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Preface

The rapid advancement of machine learning and artificial intelligence has inaugurated a new

epoch of technological innovation, revolutionizing myriad fields including biomedical engineering.

This book, titled “Machine Learning Technology in Biomedical Engineering”, stands as a beacon of

the extraordinary progress at the nexus of these two disciplines, showcasing the pioneering research

and applications poised to redefine healthcare delivery and improve patient outcomes.

Within this compendium, readers will encounter a curated selection of advanced studies

that exemplify the confluence of machine learning and biomedical engineering. A noteworthy

contribution includes the dense multi-scale graph convolutional network (DMA-GCN) method,

tailored for the automatic segmentation of knee-joint cartilage from MR images, presenting a novel

paradigm in orthopedic analysis.

Another pivotal study scrutinizes the resilience of leading deep learning architectures, such as

ResNet, Swin-Transformer, and MLP-Mixer, against unique distribution shifts in fundus images. This

inquiry underscores the imperative of engineering robust models for critical safety applications in

medical diagnostics.

The anthology further delineates a sophisticated exploration of gradient-switching-induced

potentials during MRI, amalgamating time, frequency, and statistical analysis techniques to enhance

MRI image quality and ensure patient safety.

In the domain of non-invasive glucose monitoring, a trailblazing paper unveils an implicit

HbA1c model boasting remarkable proficiency in forecasting fasting blood glucose levels by using

photoplethysmography data, heralding a new era in diabetes management.

Moreover, this collection introduces a novel machine learning system designed for nutrition

education in diabetes mellitus clinics, adept at predicting one-year blood glucose control based on

an amalgamation of lifestyle, medication, and clinical data. This innovative modality promises to

significantly elevate diabetes care and patient outcomes.

Originally published as a Special Issue in the Bioengineering journal, this book is a compilation of

cutting-edge research articles that exemplify the remarkable synergy between machine learning and

biomedical engineering. One such seminal paper, “AIMS: An Automatic Semantic Machine Learning

Microservice Framework to Support Biomedical and Bioengineering Research”, signals a paradigm

shift in how machine learning can be leveraged to decode the complexities of biomedical data. AIMS

exemplifies a quintessential bridge between the theoretical and practical realms, offering a scalable

semantic framework that simplifies the intricacies of developing and deploying machine learning

solutions in biomedical research. Its significance cannot be overstated, as it not only underscores

the potential for machine learning to unravel novel diagnostic and therapeutic pathways but also

accentuates the framework’s role in facilitating seamless interdisciplinary collaboration, thereby

accelerating the pace of innovation in healthcare technologies.

Beyond these examples, this book spans a kaleidoscope of topics, from blockchain-based

frameworks for pandemic prevention and control to advanced feature-selection methods for precise

disease classification and biomarker identification.

As we navigate through the contents of this book, we are privy to the application of machine

learning algorithms in surmounting challenges across the biomedical engineering spectrum.

We will delve into groundbreaking approaches that fuse theoretical constructs with practical

implementations, nurturing interdisciplinary collaboration and encouraging forward movement in

this thrilling area of study.
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To the researchers, healthcare practitioners, and students who will immerse themselves in this

work, I extend an invitation to approach its contents with an open mind and an inquisitive spirit.

Embrace the possibilities at the intersection of machine learning and biomedical engineering. I hope

this work inspires you to move beyond the boundaries of what is conceivable in the search for

enhanced health and well-being for all.

Hongqing Yu, Alaa AlZoubi, Yifan Zhao, and Hongbo Du

Editors
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Abstract: The fusion of machine learning and biomedical research offers novel ways to understand,
diagnose, and treat various health conditions. However, the complexities of biomedical data, coupled
with the intricate process of developing and deploying machine learning solutions, often pose
significant challenges to researchers in these fields. Our pivotal achievement in this research is the
introduction of the Automatic Semantic Machine Learning Microservice (AIMS) framework. AIMS
addresses these challenges by automating various stages of the machine learning pipeline, with a
particular emphasis on the ontology of machine learning services tailored to the biomedical domain.
This ontology encompasses everything from task representation, service modeling, and knowledge
acquisition to knowledge reasoning and the establishment of a self-supervised learning policy.
Our framework has been crafted to prioritize model interpretability, integrate domain knowledge
effortlessly, and handle biomedical data with efficiency. Additionally, AIMS boasts a distinctive
feature: it leverages self-supervised knowledge learning through reinforcement learning techniques,
paired with an ontology-based policy recording schema. This enables it to autonomously generate,
fine-tune, and continually adapt to machine learning models, especially when faced with new tasks
and data. Our work has two standout contributions demonstrating that machine learning processes
in the biomedical domain can be automated, while integrating a rich domain knowledge base and
providing a way for machines to have self-learning ability, ensuring they handle new tasks effectively.
To showcase AIMS in action, we have highlighted its prowess in three case studies of biomedical
tasks. These examples emphasize how our framework can simplify research routines, uplift the
caliber of scientific exploration, and set the stage for notable advances.

Keywords: AI automation; biomedical; machine learning; microservices; knowledge graph; semantic
web services (SWS)

1. Introduction

The fusion of machine learning and biomedical and bioengineering research has
brought a paradigm shift in the way we understand, diagnose, and treat an array of health
conditions. With rapid advancements in technology and an influx of high-dimensional
data, the role of machine learning (ML), and especially AutoML, has become central to the
process of knowledge discovery in this field [1]. Providing a machine learning solution
often creates a burden for biomedical and bioengineering researchers, who must seek
additional support to develop or test different tools for each step of their study. The
burgeoning complexity of biomedical research underscores the need for the automatic
generation and optimization of machine learning models that can keep pace with this data-
driven evolution [2]. The impetus for our research stemmed from challenges faced by our
university’s biomedical research group. They grappled with integrating a myriad of tools,

Bioengineering 2023, 10, 1134. https://doi.org/10.3390/bioengineering10101134 https://www.mdpi.com/journal/bioengineering
1



Bioengineering 2023, 10, 1134

algorithms, and domain-specific knowledge in their investigative pursuits. We responded
by devising a framework tailored for these exact scenarios. This methodology represents
an innovative approach, unprecedented in its application across any other research domain.
Such distinctiveness makes our contribution particularly fitting for this special issue on
machine learning technology in biomedical engineering. In this paper, we investigate
the novel approach of applying an advanced ontology and context enforcement learning
approach that can support the automation of a machine learning process for biomedical
and bioengineering research. This work has great potential to be applied to other domain
areas, but the background ontology requires updating according to the domain knowledge.

The AutoML frameworks provide a robust solution to this rising demand. They offer
end-to-end pipelines that encompass all necessary steps from data preprocessing to hy-
perparameter tuning and model evaluation, automating labor-intensive and error-prone
manual tasks [3]. By significantly reducing the time taken for the model development pro-
cess, they allow researchers to focus on interpreting and applying results, thus accelerating
the pace of discovery in the biomedical and bioengineering field.

Despite the undeniable potential of AutoML, several gaps and challenges persist in
its implementation in biomedical and bioengineering research. First, biomedical data,
with their unique characteristics, including high dimensionality, heterogeneity, and inher-
ent noise, require specialized preprocessing and analytical approaches. Current general-
purpose AutoML frameworks may not adequately address these needs. Second, these
frameworks often lack interpretability, a crucial requirement in the medical field, where
understanding the decision-making process of a model is as essential as its predictive
accuracy [4]. Finally, integrating domain knowledge into the AutoML process remains an
open challenge, although it could greatly improve the quality of models generated and the
applicability of their predictions [5]. Addressing these challenges requires a novel frame-
work that enables machines to learn domain-specific knowledge and apply this knowledge
to automate decisions in the AutoML process.

This paper introduces an Automatic Semantic Machine Learning Microservice frame-
work designed to bridge these gaps. We refer to each microservice in our framework as
AIMS, and these should be implemented based on domain-specific knowledge. It is tailored
to the specific needs of biomedical and bioengineering research and places emphasis on
enhancing model interpretability, incorporating domain knowledge, and handling the
intricacies of biomedical data. Our proposed framework aims to streamline the research
process, augment the quality of scientific exploration, and provide a foundation for sig-
nificant self-learning AutoML in biomedical research. Additionally, three case studies are
tested and discussed at the end.

2. Related Work, Limitations, and Technology Background

In the work of the biomedical and bioengineering research community, the most
important challenge is to search for different tools that work on different datasets and tasks.
Our research also begins by examining existing automation technologies and tools.

2.1. Related Work and Current Limitations

There is a multitude of AI tools currently available to aid biomedical research, and
various automation frameworks have emerged to streamline the process. For instance,
machine learning platforms like Google’s TensorFlow [6] and scikit-learn [7] have been
widely utilized in biomedical research for tasks such as image analysis, genomics, and
drug discovery.

Google’s AutoML [8], TPOT (a tree-based pipeline optimization tool) [9], and H2O’s
AutoML [10,11] are some of the popular AutoML tools used for automating the machine
learning pipeline. These platforms optimize the process by automating tasks like data
preprocessing, feature selection, model selection, and hyperparameter tuning, which are
traditionally labor-intensive and error-prone. AutoML offers expedited results, bypassing
much of the manual work involved in traditional machine learning, which is especially
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advantageous for prototype testing or gauging initial user reactions to AI applications.
Moreover, AutoML solutions are less prone to becoming obsolete, as they can stay updated
with rapid advancements in AI technology, largely due to the investment capacity of major
tech vendors. Additionally, AutoML platforms, being hosted solutions, reduce the overhead
of building surrounding infrastructure. TPOT aims to simplify the construction of ML
pipelines by merging a versatile expression tree depiction of these pipelines with random
search techniques like genetic programming. It leverages the scikit-learn library in Python
as its foundation for machine learning functionalities. H2O’s AutoML streamlines the
machine learning process by autonomously training and fine-tuning various models within
a time frame set by the user. Additionally, H2O incorporates several model interpretability
techniques applicable to both AutoML collections and distinct models, such as the leader
model. These explanations can be effortlessly produced with a singular function, offering
an intuitive means to probe and elucidate the AutoML models.

Other than these general-purpose tools, there are also specialized AI platforms tai-
lored for biomedical research. DeepChem [12], for instance, is a machine learning library
specifically designed for drug discovery and toxicology, offering specialized features not
available in general-purpose libraries.

However, while these tools have made significant strides in advancing biomedical
research, there are several limitations associated with their use.

General-purpose ML and AutoML tools, such as TensorFlow and Google’s AutoML,
are not specifically designed for handling the unique characteristics of biomedical data,
such as high dimensionality, heterogeneity, and inherent noise. This often necessitates
significant manual preprocessing before data can be fed into these tools [13].

Furthermore, these tools often lack interpretability, an essential requirement in biomed-
ical research, where understanding the decision-making process of a model is as important
as its predictive accuracy [4].

While specialized tools like DeepChem offer features tailored for biomedical appli-
cations, they do not cover the entire spectrum of biomedical research and are limited in
their scope. Additionally, the automatic integration of domain knowledge into the machine
learning process is an ongoing challenge and is not well addressed by current tools [4].

Therefore, there are many recent discussions on multiple biomedical task handling
with self-learning, self-optimizations, and self-configuration processes, such as [14], focus-
ing on data science processing automation with optimization, and [3], focusing on feature
selection and model training.

2.2. Multiple-Task AI System Research

Making the system automatic by learning the solution knowledge about the different
tasks is also challenging. Industrial AI leading research groups such as Google AI and Meta
AI understood that data-driven AI technologies have issues with performing complex tasks,
for example, creating human conversations with contextual understanding or detecting
early signs of disease from images. In addition, data-driven AI is resource-intensive
and suffers from algorithm bias [15]. Thus, the multiple-task-enabled AI systems with a
knowledge-driven approach present a pathway toward a solution to these problems. Why
is it thought that a knowledge-driven approach is necessary and crucial for a multiple-task
system? There are two reasons:

• The information acquired from different tasks may present value that can be used as
the basis to build new ML models for new tasks without requiring high-cost processing
to recapture the same feature characteristics.

• Updating knowledge through validation is a relatively consistent process that will be
less prone to bias from noisy data.

Upon completion of this research, two new ideas from Google and Meta were published.
Google presents an experimental process based on knowledge mutation [16,17]. Here,

knowledge refers to base neural network transformers. To begin with, the experimental
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environment contains transformers which can work on different tasks (different image
datasets for the classification problems). Then, when a new task arrives, the most related
transformer will be triggered to perform a mutation process. The mutation process can
edit the base model by inserting a new layer, removing a layer, or doing both according
to the performance optimization. In the end, a new mutated adapter is created to enable
dealing with a similar task next time. Whenever a new task with a new dataset arrives, the
mutation process is executed based on the latest mutated model.

The Meta research group presents a world model approach to acquiring knowledge,
very much in the spirit of actor–critic reinforcement learning [18]. The system architecture is
a combination of smaller modules—configurator, perception, world model, cost, short-term
memory, and actor—that feed into each other. The world model module is responsible for
maintaining a model of the world that can then be used to both estimate missing information
about the world and predict plausible future states of the world. The perception module
will receive signals to estimate the current state of the world and, for a given task, the
configurator module will have trained the perception module to extrapolate the relevant
signal information. Then, in combination, the perception, world model, cost, short-term
memory, and actor modules feed into the configurator module, which configures the
other modules to fulfill the goals of the task. Finally, the actor module is handed the
optimal action to perform as an action. This has an effect on the real world which the
perception module can then capture, which in turn triggers the process to repeat. That is,
each action will produce a piece of state-changing knowledge feedback to the world model
for continuous learning.

Both Google and Meta’s visions derive from the previous hyperparameter-optimization-
based AutoML processes [19]. For example, AutoKeras [20], a neural architecture au-
tosearch framework, is proposed to perform network morphism guided by Bayesian opti-
mization and utilizing a tree-structured acquisition function optimization algorithm. The
searching framework selects the most promising Keras implemented NN for a given dataset.

The above experimental results show improvements in tackling complex AI tasks and
possible pathways toward human-level AI systems. However, there are two main limitations:

• The knowledge definition is too narrow and only uses the generated neural network
as the knowledge limits the capability of recording all valuable outcomes through the
learning experience.

• There is no unified knowledge representation structure for knowledge inference
(machine thinking).

Do we already have a knowledge representation framework from our AI research over
the past 70 years? The answer is yes.

2.3. Knowledge Representation and Reasoning

Knowledge representation and reasoning (KRR) are always the core research areas in
AI systems [21]. Knowledge representation and reasoning (KRR) is a core area of artificial
intelligence (AI) that deals with how to symbolically represent information in a way that
a computer system can use to reason about the world. This involves understanding
and emulating human-like thinking and the ability to make deductions, inferences, or
predictions. KRR aims to enable machines to represent knowledge in a manner that they
can reason with, as humans do. Here are the main components:

Knowledge representation (KR): This is about how to store, retrieve, and modify
knowledge in an intelligent system. Various paradigms like semantic networks, frames,
rules, and ontologies have been developed for this purpose.

Semantic networks: Graph-based structures used to represent knowledge, where
nodes represent concepts and edges represent relationships between concepts.

Frames: Data structures for representing stereotypical situations. They contain at-
tributes (or slots) and associated values.

Rules: Represent knowledge in terms of if–then statements.

4
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Ontology: Define a set of representational primitives with which to model a domain of
knowledge. Ontologies are used in modern AI applications, especially in the semantic web.

Knowledge reasoning: This is about using the stored knowledge to draw conclusions,
make decisions, or infer new knowledge.

The knowledge-enhanced machine learning approach attracts less attention than the
data-driven approaches. However, KRR is still key in developing the future generation of
AI system development [22]; even Deep Neural Networks (DNNs) can create KRR, just in a
different form [23]. In our vision, KRR should not only extract knowledge from data but also
learn knowledge from system actions that can support the reasoning process. Knowledge
reasoning can be seen as the fundamental building block that allows machines to simulate
humankind’s thinking and decision making [24]. With generations of development on
KRR, the current most promising approach is the knowledge graph (KG) [24], derived from
the semantic web [25] community. A knowledge graph has two layers of representation
structure: 1. predefined ontology and vocabularies and 2. instances of triple statements
(e.g., dog is animal, where the dog is an instance and is is a predict, while animal is a
concept vocabulary defined in the ontology). The reasoning part is to apply the logical side
of the ontology, such as description logic (e.g., Is the dog an animal? The reasoning result is
’yes’) [26]. There have been many complex types of ontologies developed in the last decade
to solve different KRR problems and applications. The most important development of
ontology-driven reasoning is to encode dynamic uncertainty [27], probability [28], and
causality [29]. Therefore, the KG-based KRR framework can be applied to implement our
proposed vision.

2.4. Services and Machine Learning Ontologies

The web services community has researched autoconfiguration or service composition
for many years by applying a variety of dynamic integration methods. There are two trends
in service composition research:

• Directly extracting the services description file (e.g., WSDL) and Quality of Services
(QoS) into a mathematical model with a logical framework for composing services such
as a linear logic approach [30] and genetic algorithms [31,32]. The major limitation
is that there are no formal specifications for modeling and reasoning. Therefore, the
processes are mostly hard-coded to match the logic framework.

• The other trend is to apply semantic web standards for semantically encoding service
descriptions and their QoS properties (semantic web services (SWS)) [33,34]. The main
benefit is that semantic annotation has an embedded logical reasoning framework to
deal with composition tasks.

On the one hand, the semantic web services (SWSs) trend has greater strength for
integrating the KRR approach with the same semantic infrastructure and reasoning logic.
Currently, there are three standards of OWL-S: composition-oriented ontology, WSMO
(task–goal matching-oriented ontology), and WSDL-S (invocation-oriented ontology). On
the other hand, there are two differences between our vision’s microservice and normal
SWSs. The first one is that AIMS has simpler input and output requirements to perform
an efficient composition process. The other is that the purpose of each microservice is to
deal with data analytic or machine learning tasks. Therefore, the AIMS ontology needs to
be defined by modifying current machine learning ontology standards. Researchers have
realized that there is a need to have a machine learning ontology, and some recent proposals
in this domain are the Machine Learning Schema and Ontologies (MLSO), which introduces
twenty-two top-layer concepts and four categories of lower-layer vocabularies (the detailed
ontology design is in [35]), and the Machine Learning Ontology (MLO), which proposes
to describe machine learning algorithms with seven top-layer concepts of Algorithm,
Application, Dependencies, Dictionary, Frameworks, Involved, and MLTypes [36].

