitation characteristics of the MKB, which were found
to be similar compared with those from study [34]. The average monthly precipitation
fluctuates in a range of lower than 10 mm to over 350 mm. Of those, the precipitation event
in November 2014 had the lowest precipitation over the period, with the average monthly
precipitation at 2.97 mm (Figure 4). The results also show that rainfall increases from
January to August and decrease gradually from August to December. The most rainfall is
in summer (JJA) and autumn (SON). Meanwhile, winter (DJF) and spring (MAM) rainfall
are lower.

Figure 4. Cont.
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Figure 4. The lowest average monthly precipitation (a), monthly (b), and seasonal (c) precipitation
of the MKB with DJF (December, January, February), MAM (March, April, May), JJA (June, July,
August), and SON (September, October, November).

Rainfall in the MKB is not distributed differently between the upstream and down-
stream (Figure 5). However, in general, the climate in the MKB can be divided into two
seasons: the rainy season and the dry season. The rainy season is from June to November,
and the dry season is from November to May. This result is similar to the study by Lee
and Dang [35]. Based on the analysis results, the IMERG satellite data were applied to the
meteorological spatial analysis and spatial analysis for the MKB area.
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Figure 5. Average rainfall distribution in Zone 1 and Zone 28.

3.2. Simulation Results of Historical Droughts of the MKB Using SPI

To evaluate the spatial distribution of drought, we calculated the SPI index for the
entire region before analyzing the max, min, mean, and standard derivation (std) values
at each zone. Figure 6 shows the results of zonal statistical analysis in 2001–2002 with an
example for Zone 1. Various raster pixel values of SPI in the same zone were compared
using a zonal statistical model. Except for the std value, the max, min, and mean values
tend to fluctuate quite similarly in Zone 1. Therefore, we chose the min value, because it is
the one that causes the most extensive drought and poses the riskiest situation.

Figure 6. Zonal statistical calculations for Zone 1.
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We computed the SPI to explore extreme drought severity events in the MKB. The
analysis of historic drought determined that drought phenomena are complicated in the
study area. The analysis results determined the spatial distribution and the dry time for
the entire basin. The results show the differences in each zone’s drought characteristics,
including the number of droughts that occurred, the duration, the severity, and the time
interval between two consecutive droughts. According to the run theory, Zone 2 has the
most frequent drought events (44 extreme drought events). Zone 26 has a minor drought,
with eight extreme drought events (Figure 7). The circles in Figure 7’s graphs are the
outliers that mainly occur when the drought duration in the region is more complex and
unpredictable than the normal drought level. However, Zone 24 has the highest average
drought duration of 7 months, while severe extreme droughts occurred under two months.
The interval drought events, or the time between two drought events, indicate that the
average interval of extreme drought is around ten months in the MKB.

Figure 7. Extreme drought events, interval duration, drought severity, and drought duration for the MKB.

3.3. Trend of Extreme Drought Indicated by the Mann–Kendall Test

The Mann–Kendall test shows that the upper part of the MKB (Zones 1, 3, 4, 6, and 8)
has increasing drought trends (Figure 8), while the lower part (Zones 5, 7, 9, 10–12, 14–16,
18–20, 23, 26, 27, and 28) has decreasing drought trends. The remaining zones have no
significant drought trends, including the Mekong Delta in Cambodia and Vietnam.
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Figure 8. Trend of droughts in the MKB.

The results of the drought trend test show that most of the SPI indicators in the lower
Mekong region tend to increase, or meteorological droughts have decreased. However,
for a small area in the upper Mekong basin, SPI values decreased, or, in other words,
meteorological drought increased (Figure 9). For example, Zone 1 in the upper Mekong
tends towards increased drought (SPI decrease) with a rate of 0.002% in the past 20 years.
Meanwhile, drought in the downstream area tends towards decrease (SPI increase) to a
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similar degree. Details of MBK’s long-term trend analysis are presented in Table 3 and
Figure 10 for slope changes in the zones.

Figure 9. Trend of drought for Zone 1 and Zone 23 in the MKB.

Table 3. Drought trend and equation slopes of 28 zones within the MKB.

Zone Trend Equation Zone Trend Equation

1 increasing Y = −0.0002x + 0.4395 15 decreasing Y = 0.0002x + 0.2421
2 no_trend Y = −0.0x + 0.6357 16 decreasing Y = 0.0002x + 0.2486
3 increasing Y = −0.0003x + 0.5832 17 no_trend Y = 0.0x + 0.468
4 increasing Y = −0.0002x + 0.5522 18 decreasing Y = 0.0003x + 0.4116
5 decreasing Y = 0.0002x + 0.3545 19 decreasing Y = 0.0004x + 0.4464
6 increasing Y = −0.0001x + 0.3857 20 decreasing Y = 0.0004x + 0.4423
7 decreasing Y = 0.0002x + 0.4203 21 no_trend Y = −0.0x + 0.2823
8 increasing Y = −0.0001x + 0.207 22 no_trend Y = 0.0x + 0.2624
9 decreasing Y = 0.0002x + 0.4526 23 decreasing Y = 0.0002x + 0.2638

10 decreasing Y = 0.0002x + 0.3552 24 no_trend Y = 0.0x + 0.2664
11 decreasing Y = 0.0004x + 0.46 25 no_trend Y = 0.0x + 0.2834
12 decreasing Y = 0.0002x + 0.381 26 decreasing Y = 0.0001x + 0.123
13 no_trend Y = 0.0x + 0.2479 27 decreasing Y = 0.0001x + 0.276
14 decreasing Y = 0.0001x + 0.3633 28 decreasing Y = 0.0003x + 0.1946
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Figure 10. Slope of drought trend in the MKB.

3.4. Clustering Time Series

K-Means Clustering shows six groups, each of which has similar zone’s characteristics
(Figure 11). The largest, cluster 2, has six zones (1, 6, 7, 21, 22, 24), and the smallest, cluster
4, has three zones (2, 3, 4). Most of the zones are located in the middle area of the MKB. The
remaining clusters have four to five zones, of which cluster 3, with all zones, is situated
in the lowest part of the basin. The results show that the meteorological limit is relatively
uniform in the upper Mekong region, with slight fluctuation. All basins stretching from
latitude 32 degrees north to 22 degrees north (Zone 2, Zone 3, Zone 4) share the same
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characteristics. In contrast, in the lower part of the Mekong, the meteorological drought is
highly variable. Especially in Zones 10 to 16, the characteristics of meteorological drought
appear in this area. In addition, neighboring regions may have different meteorological
drought characteristics (Zone 1 and Zone 2). In that climate, the locations are very far apart
but still have the same meteorological drought characteristics (Zone 1 and Zone 24).

Figure 11. Clustering time series.
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4. Discussion
4.1. Drought and Its Overall Impacts in the Mekong River Basin

This study has analyzed data retrieved from Integrated Multi-satellitE Retrievals for
Global Precipitation Measurement from 2001 to 2020. The analysis findings of the same
seasonal pattern and the lowest precipitation occurred in November during the extreme
drought event across the MKB countries. The most rainfall drops in summer (JJA) and
autumn (SON), while winter (DJF) and spring (MAM) rainfall are lower. In addition,
average monthly precipitation in the range of lower than 10 mm to over 350 mm in the
period, and rainfall increases from January to August and gradual decreases from August
to December, have implied that the data are reliable for applying SPI calculations and using
the Mann–Kendall trend detection test [36–38].

The SPI calculations based on the run theory have revealed 44 extreme drought events
as the most frequent occurrence in Zone 2 during the 19 analysis years. It means this
zone (which belongs to China) should consider droughts in the coming years. This zone
is located close to Zones 1, 3, and 4 (also belonging to China), which were detected as
having increasing drought trends under the Man–Kendall test. Besides, the lowest extreme
drought event (8 extreme events) was found in Zone 25 (which belongs to Cambodia) over
the 19 years (Figure 7). Next to this zone, however, is Zone 24, which has the highest
average drought duration of seven months compared to the remaining zones. Decreasing
drought trends were found in Zones 5, 7, 9, 10–12, 14–16, 18–20, 23, 26, 27, and 28 in
the lower part of the MKB (Myanmar, Thailand, Laos, Cambodia, Vietnam), which may
indicate the increasing precipitation from 2001 to 2020, while the upper part (Zones 1, 3, 4,
6, and 8, located mainly in China) has increasing drought trends.

The Mann–Kendall test shows that the lower part of the MKB has decreasing drought
trends, while the upper part has to deal with increasing drought trends. These results
imply hydrological conditions of precipitation decreases downstream which are the same
as those found by Dang et al. [39]. The remaining zones with no significant drought trends,
such as those in the Mekong Delta (Cambodia and Vietnam) may be due to the relatively
balanced water conditions in the area or insufficient data availability for the data we used
for our analysis [35]. The results were also supported by the drought trend test, with
increased SPI indicators found in the lower Mekong region, providing the decreasing
trend of meteorological drought. However, our clustering results based on the K-Means
Clustering method indicate that drought characteristics vary across the MKB, indicated
by zone distributions; of those, only cluster 3 has all zones located in the lowest section at
the same time. We realized that the meteorological limit is relatively uniform in the upper
Mekong region, with slight fluctuation. Precipitation in the Mekong basin is subject to
the precipitation oscillation explained by Räsänen and Kummu, (2013) [40]. However, the
episodes of drought do not reveal any proven periodicity. This may explain the apparent
low spatial coherence of the number of clusters, which may reflect local climatic conditions.

4.2. Policy Implication

The significant variability of precipitation across the zones of the countries in the
MKB has been recognized in our study. Based on the findings, we recommend that
countries with historical drought zones and those with increasing drought trends consider
these phenomena in their water governance systems. These countries should enhance
the capabilities developed for drought forecasting, warning, and preparedness systems.
Although the member countries that belong to the MKB have long acknowledged the
challenges associated with drought and natural disasters, the changing climate and other
environmental pressures could exacerbate the phenomenon. Our study recommends
developing a policy that focuses more on identifying solutions that minimize drought
impact and exposure and maximize precipitation water storage for water use in the dry
seasons.
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4.3. Limitation and Future Outlook

Although this study has put great efforts into detecting drought trends in the MKB
using various satellite image analysis methods, two main limitations are partially associated
with the chosen method of calculating drought indexes for a large-scale area such as the
MKB. First, the not-too-long period of observing satellite data (2001–2020) may partly
influence the analysis results. This study uses statistical methods of analyzing satellite
data, so the longer the time series data, the better the calculation to determine the extreme
values. Second, the model could be improved if more observational data from the ground
stations were available to adjust or assimilate into the models.

Based on the scope of this study, we only evaluated increasing and decreasing drought
trends. Predicting the degree of increase and decrease of drought, such as intensity and
time extreme, could be further studied. The Mann–Kendall test is a non-parametric method
of trend assessment that does not consider serial correlation or seasonality effects. However,
it is one of the simplest and most popular methods for analyzing and evaluating time-
series-based trends. This study can be further extended using other trend analysis methods
such as the Modified Mann–Kendall test [41], the Yue and Wang Modified M–K Test [36], or
the Seasonal Sen’s Slope Estimator [41] to calculate serial autocorrelation and seasonality.

5. Conclusions

In this study, a multidisciplinary analysis based on satellite data is used to detect
droughts and their trends in the Mekong River Basin (MKB) regarding how their historical
dynamics could be explained for seeking potential adaptation and mitigation measures
in the coming years. To our knowledge, this is one of the first studies integrating IMERG
satellite images analyzed by various methods. In this study, we have therefore shown
the trajectory of drought dynamics, the highest and lowest frequent droughts, and the
locations and durations of droughts across the MKB. We argue that the method used by this
study has broad transferability, offering the potential for drought assessments in regions
worldwide facing similarly intense changes, particularly in the context of climate change.

The findings of this study reveal that even rainfall data are sufficient for drought
detections, and that these types of data, particularly in terms of satellite images, present a
dynamic drought process across the MKB. First, the zones with high rainfall in the upper
basin show decreasing drought trends, which are not the same for those in downstream
areas. Second, it should be noted that the lowest and highest severe droughts changed
across the river basin with different durations, implying that future drought trends are
complex. These would be indicators of a movement towards unsustainability, which should
be taken into account by the countries in the MKB.
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Abstract: Currently, many studies have reported that many landslides occur in tea or rubber planta-
tion areas. In these areas, it is important to make a landslide susceptibility map and to take necessary
measures to mitigate landslide damage. However, since historical landslide distribution data and
land use data are not available, quantitative landslide assessment measurements have not been made
in many countries. Therefore, in this study, landslide distribution maps and land use maps are created
with worldwide available satellite imagery and Google Earth imagery, and the relationship between
landslides and land use is analyzed in Rize, Türkiye. The results show that landslides are 1.75 to
5 times more likely to occur in tea gardens than in forests. It was also found that land use has the
highest contribution to landslides among the landslide conditioning factors. The landslide assess-
ment, using a simple landslide detection method and land use classification method with worldwide
available data, enabled us to quantitatively reveal the characteristics of landslides. The results of this
study reveal that quantitative landslide assessments can be applied in any location, where relatively
high resolution satellite imagery and Google Earth imagery, or its alternatives, are available.

Keywords: land use; quantitative landslide assessment; Rize; satellite images; tea garden

1. Introduction

Rainfall-induced landslides occur worldwide, and they cause economic losses and
human casualties every year [1]. Intense or prolonged rainfall induces landslides. Lithology,
slope gradient, slope aspect, elevation, vegetation cover, and proximity to drainage line
are considered to be influential physical parameters in the occurrence of rainfall-induced
landslides [2,3]. Regarding vegetation cover, it is well known that improper land use
change affects the landslide frequency [1,4–6]. Some studies in Türkiye [7,8], India [9], and
Sri Lanka [10,11] have reported that landslides frequently occur in areas where the land
use has converted into tea garden or rubber plantation areas. The contributing factors
for increasing landslide susceptibility are thought to be: (1) shallower roots of tea or
rubber plantations than the original trees [7,9], (2) improper drainage systems around the
plantation garden [12,13], and (3) excessive use of fertilizers [9,14].

Effective land use planning and management based on landslide risk assessment is
necessary to mitigate damages caused by landslides [15]. Landslide susceptibility can be
assessed qualitatively or quantitatively [16]. Qualitative landslide assessment is a subjective
assessment based on experience and the knowledge of the experts employed [16–19]. On
the other hand, quantitative landslide risk assessment is an objective and reproducible
assessment based on comprehensive historical data [16–18,20]. Quantitative landslide risk
assessment is useful because it provides a basis for the prioritization of measurement and
mitigation actions [16]. However, quantitative landslide risk assessment is still inadequate
in many countries [16,17,21–23], because financial resources and personnel for allocating
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baseline information to landslide assessment (e.g., landslide historical data, land use data,
rainfall data, data regarding the distribution of soil properties) are limited [24,25].

Remote sensing information is the best alternative source for collecting these lim-
ited data [26]. Current satellite images make it possible to obtain accurate time-series
information on the earth’s surface over wide areas. If satellite images before and after
landslide occurrence are available, it is a powerful tool for detecting landslide areas for
landslide susceptibility assessment in many countries [26,27]. Detecting landslides using
satellite images has the advantage of reducing the time and cost compared to conventional
methods of using field surveys and aerial photos [27–29]. Recently, high resolution and
highly revisited frequency satellite images have become more easily available, and they are
sometimes available for free. For example, the Education and Research Program of Planet
Labs provides access to the PlanetScope Imagery and the RapidEye Archive to anyone who
belongs to the university [30]. In addition, Google Earth images is a very useful alternative
for any user.

To take effective measures to mitigate landslide damages in the area, where quan-
titative landslide risk assessment is insufficient, it is very important to present an easy
method (without a high level of techniques and knowledge) to generate the data necessary
for landslide risk assessment, even if there is some compromise in the spatial resolution
accuracy of the data obtained.

The objective of this study is to generate the data that is necessary for landslide risk
assessment (such as landslide distribution map and the land use map) using globally
available satellite images and Google Earth images, to quantitatively assess the relationship
between landslide, land use, and topography, and to demonstrate the usefulness of this
series of methods.

2. Study Area and Data

The Black Sea region of Türkiye is a highly landslide-prone area, due to its steep
topography and heavy annual precipitation [3]. Many rainfall-induced landslides cause
damage in the Rize region, which is located in the Eastern Black Sea region, and there have
been 1 to 32 casualties every year from 1973 to 2010 [8]. A significant upward trend of
fatal landslides was observed in Rize from 1952 to 2019 [31]. Rize is a very famous area
for tea production, and tea is an economically valuable plant and essential for farmers [32].
The alder forests were converted to tea gardens, especially in the last 50 years, and the tea
plantation area has increased by 32 times between 1940 and 2010 [4,7,33]. Many studies have
reported that landslide incidents increase as tea garden areas increase [4,7,8,13]. Although
Karsli et al. [7] studied the effect of land use changes on landslides, studies quantitatively
evaluating the relationship between land use and landslide in Rize are rather limited.

The study area covers 683.1 km2 in Guneysu district, Derepazari district, Merkez
district, and a part of Cayeli district in Rize city, which is between a latitude of 40◦82′66′′

and 41◦08′38′′ N, and a longitude of 40◦38′86′′ and 40◦79′67′′ E (Figure 1). The altitude of
the study area ranges from 0 to 2453 m above the mean sea level. The terrain is steep and
mountainous, except for the coastal area (Figure 2). The flat coastal areas are populated
with houses, while villages and tea gardens spread out in the mountainous areas despite
the steep slopes. The geological map of the study area is shown in Figure 3.
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Heavy rainfall on 14 July 2021 triggered many landslides, mainly in Guneysu district
(Figure 4), which resulted in six casualties [34]. The average July monthly rainfall was
152 mm according to the Turkish State Meteorological Service (TSMS) of the Ministry of
Agriculture and Forestry [35]. However, 220 mm of rainfall was received only in 7 h [36]
and it caused these landslides.

In addition, heavy rainfall on 26 August 2010 also triggered many landslides in
Gundogdu town (Figure 4), which resulted in 14 casualties [37]. The average monthly
rainfall in August is 197 mm [35]. However, 219 mm of rainfall was received within the day
and on the day before the disaster [8], causing these landslides. For these landslides, only
the concentrated area concerning the landslide, covering 10.6 km2 and located between
a latitude of 41◦02′40′′ and 41◦05′64′′ N, and a longitude of 40◦59′39′′ and 40◦63′48′′ E, is
used for analysis (Figure 1).
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Figure 4. Heavy rainfall-induced landslides in Rize city in Türkiye. (a) Landslide in 2010 (photo from
Turkish Disaster and Emergency Management Directorate [39]). (b) Landslide in 2021 (photo from
Turkish Disaster and Emergency Management Directorate [34]).

3. Methodology

RapidEye imagery, PlanetScope imagery [30], and Google Earth imagery were used in
order to detect the landslide area and classify the land use. The details of the satellite images
used in this study are shown in Table 1. In addition, the Shuttle Radar Topography Mission
(SRTM) DEM with a 30 m resolution was used to obtain topographic parameters such as
slope gradient. The image analysis tool in ArcGIS Pro 2.6 was used for creating landslide
distribution maps and land use, and for analyzing the relationship between landslide,
land use, and other landslide-contributing factors. The rainfall data were acquired at
17 rainfall stations in Rize, and these were provided by TSMS [40]. The spatial variation
of the cumulative daily rainfall the day before and the day of the landslide in 2021 (06:00,
13 July 2021–06:00, 15 July 2021 (UTC)) were interpolated using ordinary kriging.
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Table 1. Satellite data used for landslide detection and land use classification.

Landslide Event Mission Resolution after
Processing

Sensor Type Spectral Bands
(nm)

Acquisition Date

Pre-Event Post-Event

26 August 2010 RapidEye 5 m MS B (440–510) 22 Jun 2010 16 May 2011
G (520–590)
R (630–685)
Red Edge
(690–730)

NIR (760–860)

14 July 2021 PlanetScope 4.1 m MS B (455–515) 3 July 2021 19 July 2021
G (500–590) 27 August 2021
R (590–670)

NIR (780–860)

3.1. Landslide Detection

Landslides were detected by visual interpolation or semi-automatic extraction using
Google Earth images and satellite images. Although visual interpolation is the most com-
mon method for landslide mapping, it requires experience and time, since the landslides
are mapped manually by experts [28]. Therefore, semi-automatic landslide detection is
important for quick and easy-to-implement analysis. A change detection method, which is
a semi-automatic method, was used. This method is the most common landslide detection
method since it is simple and easy to apply [41].

In this study, landslides were detected using the change detection method from
satellite images once, and then each landslide area was checked visually using Google
Earth images or other satellite images. This method reduces the required skill needed
compared with the conventional visual interpolation method. It also improves the accuracy
of the change detection method. Therefore, it improved the efficiency of landslide detection.
Only landslides of more than 100 m2 in area were targeted for detection, since it is relatively
difficult to identify small landslide areas.

The supervised classification method of the maximum likelihood classification algo-
rithm was used to detect landslides in 2010. Training samples were gathered from Google
Earth imagery. The landslide distribution map was created after visual checking using
Google Earth images.

The GSI (Grain Size Index) is the index that has a positive correlation with fine sand
content, and the GSI analysis was originally used for detecting desertification [42]. However,
in this study, GSI was used to detect landslides in 2021. GSI is calculated as follows:

GSI = (R − B)/(R + B + G) (1)

where, R, B, and G are the reflectance of the red, blue, and green bands of the satellite
images. The GSI value was close to 0 in vegetated and water areas, and high in bare soil
surfaces [42]. In this study, the landslide area was defined as GSI < 0.2 in the satellite image
before the landslide, and GSI ≥ 0.2 in the satellite image after the landslide. The landslide
distribution map was created after visual checking with satellite images that were taken
after the landslide.

3.2. Land Use Classification

In this study, three land use classes were established: tea garden, forest, and road/house/
stream. Land use before the 2010 landslide and the 2021 landslide were classified using a
Random Forest (RF) machine learning technique using satellite images. RF is an ensemble
learning algorithm that generates multiple decision trees based on random subsets of
training data [43], and it is one of the most accurate machine learning algorithms for
land use classification [44,45]. The accuracy of land use classification in a landslide area
immediately before a landslide occurs has a significant impact on the reliability of the
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quantitative landslide risk assessment. Therefore, after land use classification by the RF
method, land use in a landslide area was checked visually using Google Earth images.

The landslide spreading area in the 2010 rainfall event was relatively small (approxi-
mately 10 km2) and covered the coastal area, while the landslide spreading area in the 2021
rainfall event was large (approximately 370 km2) and covered coastal and steep mountain-
ous areas. It is difficult to classify land use in large and heterogeneous landscape areas [46].
Furthermore, the shadows effect on rugged terrain can lead to classification errors [47,48].
Thus, the satellite images were divided into inland and coastal areas when classifying
land use in 2021. In addition, each divided image was divided again into sunny parts and
shaded parts, using the slope aspect and the azimuth of the sun at the time that satellite
image was taken. The land use of each image was classified individually.

3.3. Analysis of the Relationship between Landslide, Land Use, and Other Landslide
Contributing Factors

The relationship between landslide and land use was analyzed statistically using a
created landslide distribution map and a land use map. The landslide area ratio, which
is the ratio of landslide area to the total area, was used for quantitative assessment. (e.g.,
Landslide area ratio in tea gardens = Landslide area in tea gardens (m2)/Total area of
tea gardens (m2) × 100). In general, the ground surface of the ground that experienced
landslides was disturbed. For the 2021 landslides, previous landslides could be detected
because Google Earth images from before the landslides are available. Therefore, follow-up
landslides were excluded from the analysis.

To clarify the difference in landslide characteristics between the tea gardens and the
forests, the relationship between landslides and the other factors (such as rainfall amount,
geology, elevation, slope aspect, slope angle, plane curvature, profile curvature, flow
accumulation, distance to the road, distance to stream, distance to first- or second-order
drainage lines) were analyzed in tea gardens and forests, individually.

To reveal the dependency of land use on the occurrence of landslides, the dependence
of each landslide conditioning factor on the occurrence of landslides was analyzed using
Hayashi’s quantification theory type II. Approximately 680,000 points were extracted from
10 km2 of landslide concentrated area, and Hayashi’s quantification theory type II was
applied. Hayashi’s quantification theory type II is a method of multivariate discrimination
analysis [49]. Except for rainfall amount, four major landslide conditioning factors (items)
that were revealed from preliminary analysis were adopted as landslide contributing
factors. Each item is divided into some categories, and the contribution of each item is
expressed as category scores and item range. A positive value of category score indicates
that the corresponding category will promote occurrences of landslides. On the other
hands, negative values indicate that the corresponding category will restrain landslides.
The order of contribution to landslide occurrence was judged from the item range. The
larger the item range, the more contribution to occurrences of landslides.

4. Result
4.1. Landslides

The landslides detected in 2010 and 2021 are shown in Figure 5. Landslides were
concentrated in a small area during the 2010 landslides, while landslides were spread over
a large area in the 2021 landslides.

In the 2010 landslides, 415 landslides were detected using the maximum likelihood
method, and 348 landslides, after visual checking. In the 2021 landslides, 13,409 landslides
were detected using GSI analysis, and 910 landslides, after visual checking (Table 2). It took
one person 15 days to visually check the landslide areas. A total of 240 landslides were
follow-up landslides, and 670 landslides were new ones. The number of actual landslides
was less than 7% of the detected landslides when using GSI analysis in the 2021 landslides,
because satellite images were taken immediately (5 days) after landslide occurrences, and
sediment flowed areas were also recognized as landslide areas.
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Table 2. Landslides that occurred in 2010 and 2021.

26 August 2010 14 July 2021

Number of landslides
Before visual check 415 13,409

After visual check 348 910

Landslide area (m2) 291,556 648,229
Minimum landslide area (m2) 104.9 104.1
Maximum landslide area (m2) 15,720.7 8378.2

Study area (km2) 10.65 683.06

4.2. Land Use

The classified land use in 2010 and 2021 is shown in Figure 6. The land use classification
accuracy assessment was performed in the multiple test area. Google Earth images were
used for creating the ground truth data. To verify the land use classification accuracy,
the homologous points in the land use map and in Google Earth images were compared
directly. Confusion matrices were created to calculate the overall accuracy, user’s accuracy,
producer’s accuracy, and kappa coefficient (Tables 3 and 4). These statistical accuracy
assessments provide a measure of confidence in the satellite image classification. Each
column of the confusion matrix represents a ground truth data, and the values in the
column correspond to the land use classification of the ground truth points. The results
indicated overall accuracies of 78.6% and 75.1%, and a kappa coefficient of 0.61 and 0.53 for
the classified images of 2010 and 2021, respectively. Although the accuracies were lower
than the recommended level [50], it was considered sufficiently accuracy to determine the
percentages of each land use type in a large area.
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Figure 6. Land use map (a) in 2010 and (b) 2021.

Table 3. Confusion matrix between ground truth and classified land use in 2010.

Ground Truth Data
SUM User’s Accuracy

Classified Tea Garden Forest Road/House/Stream

Tea garden 3663 589 205 4457 82.2%
Forest 371 1246 8 1625 76.7%

Road/House/Stream 287 84 747 1118 66.8%

SUM 4321 1919 960 7200
Producer’s accuracy 84.8% 64.9% 77.8%

Overall accuracy 78.6%
Kappa coefficient 0.61

Table 4. Confusion matrix between ground truth and classified land use in 2021.

Ground Truth Data
SUM User’s Accuracy

Classified Tea Garden Forest Road/House/Stream

Tea garden 16,051 5110 1403 22,564 71.1%
Forest 7780 35,244 921 43,945 80.2%

Road/House/Stream 1809 806 2419 5034 48.1%

SUM 25,640 41,160 4743 71,543
Producer’s accuracy 62.6% 85.6% 51.0%

Overall accuracy 75.1%
Kappa coefficient 0.53

4.3. Relationship between Landslide, Land Use, and Other Landslide Contributing Factors

The landslide area ratio in the tea gardens was 1.75 times higher than in forests in
the 2010 landslides, and five times higher than in forests, in the 2021 landslides (Table 5).
Landslides were more likely to occur in the tea gardens than in the forests, regardless of
rainfall events.
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Table 5. Landslides in each land use area in 2010 and in 2021.

Total Area (ha) Landslide Area (ha) Landslide Area Ratio (%)

2010 Tea garden 366.08 13.57 3.71
Forest 223.20 4.73 2.12

Road/House/Stream 94.11 0.41 0.43

2021 Tea garden 17,748.30 29.11 0.16
Forest 42,879.02 14.23 0.03

Road/House/Stream 9647.04 2.58 0.03

The relationship between the slope angle and landslides was analyzed in the tea
gardens and forest (Table 6). In the tea garden, the landslide area ratio increased as the
slope angle increased. The landslide area ratio reached a peak value at a slope angle of
20–30◦ in the 2010 landslide, and 30–40◦ in the 2021 landslide. This result was the same
as Yalcin [51], which indicated that almost all of the landslides occurred at angles ranging
over 10–40◦ in the eastern part of Rize. However, in the forest, there was no relation
between the slope angle and the landslide area ratio. Therefore, in the slope range of
30–40◦, the landslide area ratio in the tea gardens was 3.5 times more than in the forest in
the 2010 landslide, and 9.1 times more than in the forest in the 2021 landslide.

Table 6. Landslides and slope angles in each land use area in 2010 and in 2021.

Area (ha) Landslide Area (ha) Landslide Area Ratio (%)

Slope Angle (◦) Tea Garden Forest Tea Garden Forest Tea Garden Forest

2010 0–10 52.6 12.2 1.36 0.40 2.584 3.303
10–20 222.5 93.1 7.18 2.08 3.226 2.236
20–30 236.8 173.5 10.39 4.11 4.386 2.367
30–40 57.4 67.9 2.22 0.75 3.875 1.109

40– 1.30 1.30 0.02 0.02 1.566 1.793

2021 0–10 3197.3 2767.3 1.28 0.93 0.040 0.034
10–20 10,505.3 13,170.5 9.59 4.23 0.091 0.032
20–30 9925.1 27060.3 23.61 10.09 0.238 0.037
30–40 3698.8 21283 10.15 6.40 0.274 0.030

40– 336.1 2550.3 0.75 0.54 0.222 0.021

Landslide distribution and two-days rainfall distribution in the 2021 landslides are
shown in Figure 7. Rainfall data were lacking in the western part of the study area, so it
was not possible to interpolate the accumulated rainfall. Figure 7 shows that the landslide
concentrated area and the rainfall concentrated area were almost the same. With less
than 120 mm 48-hr rainfall, the landslide area ratio in both the tea gardens and the forest
was very low (<0.02%; Table 7). It is only in the tea gardens that the landslide area ratio
increased significantly when 48-hr rainfall exceeded 120 mm, and the landslide area ratio
increased with increasing rainfall. On the other hand, in the forest, the landslide area ratio
increased significantly when the 48-hr rainfall exceeded 160 mm. There was a smaller
number of rainfall-induced landslides in the tea gardens compared with the forest.
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Table 7. Landslide area ratio and cumulative rainfall in 2021 (data from TSMS).

Landslide Area Ratio (%)

48-hr Rainfall (mm) Tea Garden Forest

–100 0.003 0.000
100–120 0.006 0.009
120–140 0.050 0.011
140–160 0.062 0.009
160–180 0.188 0.045
180–200 0.346 0.096
200–220 0.561 0.162

The dependence of each landslide conditioning factor on the occurrence of landslides
was analyzed in the area shown in Figure 8. Our preliminary analysis revealed that land
use, slope angle, distance to the first- or second-order drainage line, and flow accumulation
(i.e., how much area drains water to a given point) are major factors for landslide occurrence.
Therefore, these four factors were chosen as items (landslide contributing factor) for analysis
using quantification theory type II. The result of quantification theory type II is shown in
Table 8. Each landslide conditioning factor can be quantified on the basis of the category
score and the item range.

The discriminative ratio was 58.3%. Judging from the range of the category scores, it
is clear that land use was the most critical factor for landslide occurrence.
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Table 8. Result of quantification theory type II analysis.

Item Category Category Score Range

Land use Tea garden 1.066
1.602Forest −0.536

Road/House/Stream −0.511

Slope angle 0◦–10◦ −0.847

1.276
10◦–20◦ −0.454
20◦–30◦ 0.429

30◦– −0.010

Flow accumulation 0 −0.162

0.924

0–5 −0.076
5–10 0.036

10–20 −0.062
20–100 0.227

100– 0.762

Distance to first or
second drainage line –20 m 0.308

0.423
20–40 m −0.115
40–60 m −0.110
60–80 m −0.070

80–100 m −0.051
100 m– 0.008

5. Discussion
5.1. Landslide Detection and Land Use Classification

Regarding landslide detection, landslide detection using the maximum likelihood
method gave much fewer mis-detections than GSI analysis. However, it is necessary to
provide training data of the landslide area to detect landslides when using the maximum
likelihood method. Immediately after a landslide occurs, it is not possible to obtain Google
Earth images that clearly show the landslide area that are necessary for creating training
data. Therefore, to detect landslides soon after a disaster, it is a more effective method to
detect landslides using GSI analysis and then to select actual landslide areas using visual
checking with another satellite image.
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In this study, landslide assessment was conducted without a field survey. The accuracy
of landslide detection using the change detection method and land use classification using
the RF method were not high. However, visual verification after these measurements
enabled us to efficiently generate the landslide distribution map and the land use map.

In countries where quantitative landslide assessment is still inadequate, it is important
to objectively reveal the characteristics of landslides, even while using a less accurate
method. In addition, to develop studies on landslides, it is essential to accumulate landslide
historical data, land use data, and rainfall distribution data, and to make them available to
the public [52].

5.2. Landslides and Tea Gardens

It is clear that in tea gardens landslides are more likely to occur in Rize. Some
differences might relate to landslide occurrences between tea gardens and forests:

• Tea roots are approximately 50 cm in depth [53]. On the other hand, field research on
rainfall-triggered landslides in another district of Rize (Kaptanpasa) with a similar
geology as that of this study revealed that the mean depth of landslides is 1.05 m, and
98% of the landslides were less than 3 m in depth [54]. The depth of the slip surface of
typical landslides around the study area tends to be deeper than the depth of the tea
roots. Even if the tea roots penetrate the slip surface of a landslide, they would have
little effect on retaining the landslide occurrence.

• Yüksek et al. [33] indicates that the average saturated hydraulic conductivity from the
surface to 50 cm depth is 8.5 mm/h in the tea garden, and 24.7 mm/h in the forest [33].
Üyetürk [55] indicates that the saturated hydraulic conductivity in the tea gardens are
in range of 0.54 to 3.96 mm/h. Therefore, it is easy to saturate the surface soil layer in
the tea gardens, and greater surface flow can occur in the tea gardens than in the the
forest. Yalcin [56] mentions that surface runoff is one of the primary factors leading to
a landslide. In addition, some studies have reported that in order to reduce landslide
incidences in tea gardens, it is important to make a proper drainage system that can
collect rainfall and prevent its infiltration into the soil [8,13,14,56].

• In terms of the soil properties of the tea gardens and the forest, Yüksek et al. [33]
indicates that saturated hydraulic conductivity, porosity, soil organic matter, plant
available water, and total N are significantly different. The introduction of cultivation
techniques using fertilizers has affected soil properties.

However, it is still not comprehensively clear how these differences affect landslide
occurrence in the tea gardens. Clarification on the mechanism of landslides in tea gardens
is required for future studies.

5.3. Landslides in Tea Gardens in Rize and Other Regions

Japan is also a tea-producing country, and one of the most landslide-prone countries
in the world. Heavy rainfalls occur frequently and induce landslides. Heavy rainfall over
11 August 2021–15 August 2021 induced more than 80 landslides in tea gardens in Ureshino
city, Saga prefecture (33◦06′2′′ N and 130◦03′31′′ E). The accumulated rainfall was 1178
mm, which was four times higher than the average August monthly precipitation [57].
In addition, heavy rainfall on 14 July 2012 induced some landslides in the tea gardens,
and more than 40 ha of tea gardens were damaged in Yame city, Fukuoka prefecture
(33◦21′19′′ N latitude and 130◦55′79′′) [58]. The daily rainfall was 415 mm, which was the
highest record in Yame city [59]. However, landslides in forests have been reported much
more frequently than in tea gardens in Japan [60,61]. Some differences might relate to the
landslide occurrence between the tea gardens in Rize and in Japan:

• A total of 72% of tea gardens were on ground that was inclined more than 15◦ in
Rize. On the other hand, only 32% of tea gardens were on slopes steeper than 15◦ in
Japan [62]. In short, many more tea gardens are on a steep slope in Rize. In addition,
the steeper the slope angle, the higher the landslide area ratio, both for Rize and for
Japan. However, the landslide area ratio achieves a peak value of around 25–30◦ in

137



Water 2022, 14, 1811

tea gardens in Rize, while it is generally 30–35◦ in Japan [63]. This means that more
landslides tend to occur on smaller slope angle in Rize, as compared to Japan. The
synergistic effects of these two differences between Rize and Japan might be the reason
for why a collapse is more likely to occur in tea gardens in Rize than in Japanese
tea gardens.

• In Japan, it is common practice to pile up stone walls in tea gardens with steep slopes
to prevent soil erosion and to stabilize slopes. However, in Türkiye, it seems that such
landslide prevention measures are not thoroughly implemented in tea gardens.

However, it is still not clear how the tea gardens in Rize differ from those in Japan, and
what the crucial difference are for landslide occurrence. It would be useful, in considering
effective landslide mitigation measures in Türkiye, to clarify the differences between tea
gardens in Rize and in Japan.

6. Conclusions

This study aimed to quantitatively assess the relationships between land use and
landslides, using globally available data. The landslide distribution map and land use map
in Rize were prepared using globally available satellite images and Google Earth images.
Additionally, it was found that landslides were 1.75 to 5 times more likely to occur in the
tea gardens than in the forest. In addition, less rainfall triggers landslides in the tea gardens
than in the forest. In addition, the landslide area ratio dramatically increases when the
48-hr rainfall exceeds 120 mm in the tea gardens and 160 mm in the forest. Additionally, in
steep sloped areas (where the slope angle is 30–40◦), landslides were 3.5 to 9.1 times more
likely to occur in the tea gardens than in the forest.

Even if there are no landslide historical records, it is possible to create a landslide
distribution map and to quantitatively assess landslide susceptibility using rather high
resolution satellite images and Google Earth images, or alternative images. Therefore, there
is a possibility for conducting landslide assessments quantitatively in any location, where
those images mentioned above are available.
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Abstract: Landslides often cause deaths and severe economic losses. In general, forests play an
important role in reducing landslide probability because of the stabilizing effect of the tree roots.
Although fruit groves consist of trees, which are similar to forests, practical land management, such
as the frequent trampling of fields by laborers and compression of the terrain, may cause such land
to become prone to landslides compared with forests. Fruit groves are widely distributed in hilly
regions, but few studies have examined their role in landslide initiation. This study aims at filling this
gap evaluating the predisposing and triggering conditions for rainfall-triggering landslides in part of
Uwajima City, Japan. A large number of landslides occurred due to a heavy rainfall event in July 2018,
where citrus groves occupied about 50% of the study area. In this study, we combined geodata with
a regression model to assess the landslide hazard of fruit groves in hilly regions. We developed
maps for five conditioning factors: slope gradient, slope aspect, normalized difference vegetation
index (NDVI), land use, and geology. Based on these five maps and a landslide inventory map, we
found that the landslide area density in citrus groves was larger than in forests for the categories of
slope gradient, slope aspect, NDVI, and geology. Ten logistic regression models along with different
rainfall indices (i.e., 1-h, 3-h, 12-h, 24-h maximum rainfall and total rainfall) and different land use
(forests or citrus groves) in addition to the other four conditioning factors were produced. The result
revealed that “citrus grove” was a significant factor with a positive coefficient for all models, whereas
“forest” was a negative coefficient. These results suggest that citrus groves have a higher probability
of landslide initiation than forests in this study area. Similar studies targeting different sites with
various types of fruit groves and several rainfall events are crucial to generalize the analysis of
landslide hazard in fruit groves.

Keywords: landslide hazard; land use evaluation; multiple logistic regression; rainfall variability

1. Introduction

Landslides are frightening and destructive natural disasters. The Global Fatal Land-
slide Database recorded 55,997 fatalities from 4862 landslide events from 2004 to 2016 [1],
and the number of landslides has increased over time [2,3]. For example, the Centre for
Research on the Epidemiology of Disaster and United Nations Office for Disaster Risk
Reduction [4] reported a 48% increase in landslide events from 1999 to 2019. Although
several approaches for landslide mitigation exist, understanding the hazards in areas prone
to landslides is a fundamental approach.

Geology, morphology, vegetation, and human activities are factors affecting landslide
hazards [5,6], and land cover is a key determining factor. Forests and trees play important
roles in reducing landslide risk mainly due to shear strength enhancement by roots on soil
particles of slip surfaces [7,8]. A comparison of landslide distribution among land use types
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has been conducted by numerous studies: a lower landslide area density (LAD) has been
found in forests than in bare land [9], grasslands, and shrublands [10,11].

Fruit groves, such as citrus groves, apple orchards, and pear orchards, are composed
of trees categorically similar to forests. Therefore, fruit groves are easily founded in hilly
regions [12,13]. However, land treatment of fruit groves differs greatly from forests. In
fruit groves, laborers frequently trample fields, and compressed terrain is formed due
to irrigation efficiency, soil wash prevention, and cultivation. Land treatment of fruit
groves, in turn, may impact landslide initiation and distribution. In Iran, for example, a
higher landslide density has been reported for fruit groves than in forests and agricultural
lands [11,14]. In Thailand, landslides frequently occurred in forest areas converted to fruit
groves [15], especially in mountainous areas where the largest area destroyed by landslides
occurred in a region with fruit groves [16]. Landslides in fruit groves cause huge economic
losses; for instance, in Southern Thailand, the total economic damages are estimated at
approximately $300 million a year [17]. Landslide sensitivity determines whether a danger
becomes a disaster [18]. Thus, reducing activities that impair sensitivity is an effective
approach to prevent damage. Until now, few studies have evaluated the role of fruit groves
in landslide initiation. However, such evaluation is essential for policymakers to develop a
land use plan in regions where fruit production thrives.

Landslide hazard has previously been evaluated using landslide inventory maps
(LIMs) as well as maps for the effects of triggering factors [6]. Rainfall is the most common
trigger for landslides [19,20], although earthquakes and volcanic activities also frequently
initiate landslide events. Landslide modeling and prediction of rainfall-triggered landslides
requires rainfall distribution data [21]. These data can be obtained from the global rainfall
database, with a resolution of >1 km [22,23] or developed by spatial interpolation of
ground-based observations [24,25]. Therefore, although rainfall is highly heterogeneous,
rainfall distribution data with high resolution are not generally available. Recently, rainfall
distribution data with 250-m resolution, observed in X-band multiparameter (MP) radar
networks, have become available in Japan. Thus, this rainfall data would be efficient for
evaluating the landslide triggering conditions in fruit groves in the study area.

This study aimed to evaluate the impact of fruit groves on landslide initiation in part
of Uwajima City, Japan. This region has widespread tangerine citrus groves in hilly
areas that were affected by many landslides in July 2018 due to heavy rainfall. The
objectives of the study were to (1) examine landslide distributions and conditioning factors,
including several rainfall indices; (2) compare the landslide density among land use types
for each category of slope gradient, slope aspect, NDVI, and geology; and (3) develop the
logistic regression models to evaluate the significance of citrus groves in the occurrence
of landslides.

2. Materials and Methods
2.1. Site Descriptions

This study was conducted in the northern part of Uwajima City, Ehime prefecture,
Japan (Figure 1). The total area is 30.28 km2, occupying 6.5% of Uwajima City. The
annual rainfall from 2001 to 2020 was recorded at the Uwajima rainfall station of the
Japan Meteorological Agency, which is 4.4 km south of the study area; the minimum and
maximum annual rainfall were between 1049.5 mm in 2002 and 2305.0 mm in 2004 (mean,
1767 mm). The mean annual temperature was 17.1 ◦C. There were seasonal variations
in rainfall; rainfall from June to September was heavier than that from November to
February. The elevation of the study area is 5–620 m.a.s.l (mean, 61 m.a.s.l). Areas with
elevations ≤200 m.a.s.l occupy over 70% of the study area. The study area is dominated
by gentle terrains; 79% of the study area has a slope gradient of ≤24◦. For land use, citrus
groves occupied about 50% of the study area. The area mainly comprised sandy turbidite,
muddy turbidite, and turbidite soil. More detailed topography, geology, and land use of
the study area are shown in the results section.
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Figure 1. Location of the study area (in Uwajima City, southwest part of Ehime prefecture) and
landslide distribution in July 2018. The height of elevation means height above sea level.

2.2. The Rainfall Event in July 2018

Heavy rainfall events occurred from 1 to 8 July 2018. At the Uwajima station, the
total rainfall was 578.0 mm; the maximum hourly rainfall observed from 06:00 to 07:00 on
7 July was 49.0 mm (Figure 2). The rainfall event induced numerous landslides in several
cities in Ehime prefecture, particularly in Uwajima City. Uwajima City suffered the greatest
landslide disaster on 7 July 2018; in total, 51 debris flows and 102 steep slope failures
affected houses and public facilities [26].
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Figure 2. Hourly rainfall (blue bars) and cumulative rainfall (a red line) on 1–8 July 2018, at the
Uwajima rainfall station.

2.3. Data Preparation

We used a LIM, distributions of slope gradient, slope aspect, NDVI, land use, and
geology as conditioning factors, and rainfall for analysis. Data of the conditioning factors
were generally selected based on the abundance, accessibility, region characteristics, and
research purposes [27,28]. Because we aimed to evaluate the effects of citrus groves on land-
slide initiation, we considered land use as a primary conditioning factor. We also included
morphological factors such as slope gradient and aspect, as well as NDVI and geology,
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as conditioning factors. The number of conditioning factors may not be sufficient for a
landslide susceptibility study. However, they were appropriate for the hazard assessment
in the area according to the study purposes. Table 1 summarizes the datasets used. We used
a LIM provided by the Geospatial Information Authority of Japan (GSI) [29], which was
produced using aerial photographs taken both before and shortly after the rainfall event.
The LIM included 162 landslides and occupied 0.53% of the study area (Figure 1). The
slope gradient and aspect were calculated using a digital elevation model (DEM). ASTER
Global DEM (GDEM) was used for the calculations [30], and NDVI was calculated from
the reflectance of the near-infrared wavelength (NIR) and red wavelength (RED):

NDVI =
NIR− RED
NIR + RED

(1)

Herein, we used the NIR and RED of Landsat 8, collection 2, level-2, measured on
20 April 2018 [31], which was a clear day just before the landslide events. Landsat series
collection 2, level-2, was generated from collection 2, level-1 inputs. The level-1 consisted
of quantized and calibrated scaled digital number values representing multispectral image
data, whereas level-2 data consisted of pixel values estimating the spectral reflectance
measured at the Earth’s surface without atmospheric scattering or absorption effects [32].
Land use and geological maps were provided by the Ministry of Land, Infrastructure,
Transport, and Tourism in vector format (polygon coverage) [33]; these were converted
into raster data with a resolution of 100 m. The land use map included six categories (i.e.,
“forest,” “other agricultural land (land where vegetables and fruits are cultivated),” “field
(agriculture),” “building site,” “road,” and “water”). Within the study area, the category
“other agricultural land” mainly included citrus groves. Although the original classification
was used when examining the landslide density for each category, these were further
classified as “forest,” “citrus grove,” and “the others”, which represented the field, building
site, road, and water categories. The purpose of the new classification was to highlight the
difference in landslide initiation between “forest” and “citrus grove.” The geological map in
this area included five geological units: “sandy turbidite,” “muddy turbidite,” “turbidite,”
“limestone block,” and “chert block.”

Table 1. Summary of datasets.

Datasets Data Type Scale/ Resolution Source

Landslide inventory maps (LIM) Polygon coverage 1:25,000 [29]
Digital Elevation Model (DEM) Raster 30 × 30 m [30]

Normalized Difference Vegetation Index (NDVI) Raster 30 × 30 m [31]
Land use Polygon coverage 1:200,000 [33]
Geology Polygon coverage 1:200,000 [33]
Rainfall Raster 258 × 258 m [34]

For rainfall analysis, rainfall distributions based on the X-band MP radar network
were used [34]. We downloaded the data that were recorded every 10 min on 1–8 July, and
we calculated the 1-h, 3-h, 12-h, and 24-h maximum rainfall and total rainfall during the
study period.

2.4. Analysis

First, maps for the one triggering and five conditioning factors were developed. For
rainfall, maps for the 1-h, 3-h, 12-h, and 24-h maximum rainfall and the total rainfall during
the study period were developed. Second, we calculated the landslide area proportional
to the entire study area, and the LAD for each category was calculated. The LAD was
calculated as the ratio of the area with landslides to the total area of each category [35,36].
We established eight categories for slope aspect, and six categories with the same data
range were set for the slope gradient and NDVI. For the five rainfall indices, four categories
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with the same data range were set. Third, the LAD was compared in the new land use
categories for each category of slope gradient, slope aspect, NDVI, and geology. Finally,
multivariate analyses were performed to comprehensively examine the effects of each factor
on landslide initiation. For this analysis, we applied logistic regression although random
forest has also been frequently used recently. However, according to a previous review [37],
logistic regression has been the most commonly used for landslide susceptibility modeling.
The logistic regression can be expressed as follows [38]:

z = b0 + b1x1 + b2x2 + · · ·+ bnxn (2)

where z is a dependent variable, b0 is the constant, bi is ith regression coefficient, xi is the ith
independent variables, i is the number of independent variables, and n (= 6 in this study) is
the number of independent variables.

Landslides and non-landslide points are required to predict the probability of landslide
occurrences in the logistic regression model and evaluating the model accuracy by true-
or false- positive and negative rates. Landslide points at pixels with the highest elevation
for each landslide were set [39,40]. Non-landslide points were randomly selected in areas
without landslides using the “random points inside polygons” function in QGIS. We set the
minimum distance to 10 m, and the observed mean distance was 262.3 m as a result. Follow-
ing the previous literature [38,41], the number of non-landslide and landslide points was
the same. Both landslide and non-landslide points were divided into training sets for model
development and testing sets for model validation. According to the suggestions in previous
studies [38,42–44], the ratios of the training and testing sets were 80% and 20%, respectively.

The slope gradient, slope aspect, NDVI, land use, geology, and rainfall were considered
as independent variables. Dummy variables were used for categorical factors of land use
and geology [45] (see Appendix A Tables A1 and A2). We developed ten models with
different rainfall indices, namely 1-h, 3-h, 12-h, and 24-h maximum rainfall and total
rainfall and different land use categories, namely “forest” and “citrus grove” (Appendix A
Table A3). To investigate the linearity among independent variables [46], the variance
inflation factor (VIF) was used, which is widely used for multicollinearity analysis. VIF
indicates the effect of the determination coefficients on the variance of the estimated
regression coefficients [45]. A high VIF value indicates that the model is not feasible due
to multicollinearity among independent variables [45,46]. We set an acceptable VIF of 2.5,
because several studies stated that VIF ≥ 2.5 indicates considerable collinearity [47,48],
and VIF > 5 or 10 indicates a serious collinearity problem. The two land use types were
separately calculated because the VIF values were >2.5 without separation.

The independent variables for each model were reduced stepwise based on the akaike
information criterion (AIC). A stepwise regression automatically assigned the best subset
of independent variables throughout several stages [49]. Each conditioning factor was
evaluated one-by-one at every step using t statistics to determine the variable coefficients.
To ensure acceptable model accuracy, the final models were evaluated using the area under
the curve (AUC), which was obtained by constructing a receiver operating characteristic
(ROC) curve comparing true- and false-positive rates, an F1 score by Equation (3) [50],
and the overall accuracy by Equation (4) [51]. The all-accuracy score takes a value be-
tween 0% and 100%, and a higher score indicates higher model accuracy [46,51,52]. All
geoprocessing was performed with QGIS (ver. 3.10), and logistic regression analysis was
performed using R (ver. 4.1.0) programming language.

F1 score =
TP

TP + 1
2 (FP + FN)

(3)

Overall Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the
false negative.
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In the evaluations, we set the threshold of 0.5 between the occurrence and nonoccur-
rence of landslides.

3. Results
3.1. Landslide Area Density on Each Conditioning Factor

Figure 3 shows the maps of the five conditioning factors. The proportional area and
LAD for each category in all conditioning factors are shown in Figure 4. The center of
the LAD distribution was a slope gradient of 16–24◦. The LAD was smaller when the
slope gradient was smaller or larger than 16–24◦ (Figure 4a). There were no considerable
differences in the proportional area among the eight slope aspects. The LADs in the
southern- and northern-facing slopes tended to be larger than those in the western- and
eastern-facing slopes (Figure 4b). The NDVI for the study area was 0.05 and 0.83; over
70% of the area had an NDVI of >0.68 (Figure 4c). For land use, “citrus grove” was the
dominant (52.74%), followed by “forest” (35.80%) and “building site” (7.31%) (Figure 4d).
The highest LAD was found on “citrus grove” (0.41%), followed by “forest” (0.11%). The
LADs of the other four land use types were 0.01% (Figure 4d). Limestones and chert blocks
occupied <2% (Figure 4e). The LAD of sandy turbidites was more than twice as large as
that of muddy turbidites and turbidite.
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Figure 4. Proportion of area (bars) and landslide area density (lines) for each category of the five
conditioning factors: (a) slope gradient; (b) slope aspect; (c) normalized difference vegetation index;
(d) land use; and (e) geology.

3.2. Landslide Area Density Based on Rainfall Indices

Areas with a high 1-h maximum rainfall (35–63 mm) were distributed in the western
part of the study area (Figure 5a). In contrast, areas with a high 3-h maximum rainfall
were distributed in the northern part of the study area (Figure 5b). The distributions of
the 12-h (Figure 5c) and 24-h (Figure 5d) maximum rainfall were similar to that of the total
rainfall (Figure 5e); these were higher in the northeast to southwest areas and lower in
the southeastern and southwestern areas. The LAD increased with an increase in the 1-h
maximum rainfall (Figure 5f). The pattern of the 3-h maximum rainfall was different from
that of the 1-h maximum rainfall. The middle range had the highest LAD (Figure 5g). The
LADs for the 12-h (Figure 5h) and 24-h (Figure 5i) maximum rainfall and the total rainfall
(Figure 5j) were comparable due to the similarity in rainfall distributions. The LAD steeply
increased from the first to the second categories, and it gradually increased from the second
to the fourth categories.
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Figure 5. (a–e) Rainfall distributions measured by the X-band MP radar network and (f–j) the
proportion of areas (bars) and landslide area density (lines) for the 1-h (a,f), 3-h (b,g), 12-h (c,h), and
24-h maximum rainfall (d,i) and total rainfall (e,j).
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3.3. Land Use Effect to Landslide Density Distribution

Figure 6 compared the LADs of “forest,” “citrus grove,” and “the others” for each
category of slope gradient, slope aspect, NDVI, and geology. For the slope gradient
(Figure 6a), the LAD for citrus groves was larger than that for forests on gentle slopes
(<24◦); in contrast, it was an inconsiderable difference on steep slopes (>32◦). For the slope
aspect (Figure 6b), NDVI (Figure 6c), and geology (Figure 6d), the LAD for “citrus grove”
was larger than that for “forest” in all categories.
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Figure 6. Landslide area density of “forest” (green), “citrus grove” (pink), and “the others (gray)” for
each category of conditioning factors: (a) slope gradient; (b) slope aspect; (c) normalized difference
vegetation index, and (d) geology.

3.4. Significant Effects of Landslide Conditioning Factors

All the independent variables for the ten models had a VIF of <2 (Appendix A
Tables A4 and A5), indicating that all the variables could be simulated together. Table 2
summarized the selected factors; after the stepwise processes of logistic regression analysis,
NDVI, “forest,” and “citrus grove” were selected as significant factors. Because rainfall was
not selected for models 2–5 and 7–10, the same result was obtained for the eight models. For
models 1–10, NDVI and slope gradient were selected with negative coefficients, and “sandy
turbidites” (Dummy 3) was selected with positive coefficients. In models 1–5, “forest”
(Dummy 1) was selected with negative coefficient, and “citrus grove” (Dummy 2) was
selected with positive coefficients in models 6–10. Additionally, rainfall was selected with a
positive coefficient for models 1 and 6. The factors with a positive coefficient indicated an
increasing value (or the presence) of factors that increase the landslide hazard. The AIC
value for model 1 and 6 (321.1 and 311.7, respectively) were lower than those for models
2–5 and 7–10 (323.9 and 314.2, respectively). Figure 7 shows the ROC of all models; the
AUC for models 1 and 6 were larger than that for models 2–5 and 7–10 as well as the F1
scores and the overall accuracy for models 1–5. However, the same accuracy values for
models 6–10 were found in the F1 scores and the overall accuracy (Table 3).
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Table 2. The coefficients of selected independent variables by logistic regression analysis for
models 1–10.

Variable
Coefficient

Variable
Coefficient

Model 1 Models 2–5 Model 6 Models 7–10

Slope gradient – –0.01 Slope gradient – –0.005
Slope aspect – – Slope aspect – –

NDVI –3.27 *** –3.48 *** NDVI –3.10 *** –3.29 ***
Dummy 1 –0.14 * –0.15 * Dummy 2 0.22 *** 0.23 ***
Dummy 3 0.13 0.12 Dummy 3 0.13 0.13
Dummy 4 – – Dummy 4 – –
Rainfall 0.01 – Rainfall 0.01 –

–: eliminated variables by stepwise regression process; *** p < 0.001, ** p < 0.01, * p < 0.05.
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Table 3. The values of the AUC, F1 scores, and overall accuracy for models 1–10 developed by logistic
regression analysis.

Method Model 1 Models 2–5 Model 6 Models 7–10

AUC 79.40 75.95 77.86 74.64
F1 score 77.78 67.92 72.73 72.73

Overall accuracy 79.31 70.69 74.14 74.14

4. Discussion and Conclusions

The land use category “citrus grove” occupied >50% of the study area (Figure 4). The
LAD for “citrus grove” was the highest among the six land use categories (Figure 4). When
LAD was compared with “forest”, “citrus grove,” and “the others” for each category of
conditioning factors, the LAD for “citrus grove” was larger than that for “forest” and “the
others” in most cases (Figure 6). Specifically, the LAD of citrus groves on gentle terrain was
higher than that of forests on steeper terrains (32–40◦ of gradient) (Figure 6). This result
may be attributed to the study location, which is predominantly covered by gentle terrain
(78.46%), and “citrus grove” was more distributed on gentle terrain than steep terrain with
42.82%, and 9.92% of the area, respectively. Furthermore, “citrus grove” was selected as a
significant factor with positive coefficients in the logistic regression analysis for all models.
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Thus, citrus groves contributes more to increasing the landslide hazard than forests in the
study area.

Some studies [11,14] also reported a higher landslide density of fruit groves to land-
slides compared with forests, although there are few extensive studies examining the
differences in landslide hazard between forest lands and fruit groves. However, there are
several possible reasons for fruit groves contributing more to the landslide hazard. First,
fruit groves are often developed by cutting the upper side of the slope and leveling the
lower side of the slope to build pits for transplanting the seedlings. Generally, manmade
slopes are more susceptible to landslides than natural slopes [53]. Manmade slopes and
leveled natural slopes tend to change the physical properties of the soil. The main cause of
hazard in manmade slopes is excavation [54,55]; geomechanical studies of soft rock slopes
state that large deformation of the slope may occur on layered excavations without retain-
ing the structure, due to the unloading of stress, which can lead to slope instability [55,56].
Second, irrigation in fruit grove areas can maintain a high soil water content. Third, fruit
groves are composed of a single species. Areas with low biodiversity may have a weak
root network system in terms of soil-binding capacity [57]. In addition, soil compaction by
trampling may also alter soil physical properties to influence landslide initiation.

This study used radar-based rainfall data with high spatial and temporal resolutions.
The result showed 1-h maximum rainfall significantly affected the landslide occurrence
(Table 2). The AIC and AUC of model 1 and 6, including 1-h maximum rainfall, were
lower and larger than models 2–5 and models 7–10, respectively, where rainfall indices
were excluded. In a previous study [58] that compared rainfall data from XRAIN radar
with those based on rain gauges, the reported differences were 2% for normalized bias,
22% for normalized error, 0.96 for correlation coefficient, and 3.5 mm for root mean square
error. High-quality radar-based rainfall measurement can improve the evaluations of
landslide hazard.

The results of this study suggest that fruit groves should not be developed on slopes
near houses or public facilities, where people can be harmed and assets destroyed. This
may apply to other areas with similar topographic and geological conditions. The results
of this study (i.e., higher contribution in landslide initiation and distribution in fruit groves
than forests) are identical to previous studies [11,14]. However, previous studies have
only examined landslide initiation among land use types without considering variations
in rainfall distributions; this study examined landslide hazard in several steps while
considering several rainfall distributions, which expands upon previous work. This is an
improvement over the previous studies. However, this study had some limitations. First,
this study only included one rainfall event, several events would have been desirable for
generalization. Second, historical land use changes and landslides were not considered,
which may affect the current landslide hazard [59,60]. Third, the mechanism that leads
to higher landslide initiation in fruit groves compared with forests could not be clarified.
Examining and comparing the root system as well as hydrological aspects of fruit groves
with forests will further increase the understanding of these mechanisms. Finally, other
data inputs (i.e., natural vs. manmade slopes, soil characteristics, and root types) for the
logistic regression model will help to better understand the landslide hazard of fruit groves.
Our final goal is to be able to generalize landslide hazard in fruit groves, and the study
presented in this paper is a step in this direction.
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Appendix A

Table A1. Rule of dummy variables on land use.

Forest Citrus Grove Others

Dummy 1 1 0 0
Dummy 2 0 1 0

Table A2. Rule of dummy variables on geology.

Sandy Turbidite Muddy Turbidite Others

Dummy 3 1 0 0
Dummy 4 0 1 0

Table A3. Independent variables of models 1–10.

Model
Factor

Slope
Gradient

Slope
Aspect NDVI Forest Citrus

Grove Geology 1h-Max
Rainfall

3h-Max
Rainfall

12h-Max
Rainfall

24h-Max
Rainfall

Total
Rainfall

1
√ √ √ √ √ √

2
√ √ √ √ √ √

3
√ √ √ √ √ √

4
√ √ √ √ √ √

5
√ √ √ √ √ √

6
√ √ √ √ √ √

7
√ √ √ √ √ √

8
√ √ √ √ √ √

9
√ √ √ √ √ √

10
√ √ √ √ √ √

√
: including model.

Table A4. Variance inflation factors (VIF) for the five models (i.e., models 1–5).

Landslide Conditioning Factors Model 1 Model 2 Model 3 Model 4 Model 5

Slope gradient 1.27 1.08 1.11 1.11 1.10
Slope aspect 1.01 1.01 1.01 1.01 1.01

NDVI 1.23 1.14 1.18 1.18 1.18
Dummy 1 1.10 1.13 1.15 1.15 1.15
Dummy 3 1.83 1.83 1.83 1.83 1.83
Dummy 4 1.77 1.78 1.77 1.77 1.77
Rainfall 1.37 1.05 1.18 1.18 1.16

Table A5. Variance inflation factors (VIF) for the five models (i.e., models 6–10).

Landslide Conditioning Factors Model 6 Model 7 Model 8 Model 9 Model 10

Slope gradient 1.27 1.09 1.11 1.11 1.10
Slope aspect 1.01 1.01 1.01 1.01 1.01

NDVI 1.23 1.15 1.18 1.18 1.18
Dummy 2 1.11 1.16 1.20 1.20 1.77
Dummy 3 1.81 1.80 1.80 1.80 1.80
Dummy 4 1.77 1.78 1.77 1.77 1.77
Rainfall 1.38 1.08 1.22 1.22 1.20
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Abstract: In this study, we conducted small-scale physical modeling tests to consider the impact of the
infiltration of rainfall in order to investigate the processes involved in wedge slope deformation and
failure. The experiments were conducted under controlled conditions of the intersection angle and
half-wedge angle. The observations obtained during each stage of deformation and failure were used
to explain how gravity deformation varies on wedge slopes and infer how rainfall influences slope
failure. The results indicated that half-wedge angle is a crucial factor in the deformation failure of
slopes. The failure mechanisms of small-intersection angle slopes (sliding model) differ considerably
from those of large-intersection angle slopes (free falling or toppling model). The infiltration of
surface water can have a significant influence on rock layer deformation and the speed of failure.
Details of the failure characteristics of wedge slope models were discussed in this paper.

Keywords: physical modeling; rainfall; wedge slope; the intersection angle; half-wedge angle

1. Introduction

Extreme weather events in recent years have greatly increased the amount of rainfall
in the mountains of Taiwan. Substantial rainfall affects rock slope safety by infiltrating rock
slopes via weak planes, thereby weakening the shear strength of the slope body, raising the
water table, and increasing the weight and downslide stress of the soil. This, in turn, causes
parts of the rock slopes to deform and collapse. The fragile geological environment and
heavy rainfall conditions in Taiwan make for frequent landslide disasters, mostly around
mountain roads, villages, and valley banks. Large-scale rockslide disasters in the past
include the complex landslide in Tuchang Village, Hsinchu in 2004, the collapse event at
3.1 km on National Freeway No. 3 in 2010, and the complex landslide in Zhongzhi Village,
Wulai in 2016, all of which greatly threatened protected targets downstream. Rock slope
failure is generally determined by the discontinuities between strata, such as bedding,
faults, foliation, and joints [1]. Prior to rock slope failure and creep deformation, tension
cracks can generally be observed developing at the top of the slope, affecting it or causing
the rocks on the slope toe to overturn or bulge. The damage gradually extends upwards
toward important public facilities or villages, and if the scope of the creep damage is not
determined and protective measures are not taken in a timely manner, major disasters may
occur. In addition to enhancing emergency responses to landslides, disaster warnings for
evacuation are also crucial to minimize losses. Model tests, numerical simulations, and
real-time deformation monitoring are thus employed to grasp rock slope deformation, the
timing of failure, and the hazard ranges of rock failure and deposits. These are all important
issues in rock slope disaster prevention [2–8].

Wedge failures are a common type of failure in rockslides, and mostly occur where
the strata have an oblique attitude [9]. Most wedge failures take place in rock masses via
the following methods [10]: (a) sliding along the line of intersection of the two planes,
(b) sliding along only a single plane accompanied by rock mass fracturing, (c) rotation and
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sliding along only a single plane accompanied by rock mass fracturing, and (d) if the rock
mass has a high joint density, gradual disintegration of the rock mass along two planes. A
number of studies have examined the issue of rock wedge stability [1,2,4,5,9,11–16] and also
pointed out that wedge failure is related to its intersection angle and half-wedge angle, but
they did not consider the three-dimensional rock slope state. Hoek and Bray [9] proposed
the rigid wedge method (RWM), which assumes that the wedge is a rigid body and ignores
shear forces that intersect perpendicular to the discontinuities. It is assumed to be zero
in the slope stability analysis, and RWM does not consider the deformation of the rock
mass itself. Kovari and Fritz [17] considered the influence of static and dynamic loads on
wedge models and used model tests and numerical methods to assess the applicability
of the limit equilibrium method to wedge slopes. Riquelmea et al. [6] used Slope Mass
Rating (SMR) to characterize the wedge failure mechanism found through 3D point cloud
analysis. Grenon and Hadjigeorgiou [3] proposed a methodology for linking a fracture
system model to limit equilibrium and analyze the wedge failure. Smith and Arnhardt [18]
proposed the circle method, which can assess the sliding and toppling mechanisms of
individual planes and pairs of planes forming wedges. Model verifications were conducted
using real-world data from Turkey and Japan, and the influence of dynamic loads on
slope stability in earthquake-prone areas was analyzed and discussed using parameter
back-calculation. Kusmar et al. [14] designed four types of test models in their study: static
tests, dynamic tests, dry tests, and wet tests. Although these tests conformed to the limit
equilibrium method, they could not accurately reflect the behavior of wedge slopes for the
following reasons:

(a) The two-dimensional limit equilibrium method cannot describe the behavior of real
three-dimensional wedge slope failure;

(b) Rock wedges are composite materials with both joints and weak planes, so an analysis
with a single rigid body model cannot completely describe its physical behavior;

(c) The material parameters and variability of rock masses are complex and cannot be
described using a single material; thus, the limit equilibrium method cannot express
the influence of weak planes in the slope on failure characteristics.

To fill these gaps, this study examined the distributions of discontinuities and changes
in intersection planes and angles in various types of oblique slopes, developed moderately
simplified physical models, and used these models to investigate the deformation of wedge
slopes until failure under conditions of rainfall infiltration. The factors of wedge failure
caused by rainfall include rise in groundwater level (increase in water pressure), decrease
in effective stress and frictional resistance, failure caused by seepage of weak surface of
rock mass, etc. The softening of weak interlayers is also an important factor in rainfall-
induced landslides. Xu et al. [8] used nanoindentation experiments and simulations to
study the softening of weak interlayers during landslides. The results of the study found
that the friction angle of shale was almost unchanged after immersion in water, while
the elastic modulus and cohesion decreased significantly. The shear strength of the weak
interlayer decreased significantly, and the plastic zone developed along the weak interlayer,
eventually forming a landslide. However, because of the complexity all the factors, the
establishment of more complex physical models or numerical models has its limitations,
and it is difficult to deeply understand the characteristics influencing each factor. Therefore,
in this study, we only moderately simplified the wedge failure model of the rock slope, and
first discussed the shear strength weakening characteristics of the discontinuity of the rock
mass, assuming that the shear strength weakening of the discontinuity occurs in the entire
rock mass during the rainfall period. In order to initially grasp the failure behavior under
different wedge slope conditions, other factors will be gradually explored in the future.

2. Methodology
2.1. Introduction to Study Area

The study area is located between 81.7 km and 81.9 km and at 83.9 km of Provincial
Highway No. 2 in Nanyali of Ruifang District, New Taipei City, Taiwan. In terms of
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geological conditions, the section from 81.7 km to 81.9 km belongs to the Dapu section
of the Kueichoulin Formation, which mainly consists of muddy sandstone and white
sandstone and is on the west wing of the Pitou Syncline, which strikes northeast–southwest.
The 83.9 km location belongs to the Erjiu section of the Kueichoulin Formation, which
mainly consists of muddy sandstone and shale (Figure 1). The abundance of vertical joints
has created steep rock faces and, on the northeast coast, many of the rock faces are concave
due to differential erosion caused by the ocean wind in the muddy sandstone. The shale
is often eroded, leaving the sandstone in the upper portion suspended without support.
Consequently, the Ruifang section of Provincial Highway No. 2 is prone to rockfalls and
wedge sliding after heavy rain or earthquakes, which severely threatens the safety of road
users (Figure 2). According to field surveys, there are three primary sets of joint planes in
Nanyali. Stereographic projections show that two of the weak planes intersect, and the
exposure of intersection lines on the slope surface can easily lead to wedge failure. We
found six intersection lines in the study area, and four intersection points were exposed.
The plunge at the points where Joint 1 intersects with Joints 2 and 3 is between 60◦ and 64◦,
and the plunge of the intersection point of Joints 2 and 3 is approximately 38◦ (Figure 3).
On-site observations revealed that the average slope below Provincial Highway No. 2
was around 30◦, whereas most of the upper slopes were steep and near 90◦. Due to the
three joint sets, many collapses have left V-shaped rock formations with talus cone deposits
below them. According to Figure 1, the geological composition of this area is a combination
of muddy sandstone and white sandstone. Because of insufficient support from below,
wedge-shaped masses formed by Joints 2 and 3 slide along the intersection line. The
intersection angle seen onsite is roughly 40◦, and triangular rock masses are left behind
(Figure 2). Field surveys show that approximately 30% of the wedge slopes are controlled
by Joints 1 and 2; roughly 30% are controlled by Joints 1 and 3, and about 40% are controlled
by Joints 2 and 3. The dip angles of the wedge slopes mainly controlled by Joint 1 are
steeper, at about 60◦. The intersection angles of the wedge slopes controlled by Joints 2 and
3 are close to 40◦. Thus, this study simplified the site conditions and designed 7 physical
models to carry out related experiments. The intersection angles include 40◦, 60◦, and 70◦,
and the half-wedge angles include 25◦, 45◦, 60◦, 75◦, eccentricity, etc., and their conditions
are similar to the field wedge rock mass.

2.2. Design of the Physical Model

We simplified on-site conditions to design simulation tests. A stainless-steel platform
was used to simulate the intersection angle and wedge angle of the wedge masses. Both
Zhang et al. [7] and Bowa et al. [19] pointed out that the main cause of wedge instability is
the water pressure caused by gravity. When the rock slope is affected by rainfall infiltration,
the uplift forces acting along the joint planes increase, and can lead to rapid deterioration
of the stability of rocky slopes and wedge sliding. Thus, a sprinkler was installed above the
platform to simulate rainfall. The rainfall caused surface water that gradually infiltrated the
rock mass, affecting the stability of the model and ultimately leading to slope failure. The
physical model of the rock mass comprised grinding stone and resin to simulate sandstone
and shale, respectively, that weaken upon encountering water. Although these models
do not represent complex full-scale cases, they are sufficient for the analysis of wedge
slope failure.
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In the design of the physical models, we first investigated and generalized the morphol-
ogy of wedge slope failures in Nanyali. Based on the obtained morphological characteristics,
we determined the adjustable variables needed for the platform, including the half-wedge
angle (ω) between two discontinuities and the wedge intersection angle (ia). The platform
has two major parts that can be adjusted (Figure 4). The first part is the half-wedge angle.
The angles between the two discontinuity steel plates on the sides and the normal line can
be adjusted from 0◦ to 90◦. The steel plates on the sides can move freely, which means that
the angles between the two steel plates and the normal line do not have to be identical;
simulations can have designs in which ω1 6= ω2 (unique conditions in which the two
half-wedge angles are not the same). The second part is the wedge intersection angle.
Two apparatuses on the sides can be used to adjust the intersection angle, the range of
which is between 10◦ and 90◦, to simulate gentle to steep slopes.

To ensure that the influence of the rainfall simulated by the sprinkler remained consis-
tent for all the tests, we did not adjust the height, position, or support of the sprinkler and
fixed the rainfall intensity at 150 mm/h.
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2.3. Simulation Rock Materials

The rock slopes in the study area near Nanyali mainly consist of thick white-gray layers
or fine-to-medium-grained blocks of sandstone occasionally interbedded with thin layers
of shale. Most of the rocks deposited onsite are shaped like triangular prisms. Thus, after
comparing on-site rock wedges with our physical model, we found that grinding stones
in the shape of triangular prisms were similar to the on-site sandstone. Thus, we chose
triangular grinding stones to represent the sandstone material. Resin has characteristics
similar to those of the interbedded shale or muddy material. When it encounters water, it
weakens the strength of the simulated rock mass, accelerating the failure of the model. This
helped us simulate the behavior of rocks infiltrated by rain. In the test models, we arranged
layers of triangular grinding stones and then stacked them to form a wedge. Polyvinyl
acetate (resin) was applied between the grinding stones and layers as an adhesive to create
an oblique slope structure (Figure 5). We kept the amount of resin in the rock mass to
8 mm3 per layer and 2 mm3 between layers. This ensured the water weakened the planes
between layers in the oblique slope to reflect the failure behavior of discontinuities. The
physical model thus reflects the failure characteristics of discontinuities (weaker strength).
Additionally, we assumed that the intact rock was the undamaged material during the test,
and the rock mass failure mainly occurred at the discontinuous position between the rock
blocks. The two supports in the upper portion of the platform were both stainless-steel
plates, which have smooth surfaces and little friction. We therefore glued the model to the
test platform using sandpaper and clamped the sandpaper to the surfaces of the stainless-
steel plates to increase the friction between the two. The bottom bases of the models were
kept within 15 cm × 25 cm. Before each test, the triangular grinding stones were kept fixed
and dry; the resin in the model was left to dry for 5 to 7 days. The purpose was to keep
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the sizes and strength properties of the models consistent. The details about the rock slope
material properties are listed in Table 1.
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Table 1. Material properties for the physical models.

Properties Value

Specific gravity (intact artificial rock) 3.65
Density (intact artificial rock) 2600 kg/m3

Friction angle (intact artificial rock) 32◦

Permeability (intact artificial rock) 1.5 × 10−9–2.3 × 10−9 cm/s
Permeability (artificial rock discontinuity) 1.2 × 10−3–1.7 × 10−3 cm/s
Compressive strength (intact artificial rock) 7.46 MPa
Compressive strength (the resin in a dry condition) 0.15 MPa

Modulus of elasticity (intact artificial rock) 3 GPa

2.4. Physical Model Test Items

Based on field surveys and inductive analysis, we used physical models to change the
characteristics of ω and ia and designed different test items to examine the process and
characteristics of wedge failure. We focused on three variables (angle ia, angleω, and the
eccentricity of angle ω) to construct 7 physical models (see Table 2). We also altered the
direction of the oblique slope for preliminary observation of the influence of the oblique
direction on rock wedge failure.

Table 2. Experiment parameters for the physical models.

Experiment
Numbering ia ω1 ω2

Oblique
Direction

A 40◦ 25◦ 25◦ left
B 40◦ 45◦ 45◦ right
C 40◦ 60◦ 60◦ right
D 40◦ 75◦ 75◦ left
E 70◦ 45◦ 45◦ right
F 70◦ 25◦ 25◦ right
G 60◦ 10◦ 45◦ right
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3. Failure Processes of Physical Wedge Models

Rainfall intensity was controlled at 15 mm/h for constant surface water infiltration
conditions. We varied ia,ω, the eccentricity ofω, and the oblique direction while observing
the processes and behavioral characteristics of wedge failure in the oblique slope under
rainfall and slope toe daylight conditions. The primary conditions of Model A were ia = 40◦

andω1 =ω2 = 25◦, and the duration of the test was 12 h 27 min 55 s. The test procedure is
depicted in Figure 6. In the initial stage, the initial resting state before the rainfall began,
the oblique slope strata were inclined towards the left plate, and none of the rocks showed
any signs of displacement or deformation. After the test started, the model began to soften
from the water, and then, because of its own weight, further softened and deformed. The
rock at locations No. 6 and No. 7 (close to the left plate) showed signs of dislocation and
deformation. The model gradually slid downwards along the weak plane along the left
plate. Some of the rock where the slope toe daylighted (locations No. 9 and No. 10) fell.
This stage is mainly characterized by local slope failure (00:00:00–02:36:44) followed by the
development of wedge failure (02:36:45–08:02:20). Because of surface water infiltration and
the weakening of the strata at locations No. 4–10, approximately 17% of the lower portion
of the entire rock mass slid downward, and tension cracks appeared in the upper portion
of locations No. 5–9. The tension cracks allowed surface water to infiltrate the model even
more easily, thereby accelerating the collapse of the lower portion of the rock. Once some
of the rock in the lower portion of the model collapsed, the daylighting of the slope toe
caused the upper portion of the rock mass to slide down along the intersection angle. The
tension cracks near the top of the slope gradually progressed towards the source, enlarging
the wedge failure range. The final stage is the accelerated development of rock mass sliding
(08:02:21–12:27:55). Following the collapse of the lower portion of the rock mass, the surface
water continued to infiltrate deep into the rock mass, causing tension cracks to form at the
source and deeper within the rock. Thus, the lower portion of the rock mass continued to
deform and collapse. With progressive wedge failure, tension cracks began appearing in
multiple places along the left and right plates and developing along the sides. Ultimately,
around 30% of the center of the rock wedge and fell along the intersection line, and only a
small-scale collapse took place instead of complete wedge failure.

The duration of the Model B (ia = 40◦ and ω1 = ω2 = 45◦) test was 12 h 26 min 23 s
(Figure 7). At first (initial slight deformation stage at 00:00:00–01:29:00), surface water
infiltrated the model via weak planes, softening the model and causing slight deformation.
At locations No. 2 and No. 3, tension cracks could be seen at the slope toe. In this stage,
the model only presented slight deformation toward the left plate with no significant
displacement. At 01:29:01–04:32:30, the entire model gradually moved downhill. Tension
cracks appeared at the slope toe at location No. 2, and after the rainfall continued for
an hour, the slope toe at locations No. 1–4 slowly slid, creating local tension cracks.
Apparent bulges could be seen where the slope toe daylighted, and deformation was
more significant at the slope toe on the left plate of the model than that on the right plate
(continued development of slight deformation). During this stage (slope stabilization
at 04:32:31–12:26:23), the rocks at locations No. 6–12 stabilized and showed no signs of
deformation. The tension cracks at the slope toe of locations No. 2 and No. 3 continued
to develop, and small-scale collapses took place. However, there were no significant
deformations or tension cracks in the overall rock mass. Before the end of the test, the rock
wedge had not slid significantly and remained stable after 05:56:13.
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Model C (ia = 40◦ andω1 =ω2 = 60◦) was tested for about 10 h 53 min 51 s (Figure 8).
During the initial deformation stage (00:00:00–06:15:57), the model began to soften from the
infiltrating surface water, and then, because of its own weight, began to deform, and some
tension cracks appeared on the surface. Because of the progression of tension cracks, the
daylighting of the slope toe at locations No. 8–10 caused some of the rock to fall. Because
of the continued influence of surface water infiltration and gravity, the rock wedge slowly
slid along the intersection line. Local tension crack development continued on the slope,
accelerating the infiltration of surface water and weakening the strength of the rock. This
stage is characterized by the sliding of the entire rock mass (06:15:58–08:26:51). As the
duration of surface water infiltration increased, the resin at the bottom on the left and right
plates gradually lost its shear strength. Ultimately, the entire rock wedge began to slide
along the intersection line because of its own weight, and only 5% of the rock remained on
the slope (08:26:52–10:53:51). The test conditions of model D (ia = 40◦ andω1 =ω2 = 75◦)
and model C were similar (Figure 9), bothω1 andω2 exceeded 50 degrees, and only the
failure time of the test model was different. In the initial sliding stage (00:00:00–00:56:55),
the model began to soften from the infiltrating surface water, and then, because of its
own weight, the entire rock wedge began sliding toward the slope toe. As the surface
water continued to infiltrate the rock wedge, the surface of the rock showed no apparent
tension cracks. However, the strata in the oblique slope were inclined toward the left
plate, which caused most of the surface water that had infiltrated the rock mass to flow
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through the strata on the right plate toward the left plate. Consequently, the rock on the
right plate of the mode gradually weakened, resulting in twisting, deformation, and sliding
(00:56:56–01:56:51). Then, the bottom of the rock wedge gradually lost its shear strength.
Ultimately, the entire rock wedge began to slide along the intersection line and the two
intersection planes because of its own weight, and only 10% of the rock remained on the
slope (01:56:51–02:37:39).
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The primary conditions of Model E were ia = 70◦ andω1 =ω2 = 25◦, and the duration
of the test was 3 h 24 min 03 s (Figure 10). At the first stage (the initial deformation
stage; 00:00:00–01:44:39), the model softened because of rainfall infiltration, and the greater
intersection angle meant that gravity exerted a greater impact on the model. Significant
deformation was observed after 20 min of rainfall. The weak planes in the oblique slope
were inclined towards the right plate, and, as a result, soon after the surface water had
infiltrated the model, the surface layer at the slope toe on the right plate (locations No. 7–10)
showed local collapses and toppling failure. During the second stage (the local rock mass
failure stage; 01:44:40–03:14:12), as some of the rock at the slope toe on the right plate
collapsed, the rock on the right plate also became unstable, gradually resulting in wedge
failure. Approximately 30% of the rock wedge slid and collapsed along the slope, greatly
reducing the support below the rock mass on the right plate. Losing its support on the
right, the entire rock wedge relied on the rock on the left plate and the intersection line
for support. Then, as the duration of surface water infiltration increased, gravity and the
weakening of the rock near the left led to gradual leaning and deformation. Subsequently,
the rock in the back collapsed and toppled on a large scale along the intersection line,
and only 5% of the rock remained on the slope. The duration of the Model F (ia = 70◦

and ω1 = ω2 = 45◦) test was 7 h 49 min 14 s (Figure 11). At the first stage (the initial
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slope deformation stage; 0:00:00–1:30:44), the model softened because of surface water
infiltration, and the greater intersection angle meant that gravity exerted a greater impact
on the model. The model thus deformed and shifted toward the slope toe, and some of
the rock at location No. 14 collapsed. The weak planes in the oblique slope were inclined
towards the right plate, and the surface water could easily infiltrate and reach the weak
places from above, resulting in weakening and failure on the surface on the right plate. At
the local rock mass failure stage (1:30:45–5:37:36), rocks continued to fall at location No. 14.
Because of gravity and surface water infiltration, the center of the model deformed and
tilted forward. Local collapses were caused at locations No. 1–3, causing the deforming
and forward-tilting slope toe at locations No. 3–9 to lose some of its support at the wings.
After an hour of rainfall, the rock at locations No. 3–9 continued to deform and tilt forward.
After four hours of rainfall, the forward-tilting rock became an independent mass on the
verge of collapse. With the continuing infiltration of rainfall and the steep intersection
angle, this mass eventually toppled. After the rock at locations No. 3–9 lost its support on
the sides, the mass toppled. The remaining rock on the right plate also gradually toppled
towards the intersection line, ultimately leaving only about 20% of the rock on the slope
(5:37:37–07:49:14).
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The primary conditions of Model G were ia = 60◦,ω1 = 40◦, andω2 = 10◦, with two ec-
centric half-wedge angles, and the duration of the test was 3 h 24 min 03 s (Figure 12). At the
initial deformation stage under conditions of surface water infiltration (00:00:00–02:19:25),
the model’s center of gravity was on the left plate (the side with a gentler slope), whereω
was greater. In addition, the greater intersection angle meant that gravity exerted a greater
impact on the model from the onset. As the surface water continued to infiltrate the model,
it began to weaken and gradually deform and slide toward the toe on the left plate, leaving
most of the rock on the left plate under compression, while most of the rock on the steep
right plate was under tension. Before the midpoint of the test, rock continued to fall from
the bottom of the model, resulting in local vertical torsion and displacement at locations
No. 2 and No. 3. Weakened by water, the entire tock mass gradually slid and deformed.
Next, the overall model reached the stage of local rock mass failure (02:19:26–02:33:32).
Vertical torsion and displacement continued at locations No. 2 and No. 3 until tension
cracks developed at location No. 8 (the cracks parallel to the intersection angle). The
rock at locations No. 3–7 then lost its support on the sides, causing the rock mass to slide
downwards along the intersection line, and only approximately 35% of the rock remained
on the slope. The last stage is characterized by the rock wedge sliding and acceleration
of the failure (02:33:33–04:00:51). After the collapse of the center rock mass, the rock at
locations No. 9 and No. 10 remained on the slope. However, due to the loss of the rock on
the intersection line, the rock remaining on the right plate gradually toppled toward the
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intersection line. The remainder of the rock was also softened by the infiltrating surface
water and collapsed. Afterwards, approximately 15% of the rock remained on the right
plate. The failure behaviors displayed by the entire rock wedge included sliding (gentle
slope on left plate), collapsing, and toppling (steep slope on right plate).
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4. Discussion
4.1. Comparison of Physical Models
4.1.1. Influence of Small ia and Changingω

Comparison of the test results with ia fixed at 40◦ and different ω (Figure 13) revealed
that the failures in the models with smallerωmainly began at the slope toe and gradually
progressed towards the source until wedge failure took place. The final failures were
shallower in depth. In the model withω = 60◦, collapses initially only took place where the
slope toe daylighted, and the surface of the rock showed deformation and tension crack
development. In the end, the entire rock wedge collapsed. In the model withω = 75◦, the
rock displayed no significant deformation or crack development. Total rock wedge failure
took place within a short period of time, and the characteristics were similar to those of
planar failure.