The existing ontology and schema provide a foundational base that can be integrated
and augmented to define a more comprehensive schema for generating automotive AI
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solutions in the biomedical domain. The primary enhancement required is to effectively
present the knowledge acquired from each task. Additionally, a self-learning policy is
essential to aid machines in comprehending the task context and devising the most optimal
pathway to offer a solution.

2.5. Generative AI

Recently, generative AI technology, such as ChatGPT and its associated APIs, has
marked a significant advancement in AI research. These technologies are primarily de-
signed to engage in text-based conversations, providing solutions to queries and problems
in a natural, human-like manner. This form of AI has shown tremendous utility in diverse
fields, from customer service to education, demonstrating its versatility.

However, when applied to more complex domains like biomedical research, there
are notable limitations. Specifically, the ability of these models to generate code or au-
tomated solutions for multistep biomedical problems is limited. The key issue lies in
the representation and understanding of data tokens within these problem spaces. In
biomedical research, data tokens can represent complex and highly specific biological or
medical entities, procedures, or relationships, which can be challenging for AI models
to comprehend.

Generative AI models like ChatGPT operate best when dealing with structured data
and clear-cut problem domains. Yet, biomedical research often involves dealing with
unstructured or semistructured data, highly domain-specific language and concepts, and
complex multistep processes.

Another significant challenge for generative AI, particularly in highly specialized
fields such as biomedical research, is the integration and expansion of domain-specific
human knowledge within the existing large language model.

Generative AI models are usually trained on extensive and diverse datasets, covering
a broad range of topics and languages. As a result, they can effectively generate text that
mimics human language in many situations. However, these models typically lack the
ability to learn continuously or integrate new knowledge once they have been trained.
Their knowledge is essentially frozen at the point of their last training update.

This limitation becomes particularly problematic when attempting to apply these
models in rapidly advancing fields such as biomedical research, where new discoveries and
innovations continually push the boundaries of existing knowledge. As the model cannot
natively integrate this new information, it struggles to provide up-to-date and accurate
solutions to complex, domain-specific problems. This limitation also extends to learning
from user interactions over time, a process which could theoretically allow the model to
fine-tune its responses and become more accurate.

Furthermore, the vast and generalized knowledge base of these models can be a
double-edged sword. While it allows them to engage with a wide variety of topics, it can
also lead to dilution of specialist, domain-specific knowledge. The models may struggle to
produce in-depth, nuanced responses to specialized queries due to the sheer breadth of
their training data.

In summary, while generative AI has shown significant promise, its limitations in
integrating and extending domain-specific human knowledge, coupled with its inability to
learn continuously, present considerable challenges for its application in specialized fields
like biomedical research. Overcoming these challenges will require novel approaches to
model training and updating, making it an exciting area for future AI research and devel-
opment. A potential strategy could involve using pretrained, domain-specific transformers
as a base model. This would facilitate the use of customized small research datasets to
efficiently produce a high-quality model. However, this approach necessitates a base model
framework to select the most suitable transformer effectively.
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2.6. The Gaps

By reviewing the current state of the art, we found that there are research gaps
remaining to achieve our goal:

• Self-supervised knowledge generation during the machine learning process and so-
lution creation: In the past, knowledge generation system mainly referred to expert
systems that acquire knowledge from human expertise or systems that transform
existing knowledge from one presentation to the other. Enabling the understanding of
common knowledge in the biomedical domain is crucial. Reference [29] presents an
automatic process of disease causality knowledge generation from HTML-text docu-
ments. However, it still does not fully address the problem of how to automatically
learn valuable knowledge from the whole task–solution–evaluation machine learn-
ing life cycle. Considering human-level intelligence, we always learn either directly
from problem-solving or indirectly through other human expertise (e.g., reading a
book or watching a video), or a combination of both (e.g., reflecting on the opinions
of others).

• Provisioning a knowledge-guided auto-ML solution: In contrast to the first gap, there
are no significant research works on using knowledge to assist in providing an AI
solution. Again, compared with human-level intelligence, we always try to apply
acquired knowledge or knowledge-based reasoning to solve a problem. We can
consider that the transformer process [37] is a step forward in this direction. We can
treat well-trained AI models as a type of knowledge to apply to different tasks in a
similar problem domain. However, there is still no defined framework that can specify
what knowledge is required and how to use the knowledge to find a solution to new
tasks [16].

3. The Framework Architecture

Figure 1 represents our vision of self-supervised knowledge learning with the AIMS
engineering approach. The left part of the Figure 1A presents the initial settings of the
intelligent environment. The initial environment only contains default AIMS information,
such as purposes, I/O requirements, and invokable URI (detailed AIMS metadata ontology
is introduced in the next section). However, the initial settings are ready to perform
four things:

Sensitivity: Internal

Microservices

Intelligent System Environment

Knowledge space only 
contains the initial 

information 
about the microservices

Interactive 
interface to 

take input data 
and task

Interactive 
interface to 

provide output

Intelligent System Environment

Knowledge Space

Grows bigger whilst trying to self-
configure microservices to solve 

tasks

Interactive 
interface to 

take input data 
and task

Interactive 
interface to 

provide output

Runtime cost 
optimisation 

(decision making)

Action

Reasoning

Microservices

A B

Figure 1. The vision of the self-knowledge learning approach with semantic ML microservices.
(A) shows the initial environment of the framework without any knowledge learning. (B) shows the
knowledge growing after learning from the actions that tried to provide an solution to the given tasks.
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• Registering new AIMSs (Automatic Semantic Machine Learning Microservices) from
outside the environment. The registration process is through the interactive interface
according to the defined microservice ontology (see Figure 2). Therefore, human
involvement in machine learning microservice engineering is a core part of this vision,
which defines humans as educators to teach basic skills and capabilities to deal with
different tasks. Then, the environment will reuse these skills and capabilities to acquire
knowledge. The knowledge will provide powerful reasoning sources to independently
deal with complex tasks, decision making, and creating new pipelines. Specific to
the biomedical research, the registration ontology can refer to biomedical engineering
ontologies, including Disease Ontology, Foundational Model of Anatomy (FMA),
Human Phenotype Ontology (HPO), and many others [38].

AI Microservice

xs: String

xs: String

Controlled 
Vocabulary

xs: String

xs: String

xs: String

Controlled 
Vocabulary

Input

Output

name

description

dependency

framework

input

output

category

license

invoking path

Parameter

xs: String

Controlled 
Vocabulary

Controlled 
Vocabulary

xs: String

pid

iocategory

iodatatype

ioshape

Figure 2. AI Microservice Registration Ontology.

• Taking tasks with a variety of inputs, such as CSV data files, images, text, and audio
data: The environment autoconfigures on the default AIMSs and provides solutions to
the tasks. The success or failure outcome will be recorded as knowledge. Microservice
autoconfiguration refers to the automated setup and configuration of individual
microservices in a pipeline to serve a machine learning task in our context. The
microservice human engineering process will start if there are no suitable AIMSs to
deal with the task.

• The environment can compose multiple AIMSs to complete a task if one single mi-
croservice cannot achieve it.

• The environment can start learning, representing, and storing knowledge in the
knowledge space as knowledge graph data. The knowledge is derived from processing
input data, the autoconfiguration process, and task outcomes. The knowledge size
will increase and thus provide better optimizations, autoconfiguration, and feedback
to the system user.

To realize the vision presented in Figure 1, we discuss the related existing technologies
and their research outcomes that can be adapted into our research next.

4. Self-Supervised Knowledge Learning for Solution Generation

The self-supervised knowledge learning approach involves three types of autoconfig-
uration transfer learning methods. Figure 3 presents the overall learning framework.

The first method is knowledge space searching and transferring: A task with a dataset
(referred to as a task-context) arrives, and there is no previous knowledge related to the
task-context. Therefore, the knowledge space will be searched to try to find a possible
microservice that can match the context to complete the task or search for a pipeline
(workflow) that contains multiple I/O compatible AIMSs together towards the best and
successful completion which can be optimized. The task context and the optimized solution
are recorded as task input and output knowledge.
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EvaluationNew Model
Raw Data + Task 

Specification
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Solution KR
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B: Base Microservice Function
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Figure 3. The vision of the self-knowledge learning approach with AI microservices.

The evaluation will generate rewards for the policy knowledge space (we demo a
detailed process in the sections Experimental Implementation and Scenario Evaluation and
Lesson Learned). In addition, the knowledge learned from the process will be recorded to
update the world knowledge space.

The second one is the mutation of a previously generated context-matched solution
(a composition transfer learning process; we demo a detail process in the section Scenario
Evaluation and Lesson Learned). If the new task context matches with a previously
recorded task context in the knowledge space, then the previous solution will be loaded to
adapt to the new datasets and the optimization process. Finally, a new mutated solution
is created and recorded as new knowledge with the new evaluation rewards and world
knowledge of the KRR environment.

The third one is the continuous learning mutation method based on the reinforcement
learning approach. With the growth of the KRR statements, the automutation will take
place using world knowledge to retrain the solutions according to the rewards. The third
learning method takes place offline only but continues carrying out an update when KRR
is updated.

5. Experimental Implementation

Figure 4 shows a three-layer implementation of the vision. This structure reflects to
our vision that AI system should have three major capabilities of learning knowledge,
reasoning (thinking), and reacting to the problem. The figure also shows how these layers
map to the automotive solution provisioning process.

• The request layer takes tasks and inputs from AI applications to trigger the solution
searching and self-learning processes. Task context is semantically encoded to enable
starting the policy knowledge to explore the environment for learning, creating, or
finding solutions.

• The reasoning layer takes the request layer’s semantic reasoning tasks for semantic
matching, reasoning, and performing the reinforcement learning mechanism. Finally,
the policy will be recorded in the knowledge graph layer. In addition, the newly
added AIMSs are registered to the environment with semantic annotations through
knowledge registration and generation components.

• The knowledge graph layer remembers the knowledge data in the knowledge graph
triple store based on different types of knowledge schemata.
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Figure 4. Self-supervised knowledge learning and reasoning framework design.

5.1. Knowledge Ontology Implementation

AIMS registration ontology defines nine parameters (see Figure 2).

• Name— Must be no duplication in the system, and the registration process will check
the name’s legibility.

• Description—A short presentation of the AIMS for human understanding.
• Framework—Indicates the programming framework used to develop the AIMS. Nor-

mally, it should be just one framework as AIMS is designed to be decoupled and
ideally single responsibility.

• Dependency—Describes the required programming libraries that need to be precon-
figured to enable the AIMS to work. The schema includes id, library install port URI
and version.

• Input and output—Specifies the parameters that should be in the input and output
messages.

• Category—Tells what AI-related domain the ms works on, such as supervised classifi-
cation, unsupervised clustering, image classification base model, and more.

• License—Identifies the use conditions and copyright of the AIMS.
• Invoke path—Contains the portal for accessing the AIMS. The path can be a local path

or URI of a restful API.

Each given task triggers a context knowledge creation that collects knowledge of
the following:

• The type of input data—A controlled variable that majorly includes normal dataset
(e.g., tableau data stored in a CSV file, image, or text).

• Task domain—Free text to record the specific application domain.
• Desire output type—Records the output required to complete the task successfully.
• The parameters—The dataset or data presents the initial characters of the input data.

For example, the number of columns and column names of the tableau data will be
remembered as part of the context knowledge of the task.

The output of the performed task can be categorized into two types, failure and success.
Both failure and success need to update the policy knowledge link to the task-input context.
Failure has no solution registered to the knowledge but records which AIMSs have been
successfully invoked (can be an empty list) until the step that cannot continue going further.
So, the failure experience will tell the system administrators (people) what AIMS(s) are
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required to create a solution. The success registers the solution location and changes the
policy with the reward value. If the solution contains a workflow of composed AIMSs, then
the workflow will also be registered as knowledge with the normalized rewards for each of
the AIMSs.

The policy ontology is designed as follows:

• Policy context—Links to a task-context.
• Policy state—1 is success and 0 is failure, the binary state only presents whether

the whole workflow is work or not but inside the workflow context that shows
the continuous measure of individual component’s potential contribution toward to
success in other possible solutions (see Figure 5).

• Solution iloc—The location where the solution can be loaded and executed.
• Workflow—Presents a pipeline solution that composes multiple AIMSs.
• Solution reward—The reward value stored for the policy that can be the recommended

guidance for supporting the creation of a new task solution.

Figure 5. Reinforcement learning policy generation for the knowledge layer.

The can be rewarded in a failure pipeline if the individual step is invoked and running
successfully. Therefore, the rewarded micorservice can be reused when searching for the
alternative success composition solution. Figure 5 shows that failure workflow at run-
time provide one of three rewards to the successful individual microservices, but no final
solution model is created comparing it with the second searching which created a successful
workflow pipeline and recalculated rewards to all four microservices. The successful
workflow will reward the total reward value 1 divided by the number of microservices (n)
involved (n—order number).

The world knowledge ontology presents the facts learned from the task solution
creation process and outputs. There are three types of world knowledge recorded in the
current environment:

• Feature optimization outcomes—The features selected in the optimization are valuable,
and these features will be reused to create a classification model if the new dataset
features are the same.

• Answers for a certain text topic—A generated text answer for a question. The an-
swer quality will be reported as a reward value feedback from humans back to the
policy knowledge.

• Image RBG vectors—Map to a classification label. The reward process is the same as
the answers.

More world knowledge can be expanded in the environment. By having these com-
monsense and policy records, reinforcement can be performed to improve the solution
accuracy incrementally.

5.2. Environment Initialization

The experiment environment is developed by Python in a local single-computer
environment. We simplified the AIMS as a .py module in the environment to be invoked
and registered. We initialized the environment with three types of AIMSs:
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1. Data processing AIMSs that include CSV files to a Panda service, data training and
split services, data quality control services, data normalization services, image process
services, and data quality control services.

2. ML AIMSs that include clustering services, classification services, GPT-neo-1.3B text
generation services [39,40], ViT image classification transformers [41], and Seanborn
visualization services.

3. RFECV optimization services.

6. Scenario Evaluation and Lessons Learned

6.1. Heart Disease Classification Scenario

Figure 6 presents one of our use-case scenarios in the medical domain. The task context is
as follows:

• Input: 335 clinical CSV heart disease files labeled 0 (no disease) and 1 (confirmed disease).
• Domain: Medical.
• Desire output: An optimized classification pipeline model.

Figure 6. Scenario 1—Heart disease classification solution building and knowledge learning process.

Additionally, the columns of the data are as follows:

• Age: The person’s age in years.
• Sex: The person’s sex (1 = male, 0 = female).
• cp: Chest pain type—value 0: asymptomation, value 1: atypical angina, value 2:

nonanginal pain, value 3: typical angina.
• trestbps: The person’s resting blood pressure (mm Hg on admission to the hospital).
• chol: The person’s cholesterol measurement in mg/dL.
• fbs: The person’s fasting blood sugar (>120 mg/dL, 1 = true; 0 = false).
• restecg: Resting electrocardiographic results.
• thalach: The person’s maximum heart rate achieved.
• exang: Exercise-induced angina (1 = yes; 0 = no).
• oldpeak: ST depression induced by exercise relative to rest (ST relates to positions on

the ECG plot.
• Slope: The slope of the peak exercise ST segment—0: downsloping; 1: flat; 2: upsloping.
• ca: The number of major vessels (0–3).
• thal: A blood disorder called thalassemia.
• target Heart disease (1 = no, 0 = yes).

The application domain is medical, and the desired output is an optimized classifi-
cation pipeline model. Figure 6 illustrates the process. The procedure commences with
the input of a CSV file containing the Heart Disease dataset, accompanied by a query
pertaining to the generation of a predictive model. Following this, the framework attempts
to retrieve relevant knowledge via the request layer and its associated functions, as shown
in Figure 4. Given the absence of pre-existing knowledge, the system initiates a reasoning
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process through the reasoning layer. This layer, utilizing the knowledge representation
of existing microservices, crafts a workflow. The formulated workflow incorporates four
AI microservices: data loading from the CSV, data partitioning, creation of a classification
pipeline, and optimization. The culmination of this process results in a model boasting an
accuracy rate of 96.8%. Throughout the procedure, various knowledge components are
assimilated and documented within the system’s environment. The unique insight derived
from the general knowledge context is that eight features are deemed more significant than
other columns in determining the classification results. These features are sex, cp, thalach,
exang, oldpeak, slope, ca, and thal. The reason these columns are highlighted as the most
crucial is because the optimization microservice identified them in generating the most
accurate model.

6.2. Parkinson Disease Classification Scenario

The second task context is as follows:

• Input: CSV Parkinson’s disease clinical example data with labels 0 (no disease) and
1 (confirmed disease).

• Domain: Medical.
• Desired output: An optimized classification pipeline model.

Figure 7 depicts the scenario in which a similar task of classifying Parkinson’s disease
is fed in; the framework starts searching for a solution. As the system environment has
preknowledge, gained through the previous heart disease classification, and since the only
difference is the dataset when compared with the heart disease classification context, the
framework can use the classification pipeline and retrain it to be optimized for the new
dataset. We can call this process a composition transfer learning process. The novelty is
that the system environment can solve different tasks by applying contextual knowledge
of the problem. Thus, the framework can automatically deal with all types of data if the
required models are semantically registered in the framework. Through this composition
transfer learning, the whole automatic pipeline can produce a 94.6% accurate model.

Figure 7. Scenario 2—Parkinson’s disease pipeline transfer classification process.