A comprehensive comparison of the three tests showed that with a small ia, the failure
behavior resulting from a smaller ω produced relatively higher stability and shallower
failure depth because of the two discontinuities on the sides, and this is categorized as
progressive wedge failure. In contrast, a larger ω resulted in greater failure depth and
a larger sliding rock wedge. Additionally, most of the sliding followed the intersection
line and planes, and the wedge failure behavior was similar to planar sliding. Clearly,
under small ia, the influence of ω on wedge failure characteristics was significant, and
failure behavior varied significantly with ω. From a mechanical point of view, the change
in the half-wedge angle mainly affected the mechanical properties of wedge rock mass
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confining pressure. The lower half-wedge angle led to larger confining pressure in the
wedge rock mass, which made the resin between the discontinuities in the rock mass
more easily damaged by soaking and softening under rainfall conditions. Additionally,
the failure behavior of the rock mass was similar to the progressive failure: the damage
was first concentrated at the slope toe of the wedge rock mass, and then gradually failed
towards the top of the slope. Therefore, under the condition of high confining pressure
(the smaller half-wedge angle condition), the failure behavior of this kind of wedge rock
mass is characterized by discontinuity, which mainly controls its failure characteristics.
However, under the condition of larger half-wedge angles (smaller confining pressure),
since the boundary constraints of the wedges on both sides are relatively small, the interface
(or discontinuity at the bottom) of the wedge rock mass will dominate its overall failure
characteristics. Therefore, its failure behavior is very similar to translation sliding.
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4.1.2. Influence of Large ia and Changingω

Comparison of the test results with ia fixed at 70◦ andω equal to 50◦ and 90◦ (Figure 14)
revealed that once some of the rock at the toe of the model with a smaller ω collapsed,
the steep terrain caused the rock wedge to gradually deform and tilt forwards. After
the partial collapse on the right plate and the loss of support, the rock on the left plate
was also weakened by infiltrating surface water, resulting in the loss of support on both
sides and inducing toppling failure. The model with the greater ω also gradually lost
support on both sides, resulting in some of the rock in the middle deforming and tilting
forward. In the end, the continuing rain led to toppling failure, and after the rock in the
middle toppled over, the rock on the right plate along the intersection line also toppled
over. Comparison of the two tests showed that because of the steeper inclination angle, the
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failure depths were significant in both tests, and the failures were similar in type. Clearly,
under large ia, the influence of ω on wedge failure characteristics is smaller, and failure
behavior is mainly determined by the extent of discontinuity erosion and the toppling and
deformation characteristics of the rock. From the perspective of its mechanical mechanism,
when the intersection angle reached 70 degrees, the change of its half-wedge angle (that is,
the change of the confining pressure of the wedge rock mass) did not cause a significant
impact on the failure mechanism. Both of them exhibited toppling failure characteristics
under this condition, and both occurred in the intersection line range. Therefore, when the
wedge rock mass reaches the topographical condition of the toppling, the discontinuous
strength of the rock mass within the intersection line range is the main factor controlling
the toppling failure.
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4.1.3. Influence of Largeω, Smallω and Changing ia
Comparison of the test results with ω fixed at 45◦ and two ia (Figure 15) revealed that

after the model with a greater ia was weakened by water, tension cracks developed swiftly,
causing the rock in the middle of the model to deform and ultimately topple. Only a small
portion of the rock fell in the model with a smaller ia, and no significant deformation or
wedge failure took place during the test. Comparison of the two tests showed that toppling
or falling was more likely with a greater ia due to gravity, whereas a smaller ia produced
greater stability. In addition, most of the failure behavior involved the rock wedge sliding
along the intersection line or plane. Comparison of the test results withω fixed at 25◦ and
two ia (Figure 16) revealed that the model with a smaller ia took longer to reach wedge
failure. The tension cracks gradually developed towards the source, and the failure in the
end was shallower. The result was similar to progressive wedge failure. Gravity exerted a
greater impact on the model with a greater ia, and the common failure types were toppling
and falling. A comparison of the two tests revealed a shallower failure depth in the model
with a smaller ia, longer time to wedge failure, and greater overall stability than in the
model with a greater ia. As far as its mechanical mechanism is concerned, when the wedge
rock mass is in a small confining pressure state, the change of its intersection angle causes
a significant difference in the failure mode of the rock slope, that is, sliding along the
intersection angle and half-wedge face (at intersection angles less than 60 degrees, the
failure is dominated by the discontinuity at the bottom), or toppling (at intersection angles
greater than 60 degrees, the failure is dominated by the discontinuity strength near the
intersection angle) failure behavior. Additionally, when the wedge rock mass is in a state of
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high confining pressure, it also has the same mechanical properties. That is, progressive
failure occurs along the slope toe to the top of the rock slope (at intersection angles less
than 60 degrees, the failure is mainly controlled by the discontinuity of the rock mass), or
overturning (at intersection angles greater than 60 degrees, the failure is mainly controlled
by the discontinuity strength near the intersection angle) failure behavior.
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4.1.4. Influence ofω Eccentricity

Comparison of the test results with different ω (eccentric) and identical ω (Figure 17)
revealed that the initial failure with identical ω is determined by the distribution of weak
planes in the oblique slope and that the type of the failure is determined by ia. In contrast,
the initial failure in the eccentric model with differentω is determined by the distribution
of weak planes in the oblique slope as well as the slope of the terrain on the left and right
plates. The side with the gentler slope was mostly compressed, most of the rock mass was
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characterized by toppling/sliding failure along this side, and it was the primary sliding
zone of the wedge failure. The side with the steeper slope was mostly under tension, and
the stability of most of the rock mass on this side was controlled by the steep terrain. In the
end, toppling or failing failure occurred on this side. In terms of its mechanical behavior,
when the half-wedge angles were different, the wedge rock mass more easily failed along
the smaller half-wedge angle position. The main reason for this is that when the wedge
rock mass is eccentric, the main stress is concentrated on the relatively gentle half-wedge
surface, resulting in sliding or toppling failure first occurring on this side. After the smaller
half-wedge angle is damaged to a certain extent, the other side decompresses, and failure
behaviors such as falling or overturning occur.
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4.1.5. Comparison of Study Models and Kumsar Model

Kumsar et al. (2000) plotted model test results and the FS = 1 curve using a stability
model on the same graph to examine the influence of ia andω on wedge failure (Figure 18).
The results in Figure 18 show that wedge slopes with greater ia and ω were less stable
(region to the upper right of the FS = 1 curve), whereas those with smaller ia andωwere
relatively more stable (region to the smaller left of the FS = 1 curve). In wedge slopes with a
greater ia, only a smaller ω can create more stable conditions, whereas if ω is greater, then
ia must be smaller for the sake of stability. These results demonstrate the importance of ia
andω in wedge slopes.

The marks of the physical models in Figure 18 show that Models E and F, in which
ia = 70◦ andω = 25◦ and 45◦, respectively, were both located in the unstable region. This
means that a greater ia tended to result in wedge failure (Figure 18). Model E had a smaller
ω than Model F; it was thus closer to the FS = 1 curve and had greater stability. Comparison
of the wedge failure time of the two models also confirmed that Model F was likely to
succumb to total wedge failure sooner than Model E. In contrast, Models A and B were
situated in the stable region (wedge failure took place in Model A); however, the stability
formula and test only considered rigid wedge failure models, and the formula did not
consider the impact of continuous rainfall on the wedge mass. Our models took both the
rock material and rainfall infiltration into account, and after the continuous infiltration of
surface water weakened the strength of the rock material, progressive wedge failure took
place. This demonstrates that these two factors also influence wedge slope stability. The
conditions for Models C and D were similar. Although ia was only 40◦, the overall wedge
failure was similar to planar failure whenω was greater than 50◦, and total failure tended
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to occur swiftly following continuous surface water infiltration. This further demonstrates
that the wedge failure of rock material and the continuous infiltration of surface water are
suitable predictors for conventional stability analysis. We next marked the parameters of
the eccentric model (Model G, where ω = 10◦ and 45◦) in Figure 19 and found that with
ω = 45◦ (G2), Model G fell in the unstable region, whereas withω = 10◦ (G1), it fell in the
stable region. However, the test results revealed wedge failure occurring within a short
period of time (indicating instability), which means that whenω on the two slides of the
slope differ, using the greaterω for stability analysis is the best approach (Figure 19).
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5. Conclusions

Our field surveys revealed that the wedge slopes along Provincial Highway No. 2
in Nanyali are mainly controlled by three sets of joints. Approximately 40% of the wedge
slopes are controlled by Joints 2 and 3, and their intersection angles mostly range from
40◦ to 60◦. We thus designed our physical models accordingly. The results of the physical
tests revealed that most of the initial failure took place where the slope toe daylighted
and that rockfalls or toppling were the most common. After some of the rock at the slope
toe collapsed, tension cracks gradually developed toward the source, and surface water
continued to infiltrate the rock mass via tension cracks, which weakened the shear strength
within weak planes, reduced the overall stability of the rock wedge, and ultimately led to
wedge failure.

The physical tests also revealed that ia had the greatest impact on overall rock wedge
stability: ia less than 50◦ tended to result in sliding-type failure, and ia greater than 90◦

tended to result in toppling- or falling-type wedge failure. The variable with the second
greatest impact wasω; whenω was less than 40◦, forces on the rock mass from both sides
produced progressive wedge failure characteristics. The failure began at the slope toe
which the oblique slope was inclined towards and then gradually developed. Following
local wedge failure, tension cracks formed in the rock above, and this cycle continued. The
failure behavior resulting fromω greater than 45◦ was similar to that of planar rock sliding;
there were fewer tension cracks, and the sliding mass was relatively whole. Most of the
failure took place in deeper locations, thereby demonstrating that the characteristics of
wedge failure are mostly controlled by ia andω. Comparisons of the physical models and
stability analysis models revealed that greaterω and ia increase the probability of wedge
failure; however, existing stability formulas overlook the influence of rock material and
continuous rainfall infiltration on wedge slope stability. This should be a focal point of
future improvements to stability formulas. In wedge slopes whereω on the two slides of
the slope differ, using the greaterω for stability analysis is the best approach.

Our results indicated that wedge slopes with ω less than 40◦ in Nanyali should be
inspected for progressive wedge failure, and any tension cracks on the slope surface or
wedge failure at the slope toe should be noted. Wedge slopes with ω greater than 45◦

should be inspected for slope toe daylighting to prevent large-scale wedge sliding. In
eccentric wedge slopes (ω1 6=ω2), a greater ia means a greater chance of large-scale sliding
on gentler slopes, which is important information for engineers.
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Abstract: For the investigation of landslide mass movement scenarios through numerical simulation,
a well-defined released mass and a precise initial source area are required as prerequisites. In
the present study, we present a genetic algorithm-based approach for preliminarily assessing the
landslide scarp when the local field data are limited, using an ellipse-referenced idealized curved
surface (ER-ICS)—a smooth surface constructed with respect to an ellipse. According to a specified
depth at the center, there are two distinct curvatures along the major and minor axes, respectively. To
search for the most appropriate ICS, the reference ellipse is translated, rotated, and/or side-tilted
to achieve the optimal orientation for meeting the best fitness to the assigned condition (delineated
area or failure depths). The GA approach may significantly enhance the efficiency, by reducing the
number of candidate ICSs and notably relaxing the searching ranges. The proposed GA-ER-ICS
method is examined and shown to be feasible, by mimicking the source area of a historical landslide
event and through application to a landslide-prone site. In addition to evaluating the fitness of the
ICS-covered area with respect to the source scarp, the impacts of various ICSs on the flow paths are
investigated as well.

Keywords: genetic algorithm (GA); landslide-prone area; landslide scarp assessment; ellipse-referenced
idealized curved surface (ER-ICS); flow paths; scenario investigation

1. Introduction

From the viewpoint of hazard assessment or disaster mitigation, the core concerns
are the plausible threats to residents and potential damage to infrastructure. Over the
years, researchers have proposed various empirical laws (e.g., [1–3]) and physics-based
numerical simulation tools (e.g., [4–7]) in order to delineate landslide-susceptible hazard
zones. With either of these approaches, the volume of the released mass and the location of
the possible failure surface are prerequisites for the evaluation process. However, predicting
the released landslide volume and estimating the failure surface are highly challenging,
due to high uncertainty caused by the complexity of spatial geological and hydrological
variations. At the same time, weathering effects and the material composition at sites are
also generally inhomogeneous (e.g., [8,9]).

With the rapid development of UAVs and modern remote sensing techniques (e.g.,
LiDAR, UAV-LiDAR, SAR, InSAR, and UAV-SAR), high-resolution digital elevation mod-
els (DEMs) have become popular, in which detailed topographic features can be well-
recognized. Furthermore, with expensive and time-consuming geological field surveys,
the scar boundaries of landslide-prone areas can be estimated and delineated, with re-
spect to some specific features (e.g., crowns, bulges, trenches, or fissures). Based on the
DEM, a geometric interpretation method—namely, the Sloping Local Base Level (SLBL)
method—has been suggested by Jaboyedoff et al. [10,11] for the approximation of a 3D
failure surface, which possesses a constant second derivative in the down-slope direction
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(i.e., a parabolic curve in section view). Besides the SLBL approach, Reid et al. [12,13]
have proposed a spherical surface for analyzing the slope stability of a 3D stratovolcano
edifice. Considering the spatial geological structure and groundwater patterns, the concept
of spherical failure surfaces has been adopted and extended in the open-source software
Scoops3D (see, e.g., [14,15]). Tun et al. [16] have further applied Scoops3D for calculating
the probability of multiple failures, where a genetic algorithm (GA) with the first-order
reliability method (FORM) was utilized.

For a well-defined landslide scarp area, Kuo et al. [17] have proposed a smooth
minimal surface (SMS) method to approximate the failure surface by a smooth surface,
where the constructed fracture surface is determined according to the minimal surface
area, with the prerequisites of a given landslide volume and a convex polygon-outlined
region. Instead of fitting the scarp boundary, Tai et al. [18] suggested the concept of using
an idealized curved surface (ICS) to mimic the fracture surface for numerical simulation,
where the ICS is defined by two distinct curvatures in the down-slope and cross-slope
directions, respectively (cf. Figure 1b). As the ICS approach does not request an exact fitness
to the assigned area (source area or delineated area), a search process is needed to find the
most appropriate ICS. Motivated by the ellipticity of landslide shapes [19], and for ease of
proceeding with the search process, Ko et al. [20] have utilized an ellipse with a specified
depth to represent the corresponding ICS (ellipse-reference ICS; ER-ICS), where the depth
is used to determine the landslide volume. In the search process, the optimal reference
ellipse is selected, with respect to the best fitness to the assigned area, through translation,
rotation, and/or side-tilting (cf. Figure 2). The ER-ICS search process is an exhaustive
method considering all the candidate ICSs, where the associated depth is determined by
the assigned volume. Due to the non-trivial topography, the reference ellipse-covered area
varies for different orientations, such that the determination of depth should be repeated
for each candidate ICS. Therefore, the search process is rather time-consuming, limiting
the search range. Taking the ICS-D in Ko et al. [20] as an example, the search range
covers 7× 7 grids for the top and bottom vertices, yielding 10,633 candidate ellipses with
corresponding ICSs to be evaluated. Hence, an efficient method, which either reduces
the number of candidate ellipses or enhances the computational performance, is highly
desirable. Accordingly, a genetic algorithm (GA) [21–24] can provide an optimal solution
for reducing the number of candidate ellipses.

Figure 1. Ellipse-referenced idealized curved surface (ER-ICS): (a) The reference ellipse with major
axis L1 and minor axis L2; (b) The constructed ICS with respect to a depth dE below the middle point;
(c) Section view of the ICS along the major axis, where dm cos θ = dE with inclination angle θ.
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Figure 2. To search for the optimal ellipse, the reference ellipse is (a) translated, (b) rotated, and/or
(c) side-tilted.

From the viewpoint of engineering applications, a genetic algorithm (GA) is an opti-
mization tool utilizing an iterative process. It delivers solutions through the use of evolution
operators such as mutation, crossover, and selection [24]. In the present study, the “canoni-
cal genetic algorithm” (cf. [21,23,24]) is adopted for the search process; that is, the initial
population is generated with the first reference ellipse mapping within the assigned search
ranges of parameters randomly. The parameters determining the orientation of the refer-
ence ellipse comprise the genes. Each constructed ICS is evaluated based on the fitness
function, and then assigned a fitness value. The selection process follows the method of
roulette wheel selection [24], where the possibility of being selected is proportional to fitness
(also known as fitness proportionate selection). After the selection process, recombination
(crossover) of the genes (parameters determining the orientation of the reference ellipse) is
conducted for breeding the populations of the next generation, where mutation is allowed
with a slight possibility (generally ≤1%).

In addition to the GA approach, a manipulation treatment is introduced to isolate
some redundant portion(s) of the ICS-covered area, as the complex topography may induce
the inclusion of unexpected regions in the neighborhood of the target area. The redundant
part can be automatically isolated without additional manual operation, through utilization
of Erosion and dilation operations in morphological image processing (e.g., [25]). This
manipulation treatment may retain an ICS whose main portion has good fitness, while
removing the redundant part(s).

The feasibility and applicability of the GA-ER-ICS approach are investigated through
the validation of a historical landslide event and application to a plausible failure surface,
based on the measured failure depths in a landslide-prone area. In terms of the fitness of
the target area, the convergence of the employed GA approach is examined, considering
the number of generations. The application to landslide-prone areas demonstrates another
advantage of the GA-ER-ICS approach, in that the failure surface can be mimicked in a
flexible manner for various scenarios. All of the selected ICSs with the corresponding
released volumes of landslide mass are integrated into a GPU-accelerated simulation tool
(MoSES_2PDF [26]), in order to investigate the impacts of various ICSs on their consequent
flow paths.

The remainder of this manuscript is structured as follows. In Section 2, the construction
of ellipse-referenced ICS is reviewed, where the manipulation approach for isolating the
redundant portion of the ICS-covered area is detailed. In Section 3, the employment of
the GA procedure is elaborated. The procedure of the GA-ER-ICS searching process is
given in Section 4. Numerical investigations and the application to a landslide-prone
area are discussed in Section 5. The key features of the proposed GS-ER-ICS approach
and its potential for engineering applications are summarized and highlighted in the
concluding remarks.
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2. Ellipse-Referenced Idealized Curved Surface (ER-ICS)
2.1. Construction of the ER-ICS

The ICS concept was first suggested to replicate the failure surface of a sliding-type
landslide in Tai et al. [18]. As the ICS is characterized by two constant curvatures in the
down- and cross-slope directions, respectively, Ko et al. [20] used an ellipse with a specified
depth to construct the ICS; that is, the Ellipse-Referenced Idealized Curved Surface (ER-
ICS). As shown in Figure 1a, AB (with length L1) denotes the major axis of the ellipse
along the down-slope direction, while CD (with length L2) represents the minor axis. Once
L1 and L2 are fixed, the ICS can then be constructed with respect to a specified depth,
dE, where the corresponding curvature radii (R1 and R2) are determined accordingly (cf.
panels b and c). In general, point A sits at the upper part of the scarp area, point B is at
the lower part, and the length L2 of CD determines the width of the site. Once the ICS is
constructed, the landslide volume can be calculated based on the DEM; that is, the reference
ellipse defines the orientation and location of the ICS, while the depth determines the two
curvatures and the associated landslide volume.

For each reference ellipse, the corresponding depth is determined in accordance with
an assigned prerequisite, such as the released volume of mass or a specific failure depth at
some location. Hence, it takes time to find the covariant depth for each reference ellipse.
There may be thousands of reference ellipses for one site, where each ellipse yields an
ICS and serves as a candidate. To construct the most appropriate ICS, Ko et al. [20] have
suggested trying various locations/orientations of the ellipse (i.e., translating, rotating,
or side-tilting the reference ellipse; cf. Figure 2), where four methods (methods A–D) were
considered and evaluated. In the present study, method D in Ko et al. [20] is employed,
in which, in addition to translation, rotation, and/or side-tilting, the RE is allowed to
stretch or shrink slightly, while keeping the area of the RE invariant. Even though the
area of the ellipse is fixed, thousands of candidate ICSs still have to be constructed. If not
additionally specified, the most appropriate ICS is the one with the minimal deviation
index, calculated as:

ΛS =
|AICS − AICS∩sa|+ |Asa − AICS∩sa|

Asa
, (1)

which indicates the deviation of the ICS-covered area from the source (target) area (cf. [20]).
In (1), AICS denotes the ICS-covered area, Asa is the source (target) area, and AICS∩sa
represents their intersection.

2.2. Manipulation of the ER-ICS-Covered Area

Due to the complex topography, the constructed ICS might intersect the neighboring
hill and include some additional unexpected area. An example can be seen in Figure 3a,
in which the blue area indicates the source (target) area and the red dot line depicts the
outline of the ICS-covered area. A sizable unexpected area, indexed by “II”, can be seen on
the right-hand side. Figure 3b shows the section view of the dashed line in panel a, where
the portion in tawny color indicates the ICS-determined landslide body of interest, while
the intersected part of the unexpected portion (II) is marked in yellow. This unexpected
portion can be seen as redundant and is usually isolated manually (e.g., as in [20]), which
is highly time-consuming and could differ between individuals. Here, a manipulation
process (morphological process), on the basis of the OpenCV software [27], is introduced in
order to segment and isolate the redundant section(s) automatically.

The manipulation process consists of two operations: Erosion and Dilation. The Ero-
sion process shrinks the area through a local minimum over the area of a given kernel K
(e.g., an n× n matrix or a circle). It replaces the image pixels (grid) in the anchor point
(center of K) with the local minimum. The Dilation process extends the area shrunk in
the Erosion process by determining the local maximum for the anchor point over the
kernel-covered area. In the present study, the kernel K is set using a 3× 3 matrix, which is
scanned over the whole DEM in the erosion and dilation operations (cf. Figure 3). Letting
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the grids within the ICS-covered area be indexed by 1 and 0 set for those in the rest of the
area (i.e., as a mask), one can divide the connected areas into several blocks by carrying
out the Erosion operation several times, in order to isolate the redundant one(s). After that,
the resultant mask for the major scarp area is retained and recovered through several runs
of the Dilation operation. Figure 3c depicts the eroded area(s) after five operations, where
the redundant portion (II) is separated from the primary area (I). The recovered major
scarp area is illustrated in Figure 3d, where six Dilation operations have been conducted.
It should be noted that the resultant scarp area is valid only when the ICS sits below the
topographic surface locally. The additional Dilation operation (versus the five Erosion op-
erations) is conducted to alleviate the cliffs possibly sitting at the boundary of the resultant
mask, if they exist.

Figure 3. Manipulation of the ICS-covered area. The blue area represents the source (target) area, and
the preliminary ICS-covered area is shown in aqua-blue. (a) The initial ICS-covered area is marked by
the red dotted line and divided into two portions (I and II); (b) Section view along the white dashed
line in panel (a); (c) Outlines of the two portions after Erosion operations; (d) The resultant mask of
the target portion after Dilation operations.

3. Genetic Algorithm Approach

For high efficiency in the search process, a genetic algorithm (GA) is employed (see,
for example, [22–24,28]). Together with the GA approach, determination of the failure
depth (i.e., dE, as indicated in Figure 1b) is implemented based on the CUDA structure
(cf. [29]) for high-performance GPU computation. A GA is a search process, which is
generally used to generate an optimal solution under a given context. The approach used
here is composed of two parts: the first consists of decoding the genes which determine the
candidate solutions (i.e., the orientation of the reference ellipse; RE), while the second part
involves the fitness function, which is used to evaluate the corresponding performance.
In this study, the genes used for constructing the RE are (δx, δy, δθ, δL1), where δx and δy
denote translations, δθ denotes rotation, and δL1 represents stretching/shrinking of the
reference ellipse. Each reference ellipse is associated with a depth, in order to construct the
ICS and meet the assigned landslide volume. If not additionally specified, the deviation
index, ΛS—defined in (1)—represents the fitness (i.e., serves as a fitting function) between
the ICS-covered area and the target area.
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In the GA search process, thirty ICSs (population size) are constructed in each gen-
eration. During each successive generation, the better-fitted ICSs (i.e., those with smaller
deviation index) are selected to breed the next generation through genetic crossover and
mutation. The DNA size is 12, and the rates for crossover and mutation are 0.8 and 0.01,
respectively. Figure 4 illustrates the framework of the GA-ER-ICS search process. Each ICS
is constructed in the GPU section, where the depth is determined based on the assigned
volume and the given genes for the orientation of the RE. The GA procedure in the CPU
section evaluates the fitness and provides the genes through crossover and mutation op-
erations. We experimentally determined that a plateau of fitness was reached after circa
10 generations. As this result might depend on the size of the search range of genes, we
set 10 and 15 generations as the termination criteria for GA-ER-ICS construction in the
following numerical investigation and site application, respectively.

Figure 4. The framework of the GA-ER-ICS search process, in which the ICSs are constructed in the
GPU section and the GA is operated in the CPU section.

4. Procedure of the GA-ER-ICS Search Process

The search process consists of four main stages: (1) Preparation; (2) Input and parame-
ter setting; (3) ER-ICS construction; and (4) GA process, termination, and results output.

Stage 1: Preparation and determination of the initial reference ellipse

Based on the source area (post event) or the delineated area of the landslide-susceptible
zone, four starting reference points are assigned to determine the initial reference ellipse
(RE) on the DEM (cf. Figure 5a). In general, these four reference points indicate the length
and width of the target area. The highest and lowest points (in elevation) compose the
major axis of the initial RE, while the length of the minor axis is determined by regression
for a minimal root mean square (RMS), with respect to the other two reference points.

Stage 2: Input and parameter setting

In this stage, the ranges of the genes (δx, δy, δθ, δL1) are given, and the size of the
population in each generation, as well as the termination criterion (the number of genera-
tions), must be assigned. With the initial RE determined in Stage 1, the initial population is
randomly generated within the range of the genes.

Stage 3: ER-ICS construction

For each RE in the initial population (or the replaced population of the evolution), the
individual depth is determined according to the assigned released volume, which can be
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given by assignment or through the use of a volume–area empirical relation, as suggested
in, for example, [17,18,30]. As each RE is associated with one most appropriate ICS, this
process (including the manipulation process introduced in Section 2.2) is highly time-
consuming. It is, therefore, conducted in the GPU section (cf. Figure 4). Once all the ICSs
are constructed, the GPU section returns the corresponding sets of genes and DEMs to the
CPU section.

Stage 4: GA process, termination, and results output

The fitness of all determined ICS (DEMs) is evaluated based on the deviation index
ΛS given in (1), in the case where the source/target area is available. On the other hand,
when the evaluation is based on the specified failure depth(s), the fitness is computed
based on the root mean square (RMS) between the ICS and the specified depth(s). In
both cases, a smaller value of the fitness index (i.e., ΛS or RMS) indicates better fitness.
As illustrated in Figure 4, the next generation is bred as the new population, until the
termination criterion (i.e., the maximum number of generations) is fulfilled. The best-fitted
ICS in the last generation is considered the most appropriate ICS in the GA search process.

Figure 5. The shape and depth distribution of the initial landslide mass: (a) The measured data in
the main source area, where the four red points stand for the starting reference points and the red
line represents the initial reference ellipse; (b) The ICS constructed by the method-D in [20]; (c) The
best-fitted ICS in condition GA-I (i.e., GA-Ib); (d) The best-fitted ICS in condition GA-II (i.e., GA-IIb);
(e) The best-fitted ICS in condition GA-III (i.e., GA-IIIb); (f) The best-fitted ICS in condition GA-IV
(i.e., GA-IVa).

5. Numerical Investigation and Application in a Landslide-Prone Area

The performance of the proposed GA-based ER-ICS (GA-ER-ICS) method, in terms
of constructing a plausible failure surface, was investigated against a historical large-
scale landslide event, and a trial application was arranged in a landslide-prone area. The
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historical event was the Hsiaolin landslide, triggered during typhoon Moratok in 2009 in
southern Taiwan. Due to its huge scale, severe damage (more than 450 victims), and unique
characteristics, the 2009 Hsiaolin landslide has become one of the most representative
deep-seated landslides worldwide, for which ample well-documented data are available.
For further details, the readers are referred to [31–37]. The DEM and initial conditions used
in [32,38] were employed in the numerical investigation. Note that only the main source
area listed in Kuo et al. [32] was taken into account when mimicking the failure surface,
as it provides more than 94% of the total landslide mass.

For application of the GA-ER-ICS method to a landslide-prone area, we assigned a
potential large-scale landslide area named Kuanghua-T002, located in Taoyuan county,
northern Taiwan. As creeping movements have been detected in this area for years, three
inclinometers (indexed by K18-1BW, K18-2BW, and K19-1BW) had been installed. Both
K18-1BW and K18-2BW were broken on 31 May 2018, while K19-1BW was broken on 3
December 2019, due to local mass movements (cf. Chen [39]). The plausible outline of the
potential deep-seated landslide has been suggested and delineated in Chen [39].

The ranges of genes used in the GA procedure to search for the most appropriate
ICSs are listed in Table 1. Due to the complex topography in the neighborhood of the
target area, redundant areas were found and, so, the manipulation process was employed
for site Kuanghua-T002. For reference landslide volumes, we took the measured amount
(21,180,535 m3) in the Hsiaolin case and 348,581 m3 (estimated by the volume–area empirical
relation suggested in [30]) for the Kuanghua-T002 case. The consequent flow paths of
the released landslide masses were computed using a GPU-accelerated simulation tool
(MoSES_2PDF in [26]). The values of the material parameters used for computation were
identical to those presented in [20], as collected in Table A1. The following index:

Λpath =
|Apath

α − Apath
α∩β |+ |A

path
β − Apath

α∩β |
Apath

α∩β

, (2)

was introduced for quantitative investigation of the discrepancy of flow paths between
two scenarios. In (2), Apath

α∩β denotes the intersection (overlapped area) of the flow paths
between Scenarios α and β. In the scenario campaigns, the index ΛS quantifies the fitness
of the constructed ICS, while Λpath evaluates the difference between two ICSs (scenarios).

Table 1. Range of genes used in the GA for plausible ICS searches in the 2009 Hsiaolin event and site
Kuanghua-T002 cases.

(δx, δy, δθ, δL1) Manipulation Volume (m3)

Hsiaolin event (±8∆x, ±8∆y, ±15◦, ±8∆x) no 21,180,535
Kuanghua-T002 (±5∆x, ±5∆y, ±10◦, ±5∆x) yes 348,581

5.1. Numerical Investigation (The 2009 Hsiaolin Landslide)

With respect to the main source area of the 2009 Hsiaolin landslide, the most appro-
priate ICS was selected through the GA-ER-ICS search process. Here, the feasibility and
applicability are investigated in terms of three aspects: (a) Convergence with respect to the
number of generations; (b) the effectiveness of the side-tilting operation; and (c) the impacts
of the different coverages between ICSs on the consequent flow paths. The resolution of
the used digital elevation map (DEM) was 10 m (∆x = ∆y = 10 m), and the computational
domain was 3700× 2210 m2, where the projection of the main scarp on the horizontal plane
covered an area of 624,900 m2.

Four conditions for the GA-ER-ICS search process were arranged, and three runs for
each situation were carried out (cf. Table 2). The impact of the number of generations (i.e.,
10 or 15 generations) on the GA process was also investigated. The search processes with
side-tilting are indexed by GA-I and GA-II, in which the tilting angle was determined by
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the inclination of the minor axis of the reference ellipse to the horizon (i.e., the inclination
angle of CD, shown in Figure 1b). GA-I and GA-III used ten generations, while GA-II and
GA-IV used 15 generations. The constructed ICSs were compared with the main source
area. In addition, the most appropriate ICS (ICS-D) in Ko et al. [20], as determined by
method D, was included in the campaigns for comparison. We first focused on the fitness
of the landslide source area and the sensitivity of the ICSs constructed by the proposed
GA-ER-ICS approach under various conditions. After that, the consequent flow paths were
computed, with respect to the best-fitted ICSs. The flow paths were determined using the
moving mass-covered areas of 61 sets of results from 0.0 s to 181.83 s with an interval of
3.0305 s, where only areas with flow thickness greater than 10 cm were considered.

Table 2. Fitness of the ICSs under various conditions for the main source area in the 2009
Hsiaolin event.

Condition Run Generation Side-Tilting ΛS

ICS-D - - 28.72%

a 10 yes 30.05%
GA-I b * 10 yes 25.01%

c 10 yes 25.83%

a 15 yes 24.08%
GA-II b * 15 yes 24.05%

c 15 yes 24.24%

a 10 no 25.76%
GA-III b * 10 no 24.23%

c 10 no 29.12%

a * 15 no 24.15%
GA-IV b 15 no 25.52%

c 15 no 24.82%
* The best-fitted among the three runs.

5.1.1. Fitness to the Main Source Area

With respect to the starting reference points (the four red points marked in Figure 5a),
three runs were performed for each condition (GA-I to GA-IV). The performance of the
selected ICS was evaluated with respect to the fit to the measured source area, as indexed
by the value of ΛS defined in (1); see Table 2. A smaller value of ΛS indicates a better fit. As
the GA process does not guarantee identical results, the ΛS value varied with each run. It
was found that ten generations (GA-I and GA-III) did not provide satisfactory convergence
of fitness; however, a plateau of fitness is reached when the evolution terminated at
15 generations. Despite the small difference, inclusion of the side-tilting operation slightly
improved the fitness (see GA-I vs. GA-III and GA-II vs. GA-IV). Furthermore, it was found
that 10 of the resultant ICSs, among the 12 runs of the GA search process, presented better
fitness than ICS-D. The better performance of the GA approaches is possibly due to the
more considerable translation distance (i.e., ±8 grids in the GA approach versus ±3 grids
in the method of exhaustion). Together with its high efficiency, the proposed GA approach
is apparently superior to the exhaustive method.

The best-fitted ICSs in the four conditions (GA-Ib, GA-IIb, GA-IIIb, and GA-IVa) are
exhibited in Figure 5. The measured depth distribution of the released landslide mass
from the primary source area is shown in panel a, and its outline is depicted in all the
other panels for comparison. Panel b displays the ICS-D result. All the ICSs, including
ICS-D, yielded higher thickness than the measured data (cf. Figure 5). This phenomenon is
suspected to have been induced by two causes. The first is the smaller ICS-covered area,
such that a higher thickness of the initial landslide body is required to retain the constant
reference volume. The second reason could be that the ICS is a smooth surface, differing
from the natural failure surface, for which the local geological conditions may play a crucial

186



Water 2022, 14, 2400

role. Another interesting finding is that the GA-selected ICSs were rather similar, for which
the value of ΛS ranged from 24.05% (GA-IIb) to 25.01% (GA-Ib). It was also found that
the side-tilting operation did not significantly improve the performance with either 10 or
15 generations, if there were three runs for selection in each condition. Hence, the operation
of side-tilting was not employed for the application in a landslide-prone area (Section 5.2).

5.1.2. Impacts on Flow Paths

Ko et al. [20] have investigated the consequent flow paths of the ICS by comparing the
results computed with ICS-D against the results calculated using the measured landslide
scarp. The area discrepancy between the measured failure surface (FS) and ICS-D was
26.82% at the initial stage of initiation, which reduced to circa 9.5% for the computed results
at the rest state. Here, we focus on the discrepancy of the flow paths computed with the
selected ICSs. The differences between the initial areas and the discrepancy of the flow
paths are quantitatively denoted by the indices Λinit

path and Λpath, respectively (see Table 3).
In agreement with the illustration in Figure 5, where all the GA process-selected ICSs can
be seen to be rather similar, the values of Λinit

path were in the range from 4.13% to 6.90%
(cf. Table 3). With 15 generations, no significant discrepancy between GA-IIb (with side-
tilting) and GA-IVa (without side-tilting) could be identified, with respect to the initial
ICS-covered area and the consequent flow paths, where Λinit

path = 4.13% and Λpath = 3.87%.

Table 3. Comparison of the flow paths under various conditions for the 2009 Hsiaolin event.

Impacts ICS Λinit
path Λpath

GA-Ib vs. GA-IIIb 6.90% 10.52%side-tilting
GA-IIb vs. GA-IVa 4.13% 3.87%

GA-Ib vs. GA-IIb 5.38% 6.06%generation
GA-IIIb vs. GA-IVa 5.70% 7.77%

ICS-D vs. GA-Ib 15.08% 14.24%

Exhaustion vs. GA ICS-D vs. GA-IIb 14.77% 12.63%
ICS-D vs. GA-IIIb 12.84% 13.97%
ICS-D vs. GA-IVa 14.53% 13.13%

Among the four selected best-fitting ICSs (GA-Ib, GA-IIb, GA-IIIb, and GA-IVa),
the results computed with GA-Ib had the most significant discrepancy from the results,
compared with ICS-D, where Λinit

path = 15.08% and Λpath = 14.24%. Figure 6 depicts the
associated distinctions at the initial stage (panel a) and the flow paths (panel b). The four
red markers in panel a are the initial reference points in the search process, and the red
line outlines Hsiaolin village. It was found that most of the differences took place around
the source area, due to the shape discrepancy in the initial stage. For a thorough overview,
the flow paths of ICS-D, GA-Ib, GA-IIb, GA-IIIb, and GA-IVa were all collected, and are
displayed in a comparable way in Figure 7, in which the blue zone represents the shared
paths. The individual routes yielded by ICS-D, GA-Ib, GA-IIb, GA-IIIb, and GA-IVa are
shown in red, magenta, cyan, green, and yellow, respectively. Due to the minor distinction
between the source areas, only one of the two outlines is given in each comparison scenario.
We refer the readers to Figure A1 in Appendix B for the details of the outlines between the
source areas, in accordance with the sequence of Figure 7. As has already been elaborated
and illustrated in Figure A1e, the flow paths of GA-IIb and GA-IVa were very close,
with Λpath = 3.87%. Both of them were constructed using 15 generations in the GA process,
revealing that, with a sufficient number of generations for evolution, the effectiveness of
the side-tilting operation becomes insignificant. The data listed in Table 3 indicate that
the GA-ER-ICS method may deliver the selected ICSs with good convergence, in terms
of the flow paths. This convergence might benefit from the repetition of operations and a
sufficient number of generations for evolution in the GA search process.
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Figure 6. Orthophoto and landslide mass-covered areas in the computation, where cyan indicates
the overlapped area, the pink area is covered only by the results computed with the ICS-D, and the
area in dark-yellow is occupied only in the condition of GA-Ib. The red line denotes Hsiaolin village,
and the four red markers in panel a represent the initial reference points in the GA-ER-ICS search
process. (a) Initial stage; (b) Flow paths (Orthophoto: Courtesy of Serial Survey Office, Forestry
Bureau, Taiwan).

Figure 7. Flow paths in various conditions, where the blue represents the overlapping area. The red,
magenta, cyan, green, and yellow areas are covered only by results computed with ICS-D, GA-HL-Ib,
GA-HL-IIb, GA-HL-IIIb, and GA-HL-IVa, respectively. The brown dash-dotted lines outline the
source areas: (a) ICS-D; (b) GA-IIIb; (c) GA-IVa; (d) GA-Ib; (e) GA-IIb; (f) GA-IVa.

5.2. Application to a Landslide-Prone Area (Kuanghua-T002)

Based on the records of the three installed inclinometers (K18-1BW, K18-2BW, and K19-
1BW), three scenarios (A, B, and C) were designed, as listed in Table 4. In Scenario A,
the fitness evaluation is based on the failure depths recorded by gaging wells K18-1BW
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and K18-2BW. Only K19-1BW is considered in Scenario B, while the failure depths of
all three gaging wells are taken into account in Scenario C. In this application, the DEM
has a resolution of 5 m and the horizontal projection of the delineated source area is
32,325 m2. This is much smaller than the main source area in the Hsiaolin case, so we set
δx = δy = δL1 = ±5∆x in the GA-ER-ICS search process.

Table 4. Scenarios for the Kuanghua-T002 landslide-prone area.

Scenario Referenced Gaging
Well

ICS-Determined Failure Depth (m)
ΛS VTarget/VGuzzetti

K18-1BW K18-2BW K19-1BW

A K18-1BW & K18-2BW 5.68 24.98 (38.71) 23.36% 1.5

B K19-1BW (none) (14.08) 27.35 29.47% 1.0

C K18-1BW, K18-2BW &
K19-1BW 4.63 19.27 30.71 36.58% 1.0

Inclinometer
records - 5 25 27 - -

Note: Values in brackets are not for the fitness evaluation in the GA search processes.

Although local movement and failures have been detected by the inclinometers, they
did not take place at the same time, and the landslide body has not yet been ultimately
released. Hence, the exact volume of the landslide mass is not available for determining
the depth, as well as constructing the ICS. The reference volume for constructing the ICS
can basically be approximated by empirical laws based on the delineated source area,
such as Guzzetti’s empirical volume–area relation [30] or other similar laws, as detailed
in [17,18]. As the ICS-determined failure surface is required to be close to the records
of the inclinometers, with as sound a fitness to the delineated area (e.g., ΛS ≤ 40%) as
possible in the GA-search process, one may not always obtain satisfactory results. In such
circumstances, we can relax the constraint of the reference (target) volume; for example,
the reference volume VTarget in Scenario A was suggested as 1.5 × VGuzzetti for a more
satisfactory result. The best-fitting ICSs in Scenarios A, B, and C are listed in Table 4, where
the values in brackets were not taken into account when evaluating the fitness in the GA
search processes.

The best-fitting ICSs in Scenarios A, B, and C are illustrated in the left panels of Figure 8.
The yellow line depicts the outline of the delineated area, while the ICS-covered regions
are marked in an emerald-green color. In Figure 8a, the four red markers represent the
reference points for determining the first RE in the GA-ER-ICS search process. As reported
in Table 4, the discrepancy between the ICS-determined source area and the delineated one
was indexed by ΛS, whose value ranged from 23.36% to 36.58%. It is interesting to find that
the best-fitting ICS in Scenario A was found with a reference volume VA

Target/VGuzzetti = 1.5.
At the same time, it delivered the best fitness (ΛS = 23.36%) among these three scenarios.

The flow paths under the three scenarios were computed in accordance with the ICS-
determined source area. The computational domain covered 1275× 740 m2 and the DEM
had a resolution of ∆x = ∆y = 5 m. The simulation period was 101.0153 s, and the flow
paths were determined using the moving mass-covered areas of 51 sets of results from 0.0 s
to 101.0153 s, with an interval of 2.0203 s. Similar to the illustration of the flow paths in the
Hsiaolin event, only the areas covered by flow thickness of more than 10 cm were taken
into account when determining the flow paths. Figure 8d–f present the flow paths under
the three scenarios. The turquoise color indicates the overlapping area, while the green,
orange, and pink areas are covered only by the results computed in Scenarios A, B, and C,
respectively. As reported in Table 5, although the discrepancy between the ICS-covered
areas Λinit

path was more significant (ranging from 22.16% to 40.12%), the discrepancy for the
whole flow paths Λpath was reduced to less than 10%. We suspect that the channelized
topography diminished the discrepancy at the early stage.
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Figure 8. The delineated area (outlined by a yellow line), the ICS-covered area, and the consequent
flow paths, where the four red points in panel (a) are the initial vertices of the GA-ER-ICS search
process. The emerald-green indicates the ICS-covered area, the turquoise represents the overlapping
area, and the green, orange, and pink regions are covered only by the results computed under Scenarios
A, B, and C, respectively: (a) ICS-covered area in Scenario A; (b) ICS-covered area in Scenario B;
(c) ICS-covered area in Scenario C; (d) Computed flow paths in Scenarios A and B; (e) Computed
flow paths in Scenarios A and C; and (f) Computed flow paths in Scenarios B and C. (Satellite image:
http://mt0.google.com/vt/lyrs=s&hl=en&x=x&y=y&z={z} (accessed on 4 May 2022)).

Table 5. Comparison of flow paths between various scenarios.

Kuanghua-T002 Λinit
path Λpath

Scenarios A vs. B 22.16% 6.80%
Scenarios A vs. C 30.42% 8.93%
Scenarios B vs. C 40.12% 9.72%

Among the scenarios, the released mass in Scenario A was 50% more than those in
the other two scenarios. Still, the corresponding values of Λpath were not as notable as
the volume difference. In this regard, the volume of released mass seems not to be the
critical factor for the flow paths. On the other hand, the released volumes in Scenarios
B and C were identical, but the values of the associated Λinit

path and Λpath were dominant.
Nevertheless, the discrepancy in the campaign between Scenarios B and C reduced from
40.12% at the initial stage to 9.72% for the whole flow-flushed region, indicating that the
channelized topography in the downstream area plays a significant role in the consequent
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flow paths (see also [18]); that is, a considerable discrepancy at the initial stage may be
attenuated during the movement in a channelized topography. These findings reveal that
the flow paths are not sensitive to various ICSs under a channelized topography. In the
three scenarios, the simulated flow paths did not touch the houses sitting in the lower
right corner of Figure 8d–f. Although a more detailed study concerning various parameter
sets is needed, these results indicate that the buildings do not lie in the center of the flow
paths and, so, are at low risk. Such flow path investigations, using constructed ICSs under
various scenarios, might provide an excellent representative hazard assessment model for
landslide-prone areas.

6. Discussion and Concluding Remarks

In the present work, we outlined an efficient methodology integrating a GA approach
with the reference ellipse-ICS method, in order to mimic the plausible failure surface, as well
as estimate the scarp, for a landslide-prone area. The proposed method does not aim to
extract a precise estimation but, instead, to provide a preliminary assessment; especially
when no detailed field data are available. The reference ellipse-ICS method [20] utilizes the
reference ellipse to construct the ICS. However, the goodness-of-fit to the assigned targets
(e.g., shape of the area, failure depths) highly depends on the location and orientation of
the reference ellipse. As a matter of course, there are thousands of orientations (candidate
ICSs) to be evaluated for a target site, in order to determine the most appropriate ICS. The
GA process reduces the number of candidate ICSs by preserving the critical characteristics
of the ICS through the concept of evolution, such that one can practically employ a broader
range of parameters (treated as genes) in the search process.

For each assigned condition/scenario, the search operation was repeated three times,
and the best-fitted one was selected for simulation of the associated flow path. The fitting
ability of the constructed ICSs to the main source area of the 2009 Hisiaolin landslide was
numerically studied, and the effectiveness of the side-tilting operation and the convergence
against the number of generations were examined. It is interesting to note that all of the
GA-selected ICSs exhibited similar shapes, with deviation index ΛS ∈ [0.2405, 0.3005]. The
results also revealed that the side-tilting operation did not have a remarkable impact on
the fitness performance. In addition, it was found that a satisfactory ICS could be found
after ten generations among the three runs, although a more stable plateau of fitness was
obtained with 15 generations. In the investigation of flow paths, most of the discrepancy
took place in the early stage, and the presence of a channelized topography may attenuate
the impact of the difference between ICSs on the flow path.

Application of the proposed method to a landslide-prone area (Kuanghua-T002) ex-
hibited a representative example, concerning the utilization of the GA-ER-ICS method for a
preliminary hazard assessment, through the delineation of a potential zone without requir-
ing detailed geological structure or hydrological conditions as prerequisites. Based on the
records of installed inclinometers, three scenarios (Scenarios A, B, and C) were considered.
The GA-ER-ICSs were constructed and selected in accordance with the recorded failure
depths in the scenarios. It was found that simultaneously meeting the fitness of the target
area, failure depth(s), and the assigned volume of released mass is highly challenging.
Hence, some compromises (e.g., the fitness to the delineated area or the landslide volume)
may be needed. In the three scenarios, all of the ICS-covered areas deviated from the
delineated region, and were distinct from each other. Despite the clear distinction among
the ICS-covered zones, simulation of the landslide routes revealed that the consequent flow
paths were not sensitive under a channelized topography.

It is worth noting that the ICS is a preliminary approximation to the landslide scarp
and should be used for the purpose of scenario investigation by numerical simulation
when only limited field data are available. It is intended to make up for a deficiency,
instead of replacing conventional slope stability analyses. We should admit that there
is inevitably a notable discrepancy between the smooth ICS and the non-trivial natural
failure surface. Nevertheless, our investigations support the fact that this discrepancy does
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not significantly influence the consequent flow paths (see also [18,20]). The integration of
the GA approach with the ER-ICS method has significantly enhanced the efficiency of the
searching process. In comparison with the method of exhaustion (ER-ICS), the proposed
GA-ER-ICS may reduce the computational time from more than 20 hrs (for ICS-D) to circa
13.5 mins (e.g., for GA-IIb with 15 generations) with a PC (i7-9700 CPU@3.00 GHz×8, 64 GB
memory, Linux OS Ubuntu 18.04), when a GPU (NVIDIA GeForce TRX 2080Ti) is utilized.
It should be noted that, in the GA-ER-ICS process, a significantly more extensive translation
range (17× 17 grids) is taken into account in the search process, compared to that in the
exhaustive method (7× 7 grids for the ICS-D in [20]). The proposed GA-ER-ICS method
and the GPU-accelerated simulation tool [26] facilitate a highly efficient hazard assessment
system, which is currently under development. We intend to report updates on the system
in due time.
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Appendix A

In the GPU-accelerated simulation tool (MoSES_2PDF [26]), there are five material
parameters (αρ, δb, Cd, NR, ϑb) and one initial concentration, φs

0, for the flow body to be
set (cf. Tai et al. [38]). Here, αρ = ρ f /ρs is the density of the interstitial fluid to the solid
constituent, δb denotes the angle of basal friction of the solid constituent, Cd represents the
drag coefficient between the interstitial fluid and the solid constituent, NR is proportional
to the inverse viscosity (similar to the Reynolds number), and ϑb denotes the fluid friction
coefficient at the basal surface. It should be noted that the values of the material parameters
depend on the composition of the moving mass. The determination of their values requires
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further study, and is beyond the current scope of this paper. To enable a comparison with
the results provided in previous studies [18,20,38], identical values were adopted in the
investigation of the consequent flow paths, which are listed in Table A1.

Table A1. Material parameters and initial volume fraction used for computing flow paths.

Parameter αρ δb cD NR ϑb φs
0

Used value 1.42/2.6 16◦ 6.0 268 5.0 0.5

Appendix B

Figure A1. Outlines of the ICS-determined failure (source) areas used for computing the flow paths
in the corresponding panels in Figure 7.
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Using the Spatiotemporal Hot Spot Analysis and Multi-Annual
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Subwatershed Scale in Taiwan
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Abstract: This study used rainfall and annual landslide data for the 2003–2017 period in Taiwan
to determine the long-term evolution of landslides and conducted a spatiotemporal analysis of
landslides at the subwatershed scale. The historically severe landslide induced by Typhoon Morakot
in 2009 was mainly distributed in the central mountainous region and southern Taiwan. The Mann–
Kendall trend test revealed that in 2003–2017, 13.2% of subwatersheds in Taiwan exhibited an upward
trend of landslide evolution. Local outlier analysis results revealed that the landslide high–high
cluster was concentrated in the central mountainous region and southern Taiwan. Moreover, the
spatiotemporal analysis indicated 24.2% of subwatersheds in Taiwan in 2003–2017 as spatiotemporal
landslide hot spots. The main patterns of spatiotemporal landslide hot spots in 2003–2017 were
consecutive, intensifying, persistent, oscillating, and sporadic hot spots. The recovery rate in the first
two years after the extreme rainfall-induced landslide event in Taiwan was 22.2%, and that in the
third to eighth years was 31.6%. The recovery rate after extreme rainfall-induced landslides in Taiwan
was higher than that after major earthquake-induced landslides in the world, and the new landslides
were easily induced in the area of rivers and large landslide cases after Typhoon Morakot in 2009.

Keywords: landslide evolution; landslide recovery rate; local outlier analysis; Mann–Kendall trend
test; spatiotemporal analysis; sub-watershed scale; Taiwan

1. Introduction

The rainfall variability under the present and future climate is examined as a function
of global warming [1]. The trend of extreme rainfall events has been rising during the last
three decades [2], and flood events are sensitive to global climate changes [3]. Rainfall-
induced landslides are a common geological disaster in Taiwan that jeopardizes the safety
of human life and property. The most severe rainfall-induced landslide disasters have
been recorded in Taiwan in the past three decades, especially in 2001–2010 [4–7]. During
2001–2010, deaths caused by landslide disasters in Taiwan exceeded 1000, including 214
in 2001 caused by Typhoon Toraji, 45 in 2004 caused by Typhoon Mindulle, 33 in 2004
caused by Typhoon Aere, 21 in 2008 caused by Typhoon Sinlaku, and 699 in 2009 caused by
Typhoon Morakot. Debris flow and sediment deposition in rivers are secondary geological
disasters in watershed units caused by extreme rainfall-induced landslides [8,9]. The dense
distribution of landslides and high sediment deposition in rivers have been the two main
driving forces for the long-term geomorphologic evolution of landslides in mountainous
watersheds in Taiwan in the past decade. Strategies for predicting landslides based on the
characteristics of long-term landslide evolution must be developed to mitigate the effects
of landslide disasters and secondary geological disasters.

Landslides caused by large-scale earthquakes or extreme rainfall events are usually
clustered in mountainous areas near the earthquake epicenter [10–12] or with abundant rain-
fall during extreme rainfall events [6,13]. The spatial-temporal analysis method has been
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widely used to explore the long-term evolution and distribution of specific phenomena, in-
cluding water use efficiency [14], the long-term GDP development trend [15], groundwater
storage [16], observation of crop growth [17], and urban sprawl [18]. To effectively analyze
the temporal distribution and evolution of landslides, a spatiotemporal landslide database
should be developed by combining multitemporal landslide inventories [8]. Multitemporal
high-resolution and NDVI satellite imagery has been used to build multitemporal landslide
inventories for identifying and analyzing multiple landslides [10,19,20]. Satellite images
captured by FORMOSAT-2 with a spatial resolution of 2 m during 2003–2017 were used to
develop annual landslide inventories in Taiwan. Several serious landslide disaster events
occurred during 2003–2017 in Taiwan [21,22]. The spatiotemporal landslide database can
be used to analyze the long-term evolution, distribution, and characteristics of landslides
in Taiwan [8,9,23].

Landslide evolution analysis has been used to observe the long-term deformation of
specific large landslide cases [24,25] or the spatial and temporal distribution of landslides on
a watershed scale [8,10–12]. Long-term landslide evolution analysis needs multi-temporal
remote sensing data, including SPOT images, interferometric synthetic aperture radar
(InSAR), and light detection and ranging (LIDAR), to produce landslide inventories, NDVI
images, or a digital elevation model for deformation observation [8–12,19–21,26–31]. The
long-term evolution of landslides on a watershed scale has been increasingly studied in the
past decade, especially in areas that experience major earthquake events (2005 Kashmir
earthquake in Pakistan, 2008 Wenchuan earthquake in China, and 2015 Gorkha earthquake
in Nepal) or extreme rainfall events (2009 Typhoon Morakot in southern Taiwan). Many
approaches have been used to analyze the long-term evolution of landslides, including
the evaluation of the spatial and temporal distribution of landslides using annual data
of landslide areas and the number of landslides [10,11,19,26,27], evaluation of the spatial
distribution of new, enlarged, and recovered landslides [19,26,27], assessment of the re-
lationship between the spatial distribution of annual landslides and geomorphological
factors [10,11,19,26,28], and assessment of the spatial and temporal distribution of land-
slide activity [10,11,19,26]. The temporal stability of landslides at the subwatershed scale
has been examined by evaluating the relationship between annual rainfall [17], monthly
rainfall [10], or daily rainfall [19] and the annual number of landslides or area of land-
slides. Images taken at multiple time points, including those obtained from Google Earth,
aerial photographs, and field investigation images, have also been used to study temporal
differences in landslide stability and recovery [19,20,26]. The landslide area frequency
distribution have been used to examine the composition of recurring and new landslide
areas in landslide inventories [20], and the β coefficient of the landslide area frequency
distribution was used as a basis for comparison with other earthquake-induced landslide
events [28].

The analysis of landslide evolution usually requires more than 10 years of climate
data and landslide inventories [5,27]. In this study, we used the hot spot analysis tool to
evaluate the characteristics of long-term landslide evolution and distribution in Taiwan [32].
Typhoon Morakot induced the most severe rainfall-induced landslide events in the last two
decades in Taiwan, especially in southern Taiwan. Taiwan is one of the most landslide-prone
regions in the world [33], and the number of landslides and areas affected in Taiwan reached
a historical peak during 1999–2017. The analysis of the long-term evolution of landslides in
Taiwan at the subwatershed scale should help determine the evolution characteristics of
rainfall-induced landslides.

The purpose of this study was to explore and explain the long-term evolution charac-
teristics of rainfall-induced landslides at the subwatershed scale in Taiwan using annual
landslide inventories from 2003 to 2017 and spatiotemporal hot spot technology. Knowing
the long-term evolution characteristic of landslides can contribute to planning the correct
engineering in the correct place to prevent secondary geological hazards, especially in a
watershed with dense landslide distribution. The long-term rainfall records from 16 rainfall
stations for the period 2003–2017 were collected, and the relationship between rainfall and
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landslide evolution was analyzed. Two spatiotemporal landslide cube models were devel-
oped in this study. The first was based on the annual landslide inventories from 2003–2017
and was used for exploring the long-term evolution of landslides in Taiwan. The other
model was based on the annual landslide inventories from 2008–2017 and used to explore
the long-term evolution of landslides caused by Typhoon Morakot in 2009. Moreover, the
complete set of hot spots was statistically analyzed. We used spatial cluster and outlier
analysis to explore the spatial and temporal distribution of landslides in Taiwan and the
emerging hot spot analysis tool to explore the spatial and temporal hot spot patterns of
landslides in Taiwan. We also determined the spatial and temporal distribution of landslide
recovery after extreme rainfall-induced landslide events and compared it with that after
major earthquake-induced landslide events.

2. Study Area

The research area, Taiwan, is located in East Asia. The elevation in Taiwan ranges
from 0 m to 3952 m, and the average elevation is around 738 m (Figure 1a). The slope in
Taiwan ranges from 0◦ to 89.8◦, and the average slope is around 21.8◦. The area with a
slope >30◦ occupies 38.3% of the total area in Taiwan. Based on the delineation of sub-
watersheds proposed by the Soil and Water Conservation Bureau in 2021 [34], there were
839 sub-watersheds in Taiwan (Figure 1b). The average slope of the 839 sub-watersheds is
22.5◦, and 42.1% of the 839 sub-watersheds have a slope >30◦.
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Figure 1. Distribution of elevation, rainfall stations (a), slope, rivers, and sub-watersheds (b)
in Taiwan.

The long-term average annual rainfall in Taiwan was estimated at 2510 mm, but that
in 2013–2020 was estimated at 2454 mm based on the open data information on the Water
Resources Agency website [35]. The characteristic of annual rainfall in the past 2 decades
in Taiwan was obvious oscillating. The average annual rainfall in 2014 and 2016 in Taiwan
was 1921 mm and 3278 mm, and the difference between the annual rainfall in 2014 and
2016 was 1357 mm, i.e., 54.0% of the long-term average annual rainfall. The geological
settings in Taiwan are shown in Figure 2. The terrace deposits (21.7%), alluvium (8.8%), and
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Sanhsia group and its equivalents (7.7%) were the three main geological settings in Taiwan.
The main stratigraphical formations in the northern central mountain region include the
Oligocene-era Aoti formation, Oligocene-era Kankou formation, Eocene-era Szeleng sand-
stone, and Oligocene-era Tatungshan formation, and those in the southern central mountain
region include Eocene-era Hsitsun Formation, Hsinkao Formation, Miocene-era Lushan
Formation, late Miocene-era Sanhsia group and its equivalents, and late Paleozoic-era
Tananao schist. Most landslides were concentrated in central and southern Taiwan, espe-
cially in the five landslide-prone stratigraphical formations, including the Changchihkeng
Formation, Chaochou Formation, Pilushan Formation, Lushan Formation, and Tayuling
Formation. The occupied percentage of the five landslide-prone stratigraphical formations
in Taiwan is <30%, but the landslide area within the five landslide-prone stratigraphical
formations after 2009 Typhoon Morakot occupied >70% of the all landslide areas in Taiwan.
The main composition in the five landslide-prone stratigraphical formations are sandstone,
shale, and slate. Detailed information of geological settings in Taiwan is also shown in
Supplementary Materials.
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3. Materials and Method

The flow chart of this research is shown in Figure 3.
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3.1. Materials

The rainfall data for the period 2003–2017 used in this study were collected from 16
rainfall stations (Figure 1a). Eight rainfall stations, namely stations 1, 3, 5, 7, 9, 11, 13,
and 15, were located in the central mountainous region, which is the main spatiotemporal
landslide hot spot in Taiwan, and the other eight rainfall stations, namely stations 2, 4, 6, 8,
10, 12, 14, and 16, were located outside the central mountainous region and not within the
main spatiotemporal landslide hot spot. The data obtained from the 16 rainfall stations are
detailed in the Supplementary Materials.

A digital elevation model with a resolution of 5 m was used in the study to conduct
geomorphologic analyses. The delineation of subwatersheds in Taiwan (Figure 1b) was
based on the proposed delineation from the Soil and Water Conservation Bureau [34], which
is commonly used in research in Taiwan. The total area of 839 subwatersheds in Taiwan
ranges from 0.39 to 575.8 km2, with an average area of 42.9 km2. Multiannual landslide
inventories in 2003–2017 were generated by the Forestry Bureau in Taiwan by selecting
images captured by the FORMOSAT-2 satellite with a spatial resolution of 2–5 m in January
every year to identify landslides; this entails using a supervised classification method to
develop landslide inventories for the previous year [18]. The production process of the
annual distribution of landslides in 2003–2017 in Taiwan is shown in the Supplementary
Materials. The large-scale landslide case considered in this study had a landslide area of
>100,000 m2.

3.2. Rainfall Seasonality Index (RSI)

Climatic factors are key to the recovery and long-term evolution of landslides, and
the centralization of rainfall during the rainy seasons is a crucial factor that influences the
recovery of rainfall-induced landslides in Taiwan [8,9,23]. The rainfall seasonality index
(RSI) was used to measure the centralization of monthly rainfall in a year [36] and to assess
the relationship between rainfall centralization and the recovery of earthquake-induced
landslides in post-seismic periods [27]. The RSI is given [37] as follows:

RSI =
1
−
R

∑12
n=1

∣∣∣∣∣∣
−

Xn −
−
R
12

∣∣∣∣∣∣
(1)
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where
−
R is the average annual rainfall in the research period and

−
Xn is the average monthly

rainfall of the nth month in the research period. The centralization of monthly rainfall
based on the RSI is described in Table 1 [38].

Table 1. The explanation of the centralization of monthly rainfall based on the rainfall seasonality
index [36].

RSI Rainfall Regime

≤0.19 Very equable
0.20–0.39 Equable but with a definite wetter season
0.40–0.59 Rather seasonal with a short drier season
0.60–0.79 Seasonal
0.80–0.99 Markedly seasonal with a long drier season
1.00–1.19 Most rain in 3 months or less
≥1.20 Extreme, almost rain in 1–2 months

Note: The table was reprinted with permission from Ref. [37]. 1981, Walsh, R.P.D. and Lawler, D.M.

3.3. Landslide Spatiotemporal Cube Models

The annual landslide inventories in 2003–2017 and 2008–2017 in Taiwan were used to
construct the two spatiotemporal landslide cube models in this study, namely the 2003–2017
spatiotemporal landslide model and the 2008–2017 spatiotemporal landslide model. The
2003–2017 spatiotemporal landslide model was used to analyze the long-term evolution
of landslides in Taiwan, and the 2008–2017 spatiotemporal landslide model was used to
analyze the evolution of landslides caused by Typhoon Morakot. The basic unit in the
spatiotemporal cube models was data from the 839 subwatersheds based in Taiwan. The x
and y coordinates in the spatiotemporal cube model denote the x and y coordinates of the
centroid in the subwatershed scale image and represent the spatial dimensions in a specific
year. The term t denotes the time dimension. The landslide ratio in the subwatershed
for a specific year was calculated using the spatiotemporal cube model and was defined
as the ratio of the landslide area to the total subwatershed area. The process of building
the spatiotemporal landslide cube models is shown in the Supplementary Materials. The
spatiotemporal landslide cube models were developed using ArcGIS Pro software Ver 1.2,
and the data were converted to the NetCDF data format. The spatiotemporal hot spot
analyses were conducted using the NetCDF data set.

The Mann–Kendall test was used to measure the temporal trend of landslide ratio in
a specific basic unit in the two spatiotemporal cube models. The temporal trend meant
that the landslide ratio in a specific period had been increasing or decreasing over time.
The purpose of the Mann–Kendall test was to compare the landslide ratio in the specific
subwatershed between the current year and the previous year. A positive value, negative
value, or value of 0 in the Mann–Kendall test indicated an increasing trend, a decreasing
trend, or no obvious change, respectively, over time for the annual landslide distribution.

3.4. Spatial Cluster and Outlier Analysis

The spatial landslide pattern is key to identifying landslide-prone regions and deter-
mining landslide evolution. The Anselin Local Moran’s I index [38] was used to explore
the spatial clusters and outliers of landslides in space and time dimensions in the study.
Based on the calculations obtained using the Anselin Local Moran’s I index, the spatial
landslide pattern can be classified into six types, including a statistically significant cluster
of high values (only high–high cluster), a statistically significant cluster of low values (only
low–low cluster), an outlier in which a high landslide ratio value was surrounded by low
landslide ratio values (only high–low outlier), outlier in which a low landslide ratio value
was surrounded by high landslide ratio values (only low–high outlier), multiple types, and
never significant.
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3.5. Spatiotemporal Hot Spot Patterns

Spatiotemporal hot spot patterns are useful in explaining landslide evolution and can
be obtained by analyzing the spatiotemporal landslide cube models using the Space Time
Pattern Mining toolbox in Arc GIS Pro software Ver 1.2. This tool can be used to analyze
the distribution and patterns of multiannual landslide data in terms of both space and time.
A basic unit in the spatiotemporal landslide cube model represents the landslide ratio in a
specific subwatershed in a specific year, and all basic units were input into the emerging
hot spot analysis tool. The statistically significant values of each basic unit were used to
identify the types and spatiotemporal distribution of hot spots.

The hot spot analysis tool estimated the Getis-Ord Gi statistic for each basic unit in
the spatiotemporal models [39]. The pattern of the spatiotemporal landslide hot spots was
identified using the landslide ratio of the basic unit and the neighboring basic units in both
space and time. If the landslide ratios exhibited high (low) significant clustering, the basic
unit was identified as a hot (cold) spot. The statistical significance of each basic unit in the
spatiotemporal landslide models was determined based on the z-scores and p values for
the Getis-Ord Gi statistic [39]. If a basic unit had a high landslide ratio and was surrounded
by other basic units with high landslide ratios, the basic unit was identified as a significant
hot spot. Based on the z-score and p value of each basic unit in the spatiotemporal landslide
model, eight patterns of hot and cold spots, or no pattern, were detected. The eight hot or
cold spot patterns were new, consecutive, intensifying, persistent, diminishing, sporadic,
oscillating, and historical. The original definition of 8 patterns had been described on
the ESRI website [40], and the adjusted definition of 8 patterns which was suitable to
characterize the pattern of landslide evolution is shown in Supplementary Materials. The
new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating, and historical
hot spots were abbreviated as NHS, CHS, I, PHS, DHS, SHS, OHS, and HHS, respectively,
in this study.

The 2003–2017 spatiotemporal landslide model contained 12,585 basic units, and
the 2008–2017 spatiotemporal landslide model contained 8390 basic units. The spatial
neighborhood distance and time step were set as 13.6–14.2 km and 5 years, respectively.

4. Results
4.1. Long-Term Spatial and Temporal Distribution of Rainfall and Landslide Data in 2003–2017

The annual rainfall distribution data for 2003–2017 were obtained from the 16 rainfall
stations (Figure 1a) in Taiwan and are presented in Figure 4. The complete data obtained
from the 16 rainfall stations are presented in the Supplementary Materials. The average
annual rainfall in 2003–2017 (2993.3 mm) was slightly higher (by 56.9 mm) than that in
2008–2017 (2930.5 mm). The average annual rainfall at the eight rainfall stations in the
central mountainous region in 2003–2017 (3158.7 mm) was slightly higher (by 330.8 mm)
than that at the eight rainfall stations outside the central mountainous region (2827.9 mm).
The average ratios of the accumulated rainfall in the rainy season (from May to October)
to the annual rainfall in 2003–2017 at the eight rainfall stations inside and outside the
central mountainous region were 79.0% and 80.7%, respectively. The data indicated that
the average accumulated rainfall in the rainy season from 2003–2017 at the eight rainfall
stations in the central mountainous region was higher by 213.3 mm than that at another
eight rainfall stations outside the central mountainous region. The three largest differences
in average annual rainfalls recorded in 2003–2017 between the rainfall stations in and
outside the central mountainous region were 1803 mm (No. 11 and No. 12 rainfall stations
located in southeastern Taiwan), 1172 mm (No. 13 and No. 14 rainfall stations located
in southwestern Taiwan), and 464.3 mm (No. 1 and No. 2 rainfall stations located in
northern Taiwan). The distribution of annual rainfall recorded at the 16 rainfall stations in
2003–2017 in Taiwan was oscillating, especially in southern Taiwan. The annual rainfall
recorded at rainfall station No. 13 in 2005 and 2011 was 7012 and 1832 mm, respectively,
and the difference in annual rainfall between 2005 and 2011 was 5180 mm, 1.21 times the
average annual rainfall. Furthermore, the temporal distribution of rainfall in the central
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mountainous region in southern Taiwan in 2003–2017 was obviously different from that
outside the central mountainous region.

The annual number of landslides and their temporal distribution in 2003–2017 in
Taiwan are shown in Figure 5. The annual landslide area in 2003–2017 in Taiwan ranged
from 216.1 km2 in 2008 to 623.1 km2 in 2009, and the average annual landslide area was
estimated to be 424.1 km2. The average landslide ratio (i.e., the ratio of landslide area
to total area) in Taiwan in 2003–2017 was 1.15%. Based on the analysis of landslides in
Taiwan, areas with a landslide ratio of >1.0% can be considered areas with serious disaster
occurrence [3]. The annual number of landslides in Taiwan ranged from 19,041 in 2008 to
51,898 in 2013, and the average annual number of landslides was estimated to be 32,070.
The average landslide density in Taiwan in 2003–2017 was estimated to be 0.87/km2. The
annual number of large-scale landslides in 2003–2017 in Taiwan ranged from 279 in 2003 to
1036 in 2009, and the average number of large-scale landslides was estimated to be 638.5.
Thus, for 2003–2017, Taiwan is regarded as a region with a serious disaster occurrence,
especially for the period of 2009–2017.
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Taiwan has a nonuniform temporal distribution of annual and monthly rainfall, es-
pecially in southern Taiwan. The RSI was used to quantify the centralization of monthly
rainfall at the 16 rainfall stations. Table 2 presents the average RSI values at the 16 rainfall
stations in 2003–2017 in Taiwan. The rainfall stations located in the central mountainous
region that recorded the top three highest RSI values were stations No. 13 (RSI = 0.78),
No. 15 (RSI = 0.74), and No. 9 (RSI = 0.73). These three rainfall stations recorded relatively
dry seasons (Table 1). High RSI values enable faster remobilization of sediment yield
after severe landslide events [37]. The monthly rainfall regime in 2003–2017 in western,
southwestern, and southern Taiwan exhibited obvious centralization, which implies that
recovery after landslides in these three regions is more difficult and slower than in other
regions in Taiwan.

Table 2. The rainfall seasonality index value in each region in Taiwan from 2003–2017.

No. of RS 1 Region RSI No. of RS 1 Region RSI

1 Northern
Taiwan

0.62 9 Western
Taiwan

0.73
2 0.36 10 0.84
3 Eastern

Taiwan
0.47 11 Southeastern

Taiwan
0.76

4 0.65 12 0.70
5 Western

Taiwan
0.56 13 Southwestern

Taiwan
0.78

6 0.78 14 0.94
7 Eastern

Taiwan
0.64 15 Southern

Taiwan
0.74

8 0.45 16 0.64
Note: 1 means the number of rainfall stations in Figure 1a.

4.2. Landslide Spatialtemporal Cube Model and Trend

The 2003–2017 landslide model contained 12,585 basic units, and the 2008–2017 land-
slide model contained 8390 basic units. The results of the Mann–Kendall trend test for the
two models are presented in Figure 6. In the 2003–2017 landslide model, 13.2%, 11.6%,
and 75.2% of the subwatersheds accounted for upward, downward, and nonsignificant
trends, respectively, whereas in the 2008–2017 landslide model, the corresponding per-
centages were 9.3%, 11.9%, and 78.8%, respectively. The subwatersheds exhibiting the
upward trend in the 2003–2017 and 2008–2017 landslide models were concentrated in the
central mountainous region of Taiwan, especially in southern Taiwan. This region was also
severely affected by Typhoon Morakot. The subwatersheds exhibiting the downward trend
in the 2003–2017 and 2008–2017 landslide models were spread across Taiwan and located
outside the central mountainous region. The data indicated that the long-term evolution of
landslides over 2003–2017 exhibited no obvious change after Typhoon Morakot in 2009,
and that the landslide-prone subwatersheds were concentrated in the central mountainous
region of Taiwan (i.e., upstream of the river watershed).
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2008–2017 (right).

4.3. Results of Spatial Clusters and Outliers

The distributions of the spatial landslide clusters and outliers in the 2003–2017 and
2008–2017 landslide models were analyzed using the local outlier analysis tool with a
neighborhood time step of 5 years and 499 permutations in ArcGIS Pro software Ver 1.2.
The results are shown in Figure 7. The high–high landslide cluster was still concentrated
in the central mountainous region, whereas the low–low cluster was concentrated in the
plains in west and north Taiwan. The statistical results of the spatial landslide cluster and
outlier analyses are shown in Table 3.

A total of 447 and 502 subwatersheds were identified as significant spatial clusters
(only high–high and only low–low) in the 2003–2017 and 2008–2017 landslide models,
respectively. The only high–high cluster was distributed in the central mountainous
region of south Taiwan in 2003–2017 and 2008–2017. This finding indicates that the central
mountainous region in southern Taiwan was an originally landslide-prone region. The
number of subwatersheds identified as having multiple types of patterns was 214 in
2003–2017 and decreased to 137 in 2008–2017; by contrast, the number of subwatersheds
designated as never significant increased from 101 to 142, and the number designated as
only the low–low cluster type increased from 241 to 305. The subwatersheds designated
as multiple types in 2003–2017 and later identified as never significant, and only the
low–low cluster type in 2008–2017 were mainly distributed in northern Taiwan. The
number of subwatersheds designated as only the high–high cluster type in the 2008–2017
landslide model in north Taiwan was smaller than that in the 2003–2017 landslide model.
This result indicated that the landslide recovery rate in northern Taiwan was gradually
improving because the sediment deposition disaster caused by Typhoon Morakot was
mainly distributed in southern Taiwan (see the annual landslide distribution in 2009–2017
in Supplementary Materials). The number of subwatersheds marked as only high–low
outliers declined from 2003–2017 to 2008–2017, and these subwatersheds were mainly
distributed in the piedmont regions across Taiwan. Only nine and five subwatersheds were
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designated as only low–high outliers in the 2003–2017 and 2008–2017 landslide models,
respectively, and these subwatersheds were mainly distributed in southern Taiwan.
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Table 3. Statistical data of landslide spatial clusters and outlier analyses in Taiwan.

Type Numbers of Sub-Watersheds

2003–2017 2008–2017

Mul. * 214 137
NS * 101 142
HH * 206 197
HL * 68 53
LH * 9 5
LL * 241 305

Note: * The Mul., NS, HH, HL, LH, and LL mean multiple, never significant, only high-high cluster, only high-low
outlier, only low-high outlier, only low-low cluster types.

4.4. Landslide Spatiotemporal Hot Spot Analyses

The distribution and pattern of the spatiotemporal landslide hot spots in the 2003–2017
and 2008–2017 landslide models obtained using the emerging hot spot analysis tool in
ArcGIS Pro software are shown in Figure 8. The statistical data of the spatiotemporal
landslide hot and cold spots in Taiwan are presented in Table 4. The percentages of
subwatersheds marked as hot spots in the 2003–2017 and 2008–2017 landslide models
were 24.2% and 22.6%, and those of subwatersheds marked as cold spots were 50.1% and
52.8%. The landslide hot spots in the 2003–2017 and 2008–2017 landslide models were
concentrated in the central mountainous region, but the pattern of spatiotemporal landslide
hot spots in the 2003–2017 landslide model was obviously more concentrated than that
in the 2008–2017 landslide model. The spatiotemporal hot spot pattern of subwatersheds
accounting for >1.0% in the 2003–2017 landslide model included the consecutive hot spot
(13.2%), intensifying hot spot (6.0%), persistent hot spot (1.8%), oscillating hot spot (1.5%),
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and sporadic hot spot (1.0%), but the pattern in the 2008–2017 landslide model included
only the consecutive hot spot (21.9%).
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Table 4. Occupied percentage of landslide spatiotemporal hot spots and cold spots in 2003–2017 and
2008–2017 in Taiwan.

Pattern
Occupied Percentage

Pattern
Occupied Percentage

2003–2017 2008–2017 2003–2017 2008–2017

Cold spot 50.1 52.8 Hot spot 24.2 22.6
CCS 15.5 44.0 CHS 13.2 21.9
DCS 0.0 0.0 DHS 0.4 0.0
HCS 0.0 0.0 HHS 0.0 0.0
ICS 30.5 8.2 I HS 6.0 0.0
NCS 0.0 0.2 NHS 0.4 0.5
OCS 0.0 0.0 OHS 1.5 0.0
PCS 1.2 0.0 PHS 1.8 0.0
SCS 2.9 0.4 SHS 1.0 0.2

No pattern 25.7 24.6

The trend and pattern of the distribution of landslide cold spots in the 2003–2017 and
2008–2017 models were similar to those of the distribution of landslide hot spots. The
spatiotemporal cold spot pattern of subwatersheds accounting for >1.0% in the 2003–2017
landslide model included the intensifying cold spot (30.5%), consecutive cold spot (15.5%),
sporadic cold spot (2.9%), and persistent cold spot (1.2%), but the pattern in the 2008–2017
landslide model only included the consecutive cold spot (44.0%) and intensifying cold
spot (8.2%). The percentage of subwatersheds marked as having no pattern was 25.7%
and 24.6%, respectively, in the 2003–2017 and 2008–2017 models. This result indicated
that the spatiotemporal landslide hot spots were still primarily distributed in the central
mountainous region of Taiwan.
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5. Discussion

A comparison of the spatial and temporal distribution of landslide stability after severe
landslide events induced by large-scale earthquakes and extreme rainfall can help clarify
the characteristics of landslide recovery. Some studies [10,12,19,26] have elucidated the
spatial and temporal distribution of landslide stability using the landslide recovery rate
after large-scale earthquake-induced landslide events. The landslide recovery rate was
defined as the ratio of the difference between the landslide area in a specific year and the
landslide area in an earthquake-induced or rainfall-induced landslide year to the landslide
area in an earthquake-induced or rainfall-induced landslide year. A comparison of the
annual landslide recovery rate between earthquake-induced and extreme rainfall-induced
landslide areas can reveal the characteristic differences between earthquake-induced and
rainfall-induced landslide recovery.

The annual landslide recovery rate in northern Sichuan Province, China, in the first
two years after the 2008 Wenchuan earthquake, was estimated to be 13.45%, and that in
the third to eighth years was estimated to be 10.56% [41]. The landslide recovery rates in
northern Pakistan in the fifth, ninth, eleventh, and thirteenth years after the 2005 Kashmir
earthquake were 9.5%, 43.8%, 50.2%, and 61.3%, respectively [10]. Typhoon Morakot in
2009 was the most severe rainfall-induced landslide event during 2003–2017 in Taiwan.
The number of landslides and the area affected in 2008 in Taiwan were estimated to be
19,041 and 167.1 km2, respectively, and those in 2009 were estimated to be 33,274 and
502.2 km2, respectively. The mean annual landslide ratio of 839 subwatersheds in 2009
in Taiwan was estimated to be 1.33%, and that in the first to second years and third to
eighth years after Typhoon Morakot ranged from 1.01% to 1.06% and 0.71% to 1.01%,
respectively. The landslide recovery rate in the first to second years after Typhoon Morakot
in the 839 subwatersheds was estimated to be 22.2%, and that in the third to eighth years
was estimated to be 31.6%.

The landslide recovery rate in the landslide-affected subwatersheds in the study
was estimated to assess the actual landslide recovery after Typhoon Morakot in Taiwan.
Subwatersheds were defined as “landslide affected” if their landslide ratio in 2009 was
larger by at least 0.3% than that in 2008. The 278 landslide-affected subwatersheds were
distributed in southern Taiwan (Figure 9). The mean landslide ratio in the 278 landslide-
affected subwatersheds in 2009 was larger by 2.86% than that in 2008. The annual landslide
recovery rates of the landslide-affected subwatersheds from 2010 to 2017 are shown in
Figure 9. The landslide recovery rate of 278 landslide-affected subwatersheds in the first to
second years after Typhoon Morakot was 31.6%, and that in the sixth to eighth years was
47.7%. The recovery rate of landslides induced by extreme rainfall events in Taiwan was
larger than that of landslides induced by large-scale earthquake events in the world [10,42].
The landslide recovery rate of the subwatersheds with a landslide ratio >3.0% in 2009
was larger than that of all landslide-affected subwatersheds. By contrast, the landslide
recovery rate of the subwatersheds with a landslide ratio <3.0% in 2009 was lower than
that of all landslide-affected subwatersheds. Furthermore, the landslide recovery rate of
the subwatersheds with a landslide ratio >3.0% in 2009 in the first two years after Typhoon
Morakot was 35.4%, and that in the sixth to eighth years was 53.7%. The trend of the
landslide recovery rate increased after Typhoon Morakot, but the landslide recovery rates
in 2013, 2016, and 2017 showed a declining trend.
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Figure 9. Distribution (a) and the annual landslide recovery rate (b) of 278 landslide-affected sub-
watersheds after the 2009 Typhoon Morakot in Taiwan.

Two subwatersheds, namely the Taimali upstream subwatershed and the Kaoping
upstream subwatershed (Figure 9a), were selected as examples to assess the spatial distri-
bution of landslide recovery after Typhoon Morakot in 2009. The number of landslides and
landslide ratios after Typhoon Morakot in the Taimali upstream subwatershed were 353
and 24.5%, respectively, and those in the Kaoping upstream watershed were 165 and 15.9%,
respectively. The Taimali upstream subwatershed and Kaoping upstream subwatershed
were listed among the top five subwatersheds with the most severe landslide disasters
after Typhoon Morakot in Taiwan. Landslide frequency [9] was defined as the total number
of landslides that occurred from 2010 to 2017 in the study. The distribution of landslide
frequency in the two subwatersheds from 2010 to 2017 is presented in Figure 10. The mean
frequency of landslides in the Taimali and Kaoping upstream subwatersheds induced by
Typhoon Morakot was 4.32 and 1.58 years, respectively, and outside the landslide area
was 2.24 and 2.41 years, respectively. This result indicates that the landslide recovery time
inside the area of the landslide induced by Typhoon Morakot was longer than that outside
the landslide area (i.e., the new or enlarged landslide area from 2010 to 2017). Most areas
with a high landslide frequency, especially for large-scale landslides, were located in the
source area of the landslide induced by Typhoon Morakot. Landslides induced by Typhoon
Morakot in the Taimali and Kaoping upstream watersheds accounted for 96.9% and 73.5%
of the high landslide frequency grids (i.e., landslide frequency > 5), respectively, inside
the landslide area. Moreover, landslides induced by Typhoon Morakot in the Taimali and
Kaoping upstream watersheds accounted for 69.2% and 58.9%, respectively, of the low
landslide frequency grid (i.e., landslide frequency < 3) inside the landslide area. The grid
with a landslide frequency value outside the area of the landslide induced by Typhoon
Morakot covered the bank area of sinuous reaches, gully areas, and the boundary of the
original landslide area. This result indicated that the area along the sediment transport path
was the main region of occurrence of secondary geohazards after extreme rainfall-induced
landslide events.
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Figure 10. Distribution of landslide frequency from 2010 to 2017 in the Taimali upstream sub-
watershed (a) and Kaoping upstream sub-watershed (b).

The recovery of most of the subwatersheds with a landslide ratio >5% in 2009 in
southern Taiwan was difficult in the landslide hillslope, and this was related to four factors,
namely landslide-prone geological settings, abundant rainfall during Typhoon Morakot,
temporal nonuniform monthly rainfall, and sediment yielded from numerous landslides
being deposited on the landslide hillslope or transported to the rivers. Most of the sub-
watersheds with a landslide ratio of >5% in 2009 were located in the Lushan Formation,
Histsun Formation, Hsinkao Formation, and Sanshia Group and its equivalents (Figure 2).
The aforementioned three sediment formations contain shale, sandstone, and slate and are
prone to landslides. During Typhoon Morakot in southern Taiwan, the rainfall total was
estimated to be >2000 mm in 3 days [3]. The abundant rainfall at these landslide-prone
geological formations may have resulted in a severe landslide disaster in 2009 in southern
Taiwan, and huge amounts of sediment from this landslide area were deposited on the
landslide hillslope or transported to creeks or rivers. This observation can be verified
by the finding that the core areas of large-scale landslide cases or the vicinity of creeks
or rivers had high landslide frequencies in 2010–2017 (Figure 10). The RSI values at the
rainfall stations for the subwatersheds with a landslide ratio >5% in 2009 (Figure 9a) were
>0.70 in 2010–2017, which indicated that most of the rainfall occurred in the rainy season.
The seasonal rainfall regime also affects the stability of sediment in southern Taiwan. The
sediment in these areas was unstable, and rainfall events with low accumulated rainfall
could induce landslides on the hillslope or transport sediment to the rivers. Therefore, the
core areas and boundaries of large-scale landslides and the vicinity of creeks and rivers had
high landslide frequencies. This was also why the consecutive and intensifying pattern of
spatiotemporal landslide hot spots was observed in southern Taiwan. The spatiotemporal
analysis of landslide evolution helped characterize the patterns of landslide hot spots and
revealed the reason for the difficult and slow recovery after landslides in these regions.

The composition change of soil grain before and after the 2009 Typhoon Morakot in the
upstream watershed was also obvious. Most sediment yield from landslides during 2009
Typhoon Morakot was deposited in the down hillslope or transported into the rivers in the
upstream watersheds. However, the fine sediment in the sediment deposition in the down
hillslope or in the riverbed was gradually transported downstream after several heavy
or flooding events after the 2009 Typhoon Morakot [43]. The composition of sediment
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deposition in the down hillslope or in the river became coarse. The coarse sediment
deposition in the river also became an armor layer.

The mechanisms and triggering factors of secondary geological hazard, and the char-
acteristics of long-term evolution can be explored by using the spatiotemporal hot spot
analysis method based on the results in this study. The findings in this study can be referred
to or used in other countries that had faced a serious landslide disaster in the past few
years, such as the serious landslide disaster caused by heavy rainfall events in July 2020 in
southern Japan, including Kumamoto, Nagano, and Kagoshima Prefectures.

The main reasons for the dense landslide caused by the 2009 Typhoon Morakot in
Taiwan were extreme rainfall and subsequent flooding. Besides designing engineering to
reduce or prevent secondary geological hazards, it is also important to reduce the flooding
impact caused by extreme rainfall events in Taiwan [43,44]. Planning flood detention ponds
and increasing the riverbed roughness coefficient have been proven to lower the impact of
flooding on the safety of human life and property [45,46]. It is also important to examine
the drainage ability of each reach or river in the upstream watershed in Taiwan under
possible climate change conditions [47].