6.3. A Complex Scenario: Mouse Brain Single-Cell RNASeq Downstream Analysis

In this section, we use a clustering analysis case study to highlight how the proposed
framework can solve a real-world downstream single-cell data analysis task. The clustering
analysis of single-cell data offers a powerful tool for a myriad of applications, ranging
from understanding basic biological processes to the development of clinical strategies for
treating diseases. The clustering analysis task works on a mouse brain single-cell RNASeq
dataset. The dataset is publicly available through a workshop tutorial at [42]. There are
five sequential processing and analysis steps:
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1. Data semantic transforming and loading: For instance, applying AnnData structure [43],
where AnnData stores observations (samples) of variables/features in the rows of a
matrix (see Figure 8).

2. Data quality control: This aims to find and remove the poor-quality cell observation
data which were not detected in the previous processing of the raw data. The low-
quality cell data may potentially introduce analysis noise and obscure the biological
signals of interest in the downstream analysis.

3. Data normalization: Dimensionality reduction and scaling of the data. Biologically,
dimensional reduction is valuable and appropriate since cells respond to their envi-
ronment by turning on regulatory programs that result in the expression of modules
of genes. As a result, gene expression displays structured coexpression, and dimen-
sionality reduction by the algorithm such as principle component analysis can group
these covarying genes into principle components, ordered by how much variation
they explained.

4. Data feature embedding: Further dimensionality reduction using advanced algo-
rithms, such as t-SNE and UMAP. They are powerful tools for visualizing and under-
standing big and high-dimensional datasets.

5. Clustering analysis: Groups cells into different clusters based on the embedded features.

Figure 8. AnnData Structure.

Based on the above five steps, we developed four extra microservices, which include
AnnData loading, two feature embedding services (t-SNE and UMAP), and clustering
services (Louvain graphical clustering algorithms). The other existing microservices which
can be involved should be different types of normalization (PCA or CPM algorithm) and
K-mean clustering algorithms.

The microservices were semantically registered into the framework through the inter-
face. Figure 9 depicts an example of a quality control microservice semantic description in
the knowledge graph repository.
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Figure 9. Quality control microservice semantic description.

With all the microservices registered, researchers can start expressing the analysis task
to stop, interact, and provide feedback at any stage during the process of automatically
creating the solution. The researchers can also see visualizations of outputs produced by
different steps. Therefore, researchers can provide preferences for selecting microservices if
there are options.

A realistic example is that a researcher can specify a clustering task applied to the
mouse brain single-cell RNASeq dataset. The framework will first try to see if a single
microservice can complete this task. The answer is ’no’, because no semantic-matched
microservice can take the RNASeq CSV input and provide the clustering output. At
this juncture, the microservice that can take the RNASeq CSV will be invoked to process
the data into the next step with the output of AnnData. If there are multiple choices in
the composition sequence, all possibilities will be invoked to run, unless the previous
knowledge in the policies has a priority. The possibilities have multiple solutions at the
end for researchers to analyze in order to give professional feedback to the system. The
feedback will help greatly with the knowledge graph policies. For example, suppose the
researcher gives feedback to the system that UMAP is the better embedding method than
t-SNE but has no priority on the clustering methods. In that case, the framework will
produce two possible clustering results, shown in Figure 10.

Figure 10. Two clustering outcomes from automatic processes.

7. Discussion

By evaluating the performance of the test scenarios, we believe the combination of KRR
and automation of AIMSs offers a viable strategy for developing human-level AI systems.
We created an environment with AIMSs capable of handling text, CSV files, and images
as default settings. This environment supports data splitting, classification, prediction,
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and optimization AIMSs. These findings suggest the system’s capability to generate and
optimize solutions for various tasks by applying or creating knowledge. However, there
remain some challenges that future work needs to address:

• The advantage of using a triple KG structure to encode KRR elements lies in its
unification, standardization, and adaptability across diverse applications. Nonetheless,
as the KG expands, its referencing efficiency diminishes, particularly with intricate
graph queries. This inefficiency is exacerbated when different knowledge types are
stored separately, making union queries on the graph resource-intensive. A proposed
solution is to embed the knowledge graph into a more efficient vector space [44]. To
achieve this, we plan on investigating state-of-the-art embedding techniques, such
as graph neural networks, that can maintain the relationships between entities while
offering efficient querying.

• The current system architecture does not support multimodal inputs pertaining to a
singular task (multimodal machine learning). While humans can seamlessly integrate
visual, auditory, and other sensory data to accomplish tasks, machines struggle to
synthesize multiple data types [45–47]. Moving forward, we aim to explore fusion
techniques, both at the feature and decision levels, to facilitate more comprehensive
input processing.

• During the initial stages of our manuscript’s preparation, Google released research
papers detailing the mutation of neural networks (NNs) to handle diverse image
classification tasks [16,17]. These papers have illuminated the potential of not just
mutating data or services but also the possibility of adding or removing NN hidden
layers as a form of knowledge storage for future considerations. Our intent is to delve
deeper into the dynamics of such mutations and explore frameworks that allow for
flexible and dynamic architectural changes in neural networks.

8. Conclusions

Our proposed Automatic Semantic Machine Learning Microservice (AIMS) frame-
work presents a novel approach to managing the complex demands of machine learning in
biomedical and bioengineering research. The AIMS framework utilizes a self-supervised
knowledge learning strategy to ensure automatic and dynamic adaptation of machine
learning models, making it possible to keep pace with the evolving nature of biomedical
research. By placing emphasis on model interpretability and the integration of domain
knowledge, the framework facilitates an improved understanding of the decision-making
process, enhancing the relevance and applicability of the generated models. A significant
finding of this research is our demonstration that knowledge-based systems can play a
pivotal role in self-learning AI systems for biomedical research. Such systems offer the
capability to store domain-specific knowledge with reusability and bolster the reinforce-
ment learning processes for machines. Furthermore, the potential of these systems extends
beyond biomedical research, suggesting applicability to AI applications in other domains.

The three case studies presented underscore the framework’s effectiveness in various
biomedical research scenarios, demonstrating its capacity to handle different types of data
and research questions. As such, the AIMS framework not only offers a robust solution
to current challenges in biomedical and bioengineering research but also sets a promising
direction for future developments in automated, domain-specific machine learning. Further
studies are required to evaluate the AIMS framework’s performance across a wider range
of biomedical and bioengineering applications and to refine its capabilities for even more
efficient and precise knowledge discovery.
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Abstract: Magnetic resonance imaging (MRI) is a standard procedure in medical imaging, on a
par with echography and tomodensitometry. In contrast to radiological procedures, no harmful
radiation is produced. The constant development of magnetic resonance imaging (MRI) techniques
has enabled the production of higher resolution images. The switching of magnetic field gradients
for MRI imaging generates induced voltages that strongly interfere with the electrophysiological
signals (EPs) collected simultaneously. When the bandwidth of the collection amplifiers is higher
than 150 Hz, these induced voltages are difficult to eliminate. Understanding the behavior of these
artefacts contributes to the development of new digital processing tools for better quality EPs. In this
paper, we present a study of induced voltages collected in vitro using a device (350 Hz bandwidth).
The experiments were conducted on a 1.5T MRI machine with two MRI sequences (fast spin echo
(FSE) and cine gradient echo (CINE)) and three slice orientations. The recorded induced voltages
were then segmented into extract patterns called “artefact puffs”. Two analysis series, “global” and
“local”, were then performed. The study found that the temporal and frequency characteristics were
specific to the sequences and orientations of the slice and that, despite the pseudo-periodic character
of the artefacts, the variabilities within the same recording were significant. These evolutions were
confirmed by two stationarity tests: the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and the time-
frequency approach. The induced potentials, all stationary at the global scale, are no longer stationary
at the local scale, which is an important issue in the design of optimal filters adapted to reduce MRI
artifacts contaminating a large bandwidth, which varies between 0 and 500 Hz.

Keywords: induced potentials; MRI; time and frequency analysis; stationarity test; KPSS test;
surrogates; biomedical engineering; image and signal processing; medical image analysis and
medical decision-making

1. Introduction

Magnetic resonance imaging, like all other imaging techniques, is designed to support
research into diseases. A particular feature of MRI is the high contrast of the smooth tissues pro-
duced. This means that even the smallest differences in the body’s soft tissues (brain, abdominal
organs, spinal cord) are clearly visible. Tumors and inflammatory changes, muscles, tendons, in-
tervertebral discs and joints can, therefore, be particularly well-represented. Magnetic resonance
imaging (MRI) techniques, like other medical approaches, such as dental implantology [1], the
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vascularization of engineered tissues [2] and synthetic bone graft substitution (BGS) [3], are
constantly evolving with the aim of improving the image quality and broadening the spectrum
of applications. These developments have led to considerable improvements in the spatial
and temporal resolution of diagnostic MRI images, and to the development of functional and
interventional MRIs. Unfortunately, these advances generate sources of artefacts that “pollute”
the electrophysiological signals (EPs) acquired simultaneously [4–6]. Indeed, better spatial and
temporal resolution requires increasingly strong gradients with shorter and shorter rise
times, sometimes associated with higher magnetic fields (3-7T). EPs are essential for patient
monitoring and image synchronization in all types of MRI examinations [7,8]. They are
also used as a source of additional information in functional MRI. EPs “pollution” is mainly
due to the interaction between the electromagnetic devices needed to construct the MRI
images and the EPs acquisition devices used for patient monitoring [9,10]. The signal s(t)
collected by the electrodes can be modeled as a linear combination of the desired signal EPs,
and three main sources of noise [4]: s(t) = sEPs(t) + nRF(t) + nMHD(t) + nGA(t) sEPs(t) is
the electrophysiological signal, nRF(t) represents the tensions induced by the RF pulses,
nM HD(t) represents the tensions induced by the RF pulses and nGA(t) are the voltages
induced by the gradient switches. The nRF(t) and nM HD(t) components can be properly
reduced by filtering. The voltages induced by gradient switching are difficult to remove
because they have large amplitudes and frequencies that fall within the bandwidth of the
electrophysiological signals. For several decades the electrocardiogram (ECG) [11] has been
used during MRI examinations for patient monitoring and image acquisition synchroniza-
tion. However, this technique is performed using electronic devices with a low bandwidth
(1 Hz–60 Hz) which does not allow provision of a good diagnostic quality ECG. Indeed,
a diagnostic ECG requires a wide bandwidth (0.05–150 Hz). Recent studies show the
interest in and difficulties associated with this type of collection [12–15]. The surface elec-
tromyography signal is another interesting example in the functional MRI of neurological
pathologies. Combining the information from the image of a muscle section and the EMG
signal collected simultaneously on the surface of the same muscle could provide diagnostic
assistance. At present, obtaining a clean EMG signal in the presence of gradients is a major
difficulty; its amplitude is low (few μv) and its bandwidth is (0.05–500 Hz). Research in this
field confirms the interest in and difficulties of this type of investigation [16–18]. In the cited
works, EMG was used only as a control for muscle activity. The authors did not perform
a quantitative analysis to correlate the EMG and fMRI signals, due to gradient-induced
potentials affecting the EMG signals. The variations in the time-frequency characteristics
of the EMG in the presence of gradient artefacts are even more complex. To eliminate the
induced potentials that strongly contaminate the broadband electrophysiological signals, it
would be interesting to understand the behavior of these artefacts systematically generated
by gradient switching. The results of this type of investigation could contribute to the
development of new analogue and digital processing tools leading to better quality EPs.
The study we propose here falls within this framework and focuses on the characterization
of the temporal and frequency variations of the nGA(t) component. The novelty of this
work lies in its focus on addressing a specific problem related to the contamination of
electrophysiological signals (EPs) during magnetic resonance imaging (MRI) procedures.
In this paper, we present a study of induced voltages collected in vitro. In the laboratory,
we developed a device that allows collection of only the potentials induced by gradient
switching according to different imaging protocols. After analysis of the temporal and
frequency properties, we formulated a study of the stationarity of these induced voltages.
The fundamental notion that informs the modeling of a temporal process is that of station-
arity. Two approaches for testing stationarity were applied to the rewired artefacts: the
KPSS stationarity test and the time-frequency stationarity test. The first part of the paper
briefly presents the theoretical basis of the two stationarity test methods used. The second
part of the paper describes the process of collecting the induced potentials, the method
of analysing their variabilities in the time and frequency domains, which is widely used
in several fields, like the monitoring and early warning of mine rockbursts [19], and the
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algorithm for the stationarity study. The results and a discussion of the observations are
presented in the last section.

2. State of the Art of Stationaity Test

The stationarity of electrophysiological signals such as EMGs, EEGs and ECGs have often
been studied in order to better develop tools for extracting relevant information [20–22]. The
stationarity of these same signals recorded in MRI does not seem to have been studied, probably
due to the complexity of the different noise sources involved. It seemed appropriate to first
study the noise generated by gradient switching using an in vitro approach.

2.1. The Kwiatkowski–Phillips–Schmidt–Shin Stationarity Test

By definition, a signal is considered strictly stationary if, and only if, its statistical
moments are independent of time. In practice, it is virtually impossible to verify stationarity
in the strict (or strong) sense, mainly because a real physical signal can never be stationary
in the strict sense. For this reason, it makes sense to define stationarity in the weak, i.e.,
second-order, sense. In practice, an acquired signal can be assimilated to a time series whose
“trajectory” we observe and analyze in order to qualify it as stationary if it is likely to result
from a stationary process. According to the definition of stationarity in the weak sense, non-
stationarity can arise from a time dependence of the first-order moment (the expectation)
and/or a time dependence of the variance or the auto-covariance. Kwiatkowski et al.
proposed hypothesis tests to verify under the null hypothesis that a series is stationary in
level ημ or around a trend ητ [23]. To this end, a time series is modeled as follows:

yt = δt + ξt + εt, (1)

where εt is a stationary error, δt is a deterministic trend and ξt is a random walk given by
the following equation:

ξt = ξt−1 + μt (2)

where μt iid (0,σ2
μ): under the null hypothesis, the signal is trend-stationary, i.e., σ2

μ = 0. In
the special case where δ = 0, the KPSS test can be used to check that the signal is weak-
sense stationary.

2.2. Stationarity Test with a Time-Frequency Approach

The time-frequency approach for testing the stationarity of a time series recommended
by Jun et al. [24,25] is very briefly presented below. The starting point of this approach
is that second-order stationary processes are a special case of the class of harmonizable
processes where time-varying spectra can be defined. When the process under analysis is
stationary, its time-varying spectra can be reduced to the classical power spectral density
(PSD). This is true for a good choice, such as for the Wigner–Ville Spectrum (WVS). The
basic idea underlying the approach used here is, therefore, that, considered over a given
period of time, a process is said to be stationary with respect to this scale of observation if its
time-varying spectrum does not support any evolution—in other words, if the spectra at all
different times are statistically similar to the global spectrum obtained by marginalization.
This idea is not new, but the approach advocated is based on the meaning of the difference
“local vs. global”.

2.2.1. The Time-Frequency Approach

The first element required for the test is a time-frequency representation susceptible to
guarantee robust subsequent processing. The choice here will be made on a multi-window
spectrogram, which has the advantage of being a good estimator of the theoretical Wigner–
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Ville spectrum [26]. Given a signal x(t), the spectrogram is estimated according to [27]:

Sx,K(t, f ) =
1
k

K

∑
k=1

S(hk)
x (t, f ) (3)

where ∑K
k=1 S(hk)

x represents the K spectrograms computed on the signal x(t), taking as short-
term windows the successive terms hk(t) of an (orthonormal) basis of Hermite functions:

S(hk)
x (t, f ) = |

∫
x(s)hk(s − t)e−i2π f sds|2 (4)

In practice, the average (4) refers to a reduced number of windows, usually between
5 and 10. Another essential element of any window analysis is, of course, the size of the
windows, irrespective of their shape. In the present context, the possibility to vary this size
provides an intrinsic degree of freedom to the method in order to adjust the horizon of the
local analysis with respect to the global time scale set by the total observation time.

2.2.2. Surrogates

The idea of the test is to identify the concept of stationarity with the equivalence of
global and local spectral properties. In order to have a quantifiable basis for comparison
between the global and local characteristics, the proposed approach is to associate the
observed signal with a “stationary” reference in order to be able to reject the stationarity
hypothesis, if necessary. To this end, the authors use the interpretation that, for the same
spectrum mean, a non-stationary signal differs from a stationary counterpart by a temporal
structure whose signature is found in the spectral phase. Thus, given a single observed
signal x(t), it is possible to associate a battery of substitutes [28,29] sj(t); j = 1, . . . , J, each
having the same power spectrum as the original signal but a stationary time content. It
would be enough to replace the original phase of the spectrum by a random phase.

2.2.3. Distances

The idea is to compare the local spectra with the global spectrum. For this purpose,
we defined the quantities marginalized in time as follows:

〈Sy,k(tn, f )〉n =
1
N

N

∑
n=1

Sy,k(tn, f ) (5)

Since the signal y(t) = x(t) for J substitutes y(t) = sj(t); 1, . . . , J), the different time-
frequency spectrum was only evaluated at N times tn, which are a fraction of the equivalent
width of the short-term windows. The “distances” J + 1 between the local and the global
spectra are derived from this equation:

{C(y)
n = D(Sy,K(tn, .), 〈Sy,K(tn, .)〉n), n = 1, . . . , N} (6)

where D (.,.) stands for some dissimilarity measure (or “distance”) in frequency.
In order to choose a measure of dissimilarity between spectra, the authors adopt a

pragmatic attitude which consists in considering the simplest “distances” that have already
proved their efficiency in similar contexts. A good choice of measurement is based on
two spectra G (f) and H (f),

k(G, H) = kKL(G̃, H̃).(1 + kLSD(G, H)) (7)

Combining the Kullback–Leibler divergence

kKL(G̃, H̃) =
∫

Ω
( ˜G( f )− ˜H( f ))log(

G̃( f )
H̃( f )

)d f (8)
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Applied to the normalized spectrum ˜G( f ) and ˜H( f ) from G(f) and H(f) and the
log-spectral deviation

kLSD(G, H) =
∫

Ω
|log

G( f )
H( f )

|d f (9)

2.2.4. Stationarity Test

Let us consider sj(t), j = 1, . . . , J as the J substitution signals obtained as just de-
scribed. When they are analyzed as explained above for the original signal x(t), we fi-
nally end up with a new collection of distances depending on both the time indices and
the randomizations.

{c
s( j)
n = k(Ssj ,K(tn, .), 〈Ssj ,K(tn, .)〉n), n = 1, . . . , J} (10)

To measure the fluctuations in time of the divergences c(.)nn between local and global
spectra, one can use the distance l2− defined by equation (16):

L(g, h) =
1
N

N

∑
n=1

(gn − hn)
2 (11)

For each pair of sequences {(gnhn); n = 1, . . . , N}. Regarding the intrinsic variability
in the proxy data, the dispersion of the divergences under the null hypothesis of stationarity
can be measured by the distribution of the J empirical variances

{θ0(j) = L(c(sj), 〈c(sj)〉n=1,...N), j = 1, ...J} (12)

The distribution is used to determine the threshold γ over which the null hypothesis
is rejected. The effective test is, therefore, based on the statistics

θ1 = L(c(x), 〈c(sj)〉n=1,...,N), j = 1, . . . , J (13)

And takes the form of the unilateral test:

θ1 > γ : “non − stationarity′′; (14)

θ1 < γ : “stationarity′′

2.2.5. Index of Non-Stationarity

Test (20) is used to determine the non-stationarity of a signal in terms of its achievement.
In the non-stationary case (where the null hypothesis is rejected), it is then possible to
define a non-stationary index (INS) according to the following relation:

INS =

√√√√ θ1
1
J ∑J

j=1 θ0(j)
(15)

3. Signal Acquisition and Treatment

3.1. Recording of Induced Potentials

An experimental bench was built in our laboratory to collect the in vitro potentials in-
duced by gradient switching (Figure 1). A detailed description of this bench was published
in a previous paper [30]. From an electrophysiological signal generator (A), five signals
can be injected simultaneously into the tunnel via the transmitter (B), the optical fiber
and the receiver (C). These signals contaminated at the level of the conductive tissue (D),
which is placed at the center of the magnet, are detected by the second transmitter (E) and
transmitted to the outside of the tunnel via a second optical fiber and the second receiver
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(F). The data is stored and processed by station G. The non-MRI-compatible elements (A),
(B), (E) and (G) are placed outside the MRI chamber.

Figure 1. Experimental bench with two “transmitter-receiver” modules: (B,C) for signal transmission,
and (E,F) for detection. From (A), five signals can be injected simultaneously into the tunnel via the
transmitter (B), the optical fiber and the receiver (C). These contaminated signals at the conductive
fabric (D) are detected by the second transmitter (E) and transmitted to the outside of the tunnel via a
second optical fiber and the second receiver (F). When the generator (A) is off and the MRI sequences
are activated, the system collects the potentials induced by the gradient switches. The contaminated
signals or induced potentials are stored and processed by the station (G).

The bandwidth of the set extends from 0.05 Hz to 350 Hz. The bench has 20 channels
divided into four frequency bands (40 Hz, 80 Hz, 160 Hz and 350 Hz). It is, thus, possible
to analyze the changes in the signal parameters according to the sequences, but also
within the different frequency bands. This bench offers different types of experiments.
It consists of two MRI-compatible “transmitter-receiver” modules. The first allows EPS
signals with known characteristics to be introduced into the MRI tunnel. The signals are
injected into a sample of conductive tissue placed in the tunnel. The second module allows
the signals to be collected after they have been contaminated by artefacts generated by
the imaging sequences owing to the electrodes placed on the conductive tissue. When
no signal is injected into the tunnel, the potentials induced after activation of the MRI
sequences can be collected. This type of experiment was used in the present work. The
study focused on the induced potentials collected at the output of the 350 Hz (broadband)
filter, which, therefore, contains a maximum of noise generated by the gradients. The
experiments were conducted on a 1.5T MRI system (GE Signa HDxt 1.5T, GE Healthcare)
equipped with a 33 mT/m gradient system. To simulate a human body, a conductive
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tissue model was placed in the MRI tunnel. It was made from salt, gelatine powder and
water. By varying the concentrations of salt in the gel, different conductivities of the
medium were obtained. For this study, the conductivity was 348 Ω·cm. The induced
potentials were acquired with three carbon electrodes (3MTM RedDotTM radiolucent
electrode). The induced potentials were sampled at 5 kHz and recorded for a duration of
10 s. The MRI sequences used were FSE and CINE in three slice orientations. Fast spin echo
(FSE) (Fov = 30 × 30 cm, TR/TE = 500/12 ms, Matrix = 448 × 512) and cine gradient echo
(CINE GE) (Fov = 34 × 25 cm, TR/TE = 9.4/5.1 ms, Matrix = 256 × 128) were used as the
MRI sequences.

3.2. Pre-Treatment

Figure 2a shows an example of low-frequency noise recorded without MRI sequence
activation. Figure 2b illustrates an example of an induced potential where the amplitude
modulation by the noise seen in Figure 2a is observed. There are also bursts of artefacts
that appear periodically. These two features were exploited in the studies presented below.
The studies focused on a 5-s recording duration for global analysis, and on the artefact
puffs for local analysis.

A recording without sequence activation was also performed in order to observe the
disturbances caused by the static field B0 and the rest of the measurement environment.
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Figure 2. (a) Non-sequenced noise and its frequential representation, and (b) induced potentials FSE.

3.2.1. Normalization

In order to process the potentials collected in different sequences and slice orientations,
the normalization of the data is essential in order to transform the amplitude values of the
induced potentials from their original values into comparative scales. In this study the
Z-score normalization used was set by the following formula:

Y(s) =
X(s)− μ

σ
(16)

Y(s) represents the normalized induced potential, X(s) is the original induced potential
μ and σ represents the mean and standard deviation.
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3.2.2. Puff Extraction

In order to precisely delineate the artefact bursts, we performed a manual segmenta-
tion, which is more accurate for delineating the puffs (Figure 3).

Figure 3. Signal segmentation principle.

The operation was applied to 5 s of induced potential recorded as indicated above
for each of the two sequences and according to the three orientations. This gave a total of
three “noise signals” per sequence, i.e., six recordings to be segmented. In all, 80 puffs were
extracted from each of the six segments, i.e., a total of 480 puffs to be analyzed.

3.2.3. Time and Frequency Analysis of Induced Potentials

The aim here was to verify the expected properties and to highlight the inter-sequence
and intra-sequence variabilities. The estimated time and frequency domain characteristics
are given below:

- RMS values of the global signal and RMS values of the different bursts.
- Estimation of the average curve of the chirps, and calculation of its RMS value.
- Measurement of the similarity between the puffs by calculating the mean square error

between each puff and the mean curve according to the following equation:

ern =
1
ȳ

√√√√ N

∑
1
(ŷi − yi)2 (17)

This value is normalized to the range ỹ = ymax − ymin.

- The calculation of the power spectral density (PSD) is performed by the Welche–WOSA
method, and estimation of the characteristic parameters, the average frequency, the
maximum amplitude frequency and the standard deviation of the overall spectrum
and on the set of puffs are obtained by segmentation.

3.3. Stationarity Study
3.3.1. Kpss Method

The theoretical approach outlined in Section 2.1 was applied to the different 5 s
recordings, which was enough to have sufficient puffs to analyse:

(a) the KPSS of the six 5 s recordings (FSE/axial/ coronal/sagittal-CINE/axial/coronal/sagittal).
(b) the KPSS of the 480 extracted puffs and evaluation of the variabilities by estimating the

mean values and standard deviation of the obtained series of values. The values were
also grouped and graphed to highlight the degree of stationarity or non-stationarity
of the different studied segments of the induced potentials.
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3.3.2. Surrogate-Based Method

The algorithm proposed by Bor et al. [24], which is based on the briefly presented
approach in Section 2.2, was adapted and applied to our records. The program is imple-
mented in the Matlab language and contains different functions. Below is a presentation of
the main steps of the algorithm:

(1) Time-frequency representation: The choice was made for the multi-window
Wigner–Ville spectrogram, having successive short-term windows of a Hermite
function base. This allows the possibility to adapt the window sizes of our recordings
to the MRI sequences.

(2) Surrogate generation: A set of surrogates each having the same power spectral density
as the original signal was created. This was achieved by keeping the Fourier transform
modulus unchanged but replacing its phase with another randomly taken on [−π, π].

(3) The stationarity test is based on the distances between the local and global spectra.
The distance calculation was carried out by combining the Kullback–Leiber divergence
(KL) and log spectral deviation (LSD) methods.

The studied induced potentials show an amplitude modulation by a pseudo sinusoidal
low-frequency noise (Figure 2a). Since our induced potentials are similar to the examples
of signals used by the authors of the surrogate approach to validate their approach, we
were inspired by their approach for the choice of the parameters for the stationarity study.
These parameters are as follows:

• Number of substitutes: 5000;
• Number of windows: 5;
• Window size range: [0.03:0.04:0.005:0.07:0.075] adjusted for slice orientation.

The possibility of varying this size provides a degree of freedom intrinsic to the method
to allow the local analysis to be adjusted in relation to the global time scale set by the total
observation time.

4. Results and Discussion

The temporal and frequency analysis and stationarity studies were applied to a series
of induced potential recordings to highlight the variability of the characteristics of the
gradient-induced potentials. The different graphs allow a qualitative observation of these
variabilities. Tables 1–4 summarize the main parameters calculated for a quantitative
analysis of the observed variabilities. The six recordings, according to two sequences and
three slice orientations processed throughout this work, are shown in Figure 4. It can be
observed that the pseudo-periodicity of each of the six recordings was confirmed by a
spectrum of amplitude lines more or less rich according to the imaging sequence. The
frequencies of the amplitude maxima are different according to the slice orientations.

4.1. Puff Analysis

The puffs of the potentials obtained by segmentation on the previously described six
recordings are shown in Figure 5. The first row shows a 3D representation of the extracted
puffs (20 as an example) for each of the FSE and CINE sequences, respectively. The second
row shows the respective average puffs. The third row shows the variability in the RMS
values of the 80 puffs around the RMS value of the mean puff. The fourth row shows the
variability in the average quadratic deviation of each puff from the average puff curve.

The average puffs were estimated for the coronal orientation of the FSE and CINE
sequences. The analysis of these puffs shows the variability of the features within a
sequence. The RMS values calculated for each puff were compared to the RMS value of the
average puff curve. We also compared the root mean square deviation between each puff
and the mean puff evaluated from the set of puffs.
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Figure 4. Recorded induced potentials: representation in time and frequency domains. Columns 1
and 2, potentials induced by the FSE sequence (coronal/axial/sagital). Columns 3 and 4, potentials
induced by the CINE sequence (coronal/axial/sagittal).

The qualitative analysis of the different graphs in Figure 5 shows that the waveforms
of the average puffs from one orientation to another are very different, which is an expected
result. The puffs appear in a regular way, but their shape is not identical, as shown in the
MSE curves. Table 1 summarizes the values of the calculated RMS and MSE parameters.

The RMS values calculated over the entire duration of the recordings indicate that
the orientation of the slices does not determine the level of noise power; it is higher for
the axial FSE than the CINE. The dispersion of the RMS values of the puffs is greater for
the coronal FSE orientation (0.0644) but the mean value 1.2684 is close to the RMS value
calculated on the global recording (1.2566). The variability degree in the morphology of
the puffs within the same sequence is more or less significant depending on the sequence
and the cutting orientation. The RMS and MSE curves show significant variability for the
coronal orientation of the FSE sequence despite the periodic character of the puffs.

For all six recordings, we noted that the estimated average frequency parameters
varied significantly from one puff to another for the same slice orientation. This indicates
that an in-depth study of the stationarity of the induced potentials is an avenue to explore.
The average values of the frequency parameters were calculated in order to compare them
with the global values; differences of around 5% were noted.

Table 1. Illustration of RMS and MSE values of FSE and CINE sequences.

FSE CINE

Axial Coronal Sagital Axial Coronal Sagital

RMS
Global 1.9022 1.2566 1.7004 1.4715 2.2606 2.1468
[min–max] [0.8770–1.0017] [1.0947–1.3463] [1.2018–1.3360] [1.3902–1.4610] [2.1046–2.1855] [2.0844–2.1394]
Mean–stdev 0.9393–0.0279 1.2684–0.0644 1.2770–0.0293 1.4154–0.0152 2.1463–0.0181 2.1028–0.0125

MSE
[min–max] [0.0001–0.0133] [0.0004–0.0140] [0.0003–0.0109] [0.0003–0.0151] [0.0003–0.0096] [0.0004–0.0099]
Mean–stdev 0.0029–0.0036 0.0054–0.0027 0.0036–0.0031 0.0053–0.0037 0.0043–0.0025 0.0043–0.0027

Table 2. Representation of the mean and maximum frequencies and standard deviation for the FSE
and CINE puffs.

FSE CINE

Frequency Coronal Axial Sagital Coronal Axial Sagital

Fmean [246.163–254.390] [87.66–97.451] [121.364–161.663] [217.309–231.005] [254.220–295.720] [230.406–237.216]
Fmax [280.681–287.959] [9.765–9.765] [9.548–10.184] [234.375–234.375] [234.375–234.375] [234.375–234.375]
stdev [0.0013–0.0013] [0.004–0.005] [0.0033–0.0049] [0.0043–0.0051] [0.0013–0.0015] [0.0079–0.0084]
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Figure 5. Puffs extracted from the induced potential recordings after activation of the coronal
orientation for the FSE and CINE sequences. (a,b) are the 3D representation of FSE and Cine
sequences respectively, (c,d) are the average puffs of FSE and Cine, (e,f) the variability in the RMS
values around the RMS value of the mean puff and (g,h) is the variability in the average od quadratic
deviation of each puff.
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Table 3. Results of the stationarity tests for the two sequences FSE and CINE with the KPSS method
and the time-frequency method.

FSE CINE

Stationarity Test Coronal Axial Sagital Coronal Axial Sagital

KPSS test Statistical value 0.0678 0.0921 0.0403 0.0098 0.0019 0.0020
Surrogates Theta 0.0089 0.0048 0.0033 0.0072 0.0032 0.0055

Threshold 0.2698 0.0994 0.4134 0.0311 0.0573 0.0320
INS 0.0776 0.0941 0.1208 0.0779 0.0377 0.0652
INS threshold 1.3457 1.3314 1.3341 1.6109 1.5754 1.5632

Table 4. Test results for the FSE puffs.

KPSS Test Surrogate Test

FSE Statistical Value Theta Threshold INS INS Threshold

Coronal Mean–stdev 0.1280–0.1472 0.0051–0.0009 0.0058–0.005 1.2607–0.0984 1.5920–0.0413
Axial Mean–stdev 0.4376–0.1838 0.0041–0.0004 0.0067–0.0011 1.3963–0.4480 0.8594–0.3205
Sagittal Mean–stdev 0.3142–0.1475 0.0117–0.0011 0.0067–0.0011 1.9565–0.5376 1.2336–0.2032

4.2. Global and Local Power Spectral Density

The calculated power spectral densities of the induced potentials are shown in Figure 6.
They are calculated over the total duration of the recordings (global PSD) and for each
series of puffs (local PSD). The first interesting observation on the global PSDs we can make
is the very significant variability in the frequency parameters within the same sequence.
For example, for the FSE sequence, the average frequency, fmean, is 234.97 Hz, 145.82, and
114.26 for the three orientations, coronal, axial, and sagittal, respectively.
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Figure 6. Spectral analysis of the coronal orientation for FSE and CINE sequences. Column 1: global
spectrum for each FSE and CINE, respectively. Column 2: spectrum of local segments.

Table 2 shows that the puff-by-puff calculated parameters (local analysis) occupy a
quite large interval for each frequency range (min–max). The frequency of the maximum
amplitude varies significantly from one puff to the next, whatever the sequence and
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orientation. This parameter is influenced by the low frequency modulation mentioned in
the beginning of the paper. This parameter, whose variations do not depend solely on the
morphology of the induced potential, must be analyzed with caution.

4.3. Stationarity

The stationarity study was motivated by the frequency parameters variability observed
on the local power spectral densities. The results of this investigation are displayed in
this subsection. Two stationarity test processes were proposed: a KPSS test and a time-
frequency test. The study was carried out both globally (the total duration of the recording
was considered) and locally (each puff extracted from the same recording was analyzed).
The local study allows observing the evolution of the stationarity criteria. It was interesting
to compare two stationarity-testing methods, one of which uses frequency properties.

For the global study, both methods lead to the results displayed in Table 3, showing
the stationarity of the induced potentials whatever the sequence and the cutting orientation.
For the KPSS test, the statistical value is effectively below the threshold of 0.1460. The
recordings made according to two sequences and three slice orientations, allow highlighting
the intra- and inter-sequence variability. The local analysis shows significant levels of
variability in the features that cannot be identified in the global analysis. This point was
confirmed by both the KPSS and the time-frequency stationarity tests.

For the time-frequency test, a large number of substitutes was taken (JJ = 5000). The
stationarity was verified for the six records, and the values of theta and INS were, in fact,
lower than the threshold values estimated by the algorithm.

For the local analysis (puff-by-puff evolutionary observations), the stationarity tests
results are shown in Table 4. Some puffs are not stationary. It is to be noted that all puffs
tested stationary by the time-frequency method were confirmed by the KPSS statistical
test. The reverse is not true; in fact, 97.5% of puffs tested stationary by the KPSS method
were not confirmed by the time-frequency method. For a given record, the variation range
of the stationarity thresholds are generated automatically, while the mean values and the
values of the estimated dispersion are shown in Table 4. Depending on the orientation of
the cut, the variability in the test parameters can be significant. For example, for the axial
orientation, we have a range of [min–max] = [ 0.1851–0.8744], with a dispersion of 0.18 for
the KPSS test; this was confirmed by the threshold values obtained by the time-frequency
method. For this slice orientation, no puffs were tested stationary. In contrast, for the
coronal orientation, both methods indicate stationarity for 78 of the 80 puffs analyzed.

It should be noted that only the recordings obtained with the FSE sequence are shown
because, for the CINE sequence, the time-frequency method did not provide usable results,
the duration of the potentials being very short for this type of approach.