6. Conclusions

The study period (1990 to 2020) recorded the highest landslide density in the history
of Taiwan. The Chi-Chi earthquake in 1999 and several extreme rainfall events resulted in
severe landslide disaster events in Taiwan. Therefore, investigating the long-term evolution
of landslides and secondary geological disasters is valuable. Based on the analysis using
long-term rainfall records and annual landslide inventories for 2003–2017, recovery after
landslides was the most difficult in the central mountainous region and southern Taiwan.
These regions were also the densest landslide areas during Typhoon Morakot in 2009.
The monthly rainfall regimes in the central mountainous region and southern Taiwan
are obviously seasonal, making the sediment in these areas unstable. The Mann–Kendall
trend test indicated that half of the subwatersheds that exhibited an upward trend of
landslide evolution in 2003–2017 were concentrated in the central mountainous region and
southern Taiwan. Furthermore, the subwatersheds with the high–high landslide cluster
type were also located in the central mountainous region and southern Taiwan based on
the spatial cluster and outlier analyses. The main patterns of spatiotemporal landslide
hot spots in the central mountainous region and southern Taiwan were consecutive and
intensifying. A comparison of landslide recovery rates between regions with large-scale
earthquake-induced landslides and extreme rainfall-induced landslides showed that the
recovery rate of regions affected by extreme rainfall-induced landslides in Taiwan was
higher than that of regions affected by large-scale earthquake-induced landslides in the
world. Rainfall-induced landslides were widely distributed in unstable areas of the central
mountainous region and southern Taiwan during Typhoon Morakot in 2009 and gradually
moved to the core and boundaries of large-scale landslide hillslopes and the vicinity of
creeks and rivers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15071355/s1. References [48,49] are cited in the Supplemen-
tary Materials.
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Abstract: A three-dimensional engineering geological model (EGM), which provides an approxima-
tion of the geological conditions, is a key element in any engineering project. The slope at Huafan
University, Mt. Dalun, in the Western Foothills of northern Taiwan, is a dip slope that has been
assumed to be unstable. The bedrock is mainly composed of intercalated sandstone and shale, where
the thickness of the sandstone varies from thin to massive, interbedded with shale from the Miocene
age. By interpolating the thickness of the colluvium derived from borehole data and analyzing the
contours of the interpolation surface result, we find that the landslide material accumulates at the
slope foot, towards the southwest in the direction of movement. Due to tectonic control—in particular,
considering the two local faults that pass through the study area—the strata’s orientation significantly
changes over the studied slope. As a basis for the 3D EGM, polynomial surface fitting is applied
for detailed analysis of the sub-surface geological structure, as well as to compute the regressive
orientation of the bedding plane derived from the borehole data. Based on the calculated regression
plane passing through the elevations of the geological interface (key bed), the results indicate that
the regression plane’s direction is consistent with the outcrop measurements. Moreover, several
cross-sectional profiles are considered to visualize and clarify the 3D EGM. Finally, surface and sub-
surface monitoring data are compared with the result, in order to refine the 3D EGM. The proposed
geological model is expected to contribute to the comprehensive understanding of gravitational slope
deformation, and may serve as a guideline to minimize potential disasters.

Keywords: landslides; 3D engineering geological model; grid- and vector-based; surface and
subsurface displacement monitoring; failure mechanisms; geotechnical engineering design

1. Introduction

An engineering geological model (EGM) is, according to the IAEG C25, an approx-
imation of the geological conditions created for the purpose of solving an engineering
problem [1], and it is an element of utmost importance in an engineering project [2].

Traditionally, geological maps and geological profiles are used as geological models,
representing the sub-surface 3D structure in a two-dimensional manner [3], in order to
communicate complex spatial geological information [4]. However, it is quite difficult for a
broader audience without extensive geological knowledge to conceive of and comprehend
sub-surface geological information through a two-dimensional (2D) view. Although skilled
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geologists know how to translate 2D information into three-dimensional (3D) information
qualitatively or conceptually, inaccurate and sometimes incorrect translation may still
occur [5]. Moreover, limited geological profiles are not necessarily coincident with the
critical cross-sections that are important to a given engineering project. The shortcomings
of this traditional presentation mode include: (1) Being unfavorable for communication
between geologists and engineers, due to the knowledge gap; (2) when hard data (e.g., out-
crops or boreholes) are lacking, it is difficult to obtain the geological profiles required
for engineering design; (3) difficulties in constructing the 3D geometry for 3D numerical
simulations; and (4) the monitoring results may be hard to interpret. Therefore, a 3D EGM
may essentially contribute to better sub-surface understanding in engineering projects
such as natural hazard assessment, underground work planning, hydrogeological analysis
for aquifer recharge assessment, and so on [6]. Such 3D EGMs play a significant role in
visualizing and communication, synthesizing all available data, and providing more accu-
rate representations of specific geological conditions or simulating stratified geology [7–9],
as well as allowing engineering geologists to test the validity of geological assumptions
or hypotheses.

Three-dimensional EGMs have widely been used over the past 40 years, mainly in
the hydrocarbon and mining industries [10]. They have also been used extensively for
groundwater flow modelling (see, e.g., [11–13], especially for Quaternary sedimentary
rocks. Although quite a few studies have applied 3D EGMs for civil engineering purposes
in urban areas (e.g., [6]), 2D EGMs are still used for most landslide studies. The more
efficient 3D EGMs, however, have recently been increasingly used in landslide research;
for example, to reconstruct the spatial structure of a landslide [14,15], or to integrate the
3D geology of sub-surface geometry and properties to visualize landslide susceptibility
and evaluate the risk of natural landslides [16–18]. Moreover, Gu et al. [18] have calculated
the stability of each unit after establishing a 3D EGM to generate regional slope stability.
Li et al. [19] have created a 3D EGM of a landslide, in order to assess the relationship
between landslide deformation and groundwater level change beneath the sliding surface.
The application of a 3D EGM in geologically vulnerable areas that might lead to disaster
landslides is necessary, as the potential presence of peculiar geological properties influenced
by the geometry of the bedrock and overlying soil can create unstable slopes, leading to a
reduction in the resistance forces that retain them. The geological features and structures
are the most important factors in the movement development of a rock mass [20]. Landslide
deformation patterns and the processes that cause them can be determined through analysis
of the geometry of the bedrock, the interior layers, and the slip surfaces [21,22], which can
be detected from a 3D EGM. However, studies considering the monitoring and mitigation
of landslides based on a critical 3D EGM remain rare, and determination of the surface or
sub-surface displacement of slope mass is still a difficulty. Therefore, there is not yet any
meaningful cohesiveness in the relevant literature.

Three methods can be used to model a 3D EGM of sedimentary rocks [3]: (1) Using
borehole observations to create a triangle defining a surface. In geographic information
system (GIS) terms, this is a triangulated irregular network (TIN); (2) by applying any
of several surface-generation and contouring procedures to the borehole observations; or
(3) by developing a series of parallel or intersecting interpretive cross-sections between
boreholes, in order to better control the surface geometries. These surfaces can be modelled
using grid-based methods [13] or vector-based methods [23]. Generally, the geological
data derived from borehole or stratigraphic sections are processed to form discrete points.
To make full use of these points, a grid-based method with geological contour can be
carried out in the map [24]. Grid-based methods use a mesh that is either regularly spaced
(triangular, square, or rectangular), or has angular grids that are consistently spaced. Grid
layering is used to simulate planes (e.g., paleo-depositional surfaces or bedding planes,
which should possess continuity). In particular, a GIS grid-based data model may be used
to describe slope-related items such as strata, sliding surfaces, and groundwater-surface
in 3D slope models in slope stability research [25]. Additionally, the bounding surface in
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vector-based methods computes the elevations of the contour surfaces utilizing complicated
geo-modelling computations. This means that each contour line must be properly digitized,
in the form of (X, Y) pairs along each contour line of specified elevation [26] (Moore et al.,
1993). The vectorial foundation of the model structure is very adaptable and reasonably
simple to modify computationally. Hence, a complete modelling system that integrates grid-
and vector-based methodologies to stimulate the natural geological structure is required.
These combined capabilities provide the essential framework and a degree of trust for a
3D EGM.

To build a reliable 3D model, all accessible geological data should be reconciled [27].
Borehole data can clearly reveal the stratification of the underlying rock, allowing for direct
observation of samples [3], and are currently utilized to create 3D EGMs [7,13]; however,
the construction of a 3D EGM is still a challenging task for engineering geologists.

In this study, an example of an ancient, recently re-activated landslide is presented,
in order to argue the necessity of a 3D EGM for its comprehensive understanding. The
3D model building process calls for complex feedback between the interpretation of the
data (observational model approach) and the model (conceptual model approach). In
the interpretation, the 3D framework forces us to make interpretive decisions that would
be left on the side in map-based or cross-section interpretations [5]. The slope on which
Huafan University, in the Mt. Dalun region of Taiwan, is located, has been identified as a
possible unstable dip slope. Numerous site investigation projects have been carried out, in
order to understand the sub-surface geology and possible landslide mechanisms. There
are almost 50 drilling boreholes from diverse sources. Moreover, extensive monitoring
systems including surface and sub-surface displacement measurements, groundwater
table measurements, and rainfall measurements, indicating a creep phenomenon in the
study area [28–30]. However, the monitoring data are mainly compared with geological
profiles or plan view of the landslide boundary in a two-dimensional manner. Although
3D numerical modelling has been conducted [29], the sliding surface determined from
inclinometer was used to define the model boundary without incorporating a 3D EGM.
The design of drainage wells, which has been carried out by a local consultant company,
was also based on two-dimensional information. This indicates that previous studies have
not provided a comprehensive geological model for the entire area, in the form of a 3D
EGM. Therefore, the 3D EGM presented in this paper provides a comprehensive geological
model for the sloping area, which can help to determine the potential landslide extent. This
is crucial for anticipating the failure mechanism and assessing the slope’s stability; it may
also serve as a guideline for future civil engineering and geotechnical methods aimed at
preventing landslides.

2. Study Area

Mt. Dalun is located in northern Taiwan’s Western Foothills belt. The Huafan Univer-
sity campus is built on the upper part of the mountain, and it is elevated between 240 and
580 m above sea level. This location is the headstream of the Pengshan River (Figure 1).

According to the 1:50,000 geological map published by the Central Geological Survey
of Taiwan [31], the main exposed strata near the study area are those of the Mushan
Formation (Ms) in the early Miocene age. One of the prominent lithological features is
“white sandstone” (orthoquartzite). These sandstones are mainly composed of quartz,
indicating a continental shelf sedimentary environment. The sandstones in the Mushan
Formation are fine- to coarse-grained, mostly in thick or massive layers with thicknesses of
8–20 m, and usually have an obvious cross-bedding sedimentary structure. Grayish black
shale or thin beds of sandstone are well-developed, often alternating with thick sandstones
to form interbeds [28]. The bedding plane with the strike of the rock is roughly in the
east–west direction, and is inclined between 10◦ and 20◦ to the south, being consequent to
the topographical slope [29,31].
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main colluvium is distributed; potential sliding blocks are estimated to occur within this area.

There are three major faults in the study area: The Hsiaokotou Fault, the Chuchih
Fault, and the Tungshihko Fault. The Hsiaokotou and Chuchih Faults are thrust faults
with a strike along ENE–WSW, trending and dipping to the southeast. The fault traces are
intercepted by the left-lateral, strike-slip Tungshihko Fault with NE trend.

The geological structure and local lithology have determined the topographical fea-
tures in the study area. The topography is defined by mountain ranges in the form of a bowl
that trends northeast–southwest and has a surface slope of 20–25◦. The catchment area in
Mt. Dalun is represented by the mountain ridgelines that resemble the shape of a bowl
on the terrain. The surface runoff within the mountain ridgelines flows down to streams,
consisting of nature erosion gullies (marked as blue lines in Figure 1) on the slope surface.

By means of thorough site investigations, Jeng and Sue [28] have documented two
minor faults which influence the local geological structure: (1) The Nanshihkeng Fault is
a thrust fault with trace trending northeast and with a fault plane dipping 60–70◦ to the
southeast; and (2) the A Fault is an oblique-slip fault truncated by the Nanshihkeng Fault.
The strike is roughly NW–SE and dipping to the south with a dip angle of 65–70◦. The A
Fault is likely a normal fault with a left-lateral slip component, with its footwall relatively
throwing up. Two sets of joints cut the bedrock, whose strikes are average NW–SE and
NNE–SSW, thus being roughly parallel to the two local aforementioned faults [29].

Based on the results of the site investigation [28], the bedrock of the study area is
overlaid by colluvium (slope wash), thick (more than 40 m) ancient landslide deposits (to
the southeast of the study area), and artificial fill materials (ranging from 10 to 20 m). Due to
the thick colluvium and fill materials, rock outcrops in the study area can only be found in
eroded creeks or on the artificially excavated surfaces. In areas with thick landfill (e.g., the
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northeastern part of the study area), such as the sports ground and basketball court of
Huafan University, surface displacement is significant due to inadequate compaction of the
filled land or sliding along the bottom of the landfill [28,30]. These creeping areas revealed
multiple listric sliding surfaces [30].

Due to the unstable slope and existing landslide potential in Mt. Dalun region, a
monitoring system has been in operation since 2000, in order to determine the slope failure
mechanism and to enhance the effective risk management. This includes inclinometer
casings, standpipes for groundwater pressures, rainfall gauges, and a nail network for
surficial deformation of the slope. To measure the sub-surface displacement and possible
depth of sliding surfaces, every inclinometer casing in the borehole is recorded every
month. Every six months, a network of monitoring points on the slope surface enables the
measurement and monitoring of surficial displacement. It is possible to link changes in
slope displacement to changes in the groundwater table and the magnitude of earthquakes
by monitoring these variables after heavy rainfall or earthquakes. In addition, a counter-
measure system has also been implemented in order to diminish the slope moment and
to prevent the failure of the slope, including a drainage system and ground anchors. The
installed drainage systems, comprising catch pits and trenches for collecting groundwater,
have been carried out by a local consultant company, in order not to allow the water table
to increase and submerge the sliding surface. In the future, it may be necessary to expand
the number of drainages to ensure the safety of the slope.

3. Methodology to Develop a 3D EGM

The data used to develop the 3D EGM included: (1) field works; (2); interpretations
of borehole cores; and (3) airborne LiDAR data. The field data included existing ground-
surface geological map provided by numerous geologists, publicly available data collected
by companies over dozens of years [28,30], and field investigation data obtained during
field trips Mt. Dalun. The approach is described in detail below, following the flow chart
depicted in Figure 2.

3.1. Topography Analysis

Based on a high-resolution (1 m) LiDAR DEM, a topographic map of the study area
was generated with contour line interpretation. Moreover, the large-scale topographic
features, such as geological structures, scarp, hummocky topography, and gully paths
could be detected. We also analyzed the terrain in an attempt to anticipate the distribution
of sandstone outcrops.

3.2. Field Investigation

The field investigation was a critical step to identify the interface between the collu-
vium and bedrocks, the boundaries of rock units, and bedding planes’ orientation. We
divided the field investigation into two stages. The first stage was a general overall view
of the slope, including a preliminary assessment of terrain features and landforms and
collecting outcrop information along the road in the eastern part (Figure 1). We examined
classifications of lithological unit, discontinuity features, rock masses, and deposits on
outcrops. In the second stage, we investigated the fields along the Pengshan River, near
the toe of the slope, in order to evaluate the rock outcrop lithology for certain characteris-
tics of rock unit classification, and investigated the dipping direction of the exposures of
sedimentary strata on both sides of the riverbed. This work aims to confirm whether the
type of exposure belongs to the in situ rocks or moving blocks that were deposited after
ancient landslides in the past. The information gained from the field investigations and the
geological map provide basic data for the establishment of a geological model in the study
area. In addition, the field investigation aimed to re-examine and compare our geological
records with those obtained in earlier investigations.
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3.3. Borehole Data Analysis

The 3D EGM developed in this study was mainly based on the stratigraphic column
interpreted from rock cores. Drilling data from 50 boreholes of various depths were utilized
for the analysis. The main process of borehole data analysis was as follows:

(1) Borehole data quality check. To begin, we thoroughly checked the reported locations
and elevations of the boreholes, in order to ensure the correctness of the basic informa-
tion. If the X and Y input values were inaccurate, the elevation of each borehole will
be changed significantly, such that the elevation of the rock unit boundary will also be
misjudged. The TWD97 TM2 (i.e., Taiwan Datum 1997, 2-degree Transverse Mercator)
coordinate system was employed in this work, in order to ensure data coherence. As
a result, this step is critical for further analysis. We used the LiDAR DEM to obtain
the elevations (i.e., Z values) of the boreholes at given horizontal coordinates (i.e., X
for E–W direction and Y for N–S direction), and compared them with the documented
elevations of boreholes. In addition, the quality of the rock core must not have been
significantly impacted by weathering (i.e., preserved in fresh bedrock) or shearing
or fracturing by tectonic processes. We preferred boreholes with an adequate depth,
which permit comparisons between a sequence of units in different boreholes. Only
the boreholes that passed this checking step were used for subsequent 3D EGM de-
velopment. In this way, we ensured that only reliable borehole data were considered
prior to the following steps.
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(2) Rock unit classification. The fundamental interpretation consisted of lithology identi-
fication and rock unit boundary determination. Sandstone (SS) and thin alternating
layers of sandstone and shale (SS and SH, respectively) constitute the main lithology
in the study area. The sedimentary features of rock units, such as whitish sandstone,
particularly form thick or massive layers. The grayish-black shale and thin interbeds
of sandstone and shale are also well-developed, often alternating with thick sand-
stones [28]. The sedimentary sequences were considered when we analyzed the rock
cores; in particular, we considered a sequence of continuous rock units throughout
the borehole, as opposed to focusing on a single rock unit (i.e., homogeneous in a
sequence of rock units). Lithostratigraphic bodies were distinguished by distinct
lithological minor structures, such as lamina and flaser structures, as a criterion for
determining the sedimentary sequence. The proportion of sandstones and shales was
used to classify the alternated layers of sandstone and shale into different rock units.
The descriptive reference proportions are:

(I) Interlayer 1:1 ≤Mj:Mn ≤2:1,
(II) Interbedded 2:1 ≤Mj:Mn ≤ 4:1,
(III) Occasionally 4:1 ≤Mj:Mn ≤ 8:1,
(IV) Main lithology 8:1 ≤Mj:Mn,

where Mj denotes major lithology and Mn denotes minor lithology.

We summarized all the descriptive properties of the rock, and then split the observation
data into two separate parts: colluvium on the top, and sedimentary rock beneath each
drilling borehole.

(3) Comparison between rock units from different boreholes. In the advanced step, we
conducted a comparison of the lithology from the 26 complete boreholes among the
50 boreholes in the study area, in order to prepare the necessary material for the
building of the geological model. To make the comparisons accessible and reliable,
we started with the boreholes that were close to each other. We grouped the boreholes
together and compared the lithology of the strata. We assumed that the features of
the strata lithology of these boreholes should be the same; however, the boreholes
were distributed sporadically and also outside the campus on the downward slope.
Both petrographic properties and the distribution of boreholes had changed slightly.
When the rock cores were compared to each other, this aspect also had been carefully
considered. There are comparison criteria that may be depended upon to ensure
reliability. In this context, sedimentary characteristics, including the texture and
internal structures created by bioturbation and bio-erosion, are essential for classifying
rock units to build correlatively connected boreholes. Furthermore, every objective
layer’s thickness must have minimal change; that is, the standard deviation of the
thickness should be small. Furthermore, a structural dip was recognized in the
borehole description and the rock core photos, handled in laminated or thinly bedded
to bedded shale and sandstone sequences. Such a structural dip is best-identified
from cross-bedded sections thought to have been horizontally stratified originally,
which we call cross-bedding, accordingly. As a result, a side-by-side comparison of
lithological borehole data was conducted.

(4) Selection of key marker bed. The thick sandstone was selected as the key bed of
the rock unit, as it was readily distinguishable. To obtain a reliable result, the thick
sandstone must be identifiable over a large number of boreholes (i.e., be unique and
widespread), ensuring that it exists at most locations in the study area through these
boreholes. The sedimentary sequences are significant, as they help us to identify
which sandstone is the proper one among the boreholes. This is based strictly on the
distinguished lithology in the sedimentary sequences, as mentioned above (e.g., the
laminated structure in the alternating sandstone and shale units). In addition, the
key bed must fulfill the requirements for the comparison of rock units from different
boreholes, as described in step (3) above.
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The elevation of the colluvium bottom (top of the bedrocks), in combination with the
borehole elevation and recorded depth, can be obtained in each borehole. Based on the
rock unit classification results, the elevations of the top and bottom of each rock unit can
also be identified. Meanwhile, the average thickness of each rock unit can be determined
considering the thicknesses obtained from different boreholes.

3.4. Development of the 3D EGM
3.4.1. Interpolation of Colluvium Bottom Boundary (Depth of Bedrock Top Surface):
Grid-Based Method

A dataset including the X, Y, and Z values of the interface between the colluvium
and underlying bedrocks from 50 boreholes were utilized for interpolation. In addition,
we assumed that the elevation of the bottom boundary of the colluvium was equal to
the elevation along the Pengshan River and the water divides (ridges) and the bedrock
outcrops along these lineaments. The elevation data points along these lineaments were
used to interpolate the elevation of the bottom boundary of the colluvium (i.e., the bedrock
top surface). These lineaments are marked with the orange dotted line in Figure 1. The
3D software Surfer 16.0 [32] was used to interpolate the boundary surface elevation at
each grid with 12 × 12 m resolution using the Kriging method. Equation (1) describes the
process of calculating the estimated value:

ZA =
n

∑
i=1

WiZi, (1)

where ZA is the estimated value, Zi refers to the value at position i, Wi expresses the
weight at position i, and n identifies the number of neighboring data values utilized in the
estimation (derived from the Golden software).

We gridded the datasets using the default properties of the Kriging interpolation. From
unevenly spaced datasets, this approach creates structural contour maps which represent
the colluvium bottom. The data were acquired from a total of 50 available boreholes
for the whole study area. To make the result of interpolation reliable, we attempted to
exclude the extrapolation when there was no data outside the borehole network in the
study area. Consequently, visualization of the bedrock depth distribution in the study area
was achieved (see Section 4.2).

3.4.2. Determining the Polynomial Surfaces Representing the Rock Boundaries:
Vector-Based Method

Polynomial surface fitting is a mathematical approach that involves identifying and
measuring trends in the characteristics of the dispersed observed data, in which the sum
of the squared deviations from the trend surface is minimized. With this analysis, our
purpose was to develop a fitting surface for the boundaries of each rock unit, representing a
geological boundary to create the spatial geometry of the interfaces between the rock units.
Thus, we decided to use a prediction model which creates an interpolated geological contact
surface extending in a continuous layer from the data (i.e., the geological observations
obtained from the boreholes). This is a type of regression analysis expressing each initial
observation, using the product of a deterministic polynomial function of the geographic
location with a general Function (2):

ZA = f (XA, YA) = b0 + b1X + b2Y + b3Xn + b4XY + b3Yn + . . . , (2)

where ZA is the value of a property at location A, XA and YA are the coordinate values at
location A, f is the regression function, bi is a polynomial constant, and n is the order of the
polynomial [33–36]. The dataset collection step is heavily reliant on stage 2 of the borehole
data analysis, including X and Y representing the longitude and latitude of boreholes,
respectively, and Z is the elevation value of the top of the thick sandstone, the so-called key
bed (i.e., the occurrence depth of thick sandstone).
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We began our spatial distribution analysis procedure with the aforementioned 26 data
points corresponding to the 16 boreholes (Table 1) which were irregularly distributed over
the research region, spanning from the middle to the lower part of the slope, as well as
the 10 data points distributed around the campus (Table 2). The top of the key bed in
these boreholes was extracted with respect to elevation values (i.e., Z). Then, these values
were used to carry out regression-based surface fitting, in order to get the best fit. We
began by employing a polynomial function of order one, and gradually increased the order
until the result fit the data well. The prediction methods for spatial computing data were
then established. According to the goodness-of-fit statistics, the best polynomial surface
regression model was selected, with respect to the data, in order to describe the surface
trend, thus simulating the spatial distribution of the rock units. This function then could
be used as a critical model to evaluate the vertical spatial distribution of the geological
sub-surface at any location with geographic coordinates inside the study area. To display
the surface of the interfaces (i.e., geological contacts) or the top of the thick sandstone (key
bed) obtained from the model, the contour map was processed as a resultant map. This
structural map guaranteed smooth boundaries and fit the data well. In order to obtain a
reliable resultant interface of rock units, the contour map was validated with respect to
the bedding plane orientation from outcrops. In addition, validation of the borehole data
(structural dip angle) from rock core logging was significant. We assumed that all rock
units were parallel to one another (i.e., the principle of sedimentary rock), and then used
the average thickness of each rock unit to generate the other interfaces, based on the fitting
interface of the key bed. This means that every interface of the rock units was introduced
into a polynomial function. This led to creating of a so-called 3D vector-based grid of the
interfaces of different rock units. Finally, cross-sections were used to visualize the spatial
distribution of the rock units.

Table 1. Error of the first- and second-order polynomial regression models in comparison with the
real data from the boreholes in Zone 1. Z represents the elevation of the sandstone top (key bed).

Borehole X Y Z
Error

2nd 1st

W-4 319,803.7 2,763,737.5 413 4.10 7.00
19-7 319,722.7 2,763,660.8 390.6 5.46 2.20
19-3 319,743.2 2,763,686.7 399 3.95 2.53

DH-5 319,800.2 2,763,697.0 411 −3.14 2.79
DH-7 319,740.0 2,763,699.7 403.8 1.95 1.23
DH-4 319,792.5 2,763,743.6 422 −3.75 −0.98
DH-1 319,758.2 2,763,763.9 423 −1.00 1.57
SIS-36 319,761 2,763,769.8 427 −3.40 −0.53
18-2 319,443.5 2,763,803.5 418 −2.21 −2.63
19-1 319,456.7 2,763,780.4 414 −4.36 −4.38
18-1 319,572.3 2,763,871.3 440 4.90 3.16
17-7 319,614.1 2,763,867.3 444.4 1.03 0.32
17-3 319,273.8 2,763,519.9 314.3 4.06 8.91
17-1 319,643.2 2,763,641.1 394 −7.46 −12.01
19-2 319,177.7 2,763,324.5 262 −1.79 −0.88

21-1S 319,431.5 2,763,541.8 342.5 1.58 −2.70

Table 2. Difference between actual and predicted data using first-order regression model in Zone 2.

Borehole X Y Z Error

W-3 319,631.7 2,763,871.4 443.8 3.68
17-8 319,696.5 2,763,972 472.8 −2.5
19-8 319,691.3 2,763,949.3 466.2 −1.22
BH-1 319,823.9 2,763,774.3 428.6 −5.38
19-6 319,804.5 2,763,789.9 424.8 2.21

222



Water 2022, 14, 2941

Table 2. Cont.

Borehole X Y Z Error

W-2 319,938.1 2,763,849.8 440.3 −0.67
18-4 319,941.3 2,763,915.9 452.8 2.11

SIS-14B 319,919.3 2,763,880 446.9 −0.01
SIS-26A 319,929.6 2,763,913 453.7 0.7
SIS-11B 319,848 2,763,752 416.7 1.1

4. Results of 3D EGM Development
4.1. Boundary of Paleo Landslide Deposits

Widely sporadic outcrops are exposed along both sides of the Pengshan River (Figure 3).
The Mushan Formation is characterized by a preponderance of whitish fine- to medium-
grained sandstone, which is easy to identify and track along the outcrops. The orientations
measured at the outcrops almost differ from the background orientations (i.e., the Mushan
Formation). In some places, the orientations are almost toward the south with orientation
groups of steep dip angles, ranging from 49◦ to 55◦. Particularly, in the confluence of the
two creeks, there is mudstone exposure which differs from the previous rock description.
In contrast, the orientation measured not far to the southeast of the intersection is almost
equal to the orientations of the background, with a dip angle of about 20◦. Thus, they
look like the Mushan Formation, indicating that the strata in this area were not affected by
tectonic activities.
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Therefore, the outcrop measurements can be categorized into two groups, with a
change in orientation. The first, representing a majority of the outcrops, is positioned on the
northern bank of the river, with orientation differing from that of the Mushan Formation.
As boreholes 20-4W and 17-4 near creeks indicate 36 and 40 m of colluvium, this rock may
originate from ancient landslides. As a result, a boundary for the paleo landslide deposits
is proposed in this study, shown as the orange dotted line in Figure 3. On the other side
(i.e., on the southern bank of the river), the dip angle of the bedding is steep in the same
direction, indicating that the geology in the area must be influenced by tectonic forces.
There is a possibility that the Nanshihkeng Fault passes through this area, but there is
not much evidence to support this claim. In addition, there are still normal orientations
(i.e., background orientation) that should belong to the Mushan Formation.

4.2. Grid-Based Interface between Colluvium and Bedrock

The large-scale terrain interpretation derived from the LiDAR DEM indicated that the
eastern, northern, and western sides of the Mt. Dalun area have relatively high altitudes,
and the topography is bowl-shaped with collapsed cliffs. Several hummocky areas dom-
inate the topography of the study region, characterized by many small hills and closed
depressions. The contour lines, in particular, indicate that the crown is dense while the
toe of the avalanche protrudes with a V or U shape. The surface of the study area was
previously formed by an ancient landslide debris and by erosion caused by typhoon events.
The slope surface is in a current state of equilibrium of material accumulation (Figure 4a).
Figure 4b additionally depicts a Kriging map showing the elevation of the interface be-
tween the colluvium and the bedrock, which represents the depth of the colluvium. This
result incorporates topographical features, outcrops, and borehole data as well. The areas
constrained by the rock outcrops, such as steep terrain and the paleo-landslide boundary
(cf. Section 4.1), are denoted on the map by red solid crosses (i.e., the thickness of loose
materials, including the colluvium and artificial filled land, is assumed to be 0 m). This map
may even reveal that the geometry of the bedding plane underneath the surface is covered
by loose materials, which dips toward the southwest with an inclination of approximately
15◦. Furthermore, the relationship between the colluvium and the bedrock is viewed,
through several profiles, in the following sections.
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4.3. Geologically Uniform Zones

According to previous studies, two small-scale faults may exist in the study area:
The Nanshihkeng Fault and A Fault. The potential Nanshihkeng Fault striking in NE–
SW can be observed from the drilling data, in which the fault plane is inclined about
60◦ to the southeast and cuts through the bedrock in the slope [28]. The hanging wall
dominates the eastern portion, with steep terrain to the southeast representing a reversal
topography caused by the uplift phenomenon of the two thick sandstone layers in the
surrounding geology. In additional, Jeng and Sue [28] have analyzed 2D resistivity data to
hypothesize that a probable NW–SE striking oblique-slip fault (i.e., A Fault) intersecting
the Nanshihkeng Fault might be characterized by high angle dipping. However, this fault
is unclear, without any difference in topographical features.

Based on rock core analysis of the boreholes around the A Fault on the map, extensively
fragmented rock and a non-cohesive crush zone as a shear zone were revealed. The shear
zone is made up of gouges and rock pieces, as well as clay-rich material. This information
provides evidence supporting the existence of the A Fault structure in the study area. The
orientation of the A Fault can be detected from the three-point method, which corresponds
to 55◦ NW, 75◦ N, suggesting that the borehole data applied in this study are consistent
with the existence of the A Fault from previous studies. Notably, in following additional
rock core data analysis of the borehole 20-4W around the foot part of the slope to the
southwest, a piece of especially significant evidence for the presence of this fault was
revealed. Figure 5a shows the shear zone like a crush and scratches, as well as a change
in the bedding dip angle along with the depth of the borehole, which is a steep bedding
dip angle at a depth of over 47 m. The mean inclination value ranges between 60–70◦, and
seems to change gradually from this depth to become a gentle bedding dip angle toward
bottom of this borehole. Even though borehole 17-4 is almost filled by colluvium, the high
bedding dip angle track is also indicated obviously. This implies that both boreholes 20-4W
and 17-4 pass through the fault plane of the Nanshihkeng Fault, which is evolving in a drag
fold pattern. Hence, the existence of these two faults is reasonable, and their distribution
might dominate the bedrock orientation in a local area.
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However, the lithology of the sedimentary rock in the study area did not change,
as revealed from the rock core analysis and field investigation. One of the lithological
features was white sandstone and alternation of sandstone and shale, characteristic of
the Mushan Formation, which can be easily found from the rock core logging and the
outcrops. The bedding plane revealed a gentle (about 20◦) dip angle for most of the rock
units (borehole data). This finding was also consistent with that provided by the CGS
geological survey [31]. The evolution of the Nanshihkeng Fault and the A Fault will result
in a change in the spatial distribution of the bedrock; even so, the geological characteristics
were the same over the whole region. Based on these conditions, the research area was
divided into three zones—Zone 1, Zone 2, and Zone 3—with the two faults serving as
boundaries for geological uniform zones of the study area (Figure 5b).

4.4. Development of Geological Model in Zones 1 and 2
4.4.1. Classification of Rock Units

In the Mt. Dalun area, a detailed rock core description was revealed through litho-
logical sediment analysis of the 26 boreholes. We attempted to separate these boreholes
into two groups, based on the above-mentioned fault division (cf. Section 4.3): one for the
boreholes located to the north of the A Fault and another for the boreholes located to the
south of the A Fault. In other words, the boreholes indicated in the western portion of the
research area (Zone 1) and the boreholes around the Huafan University campus (Zone 2).

Nine rock units could be distinguished with various types of rock, correspondingly
shown in Figure 6. Of these, the key bed in the geological feature was the thick sandstone
(L4), with thickness ranging from 16 to 22 m. This rock unit was critical for interpolation and
surface fitting in constructing the 3D EGM, as mentioned in the methodology section. In
Zone 1, according to the rock core interpretation, eight rock units were revealed, excluding
the colluvium layer. The group of boreholes 17-1, 17-3, 17-7, 18-1, 18-2, 19-1, 19-2, and 21-1S
covered L1 to L6 in the rock unit, while the other boreholes (19-3, 19-7, W-4, DH-5, DH-7,
DH-4, DH-1, and SIS-36) penetrated through L4 and above. In Zone 2, nine rock units could
depict the northern stratigraphy of the research region. The borehole BH-1 had a depth
of 100 m and penetrates through nine rock units. As an outcome, the stratigraphy in both
Zones 1 and 2, as well as the study area overall, could be connected continuously based
on the borehole BH-1. Their standard deviation was within an acceptable range, with not
much difference between the boreholes in Zone 1 and Zone 2. The characteristics of the
colluvium and each rock unit are described in the following.

1. Colluvium (Co). The cover material layer consists of loose and unconsolidated sedi-
ments characterized by weathered sandstone pieces and blocks with brownish color
and gray matrices, fragments, debris, and soil. The fragments differ in size, shape,
and crack density. In some boreholes, the fill material (dark yellowish, fine-grained)
is fairly thick, which is due to the constructions, especially in the group of boreholes
within the university campus. The thickness of the cover material varied, with the
thickest section reaching approximately 40 m (borehole 17-4) towards the toe of the
slope located to the southwest of the mountain. Based on the geological processing
in the Mt. Dalun area, as well as topographical analysis, the colluvium may have
originated from two sources: Loose material belonging to the ancient deep-seated
landslides and so-called slope wash (i.e., debris slide).
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2. Sandstone (SS). Two rock units were identified as sandstone: L4 (SS-1) and L8 (SS-2).
The lithology in L4 was mostly composed of thick, medium-grained whitish sandstone
intercalated with thin dark black shale layers scattered in a few places in the massive
sandstone. A shear zone containing mud was found in some rock cores. The rock
core contains a number of joints. As previously stated, L4 is a key bed identified
in the sedimentary sequence, and the overlaying and underlying units are L5 and
L3, respectively, characterized by laminated alternations of sandstone and shale.
As for L8, grayish sandstone occasionally intercalated with laminated shale is the
main lithology. L8 had a higher average thickness than L4, about 25 m and 16 m,
respectively. Therefore, the L4 was comparatively identifiable from L8.

3. Alternations of sandstone and shale (SS, SH). This type of rock unit included L1
(SH/SS), L2 (SS/SH), L3 (SS-SH), L5 (SH/SS), L6 (SS/SH), L7 (SS-SH), and L9 (SH/SS).
The ratio of sandstone and shale proportion in the recovered rock core significantly var-
ied among these rock units. Each rock unit is described, respectively, in the following:

a. Rock unit SH/SS (Shales occasionally interbedded with sandstones). This rock
is characterized by black to gray shale interbedded with fine sandstone, very
thin-bedded sandstone and shale, and mainly dominant shale percentage. It
contains sandstone and shale, with shale constituting up to 70–90% of the
rock core.

b. Rock unit SS-SH (Sandstones interlayered with shales). The lithology is com-
posed of interbedded sandstone and black to gray shale, with the thickness
ranging from thinly laminated to thickly laminated, and extremely thinly bed-
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ded. The sandstone content throughout the portion is approximately 50%, with
beds containing parallel lamination and, occasionally, ripple cross-stratification.

c. Rock unit SS/SH (Sandstones occasionally interbedded with shales). The
lithology composed of gray to whitish sandstone is the dominant lithology,
with black shale interspersed and occasionally locally interbedded sandstone
and shale. The sandstone beds range from medium bedded to very thickly
bedded, accounting for about 70–80% of the composition.

According to the rock core interpretation, the dip angle of the bedding plane of the
sedimentary rock in the above regions mostly ranged from 10◦ to more than 20◦, implying
that the bedding plane and slope topography are easily compatible. The results were also
supported by the topographical features, field survey, and observations.

4.4.2. Upper Boundary of Key Bed

The application of the polynomial surface fitting method for modelling was applied
to determine the geometry of the interface between L4 and L5. In further analyses, this
sandstone (L4) top surface was used to estimate the boundaries of other rock units, where
the boundaries were assumed to be parallel to each other. For Zone 1, the spatial distribution
of the strata was created using both first- and second-order polynomial regression. The
first-order polynomial was formulated as shown in Equation (3):

Z = −810, 375.5140 + 0.065242 X + 0.285820 Y. (3)

This equation denotes that assumed bedding is planar; that is, based on a linear
equation. Meanwhile, the top elevation of the key bed using the second-order polynomial
regression equation, which had high accuracy (R2 = 0.99) is shown in Equation (4):

Z = a + bX + cY + dX2 + eY2 + fXY, (4)

where a = 1.18 × 109; b = 4.83 × 102; c = −9.07 × 102; d = −7.07 × 10−5;
e = 1.73× 10−4; and f = −1.58× 10−4.

The error between the actual data obtained directly from the boreholes and the values
from the regression processing is critical to validate the effective model fitting. In order
to study the difference between the actual and interpolated data, Table 1 shows the errors
obtained when using first- and second-order models. It can be seen that the maximum
errors with the second-order model were lower than those with the first-order model,
implying that the uncertainties in spatial formation were lower. Then, a cross-section A-A’
was plotted to visualize the errors in Table 1 for a borehole group, when using the different
models in both orders (Figure 7). The sandstone layer is highlighted in yellow color in the
boreholes. The red line, which indicates the geological boundary, was obtained by using
regression values of the top elevation of the sandstone in the cross-section. The curved line
represents the physical shape of the second-order surface polynomial regression, which
was more likely to satisfy and better fit the surface than the first-order model, which is a
straight line (or linear resultant). For example, borehole 17-1 displays the most obvious case
of a comparison between the first- and second-order models with a decreased mismatch
between the borehole and regressed data with the latter. The red line (i.e., second-order
model) is more consistent with the top of the sandstone in this borehole, implying that the
error was improved significantly.
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Figure 7. Cross-section A-A’ showing the resulting surface interpolation polynomials of the first (red
straight line) and second (red curved line) order, for the top of the thick sandstone (L4) based on the
borehole data. Each polynomial function has a different arrangement of boreholes on the profile.
The deviation from the top sandstone with the second-order model is smaller than that with the
first-order model.

For Zone 2, we only used first-order regression to generate the bedding distribution
model, as there was not enough data in this region to perform second-order polynomial
regression surface fitting, given that the majority of the boreholes did not reach the interface
between L4 (the key bed) and L5. As a result, only the first order was used as the function
of the polynomial regression for the geological model in Zone 2. The linear surface fitting
regression equation is as follows:

Z = −636796.2239− 0.009296X + 0.231637 Y. (5)

The root-mean-square (RMS) error values, which can demonstrate the difference
between the actual and predicted data in regression, were also computed. This number
was high (R2 = 0.98), indicating that the estimated coefficients in the regression equation
were credible. Moreover, after determining the surface equation of the fitted bedding, the
regression results demonstrated that the first-order model were fairly consistent with the
real data, with the error being acceptable and not changing significantly (Table 2). Except
for two boreholes—BH-1 and W-3—the majority of the observed data had low error.

Based on the results of the surface fitting regression, a structural contour map of
the thick sandstone (key bed) was created, in order to visualize the pattern (trend) of the
sedimentary rock in the two zones. To ensure the continuity of the geological structure
map of the thick sandstone (key bed, L4), Figure 8 illustrates a structural contour map
comprised of two groups: Zone 1 and Zone 2. It can be seen that the shape and direction of
the contours had a high association with the inferred structures. To the north of the research
area, the largest portion of the location is Zone 2, with the bedding plane striking almost in
the E–W direction and dipping to the south with a gentle inclination of approximately 13◦.
This implies that the geological structure underneath the Huafan University campus is a
dip slope in the literally strictest sense. Then, progressively moving towards the downslope
direction, the contour seems likely to become bent, turning towards the southwestern
direction. The tangent line of these contours gradually changes, implying that the strike
of the bedding plane adjusts as well, with a steeper inclination towards the southwest.
Based on this contour map, a proposed geological structure can be detected with a left-
lateral strike-slip fault, and the strike-slip movement on the map does not have vertical
displacement of stratum. However, the displacement becomes progressively unclear
along the southeastern direction of the fault, and appears to be somewhat of a slip at
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the intersection with the Nanshihkeng Fault. The evidence for this assumption needs to
be investigated through supplementary data in the future. Furthermore, the structural
contour map was consistent with the attitude of the geology (the purple attitudes) and, in
particular, it fit well in the dip direction of the bedding plane, which has also been recorded
by Jeng and Sue [28] and measured in the field survey (Figure 8). These orientation data
(i.e., strike and dip) may be expressed as vectors that are orthogonal to the strike in their
locality. Therefore, the polynomial surface fitting method procedure was used to represent
the geometry of the geological contact surface between strata in the Mt. Dalun area, which
was considered reasonable.
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Figure 8. Structural contour of the top surface of the thick sandstone (L4, the key bed). By comparison
with the outcrop measurements, a contour map with the contour interval of 2 m was created. The
green circles indicate the locations of the boreholes used for the regression. The purple symbols of
bedding attitudes can be utilized as a basis for comparison.

4.4.3. The Average Thickness of Each Rock Unit in Zones 1 and 2

The thickness of the rock units varied with the distribution of the boreholes. The
stratigraphical sedimentary rock was constituted of a succession of rock units, which were
constructed according to their sequence. These rock units are characterized by a series of
boundary horizons, which represent the geological contacts between the various layers,
shown as a stratigraphic column in Figure 9.
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The thickness of each rock unit was derived as the average thickness from the data of 26 boreholes.

4.5. Development of Geological Model in Zone 3

Zone 3 represents the eastern section of the study area, which lacked boreholes to
analyze the underground stratigraphical conditions. According to the study of Jeng and
Sue [28], two layers of thick sandstone and thin interbedded shale and sandstone shale can
be found in this area. The thicknesses of these two thick sandstones are 30 m and 10 m,
respectively (Figure 1). However, new outcrop measurements and geological descriptions
have been carried out, such that the boundary of these two sandstone layers should be
modified. Several attitudes in the outcrops were confirmed along the road to the southeast,
where the topography is steep. Most of the exposures were discovered only by excavation
on a construction road, which provided easy access to the outcrops. Exposures mostly
included interbedded shale and sandstone. These were moderately to heavily weathered,
covered by vegetation, and dip 20–40◦ to the southwest. The Nanshihkeng Fault may have
changed the bedding plane’s orientation, resulting in a steep oblique slope in this area. The
result of this work is consistent with that of previous studies. A total of 15 measurements
were recorded during this survey, and the statistical results indicated the orientation of
the bedding plane in the stereonet (Figure 10a). The average attitude of the representative
bedding plane was selected to draw a structural contour map (68◦ NW, 31◦ SW). We
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observed the real contact exposure between the sandstone and interbedded sandstone;
shale, in particular, may be seen extending from 30 to 40 m, having a light gray tint (i.e., red
circle), in Figure 11. In addition, a high-resolution slope inclination map derived from the
LiDAR DEM was constructed, in order to determine and deduce the reasonable boundaries
of the rock units. Then, the proposed geological map for Zone 3 was redrawn. Figure 10b
exhibits the distribution of the two sandstone layers, as well as the attitudes of bedding
planes. We named the thicker sandstone sandstone A, while the other was sandstone B.
The distribution of sandstone A on the geological map was corroborated by the contact
observed in the field. Even though the outcrop of sandstone B was not exposed in the
field trip, the thick sandstone should be exposed to become the ridge. This seems to be
compatible with the distribution of the thinner sandstone layer observed in the study of
Jeng and Sue [28]. As a result, the outcrops drawn by Jeng and Sue [28] around the ridge are
realistic, working in conjunction with the average orientation to illustrate the distribution
of these two thick sandstones, particularly sandstone B. These two sandstone layers on the
southeastern oblique slope are distributed along NE–SW striking steep slopes or ridges,
and may turn gradually to the westward direction and terminate at the Nanshihkeng
Fault. For terrain compatibility, it can be inferred that sandstone A lies above sandstone
B, meaning that the top of sandstone B will be the bottom of sandstone A in the spatial
distribution. This can be seen in the geological profiles provided in the following section.
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(a) Stereonet visualization presents the outcrop measurements; and (b) outcrops measured during
the field survey and redistribution of two sandstone layers in the southeastern part.
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Figure 11. Three-dimensional engineering geological model of the study area visualizing the strata
dip slope distribution in Zones 1 and 2, and the high oblique sandstones A and B in Zone 3. The
surface was derived from the high-resolution LiDAR DEM (1 m resolution).

4.6. Three-Dimensional Engineering Geological Model and Geological Profiles

The three-dimensional engineering geological model, derived from the integration of
the grid-based method (i.e., colluvium bottom elevation) and vector-based method (i.e.,
the geological interface of rock units) mentioned above, as well as field outcrop geological
data in the research region, is shown in Figure 11. Cross-sections were also generated to
interpret the 3D engineering geological model (Figure 12). The colluvium and bedrock
were characterized by the rock units identifiable through the geological contact (interface)
of strata. Two geological profiles (A-A’ and B-B’) from the northeastern to the southwestern
part of the slope, along with their geological explanations, are detailed in Figure 12. It can
be observed that the profile B-B’ passes through the eastern part of the Huafan University
campus, revealing that the covered colluvium in the upper part around the campus is
thin. However, their thickness becomes progressively larger toward the southwest. In
particular, at the bottom of this slope where the riverbank is located to the north, there is a
massive and thick colluvium accumulation area. For the sedimentary rock, the strata are
parallel to each other, which is compatible with the topography. There is a thick sandstone
layer (SS-2) of approximately 25 m thickness beneath the interbedded sandstone and shale
(SH/SS) cover, to the north of the A Fault. However, this sandstone layer disappears in a
portion in the profile A-A’, meaning that it had been eroded due to erosion of the exposed
surface. Through two profiles extracted from the geological model, the interface between
the colluvium and the underlying rock was found to be almost parallel to the geological
boundary of the strata. The thick colluvium layer with the maximum depth lies roughly
on the top of the sandstone (SS-1), which is acceptable as the sandstone at that altitude
in those profiles is quite persistent and difficult to break. While other layers are mostly
composed of narrow interbeds of shale and sand, this material has partly transformed into
the colluvium due to long-term weathering and erosion. The two profiles also show that
these outcrops of the bedrock on the ground surface here form the steps of a staircase in
the topography. Therefore, the sources of colluvium almost entirely originated from this
bedrock of alternative shale and sandstone (SS, SH). A cross-section in the northwestern to
the southeastern direction (C-C’) was additionally drawn (Figure 13). It can be observed
that the bedding was nearly consistent with the topographical surface and interface between
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the colluvium and itself. To visualize the spatial distribution of the two thick sandstones in
the southeastern part (Zone 3), a profile D-D’ in an almost N–S direction passing across
the A and Nanshihkeng Faults was also created (Figure 13). Even though the rock units of
alternating sandstone and shale cannot be distinguished in the profile, the steep terrain can
be explained by the uplift of the Nanshihkeng Fault as a reverse fault, based on this profile.
In the southern part of the profile, the thickness of the colluvium is extremely thin, and the
bedrock is virtually exposed around this part.
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Figure 12. Distribution diagram of the four geological cross-section profiles and the borehole data.
These borehole sources were gathered from available existing borehole logs in the study area. The
deepest borehole was 100 m (BH-1), while the shallowest borehole was 25 m deep (SIS-26A). The red
boreholes are projected along the contour line at the top of the key bed in the profiles (i.e., sandstone).
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According to the study of Tseng et al. [30], hundreds of displacement monitoring 
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Figure 13. Geological cross-section profiles within the Mt. Dalun area. The colluvium boundary is
plausibly compatible with the terrain (i.e., parallel to the topographical surface), and the deepest part
of it does not cross over the thick sandstone layer (L4). The thickness of the colluvium is the largest
in the lower half of the slope, and becomes increasingly thinner with topographical elevation. Two
faults in the region contribute to the alteration of the spatial distribution of geological strata.

5. Applications of the 3D EGM
5.1. Surface and Sub-Surface Displacement Monitoring
5.1.1. Surficial Displacement Interpretation

According to the study of Tseng et al. [30], hundreds of displacement monitoring points
were established and recorded in the study area from April 2010 to July 2017. This is a part
of the long-term monitoring of surface and underground movements based on time-series
data. On the map, Figure 14a displays the displacement tracks of each observation point
within the Huafan University campus, from which the quantity and direction of horizontal
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displacement at each monitoring point throughout each period can be seen. This surficial
displacement can be classified into three groups, as shown on the map. One is a larger
displacement, with the main direction being down to the slope in the south-southwestern
direction, denoted by red color (group 2); the second is towards the northwestern part,
revealed by the black, as well as a smaller displacement movement toward almost the
south (group 1). The displacement monitoring points outside the intersection part of the
A Fault and the Nanshihkeng Fault are marked by dark blue color, in which the western
components of displacement are more visible (group 3).

Water 2022, 14, x FOR PEER REVIEW 26 of 33 
 

 

 
(a) (b) 

Figure 14. Groups of surficial displacement at the Huafan University campus: (a) horizontal dis-
placement tracks, revealed by surficial monitoring within the measurement period and the group’s 
distribution. The displacement vectors represent the movements from the beginning to the end dur-
ing the measurement period. (b) The geometry of displacements, i.e., the displacement vectors pre-
sented in a stereonet. The diameter scale shows magnitudes of displacement, and the solid purple 
cross represents the dip direction of the bedding plane in Zone 2. 

 
Figure 15. Geometry of each sliding block in the northwestern part (group 1) shown using stere-
onets. Each stereonet illustrates a block in motion, with the green dots representing the head and 
the orange ones representing the main body to the toe of the sliding mass. The hollow triangles on 
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Figure 14. Groups of surficial displacement at the Huafan University campus: (a) horizontal dis-
placement tracks, revealed by surficial monitoring within the measurement period and the group’s
distribution. The displacement vectors represent the movements from the beginning to the end
during the measurement period. (b) The geometry of displacements, i.e., the displacement vectors
presented in a stereonet. The diameter scale shows magnitudes of displacement, and the solid purple
cross represents the dip direction of the bedding plane in Zone 2.

To obtain detailed movement behavior of the multiple sliding blocks within the
campus, the displacement vectors are indicated using a stereonet from the beginning to
the ending of the monitoring period. The displacement trend was a two-dimensional
resultant vector in the E and N horizontal components. To show three-dimensional surficial
displacement, horizontal and vertical displacements were combined to compute the sliding
surface’s spatial dip, also displayed using a stereonet (Figure 14b). The red and black
solid circles represent surface monitoring data groups 1 and 2, respectively. They are
indicated with different diameters, according to displacement amount and direction at each
monitoring site. If the vertical displacement is larger than the horizontal, the displacement
vector will approach the stereonet’s center, implying that the campus may have multiple
sliding surfaces with different characteristics. In the results, the group 1 displacement
vectors can be seen as being dispersed in the stereonet. Smaller solid circles represent
less displacement. This movement is not happening in a pre-determined direction, nor
is it similar to sliding on the same weak layer inside the bedrock. For further insight,
the surficial displacement in the northwest (group 1) may be separated into two smaller
groupings. As each small group’s stereonet displacement vector is scattered from inside to
outside, each group should be represented by a separate sliding block, comprising Blocks
1 and 2, respectively (Figure 15). In addition, these surface displacement vectors were
also compared with the shape of the interpolated colluvium bottom (i.e., the colluvium–
bedrock interface), as shown in Figure 15. The primary slope angle of the colluvium
was approximately equivalent to the slope surface angle. The majority of horizontal
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displacements ware almost downslope or deviated from the tangent line of the colluvium
contour line at a small angle. Moreover, the displacement direction of the inclinometer
SIS-1A coincided well with the dip direction of the interface of colluvium and bedrock
(Figure 15). This suggests that the direction of the sliding blocks should be similar to the
tangential direction of the colluvium plane. Particularly, in the southwest part of the map in
Figure 15 or the south portion of the A Fault, the dip direction of two displacement vectors
is similar to the direction of displacement indicated by inclinometer SIS-1A. These two
displacement vectors almost correlate with the dip direction of the colluvium and bedrock
interface. In the stereonet of Block 2, these two displacement vectors are denoted as hollow
triangles pointing southwest, even though their dip angle deviated from the dip angle of
the interface (i.e., colluvium and bedrock) by about 15–20◦ and 20–30◦ in trend, respectively
(Figure 15). The reason for this difference is that the shape of the contact between the
colluvium and bedrock may be influenced by the outcome of interpolating this interface.
In the stereonet, the green displacement vector in each sliding block denotes the head of
the block when the vertical displacement is larger than horizontal displacement, producing
a steep angle, while the orange vector supposedly represents a gradual change in the dip
angle from the main body to the toe of the sliding block. Overall, the displacement vectors
in both blocks almost follow the downward trend in the shape of the interface between the
colluvium and bedrock. However, it can be seen that Block 2 has a number of displacement
vectors turning toward the southeast. It can be speculated that these displacements were
influenced by other blocks nearby, as an extrusion of the slope slide would have affected
the opposite direction component when Block 1 slid downslope. This displacement would
progressively deviate from the downward direction. One more probable reason is the
shifting shape of the sliding blocks, which resemble a curved sliding boundary at the edge
of the filled land distribution with the original topographical surface. This led Block 2 to
slide on the simplest sliding surface, as long as it could slide under the driving force on
the slope. Variation of the surface displacement vector with respect to the common sliding
direction may reflect stress and other slope deformations. Block 1, with a high altitude
without ground cracks nearby, could only exist at the contact between the colluvium and
the underneath bedrock. This possible sliding surface could be one of multiple bottom
colluvium surfaces connecting Block 1 to Block 2 in profile 3-3′, due to the apparent dip
angles of surface displacements on the profile switching from gentle (18◦) in Block 1 to
steep (75◦) at the head of Block 2. Block 2 was also identified as having a sliding block
head around the filled land’s distributed border, and the possibility that the sliding surface
occurs at the filled land–colluvium interface is remarkable. It could be parallel to the
topographical surface and plane; the red dashed lines in profiles 1-1’ and 2-2’ indicate
the sliding surface geometry for the inferred interface between filled land and colluvium
(Figure 16). The upward termination of these sliding surfaces on the ground surface also
presents with ground cracks. However, a sliding surface may only appear at the boundary
between the colluvium and bedrock in the southwest, where the two displacement vectors
as mentioned above are not greatly impacted by the thick filled land in Block 2. Similar to
Block 1, the geometry of the sliding surfaces changes slightly along Block 2 in the profiles,
almost reflecting the apparent dip angles of surface displacements on profiles (i.e., the
surface sliding parallel to apparent surface displacement angles). For the sliding surface
at the colluvium–bedrock interface, the interface seems to be the consequence of a steeply
vertical, stepped joint system. The depth of the sliding surface should be proportional to
the depth of joints formed in the bedrock and the advent of weathering (Figure 16). These
vertical joints might create blocks of mass slope failure on the surface of the bedrock, as
the bedrock platform typically makes it impossible to develop “daylight” on the slope
without a significant amount of the maximum principal stress; particularly in persistent,
thick sandstone.
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Figure 15. Geometry of each sliding block in the northwestern part (group 1) shown using stereonets.
Each stereonet illustrates a block in motion, with the green dots representing the head and the orange
ones representing the main body to the toe of the sliding mass. The hollow triangles on the stereonets
represent the dip direction of the orange solid circles, with respect to the two surface displacements
bordered by black circles in the southwest portion of the map view. The contour line interval for the
colluvium–bedrock interface is 1 m.
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As the stereonet in Figure 14b shows, the displacement vectors for group 2 had
significantly larger diameter. The vertical displacement for this group was almost smaller
than the horizontal displacement, as they were distributed densely at the edge of the
stereonet (i.e., far away from the center). In addition, it can be seen that group 2 displayed
a relatively similar amount of displacement. However, there were still some displacement
vectors with dominant vertical displacement, meaning that the sliding surface was nearly
vertical elsewhere in group 2. One possible explanation is that the sliding surface near
the head of the sliding block had greater vertical displacement, being relatively consistent
with these displacement vectors towards the center of the stereonet. Considering this
phenomenon, it can be assumed that the entire surficial monitoring data of group 2 were
recorded for one sliding block. However, from the stereonet (Figure 14b), the dip direction
of bedding (dark purple solid cross) proposed by the 3D EGM within the campus was not
consistent with the surficial displacement vectors.

5.1.2. Sub-Surface Displacement Interpretation

Based on the 3D EGM indicated by the profiles provided in Section 4.6 and inclinometer
measurements, the correlations between the sliding surface and geological features were
revealed. The profile A-A’ suggests that the sliding surface was located approximately
15–22 m deep, with multiple surfaces (green dashed line in Figure 17). The inclinometer
data of SIS-1A, 17-7, 17-2, and 17-3 indicated that the sliding surface was the interface
between the colluvium and the underlying bedrock, with the inclinometer SIS-1A also
having been correlated to the bottom of colluvium in the study of Tseng et al. [30]. The
profile B-B’ passes through the main Huafan University campus in the eastern part, near
the intersection of the Nanshihkeng and A Faults. In the upper part, the inclinometer set in
the borehole 18-4 indicated a sliding surface (purple dashed line) deep in the sandstone
layer (SS-2). In many instances, a break in persistent sandstone is rare; consequently, this
deep sliding surface is a so-called local slope failure (e.g., a thin, soft interlayer of shale
and mudstone inside sandstone, which easily slips). With reference to the underground
monitoring evidence revealed by the inclinometers in boreholes 19-3 and SIS-27, it was
possible to infer the presence of a sliding surface inside the bedrock at a specific depth of
38 m (purple dashed line). The sliding surface developed continuously in the rock mass at
the SS/SH unit. In cooperation of the inclinometer monitoring of the boreholes 19-5 and
17-4 near the toe of the slope, the sliding surfaces at these locations were found to possibly
occur deeper, at depths of 25–45 m, likely in a curved shape (green dashed line). The depth
of the sliding surface was not found to lie on a plane, meaning that the sliding surface
is curved.

5.1.3. Slope Instability Mechanisms Based on 3D EGM

The slope failure mechanism depends on the geological structure and spatial distri-
bution of the objective geology of the slope. Multiple mechanisms of slope instability
may occur at different locations, as revealed by the monitoring of surface and sub-surface
displacements and the 3D EGM.
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Figure 17. Potential sliding surfaces and projected inclinometer casing positions inside the slope
in the profiles A-A’ and B-B’. The dashed green and dashed purple curves are inferred to be at the
bottom of the colluvium and within the bedrock, respectively, based on rock cores and inclinometer
measurements. The dashed red curve represents the sliding surface at the interface between the collu-
vium and the fill, revealed by considering the behavior of surficial displacements and topographical
features.

According to the study of Jeng and Sue [28], the sports court and the western part of
the campus overlie thick artificial fill, from 2 to 20 m, used for the construction of Huafan
University (Figure 14a). The surficial displacement in this area (i.e., the western part of the
campus) should not only have happened at the interface between the colluvium and the
bedrock, but also at the interface between the fill and the colluvium (i.e., on the original
topographical surface before the construction). Similarly, considering the green curving
dashed lines indicating the lower portion of the slope (i.e., the location where a large
volume of colluvium has accumulated), the sliding surface was determined to be within
the colluvium or at the interface between the colluvium and the bedrock. These sliding
blocks suggest that, at the interface between the colluvium and the bedrock, the fill and
the colluvium may exhibit creeping behavior. This can be explained by the fact that, due
to the unconsolidated and permeable nature of the colluvium, when the infiltrated water
flows along the interface, the resistance force at the interface decreases and sliding may
be triggered. The colluvium has progressively slid downstream, due to a combination of
gravity, erosion, and rainfall, resulting in the emergence of several sliding surfaces. Another
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proposed explanation is that the heterogeneous material between the colluvium and the
fill, where the heterogeneities resulting from their uneven elasticity gradually create tiny
cracks within the interface. Water infiltrates and then separates the layers through a sliding
surface. The cracks on the ground surface might be the consequence of the movement of
fill on the original surface (i.e., the interface between the fill and the colluvium).

In addition, the inclinometer results based on the 3D EGM suggested that the sliding
surface occurred inside the bedrock. The eastern slope might act under this particular
mechanism for slope failure. This circumstance suggests, again, that the sliding block
advances downslope, and behaves like a translational dip-slope landslide on a planar
sliding surface developing parallel to the bedding plane. That means the sliding surface
can develop continuously at an interbedded layer with weak strength in the rock mass,
such as sandstones interbedded with shales. The vertical joints inside the slope may
cause the sliding surface to break up into a series of block-like slides. Then, the entire
slope toe daylights, leading to the interlayer sliding within the bedding plane, creating
tension cracks at the head. Once the deformation of the bedding plane surpasses a certain
threshold, surface ruptures spread along the deformation face and combine to produce a
sliding surface.

In summary, based on the scenario of development shown through analysis of the 3D
EGM and sub-surface/surface displacement monitoring, sliding surfaces can be detected,
which cause the whole slope to become increasingly unstable. Slope failure can occur on
multiple sliding surfaces through a variety of depths and mechanisms. In this case, three
sliding surfaces were inferred, including both at the interface between the colluvium and
the bedrock, and at the interface between the fill and the colluvium. Finally, a remarkable
sliding surface mechanism was also located within the bedrock.

5.2. Application of the 3D EGM to Drainage Well Design

To improve slope stability, the installation of sub-surface drainage wells is the most
common approach. As a result, we attempted to optimize the number and spacing of
horizontal drains. An effective design for sub-surface drainage utilizes horizontal drains
capable of capturing groundwater flow before it infiltrates an unstable region susceptible
to landslides [37]. Moreover, a reasonable drainage well site can only be achieved by first
understanding the potential sliding surface, as well as the ground water flow and flow
pattern, which can be accomplished by using a 3D EGM. The 3D EGM proposed in this
study, therefore, can also be used to optimize the drainage efficiency of the considered slope
in the future. Figure 18 depicts the position of the vertical drainage well, T1, that has already
been constructed in the middle of the Huafan University campus by a local consultant
company, in order to illustrate the spatial distribution of geological characteristics that
interact with it through the three-dimensional profiles considered in this work.
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6. Conclusions

In this study, we attempted to construct a 3D EGM of the dip slope located in the Mt.
Dalun area, incorporating field geology and rock core data analysis. The spatial distribution
of the colluvium and bedrock stratum interface was determined using interpolation and
surface regression approaches, based on polynomial functions. The following conclusions
were reached in this study:

(1) The study area can be divided into three uniform geological zones belonging to the
Mushan Formation. Two faults—the Nanshihkeng Fault and the A Fault—formed the
boundaries of these three zones.

(2) The interpretation of the borehole cores provided a clear overall stratigraphy of the
sedimentary rocks in the area. In particular, there were nine rock units that could be
distinguished, including thick sandstone and a variable proportion of interbedded
shale and sandstone for Zones 1 and 2, in the following order of stratigraphic history:
L1 (SH/SS), L2 (SS/SH), L3 (SS-SH), L4 (SS-1), L5 (SH/SS), L6 (SS/SH), L7(SS-SH),
L8 (SS-2), and L9 (SH/SS). The thick sandstone (L4) identified as the key bed is
dominated by thick medium-grained whitish sandstone, intercalated with thin dark
black shale layers dispersed in a few spots in the massive sandstone. The top boundary
of this rock unit was observed from the borehole samples, following which this key
bed was used for surface regression. In Zone 3, the spatial distribution of the two thick
sandstones was proposed in the 3D EGM model as the consequence of outcrop field
geology measurements and topographical analysis, by applying a high-resolution
DEM.

(3) Loose material covered the slope with varying thicknesses. It was most densely dis-
tributed in the southwestern slope, at approximately 50 m thick, and became thinner
in the upper elevations along the mountain ridge. According to the topographical
features, the colluvium may consist of material from various sources, such as an-
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cient landslides or bedrock deterioration. The geometry of the bedding plane was
calculated, based on its distribution, as a plane generally dipping 15◦ to the southwest.

(4) Along with the 3D EGM, the structural contour map obtained by bedding surface
fitting using a second-order model revealed that the geometry of the geological
interface (i.e., the top surface of the key bed) gradually changes its direction and dip
inclination (Zone 1). Even though the bedding in Zones 2 and 3 proposed in this study
was found to be planar, its orientation changed significantly in space. Therefore, the
underground information in both zones needs to be supplemented in future research.

(5) The possibility of the future dip slope failure might be assessed through the use
of a combination of surficial/underground monitoring. The geological model that
incorporated the time-series of the displacement of the slope surface, revealed three
sliding mechanism types. The first one comprises the sliding surface at the interface
between the fill and the colluvium. The second one involves creeping on the contact
surface between the colluvium and the underlying bedrock. The third mechanism
is sliding occurring within the interlayer as a bedding plane. The development of
deep-seated landslides through gully erosion was also proposed. However, the slope
failure occurs only as local sliding and it is spatially very limited.

The three-dimensional engineering-geological model was approved as a powerful tool
for further landslide hazard and risk mitigation.
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Abstract: Water treatment is an important process, as it improves water quality and makes it better
for any end use, whether it be drinking, industrial use, irrigation, water recreation, or any other kind
of use. Turbidity is one of the fundamental measurements of the clarity of water in water treatment.
Specifically, this component is an optical feature of the amount of light on scatter particles when
light is shined on a water sample. It is crucial in water reservoirs to provide clean water, which is
difficult to manage and predict. Hence, this study focuses on the use of robust deep learning models
to analyze time-series data in order to predict the water quality of turbidity in a reservoir area. Deep
learning models may become an alternative solution in predicting water quality because of their
accuracy. This study is divided into two parts: (a) the first part uses the optical bands of blue (B),
green (G), red (R), and infrared (IR) to build a regression function to monitor turbidity in water,
and (b) the second part uses a hybrid model to analyze time-series turbidity data with the recursive
neural network (RNN2) model. The selected models’ accuracies are compared based on the accuracy
using the input data, forecasting level, and training time. The analysis shows that these models have
their strengths and limitations under different analyzed conditions. Generally, RNN2 shows the
performance regarding the root-mean-square error (RMSE) evaluation metric. The most significant
finding is that the RNN2 model is suitable for the accurate prediction of water quality. The RMSE
is used to facilitate a comparison of the accuracy of the sampling data. In the training model, the
training data have an RMSE of 20.89, and the testing data have an RMSE of 30.11. The predicted
R-squared values in the RNN2 model are 0.993 (training data) and 0.941 (testing data).

Keywords: water quality; deep learning; recursive neural network

1. Introduction

Mountain areas can store large amounts of water in various ways for human beings.
In Taiwan, watershed areas can be affected by different man-made developments; abuse;
or natural factors, such as typhoons, heavy rains, and other soil and sand disasters. For
instance, landslides are often directly or indirectly influenced by the turbidity of the water
source and can cause reservoir siltation, seriously threatening water quality. Moreover, the
variations in rainfall and soil/rock characteristics in reservoirs are also dominant factors of
water quality [1–3]. A smart image management platform is required for water resources,
and it would also help to strengthen water conservation and land use management. Past
studies that have monitored the environment can be divided based on the two types of
systems used: a monitoring system or a decision support system. Most of these systems
are built based on the consideration of the factors of the water body and the land use
surrounding the reservoirs [4]. Although water quality comprises a very broad area, such
as hydro-chemical and physicochemical properties, this study only focuses on the turbidity
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value of water, but other influencing factors of water quality that can also be predicted by
our proposed method.

The Water Resources Department (WRD) in Taiwan effectively and constantly monitors
the variation in water quality. Most turbidity problems are caused by landslides after heavy
rain or illegal land use in the watershed area. However, developing intelligent image
recognition technology is well accepted for water conservation and land management in
the watershed area. Accordingly, the goal of this study is to construct a prediction-based
image system to gain a better understanding of reservoir areas and water quality protection
areas. This type of system safeguards the ecological conservation of water collection areas
to ensure the safety and cleanliness of national drinking water, which hopefully ensures the
sustainable use of water resources [5]. Regarding the effective management and control of
image information, it can easily determine the location of actual violations and understand
the results of image interpretation. Hence, the Water Resources Department (WRD) built
the “Water Resource Conservation Smart Image Management Platform” in 2018. It is more
effective in improving the convenience of the overall operation of image management,
strengthening the functionality of the platform. The spatial management platform that we
are developing will use the advantages of geographic information systems in relational
analysis [6,7]. This imaging system should contain two major functions: (a) the ability to
transfer image data to compute turbidity and (b) the ability to build a predictive water
system to monitor turbidity in a reservoir. Specifically, the imaging system has an interface
with related demand areas, it is connected to electronic maps and uses aerial images as
base maps, and it constructs spatial displays to provide different images and real-time
information references from the Water Resources Department.

However, the variation in water quality is hard to predict, and it may also be influenced
by climate factors [8]. Turbidity in water is a major factor, and it is purified by water
treatment plants in downstream in the water system. Thus, if an imaging system providing
real-time data can transfer information to govern water quality, it will be of great help in
understanding the current situation of the water [4]. In addition, if a proper predictive
water system can be constructed, it will offer a better understanding of the near feature
of turbidity in water. To achieve the prediction of water variation, a time-series neural
network is adopted in this study.

As previously mentioned, the observations and predictions of water components
(such as turbidity) seem to be a crucial problem for water treatment plants and should be a
precaution when handling the current stage and next stage of the water body. Accordingly,
in the current stage, one can consider using regression analysis to solve the problem.
However, prediction involves a large amount of know-how in data analysis. Deep learning
methods show promise for time-series predictions, for example, the automatic learning of
temporal dependence and the automatic handling of temporal structures, such as trends
and seasonality. With clear explanations, standard Python libraries (Keras and TensorFlow
2) have many useful analysis tools that can be used to carry out solutions for many fields,
such as the prediction of PM 2.5 [9]. Furthermore, long short-term memory (LSTM) is
another artificial recurrent neural network (RNN) architecture used in the field of deep
learning. Currently, LSTM networks are applied to classify, process, and make predictions
based on time-series data, since there can be lags of unknown duration between important
events in an analysis of time-series data [10–12]. Therefore, using these tools to govern
step-wise data and to train a neural network could be a possible way to resolve turbidity
in water. The water quality of reservoirs, such as Qingtan Weir, is affected by heavy rains.
This study plans to develop a boosting neural network to calculate the huge changes in
turbidity under sudden conditions. The measured turbidity value is established in each
sub-routine to correct the prediction of the drastic change in water turbidity of RNN2.

The two main types of analytical neural networks in the time series are (a) recurrent
neural network (RNN1) and (b) recursive neural network (RNN2) [10–12]. The connections
between the neurons of the time recurrent neural network form a directed graph, while the
structural recurrent neural network uses a similar neural network structure to recursively
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construct a more complex deep network. Time recursive neural networks can describe
dynamic time behavior, and they are unlike feedforward neural networks, which accept a
more specific structure input. RNN2 cyclically transmits the state in its network. That is, it
can accept a wider range of time-series structures. For example, handwriting recognition
was the first research result to successfully use RNN2. In general, the accuracy of the
classifier can usually be improved by averaging the decisions of the classifier set. In general,
when the various classifiers are different and accurate, a greater improvement can be
expected. It was decided to obtain the results by adopting a basic learning algorithm and
using it in multiple time domains on different training sets [13].

To achieve the goal of this study, we used the image data of the turbidity of Qingtan
Weir, Taiwan. The sensor under the water attained the real value of the turbidity. Moreover,
a UAV took an image to acquire the band value of the water body at the sensor. The
regression model was built, and the time-series data were used to predict the turbidity
change in Qingtan Weir after heavy rains or after soil condition changes through the RNN2
model. The paper is structured as follows: (1) Introduction, (2) Materials and Methods,
(3) Methods, and (4) Discussion of the Results. The last part is divided into two steps: the
first step generates the regression model, and the second step uses the neural network with
the RNN2 approach.

2. Materials and Methods
2.1. Study Area

Reservoir areas are important for soil water conservation areas. Therefore, most
reservoir areas are involved in many types of land use and other induced water quality
issues. There are currently 95 reservoirs in Taiwan. The first stage of this study considered a
total water area of about 700,000 m3 of a reservoir, which is an appropriate size for analysis
of water quality in a specific area. The effective capacity is 150,000 m3, and the effective
size is 716.8 km2. Hence, the study selected Qingtan Weir (Figure 1) as an example to
demonstrate the application on monitoring and prediction. The longitude and latitude of
the Qingtan Weir are located at 24.948N and 121.545E, respectively. More specifically, this
study took the Qingtan Weir water area sampling as a means to analyze monthly the past
series of image data by a UAV, to monitor the water quality from images, and to produce
the acquisition of UAV images. Then, the study built a new monitoring and prediction
model based on an intelligent technology system, which is a computer system platform
using a regression approach [8]. However, since one series of data was collected, the RNN
model was applied to predict water quality in time series.

Due to the complicated components of the water body, this study decided to use
the different changes in the color of the surface water of remote images to calculate the
turbidity value of the water body through the reflectance of different wavebands [13].
Figure 1 displays the observation points, namely, A, B, and C, that were selected. The
underwater sensor was mounted at those points, and time-series data were collected stably
and automatically. In the first stage, we compared these three points and selected point B,
which displayed the best outcomes of water quality. Due to points A and C being near to
a sandy shore, some unpredictable values may have occurred as a result of rainfall. This
study used multiple regression analysis methods to predict the turbidity value of water
quality. The first trial used regression analysis. Then, it established the dependent variable
(Y; turbidity) as a function of the independent variable (X; B, G, R, and IR) model and then
estimated the parameters of the function based on the data obtained from the sample. The
purpose of this was to present the image bands of the data to form a correlation of the
turbidity of the water body.
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Figure 1. The contour elevation line of Qingtan Weir.

2.2. Study Plan

As previously mentioned, we received the image data from the UAV at point B in
Figure 1. The water quality of turbidity was used as a series of outcomes to build the
regression function by considering the image bands of B, G, R, and IR as input variables.
The rainfall database was also used for calibration to amend the regression function.
Figure 2 presents the research steps for analysis. The prediction of turbidity is quite
difficult, especially considering the rainy hours of emergency notice for water treatment
plants. The novelty this paper is that we used two neural network systems:

(a) A regular neural network to handle no-rain hours.
(b) The boosting model (RNN2) to handle rainy hours.
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2.3. Image Data

The plan of the study was to use the acquisition image data at 10 a.m. of the selected
study area in cloudless weather for a standard image format. Since the optical scanning
operations are performed simultaneously, the image data will be operated to meet the
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requirements of a scanning height of 15 m above the ground and FOV of 40◦ to obtain the
ground resolution as 0.4 m images. At least 72 time intervals were recorded (locations are
refer points A, B, and C in Figure 1) for the time-series data, which were used as an element
to identify image features and make a prediction in future steps.

3. Methods
3.1. Neural Network (NN) Model

Neural networks are constructed based on the structure of the human brain, and
they have contributed to current machine learning technology. They provide a simplified
mathematical model to solve various nonlinear problems. In the past, researchers reviewed
the ANN model’s predictions of solar energy [14] and groundwater levels [15]. Past studies
showed that the ANN model has a more accurate prediction than other conventional
models, such as the Angstrom, conventional, linear, nonlinear, and fuzzy logic models [16].

The traditional neural network model comprise input, hidden, and output layers with
auxiliary components, such as neurons, weight, bias, and activation functions [16]. Figure 3
shows basic neural network architecture with a multilayer perceptron. The input layers
may receive input values from the signal or data, and the hidden layer analyzes the input
values. The output layer collects the data from the hidden layer and decides the output. In
the learning process, the neural network modifies its structure to obtain the same reference
or set point as the supervisor. The training process is repeated until the difference between
the neural network output and the supervisor lies within an acceptable range.
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3.2. Recurrent Neural Network; RNN1

A recurrent neural network (RNN) is a class of artificial neural networks where
connections between nodes form a directed graph along a temporal sequence. Previous
RNN studies have drawn great attraction for water quality predictions [17–23]. This allows
it to exhibit temporal dynamic behavior. Derived from feedforward neural networks, RNNs
can use their internal state (memory) to process variable-length sequences of inputs. This
makes them applicable to tasks such as unsegmented, connected handwriting recognition
or speech recognition.

RNN models (see Figure 4) in particular are designed to analyze sequential data. They
have been successfully used in fields such as speech recognition, machine translation, and
image captioning. RNN processes sequence data by elements, and they preserve a state to
represent the information at time steps. The traditional neural network assumes that all
units of the input vectors are independent. Accordingly, the traditional neural network is
ineffective for prediction when using sequential data. The architecture of RNNs comprise
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three main components (input, hidden neuron, and activation function). The previous
hidden state (ht) can be formulated as

ht = tanh(U·xt + W·ht−1)

where xt is the input at time t, ht is the hidden neuron at time t, U is the weight of the
hidden layer, and W is the transition weights of the hidden layer. The input and previous
hidden states are combined to produce information as the current and previous inputs
go through a tanh function. Then, the output is the new hidden state, performing as the
neural network memory because it holds information from the previous network. Training
regular RNNs results in a series of vanishing and exploding gradient problems. In the case
of the exploding gradient, the problem is resolved after backpropagation, which is closed
at a certain point. However, the results may not be optimal because all the weights are not
updated. In the case of the vanishing gradient, it can be adjusted by initializing the weights
to reduce the possibility of a vanishing gradient [24].
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3.3. Recursive Neural Network; RNN2

A recursive neural network is a type of deep learning neural network. It is usually cre-
ated by applying the same set of weights recursively over structured data for inputs. Then,
it produces a structured prediction over variable-size input structures, or a scalar prediction
on it, by traversing a given structure in topological order. Recursive neural networks have
been successfully resolved of the prediction in learning sequence data [20–22]. A recursive
neural network is a type of deep neural network produced by a set of weights recursively
over a time series of structured inputs to produce consecutive predictions over variable-size
input structures, or a scalar prediction on it [23–25]. It traverses a given structure in topolog-
ical order. Recursive neural networks, sometimes abbreviated as RNN2 (see Figure 5), have
been successful, for instance, in learning sequence and tree structures in natural language
processing. RNN2 was first introduced to learn distributed representations of structure,
such as logical terms.
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Although recursive neural network (RNN2) models demonstrate advantages in system
robustness and time-series data computation, they have been widely applied to redundant
data optimization. Existing RNN2 models suffer from local minimum and do not have
planning completeness. Therefore, many techniques are used to solve the redundant
data in time-series data acquisition [25,26]. Recursive neural networks usually operate on
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any hierarchical structure, transforming child representations into parent representations.
In general, stochastic gradient descent (SGD) is used to train this type of network. The
gradient is calculated using backpropagation on varying data through a time series. In
detail, every node in a given layer is connected to every other node in the next successive
layer through a directed (one-way) connection. Each node (neuron) has a time-varying
real-valued activation. Each connection (synapse) has a real-valued weight that can be
modified. Nodes are either input nodes (receive data from outside the network), output
nodes (produce results), or hidden nodes (modify data in the process from input to output).
For supervised learning in discrete-time data, a sequence of real-valued input vectors
arrives at the input node, one vector at a time. In any given time step, each non-input unit
calculates its current activation (result) as a non-linear function of the weighted sum of the
activations of all units connected to it [27,28]. The target activation given by the supervisor
is applied to certain output units at a specific time step [29,30].

4. Discussion of the Results

Step 1: Build the regression function using image data.

In the first stage, the goal was to monitor turbidity in water. This study used multiple
regression analysis to predict the turbidity value of water quality. B, G, R, and IR are four
variables taken from image data, and the images were taken by a UAV. The turbidity values
were extracted from sensor B. One series of the regression function was obtained. One of
them can be formulated as

T = −1.238 × R + 3.616 × G − 2.991 × B − 0.048 × IR + 391.448, R2 = 0.931 (1)

where T is the turbidity.
Part of the regression error is plotted in Figure 6. The average error is about 0.07%.

The Y-axis is the real value of turbidity, and the X-axis is the value predicted by regression.
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Step 2: Use the time-series data of turbidity to build the RNN2 model.

The architecture of our RNN2 model was built based on a neural network framework,
and it is shown in Figure 7. There is one input layer of neurons and one single output of
neurons. Four hidden layers are constructed for computation. Two parts are constructed as
(a) RNN2 parts and (b) NN parts. A total of 72 inputs of the neuron are set up to receive the
signal of the water quality, considering the turbidity. Layer 2 is the hidden layer, and the
received neurons of this layer take turns to transmit the data to the NN part of the system.
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There are 72 input neurons of 12 h, with each hour taking 6 sampling rates. We selected
four hidden layers, and the first two are in the RNN part and the last two are connected to
the NN part. To accelerate and consider the convergence speed of the network, we decided
to use the same number of neurons as in the input layer. The rectified linear unit (ReLu)
was used as the activation function, which is used in the calculation of the core of the NN
and RNN systems. Since the ReLu converts all the negative and zero input values to zero,
using ReLu as an activation function for RNN2 is a legitimate concern. Srivastava et al. [31]
suggested dropout to feedforward neural networks and RBMs and noted the probability
of dropout being around 0.5 for hidden units and 0.2 for inputs, which worked well for a
variety of tasks. There is a dropout ratio of 20%, which was set up in the first three layers.
The last hidden layer was set up for 50% to accelerate the convergence of iterations.
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Step 3: The indicators of accuracy.
(1) RMSE: Root-mean-squared error is a frequently used measure of the differences

between values predicted by an estimator and the values observed. It can be formu-
lated as

RMSE =

√
∑(y − y )̂2

T

where T represents the different predictions, yˆ is the value predicted by an estimator,
and y is the real value.

(2) MAE: Mean absolute error (MAE) is a measurement of errors between paired observa-
tions with the absolute value.

(3) R2 is a statistical measure that represents the proportion of the variance for a depen-
dent variable.

(4) CV: Coefficient of variation is a statistical measure of the relative dispersion of data
points in a data series around the mean. It can be formulated as

CV =
σ

µ
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where σ is the standard deviation, and µ is the mean.

4.1. Training Model

This study collected the training data in October 2019. The RNN2 model was built
for two different cases of (a) accumulated rainfall corresponding to 0 and (b) accumulated
rainfall greater than 0. The training dataset comprises 0.7 of the entire dataset, and the
remainder is used as the testing dataset for the self-testing of the model. Figure 8 presents
the prediction error distribution diagram.
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4.2. Prediction Model for Convergence

RNN2 converges quickly, which is illustrated in Figure 9a for the case of no-rain days.
It varies dramatically at the initial stage. The accuracy becomes stable at 16 epochs. The
RMSE of the training dataset descends from 300,000. The test data move downward after
the fifth epoch. Figure 9b shows the case of no-rain days of RMSE vs. epochs. The network
converges at 14 epochs. The variations in Figure 9a,b are very similar.
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4.3. Prediction for Time–History

Time–history analysis is used to analyze the performance of RNN2 models. Accord-
ingly, the turbidity of water can apply RNN2 for the step-wise analysis of temporal data. In
our study, a portion of data is extracted to display the physical meaning of the analysis. The
X-axis is the time and date, and the Y-axis is the density of turbidity. We used October 2018
to build the RNN2 model. Figure 10a shows the time–history of the accuracy of real data
(blue) and verification (red) for October 2018. Figure 10b shows the time–history of accuracy
of real data (blue) and prediction (red) for November 2018. The RMSE of October is 20.89,
which is smaller than that of November (36.11); this makes sense as the prediction outcomes
are greater. However, the differences between October and November are sufficiently small
to explain the prediction of outcomes, which are considered quite rational.
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Figure 10. Time–history difference between real (blue) and predicted (red). (a) Time–history of
October for building of RNN2 model; (b) time–history of November for predicting of RNN2 model.
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In addition to using time–history analysis, we also employed MAE, RMSE, CV, and
R2 to observe the performance and accuracy of the model. The performance criteria of
RNN2 are presented in Table 1. We illustrated the MAE, RMSE, and R2 of October 2018 and
November 2018. October represents the training data used to generate the RNN2 model.
November represents the verification part, using testing data to examine how the real-time
value is displayed.

Table 1. The RNN performance criteria table.

Date Type Value

October 2018 MAE 13.88
October 2018 RMSE 20.89
October 2018 CV 0.757
October 2018 R2 0.993

November 2018 MAE 25.20
November 2018 RMSE 36.11
November 2018 CV 0.768
November 2018 R2 0.961

5. Summary and Conclusions

The recursive neural network (RNN2) is a type of artificial neural network that uses
time-series data to predict a few forward step-wise data items of values. Such deep learning
algorithms are usually designed for temporal problems. In addition, RNN2 utilizes training
data to learn a learning system, which is similar to its “memory”, as it takes information
from prior inputs to influence current outputs. Traditional deep neural networks presume
that inputs and outputs are independent of each other, as well as the output of recurrent
neural networks depending on prior elements within a sequence. When future events help
to determine the output of a given sequence, unidirectional recurrent neural networks
cannot take account of these events in their predictions. Considering these characteristics
of RNN2, the few-step time-series data of water components can be successfully applied by
using RNN2 to resolve them.

Turbidity is the most important measure indicator of the relative clarity of water. It is
an optical feature of water, and it is a measurement of the amount of light that is scattered
by materials in water samples. In general, the higher the intensity of scattered light, the
higher the turbidity. However, many materials, such as clay, silt, very tiny inorganic and
organic matter, algae, dissolved organic/non-organic compounds, plankton, and other
microscopic organisms, cause water to be turbid. We monitored a reservoir’s turbidity
values using sensors mounted at the waterbed. Simultaneously, a series of images from
the UAV were taken to correlate turbidity and the band values of B, G, R, and IR. Remote
sensing data were used to present the values of turbidity of water in our selected reservoir.
The R-squared value is 0.931, which satisfies the prediction of a regression model. We
aimed to construct an ANN system (regular no-rain hours) with an RNN2 system for a
subroutine (considering rainy hours) to predict turbidity values using water sensors. Due
to the occurrence of rainy hours, the prediction can have huge errors, but our subroutine
can adjust the accuracy of results. As part of this study, a deep learning approach using the
RNN2 model is presented to forecast time-series data by operating the main program in
regular hours. That is, when the data increase dramatically, the subroutine is automatically
operated. The main objectives of this work were to design a model that can not only
predict the very next step but also generate a sequence of predictions and utilize multiple
driving time series together with a set of static (scalar) features as its inputs. The RMSE of
October is 20.89, which is smaller than that of November (36.11). The predicted R-squared
values in RNN2 are 0.993 and 0.941. The differences in RMSE for October and November
are sufficiently small, which explains why the predictions of outcomes are considered
quite rational.
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Abstract: While multi-year and event-based landslide inventories are both commonly used in land-
slide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results
obtained from the use of event-based landslide inventories are very sensitive to the choice of event.
Based on 24 event-based landslide inventories for the Shihmen watershed from 1996 to 2015, this study
established five event-based single landslide susceptibility models employing logistic regression,
random forest, support vector machine, kernel logistic regression, and gradient boosting decision tree
methods. The ensemble methods, involving calculating the mean of the susceptibility indexes (PM),
median of the susceptibility indexes (PME), weighted mean of the susceptibility indexes (PMW),
and committee average of binary susceptibility values (CA) of the five single models were then
used to establish four event-based ensemble landslide susceptibility models. After establishing nine
landslide susceptibility models, using each inventory from the 24 event-based landslide inventories
or a multi-year landslide inventory, we identified the differences in landslide susceptibility maps
attributable to the different landslide inventories and modeling methods, and used the area under the
receiver operating characteristic curve to assess the accuracy of the models. The results indicated that
an ensemble model based on a multi-year inventory can obtain excellent predictive accuracy. The
predictive accuracy of multi-year landslide susceptibility models is found to be superior to that of
event-based models. In addition, the higher predictive accuracy of ensemble landslide susceptibility
models than that of single models implied that these ensemble methods were robust for enhancing the
model’s predictive performance in the study area. When employing event-based landslide inventories
in modeling, PM ensemble models offer the best predictive ability, according to the Kruskal–Wallis
test results. Areas with a high mean susceptibility index and low standard deviation, identified using
the 24 PM ensemble models based on different event-based landslide inventories, constitute places
where landslide mitigation measures should be prioritized.