For the time-frequency test, the window size is an important parameter in the evalua-
tion of stationarity. The choice of the windows applied was guided by the nature of our
“noise signals”, which are amplitude modulated, similar to those tested by the authors of
this approach [24]. Knowing that for the global study, all our “noise signals” are stationary
by the time-frequency approach, we analyzed the influence of the window size for each
of the three slice orientations. The evolution of the INS is a function of the number of
windows and their sizes. The results are shown in Figure 7.

It was noted that, for the range of variation [0.003–0.05], the obtained curves remain
below the INS threshold and show that the induced potentials remain stationary. This
approach, which takes into account the frequency characteristics of the signals, is interesting,
but the choice of the number of windows and their size is a delicate issue. The number
of substitutes is also a parameter that could influence the stationarity results. We tested
with 50 and 5000 surrogates and verified the null hypothesis of stationarity. To evaluate
the null hypothesis of stationarity, we have taken up the idea advocated in [25], i.e.,
the representation of the asymptotic histograms of the distributions of θ relative to the
surrogates and its fitting by the gamma distribution.
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An illustration is given in Figure 8 for two induced potential puffs—one is stationary
but the other is not. For the example shown in Figure 8 (5000 and 50 surrogates), the
magenta plot is in the middle of the distribution, which proves that the null hypothesis of
stationarity is met. The last example shown in Figure 8 is a case of non-stationarity; the
statistical value in magenta is far from the distribution.
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Figure 7. Graphical illustration of INS values in relation to the threshold for the FSE sequence orientations.
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Figure 8. Histogram of Θ(j), surrogate-based distribution and its gamma fitting.

5. Conclusions

These signals are useful to monitor the subject and are also used in the MRI examina-
tion process itself, for example, as a source for triggering observation sequences, and in its
interpretation by correlation with information obtained in functional MRI. Unfortunately,
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the technical constraints specific to MRI give rise to sources of artefacts which ’pollute’ the
electrophysiological signals collected simultaneously. A knowledge of the variability in the
characteristics of the artefacts that cause signal disturbances is essential in the choice of
strategies to adopt for the development of signal cleaning algorithms. The novelty of this
work lies in its systematic investigation of the contamination of EPs by gradient-induced
artefacts during MRI scans. It involves the development of a specialized device, detailed
analysis of the temporal and frequency properties, and the application of stationarity tests.
In this work, an analysis of the induced potentials generated by the gradient switches col-
lected during MRI examination was investigated. The temporal, frequency and statistical
characteristics of these artefacts were determined globally and locally. The global analysis
was performed on the total recording time and the local analysis on segments extracted
from the same recording. The segments designated as puffs of the induced potentials
were isolated in accordance with the temporal pseudo-periodicity that characterize these
artefacts. It should be noted that the study presented in this paper is just a first step, as
the induced studied potentials, collected in vitro, do not have all the characteristics of
induced potentials collected in vivo. Forthcoming studies will first focus on the collection
of induced potentials in vivo, then on digital filters’ modeling. An experimental protocol to
isolate segments of the induced potentials generated during the collection of the electro-
physiological signals will be developed. The characterizations of the induced potentials is
specific to such sequences as MRI sequences. Other MRI sequences, particularly those that
generate more artefacts, like true FISP or EP sequences, will be tested in a future study.
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Abstract: Background: Diabetic retinopathy (DR) is the leading cause of visual impairment and
blindness. Consequently, numerous deep learning models have been developed for the early detection
of DR. Safety-critical applications employed in medical diagnosis must be robust to distribution shifts.
Previous studies have focused on model performance under distribution shifts using natural image
datasets such as ImageNet, CIFAR-10, and SVHN. However, there is a lack of research specifically
investigating the performance using medical image datasets. To address this gap, we investigated
trends under distribution shifts using fundus image datasets. Methods: We used the EyePACS dataset
for DR diagnosis, introduced noise specific to fundus images, and evaluated the performance of
ResNet, Swin-Transformer, and MLP-Mixer models under a distribution shift. The discriminative
ability was evaluated using the Area Under the Receiver Operating Characteristic curve (ROC-AUC),
while the calibration ability was evaluated using the monotonic sweep calibration error (ECE sweep).
Results: Swin-Transformer exhibited a higher ROC-AUC than ResNet under all types of noise and
displayed a smaller reduction in the ROC-AUC due to noise. ECE sweep did not show a consistent
trend across different model architectures. Conclusions: Swin-Transformer consistently demonstrated
superior discrimination compared to ResNet. This trend persisted even under unique distribution
shifts in the fundus images.

Keywords: calibration; diabetic retinopathy; distribution shift; fundus image; robustness

1. Introduction

1.1. Background

Diabetes is rapidly increasing worldwide, affecting an estimated 537 million people [1].
Approximately 40–45% of people with diabetes are likely to develop diabetic retinopathy
(DR) during their lifetime, a leading cause of visual impairment and blindness [2]. It is
important to regularly screen patients with diabetes because early symptoms of DR can be
subtle and go unnoticed. Early detection of DR can halt its progression; however, manual
diagnosis by ophthalmologists is time-consuming and costly. In addition, there is a shortage
of ophthalmologists as the number of diabetes cases increases every year, especially in
poor regions such as developing countries. To address these issues, automated screening
technologies have received considerable attention, and several deep learning models have
been developed to detect DR [2–5].

The models used in safety-critical applications, such as medical diagnostic devices,
must be both discriminative and well calibrated. A model is well calibrated when its output
reflects the true correctness likelihood. Recent studies have shown that modern deep
learning models are highly discriminative but poorly calibrated [6,7]. Because safety-critical
applications make decisions based on the confidence score of the model, overconfidence
and underconfidence are significantly detrimental to patients.

In addition, it is critical that the models used in safety-critical applications are robust
to distribution shifts where the distributions of the training and test data differ. Distribution
shifts can occur naturally in different real-world settings and are influenced by factors
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such as different hospitals, cameras, or lighting conditions. Previous studies have shown
that although deep learning models are highly accurate when the distributions of the
training and test data are the same, they can significantly underperform under distribution
shifts [8,9]. Therefore, it is extremely important to evaluate models under distribution shifts
assumed to occur in real-world settings.

1.2. Related Works
1.2.1. Discrimination and Calibration Abilities of Deep Learning Models

There have been many reports on the discrimination and calibration capabilities of
deep learning models [7,10–14]. Some studies have suggested that modern high-capacity
neural networks, such as ResNet, become overconfident by overfitting to a negative log-
likelihood (NLL) [7,15]. In contrast, more modern neural networks with non-convolutional
architectures, such as the Vision-Transformer (ViT) and MLP-Mixer, have been reported to
possess superior discriminative and calibration abilities [10]. Reportedly, the model size
and pre-training scale do not fully explain calibration trends and the model architecture is
a critical determinant of calibration [10].

1.2.2. Robustness of Deep Learning Models

In recent years, many studies have investigated the robustness of deep learning models,
particularly convolutional neural networks (CNNs) and Transformer-based models. While
one study suggested that the robustness of CNNs and ViTs is comparable [16], many studies
have reported that ViTs are more robust than CNNs [17–20]. One reason for the robustness
of ViT is that it has a strong shape bias and is similar to the human cognitive system.
Therefore, ViT is expected to have better generalizability than CNNs under distributional
shifts [19–21]. The robustness of MLP-Mixers has been inconclusive, with one study
suggesting that MLP-Mixers are as robust as CNNs and another suggesting that MLP-
Mixers are superior to CNNs [10,22].

1.2.3. Distribution Shift of Fundus Image

In clinical settings, several factors such as lighting conditions, unexpected eye move-
ments, and ocular lesions including cataracts can affect the quality of fundus images,
resulting in uneven illumination, blurring, and low contrast. The degradation of fundus
images can affect the diagnosis of DR.

Common image corruptions, including Gaussian noise, snow, frost, brightness, and
contrast, are often used to induce distribution shifts in natural image datasets [23]. However,
there are concerns regarding the application of these image corruptions to fundus images
because of the unique noise that occurs in fundus images.

1.3. Objective

Several of the datasets used to investigate model performance under distribution
shifts are natural image datasets, such as ImageNet, CIFAR-10, and SVHN, and there is a
lack of research investigating model performance under distribution shifts using medical
datasets. In this study, we used the retinal fundus image dataset EyePACS [24] to diagnose
DR. The purpose of this study was to verify whether the previously reported trends in
model performance under distribution shifts remain consistent under unique distribution
shifts in fundus images.

2. Materials and Methods

2.1. Dataset

In this study, we used the open-source DR database EyePACS, which contains 35,126 fun-
dus images of both eyes from different racial backgrounds. We obtained permission from
the EyePACS office to access and use the dataset for research purposes (Supplementary
Materials).
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2.2. Outcome

Each image was labeled with DR severity levels based on the International Classi-
fication of Diabetic Retinopathy (ICDR) scale. The ICDR scale categorizes DR based on
the presence of new blood vessels and distinguishes between non-proliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). Within NPDR, there are
further subcategories: mild, moderate, and severe. Therefore, the ICDR classifies diabetic
retinopathy into five levels of severity: no DR, mild NPDR, moderate NPDR, severe NPDR,
and PDR. In our study, we adopted a two-class classification task to predict referable DR
and defined referable DR as moderate NPDR, severe NPDR, and PDR [25].

2.3. Experimental Pipeline

The experimental pipeline is illustrated in Figure 1. The EyePACS database was
randomly divided into training (80%), validation (10%), and test (10%) datasets. The
training data were used to fine-tune the pre-trained model, the validation data were used to
tune hyperparameters such as the number of epochs, and the test data were used to evaluate
model performance on in-distribution data and under distribution shifts. In-distribution
refers to scenarios in which the fundus image remains unaltered, whereas a distribution
shift refers to scenarios in which noise is introduced into the image. Following previous
studies, we induced a distribution shift by introducing three types of noise that can occur
in real-world settings during fundus imaging examinations [26]. In previous research, the
difference in evaluation metrics before and after the addition of noise has been used as a
metric of model robustness [22,23]. Therefore, we adopted the same definition in our study.

 

Figure 1. Series of steps from model development to evaluation.

2.4. Preprocessing

The Benjamin Graham method was used to improve the lighting conditions of the fundus
image [27,28]. Subsequently, the images were normalized and resized to 224 × 224 pixels.
In addition, random horizontal and rotational magnifications were applied.
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2.5. Models

To evaluate model robustness, we adopted three model architectures: ResNet, Swin-
Transformer, and MLP-Mixer and used pre-trained models (Table 1). The pre-trained
models were tuned across all layers. The models were trained for 100 epochs with a batch
size of 128. We used 10−4 as the base learning rate for the Adam optimizer, along with
a default of 20 warm-up iterations and 10−5 as the weight decay. During training, the
learning rate was reduced by a factor of 10 after 30, 60, and 90 epochs.

Table 1. Pre-trained models used in this study.

Model Name Model Size (Parameters)

ResNet-50 23.5 M
ResNet-101 42.5 M
ResNet-152 58.1 M

Swin-Transformer (Tiny) 27.5 M
Swin-Transformer (Small) 48.8 M
Swin-Transformer (Base) 86.7 M

Swin-Transformer (Large) 195 M
MLP-Mixer (Base) 59.1 M

MLP-Mixer (Large) 207 M

1. ResNet [29] is a widely used model with a convolutional structure that incorporates
residual connections. We used three ResNets with different model sizes: ResNet-50,
ResNet-101, and ResNet-152.

2. Swin-Transformer [30] is a model with a non-convolutional structure that implements
a hierarchical structure using shifted windows in the Vision-Transformer [31]. We
used four Swin-Transformers with different model sizes: Tiny, Small, Base, and Large.

3. MLP-Mixer [32] is a model implemented using only a multilayer perceptron without
a convolutional structure or attention mechanism. We used two MLP-Mixers with
different model sizes: Base and Large.

2.6. Evaluation

The Area Under the Receiver Operating Characteristic- Curve (ROC-AUC) was used
to evaluate the discriminative ability of the models. While the Expected Calibration Error
(ECE) is commonly used to evaluate the calibration ability of models [7,33], it has been
reported to be an inadequate estimator of calibration error due to its systematic non-
negligible bias [34]. Therefore, in this study, we used the monotonic sweep calibration error
(ECE sweep) [34], which has been suggested as an estimator with a lower bias than the
ECE. The calibration metrics are described in detail below. The robustness of a model was
evaluated based on the difference between its performance on noise-free data and that on
data with pseudo-noise.

Calibration Metrics

We consider a binary classification with input X ∈ χ, output Y = {0, 1}, and model
f : X → [0, 1] that predicts the confidence score of the true label Y to be 1. Model f is well

calibrated if its output correctly reflects the true correctness likelihood. Formally, a perfectly
calibrated model satisfies:

P(Y = 1| f (X) = p) = p, ∀p . (1)

True Calibration Error (TCE) is widely used to measure the calibration error by calcu-
lating the expected deviation between both sides of Equation (1).

TCE( f ) = EX[| f (X)−EY[Y| f (X) ]|]. (2)
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f (X) represents the distribution of confidence scores, whereas EY[Y| f (X) ] denotes the
true calibration curve and illustrates the relationship between the empirical accuracy and
confidence scores.

To estimate the TCE of model f , if we are given a finite sample {xi, yi}n
i=1, we typically

group the sample into equally spaced bins {Bm}M
m=1 based on confidence scores and

then calculate the expected difference between the average confidence score fk and the
proportion yk where the true label Y is 1.

ECE =
b
∑

k=1

|Bk |
n

∣∣∣ fk − yk

∣∣∣ . (3)

The calculation of ECE is known to be sensitive to hyperparameters, such as the chosen
binning method and the number of bins [35]. In addition, ECE is an inherently biased
estimator, and it has been empirically observed that there exists an optimal number of
bins that minimizes estimation bias, which tends to increase with the sample size [34].
To address this and determine the optimal number of bins, an ECE sweep is proposed,
assuming a monotonically increasing behavior in the true calibration curve and providing a
less-biased estimator [34]. The ECE sweep chooses the largest number of bins that preserve
monotonicity in the proportion yk.

ECESWEEP =
b∗

∑
k=1

|Bk |
n

∣∣∣ fk − yk

∣∣∣ where

b∗ = max{b|1 ≤ b ≤ n; ∀b′ ≤ b, y1 ≤ · · · ≤ yb′ }.
(4)

2.7. Distribution Shift of Fundus Image

Various factors, such as lighting conditions, unexpected eye movements, and ocular
pathologies, such as cataracts, can cause uneven illumination, blurring, and low contrast.
These elements can significantly degrade the quality of the fundus images. Based on the
three realistically occurring factors defined by Shen et al. [26]: (a) Light Transmission
Disturbance, (b) Image Blurring, and (c) Retinal Artifact, noise was added to the test data
to evaluate the robustness of the model under distribution shifts (Figure 2). To facilitate the
interpretation of the effect of noise introduced into retinal images on prediction accuracy,
three different noise sources were evaluated one at a time.

2.7.1. Light Transmission Disturbance

The fundus camera was programmed for automatic exposure; however, unstable stray
light can cause under/over exposure. Differences in the distance between the fundus
and ophthalmoscope can cause uneven illumination due to differences in the sensitivity
of certain regions of the image plane. To model these factors, the light transmission
disturbance is defined for a clean image x and its degraded image x’ as

x’ = clip(α(J·GL(rL, σL) + x) + β; s),

where α, β, and s refer to the factors for contrast, brightness, and saturation, respectively.
Clip (β; s) represents a clipping function. GL represents a Gaussian kernel. J represents
the illumination bias to be over- or under-illuminated in a panel centered at (a, b) with a
radius of rL.

2.7.2. Image Blurring

Blurring can be caused by several factors, such as program settings during the fundus
imaging procedure, human error, or the presence of cataracts. To model these factors, Image
Blurring is defined for a clean image x and its degraded image x’ as

x’ = x·GB(rB, σB) + n,
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where GB is a Gaussian filter with a radius rB and spatial constant σB, and n denotes the
additive random Gaussian noise.

Figure 2. Examples of fundus images without noise and with three types of added noise. (a) Light
Transmission Disturbance, (b) Image Blurring, (c) Retinal Artifact.

2.7.3. Retinal Artifact

Imaging in poor conditions can degrade the quality of the fundus image due to dust
and grains attached to the lens of the imaging plane. To model these factors, Retinal Artifact
is defined for a clean image x and its degraded image x’ as

x’ = x +
K

∑
k

GR(rk/4, σk)·ok,

where the Gaussian filter used is GR, with a specified radius of rk for object k deemed
undesirable and its corresponding variance σk. The luminance bias is also represented
by ok.

3. Results

3.1. Model Performance on In-Distribution Data

First, we assessed the discrimination and calibration ability of the models on in-
distribution data (Figure 3). The ROC-AUC was the highest for Swin-Transformer (the
lowest and highest values for different model sizes: 0.912–0.923), followed by ResNet
(0.889–0.904) and MLP-Mixer (0.812–0.831). No significant differences were found be-
tween the model architectures in the ECE sweep (Swin-Transformer: 0.012–0.023, ResNet:
0.012–0.034, MLP-Mixer: 0.023–0.026). For all three model architectures, the model size
tended to increase with the ROC-AUC value, but this trend was not found in the ECE sweep.

3.2. Model Performance under Distribution Shift

We assessed the discrimination and calibration abilities of the models under three
unique distribution shifts in the fundus images (Figure 4). Similar to in-distribution, the
ROC-AUC is highest for Swin-Transformer ((a) 0.871–0.887, (b) 0.881–0.918, (c) 0.891–0.911),
followed by ResNet ((a) 0.834–0.849, (b) 0.821–0.860, (c) 0.839–0.865) and MLP-Mixer
((a) 0.725–0.753, (b) 0.785–0.812, (c) 0.792–0.820). No consistent trend was found for the
ECE sweep as its value for each model differed depending on the distribution shift type
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and model size (Swin-Transformer: (a) 0.030–0.033, (b) 0.023–0.042, and (c) 0.046–0.060;
ResNet: (a) 0.027–0.050, (b) 0.019–0.0430, and (c) 0.043–0.103; MLP-Mixer: (a) 0.060–0.065,
(b) 0.036–0.054, and (c) 0.027–0.043).

 

Figure 3. Model performance on in-distribution data. Circle size represents the model size, with the
ROC-AUC on the x-axis and the ECE sweep on the y-axis. The blue, red, and green plots represent
the ResNet, Swin-Transformer, and MLP-Mixer architectures, respectively.

Figure 4. Model performance under three unique distribution shifts in the fundus images: Light
Transmission Disturbance (a), Image Blurring (b), and Retinal Artifact (c). Plot details are the same as
for Figure 3.

3.3. Difference in Model Performance between Noise-Free and Pseudo-Noise Data

We first assessed the robustness of the models in terms of discriminability (Figure 5).
The ROC-AUC difference for the distribution shift caused by Light Transmission Distur-
bance (Figure 5a), compared to in-distribution, was the smallest for Swin-Transformer
(0.028–0.049), followed by ResNet (0.041–0.059) and MLP-Mixer (0.078–0.086). The ROC-
AUC difference for the distribution shift caused by Image Blurring (Figure 5b) was compar-
atively small for both the Swin-Transformer (0.005–0.037) and MLP-Mixer (0.019–0.027),
followed by ResNet (0.030–0.083). The ROC-AUC difference for the distribution shift
caused by Retinal Artifact (Figure 5c) was the lowest for MLP-Mixer (0.011–0.019), fol-
lowed by Swin-Transformer (0.012–0.027) and ResNet (0.025–0.054). Compared to ResNet,
Swin-Transformer showed a smaller reduction in the ROC-AUC across all noise types. We
also compared the ROC-AUC reductions across the three distribution shifts within each
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model; both the Swin-Transformer and MLP-Mixer tended to deteriorate mainly under
the distribution shift caused by Light Transmission Disturbance. From the perspective
of model size, ResNet tended to increase the reduction in the ROC-AUC with increasing
model size. In contrast, Swin-Transformer and MLP-Mixer tended to decrease the reduction
in the ROC-AUC with increasing model size.

Figure 5. Robustness for discriminative ability under three unique distribution shifts. The x-axis
showcases each model architecture with different model sizes. The blue, green, and red bars represent
the ResNet, MLP-Mixer, and Swin-Transformer architectures, respectively. The y-axis highlights the
difference in ROC-AUC between distribution shift and in-distribution.

Next, we assessed the robustness of the models in terms of their calibration ability
(Figure 6). The difference in the ECE sweep values between distribution shift and in-
distribution did not show a consistent trend as the ECE sweep value for each model
varied depending on the type of distribution shift and model size (Swin-Transformer: (a)
0.009–0.018, (b) 0.005–0.030, and (c) 0.028–0.045; ResNet: (a) 0.014–0.017, (b) 0.001–0.031,
and (c) 0.026–0.069; MLP-Mixer: (a) 0.034–0.042, (b) 0.014–0.028, and (c) 0.001–0.020). In
contrast, when comparing the reduction in the ECE sweep across the three distribution
shifts within each model, the MLP-Mixer tended to degrade under the distribution shift
caused by Light Transmission Disturbance, whereas both ResNet and Swin-Transformer
tended to degrade under the distribution shift caused by Retinal Artifact.

Figure 6. Robustness for calibration ability under three unique distribution shifts. The x-axis depicts
each model architecture with different model size. The blue, green, and red bars represent the ResNet,
MLP-Mixer, and Swin-Transformer architectures, respectively. The y-axis represents the difference in
ECE sweep between distribution shift and in-distribution.
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4. Discussion

The main findings of this study are as follows: Swin-Transformer displayed a consis-
tently higher discriminative ability than ResNet. This trend persisted even under unique
distribution shifts in the fundus images. No significant differences were found in the
calibration ability between the model architectures and model sizes.

4.1. Model Discrimination and Calibration Ability

Swin-Transformer demonstrated superior discriminative ability under both in-distribution
and distribution shifts, followed by ResNet and MLP-Mixer. These results are consistent
with those of a previous study using a natural image dataset [22]. Significant findings
in retinal images of diabetic retinopathy include capillary aneurysms, beaded expansion,
intraretinal microvascular abnormalities, hard exudates, soft exudates, new vessels, and
vitreous hemorrhage. These findings are primarily localized and appear at different scales
within retinal images. A Swin-Transformer model builds hierarchical feature maps by
gradually merging features from adjacent small patches to create representations for larger
patches. This hierarchical structure can capture features at different scales ranging from
global image features to finer details. This approach may effectively capture the localized
and different-scale features of diabetic retinopathy present in retinal images, potentially
leading to its high discriminative performance.

Previous studies suggest that non-convolutional models, such as ViT and MLP-
Mixer, have a better calibration ability than CNNs in both in-distribution and distribution
shifts [10]. In addition, it has been reported that large deep learning models trained with a
large number of parameters using negative log-likelihood exhibit overconfidence [7,15].
However, in this study, no significant differences were observed in calibration performance
based on model architecture or size. Several previous studies identified factors that af-
fect calibration, including regularization, model size, insufficient data, and imbalanced
data [7,12]. As suggested by previous studies, various factors could complexly influence
calibration performance, making it challenging to discern differences due to the architecture
or model size; therefore, further research is needed.

4.2. Model Robustness

Previous studies have suggested that Transformer-based models are more robust
than CNNs in their discriminative and calibration abilities [10,17–20]. Similarly, our study
indicates that Swin-Transformer is more robust in its discriminative ability than ResNet as
it consistently achieves a smaller reduction in the ROC-AUC across all distribution shifts
considered in this study. Previous studies on the robustness of MLP-Mixer compared to
CNNs have provided contradicting results [10,22]. Our study could not demonstrate the
robustness of MLP-Mixture.

Herein, we considered three types of noise that can occur in fundus images. We
hypothesized that Light Transmission Disturbance would primarily affect the texture of
images, Image Blurring would affect their shape, and Retinal Artifact would potentially
affect both texture and shape. Previous studies have suggested a strong texture bias
in CNNs, whereas Transformer-based models, including ViT, indicate a stronger shape
bias [19–21]. Therefore, we postulated that ResNet might be particularly susceptible to
distribution shifts induced by Light Transmission Disturbance and Swin-Transformer
to those induced by Image Blurring. However, our findings did not corroborate these
anticipated tendencies (Figures 5 and 6). The discrepancy between our assumptions and
results could be due to the fact that Light Transmission Disturbances strongly affect not
only the texture but also the shape. Alternatively, the low intensity of the image blurring
noise could have resulted in a minimal effect on the shape. Further research is needed to
draw definitive conclusions.

The calibration ability of ResNet and Swin-Transformer significantly worsened under
the distribution shifts caused by Retinal Artifact (Figure 6c). Previous research has sug-
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gested that adversarial attacks on medical images are easier to conduct than on natural
images, indicating a vulnerability in deep neural network models developed for medical
images [36]. This is because medical images have complex biological textures, resulting in
regions of high gradients that are sensitive to small adversarial perturbations. Therefore,
in our study retinal artifacts may have behaved similarly to adversarial perturbations,
potentially influencing the calibration performance.

In addition, MLP-Mixer was particularly susceptible to distribution shifts caused by
Light Transmission Disturbance (Figures 5a and 6a), suggesting that it may be affected by
distribution shifts based on principles different from those of ResNet and Swin-Transformer,
which requires further investigation.

4.3. Limitations

This study had several limitations. First, because a single dataset was used, additional
verification using different fundus image datasets is required to validate the results of this
study across all fundus images. Second, models with lower inductive bias, such as the Swin-
Transformer and MLP-Mixer, require large amounts of data to improve accuracy; the dataset
used in this study may not be large enough for these models to demonstrate their intrinsic
capabilities. To mitigate this problem, we fine-tuned the models that were pre-trained on
ImageNet. Finally, the recently developed ConvNeXt, a CNN architecture, was reported to
exhibit robustness comparable to that of Transformer-based models [16]. Further research
is needed to compare the robustness of convolutional and Transformer-based models.

5. Conclusions

In this study, we assessed the performances of the ResNet, Swin-Transformer, and MLP-
Mixer models under unique distribution shifts in fundus images. Swin-Transformer demon-
strated superior and robust discriminative ability than ResNet under both in-distribution
and distribution shifts. In contrast to the previously reported trends in model calibration,
this study did not observe significant differences in calibration ability based on model
architecture and model size. This discrepancy can be attributed to the unique characteris-
tics of the medical dataset. These findings highlight the need for additional multifaceted
validation processes focused on retinal images and additional verification using different
fundus image datasets.
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(version 1.11.0). Further details regarding these programs are available on GitHub (https://github.
com/kazuakiishihara/), accessed on 22 October 2023.

Author Contributions: Conceptualization, K.I. and K.M.; methodology, K.I. and K.M.; formal analy-
sis, K.I.; data curation, K.I.; writing—original draft preparation, K.I.; writing—review and editing,
K.M.; supervision, K.M.; funding acquisition, K.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by a Grant-in-Aid for Scientific Research (KAKENHI; Grant
number 22K17336) from the Japanese Ministry of Education.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data were ob-
tained from Kaggle and are available [https://www.kaggle.com/c/diabetic-retinopathy-detection]
(accessed on 22 October 2023) with permission from the EyePACS office.

Acknowledgments: We thank the EyePACS office staff for providing the data. We would also like to
thank all the professors and students at the Biostatistics Center who provided invaluable advice and
insights for our analysis.

44



Bioengineering 2023, 10, 1383

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; 2021. Available online: https://www.ncbi.nlm.nih.gov/books/
NBK581934/ (accessed on 22 October 2023).

2. Gargeya, R.; Leng, T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017, 124, 962–969.
[CrossRef] [PubMed]

3. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;
Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA 2016, 316, 2402–2410. [CrossRef] [PubMed]

4. Alyoubi, W.L.; Abulkhair, M.F.; Shalash, W.M. Diabetic retinopathy fundus image classification and lesions localization system
using deep learning. Sensors 2021, 21, 3704. [CrossRef] [PubMed]

5. Pires, R.; Avila, S.; Wainer, J.; Valle, E.; Abramoff, M.D.; Rocha, A. A data-driven approach to referable diabetic retinopathy
detection. Artif. Intell. Med. 2019, 96, 93–106. [CrossRef] [PubMed]

6. Hein, M.; Andriushchenko, M.; Bitterwolf, J. Why ReLU networks yield high-confidence predictions far away from the training
data and how to mitigate the problem. In Proceedings of the Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 41–50. [CrossRef]

7. Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, Q.K. On calibration of modern neural networks. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

8. Taori, R.; Dave, A.; Shankar, V.; Carlini, N.; Recht, B.; Schmidt, L. Measuring robustness to natural distribution shifts in image
classification. In Proceedings of the Neural Information Processing Systems, Virtual-Only, 6–12 December 2020.

9. Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V.; ImageNet, D. Classifiers generalize to ImageNet? In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.

10. Minderer, M.; Djolonga, J.; Romijnders, R.; Hubis, F.; Zhai, X.; Houlsby, N.; Tran, D.; Lucic, M. Revisiting the calibration of modern
neural networks. In Proceedings of the Neural Information Processing Systems, Virtual-Only, 6–14 December 2021.

11. Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.; Nowozin, S.; Dillon, J.; Lakshminarayanan, B.; Snoek, J. Can you trust your
Model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In Proceedings of the Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019.

12. Wang, D.; Feng, L.; Zhang, M.L. Rethinking calibration of deep neural networks: Do not be afraid of overconfidence. In
Proceedings of the Neural Information Processing Systems, Virtual-Only, 6–14 December 2021.

13. Krishnan, R.; Tickoo, O. Improving model calibration with accuracy versus uncertainty optimization. In Proceedings of the
Neural Information Processing Systems, Virtual-Only, 6–12 December 2020.

14. Karandikar, A.; Cain, N.; Tran, D.; Lakshminarayanan, B.; Shlens, J.; Mozer, M.C.; Roelofs, B. Soft calibration objectives for neural
networks. In Proceedings of the Neural Information Processing Systems, Virtual-Only, 6–14 December 2021.

15. Mukhoti, J.; Kulharia, V.; Sanyal, A.; Golodetz, S.; Torr, P.; Dokania, P. Calibrating deep neural networks using focal loss. In
Proceedings of the Neural Information Processing Systems, Virtual-Only, 6–12 December 2020.

16. Pinto, F.; Torr, P.; Dokania, P. An impartial take to the CNN vs transformer robustness contest. In Proceedings of the European
Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022.

17. Paul, S.; Chen, P. Vision transformers are robust learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vancouver, BC, Canada, 20–27 February 2022; Volume 36, pp. 2071–2081. [CrossRef]

18. Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Unterthiner, T.; Veit, A. Understanding robustness of transformers for
image classification. In Proceedings of the International Conference on Computer Vision, Virtual-Only, 11–17 October 2021;
pp. 10211–10221. [CrossRef]

19. Zhang, C.; Zhang, M.; Zhang, S.; Jin, D.; Zhou, Q.; Cai, Z.; Zhao, H.; Liu, X.; Liu, Z. Delving deep into the generalization of vision
transformers under distribution shifts. In Proceedings of the Computer Vision and Pattern Recognition, New Orleans, LA, USA,
19–24 June 2022; pp. 7267–7276. [CrossRef]

20. Naseer, M.; Ranasinghe, K.; Khan, S.; Hayat, M.; Khan, F.; Yang, M. Intriguing properties of vision transformers. In Proceedings
of the Neural Information Processing Systems, Virtual-Only, 6–14 December 2021.

21. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.; Brendel, W. ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

22. Morrison, K.; Gilby, B.; Lipchak, C.; Mattioli, A.; Kovashka, A. Exploring corruption robustness: Inductive biases in vision
transformers and MLP-mixers. In Proceedings of the International Conference on Machine Learning, Virtual-Only, 18–24
July 2021.

23. Hendrycks, D.; Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations. In Proceedings
of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

45



Bioengineering 2023, 10, 1383

24. Cuadros, J.; Bresnick, G. EyePACS: An adaptable telemedicine system for diabetic retinopathy screening. J. Diabetes Sci. Technol.
2009, 3, 509–516. [CrossRef]

25. Ghanchi, F.; Bailey, C.; Chakravarthy, U.; Cohen, S.; Dodson, P.; Gibson, J.; Menon, G.; Muqit, M.; Pilling, R.; Olson, J.; et al.
Diabetic Retinopathy Guidelines. 2012. Available online: https://www.rcophth.ac.uk/wp-content/uploads/2021/08/2012-SCI-
267-Diabetic-Retinopathy-Guidelines-December-2012.pdf (accessed on 22 October 2023).

26. Shen, Z.; Fu, H.; Shen, J.; Shao, L. Modeling and enhancing low-quality retinal fundus images. IEEE Trans. Med. Imaging 2021, 40,
996–1006. [CrossRef] [PubMed]

27. Ratthachat, C. APTOS: Eye Preprocessing in Diabetic Retinopathy (Kaggke Report). 2019. Available online: https://www.kaggle.
com/code/ratthachat/aptos-eye-preprocessing-in-diabetic-retinopathy/comments (accessed on 22 October 2023).

28. Graham, B. Kaggle Diabetic Retinopathy Detection Competition Report. 2015. Available online: https://www.kaggle.com/c/
diabetic-retinopathy-detection (accessed on 22 October 2023).

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 26 June 2016; pp. 770–778. [CrossRef]

30. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the International Conference on Computer Vision, Virtual-Only, 11–17 October 2021; pp. 9992–10002.
[CrossRef]

31. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the International
Conference on Learning Representations, Virtual-Only, 3–7 May 2021.

32. Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al.
MLP-Mixer: An all-MLP architecture for vision. In Proceedings of the Neural Information Processing Systems, Virtual-Only, 6–14
December 2021.

33. Naeini, M.P.; Cooper, G.; Hauskrecht, M. Obtaining Well Calibrated Probabilities Using Bayesian Binning. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; p. 29. [CrossRef]

34. Roelofs, R.; Cain, N.; Shlens, J.; Mozer, M.C. Mitigating bias in calibration error estimation. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, Virtual-Only, 28–30 March 2022.

35. Nixon, J.; Dusenberry, M.W.; Zhang, L.; Jerfel, G.; Tran, D. Measuring calibration in deep learning. In Proceedings of the Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 16–20 June 2019.

36. Ma, X.; Niu, Y.; Gu, L.; Wang, Y.; Zhao, Y.; Bailey, J.; Lu, F. Understanding adversarial attacks on deep learning based medical
image analysis systems. Pattern Recognit. 2021, 110, 107332. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

46



Citation: Wang, S.; Kim, S.Y.; Sohn,

K.-A. ClearF++: Improved

Supervised Feature Scoring Using

Feature Clustering in Class-Wise

Embedding and Reconstruction.

Bioengineering 2023, 10, 824.

https://doi.org/10.3390/

bioengineering10070824

Academic Editor: Luca Mesin

Received: 19 May 2023

Revised: 28 June 2023

Accepted: 4 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

ClearF++: Improved Supervised Feature Scoring Using Feature
Clustering in Class-Wise Embedding and Reconstruction

Sehee Wang 1, So Yeon Kim 1,2 and Kyung-Ah Sohn 1,2,*

1 Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea;
wsh0509@ajou.ac.kr (S.W.); jebi1771@ajou.ac.kr (S.Y.K.)

2 Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea
* Correspondence: kasohn@ajou.ac.kr

Abstract: Feature selection methods are essential for accurate disease classification and identifying
informative biomarkers. While information-theoretic methods have been widely used, they often
exhibit limitations such as high computational costs. Our previously proposed method, ClearF,
addresses these issues by using reconstruction error from low-dimensional embeddings as a proxy
for the entropy term in the mutual information. However, ClearF still has limitations, including a
nontransparent bottleneck layer selection process, which can result in unstable feature selection. To
address these limitations, we propose ClearF++, which simplifies the bottleneck layer selection and
incorporates feature-wise clustering to enhance biomarker detection. We compare its performance
with other commonly used methods such as MultiSURF and IFS, as well as ClearF, across multiple
benchmark datasets. Our results demonstrate that ClearF++ consistently outperforms these meth-
ods in terms of prediction accuracy and stability, even with limited samples. We also observe that
employing the Deep Embedded Clustering (DEC) algorithm for feature-wise clustering improves
performance, indicating its suitability for handling complex data structures with limited samples.
ClearF++ offers an improved biomarker prioritization approach with enhanced prediction perfor-
mance and faster execution. Its stability and effectiveness with limited samples make it particularly
valuable for biomedical data analysis.