Keywords: landslide susceptibility analysis; event-based landslide inventory; ensemble model;
Shihmen watershed

1. Introduction

Under the impact of climate change, extreme rainfall events have caused frequent
landslides and debris flows in Taiwan’s mountainous areas. In order to effectively reduce
the losses caused by the landslides and debris flows, it is necessary to employ landslide sus-
ceptibility analysis to delineate those areas in watersheds that are susceptible to landslides
and use this information as a reference for overall watershed management plans. The chief
methods for landslide susceptibility analysis consist of heuristic, statistical, probability, and
deterministic methods [1]. Many types of machine learning methods have been broadly ap-
plied to landslide susceptibility analysis in recent years and have yielded excellent results;
machine learning algorithms can be classified as either parametric or nonparametric [2].

Parametric machine learning algorithms first select a form of the function and then
learn the function’s coefficients through a training process. The advantage of these algo-
rithms is that the methodology is easy to explain and understand, and the training process
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is short and does not require the collection of vast amounts of data; their limitation is
that the prior selection of a function often constrains the learning process, the method is
only suitable for simple problems, and the fit is often relatively poor. Parametric machine
learning algorithms may employ logistic regression and linear discriminant analysis, and
logistic regression, in particular, is often applied in landslide susceptibility analysis [3–7].
For their part, nonparametric machine learning algorithms do not require prior selection
of the functional form and may fit the function of any form through the training process.
The advantage of this approach is its versatility and ability to generate good performance
for training sample data; its limitation is its need for vast amounts of data, a slow training
process, and a higher chance of overfitting occurring [2]. When the training sample is
too small, the nonparametric algorithm inevitably leads to inadequate training, which
will reduce the accuracy [8]. The nonparametric machine learning algorithms most com-
monly used in landslide susceptibility analysis include the support vector machine [9–15],
random forest [8,9,12,15–18], kernel logistic regression [10,11,19], and boosted regression
tree [15–17].

When performing landslide susceptibility analysis, landslide inventories can be classi-
fied as either multi-year or event-based, depending on the length of data collection time
in the inventory. Apart from establishing a landslide susceptibility model based on a
multi-year landslide inventory [20–22], when the research area lacks a multi-year landslide
inventory, an event-based landslide inventory and triggering factors can be used to perform
susceptibility analysis [3]. When establishing an event-based landslide susceptibility model,
a landslide inventory for the event and data concerning the spatial distribution of triggering
factors must be available; triggering factors, such as rainfall or earthquake intensity, are
taken as independent variables in the model [6,23–25].

When establishing a landslide susceptibility model, the input sample data set is
usually divided into a training set and a testing set. After using the training set to establish
a model, the testing set is used to assess the performance of the model. The sample data set
commonly contains a 50:50 ratio of landslide and no-landslide samples [9,13,26,27], and the
ratio of the training set sample to the testing set sample is typically 70:30 [8,12,13,26,28,29].
Furthermore, when establishing a nonparametric machine learning model, the training set
is also used to perform hyperparameter optimization. During the optimization process,
fivefold cross-validation [9] and tenfold cross-validation [12,30] are often used to tune
the hyperparameters.

Because each modeling method has its own advantages and limitations, different
models can be used to perform landslide susceptibility analysis for the same research
area, but uncertainty associated with the results of these models may exist. The ensemble
method can then be used to aggregate the results of different models and can delineate
areas with high susceptibility and low uncertainty [16,31]. The five most commonly
used ensemble methods [32] involve the calculation of mean of landslide probabilities
(PM), confidence interval for the mean of landslide probabilities (CI), median of landslide
probabilities (PME), weighted mean of landslide probabilities (PMW), and committee
averaging (CA), respectively. The stacking ensemble method, which uses a meta-learning
algorithm to combine different single models [33], was also employed to establish ensemble
modes [34,35]. In this study, the landslide susceptibility models were constructed by
adopting the ensemble methods, such as PM, PME, PMW, and CA.

In order to assess the performance of different event-based ensemble landslide suscep-
tibility models, this study used event-based and multi-year landslide inventories for the
Shihmen watershed to establish single and ensemble landslide susceptibility models. To
assess the robustness of the ensemble methods, we used numerous landslide inventories,
rather than a single one, and compared the predictive accuracy of these single models and
ensemble modes, established using the same inventory. Additionally, the rainfall-triggering
factors were incorporated as independent variables into the landslide susceptibility models,
which contributes to the development and improvement of landslide early-warning sys-
tems. Apart from comparing the landslide susceptibilities in the different models, this study

260



Water 2022, 14, 717

also located those areas with high landslide susceptibility within the research area, which
can provide a reference for decision-making when planning landslide mitigation measures.

2. Methods

This study first employed a logistic regression model and 4 nonparametric machine
learning models to establish single landslide susceptibility models; then, it used 4 ensemble
methods to establish ensemble landslide susceptibility models. In addition to establishing
an event-based landslide susceptibility model, based on an event-based landslide inven-
tory, we also combined 24 event-based landslide inventories, i.e., a multi-year landslide
inventory, to establish a multi-year landslide susceptibility model. We then use the receiver
operating characteristics (ROC) curve, Spearman’s rank correlation coefficient, the Mann–
Whitney test, and the Kruskal–Wallis test to assess the performance of different models.

2.1. Single Landslide Susceptibility Model
2.1.1. Logistic Regression (LR) Model

Because the goal of landslide susceptibility analysis is to predict whether landslides
will occur in individual slope units, the dependent variables in this model consisted of the
binary response variables of “landslide” and “no-landslide”, and the logistic regression
developed by Menard [36] was used to establish a parametric machine learning model,
which took the form shown in Equation (1):

ln
(

pi
1− pi

)
= αi +

k

∑
j = 1

βijxij. (1)

Here, pi is the probability of landslide occurrence, αi, βij are the coefficients, xij is the
value of the susceptibility factor, i represents different events, and j represents different
susceptibility factors.

2.1.2. Random Forest (RF) Model

The random forest model proposed by Breiman [37] is a decision tree-based ensem-
ble method and establishes multiple decision trees via the random selection of variable
subsets. Because random forest models do not require any prior assumptions concerning
the relationship between the independent variables and the target variable, this type of
model is suitable for the analysis of large datasets with nonlinear correlations [38]. In the
process of establishing different decision trees, the re-sampling of the data and the random
selection of variable subsets increase the diversity of the decision trees [39]. According to
Chang et al. [12], there are three reasons for random forest models’ high performance: (1) it
is a form of nonparametric nature-based analysis; (2) it can determine the importance of
the variables used; and (3) it can provide an algorithm for estimating missing values. This
method has been extensively used in landslide susceptibility analysis in recent years, and
has yielded excellent results [8,9,12,16].

2.1.3. Support Vector Machine (SVM) and Kernel Logistic Regression (KLR) Models

Support vector machines, as proposed by Vapnik [40], constitute a supervised clas-
sification method. Their special property is their ability to simultaneously maximize the
geometric margin and minimize the empirical classification error, which is why they are
also referred to as maximum margin classifiers [41]. SVMs perform classification by finding
the hyperplane with the largest margin between two types of training data in a higher
dimensional space. A non-linear kernel function can be used to map the input data onto
a higher dimensional space, where a hyperplane classifying the data can be established.
Kernel logistic regression is a kernelized version of linear logistic regression [42]. This
method uses a kernel function to project the input data onto a higher dimensional feature
space, with the goal of finding a discriminant function of distinguishing the two categories
of landslide and no-landslide.
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In the two previous models, the most commonly utilized kernel functions consist of
linear kernel functions, polynomial kernel functions, radial basis kernel functions (RBF),
and sigmoid kernel functions. Of these types, radial basis kernel functions are the most
widely used [11] and offer the best predictive ability in most situations, especially in the
case of nonlinear data [14]. Radial basis kernel functions are also a very popular choice for
the establishment of landslide susceptibility models [43].

2.1.4. Gradient-Boosting Decision Tree (GBDT) Model

The gradient-boosting decision tree (GBDT) model proposed by Friedman et al. [44]
is similar to the gradient-boost regression tree (GBRT) and multiple additive regression
tree (MART) algorithms. GBDT models combine boosting and regression trees in a single
algorithm [41]. Boosting relies on the minimization of the loss function at each tree spilt
to improve the decision trees [45] and represents one of the learning methods offering
the greatest improvement of model accuracy [17]. Rather than being fitted without any
relationship with adjacent trees, GBDT trees are fitted on top of the previous trees.

2.2. Ensemble Landslide Susceptibility Model

Referring to Thuiller et al. [32], this study selected PM, PME, PMW, and CA as the
ensemble methods used to aggregate the results of the 5 single models, as shown in Table 1.
Among these methods, the PM ensemble model calculates the mean of the susceptibility
indexes of the single models; the PME ensemble model calculates the median of the
susceptibility indexes of the single models; and the PMW ensemble model calculates the
weighted mean of the susceptibility indexes of the single models. To set weights, this
study assigned weights to each single model, based on the accuracy calibrated by the
training-event data. Additionally, the CA ensemble model first identifies the threshold
value of each single model, converts the landslide susceptibility index to a binary value
(landslide or no-landslide), and calculates the committee average of binary values of the
5 single models.

Table 1. The ensemble methods to aggregate the results of the selected models.

Ensemble Methods Description

PM Mean of susceptibility indexes. The PM ensemble model calculates the mean of the susceptibility
indexes for the selected models.

PME Median of susceptibility indexes. The PME ensemble model calculates the median of the
susceptibility indexes for the selected models.

PMW
Weighted mean of susceptibility indexes. The PMW ensemble model calculates the relative

importance of the weights based on the accuracies of the selected models, and then calculates the
weighted mean of the susceptibility indexes for the models.

CA
Committee averaging. After identifying the threshold value of each selected model and converting

the susceptibility index to binary value, the CA ensemble model calculates the average of binary
values for the selected models.

2.3. Single Model Establishment Process
2.3.1. Logistic Regression (LR) Model

All slope units with landslides in each landslide inventory are included in the landslide
sample, and the no-landslide samples with the same sample number as the landslide sample
are also selected. A 10-fold cross-validation is then used to perform model validation. The
cross-validation process is repeated 5 times to reduce the error from the split subsets, which
yields the mean test accuracy for the models, established from that sample dataset. The
foregoing sampling process is repeated 10 times in order to reduce sampling error, and the
model with the best mean test accuracy is selected for use in subsequent analysis.
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2.3.2. Nonparametric Models (RF, SVM, KLR, GBDT)

Among nonparametric machine learning algorithms, hyperparameters must be set
manually before training. For example, two hyperparameters must be set in the RF model
used in this study: the number of trees to fit (numtree) and the number of variables for each
tree (mtry). In an SVM or KLR model employing an RBF kernel function, two hyperparam-
eters must be set: a penalty parameter (C) and an RBF parameter (γ). In a GBDT model,
three hyperparameters must be set: numtree, mtry, and learning rate. The grid search
method used to tune the hyperparameters in this study is a conventional optimization
method, using our preset hyperparameter subset to perform a comprehensive search. The
nonparametric models used in this study and the range of their hyperparameters are shown
in Table 2.

Table 2. Hyperparameter types and the range of nonparametric models.

Model Hyperparameter Range

RF
number of trees (numtree) 100–1500
number of variables (mtry) 3–14

SVM
penalty parameter (C) 0.001–1000

RBF parameter (γ) 0.001–1000

KLR
penalty parameter (C) 0.001–1000

RBF parameter (γ) 0.001–1000

GBDT
number of trees (numtree) 100–1000
number of variables (mtry) 5–14

learning rate 0.1–1

The modeling process involved the selection of all slope units with landslides in each
landslide inventory, to serve as the landslide sample, and the selection of a no-landslide
sample with the same sample number. All the sample data were then split into a training
set and testing set in a 70:30 ratio. The model training process began with hyperparameter
tuning, which involved the use of the training set data and 10-fold cross-validation to
perform an analysis of each hyperparameter subset, which yielded the mean training
accuracy of each hyperparameter subset. The next step consisted of establishing a model
using the tuned hyperparameter subset and training set data, and the testing set data were
then used to perform model validation, which yielded the test accuracy. The sampling
process was repeated 10 times, which yielded 10 tuned hyperparameter subsets and their
corresponding models, and the model with the best test accuracy was selected for use in
the subsequent analysis.

2.4. Model Performance Assessment
2.4.1. Receiver Operating Characteristic (ROC) Curve

The receiver operating characteristic (ROC) curve [46] method employs the use of
threshold values to classify prediction results into 4 types: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). After calculating the true positive rate
(TPR) and false positive rate (FPR) for each threshold value, the resulting data points are
connected up to plot an ROC curve, where the area under the curve (AUROC) represents
the model’s performance and predictive accuracy. The closer the AUROC value is to 1, the
better the performance of the model.

2.4.2. Inferential Statistics

This study used the Mann–Whitney test and Kruskal–Wallis test to analyze the effect
of different model methods and landslide inventories on the predictive ability of the
established models.

The Mann–Whitney test, which is also known as the Wilcoxon rank sum test [47,48],
is a nonparametric test used to determine whether there is a difference in the dependent
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variables between two independent populations. The test statistic, U, is calculated using
Equation (2):

U = N1N2 +
N1(N1 + 1)

2
−∑ R1. (2)

Here, N1 and N2 are the sample sizes in sample 1 and sample 2, where the sample
with the greatest rank sum is taken as the first sample and has a rank sum of ∑ R1.

The Kruskal–Wallis test was first proposed by Kruskal and Wallis [49], and is a non-
parametric test that extends the two-sample Wilcoxon test in the situation where there are
more than two groups. The Kruskal–Wallis test does not assume a normal distribution of
the underlying data. It ranks the data from smallest to largest, and assigns a rank to the data
that is used to calculate the test statistic H, as shown in Equation (3). This test is used to
determine whether there is a difference between the medians of K independent populations.

H =
12

n(n + 1)

k

∑
i = 1

Ri
2

ni
− 3(n + 1) (3)

Here, n = n1 + n2 + . . . + nk, ni is the sample size of each sample, and Ri is the rank
sum of each sample.

2.4.3. Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient, as proposed by Spearman [50], is a nonpara-
metric measure used to assess the strength and direction of the association between two
ranked variables, X and Y. Depending on the values of variables X and Y, this measure
ranks the data and establishes paired ranks, then calculates the difference in rank for each
pair, as shown in Equation (4); the value of this coefficient is between −1 and 1 [51]:

ρ = 1− 6 ∑ d2
i

n(n2 − 1)
(4)

where di is the difference in rank between the susceptibility index of slope units in the two
models, ρ is the Spearman’s rank correlation coefficient, and n is the sample size.

The model performance assessment methods employed in this study are summarized
in Table 3.

Table 3. Description and explanation of the model performance assessment methods.

Assessment Methods Description Explanation

Receiver operating
characteristic (ROC) curve

The area under the ROC curve
(AUROC) represented the model’s

performance and predictive accuracy.

AUROC ranges in value from 0 to 1. An excellent model has
an AUROC near 1, and a poor performance model has an

AUROC near 0.

Mann–Whitney test
The test was used to compare the
predictive accuracy of multi-year

model to that of event-based models.

A p-value < 0.05 indicates that the null hypothesis is
rejected and a statistically significant difference between the

predictive accuracy of multi-year model and that of
event-based models exists.

Kruskal–Wallis test
The test was used to compare the
predictive accuracy of different

modeling methods.

A p-value < 0.05 indicates that null hypothesis is rejected
and a statistically significant difference of the predictive

accuracy of 9 modeling methods exists.

Spearman’s rank
correlation coefficient

The coefficient was used for a
quantitative comparison on landslide

susceptibility maps.

The value ranges between −1 and 1. A coefficient close to
1 means small differences between the susceptibility map of

the optimal model and that of other models.

3. Research Area and Materials
3.1. Research Area and Topographic Factor

The Shihmen watershed, with an area of 75,243 ha, is located in the north part of Tai-
wan and is largely characterized by mountainous topography. Elevations in the area range
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from 236 m to 3526 m, and a slope gradient ranging from 20◦ to 50◦ accounts for 77% of the
whole area (Figure 1). Because of the relatively well-defined topographic boundaries and
topographic meaning in the Shihmen watershed, slope units were employed as analytical
units for landslide susceptibility analysis. According to the subdivision method suggested
by Xie et al. [52], this watershed was divided into 9181 slope units (Figure 2).

Twelve topographic factors, such as maximum slope, average slope, slope roughness,
highest elevation, total slope height, terrain roughness, average elevation, distance from the
road, distance from the fault, distance from the river, average aspect, and lithology, were
selected as intrinsic susceptibility variables according to the previous study [6]. The values
of highest elevation, total slope height, terrain roughness, average elevation, maximum
slope, average slope, slope roughness, and average aspect of each slope unit were calculated
by employing ArcGIS programs and by utilizing 5 m digital elevation model produced by
the Ministry of the Interior. After obtaining the 1:5000 orthophoto base maps issued by the
Aerial Survey Office of the Forestry Bureau, the 1:50,000 geologic maps issued by the Central
Geological Survey and a road map overlay from the Soil and Water Conservation Bureau,
we calculated the horizontal distances of each slope unit from the river, fault, and road,
respectively. The lithologic types of each slope unit, such as argillite, quartzitic sandstone,
hard sandstone and shale, sandstone and shale, and terrace deposit and alluvium, were
analyzed utilizing the 1:50,000 geological maps. The distribution maps of 12 topographic
factors are presented in Appendix A.

Water 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

 

Figure 1. Elevation, road, fault, river system, and rain gauge station in the Shihmen watershed. 

3.2. Landslide Inventory and Rainfall Factor 

After collecting 24 sets of satellite images of the Shihmen watershed during the 

period from 1996 to 2015, landslide inventories triggered by 24 typhoon events were 

mapped according to the interpretation procedures proposed by Liu et al. [53]. The landslides 

recorded in the 24 landslide inventories in each slope unit are shown in Figure 2. The number 

of landslides for each landslide inventory ranged from 59 to 1350 and the total landslide 

area ranged from 10.19 ha to 577.04 ha (Figure 3).  

Two rainfall factors, namely, maximum 1-h rainfall and maximum 24-h rainfall, were 

selected as extrinsic triggering variables, according to the previous research [6]. The short-

duration rainfall and long-duration rainfall values reflect the rainfall pattern during the 

typhoon event. After collecting rainfall data from 31 rain-gauge stations (Figure 1), the 

maximum 1-h rainfall and maximum 24-h rainfall of each station during each typhoon 

event were analyzed. Then, the rainfall values of each slope unit were calculated, after 

using the Kriging method to estimate the spatial distribution of rainfall. The average 

maximum 1-h rainfall and maximum 24-h rainfall for each typhoon event are shown in 

Figure 3. 

Figure 1. Elevation, road, fault, river system, and rain gauge station in the Shihmen watershed.

265



Water 2022, 14, 717
Water 2022, 14, x FOR PEER REVIEW 9 of 26 
 

 

 

Figure 2. The slope units and landslide inventories, triggered by 24 typhoon events in the Shihmen 

watershed. Figure 2. The slope units and landslide inventories, triggered by 24 typhoon events in the Shih-
men watershed.

266



Water 2022, 14, 717

3.2. Landslide Inventory and Rainfall Factor

After collecting 24 sets of satellite images of the Shihmen watershed during the period
from 1996 to 2015, landslide inventories triggered by 24 typhoon events were mapped
according to the interpretation procedures proposed by Liu et al. [53]. The landslides
recorded in the 24 landslide inventories in each slope unit are shown in Figure 2. The
number of landslides for each landslide inventory ranged from 59 to 1350 and the total
landslide area ranged from 10.19 ha to 577.04 ha (Figure 3).
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Figure 3. Landslide inventory and rainfall statistics for 24 typhoon events.

Two rainfall factors, namely, maximum 1-h rainfall and maximum 24-h rainfall, were
selected as extrinsic triggering variables, according to the previous research [6]. The short-
duration rainfall and long-duration rainfall values reflect the rainfall pattern during the
typhoon event. After collecting rainfall data from 31 rain-gauge stations (Figure 1), the
maximum 1-h rainfall and maximum 24-h rainfall of each station during each typhoon
event were analyzed. Then, the rainfall values of each slope unit were calculated, after
using the Kriging method to estimate the spatial distribution of rainfall. The average
maximum 1-h rainfall and maximum 24-h rainfall for each typhoon event are shown in
Figure 3.

4. Results of Analysis
4.1. Results of Single Models
4.1.1. Logistic Regression (LR) Model

This study used LR to establish a parametric landslide susceptibility model. In the
modeling process, 10-fold cross-validation was repeatedly used to assess model perfor-
mance. The repeated application of this process reduced the sampling error and enabled
the selection of the model with the best mean test accuracy for subsequent analysis. The
test accuracy of 24 event-based logistic regression models (i.e., the AUROC value of the test
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stage) ranged from 0.740 to 0.862, and the mean accuracy was 0.819 (Table 4). Additionally,
the test accuracy of the multi-year logistic regression model was 0.798.

Table 4. Performances of the LR models.

Event Test Accuracy Event Test Accuracy

1-Herb 0.825 14-Morakot 0.832
2-Xangsane 0.776 15-Parma 0.802

3-Toraji 0.740 16-Fanapi 0.815
4-Nari 0.760 17-Megi 0.859
5-Aere 0.824 18-Meari 0.798

6-Haitang 0.789 19-Nanmadol 0.862
7-Matsa 0.832 20-Talim 0.812
8-Talim 0.806 21-Saola 0.815

9-Longwang 0.859 22-Soulik 0.835
10-Shanshan 0.826 23-Matmo 0.835

11-Krosa 0.850 24-Soudelor 0.823
12-Nuri 0.842 Multi-year 0.798

13-Jangmi 0.849

The 24 event-based logistic regression models established in this study enabled the
spatial variation in each event’s landslide susceptibility index to be determined. The mean
values and standard deviations of the 24 landslide susceptibility indices for each slope
unit were then calculated (Figure 4). Similarly, the mean landslide susceptibility indices
and standard deviations were calculated for each slope unit in the multi-year logistic
regression model.
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4.1.2. Random Forest (RF) Model

The hyperparameter tuning results for each event-based model, established using
the RF algorithm, are shown in Table 5; it can be seen that the number of trees (numtree)
ranged from 100 to 1000 and the number of variables (mtry) ranged from 7 to 14. The test
accuracy of the 24 event-based models ranged from 0.772 to 0.944, and the mean was 0.842.
Hyperparameter tuning for the multi-year RF model yielded a numtree: 400 and mtry: 14,
and the model’s test accuracy was 0.789.
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Table 5. The tuned hyperparameters and model performances for RF models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyNumtree Mtry Numtree Mtry

1-Herb 100 8 0.797 14-Morakot 300 13 0.815
2-Xangsane 500 14 0.772 15-Parma 1000 14 0.820

3-Toraji 700 11 0.851 16-Fanapi 600 14 0.848
4-Nari 400 13 0.821 17-Megi 200 11 0.872
5-Aere 1000 12 0.820 18-Meari 500 7 0.849

6-Haitang 700 11 0.792 19-Nanmadol 600 14 0.913
7-Matsa 700 12 0.845 20-Talim 600 13 0.824
8-Talim 300 11 0.808 21-Saola 700 13 0.944

9-Longwang 600 13 0.843 22-Soulik 500 11 0.846
10-Shanshan 500 14 0.819 23-Matmo 900 13 0.883

11-Krosa 700 12 0.855 24-Soudelor 400 13 0.827
12-Nuri 1000 14 0.881 Multi-year 400 14 0.789

13-Jangmi 900 13 0.855

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based RF models. The mean values and standard deviations of the
24 landslide susceptibility indices for each slope unit were then calculated (Figure 5).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year RF model.
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Figure 5. RF models: (a,b) the mean susceptibility index and standard deviation of 24 event-based
models; (c,d) the mean susceptibility index and standard deviation of the multi-year model.

4.1.3. Support Vector Machine (SVM) Model

The hyperparameter tuning results for each event-based model, established using
the SVM algorithm, are shown in Table 6; it can be seen that the penalty parameter (C)
ranged from 0.029 to 754.312 and the RBF parameter (γ) ranged from 0.001 to 0.091. The
test accuracy of all event-based models ranged from 0.674 to 0.861, and the mean was 0.754.
Hyperparameter tuning for the multi-year SVM model yielded a penalty parameter (C) of
0.1 and an RBF parameter (γ) of 0.774, and the model’s test accuracy was 0.806.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based SVM models. The mean values and standard deviations of
the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 6).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year SVM model.
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Table 6. The tuned hyperparameters and model performances for SVM models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyC γ C γ

1-Herb 2.683 0.017 0.721 14-Morakot 0.029 0.029 0.768
2-Xangsane 79.060 0.007 0.717 15-Parma 2.024 0.052 0.766

3-Toraji 0.494 0.091 0.759 16-Fanapi 3.556 0.029 0.772
4-Nari 0.655 0.029 0.755 17-Megi 0.121 0.017 0.786
5-Aere 4.715 0.013 0.732 18-Meari 2.024 0.029 0.787

6-Haitang 33.932 0.001 0.729 19-Nanmadol 1.151 0.017 0.797
7-Matsa 754.312 0.001 0.757 20-Talim 4.715 0.002 0.674
8-Talim 2.024 0.069 0.758 21-Saola 10.985 0.091 0.861

9-Longwang 14.563 0.005 0.754 22-Soulik 19.307 0.002 0.712
10-Shanshan 138.950 0.002 0.741 23-Matmo 1.151 0.017 0.739

11-Krosa 2.024 0.007 0.758 24-Soudelor 0.373 0.007 0.728
12-Nuri 3.556 0.022 0.754 Multi-year 0.1 0.774 0.806

13-Jangmi 184.207 0.001 0.769
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models; (c,d) the mean susceptibility index and standard deviation of the multi-year model.

4.1.4. Kernel Logistic Regression (KLR) Model

The hyperparameter tuning results for each event-based model established using the
KLR algorithm are shown in Table 7; it can be seen that the penalty parameter (C) ranged
from 0.017 to 244.205 and the RBF parameter (γ) ranged from 0.002 to 0.281. The test
accuracy of every event-based model ranged from 0.712 to 0.833 and the mean was 0.754.
Hyperparameter tuning for the multi-year KLR model yielded a penalty parameter (C) of
1.0 and an RBF parameter (γ) of 0.1; the model’s test accuracy was 0.812.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based KLR models. The mean values and standard deviations of the
24 landslide susceptibility indices for each slope unit were then calculated (Figure 7).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year KLR model.
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Table 7. The tuned hyperparameters and model performances for KLR models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyC γ C γ

1-Herb 244.205 0.005 0.712 14-Morakot 0.017 0.039 0.729
2-Xangsane 59.636 0.005 0.712 15-Parma 2.683 0.017 0.771

3-Toraji 1.151 0.052 0.781 16-Fanapi 33.932 0.013 0.784
4-Nari 10.985 0.017 0.775 17-Megi 2.024 0.069 0.815
5-Aere 1.151 0.022 0.760 18-Meari 33.932 0.007 0.725

6-Haitang 1.526 0.029 0.717 19-Nanmadol 8.286 0.003 0.829
7-Matsa 244.205 0.002 0.747 20-Talim 1.151 0.069 0.712
8-Talim 1.526 0.069 0.744 21-Saola 14.563 0.281 0.833

9-Longwang 3.556 0.039 0.765 22-Soulik 244.205 0.001 0.730
10-Shanshan 0.494 0.029 0.745 23-Matmo 1.526 0.039 0.737

11-Krosa 33.932 0.004 0.746 24-Soudelor 8.286 0.005 0.737
12-Nuri 59.636 0.029 0.723 Multi-year 1.0 0.1 0.812

13-Jangmi 3.556 0.029 0.767
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models; (c,d) the mean susceptibility index and standard deviation of the multi-year model.

4.1.5. Gradient-Boosting Decision Tree (GBDT) Model

The hyperparameter tuning results for each event-based model established using the
GBDT algorithm are shown in Table 8, and it can be seen that the number of trees (numtree)
ranged from 100 to 1000, the number of variables (mtry) ranged from 6 to 14, and the
learning rate ranged from 0.1 to 1.0. The test accuracy of the 24 event-based models ranged
from 0.772 to 0.861 and the mean was 0.820. Hyperparameter tuning for the multi-year
GBDT model yielded a numtree of 900, an mtry of 7, and a learning rate of 0.1; the model’s
test accuracy was 0.804.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based GBDT models. The mean values and standard deviations of
the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 8).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year GBDT model.

271



Water 2022, 14, 717

Table 8. The tuned hyperparameters and model performances for GBDT models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyNumtree Mtry Learning Rate Numtree Mtry Learning Rate

1-Herb 100 8 0.1 0.800 14-Morakot 200 8 0.1 0.833
2-Xangsane 700 13 0.9 0.772 15-Parma 300 13 0.5 0.823

3-Toraji 100 8 0.1 0.777 16-Fanapi 100 13 0.5 0.815
4-Nari 300 11 0.6 0.807 17-Megi 1000 13 0.8 0.848
5-Aere 600 14 0.3 0.821 18-Meari 1000 14 0.4 0.788

6-Haitang 200 11 0.7 0.772 19-Nanmadol 1000 10 0.7 0.852
7-Matsa 100 12 1.0 0.837 20-Talim 100 13 0.7 0.807
8-Talim 100 9 0.3 0.817 21-Saola 100 7 0.3 0.832

9-Longwang 200 6 0.1 0.845 22-Soulik 200 6 0.2 0.839
10-Shanshan 200 6 0.9 0.815 23-Matmo 100 6 1.0 0.843

11-Krosa 200 11 0.5 0.841 24-Soudelor 100 6 0.1 0.811
12-Nuri 1000 9 0.3 0.827 Multi-year 900 7 0.1 0.804

13-Jangmi 100 12 0.1 0.861

Water 2022, 14, x FOR PEER REVIEW 15 of 26 
 

 

 

Figure 8. GBDT models: (a,b) the mean susceptibility index and standard deviation of 24 event-

based models; (c,d) the mean susceptibility index and standard deviation of the multi-year model. 

4.2. Results of Ensemble Models  

After establishing the single models, this study used the PM, PME, PMW, and CA 

ensemble methods to aggregate the landslide susceptibility indices of each single model 

for each event, yielding the landslide susceptibility indices of the 4 ensemble models. 

The spatial variation in each event's landslide susceptibility index could be obtained 

from the 24 event-based PM ensemble models. The mean values and standard deviations of 

the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 9). The 

mean landslide susceptibility indices and standard deviations that were calculated for 

each slope unit in the multi-year PM ensemble model are shown in Figure 9. Similarly, the 

mean susceptibility index and the standard deviation of the 24 event-based models, obtained 

using the PME, PMW, and CA ensemble methods, are shown in Figures 10–12. 

 

Figure 9. PM ensemble models: (a,b) the mean susceptibility index and standard deviation of 24 

event-based models; (c,d) the mean susceptibility index and standard deviation of the multi-year 

model. 

Figure 8. GBDT models: (a,b) the mean susceptibility index and standard deviation of 24 event-based
models; (c,d) the mean susceptibility index and standard deviation of the multi-year model.

4.2. Results of Ensemble Models

After establishing the single models, this study used the PM, PME, PMW, and CA
ensemble methods to aggregate the landslide susceptibility indices of each single model for
each event, yielding the landslide susceptibility indices of the 4 ensemble models.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based PM ensemble models. The mean values and standard deviations
of the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 9).
The mean landslide susceptibility indices and standard deviations that were calculated
for each slope unit in the multi-year PM ensemble model are shown in Figure 9. Similarly,
the mean susceptibility index and the standard deviation of the 24 event-based models,
obtained using the PME, PMW, and CA ensemble methods, are shown in Figures 10–12.
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4.3. Assessment of Model Accuracy

After establishing all the above-mentioned models, this study assessed the predictive
ability of each model established using a specific landslide inventory by examining that
model’s ability to predict the remaining landslide events. For the sake of clarity, the section
below will employ the terminology ai,j,k to indicate the accuracy of the various models
established using different landslide inventories and different modeling methods. Here,
i = 1–25 indicate the individual landslide inventories used in modeling, where 1–24 are
event-based landslide inventories, and 25 is the multi-year landslide inventory; j = 1–24
indicate the predicted events; and k = 1–9 indicate the different modeling methods.

The accuracy of each PM ensemble model is shown in Table 9; AUROC > 75% is
indicated in green, AUROC 75–50% is indicated in yellow, and AUROC < 50% is indicated
in red. The average predictive accuracy of event-based models (i = 1–24, j = 1–24, i 6= j,
k = 6) ranged from 70.9% to 77.9% and the mean was 74.8%; the average predictive accuracy
of the multi-year model (i = 25, j = 1–24, k = 6) was 91.1%. The average predictive accuracy
of the LR models (k = 1), RF models (k = 2), SVM models (k = 3), KLR models (k = 4), GBDT
models (k = 5), PME ensemble models (k = 7), PMW ensemble models (k = 8), and CA
ensemble models (k = 9) were also obtained.

The average predictive accuracy of the 5 event-based single landslide susceptibility
models (k = 1–5) with regard to the other landslide events is shown in Figure 13. In
Figure 13, from top down, the various symbols represent the maximum, third quartile,
median, first quartile, and minimum of a box plot of average predictive accuracy. This
figure also shows the predictive accuracy distribution of the multi-year single landslide
susceptibility models. In particular, the average predictive accuracy of the event-based
LR models (i = 1–24, j = 1–24, i 6= j, k = 1) ranged from 48.8% to 76.1%, and the mean was
71.2%; the multi-year LR model had a mean predictive accuracy of 78.8%. Similarly, the
average predictive accuracy of event-based RF models ranged from 57.9% to 74.7%, and
the mean was 69.5%; the multi-year RF model had a mean predictive accuracy of 79.5%.
The average predictive accuracy of event-based SVM models ranged from 50.0% to 76.1%,
and the mean was 68.1%; the multi-year SVM model had a mean predictive accuracy of
88.0%. The average predictive accuracy of event-based KLR models ranged from 50.0% to
76.4% and the mean was 67.4%; the multi-year KLR model had a mean predictive accuracy
of 88.6%. The average predictive accuracy of event-based GBDT models ranged from 69.2%
to 76.3%, while the mean was 72.8%; the multi-year GBDT model had a mean predictive
accuracy of 94.3%.

The average predictive accuracy of the 4 event-based ensemble landslide suscepti-
bility models (k = 6–9) with regard to the other landslide events is shown in Figure 13,
which also shows the predictive accuracy distribution of the multi-year ensemble landslide
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susceptibility models. In Figure 13, the average predictive accuracy of event-based PME
models (i = 1–24, j = 1–24, i 6= j, k = 7) ranged from 67.0% to 77.5% and the mean was
73.8%; the multi-year PME model had a mean predictive accuracy of 89.2%. The average
predictive accuracy of event-based PMW models ranged from 70.9% to 77.8%, and the
mean was 74.7%; the multi-year PMW model had a mean predictive accuracy of 91.6%. The
average predictive accuracy of event-based CA models ranged from 72.7% to 77.1%, while
the mean was 74.8%; the mean predictive accuracy of the multi-year CA model was 89.0%.
These results indicate that the event-based ensemble models all had an AUROC > 50% with
regard to other landslide events (i = 1–24, j = 1–24, i 6= j, k = 6–9).

Table 9. AUROCs (%) of each PM ensemble model for the calibration or prediction of other landslide
events. AUROC > 75% is indicated in green, AUROC 75–50% is indicated in yellow.

Event for Calibration or Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 90 71 70 67 79 67 75 74 76 77 75 77 78 75 76 75 78 76 78 73 74 69 76 67
2 74 90 75 78 71 74 70 76 81 79 78 78 75 73 79 79 83 76 81 75 80 73 78 77
3 70 75 92 75 71 74 73 74 78 78 76 74 79 75 77 77 81 74 81 72 78 76 78 74
4 71 75 72 92 65 71 67 70 77 76 78 75 77 69 77 76 79 68 79 70 80 69 73 72
5 80 77 74 74 91 74 81 78 81 82 78 79 83 79 77 78 83 78 82 74 73 75 80 72
6 67 73 69 74 70 90 76 82 75 77 78 78 78 76 76 72 79 76 77 74 79 76 75 72
7 72 73 68 69 79 76 91 78 77 76 79 77 78 77 76 72 76 72 77 70 76 72 72 70
8 64 70 65 65 73 74 72 91 75 74 76 78 70 73 72 67 68 75 77 72 65 72 72 68
9 76 75 72 75 78 75 76 78 93 79 82 80 78 74 78 77 78 78 84 75 79 78 80 79
10 76 75 74 75 80 72 76 75 82 90 80 80 81 77 79 77 84 77 79 73 77 76 79 73
11 74 74 67 74 74 74 76 77 81 79 92 74 79 77 78 71 79 73 69 68 75 67 69 71
12 71 70 70 71 72 70 72 72 75 73 73 90 74 71 74 77 79 73 76 70 77 72 76 72
13 77 77 74 76 78 75 80 79 78 79 82 75 92 79 77 75 75 74 76 71 82 79 77 64
14 72 70 66 68 78 72 79 78 76 78 78 78 77 90 74 69 76 77 70 71 69 68 73 65
15 69 76 72 77 69 69 68 68 80 81 78 82 74 69 91 77 84 73 82 75 77 67 77 77
16 67 71 71 69 74 66 72 63 71 74 74 72 70 69 73 93 81 69 69 67 77 63 76 74
17 72 73 73 74 76 63 71 69 79 79 72 79 71 75 78 78 93 74 81 73 70 73 76 78
18 72 71 69 69 68 72 70 74 79 77 71 78 73 71 76 72 74 89 80 75 79 77 79 78
19 72 72 70 74 74 74 76 74 78 77 72 79 74 72 78 74 81 73 93 74 83 79 80 77
20 69 70 63 68 71 73 72 73 76 73 71 79 72 70 70 72 75 75 79 89 80 74 76 74
21 66 74 70 72 69 74 73 75 76 77 74 79 80 73 76 74 80 73 81 73 91 79 77 75
22 72 72 67 72 75 73 74 76 77 77 71 80 80 76 74 72 78 80 85 75 83 92 81 79
23 72 73 70 71 76 71 72 73 79 78 73 79 76 75 75 76 80 77 82 74 75 80 92 81
24 74 74 69 72 75 75 75 77 82 80 77 81 77 77 78 76 83 80 82 76 80 81 82 89

M
od

el
tr

ai
ne

d
by

ev
en

t

25 90 88 89 90 92 89 92 90 92 91 91 94 93 90 91 89 94 91 95 91 92 93 92 89
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Figure 13. Box plot of the average predictive accuracy of single and ensemble models in the prediction
of other landslide events: (a) blue, green, and red represent LR, RF, and SVM, respectively; (b) blue,
green, and red represent KLR, GBDT, and PM, respectively; (c) blue, green, and red represent PME,
PMW, and CA, respectively.
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5. Discussion
5.1. Comparison of the Performance of Single and Ensemble Models

It can be seen from Figure 13 that the predictive accuracy of the ensemble models is
superior to that of single models under most circumstances. In particular, the four ensemble
models established on the basis of event-based landslide inventories 1, 3, 4, 9, 10, 17, and
21, as well as the multi-year landslide inventory all had greater predictive accuracy than
any single models. In addition, the four ensemble models established on the basis of
the event-based landslide inventories 2, 5, 7, 11, 12, 13, 15, 16, 18, 20, and 22 had greater
predictive accuracy than at least any four single models. In other words, when establishing
a model using the same landslide inventory, most ensemble models will offer superior
predictive accuracy.

The mean predictive accuracy of different modeling methods (k = 1–9) are compared
in Table 10. It can be seen that the mean predictive accuracy of ensemble models (k = 6–9)
ranged from 0.738 to 0.748 and was higher than the accuracy range of 0.674–0.728 for single
models (k = 1–5). Since the Kolmogorov–Smirnov test indicated that not all datasets were
normally distributed, the Kruskal–Wallis test was used to compare the predictive accuracy
of different modeling methods (Table 11). The post hoc test indicated that the predictive
accuracy of ensemble models is consistently superior to that of single models. Furthermore,
the coefficient of variation (CV) of the predictive accuracy of ensemble models ranged from
0.047 to 0.063, which was lower than the CV range for single models. In summary, our
results show that ensemble landslide susceptibility models offer superior predictive ability
and relatively low uncertainty.

Table 10. Performance assessment of the different modeling methods.

Inventory Type Metric LR(1) RF(2) SVM(3) KLR(4) GBDT(5) PM(6) PME(7) PMW(8) CA(9)

Event-based

Mean training accuracy 0.813 0.878 0.833 0.856 0.977 0.909 0.883 0.912 0.923
CV of training accuracy 0.038 0.028 0.054 0.037 0.011 0.013 0.017 0.013 0.019

Mean predictive accuracy 0.712 0.695 0.681 0.674 0.728 0.748 0.738 0.747 0.748
CV of predictive accuracy 0.118 0.104 0.146 0.142 0.059 0.055 0.063 0.055 0.047

Multi-year Mean predictive accuracy 0.788 0.795 0.880 0.886 0.943 0.911 0.892 0.916 0.890
CV of predictive accuracy 0.040 0.029 0.026 0.021 0.014 0.019 0.022 0.018 0.022

Table 11. Kruskal–Wallis test of the predictive accuracy of different modeling methods.

N Mean Rank d.f. H p Post Hoc Test

LR(1) 576 2481.79 8 514.142 0.000 >2–4
RF(2) 576 2013.05 -

SVM(3) 576 2080.67 -
KLR(4) 576 1924.60 -

GBDT(5) 576 2571.61 >2–4
PM(6) 576 3134.95 >1–5

PME(7) 576 2873.52 >1–5
PMW(8) 576 3120.86 >1–5

CA(9) 576 3131.45 >1–5

Prior studies have demonstrated that the predictive ability of the landslide suscep-
tibility models established by different ensemble methods was superior to that of single
landslide susceptibility models [16,31,34,35]. In accordance with the previous study results,
we found that most ensemble models were superior in terms of predictive accuracy to the
single models developed with the same inventory. Moreover, this study used 24 invento-
ries to establish the corresponding ensemble models. The higher predictive ability of the
ensemble models for each inventory implied that the PM, PME, PMW, and CA ensemble
methods were robust for enhancing the predictive performance of landslide susceptibility
models in the study area.
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Among the single models, while LR models had the lowest mean training accuracy
(i = 1–24, j = 1–24, i = j, k = 1), their mean predictive accuracy of 0.712 (i = 1–24, j = 1–24,
i 6= j, k = 1) was higher than that of the RF, SVM, and KLR models. Although the RF, SVM,
and KLR models had very good mean training accuracy, their mean predictive accuracy
was poor; this may be because these nonparametric models require a greater quantity of
data for training and are prone to overfitting [2,8].

5.2. Comparison of the Performance of Event-Based and Multi-Year Models

It can be seen from Figure 13 that among the nine modeling methods, the predictive
accuracy of multi-year models is consistently superior to that of the 24 event-based models.
Table 10 also reveals that the mean predictive accuracy of multi-year models (i = 25, j = 1–24)
ranged from 0.788 to 0.943, which was higher than the values of 0.674–0.748 in the event-
based models (i = 1–24, j = 1–24, i 6= j). The results of the Mann–Whitney U test (Table 12)
indicate that among the nine modeling methods, the predictive performance of models
established based on multi-year landslide inventories is uniformly superior to that of
event-based models. Furthermore, the CV of the multi-year models’ predictive accuracy
(0.014–0.040) was lower than that of event-based models. In summary, multi-year landslide
susceptibility models offer excellent predictive performance and low uncertainty.

Table 12. Mann–Whitney U test of the predictive accuracy of models, based on different types of
landslide inventories.

Modeling
Method

Inventory
Type N Mean

Rank Sum of U p

LR (1) Event-based 552 279.95 154,531.00 1903.000 0.000
Multi-year 24 485.21 11,645.00

RF (2) Event-based 552 277.78 153,332.00 704.000 0.000
Multi-year 24 535.17 12,844.00

SVM (3) Event-based 552 276.50 152,629.00 1.000 0.000
Multi-year 24 564.46 13,547.00

KLR (4) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

GBDT (5) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 135,48.00

PM (6) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

PME (7) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

PMW (8) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

CA (9) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

The findings of the current study that the relatively excellent predictive performance
and low uncertainty of the landslide susceptibility models established using multi-year
landslide inventories verifies the advantage of using a combination of event-based invento-
ries and confirms the previous study results. The relatively high predictive abilities of the
landslide susceptibility models, built by the combination of different event-based landslide
inventories, have been thought to be related to their bigger landslide sample size and the
wider numerical range of rainfall parameters in the training sample [23,54,55], or to their
lower concentration of landslides in areas with the same lithology and a lower collinearity
between rainfall parameters and lithology [56,57].

It can also be seen from Figure 13 that when applying the same modeling method, the
predictive accuracy of event-based models depends on the choice of event. For example,
in terms of the average predictive accuracy of the 24 event-based LR models, a maximum
of 76.1% appeared when employing the event in Jangmi, and a minimum of 48.8% was
obtained when using the event in Nuri, while the range is 27.30%. Similarly, the ranges
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of the average predictive accuracy of the 24 event-based RF, SVM, KLR, GBDT, PM, PME,
PMW, and CA models are 16.80%, 26.10%, 26.40%, 7.10%, 7.00%, 10.50%, 6.90%, and 4.40%,
respectively. These results confirmed the findings of previous studies that the choice of
event has an influence on the predictive ability of the event-based landslide susceptibility
model established [22–24], which may correlate with the event’s rainfall intensity range [3]
and the event’s spatial concentration degree of landslides [56,57].

5.3. Correlations between the Susceptibility Maps of the Optimal Model and Other Models

It can be seen from Figures 4–12 that when a specific modeling method is used, the
high susceptibility areas in landslide susceptibility maps, based on multi-year models, are
similar to those created using the mean susceptibility indices of 24 event-based models.
Nevertheless, there are significant differences in the landslide susceptibility index range
and standard deviation among the different modeling methods. Because PM ensemble
models have optimal predictive accuracy (Table 11) and multi-year models are superior to
event-based models (Table 12), this study considered the multi-year PM ensemble model to
be the optimal landslide susceptibility model. This model’s landslide susceptibility map is
the most representative and can best reflect the probabilities of landslides in different slope
units of the research area.

We also compared these landslide susceptibility maps, in order to analyze the cor-
relations in the spatial distribution of susceptibility index between the multi-year PM
ensemble model and other models. Rather than performing the mutual subtraction algo-
rithm [6,58–60] or the histogram matching method [55,56], we calculated the Spearman’s
rank correlation coefficient to assess the degree of difference between the susceptibility
maps of the optimal model and other models. As shown in Table 13, the correlation coef-
ficient of the single models ranged from 0.811 to 0.946, with an average of 0.912, which
was lower than the 0.940–1.00 correlation coefficient range of the ensemble models. This
indicates that there are only relatively small differences between the susceptibility maps of
the optimal model and other ensemble models. In addition, when a multi-year landslide
inventory is not available, the fact that the average correlation coefficient of the single
models was lower than the average correlation coefficient of the ensemble models indicates
that ensemble models can effectively reduce the discrepancies between the susceptibility
maps of the established models and the optimal model.

Table 13. Degree of difference between the susceptibility maps of the multi-year PM ensemble model
and other models.

Susceptibility Map Spearman’s Rank
Correlation Coefficient Susceptibility Map Spearman’s Rank

Correlation Coefficient

Event-based LR model 0.924 Multi-year LR model 0.928
Event-based RF model 0.917 Multi-year RF model 0.913

Event-based SVM model 0.938 Multi-year SVM model 0.811
Event-based KLR model 0.946 Multi-year KLR model 0.864

Event-based GBDT model 0.938 Multi-year GBDT model 0.936
Event-based PM ensemble model 0.962 Multi-year PM ensemble model 1.000

Event-based PME ensemble model 0.954 Multi-year PME ensemble model 0.990
Event-based PMW ensemble model 0.963 Multi-year PMW ensemble model 1.000
Event-based CA ensemble model 0.940 Multi-year CA ensemble model 0.950

6. Conclusions

This study collected 24 event-based landslide inventories for the Shihmen watershed
and employed logistic regression, random forest, support vector machine, kernel logistic
regression, and gradient boosting decision tree methods to establish event-based single
landslide susceptibility models. We also used four ensemble methods to aggregate the
results of single models, to establish event-based ensemble models. In addition, the 24 event-
based landslide inventories were combined to form a multi-year landslide inventory, which
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was used to establish multi-year single landslide susceptibility models and multi-year
ensemble models.

As shown in Tables 10–12, the current study found that an ensemble model based on a
multi-year inventory can achieve excellent predictive accuracy. Compared with event-based
models, multi-year landslide susceptibility models offer superior predictive ability and
lower uncertainty; compared with single models, ensemble landslide susceptibility models
have higher predictive ability and lower uncertainty for each inventory, implying that the
four ensemble methods are robust for enhancing the model’s predictive performance in the
study area.

When relying on an event-based landslide inventory instead of a multi-year inventory
to establish a model, the predictive accuracy of single models has considerable uncertainty
due to differences in the predicted landslide events. The ensemble models can both reduce
uncertainty and achieve better predictive accuracy, while the established PM ensemble
models are the most effective of all. The susceptibility map created using the 24 PM
ensemble models, based on different event-based landslide inventories, revealed areas
where landslides are likely to occur. High-priority landslide mitigation measures should
be implemented in places with a high mean susceptibility index and a low variation in
susceptibility index to effectively reduce the losses caused by the landslides.

We recommend that other modeling methods, such as neural networks and deep
learning, be further employed to establish landslide susceptibility models. When there
are large numbers of single models, other ensemble methods, such as the confidence
interval of the mean susceptibility index, may be used to establish even more effective
ensemble landslide susceptibility models. Finally, due to the influence of the choice of
event on the predictive ability of an event-based model and the better predictive ability of
the models built by the combination of different event-based landslide inventories, future
research can investigate possible improvements in predictive ability by combining two
different event-based inventories to create an ensemble model when researchers are lacking
a multi-year inventory.
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Abstract: The complex and extensive mechanism of landslides and their direct connection to climate
change have turned these hazards into critical events on a global scale, which can have significant
negative influences on the long-term sustainable development of nations. Taiwan experiences
numerous landslides on different scales almost every year. However, Typhoon Morakot (2009), with
large-scale landslides that trapped people, demonstrated the importance of an early warning system.
The absence of an effective warning system for landslides along with the impossibility of its accurate
monitoring highlighted the necessity of landslide rainfall threshold prediction. Accordingly, the
prediction of the landslide rainfall threshold as an early warning system could be an effective tool
with which to develop an emergency evacuation protocol. The purpose of this study is to present the
capability of the deep learning algorithm to determine the distribution of landslide rainfall thresholds
in a potential large-scale landslide area and to assess the distribution of recurrence intervals using
probability density functions, as well as to assist decision makers in early responses to landslides
and reduce the risk of large-scale landslides. Therefore, the algorithm was developed for one of the
potential large-scale landslide areas (the Alishan D098 sub-basin), Taiwan, which is classified as a
Type II Landslide Priority Area. The historical landslide data, maximum daily rainfall, 11 topographic
factors from 2004 to 2017, and the Keras application programming interface (API) python library were
used to develop two deep learning models for landslide susceptibility classification and landslide
rainfall threshold regression. The predicted result shows the lowest landslide rainfall threshold is
located primarily in the northeastern downstream of the Alishan catchment, which poses an extreme
risk to the residential area located upstream of the landslide area, particularly if large-scale landslides
were to be triggered upstream of Alishan. The landslide rainfall threshold under controlled conditions
was estimated at 780 mm/day (20-year recurrence interval), or 820 mm/day (25-year recurrence
interval). Since the frequency of extreme rainfall events caused by climate change is expected to rise
in the future, the overall landslide rainfall threshold was considered 980 mm/day for the entire area.

Keywords: deep learning; rainfall-induced landslide; sediment disaster; Keras; multilayer perceptron;
hyperparameter tuning; mountain disaster risk reduction

1. Introduction

Landslides are natural hazards that cause loss of life and heavy financial and economic
damage to residential areas all over the world. Therefore, investigating the effective
factors of landslides for planning and providing management solutions in sensitive areas is
essential.

Landslides generally occur under the influence of physical, human, and climatic fac-
tors [1]. Among all factors, intense rainfall is highly significant [2], and is thus considered
a crucial factor in the implementation of early warning systems for landslides [3]. For-
mulation approaches used for the landslide rainfall threshold are mainly divided into the
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empirical and the deterministic approaches. The empirical approach generally is defined
based on empirical formulae proposed in previous studies [4,5]. Since empirical formulae
are provided for a specific study area, their application is constrained to areas with similar
characteristics and properties. In addition, landslide precipitation threshold prediction
through empirical formulae with insufficient raw data leads to unreliable results with
larger confidence prediction intervals. On the other hand, the deterministic approach has
mainly been presented by models, such as slope stability models or artificial intelligence
models [3,6–8].

The main point of these models is to require sufficient physical parameters or factors to
analyze and obtain optimized results; otherwise, despite multiple analyses at various time
points, the result will be suboptimal. The most important challenge in landslide prediction
through statistical-based methods is access to the location and date of landslides, factors of
landslide occurrence, and controlling factors such as topography, geology, soil, and land
cover [9].

The topography of the watershed is diverse, complex, and heterogeneous, and these
different factors establish different conditions for landslide occurrence. Geology, topogra-
phy, and soil type are requisite factors for formulating the landslide rainfall threshold [4].
Research has shown that high-risk landslide areas are mainly located within high altitudes,
steep slopes, high curvature, barren lands, loose geology or lithology, and near river sys-
tems or roadsides [10–12]. In order to predict high-risk landslide areas, first, the landslide
precipitation for the entire area should be determined, which is difficult when there is
insufficient information.

Deep learning has evolved gradually in recent years as a result of technological ad-
vances in software and hardware computer equipment, such as the advent of tensor and
graphics processing units (TPUs and GPUs). Moreover, as landslide control factors limit the
capability of traditional machine learning methods [13], deep learning can be a wiser choice
due to some of its advantages, including: (i) its capability to be used in multiple fields;
(ii) ability to extract inherent and deep features easily; (iii) ability to distinguish effective
information and obtain optimal parameters to construct models (iv) without requiring prior
knowledge or hypotheses [14]; and (v) capability of accepting a higher sample size without
manually constructing and (vi) selecting feature layers [15]. Various studies have applied
deep learning techniques for landslide analysis [16–18], landslide susceptibility analy-
sis [19–22], and landslide displacement predictions [23,24], and have proved the accuracy
of these methods compared to traditional methods. Similarly, traditional machine learning
methods compared to empirical approaches and physical modeling have provided highly
efficient and accurate landslide disaster warning models [25]. Multiple studies employed
precipitation data and artificial intelligence methods to develop landslide displacement
prediction methods [1–3,5–9,13–15,26–33].

Recent studies attempted to enhance the reliability of landslide displacement predic-
tion models through machine learning algorithms [26,27].

Although landslides in Taiwan have been studied for a long time, landslide hazards
came into prominence in 2009 coincidentally with Typhoon Morakot, which trapped
people. Due to the large population of Taiwan compared to the area of the country,
concern was raised about potential property damage and fatalities in residential areas.
On the other hand, the lack of landslide prediction and warning systems adds to this
concern. Therefore, this paper attempts to assist responsible authorities in taking emergency
evacuation decisions by introducing a model of estimation of the landslide rainfall threshold.
This study combined the advantages of empirical approaches (with sufficient raw data) and
deterministic approaches (with high resolution and high accuracy); in addition, we used
a deep learning model to establish the landslide susceptibility and the landslide rainfall
threshold map of potential large-scale landslide area for Alishan D098. To indicate the
range with a “highly landslide potential and lower rainfall threshold”, the critical rainfall
threshold should be considered in landslide susceptibility. Therefore, the prediction results
of the two models were multiplied to obtain the revised landslide rainfall threshold. The
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deep learning model parameters were chosen through hyperparameter tuning with a Keras
tuner to probe and choose the model with the highest score (low validation loss score).
Missing values were interpolated on the basis of historical landslide data. Figure 1 shows
the workflow of this study.

Figure 1. Study workflow for the prediction model.

2. Study Area

The study area was Alishan D098 (Figure 1) in southwestern Taiwan, which is known
as the Laitou Landslide Area, located upstream of the Tsengwen Reservoir Watershed. It
serves as a reference area for potential large-scale landslide areas affecting Gongxin Village,
Fanlu Township, and Shanmei Village in Chiayi County’s Alishan Township (Figure 2a).
The potential area is approximately 42.9 hectares, with a downstream influence area of
74.2 hectares; landslide occurrence along the river is the debris flow type [34,35]. The
geological formation is primarily Changchihkeng, which consists of sandstone and sand-
shale interbedding lithology, and the Laitou Fault runs through this area from the northwest
to southeast, resulting in relatively fragmented geology [36].
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Figure 2. (a) Location of the influence area of Alishan D098; (b) the historical landslide areas by years.

Landslides have previously occurred in the northeast of Alishan D098, trapping ten
residents during Typhoon Morakot in 2009 [37]. The recent multiphase regulation [38] has
stabilized this area. The Soil and Water Conservation Bureau classified the area as a Type II
Landslide Priority Area, which can be described by potential large-scale landslide objects
without overlapping with existing debris-flow-protected targets [35].

3. Materials and Methods
3.1. Data Collection

Historical landslide datasets, including the Taiwan Satellite Interpretation Landslide
Map provided by the Council of Agriculture (COA) from 2003 to 2017, and the Historical
Landslide Catalog, provided by the Central Geological Survey (CGS) from 2003 to 2010,
with all polygon vector data types, were used in this study. First, the landslide area was
analyzed in 2003 and 2004. To obtain the overlapping area, the Intersect tool (ArcGIS 10.8)
was employed afterward, and the overlapping area in 2004 was eliminated by the Erase
tool to establish the new landslide area for the same year. The process was repeated year
after year to generate all vector data of landslide areas from 2004 to 2017. After that, we
converted it to grid data with the same resolution as the DEM (5 × 5 m) to obtain point
data and finally created new landslide grid points.

The analysis result shows the new landslide grid points in Alishan D098 and its
influence area were calculated at about 7000 grid points, which is considered insufficient.
As a result, new landslide grid points in the sub-basin where the influence area is located
were added to augment the dataset (Figure 3a). The bar chart illustrates new landslide grid
points in the sub-basin (Figure 3b) from 2004 to 2017, with a total of 36,369 grid points. The
highest frequency occurred in 2009, with 23,806 grid points (equivalent to an increase of
59.5 hectares of new landslide area) in the basin as a result of Typhoon Morakot’s heavy
rainfall. In 2004, 2008, and 2011, there were no landslide increases. Moreover, a significant
decline in landslide occurrence has been observed since 2013.
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Figure 3. (a) The new landslide distribution; (b) the number of grid points by year in the sub-basin.

Based on literature research [18,22,39–42], 11 topographic factors were chosen (Table 1).
The annual maximum daily rainfall (MDR) was collected from local rain gauge stations
around Tsengwen Reservoir Watershed by the Central Weather Bureau (CWB) from 2004
to 2017 and was interpolated using inverse distance weighted (IDW) for conversion into
spatial distribution grids (Figure 4a). The values extracted by the Point tool were used
to match newly acquired landslide grid points from these grids with the corresponding
topographic factors and the MDR. Figures 4b and 5 depict the spatial distribution of 11
topographic factors and the MDR in the sub-basin.

Repeated points in the new landslide grid points dataset represented the landslides
that occurred more than once during or after the recovery period due to topography with a
high landslide risk. Given that the high-landslide-susceptibility area requires a lower land-
slide rainfall threshold, the year with the lowest MDR was retained when the grid point was
repeated. After filtering, 5243 repeated points were reduced to 31,126 non-repeated points.

The grid points in the sub-basin were used as training and testing datasets for the deep
learning models of landslide susceptibility classification and rainfall threshold regression.

The former was the input feature for both the landslide and non-landslide grid points,
with the non-landslide grid points having the same count as the landslide grid points
chosen at random for dataset balance; the latter was only used for the landslide grid points
because the rainfall for the non-trigger landslide was unknown.

Figure 4. Spatial distribution of maximum daily rainfall in 2009. (a) Tsengwen Reservoir Watershed;
(b) sub-basin where the study area is located.
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Figure 5. Topographic factors: (a) elevation; (b) slope; (c) aspect; (d) plan curvature; (e) profile
curvature; (f) Topographic Wetness Index (TWI); (g) Stream Power Index (SPI); (h) distance from
fault; (i) distance from river; (j) distance from road; (k) lithology. 1. Thick-bedded massive sandstone
and argillaceous sandstone; 2. sandstone and sand-shale interbedding; 3. bodies of water; 4. massive
shale, occasionally with thin-bedded siltstone; 5. siltstone and shale thin interbedding.

289



Water 2022, 14, 3320

Table 1. The information about factors selected in the study.

Topography Factors Data Source Data Type Value Range

Elevation DEM Continuous 384.70–1238.10
Slope DEM Continuous 0.00–64.89

Aspect DEM Continuous −1.00–360.00
Plan curvature DEM Continuous −27.07–25.72

Profile curvature DEM Continuous −31.32–30.42
Topographic Wetness Index (TWI) DEM Continuous 2.65–20.51

Stream Power Index (SPI) DEM Continuous 0–4,388,483
Distance to fault CGS Continuous 0.00–1646.15
Distance to river DEM Continuous 0.00–680.66
Distance to road OpenStreetMap Continuous 0.00–610.98

Lithology CGS Categorical n/a

3.2. Preprocess

Preprocessing of new landslide grid points was required before model training. Only
11 topography factors were left to be assigned as input features, and the new landslide
year of occurrence was considered as the label. The scikit-learn MinMaxScaler function
was applied for feature standardization [43], which scaled all input features into a range
of 0 to 1. The transformation serves two purposes: the first is to allow the optimization
function to converge earlier during iteration, improving model accuracy, and the second is
to combine the landslide susceptibility and rainfall threshold regression models, correcting
the rainfall threshold once the model prediction is complete. The label was one-hot-encoded
for the landslide susceptibility model. To give the lower MDR a large-scale value after
transformation in the rainfall threshold regression model, first, the multiplicative inverse
of the original MDR was used, and then the reciprocal of the MDR was scaled to a range
from 0 to 1 with MinMaxScaler. Therefore:

MDRiscaled =
MDRi −MDRmin

MDRmax −MDRmin
(1-1)

MDRi =
1

MDRi
(1-2)

3.3. Multicollinearity Analysis

The variance inflation factor (VIF) is the ratio of the overall model variance to the
variance of a single independent variable model. It is used to determine variable multi-
collinearity. The VIF formula is shown below [44]:

VIFi =
1

Tolerance
=

1
1− Ri

2 (2)

where Ri
2 is the coefficient of multiple determination of regression i.

Although the VIF threshold is still controversial, there is agreement on the maximum
threshold. If the VIF of a factor exceeds 10.0 (or tolerance is less than 0.1), it is described as
higher multicollinearity, which may have a negative impact on predictive power in multiple
regression models [44,45]. The statsmodels was used to calculate the VIF [46]. In this study,
the VIF threshold was set to 5 based on previous study recommendations [19–21] and
considered the condition that exceeding values would be excluded and then reanalyzed
until the VIF of all features showed a value of less than 5.

3.4. The Framework of Deep Learning Model

Deep learning is an artificial neural network (ANN) architecture with multiple and
continuous layers between the input and output layers, with the number of layers increas-
ing the model’s depth. The weight values stored in the layers are interacted with and
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transformed in this model to determine the rules via the connection of neurons between
layers. The predicted values are expected to match the true values.

Keras API is a Python deep learning library for high-level neural network program-
ming, similar to TensorFlow and PyTorch. However, Keras API can build deep learning
models faster and easier [47]. Hale [48] evaluated 11 popular deep learning applications
based on usage, interest, and popularity. TensorFlow, Keras, PyTorch, Caffe, and Theano
topped the preference list, with Keras being preferred most by deep learning novices. Ac-
cording to a Kaggle survey of data scientists and machine learning engineers, Scikit-learn
is the most popular machine and deep learning library, followed by Tensorflow and Keras
API [49].

The multilayer perceptron (MLP) in Keras API was used to build the deep learning
model in this study. MLP architecture is shown in Figure 6. Moreover, the dropout layer
was added after each hidden layer to reduce the model’s overfitting problem; the input
value for the dropout layer indicates that the ratio of neurons will not be used in this layer.
The normalized exponential function (Softmax), Softplus, Softsign, rectified linear unit
(ReLU), hyperbolic tangent (tanh), sigmoid, and exponential are some activation functions
provided by Keras API [47]. As a result, different activation functions are appropriate for
various layers and purposes. The ReLU function was used for each hidden layer, and the
Softmax function was employed for the output layer of the landslide susceptibility model.
However, the regression model is usually not required to set the activation function of the
output layer, with the output value expected to be between 0 and 1; therefore, Sigmoid was
used for the rainfall threshold regression model’s output layer. The ReLU, Softmax, and
Sigmoid function formulae are as follows:

So f tmax(x) =
ezj

∑K
K=1 ezk

f or j = 1, . . . K (3)

ReLU(x) = max(0, x) (4)

Sigmoid(x) =
1

1 + e−x (5)

where zj is the raw output value of the layer j, and K is the total number of labels. The total
percent of the output value in the classification model must be equal to 1.

Figure 6. The MLP model architecture.
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Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMSProp), and
Adaptive Moment Optimization (Adam) are among the Keras optimizer algorithms. Binary
cross-entropy loss (CE, also known as sigmoid cross-entropy loss), mean absolute error
(MAE), and mean squared error are among the loss functions (MSE). Setting Adam and
MSE as the optimization algorithm and loss function, respectively, yields the highest model
predictive accuracy [22]. Therefore, Adam and MSE were assigned to this study.

Adam is an SGD-based algorithm with the added benefits of AdaGrad and RMSProp.
It has high computational efficiency and low memory usage. Adam Optimizer’s algorithm
functions are as follows [50]:

m̂t =
β1·mt−1 + (1− β1)·gt

1− βt
1

(6-1)

v̂t =
β2·vt−1 + (1− β2)·gt

2

1− βt
2

(6-2)

wt = wt−1 −
α·m̂t√
v̂t + ε

(6-3)

where t is the timestep, m is the first moment vector, v is the second moment vector, gt is the
gradients with respect to the stochastic objective at t, wt is the resulting parameter, α is the
stepsize, β1, β2 are the exponential decay rates for the moment estimate, and ε is the value
that, to be prevented, must be divided by zero. The final parameter vector is returned when
wt is converged. The suitable parameters for Adam Optimizer are: α = 0.001; β1 = 0.9;
β2 = 0.999, and ε = 10−8.

Typically, the epoch is determined by training a model several times and selecting the
appropriate epochs from the results. If the epochs are too long or too short, it will result
in overfitting for the validation loss or underfitting for the training loss, and the model’s
performance will suffer as a result. To improve on this, we set the EarlyStopping function
to monitor the validation loss and stopped training if the validation loss was no longer
reduced after 10 consecutive training sessions.

3.5. Hyperparameter Tuning

Deep learning model parameters are typically chosen via manual selection based on
previous experiences and research, trial and error, grid search, and or random search meth-
ods. Although the babysitting and random search are simple and quick, these strategies
are not always the most appropriate combination. On the other hand, the grid search will
always obtain the best combination; however, it will be time-consuming to search in cases
with a large number of combinations. The current study used KerasTuner [51], a Keras
hyperparameter tuning library, to determine the parameter of each hyperparameter in the
model, such as the number of hidden layers, the neurons of each hidden layer, the dropout
rate of each dropout layer, and the stepsize (α) of the Adam Optimizer, in order to provide
the most suitable combination in a short period of time. In addition, the Hyperband Tuner
was selected to obtain the best model parameters. The range of hyperparameters for the
model defined in this study is listed in Table 2.

Table 2. The range of hyperparameters for the model defined.

Hyperparameters Type Defined Parameters

Counts of Hidden Layer Integer 2–10
Neurons of Hidden Layer Integer 4, 8, 12, . . . , 124, 128

Dropout Rate Real 0.00, 0.05, 0.10, . . . , 0.85, 0.90
Stepsize of Adam Optimizer Float 0.0001–0.1
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3.6. Model Evaluate

The model was tested on validation and test datasets to assess the model’s accuracy
after training. In this study, the accuracy of the landslide susceptibility model was evaluated
using a binary confusion matrix. The model performance evaluation metrics used the OA,
which is defined as the ratio of all true predicted data (TP + TN) to all data; precision, which
is defined as the ratio of true positive data predicted by the model (TP) to all true data
predicted by the model (TP + FP); and recall, which is defined as the ratio of true positive
data predicted by the model (TP) to all actual true data (TP + FN):

Overall Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

In addition, some common indices for evaluation were selected, such as the F-score,
Cohen’s kappa coefficient (κ), and Matthews correlation coefficient (MCC). The F-score was
proposed by van Rijsbergen in 1979, and introduced by Chinchor [52] in 1992. The formula
of the F-score is the following:

Fβ score =
(

β2 + 1
)
·Precision·Recall

β2·Precision + Recall
(10)

where β is the relative importance of the precision and recall; if β = 1, the precision is as
important as the recall, meaning the F1 score, as well as the harmonic mean of the precision
and recall [53].

Matthews introduced the MCC classification accuracy index in 1975 (in the range of
−1 to 1). If the value is close to 1, it represents the best and most consistent classification
accuracy; a score close to 0 indicates poor classification accuracy, and a score close to −1
shows an inconsistent difference between the true and predicted classification accuracy.
According to Chicco et al. [54], the MCC can provide more realistic and informative results
than the commonly used Cohen’s kappa coefficient and Brier score. Chicco and Jurman [55]
also demonstrated that the MCC will receive a higher score when the confusion matrix
categories have high precision, whereas the accuracy and F-score in imbalanced datasets
are prone to over-optimism. The formulae for Cohen’s kappa coefficient (κ) and MCC are
as follows [54]:

MCC =
TP·TN − FP·FN√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(11)

κ =
2·(TP·TN − FN·FP)

(TP + FP)·(FP + TN) + (TP + FN)·(FN + TN)
(12)

The rainfall threshold regression model was evaluated using MAE, root mean square
error (RMSE), and mean absolute percentage error (MAPE). MAE and RMSE are used to
compute model error, while MAPE is used to calculate the model accuracy. The formulae
for the three metrics are as follows:

MAE =
1
n

n

∑
i=1
|A(i)− P(i)| (13)

RMSE =

√
∑n

i=1[A(i)− P(i)]2

n
(14)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣
A(i)− P(i)

A(i)

∣∣∣∣× 100% (15)

where A(i) is the actual value of data i, P(i) is the predicted value of data i, and n is the total
of the dataset.

All models in this study were built using Desktop PC with Intel Core i7, Processor
3.20 GHz, 40 GB RAM, and python language 3.9.7 through Spyder IDE 5.1.5 compiler.

4. Results and Discussion
4.1. Correlation and Multicollinearity between Factors

First, the correlation between factors was investigated by using the Pearson corre-
lation coefficients (PCCs). PCCs close to 1 or −1 represent the probability of extreme
multicollinearity while PCCs close to 0 indicate almost no multicollinearity between fac-
tors. The results (Figure 7) show that the highest PCCs between factors were observed in
elevation/distance to river, elevation/distance to fault, SPI/TWI, and aspect/distance to
fault, with both PCCs being greater than 0.5 or less than −0.5. Table 3 shows the results of
the multicollinearity analysis. The VIFs of 11 terrain factors were all less than 5, with the
highest being 2.916 and 3.330 in elevation, and the second being 2.444 and 2.492 in distance
from the fault. The distance to the road was the lowest. All factors were used for model
training and prediction based on the VIF results.

Figure 7. Pearson correlation coefficient between factors for training datasets. (a) Landslide suscepti-
bility classification model; (b) rainfall threshold regression model.

Table 3. The VIF results of each factor for training datasets of landslide susceptibility and rainfall
threshold regression model.

Features Landslide Susceptibility
(n = 62,252)

Rainfall Threshold
(n = 31,126)

Elevation 2.916 3.330
Slope 1.359 1.502
Aspect 1.435 1.381
Plan Curvature 1.548 1.548
Profile Curvature 1.246 1.252
TWI 1.963 2.293
SPI 1.279 1.447
Distance to fault 2.444 2.492
Distance to river 2.094 2.491
Distance to road 1.060 1.041
Lithology 1.346 1.423

The variance inflation factor.

294



Water 2022, 14, 3320

4.2. Result of Hyperparameter Tuning

Table 4 shows the top three validation loss score combinations based on model hy-
perparameter results. The validation loss score of the best combination for the landslide
susceptibility classification model was 0.0801; the architecture contained four hidden layers
with 108, 84, 100, and 112 neurons, and the dropout rate of the dropout layers was 0.05, 0.25,
0.45, and 0.3, respectively. Additionally, the stepsize of the Adam Optimizer was 0.000874,
and the validation accuracy was 90%; this combination was the same as the second. The
validation loss score of the best combination for the rainfall threshold regression model
was 0.0675, which had four hidden layers with 124, 128, 36, and 72 neurons, respectively,
and the dropout rate of the dropout layers was 0.2, 0.2, 0.25, and 0.1, respectively, and the
stepsize of the Adam Optimizer was 0.001889. The combination with the best validation
loss score was applied as the model parameter in the study based on the results.

Table 4. Top 3 ranking of hyperparameter tuning results for models.

Hyperparameters
Landslide Susceptibility Classification Rainfall Threshold Regression

1st 2nd 3rd 1st 2nd 3rd

Counts of hidden layer 4 4 3 4 4 3
Neurons of hidden layer 1 108 108 108 124 120 120

Rate of dropout layer 1 0.05 0.05 0.30 0.20 0.20 0.45
Neurons of hidden layer 2 84 84 96 128 108 84

Rate of dropout layer 2 0.25 0.25 0.45 0.20 0.70 0.05
Neurons of hidden layer 3 100 100 60 36 28 88

Rate of dropout layer 3 0.45 0.45 0.10 0.25 0.05 0.00
Neurons of hidden layer 4 112 112 - 72 28 -

Rate of dropout layer 4 0.30 0.30 - 0.10 0.40 -
Stepsize of Adam

Optimizer 0.000874 0.000874 0.000383 0.001889 0.000669 0.000507

Initial epoch 67 23 67 67 67 67
Epochs 200 67 200 200 200 200

Best step 91 41 127 83 120 99

Validation accuracy 0.8916 0.8683 0.8652 n/a n/a n/a
Score (Validation loss) 0.0801 0.0977 0.0998 0.0675 0.0704 0.0710

4.3. Training and Evaluated Results

The total dataset was split into train and test datasets in the ratio of 70% to 30%,
respectively. The prediction data were based on all grid points within the study area, with
a batch size of 50,200 epochs, and 20% for validation dataset. The model parameters were
determined using tuning hyperparameters to produce the best combinations of validation
loss scores.

The results for the landslide susceptibility classification model show that the early
stopping function ceased during training while the epoch was approaching 155 times
(Figure 8a, Table 5). The final accuracy and loss for the training dataset were 0.8816 and
0.0871, respectively, and 0.8973 and 0.0786 for the validation dataset. The overall accuracy,
F1 score, Cohen’s kappa, and MCC for the training dataset were 0.9094, 0.9092, 0.8187, and
0.8211, respectively, while the results show 0.8959, 0.8957, 0.7918, and 0.7944 for the test
dataset. The high model metric scores indicate the model is able to predict reliable results.

During the rainfall threshold regression model training, the early stop function paused
when the epoch reached 89 times (Figure 8b, Table 5). The calculated final loss for the
training and validation datasets was 0.0734 and 0.0698, respectively. The MAE, RMSE,
and MAPE of the training dataset computed 180.09 mm/day, 228.03 mm/day, and 26.31%,
respectively; for the validation dataset, these were 185.98 mm/day, 233.97 mm/day, and
27.16%. The reason for the high MSE and RMSE errors is that the actual rainfall at the time
of the landslides could not be captured; therefore, this study assumed that the landslides
occurred when precipitation reached the maximum daily rainfall for the year; accordingly,
the training results for the model still had errors and uncertainties. Although the model’s
results were not perfect, MAPE was calculated at about 27%, which is within an acceptable
range. Figure 9 shows the ROC area under curve of training and test models.
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Figure 8. The accuracy and loss trend of training and validation dataset. (a) Landslide susceptibility
classification model; (b) rainfall threshold regression model.

Table 5. The evaluated result for models.

Models Evaluate Train Dataset Test Dataset

Landslide
Susceptibility
Classification

Overall accuracy 0.9094 0.8959
Precision 0.9118 0.8985
Recall 0.9094 0.8959
ROC AUC 0.9633 0.9550
F1 score 0.9092 0.8957
Cohen’s kappa 0.8187 0.7918
MCC 0.8211 0.7944

Rainfall Threshold
Regression

MAE 180.09 185.98
RMSE 228.03 233.97
MAPE 0.2631 0.2716

Figure 9. The ROC area under curve. (a) Training dataset; (b) test dataset.
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4.4. Predicting and Revising Landslide Rainfall Threshold

Generally, when the susceptibility factor shows a higher value and the rainfall thresh-
old factor a lower value, the risk of landslide occurrence is elevated. As a result, the
emergency evacuation is triggered earlier.

Therefore, the prediction dataset was used as input for the trained model to calcu-
late the landslide susceptibility factor and rainfall threshold factor with values ranging
from 0 to 1.

The spatial distribution tagged image file (TIF) for prediction results is from the Geospatial
Data Abstraction Library (GDAL) [56] and was mapped in with ArcGIS. Figure 10 shows that
the landslide susceptibility factor in the historical landslide area and downstream was
higher than in other areas, whereas the high rainfall threshold factor was primarily found
in areas with obvious topographic changes.

Figure 10. The prediction result of the sub-basin and Alishan D098 influence area. (a) Landslide
susceptibility classification model; (b) rainfall threshold regression model.

Although the rainfall threshold model’s input data include topographic factors, these
factors were excluded from the training data due to missing landslide rainfall values in
the non-landslide area, because the rainfall threshold model was only able to estimate the
rainfall threshold data in the landslide areas. Accordingly, the training model eliminated
topographic features of the non-landslide zone and the prediction results show a lower
rainfall threshold value for non-landslide areas. It was assumed that the landslide occurred
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when rainfall surpassed the highest daily precipitation of the year because the actual
precipitation landslide threshold was not known; therefore there was still uncertainty in
the training model’s outputs. To obtain the revised landslide rainfall threshold factor, two
predictions were multiplied. This method significantly reduces the factor of the area with
low landslide susceptibility and low rainfall threshold; as a result, the high coefficient
of “high landslide susceptibility and low rainfall threshold” was retained. The result
(Figure 11) shows that the lowest landslide rainfall threshold in Alishan D098 was primarily
located in the northeast, with a downstream influence area. Due to the area’s high landslide
susceptibility but lower rainfall threshold in the prediction results, the MDR ranged from
350 to 780 mm/day after revision. Because of the topography, the western area showed a
lower rainfall threshold, but the landslide susceptibility was lower. The original landslide
rainfall threshold value of about 600 mm/day was increased to about 900 mm/day after
the rainfall threshold was revised.

Figure 11. The spatial distribution of landslide rainfall threshold in Alishan D098 influence area. (a)
Original result, which did not take the landslide susceptibility into account; (b) revised result, which
did take the landslide susceptibility into account.

4.5. Establishing Recurrence Interval Distribution of Revised Landslide Rainfall Threshold

MDR data (from 1989 to 2021) were collected from the Longmei rain gauge station
(C1M390), which is located near Alishan D098. The probability density functions, such
as Extreme-value Type I, Normal, Pearson Type III, Log-Normal, and Log-Pearson Type
III Distribution frequency analysis, were employed for frequency analysis. Moreover, the
Kolmogorov–Smirnov Test (K-S Test) was used to examine the suitability. After that, the
lowest RMSE among distribution methods was selected to establish the distribution for
each corresponding recurrence interval. Since the extreme values of type I distribution
showed the lowest RMSE (Table 6) to determine the corresponding recurrence intervals, the
revised landslide rainfall threshold values were inputted into this distribution (Figure 12).

Table 6. Result of KS-Test and RMSE * by distributions.

Recurrence Interval p-Value RMSE

Extreme-value Type I Distribution 0.9995 0.0424
Normal Distribution 0.8510 0.0555

Pearson Type III Distribution 0.9725 0.0441
Log-Normal Distribution 0.9725 0.0437

Log-Pearson Type III Distribution 0.8510 0.0840
* Root mean square error.

298



Water 2022, 14, 3320

Figure 12. Extreme-value Type I distribution of Longmei rainfall gauge station.

The results (Figure 13) indicate that the lowest landslide rainfall threshold areas are
primarily located in the northeastern and downstream in Alishan D098, with a recurrence
interval of about 2–20 years, because the area has experienced sporadic landslides since
the occurrence of Typhoon Morakot disturbances in 2009. The lowest recurrence interval
was observed in the red-colored area (Figure 13), which showed the highest susceptibil-
ity to landslides. Thus, landslide management is critical for this area. In addition, the
landslide risk in this region will be more crucial when a large-scale landslide occurs in
Alishan D098, which could endanger the upstream settlements (Longmei). The MDR of
the landslide rainfall threshold was defined as 780 mm/day (about a 20-year recurrence
interval) for yellow-colored areas, which eventually increased to 820 mm/day (about a
25-year recurrence interval) for the historical landslide areas that have been managed.

Figure 13. The distribution of recurrence interval of revised landslide rainfall threshold in the
influence area.

Except for the historical landslide area in the northeast part, the obvious landslide
or small-scale landslide was not observed in areas surrounding Alishan D098. The pre-
dicted landslide rainfall threshold was around 980.5 mm/day with a recurrence interval of
approximately 63.6 years.
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Typhoon Morakot’s devastation in 2009 showed climate change impacts in the future
will change the MDR. As a result, the landslide rainfall threshold for the entire area was
proposed to be 980 mm/day. Table 7 shows the proposed landslide rainfall threshold for
the Alishan D098 region.

Table 7. The landslide rainfall threshold of each region as suggested.

Regions Condition
Rainfall

Threshold
(mm/day)

Recurrence
Interval
(Year)

Northeast Alishan D098
Downstream of Alishan D098

Longmei Settlement

Non-managed 780 20

Has been managed 820 25

Whole Area n/a 980 64

5. Conclusions

The landslide incidence time series limitation, the limitation of landslide monitoring
data, the vagueness of the rainfall threshold for the landslide’s occurrence, and the com-
plexity of topographic factors have made it difficult to predict landslide incidence. Despite
numerous types of research, most previous methods for determining the landslide thresh-
old have limitations and errors. As a result, with the advancement of artificial intelligence
algorithms, new methods can compensate for the lack of data availability and produce
satisfactory results. Recent studies which applied deep learning algorithms to predict or
map landslide susceptibility [13,14,20–22,39] acknowledged the capability of deep learning
and, at the same time, have stated uncertainty in the prediction of landslide hazards due
to insufficient data, climate change, and human activities. Moreover, they considered the
achievement of satisfactory results to be contingent on future research.

The purpose of the current study was to predict the distribution of landslide suscepti-
bility and rainfall threshold in the influence area of Alishan D098 using a deep learning
algorithm. The results indicate the model achieved sufficient efficiency in determining the
landslide rainfall threshold. In general, compared to the previous research [19,20], which
focused on the effect of precipitation parameters on the occurrence of landslides, this study
employed the topographic factors, the historical landslide data, and the maximum daily
rainfall. The results show the lowest MDR threshold prediction was about 980.5 mm/day
(64-year recurrence interval), decreasing to 820 mm/day in the managed historical land-
slide area. However, the MDR for the entire Alishan D098 region is anticipated to exceed
980.5 mm/day in the future due to climate change impacts. Therefore, this study proposed
the landslide rainfall threshold to be 980 mm/day.

The current research findings are expected to be used to estimate and adjust the
landslide rainfall threshold and, as a result, to make an emergency evacuation decision for
the region. In addition, the results can be applied for future planning, land management,
and policies or strategies for landslide hazard mitigation.

Since this study provides a new model, it faced challenges and limitations. Due to
insufficient data in the study area, soil texture was not considered as an input feature in
the deep learning models. Furthermore, the amount of rainfall at the time of the landslide
could not be accurately calculated. As a result, the maximum daily rainfall for the year was
chosen as the rainfall landslide threshold; consequently, the training results of the rainfall
regression model were uncertain and showed errors. Therefore, the current study suggests
using the model as a reference for other areas with more available data or improving input
data through the application of different references, such as satellite data to predict future
landslide incidence in this area.
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Abstract: With the unique rainfall patterns of typhoons, plum rains, and short-term heavy rainfalls,
the frequent landslide and debris flow disasters have caused severe loss to people in Taiwan. In the
studies of landslide susceptibility, the information of factors used for analysis was usually annual-
based content, and it was assumed that the same elements from different years were independent
between each year. However, the occurrence of landslides was usually not simply due to the changes
within a year. Instead, landslides were triggered because the factors that affected the potential of
landslides reached critical conditions after a cumulative change with time. Therefore, this study had
well evaluated the influence of temporal characteristics and the ratios of antecedent landslide areas in
the past five years in the landslide potential evaluation model. The analysis was conducted through
the random forest (RF) algorithm. Additional rainfall events of 2017 were used to test the proposed
model’s performance to understand its practicality. The analysis results show that in the study area,
the RF model had considerably acceptable performance. The results have also demonstrated that
the antecedent landslide ratios in the past five years were essential to describe the significance of
cumulative change with time when conducting potential landslide evaluation.

Keywords: landslide potential; random forest; antecedent landslides; machine learning

1. Introduction

Taiwan is an island located in the hot zone of the Circurm-Pacific Earthquake Belt,
typhoons, and subtropics monsoon climatic region. About 70% or more of the island’s area
is hillsides and mountains. Because of the steep topography and geological vulnerability,
two or more natural disasters are common in Taiwan. Landslide disasters have become
a critical issue in recent years due to their increasing frequency of occurrence caused by
extreme weather and climate change.

To better understand and deal with the increase in landslide disasters, researchers
conducted studies on the potential for landslide and occurrence probability by considering
environmental conditions. Most researchers used the landslide susceptibility analysis (LSA)
to develop landslide evaluation models. Factors that describe the environmental conditions
and triggering behavior of landslides were usually used in the LSA method. The LSA-based
models can be divided into qualitative and quantitative methods [1,2]. The approaches
of statistical analysis, geotechnical engineering analysis (deterministic and probability),
artificial intelligence [3–9], and data mining were commonly used for quantitative LSA
modeling. Artificial intelligence has become a popular data analysis method in recent
years [8] utilizing machine learning, and deep learning algorithms have become more
efficient and reliable in recent years. The machine learning algorithm, Random Forest (RF),
was often used for landslide potential evaluation [9–15] and was the study focus of this
paper.
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Landslide risk analysis (LRA) is another approach to study the landslide disaster.
The concept of the risk triangle, proposed by Crichton [16], including hazard, vulnerability,
and exposure, is usually used to develop an LRA model, in which probability assessment
is performed to describe the risk level. A recently developed landslide evaluation model
using the landslide fragility curves (LFC) was a model of LRA [1,2,17]. LFC model used
spatial statistics and GIS for data processing on the grid base. Rainfall data over the study
areas and landslide cases were obtained and analyzed by constructing a fragility curve
to describe the exceeding probability of landslide for given environmental conditions.
Fragility curves were built for each combination of factors in the model. With the fragility
curves, the critical hazard potential and critical fragility potential were determined to
express the probability of exceeding a damage state of landslides under certain conditions
of rainfall intensity and accumulated rainfall [2].