Keywords: feature selection; feature scoring; information theory; entropy; mutual information
(MI); dimension reduction; low-dimensional embedding; reconstruction error; principal component
analysis (PCA); clustering

1. Introduction

In the field of bioinformatics, accurate disease classification is crucial for effective
diagnosis and treatment. Furthermore, the precise identification and selection of relevant
biomarkers is essential to predict disease risk or aid in drug development [1]. As a result,
a significant amount of research is currently being conducted in biomarker detection.
Feature selection methods [2–4] are widely used in this context to identify and prioritize
biomarkers from large and complex datasets [5,6]. These methods are particularly valuable
in bioinformatics, where datasets often have a high number of features relative to the
number of samples. By reducing the dimensionality of such data, feature selection can help
identify the most informative biomarkers, facilitating accurate disease classification. Many
feature selection algorithms have been developed to precisely select the most relevant
biomarkers. This is crucial to better understand the underlying mechanisms of disease
development and prognosis and to develop more targeted therapies.

Feature selection methods can be broadly classified into supervised and unsupervised
approaches, where supervised approaches utilize class labels to identify relevant features,
while unsupervised approaches do not [7]. As supervised approaches are more suitable
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for targeting specific diseases and finding relevant biomarkers, this study utilizes super-
vised feature selection methods for effective biomarker prioritization. There are various
supervised feature selection methods, such as statistical methods [8,9], similarity-based
approaches [10,11], and information-theoretic methods. Information-theoretic methods
perform feature selection by quantifying the amount of mutual information, which is a
measure of entropy and conditional dependencies between data variables and their labels.
Information-theoretic methods have been widely studied for feature selection, and their
effectiveness has been demonstrated by promising experimental results [12–16]. Recently,
innovative approaches like MI-VIF [17] have emerged, which combine variance inflation
factor and mutual information, offering a solution to the collinearity problem that leads
to unstable parameter estimation. In addition, a methodology named Relevance based on
Weight Feature Selection (RWFS) [18] has been proposed. This method is based on two
types of changed ratios in relation to feature relevance evaluation: one for the undeter-
mined amount of information and the other for the established amount of information.
These strategies have demonstrated their effectiveness by improving performances

However, these methods often suffer from high computational costs, and they may
require discretization of continuous variables, which may lead to information loss [19].
To address these issues, we have previously proposed ClearF [20], which uses the re-
construction error of a low-dimensional embedding method as a proxy for the mutual
information. ClearF assigns supervised scores to features by applying unsupervised class-
wise low-dimensional embedding, which has been demonstrated to be effective in several
benchmark datasets. However, ClearF has a limitation in that the selection process of
the bottleneck layer is not transparent, requiring the selection of feature size in advance,
followed by a greedy search. Consequently, the process can be complicated, unstable, and
time-consuming, depending on the experimental setup. Furthermore, due to the parti-
tioning of the entire dataset based on class labels and the subsequent embedding of each
partition, the sample size becomes significantly smaller. This may introduce the risk of
generating unstable outcomes during the feature selection process.

In this paper, we propose ClearF++ to address the limitations of ClearF. ClearF++
simplifies the process of determining the number of uncertain bottleneck layers and further
improves performance through feature clustering. First, we propose a method to increase
convenience and stabilize the process by simply fixing the number of bottleneck layers
to a single value. In addition, we apply a feature-wise clustering method to mitigate the
problem of embedding too many features at once and only reflecting the importance of a few
features. This method allows for the selection of important features by clustering similar
features together, thus reducing the number of embedded features. In summary, ClearF++
addresses the limitations of ClearF by simplifying the selection process of bottleneck layers
and improving performance through feature clustering. Figure 1 illustrates the proposed
architecture, and the entire process is shown in the pseudocode presented in Algorithm 1.

Algorithm 1 Algorithm ClearF++: Supervised feature scoring method using feature clus-
tering in the class-wise embedding and reconstruction method.

1: function CLEARF++(X, Y, k, l)
2: Input:

X = {X1, X2, . . . , Xs} ∈ R
n×s: Data matrix (n features and s samples)

Y = {y1, y2, . . . , ys}: Label vector
k: Number of clusters
l: Number of classes

3: Output:
F = { f1, f2, . . . , fn}: Feature scores

4: Perform feature-wise clustering on data X:
5: Apply DEC clustering method that divides n features into k clusters to obtain

C = {C1, C2, . . . , Ck}, where each cluster Ci ∈ R
ci×s.
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Algorithm 1 Cont.

6: for i = 1, . . . , k do
7: Fi ← CLEARF(Ci, Y, l, 1)
8: end for
9: Aggregate feature scores for each cluster and rank features to obtain F

10: return F
11: end function

12: function CLEARF(X, Y, l, d)
13: Input:

X = {X1, X2, . . . , Xs} ∈ R
n×s: Data matrix

Y = {y1, y2, . . . , ys}: Label vector
l: Number of classes
d: Number of components

14: Output:
F = { f1, f2, . . . , fn}: Feature scores

15: Using label vector Y, divide X into L = {L1, L2, . . . , Ll}, where each divided data
Lj ∈ R

n×lj .
16: Perform low-dimensional embedding on X with d components and reconstruct to

calculate the feature-wise reconstruction error:
17: RX = {r(X,1), r(X,2), . . . , r(X,n)}
18: for j = 1, . . . , l do
19: Perform low-dimensional embedding on Lj and reconstruct to calculate the

feature-wise reconstruction error:
20: Rj = {r(j,1), r(j,2), . . . , r(j,n)}
21: end for
22: Rsum = sum(R1, R2, . . . , Rl)
23: F = RX-Rsum
24: return F
25: end function

Figure 1. Overview of ClearF++, a supervised feature scoring method that utilizes feature clustering
in a class-wise embedding and reconstruction method: (A) Description of how the entirety of the
data are divided into multiple partitions using feature-wise clustering. (B) Description of the process
of calculating feature importance using ClearF++.
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2. Materials and Methods

2.1. ClearF-One: Simplifying Bottleneck Layer Selection

To tackle the instability issue in the bottleneck layer selection process within ClearF,
we propose a refined approach called ClearF-one. In this modified method, the bottleneck
layer is set to a single layer rather than employing a greedy search to determine the optimal
number of bottleneck layers. As the size of the bottleneck layer increases, a broader
range of information is selected, resulting in the dilution of focusing important parts.
By constraining the number of layers to one, only the most informative features from
each class’s embedding are selected, aligning with the theoretical foundation of ClearF. In
summary, ClearF-one serves as an enhanced version of ClearF that addresses instability in
the feature selection process by simplifying the bottleneck layer to a single layer.

2.2. ClearF++: Advanced Feature Selection via Feature-Wise Clustering

As described above, ClearF-one fixes the bottleneck layer to a single layer, resulting
in features with strong signals for each class that are likely to have high scores. However,
ClearF-one can be disadvantageous in selecting multiple features due to the limited amount
of expressed information. To overcome this limitation, we propose a novel method that
divides the data into several partitions through feature-wise clustering and applies ClearF-
one to each cluster. As shown in Figure 1A, feature-wise clustering is performed to divide
the data into units of each cluster with similar features. When we perform feature-wise
clustering, the Deep Embedding Clustering (DEC) method [21] is applied, which is a
method of unsupervised learning that combines deep neural networks with clustering
algorithms. Next, ClearF-one is applied to each of the clustered data to calculate the
feature score. Finally, ClearF++ produces a high feature score when it exhibits a significant
difference between classes, such as in case 2 of Figure 1B. Features with no significant
difference between classes, such as case 1, are not scored high. This approach allows the
most informative features to produce high scores by calculating a class-wise reconstruction
error. The above process is performed for each cluster, as depicted in Figure 1B, extracting
features that encapsulate important characteristics unique to each cluster.

Our proposed method ClearF++ has several advantages over ClearF and ClearF-one.
It is particularly useful when an appropriate number of features must be selected from
data with a large number of features, such as in biomarker identification. Additionally,
it can be applied when the number of samples is too small compared with the number
of features, making it difficult to learn ClearF stably. In summary, ClearF++ divides the
data into feature-wise clusters and applies ClearF-one to each cluster, enabling us to select
multiple informative features from a large number of features.

3. Results

3.1. Datasets

We conducted an experiment on the gene expression data of lung cancer patients using
the ARCHS4 dataset [22], which has been used in several studies [23,24]. We removed genes
that had more than 25% zero expression across all samples. The experiment was tested with
8710 genes and 3079 samples. Out of the 3079 samples, 1158 samples belong to the A549
cells (non-small-cell lung cancer) and 1921 samples belong to the IMR90 cells (normal lung
fibroblast). Additionally, we performed experiments on several benchmark datasets. To
externally validate our results, we further conducted the experiments over two additional
benchmark datasets, colon and ALL/AML leukemia datasets [7]. The ALL/AML dataset
consists of 72 samples, 47 samples belong to acute lymphoblastic leukemia (ALL) and
25 samples belong to acute myeloid leukemia (AML) [25]. Gene expression levels were
measured using Affymetrix high-density oligonucleotide arrays containing 7129 genes. The
colon dataset consists of 62 samples, of which 22 are normal and 40 are colon tumor tissue
samples [26]. Gene expression levels were measured using Affymetrix oligonucleotide
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arrays containing expression levels for the 2000 genes with the highest minimal intensity
across the samples, as it is prepared in the paper [26].

3.2. Performance Evaluation on Multiple Benchmark Datasets

We compared the performance of several feature selection algorithms, including
MultiSURF, IFS, and ClearF, to demonstrate the effectiveness of our proposed method
in extracting the most relevant features for lung cancer classification using the ARCHS4
dataset. The selected features from each method were used for classification and their AUCs
were compared. We performed 10-fold cross-validation by dividing the entire dataset into
10 folds, with one fold for test data and the remaining folds for training data. Each feature
selection algorithm was applied solely to the training data to select important features. A
classification algorithm was then applied using only the selected features, and the average
AUC of the 10-fold cross-validation was measured. The classification model is a basic
four-layer DNN, consisting of an input layer, two hidden layers, and an output layer. The
sizes of the hidden layers were determined as the number of selected features * 2 and the
number of selected features, respectively. The hyperbolic tangent served as the activation
function. The Adam optimizer was employed for learning with a learning rate of 1 × 10−3

and 500 epochs using a full batch.
To validate the stability and effectiveness of our proposed method, ClearF++, we

conducted a performance comparison using the ARCHS4 lung cancer dataset and several
benchmark datasets, such as colon and ALL/AML. The results are displayed in Table 1.
These experiments demonstrate that ClearF++ mostly outperforms (p-value < 0.05) other
feature selection methods, such as MultiSURF [11], IFS [27], and ClearF [20], across the
ARCHS4, colon, and ALL/AML datasets. ClearF++ achieved the highest performance
across most of the feature subsets, reaching its best performance at 60 features both in
the colon dataset (AUC = 0.826) and the ARCHS4 lung dataset (AUC = 0.983). Likewise,
in the ALL/AML dataset, excluding the comparison with ClearF when the number of
features was 60, ClearF++ outperformed other methods (p-value < 0.05), achieving the best
performance at both 45 and 60 features (AUC = 0.949). Overall, these results highlight the
consistent and enhanced performance of ClearF++ across varying numbers of features,
showing the robustness and effectiveness of ClearF++. To show the statistical significance
of the improvement, we included the results of a paired t-test between ClearF++ and other
methods in Table S2 of the Supplementary Material, aligning with the results in Table 1. The
results predominantly affirmed the notable superiority of our proposed method compared
with other methods, with the exceptions of the case where ClearF++ vs. ClearF selected
60 features in the ALL/AML dataset, and the case where 45 features were selected in the
colon dataset.

Table 1. Performance comparison on several benchmark datasets across a varying number of features.
The performance was measured with the average AUC of 10-fold cross-validation.

n 1
Colon ALL/AML ARCHS4

MultiSURF IFS ClearF ClearF++ MultiSURF IFS ClearF ClearF++ MultiSURF IFS ClearF ClearF++

15 0.648 0.749 0.707 0.805 0.906 0.913 0.912 0.947 0.925 0.927 0.949 0.959
30 0.711 0.672 0.765 0.773 0.927 0.926 0.921 0.940 0.944 0.953 0.943 0.973
45 0.703 0.658 0.801 0.751 0.938 0.915 0.927 0.949 0.955 0.955 0.952 0.980
60 0.723 0.761 0.815 0.826 0.927 0.915 0.949 0.949 0.969 0.949 0.951 0.983

1 The number of features.

3.3. Performance Evaluation Across Varying Feature and Sample Sizes

To assess the stability of our proposed method with a limited number of data samples,
we evaluated lung cancer classification performance using only 5% of the training data
samples from the ARCHS4 dataset. The number of features to be selected increased by 5,
starting from 10, in accordance with the experimental procedure employed in the previous
study [20].
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Figure 2 presents the experimental results on the ARCHS4 lung cancer dataset, using
only 5% of the training samples. Our proposed method, ClearF++, exhibited superior
performance compared with ClearF and other comparable feature selection algorithms. As
displayed in Figure 2A, we observed that the stability of ClearF++ was preserved, while
other methods yielded relatively unstable and poor performances with a limited number
of samples.

Figure 2. (A) Performance comparison across varying numbers of features between ClearF++ and
other algorithms. The experiment was obtained using only 5% of the sample for training. (B) A
comparative experiment measuring performances as the number of samples changes. The experiment
was conducted by fixing the number of features at 45.

In Figure 2B, we conducted experiments with varying numbers of samples to investi-
gate the stability of ClearF++ across different sample sizes, fixing the number of features
at 45. The experimental results reveal that ClearF++ and MultiSURF showed stable and
improved performance across varying numbers of features, even with a small sample size.
However, ClearF++ outperformed other methods when more than 10% of the samples were
used, whereas MultiSURF exhibited no improvement when larger sample sizes were used
and even suffered from slight performance degradation.

These results indicate that our proposed method, ClearF++, demonstrates impressive
stability and performance even when dealing with a limited number of data samples. In
comparison with other feature selection algorithms, ClearF++ consistently outperforms
them, particularly when utilizing more than 10% of the training samples. This highlights the
robustness and effectiveness of ClearF++ in various feature or sample size scenarios. These
findings emphasize the potential of ClearF++ as a robust and effective feature selection
technique, capable of maintaining its performance across a range of feature or sample sizes.

3.4. Effect of Feature-Wise Clustering Algorithms

We conducted an ablation study to confirm that our proposed method, ClearF++,
indeed contributes to performance improvement compared with the previously proposed
method, ClearF. For low-dimensional embedding, KernelPCA with an RBF kernel that
showed the best performance in ClearF was utilized in ClearF-one and ClearF++. For the
clustering method in ClearF++, k-means and DEC [21] were used. The ablation study
was conducted on the ARCHS4 lung cancer dataset, with the results shown in Figure 3.
Figure 3A displays the results for the entire samples, while Figure 3B presents the result
using only 5% of the samples for training.
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Figure 3. Performance evaluation of ClearF-based methods with various experimental settings in a
lung cancer dataset. ClearF-one limits the number of bottleneck layers to 1, and ClearF++ applies
feature-wise clustering in the proposed algorithm; thus, two clustering algorithms were compared.
(A) Results using entire samples. (B) Results using 5% of samples for training.

The experimental results show that ClearF-one, which substantially restricts the num-
ber of bottleneck layers, contributes to performance improvement, particularly when only a
small portion of samples (5%) is used for training. This suggests that ClearF-one is effective
in handling limited data samples and can still yield improved performance by simplifying
the architecture, reducing the complexity, and focusing on the most relevant features. It
is noteworthy that in the context of k-means clustering, the results yielded from training
with only 5% of the samples shortly underperformed in comparison with those obtained
from ClearF-one without clustering. Under the constraints of a small data size, k-means
clustering appeared to struggle in achieving effective clustering. However, when we em-
ployed the more sophisticated clustering algorithm, DEC, we observed stable and enhanced
performances when feature-wise clustering was applied. Particularly, DEC outperformed
k-means clustering in terms of performance when a larger number of features were being
selected, both in the scenarios with all samples in Figure 3A and with a small number of
samples in Figure 3B. This suggests that DEC may be more suitable for handling complex
data structures and capturing underlying patterns in the data when compared with the
k-means clustering algorithm, particularly in situations with limited data samples.

We evaluated ClearF++ performance by employing two different clustering methods
with varying numbers of clusters. Figure 4A presents the results using the DEC clustering
algorithm, while Figure 4B shows the results using k-means clustering. The results reveal
that DEC with 15 clusters yielded the best performance, while k-means clustering achieved
optimal results with 5 clusters. Although the best performances of these two clustering
methods were comparable (close to AUC = 0.98), k-means clustering showed considerable
variance depending on the number of clusters. In contrast, DEC demonstrated smaller vari-
ance and consistently higher performance across different cluster numbers. Consequently,
while both clustering methods (DEC and k-means) can achieve comparable performances,
DEC not only improved performances but showed more consistent and reliable results
across different numbers of clusters. It suggests that the choice of clustering algorithm is
important and that the proposed feature-wise clustering idea of ClearF++ contributes to
more robust and improved performances.
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Figure 4. Performance evaluation based on varying numbers of clusters in the lung cancer dataset. F
represents the number of selected features. (A) Performances of ClearF++ when DEC clustering is
applied. (B) Performances of ClearF++ when k-means clustering is applied.

3.5. Computational Cost Validation

To verify the computational efficiency of ClearF++ over other methods, we measured
and compared the CPU time by running each method 10 times. The experiment utilized
data containing 5000 randomly generated features and 5000 samples. As shown in Table 2,
ClearF++ showed a substantially faster execution time than MultiSURF and IFS. While it
showed a slightly slower execution time than ClearF due to the inclusion of clustering time,
the improved performance ensures its competitiveness and effectiveness in comparison
with other methods.