Both LSA and LRA models use factors to describe the potential of landslides. These
factors, such as rainfall intensity, accumulated rainfall, slope degree, etc., were categorized
as environmental factors and triggering factors. The development of the landslide potential
evaluation model was usually conducted by considering the effectiveness of each chosen
factor for a given period, e.g., the accumulated rainfall of each heavy rainfall event used for
developing the model. Among the rainfall-induced researches, the rainfall thresholds are
usually the main factor when evaluating the landslide susceptibility [18], and the temporal
resolution of rainfall affects the thresholds significantly [19]. In these studies, the rainfall
factors were included in the evaluation procedure by yearly-based input, not considering
the consecutive influence from previous years.

In addition to rainfall factors, previous studies [1,2,20,21] on landslides usually used
other annual factors of each year to establish a potential evaluation model. The variation
of the same factors between each year was typically assumed to be independent and
uncorrelated. However, landslides were usually caused not simply due to the change that
occurred within a year. The cumulative impacts of the factors had affected the landslide
potential over time, and the landslide was triggered when the critical condition was reached.
Therefore, not only the spatial factors but the temporal consecutive characteristics should
be considered in the model. For this purpose, a novelty attempt was made by including
the consecutive changes of landslide areas in this study. The antecedent landslide area
was adopted as a temporal characteristic factor in the proposed model, and its effect was
discussed in this paper.

Finally, the performance of the proposed RF model was evaluated, and two events of
heavy rainfalls in 2017 were used for specific event-driven performance tests. The insights
from the newly developed RF model were also included in this paper.

2. Study Areas and Environmental Factor Database
2.1. Study Areas

In the middle south of Taiwan, the watershed areas of the ChenYuLan River, the Lao-
nong River, and the Qishan River (Figure 1) were chosen to develop the landslide potential
evaluation model. The ChenYuLan River watershed is located in the mountainous area
of Nantou County. The mainstream ChenYuLan River is one of the important tributaries
of the Zhuoshui River, with a total length of about 42 km. The terrain of the ChenYuLan
River is characterized by a significant height difference and steep slope. The watershed
area of ChenYuLan River is about 448 km2, and the average gradient is over 55%. Most
of the Laonong River watershed area is located in Kaohsiung City. The mainstream of
the Laonong River is the first tributary of the Gaoping River basin, with a total length of
about 137 km. The terrain of the Laonong River is characterized as the valley topography,
and the downstream is a suddenly widened sediment area. The watershed area of the
Laonong River is extensive, with an area of 1408.71 km2 and an average slope of over
65%. The Qishan River watershed area is located in Kaohsiung City and Chiayi County.
The mainstream Qishan River is a tributary of the Gaoping River, with a total length
of about 117 km. The terrain of the Qishan River is characterized as the terraces valley.
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The river is suddenly widened at the downstream section. The watershed of Qishan River
is about 750.79 km2 and with an average slope of more than 55%.

Figure 1. Watersheds of ChenYuLan River, Laonong River, and Qishan River in Taiwan.

To better understand what has occurred in the region, satellite images from 2011 to
2016 were used to build the model factor for this study. The images had undergone a
radiometric correction and orthorectification process. The satellite images of 2011 and 2016
are shown as examples in Figure 2.

2.2. Slope Units

To develop the RF models, the area impacted by landslides was first calculated based
on slope units. A slope unit is defined as one slope part or the left/right part of a water-
shed. Slope units can be topologically divided by the watershed divide and drainage line
(Figure 3) with the help of the GIS tool [22]. We used the slope unit as the analysis basis to
physically and adequately represent the local conditions. Then, the environmental database
was applied in accordance with the slope units at the site of interest. The ChenYuLan
River, Laonong River, and Qishan River watersheds are 6651, 21,279, and 10,985 units,
respectively (Figure 4).
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Figure 2. Satellite images of the ChenYuLan River watershed in (a) 2011, (b) 2016.

Figure 3. Slope unit delineation, the (a) and (b) slope units of a watershed.

2.3. Environmental Database and Model Factors

From research and studies, the landslide factor used for analysis included slope,
lithology, aspect, elevation, land use, river system-related (including distance, density, etc.),
vegetation-related (including species, density, age, etc.), geology (including distance, type,
geological structure, etc.), soil-related (including type, thickness, content, etc.), slope shape,
curvature (including horizontal, vertical, etc.), rainfall (including accumulated rainfall,
rainfall intensity), and many more.

Factors directly or indirectly related to landslide occurrence were analyzed by their
importance to establish the model for landslide potential evaluation. These factors were
generally classified as environmental and triggering factors [23–25]. The rainfall was
the primary concern, and the rainfall intensity (maximum hourly precipitation, Imax) and
effective accumulated rainfall (Rte) were used as triggering factors in this study. In addition,
elevation, slopes, slope aspects, normalized difference vegetation index (NDVI), distance
to the river (stream), geology type, and the ratio of incremental landslide area were used as
environmental factors of hillside slope in the study. These factors (Table 1) were collected
from satellite images, digital elevation model (DEM), and monitoring records, and a GIS
database was created to obtain and process the necessary content of factors. The basic
statistical information of the database is shown in Table 2.
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Figure 4. The slope units of watersheds (a) ChenYuLan River, (b) Laonong River, (c) Qishan River.

Table 1. Environmental database of factors.

Type Source Factors Data Format

Grid
DEM

Elevation
Slope (degree)

Aspect
Raster, 5 m

SPOT satellite images NDVI (from 2011 to 2016) Raster, 20 m

Rainfall Maximum hourly rainfall (Imax) of events from 2006 to 2016
Effective accumulated rainfall (Rte) of events from 2006 to 2016 Raster, 20 m

Vector
River system River system

Distance to river (stream) Shapefile, Polygon
Geology Map Geology type
Landslide 1 Incremental landslide areas, from 2011 to 2016

1 the source of satellite images was from Taiwan’s government open data platform (https://data.gov.tw accessed on: 27 August 2021).

Table 2. Statistical information of database.

Watersheds Year Imax (mm)
(Mean, SD)

Rte (mm)
(Mean, SD)

NDVI
(Average)

Slope (Degree)
(Average)

Elevation (m)
(Average)

Distance to the River (m)
(Average)

ChenYuLan
River

2011 (46.7, 14.2) (289, 84) 0.1261

33.7 1591.2 287.3

2012 (40.1, 9.9) (223, 46) −0.1072
2013 (53.2, 23.1) (166, 39) 0.0344
2014 (21.4, 4.0) (202, 75) 0.0497
2015 (31.7, 3.5) (139, 28) 0.0055
2016 (55.4, 6.8) (509, 58) 0.0893

Laonong River

2011 (50.4, 11.8) (509, 152) 0.1016

32.2 1508.0 265

2012 (49.5, 10.7) (248, 85) −0.1372
2013 (62.9, 18.7) (289, 73) 0.0225
2014 (41.4, 13.4) (322, 74) −0.0051
2015 (53.7, 13.9) (347, 179) 0.0235
2016 (58.8, 9.8) (421, 161) −0.0010

Qishan River

2011 (49.8, 12.1) (322, 117) 0.0956

24.7 926.8 190.6

2012 (49.0, 8.2) (187, 58) −0.0376
2013 (56.1, 15.1) (311, 130) −0.2053
2014 (40.9, 6.9) (278, 74) 0.0799
2015 (50.3, 9.9) (287, 103) 0.0997
2016 (64.1, 8.8) (473, 70) −0.0062
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In the database, the landslide area, especially the incremental landslide area, was con-
sidered significant when describing the landslide situation in each target area. Figure 5
illustrates the difference of landslide areas between two periods of SPOT image. The total
area, labeled as No. 3 and No. 4 in the figure, was treated as the new landslide areas during a
single period. The ratios related to landslide areas, i.e., the proportions of No. 1, No. 2, No. 3,
No.4, and No. 5 in Figure 5 were calculated for each slope unit after satellite image processing
and interpretation. The condition of a slope unit would be classified as landslide when the
ratio of incremental landslide area (No. 3 + No. 4) was greater or equal to 5%. The landslide
ratios on each period from 2006 to 2016 were estimated and used in the proposed model.

Figure 5. Illustration of landslide area between two periods of a satellite image.

According to the Soil and Water Conservation Bureau (SWCB), Taiwan, a rainfall event
starts when the hourly rainfall is greater than 4 mm. The event ends when the accumulated
rainfall of continuous 6 h does not exceed 24 mm, and any hourly rain is less than 10 mm
during the 6-h period (Figure 6).

The factor, effective accumulated rainfall, Rte, was calculated by the expression as follows.

Rte = R0 +
7

∑
i=1

(0.7)iRi (1)

where the R0 is the current daily rainfall, and Ri represents the daily rainfall i-th day before.
The maximum hourly rainfall, Imax, was used to label the timing of landslides by

assuming that the landslide occurred when the hourly precipitation reached Imax. First,
for a given rainfall event, each grid’s Imax and Rte were calculated by applying Kriging
interpolation based on the data of reference weather stations. Then, the Imax and Rte of a
slope unit were determined by averaging the values of grids within the slope unit. Figure 7
shows the processed results of factors in the study areas, and Figure 8 shows an example
of the interpolation of rainfall of given rainfall events in 2011.
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Figure 6. The definition of a rainfall event and rainfall factors.

Figure 7. The factors of (a) elevation; (b) slope; (c) slope aspects; (d) geology type; (e) NDVI (2011) of study areas.
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Figure 8. Examples of Imax and Rte in the study area in 2011. From left to right are events of
0719 Heavy Rainfall, Typhoon Nanmadol, and 1001 Heavy Rainfall.

3. Development of Landslide Potential Evaluation Model

Machine learning, a branch of artificial intelligence (AI), has become popular in vari-
ous fields. Computer algorithms are necessary and essential in machine learning to robustly
analyze and predict information based on learning from training data [22]. Among its
applications, the use of machine learning has increased in landslide susceptibility analy-
sis [10]. The methods of artificial neural network (ANN) [26,27], logistic regression [28],
support vector machine (SVM) [29], and random forest [11,12] have been popular for
landslide-related analysis.

The random forest is a classifier based on the ensemble method and consists of many
decision trees. Each tree must meet the basic classification ability and certain accuracy
conditions. The built-in classifier performance will eventually be better than the result
predicted by a single classifier. The random forest will randomly take the data for training,
and the output will be based on the voting in each decision tree. At present, random forests
are also widely used due to the advantages of accurate classification, the capability of large
amounts of data processing, multi-variable data, and fast calculations.

In the analysis of landslide prediction, rainfalls and landslides in the past years
may cause the current site condition to be unstable in the investigated areas. Therefore,
the impacts of temporal characteristics should be taken into account in the analysis. Thus,
the antecedent rainfalls and landslides were used as the temporal characteristics in the
proposed random forest model. The data of the past five years were considered to represent
the previous environmental impacts related to current landslide conditions.

In addition to the six environmental factors of elevation, slope, slope aspects, geology
type, distance to the river, and NDVI, the temporal factors of annual landslide areas in the
past five years were also considered. Therefore, these temporal factors were included in the
model in annual area ratios of five-type landslides (Figure 5) in a slope unit. Furthermore,
the triggering factors of annual Imax and annual Rte of a slope unit in the past five years
were also treated as temporal characteristics in the model. Therefore, there was a total of
43 factors (6 environmental factors, 25 annual landslide area ratios in the past five years,
ten annual factors of Imax and Rte in the past five years, and current yearly Imax and Rte) in
the model database. The examples of annual landslide areas are shown in Figure 9.
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Figure 9. Annual incremental landslide areas of the Qishan River Watershed in (a) 2011 and (b) 2016.

The program WEKA (Waikato Environment for Knowledge Analysis) was used to
develop the random forest model. The data were processed by standardization method,
Z-Score, and normalization procedure (values of 0 to 1). From a total of 38,915 slope units,
10,000 units were randomly selected for model development, with a landslide to a non-
landslide ratio of 1:1. In total, 50% of data were used for training during the development,
and the 50% left were used for internal validation. The supervised classification algorithm
was applied in training.

Validation indices are usually used to evaluate the performance of a model. In machine
learning, the validation indices can be divided into classification metrics and regression
metrics. The proposed model was mainly a binary case. Thus, the confusion matrix of
classification metrics (Table 3) was used to validate the model performance.

Table 3. The confusion matrix of landslide evaluation.

Predicted\Actual Landslide (1) Non-Landslide (0)

Landslide (1) True Positive (TP) False Positive (FP)
Non-Landslide (0) False Positive (FP) True Negative (TN)

The validation indices from Table 2 include accuracy (ACC), precision, sensitivity
(or recall), Kappa (kappa index of agreement, KIA), and receiver operating characteristic
curve (ROC) and area under the curve (AUC). These indices were used to validate the
performance of the proposed model.

The random forest model was trained using data from 2006 to 2010 to obtain the 5-year
temporal factors (rainfall factors of Imax and Rte, and ratios of antecedent landslides) and
the data from 2011 as the input to represent the current state. After establishing the RF
model, the landslide area data from 2012 to 2016 and the annual Imax and Rte were used
as the external validation to analyze the model performance of prediction. In addition to
the confirmation of the 43-factor model, the version of the model using only eight factors
(elevation, slope, slope aspects, geology type, distance to river, and NDVI, and Imax and Rte)
in 2011, i.e., without factors of antecedent landslide ratios, was also evaluated. The training
and validation results were represented by the indices of the confusion matrix, as shown in
Table 4. The examples of training and validation results are shown in Figures 10 and 11.
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Table 4. RF Model training and validation results.

Training/Validation Year Accuracy Precision Recall Kappa AUC

2011 (model training) 0.808 0.791 0.833 0.616 0.889

2012 0.716 0.860 0.515 0.431 0.839
2013 0.706 0.870 0.485 0.412 0.844
2014 0.839 0.773 0.708 0.622 0.901
2015 0.833 0.664 0.828 0.616 0.898
2016 0.834 0.619 0.819 0.592 0.897

2011 (8 factors) 0.702 0.680 0.758 0.406 0.776

Figure 10. The results of model training and validations of Laonong River watershed (a) 2011; (b) 2012; (c) 2014; (d) 2016.

From Table 4, the analysis showed that the accuracy and sensitivity (recall) of the RF
model had been greatly improved after adding factors of antecedent landslide ratios, which
indicated a noticeable improvement in the model’s capability of classification. Although
the overall ACC of the model was improved due to a large amount of TN, the lower
missing rate, i.e., 1-recall, from the RF model, was critical to denote more landslide samples.
The Kappa value showed fair to good accuracy [30], within an acceptable range (0.4~0.74).

It was also noted that the precision values from 2012 to 2014 were at the same level
of around 80% as 2011, and the precision from 2015 and 2016 was slightly lower than the
level of the trained model. The precision variation from the tests had indicated that the
proposed RF model was valuable and referential when applied to predict future landslide
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potential without re-training the RF model. However, it was also noted that the model
might need to update every three years if precision performance was a concern.

In any subsequent year (2012 to 2016), the AUC value of the temporal-factor-added RF
model was higher than that of the model that did not include factors of antecedent landslide
ratios. The validation results show that the RF model with temporal characteristics had
better performance than the model without those temporal factors.

Figure 11. The comparison of model training between 43 and 8 factors using 2011 database of the
Qishan River watershed.

4. Model Performance Evaluation for Individual Rainfall Events

Instead of using annual Imax and Rte for analysis, the selected rainfall events in 2017
(Table 5) were used to test the model’s ability of landslide potential prediction if only
short-period data were available. The test results would help to understand the capability
of the RF model in practical applications during disaster response operations.

Based on the data from the 73 rainfall stations surrounding the study area, the Imax
and Rte of each event (Table 5) were determined and inputted into the model as the factors
of current annual rainfall indices. The in-situ rainfall conditions, I and R, disaster overview,
and disaster scale were available from the disaster case reports, as shown in Table 5.
The proposed RF model obtained the predicted landslide areas using events’ rainfall
conditions, and the result of the ChenYuLan River watershed was shown in Figure 12.
The local government reported the landslide disasters, and three locations were in the
study areas. Figure 13 shows the predicted landslide locations and observed ones from
the disaster reports of events. It is noted that the reported three locations of landslides
are not precisely at the expected locations by the proposed RF model. The model did not
capture the two landslide locations at the northern ChenYuLan River watershed. However,
the third landslide location at Tongfu Village was close to the predicted area by the model.
The results imply that the “hit rate” of the RF model might not perform well when targeting
event-based predictions. A rational inference was that the rainfall conditions used in the
model input were different from the actual local rainfall conditions since the maximum
rainfall intensity was determined from the surrounding rainfall stations, which might not
be suitable to represent the local conditions. Another possible explanation of the model’s
miss-hit was the lack of past five years’ data of landslides at the two northern locations in
the ChenYuLan River watershed. Nevertheless, the proposed RF model had a promising
performance for landslide potential evaluation when applied to rainfall events.
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Figure 12. The predicted landslide areas of ChenYuLan River watershed: (a) 0601 Heavy Rainfall;
(b) Typhoons Nesat and Haitang in 2017.

Figure 13. The predicted and observed landslide locations of events in 2017.

5. Conclusions

Based on the analysis results from the study, the importance of antecedent landslide
areas in the past five years has been emphasized and discussed. Furthermore, the perfor-
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mance of the proposed RF model was also highlighted by conducting annual validation
from 2011 to 2016. As a result, the following conclusions were derived.

1. According to the analysis results, adding temporal characteristics had significantly
improved the performance of landslide potential prediction by the proposed random
forest model.

2. The contribution of antecedent landslide ratios was significant in improving the
model performance. The performance improvement of the model indicated that the
time-dependent factors should be taken into consideration, in terms of a series of
inputs within a period, such as the five years in this study.

3. The results of better model performance had shown the significance of cumulative
change with time. Therefore, a relevant factor, e.g., the antecedent landslide ratios of
the past five years, to describe the time effects was significant in landslide potential
evaluation.

4. The trained model by considering annual temporal factors provided an angle to
estimate the landslide potential in event-type disaster responses.
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Using Landslide Statistical Index Technique for Landslide
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Lao Cai Province, Vietnam
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Abstract: Ban Khoang is a mountainous commune in Sa Pa district located in the central part
of Lao Cai province, Vietnam. Landslides occur frequently in this area and seriously affect the
local living conditions. To help the local authority in developing a landslide disaster action plan,
the statistical index method for landslide susceptibility mapping is applied. As the result, the
landslide susceptibility zonation (LSZ) map was created. The LSZ map indicates that areas of low,
moderate, high and very high landslide susceptibility zones are, respectively, 20.3 km2, 12.4 km2,
15.4 km2, and 5.2 km2; most of the observed landslide areas that are well predicted belong to high
or very high landslide susceptibility classes. In detail, 80% observed landslide areas and 78.57%
number of observed landslides were well predicted, and the area (AUC) under the receiver operating
characteristic (ROC) curve obtained 80.3%. Hence, the high and very high landslide susceptibility
classes in the LSZ map can be considered highly believable, and the LSZ map will be reliable to use
in the practice.

Keywords: natural hazards; landslide; susceptibility; GIS; Vietnam

1. Introduction

Ban Khoang is a mountainous commune in Sa Pa district, Lao Cai province of Vietnam,
where these landslides occur regularly (Figure 1). In particular, a vast landslide happened
in Can Ho A village, Ban Khoang commune in September 2013, causing 14 people loss
and severe property damage. Hence, predicting landslide hazards is very important for
the inhabitants and local administration of Ban Khoang commune to mitigate landslide
damage in this area.

According to the result of a nationwide project “Investigation, assessment and geohaz-
ards susceptibility zonation in mountainous areas of Vietnam” [1] recently, Ban Khoang is
one of 200 communes with highest level of landslides susceptibility in Vietnam.

Therefore, the LSZ mapping will be very necessary and helpful for local authorities
and people in landslide hazard prevention and mitigation, as well as developing a landslide
action plan. In addition, the LSZ map will be a technical foundation for practical activities
relevant to setting up landslide early warning systems.

The most straightforward initial approach to any study of landslide hazards is the
compilation of a landslide inventory and analyzing the relationship with different causative
factors to predict landslide-prone areas [2]. In Ref. [3], Carrara (1983) introduced the
so-called statistical approach for landslide hazard assessment. This technique has been
widely employed and has become one of the most popular approaches for landslide hazard
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assessment worldwide. Combinations of factors that have led to landslides in the past are
identified statistically, and quantitative predictions are made for areas currently free of
landslides but with similar conditions. Since then, many other statistical approaches have
been proposed and used in landslide susceptibility mapping and analyses.
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Figure 1. In this study area, 28 landslides, covering 0.262 km2 (Figure 2), were identified (from 2012
up to May 2022) based on (1) field recognizance to investigate landslide occurrences, (2) collection
of historical literature on landslides, and (3) interpretation of available multi-serial google images
coupled with field verification.

Basically, statistical landslide susceptibility approaches are based on related spatial
information on past landslide activities (i.e., landslide presence/absence) to static geoen-
vironmental factors (e.g., topography, geology, geomorphology, land use, fault density,
soil, and drainage density) using statistical techniques. In Ref. [4], Steger et al. (2016)
commented that the generated empirical relation, commonly expressed as a relative sus-
ceptibility score, is then applied to each spatial unit of an area (e.g., grid cell, and slope
unit) [5–7]. The validation of spatial predictions is commonly evaluated by interpreting
inventory-based predictive performance estimates [8–10].

It is obvious that the landslide inventory is a vital component to obtaining high-quality
statistical landslide susceptibility models because most analysis steps are dependent on a
correct representation of past landslide occurrences [4,9,11–14].

Several studies compared statistical landslide susceptibility models produced from
heterogeneous inventories [4,15–19]. However, a differentiated evaluation of the propaga-
tion of potential inventory-based errors into landslide susceptibility models was hampered
due to the practical inseparability of positional accuracy and inventory completeness as
well as the lack of truly accurate reference inventories.

There are many previous works using the statistical approaches for landslide suscepti-
bility assessment (e.g., methods of statistical index, certainty factor, probability, weight of
evidence modeling, and logisitic regression). However, the selection of input parameters or
causative factors for landslide susceptibility mapping, the method for landslide suscepti-
bility mapping and landslide susceptibility index classification are still confused between
many studies.
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The statistical index method is considered the simplest and quantitatively suitable
method for statistical approaches for landslide susceptibility mapping. However, it has
been adopted by various researchers [19–27].

Therefore, in this study, the statistical index method is applied for landslide suscepti-
bility analyses of Ban Khoang commune in Sa Pa district, Lao Cai province of Vietnam. The
research result will play an important role for landslide hazard prevention and mitigation
in this mountainous commune in Vietnam.

Water 2022, 14, x FOR PEER REVIEW 3 of 23 
 

 

 

Figure 2. Map of landslide inventory in the study area. 

There are many previous works using the statistical approaches for landslide suscep-

tibility assessment (e.g., methods of statistical index, certainty factor, probability, weight 

of evidence modeling, and logisitic regression). However, the selection of input parame-

ters or causative factors for landslide susceptibility mapping, the method for landslide 

susceptibility mapping and landslide susceptibility index classification are still confused 

between many studies. 

The statistical index method is considered the simplest and quantitatively suitable 

method for statistical approaches for landslide susceptibility mapping. However, it has 

been adopted by various researchers [19–27]. 

Therefore, in this study, the statistical index method is applied for landslide suscep-

tibility analyses of Ban Khoang commune in Sa Pa district, Lao Cai province of Vietnam. 

The research result will play an important role for landslide hazard prevention and miti-

gation in this mountainous commune in Vietnam. 

2. Landslide Inventory 

The study area, Ban Khoang commune selected for assessment of landslides suscep-

tibility (Figure 1) is about 53.3 km2. 

The average size of the landslides in the study area is approximately 9369 m2, but the 

details about width, depth, types, or causes of some landslides were not identified. Some 

pictures of landslide inventory are displayed in Figure 3. 

Figure 2. Map of landslide inventory in the study area.

2. Landslide Inventory

The study area, Ban Khoang commune selected for assessment of landslides suscepti-
bility (Figure 1) is about 53.3 km2.

The average size of the landslides in the study area is approximately 9369 m2, but the
details about width, depth, types, or causes of some landslides were not identified. Some
pictures of landslide inventory are displayed in Figure 3.
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Figure 3. Some landslide pictures in Ban Khoang commune, Sa Pa district, Lao Cai province of
Vietnam. (A) Landslide as debris flow occurred near hospital of Ban Khoang commune in 2013.
(B) Landslides near provincial road 155 in Ban Khoang commune. (C) Landslide on the provincial
road 155, the section closed to Can Hồ B village in Ban Khoang commune on 22 May 2022.

3. Landslide Causative Factors

The selection of causative factor maps for landslide susceptibility should be con-
sidered carefully based on relevance, availability and scale attributes. These are cum-
bersome in Vietnam, as systematic studies and inventories of spatial characteristics and
land cover features have only been initiated recently by different government institutions.
Therefore, such data are often lacking, incomplete, or on a scale that is not useful for
scientific purposes, especially in remote and rural regions as the present study area. Ham-
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pered by such constraints, eight digital causative factors map for landslide analysis could
be developed:

• Topography is intrinsically associated with landslides by slope gradient and other fac-
tors, such as weathering, precipitation, soil thickness, etc. Hence, topography strongly
affects landslides [28,29]. Ban Khoang is a mountainous area where the microclimate
is quite predominant. Hence, the aspect is considered an indirect landslide causative
factor in this study. A digital elevation map (DEM) of the study area with a pixel size
of 10 m by 10 m was obtained by using inverse distance weighted interpolation in
QGIS 3.6 from elevation points and contours of a topographic map, scale 1:10,000,
published by the Cartographic Publishing House, Vietnamese Ministry of Natural
Resources and Environment (2019). Then the aspect map of Ban Khoang commune
(Figure 4A) was developed based on the Aspect tool inside QGIS 3.6 software.

• In most landslide studies, slope gradient is considered a principal causative or trig-
gering factor. A slope map was derived from the DEM using the slope function tool
of QGIS 3.6. The slope map is in the form of a raster map with the same 10 m pixel
size as the DEM, but was converted to vector by separating the slope angles into six
classes: (1) flat-gentle slope (<5◦), (2) fair slope (5–15◦), (3) moderate slope (15–25◦),
(4) fairly moderate slope (25–35◦), (5) steep slope (35–45◦), and (6) very steep slope
(>45◦). The map of slope classes of Ban Khoang commune is displayed in Figure 4B.

• Geology and slope instability are strongly associated [30,31]. Hence, a geological map
of Ban Khoang (Figure 4C) was derived from the map of geology and mineral resources
of the Lao Cai sheet group, scale 1:50,000 by Lap et al. (2003) [32]. Figure 4C displays
the distribution of geological classes in Ban Khoang commune in Sa Pa district, Lao
Cai province of Vietnam.

• Geomorphology is considered an essential factor related to landslide occurrence in
the study area. Based on the analyses of the topological characteristics, geological
structures, neotectonic movements, and morphometries, six geomorphological units
can be identified in the study area by [33] (Figure 4D).

• Soil is an essential factor of slope instability in many settings [34,35]. A digital map of
soil was derived from previous work in Lao Cai province carried out by the National
Institute of Agriculture Planning and production (2019), identifying three types of
soil mechanics in the study area, i.e., (1) outcrop, (2) reddish-yellow humus soil on
claystone, and (3) reddish-yellow humus soil on magma rocks (Figure 4E). The soil
depth map (Figure 4F) was derived based on the soil depth information based on the
map of soil mechanics.

• Neotectonics contribute to slope instability by fracturing, faulting, jointing, and de-
forming foliation structures [36,37]. For this study, faults were extracted from the
map of geology and mineral resources scale 1:50,000. Additionally, lineaments were
interpreted from free available Landsat 8 captured by NASA in 2020. The fault and
lineament density was calculated as the total length of faults and lineament per 1 km2

(See Figure 4G).
• Studies have shown that the proximity to drainage axes with intensive gully erosion is

an important factor controlling the occurrence of landslides [38,39]. A map of river
density was derived on the basis of the digitizing river and stream courses on the
topographic map and interpolation in QGIS software (version 3.6). A map of the river
density class (Figure 4H) was created by subdividing the river density range values
into five classes: (1) <1000 m/km2, (2) 1000–2000 m/km2, and (3) 2000–3000 m/km2,
(4) 3000–4000 m/km2, and (5) >4000 m/km2.

• Vegetation augments slope stability primarily in two ways: (1) by removing soil
moisture through evapotranspiration and (2) by providing root cohesion to the soil
mantle [40]. A land-use map was obtained from the land-use map of Lao Cai published
by the land administration department of the Ministry of Natural Resources and
Environment, 2019 [41]. The land use composed of 10 land-use classes is displayed in
Figure 4I.
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Figure 4. Landslide causative parameters for landslide susceptibility mapping of Ban Khoang
commune.

4. Method for Landslide Susceptibility Analysis

The statistical index method is a bivariate statistical technique introduced by van
Westen in 1997 [20] for landslide susceptibility analyses. Other researchers, such as Ge-
bremedhin et al., 2021 [21], Mandal et al., 2018 [22], Wu et al., 2017 [23], Wang et al.,
2016 [24], Dieu et al., 2011 [25], Long, 2008 [19], Cevik and Topal, 2003 [27], and Oztekin
and Topal, 2005 [26], also applied this technique and termed it the statistical index method.
In the statistical index method, a weight value for a parameter class is defined as the natural
logarithm of the landslide density in the class divided by the landslide density in the entire
map [20].

Wij = ln
(

fij

f

)
(1)

where Wij is the weight of a class i of parameter j, fij the landslide density within the class i
of parameter j, and f the landslide density within the entire map. Hence, the statistical index
method is based on statistical correlation of the landslide inventory map with attributes
of different parameter maps. The Wij value in Equation (1) is only calculated for classes
that have landslide occurrences. If there are no landslide occurrences in a parameter class,
the Wij will be assigned to zero [20,30]. This also means that the parameter class having no
landslide occurrences will have no correlation with the landslide inventory. Hence, it does
not influence the calculation of the landslide susceptibility index.

In this study, nine landslide causative factors, i.e., (1) slope, (2) geology, (3) geomor-
phology, (4) soil depth, (5) soil type, (6) land use, (7) fault and lineament density, and (8)
river density (Figure 4), were used as the layer input for landslide susceptibility index
mapping. The workflow for landslide susceptibility mapping in Ban Khoang commune
is shown in Figure 5. Every parameter map is crossed with the landslide map, and the
density of the landslide in each class is calculated. The distribution of landslides for various
data layers and weight wij values are shown in Table 1. The distribution of landslides for
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various data layers, weight of class (Wij) of all the causative factors in the study area is
displayed in Table 2.
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Table 1. Distribution of landslides for various data layers, weight of class (Wij) of all causative factors
in the study area.

Landslide Causative Factors
Landslide

Occ.
Pixels

% Occ.
No. of

Pixels in
Domain

%
Domain Wij

Slope
<5◦ 11 0.42 2798 0.52 −0.2261

5–15◦ 537 20.43 45,087 8.46 0.8823
15–25◦ 580 22.07 114,691 21.51 0.0257
25–35◦ 508 19.33 182,665 34.26 −0.5723
35–45◦ 609 23.17 138,605 25.99 −0.1149
>45◦ 383 14.57 49,356 9.26 0.4539

Fault and lineament density
<500 m/km2 348 13.24 81,710 15.32 −0.1461

500–1000 m/km2 1103 41.97 235,319 44.13 −0.0502
1000–1500 m/km2 1170 44.52 178,785 33.53 0.2835
1500–2000 m/km2 7 0.27 35,889 6.73 −3.2296

>2000 m/km2 0 0.00 1499 0.28 0.0000

River density
<1000 m/km2 758 28.84 86,095 16.15 0.5802

1000–2000 m/km2 603 22.95 135,804 25.47 −0.1044
2000–3000 m/km2 684 26.03 113,416 21.27 0.2018
3000–4000 m/km2 250 9.51 96,950 18.18 −0.6478

>4000 m/km2 333 12.67 100,937 18.93 −0.4014

Soil depth
0 m 0 0.00 11,686 2.19 0.0000
1 m 175 6.66 94,253 17.68 −0.9763
2 m 2314 88.05 376,835 70.67 0.2198
3 m 139 5.29 50,428 9.46 −0.5812

327



Water 2022, 14, 2814

Table 1. Cont.

Landslide Causative Factors
Landslide

Occ.
Pixels

% Occ.
No. of

Pixels in
Domain

%
Domain Wij

Soil type
Reddish-yellow humus soil on magma rocks 1629 61.99 401,940 75.38 −0.1957

Outcrop 0 0.00 11,686 2.19 0.0000
Reddish-yellow humus soil on claystone 999 38.01 119,576 22.43 0.5277

Geomorphology
Ancient planation surface 93 3.54 59,101 11.08 −1.1417

Denudational and erosional slope on
metamorphic rocks 1597 60.77 193,797 36.35 0.5140

Denudational and erosional slope on granite
rocks 489 18.61 256,604 48.13 −0.9502

Quaternary sediment 427 16.25 9101 1.71 2.2533
Erosional steps in front of mountain 22 0.84 14,599 2.74 −1.1850

Geology
Sa Pả formation 262 9.97 32,774 6.15 0.4836

Cam Ðường formation 169 6.43 15,573 2.92 0.7893
Yê Yên Sun complex 571 21.73 69,501 13.03 0.5110

Po Sen complex 163 6.20 183,843 34.48 −1.7154
Ðá Ðinh formation 312 11.87 64,195 12.04 −0.0140

Bản Nguồn formation 1151 43.80 167,316 31.38 0.3334

Landuse
Protection reforestation land 1089 41.44 252,972 47.44 −0.1353

Rice land 241 9.17 29,879 5.60 0.4926
Annual crop land 2 0.08 33,860 6.35 −4.4242

Natural reforestation land 585 22.26 39,883 7.48 1.0906
Rural residential land 16 0.61 8229 1.54 −0.9302

Unused mountain land 682 25.95 152,292 28.56 −0.0958
Mountain land without forest 0 0.00 12,683 2.38 0.0000

Perennial land 0 0.00 619 0.12 0.0000
River and spring land 13 0.49 2660 0.50 −0.0085
Protection forest land 0 0.00 125 0.02 0.0000

Aspect
Flat 0 0.00 24 0.00 0.0000

North 422 16.06 80,933 15.18 0.0563
Northeast 904 34.40 103,501 19.41 0.5722

East 586 22.30 102,496 19.22 0.1484
Southeast 285 10.84 64,916 12.17 −0.1157

South 100 3.81 40,339 7.57 −0.6872
Southwest 102 3.88 33,324 6.25 −0.4764

West 58 2.21 54,362 10.20 −1.5303
Northwest 171 6.51 53,307 10.00 −0.4295

Table 2. Distribution of landslides for various data layers, weight of class (Wij) of all causative factors
in the study area.

Landslide Causative Factors LSIMin LSIMax LSIRange LSIDev

Slope −0.5723 0.8823 1.4546 −0.5183
Fault and lineament density −3.2296 0.2835 3.5131 −1.4628
River density −0.6478 0.5802 1.2280 −0.4851
Soil depth −0.9763 0.2198 1.1961 −0.5453
Soil type −0.1957 0.5277 0.7234 −0.3742
Geomorphology −1.1850 2.2533 2.5047 −0.9107
Geology −1.7154 0.7893 2.5047 −0.9107
Land use −4.4242 1.0906 5.5147 −1.5015
Aspect −1.5303 0.1484 2.1025 −0.6039
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From Tables 1 and 2, it can be noted the following:

• For the slope factor, there is an obvious distinction between classes with slope angles
5–15◦ and >45◦ compared to other classes. This indicates that landslides in the study
area are mainly occurring in areas with slope angles 5–15◦ and >45◦.

• The class of fault density of 1000–1500 m/km2 has the highest Wij value (0.2835)
compared to the remaining classes from all causative factors; hence, it has the highest
impact on landslides in the study area.

• Cam Ðường formation (Wij = 0.7893) are distinctly more favorable for landslides
compared to the other geological formations (Wij ≤ 0.5110).

• For the geomorphological factor, denudational and erosional slope on metamorphic
rocks, Quaternary sediment, also favor landslides.

• For the land-use factor, natural reforestation land is most favorable for landslide
occurrence. Other classes seem to have very little or no influence for landslides.

All Wij layers for the different causative factors were constructed with QGIS 3.6 software.
Next, these were summed up to obtain a resultant landslide susceptibility index map.

LSI =
n

∑
j=1

Wij (2)

where LSI is the landslide susceptibility index and n the number of parameters.
As the result, the LSI map of Ban Khoang commune was developed and is displayed

in Figure 6.
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5. Results and Discussion

Classifier methods that have been used in landslide classification are manual classifica-
tion [26,38,42–48], equal interval classification [49,50], standard deviation classification [51–55].
However, the authors usually do not explain the reasons for using a certain method in
previous works.

In this study, the manual classifier method was used to reclassify the LSI values into
four different susceptibility zones, according to the classification method that was proposed
by Galang (2004) [56]. The susceptibility classes are low, moderate, high, and very high.
Ideally, the classification method should satisfy the principle that higher landslide suscepti-
bility classes should capture more or most landslide occurrences. Therefore, it is assumed
that the expected number of observed landslide occurrences within a higher landslide
susceptibility class equals two times the expected numbers in the next lower landslide
susceptibility class. Hence, the expected numbers of observed landslide occurrences in
the very high landslide susceptibility class equals two times the expected numbers in the
high landslide susceptibility class, and so on. Based on this rule, it can be inferred that the
expected percentages of observed landslide occurrences in the low, moderate, high, and
very high landslide susceptibility classes are 6.7%, 13.3%, 26.7%, and 53.3% respectively.

Hence, the procedure is as follows. The landslide occurrence map is compared to the
LSI map, and the cumulative percentage of observed landslide values versus ranked LSI
values is calculated as shown in Figure 6. Three cut-off percentages of observed landslide
occurrence in the cumulative curve are used to identify the four landslide susceptibility
classes. It is 6.7% for separating the low from the moderate class, 20% for separating the
moderate from high class, and 46.7% for separating the high from the very high class, as
shown in Figure 7.
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As the result, the final map of landslide susceptibility zonation is shown in Figure 8.
The statistical index shows that areas of low, moderate, high and very high landslide
susceptibility zones are, respectively, 20.3 km2 (38.0%), 12.4 km2 (23.3%), 15.4 km2 (28.9%),
and 5.2 km2 (9.8%).

In addition, to minimize the damage caused by natural disasters caused by climate
change to people in Lao Cai province, Taiwan’s Soil and Water Conservation Bureau (SWCB)
and the Vietnam Institute of Science and Mineral Geology (VIGMR) have built a landslide
monitoring station in Ban Khoang commune, Lao Cai in November 2019.
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According to a survey by the VIGMR, Ban Khoang commune (Lao Cai province) is the
area most at risk of landslides in Lao Cai province. At the same time, it is also the place
with the highest risk of landslides in Vietnam. Therefore, installing a real-time landslide
monitoring station in these two areas is essential.

Within the framework of international cooperation among the SWCB, GIS.FCU (the
Geography information System Research Center of Taiwan Feng Chia University), VIGMR,
WeatherPlus company (Former is AgriMedia), the projects “Study, develop a pilot debris
flow early warning system in real time for mountainous areas of Vietnam” and “Study,
develop a pilot debris flow early warning system in real time for mountainous areas of
Vietnam” were applied to Ban Khoang area, Sa Pa town, Lao Cai province.

The real-time landslide early warning system deployed and installed in Ban Khoang
includes a series of sensors, such as geophone, water level, tensiometer sensor, infrared
cameras, and auto-rain gauges installed in three areas (Figure 9) (upstream (Figure 10) and
midstream (Figure 11), and downstream (Figure 12)) to observe and record changes in
weather conditions, such as precipitation, geology (by geogphone), hydrology (flow, water
level) and the surface movement of liquid mud, soil and rock. All data are collected and
processed on site (Figure 13) by the Data Processing Center.
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Figure 12. Downstream of the real-time landslide monitoring station.
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Figure 13. On-site station at the downstream of the real-time monitoring station.
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6. Validation of Landslide Susceptibility Map

The final map of landslide susceptibility zonation for the study area is shown in
Figure 8, and the area percentages of landslide susceptibility classes and posterior landslide
susceptibility of these classes in the final LSZ map are shown in Figure 14.
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Figure 14. Area percentage of LSZ classes and the observed landslide accumulation in each LSZ class.

The accuracy of the final LSZ map is evaluated based on the observed landslides. First,
Figure 13 shows that 80% observed landslide areas belonging to very high and high LSZ
classes. Secondly, the final LSZ map is checked by overlaying it with the observed landslide
map. In addition, As shown in Figure 14, there are various possibilities of different LSZs
coinciding with a landslide polygon. Because in the inventory of the observed landslide,
no distinction was made between the initiation part of the landslide and the areas of debris
or flows, there can be no complete correspondence between the LSZ classes (Figure 15) that
blue line is landslide area, and the complete observed landslide affected area. Hence, we
consider a landslide as having “good” prediction when at least part of it is situated in a
high or very high susceptibility zone. Otherwise, based on the above criteria, the model
predicts 28 landslides in the study area, as shown in Table 3.
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Figure 15. Example of some landslides overlaying the final LSZ map.

Table 3. LSZ validation result with observed landslide.

Accuracy of Prediction
Observed Landslide

Number Percentage (%)

Good 22 78.57
Wrong 6 21.43
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Table 3 indicates that 22 of the 28 observed landslides are well predicted (78.57%), and
only 6 of the total landslides are wrongly predicted (21.43%). Figure 16 shows the LSZ map
with the observed landslides indicating the different levels of prediction.
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Figure 16. Validation LSZ map with observed landslides of Ban Khoang commune.

The Area Under the Curve (AUC) is used to qualitatively analyze the prediction
accuracy of the landslide susceptibility map (Figure 17). The analysis results of the success
rate curve indicated that the statistical index model has an approximately high AUC value
of 0.803.
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Figure 17. AUC representing quality model a success rate curve.

In terms of model performance, the accuracy of the statistical index method for landslide
susceptibility mapping is approximately 80.3%, which is much closer to other studies (e.g., 74%
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in the work of Conoscenti et al. (2016) [57], 71% in the work of Camilo et al. (2017) [58], 75%
in the work of Youssef et al. (2015) [59], and 73.3% in the work of Shu et al. (2021) [60]). It must
be admitted that this accuracy is not superior, which mainly includes the following reasons:
one is that the data quality of the inventory is not very high, and the other is associated with
the limitation of statistically based methods and assumptions of the landslide classification
method.

Because we do not have such another area, a validation of the landslide susceptibility
was performed as follows:

• A total of 75% of the observed landslides in the study area is selected at random (see
Figure 18). These areas form the training data set. The actual selection was made
arbitrarily without considering causative factors. It was only taken into account to
spread the training data set as evenly as possible over the study area.

• On the basis of the training data set, a new LSZ map based on the statistical index
method for the whole study area was created (see Figure 19).

• The remaining 25% of the observed landslides in the study area is used to evaluate the
correctness of the new LSZ map.
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It can be seen that the 80.95% of landslide number has “good” prediction for the new
LSZ map based on 75% landslide training data set. Meanwhile, it is a higher value of
“good” prediction (83.33%) for the landslide validating data set.
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Figure 19. LSZ map based on 75% training landslides of Ban Khoang commune.

The area of landslide belonging to high and very high LSZ classes for the landslide
training data set is 80%. Meanwhile the similar value for the landslide validating data set
is obtained to be a little bit higher, with 81.2%. The model predictions for training and
validating landslides in the study area are shown in Table 4. Generally, the results show
that the target data can be predicted well with the modeling approach.

Table 4. LSZ validation result with training and validating landslide.

Accuracy
of Prediction

Landslide Training Data Set Landslide Validating Data Set

Number Percentage (%) Area (km2) Percentage % Number Percentage % Area (km2) Percentage %

Wrong 4 19.05 0.0512 20 1 16.67 0.0011 18.8
Good 17 80.95 0.2050 80 6 83.33 0.0047 81.2

7. Conclusions

Because most of the observed landslides are well predicted, the high and very high
landslide susceptibility classes in the final LSZ map can be considered highly believable.

For all landslides that are wrongly predicted, of course, due to the assumptions of
the landslide classification method, 6.7% and 13.3% of the total observed landslide areas
fall in the low and medium landslide susceptibility class, respectively. Hence, it is easy to
understand that some observed landslides are not correctly predicted.

The causes of these landslides remain unanswered in this study. This probably has to
do with some unique local conditions that promote landslides that were not considered in
the present analyses or errors or misinterpretations of the data and factor maps.

Finally, the good prediction can be evaluated based on observed landslides belonging
to very high and high LSZ classes, it can be seen that 80% observed landslide areas and
78.57% number of observed landslides were well predicted, and AUC obtained 0.803.
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Hence, the LSZ map was created, and the real-time landslide monitoring station will be
reliable to use in the practice.
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Abstract: Typhoon Morakot had a serious impact on Taiwan, especially the uncommon type of
landslide called large-scale landslide (LSL), not many in number but serious in effect, the origin of
which the study induced. To establish a specific relationship between LSL and triggering rainfall for
future applications of LSL early warning predictions, relevant cases from satellite imagery, along
with field investigation data, major event reports, and seismic data from 2004 to 2016, were collected.
All collected cases are distributed around the mountainous area in Taiwan, and a total of 107 cases
which were mainly distributed in the southern part of the mountainous area were finally selected,
including 28 occurrence-time-known cases and 79 occurrence-time-unknown cases. In addition,
149 potential areas identified by the Soil and Water Conservation Bureau (SWCB) were used for
improving bounding estimates. Based on the concept of safety factor, two dimensionless quantities,
rainfall/landslide depth (R/D) and friction angle/slope (φ/θ), were analyzed by linear regression. In
addition, D was assumed to be nonlinearly dependent on R, θ, and φ, and the parameter uncertainties
were evaluated by the resampling with bootstrap method. Based on the currently obtained data,
there were 8% Type-I errors in the results of the linear regression analysis, and 1% Type-II errors
in the results of the nonlinear regression analysis. Through the comparison of statistical indicators,
the results of nonlinear regression analysis have a better correlation trend. Based on the needs of
early warning operations, more conservative indicators can reduce the risks faced by management
operations. Therefore, according to the results of this study, the lower boundary values from nonlinear
analysis could be used as the LSL early warning management settings. Incorporated with real-time
rainfall forecasts, the variation of statistical indicators will provide the trend information dynamically,
and will help to increase the response time for relevant evacuation operations, that will be welcome
for the further extended applications to guide the evacuation operations of early warning systems.

Keywords: landslide; large-scale landslide; triggering rainfall; early warning system; linear regression;
nonlinear regression; uncertainty

1. Introduction

Typhoon Morakot brought Taiwan a historically record-breaking rainfall in August 2009.
Half of Taiwan Island had accumulated rainfalls exceeding 500 mm [1] with some hot
areas receiving up to 3000 mm [2]. There were 673 people killed, 26 people missing, and
more than TWD 19.5 billion in agricultural losses [3]. Various types of sediment disasters
occurred in large numbers during Typhoon Morakot.

Among the sediment disasters, there were 43,519 landslide cases found after this event,
but only 259 cases of the uncommon type of landslide called large-scale landslide (LSL),
which is not many in number but serious in effect, were found. The most famous case was
Xiaolin Village, in Jiaxian District of Kaohsiung City, which was horribly destroyed in this
event and 462 people from 180 households were buried in mud and rocks [4]. The tragedy
of Xiaolin Village not only shocked all sectors of society, but also made the public realize

Water 2022, 14, 3358. https://doi.org/10.3390/w14213358 https://www.mdpi.com/journal/water341



Water 2022, 14, 3358

that we are not familiar with LSL, and knowledge of the key for prevention and mitigation
of LSL incidents is urgently needed. This need prompted the present study.

After Typhoon Morakot, the National Science and Technology Center for Disaster
Reduction (NCDR) of Taiwan defined an LSL as a landslide area larger than 10 ha, earth
volume larger than 100,000 m3, or a collapse depth deeper than 10 m [5]. Under the
situation that epistemic conditions of LSLs are insufficient, in order to find a practical
solution for early warning works, this study tries to find the most intuitive indicator, and
rainfall and some other factors of LSLs seem to be the best choice. In order to establish the
specific relationship between LSLs and triggering rainfall for the future LSL early warning
predictions, LSL cases, satellite imagery, rainfall data, seismic data, and other support
datasets were collected. In this study, two dimensionless factors, rainfall/landslide depth
(R/D) and friction angle/slope (φ/θ), were assumed to have a linear relationship, and all
factors, R, D, φ, θ, were assumed to have a nonlinear relationship, and the both linear and
nonlinear regressions were analyzed statistically.

The results of LSL occurrence time and location evaluated from the data of the Broad-
band Array in Taiwan for Seismology (BATS) were applied in this study for establishing
the specific relationship between LSLs and triggering rainfall. Compared with previous
research results using only cumulative rainfall of events, the reliability is expected to be
considerably improved.

2. Literature Review

Current research topics of LSLs include a wide range of subjects, e.g., occurrence
mechanisms, monitoring, and early warning. In order to clearly understand past studies,
including the key points and effectiveness, a detailed literature review on the above topics
was conducted.

2.1. Occurrence Mechanism-Related Research

The stability of a slope can be considered by the factor of safety (FS), the ratio of shear
strength τR and shear stress τD. When the FS is greater than or equal to 1, it can be regarded
as a balanced state [6]. The limit equilibrium method is popular in many studies on slope
stability analysis [7]. Slope stability analyses can be roughly divided into three common
theories based on the corresponding concept of slope type: infinite slope theory [6,8–11],
finite slope theory [6,9,12], and the method of slices [6,9–11].

Numerous numerical models have been developed based on the three simulation
functionalities of movement status as the following:

1. Simulate the occurrence of landslide only models, such as SHALSTABLE, SINMAP,
TRIGRS, Scoops3D, PLAXIS, and GeoSutio [6,13–17].

2. Simulate the movement of soil on the slope after landslide only models, such as Flo2D,
Landslide2D, PFC, and DDA [6,18,19].

3. Simultaneously simulate the occurrence of landslide and the movement of soil on the
slope after landslide models, such as FLAC, ABAQUS, and Anura [6,20].

In this study, the most important issue is whether the slope is stable or not, which is the
reason why limit equilibrium theory is used, but not numerical simulations of landslides,
for the selection of parameters for statistical analysis.

2.2. Monitoring-Related Research

Slope monitoring data is the basis for the LSL research and early warning predictions.
Slope monitoring can be carried out through on-site monitoring and remote sensing.

1. On-site monitoring

The purpose of on-site monitoring is mainly to obtain on-site data, including surface
changes, underground changes, surface hydrology, groundwater hydrology, and struc-
tural deformation. The comparison of various on-site monitoring programs is shown in
Table 1 [21]. In recent years, new technologies and equipment have been continuously
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improved, e.g., GPS [22,23], TDR [23], RGB-D sensors [24,25], and ERT [26]. On-site moni-
toring has the advantages of high efficiency, high frequency, and accuracy from directly
measuring on-site data, and it is quite convenient for subsequent analysis and application.
Therefore, the program of on-site monitoring is widely used. However, since the results
of on-site monitoring are limited to “points”, if wide-range monitoring is to be carried
out, a lot of resources have to be invested not only in equipment construction but also in
subsequent maintenance because underground monitoring instruments are vulnerable to
damage from ground deformations.

Table 1. Comparison table of on-site monitoring programs (modified from [21]).

Investigation Item Instruments Investigation Objects Accuracy

Surface
changes

Surface inclinometer Tilting direction and amount of ground surface 1′ ′

Surface extensometer Fracture displacement and velocity 0.2 mm

Surface measurement

Optical measuring
instruments Tilting direction and amount of ground surface 1~10 mm

GNSS Displacement of the ground surface NA

LiDAR scanner Terrain 3D variation NA

Underground
changes

In-place inclinometer Sliding surface position and variation 5~10′ ′

Pipe strain gauge Sliding surface position and variation 1 × 10−6

Borehole extensometer Sliding surface dislocation rate 0.2 mm

Multipoint
borehole extensometer Sliding surface position and dislocation rate 0.3 mm

Surface hydrology Rain gauge Rainfall amount 0.5 mm

Underground
hydrology

Water level gauge Variation of water level in the hole 0.05%FS

Pore pressure gauge Variation of water pressure of the sliding surface 0.05%FS

Soil moisture meter Variation of soil saturation NA

Flowmeter Variation of discharge NA

Structures

Earth pressure gauge Earth pressure acting on retaining walls, deep
foundation piles 0.1%FS

Load cell Tension acting on the ground anchor 0.1%FS

Strain gauge Deformation of the structure 1 × 10−6

Rebar gauge Stress acting on the rebar gauge 0.1%FS

Inclinometer Tilt variation of structure 1~10′ ′

In-place inclinometer Bending deformation of steel pipe piles 5~10′ ′

Note: FS—Factor of Safety; ” —inch; NA—Not Available.

Some of the occurrence times of LSLs in this study were obtained from analyses using
the seismic data from the BATS. Since 1992, 42 stations have been set up in Taiwan and
offshore islands. Each station is equipped with a broadband seismograph, which can record
a wide frequency range of fluctuations due to the characteristics of its sensitive sensors,
which can record rich and high-quality seismic waveforms. It can effectively make up for
the insufficiency of seismic wave information recorded by acceleration type or traditional
narrow-band velocity type seismographs, thereby improving the evaluation accuracy of
earthquake location and scale [27].

2. Remote Sensing

Remote sensing mainly includes optical imagery, airborne LiDAR, and radar data.
Optical imagery can be obtained from unmanned aerial vehicle (UAV) imagery [28], aerial
photos [29], satellite imagery [29–31], etc., and usually requires special processes [30–32] to
derive surface variation or trend information. The airborne LiDAR acquires a large amount
of point cloud data through intensive light wave scanning ranging, and can derive high-
precision surface deformation after data calculation and spatial matching [33–37]. In recent
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years, with the gradual miniaturization of LiDAR products, there have been small LiDAR
applications that can be matched with UAVs [38]. Radar data analysis evaluates surface
variability through radar wave phase changes. In the application of surface variability,
the current common applications include differential InSAR (D-InSAR) [39,40], persistent
scatterer InSAR (PS-InSAR) [40–48], short baseline subset InSAR (SBAS-InSAR) [49], and
temporarily coherent point InSAR (TCP-InSAR) [50,51]. The advantage of landslide moni-
toring through remote sensing data analysis is to obtain the “plane” data of a landslide.
As acquisitions of data have to be coordinated with the schedule of the remote sensing
payload, and most of the original data have to be processed by some complex interpretation
and analysis, the time frame of data acquisition is slower than for on-site monitoring.

Rainfall data for statistical analysis in this study come from the CWB’s on-site mon-
itoring data and radar evaluation data, and all the terrestrial data of LSLs are based on
airborne LiDAR and satellite optical imagery.

2.3. Early Warning-Related Research

By comparing the literature of current LSL early warning studies from Taiwan [52],
the United States [53], Japan [54], Italy [55], and Canada [56], it is clear that each country
has a different approach to establishing warning systems according to the risks to be faced
and the technologies to be mastered. The approaches are follows:

1. Early warning indicators

Through the aforementioned on-site monitoring, remote sensing, and other solutions,
on-site information is obtained to establish early warning indicators, including:

• Surface or underground deformation, velocity, or amount of deformation [21,30,40,42,44,49–51];
• variation speed of groundwater level or water level changes [21,57–60];
• rainfall amount [59,61];
• comprehensive indicators [59].

2. Early warning management values

The management values of early warning indicators are determined by statistical
methods, which are generally divided into warning management values and evacuation
management values [62–68].

3. Real-time simulation

In addition, early warning indicators and management values are also introduced into
the numerical model of LSLs, and real-time simulation is performed to provide guidance
for warning and evacuation.

3. Materials and Methods

The process with major data analysis steps is as follows: case collection and screening
(Section 3.1), case confirmation (Section 3.2), occurrence time confirmation (Section 3.3), trig-
gering rainfall analysis (Section 3.4), linear regression analysis (Section 3.5), and nonlinear
regression analysis (Section 3.6). Details are delineated in the following subsections.

3.1. Case Collection and Screening

The FORMOSAT-2 satellite images of landslides caused by typhoons and torrential
rain events from 2004 to 2016 were collected. The images were compared with each other to
confirm each landslide type, location, and size. Based on the NCDR’s definition of an LSL,
43,519 collected landslide events were screened out and narrowed down to 259 landslides.
In addition, new landslides can be classified into the newborn landslide and the expanded
landslide (as shown in Figure 1), and 107 newborn landslides were selected for analysis.
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(a) (b) 

  
(c) (d) 

Figure 1. Landslide types of satellite images: newborn landslide (a,b) and expanded landslide
(c,d). (modified from: [66]). (a) Xiaolin Village Landslide (pre-event), (b) Xiaolin Village Landslide
(post-event), (c) Shanping Landslide (pre-event), (d) Shanping Landslide (post-event).

3.2. Case Confirmation, Area Size, and Average Slope Identification of LSL

In this study, the practice of the Central Geological Survey, MOEA on the identification
of landslides was referred to [69,70], and landslide cases caused by the influence of specific
events were obtained through the creation and comparison of landslide catalogues. The
LSLs discussed in this study are mainly new landslides. A total of 259 new LSL cases
were identified, including 107 newborn landslides and 152 expanded landslides. Only the
107 newborn landslides were used for analysis. In this stage, area size and average slope of
LSLs were obtained at the same time. The projected area A (m2) of an LSL was calculated
by the Calculate Geometry function of ESRI ArcMap® software. Based on 5 m resolution
DEM data, the slope of each data grid was calculated first with the Slope function of the
Surface tool in the Spatial Analyst Tools module of ArcToolbox, and the average slope θ
(degree) for the corresponding range of each newborn LSL was calculated by the Zonal
Statistics function in the Zonal tool module.

3.3. The Occurrence Time Confirmation of LSL

In order to accurately correlate the triggering rainfall with LSLs, the first task is to
confirm the occurrence time of each landslide. The occurrence time data cited in this study
mainly come from interviews with local residents [71,72], and the evaluation results of
the LSL occurrence time from the BATS [73]. Among the 107 newborn LSL cases, 28 cases
were identified with their occurrence time, and for the remaining 79 cases the exact time of
occurrence was unknown. The information of the 28 newborn LSLs is shown in Table 2.
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Table 2. Information of the 28 newborn LSLs.

No. ID Event Area Size (ha) Occurrence Time Cited From

1 SR-3

Typhoon
Morakot
(200908)

19 09 August 2009 17:00

Interviews
with
local

residents

2 SR-5 238 09 August 2009 17:00
3 SR-6 142 10 August 2009 12:00
4 SR-7 130 09 August 2009 02:00
5 SR-8 88 09 August 2009 02:00
6 SR-9 74 09 August 2009 04:00
7 SR-11 40 08 August 2009 16:00
8 SR-12 32 09 August 2009 07:00
9 SR-16 26 09 August 2009 07:00
10 SR-19 23 08 August 2009 15:00
11 SR-42 15 09 August 2009 07:00
12 SR-43 15 09 August 2009 07:00
13 SR-46 15 09 August 2009 05:00
14 SR-53 14 09 August 2009 00:00
15 SR-94 351 09 August 2009 10:00
16 SR-95 249 09 August 2009 06:00
17 SR-96 81 09 August 2009 10:00
18 SR-97 61 09 August 2009 09:00
19 SR-98 52 09 August 2009 06:00
20 SR-99 15 09 August 2009 04:00
21 SR-100 11 08 August 2009 10:00
22 SR-101 10 09 August 2009 09:00

23 2005_002
Typhoon
Haitang
(200505)

18 21 July 2005 14:33

The
evaluation
results of
the LSL

occurrence
time and
location
from the

BATS

24 2006_002 0609 Torrential
Rain 12 10 Jun 2006 00:53

25 2008_002 Typhoon Sinlaku
(200813) 89 18 September 2008

02:50

26 2008_003
Typhoon
Kamaegi
(200807)

10 19 July 2008 05:30

27 2012_002 Typhoon Saola
(201209)

19 03 August 2012 09:02
28 2012_004 25 03 August 2012 03:00

3.4. The Triggering Rainfall Analysis

From previous methods of analyzing the triggering rainfall of landslides and debris
flows [62,68,74,75], the triggering rainfall of LSLs can be described as Equation (1). The rain
field can be divided as in Figure 2. The analysis of landslide triggering rainfall R should
consider R0 and P. The cumulative rainfall R0 directly contributes to the landslide event
from the beginning of rainfall to the moment the LSL occurred and is called “direct rainfall”.
The rainfall P is called “antecedent rainfall” that occurred before the start of the current
rain event, and is related to the moisture content of soil which also affects the likelihood
of having a landslide. The length of time considered for the antecedent rainfall can be
adjusted according to the local geological characteristics. In this study, the rainfall of the
antecedent seven days is used. The sum of the direct rainfall of the current rainfall event
and the antecedent rainfall is the effective cumulative rainfall of the landslide, and is called
the triggering rainfall, which can be expressed by Equation (1).

R = R0 + P ≈ R0 + ∑N
i=1 αiRi, (1)

where:

R is the triggering rainfall for LSL (mm);
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R0 is the accumulated rainfall from the beginning of the rainfall event that caused the LSL
to the moment the landslide occurred (mm);
P is the antecedent rainfall (mm) ≈ ∑N

i=1 αiRi;
Ri is the rainfall on the i-th day (24 h) before the start of the rain field t0 (mm);
N is the number of days to consider the antecedent rainfall (), generally N = 7;
α is the daily (24 h) rainfall triggering landslide decay coefficient (), which can be 0.7 or 0.8.
At present, α = 0.7 is used in this study to calculate the antecedent rainfall [62].
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The aforementioned 107 newborn LSL cases and the data of 149 potential LSL areas evalu-
ated by the SWCB were used in this study for the follow-up analysis, with the information
of the cases shown in Table 3. Among the 107 newborn LSL cases, the occurrence time of
28 cases was confirmed through local resident interviews and evaluation of the data from
the BATS, and then triggering rainfall was also calculated. Since the time of occurrence
of the remaining 79 cases could not be confirmed, the total rainfall of the corresponding
event was used instead of the triggering rainfall. For the 149 potential LSL areas without
landslide, the total rainfall of Typhoon Morakot was used as the triggering rainfall in this
study. In summary, three different sets of LSL events were used in this study: 28 occurrence-
time-known cases, 79 occurrence-time-unknown cases, and 149 potential LSL areas. As
for other relevant parameters, the relevant data were collected and estimated based on the
actual collapse area and the potential collapse range delineated by the SWCB.

Table 3. Information of selected cases.

Cases Landslide or Not Rainfall Type Used

107 newborn LSLs
28 occurrence-time-known cases Yes Triggering rainfall

79 occurrence-time-unknown cases Yes Total event rainfall

149 potential LSL areas No Total rainfall of Typhoon Morakot

3.5. The Linear Regression Analysis

When the rain infiltrates the sliding surface and starts to accumulate, the pore water
pressure rises. It is assumed that the soil will start to slide when the pore water pressure
rises to a critical hc (m). According to the infinite slope theory, θ (degree) is defined as the
average slope of the sliding surface, D (m) is defined as the thickness of the sliding soil
layer, and hc is defined as landslide triggering pore water pressure or critical pore water
pressure for soil sliding. According to Towhata et al. [77], the hc/D is a function as shown
in Equation (2).

hc

D
= f

(
internal f riction angle

slope o f sliding sur f ace

)
= f

(
internal f riction angle

θ

)
(2)
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Alternatively, hc is replaced with the landslide triggering rainfall R, and the internal
friction angle is replaced by the equivalent friction angle φ (degree). Therefore, Equation (2)
can be rearranged in two dimensionless quantities, R/D and φ/θ, for a linear statistical
regression analysis as the following:

(
R
D

)
= a×

(
φ

θ

)
+ b. (3)

In Equation (3), R can be derived from Equation (1), θ can be obtained by calculating the
average slope by the steps in Section 3.2, and D is the landslide volume V (m3) divided by
the projected landslide area A as Equation (4). With an empirical volume–area relation [78]
as Equation (4) from the SWCB, D can be evaluated as Equation (5).

V = 0.1025× A1.401 (4)

D =
V
A

= 0.1025× A0.401 (5)

Scheidegger mentioned that the equivalent friction coefficient f [] is a function of the
landslide volume V as in Equation (6) [79]. Since the friction coefficient f is equal to tan φ
based on the force balance (gravity and friction) of an incline plane, the equivalent friction
angle φ can be calculated by Equation (7).

log10 f = −0.1466 log10 V + 0.62419 (6)

φ =
tan−1 f × 180

π
=

tan−1
(

e−0.1466 log10 V+0.62419
)
× 180

π
(7)

3.6. The Nonlinear Regression Analysis

To evaluate of the stability of the slope using the concept of FS in Section 2.1, D, R, θ,
and φ are the four factors to be considered, and a generic nonlinear relationship is assumed
as shown in Equation (8).

D = f(R, θ, φ; a, b, c, d, e) =
a× Rb × θc

φd + e, (8)

where:
D is a nonlinear function of R, θ, φ (m),
a, b, c, d, e are the regression coefficients (). To be dimensionally correct, these coefficients
should have certain physical units. However, they are just regressionally fitted values and
the actual units are ignored in this paper for simplicity.

To deal with this inverse problem, a nonlinear regression is performed with bootstrap
resampling to evaluate parameter uncertainty. The analysis steps are shown in Figure 3.
The key steps of the entire nonlinear process are detailed as follows.

Step 1. Initial calculation

In this step, the coefficients of a, b, c, d, and e are initially set to be 1.0, and the initial
predicted values can be calculated as Equation (8). The (relative) residual is defined as
Equation (9).

∆i ≡ 1− pi
oi

, i = 1 · · · n, (9)

where:

∆i is the residual of the i-th data [],
pi is the landslide thickness of the i-th prediction (m),
oi is the landslide thickness of the i-th observation (m),
n is the total number of observations ().
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Step 2. Solver

For the nonlinear regression analysis, the built-in Solver add-in of Microsoft Excel®

is used to find the optimized coefficients a, b, c, d, e. The sum of squared errors (SSE) as
in Equation (10) is used as the target function, and the coefficients can be obtained by
minimizing the SSE with Solver. Solver uses the GRG nonlinear solving method to solve
the problem with an accuracy of the constraint of 0.000001.

SSE =
n

∑
i=1

∆i
2 =

n

∑
i=1

(
1− pi

oi

)2
(10)

Step 3. SSE convergence

To obtain the optimal solution, a convergence criterion of 0.0001 is set in Solver. When
the absolute value of the change of the SSE in the last 5 iterations is less than the convergence
criteria, the GRG nonlinear solution method will stop. With the final optimized coefficient
ã, b̃, c̃, d̃, ẽ, the optimized prediction value p̃i and the corresponding optimized residual
value ∆̃i will be used for the following bootstrap procedure (steps 4 to 8).

Step 4. Bootstrap method processing

The bootstrap method was proposed by Efron in 1979 [80] and can be used to estimate
the uncertainty of system parameters. The concept of this method is to use the existing
data to generate a large number of “phantom samples” through a procedure of resampling
with replacement [81]. Since this method is a nonparametric method, there is no need to
make assumptions about the data distribution pattern [82].

When carrying out the bootstrap method, the optimal set of residual values ∆̃i from
step 3 is resampled with replacement to obtain a new set of residual value ∆i

∗. With the
rearrangement of Equation (9), the observation value can be described as Equation (11).
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Therefore, with the optimized prediction value p̃i and the bootstrapped residual value ∆i
∗,

the new observation value oi
∗ can be obtained as Equation (12).

∆i = 1− pi
oi
⇒ oi =

pi
1− ∆i

, i = 1 · · · n (11)

oi
∗ =

p̃i

1− ∆i
∗ , i = 1 · · · n (12)

Step 5. Solver

This step is essentially the same as step 2, and the main difference is that the new
observation value oi

∗ from step 4 will be used for optimization.

Step 6. SSE convergence

This step is the same as step 3. Different SSEs are solved repeatedly through iterative
optimization, and new optimized coefficients ãj, b̃j, c̃j, d̃j, ẽj are obtained for j-th
calculation of the bootstrap method.

Step 7. Cumulative coefficient statistics

In this step, the cumulative coefficient of variation (CV) for each optimized coefficient
is defined as Equation (13).

CVj =
σ1∼j

µ1∼j
, j = 1 · · · , (13)

where:

CVj is coefficient of variation of the specific coefficient from the 1st to the j-th bootstrap
resampling [],
σ1∼j is the standard deviation of the specific coefficient from the 1st to the j-th bootstrap
resampling [],
µ1∼j is the average value of the specific coefficient from the 1st to the j-th bootstrap resam-
pling [].

Step 8. Statistics converged

The variation value ∆CV is defined as the absolute value of the difference between
two consecutive CV values shown in Equation (14) and it can be used to gauge the trend
asymptotically stable solution. The convergence criterion for ∆CV is set to be 0.0001 and
steps 4 to 8 are repeated m times until the ∆CV is converged. In the bootstrap procedure, m
is the total times of resampling and is not a preset number but can only be determined by
the convergence in this step.

∆CVj =
∣∣CVj − CVj−1

∣∣, j = 2 · · ·m (14)

Step 9. Coefficient statistical analysis

After the iterative outcomes converge to stability, the statistical analysis of ãj, b̃j, c̃j, d̃j, ẽj

is performed to obtain the maximum value, minimum value, average value, mode value,
and statistical values of 40% and 60% confidence intervals of each coefficient.

Step 10. Outcome estimation

With the nonlinear relationship of D from the previous step, the new predicted D
can be calculated with the existing LSL data. By comparing the calculated values with the
existing data, the prediction ability of each nonlinear relationship of D can be estimated.

4. Results

Through the data preparation steps in Sections 3.1–3.3, all the data were analyzed
according to Sections 3.4 and 3.5, and the results are described in the following sections.
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4.1. Linear Regression Analysis Results

With a linear relationship between dimensionless (R/D) and dimensionless (φ/θ)
according to Equation (3), the regression results are illustrated as Figure 4. In the figure,
the black dots are the 28 known occurrence time cases, the red line is the regression trend
line of Equation (15), and the green and purple dotted lines are the upper and the lower
boundary lines of Equations (16) and (17), respectively.

Trend line :
R
D

= 0.1347× φ

θ
− 0.0281, R2 = 0.55 (15)

Upper boundary line :
R
D

= 0.1347× φ

θ
+ 0.0032 (16)

Lower boundary line :
R
D

= 0.1347× φ

θ
− 0.0543 (17)
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Figure 4. Dimensionless factor relationship of LSL cases with known occurrence time.

In order to examine whether the relationship of Equation (15) is reasonable, this study
collected data according to the procedures of Sections 3.1–3.3 for the 79 occurrence-time-
unknown cases and 149 potential areas delineated by the Soil and Water Conservation
Bureau (SWCB). Since there is no information about the time of landslide for these two types
of cases, the effective cumulative rainfall is evaluated alternatively. The total accumulated
rainfall values of the corresponding events were used for the 79 occurrence-time-unknown
cases, and the maximum total accumulated rainfall recorded over the years was taken
for the 149 potential areas. After calculating the two dimensionless quantities, the results
were superimposed with the trend line and the boundary lines from Figure 5 to display in
Figures 6 and 7.
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Figure 6. Dimensionless factor relationship of potential LSL area.

In Figure 5, almost all cases are above the trend line, and only one case falls between
the trend line and the lower boundary line. Since the total rainfall should cap the actual
effective cumulative rainfall, it is reasonably expected that most of the data (if not all) are
above the trend line.

Among the 149 records in Figure 8, 67 records are located below the lower boundary
line (45%), 112 below the trend line (75%), 135 below the upper boundary line (91%), and
14 above the upper boundary line (9%).
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Figure 7. Dimensionless factor relationship of potential LSL area.

To be conservative, the lower boundary line (the purple dotted line in Figure 9) of the
occurrence rainfall is suggested to be the management value for LSL evacuation and refuge.

4.2. Nonlinear Regression Analysis Results

In this study, the Analysis ToolPak of Microsoft Excel® was used to perform the non-
linear fit analysis between the predictions and the observations according to Equation (8).
The results are shown in Table 4 and Figure 8. From the value of R square and the adjusted
R square, it was found that Equation (8) has a good degree of model fit, and F is very
different from the significance F (last two columns of ANOVA). This indicates that each
parameter has large differences between groups, and small differences within groups. From
the results in Figure 8b, it was found that the predicted value and the observed value have
similar trends, and the function described by Equation (8) is reasonable.

Table 4. Result of complex data analysis.

Regression Statistics

Multiple R 0.9569
R Square 0.9157
Adjusted R Square 0.9052
Standard Error 2.8447
Observations 28

ANOVA

df SS MS F Significance F

Regression 3 2109.4427 703.1476 86.8894 4.9903 × 10−13

Residual 24 194.2187 8.0924
Total 27 2303.6614

Coefficients Standard
Error t-Test p-value Lower 95% Upper 95%

Intercept 66.7058 6.1858 10.7838 1.10 × 10−10 53.9390 79.4725
R(m) −2.2273 2.8034 −0.7945 0.4347 −8.0133 3.5587
θ(degree) 0.0043 0.1279 0.0334 0.9737 −0.2597 0.2682
φ(degree) −2.2251 0.1456 −15.2793 7.26 × 10−14 −2.5257 −1.9246
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Figure 8. The results of the fit analysis between the nonlinear predicted value and the observed value,
where (a) is the residual of each parameter, (b) is the sample regression line of each parameter, and
(c) is the normal probability. D is the thickness of the sliding soil layer, R is the landslide triggering
rainfall, θ is the slope of sliding surface, and φ is the equivalent friction angle.
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Figure 9. Comparison between predicted and estimated values of collapse thickness in 149 potential
LSL areas.

After confirming that Equation (8) was reasonable, the nonlinear regression analysis
according to the procedures in Figure 5 was performed. With 5000 iterations of calculation,
it was found that the variation of the CV of each coefficient is approaching asymptotic
stability as the number of iterations increases. The optimized coefficients of each group
were obtained from the statistics in Table 5. Through the results in Table 5, the statistical
values of each coefficient were substituted into Equation (8) to calculate the predicted value.
The predicted values were compared with the observed values of 28 occurrence-time-
known cases and 79 occurrence-time-unknown cases. The results of landslide thickness
difference ∆D are shown in Tables 6 and 7.

Table 5. Statistics of nonlinear regression coefficients.

Parameter Max Min Mean Median 40% 60%

a 24,469.2875 648.5690 6095.1517 4438.0571 3576.8579 5539.8139
b −0.0229 −0.3621 −0.1647 −0.1604 −0.1744 −0.1460
c 0.1614 −0.4220 −0.1339 −0.1298 −0.1492 −0.1089
d 2.4898 0.8831 1.6260 1.6288 1.5488 1.7067
e 5.0123 −22.1158 −4.4903 −3.5814 −4.7650 −2.5826

Table 6. The landslide thickness of the prediction minus the observation for 28 occurrence-time-
known cases. (Unit: m, % relative to the observation).

∆Dmax ∆Dmin ∆Dmean ∆Dmedian ∆D40% ∆D60%

Standard deviation 9.18 (15%) 6.85 (35%) 3.52 (9%) 1.38 (6%) 1.65 (6%) 1.77 (7%)
Mean of absolute values 15.03 (72%) 31.00 (167%) 8.03 (41%) 1.07 (5%) 2.20 (11%) 2.87 (15%)

Maximum value 42.61 (99%) −23.20 (−117%) 16.15 (55%) 2.38 (12%) 0.02 (0%) 6.63 (26%)
Mean value 15.03 (72%) −31.00 (−167%) 8.03 (41%) 0.16 (1%) −2.20 (−11%) 2.82 (15%)

Median value 11.38 (76%) −28.18 (−163%) 6.94 (43%) 0.45 (3%) −1.85 (−10%) 2.84 (17%)
Minimum value 6.38 (37%) −50.56 (−231%) 3.69 (21%) −4.00 (−13%) −7.11 (−23%) −0.36 (−2%)
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Table 7. The landslide thickness of the prediction minus the observation for 79 occurrence-time-
unknown cases. (Unit: m, % relative to the observation).

∆Dmax ∆Dmin ∆Dmean ∆Dmedian ∆D40% ∆D60%

Standard deviation 1.42 (4%) 1.60 (20%) 1.20 (8%) 0.65 (5%) 0.69 (6%) 0.67 (5%)
Mean of absolute values 9.26 (75%) 26.47 (216%) 4.39 (35%) 0.63 (5%) 2.13 (17%) 1.48 (12%)

Maximum value 16.21 (83%) −22.69 (−150%) 8.71 (61%) 1.62 (15%) 0.13 (1%) 3.36 (30%)
Mean value 9.26 (75%) −26.47 (−216%) 4.39 (35%) −0.39 (−3%) −2.13 (−17%) 1.48 (12%)

Median value 8.81 (75%) −26.41 (−219%) 4.19 (35%) −0.43 (−3%) −2.17 (−18%) 1.42 (12%)
Minimum value 7.46 (62%) −32.25 (−254%) 1.85 (17%) −1.72 (−16%) −3.55 (−32%) 0.02 (0%)

From Tables 6 and 7, Equation (18) was obtained by substituting the median value
of each coefficient into Equation (8) which has a relatively good predictive ability in
both cases with or without known occurrence time. Assuming a normal distribution of
Equation (8), the upper and lower boundaries of the 99.7% range covered by three standard
deviations were used. The lower boundary illustrated in Equation (19) was obtained
by the 40th percentile values of each coefficient, and the upper boundary illustrated in
Equation (20) was obtained by the 60th percentile value of each coefficient.

Trend line : DTL =
4438.0571× R−0.1604 × θ−0.1298

φ1.6288 − 3.5814 (18)

Upper boundary line : DLB =
3576.8579× R−0.1744 × θ−0.1492

φ1.5488 − 4.7650 (19)

Lower boundary line : DUB =
5539.8139× R−0.1460 × θ−0.1089

φ1.7067 − 2.5826 (20)

To better illustrate the data distribution for the 149 potential LSL areas, the trend line
and the boundary lines were transformed and normalized. The results from Equation (18)
were set as the zero-reference line, and those from Equations (19) and (20) were scaled to be
+100% (upper boundary) and −100% (lower boundary), respectively. The three lines of the
149 observation data are plotted in Figure 9. Of the 149 records, 83 records (56%) are below
the lower boundary line, 115 records (77%) below the trend line, and all 149 records (100%)
are below the upper boundary line.

5. Discussion

According to the aforementioned information and results, some issues are discussed
in the following sections.

5.1. Prediction Ability

In order to directly compare the predictive capabilities (rainfall is the key indicator
for early warning systems) of the results from linear regression analysis and nonlinear
regression analysis, Equations (15) to (20) can be rewritten with R as the dependent variable
as Equations (21) to (26).

RLT = D× (0.1347× φ

θ
− 0.0281), (21)

RLU = D× (0.1347× φ

θ
+ 0.0032), (22)

RLL = D× (0.1347× φ

θ
− 0.0543), (23)

RNT =

[
(D + 3.5814)× φ1.6288

4438.0571× θ−0.1298

] 1
−0.1604

, (24)
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RNU =

[
(D + 2.5826)× φ1.7067

5539.8139× θ−0.1089

] 1
−0.1460

, (25)

RNL =

[
(D + 4.7650)× φ1.5488

3576.8579× θ−0.1492

] 1
−0.1744

, (26)

where:

RLT is the predicted rainfall by the linear regression trend line (m),
RLU is the predicted rainfall by the linear regression upper boundary line (m),
RLL is the predicted rainfall by the linear regression lower boundary line (m),
RNT is the predicted rainfall by the nonlinear regression trend line (m),
RNU is the predicted rainfall by the nonlinear regression upper boundary line (m),
RNL is the predicted rainfall by the nonlinear regression lower boundary line (m).

With the 79 occurrence-time-unknown cases and the 149 potential areas, the predicted
rainfalls were calculated by Equations (21) to (26), the trend lines and boundary lines were
transformed and scaled to be 0% and ±100%, similar to Figure 9, and the results are shown
in Figures 10–13.
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In Figure 10 (the linear regression analysis results of 79 occurrence-time-unknown
cases), all observed rainfall data are greater than the predictive ones, indicating no Type-II
error (false negative).

In Figure 11, there are Type-I errors (false positives). Among the 149 cases, 12 (about
8%) are above the upper boundary of the predictive rainfall but no landslide occurred. For
the results of the nonlinear regression analysis in Figure 12, there is one case (about 1%)
below the lower boundary of the predictive rainfall, which is a Type-II error. According to
the results in Figure 13, all of the 149 cases are below the upper boundary of the predictive
rainfall, which means no Type-I error.

In summary, based on the limited data used in this study, there is no Type-II error from
linear regression and no Type-I error from nonlinear regression. If different situations occur
in the future, the new data should be updated and included for improving risk probability
assessment.
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Figure 12. Prediction of rainfall distribution by nonlinear analysis of 79 LSL cases.

With Equations (21) to (26) for the 28 occurrence-time-known cases, the predicted
rainfalls were compared with the observed triggering rainfalls, and error sums of squares
and the root mean square errors are shown in Table 8. By examining the error sum results,
the nonlinear trend (RNT) has the best predictive capacity. Following the same procedures,
79 occurrence-time-unknown cases and 149 potential areas were evaluated and the results
are shown in Tables 9 and 10. It is also found that the nonlinear trend line has the best
predictive capacity. Nevertheless, the conservative lower boundary value should be used
regarding the evacuation management value of the early warning operation. From the
comparison of the error sums in Tables 8 and 9, the estimates by the lower boundary line of
nonlinear analysis do provide better predictions.
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Table 8. Statistics of rainfall predictions for 28 occurrence-time-known LSL cases.

R RLT RLL RLU RNT RNL RNU

Maximum value (mm) 1271.3 1599.1 1147.8 2554.0 1425.8 804.3 3069.4
Minimum value (mm) 501.6 571.4 −198.5 955.9 277.0 178.7 507.4
Error sum of squares (m2) 2.3922 9.0971 19.3008 2.1096 4.3647 55.0174
Normalized error sum of squares 4.1646 9.9850 34.2229 3.2921 4.8297 70.8433
Standard deviation (mm) 297.7 580.5 845.5 279.5 402.1 1427.5
Normalized standard deviation 0.3927 0.6081 1.1258 0.3492 0.4229 1.6198

Table 9. Statistics of rainfall predictions for 79 occurrence-time-unknown LSL cases.

R RLT RLL RLU RNT RNL RNU

Maximum value (mm) 1994.4 1544.9 1174.1 1987.9 1688.7 950.8 3589.9
Minimum value (mm) 779.2 464.8 132.2 862.1 872.7 470.0 1966.4
Error sum of squares (m2) 11.2251 26.5031 3.7198 4.1568 18.3132 40.8837
Normalized error sum of squares 4.5775 12.7829 1.9193 1.5839 7.6505 31.4102
Standard deviation (mm) 644.8 990.8 371.2 392.4 823.6 1230.5
Normalized standard deviation 0.4117 0.6881 0.2666 0.2422 0.5323 1.0786

Table 10. Statistics of rainfall predictions for 149 potential LSL areas.

R RLT RLL RLU RNT RNL RNU

Maximum value (mm) 2267.9 3016.4 2685.2 3412.0 2739.7 1575.6 5647.8
Minimum value (mm) 822.3 804.5 511.1 1037.4 1144.4 591.5 2583.9
Error sum of squares (m2) 10.0854 20.0943 8.5405 6.1552 23.6371 94.8223
Normalized error sum of squares 3.1882 5.8767 3.4506 2.3811 6.6163 44.9751
Standard deviation (mm) 611.2 862.7 562.4 477.5 935.7 1874.0
Normalized standard deviation 0.3436 0.4665 0.3575 0.2970 0.4950 1.2906

5.2. Limitations

In order to establish the specific relationship between LSLs and triggering rainfall for
the future LSL early warning predictions, this study collected LSL case data for modeling.
As aforementioned, under the situation that epistemic conditions of LSLs are insufficient,
coupled with the fact that LSL is not common, the data that can be collected are very
limited. Although the model verified the rationality, it does not mean this model could be
used directly in another region outside Taiwan, and those who want to apply this model
should follow the procedures mentioned in this study to retrieve the suitable parameters
before practice.
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5.3. Early Warning Application

When the evacuation of early warning systems is announced, it is important to take
into account not only the number of evacuees, the length of the evacuation route, and
the opening of evacuation shelters, but also the time required for the activation of the
evacuation mechanism, agency communication, evacuation notification and enforcement,
evacuation status confirmation, etc. It is recommended that the operation should be car-
ried out 3 to 6 h before the cumulative rainfall value reaches the evacuation management
value. For this reason, it is suggested to use the quantitative rainfall forecast of 3 to 6 h,
such as: ensemble model-based typhoon quantitative precipitation forecast (ETQPF) or
blended quantitative precipitation forecast (BQPF). When the forecast of accumulated rain-
fall reaches the critical value, the evacuation mechanism should be activated immediately
for an adequate response time.

6. Conclusions

When a large-scale landslide (LSL) disaster occurs, it could have a great impact on
people’s lives and properties. In response to the potential threat caused by LSLs, this
study collected most relevant data of LSL cases, analyzed them to quantify the relationship
between the LSL and the triggering rainfall, and proposed to apply this relationship to LSL
warning predictions.

The satellite imagery and additional information of landslides from 2004 to 2016 were
collected in this study. After screening of 43,519 landslide records, 107 newborn landslides
were selected for analysis, including 28 occurrence-time-known cases and 79 occurrence-
time-unknown cases. In addition, 149 potential LSL areas evaluated by the Soil and Water
Conservation Bureau (SWCB) were also used for improving the lower boundary line.

This study employs two methods of linear and nonlinear regression analysis to assess
the relationship between LSL and rainfall. The results show that there are 8% Type-I errors
(false positives) in the linear regression analysis, and 1% Type-II errors (false negatives)
in the nonlinear regression analysis. With the comparison of statistical indicators, the
trend line of nonlinear regression analysis shows better predictive power. Considering the
response time required for the early warning operation, it is suggested that the nonlinear
lower boundary line can be used as the evacuation and refuge management value. Com-
bined with the numerical rainfall forecast of 3 to 6 h, it can be applied to the evacuation
and refuge operations of LSLs.

LSL is not common, but always causes serious impacts. In this study, although a
reasonable model for Taiwan was successfully established through limited data, it does
not mean that it can be directly applied to other regions. In order to make this model more
widely used, testing through foreign cases and expanding the factors considered, such as:
geological type, slope aspect, water content, land use, NDVI, time error effect, etc., would
be the future topics for further understanding and applications of LSL-related issues.
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Abstract: In mountain areas, anthropic pressure is growing while, concurrently, landslide frequency
in most of the mountain regions of the world is increasing due to a more extreme precipitation pattern
and permafrost deglaciation. Because of budget constraints, the need to investigate innovative and
low-cost countermeasures for landslide risk is becoming more and more pressing. In this context,
the Passo della Morte area (North-East Italy) is a perfect benchmark case. It comprises an extensive,
long-term database of monitoring data that allows for testing hypotheses and validating them.
Based on this data, a strong correlation between the velocity of a displacement of a landslide and
the discharge of the Rio Verde stream was found. According to this evidence, local authorities
have started the construction of a completely innovative mitigation strategy. It is focused on the
triggering factor by identifying a significant component of the flow rate of the stream that cuts
through the landslide. In addition, aiming to reduce the cost of construction and maintenance, this
mitigation strategy is coupled with a micro-hydropower plant that can provide economic revenue
by exploiting the discharge itself to produce electricity. Considering the active monitoring system
that will be used to verify the effectiveness of the countermeasure, the Passo della Morte case study
could become a starting point for implementing this pioneering and low-cost mitigation solution in
similar morphologies.

Keywords: landslide mitigation; monitoring; micro-hydro plant; costs reduction; gray-box model

1. Introduction

Structural mitigation of landslides was an expenditure item on which there was
substantial investment in the 20th century, especially in associated high-risk areas such
as in Europe, North America, and Far East Asia [1]. However, many of these structures
are now increasingly old and damaged, significantly decreasing their capability to reduce
risk. In Japan, for example, within 20 years, 60% of the Sabo facilities will exceed 50 years
of age [2]. The major concern about the deterioration of these structures is that this will
result in a potential risk even higher than the one prior to the implementation of the
countermeasure, such as the Barlin dam (Taiwan) failure in August 2007 that caused the
sudden release of over 7.5 Mm3 of stored sediment [3,4].

Three elements must be considered when facing the optimization problem regarding
maintenance and/or replacement of old countermeasure works. First, risk aversion and
risk tolerance are changing in several countries globally [5]. Secondly, global population
growth is pushing people to expand the road network. As a result, the urbanized areas
in new locations may not be as safe as the historically built ones, especially near active
debris flow and debris flood fans in mountain areas [6]. At the same time, the population is
becoming older, which means that more and more people require assistance during rapid
evacuations. Consequently, the probability of landslides causing disasters and fatalities
is increasing since it is also increasing (and changing) the number and types of exposed
elements [7,8]. Thirdly, the modification of the precipitation patterns that most scientists
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attribute to climate change has a significant impact on the type and frequency of floods
and landslide events [9], and that should be taken into account in the assessment of the
efficacy of structural mitigation works that have been designed 50 years ago considering a
different climate.

An excellent example of this is well illustrated in the research of Junichi and Naoki
2020 [10] about the Japan situation. According to the study, over the last 20 years, landslide
processes caused 678 human fatalities in Japan, encompassing 21% of the total deaths
due to natural disasters (excluding the Great East Japan Earthquake of 2011), and the
most impacted age class is the elderly. Moreover, between 2000 and 2019, the number of
landslides increased due to heavy rains and extreme events.

In this framework, it is evident that new countermeasure structures, reinforcements,
and continuous maintenance of the old ones are needed. However, before that, each country
would have to convert landslide damage into economic terms to evaluate the potential
budget that would allow paying for all these works [11,12]. Further, some nations assign
jurisdiction and responsibility for risk reduction control measures to local authorities, such
as regions or even municipalities; in this case, the overall costs of all the required mitigation
actions percolate through different institutions and are challenging to assess. One crucial
example is Italy. In fact, despite the presence in its territory of two of the most important
mountain ranges in Europe, rarely are the costs associated with countermeasure works for
landslide stability taken into account by national or regional authorities.

Consequently, mountain municipalities and local communities must assume the criti-
cal economic burden of financing infrastructures designed to reduce landslide risk [13,14].
However, the annual cost that those small municipalities can bear is often minimal. There-
fore, when faced with the issues of funding kindergartens or landslides’ countermeasures,
the choice is evident and understandably the first. Moreover, in addition to degradation and
sediment deposition in mitigation structures, which requires continuous use of economic
resources for maintenance, local communities are often against extensive stabilization
intervention that would lead to the appropriation of some of their properties or significant
disturbance to the landscape [15].

A possible strategy to limit the impact on mitigation structures is acting on the trigger-
ing factors of the landslide process. Unfortunately, these are not always so easy to identify.
The other option is to produce very sophisticated geotechnical models of the landslide risk
to design countermeasure works [16]. However, these require a deep knowledge of the
geotechnical and geological characteristics, such as subsoil reconstruction, groundwater
regime, and rock/soil parameters burdened by high uncertainties. For this reason, numer-
ical simulations, despite their solid theoretical basis, are not always the best option for
producing a landslide model that is functional for mitigation.

On the other hand, careful analysis of an already present long-term series of recorded
monitoring datasets such as inclinometric measures, Global Navigation Satellite System
(GNSS) surveys, piezometers’ data, acoustic emissions, discharge rate, rainfall, and tem-
perature reports can lead to significant statistical testing for correlation between slope
movement and other variables [17–19]. If the link is statistically significant, then it can
be modeled using a gray-box approach [20]. The latter requires mainly identifying a cor-
relation between input and output with limited knowledge of the intrinsic process that
produces the relationship. Another critical aspect is that the monitoring period should be
long enough to catch a few high-intensity events to record the duration and magnitude
of a landslide occurrence under these circumstances. This not only reduces the time and
cost of modeling but also increases its reliability and predictive value as it is based on
actual signals provided by the investigated landslides without introducing uncertainties
regarding the rheological property of the landslide mass [21,22]. In addition, acting on the
triggering factors rather than barring a landslide through steel and concrete deployment is
generally cheaper [23,24].

Since water is one of the main triggering factors for landslides in the various forms of
rainfall, snowmelt, groundwater, or surface runoff, water sequestration is usually one of
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the most successful forms of “soft countermeasure” [25–27]. Given that landslides occur on
steep mountain slopes, it is not so futuristic to think about using the potential energy of
water runoff and velocity to produce power employing micro-hydropower plants. This
has the potential to encourage municipalities to implement this mitigation strategy as it
may become self-paying or, in some contexts, even profitable. This approach will be more
and more feasible in the forthcoming future as research into and investments for designing
efficient micro-hydro power plants are booming [28].

The case study presented here is an example of this approach. The area is located in
the upper Tagliamento Valley, where a main national road crosses through it. A medium-
size landslide monitored for more than a decade intercepts the latter. However, despite
the considerable risk of a paroxysmal event that would hinder the road’s usability, thus
causing major disruption in the life of the valley inhabitants, only monitoring actions have
been implemented since the Spring of 2022. This was due to the lack of resources of the
municipality and jurisdictional disputes between the national and local authorities. In this
context, we proposed a new mitigation strategy in 2019. It consists of pulling out the water
that flows above and within the slope and funneling it away from the landslide to reduce
the landslide’s movement.

Additionally, the water would not be directly returned to the Rio Verde downstream
of the landslide. Thus, the ultimate plan calls for exploiting the available 130 m vertical
drop to produce power by installing a micro hydropower plant. This solution would
provide a long-term financial return that would pay for the stabilization costs, offer funds
for maintenance, and possibly economic revenue.

2. Study Area

A large sector of the Eastern Alps falls within the borders of the Friuli Venezia Giulia
region in North-East Italy. The morphology generated by these high reliefs and tectonics
favors the existence of numerous areas with an associated high risk of landslides [29,30].
Additionally, the abundance of evaporites causes the formation of sinkholes [31].

The most dominant hydrologic element in the region is the Tagliamento river. Its
course is 178 km long with a basin of 2916 km2 [32]. Part of its mountain path in the Eastern
Alps is closely linked to the Tagliamento fault’s presence [33]. This relation originated in a
45 km E–W oriented valley traversed by a major national road called the SS52 “Carnica”
that connects the upper plains of the Friuli Venezia Giulia Region with the industrial areas
of the Cadore (Veneto Region).

The road is located in an area with confined morphology and high relief potential energy.
Widespread landslides, such as rockfalls, slides, and snow avalanches, are frequent [34,35].

One of the most hazardous segments of the road is located on the left flank of the upper
Tagliamento valley between Ampezzo and Forni di Sotto municipalities. It is called Passo
della Morte (46.396 N, 12.715 E) (Figure 1). In this tortuous tract, the avalanche and rockfall
relative risk was so high that the construction of a bypass tunnel was needed. The works
started in 1994, and finally opened in 2008. In fact, in 1996, during the construction, an
extreme precipitation event disrupted part of the infrastructure. The extreme rainfall event
allowed the discovery of two major slow slope movements, causing incapacitating road
infrastructure problems. The first is a 24 × 106 m3 slow-moving landslide called “Frana
3” [36]. Frana 3 intercepts the road’s tunnel 300 m from the eastern entrance and in 1996,
caused the collapse of the tunnel in this segment [37]. The same portal and 200 m of the
SS52 were affected by another 2.1 × 106 m3 slope movement called “Frana 1-2” [38]. The
latter comprises two different rotational landslide bodies in the upper part that converge in
the toe with a translational behavior.
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Frana 1-2 is cut across by the Rio Verde torrent. This same stream crosses the new
and old national roads below a concrete box culvert. The retaining walls along the SS52
and the road pavement suffer continuous damage due to unremitting movements of heart-
shaped landslide. To mitigate the slope movements of both the Frana 3 and the Frana
1-2, a drainage tunnel was drilled underneath the road tunnel in 2007. Despite that, this
remediation strategy proved insufficient for a complete solution to the problem.

2.1. Hydrological Context

The Rio Verde basin covers an area of approximately 2 km2 from 2122 m a.s.l. of Mt.
Tinisa to the Tagliamento River at 578 m a.s.l. The upper part of the basin lies over the
tectonized dolomitic limestone of the Monte Tiarfin Formation, which is affected by karst
phenomena. In a different way, the lower domain is characterized by colluvium and back
scarp deposit of Frana 3 consisting of dolomitic boulders. The runoff coming from the
upper part of the basin, except for extremely intense rainfall events, is completely infiltrated
into the groundwater circulation of the right bank of the Rio Verde and almost does not
participate in the water discharge of the lower part of the torrent [39]. In fact, the flow
rate of the stream is mainly sustained by the water flowing from the springs located north
of Frana 1-2. The stream guarantees an average “dry base flow” of 40 L/s related to the
deep groundwater circulations, with long residence times set in the dolomitic limestone on
the hydrographic western area of the Rio Verde Torrent [40]. This dry baseflow represents
an emergency source of water for the aqueduct of the nearby village of Ampezzo, when
other sources of freshwater fail to provide enough discharge during arid summers. During
extreme rainy events, the discharge from the springs can increase substantially, thanks to
the rapid infiltration into the high-permeability debris at the base of the Tinisa massif [20].
The geological context thus induces the water table to stay shallow near the contact between
the clay and silty shales and the colluvium until the scarp of Frana 1-2 (Figure 1). Then,
all the groundwater that did not manage to surface through the springs and reach the
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Rio Verde, is again rapidly infiltrated into the conglomerates forming the landslide and
then dispersed.

2.2. The Vaia Storm (2018) and Other Intense Meteorological Events

The Vaia storm was an extreme meteorological event that affected the Italian Northeast
from 26 to 30 October 2018. The event originated following a perturbation of Atlantic origin.
In the context of a strong wave of bad weather over Italy (also affecting the neighboring
regions of Switzerland, Austria, and Slovenia), it brought strong winds and persistent,
intense rainfall in the region, inducing floods and landslides. At the same time, the wind,
blowing between 100 and 200 km/h for several hours, caused the felling of millions of
trees, with the consequent destruction of tens of thousands of hectares of alpine coniferous
forests. Several peripheral valleys were isolated due to road blocks caused by fallen trees
or landslides, and the electric grid was out of operation for days. Vaia was a large-scale
multi-hazard natural disaster in the Veneto and Friuli Venezia Giulia mountain areas.

In the Passo della Morte area, the Vaia storm brought a cumulated rainfall of 800 mm,
almost 700 mm in the initial three days. Vaia was a hot windstorm, so all the precipitation
in the first days was in the form of rain, even at 2000 m above sea level (Figure 2). To
provide a reference measure, this area’s average yearly accumulated rainfall amount is
around 1700 mm.
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In November 2019, another extreme event hit the Carnian Alps with an accumulated
rainfall amount of 908 mm within a week in Passo della Morte. The event was intense;
the peak daily accumulated rainfall was 250 mm on 17 November but lasted longer with
constant and unremitting precipitation amount for days that were, however, in the form of
snow above 1500 m a.s.l.

These two events induced significant disruption in the study area and are presented
here since they are essential to interpret the 2018–2019 data and in understanding the
following analysis and results.

2.3. Societal Background

As mentioned, the landslides in the Passo della Morte are constantly moving and
damaging the road infrastructure [37]. The Italian National Road Authority (ANAS)
manages the new tunnel’s damage and associated risk. On the other hand, the jurisdiction
is disputed over the 200 m of the road before the eastern entrance of the tunnel. In fact,
several institutions could take charge of the slope’s stabilization. Among them, the Civil
Protection of Friuli Venezia Giulia decided to act based on the monitoring data, given the
high societal risk linked to the possibility of the failure of the only road serving the valley.
In case of road disruptions, the logistical impact would be severe, with traffic detours
through another valley and, consequently, damaging the local economy (the extra travel
time for the local commuters might reach two hours).
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The municipality of Forni di Sotto is also the most invested in resolving the problem.
However, the municipality of Forni di Sotto is small (less than 600 inhabitants); conse-
quently, the funds to finance a big slope stabilization plan are difficult to gather. On the
other hand, the Civil Protection of the Friuli Venezia Giulia region can act and finance
simple, environmentally friendly, and “light” solutions, but in any case, the municipality
would be in charge of the maintenance of any countermeasure.

In this framework, the National Research Council of Italy (CNR-IRPI) has been con-
sulted to design a low-cost, low-impact remediation strategy that would at least mitigate,
if not stop, the movements of Frana 1-2. This was completed based on a long-lasting
monitoring campaign and several modeling tests.

3. Materials and Methods
Monitoring Network

The landslides in Passo della Morte have been monitored since 2002. One of the
primary purposes was to control the slope’s movement and characterize the kinematics
of each landslide in the area. In addition„ through the continuous maintenance of the
monitoring network, it is possible to assess, now and in the future, the effectiveness of each
countermeasure and provide data on which to design additional mitigation strategies.

A complex system was deployed over 20 years of monitoring (Figure 3). It consists of
inclinometers (periodic and in-place, IPI), Periodical Global Navigation Satellite System
(GNSS) surveys, piezometers, a rain gauge, and temperature sensors [16,30]. The IPI series
namely I21 (I21, I21bis, I21ter, I21quater), PC1 (PC1, PC1bis, PC1ter) and I15 (I15, I15bis)
have been deployed along the slip surfaces and each time backed up with another one
drilled nearby after a couple of years in order to follow the evolution of the landslides for
several years and obtain a large, continuous dataset. The location of the IPI series along
the landslide cross sections can be seen in Figure 4. In addition, a fundamental element
joined the monitoring network in 2012: a sharp-crested thin-plate weir that can measure
the water flow rate of the Rio Verde torrent. The weir was deployed in a regular 6 × 5 m
concrete culvert that acts as a bridge for the National Road over the stream (Figure 5). The
rating curve for the measuring station was assessed through periodic measurements with
different flow rates and then interpolated using simple hydraulic equations considering
the free fall setting of the streamflow.

For Frana 1-2, 18 inclinometers have been installed since 2002. In addition, for three
locations considered of higher interest, a backup borehole was drilled nearby every 3–4 years
to be able to follow continuously the movements of the landslides through IPI (In-Place
Inclinometers), minimizing the gaps of measurements in the database and consequently
gaining a complete and large dataset that covers several years. This series of inclinometers,
namely I21, PC1, and I15, are still active today and have been recording since August 2010 [20].

The information collected through GNSS provided quantitative data about the surface
movement of Frana 1-2. These measurements revealed an average annual displacement
more significant on the Frana 1 side compared to the Frana 2 side. Benchmark PM18 and
PM22 have recorded values of 4.2 cm/year and 3.7 cm/year, respectively. On the other
hand, PM21 shows a 1.2 cm/year rate of movement.

Lastly, but most importantly, in 15 years of continuous monitoring in all piezometers
installed in Frana 1-2 located along the main road or below the road, the water table location
was way below the slip surface.
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4. Gray Box Modelling

In 2019, Bossi and Marcato [20] presented a gray-box model that could reproduce
the velocity of displacement recorded in IPI I21Ter in function of the discharge of the Rio
Verde torrent. The data presented in the paper stopped on 15 July, 2018. Of course, the
system continued recording, and until the Vaia storm (end of October 2018), the correlation
between the modeled velocities and the actual recorded ones produced a high fit to the
model (R2 = 0.82).

During the Vaia Storm, the peak discharge rate of the Rio Verde reached about
1000 L/s; we cannot be sure of the actual peak discharge of the flow since it was not
confined in the small adit of the measuring section, and in this condition our rating curve
becomes imprecise. For the 2019 event, the estimated peak discharge was about 700 L/s.
The lower discharge of the 2019 event is linked with the temperature regime that caused
snow precipitation above 1300 m a.s.l. (Figure 6).
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During the Vaia Storm, Frana 1-2 and Frana 3 landslides showed a marked peak
acceleration never observed before in more than 12 years of continuous monitoring. It also
caused damage to the emergency aqueduct due to the sudden displacement of Frana 1-2.

After Vaia, we also observed a marked change in the baseline velocity of inclinometer
I21Ter (Figure 7) linked to the storm’s effect that increased the landslide’s overall mobility.

Therefore, a new equation to model the velocity change in the Rio Verde discharge
was developed:

0.000095Q5g + 0.001 = V10g

where (Q5g) is the average flow calculated over the previous 5 days; V10g is the average
velocity calculated over 10 days. The fit is linear as before [20] and produces a coefficient of
determination (R2 = 0.86) that indicates a high fit of the data to the model, however, the
coefficients differ from the pre-event gray-box model. The base-velocity was estimated
based on the data from a dry period (from 1 March 2020 to 1 June 2020), when the discharge
was lower and optimized to reduce the systematic error that is the average of the residuals.
The new equation that fits the post-Vaia data can also reproduce the landslide dynamic
during the 2019 event (Figure 8). However, some data about the discharge needed to be
discarded (from 19 March 2019 to 1 August 2019) as there were reliability issues for the
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measurements since the sensor was experiencing problems with limescale and sediment
accumulation in the stilling basin. In July 2019, part of the accumulated sediment was
removed, and the sensor was cleaned and repaired. On 1 August 2019, the rating curve for
the discharge was re-tested and validated.
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These strong results, showing a long-term direct correlation between the Rio Verde
discharge and the displacements, convinced the local authorities (Protezione Civile Friuli
Venezia Giulia) to start the realization of remediation works based on the reduction in the
flow discharge in the Rio Verde stream.
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5. Implementation of the Risk Mitigation Strategy

A cost–benefit analysis was performed to decide the optimum value of discharge to be
extracted. The elements that were considered were: (1) the expected reduced displacements;
(2) the expected cost of the construction works; (3) the expected economic revenue from the
hydro plant; and (4) the environmental impact both in terms of bioenvironmental effects
on the stream and from the visual impact on the landscape.

If we calculate, for the period June 2018–January 2021, the expected displacement
considering sequestration of 100 L/s with the linear model, and we confront them with the
measured displacements, the decrease in the movements reaches about 70% (Figure 9). The
value of 100 L/s represents an optimum considering both the Rio Verde flow regime and
the possible countermeasures’ size.

The project calls for constructing two small (10 × 2 m) transversal sedimentation/intake
basins in the upper part of the slope (Figure 10). The need for sediment removal is not
so crucial during dry periods when the spring water component is prevalent, but it is
fundamental during extreme rainy events.
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The first tank will be placed on the Rio Verde upstream of the road bridge. Here,
the water from the natural springs above the road (except those serving the emergency
aqueduct) will be conveyed through sub-horizontal drains and little spillways. Then, with
a pipe, the water will reach the second intake basin, placed downstream of the bridge,
where all the discharge from the drainage network of the road tunnel will be collected
along with the water from lower springs. Funneling the water below the bridge through a
pipe is necessary due to large cracks in the culvert below the bridge that could cause water
loss through infiltration.

A 900 m long HDPE (High-Density Polyethylene) penstock is currently under con-
struction. It will gather the discharge to the Tagliamento river at an altitude of 590 m a.s.l.
The total cost of these works for the Friuli Venezia Giulia Civil Protection will be around
800,000 EUR.
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6. Discussion Regarding Costs and Self-Sustainability

As emphasized in the introduction, it is essential to consider economic revenue for
the municipalities to incentivize them to implement mitigation strategies and maintain
the countermeasure works. That is why, in this study, the integration of the remediation
system with a micro-hydro plant has been proposed. In Italy, the latter (5 kW to 100 kW)
is subsidized on a national basis, giving 0.22 EUR/kWh. Consequently, for the Forni di
Sotto municipality, the micro-hydro plant option is an excellent solution for exploiting
the discharge of the Rio Verde stream by producing electric power and selling it to the
national network.

For the hydroelectric exploitation of the system, the horizontal axis Pelton turbine is
optimal, considering the available 130 m drop and low average flow rates of the torrent. The
turbine should be integrated with a three-phase asynchronous generator with a rated power
of 100 kW. This generator is cheaper and requires less maintenance than a synchronous
generator of the same deliverable power. Additionally, considering the quality of the water
entering the hydro plant, which is very poor in terms of the level of sediments, it is believed
that the conservation of the turbine will be excellent. This power plant will be located over
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an old fluvial terrace of the Tagliamento river (603 m a.s.l.). The position is isolated and
not subject to landslides or erosion. This will reduce the landscape impact and the risk of
damage. In addition, the building will be more than 10 m above the active course of the
Tagliamento river to avoid any chance of damage by the river’s floods. To further mitigate
the impact on the landscape, the penstock will be buried in the soft colluvium present in
the area which is easy to excavate.

The minimum predicted discharge of water funneled into the plant would be around
15 L/s, while the maximum will be 100 L/s with an estimated average of 45 L/s. Con-
sidering the 130 m drop, an average nominal power at 58.27 kW has been calculated: the
yearly mean production will be 378,000 kWh. This will allow the municipality of Forni
di Sotto a profit of 65,745 EUR every year, considering a selling price of 219 EUR/MWh,
while the total cost of the hydro-plant will be around 300,000 EUR. As shown in Table 1,
this relevant financial intake will pay for the power plant in less than five years. After that,
the additional profit will finance the maintenance of the mitigation strategy of Frana 1-2
and probably provide economic income for the municipality.

Table 1. Cost and benefit of micro-hydro power plant implementation.

Cost Expected Revenue

1 year 300,000 EUR 65,745 EUR

5 years 328,725 EUR

20 years maintenance 1,314,900 EUR

Given the relatively low cost of the operation and the possibility of revenue, the local
authorities deemed the project worthy of a try. During several meetings the expected
output, and the unlikely possibility that the project as it is would not work, were presented.
What was crucial from the general risk assessment point of view was the fact that it would
be simple to reinstate the fluvial system and the landslide area to its original condition
if the expected reduction in displacement targets were not met. Moreover, it would be,
in any event, a much easier option than with other structural mitigation works that were
considered over the years [41]. Lastly, the project would not interfere with secondary
structural mitigation solutions implemented in a stepwise manner if in the future the target
would be stopping the landslide altogether rather than reducing its displacements. Actually,
it would have decreased for some time the stresses within the slope, thus allowing smaller
“bolts and nails” countermeasures.

The Civil Protection of Friuli Venezia Giulia was so involved in this project that it also
financed an additional monitoring campaign consisting of two permanent GNSS stations
deployed on the Frana 1-2 landslide. In this way, the reduction in the superficial movements
will be assessed with a state of the art technology.

7. Conclusions

A constant flow of money is needed to maintain old landslide mitigation structures and
build new ones, given the increasingly risk-averse attitudes from the exposed population.
This leads to developing countermeasures that are easier to restore and less expensive.

Most of the time, when dealing with small-to-medium landslides, the usual pipeline
followed by engineering geologists is to reduce the monitoring phase to a minimum
(due to time and budget constraints), test some soil samples, develop a geotechnical
model of the landslide based on laboratory results and on this model design the structural
countermeasure works. Unfortunately, due to the high uncertainties linked with this
process, the countermeasures are usually over-dimensioned and thus overpriced [42].

Acting on the triggering factor, when possible, is way more focused and surgical.
However, the monitoring activity needs to be pursued in more extended periods than usual
and with several different instruments for robustness. While the time factor is in itself a
cost, we cannot forget that these slow-moving landslides are usually chronic phenomena
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that are, in any case, bureaucratically taking a long time to pass through all the phases
from the identification to the actual mitigation. Moreover, from the mere actual cost point
of view, the cost of a well-designed monitoring network is a tiny fraction of the cost of a
classic “walls and nails” mitigation structure.

Thanks to long-term monitoring data in Passo della Morte, a strong correlation and
model fit between the velocity of the displacement of Frana 1-2 and the discharge of the Rio
Verde stream was found. The gray-box model presented by Bossi 2019 [20] was validated by
the data gathered in the months after publication until the Vaia storm. Then, the landslide
dynamic changed, showing an increase in the baseline displacements. In any case, even
this new behavior is still strongly linearly correlated with the water discharge in the Rio
Verde torrent, as previously stated.

Considering this result, local authorities have started constructing a series of tanks
and penstocks to redirect the majority of the stream’s discharge. The cost of this type
of mitigation action for the Civil Protection is around 800,000 EUR. With an additional
300,000 EUR from the municipality of Forni di Sotto, this solution could be associated
with a micro-hydropower plant that has the potential to payback its cost in five years. The
future profits will guarantee the maintenance of the mitigation system itself and probably
some economic income for the municipality. Moreover, this kind of countermeasure would
drastically reduce the visual impact on the landscape compared to extensive engineering
slope stabilization or large Sabo works.

Another advantage of this type of design is that it is scalable. The monitoring system
will be maintained and enhanced with a permanent GNSS receiver along with the tanks and
penstocks. This will allow for the precise quantification of the displacements, confronting
them with the estimate from the gray-box model, and checking to see if the reduction in
movements is in line with what was expected. In this case, the Passo del Morte case study
serves as a benchmark for implementing this type of low-cost remediation solution.
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Abstract: Non-structural measures, including relocation from a hazard zone, land development
regulations, and evacuation, are important sediment-related countermeasures. Such measures depend
on the behaviour of residents and are affected by socio-economic conditions. In Japan, the declining
birth rate and ageing population are expected to result in rapid changes in socio-economic conditions;
accordingly, there is a need to evaluate the impact of such changes. However, there is no established
methodology for the establishment of non-structural measures that considers the socio-economic
conditions of all areas. Therefore, this study analysed the regional characteristics of disaster-affected
areas with high numbers of casualties to elucidate the impact of socio-economic conditions. The
results imply that severe losses occurred under various topographical and socio-economic conditions,
such as in urban areas with high population densities and in mountainous areas with increasing
depopulation. More data are needed, especially regarding socio-economic conditions. Importantly,
the community-based analytical method used in this study enables a comparative analysis of disasters
in different regions at different times.

Keywords: sediment-related disaster; non-structural measurement; socio-economic conditions; hu-
man loss; community-based analysis

1. Introduction

More than 1000 sediment-related disasters occur annually in Japan; they occur in
both urban and mountainous areas under different socio-economic conditions, and their
causes differ among areas. Sediment-related disasters in this context are disasters that
cause direct damage to human lives and houses as a result of sediment movement, and are
broadly classified as debris flows, slope failures and landslides [1]. Because Japan is a moun-
tainous and densely populated country, many areas are vulnerable to sediment-related
hazards. Despite ongoing preventive structural measures being undertaken annually, many
sediment-related casualties occur. Therefore, the importance of non-structural measures,
such as land development regulations and evacuation warnings, is regaining attention.
However, these measures require the cooperation of residents, and it is important to
consider socio-economic factors and to select appropriate measures for both urban and
mountainous areas.

According to the FY2020 White Paper on Forest and Forestry [2], mountain villages,
most of which are located in mid-mountainous areas (mountainous areas on the outer edges
of plains), experienced a significant outflow of population, particularly of young people,
during the recent period of rapid economic growth in Japan (ca. the 1960s). Additionally,
depopulation and ageing are rapidly progressing. The report also indicated that many
villages face problems, such as fewer households, a large proportion of older residents,
difficulties in maintaining village functions, the potential for village disappearance, and an
absence of newcomers. These problems are worse in mountain villages than in flatlands or
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mid-mountainous areas. Furthermore, Karasaki [3] described a situation in which social
changes (e.g., agricultural decline, depopulation, and widespread ageing) are causing the
ties between local community members to fade; thus, the nature of local communities is
changing. Such changes threaten livelihoods, particularly in mid-mountainous areas.

Kanai [4] focused on sediment-related disasters in urban areas, in a study that traced
the relationship between the conditions of residential land and major sediment-related
disasters from the Meiji period (1868–1912) to the collapse of the bubble economy. He
concluded that post-war housing policies that prioritised single-family homes, combined
with urban planning that prioritised the economy, led to residential land development
that drastically changed the topography. After the collapse of the bubble economy, the
number of housing starts declined, and the housing industry was restructured. These
changes resulted in the emergence of a business model in which large numbers of houses
with land were built for sale at low prices. A related issue is the inappropriate disposal
of construction soil. Although this was a problem during the period of rapid economic
growth and in construction related to the 1964 Tokyo Olympics, there was no shortage of
locations to dispose of the soil because of strong demand for soil and sand as aggregate for
coastal reclamation, road construction, and building construction. However, during the
1990s, a period of low economic growth, the need for dumping sites increased, resulting in
mountainous areas being chosen for the disposal of construction soil. This situation resulted
in disaster-prevention structures that were established under conventional socio-economic
conditions no longer functioning because of the changes in the socio-economic conditions,
which led to sediment-related disasters.

Differences in socio-economic conditions among regions are also affected by the
intensification of disasters due to climate change and population decline; these factors are
relevant to the nature of future sediment-related disaster countermeasures. However, to
date, research has not sufficiently considered socio-economic conditions and the causes of
sediment-related disasters. Therefore, this study analysed the socio-economic conditions of
major sediment-related disaster sites where casualties occurred, considering the relationship
between the occurrence of casualties and socio-economic conditions. It provides key
information for the assessment of sediment-related disaster countermeasures in the context
of socio-economic conditions.

2. Literature Review of Human Suffering Caused by Sediment-Related Disasters

In one case, the mortality rate from sediment-related disasters was higher among
people in their 40s and 50s than among older adults. This can be explained by social
norms that influenced the living spaces of different age groups using the data from 38
cases occurring between 1881 and 2019 [5]. Additionally, Jason [6] reported that disaster
preparedness was negatively associated with renter status, although the reasons for this
were unclear. Socio-economic conditions can affect loss of life as a result of sediment-related
disasters. Václav et al. [7] demonstrated that the memory and experience of past disasters in
a community affect where people live, indicating that by reducing the number of residents
in sediment-disaster-related areas, past disasters have a significant socio-economic impact
on subsequent losses from sediment-related disasters.

In terms of non-structural measures based on the Sediment-related Disaster Prevention
Act (enacted in 2001), 41% of respondents to a survey that covered 47 prefectures (up to
three items selected; percentage of total points when first, second, and third choice scored
3, 2, and 1 points, respectively; same below) indicated ‘concern about a decrease in land
prices’ as the reason why residents opposed the designation of areas based on the Sediment-
related Disaster Prevention Act. The top responses were ‘dissatisfaction with structural
restrictions on building’ (25%) and ‘dissatisfaction with the lack of implementation of
structural measures, if designated’ (17%) [8]. These results imply that the designation
of areas and the development of controls and structural regulations under the Sediment-
related Disaster Prevention Law are affected by the possibility of land sales (e.g., the degree
of population increase or decrease), the type of homeownership (e.g., owner-occupied or
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rental housing), and conditions that affect the implementation of structural measures (e.g.,
financial status of government agencies and population size).

Of these, population size and the rate of increase or decrease are among the socio-
economic conditions that require the most attention. In the previous section, we discussed
the population declines in agricultural and mountain villages as a socio-economic condi-
tion that influences sediment-related-disaster countermeasures. In some villages, ageing
residents cannot drive and have problems moving to evacuation centres [9]. In addition,
population size can affect the ability to provide assistance: if the number of residents in a
village with a declining population decreases further because of a sediment-related disaster,
assistance becomes more difficult, thus increasing the risk of a disaster and potentially
producing a vicious cycle.

The initial budget for erosion-control projects declined continuously from 1972 to
2006, with a peak decline in 1998 [10]. Since then, the rate of increase or decrease has been
approximately 1.0 [11]. Data from 27 prefectures show that, from FY2009 to FY2013, the cost
of non-structural measures was less than 10% of that of structural measures annually [12].
Thus, each prefecture primarily promoted structural measures, while providing less fi-
nancial support to non-structural measures. In addition, considering the large number
of designated zones, it would be difficult to allocate sufficient financial resources toward
explaining the conditions in each zone. Therefore, the financial situations of municipalities
located closest to residents at risk and responsible for building-evacuation precautions
under the Sediment-related Disaster Prevention Law may directly affect the human loss
resulting from a lack of sediment-related disaster countermeasures. Mizuyama [13] de-
scribed the need for a cost–benefit analysis of evacuation alerts and provided a discussion
of the costs of gathering information and recommending evacuation, the cost of providing
food at evacuation sites, and other expenses to support evacuation. It has been estimated
that the financial and human resources of municipalities that conduct such activities affect
human loss.

In this study, we presumed that socio-economic conditions (e.g., the population size
and its increase or decrease, the financial status of administrative agencies, and the type
of home ownership) were related to the occurrence of casualties resulting from sediment-
related disasters. We analysed these and other conditions at disaster sites.

3. Method

In our study, we selected study areas based on the magnitude of human loss resulting
from sediment-related disasters. A characteristic of sediment-related disasters, as distinct
from other natural disasters, is that the forces generated by water and rocks are extremely
large and have considerable potential to impact people’s lives. In addition to its significant
effect of further decreasing resident numbers in mountainous areas with continuing popu-
lation decline, loss of life is an important indicator that can both maintain the memory of
disasters and aid in the implementation of disaster-prevention activities.

We collected study cases from the annual reports of major sediment-related disasters
listed by the Erosion Control Department of the Ministry of Land, Infrastructure, Transport
and Tourism, Japan, from 2004 to August 2021 [14]. All study cases were defined as
community units, smaller than municipalities. The cases selected included fatalities or
missing persons. We supplemented these cases with reports from national or prefectural
verification committees and academic papers related to disasters. Based on these results,
28 cases with ≥5 people missing or dead per location were included (Table 1, Figure 1). In
Table 1, the term ‘meteorological phenomenon’ is based on the definition provided by the
Japan Meteorological Agency [15]. The term ‘agricultural community’ is based on units
from the agricultural census [16].

382



Water 2022, 14, 2408

Table 1. Study areas where losses occurred between 2004 and 2011.

Years Natural Phenomena Prefecture Agricultural Community
(Study Area)

2004
TY Meari (0421) Mie Takiya

TY Tokage (0423) Okayama Uno

2006 Heavy rain of July 2006 Nagano Hanaoka

2008 The Iwate-Miyagi Nairiku
Earthquake in 2008 Miyagi Koei

2009 Heavy rain in
Chugoku-Kyushu of July 2009 Yamaguchi Nango

2011

The 2011 off the Pacific coast of
Tohoku Earthquake Fukushima Iizawa

STS Talas (1112)
Wakayama

Ichinono
Iseki-1

Nagano-6

Nara
Ui

Nojiri

2012 Heavy rain in Kyushu of
July 2012 Kumamoto Fukuoka

2013
Heavy rain of August 2013 Akita Sendatsu

TY WIPHA (1326) Tokyo Motomachi

2014 Heavy rain of August 2014 Hiroshima

Yashiki
Kobara

Kamirakuchi
Muroya

2016 The 2016 Kumamoto
Earthquake Kumamoto Kurokawa

2017
Heavy rain in Kyushu of

July 2017 Fukuoka
Ishizume

Tachi

2018

– Ooita Kajigaharu-yukihiro

Heavy rain of July, 2018 Hiroshima

Kawasumi
Tenjin

Oonishi
Koyaura

Hokkaido Eastern Iburi
Earthquake, 2018 Hokkaido Yoshino

2021 Heavy rain of July 2021 Shizuoka Kidani

The disaster phenomena included in the 28 cases were 13 cases of debris flow (reported
in terms of the agricultural community names: Sendatsu, Motomachi, Hanaoka, Ui, Ichi-
nono, Iseki-1, Uno, Muroya, Kamirakuchi, Ohara, Yashiki, Nango, and Fukuoka), 3 cases
of landslides (Iizawa, Nagano-6, and Kurokawa), 2 cases of slope failure (Yoshino, and
Kajigaharu-yukihiro), and 10 unknown cases (3 cases described as ‘debris flow and other’:
Kidani, Kawasumi, and Koyaura; 5 cases without a description of the disaster in the annual
reports: Kouei, Tenjin, Onishi, Tachi, and Ishizume, and 2 cases without a description of the
disaster phenomenon: Takiya and Nojiri). The most common disaster among these cases
was a debris flow that damaged a wide area.

Published data were collected to elucidate the characteristics of the ‘place’ and ‘people’
in the study area affected by the targeted sediment-related disaster, including conditions
that affected losses during the sediment-related disaster. We used the agricultural com-
munity unit as the unit of the study area. According to the Census of Agriculture and
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Forestry [17], an agricultural community is ‘a community based on agriculture in part
of a municipal area,’ and ‘specifically, a production community closely connected to the
maintenance and management of agricultural roads and water facilities, common forests,
marriage, funerals, and other aspects of life. In addition, an agricultural community func-
tions as a unit of self-governance and administration’. As such, an agricultural community
is considered similar to the unit used in normal times and in times of disaster. However, the
sub-regional units from the census [18] were used in cases where data were not organised
into units of agricultural community.

Water 2022, 14, x  5 of 16 
 

 

maintenance and management of agricultural roads and water facilities, common forests, 
marriage, funerals, and other aspects of life. In addition, an agricultural community func-
tions as a unit of self-governance and administration’. As such, an agricultural community 
is considered similar to the unit used in normal times and in times of disaster. However, 
the sub-regional units from the census [18] were used in cases where data were not organ-
ised into units of agricultural community. 

 
Figure 1. Location of study areas. (Partially edited from [19]). 

4. Results 
4.1. Topography, Geology, and Rainfall Conditions 

In this study, the topographical conditions of the study areas can be summarised as 
follows: average elevation of the centre and average slope of the centre [20], geology [21], 
and annual precipitation [22] (Table 2). 

None of the study areas had an average elevation <10 m above sea level; however, 
17.9% and 24.9% of the areas had an average elevation of 30–50 m or ≥200 m, respectively, 

while the corresponding national averages are 10.2% and 14.9%. Thus, although the af-
fected areas were generally higher in elevation compared to the nation as a whole, many 
areas were located at relatively low elevations of 30–50 m. No bias suggesting an impact 
on the amount of human harm could be identified. 

The average slopes of the central part of the areas were <5° for 11 (42.9%), 5–15° for 
16 (53.6%), and >15° for 1 (27.1°). The areas with an average central land slope of ≥5°, 

which constituted half of the settlements, are presumably located in areas with poor agri-
cultural production; accordingly, many of them tend to have low agricultural incomes 
and an ageing population. The average slope does not directly affect the number of human 
casualties, although it is necessary to consider the impact of social conditions as well. 

The geological classification of the sediment movement that caused damage to each 
area was established. The number of movements classified was larger than the number of 
target areas because two areas included two geological classifications. Based on the re-

Figure 1. Location of study areas. (Partially edited from [19]).

4. Results
4.1. Topography, Geology, and Rainfall Conditions

In this study, the topographical conditions of the study areas can be summarised as
follows: average elevation of the centre and average slope of the centre [20], geology [21],
and annual precipitation [22] (Table 2).

None of the study areas had an average elevation <10 m above sea level; however,
17.9% and 24.9% of the areas had an average elevation of 30–50 m or ≥200 m, respectively,
while the corresponding national averages are 10.2% and 14.9%. Thus, although the affected
areas were generally higher in elevation compared to the nation as a whole, many areas
were located at relatively low elevations of 30–50 m. No bias suggesting an impact on the
amount of human harm could be identified.

The average slopes of the central part of the areas were <5◦ for 11 (42.9%), 5–15◦ for 16
(53.6%), and >15◦ for 1 (27.1◦). The areas with an average central land slope of ≥5◦, which
constituted half of the settlements, are presumably located in areas with poor agricultural
production; accordingly, many of them tend to have low agricultural incomes and an ageing
population. The average slope does not directly affect the number of human casualties,
although it is necessary to consider the impact of social conditions as well.
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Table 2. Topography, geology, and rainfall conditions of the study areas.

Study Area Elevation
(m)

Slope
(◦) Geology Annual

Precipitation (mm)

Yoshino 33.4 3.6 Sedimentary rock 1028.4

Koei 578.5 7.4

Igneous rock

2124.9
Sendatsu 266.8 2.5 2354.1

Iizawa 366.1 4.5 1456.7
Motomachi 54.9 4.0 2858.9

Hanaoka 798.7 12.5 1301.5
Kidani 193.8 13.6 2012.7

Takiya 183.8 10.5 Accretionary wedge 3369.0

Ui 418.4 5.8 Sedimentary rock,
Accretionary wedge 2538.2

Nojiri 329.0 27.1 Accretionary wedge 2538.2

Nagano-6 219.6 7.8 Aedimentary rock,
Accretionary wedge 2581.3

Ichinono 72.6 8.8 Sedimentary rock 3784.7
Iseki-1 30.8 5.2 3332.9

Uno 11.1 4.4

Igneous rock

1038.5
Muroya 48.3 10.6 1678.3

Kamirakuchi 17.2 2.2 1678.3
Kobara 32.4 8.2 1678.3
Yashiki 14.0 3.1 1572.2
Tenjin 80.7 8.7 1572.2

Oonishi 27.9 6.6 1417.2
Kawasumi 227.4 1.4 1417.2
Koyaura 19.3 3.6 1417.2
Nango 44.9 3.5 1653.7
Tachi 103.6 8.0 1876.3

Ishidume 195.2 8.6 1876.3
Fukuoka 605.8 13.5 3009.6

Kurokawa 449.3 3.8 3009.6
Kajigaharu-yukihiro 217.0 11.3 1944.9

Average 201.4 7.5 — 2075.8
Note: Date sources: Elevation and Slope [20], Geology [21], Annual Precipitation [22].

The geological classification of the sediment movement that caused damage to each
area was established. The number of movements classified was larger than the number of
target areas because two areas included two geological classifications. Based on the results,
we classified the geological units into sedimentary rock, igneous rock, and accretionary
complexes; igneous rock constituted the largest proportion (70%), followed by sedimentary
rock (17%) and accretionary complexes (13%). Among igneous rock, granite was the most
common rock type, constituting 30% (nine sites) of the total, because of the large number of
disasters in Hiroshima Prefecture. The frequency of slope failures and debris flows caused
by heavy rainfall is once every 10–1000 years based on 34 reports of such events in Japan,
but the frequency is as high as once every 10–100 years for siliceous and granitic rocks
and as low as once every 1000 years for accretionary sedimentary rocks of the Mesozoic to
Paleozoic boundaries [23]. Therefore, the geological features of an area may lead to different
disaster experiences. It is possible that differences in the frequency of incidents due to
geology may also affect the number of human casualties, but this cannot be confirmed due
to the bias in the cases collected in this study.

We compiled annual rainfall data from the nearest rainfall stations for each area. Japan,
which is located on the eastern edge of monsoon Asia (one of the world’s rainiest regions),
receives an average annual precipitation of 1718 mm, which is approximately twice the
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global average (880 mm) [24]. Thus, half of the study areas generally receive rainfall above
the average for Japan, while the remaining areas receive below-average rainfall. Some
of the affected areas had experienced very high rainfall of as much as 3784.7 mm/year,
while others had low rainfall of 1301.5 mm/year (the lowest value excluding earthquake-
damaged areas). However, no direct relationship between the amount of rainfall and the
number of human casualties was observed.

4.2. Land Use

The land-use status of each area was summarised based on the agricultural area
classification [25] and changes in land-use status determined from aerial photographs [26].

• Type of agricultural area

The study areas were organised based on agricultural area type, which is one of the
main land-use categories. In accordance with the Ministry of Agriculture, Forestry and
Fisheries of Japan [27], agricultural areas were classified on the basis of the land-use charac-
teristics in each municipality. This classification is based on the conditions that define the
regional agricultural structure and is used as a fundamental consideration in analyses of
agricultural and forestry statistics, as well as in the promotion of agricultural policy. The
classification comprises the following categories: urban area, flat agricultural area, interme-
diate agricultural area between flat and mountain areas, and mountain agricultural area.
Comparison of agricultural area categories in the study areas and the nation as a whole [28]
revealed that none of the study areas was ‘flatland agricultural area’; the proportions of the
other categories (urban area, intermediate agricultural area, and mountain agricultural area)
were all higher in the study areas than nationwide (Figure 2). The ratio of the number of
fatalities in ‘urban areas’ in the study areas was lower than the ratio of population in Japan,
whereas the ratio in ‘intermediate agricultural areas’ and ‘mountainous agricultural areas’
was fourfold and sixfold higher, respectively (Figure 3). The ‘mountainous agricultural
areas’ have had the highest rate of population decline, with a consistent decline since 1970,
and had the highest ageing rate (38.5%) [28]. Sediment-related disasters occurred in various
areas, but the effects of loss of life were greater in mid-mountain areas and mountainous
areas than in urban areas.

Water 2022, 14, x  7 of 16 
 

 

twice the global average (880 mm) [24]. Thus, half of the study areas generally receive 
rainfall above the average for Japan, while the remaining areas receive below-average 
rainfall. Some of the affected areas had experienced very high rainfall of as much as 3784.7 
mm/year, while others had low rainfall of 1301.5 mm/year (the lowest value excluding 
earthquake-damaged areas). However, no direct relationship between the amount of rain-
fall and the number of human casualties was observed. 

4.2. Land Use 
The land-use status of each area was summarised based on the agricultural area clas-

sification [25] and changes in land-use status determined from aerial photographs [26]. 
• Type of agricultural area 

The study areas were organised based on agricultural area type, which is one of the 
main land-use categories. In accordance with the Ministry of Agriculture, Forestry and 
Fisheries of Japan [27], agricultural areas were classified on the basis of the land-use char-
acteristics in each municipality. This classification is based on the conditions that define 
the regional agricultural structure and is used as a fundamental consideration in analyses 
of agricultural and forestry statistics, as well as in the promotion of agricultural policy. 
The classification comprises the following categories: urban area, flat agricultural area, 
intermediate agricultural area between flat and mountain areas, and mountain agricul-
tural area. Comparison of agricultural area categories in the study areas and the nation as 
a whole [28] revealed that none of the study areas was ‘flatland agricultural area’; the 
proportions of the other categories (urban area, intermediate agricultural area, and moun-
tain agricultural area) were all higher in the study areas than nationwide (Figure 2). The 
ratio of the number of fatalities in ‘urban areas’ in the study areas was lower than the ratio 
of population in Japan, whereas the ratio in ‘intermediate agricultural areas’ and ‘moun-
tainous agricultural areas’ was fourfold and sixfold higher, respectively (Figure 3). The 
‘mountainous agricultural areas’ have had the highest rate of population decline, with a 
consistent decline since 1970, and had the highest ageing rate (38.5%) [28]. Sediment-re-
lated disasters occurred in various areas, but the effects of loss of life were greater in mid-
mountain areas and mountainous areas than in urban areas. 

As the distribution of the number of human casualties differs significantly from that of 
the population in each agricultural area category, it is expected that land use and living pat-
terns in each agricultural area category have an impact on the occurrence of human casualties. 

 

 
Figure 2. Proportions of the numbers of study areas and nationwide areas stratified according to 
agricultural area type. (Date sources: [25,28]). 

Figure 2. Proportions of the numbers of study areas and nationwide areas stratified according to
agricultural area type. (Date sources: [25,28]).

Water 2022, 14, x  8 of 16 
 

 

 
Figure 3. Proportion of casualties among the study areas and proportion of nationwide population, 
stratified according to agricultural area type. (Date sources: [14,25,28]). 

• Changes in land use 
Among the tertiary-mesh land-use data of the National Land-use Data, the oldest 

data (1976) were compared with the newest (2016). The average values of the mesh units 
comprising each set of data were as follows, in descending order: ‘building sites’, ‘forests’, 
‘saltwater areas’, ‘other sites (including golf courses)’, and ‘land for transportation’. The 
types of land that decreased were as follows, in descending order: ‘rice paddies’, ‘waste-
lands’, ‘other agricultural land’, ‘beaches’, and ‘river and lakes’ (Table 3). Based on the 
changes in the land-use classification of Japan [29] (Figure 4), ‘residential land’ and ‘roads’ 
have increased continuously during the same period, while ‘agricultural land’ has de-
creased continuously; ‘forests’ have increased and decreased at regular intervals. The 
study areas were unique in that ‘forests’ continuously increased in these areas. 

Table 3. Changes in land use (average of the study areas). 

Land Use Change of Study Area (m2) 
Building sites 44,555.6 

Forests 19,666.5 
Saltwater areas 16,740.4 

Other sites (including golf courses) 2299.1 
Land for transportation 1457.8 

River and lakes 1082.0 
Beaches −300.8 

Other agricultural land −7669.5 
Wastelands −27,168.8 

Rice paddies −30,706.3 
Note: Date source: [26]. 

 
Figure 4. Changes in Land Use Classification in Japan; the baseline value of 1963 was set as 1 (Date 
source: [29]). 

Figure 3. Proportion of casualties among the study areas and proportion of nationwide population,
stratified according to agricultural area type. (Date sources: [14,25,28]).

386



Water 2022, 14, 2408

As the distribution of the number of human casualties differs significantly from that
of the population in each agricultural area category, it is expected that land use and living
patterns in each agricultural area category have an impact on the occurrence of human
casualties.

• Changes in land use

Among the tertiary-mesh land-use data of the National Land-use Data, the oldest
data (1976) were compared with the newest (2016). The average values of the mesh
units comprising each set of data were as follows, in descending order: ‘building sites’,
‘forests’, ‘saltwater areas’, ‘other sites (including golf courses)’, and ‘land for transportation’.
The types of land that decreased were as follows, in descending order: ‘rice paddies’,
‘wastelands’, ‘other agricultural land’, ‘beaches’, and ‘river and lakes’ (Table 3). Based on
the changes in the land-use classification of Japan [29] (Figure 4), ‘residential land’ and
‘roads’ have increased continuously during the same period, while ‘agricultural land’ has
decreased continuously; ‘forests’ have increased and decreased at regular intervals. The
study areas were unique in that ‘forests’ continuously increased in these areas.

Table 3. Changes in land use (average of the study areas).

Land Use Change of Study Area (m2)

Building sites 44,555.6
Forests 19,666.5

Saltwater areas 16,740.4
Other sites (including golf courses) 2299.1

Land for transportation 1457.8
River and lakes 1082.0

Beaches −300.8
Other agricultural land −7669.5

Wastelands −27,168.8
Rice paddies −30,706.3

Note: Date source: [26].
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The increase in ‘forest’ was likely the result of a decrease in ‘wasteland’ in mountainous
areas because of afforestation and other factors. Furthermore, the increase in ‘building
sites’ was generally consistent with the decrease in ‘rice paddies’ and some ‘wasteland’,
implying that the overall trend in the target villages was for rice paddies and wasteland to
be used for residential areas.
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Analysis of the changes in land use (only building sites, forests, rice paddies, and
wasteland with large increases or decreases were extracted) in each study area revealed that
the changes varied among areas, but the main patterns were that ‘rice paddies’ decreased
and ‘building sites’ increased, while ‘wasteland’ decreased, and ‘forest’ increased. Where
‘rice paddies’ decreased and ‘building sites’ increased, the expansion of residential areas
was one cause of human suffering. Where ‘wasteland’ decreased and ‘forest’ increased, it is
possible that the increase in forested areas, which at first glance would not be expected to
cause landslides, led to a decline in awareness of landslide hazards.

The results indicate that land-use change and the associated expansion of settlements
tend to increase human suffering.

4.3. Population and Its Change

We checked the population size (total population, sex ratio, and population aged
≥ 65 years) and population trends [30], together with the long-term status of population
trends aggregated according to municipality [31].

• Population size and population trends in recent years

Table 4 shows the population size and recent population trends in the study areas.
The total populations ranged from 40 to 5472 in 2005 and from 18 to 4771 in 2015, with
considerable variation. The populations of all study areas except one (Muroya) declined;
the average rate of decline was 23.8%. Sex ratios (here, the ratio of the female population to
the male population) remained virtually unchanged at 1:1 in 2005 and 2015, but Yoshino
and Nango experienced declines of >0.5 (the female population declined more than the
male population). The proportion of the population aged ≥ 65 increased from 27.8% in
2005 to 36.7% in 2015. Based on the median values in 2015, the average area had a total
population of 559, a male-to-female ratio of 1.1, a population in which 38.2% were aged
≥ 65 years, and a population decline rate of 19.6% over 10 years. Population size and
composition, as well as population trends in recent years, did not directly affect the number
of disasters with high numbers of human casualties.

• Long-term population trends (1995–2015)

The population growth rates of the 20 municipalities included in the study areas
tended to decline from 1985 to 2015, similar to the national trend (Figure 5). However, the
degree of change during this period was −4.8%, which was slightly larger than the national
rate of −4.2%. It was also 3.3% lower on average for each year, compared to the nation as
a whole. Over approximately the past 30 years, disasters with large human losses have
occurred in municipalities with large population losses.
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Table 4. Comparison of 2005 and 2015 populations in the study areas.

2005 2015

Population Ratio of
Female to Male

Ratio of Aged
65 and Over Population Ratio of

Female to Male
Ratio of Aged
65 and Over

Yoshino 54 1.35 0.37 32 0.78 0.47
Koei 126 0.77 0.47 64 0.64 0.45

Sendatsu 145 1.13 0.35 117 1.17 0.48
Iizawa 1098 1.03 0.18 979 1.05 0.31

Motomachi 2789 1.04 0.26 2461 0.97 0.32
Hanaoka 1551 1.09 0.28 1304 1.05 0.36

Kidani 1024 1.15 0.27 898 1.12 0.40
Takiya 64 1.29 0.42 30 1.14 0.47

Ui 108 1.16 0.30 26 1.00 0.58
Nojiri 40 0.90 0.20 18 1.25 0.44

Nagano-6 177 1.16 0.34 115 1.21 0.45
Ichinono 775 1.25 0.28 632 1.32 0.40
Iseki-1 664 1.14 0.31 467 1.22 0.41

Uno 5472 1.12 0.29 4771 1.04 0.38
Muroya 1093 0.81 0.17 1231 0.88 0.19

Kamirakuchi 1540 1.06 0.17 1168 1.02 0.25
Kobara 1137 1.08 0.17 832 1.04 0.25
Yashiki 2355 1.08 0.16 2330 1.13 0.20
Tenjin 1598 1.07 0.20 1396 1.09 0.38

Oonishi 535 1.25 0.24 486 1.20 0.38
Kawasumi 4556 1.12 0.15 4465 1.09 0.24
Koyaura 2333 1.12 0.26 1871 1.09 0.39
Nango 173 1.54 0.61 83 1.02 0.42
Tachi 102 1.17 0.19 80 1.29 0.26

Ishidume 77 1.41 0.29 57 1.85 0.33
Fukuoka 40 1.11 0.28 35 1.19 0.37

Kurokawa 1222 0.89 0.23 1149 0.89 0.28
Kajigaharu-Yukihiro 78 1.05 0.33 59 1.03 0.42

Average 1104.5 1.12 0.28 969.9 1.10 0.37

Note: Date sources: [30].

4.4. Residency Status

The residential status in each area was summarised based on the length of resi-
dence [32] and housing type (proportion of households living in owner-occupied houses) [33].

• Length of residence

We compared the average values of the study areas to those for Japan (Figure 6). The
term “since birth” included people who had lived in an area for various lengths of time.
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The percentages of the ‘since birth’ and ‘more than 20 years’ categories were higher in
the study areas than in the whole of Japan. This suggests that disasters with large human
losses have occurred in areas of low turnover of people. In addition, the proportion of
women in the study areas was higher than the proportion of men in the ‘more than 20 years’
category and lower than the proportion of men in the ‘since birth’ category, compared to
the national proportions. In many cases, there was minimal migration of people in the
study areas. Many women presumably entered the study areas at marriage.

• Housing type

The proportion of households living in ‘owner-occupied’ housing as a percentage
of the general number of households living in housing was analysed for each study area
(we used sub-region units because of data limitations). Here, housing other than ‘owner-
occupied’ homes included ‘public, the Urban Renaissance Agency, public corporation
rented housing’, ‘private rented housing’, ‘salaried housing’, and ‘rented rooms’. The
data were not disclosed because of confidentiality for one study area (Motomachi), and
one sub-region included two study areas; thus, 26 sub-regions were covered. The results
showed that the average proportion of households living in ‘owner-occupied housing’
was 83.2% of the total number of general households, which was higher than the national
average of 62.3%. Disasters with high human casualty numbers occur in areas with high
numbers of people in owner-occupied housing, who generally do not move as frequently.

4.5. Characteristics of Municipal Administration

The numbers of staff members and the financial statuses of 22 municipalities including
the study areas were summarised.

• Number of staff members in municipalities

The numbers of staff members were based on data (as of 15 July 2021; 2005–2020)
published in the ‘Capacity Management of Local Public Organisations’ [34]. The data for
2006 and 2020 were used. We used the 2006 data to take into account the impact of the
merger of many municipalities that took place in 2005 throughout the country. We excepted
Hiroshima City from some analyses because it is a ‘designated city’ (only 20 such cities
exist in Japan).

In the results, the trend in the average number of staff members was higher in the
study areas than the average in Japan in each case, whether ‘designated cities’ or not.
The gap between the study areas and Japan narrowed when ‘designated cities’ were not
included, and the average number of staff members in the study areas between 2006
and 2020 decreased by >100 (Figure 7). However, the sediment-related hazard areas
were designated inhabitable areas and a warning evacuation system would have been
established by municipalities. Therefore, the amount of inhabitable area could have affected
the workload of municipal staff. For this reason, we determined the number of staff
members per inhabitable area (using 2020 data; however, the inhabitable area used here
is for 2019 [35]); this value was 10.1 persons/km2 in Japan overall and 12.5 persons/km2

in the study areas. Furthermore, when ‘designated cities’ were excluded, this value was
7.7 persons/km2 in Japan (excluding the ‘designated cities’) and 6.6 persons/km2 in the
study areas (excluding Hiroshima City).

These results indicate that the target municipalities had slightly more staff mem-
bers than the nationwide average in Japan. However, the number of staff members was
1.1 persons/km2 lower in the study areas than in Japan overall, considering the greater
proportion of ‘designated cities’ in the study areas and the numbers of staff members per
inhabitable area including sediment-related-disaster hazard warning areas. Disasters with
high human casualties occur in municipalities where the number of staff is small in relation
to the size of the area.
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• Financial status of municipalities

The standard fiscal scale was collected from the ‘Municipal Accounts Card’ [36] and
the ‘List of Major Financial Indicators of Local Public Organisations’ [37], and the financial
indicators of the study areas were compared with the financial indicators of Japan. With the
exception of one municipality (Miyagawa Village; merged with Odai Town in 2006), which
includes data from Takiya from FY2005, the earliest year for which data were available for
all target municipalities, and FY2019, the most recent year, were used. Since Miyagawa
Village was not listed in FY2005 or FY2019, we used the 2004 values for Miyagawa Village
and the 2019 values for Odai Town.

The results are shown in Table 5. A comparative analysis between the study areas
and Japan showed that the ‘fiscal capacity index’, which indicates the affordability of
financial resources, remained almost identical. Although the differences were limited, the
following indicator values were larger in the study areas than in the nation as a whole:
‘current account balance ratio’, which indicates the ratio of fixed expenditures; the ‘real
bond cost ratio’, which indicates the degree of cash flow; and the ‘future burden ratio’,
which indicates the possibility of future financial pressures. In addition, the ‘Laspeyres
Index’, which indicates salary, was smaller. These results imply that disasters with large
human casualties occur in municipalities that have financial difficulties.

Table 5. Fiscal indicators according to municipality.

Fiscal Capacity
Index

Current Account
Balance Ratio

Real Bond
Cost Ratio

Future
Burden Ratio

Laspeyres
Index

FY2005
Average of Japan 0.52 90.2 14.8 11.4 * 98.0

Average of Study areas 0.52 93.0 15.2 12.5 * 95.2

FY2019
Average of Japan 0.51 93.6 5.8 27.4 99.1

Average of Study areas 0.50 94.1 8.4 62.7 97.4

Note(s): Date sources: [36,37]. * Instead of the ‘Future Burden Ratio’, ‘Debt Limit Ratio’ is published.

5. Discussion

There is no obvious bias in the natural conditions (altitude, slope, geology, precipi-
tation) of the areas where human-casualty disasters have occurred, but social conditions,
as opposed to natural conditions, are likely to have an influence. Disasters with large
human losses have occurred in areas where there have been land-use changes, such as the
expansion of settlements, areas where people have lived for a relatively long period of
time, areas where many people live in owner-occupied housing, and municipalities with a
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continuously high rate of population decline and difficulties in terms of staff number and
finances. However, no effects of total population, sex ratio, and population aged 65 and
over were identified.

These results imply the following relationships between socio-economic factors and
large human losses in sediment-related disasters.

• The study showed that development activities in hazard areas can have an impact even
after a considerable number of years of development. On the other hand, sediment-
related disasters with significant human losses have also occurred in areas that have
been afforested. The main reason for not evacuating is the lack of anticipation of
landslides (see, for example, [38]). Forests may lead people to believe that the threat of
landslides is low and that there is no need to evacuate.

• The total population, sex ratio, and population over 65 years of age in the units
examined in this study were not relevant. This is inconsistent with previous reports,
e.g., [39], which have concluded that older people are more likely to be victims. The
combined effect of total population and sex ratio, such as the presence or absence of
people to support the elderly, may have influenced the results.

• The fact that more landslides occur in areas where more people live in owner-occupied
houses is consistent with reports [6] that people living in rented houses, who probably
do not plan to live there for a long time, are less likely to make individual household
emergency plans. It may be that people who do not plan to remain in their residence
for a long time perceive the need to be prepared less strongly than those who intend
to stay in their residence for an extended period of time. However, disasters with sig-
nificant human suffering have occurred in areas where people have lived for relatively
long periods of time. A report concluded that memory of floods depends on living
witnesses, and that it diminishes within two generations [7]. Given the frequency of
sediment-related disasters, which may occur only once every few hundred years, the
relatively long residence period of more than 20 years may still have been too short
for people to have experienced a disaster, which would explain the result that a long
period of residence did not result in a reduction in human losses.

• The positive relationship between the number of disasters in a municipality and high
rates of population decline and small staff and financial resources relative to the area
is consistent with examples of existing disasters in which inadequate disaster man-
agement systems led to damage [40]. Differences in municipal disaster management
systems may affect the number of human casualties.

These discussions indicate the importance of sediment-related-disaster countermea-
sures. The study areas were located in municipalities where the populations have long
been declining and are expected to continue to decline in the future. The most serious
casualties occurred both in areas with generally flat land, where the population density was
the main cause, and in areas with mountainous terrain and small populations. In areas with
generally flat land, although development regulations under the Sediment-related Disaster
Prevention Act would have reduced the population density in hazard areas, considerable
damage still occurred, implying the existence of pre-regulation development. In areas
with mountainous terrain and small populations, it was difficult to implement building
restrictions because such restrictions could have led to a further population decline. In
addition, although many of the study areas had few people moving in or out, many did not
acquire the knowledge and experience related to disasters that would have been gained
by a person living in the area for a long time. Furthermore, for households residing in
owner-occupied housing, it would have been effective to encourage them to relocate to a
safer location, such as at the time of rebuilding in response to the ageing of residents; unlike
households residing in housing complexes, these households did not have to go through
the trouble of confirming the intentions of many residents. However, the study areas had
more staff-related and financial difficulties than other parts of Japan, and therefore efforts
and subsidies may not have been sufficiently implemented.
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Therefore, although development regulations need to be continued, emphasis should
be placed on hard and soft measures in areas that had already been developed before
the regulations and are inhabited by a large number of people. On the other hand, in
mountainous areas, where the population density and the number of human casualties
in this study was small, disasters occur in large numbers and account for a very high
proportion of the number of inhabitants. Because of the low number of residents in these
areas, it is not realistic to spend a lot of money on hard measures, so it is suggested
that detailed soft measures be implemented in each district. Non-structural measures
include the accumulation and utilisation of empirical knowledge, as well as teaching and
discussion opportunities to encourage relocation. However, support from the national and
prefectural governments is necessary in municipalities that do not have sufficient staff or
financial resources. To realise these measures, a classification method focusing on the social
conditions of each district in addition to the threat of landslides should be considered and
measures should be implemented accordingly.

6. Conclusions

In this study in Japan, natural and socio-economic conditions at the community level
were determined at the sites of recent sediment-related disasters that resulted in significant
human suffering. The results indicate that sediment-related disasters associated with ex-
tensive damage occurred under various natural conditions; the extensive human suffering
caused by sediment-related disasters was not limited to specific natural conditions. In ad-
dition, although sediment-related disasters occur more frequently in populated areas, they
also occur in less populated areas. In areas where it is difficult to justify large expenditures
on sediment-related disaster countermeasures, non-structural measures that require lower
costs than structural measures may be more important for reducing human suffering.

We attempted to understand the characteristics of each area using published data;
however, the results should be confirmed by more detailed surveys in each area to deter-
mine whether the characteristics identified from the data are indicative of the characteristics
that are influenced by a sediment-related disaster in each area. Furthermore, the limited
number of cases in this study does not allow verification of its generalisability. The relation-
ship between disaster cases and social factors should also be investigated under different
conditions, such as different periods and countries with very different social conditions.
Furthermore, alternative data items and complementary methods should be considered
for items and areas for which no data have been obtained. Additionally, deepening our
knowledge of the relationships between a wider range of socio-economic factors and the
number of human casualties is also an important issue.
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Abstract: Taiwan’s near-mountain alluvial plain is a high-risk area with frequent disasters, and resi-
dents have become more tolerant of the compound disasters that occur with overall environmental
changes associated with the development of urbanization in recent years. This paper presents a case
study of a near-mountainous alluvial plain in Southern Taiwan. The Hakka ethnic group is the main
community in the study area and also the main research object. This case study illustrates the disaster
resilience of the community to natural and artificial disasters. This study adopted two research
approaches, namely historical geography and political economic geography, as well as community
resilience theory. Research methods including case study, secondary literature analysis, fieldwork,
and interviews were used. Through text analysis, it was found that (1) the community’s awareness of
disaster avoidance was rooted in the experience of reclamation in the early 17th century; (2) com-
munities have experienced artificial disasters caused by political and economic intervention, which
have been transformed into disaster awareness and community resilience; (3) cumulative artificial
disasters have a greater impact on communities than unpredictable natural disasters; and (4) the
energy of community resilience and agricultural regeneration is based on the duality of disasters.

Keywords: actions; reorganization; artificial disaster; young farmer; resilience community

1. Introduction

There is an ecological network between humans and the environment, and in the face
of environmental threats, humans use culture to adapt in order to protect themselves in this
network [1]. This concept of cultural adaptation results in reflexive thinking and has opened
up research into environmental cognition. For example, human civilization must be close
to water and be able to prevent water disasters, which is part of the relationship between
reaction and behavior when flooding occurs [2]. International academic circles have begun
to focus on the importance of traditional disaster-prevention knowledge—especially in
the area of small regional, local and community-based knowledge research—and believe
that it should be regarded as a form of disaster-prevention technology [3–6]. Different
societies also have different levels of disaster awareness. For example, coastal residents
know how to interpret changes in walrus behavior and the environment to predict tsunamis
and earthquakes [7,8], while mountain residents in areas with frequent orogeny carefully
select their sites and test their bases during the monsoon season before settling down in
order to prevent landslide disasters [9]. One study showed that disasters are the result
of the interaction between the natural environment, socio-demographic characteristics,
and man-made facilities [10]. However, with the rapid development of human society,
there will be sudden changes when the natural load capacity exceeds the threshold [11].
Therefore, research on community resilience with regard to living environments in the face
of natural disasters, environmental degradation and toxic waste is being actively carried
out [12,13].

Water 2022, 14, 1736. https://doi.org/10.3390/w14111736 https://www.mdpi.com/journal/water396



Water 2022, 14, 1736

According to IPCC reports, human societies do not have sufficient resilience under
extreme climatic phenomena [14,15]. The latest research work is committed to contributing
effective methods to deal with the impact of floods, e.g., applying big data to assist disaster
risk management and emergency response sharing [16], and a framework entailing AI/ML
methods for identifying the safest route to destinations using UAV and path planning has
been proposed for the timely disaster response and evacuation of the residents of aged care
facilities [17], as well as for the accurate identification of flood-affected areas after floods
for effective flood management [18]. The accurate assessment of flood sensitivity with
DEM in arid regions [19,20] can provide prediction models for flash flood disasters in small
catchment areas [21]. A study on community resilience to floods proposed local residents’
resilience practices that can be applied to flood management measures and focused on
rehabilitation, community participation, and local indigenous practices [22], as well as
developing more accurate forecasting methods for the flood sensitivity of the catchment
area to enhance the resilience of catchment residents to natural disasters [23]. However,
changes in hydrological conditions within a catchment not only affects communities but
also causes significant social change. Therefore, in addition to leveraging technology
for flood protection, the main question of this study was how can communities develop
resilience under the impact of long-term environmental disasters? This paper provides a
case study of an area located downstream of a catchment, where environmental conditions
are wet, rainy, feature floodplains that are often disturbed by flooding, and allow water to
infiltrate the area within a short period of time. This case provides reflections on the impact
and transformation of repeated flooding on community resilience.

Taiwan is a long mountainous island with a long north–south and narrow east–west
mountain; the plain area accounts for only 30% of the island [24]. Taiwan’s topographic
characteristics have created short river basins and steep slopes. The geology of the upstream
mountainous areas is young, and the clay slate is fragile. In addition, the daily rainfall in
the rainy season is 1030 mm, and sudden heavy rainfall often causes large-scale landslides
in the upstream areas [25]. Therefore, in order to stabilize the mountainous area and ensure
the safety of the downstream regions, most earth and rock disaster studies have focused on
the catchment region in the mountainous area, as secondary cascade disasters are caused
when the catchment region cannot be loaded [26].

However, small catchments are highly sensitive to land use and short rainfall, which
affect the safety of the downstream alluvial plain [27]; every heavy rain event may cause
serious disasters in the plain along the river [28–30] due to the limitations of the terrain.
More than 90% of Taiwan’s population lives in the western plain, and only 5% reside in the
mountains [31]. The near-mountain alluvial plain in the valley mouth area is marginal land
with a high flood sensitivity, and it has no urban disaster-prevention system or mountain-
monitoring system. Recently, the Taiwan government announced potential streams of
debris flow so that residents could take the necessary refuge and evacuation measures
before a disaster in order to maintain the safety of settlements on slopes and valleys.

However, research has shown that the lack of spatial coverage still puts communities
near mountains at high risk [32]. Another study confirmed that the gap between urban and
rural areas makes the disaster risk in rural areas much greater than that in urban areas [33].
With the development of urbanization, mountain areas must bear other risks associated
with overall environmental changes in addition to natural disasters, e.g., the output of
water resources and environmental pollution caused by the input of urban waste. It was
pointed out that the rapid development of Taiwan’s metropolitan areas in recent years has
affected the discharge of runoff and changed the hydrological cycle, resulting in increases
in flood frequency and water volume, as well as losses of life and property.

Therefore, the increase in downstream population and water demand should be consid-
ered to be water resource factors [27,34]; according to early research data, the groundwater
resources in near-mountain areas also bear a high risk of pollution from the development
of metropolitan areas [35]. From this point of view, disasters should not only be regarded
as natural events caused by natural driving forces, as they may also result from social

397



Water 2022, 14, 1736

problems. Therefore, researchers should also seek solutions in community development
context [34].

In this study, five cases were used to explore the relationship between disasters
and community resilience. The first case comprised irrigation waterways built in the
Ching Dynasty, mainly located in the north of the Meinong Plain. At that time, the
irrigation waterway was completely excavated by local residents in accordance with natural
conditions. The second to the fifth cases comprised modern environmental events, which
are cases of cross-regional water allocation. The geographic area spanned two counties and
cities along the Gaoping Stream and the time range was from 1975 to 2019, which makes
them indicator cases of artificial disasters.

This study argue that natural disasters and social forces are intertwined, and the
phenomenon that communities near mountains bear the dual risks of natural and artificial
environmental disasters should have more attention paid to it. Therefore, based on the
dual points of view of nature and society, this study used the flood plain in Southern
Taiwan as the research object. A case study on a regional scale was used to explore the
process of disaster resistance and the agricultural regeneration action of environmental
awareness transformation. This research mainly contributes to bridge the research gap
between physical and human geography. In contrast to disaster research that only considers
natural factors, social factors can also be considered when looking at the man-made causes
behind natural phenomena. In terms of research innovation, we propose an approach to
escape a single disaster event or single point in time and integrated two research methods
and theoretical perspectives in an attempt to understand the interrelationship between
disasters and resilience.

2. Materials and Methods
2.1. Study Framework and Design

This study adopted two research approaches, namely historical and political economic
geography, as well as community resilience theory. Research methods including case
studies, secondary literature analysis, fieldwork, and interviews were used. This study was
focused on five cases in the north floor area of the Pingtung Plain, covering the period of
1680–2020.

(1) Historical geography of natural disasters: from the historical perspective, we
analyzed how a balance between man and nature was achieved with agricultural technology
in the face of natural disasters during the process of reclamation by the well-cultivated
Hakka ethnic group in the Meinong Plain.

(2) Political and economic geography of modern disasters: four cases were used to
explain the change in the nature of disaster and community anti-disaster action in the
study area.

(3) Community resilience theory: knowledge reorganization and the social self-
organization process of residents facing disasters in the study area were examined.

The simultaneous application of the two approaches allowed us to effectively compare
the community’s response to the same issues. The selection of the research method was
based on the results of exploratory research [36,37] and the data of the study cases, which
have the main characteristics of fragmentation and heterogeneity. A limitation of this study
is that the political economy and the stakes involved in civic movements will keep some
of the data hidden. In the late 1970s and early 1980s, actor network theory was able to
effectively explain the relationship between actors and space [38]. However, the spatial and
temporal relationships of the five cases were relatively scattered, and although there was a
common issue, there was no intersection between the actors; therefore, we advocate for
the concept of underground rhizomes as a research strategy [39]. The phenomenon of data
dispersion was found in the exploratory research [36,37]. This research suggested that the
effective integration of data is the most important link in the research process.

Therefore, we used case study as the main method, treated the plains community as a
unique phenomenon, and collected data from different sources as the basis for the analysis.
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An important step in analyzing secondary literature is to interpret the data collected by
original studies from another perspective [40].

The inclusion of multiple viewpoints in this study could have helped to prevent
the researchers’ personal values from affecting the research results because a wide vari-
ety of data, different methods, and perspectives of researchers in different fields can be
neutralized [41,42]. In response to two research approaches, this study firstly collected
official and quasi-official public information and secondly analyzed media materials and
interviewed reporters and interviewees on the subject in the process. Third, Triangulation
for the study to cross-check three different types of data (Figure 1). The reliability of the
research originated from the use of various methods and different data sources. The data
were verified at all levels of time (long-term), space (specific), and people (key roles). The
scientific philosophical framework of this research comprised a multi-method approach
of considering “retrospections data components back and forth”, “triangulation to seek
the most applicable interpretation”, “descriptive laws from all levels”, and “breakthrough
awareness of research limitations” [43], with the aim of generating more trustworthy
research interpretations [42].
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2.2. Study Area

The study area is located at the northernmost end of the Pingtung Plain in Southern
Taiwan, in the center of Kaohsiung City and the northernmost plain of Pingtung County.
As the plain is located between a fault zone and a trench, it forms a complete geographical
area [44–46]. The geographical scope is to the east of Chishang River, to the north of the
Ligung Embankment, to the west of Dawu Mountain cliff, and to the south of Moonlight
Mountain. It is an independent plain isolated by the natural environment. The admin-
istrative area includes Ligung Township in Pingtung County, Meinong District, and the
Chishang District in Kaohsiung City (Figure 2). The total area of the Meinong Plain is
approximately 106 km2, as shown in Figure 2. The formation of its range comes from the
coupling of special geographical conditions, which are the Laonong Stream, Chishang
River, and Meinong Stream alluvial fan and alluvial plain.

The area of this study has received attention from the humanities and nature perspec-
tives, but no previous studies have explored the relationship between the two simulta-
neously. In terms of humanities, the Hakka people’s reclamation and development have
formed a special social group. As many as 93.5% of the Hakka people in Meinong District
(Table 1) are characterized by a high level of education, a strong sense of national identity,
and strong political and cultural influence [47,48]. The geographical space where the settle-
ment is located is also a high disaster-risk area. This area has a maximum water output of
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surface and groundwater (including underlying water), as well as natural energy due to
the intersection of a fault zone, uneven rainfall, and typhoons [49].Water 2022, 14, 1736 6 of 26 
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Table 1. Population and ethnic groups in the study area.

District
Name of Village Population Main Ethnic

Meinong District

Hehe vil.; Luxing vil.; Zhongtan vil.; Dexing vil.;
Longshan vil.; Guangde vil.; Dongmen vil.; Tai’an vil.;
Minong vil.; Jidong vil.; Fu’an vil.; Zhongzun vil.;
Qingshui vil.; Jiyang vil.; Jihe vil. (Total 15 vil.)

28,359 Hakka

Chishang District Dongping vil.; Guangfu vil. (Total 2 vil.) 2786 Hakka

Ligung Township Sanbu vil.; Zhonghe vil.; Mili vil.; Tuku vil. (Total 4 vil.) 4549
Hokkien and

unnan–Burmese
Veterans

2.3. Data Collection and Analysis of Secondary Literature

According to the research design, this study began with an investigation of: (1) natural
disaster data in historical documents (mainly water and soil disasters); (2) how regional resi-
dents altered nature to meet their survival needs (mainly irrigation waterways); (3) artificial
disasters (mainly public pollution and environmental movements, such as the anti-Meinong
reservoir and the anti-Jiyang artificial lake (after the artificial lake project was rejected in
2013, the government reintroduced the new project and named it Gaoping Great lake; in
this study, it is called Jiyang artificial lake) movements in 1992); (4) water conflicts (such as
the well sinking in Ligung in 1975, the well closure and power shut-off in Ligung in 1990,
and the anti-deep-water well in Meinong District in 2015–2017); and (5) environmentally
friendly actions (such as young men returning home for farming, organic farming and
environmental protection). All the collected data were classified and coded with Excel
software. There were two main sources of data. The first was secondary literature on
natural disasters, including data on (1) and (2), which were mainly from research reports
and research papers; the second source comprised data on (3), (4), and (5), which came
from official and institutional information, official statements, internal meeting minutes,
research reports, planning reports, survey reports, etc. Historical water conflict events and
management organization data were also collected. Sources included newspapers, maga-
zines, and social media, as well as various planning reports and statistical data from the
Ministry of Economic Affairs (MEA) and the Taiwan Water Company (TWC) and its related
sub-organizations. In addition, announcement information, planning reports, and meeting
records were collected from the Pingtung County government. The interview records
from various agencies represented unofficial opinions and descriptions. Data analysis was
conducted with Excel statistics software on 54 natural disaster incidents, 35 adjusted natural
incidents, 11 water conflict incidents, 26 artificial disaster incidents, and 7 environmental
action incidents (Figure 3).
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2.4. Case Studies

Five cases were used to explore the relationship between disasters and community
resilience (Table 2). Objects included residents, farmers, religious groups, organizations, and
county governments. A network of nodes and connections, including attitudes, experiences,
knowledge, and awareness, was constructed. This network illustrates the experience of
disaster in life and in the environment, as well as culture, ordinary people’s knowledge of
the local hydrological environment, the formation of environmental risk awareness and the
resilience of life, and the process of organization.

Table 2. Basic descriptions of five study cases.

Case Location Related Parties Claim Situation

Waterway in
Ching Dynasty

Meinong
District,

KHC

1. Hakka ethnic group
2. Hakka lineage
3. Irrigation waterway owner

Survival and
settlement Settlement

Ligung Well
Closure and

Power Shut-Off

Ligung
Township,

PTC

1. Ligung villagers’ congress
2. Pingtung County

Government
Well closure

and compensation

Complete well
closure and monetary

compensation

Anti-Meinong
reservoir

Meinong
District,

KHC

1. Group 7
2. Meinong People’s

Association
Stop Whole project is

cancelled

Anti-Jiyang
artificial lake

Chishang and Meinong
District,

KHC

1. Anti-Jiyang artificial lake
self-rescue association

2. Meinong People’s
Association

3. Kaohsiung teachers’
Association Ecological
Education Centre

4. Pingtung teachers’
Association Ecological
Education Centre

5. Pingtung Environmental
Protection Alliance

Stop Whole project is
cancelled

Meinong
anti-deep-water

well

Meinong
District,

KHC

1. Anti-deep-water well
self-rescue association

2. Chishang, Meinong and
Ligung villagers

Stop Project is on hold

The first case was an irrigation waterway built in the Ching Dynasty, mainly located
in the north of the Meinong Plain. At that time, the irrigation waterway was completely
excavated by local residents in accordance with natural conditions. There was no official
waterway until the mid-19th century. The second to the fifth cases covered modern en-
vironmental events, which are cases of cross-regional water allocation. These involved
compensation for power shuts-off for closed wells in the Ligung Township, the anti-
Meinong reservoir movement, the anti-Jiyang artificial lake movement, and the Meinong
anti-deep-water well movement. The geographic area spanned two counties and cities
along the Gaoping Stream, and the time range was from 1975 to 2019, which makes them
indicator cases of artificial disasters.
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2.4.1. Irrigation Waterway in Ching Dynasty

In 1736, the Hakka ethnic group crossed the Laonong Stream from Pingtung to the
Meinong alluvial plain for reclamation. At the beginning, a few people travelled back and
forth for reclamation every day. There were two types of irrigation waterways for agricul-
ture. One was used to divert water from the depression on the plain (called Zhongzhenpi)
to the rice field, and the other was used to divert the water left in the valley to irrigate dry
fields when floods subsided [50]. After the cultivated land was slightly enlarged, Meinong
Stream water was introduced into the irrigation waterway, and the rice field environment
was completed towards the end of the Ching Dynasty, with some areas already having the
ability to harvest two crops a year [51]. Due to the fear of invasion by the indigenous people
near the mountains and the difficulty of fetching water from the plain, settlement did not
take shape in the Meinong Plain until the middle of the 18th century, i.e., after the irrigation
waterways were roughly completed [52]. In the Ching Dynasty, all irrigation waterways on
the Meinong Plain were located in areas that were not easily flooded. A total of six irrigation
waterways formed the prototype of the settlements. At the end of the 19th century, in order
to expand the demand for land development, the Japanese government built the Lion Head
waterway in flooded areas. However, the waterway has been damaged by floods year after
year, so the government has further built the Ailiao River embankment on a larger scale to
protect the developed land and waterways, which has prompted changes in land use and
industry in Meinong Plain [25,28,29].

2.4.2. Ligung Well Closure and Power Shut-Off

Since 1974, Kaohsiung City and Gangshan Township have relied on 13 deep-water
wells in Ligung Township. They extract 127,700 cubic meters per day, supplying 420,000 peo-
ple with domestic and industrial water [53,54]. In 1987, the water company dug five deep
wells in the Shoujinliao area of Kaohsiung County, which caused panic among residents
in Ligung, who jointly opposed it [53] (in 1989, the Ligung Township Congress predicted
that the groundwater level would drop, with accompanying reductions in crop yield and
demand and the cessation of pumping). The Pingtung government (PtCG) shut down
the power of its own accord when the water rights of two wells expired, and the water
company appealed to the Provincial Construction Department [54]. The PtCG implemented
a water cut-off, and the Kaohsiung County government responded by cutting off road
access, preventing people from entering Kaohsiung [55–58]. In 1988, the Ligung Township
Congress petitioned the PtCG and requested that the TWC carry out evaluation work. In
1989, the TWC agreed to conduct an evaluation and appraisal with Fengjia University; in
1990, the TWC signed a consultation resolution. The conclusions included a deadline to stop
pumping, funding subsidies and pipeline compensation, and water conservancy facility
subsidies. The well closure and power shut-off incident in Ligung ended in 1994 after the
well shut-off was completed.

2.4.3. Anti-Meinong Reservoir

The goal of the Meinong reservoir is to meet the long-term water demand in Kaohsiung,
Tainan and Pingtung [59]. Due to safety concerns caused by the fact that the dam site of
Meinong reservoir is located above a fault [60] and will seriously damage the ecological
environment of the tropical forest in Yellow Butterfly Valley [61] (as well as the impact on
the traditional Hakka culture that has long been present in Meinong village), at the end
of 1992, after the villagers learned that the reservoir was about to be built, local residents
formed a Group 7 and then established the Meinong People’s Association to take action
against the Meinong reservoir [62,63]. In 1993, they led Meinong’s residents to take a night
bus to Taipei to protest the construction of the reservoir. Through effective mobilization and
lobbying by Congress, the Legislative Yuan removed the project budget for the Meinong
reservoir in 1993 and 1994. In 2000, the government announced that it would not build the
Meinong reservoir, although it still proposed to build it in 2015, causing residents to protest
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again [64]. It can be seen that the water resources on the Meinong Plain are still a hot spot
of industrial demand.

2.4.4. Anti-Jiyang Artificial Lake

The Jiyang artificial lake was proposed by the WRA in 2000 and was intended to
address the daily 500,000 tons shortages of long-distance and industrial water in Kaoh-
siung [59,65]. In other words, it is part of a new scheme to replace the function of the
Meinong reservoir [66].

This project planned to use the surplus water from Laonong Stream during the wet
season for introduction into the artificial lake for regulation and storage in order to increase
the water supply in the Kaohsiung and Pingtung areas. The excavated earthwork could also
provide a source of sand and stone materials, which is one of the reasons for the prohibition
of sand and gravel mining in the Gaoping River. In this project, the existing farm would
have been excavated into a lake, surrounded by earth embankments, and arranged into
five lake areas (A, B, C, D and E), with a total area of 770 hectares. The project is located at
the Shoujinliao farm and the Tuku farm at the confluence of the Laonong Stream and the
Chishang River [67–72]. Residents from the Jiyang, Mili, Guangfu and Sanbu villages in the
Chishang and Meinong Districts, as well as Ligung Township, comprised the main members
of the self-rescue association, while the Meinong People’s Association, the Kaohsiung
Teachers’ Association Ecological Education Centre, the Pingtung Teachers’ Association
Ecological Education Centre, and the Pingtung Environmental Protection Alliance jointly
launched an appeal. The main reason for the appeal was that the development of the
artificial lake may cause groundwater resource issues, flood safety concerns, and disputes
over the government’s expropriation of a large amount of soya bean agricultural land.
After 13 years of continuous negotiation and resistance, the plan was terminated at the
Environmental Impact Assessment stage in 2013 [73–75].

2.4.5. Meinong Anti-Deep-Water Well

In the case of the Meinong anti-deep-water well movement, the conflict directly
involves the water corporation on the front line. Based on the support of residents and
non-profit organizations, local and central representatives hold the same view. They also
formed a self-rescue association that can be expanded. Since the Ligung incident in 1979,
Meinong’s anti-deep-water well movement has engendered a sense of opposition. In the
local area, water conflicts have forced the suspension of a strong water distribution policy.

2.5. Field Investigations and Interviews

Field investigations and interviews were conducted from 2014 to 2019. In 2014, the
TWC planned to dig deep-water wells in Sojingliao in Chishan District, which triggered
mass resistance from residents who set up a self-rescue association. Between 2015 and
2017, the association had several violent conflicts with TWC; as of 2019, the association
was still in operation because it thinks the TWC is just suspending the plan and that if the
well-sinking plan was enforced, it would have a negative outcome for the 2020 elections.

The main interviewees were local people familiar with the situation (school principals,
members of NGOs, public opinion representatives, farmers, residents, and members of
self-rescue associations), local officials (the Taiwan Agricultural Research Institute, the
Seventh River Management Office, the Ministry of Economic Affairs, the water resource
authority (WRA), the Water Resource Planning Institute of the WRA, the Water Resources
Bureau of Kaohsiung City, the Department of Urban and Rural Development of Pingtung
County, and the Department of Agriculture of Pingtung County), and professionals (a
professor of hydrology). A total of 20 interviews were conducted, and the responses were
snowballed to connect related objects.
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2.6. Community Resilience

Resilience is a social–ecological system concept [76] that is complex, nonlinear, and
unpredictable and that feeds back to other systems [12,77,78]. It differs from natural
disasters in that the system emphasizes slow-onset hazards associated with slow drivers
of change [79,80]. However, the social–ecological system view emphasizes that resilient
communities can be identified and have development advantages, establish resilience
through self-organization, and pay attention to the connection between humans and land,
values and beliefs, knowledge and learning, social networks, collaborative governance,
economic diversification, infrastructure, leadership, and outlook [12]. By applying the
concept of resilience to space science, a living environment that will not collapse in the face
of the impacts of disaster can be created [81,82]. Scholars in Taiwan have long paid attention
to the relationship between human settlements and disasters [83], emphasizing disaster
prediction, especially the use of disaster sensing before early warning monitoring systems,
such as the more sensitive detection of stratum subsidence from all aspects [84], slope
disasters [85,86], flooding [87], earthquakes [88,89], and learning recovery and adjustment
after disasters [88–94]. In recent years, people’s participation in disaster prevention and
traditional indigenous disaster-prevention knowledge have been further studied [34,95,96].

However, the disaster data in this study area showed that, because the three water-
sheds affect the alluvial plain, they are no longer a single catchment, which may explain
the causes of the natural disasters. Moreover, the types of disasters in the study area have
changed, and the factors of the disasters are complex and feed back into each other. The
current research results also lack insight into how social–ecological systems learn to resist,
absorb or adapt to disasters from the diachronic time axis. Therefore, it is necessary to
study the actions and feedback of communities experiencing disasters from the perspective
of social–ecological systems. Scholars have proposed four aligned suggestions: learning
to live with change and uncertainty, nurturing diversity for reorganization and renewal,
combining different types of knowledge for learning, and release and reorganization [77].

3. Results
3.1. Natural Disasters and Changes on the Plain

The central mountain range on the east side of the Pingtung Plain rises from 100 to
3000 m above sea level within a horizontal distance of 12 km. When the highlands on the
east side of the plain are violently eroded by rivers due to the high source and long flow,
a strong scouring force and a large amount of accumulation form a wide plain [97]. The
Meinong Plain, which is alluvial and formed by three drainage systems, has received the
largest concentration of heavy rainfall in recent years [98]. The geological conditions of the
plain are fragile, and the erosion under the flow path is rapid, able to carry rock debris and
sediment and to promote the resurgence of tributary river erosion. Moreover, this area also
has a rainfall form with summer rain and winter drought. Showers often cause large-scale
landslides in the upstream, and a large amount of debris forms debris flows, resulting in
vertical and lateral erosion. Due to accumulation, it is often diverted or overflowed, which
is also the main cause of disasters [99].

According to historical data, Taiwan experienced 223 typhoons in the Ching Dynasty
from 1684 to 1887, 31 of which were disasters that stuck Southern Taiwan [100,101]. From
1897 to 1945, the country experienced a total of 178 typhoons, 13 of which caused serious
disasters to Southern Taiwan [102–104]. The disaster events in the study area in recent
years have mainly been caused by typhoons. Heavy rainfall caused the collapse of the
upper reaches of the Chishang River and the Laonong Stream, resulting in the flooding
of the plain [30,98,105–107]. Disasters in the study area have been the focus of research in
recent years [107–109].

In 1736, the Hakka ethnic group reclaimed land from the high ground at the foot of
the mountain and irrigated it with Zhongzhenpi on the plain. After it was stable, it was
gradually expanded to the Moonlight Mountain at the upstream of the Meinong Stream to
form Meinong and other villages. The Meinong Plain was maintained in a stable state by
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the Hakka ethnic group. In the early 20th century, a large number of immigrants entered
the Meinong Plain after the Japanese government built the Ailiao River embankment [50].
Before the embankments of Ailiao and the Laonong Stream were built, the streams flowed to
the southwest. One can imagine that if heavy rain caused flooding, it would be difficult for
the whole north Pingtung area to survive. After the embankment was built, the waterway
of the Ailiao River was restrained to the north while the braided river of the Laonong
Stream was restrained to the south (Figure 4), converging to Gaoping River [110]. After
the construction of the embankment, the riverbed of Laonong Stream became reclaimed
land, which is now Sojingliao Farm and Tuku Farm (also the main area in of cases 4 and 5),
Kaohsiung Farm, and the Shingo area.

Water 2022, 14, 1736 11 of 25 
 

 

large-scale landslides in the upstream, and a large amount of debris forms debris flows, 
resulting in vertical and lateral erosion. Due to accumulation, it is often diverted or over-
flowed, which is also the main cause of disasters [99]. 

According to historical data, Taiwan experienced 223 typhoons in the Ching Dynasty 
from 1684 to 1887, 31 of which were disasters that stuck Southern Taiwan [100,101]. From 
1897 to 1945, the country experienced a total of 178 typhoons, 13 of which caused serious 
disasters to Southern Taiwan [102–104]. The disaster events in the study area in recent 
years have mainly been caused by typhoons. Heavy rainfall caused the collapse of the 
upper reaches of the Chishang River and the Laonong Stream, resulting in the flooding of 
the plain [30,98,105–107]. Disasters in the study area have been the focus of research in 
recent years [107–109]. 

In 1736, the Hakka ethnic group reclaimed land from the high ground at the foot of 
the mountain and irrigated it with Zhongzhenpi on the plain. After it was stable, it was 
gradually expanded to the Moonlight Mountain at the upstream of the Meinong Stream 
to form Meinong and other villages. The Meinong Plain was maintained in a stable state 
by the Hakka ethnic group. In the early 20th century, a large number of immigrants en-
tered the Meinong Plain after the Japanese government built the Ailiao River embankment 
[50]. Before the embankments of Ailiao and the Laonong Stream were built, the streams 
flowed to the southwest. One can imagine that if heavy rain caused flooding, it would be 
difficult for the whole north Pingtung area to survive. After the embankment was built, 
the waterway of the Ailiao River was restrained to the north while the braided river of the 
Laonong Stream was restrained to the south (Figure 4), converging to Gaoping River [110]. 
After the construction of the embankment, the riverbed of Laonong Stream became re-
claimed land, which is now Sojingliao Farm and Tuku Farm (also the main area in of cases 
4 and 5), Kaohsiung Farm, and the Shingo area. 

Since the Japanese rule of law, the construction of embankments has become the most 
important policy to protect both banks of the rivers [25,29]. However, recent studies have 
shown that typhoons can induce gully-type earth rock flow. Taking the 2009 Morakot ty-
phoon as an example, the farmland that was expanded after the construction of embank-
ments after 1948 was submerged during the Morakot typhoon, while the farmland re-
claimed before 1948 was outside the area of flood overflow [30]; This study has confirmed 
that the farmland reclaimed on the flood plain before 1948 is an area with disaster-pre-
vention awareness. 

 
Figure 4. Overlay map of drainage system changes in Meinong Plain (1904–1938). Figure 4. Overlay map of drainage system changes in Meinong Plain (1904–1938).

Since the Japanese rule of law, the construction of embankments has become the most
important policy to protect both banks of the rivers [25,29]. However, recent studies have
shown that typhoons can induce gully-type earth rock flow. Taking the 2009 Morakot
typhoon as an example, the farmland that was expanded after the construction of em-
bankments after 1948 was submerged during the Morakot typhoon, while the farmland
reclaimed before 1948 was outside the area of flood overflow [30]; This study has con-
firmed that the farmland reclaimed on the flood plain before 1948 is an area with disaster-
prevention awareness.

3.2. Artificial Disasters in the Ecological-Social System: Reservoirs, Artificial Lakes, Deep-Water
Wells and Public Pollution

In 1921, the Japanese government built the Ailiao River embankment to control the
flood disaster on the Pingtung Plain, resulting in the gradual drying up of the original
river due to the closure of the upstream embankment. Later, due to man-made reclamation
and cultivation, the appearance of the original river gradually disappeared on the surface,
though there was abundant groundwater [111]. Industrial development in Southern Tai-
wan, including traditional and science and technology industries, totally depends on the
groundwater resources in the plain. Industrial water grabbing is another disaster for com-
munities that have been farming for generations. As early as 1990, the Ligung Township
had an environmental recession due to groundwater over-pumping, and the following was
announced by the PtCG in the media:

“Over the past decade, a large amount of water from Pingtung has been pumped to
Kaohsiung, with 500,000 tons a day. For many years, thousands of wells have been

406



Water 2022, 14, 1736

scrapped because they can’t get water; The loss of irrigation water in the countryside is
serious and farming is affected.” [112]

Residents recounted the disappearance of water and species:

“In the past, Tuku area were swamps on the other side of the soil bank. Now there is no
water and it has become a dry field. I remember that in summer, the water was knee deep
and there were loaches and eels in the water. I had several classmates there, this is our
common experience. Now it is dry.”

In the 1960s, Taiwan’s economy was booming, and most of the infrastructure was
reinforced concrete structures, so a lot of sand and gravel were needed as building materials.
The sand and gravel in Ligung, Tuku and other areas at the northern end of the Gaoping
River alluvial fan were of good quality and had good traffic conditions, making it the
most important material supplier at that time. In particular, many low-use lands, such
as Taiwan sugar company land and retired farm land, are highly suitable for sand and
gravel development. The integrity, large area, and low utilization of this kind of land
make it suitable for use as a sand and gravel resource area [113]. The construction of the
Ailiao River embankment stabilized the land and brought economic benefits, but it has
also brought stagnant river sand. A large amount of sand and gravel accumulated in the
center of the river, forming a high ridge. Heavy rainfall in summer resulted in the river
sand washing into the two embankments, causing the collapse of the embankment and
the erosion and loss of fields near the river. The annual siltation volume of the Laonong
Stream (1975–1990) is 4.07 million cubic meters, and that of the adjacent the Ailiao River is
approximately 60,800 cubic meters [53]. Therefore, with the early development of artificial
mining and the establishment of special gravel areas by the government, the north and
south banks of the Laonong Stream have become a special area with the highest density of
gravel in Taiwan [49,99,114].

While meeting the needs of infrastructure construction, the government continues to
plan the remote development of water resources in the Gaoping Stream basin to meet future
needs. Under the premise of giving priority to economic development, all resources must
fully contribute to economic policies [66,67,115,116]. Therefore, implementation plans have
been formulated, as with cases two to five in our study; however, a few elite-led programs
that lack a local environmental perspective have become a form of artificial disaster. One
study showed that the north of Ailiao River has the largest water yield, the highest soil
yield/value, and the highest number of gravel fields in Taiwan [49]. This phenomenon
is known to be caused by the gravel pits (locals call it the “Grand Canyon”) and waste
pollution caused by illegal gravel mining on river banks and on agricultural land (Figure 5).
For example, agricultural land in Chishang was backfilled with waste slag that polluted
the Chishang River in 2013, and other rivers were also polluted by industrial waste in
1999, 2000, 2013, 2016 and 2019 [117–119]. The gravel pits formed by illegal mining led the
government to establish the artificial lake project and directly use a large number of gravel
pits in this area as recharge pools for groundwater recharge [120].

Early research results have revealed that the groundwater resources in this study area
bear high pollution risk from the development of Kaohsiung and Pingtung [35,121]. Recent
studies have also shown that politics and economic integrated regional scale strategies
to carry out cross-regional water distribution in the study area have resulted in fierce
conflicts [122]. The export of water resources in the study area contributes to economic
development, but industrial waste returns to the area, with the whole social–ecological
system linked through the negative feedback of artificial disasters. The main reason for
this is that economic factors distort the allocation of resources, and scholars have pointed
out that this can be regarded as interference. The stronger the interference, the weaker the
resilience and the lower the stability of the system [123].

3.3. Social System and Action of Residents in Disaster Events

In the case of Ligung, it was found that there was no solution to residents’ complaints
about the declining groundwater level, the reduced agricultural production, and the sub-
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sidence of the land. In Meinong, the self-rescue association used eddy currents, starting
from Jiyang at the center, and sent a message to the Ligung and Chisang areas to use street
sweeping, virtual and physical gatherings, and collective appeals to the power center;
that is, the association directed the areas to fight against lobbying with knowledge and
materials, reject compensation and exchange, and use every means available to organize
social cohesion.

In 2017, the deep-water well project was restarted in Meinong. Mainly, the Kaohsiung
City Government actively encouraged the TSMC (Taiwan Semiconductor Manufacturing
Company) to set up a factory in Luzhu Park, Southern Science Park. The aim was to provide
stable water resources as promised. In addition, in order to maintain the advantages of
the semiconductor industry supply chain, the central government had to restore regional
integration and dynamic balance [122].
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At the upper reaches of the Gaoping Stream is the intersection of Tainan, Kaohsiung,
and Pingtung. In 1992, the location of the Meinong reservoir was quite controversial. At that
time, it resulted in the most influential water environment movement in Taiwanese history
and led to the formation of an important environmental sustainability group [61,124,125].
After these projects failed, the central government began to develop adaptation plans. The
plans were to shift the reservoir model to a distribution model by using a combination of
surface water and groundwater abstraction. For example, the Gaoping River has multiple
water abstraction options [125–127], and deep-water wells in the underground aquifer
are designed to increase pure raw water to supply the south-moving high-tech industrial
park [122]. However, after the plan to drill new deep wells was resisted, there was proposal
to rent the existing water wells from the Taiwan Sugar Corporation. Using the old wells
to improve and clean the wells to make up for the original plan because the two could
together increase the daily water supply by 100,000 cubic meters [128]. Based on five deep
wells dug in Sojiliao, Kaohsiung County in 1987 [53], the TWC initiated negotiation and
compensation [128]. Finally, in 2011, 14 more deep-water wells were dug in the Sojiliao area.
The daily water intake was raised 100,000 tons to fill the gaps in Kaohsiung’s livelihood
and industrial needs for water, as well as to maintain the dynamic balance of the region’s
current situation by means of negotiated diffusion.

3.4. Risk Awareness and Community Resilience

The main impact of adaptation plans is that the Meinong Plains are full of water-intake
facilities and the expected reservoir space has turned into water-intake weirs, radiation
wells, deep-water wells and artificial lakes. More facilities have brought more disasters and
risks to local residents, such as lower agricultural production (R15), water pump motors
being damaged due to groundwater level drops (R13), the general feeling of residents that
the fountain disappeared (R6), groundwater level drops (R7), and the illegal mining of
sand and gravel (R12) (Figure 6). The residents’ experience of water shortage in their lives
directly formed their awareness of disasters, which not only prompted the establishment
of self-rescue associations but also led to anti-deep-water well operations. Because these
previous disaster experiences were often flooding or prolonged drought rather than the
decline of the groundwater level, they were different from the experience of extreme natural
disasters that promotes the formation of risk awareness.
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Figure 6. Risk matrix.

The personal experience of residents slowly suffering from disasters in their lives is the
main reason for the formation of environmental awareness. Residents in the study area were
found to have different reactions to sudden disasters and disasters accumulated year after
year. When economic losses are caused by natural disasters (such as floods that wash away
farmland), residents can apply for tax reduction. However, when residents find that the

409



Water 2022, 14, 1736

main cause of the disaster is man-made, their main response has been to regroup as a crowd
to demand that all human intervention be stopped. The specific methods have included
self-organization, active information collection, external connection, knowledge learning,
showing that the community can learn from and adapt to disaster risks to strengthen
community resilience (Table 3).

Table 3. Five cases and community resilience.

Resilience
Transformation

Five Cases
Water Tunnel in
Ching Dynasty

Ligung Well Closure
and Power Shut-Off

Meinong
Anti-Reservoir

Jiyang Anti-Artificial
Lake

Meinong
Anti-Deep-Water Well

Learning change and
uncertainty in disasters

• Typhoon (R1)
• Floods (R2)

• Groundwater
level drops (R7)

• Declining
agricultural
production
(R15)

• Reservoir
collapse (R4)

• Earthquake (R3)
• Breaking the

embankment
(R5)

• Edamame fields
were expropriated
(R14)

• Illegal mining of
sand and gravel
(R12)

• The fountain
disappeared (R6)

• Groundwater
level dropped (R7)

• The water pump
motor was
damaged due to
groundwater level
drops (R13)

Water sensitivity nurturing
diversity for

reorganization and renewal

• Hakka ethnic
group

• Hakka
lineage

• Irrigation
waterway
owner

• Farmer
• Ligung

villagers’
congress

• Pingtung
County
Government

• Group 7
• Self-rescue

association
• Meinong

People’s
Association

• Self-rescue
association

• Self-rescue
association

Combining different types of
knowledge for learning

• Feng Shui
• Belief
• Tradition
• Culture

• Agriculture
• Water resources
• Disappearance

of species

• Earthquake
• Fault zone
• Hakka culture,
• Yellow Butterfly

ecology
• Food

self-sufficiency
food safety

• Water resources
• Education
• Ecology
• Agriculture

• Agriculture
• Groundwater

pollution (R8)
• River water

pollution (R9)
• Hazardous waste

(R10)
• Factory waste

(R11)

Release and reorganization

• Meinong
consciousness

• Hakka
consciousness

• Ligung, Tuku,
and Sanbu

• Chimei
Community
College

• Agricultural
regeneration

• Kaohsiung
teachers’
Association
Ecological
Education Centre

• Pingtung teachers’
Association
Ecological
Education Centre

• Pingtung
Environmental
Protection
Alliance

• Chishang,
Meinong, and
Ligung

4. Discussion
4.1. Learning Change and Uncertainty in Disasters

The spatial sequence of reclamation in the Meinong Plain was related to natural
disasters. During the Ching Dynasty, avoiding disasters was the first choice. The Hakka
ethnic group, who have skilled farmers, knew how to conduct the reclamation so that
disasters could be avoided in the environment (Lingshan). The top of the fan area has
almost no settlements and or farming due to the flooding of the Laonong Stream in the
rainy season (from the south of Jingualiao to Hengshan). Moreover, residents know how to
adjust crops for the flood season and temporarily leave the cultivated land (Beishangtang),
as well as how to adjust crops according to the dry land (Jingualiao), as follows: select the
fertile field after floods to plant rice (Longdu); plant seedlings according to the season; use
rainwater, stream water, and waterway water in a planned way (Longdu, Dafen, Xiaofen,
Hobienliao, and Hengshanwei); set up cultural symbols in key places of water (Shuikou-
lisher-jenkuan-bogong); and name the space with regard to water (Sanjia means three
water clips, Xiaoshuigou means gate for distributing water, and Longque means hole for
distributing water).
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After the irrigation waterway was built, the community residents used the processes
of digging culverts and wooden boards to adjust the water volume in order to prevent
disasters [50,129]. Even after torrential water from the Laonong Stream washed away land
and caused collapse, the affected households successfully applied to the government for
rent reduction (Nanlong) [130]. At this time, spatial development was restricted by natural
conditions. Even if the Japanese government had intended to set up an immigrant village
here, it would still have failed. The main causes of failure were flooding, lack of water
supply and drainage facilities, and ant damage [50].

Building embankments was the starting point of environmental awareness. During
the initial reclamation period, the rules for allocating crops were based on the amount of
water. Even if it was necessary to divert water, the residents still chose to avoid the flooded
areas. However, after the Japanese government built the official irrigation waterway, large
and flat agricultural areas were developed in the south of the Meinong Plain, and they
planted a larger number of high-economic-value crops, such as sugarcane and tobacco,
than that on the Meinong Plain [50].

4.2. Water Sensitivity Nurturing Diversity for Reorganization and Renewal

The changes in the irrigation system on the Meinong Plain in the Ching Dynasty were
mostly funded by the lineage or Kenshou (capitalists). Farmers did not need to pay grain
rent, but they had to pay the costs of management and maintenance. The mayor in the
irrigation area was responsible for the maintenance of the irrigation waterway and water
rent. If the mayor was too busy, he was able to employ more staff [50].

The organization of waterways in the Ching Dynasty was large-scale and stable;
however, the Japanese government began to designate private irrigation waterways as
public waterways, mainly because the irrigation waterways in the Ching Dynasty had poor
equipment and were particularly vulnerable to damage in the case of rain. Joining the public
irrigation waterways meant owners could obtain bank loans to build waterways, obtain
legal protection, and manage themselves under the supervision of the government [131,132].
In 1912, the Japanese government announced the Taiwan water conservancy combination
rule, under which all irrigation waterways now belonged to the government, thus allowing
the waterways to enter a complete water conservancy organization system [133].

The scale of disasters and development has prompted the continuous renewal and
reorganization of waterway organizations, and the residents on the plain have adjusted
their corresponding abilities for hundreds of years. This means that when facing issues
such as reservoirs, artificial lakes, and deep wells, local residents have been able to organize
the Group 7 and the Meinong People’s Association and to invite various groups from
Kaohsiung and Pingtung to challenge the government’s economic and environmental
policies in terms of safety, ecology, culture and industry [63,134].

In the cases of Meinong and Ligung, there were attempts to negotiate a water alloca-
tion plan after 2006 [135,136]. Even though the central budget was prepared, it was still
unsuccessful [137,138]. Residents in this area formed a social network across counties and
cities, and they refused monetary compensation. This community acted like a network of
underground rhizomes strung together [122]. Ultimately, the TWC removed its budget
and changed its allocation strategy [139]. This also proves that even small-scale political
bodies, such as local associations and communities [140], have the ability to enact water
negotiations with the central government.

4.3. Combining Different Types of Knowledge for Learning

The development of disaster-prone areas needs to incorporate more environmental
awareness. Disaster awareness on the Meinong Plain combines different types of knowl-
edge including geology, hydrology, ecology, culture, anthropology and agriculture. For
example, regarding the issue of the Meinong reservoir being located on the fault belt, the
residents continue to uncover academic data that have become important evidence for the
anti-reservoir movement. Academic attention has also deepened the geological study of the
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Meinong Plain [60]. The development of artificial lakes and deep-water wells has helped
us gain knowledge of groundwater hydrology in flood plains [141].

The anti-Meinong reservoir issue not only strengthens the environmental awareness
of residents but also creates a special memory landscape [62,142,143]. In the process of
local consolidation, combined with different areas of knowledge such as hometown, land
and environment, the agricultural characteristics of “Meinong consciousness” and “home-
town consciousness” have been created [144]. There are also Meinong’s local writers, who
continue to create and pass literature on from generation to generation, spreading the
meaning of local environmental characteristics to the community [145]. On the other hand,
the unique Hakka ethnic group and the preservation and development of Hakka local
characteristics have highlighted the implications of Hakka culture [146]. Following the
environmental movement, Chimei Community University has become a local knowledge
institution, holding agricultural experience education activities such as the Rice Trans-
planting Festival, the Harvest Festival, and a Farmers’ Market; cultivating rural issues;
promoting agricultural knowledge; and offering courses such as environmentally friendly
farming and agricultural machinery repair in order to shorten the distance between people
the land. They have also published a large number of stories about the lives of organic
farmers [117,147].

4.4. Release and Reorganization

The anti-Meinong reservoir movement promoted the formation of a Meinong con-
sciousness and a Hakka consciousness. The artificial lake and deep-water well strengthened
the characteristics of local environmental activism, while the multi-faceted view of released
water was encouraged by the agency of the society. Taiwan’s joining to the World Trade
Organization strengthened the protective emotions around local agriculture, encouraged
small farmers to enter the countryside, and created a rural regenerative social phenomenon
of young people returning home that is referred to as Meinong’s new rural movement [147].
It has also been found that the environmental awareness formed by the environmental
movement resulted in young people choosing to connect the land with agriculture and
becoming more willing to take action to respond to climate change and environmental
change issues [117].

The environmental movement on the Meinong Plain became the foundation for un-
leashing awareness of environmental disasters. Returning young farmers share their
farming skills and experience at Chimei Community University, further cooperating with
local farmers and participating in the social movement of contemporary agricultural re-
generation [147]. With the aid of media communication, the organic farming of young
farmers returning home has gradually influenced the local farmers to adopt environmen-
tally friendly agricultural methods [148–150] and has promoted the establishment of special
agricultural production areas [151,152]. The young farmers have also encouraged the re-
organization of local agricultural groups, improvements in farming methods, and the
renewal of agricultural products, thus forming a social–ecological system with a positive
feedback loop.

4.5. Summary: Community Resilience Developed from the Duality of Disasters

The resilience of the community in this study area can be further explained on the basis
of the achievements of research [78]. The resilience in this study area is interdependent with
agriculture and economy; coupled to geographical conditions, ethnic groups, agriculture,
economy, and so on; and coevolving in the duality of disasters. In addition, the agency and
reorganization of this area involve some concepts of vortex concentration of community
resilience [12], but their particularity lies in the fact that their community resilience is
generated in a dual loop of positive and negative directions (Figure 7).

412



Water 2022, 14, 1736Water 2022, 14, 1736 20 of 25 
 

 

 
Figure 7. Two loops of disaster duality. 

5. Conclusions 
This study focuses on the interrelationship between disaster disturbance and reor-

ganization within the study area. The main findings of this study are as follows. (1) The 
disaster resilience in the study area is rooted in the experience of land reclamation in the 
early 17th century, and its main factors are the Hakka ethnic group, culture, feng shui, 
and belief. (2) The community has experienced artificial disasters caused by political and 
economic interventions that have formed residents’ awareness of risk and community re-
silience. The main events have been anti-reservoir and anti-deep-water well movements. 
(3) Cumulative artificial disasters have a greater impact on communities than unpredict-
able natural disasters, and their main factors are groundwater level drops, the disappear-
ances of species, declines in agricultural production, farmland expropriation, and illegal 
mining. (4) The duality of disasters forms positive and negative loops that generate the 
energy of community resilience and agricultural regeneration in resistance, adaptation, 
governance, and transformation. One limitation of this research is that the natural disaster 
data in the Qing Dynasty currently only have descriptive text. With accurate spatial posi-
tioning, more complete research could be conducted on the sources and subsequent im-
pacts of disasters. Additionally, studies of social resilience in this case are suggested in the 
future to obtain comparable findings. 

Author Contributions: Conceptualization, S.-C.T. and S.-H.L.; methodology, S.-C.T. and S.-H.L.; 
software, S.-C.T.; validation, S.-H.L.; investigation, S.-C.T. and S.-H.L.; resources, S.-C.T.; data cura-
tion, S.-C.T.; writing—original draft preparation, S.-C.T.; writing—review and editing, S.-H.L.; vis-
ualization, S.-C.T.; supervision, S.-H.L. All authors have read and agreed to the published version 
of the manuscript. 

Funding: This research was partially funded by the Ministry of Science and Technology of Taiwan, 
grant number MOST 110-2321-B-003-001, and an award for doctoral candidates in the humanities 
and social sciences to write doctoral dissertations, grant number MOST 108-2420-H-003-006-DR. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 7. Two loops of disaster duality.

Under the interaction of natural and artificial disasters, different stages produce
different responses of adaptation, resistance, governance, and transformation. The study
found that under the threat of natural disasters, agriculture communities should first
develop the ability to adapt until the big government brings in technology to generate the
ability to resist natural disasters, and then these communities should develop governance
and accordingly transform their agriculture industries. However, the resistance of big
government to natural disasters is also the key point in the negative loop, because the
economic benefit of land development is the main purpose of this resistance. These results
confirm the idea that the nature of disturbing the stability of resilience is an economic
factor [11]. However, in artificial disasters, resistance to the economy is what first arises,
followed by the development of adaptation, governance, and transformation processes.
Developing risk-awareness resistance actions is also key to turning community resilience
into a positive loop, because the purpose of changing farming practices is to become
environmentally friendly.

5. Conclusions

This study focuses on the interrelationship between disaster disturbance and reor-
ganization within the study area. The main findings of this study are as follows. (1) The
disaster resilience in the study area is rooted in the experience of land reclamation in the
early 17th century, and its main factors are the Hakka ethnic group, culture, feng shui,
and belief. (2) The community has experienced artificial disasters caused by political and
economic interventions that have formed residents’ awareness of risk and community
resilience. The main events have been anti-reservoir and anti-deep-water well movements.
(3) Cumulative artificial disasters have a greater impact on communities than unpredictable
natural disasters, and their main factors are groundwater level drops, the disappearances
of species, declines in agricultural production, farmland expropriation, and illegal mining.
(4) The duality of disasters forms positive and negative loops that generate the energy of
community resilience and agricultural regeneration in resistance, adaptation, governance,
and transformation. One limitation of this research is that the natural disaster data in the
Qing Dynasty currently only have descriptive text. With accurate spatial positioning, more
complete research could be conducted on the sources and subsequent impacts of disasters.
Additionally, studies of social resilience in this case are suggested in the future to obtain
comparable findings.
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Abstract: The sediment yield from numerous landslides triggered in Taiwan’s mountainous regions
by 2009 Typhoon Morakot have had substantial long-term impacts on the evolution of rivers. This
study evaluated the long-term evolution of landslides induced by 2001 Typhoon Nari and 2009
Typhoon Morakot in the Tsengwen Reservoir Watershed by using multiannual landslide inventories
and rainfall records for the 2001–2017 period. The landslide activity, vegetation recovery time, and the
landslide spatiotemporal hotspot analyses were used in the study. Severe landslides most commonly
occurred on 35–45◦ slopes at elevations of 1400–2000 m located within 500 m of the rivers. The
average vegetation recovery time was 2.29 years, and landslides with vegetation recovery times
exceeding 10 years were most frequently retrogressive landslide, riverbank landslides in sinuous
reaches, and the core area of large landslides. The annual landslide area decline ratios after 2009
Typhoon Morakot in Southern Taiwan was 4.75% to 7.45%, and the time of landslide recovery in the
Tsengwen reservoir watershed was predicted to be 28.48 years. Oscillating hotspots and coldspots
occupied 95.8% of spatiotemporal patterns in the watershed area. The results indicate that landslides
moved from hillslopes to rivers in the 2001–2017 period because the enormous amount of sediment
deposited in rivers resulted in the change of river geomorphology and the riverbank landslides.

Keywords: landslide evolution; landslide activity; vegetation recovery time; spatiotemporal hotspot

1. Introduction

Several serious landslide disaster events were caused by heavy rainfall events between
2001 and 2010, including 2001 Typhoon Toraji [1], 2004 Typhoon Mindulle [2], 2004 Typhoon
Aere, and 2009 Typhoon Morakot [3], in the mountainous areas of central and southern
Taiwan. The landslide events are believed to be related to the 1999 Chichi earthquake [4].
The return period of heavy rainfall brought by Typhoon Morakot (5–10 August 2009), which
caused approximately 45,000 landslides concentrated in central and southern Taiwan, was
estimated to be over 200 years [3]. Moreover, loose deposits from the numerous landslides
in mountainous areas continues to affect watershed evolution and landslide recovery. As
of 2021, mountainous areas in southern Taiwan remain under high risk of landslides and
debris flows.

The analysis of landslide recovery or landslide evolution had been widely used in the
long-term observation of landslide distribution after large earthquake events, including the
1999 Chichi earthquake [5], 2005 Kashimir earthquake [6], 2008 Wenchuan earthquake [7,8],
and 2015 Gorkha earthquake [9]. Landslide evolution in the years following a large
earthquake or extreme rainfall event in a watershed with dense landslide cases is the key
determinant of watershed management and the mitigation of secondary geohazards [10].
Some artificial factors, including land use [11,12] and road development [13], were the
significant factors for the evolution and reoccurrence of landslide. Some studies have been
conducted on the characteristics of landslide evolution, including landslide activity [6,7],
the spatiotemporal distributions of landslides [8,14], landslide recovery characteristics [15],
and landslide evolution trends [10,16], with regard to severe landslides induced by large
earthquakes or extreme rainfall. However, few studies have explored landslide evolution
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by examining spatiotemporal hotspots. Lin et al. (2017) [17] explained the distribution of
landslide hotspots and coldspots on a catchment scale by using multiannual records of
landslides, rainfall, and earthquakes for the 2003–2012 period in Taiwan. Conventional
hotspot analysis can only describe the clustering pattern and intensity of a particular spatial
location for a specific time interval; it cannot explain underlying trends over time [18]. The
spatiotemporal evolution of landslide distribution patterns is challenging to investigate
but merits scholarly attention.

New analysis methods by using the multi landslide inventories, including spatiotem-
poral hotspot and landslide activity, had been used to explore the characteristic of landslide
evolution after large earthquake or extreme rainfall events [6,7,19]. The emerging hot spot
analysis in ArcGIS Pro software has been employed in tracing the spread of COVID-19 [20],
locating the source area of pollutant emissions [16], and assessing spatiotemporal changes
in fisheries [21]. Emerging hotspot analysis was used in an assessment of long-term land-
slide evolution in Taiwan after 2009 Typhoon Morakot [19]. The results explained the
spatiotemporal pattern and distribution of landslide hotspots and coldspots. Landslide-
concentrated areas in the upper reaches of watersheds were determined to have poor
landslide recovery and be highly susceptible to further landslides [19]. Emerging hotspot
analysis can both explain changes in the spatiotemporal pattern and location of landslide
hot spots and evaluate the intensity and location of landslide clustering. Landslide activity
data have been employed in assessing the rates of and differences in landslide recov-
ery after large earthquake-induced landslides [6,7] but not after extreme rainfall-induced
landslide events.

The present study analyzed characteristics of landslide evolution by assessing land-
slide activity, estimating vegetation recovery time, and detecting the pattern and spatiotem-
poral distribution of landslides by using multiannual landslide inventories and long-term
rainfall records from 2001 to 2017. Moreover, the characteristics of landslide evolution after
large earthquakes were compared with the corresponding characteristics after extreme rain-
fall events. The Tsengwen Reservoir Watershed (TRW) suffered the most serious landslide
disasters of all reservoir watersheds in Taiwan following 2009 Typhoon Morakot. The land-
slide evolution characteristics in the watershed with dense rainfall-induced landslides are
poorly understood, but these characteristics represent information essential for watershed
management and disaster prevention.

2. Research Area

The TRW (Figure 1) is a watershed located in the upper reaches of the Tsengwen River
in southwestern Taiwan. The average elevation in the TRW is 959 m, and the average slope
is 29.2◦; 49.5% of the total area has a slope of greater than 30◦. According to 1/5000 basin
geological maps of Taiwan [22], the main stratigraphical formations in the TRW (Figure 2
and Table 1) include the Miocene-era Changchihkeng formation, Pliocene-era Ailiaochiao
formation, and Miocene- to Pliocene-era Tangenshan sandstone (occupying 34.2%, 16.6%,
and 16.4% of the watershed, respectively) [17]. The TRW is also surrounded by nine faults
(Figure 2). Regarding land use types, forest, agriculture, development, rivers, and bare
land account for 80.6%, 10.4%, 1.4%, 4.3%, and 3.3% of the total area based on the land use
maps produced in 2008 by National Land Surveying and Mapping Center in Taiwan.

The average (standard deviation) annual precipitation from 2001 to 2017, based on
the records of Matoushan Rainfall Station (Figure 1), was 2998.8 (934) mm. Rainfall
characteristics in the TRW are non-uniform in space and time. The 3 years with the most
precipitation were 2005 (4892 mm), 2008 (4118 mm), and 2001 (3764 mm). Those with the
least precipitation were 2003 (1533 mm), 2013 (1735 mm), and 2002 (1878 mm; Figure 3).
The difference between the precipitation in 2003 and that in 2005 is 1.12 times the average
annual precipitation. The total precipitation in the rainy season (May–October; 2749 mm)
was 91.7% of the average annual precipitation (2998.2 mm). The precipitation in August
2009, the largest monthly total in the considered period, was 2425 mm—70.2% of the annual
precipitation.
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Landslide and debris flow were the two main geohazards in the TRW, and the 1999
Chichi earthquake and heavy rainfall events during the 2000s were the main landslide
triggers. Typhoon Nari (9–10 September 2001) and Typhoon Morakot (5–10 August 2009)
caused the two main rainfall-induced landslide events during the 2000s. In the TRW, the
accumulated precipitation brought by 2001 Typhoon Nari and 2009 Typhoon Morakot was
990.5 and 2158.5 mm (62.5% of the annual precipitation in 2009), respectively. The landslide
ratios (i.e., the ratio of landslide area to watershed area) after 2001 Typhoon Nari and
2009 Typhoon Morakot were estimated to be 1.17% and 2.88%, respectively. Events with a
landslide ratio exceeding 1.0% are considered serious disaster events in Taiwan [3]; thus,
these two typhoons are regarded as serious disaster events within the TRW. The sediment
deposition volume in the Tsengwen Reservoir increased by approximately 1.28 × 108 m3

from 2001 to 2017 (Figure 3). According to the field survey results, the majority of landslides
can be classified as shallow landslide [23].

Table 1. Statistical data of landslide induced by 2001 Typhoon Nari and 2009 Typhoon Morakot in each stratigraphical
division in the TRW.

Stratigraphical Division Lithology Occ. Per. (%)
Landslide Ratio (%)

In 2001 In 2009

Water Area - 3.07 0.00 0.27
Alluvium Gravel, sand, silt, and clay 0.70 0.80 1.96

Ailiaochiao Formation Thin alternation of siltstone and shale 16.65 0.80 2.52
Changchihkeng Formation Sandstone, sandstone interbedded with shale 34.16 1.37 3.48

Chutouchi Formation Muddy sandstone, interbedded muddy sandstone and shale 2.76 0.36 5.43

Hunghuatzu Formation Thick-bedded fine sandstone or siltstone, thick alternation of
fine sandstone and siltstone 2.48 0.74 4.13
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Table 1. Cont.

Stratigraphical Division Lithology Occ. Per. (%)
Landslide Ratio (%)

In 2001 In 2009

Maopu Shale Shale with thin-bedded sandstone 0.99 0.17 5.69
Nanchuang Formation Alternation of sandstone and shale 12.44 1.93 2.91

Peiliao Shale Shale and sandy shale 5.58 0.34 1.00
Sanming Shale Shale, shale intercalated with thin-bedded siltstone 0.49 4.72 5.30

Terrace Deposits Sand, silt, mud and gravel 1.19 0.02 0.00
Tangenshan Sandstone Thick-bedded massive sandstone and muddy sandstone 16.39 1.45 2.65

Yenshuikeng Shale Massive shale, occasionally intercalated with
thin-bedded siltstone 3.11 0.44 2.13

Note: The Occ. Per. means the occupied percentage of each stratigraphical division area to the watershed area.

3. Materials and Method
3.1. Materials

A digital elevation model (DEM) and multiannual landslide inventories were the main
study materials. The DEM had a spatial resolution of 5 m, and the 5 m × 5 m grid was the
basic analysis unit in the study. The landslide inventories, corresponding to the 2001–2017
period, were produced by Taiwan’s Forestry Bureau, and landslides were identified from
images captured by the Formosat-2 satellite with spatial resolutions of 2–5 m. Multiannual
inventories of landslides in the TRW (for the years 2001–2017) were examined, and the
minimum landslide area in the inventories was 100 m2. Landslides with an area of greater
than 10 hectares (ha) were considered large landslides. The main types of landslide [24]
included in the annual landslide inventories from 2001 to 2017 in Taiwan were fall, slide,
and flow [19]. The deep-seated landslide cases, similar to the deep-seated gravitational
slope deformation in central Taiwan [25], were not listed in the annual landslide inventories.
Data on daily rainfall from 2001 to 2017 were collected from Matoushan Rainfall Station
(Figure 1). The TRW contains 14 subwatersheds (Figure 1). The subwatersheds in the upper,
middle, and lower reaches of the river are labeled as T01–T03, T04–T08, and T09–T14,
respectively.

A recovery characteristics comparison of landslides induced by large earthquake and
extreme rainfall events was conducted to explore the characteristic of landslide evolution.
The large earthquake-induced landslides considered were the landslide cases after the
2005 Kashmir Earthquake (Mw = 7.6) in Pakistan [9] and the 2008 Wenchuan Earthquake
(Mw = 7.9) in China [7,8,16]. The extreme rainfall-induced landslides used in the study
were landslides occurring in the Chishan River Watershed [10], Ailiao River Watershed [19],
and Taimali River Watershed [19] after 2009 Typhoon Morakot, and the TRW before and
after 2009 Typhoon Morakot.

3.2. Landslide Activity

Landslide activity, which is useful in analyzing the spatiotemporal evolution of land-
slides, has been assessed by using the presence or absence of landslides in specific years [7,8]
or by examining the ratio of the active landslide area to the total landslide area [26]. Fol-
lowing the landslide activity assessment methods used in the evolution discussion of
earthquake-induced landslide cases [6,14,27], the criteria for the five types of landslide
activity considered are presented in Table 2. The meaning of landslide activity used in
a single hillslope scale was the current moving condition of the hillslope [25], but that
used in a watershed scale was the vegetation recovery and the stability of loose materials
deposited on the hillslopes [6,14,27]. The meanings of extremely active, very active, and
active landslide were that the loose material deposited on the hillslope was instability or the
vegetation recovery was too poor to stabilize the hillslope. The inventories of landslides in
the TRW (2001–2017) were appropriate materials for assessing and comparing the activity
of landslides induced by 2001 Typhoon Nari and 2009 Typhoon Morakot. The landslide
activity induced by the typhoons was evaluated using multiannual landslide inventories
for the 2001–2008 and 2009–2017 periods.
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Table 2. The criteria of landslide activity in the study.

Activity Type Criteria

Extremely Active Landslides present in the annual inventories from 2001 to 2008 or
from 2009 to 2017.

Very Active Landslides present in the annual inventories from 2005 to 2008 or
from 2013 to 2017.

Active

Landslides present in the annual inventories of 2007 to 2008, or only
in the annual inventory of 2008 for 2001 Typhoon Nari. Landslides

present in the annual inventories of 2016 to 2017, or only in the
annual inventory of 2017 for 2009 Typhoon Morakot.

Dormant Landslides present in one or more annual inventories of 2001 to 2007
or 2009 to 2016 but absent in the annual inventory of 2008 or 2017.

Inactive Landslides present in the annual inventory of 2001 or 2009 but absent
in the annual inventories from 2002 to 2008 or 2010 to 2017.

3.3. Landslide Frequency and Vegetation Recovery Time

Landslide frequency in the study was defined as the total occurrence of landslide
identified in each grid from 2001 to 2017. The area that had been identified as landslide
at least once from 2001 to 2017 in the study had been named as the landslide-identified
area. The total occurrence of landslide-identified from 2001 to 2017 can be considered as
the maximum vegetation recovery time (in years). The landslide recovery time had been
estimated by using different factors, including landslide density [28], landslide rate [29],
number of landslides [30], and landslide area [6]. Vegetation recovery is a significant factor
to assess the landslide stability in long-term landslide evolution analysis [31] because
the reinforcement of vegetation root contributes to the hillslope stability, especially in
the shallow landslide cases [32,33]. The total occurrence of identified landslide of a grid
was three, which meant that the grid was identified as landslides three times over the
17-year period. If the three landslide-identified years were discontinuous (e.g., 2005, 2008,
and 2012), the vegetation recovery time was considered as 1 year. However, if the three
landslide-identified years were continuous (e.g., 2002–2004), the vegetation recovery time
was considered as 3 years. Herein, the maximum recovery time was taken as the vegetation
recovery time in the study. Vegetation recovery time can be employed as an index to assess
the difficulty of vegetation recovery in a watershed and in individual landslide cases.

3.4. Emerging Hotspot Analysis

The analysis of landslide spatiotemporal hotspots was based on the landslide spa-
tiotemporal cube (STC) model, which represented landslide clustering patterns in each
location at various time intervals. The STC model was composed of numerous 5 m × 5 m
landslides-identified grids in the TRW from 2001 to 2017 in chronological order. The time
series of landslide clustering intensity, represented by the combination of basic units at the
same location, described the temporal evolution of landslides.

The emerging spatiotemporal mining method in ArcGIS Pro software was used in the
STC model to explore the mechanism of temporal landslide evolution in the TRW. The Getis-
Ord Gi statistic [34] was used to estimate the clustering intensity and to classify hot spot
patterns (Table 3). The hotspot classification was based on the landslide clustering intensity
in the neighborhood of specific 5 m × 5 m grids in both time and space, and specific basic
units were designated as hotspots or coldspots if they featured high and low values of
landslide clustering, respectively. Under the emerging spatiotemporal mining method,
the consistency and intensity of landslide clustering in each time step was calculated,
as was the significance of the autocorrelation and dependence in the vicinity of specific
5 m × 5 m grids. The method also used a space-time implementation of the Mann-Kendall
statistic [35] to measure the intensity of landslide clustering in the neighborhood of specific
basic units. The time step was set as 1 year, and the neighborhood distance was set as 5, 25,
50, 100, and 200 m for further comparison in the study.

425



Water 2021, 13, 3479

Table 3. The classifications and definition of emerging landslide hotspots and coldspots in the study.

Pattern Definition

Consecutive
(CHS or CCS) *

A landslide grid with a single uninterrupted run of statistically significant hotspot or
coldspot grids in the final year during the research time period. The landslide grid has never
been a statistically significant hotspot or coldspot before the final hotspot or coldspot run.

Diminishing
(DHS or DCS)

A landslide grid that has been a statistically significant hotspot or coldspot for 90% of the
research time period, including the final year. In addition, the clustering intensity of

landslides in each year is decreasing (increasing) overall, and that decrease (increase) is
statistically significant.

Historical
(HHS or HCS)

The most recent year is not hotspot or coldspot, but at least 90% of the research time period
has been a statistically significant hotspot or coldspot.

Intensifying
(IHS or ICS)

A landslide grid that has been a statistically significant hotspot or coldspot for 90% of the
research time period. In addition, the clustering intensity of landslide for each year

increased (decreased) overall, and that increase (decrease) was statistically significant.

New
(NHS or NCS)

A landslide grid identified as a statistically significant hotspot or coldspot since the first
year of the research time period but was not previously identified as a statistically

significant hotspot or coldspot.

Oscillating
(OHS or OCS)

A statistically significant hotspot or coldspot for the final year that has a history of also
being a statistically significant coldspot or hotspot during a prior year. Less than 90% of the

research time period has been a statistically significant hotspot or coldspot.

Persistent
(PHS or PCS)

A landslide grid that has been a statistically significant hotspot or coldspot for 90% of the
research time period with no discernible trend indicating an increase or decrease in the

clustering intensity of landslide over time.

Sporadic
(SHS or SCS)

A landslide grid that is an on-again then off-again hotspot or coldspot. Less than 90% of the
research time period has been a statistically significant hotspot or coldspot, and none of the

time-step intervals have been a statistically significant coldspot or hotspot.

No pattern detected (No) The analysis grid does not fit any definition of hotspot or coldspot classifications

*: CHS and CCS are the abbreviations of consecutive hotspot and consecutive coldspot. The regulation of abbreviation was applied to every
hotspot and coldspot pattern in the study.

4. Results
4.1. Multiannual Rainfall and Landslide Data

The Matoushan Rainfall Station (Figure 1) was used as the representative rainfall
station in the TRW. The average annual rainfall recorded by the station from 2001 to 2017
(2998 mm) is 1.06 times that of the corresponding level from 1969 to 2020 (2835 mm) [36].
Table 4 presents data on daily and annual rainfall and on annual landslides in the TRW
from 2001 to 2017. The annual rainfall distribution in the TRW was clearly non-uniform in
time. The difference between the lowest annual rainfall (1533 mm in 2003) and the highest
annual rainfall (4892 mm in 2005) was 3359 mm, which is 1.12 times the average annual
rainfall. The daily rainfall corresponding to return periods of 1.11, 2, 5, 10, 20, 50, 100,
and 200 years, based on station records from 1969 to 2020, were estimated to be 144.5,
300.6, 447.9, 545.4, 639.0, 760.1, 850.9, and 941.3 mm, respectively [33]. The maximum daily
rainfall from 2001 to 2008 of 545.5 mm was observed twice, once during 2001 Typhoon
Nari and once during 2005 Typhoon Haitang, and the return period was estimated to be
10–20 years. The maximum daily rainfall during Typhoon Morakot of 1206.0 mm was the
highest amount of rainfall recorded at Matoushan Rainfall Station. The return period of
daily rainfall from 2010 to 2017 was <10 years, and the maximum daily rainfall of 502.5 mm
was recorded during 2015 Typhoon Soudelor.

The landslide area in 2001 (565.2 ha) was the highest for 2001–2008, and that in 2009
(1392.9 ha) marked the historical high recorded in the TRW. The average annual landslide
area corresponding to the 2009–2017 period was 2.25 times that of the 2001–2008 period.
The annual average number of landslides from 2009 to 2017 was 2.29 times larger than that
from 2001 to 2008.
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Southern Taiwan suffered serious landslide disaster during 2009 Typhoon Morakot,
and the TRW was located in this region. The number of landslides in 2009 was 5.3 times
larger than that in 2008. The number of the landslide cases with area greater than
100,000 m2, 1000–100,000 m2, and <1000 m2 in 2009 were 29, 1114, and 7, respectively.
The average landslide length/width ratio in all landslide cases induced by 2009 Typhoon
Morakot was 7.2, and this information showed that the majority type of landslide was
rainfall-triggered slide.

Table 4. The statistical data of annual rainfall and landslide from 2001 to 2017 in the TRW.

Year Annual Rainfall
(mm)

Daily Rainfall
(mm)

Return Period
(Years)

Landslide Area
(ha)

Landslide
Number

2001 3764 545.5 10 to 20 565.2 324
2002 1878 96.5 <1.11 375.3 241
2003 1533 233.0 1.11 to 2 117.4 194
2004 2593 502.5 5 to 10 154.4 294
2005 4892 545.5 10 to 20 252.1 375
2006 3774 436.5 5 to 10 108.0 169
2007 3917 267.0 1.11 to 2 216.0 255
2008 4112 501.5 5 to 10 153.5 217
2009 3454 1206.0 >200 1392.9 1150
2010 2492 379.5 2 to 5 775.6 1091
2011 2225 241.5 1.11 to 2 422.4 434
2012 3569 433.0 2 to 5 375.5 513
2013 1736 381.0 2 to 5 388.3 565
2014 2077 172.5 1.11 to 2 352.0 461
2015 3050 502.5 5 to 10 240.8 345
2016 3478 491.5 5 to 10 270.4 407
2017 2428 334.0 2 to 5 312.6 425

Note: The daily rainfall meant the maximum daily rainfall in the specific year, and the return period was based on the daily rainfall.

4.2. Landslide Activity

Landslide activity data provide insights into the stability of rainfall-induced land-
slides for the analysis of the spatial distribution of landslide evolution. Figure 4 presents
the spatial distribution of landslide activity after 2001 Typhoon Nari and 2009 Typhoon
Morakot in the TRW. Areas of extremely active, very active, active, dormant, and inactive
landslides after 2001 Typhoon Nari constituted 0.04, 40.8, 277.9, 939.5, and 561.4 ha, re-
spectively. The corresponding areas after 2009 Typhoon Morakot were 54.0, 82.0, 424.7,
1577.0, and 762.2 ha, respectively. The accumulated area of extremely active, very active,
and active landslides after 2009 Typhoon Morakot was 1.76 times that after 2001 Typhoon
Nari, indicating that the landslides induced by Typhoon Morakot were more difficult to
recover. The extremely active landslide area in subwatersheds in the upper reaches of the
TRW increased substantially from 0 ha after 2001 Typhoon Nari to 42 ha after 2009 Typhoon
Morakot, reflecting the difficulty of landslide recovery in the upstream subwatersheds.

A comparison of landslide activity after the 2005 Kashmir Earthquake [6] and 2009
Typhoon Morakot revealed that the proportions of unstable (extremely active, very active,
or active) landslides and stable landslides (dormant or inactive landslides) were 28% and
72% in 2018 (13 years after the 2005 Kashmir earthquake). However, the corresponding
proportions 8 to 9 years after typhoons in the TRW were 17.5–19.3% and 80.7–82.5%,
respectively. These results indicate that vegetation recovery of landslides induced by 2009
Typhoon Morakot in the TRW was easier than vegetation recovery of landslides induced
by 2005 Kashimir earthquake in Pakistan [6].
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4.3. Relationship between Landslide Ratio and Geomorphological Factors

The relationship between earthquake-induced landslide area and geomorphological
control factors, including elevation, slope, and distance to the river, had been discussed
in analyses of the evolution of earthquake-induced landslides [6–8,18]. The temporal
distribution of landslide ratios with respect to elevation, slope, and distance to the river
from 2001 to 2017 in the TRW is shown in Figure 5. The landslide ratio distribution for
the 2001–2007 period was used to observe the evolution of landslides induced by 2001
Typhoon Nari, and that for the 2009–2017 period was used to examine the evolution of
landslides induced by 2009 Typhoon Morakot.

The landslide ratios were concentrated at 1800 to 2200 m elevation intervals after
2001 Typhoon Nari. However, from 2003 to 2007, they were concentrated at 800–1400 m
elevation intervals. The landslide ratios at elevations below 1000 m and above 1600 m
decreased notably during this period. After 2009 Typhoon Morakot, the landslide ratios
were concentrated at 600 m to 1400 m elevation intervals. From 2010 to 2017, they were
concentrated at 1200 m to 1800 m elevation intervals. The landslide ratios at elevations
below 1200 m decreased notably, and those at elevations above 1800 m exhibited small
changes from 2010 to 2017.

Only the distribution of extremely active landslides after 2009 Typhoon Morakot is
plotted herein (Figure 5) because the area of extremely active landslides after 2001 Typhoon
Nari was quite small (0.04 ha). Extremely active landslides were clustered at 1400 to 2000 m
elevation intervals after Typhoon Morakot. The extremely active or very active landslides
were clustered at moderately high elevations after large earthquakes. For example, they
were clustered from 1000 to 1600 m after the 2005 Kashmir Earthquake [6] and below
2000 m after the 2008 Wenchuan Earthquake [7]. Overall, the clustered area and locations
of extremely active or very active landslides after large earthquakes or extreme rainfall
events was very similar.

The landslide ratios were concentrated at two slope intervals, 35◦ to 45◦ and 55◦

to 60◦, after 2001 Typhoon Nari and 2009 Typhoon Morakot. The landslide ratios were
clustered at the same intervals from 2003 to 2007 and from 2010 to 2017. The extremely
active landslides were concentrated at 35–45◦ slope intervals after 2009 Typhoon Morakot.
Extremely active or very active landslides were also clustered at 30–40◦ after the 2005
Kashmir Earthquake [6] and at 30◦ to 50◦ after the 2008 Wenchuan Earthquake [7].
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In Taiwan, loose debris from landslides after heavy rainfall events was generally
deposited in rivers and gullies [10,15]. The TRW was divided into 10 buffer areas with
100 m distance intervals from the rivers. The landslide ratios in all river buffer intervals
after 2001 Typhoon Nari ranged from 0.88% to 1.63%, but those after 2009 Typhoon Morakot
were all greater than 1.86%. The highest landslide ratio in all river buffer intervals after
2001 Typhoon Nari was 1.63% within 1000 m of the river, and that after 2009 Typhoon
Morakot was 6.3% within 100 m of the river.

Extremely active landslides were clustered along the fault line after the 2005 Kashmir
Earthquake [6] but were concentrated along rivers in the TRW after 2009 Typhoon Morakot.
This indicates that large pieces of loose material from landslides were transported by excess
surface runoff and flood discharge and deposited in the rivers, thereby inducing riverbank
landslides and change of river geomorphology.

4.4. Landslide Frequency and Vegetation Recovery Time

The distribution of landslide frequency from 2001 to 2017 in the TRW is shown in
Figure 6. The total landslide-identified area was 26.4 km2 (5.5% of the total area), and the
average landslide frequency was 2.29. The area with landslide frequency = 1 constituted
16.28 km2, which was 61.8% of the landslide-identified area. The area with landslide
frequency greater than 10 constituted 0.394 km2. Those landslides were most commonly
retrogressive landslide or riverbank landslides in the sinuous reaches and the core area of
the large landslide cases.
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in the TRW.

The landslide frequency in the subwatersheds in the upper reaches of the TRW
(2.28–3.73) differed substantially from the distributions in the subwatersheds in the middle
and lower reaches (1.82–1.97 and 1.72–2.35, respectively). The average vegetation recovery
time in the subwatersheds in the upper reaches was 1.41 to 1.59 times longer than that in the
subwatersheds in the middle and lower reaches. The subwatersheds in the upper reaches
had the highest landslide ratio (Figure 6b,c) and smallest catchment area, indicating that
the large amount of sediment yield from numerous landslides was deposited in the narrow
upper reaches, and that resulted in the change of river flowing path and the riverbank
landslides.

Large landslides and riverbank landslides in the sinuous reaches had the longest veg-
etation recovery time of all landslides in the TRW. The 2009 landslide inventory contained
22 large landslide cases, the mean vegetation recovery time of which was 3.29 years. Two
large landslide cases with mean vegetation recovery times of greater than 6 years occurred
in the sinuous upper reaches of the subwatersheds. The large landslide occurring in a
gully source area in the T01 subwatershed (Figure 7) can be a typical example to explain
the vegetation recovery condition. The area and relief of the large landslide were 35.7 ha
and 503.2 m, and the average slope was 42.1◦. The stratigraphical formation and lithology
of the large landslide were the Nanchuang formation and the sandstone and shale. The
activity type of the large landslide was very active. The mean vegetation recovery time of
the large landslide was 10.25 years. The vegetation recovery time in the boundary area of
the large landslide was less than 3 years, indicating that landslides were easily re-induced
in this boundary area. However, the vegetation recovery time in the core area of the large
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landslide case was over 7 years, and vegetation recovery in the core area of the large
landslide was difficult.
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The river buffer area was defined as the area within 300 m of the river. The landslide-
identified area occupied 7.5% of the total area in the river buffer area in the TRW, and the
mean vegetation recovery time in the river buffer area was 2.65 years. The proportion of the
landslide-identified area and the landslide frequency in the river buffer area were slighter
larger than those in the TRW. The enormous amount of loose material from landslides was
deposited in the confluence of river waters and sinuous reaches, resulting in riverbank
landslides, especially in the upper reaches of landslide-concentrated subwatersheds. The
riverbank landslide occurring in the confluence downstream of the T01 and T02 subwater-
sheds (Figure 8) is a typical example demonstrating the impacts of large sediment deposits
in sinuous reaches on landslide recovery. The area and relief of the large landslide were
0.92 ha and 269.7 m, and the average slope was 32.5◦. The stratigraphical formation and
lithology of the large landslide were the Changchihkeng formation and the sandstone and
shale. The activity type of the large landslide was active and very active. The riverbank
landslide was located in a sinuous reach with the sinuosity index = 1.62, and the sedi-
ment deposition depth from 2009 to 2011 in this sinuous reach was estimated as 4.32 m.
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The mean vegetation recovery time of the riverbank landslide (Figure 8) was 6.79 years
(2.56 times longer than that in the TRW). The considerable amount of sediment deposition
in the river in the vicinity of the riverbank landslide resulted in the formation of river
meanders and several new riverbank landslides.
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4.5. Landslide Spatiotemporal Hotspot Distribution and Trend

The total number of 5 m × 5 m grids in the landslide STC model, collected from
the aggregated spatiotemporal data corresponding to all landslide grids from 2001 to
2017 in the TRW, was 17,861,645. The spatiotemporal hot spot distribution in the TRW
is displayed in Figure 9. Neighborhood distance settings in analyses of spatiotemporal
landslide hotspots have not yet been suggested. Therefore, these settings were based on a
performance comparison of results obtained through analyses performed using various
neighborhood distances. Specifically, the distances were set to 5, 25, 50, 100, and 200 m.
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The no pattern area in the analysis with a 5 m neighborhood distance occupied
85.6% of the TRW, but that with a neighborhood distance of ≥25 m dropped to 2.4–3.4%
(Figure 9d). This result indicates that the 5 m neighborhood distance setting in the analysis
was excessively short for detecting landslide hotspots. Furthermore, the 5 m setting yielded
only five spatiotemporal patterns for the entire TRW. By contrast, when neighborhood
distances of ≥25 m were used, 10–12 spatiotemporal patterns were generated (Figure 9a–c).
The main hotspot patterns in the results obtained using a 5 m neighborhood distance were
sporadic hotspot (SHS) and consecutive hotspot (CHS). The corresponding patterns in
the results obtained using a neighborhood distance of ≥25 m were oscillating hotspot
(OHS) and oscillating coldspot (OCS). The spatiotemporal distribution of hotspots in the
results obtained using 25, 50, 100, and 200 m neighborhood distances were similar yet
distinct from that in the results obtained using the 5 m neighborhood distance. Therefore,
the neighborhood distance setting in spatiotemporal analyses of landslide hotspots was
suggested to be ≥25 m from the result in the study.

The numbers of 5 m × 5 m grids corresponding to coldspot trends in the analyses
performed using neighborhood distances of 200 and 25 m were 2.46 and 3.80 times the
number of bins corresponding to hotspot trends. These results indicate that the landslide
clustering intensity in the TRW was low. The summed proportion of OCS and OHS in
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analyses with neighborhood distances of ≥25 m in the TRW was greater than 95.8%. In
other words, the dominant spatiotemporal landslide pattern in the TRW was oscillating.
The spatiotemporal hot spot pattern of the large landslide in the T01 subwatershed and
the riverbank landslide in the T03 subwatershed are presented in Figures 7d and 8d,
respectively. Oscillating hotspots and coldspots characterized these two landslides.

5. Discussion

The landslide recovery rate and landslide activity are the keys to understanding the
evolution of watersheds with frequent and dense landslides. Studies have addressed the
rate of landslide recovery induced by large earthquake events [6–8], but few have examined
the rate of recovery from landslides induced by extreme rainfall events [19]. The present
study discussed and compared differences in the distribution rate of recovery from active
landslides induced by large earthquakes and extreme rainfall events.

The majority of landslide types after the 2005 Kashimir earthquake were rock falls
and rock slides [6], and those after the 2008 Wenchuan earthquake were debris slides [7].
The majority of landslide types after 2009 Typhoon Morakot in Taiwan were debris slides.
Herein, the landslide area decline ratio was defined as the landslide area in the specific
year to the landslide area in the year a large earthquake or extreme rainfall event occurred.
For example, the landslide areas in the TRW in 2009 and 2010 were 1392.9 and 775.6 ha,
and the landslide area decline ratio in 2010 was 55.7%. The landslide area decline ratios for
the large earthquake- and extreme rainfall-induced landslides are shown in Figure 10. For
each landslide event, the linear fitting equation was estimated. The slope coefficient of this
equation can be regarded as the average annual landslide area decline ratio, which was
used in the comparison of landslide recovery.
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The annual landslide area decline ratios corresponding to the large earthquake events
(5.02–9.56%) were slightly larger than those corresponding to the extreme rainfall events
(4.75–7.45%). The R2 values of the linear fitting equations for large earthquake-induced
landslides exceeded those of the corresponding equations for extreme rainfall-induced
landslides. This indicates that recovery from large earthquake-induced landslides was
more stable than recovery was from extreme rainfall-induced landslides. If the declining
landslide area in the TRW after Typhoon Morakot follows the average annual ratio of
landslide area decline, 28.48 years would be required for a return to the pretyphoon
landslide area.

The characteristic and evolution comparison of landslide induced by large earthquake
events in Northern Pakistan and Sichuan, China and 2009 Typhoon Morakot in TRW are
shown in Table 5. The main reasons for the difference of landslide evolution between the
large earthquake-induced or extreme rainfall-induced landslide cases were the landslide-
inducing factors and the deposition location of loose materials yield from landslide. The
inducing factor for the earthquake-induced slope instability was the ground shaking force
to reduce the shear strength of slope [37], while that for the rainfall-induced slope instability
was the infiltration water [38]. The extreme active, very active, and active landslide after
large earthquake-induced landslide events were located in the neighboring area of faults,
including the Muzaffarbad fault in North Pakistan [6] and the Longmenshan fault in
China [7,16], but those after extreme rainfall-induced landslide events in the TRW were
located in the neighboring area of rivers and gullies (Figure 4). The percentage of the
extreme active, very active, and active landslide areas located in the area within 500 m of
rivers or the source area of large landslide cases after 2001 Typhoon Nari in the TRW was
74.9%, and those after 2009 Typhoon Morakot was 85.3%. The pattern and distribution
of large earthquake-induced [6,7] or extreme rainfall-induced landslide spatiotemporal
hotspot demonstrated that the landslide hotspot had been moving from mountain regions
to the neighborhood area of rivers, but the time needed was the main difference between
the large earthquake-induced or extreme rainfall-induced landslide events. The landslide
ratio in the area within 500 m to rivers in the first year after 2009 Typhoon Morakot in
the TRW ranged from 2.4% to 6.3% (Figure 5c), which was much larger than that in the
first year after the 2008 Wenchuan earthquake-induced landslide events in China [16]. The
evolution of disaster types after extreme rainfall-induced landslide events in the TRW was
from numerous landslide cases in the hillslope to the river geomorphological changes
and riverbank landslide due to much sediment deposition in the rivers, especially in
the upstream watersheds. This was also the main reasons for the difficulty of landslide
recovery in the T01 and T02 subwatersheds. The key to reduce the disaster in the following
years after extreme rainfall-induced landslide events based on the results in the study was
how to control the huge amount of loose material yield from numerous landslides and that
deposited in the rivers.

Table 5. The characteristic and evolution comparison of large earthquake-induced and extreme rainfall-induced landslide events.

Events 2005 Kashimir Earthquake 2008 Wenchuan Earthquake 2009 Typhoon Morakot

Research area Northern Pakistan Sichuan, China TRW in the study

Scale ML = 7.6 ML = 7.9 Heavy rainfall with return
period greater than 200 years

Landslide triggers ground shaking force to reduce the shear strength of slope infiltration water to reduce the
shear strength of slope

Landslide types

debris fall, debris flow, debris
slide, rock falls (majority),

rock topple and rock slides
(majority) [6]

Rock falls, rock slides, rock
flows, debris falls, debris

slides (majority), and debris
flows [7,16,26]

debris falls, debris slide
(majority), and debris flows

Sediment deposition location concentrated in the down-hillslope to rivers near the fault lines concentrated in the
down-hillslope to rivers

Landslide volume (m3) 2.16 × 109 [6] 5–15 × 109 [39] 6.65 × 106 [40] *
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Table 5. Cont.

Events 2005 Kashimir Earthquake 2008 Wenchuan Earthquake 2009 Typhoon Morakot

Distribution of extremely active and very active landslide
Elevation 1000m to 1600 m lower than 2000 m 1200 m to 1800 m

Slope 30◦ to 40◦ 30◦ to 50◦ 30◦ to 40◦

Fault or rivers close to the
Muzaffarbad faults

close to the
Longmenshan faults -

Rivers - 100 to 400 m to the rivers <300 m to the rivers
Long-term landslide evolution

Annual landslide area
decline ratios 5.02% 9.56% 7.45%

*: The landslide volume induced by 2009 Typhoon Morakot in the TRW was estimated by using the empirical equations [40].

6. Conclusions

This study evaluated landslide activity and vegetation recovery time and detected
the spatiotemporal hotspots of extreme rainfall-induced landslides in the TRW by using
annual landslide inventories and long-term rainfall records from 2001 to 2017. Areas
of extreme rainfall-induced landslides and landslides in general decreased consistently
following 2001 Typhoon Nari and 2009 Typhoon Morakot. The return period of rainfall
events caused a slight increase in the area of number of landslides; during 2002–2008, it
was greater than 10 years. In the 2010–2017 period, it was greater than 2 years. The area of
extremely active landslides in the TRW after 2009 Typhoon Morakot was notably larger
than that after 2001 Typhoon Nari, and extremely active landslides were clustered in the
subwatersheds in the upper reaches of the TRW. The study also discussed the relationship
between temporal landslide distribution and geomorphological factors, including elevation,
slope, and distance to the river. Landslides in the years following typhoon events were
concentrated at 1400 to 2000 m elevations on 35◦ to 45◦ slopes within 500 m of the river. The
average vegetation recovery time in the TRW was 2.29 years, and landslides with vegetation
recovery times of greater than 10 years were commonly retrogressive landslide, riverbank
landslides in the sinuous reaches, and landslides in the core area of large landslides. The
time required to recover from landslides in the subwatersheds in the upper reaches was
1.41 to 1.59 times longer than the time required to recover from landslides in subwatersheds
in the middle and lower reaches. The main spatiotemporal pattern of landslides in the
TRW, including in the subwatersheds in the upper reaches, was characterized by oscillating
hotspots and coldspots. The annual landslide area decline ratio in the TRW after Typhoon
Morakot was estimated to be 94.08%, and approximately 28.5 years is required for a return
to the pretyphoon landslide area. Findings on the characteristics of landslide recovery,
the distribution of landslide activity, and the spatiotemporal patterns of landslides are
useful for watershed management and disaster prevention in areas where rainfall-induced
landslides commonly occur.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan (R.O.C.),
grant number MOST 109-2625-M-035-005 and the Project Research in Feng Chia University (grant
number: 20H00710 and 21H00710).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

436



Water 2021, 13, 3479

References
1. Cheng, J.D.; Haung, Y.C.; Wu, H.L.; Yen, J.L.; Chang, C.H. Hydrometeorological and landuse attributes of debris flows and debris

floods during typhoon Toraji, July 29–30, 2001 in central Taiwan. J. Hydrol. 2005, 306, 161–173. [CrossRef]
2. Milliman, J.D.; Lee, T.Y.; Huang, J.C.; Kao, S.J. Impact of catastrophic events on small mountainous rivers: Temporal and spatial

variations in suspended- and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle,
July 2–6, 2004. Geochim. Cosmochim. Acta 2017, 205, 272–294. [CrossRef]

3. Wu, C.H.; Chen, S.C.; Chou, H.T. Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the
Kaoping Watershed, Taiwan. Eng. Geol. 2011, 123, 13–21. [CrossRef]

4. Lin, C.W.; Liu, S.H.; Lee, S.Y.; Liu, C.C. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central
Taiwan. Eng. Geol. 2006, 86, 87–101. [CrossRef]

5. Lin, C.Y.; Chuang, C.W.; Lin, W.T.; Chou, W.C. Vegetation recovery and landscape change assessment at Chiufenershan landslide
area caused by Chichi earthquake in central Taiwan. Nat. Hazards 2010, 53, 175–194. [CrossRef]

6. Shafique, M. Spatial and temporal evolution of coseismic landslides after the 2005 Kashmir earthquake. Geomorphology
2020, 362, 107228. [CrossRef]

7. Yang, W.; Qi, W.; Wang, M.; Zhang, J.; Zhang, Y. Spatial and temporal analyses of post-seismic landslide changes near the
epicentre of the Wenchuan earthquake. Geomorphology 2017, 276, 8–15. [CrossRef]

8. Li, C.R.; Wang, M.; Liu, K. A decadal evolution of landslides and debris flows after the Wenchuan earthquake. Geomorphology
2018, 323, 1–12. [CrossRef]

9. Kincey, M.E.; Rosser, N.J.; Robinson, T.R.; Densmore, A.L.; Shrestha, R.; Pujara, D.S. Evolution of coseismic and post-seismic
landsliding after the 2015 Mw 7.8 Gorkha earthquake, Nepal. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005803. [CrossRef]

10. Wu, C.H. Landslide susceptibility based on extreme rainfall-induced landslide inventories and the following landslide evolution.
Water 2019, 11, 2609. [CrossRef]

11. Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 2003, 51,
297–314. [CrossRef]

12. Van Beek, L.P.H.; Van Asch, T.W. Regional assessment of the effects of land-use change on landslide hazard by means of physically
based modelling. Nat. Hazards 2004, 31, 289–304. [CrossRef]

13. Phillips, C.; Hales, T.; Smith, H.; Basher, L. Shallow landslides and vegetation at the catchment scale: A perspective. Ecol. Eng.
2021, 173, 106436. [CrossRef]

14. Valenzuela, P.; Domínguez-Cuesta, M.J.; García, M.A.M.; Jiménez-Sánchez, M. A spatio-temporal landslide inventory for the NW
of Spain: BAPA database. Geomorphology 2017, 293, 11–23. [CrossRef]

15. Wu, C.H. Comparison and evolution of extreme rainfall-induced landslides in Taiwan. ISPRS Int. J. Geo-Inf. 2017, 6, 367.
[CrossRef]

16. Chen, M.; Tang, C.; Xiong, J.; Shi, Q.Y.; Gong, L.F.; Wang, X.D.; Tie, Y. The long-term evolution of landslide activity near the
epicentral area of the 2008 Wenchuan earthquake in China. Geomorphology 2020, 367, 107317. [CrossRef]

17. Lin, S.C.; Ke, M.C.; Lo, C.M. Evolution of landslide hotspots in Taiwan. Landslides 2017, 14, 1491–1501. [CrossRef]
18. Cheng, S.; Zhang, B.; Peng, P.; Yang, Z.; Lu, F. Spatiotemporal evolution pattern detection for heavy-duty diesel truck emissions

using trajectory mining: A case study of Tianjin, China. J. Clean. Prod. 2020, 244, 118654. [CrossRef]
19. Wu, C.H.; Lin, C.Y. Spatiotemporal Hotspots and Decadal Evolution of Extreme Rainfall-Induced Landslides: Case Studies in

Southern Taiwan. Water 2021, 13, 2090. [CrossRef]
20. Purwanto, P.; Utaya, S.; Handoyo, B.; Bachri, S.; Sari, I.; Sastro, K.; Utomo, B.; Aldianto, Y.E. Spatiotemporal analysis of COVID-19

spread with emerging hotspot analysis and space–time cube models in East Java, Indonesia. ISPRS Int. J. Geo-Inf. 2021, 10, 133.
[CrossRef]

21. Everett, B.I.; Fennessy, S.T.; van den Heever, N. Using hotspot analysis to track changes in the crustacean fishery off KwaZulu-
Natal, South Africa. Reg. Stud. 2021, 41, 101553. [CrossRef]

22. Sinotech Consultants. Geological Investigation and Database Construction for the UpstreamWatershed of Flood-Prone; Central Geological
Survey, Ministry of Economic Affairs, R.O.C: Taipei, Taiwan, 2007.

23. Tsai, K.J.; Lee, M.H.; Chen, Y.R.; Chen, X.Y. A Study on the Sediment Quanity Variation of Large Scale Landslides Induced by
Extremely Heavy Rainfall Occurred at Zengwen Watershed in Southern Taiwan. Min. Metall. 2017, 61, 8–24. (In Chinese)

24. Varnes, D.J. Slope Movement Types and Processes. In Special Report 176: Landslides: Analysis and Control; Schuster, R.L., Krizek,
R.J., Eds.; Transportation and Road Research Board, National Academy of Science: Washington, DC, USA, 1978; pp. 11–33.

25. Lin, H.H.; Lin, M.L.; Lu, J.H.; Chi, C.C.; Fei, L.Y. Deep-seated gravitational slope deformation in Lushan, Taiwan: Transformation
from cleavage-controlled to weakened rockmass-controlled deformation. Eng. Geol. 2020, 264, 105387. [CrossRef]

26. Tang, C.X.; VanWesten, C.J.; Tanyas, H.; Jetten, V.G. Analysing post-earthquake landslide activity using multi-temporal landslide
inventories near the epicentral area of the 2008 Wenchuan earthquake. Nat. Hazards Earth Syst. Sci. 2016, 16, 2641–2655. [CrossRef]

27. Hervás, J.; Barredo, J.I.; Rosin, P.L.; Pasuto, A.; Mantovani, F.; Silvano, S. Monitoring landslides from optical remotely sensed
imagery: The case history of Tessina landslide, Italy. Geomorphology 2003, 54, 63–75. [CrossRef]

28. Marc, O.; Behling, R.; Andermann, C.; Turowski, J.M.; Illien, L.; Roessner, S. Long-term erosion of the Nepal Himalayas by
bedrock landsliding: The role of monsoons, earthquakes and giant landslides. Earth Surf. Dyn. 2019, 7, 107–128. [CrossRef]

437



Water 2021, 13, 3479

29. Barth, S.; Geertsema, M.; Bevington, A.R.; Bird, A.L.; Clague, J.J.; Millard, T. Landslide response to the 27 October 2012 earthquake
(MW 7.8), southern Haida Gwaii, British Columbia, Canada. Landslides 2020, 17, 517–526. [CrossRef]

30. Saba, S.B.; van der Meijde, M.; van derWerff, H. Spatiotemporal landslide detection for the 2005 Kashmir earthquake region.
Geomorphology 2010, 124, 17–25. [CrossRef]

31. Yang, W.; Qi, W.; Zhou, J. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake.
Ecol. Indic. 2018, 89, 438–444. [CrossRef]

32. Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [CrossRef]
33. Saito, H.; Uchiyama, S.; Teshirogic, K. Rapid vegetation recovery at landslide scars detected by multitemporal high-resolution

satellite imagery at Aso volcano, Japan. Geomorphology 2021, 398, 107989. [CrossRef]
34. Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [CrossRef]
35. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245. [CrossRef]
36. Sheen, S.W. Frequency Analysis of Annual 1-day Maximum Rainfall in the Upstream Drainage Area of Zeng-Wen River. Crop.

Environ. Bioinform. 2016, 13, 1–12. (In Chinese)
37. Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake

region. Geomorphology 2008, 101, 631–642. [CrossRef]
38. Chiu, Y.J.; Lee, H.Y.; Wang, T.L.; Yu, J.; Lin, Y.-T.; Yuan, Y. Modeling Sediment Yields and Stream Stability Due to Sediment-Related

Disaster in Shihmen Reservoir Watershed in Taiwan. Water 2019, 11, 332. [CrossRef]
39. Korup, O.; Wang, G.H. Chapter 8-Multiple Landslide-Damming Episodes. In Landslide Hazards, Risks, and Disasters; Elsevier:

Amsterdam, The Netherlands, 2015; pp. 241–261.
40. Chan, H.C.; Chang, C.C.; Chen, S.C.; Wei, Y.S.; Wang, Z.B.; Lee, T.S. Investigation and analysis of the characteristics of shallow

landslides in mountainous areas of Taiwan. J. Chin. Soil Water Conserv. 2015, 46, 19–28. (In Chinese)

438



Citation: Chiu, Y.-Y.; Wu, Y.-H.; Fu,

K.-L.; Lai, T.-C.; Chen, H.-E.; Chen,

S.-C. Nature-Based Solutions for

Disaster Reduction and Improving

Ecosystem Services in the Hutoubi

Watershed, Taiwan. Water 2023, 15,

2527. https://doi.org/10.3390/

w15142527

Academic Editors: Brian Kronvang

and Richard Smardon

Received: 31 May 2023

Revised: 24 June 2023

Accepted: 9 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Nature-Based Solutions for Disaster Reduction and Improving
Ecosystem Services in the Hutoubi Watershed, Taiwan
Yen-Yu Chiu 1, Yi-Hung Wu 2, Kuei-Lin Fu 3, Tsung-Cheng Lai 4, Hung-En Chen 1 and Su-Chin Chen 1,5,*

1 Department of Soil and Water Conservation, National Chung Hsing University, Taichung 40227, Taiwan;
yenyucc@email.nchu.edu.tw (Y.-Y.C.); hechen@email.nchu.edu.tw (H.-E.C.)

2 Sin-Hua Forest Area Experimental Forest Management Office, National Chung Hsing University,
Tainan 71249, Taiwan

3 Tainan Branch, Soil and Water Conservation Bureau, Tainan 701017, Taiwan
4 Lee Cheng Engineering Consultant Co., Ltd., Tainan 71842, Taiwan
5 Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University,

Taichung 40227, Taiwan
* Correspondence: scchen@nchu.edu.tw; Tel.: +886-4-2285-1558

Abstract: The Hutoubi Reservoir and its mainstream, Huyuan Stream, in the southern mountainous
region of Taiwan, have experienced riverbed sedimentation and flood disasters for the past 150 years.
In addition to climate change, it is necessary to scientifically consider its regulation for the next
hundred years. This study adopted a collaborative approach, involving industry, government, and
academia, using Nature-based Solutions (NbS) to enhance ecosystem services. The solution layout
is constructed by widening the channel and constructing additional farm ponds and wetlands. An
hydraulic simulation indicated that flood control was addressed. The restoration project would create
diverse aquatic habitats by simulating and evaluating the distribution of ecological biotopes, using
porous materials as revetments. It provided urban residents with forest leisure and recreational sites
and supported the local agricultural and forestry products. The restoration has propagated local
culture and created environmental and professional education. Therefore, ecological services are
enhanced regarding regulation, support, provision, and culture. This pilot study, led by researchers,
aimed to promote comprehensive management concepts considering all stakeholders and their active
participation. We integrated NbS into the watershed and its river system as a pathway for facing the
challenges of rapid urbanization and climate change and improving ecosystem services.

Keywords: mountain stream facilities; Nature-based Solutions (NbS); ecosystem services; climate
change; disaster reduction; industry-government-academia collaboration

1. Introduction

The United Nations adopted the “2030 Agenda for Sustainable Development” in 2015,
which includes the 15th Sustainable Development Goal (SDG) that urgently calls on all
countries in global partnerships to take action on address climate change and strive to
protect our terrestrial ecosystems and forest resources while stimulating economic growth.
In this context, Nature-based Solutions (NbS) and related concepts are viewed as pathways
to achieving the SDGs in various fields. NbS are defined as “actions to protect, sustainably
manage, and restore natural or modified ecosystems, that address societal challenges effectively and
adaptively, simultaneously providing human well-being and biodiversity benefits” [1]. Recently,
there has been a noticeable surge in attention directed towards NbS, which are progressively
being employed as a viable alternative to conventional engineering methods.

Several cases have been recognized as practical demonstrations of NbS. For instance,
the Elwha River Restoration Project in the United States implemented measures like reveg-
etation and removal of dams to restore the river’s natural processes and ecosystems [2,3].
The Netherlands’s Room for the River program combines traditional measures with NbS,
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such as creating floodplains and wetlands to manage flood risk [4,5]. These examples
illustrate the importance of integrating NbS into river management strategies, promoting
sustainable and resilient systems that benefit humans and the environment [6]. NbS offers
several advantages, such as enhancing biodiversity, improving water quality, and miti-
gating the impacts of floods and droughts [1,7]. Additionally, it can provide recreational
opportunities and contribute to the local economy through eco-tourism [8,9]. Moreover,
NbS typically have lower maintenance costs than traditional engineering methods and can
enhance the long-term sustainability of river management [10].

The international trend towards the adoption of NbS is increasingly evident. However,
one of the current challenges is translating global policies into national and local policies
and legal frameworks to further mainstream and upscale NbS [11]. This challenge is
particularly pronounced in Asia where many developing regions are facing environmental
degradation due to economic, population, and cultural factors [12]. According to data
from the Asian Development Bank, to sustain population and infrastructure development
and address climate change, approximately USD 53 billion per year in climate-adjusted
water and sanitation infrastructure investments are required in the Asia region from 2016 to
2030 [13]. However, the competition for limited government funding and resources for NbS
varies in different countries. This administrative obstacle poses a difficulty in promoting
the adoption of NbS [7,9,14,15].

On the other hand, Taiwan’s suburban mountain environment has both ecological
diversity and environmental sensitivity, as well as diverse characteristics of industry and
landscape. However, under the pressures of rapid urbanization and climate change, it is
facing degradation. In order to maintain the forest’s ecological environment and avoid
using gray measures, a systematic layout (action) of gray-green hybridization and adaptive
NbS is necessary to promote an increase in ecosystem services (response) but this also
poses a technical difficulty for every planning project [10,16].

We aim to share the restoration and regulation project in the Hutoubi watershed and
address the existing efforts and future potential of this project from the perspective of
ecosystem services. In this context, the actual case experiences serve as valuable learning
objectives and are highly important for the mainstreaming and customized design of NbS.
The Hutoubi Watershed is a watershed with historical significance, encompassing various
historical periods, such as the Dutch colonial period, the Qing Dynasty, the Japanese
colonial period, and the post-World War II era. The cultural developments during these
periods are closely linked to the history of the Hutoubi Reservoir. However, the watershed
and reservoir environment has been gradually deteriorating. Therefore, the watershed in
southern Taiwan’s mountainous area has undergone watershed management based on the
NbS principles. This work has overcome the difficulties as mentioned above and combined
the cooperation of the government, industry, and academia, and has also been awarded as
a gold engineering example of stream regulation in Taiwan. Therefore, in this study, we
exhibit how this project established a consensus, conducted a value analysis, was evaluated
using modeling, and designed an NbS systematic layout to implement ecosystem services
in the pilot.

2. Materials and Methods
2.1. Case Description

Due to the steep rivers and fragile geology in Taiwan, both streams and reservoirs
have problems with sedimentation. The sediment yield from upstream watersheds affects
the lifespan of reservoirs, affecting their usage efficiency. The main geological formations in
Taiwan’s mountainous regions are mudstone and sandstone. Due to their loose geological
structure, the soil becomes sticky and slippery after being washed by rainwater for a long
time, which can easily flow down slopes and form deep gullies on the mountain surface.
Therefore, the deposition ratio of reservoirs in Taiwan is generally high.

The Hutoubi Reservoir is located in southern Taiwan (Figure 1) and was built in
1868, over 150 years ago, primarily to provide irrigation water. The watershed has an
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average slope of 19.37% and covers an area of approximately 681 hectares. The site is
located in a transitional zone of a slope gradient where the phenomenon of sedimentation
is explicit [17], with a gentler slope in the west and a steeper slope in the east and elevations
ranging from 13 to 154 m above sea level. Natural boundaries form the watershed, and the
main source of water in the watershed comes from the Huyuan Stream, which has a total
length of approximately 19.1 km.

Water 2023, 15, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. Geographical Location of the Hutoubi Watershed, Sin-Hua Forest, and the study areas. A 
and B are the study areas. The flood disaster photos of the study, shown in Figure 2, correspond to 
the locations marked as ʺaʺ, ʺbʺ, ʺcʺ, and ʺdʺ in this figure. 

The rainy season in Taiwan usually falls within the monsoon season, which extends 
from May to October. The major natural disasters in this watershed are caused by ty-
phoons and heavy rains, especially in the downstream section of the Huyuan Stream con-
necting the reservoir. In a 2 year return period, the 24 h rainfall amount is approximately 
260 mm. Intense rainfall resulted in high discharge that exceeded the capacity of the river 
channel for the given recurrence interval (Table 2). The occurrence of landslides and soil 
erosion accompanying typhoons leads to a high sediment yield in the watershed and re-
sults in channel siltation. Due to the siltation of the channel, the flood discharge capacity 
is insufficient, and the river bed gradually aggregates, thereby meandering. Among them, 
study area B in Figure 1 is a severely silted section, which has caused frequent flooding 
disasters in the past decade (Figure 2), and the aquatic ecosystem has degraded. For ex-
ample, during the 2016 Typhoon Meranti, the 2017 Typhoon Haitang, and the heavy rain 
on 23 August 2018 (332 mm/day), the overflowing channel caused severe flooding in the 
building area. Soil erosion caused stream banks and embankments to collapse, affected 
the timbers, and resulted in the loss of farmland and road interruption. The riverbank 
collapse spans a length of 600 m, impacting an area of 11 hectares of forest. Under the 
influence of adverse environmental factors, the diversity of biological composition in the 
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Figure 1. Geographical Location of the Hutoubi Watershed, Sin-Hua Forest, and the study areas. A
and B are the study areas. The flood disaster photos of the study, shown in Figure 2, correspond to
the locations marked as “a”, “b”, “c”, and “d” in this figure.

The earliest topographic survey of the Hutoubi Watershed can be traced back to 1904,
and the range and storage capacity of the Hutoubi Reservoir before that is unclear. Due
to the sandstone and mudstone geology of the watershed and no forest cover in the early
years, it is highly susceptible to erosion; thereby, it can be inferred that the storage capacity
and area at the time of its construction in 1868 was much greater than in 1904. In 1920,
National Chung Hsing University established the Sin-Hua Experimental Forest in the
Hutoubi Watershed (see Figure 1). In addition to being used for education and training,
afforestation was progressively carried out throughout the forest from 1940 onwards to
prevent soil erosion. The forest area has reached 503 hectares, accounting for approximately
74% of the watershed (as shown in Table 1). The increase in forest area gradually shows
good soil and water conservation function. The Huyuan Stream has become one of the few
permanent mountain streams in southern Taiwan. Additionally, the Hutoubi Reservoir is
the only reservoir in south Taiwan that can easily survive a century drought [18]. However,
although the sedimentation problem has been moderated, the watershed’s fine-grained
geology still causes the reservoir’s tail end to silt up gradually. The volume of the Hutoubi
Reservoir has gradually shrunk over the past hundred years, from 1904 to 2021 (Figure 1,
study area A), and the tail end of the reservoir has completely silted up.
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Figure 2. The post-disaster photographs before restoration: (a) serious siltation of tributaries with
insufficient flood discharge capacity, (b) high water level during rainfall, (c) the silting channel and
concrete embankment, and (d) frequent flooding inundating the building area. The locations of a, b,
c, and d are marked in Figure 1.

Table 1. The distribution of land cover types in the Hutoubi watershed.

Land Cover Area Percentage

Forest 73.7%
Cropland 11.3%
Barren land 5.7%
Water bodies 5.3%
Built-up areas 3.7%
Grassland 0.1%

The rainy season in Taiwan usually falls within the monsoon season, which extends
from May to October. The major natural disasters in this watershed are caused by typhoons
and heavy rains, especially in the downstream section of the Huyuan Stream connecting
the reservoir. In a 2 year return period, the 24 h rainfall amount is approximately 260 mm.
Intense rainfall resulted in high discharge that exceeded the capacity of the river channel
for the given recurrence interval (Table 2). The occurrence of landslides and soil erosion
accompanying typhoons leads to a high sediment yield in the watershed and results
in channel siltation. Due to the siltation of the channel, the flood discharge capacity is
insufficient, and the river bed gradually aggregates, thereby meandering. Among them,
study area B in Figure 1 is a severely silted section, which has caused frequent flooding
disasters in the past decade (Figure 2), and the aquatic ecosystem has degraded. For
example, during the 2016 Typhoon Meranti, the 2017 Typhoon Haitang, and the heavy rain
on 23 August 2018 (332 mm/day), the overflowing channel caused severe flooding in the
building area. Soil erosion caused stream banks and embankments to collapse, affected
the timbers, and resulted in the loss of farmland and road interruption. The riverbank
collapse spans a length of 600 m, impacting an area of 11 hectares of forest. Under the
influence of adverse environmental factors, the diversity of biological composition in the
stream is low. Non-native species, such as Tilapia in large numbers, have caused ecological
pollution and impacted the habitat environment, resulting in human avoidance of the
aquatic environment.
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Table 2. The flood discharge of different return periods.

(m3/s) Q1.1 Q2 Q5 Q10 Q25 Q50

Hutoubi main stream 51.6 76.8 91.3 102.4 117.0 128.0
tributary 2.5 4.9 5.9 6.5 7.5 8.2

Hutoubi is Taiwan’s first reservoir, and the Sin-Hua Forest, with its broad-leaved forest
cover, is the closest ecological green space to the Tainan metropolitan area. However, river
functions have degraded due to sedimentation and frequent flood disasters, leading to
ecological decay. With the gradual exacerbation of climate change in the future, addressing
the next stage of watershed management and ecological restoration has become an urgent
problem to solve. Therefore, the research team has focused on regulating the A and B study
areas to maintain the Hutoubi reservoir and watershed functions.

2.2. Study Process

This study process can be broken down into three stages, as shown in Figure 3. Firstly,
the issues related to the watershed should be clarified and then focused on crucial river
reaches (as described in Section 2.1). During this stage, the consensus among all stakehold-
ers is fostered. Next, various strategies and plans are formulated, and the most suitable
option is selected. Numerical models serve as tools in this step to assess flood mitigation
capabilities. Then, strategic layout, in conjunction with the geographical environment,
is employed to achieve multiple objectives. Finally, an initial evaluation of ecosystem
services is conducted. Ecosystem services encompass a wide range of aspects, including
provisioning, supporting, regulating, and cultural phases. Flood regulation and habitat
diversity within the phases of regulating and supporting are initially quantified using
numerical models. On the other hand, the assessments of supplying and cultural phases are
more indirect. However, the overall improvement in ecosystem services can be indirectly
validated through metrics, such as visitor numbers and forest revenue. Research methods
available for estimating the economic value of ecosystem services is not considered in this
case as the aim is to present compelling specific facts or visions instead of a virtual price.

2.3. Collaboration Pattern among the Academia, Government, and Forest Management Office

The Sin-Hua Forest management office collaborated with National Chung Hsing Uni-
versity to enhance the ecosystem services. It proposed to the Soil and Water Conservation
Bureau (SWCB) to use this case as a pilot for NbS in the Taiwan mountainous watershed
and to jointly develop improvement measures. The research team, government, and forest
management office represented the roles of guidance, execution, and post-management,
respectively (Figure 4). In this project, the research team proposed strategies and pro-
fessional recommendations for enhancing ecosystem services, and the SWCB funded the
contract with the engineering agency. The completed project was then handed over to the
forest management office for operation. This collaboration model allows all three parties
to benefit. The forest management office directly benefits from improved river health for
recreational activities and reducing flood risks; the research team gains a teaching and
research field; and the SWCB gains a valuable pilot project for advanced measure and treat-
ment performance. The collaboration of the three parties has overcome the uncertainties
of ownership and maintenance responsibilities, as well as institutional, regulatory, and
governance barriers that NbS commonly faced [14]. Moreover, the crucial aspect is to pro-
mote comprehensive management concepts that consider all stakeholders and encourage
their active participation. Given that government water policies do not typically prioritize
ecological improvement as a standalone goal, it is essential to leverage the management
initiatives of diverse stakeholders [19].
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2.4. Restoration Plans Developments

During the process, the research team had several different tasks at different stages.
Firstly, the three parties jointly explored the main and potential benefits and ecosystem
services that could be obtained through restoration by conducting multiple field surveys.
Subsequently, based on this, the research team proposed professional advice to the en-
gineering agency for design. In this process, other stakeholders (such as environmental
NGO/Non-profit) were invited to enhance the communication and friendly measures
for ecological maintenance. During the implementation, recording and monitoring were
necessary to collect valuable data for analyzing the expected benefits.

The designed plans were led and proposed by the research team. Initially, in study
area B where the channel lacked flood capability, the design of an embankment elevation
or channel width was determined through numerical modeling, and the required flood
capacity (Q50). Once the plans were proposed, they were discussed with stakeholders, and
this stage involves diverse perspectives, including considerations of landscape aesthetics,
ecology, and more. These opinions were addressed by incorporating multifunctional NbS
layouts and evaluating the diversity of hydraulic biotopes. Ultimately, the adoption of a
particular plan was decided jointly by the three groups.

2.5. Numerical Model

Riverflow2D hydraulic numerical is one of the most advanced two-dimensional com-
bined hydraulic and hydrologic flexible-mesh models. Its simulation was used to quantita-
tively analyze the flood control capacity and understand the types of ecological habitats
during low water periods. The model calculates shallow water flows using depth-averaged
mass and momentum conservation equations with all the associated assumptions [20].
That system of partial differential equations will be formulated here in a conservative form
as follows:

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= S(U, x, y) (1a)

where U =
(
h, qx, qy

)T is the vector of the conserved variables with h representing the
water depth; qx = uh and qy = vh the unit discharges with (u, v) the depth-averaged
components of the velocity vector u along the (x, y) coordinates, respectively. The flux
vectors are given by:

F =

(
qx,

q2
y

h
+

1
2

gh2,
qxqy

h

)T

(1b)

G =

(
qy,

qxqy

h
,

q2
y

h
+

1
2

gh2

)T

(1c)

where g is the acceleration of gravity. The terms 1
2 gh2 in the fluxes have been obtained after

assuming a hydrostatic pressure distribution in every water column, usually accepted in
shallow water models. The source term vector incorporates the effect of pressure force over
the bed, and the tangential forces generated by the bed stress:

S =
(

0, gh
(

S0x − S f x

)
, gh
(

S0y − S f y

))T
(1d)

where the bed slopes of the bottom level zb. The bed stress contribution is modeled using
the Manning friction law.

The advanced finite-volume engine of this model provides exceptional performance,
ensuring precise and volume-conserving calculations. It excels in handling even the most
challenging flood modeling scenarios, such as simulating dam-break and levee-break
situations on initially dry landscapes. Therefore, it can be used to calculate the low-water
condition for hydraulic biotope evolution.
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The upstream boundary is the steady flow discharge, and the downstream boundary
takes the normal depth boundary condition. Manning n is 0.035. In the study, Q50 (127 m3/s,
see Table 2) condition is the target flood capacity, we thereby use it as a standard to simulate
the condition before regulation and different regulation plans. Additionally, the discharge
used as the baseflow to simulate the diversity of hydraulic biotope is 1 m3/s.

2.6. Hydraulic Biotope

The Froude number (Fr) is a reliable hydraulic parameter differentiating the hydraulic
ecological units [21–23]. Therefore, this study used hydraulic models to evaluate the
distribution and proportion of hydraulic ecological units to ensure the creation of diverse
ecological habitats. Allocating different hydraulic parameter ranges to define habitats is a
widely accepted assessment method (e.g., [21,22]). At the same time, it can quantify habitat
area and diversity, and serve as a basis for quantifying ecological quality, biodiversity, and
ecological resilience. This study used a 1 m3/s baseflow and divided hydraulic biotopes
into six categories [21] for simulation and analysis:

Fr =
v√
gh

(2)

These six categories are pool, glide, run, unbroken standing wave, broken standing
wave, and chute. They are characterized by different ranges of Fr: 0.0–0.04, 0.04–0.15,
0.15–0.24, 0.24–0.49, 0.49–0.70, and 0.70–1.5, respectively [21].

3. Numerical Simulation Results (in Study Area B)
3.1. Condition before Regulation

First, Riverflow 2D was used to realize the flood capacity before regulation. The result
is illustrated, which shows that the flood does not remain confined to the channel (red
lines in Figure 5). Under Q50 conditions, it was observed that the shallow channel cross-
section and gentle slope at the confluence caused floods to overflow the embankments and
inundate the neighboring terraces and conservation objects in the area. The water depth
distribution showed that the flooding inundated the surrounding areas beyond the stream,
reaching a height of about 1 to 2 m. The embankments were old and prone to damage
during floods, as evidenced by previous events, while the flat slope of the river channel
(approximately 0.39% to 1.1%) could lead to silting after floods.
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3.2. Simulating the Plans for Flood Control and Diversity Habitats

Two flood control plans were developed in response to the problem of insufficient
flood control capacity: Plan I, the Raising Dikes Plan and Plan II, the Widening Plan. The
engineering details for both plans were evaluated using Riverflow 2D. The results of Plan I
are presented in Figure 6a. To meet the 50 year return period flood control standard, the
dikes and embankments in the area must be raised by approximately 4–5 m. However,
since the river width remains unchanged, the water depth before and after the confluence
could reach up to 7 m during the flow peak. Furthermore, damage to the dikes by the
high velocity could significantly harm the surrounding areas, indicating that Plan I may
have low resilience. The raised dikes may also hinder wildlife passage, interrupt ecological
continuity, and harm the landscape.
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The results of Plan II, the Widening Plan, are shown in Figure 6b. Rather than raising
the dikes, this plan widens the river to increase the flood control capacity and retention
space. The water depth in the widened channel generally ranges from 3 to 4 m, which is
lower than the simulation before the engineering scenario (Figure 5). The river widening
and channel improvement can significantly improve the flooding situation, and the water
flow can be appropriately directed.

Considering the multifunctional aspects of planning and layout, the space above the
confluence can be used as a wetland and floodplain to regulate extreme floods. Furthermore,
multi-level revetments are planned to be established at the convex bank downstream of the
Huyuan Bridge, serving various functions in response to different discharge levels. These
revetments address the issue of high velocity and provide an ecological habitat during
low-flow periods. After comparing the two plans, the stakeholders agreed that Plan II
was more favorable. Furthermore, a farm pond was planned in the northern tributary to
address the multiple functions of droughts, sediment retention, and flood control; thereby
enhancing the adaptability of the plan to climate change.

The hydraulic biotope diversity simulation (Figure 7) showed that for Plan II, the
unbroken standing wave accounted for 36% of the river range, glide accounted for 24%,
run accounted for 15%, pool accounted for 10%, broken standing wave accounted for 10%,
and chute accounted for 5%. Overall, there is a diverse range of biotope types, and after
the disturbance caused by the engineering work stabilizes, there is potential for developing
a diverse ecological composition.
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4. NbS Strategies

This study considers improving the river environment during both flood and low-
flow periods. The former corresponds to flood control and retention, mainly achieved
by providing space for the watercourse. To create diverse hydraulic biotopes, the latter
corresponds to the water source, habitat conservation, and landscape considerations. This
section summarizes the overall NbS strategies adopted in the watershed.

A farm pond is planned to be set up before the confluence of the northern tributary
(blue area in Figure 8a), which has excellent potential for providing ecosystem services.
During flood periods, it can reduce peak flow and retain sediments, while during low-flow

448



Water 2023, 15, 2527

periods, it can provide water storage, supplement irrigation water, replenish groundwater,
regulate microclimates, provide recreational opportunities, and activate the landscape.
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A river islet was set up at the confluence of the main and tributary streams downstream
of the farm pond (S4 in Figure 8a) to divert floodwaters. This allows the trees in the
center of the river islet to be preserved, and the wetland can serve as a floodplain (S3 in
Figure 8a,b) at the confluence where the discharge reaching the maximum. Additionally,
this creates an undisturbed ecological habitat where organisms can move between the river
and floodplain, helping to spread plant seeds and fragments, nutrients, and carbon and
providing opportunities for feeding and reproduction for waterfowl, fish, and amphibians.

Moreover, the flooded space of the river should be significantly increased. Hydraulic
modeling planning (Section 3) widened the original mainstream from 6 to 12 m (as in S2 in
Figure 8a,b). This design can reduce the flow velocity and lower the risk of scouring the
bank and revetment damage. Two types of revetments that belong to ecological methods
were used. Stone revetments were used instead of high and vertical concrete dikes, and the
pores among the stones facilitate creature habitat and plant growth. In the downstream
reach of the confluence, the front yard section of the Sin-Hua Forest, eco-pervious blocks
were constructed as another type of ecological revetments. Precast concrete could reduce
on-site construction and dust; soil and stones were filled in the hollow parts for planting as
integration of gray-green engineering. The river revetments were designed with a mild
side slope to enhance the landscape quality.

On the convex side of the downstream bank, the original vertical dike was downgraded
and replaced with a multi-level stone revetment (as in S0 and S1 in Figure 8b). The multi-
level revetment can serve as a buffer zone during flood periods and as a waterfront space
during low-flow periods to enhance the landscape and recreation quality. The multi-level
revetment design can also provide shelter for biodiversity during floods and create another
wetland area (as in S1 in Figure 8a) in this research area. Aerial photos and pictures after
the completion are shown in Figure 9a. Since the vegetation in this pilot area is dense, the
principle of protecting the original forest as much as possible was applied during planning.
After completion, the trees and vegetation on the slopes can help stabilize the soil and
prevent erosion, thus contributing to the watershed management.

Figure 9. Cont.
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Figure 9. The results of the NbS engineering: (a) study area B, (b) study area A.

Additionally, another pond was set in study area A (Figure 9b) at the tail end of the
Hutoubi Reservoir to serve as a detention pond for floodwater and sediment. The pond
has a capacity for approximately 22,000 m3. This pond has no grey (concrete) engineering
banks, reshapes the natural landscape, and is beneficial for maintaining the reservoir and
facilitating regular dredging work. The sedimentation rate in the reservoir can be slowed,
and the dredging goals become more clearly defined.

The selected study areas, study area A and B, were originally located in the Hutoubi
Reservoir and Sin-Hua Forest Area, respectively. The restoration in these two areas con-
nected the two tourist areas, creating a more cohesive recreational region. Additionally,
these efforts integrated the water environment downstream of the watershed, starting from
the restorations of local river reaches.

5. The Review of Ecosystem Services in Hutoubi Watershed

The enhancement of the ecosystem services requires long-term maintenance and
development, and this restoration project’s primary and potential objectives can be seen
as parts of the ecosystem services. The pilot showcased the strategy of using stream
regulation to enhance ecosystem services. Figure 10 suggests that improving ecosystem
services should follow a logical progression from short-term to long-term objectives. The
adaptable regulation of flood and drought can be directly addressed by constructing
several restoring measures in a systemic layout (regulating aspect). Instead of using
traditional gray measures, the planning adopts a gray-green mixed method that meets the
principles of NbS. This approach can achieve not only the goals of flood detention and water
resource regulation but also maintain habitats during low-flow conditions and help habitats
recover faster from disturbances [24–26] (support aspect). As a result, it gradually restores
the ecosystem of native species and creates more opportunities to develop characteristic
products (providing aspect). The improved aesthetic value of the riparian zones with a
friendly environment is expected to enhance the park’s tourism quality. The Sin-Hua Forest
could create fresh elements, thereby enriching both professional and public education and
maintaining local cultures (cultural aspect).

In contrast, if the river function deteriorates, it will directly affect water resources and
water safety, as well as the ecological environment and habitats of aquatic organisms, which
causes regional ecological degradation. This can affect organisms higher up in the food
chain and soil and water conservation, leading to the deterioration of overall ecosystem
services. Therefore, stream regulation can be crucial in maintaining ecosystem services by
creating a healthy aquatic environment.

5.1. Regulating

Based on the numerical modeling results, the adopted restoration plan will increase
the flood control capacity from the current level (approximately Q2) to Q50. Additionally,
the farm pond with a maximum storage capacity of 6000 m3 can solve the water shortage
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problem in the nursery during the dry season and have functions, such as irrigation, disaster
prevention, and landscape. Additionally, the sediment detention pond (22,000 m3) can
significantly reduce the deposition rate in the reservoir and help maintain its functionality.
Furthermore, the enhanced flood and drought adaptation capacity could regulate the
microclimate and hydrology. By widening the river and settling the agricultural pond, the
humidity of the forest is regulated. In addition to reducing urban heat, the forest remains
green even in the dry season.
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5.2. Supporting

The measures to enhance the supporting services include providing eco-friendly en-
vironments and diverse river habitats. Although the diversity of biological species is a
providing aspect, it can indirectly indicate the improvement of the habitat status. The
results of the species composition of the ecological survey in the adjacent river section show
that Formosan stripe dace, Opsariichthys pachycephalus, Redspotted goby, and Caridina pseudo-
denticulata are the dominant species in the other adjacent watersheds. In contrast, in the
past ecological surveys conducted in the study area in 2020, these native species were not
observed, and instead mainly consisted of invasive species.

An ecological species survey was conducted in 2022 after the completion of the engi-
neering works (as shown in Table 3 and Table S1). As the project had just been completed,
the ecological recovery of the study area still required time. However, compared to the
records in 2020, it was found that there were more native species. For example, in terms of
fish, the survey found the presence of the indigenous species Opsariichthys pachycephalus
(endemic species), which prefers the environment of pools or shallow zones. The survey
also found the presence of Rhinogobius rubromaculatus (Redspotted goby, endemic species),
which prefers the environment of glides, and Pseudorasbora parva, which prefers muddy
and sandy still waters. The survey indicated that hydraulic biotopes (Figure 7) provide
diverse habitat environments for aquatic fish species. As for crustaceans and mollusks,
two endemic species were found, including Neocaridina saccam and the Geothelphusa olea.
Furthermore, the presence of the Tarebia granifera indicates that the river’s organic matter
has been chiefly decomposed, maintaining high dissolved oxygen levels and rich aquatic
insects. Neocaridina denticulate and Neocaridina saccam prefer clean environments with flow-
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ing and oxygenated water, indicating that the aquatic habitats have gradually improved
and recovered. In addition, there are also firefly populations in the restored wetlands.
Fireflies require a clean and unpolluted environment and are considered indicator species
of environmental health.

Table 3. The comparison of the species number statistics.

Total Number of Species Number of Endemic Species

2020 2022 2020 2022

Crustaceans 2 9 0 2
Fishes 5 12 1 2
Amphibians 8 8 1 1
Reptiles 6 8 1 2

However, as the state of the stream is still unstable and the riparian vegetation has
not fully recovered, it has also affected the composition of the aquatic organisms. Long-
term monitoring is recommended to observe changes in the biological community and to
continue investigating and tracking during the different seasons of high and low flows,
and to understand the influence of the restoration on the local ecology.

5.3. Provisioning

An increase in native and conservation species has been observed through ecological
surveys, as described in Section 5.2 and shown in Table 3 and detailed in Table S1. The
ecological species surveys focused on aquatic species (including fish and crustaceans)
and amphibians and reptiles, considering their sensitivity to improvements in the aquatic
environment. The statistics results are in Table 3. While the changes observed in amphibians
and reptiles were relatively small, there was a notable increase in the number of fishes and
crustaceans species recorded in 2022 compared to 2020. This indicates an enhancement in
species diversity and richness in these groups. The diverse biological environment and
the activities, such as the restoration of fireflies, the revenue from local timber, agricultural
products, and surrounding goods in the Hutoubi Watershed has also increased. The
Honduras Mahogany from the forest is also used for building wooden houses. The water
resources of the Hutoubi Reservoir and ponds also supply the needs of people’s livelihoods
and agriculture.

5.4. Cultural

The Hutoubi Reservoir is the first reservoir in Taiwan and has cultural remains from
different regimes periods, including those of indigenous peoples, the Qing Dynasty, the
Japanese colonial era, and the post-World War II period. Maintaining the aesthetic value
is not only to preserve the aesthetic value of the riparian zone, but also the historical and
cultural significance of the waterway. The cohesive restoration of study areas A and B has
also enhanced the connectivity and richness of the tourist area. Furthermore, given the
success of the cooperative mode used in the Hutoubi Watershed restoration project, similar
experimental NbS studies are ongoing. The Sin-Hua Forest has become more diverse in its
functions, including serving as a soil and water conservation classroom and an outdoor
laboratory for NbS experiments. For example, due to the geological characteristics of the
mudstone and sandstone in the Huyuan Stream, there are often gullies caused by heavy
rainfall on the slopes. The research team is currently studying innovative methods to
use the tree roots left in the gullies and the sediment from the farm ponds to conduct
NbS erosion control studies. In the past, traditional gray infrastructure was difficult to
replace because it was easy for engineers to control but NbS implementation urgently
needs outdoor laboratories as mechanisms for observation and case data verification to
overcome obstacles. This restoration project’s solutions, strategies, and experiences have
also attracted attention from the domestic ecology and soil and water conservation fields,
impacting these subcultures. Figure 11 shows that during the phased construction period
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from 2020 to 2022, the number of tourists increased significantly (despite the impact of
the COVID-19 epidemic). The number of tourists is used to evaluate its function as a
recreational environment.

Figure 11. Visitor numbers and revenue statistics for the forest recreation area.

6. Conclusions

This study focused on the Hutoubi Watershed to preserve the reservoir’s functions
and improve flood and drought adaptations through two study areas, A and B, while
improving the overall ecological services by rehabilitating the hostile water environment.
Firstly, historic documents were used to trace the changes in the reservoir and river system
over the past century to understand the watershed’s river path evolution process. Different
functions are expected for the basin during dry and flood seasons, so corresponding
measures should be taken.

Study area A, originally located at the tail of the reservoir based on historical maps
from over a century ago, had been lost due to prolonged sedimentation. A sedimentation
pond was established in this area to restore the original state and maintain the reservoir’s
functionality. In study area B, flood control standards were considered. Regarding flood
prevention, two contrasting plans were proposed and compared through numerical simula-
tions to highlight the differences in flood control, landscape, and ecological continuity. The
results indicated that to meet the Q50 flood control standard, Plan I required raising the
embankment by 4–5 m, which would significantly impact the landscape and ecology. Plan
II, which involved widening the mainstream channel from 6 to 12 m to provide additional
flood space, was ultimately adopted. In addition, the distribution of hydraulic biotopes
evaluated using the Froude number was simulated under low water conditions to create
diverse ecological habitats. Based on the numerical simulation results, NbS layouts that are
sustainable and resilient to extreme weather conditions were designed, with farm ponds
and wetlands, and ecological-friendly porous materials were used for bank protection. The
data from ecological species surveys and tourist statistics indicated an increase in species
richness and higher returns in the park area after the completion of the project.

This case study demonstrates a strategy of using river regulation to continuously
improve ecosystem services by chain reaction, adopting gray-green hybrid planning that
meets the NbS criteria to address flood and weather issues (regulating) directly. The man-
agement of diverse biotopes is operated to maintain the ecological habitats (supporting),
make the forest an environmentally friendly environment, and enhance the quality of
landscape and agricultural products (provisioning). The Sin-Hua Forest, originally a teach-
ing and experimental area, could maintain the function and local cultures and also create
new possibilities (cultural). The Hutoubi Watershed pilot project has established a model
with active involvement from all stakeholders, including the forest management office,
researchers, and the government, promoting cooperation among them. A customized
solution for the watershed can be developed, and long-term research and management
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projects can be conducted. The restoration of the Hutoubi Watershed is a response to the
15th SDG and represents a resilient approach to addressing climate change impacts. It
achieves flood control objectives and enhances biodiversity habitats, species, and benefits
to the tourist area. The strategies implemented in this pilot case can serve as guidance for
the restoration of other watersheds facing functional degradation due to climate change.
However, the importance of subsequent management should not be overlooked.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15142527/s1, Table S1: The species survey in Hutoubi
Watershed.
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Abstract: This study examined the conditions that lead to debris flows, and their association with
the rainfall return period (T) and the probability of debris flow occurrence (P) in the Chenyulan
watershed, central Taiwan. Several extreme events have occurred in the Chenyulan watershed in
the past, including the Chi-Chi earthquake and extreme rainfall events. The T for three rainfall
indexes (i.e., the maximum hourly rainfall depth (Im), the maximum 24-h rainfall amount (Rd),
and RI (RI = Im × Rd)) were analyzed, and the T associated with the triggering of debris flows is
presented. The P–T relationship can be determined using three indexes, Im, Rd, and RI; how it is
affected and unaffected by extreme events was developed. Models for evaluating P using the three
rainfall indexes were proposed and used to evaluate P between 2009 and 2020 (i.e., after the extreme
rainfall event of Typhoon Morakot in 2009). The results of this study showed that the P-T relationship,
using the RI or Rd index, was reasonable for predicting the probability of debris flow occurrence.

Keywords: debris flow occurrence; rainfall index; rainfall return period; probability

1. Introduction

In recent years, the frequency and magnitude of disasters associated with climate ex-
tremes have increased [1–6]. Extreme rainfall has given rise to massive sediment transport
in mountainous areas; in particular, debris flows have caused significant damage in many
countries [7–14].

Studies of rainfall that triggers debris flows, for the purpose of issuing hazard warn-
ings, have focused on empirical thresholds based on rain gauge observations [15]. The
properties of cumulative rainfall depth, rainfall intensity, and rainfall duration have been
widely used to develop an empirical threshold for triggering of debris flows [16–21].
However, debris flow initiation depends not only on local rainfall properties, but also on
sediment availability in the catchment area and local terrain conditions, such as topography,
lithology, and soil cover [15,18,22]. The sediment supply can change significantly after ex-
treme events, such as a major earthquake and extreme rainfall, and the triggering threshold
or critical rainfall for debris flow may change accordingly [23–28]. This leads to several
uncertainties when determining rainfall thresholds, and makes debris flow monitoring and
prediction a challenge [29,30]. However, most of the existing empirical models were devel-
oped for real-time warning or monitoring of debris flows. In the face of climate change and
increasing extreme events, there are few studies on how to reflect the long-term variation
in rainfall characteristics of a region (composed of multiple debris flow gullies, townships,
and villages) and the impact of extreme rainfall events on debris flow monitoring. After
extreme rainfall events, the rainfall conditions that can trigger a debris flow will change,
and this unstable period lasts for several years [26,28]. Thus, it is necessary to establish an
empirical model for critical rainfall which can be combined with the effects of long-term
rainfall changes and extreme events (on an annual scale) for debris flow monitoring and
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prediction. There are many rainfall indexes, such as cumulative rainfall depth and rainfall
intensity, which researchers have used to develop empirical models of critical rainfall. This
study aims to integrate these rainfall indicators and establish a model for evaluation of the
probability of debris flow occurrence.

The Chenyulan watershed, located in central Taiwan, has experienced extreme events
including the Chi-Chi earthquake (CCE) and extreme rainfall, and was therefore selected
as the study area. The conditions that lead to debris flows, and their association with the
rainfall return period (T) and the probability of debris flow occurrence (P), were examined.
This study had two main purposes: (1) to develop an empirical model for how the P-T
relationship was affected by extreme rainfall and the CCE, using different rainfall indexes,
and (2) to apply the P–T relationship to evaluate P after the recent extreme event of
Typhoon Morakot.

2. Study Area and Extreme Events

The study area was the Chenyulan watershed (from 23◦24′30′′–23◦53′30′′ N latitude
and 120◦42′10′′–121◦02′30′′ E longitude) in central Taiwan, as shown in Figure 1. This
area is conducive to the study of debris flows caused by extreme events owing to its
weak geological characteristics (many faults accompanied by fracture zones; enormous
landslides and an abundant source of rock debris [31]), abundant rainfall (the average
annual rainfall in the watershed is approximately 3500 mm), as well as the occurrence of
the Chi-Chi earthquake (a moment magnitude of MW 7.6, in 1999) [25,32] and many other
extreme events [26,28]. Thus, many studies associated with landslides and debris flows
have been conducted in this watershed [25,26,28,32].Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 29 

 

 

 
 
 
Many studies have shown that there is a significant relationship between the urban 

thermal environment and landscape patterns, which include composition and configura-
tion [19,20]. For example, vegetation is replaced by impervious surfaces such as asphalt 
and cement, which represents a compositional change. The fragmentation of natural land-
scapes increases because of land cover change, which represents a configuration change. 
Both aspects result in radiation energy changes and provide an energy basis for the for-
mation of UHI [21]. Urban thermal environment problems caused by landscape pattern 
changes have attracted widespread attention [10,22–25]. Land surface temperature (LST), 
which has continuous spatial coverage, has been an important parameter in manifesting 
the urban thermal environment in recent decades [26]. A series of studies have been car-
ried out to investigate the effects of landscape patterns on the urban thermal environment 
using remotely sensed LST data. The results indicated that anthropogenic land cover 
types such as asphalt-paved areas and building areas play an important role in increasing 

Figure 1. Map showing the study area in the Chenyulan watershed in central Taiwan, and locations
of debris flows triggered by five extreme rainfall events (green circles), as well as recent debris
flows (crosses) that occurred between 2009–2020 after the extreme event of Typhoon Morakot (TT) in
2009. The Chenyulan stream is a tributary of the Choushui River. The river is approximately 42 km
long, the average stream bed gradient is 4◦, and the watershed area is 449 km2 with an elevation of
310–3952 m [6].
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Extreme rainfall events in Taiwan have not yet been clearly defined; however, they
generally can be considered as rainfall events with accumulated rainfall (R) > 130 mm
within 3 h, R > 200 mm within 6 h, or R > 350 mm within 24 h [33]. The rainfall index (RI)
is defined as the product of the maximum hourly rainfall depth Im and the maximum 24-h
rainfall amount Rd (i.e., RI = Rd × Im). Extreme rainfall events with an RI of >365 cm2/h
have triggered multiple debris flows in the Chenyulan watershed [26]. The five most
extreme rainfall events in the Chenyulan watershed were Typhoon Herb (TH) in 1996,
Typhoon Toraji (TT) in 2001, Typhoon Mindulle (TMi) in 2004, a heavy rainstorm (HR) in
2006, and Typhoon Morakot (TM) in 2009.

3. Debris Flow Occurrence Associated with Rainfall Return Period

As shown in Figure 1, there are three meteorological stations in the study area, namely
Sun Moon Lake, Yushan, and Alisan, which have recorded long-term hourly rainfall since
1963. The hourly rainfall recorded from the three meteorological stations was used to
determine the representative rainfall for the Chenyulan watershed, which is the regional or
average rainfall for the entire watershed. The regional hourly rainfall in the Chenyulan
watershed can be determined [6] using the following equation:

I = 0.099I1 + 0.387I2 + 0.514I3 (1)

where I1, I2, and I3 represent the hourly rainfall records from the Sun Moon Lake, Yushan,
and Alisan meteorological stations, respectively. Equation (1) calculates the areal average
rainfall at the centroid of the Chenyulan watershed area, using the reciprocal-distance-
squared method [34]; the weighting factors in Equation (1) represent a distance function,
being inversely proportional to the square of the distance measured between the meteoro-
logical station and the centroid point. The reciprocal-distance-squared method may not
actually reflect the rainfall characteristics at specific locations where local rainfall varied
significantly due to elevation changes [6]. Although the different locations of meteorologi-
cal stations may influence the average rainfall result, this is a simple method which can be
used to directly compute the regional average rainfall characteristics of a watershed [6].
Moreover, Equation (1) can easily represent the long term variation trend in the Chenyulan
watershed [6] and it was therefore used to determine the regional hourly rainfall in this
study. However, it should be noted that the estimated average rainfall contains high
uncertainty. Thus, three rainfall indexes, described in Section 3.1, and the probability
concept were introduced in this study in the analysis of debris flow occurrence. Rainfall
events in this study were identified by the following criteria: a rainfall event occurred
when the hourly rainfall depth was >4 mm and ended when this value remained at <4 mm
continuously for 6 h. These criteria have generally been used in official Taiwanese warning
models to identify rainfall events that trigger debris flows [35].

3.1. Rainfall Return Period

Three rainfall indexes associated with debris flow occurrence, Im, Rd, and RI, have
been proposed and discussed by [26,28], and were used to analyze T in the Chenyulan
watershed. The rainfall return period can be evaluated using many methods, such as the
Weibull, Jenkinson, and Gringorten formulae, various computational methods, and the
modified Gumbel method [34]. The Weibull formula was used in this study because it is
the most efficient and commonly used for most sample data [36]; moreover, it can predict
rainfall events with much shorter return periods than the other methods [37]. T can be
estimated using the Weibull formula:

T = (n+1) / m (2)

where n refers to the number of years in the record and m is the rank of the observed rainfall
value in a list arranged in descending order. The rainfall index of the annual maximum
series collected in the Chenyulan watershed between 1963–2017 (with the exception of
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1964; no rainfall record) was used to determine T using Equation (2). A total of 53 years of
rainfall index data (Im, Rd, or RI) and T are shown in Figure 2. The relationship between
the rainfall index and T can be expressed in the following form:

xi = a (T − b) c (3)

or T = (xi / a)1/c + b (4)

where xi is the variable of the rainfall index (i.e., Im, Rd, or RI); and a, b, and c are empirical
coefficients, which can be determined by regression analysis based on xi and T data. Table 1
lists the empirical coefficients a, b, and c, and the coefficient of determination R2 for rainfall
indices Im, Rd, and RI. All rainfall indexes have high R2 to T.

Table 1. Empirical coefficients a, b, and c for the rainfall indices: maximum hourly rainfall depth
(Im), maximum 24-h rainfall amount (Rd), and RI (Im × Rd).

xi a b c R2

Im 40 0.94 0.23 0.91
Rd 410 0.96 0.26 0.95
RI 180 0.97 0.42 0.93

Equations (3) and (4) represent the long-term rainfall characteristics of the Chenyulan
watershed. The return period for the critical rainfall needed to trigger a debris flow can be
determined using Equation (4). The xi - T relationship (Equations (3) or (4)) was developed
based on 54 years of data, and the annual maximum xi was selected. Thus, the optimal
range for T was 1–54 years.

3.2. Debris Flow Events Related to the Rainfall Return Period

There are no field investigation data or scientific reports on debris flows in the Chenyu-
lan watershed prior to 1985; therefore, debris flow events prior to 1985 were not considered
in the analysis of P. Figure 3 shows rainfall events, using the rainfall indices of Im, Rd, or
RI, and rainfall-triggered debris flow events between 1985–2017. The blue lines in Figure 3
indicate various return periods (T), corresponding to three rainfall indies (Im, Rd, or RI),
which were determined by Equation (3). Data on debris flow events triggered by the five
extreme rainfall events (TMi, TT, HR, TH, and TM) and the CCE are also shown in Figure 3.

The extreme rainfall events that triggered numerous debris flows had T values > 5
years. Within approximately 5 years of the CCE, debris flows could be triggered at lower
Im, Rd, or RI values, corresponding to rainfall events with lower T values. After the CCE,
the critical rainfall for debris flows decreased significantly, and the critical rainfall returned
to the pre-earthquake level within approximately 5 years of the earthquake. This result is
consistent with those of previous studies [25,26,28]. In this paper, the period encompassing
approximately 5 years after CCE is referred to as the CCE-affected period (CEAP) and is
shown in Figure 3. After the CCE, debris flows could be triggered at low RI values with a T
of <1 year, which was much smaller than after the other extreme rainfall events. Excluding
debris flow events in the CEAP, the majority of debris flow events occurred with T > 1 year.
Many rainfall-triggered debris flow events coincided with maximum annual Im, Rd, or
RI values.
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Figure 2. Return period (T) of rainfall index in the Chenyulan watershed. Three rainfall indexes,
Im, Rd, and RI, were used. (a) Annual maximum hourly rainfall depth (Im) between 1963–2017;
(b) annual maximum 24-h rainfall amount (Rd) between 1963–2017; and (c) annual maximum RI
(Im × Rd) between 1963–2017.
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Figure 3. Rainfall events, using rainfall index of: (a) Im, (b) Rd, and (c) RI, and rainfall-triggered debris flow events between
1985–2017. Data points show debris flow events triggering after the five extreme rainfall events TMi, TT, HR, TH, and TM,
Chi-Chi earthquake (CCE), and during the CCE-affected period (CEAP).

4. Models for Evaluating Probability of Debris Flow Occurrence

The rainfall return period T is the average interval in years between events equaling
or exceeding a certain magnitude and represents the long-term rainfall characteristics
of an area. The probability of debris flow occurrence P considers rainfall events that do
not trigger debris flow and represents the uncertainty of debris flow occurrence. The
development of an empirical model for the relationship between P and T is presented in
this section.

4.1. Probability of Debris Flow Occurrence (P)

Debris flow initiation depends on local rainfall properties, sediment availability, lithol-
ogy, topography, and soil cover. These properties have a nonuniform spatial distribution
and may lead to uncertainty in the evaluation of debris flow occurrence. The average
hourly rainfall in the study area was obtained from the long-term rain records of the three
meteorological stations. The rainfall was assumed to have a uniform distribution. The
benefits of ignoring the spatial variability of hydrogeological properties are as follows:
(1) more debris flow events can be identified and analyzed over the whole watershed, and
(2) it assists in determining the long-term rainfall characteristics (or T) associated with
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the triggering of debris flows. However, ignoring spatial distribution characteristics can
result in uncertainties. Thus, to reflect the resulting uncertainty, the probability concept
was introduced in this study to analyze the probability of a rainfall event that triggered
one or more debris flows in the entire watershed.

The P at a rainfall threshold of xi is referred to as the probability that one or more
debris flows are triggered when the rainfall amount is > xi. P can be calculated using the
following equation:

P = ND/NR (5)

where NR is the number of rainfall events for rainfall amounts > xi. ND is the number of
those rainfall events that triggered debris flows. P is then determined at various rainfall
thresholds xi, from the maximum annual Im, Rd, or RI or their corresponding T values. For
example, if there were eight rainfall events and all of them triggered debris flows when
RI > 285 cm2/h or T > 5 years (see Figure 3c), thus, ND = NR = 8 and P = 1.

4.2. Relationship between Probability of Debris Flow Occurrence (P) and Rainfall Return
Period (T)

After obtaining datasets for the historical maximum annual Im, Rd, or RI and their
corresponding T, the empirical relationships between P and T can be determined for Im,
Rd, or RI at different periods.

Several extreme events occurred in the Chenyulan watershed during the study period,
such as the CCE and five extreme rainfall events. The critical rainfall for debris flows drops
significantly after extreme events [25,26,28]; however, it does recover within a certain period
thereafter. Thus, periods affected by the CCE and extreme rainfall events were separated
in this analysis. The CEAP in the Chenyulan watershed was defined as the 5 years after
the CCE [23,32]. The maximum recovery period of critical rainfall is approximately 3 years
after extreme rainfall [28]. Rainfall events occurring within the 3 years after extreme rainfall
events, were selected to determine the relationship between P and T during the extreme
rainfall-affected period (ERAP). Such events included the rainfall events for 3 years after
Typhoon Herb and Typhoon Morakot, 2 years after the heavy rainstorm in 2006, and 1 year
after Typhoon Mindulle.

Furthermore, the relationship between P and T for the whole period (WP) between
1985–2017 and the unaffected by extreme events period (UEEP) (i.e., the WP excluding
CEAP and ERAP) can also be developed. The four periods (i.e., WP, CEAP, ERAP, and
UEAP) and their analysis range of rainfall events are summarized and listed in Table 2.
Figure 4 shows the relationships between P and T during WP, CEAP, ERAP, and UEEP.
Whether using Im, Rd, or RI indices, the data describing the relationship between P and T
showed a similar distribution in all periods. The P-T relationship can be expressed in the
form of a Weibull distribution, i.e.;

P = 1− e−α( T
β )

γ

(6)

The empirical coefficients α, β, and γ for the four periods were determined by fitting
the given data and are listed in Table 2. The P–T relationship models of the four periods
are compared in Figure 5. The WP model used long-term data between 1985–2017, and
also included data that were affected by extreme events, that is, five extreme rainfall events
and the CCE. The UEEP model excluded the influence of extreme events, and the P value
predicted by the UEEP model was slightly smaller than that predicted by the WP model
at the same T. Compared to the UEEP model, P increased significantly after an extreme
rainfall event or the CCE, under the same rainfall conditions or at the same T. In particular,
the P value affected by the CCE was markedly higher than that affected by extreme rainfall.
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Table 2. Empirical coefficients α, β, and, γ of Equation (6) during the four periods.

Period Range of Analyzed Rainfall
Events α β γ R2

I. Whole period (WP) Between 1985–2017 0.47 0.78 0.85 0.89
II. Chi-Chi

earthquake-affected period
(CEAP)

Between CCE and TMi (the
period of approximately 5 years

after the CCE)
0.23 0.87 8.65 0.56

III. Extreme rainfall-affected
period (ERAP)

3 years after TH and TM, 2 years
after HR, and 1 year after TMi 0.32 0.79 2.89 0.84

IV. Unaffected by extreme
events period (UEEP) WP excluding CEAP and ERAP 0.20 0.46 0.99 0.82

Notes: R2 = coefficient of determination.

Figure 4. Four models describing the relationship between the probability of debris flow occurrence (P) and the rainfall
return period (T). Data for T were determined from historical maximum annual hourly rainfall (Im), maximum 24-h rainfall
(Rd), or Rd × Im (RI). (a) Whole period (WP); (b) Chi-Chi earthquake-affected period (CEAP); (c) extreme rainfall-affected
period (ERAP); and (d) unaffected by extreme events period (UEEP).
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Figure 5. Comparison of the four models describing the relationship between the rainfall return
period (T) and the probability of debris flow occurrence (P), i.e., the P–T relationship. The four
models are for the Chi-Chi earthquake-affected period (CEAP), the extreme rainfall-affected period
(ERAP), the whole period (WP), and the unaffected by extreme events period (UEEP).

The benefits of determining the P–T relationship (Figure 5) are as follows: (1) all
rainfall indexes can be integrated by the P–T relationship, and (2) the P values during
periods affected by the CCE or extreme rainfall can be evaluated at various T values
(or different rainfall conditions). For example, P is 48% at T = 1.5, when the area of the
Chenyulan watershed is unaffected by extreme events (see light green curve in Figure 5),
whereas P increases to 87% after an extreme rainfall event (see blue curve in Figure 5), and
P = 100% after the CCE (see red curve in Figure 5). When affected by the CCE, the P value
can reach up to approximately twice that of a period unaffected by extreme events, and P
during a period affected by the extreme rainfall events can be approximately 80% higher
than during a period unaffected by extreme events at the same T.

5. Discussion

The heavy rainfall caused by Typhoon Morakot in August 2009 was one of the extreme
rainfall events in the Chenyulan watershed and had an Im of 85.5 mm, Rd of 1192.6 mm,
and RI = 1019.7 cm2/h. It caused numerous debris flows that buried more than 20 houses
in Shenmu, Tongfu, and Xinyi villages. After Typhoon Morakot, there were seven debris
flow events triggered by rainstorms or typhoons between 2009–2020, as shown in Table 3.
The relationship between P and T was used to evaluate P after the rainfall events of
Typhoon Morakot.
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Table 3. Debris flow event and related rainfall characteristics in the Chenyulan watershed between 2009–2020, after the
extreme rainfall events of Typhoon Morakot (TM).

No. Year Date Name of Event Im (mm/h) Rd (mm) RI (cm2/h) Remark

0 2009 6–11 August Typhoon Morakot
(TM) 85.5 1192.6 1019.7 Extreme rainfall event

1 2010 23–24 May Rainstorm 35.8 227.2 81.3

Events within the period
affected by extreme

rainfall TM

2 2011 17–20 July Rainstorm 33.6 256.2 86.1

3 2012 9–12 June Rainstorm 33.6 384.6 129.2

4 2012 18–21 June Typhoon Talim 22.2 243.4 54.0

5 2012 1–3 August Typhoon Saola 36.4 502.2 182.8

6 2013 12–13 July Typhoon Soulik 52.4 661.7 346.7 Events unaffected
by TM7 2017 1–4 June Rainstorm 46.1 515.7 237.7

Notes: Im (mm/h), maximum hourly rainfall in each rainfall event; Rd (mm), maximum 24-h rainfall in each rainfall event; RI, rainfall
index for each rainfall event, which can be determined using the equation RI, Rd × Im.

5.1. Procedures

The empirical model for evaluating P was applied through the following steps:

1. The hourly rainfall data from three metrological stations was input and the regional
hourly rainfall was evaluated using Equation (1).

2. Im, Rd, and RI were determined from regional rainfall data.
3. T was determined using Equation (4) with Im, Rd, or RI.
4. P was determined using the P–T relationship. There are three P–T relationships with

different empirical coefficients based on various periods (Equation (6) and Table 2).

That is, the P–T relationship of the WP is:

P = 1− e−0.47( T
0.78 )

0.85
; (7)

the P–T relationship of the ERAP is:

P = 1− e−0.32( T
0.79 )

2.89
; (8)

and the P–T relationship of the UEEP is:

P = 1− e−0.20( T
0.46 )

0.99
, (9)

where T can be determined using Equation (4). The coefficients in Equation (4) depend
on the parameters Im, Rd, or RI, i.e., T = (Im/40)4.35 + 0.94, T = (Rd/410)3.85 + 0.96, and
T = (RI/180)2.38 + 0.97. P can be determined when Im, Rd, or RI is given according to
Equations (7), (8) or (9).

However, the three equations were developed based on different periods and datasets,
and the valid conditions for the three equations may not be identical.

Equation (7) predominantly reflects the long-term characteristics of debris flow oc-
currence and may not reflect the short-term characteristics caused by extreme events. In
contrast, Equation (8) focuses on the influence of extreme rainfall events. Equation (9)
reflects P during periods that are unaffected by extreme events, such as significant earth-
quakes and extreme rainfall. Hence, field data of debris flow occurrence and rainfall events
between 2009-2017 were used to assess the suitability of the proposed equations and their
adopted rainfall parameters (Im, Rd, or RI).

5.2. Results

The model for the WP based on the return period of different rainfall indices was used
to evaluate P. Figure 6 shows the variation in the predicted P derived from Equation (7) for
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rainfall events with return periods greater than 1 year (T > 1 year) from 2012–2020, and
the associated debris flow events are labelled (note: red dots and those labeled No. 1-7
correspond to the events shown in Table 3).

Figure 6. Cont.
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Figure 6. Probability of debris flow occurrence (P) evaluated using the model representing the whole
period (WP) and Equation (7) after Typhon Morakot. The rainfall return period (T) in Equation (7)
was determined using three rainfall indexes: Im, Rd, or RI. (a) T determined by Im: six of seven debris
flow events were predicted with P ≥ 0.5. Ten rainfall events that did not trigger debris flows were
predicted with P ≥ 0.5; (b) T determined by Rd: four of seven debris flow events were predicted with
P ≥ 0.5. Four rainfall events that did not trigger debris flows were predicted with P ≥ 0.5; and (c) T
determined by RI: four of seven debris flow events were predicted with P ≥ 0.5. Four rainfall events
with no triggering of debris flows were predicted with P ≥ 0.5.

In Figure 6a, using the T of Im to evaluate P, 10 rainfall events that did not trigger
debris flows were predicted with P ≥ 0.5, although most of the debris flow events (i.e.,
six of seven) were reasonably predicted by P values > 0.5. In Figure 6b,c, using the return
periods of Rd and RI to evaluate P, respectively, only four of the seven debris flow events
were predicted with occurrence probabilities of P ≥ 0.5. The occurrence probability P for
the four rainfall events that did not trigger debris flows was overestimated with values of
P ≥ 0.5.

The model for the WP mainly presents the long-term characteristics for P and is unable
to respond to the occurrence of a debris flow that is affected or unaffected by extreme events.
Thus, the predicted P for the period of 3 years after Typhoon Morakot was determined
using the ERAP model (Equation (8)), and the predicted P after the ERAP was determined
using the UEEP model (Equation (9)). As shown in Figure 7, three rainfall indexes (Im,
Rd, and RI) were used to evaluate the T values that were associated with the ERAP and
UEEP models.
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Figure 7. Probability of debris flow occurrence (P) evaluated using the model for the extreme rainfall-
affected period (ERAP) within the 3 years after Typhoon Morakot (Equation (8)), and the model for
the unaffected by extreme events period (UEEP) after the ERAP (Equation (9)). The rainfall return
period (T in Equation (8) or ((9)) was determined using three rainfall indexes: Im, Rd, or RI. (a) T
determined by Im: six debris flows were predicted within twenty rainfall events when P ≥ 0.5 and
one debris flow events with P ≥ 0.5; (b) T determined by Rd: six debris flows were predicted within
ten rainfall events when P ≥ 0.5 and one debris flow events within P ≥ 0.5; and (c) T determined
by RI: Six debris flows were predicted within a total of eight rainfall events when P ≥ 0.5, and one
debris flow event when P ≥ 0.5.

Using the return period T of Im, Rd, and RI (Figure 7a–c), six of the seven debris flow
events were predicted with P ≥ 0.5. One debris flow event occurred at P ≥ 0.5. Most
rainfall events that did not trigger debris flows were predicted with P ≥ 0.5. There were
six debris flows within a total of ten rainfall events for T of Im, six debris flows within
eight rainfall events for T of Rd, and six debris flows within eight rainfall events for T of RI
when P ≥ 0.5. Figure 7 shows that 30% (Figure 7a), 60% (Figure 7b), and 75% (Figure 7c) of
rainfall events triggered debris flows for T of Im, Rd, and RI, respectively, when predicted
with P ≥ 0.5. That is, the predicted P using the T of RI and Rd would be more accurate than
that using T of Im. Furthermore, [25] examined the period affected by extreme rainfall that
triggers debris flow and the modification of critical rainfall for debris flows after extreme
events in the Chenyulan watershed. Three rainfall indices, Im, Rd, and RI, were used.
The modifications of critical rainfall and recovery period have higher correlations with
RI driven by extreme rainfall than with Im and Rd. Thus, the RI index was suggested for
convenience. When applying the model, one must initially check whether extreme rainfall
(i.e., with RI > 365 cm2/h) has occurred in the Chenyulan watershed within 3 years. If so,
the model that responded to the critical reduction RI (Equation (8)) is suggested; if not,
Equation (9) should be used.
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6. Conclusions

This study investigated the occurrence of debris flows after extreme events such as the
CCE and extreme rainfall in a 449 km2 region of the Chenyulan watershed. The probability
of debris flow occurrence was analyzed to determine the uncertainty of the hydrogeological
conditions in the study area. The innovation of this study was the combining of the concepts
of T and P to establish a probabilistic model of debris flow occurrence that can be adjusted
following extreme events. The findings of this study are as follows:

1. The rainfall indices of Im, Rd, and RI associated with T were analyzed. The advantages
of using T are as follows: (1) it can reflect the long-term rainfall variation character-
istics of a region and adjust with rainfall variability, and (2) the concept of T can be
easily combined with hydrological analysis to facilitate the subsequent engineering
design. Most debris flow events occurred with T > 1 year, excluding debris flow
events affected by the CCE, while the T of extreme events triggering numerous debris
flows could exceed approximately 5 years. T affected by the CCE for debris-flow-
triggering rainfall was < 1 year, (i.e., much smaller than that affected by other extreme
rainfall events).

2. The rainfall indices of Im, Rd, and RI can be used to determine the relationship
between P and T. Four empirical models of the P-T relationship were developed (i.e.,
CEAP, ERAP, WP, and UEEP models). The P values, affected or unaffected by extreme
events (such as the CCE or extreme rainfall), can be evaluated at various T values (or
different rainfall conditions) using the P-T relationship.

3. P increased significantly after extreme rainfall events or the CCE, with the same T.
In particular, the P value of periods influenced by CCE was higher than that during
periods influenced by extreme rainfall events. The P during a period affected by the
CCE can reach up to approximately twice that of a period that is unaffected by extreme
events, while P of periods affected by extreme rainfall events can be approximately
80% higher than the P of a period that is unaffected by extreme events at the same T.

4. A model relating P and T was applied to estimate P during recent rainfall events (2009–
2020) after the extreme rainfall of Typhoon Morakot, which showed that a model using
the Rd or RI index was reasonably accurate at predicting debris flow occurrence.

5. An empirical model for evaluating P was developed based on the regional character-
istics of the Chenyulan watershed, and may not be applicable to areas with different
hydrogeological properties. The suitability of this model must be assessed, and em-
pirical coefficients will most likely be required for calibration if the model is applied
to other areas. In addition, the RI index was derived empirically, and further studies
on the association of the RI index with physical mechanisms are needed.
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Abbreviations

CCE Chi-Chi earthquake
CEAP Chi-Chi earthquake-affected period
ERAP Extreme rainfall-affected period
HR Heavy rainstorm in 2006
TH Typhoon Herb
TM Typhoon Morakot
TMi Typhoon Mindulle
TT Typhoon Toraji
UEEP Unaffected by extreme events period
WP Whole period, 1985–2017
List of symbols
a, b, and c Empirical coefficients in Equations (3) and (4).
I Region hourly rainfall.
I1, I2, and I3 Hourly rainfall record from the Sun Moon Lake, Yushan,

and Alisan meteorological stations, respectively.
Im Maximum hourly rainfall during each rainfall event.
MW Moment magnitude.
m Rank of a value in a list ordered by descending magnitude.
ND Number of rainfall events that have triggered debris flows.
NR Number of rainfall events.
n Number of years in the record.
P Probability of debris flow occurrence.
Rd Maximum 24-h rainfall amount during each rainfall event.
R2 Determination coefficient.
RI Rainfall index, RI = Rd Im.
T Return period of rainfall.
α, β, and γ Empirical coefficients in Equation (6).
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Abstract: The aesthetic design of mountain stream facilities has not received much attention in
Taiwan. In recent years, in addition to safety concerns, the focus has increasingly been on landscape
assessment or the sense of integration with the environment. This research is the first attempt to use
visual language translation in qualitative research analysis for the landscape assessment of mountain
stream facilities. This method is different from a traditional qualitative narrative analysis. It also
addresses the shortcomings of previous quantitative analysis methods, in which the topic discussions
are too limited. First, mountain stream engineering projects are selected as the research objects. This
study uses questionnaire analysis and on-site surveys to summarize the elements, representations, and
perceptions of the mountain stream facilities of the subjects concerned to examine their preferences
for the visual system. Furthermore, we also employ the scenic beauty estimation (SBE) method for a
comparison between the qualitative and quantitative analyses. This study proposes a new method
using visual language translation and SBE that combines the features of qualitative research and
quantitative analysis. However, the potential limitations include an inability to have a large sample
number and the biases caused by the cultural, regional, or personal characteristics of the subjects.

Keywords: visual language translation; mountain stream facilities; perception; qualitative analysis;
scenic beauty estimation (SBE); caption evaluation method (CEM)

1. Introduction

Taiwan is rich in topography and landscape features. Therefore, in recent years, engi-
neering projects, such as check dams and groundsills, have viewed landscape assessments
and integration with the environment as being important, in addition to safety concerns.
In mountainous areas, stream erosion control facilities should be considered to reduce the
environmental impact, as well as related eco-friendly designs, to increase the harmony of
the landscape and environmental sustainability.

Aimed at the design concept of check dam aesthetics, a previous study [1] proposed
that the three independent factors of form, color, and texture, as well as sense factors such as
harmony, rhythm, and simplicity, could be used for the aesthetic assessment. Subsequently,
a fuzzy logic system for landscape assessment was established using the analytic hierarchy
process (AHP), and these principles were used to analyze the relationship of the various
factors [2].

Furthermore, one study [3] used visual preference and four cognitive factors—naturalness,
harmony, vividness, and closeness—to discuss the visual indicators, visual aesthetic ex-
periences, and applications of the empirical relationship. Another study [4] adopted a
preference-based psychophysical landscape assessment method (scenic beauty estimation
(SBE) method) to explore the aesthetic preferences and differences in various artificial
structures in a catchment. The SBE method is a psychophysiological experimental method
for assessing the beauty of forest landscapes. The concept derives from the stimulus and
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response models of behavioral psychology, and is based on the signal-detection method and
the Thurstone measurement model, improved for assessing the beauty of landscapes [5–9].

Participant-generated image methods, often used in social science research, present a
long application history in social science [10]. Research on participant-generated images
(PGIs) in social science can be traced back to 1970. Volunteer participants were offered
cameras to take pictures representing specific topics, which might be related to their specific
life experiences or places visited. Several qualitative research analysis methods were then
used to analyze the pictures taken by the subjects, who became the “participants” in
the research.

As type of visual language translation method, the caption evaluation method (CEM),
proposed by Koga et al. [11], is a typical PGI method. Using this method, citizens in Minato,
Tokyo, Japan, were requested to freely stroll in Minato and take various environmental
pictures with a positive or negative impression. Meanwhile, they were invited to write
down their feelings about each facility. The participants were further asked to record their
reasons for being satisfied with or adverse to each facility.

Many Japanese scholars then began applying the CEM to evaluate various historical
monuments, tourist attractions, and urban open spaces [12–17]. For instance, Naoi et al. [18]
applied the CEM to evaluate visitors who selected historical areas as tourism destinations.
A total of 30 Japanese college students and 27 Japanese adults interested in architecture
and urban planning visited facilities in Japan’s historical and cultural areas and stated
their perceptions of the selected facilities. The results revealed the relationship between the
elements in the areas and the participants’ perceptions and desires. Furthermore, it also
implied the participants’ positive assessment of old buildings and adverse perception of
modern architecture.

Chen et al. [19] collected comments regarding two hydropower dams in Canada from
social media platforms such as Instagram. Each picture, and the title for each topic, was
coded as a topic category for statistics. Each comment (e.g., dam construction would affect
the perceived aesthetics and sense of home, or dam removal would cause lifestyle changes)
might affect the relevant value and activity to predict the group items. For instance, the
construction of a dam might affect the local citizens’ perceived aesthetics and sense of
home, or the deconstruction of a dam might result in lifestyle changes. This type of research
could be an extended research method of the CEM.

There are limited studies using visual language translation or the CEM in Taiwan;
however, hydraulic engineers need a reference for aesthetic design to meet the landscape
requirements. This study uses the CEM as a qualitative research analysis tool for the
landscape evaluation of mountain stream facilities. Selecting award-winning projects as
the research objects, case studies are conducted to evaluate their design styles and compare
them with other types of mountain stream facilities. Meanwhile, the quantitative analysis,
using methods such as SBE, is compared with the qualitative results. Finally, qualitative
analysis is used to explore the correlations among the characterization factors, perception
factors, and preferences. The research goal is to establish a foundation for subsequent
aesthetic engineering design in the future. The entire research process is shown in Figure 1.
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2. Materials and Methods
2.1. Caption Evaluation Method (CEM)

This study applies the caption evaluation method (CEM) to evaluate the landscape
assessment of mountain stream engineering facilities in Taiwan. The CEM, first developed
from architectural psychology and proposed and practiced by Koga et al. [11], is a par-
ticipatory qualitative research method. The method attempts to investigate the reasons
why the subjects take pictures at target locations, and the subjects are asked to state their
opinions about the images. With such a method, the pictures of the targets taken by the
participants are regarded as the trigger factors in their evaluation of the locations, and the
acquired pictures are considered clues to their reactions.

In the CEM, three points to caption the pictures are proposed:

• To which elements do the subjects pay attention?
• What are the features of such elements noticed by the subjects?
• How do the subjects treat the noticed features?

Among the three questions, the first and the second questions are designed to gain
an understanding of the features of the elements in the environment. The third question
is aimed at inducing the subjects’ thoughts regarding the features of such elements. For
instance, one subject provided the caption, “It was cool because there were few cars.
It would be better when there was no height difference between sidewalks and traffic
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lanes” [18]. In the example, “elements”, such as “cars”, “features” of the elements, such as
“few”, and “perceptions” of the subject, such as “cool”, are mentioned. Such data could be
used for various positive or negative qualitative analyses.

The CEM presents some advantages: (1) such a method could help the subjects focus
on various facilities and elements, and state their opinions; (2) the pictures taken by the
subjects could reveal the relationship between such elements and the observers’ perceptions,
and the elements might be used to manage the destinations to satisfy the interviewers’
demands and provide ample opinions; and (3) the subjects can evaluate the facilities they
experience.

On the other hand, the CEM also contains some disadvantages: (1) previous research
has revealed that the sample size for such a method is relatively small, possibly because it
takes a long time to complete taking pictures and recording, and it would be challenging to
gather photographers at the same location for a long period; (2) in addition to the small
sample size, the subjects’ attributes may need to be excluded from the investigation, such
as demographic and psychological features, as they would affect the coverage of the results;
and (3) in comparison with an in-depth individual interview, the CEM results may lack
depth with regard to the topic [18]. However, compared with the traditional questionnaire
survey, more perspectives from different users’ experiences could be investigated through
the CEM, allowing us to think about problems from various perspectives.

2.2. Analysis of Qualitative Data

Qualitative analysis, a modern method used in academic research, is more compli-
cated, with multiple layers and distinct data analyses, than traditional questionnaires or
data quantitative research. This method does not simply respond to a questionnaire or
discuss the difference, correlations, or predictions among variables. Since the mid-1980s,
the development of computer-assisted qualitative data analysis software (CAQDAS) has
allowed researchers to properly record intuition, ideas, searches, and analyses to simplify
qualitative analyses [20]. The captions acquired through the CEM further preceded qualita-
tive data analysis. Faced with former CEM survey results, many unstructured texts were
generated that could not be quickly processed or perceived by humans or computers. For
the next step, effective technology and algorithms are needed to mine and extract the most
meaningful information [21,22].

The captions obtained by the CEM need to be processed through natural language
processing (NLP) before advanced analyses are performed. Natural language processing
(NLP) is one of the essential applications of machine learning, for example, text-to-speech
and sentence-to-sentence clauses, etc. With advancements in computing speed, the accuracy
of natural language processing is gradually being accepted. Segmenting the sentences into
a file is the first task in research on text analysis using a computer. “Words” are then used
for analyzing and organizing the results; therefore, “word segmentation” can be regarded
as the most basic word analysis task.

The present study uses the Jieba module as a Chinese word-segmentation tool. The
Chinese meaning of “Jieba” is “stutter,” and the default word break principle of the Jieba
module is simplified Chinese. Therefore, when using it in Taiwan, the traditional Chinese
thesaurus was required to be downloaded in this study [23]. After the word-segmentation
process, there was still too much text information; furthermore, more important phrases
needed to be chosen.

Among the distinct computer-assisted qualitative data analysis software, NVivo is
currently the most popular qualitative research software with complete functions. Data
sources of text records, relevant literature, records, videos, and social networking sites after
interviews are often used in qualitative research. NVivo helps users systematically organize
such information with context and in a mutual relationship. Such collected “Sources” are
integrated contextually, and the contents are coded and defined for transformation into
“Nodes.” When the “attribute value” is added into the coding process, it becomes “Cases.”
In other words, “Cases” can be regarded as “Nodes with attribute data.” Set “Cases” with
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the same attribute value can be gathered together with the coding function in NVivo
queries [24]. The most meaningful and representative labels are obtained through cluster
analysis. These labels are then used for encoding CAQDAS to establish the so-called “Case”
and “Node” to clarify the research topic’s organizational and secondary levels. Through
topic coding and classification, as well as comparison and analyses, an organizational
hierarchy and sub-hierarchy were established to clarify the research structure and provide
a reference for successive research.

2.3. Scenic Beauty Estimation (SBE)

Scenic beauty, an abstract concept, was previously studied using qualitative methods.
Prior to the psychophysical paradigm phase, Daniel et al. [25–27] developed scenic beauty
estimation (SBE) to quantitatively analyze scenic beauty. The SBE method, a psychophysio-
logical experiment to evaluate the scenic beauty of forests, originated from the stimulus and
respondence model in psychology and was improved according to the signal detections
method and the Thurston scaling model. In addition, the viewers’ preference for landscape
or beauty was represented by the perceived scenic beauty distribution of the evaluators.

For the experimental procedure, the subjects viewed representative color slides (stimu-
lus) and gave responses according to the preference scale of 1 to 5, revealing low-quality to
high-quality scenic beauty. Statistics was used to standardize the evaluators’ values using
distinct evaluation criteria to solve the possible differences caused by different evaluation
scale baselines. This was expected to accurately measure the public perceived preference
for various landscapes. When the sample size was large enough, the randomly sampled
perception value would become a normal distribution.

In summary, the SBE method presents the following advantages [26]: (1) It can include
the intangible value of resources into the quantitative evaluation, and combine psychology
and statistics to exclude individual subjective judgments of managers and planning design-
ers, but adopt the public “perception preference” for different landscapes to respond to
the viewers’ perceived preference for landscapes. (2) In terms of the validity test, the SBE
method provides similar results for the randomly shot slides or photos of the subjects being
evaluated by the on-site evaluation. It could therefore save human resources and time.
(3) Regarding the reliability test, the SBE method proves the consistency of photos taken at
the same site but at different times, excluding special event factors. Therefore, the method
shows high reliability. (4) In addition to forest landscape assessments, the SBE method
can be applied to various landscapes. The results prove that it is a beauty-estimation
method with high reliability and validity. (5) The SBE method eliminates evaluation errors
caused by differences in individual aesthetic concepts. (6) The SBE index can be applied to
managing large-area landscapes. (7) With regard to evaluation, the listed landscape factors
appear to have positive and negative effects on recreation users that could be a reference
for future management decision-making.

Nonetheless, the SBE method also presents the following disadvantages [26]: (1) It is
arguable whether the selection of landscape samples could represent general landscape
groups. (2) Regarding framing, a photographer’s techniques and angles affect the evalua-
tion results. (3) It is not easy to view the exact evaluated areas and special regions from
photos. (4) The SBE method cannot distinguish whether a viewer’s evaluation prefer-
ence is landscape perception or cognition. (5) The calculated coefficients in the analysis
lack definite explanations, would change with different people, and are comparatively
subjective.

3. Results
3.1. Study Areas

This study collected relevant cases that have obtained gold awards for water conser-
vancy over the years, selecting two cases according to the completeness of the data (planar
layout, disasters experienced, photos before and after remediation, etc.) as the site surveys
for analysis.
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(1) Upstream Renovation Project of Toubiankeng Stream in Zhongpu

Located in Dongbian Village, Taiping District, Taichung City, Toubiankeng Stream
is a tributary of the upstream Dali River. A major flood on 2 July 2004 resulted in debris
flow blocking the stream and washing out the surrounding farmland. A large amount of
sediment deposited on both sides of the stream at bridge No. 10 of Zhongpu affected the
safety of city highway No. 136 and the surrounding houses. “Semi-circle groundsill work”
and “arched hollow groundsill work” are the characteristics of this engineering project,
with boulders reserved on site to avoid canalization and to direct low-water revetment
flow and for the groundsill design of the high riverbank training (Figure 2).
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Figure 2. On-site survey picture of the “Upstream Renovation Project of Toubiankeng Stream in
Zhongpu” for the 17th Honorable Mention of the Public Construction Golden Quality Award for
water conservancy (25 March 2020).

(2) Renovation Project of Sijiaolin Stream in Dongshi Forest Garden

Located in Dongshi District, Taichung City, the Dongshi Forest Garden presents
potentially unstable earth next to Dongxin Village and the Da-an River. The existing
upstream/downstream check dams appear seriously hollowed out and are almost disabled.
A large check dam water body reduction resulted in an ecological barrier, and the serious
bank scour caused sediment loss. The original upstream check dam was converted into
“water storage type energy dissipation ladders,” which has the added function of being a
fishway. In the downstream check dam, a “circuitous fishway” was added. Furthermore, a
“water and land ecological corridor” using five different types of embankment connecting
the slope and stairway channels is a characteristic of this engineering project (Figure 3).
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Figure 3. An on-site survey picture of the “Renovation Project of Sijiaolin Stream” for the 19th
Excellent Award of the Public Construction Golden Quality Award for water conservancy (20 Septem-
ber 2019).

The selection process considered the influence of weather factors in the photos taken
on site. It was a requirement that they were taken and recorded on the same day. The
driving distances and the on-site walking paths of the two sample areas are appropriate.
Moreover, the second case is located in the Dongshi Forest Garden with good walking
paths. The anonymous subjects can learn about different mountain stream facilities with
diversified construction methods.

3.2. Analysis Results of the CEM

Regarding the use of pictures, another way could be to have the researcher prepare
the images as research materials. However, the images selected by the researcher might not
completely capture the subjects’ opinions about the target destination. In this case, as in
Garrod [28], although the subjects complete the picture evaluation, the picture selection
is not controlled. Such a method, therefore, may not accurately interpret the subject’s
evaluation of the elements. Both methods, including an online survey and an on-site
questionnaire survey, are used in this study. As a result, the subjects still take pictures on
site for the analyses.

3.2.1. Online Survey Results

The online questionnaire survey period was from 1 May to 30 May 2020. The re-
searchers presented the selected digital photos to the test subjects through a slide presenta-
tion so that the test subjects could understand the function of photo structures and evaluate
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them by filling in an online questionnaire. The subjects were mainly undergraduate stu-
dents and a small number of graduate students, totaling 212 students.

Aimed at two sample areas, to analyze and explain the effect on the overall perception,
this study lists the top three factors from the analysis of the questionnaire results. From the
factors acquired in the CEM results of the “Upstream Renovation Project of Toubiankeng
Stream in Zhongpu” in Table 1, it is understood, due to year differences, that vegetation
densely covers the site. This dense distribution of vegetation affects the overall preference
score, with significant differences. For instance, in pictures 2 and 3 of Table 1, the embank-
ments show the score dropping from 4.01 to 3.64; the biological channels in pictures 6 and 7
also drop the score from 3.9 to 3.04; and the average preference for the sample areas is 3.64.
This reveals that the images of the sample areas show differences due to year differences,
but the form and overall visual perception are compatible with the skyline, presenting
high public acceptance. The “Renovation Project of Sijiaolin Stream” in Table 2, shot in the
closing year, increases the preference to 3.77 after using the CEM, with multiple factors
matching the form and arrangement of multiple embankments and multiple biological
channels on site.

Table 1. CEM results of the “Upstream Renovation Project of Toubiankeng Stream in Zhongpu”.

No. Picture
Description of Top 3 Appearance

Preference (Full Score 5)
Element Representation Perception

1
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tors of water and plants. Natural texture factors confer the feeling of being close to nature, 

so the subjects find it relaxing and stress relieving. When a body of water is reduced, the 

subjects’ feeling of being close to nature is diminished, and they feel nervous and uneasy. 

Regarding structural factors, the subjects first pay attention to form and color. Arc forms 

and meandering stairs enhance the subjects’ preference for artificial structures. Using 

wood and stone for the structure, and reducing concrete, could minimize the visual im-

pact. 

3.2.2. On-Site Investigation Results 

Before the on-site investigation, the subjects were offered a map with designated 

routes or coverage. The subjects were requested to walk for approximately an hour taking 
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The overall analysis results reveal that the subjects primarily pay attention to the
factors of water and plants. Natural texture factors confer the feeling of being close to
nature, so the subjects find it relaxing and stress relieving. When a body of water is reduced,
the subjects’ feeling of being close to nature is diminished, and they feel nervous and
uneasy. Regarding structural factors, the subjects first pay attention to form and color. Arc
forms and meandering stairs enhance the subjects’ preference for artificial structures. Using
wood and stone for the structure, and reducing concrete, could minimize the visual impact.
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3.2.2. On-Site Investigation Results

Before the on-site investigation, the subjects were offered a map with designated
routes or coverage. The subjects were requested to walk for approximately an hour taking
10–20 pictures of the facility, with either negative or positive meanings. Meanwhile, the
location of each facility was marked on the map (Figure 4), and software such as JotForm
was utilized for taking and recording their opinions about each facility. These descriptions
included three captions: attention element, characteristics of the element, and perception
of the noticed feature. From these captions, the related analysis and discussion were
carried out.

Water 2022, 13, x FOR PEER REVIEW 11 of 23 
 

 

location of each facility was marked on the map (Figure 4), and software such as JotForm 

was utilized for taking and recording their opinions about each facility. These descriptions 

included three captions: attention element, characteristics of the element, and perception 

of the noticed feature. From these captions, the related analysis and discussion were car-

ried out. 

This study conducted the first on-site investigation on 19 July, the second on 23 Sep-

tember, and the third on 17 October 2020 to establish a more credibly comprehensive eval-

uation result. A total of 24 volunteer participants visited these two study areas for inves-

tigation, taking 231 photographs and recording descriptions of these photos. 

Tables 3 and 4 demonstrate part of the text descriptions from the on-site investiga-

tion. After acquiring each interviewee’s information, Python was used for word-segmen-

tation processing to present the acquired text keywords as a word cloud, including the 

online questionnaires and on-site investigations (Tables 5 and 6). After coding with 

NVivo, it was discovered that the online questionnaire representation, as the major direc-

tion, merely aims at descriptions of form, color, and arrangement, as the researcher selects 

the pictures for which the respondents’ opinions are limited. The factors acquired in the 

on-site investigation questionnaire might be more accurate, as the subjects determine the 

images to better induce the opinions expressed, e.g., descriptions aimed at the stone size 

and arc form. In addition to static descriptions, dynamic descriptions are covered in the 

on-site investigation, e.g., water flow, to present the immersive perception, which cannot 

be realized from images. 

 

 

(a) (b) 

Figure 4. On-site investigation map: (a) Upstream Renovation Project of Toubiankeng Stream in 

Zhongpu; and (b) Renovation Project of Sijiaolin Stream (source: Soil and Water Conservation Bu-

reau, Taiwan). 

Taking the “Renovation Project of Sijiaolin Stream” as an example to explain the ap-

plication of the CEM, multiple engineering forms and textures were used in the sample 

area. The word cloud reveals different online questionnaire representations from it in the 

other sample area; the factors are multiple and dispersed, but factors of form, arrange-

ment, and color could still be acquired. After the on-site investigation, the word cloud 

clearly shows the subjects’ descriptions of on-site water, stone, biological channels, and 

stairs. Using NVivo for coding, the multiple textures of the embankment and the layered 

stairs form were acquired, and actions and sounds were added. For instance, the subjects 

see flying dragonflies and butterflies and hear bugs chirping and birds singing during the 

on-site investigation. The on-site flow conditions would not appear visually different due 

to the picture-taking skills. The overall perception is positive. Moreover, the completion 

Figure 4. On-site investigation map: (a) Upstream Renovation Project of Toubiankeng Stream in
Zhongpu; and (b) Renovation Project of Sijiaolin Stream (source: Soil and Water Conservation Bureau,
Taiwan).

This study conducted the first on-site investigation on 19 July, the second on 23 Septem-
ber, and the third on 17 October 2020 to establish a more credibly comprehensive evaluation
result. A total of 24 volunteer participants visited these two study areas for investigation,
taking 231 photographs and recording descriptions of these photos.

Tables 3 and 4 demonstrate part of the text descriptions from the on-site investigation.
After acquiring each interviewee’s information, Python was used for word-segmentation
processing to present the acquired text keywords as a word cloud, including the online
questionnaires and on-site investigations (Tables 5 and 6). After coding with NVivo,
it was discovered that the online questionnaire representation, as the major direction,
merely aims at descriptions of form, color, and arrangement, as the researcher selects
the pictures for which the respondents’ opinions are limited. The factors acquired in the
on-site investigation questionnaire might be more accurate, as the subjects determine the
images to better induce the opinions expressed, e.g., descriptions aimed at the stone size
and arc form. In addition to static descriptions, dynamic descriptions are covered in the
on-site investigation, e.g., water flow, to present the immersive perception, which cannot
be realized from images.
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Table 3. On-site investigation of the “Upstream Renovation Project of Toubiankeng Stream in
Zhongpu”.

Picture On-Site Investigation Text
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485



Water 2022, 14, 3605

Table 4. On-site investigation of the “Renovation Project of Sijiaolin Stream”.
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Table 5. Word cloud analysis of the “Upstream Renovation Project of Toubiankeng Stream in
Zhongpu”.

Word cloud of the Online Questionnaire—Representation Word cloud of the Online Questionnaire—Perception
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Table 6. Word cloud analysis of the “Renovation Project of Sijiaolin Stream”.

Word cloud of the Online Questionnaire—Representation Word cloud of Online Questionnaire—Perception
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Taking the “Renovation Project of Sijiaolin Stream” as an example to explain the
application of the CEM, multiple engineering forms and textures were used in the sample
area. The word cloud reveals different online questionnaire representations from it in the
other sample area; the factors are multiple and dispersed, but factors of form, arrangement,
and color could still be acquired. After the on-site investigation, the word cloud clearly
shows the subjects’ descriptions of on-site water, stone, biological channels, and stairs.
Using NVivo for coding, the multiple textures of the embankment and the layered stairs
form were acquired, and actions and sounds were added. For instance, the subjects see
flying dragonflies and butterflies and hear bugs chirping and birds singing during the
on-site investigation. The on-site flow conditions would not appear visually different due
to the picture-taking skills. The overall perception is positive. Moreover, the completion
of the sample area is close, environmental education is taken into account in the planning
stage, and the Dongshi Forest Garden is well maintained so the perception is positive.

The subjects’ feedback information, especially the self-selected shooting pictures,
provides rich information and multiple materials. For example, subjects with different
backgrounds observe from different perspectives. The ones with an engineering back-
ground are accustomed to observing engineering structures, so they describe the form and
functions. The students without an engineering background more easily observe from
the perspective of life, noticing things such as insects and vegetation in the surrounding
environment along with the sound of flowing water, bugs chirping, and birds singing in
the background, in their perception of the environment. Referring to the concept of the
Zaltman metaphor elicitation technique (ZMET) [29–31], using the text keywords extracted
by this study and NVivo, a consensus map of the respondents is produced, as shown in
Figure 5. Furthermore, the factors are organized from the above analyses, as shown in
Table 7.
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Table 7. Evaluation factors of element, representation, and perception.

Evaluation Factor Classification Specific Description

element
natural facility stream, river, animal, insect, plant

artificial facility check dam, groundsill, embankment,
biological channel

representation

form arc, concave, curve, meandering, size,
rectangle

texture stone, wood, plant, concrete

arrangement layer-by-layer as stairs, irregular, tidy,
cross

sound and action flowing, still, flying around, birdcall,
insect chirping

perception positive
cozy, comfortable, pretty, natural,
friendly, practical, graceful, integrative,
attractive, safe

negative messy, destructive

3.3. Online Questionnaire SBE Analysis Result

The scenic beauty estimation (SBE) method, proposed by Daniel and Boster [26], was
applied in this study to analyze the online questionnaire. The subjects evaluated the
pictures with their preferences. The online questionnaire was collected via Google for one
month (1–20 May 2020); a total of 212 valid copies were acquired. The preference evaluation
data were processed using RMRATE [7,9], provided by the United States Department of
Agriculture (USDA). The mean of 11 pictures was regarded as the baseline for both sample
areas, and the baseline-adjusted Z score, which is similar to the normal distribution, of
each image was converted into scenic beauty estimates (SBEs). The results are shown in
Tables 8 and 9.

Table 8. SBE results of the “Upstream Renovation Project of Toubiankeng Stream in Zhongpu.”.

No. Picture SBE Value Rank

1
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Table 8. Cont.

No. Picture SBE Value Rank
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Stream in Zhongpu” 

In the conversion of preferences in the online questionnaire into SBE (Table 8), three 

images, each with the highest and the lowest scores, were extracted. The top three images 

are as follows: No. 5, the semi-circle groundsill work; No. 11, the arched hollow-out 
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pictures represent the common point of a rich waterscape, with the on-site stones used in 

the structure, showing a sense of harmony with the environment. They conform to the 

aesthetic principle of integrating structures into the environment [1]. Regarding the water 

conservation facilities in No. 5 and No. 11, the dam body presents a similar shape, with 

higher immersion into the embankment on both sides, and the natural river shoreline or 

skyline enhances the harmony and visual preference [3]. The CEM reveals that the subjects 

with a high-level evaluation show a higher perception of the arrangement of stone as the 

structure (Table 10). The visual harmony of the layered stone stacks contributes to increas-

ing the subjects’ preference [32]. 

No. 6, No. 8, and No. 1 appear to have the lowest evaluation on the SBE. The former 

two structures are covered by vegetation, and No. 1 shows incoordination due to a large 

amount of irregular rocks. The green visual ratio in the image is enhanced to increase the 

sense of nature. However, the increasing sense of nature diminishes when the green visual 

ratio is higher than 40%, but the closure property appears to be an increasing trend. The 

increase in closure property decreases the visual preference [3]. The CEM reveals that the 

top three subjects show a comparatively oppressive and uneasy perception of the vegeta-

tion in the structures with the lowest scores. 
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In the conversion of preferences in the online questionnaire into SBE (Table 8), three
images, each with the highest and the lowest scores, were extracted. The top three images
are as follows: No. 5, the semi-circle groundsill work; No. 11, the arched hollow-out
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groundsill work; and No. 3, the embankment with ecological engineering. The former
two pictures represent the common point of a rich waterscape, with the on-site stones
used in the structure, showing a sense of harmony with the environment. They conform
to the aesthetic principle of integrating structures into the environment [1]. Regarding
the water conservation facilities in No. 5 and No. 11, the dam body presents a similar
shape, with higher immersion into the embankment on both sides, and the natural river
shoreline or skyline enhances the harmony and visual preference [3]. The CEM reveals that
the subjects with a high-level evaluation show a higher perception of the arrangement of
stone as the structure (Table 10). The visual harmony of the layered stone stacks contributes
to increasing the subjects’ preference [32].

Table 10. CEM comparison of the highest and lowest SBE value images of the “Upstream Renovation
Project of Toubiankeng Stream”.

No. Picture Subject Response Text
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Furthermore, No. 3, No. 10, and No. 2 appear to have the lowest scores on the SBE, 

and the common point is the absence of a water body. The sample area is a torrent with 

significant water difference in the dry season—the increasing closure property decreases 

the visual preference. The qualitative analysis reveals that the top three subjects have 

nervous and uneasy perceptions regarding the lack of water. 
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No. 6, No. 8, and No. 1 appear to have the lowest evaluation on the SBE. The former
two structures are covered by vegetation, and No. 1 shows incoordination due to a large
amount of irregular rocks. The green visual ratio in the image is enhanced to increase
the sense of nature. However, the increasing sense of nature diminishes when the green
visual ratio is higher than 40%, but the closure property appears to be an increasing trend.
The increase in closure property decreases the visual preference [3]. The CEM reveals
that the top three subjects show a comparatively oppressive and uneasy perception of the
vegetation in the structures with the lowest scores.

3.3.2. CEM and SBE Comparison of the “Renovation Project of Sijiaolin Stream”

The SBE evaluation in Table 9 shows the three images with the highest and lowest
scores. The top three images are as follows: No. 8, a roundabout biological channel; No. 11,
stone masonry groundsill work; and No. 9, a compound biological channel. The former
two images represent the common point of a rich waterscape. The water body in the image
with water conservation facilities enhances the vitality, softens the water conservation
facilities, reduces the oppressive sense of sand control facilities, and reduces the closure
property. When the water visual ratio is lower than 30%, the visual preference of the image
is proportional to harmony; the higher harmony, the greater the visual preference [3]. The
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CEM reveals that the subjects with a higher evaluation appear to prefer curve or stair forms
over traditional straight-line designs (Table 11).

Table 11. CEM comparison of the highest and lowest SBE value images of the “Renovation Project of
Sijiaolin Stream”.

No. Picture Subject Response Text
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The river is almost dry, which is worrying. It
looks like it lacks vitality without water.

Lots of sediment deposits seem to be
desolate, and there is no water or fish.

Furthermore, No. 3, No. 10, and No. 2 appear to have the lowest scores on the SBE,
and the common point is the absence of a water body. The sample area is a torrent with
significant water difference in the dry season—the increasing closure property decreases
the visual preference. The qualitative analysis reveals that the top three subjects have
nervous and uneasy perceptions regarding the lack of water.

The above findings show that the top three structures in the SBE evaluation are mainly
ecological engineering and groundsill structures with a rich waterscape; vegetation is the
typical landscape in mountainous areas, and distinct vegetation in forests appears with
different landscape aesthetics. Nevertheless, vegetation differences are reduced when there
is both a structure and waterscape. The CEM results reveal the significant effects of the
structure’s form and texture, in addition to the waterscape and vegetation, on the entire
landscape, followed by the vegetation and the structure’s volume and form.

This study has potential limitations. There are few studies on the landscape assessment
of mountain stream facilities using qualitative analysis. Some documents [33,34] have
described a detailed narrative analysis of the cultural heritage of facilities in river basins or
their relationship with human social development. The use of visual language translation
is a new concept, but this method may affect the sample number size and choice because of
the complex process. A qualitative study with a large sample size would not be possible in
this study. At the same time, it was also limited by time constraints and the impact of the
COVID-19 pandemic. Moreover, this study can only be evaluated for case-by-case projects,
and there may be biases caused by the cultural or personal characteristics of the subjects.
However, the aim of this study is to provide a new evaluation method, and subjects’ deeper
meanings may be revealed through this method. Future endeavors will be expanded to
more projects and subjects, including experts and the general public.
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4. Conclusions

Traditional landscape qualitative research is usually based on narrative analysis meth-
ods that are too subjective, although discussed in depth. However, the commonly used
quantitative analysis method often fails to deeply explore the reasons behind the data.
Therefore, this study proposes a new method, namely, visual language translation, or the
CEM, which combines the features of qualitative research and quantitative analysis. This
has also rarely been mentioned in previous studies, and this is considered a new attempt.

Different from the traditional research method, visual language translation, or the
CEM used in this study, clearly understands the subjects’ perception of the images and
sample areas. Factors are accurately acquired through the subjects’ descriptions, and such
factors, through qualitative analysis, are coded with NVivo to find the best ones. However,
too much open information can easily result in information dispersion and difficulties with
induction and analysis. For this reason, both the CEM and SBE are selected to acquire
complete information for analysis and comparison. In this study, these methods were
established and performed well with good results.

Using SBE, we can acquire the subjects’ preferences for images and sample areas,
which, corresponding with the CEM, accurately comprehends the subjects’ factor weights.
In this way, in addition to obtaining a quantitative landscape preference, it is also possible
to further understand the possible reasons for the preference. For instance, wooden lattice-
framed embankment-matching stairs reduce the visual impact on the entire environment
and enhance the subjects’ preference. A stone embankment could reduce the sense of
artificiality to make the subjects feel safe and stable. Different from individual analysis in
the past, two methods are utilized in this study, and an on-site investigation is integrated to
understand the sample areas more deeply and to accurately acquire factors for subsequent
research and design.

However, this study has limitations. It is mainly based on case studies, of which we
still need more varied research objects and a wider survey sample. It is suggested that the
CEM could be continuously used for discussing the correlations among representation,
perception, and preference. Furthermore, experts’ interviews and questionnaires could
be combined to build a list of the possible factors in landscape evaluation and to facilitate
discussion of the basic concept of aesthetic design in mountain stream engineering.
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