Table 2. Computational costs comparison of ClearF++ and other feature selection methods.

Methods IFS MultiSURF ClearF ClearF++

CPU times (s) 398.91 ± 17.22 78,515.59 ± 346.53 132.68 ± 6.51 166.85 ± 10.77

3.6. Functional Enrichment Analysis

To identify high-scoring features, we analyzed the ARCHS4 dataset using ClearF++,
which demonstrated improved performance in our experiments. Since scores were cal-
culated for each of the 10 folds, we defined an integrated scoring method. The top 100
features in each fold were assigned scores in descending order, ranging from 100 to 1 point.
We then calculated the rank scores by averaging the scores obtained across all folds. The
50 highest-scoring genes are shown in Table S1. Furthermore, to investigate the biological
relationships among the selected genes, we performed pathway and gene ontology enrich-
ment analysis using ToppGene [28] on the top 50 genes. The results are shown in Table 3,
respectively.

In biomarker detection, high classification accuracy of selected features does not
guarantee that features associated with the disease are selected. Considering that the
purpose of our algorithm is to select features for identifying important biomarkers, it
is crucial to determine whether the top-scoring features are associated with the target
disease. The 50 genes with high scores in our method are shown in Table S1. We performed
enrichment analysis using these 50 genes.

The enrichment analysis results conducted with ToppGene [28] reveal that several
genes related to the glycosaminoglycan (GAG) metabolism pathway received high scores.
The extracellular matrix (ECM) regulates cell fate, and glycosaminoglycans (GAGs) are
major macromolecules that compose the ECM, which play well-known roles in cancer
angiogenesis, proliferation, invasion, and metastasis [29]. GAGs have been widely studied
as treatments for cancer, inflammation, infection, and lung diseases, and one study [30]
clarified the role of GAGs, contributing to future research.
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Table 3. Pathway and gene ontology enrichment analysis results using ToppGene on the top 50
ranked genes. The 10 most significant gene ontology (GO) terms that have the lowest p-values
are shown, as well as pathway and disease terms with significant p-values (p < 0.05) from the
enrichment analysis.

Category ID Name p-Value q-Value 1 q-Value 2 HC 3 HCG 4

BP GO:0032963 collagen metabolic process 2.89 × 10−8 5.13 × 10−5 5.13 × 10−5 7 144
BP GO:0030042 actin filament depolymerization 5.03 × 10−7 8.95 × 10−4 3.68 × 10−4 5 71
BP GO:0032964 collagen biosynthetic process 6.63 × 10−7 1.18 × 10−3 3.68 × 10−4 5 75
MF GO:0044877 protein-containing complex binding 7.35 × 10−7 2.09 × 10−4 2.09 × 10−4 16 1726
BP GO:0001568 blood vessel development 8.27 × 10−7 1.47 × 10−3 3.68 × 10−4 13 1152
BP GO:0035904 aorta development 1.47 × 10−6 2.62 × 10−3 4.71 × 10−4 5 88
BP GO:0001944 vasculature development 1.87 × 10−6 3.33 × 10−3 4.71 × 10−4 13 1239
BP GO:0030198 extracellular matrix organization 2.21 × 10−6 3.93 × 10−3 4.71 × 10−4 8 394
BP GO:0043062 extracellular structure organization 2.25 × 10−6 4.00 × 10−3 4.71 × 10−4 8 395
BP GO:0045229 external encapsulating structure organization 2.38 × 10−6 4.24 × 10−3 4.71 × 10−4 8 398

Disease C0268362 Osteogenesis imperfecta type III (disorder) 1.90 × 10−6 3.42 × 10−3 3.42 × 10−3 3 11

Pathway 1269980 Heparan sulfate/heparin (HS-GAG) metabolism 1.82 × 10−5 5.99 × 10−3 1.82 × 10−3 4 54
Pathway 1309217 Defective B3GALT6 causes EDSP2 and SEMDJL1 2.21 × 10−5 7.26 × 10−3 1.82 × 10−3 3 19
Pathway 1269015 Defective B3GAT3 causes JDSSDHD 2.21 × 10−5 7.26 × 10−3 1.82 × 10−3 3 19
Pathway 1269014 Defective B4GALT7 causes EDS, progeroid type 2.21 × 10−5 7.26 × 10−3 1.82 × 10−3 3 19

Pathway 1269981 A tetrasaccharide linker sequence is required for GAG
synthesis 5.84 × 10−5 1.92 × 10−2 3.20 × 10−3 3 26

Pathway 1269011 Diseases associated with glycosaminoglycan
metabolism 5.84 × 10−5 1.92 × 10−2 3.20 × 10−3 3 26

Pathway 1269982 HS-GAG biosynthesis 9.99 × 10−5 3.29 × 10−2 4.69 × 10−3 3 31

Pathway M39870 Type I collagen synthesis in the context of osteogenesis
imperfecta 1.21 × 10−4 3.97 × 10−2 4.97 × 10−3 3 33

Pathway 1268756 Unfolded Protein Response (UPR) 1.48 × 10−4 4.88 × 10−2 5.42 × 10−3 4 92

1 Bonferroni q-value, 2 FDR B&H q-value, 3 Hit Count in the query list, 4 Hit count in the genome.

Among the GAG-associated genes that received high scores in our method are GPC1,
NDST1, CSPG4, and SDC3. An experiment involving CSPG4-specific mAb 225.28 demon-
strated the regression induction of tumor metastasis in a lung metastasis model [31].
Endothelial cell (ECs) junction disassembly, a key step in inflammation, allows for vascular
leakage during disease, and thrombin-cleaved fragments of the SDC3 ectodomain promote
this process in human lung microvessels in certain cases [32]. NDST1 participates in the
synthesis of the heparan sulfate (HS) chain of HSPG, and a study [33] found that it may
provide an explanation for the clinical observation that heparin can improve outcomes in
small-cell lung cancer (SCLC). Another study [34] suggested that NDST1 is associated with
angiogenesis and tumor growth in lung tumors. There is also a study that recommended
the use of glypican-1 (GPC1) as an additional positive marker for lung squamous cell
carcinoma [35]. These findings suggest that analyzing the effects of NDST1 and SDC3
expression on pulmonary blood vessels in relation to GAGs may be helpful in diagnosing
and treating lung cancer.

Additionally, enrichment analysis results using the top 50 genes with high scores
(Table 3) reveal that 7 genes related to the collagen metabolic process are included in the
biological process. These genes are P3H3, MRC2, MMP14, ENG, EMILIN1, CREB3L1, and
COL1A1, with CREB3L1, EMILIN1, and COL1A1 ranking 1st, 3rd, and 4th, respectively.
Impaired collagen metabolism is accompanied by increased prolidase activity in lung cancer
squamous epithelium [36]. Furthermore, idiopathic pulmonary fibrosis (IPF) is associated
with an increased risk of lung cancer with elevated collagen and prolidase activity [36–38].
On the other hand, Prolidase Deficiency (PD) and osteogenesis imperfecta (OI) share similar
phenotypes [37]. Notably, our enrichment analysis includes CREB3L1 and COL1A1, which,
out of the top 10 genes, are associated with osteogenesis imperfecta type III (disorder). The
expression of β1 integrin, which has been shown to regulate prolidase activity, is decreased
in OI [37,39,40]. However, there is no difference in the levels of β1 integrin between healthy
lung cells and cancer cells, suggesting that prolidase regulation in lung cancer may involve
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a different mechanism [36,37]. Therefore, studying the role of prolidase, CREB3L1, and
COL1A1 gene expression in lung cancer appears to be significant.

In addition to the aforementioned genes, we found several high-scoring genes (shown
in Table S1) that have been linked to lung cancer in multiple studies. The CREB3L1 gene has
been associated with lung cancer growth due to its involvement in the activation of alpha-
smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs) [41]. SYDE1
is associated with epithelial–mesenchymal transition (EMT) reversal, which is associated
with the progression of various tumors, including lung cancer [42]. Reduced EMILIN-1
production in some tumor types is associated with higher proliferation of tumor cells in
breast and lung cancer [43]. Another study [44] suggested that COL1A1 can be a potential
biomarker for poor progression-free survival and chemoresistance in metastatic lung cancer.
Serum CKAP4 levels can distinguish lung cancer patients from healthy controls, making it
a potential serum diagnostic marker for lung cancer [45]. Carbohydrates associated with
LAMP1 play a crucial role in determining lung metastasis [46]. A potential target of TAF15
concerning resistance to radiotherapy, essential for non-small-cell lung cancer treatment,
has been proposed [47]. TBX2 subfamily methylation may serve as a potential biomarker
for early detection and intervention in non-small-cell lung cancer [48]. Consequently, the
genes selected by our method are shown to be biomarker candidates for lung cancer.

4. Discussion

We evaluated the suitability of our methodology for biomarker detection from a
machine learning perspective. The results in Figure 2 demonstrate that our proposed
method is effective when selecting a small number of features. Particularly, when combined
with Figure 3, ClearF-one generally yields favorable results when selecting from 10 to
25 features, and ClearF++ shows improvement when selecting from 30 to 50 features.
Given the importance of selecting a small number of features in biomarker discovery,
our method can be considered suitable. Moreover, our approach demonstrates stable
performance even with a small sample size, as shown in Figure 2B. In the biomedical field,
insufficient learning samples are often encountered, and our method proves effective in
such cases. Additionally, as shown in Table 2, our method can be effectively employed in
environments with limited computational power due to its advantageous execution time.

The results in Figure 3 indicate that ClearF++ can show degraded performances
compared with the model without clustering (ClearF-one) when the number of features
is small. This is likely because ClearF-one effectively selects a small number of features
when only certain information remains after embedding the entirety of the data into
a single bottleneck layer. However, when the number of features increases, it suffers
from performance degradation due to information loss. In contrast, ClearF++ extracts
information for each cluster, which provides more robust and improved performances
when selecting multiple features.

Our method addresses the sensitivity issue related to the number of bottleneck layers in
the previously proposed method, ClearF, but still requires many parameter adjustments. In
particular, determining the number of clusters remains a challenge in clustering. Although
Figure 4 shows that our method is not highly sensitive to the number of clusters within
a range of 5 to 20 clusters, an exceptionally higher number of clusters, such as 50 or 100,
led to instability in clustering results and a substantial performance decrease. Through our
experiments, we discerned that the optimal number of clusters likely resides within the 5 to
20 range. However, this range may vary with different datasets according to their sample
sizes. Accordingly, future research could focus on the automatic selection of the number of
clusters. Further, there is still an issue in setting the model structure or learning method
in the part that utilizes DEC. This issue can be addressed in future studies. Furthermore,
our method exhibits flexibility towards a range of clustering algorithms. Our experimental
findings, as illustrated in Figure 3, indicated that employing a more sophisticated clustering
technique could result in more stable and improved performances. Thus, future research
that utilizes advanced clustering methods could potentially enhance performances.
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5. Conclusions

In this study, we developed an improved feature selection algorithm for identifying
biomarkers that can be used for disease prediction and biomedical data analysis. Our
experimental results demonstrate several advantages of our method, including improved
prediction performance and faster execution Furthermore, it shows substantially stable
performance even with a limited number of samples, making it particularly effective for
biomedical data analysis, where the available sample size is often insufficient.

One limitation of our method is that it requires determining the optimal number of
clusters, which can vary across different datasets. In this study, we experimented with
several scenarios to select the most appropriate parameters. However, automatic parameter
selection methods can be exploited in future work to address this issue.
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//www.mdpi.com/article/10.3390/bioengineering10070824/s1, Table S1: List of the highest-scoring
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across three different datasets.
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Abstract: In this paper, we propose a dense multi-scale adaptive graph convolutional network
(DMA-GCN) method for automatic segmentation of the knee joint cartilage from MR images. Under
the multi-atlas setting, the suggested approach exhibits several novelties, as described in the following.
First, our models integrate both local-level and global-level learning simultaneously. The local
learning task aggregates spatial contextual information from aligned spatial neighborhoods of nodes,
at multiple scales, while global learning explores pairwise affinities between nodes, located globally
at different positions in the image. We propose two different structures of building models, whereby
the local and global convolutional units are combined by following an alternating or a sequential
manner. Secondly, based on the previous models, we develop the DMA-GCN network, by utilizing
a densely connected architecture with residual skip connections. This is a deeper GCN structure,
expanded over different block layers, thus being capable of providing more expressive node feature
representations. Third, all units pertaining to the overall network are equipped with their individual
adaptive graph learning mechanism, which allows the graph structures to be automatically learned
during training. The proposed cartilage segmentation method is evaluated on the entire publicly
available Osteoarthritis Initiative (OAI) cohort. To this end, we have devised a thorough experimental
setup, with the goal of investigating the effect of several factors of our approach on the classification
rates. Furthermore, we present exhaustive comparative results, considering traditional existing
methods, six deep learning segmentation methods, and seven graph-based convolution methods,
including the currently most representative models from this field. The obtained results demonstrate
that the DMA-GCN outperforms all competing methods across all evaluation measures, providing
DSC = 95.71% and DSC = 94.02% for the segmentation of femoral and tibial cartilage, respectively.

Keywords: knee cartilage osteoarthritis (KOA); magnetic resonance imaging (MRI) segmentation;
multi-atlas; graph neural networks (GNNs); deep learning; graph learning; semi-supervised
learning (SSL)

1. Introduction

Osteoarthritis (OA) is one of the most prevalent joint diseases worldwide, causing pain
and mobility issues, reducing the ability to lead an independent lifestyle, and ultimately
decreasing the quality of life in patients. It primarily manifests among populations of
advanced age, with an estimated 10% of people over the age of 55 dealing with this
condition. That percentage is likely to noticeably increase in the coming years, especially in
the developing parts of the world where life expectancy is steadily on the rise [1].

Among the available imaging modalities, magnetic resonance imaging (MRI) consti-
tutes a valuable tool in the characterization of the knee joint, providing a robust quantitative
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and qualitative analysis for detecting anatomical changes and defects in the cartilage tis-
sue. Unfortunately, manual delineations performed by human experts are resource- and
time-consuming, while also suffering from unacceptable levels of inter- and intrarater vari-
ability. Thus, there is an increasing demand for accurate and time-efficient fully automated
methods for achieving reliable segmentation results.

During the past decades, a considerable amount of research has been conducted to
achieve the above goals. However, the thin cartilage structure, as well as the great variabil-
ity in and intensity inhomogeneity of MR images have posed significant challenges. Several
methods are proposed to address those issues, ranging from more traditional image process-
ing ones such as statistical shape models and active appearance models, to more automated
ones employing classical machine learning and deep learning techniques. A comprehensive
review of such automated methods for knee articular segmentation can be found in [2].

1.1. Statistical Shape Methods

A wide variety of methods that fall under the statistical shape model (SSM) and
active appearance model (AAM) family have been extensively employed in knee joint
segmentation applications in the past. Since the specific shape of the cartilage structure
is quite distinct and characteristic, these methods employ this feature as a stepping stone
towards complete delineation for the whole knee joint [3]. Additionally, SSMs have been
successfully utilized as shape regularizers within more complex segmentation pipelines,
mainly as a final postprocessing step [4]. While conceptually simple, these methods are
highly sensitive to the initial landmark selection process.

1.2. Machine Learning Methods

Under the classical machine learning setting, knee cartilage segmentation is cast as a
supervised classification task, estimating the label of each voxel from a set of handcrafted or
automatically extracted features from the available set of images. Typical examples of such
approaches can be found in [5,6]. These methods are conceptually simple but usually offer
mediocre results, due to their poor generalization capabilities and the utilization of fixed
feature descriptors that may not be well suited to efficiently capture the data variability.

1.3. Multi-Atlas Patch-Based Segmentation Methods

Multi-atlas patch-based methods have long been a staple in medical imaging applica-
tions [7,8]. Utilizing an atlas library A = {Ai,Li}nA

i=1 comprising nA magnetic resonance
images (Ai) and their corresponding label maps Li, these methods operate on a single
target image T at a time, annotating it by propagating voxel labels from the atlas library
A. The implicit assumption in this framework is that the target image T and the corre-
sponding images comprising the atlas library A reside in a common coordinate space. This
assumption is enforced by registering all atlases Ai ∈ A along with their corresponding
labels maps Li to the target image space, via an affine or deformable transformation [9].

Multi-atlas patch-based methods usually consist of the following steps: For all vox-
els x ∈ T , a search volume N(x) of size Ns = (n × n × n) centered around x is formed,
and every corresponding voxel y ∈ N(x) in the spatially adjacent locations in the regis-
tered atlases yields a patch library PL = pAi (y), ∀y ∈ N(x) for all atlases i = 1, · · · , nA.
An optimization problem such as sparse coding (SC) is then used to reconstruct the target
patch as a linear combination of its corresponding atlas library. Established methods of
this category of segmentation algorithms are presented in [7,8]. Despite being capable of
achieving appreciable results, these methods do not scale well to large datasets due to the
intense computational demands of constructing a patch library and solving an optimization
problem for each voxel of every target image.

1.4. Deep Learning Methods

The recent resurgence of deep learning has had a great impact on medical imaging
applications, with an increasing number of works reporting the use of deep architectures

61



Bioengineering 2024, 11, 278

in various applications pertaining to that field. Initially restricted to 2D models due to
the large computational load imposed by the 3D structure of magnetic resonance images,
the recent advancements in processing power have allowed for a wide variety of fully 3D
models to be proposed, offering markedly better performance with respect to the more
traditional methods [10,11]. In our study, we compare our proposed method against a series
of representative deep architectures, with applications ranging from semantic segmentation
to point-cloud classification and medical image segmentation. In particular, we consider the
SegNet [12], DenseVoxNet [13], VoxResNet [14], PointNet [15], CAN3D [13], and KCB-Net [16]
architectures (Section 9.4.2).

1.5. Graph Convolutional Neural Networks

Recently, intensive research has been conducted in the field of graph convolutional
networks, owing to their efficiency in handling non-Euclidean data [17]. These models
can be distinguished into two general categories, namely, the spectral-based [18,19] and
the spatial-based methods [20–24]. The spectral-based networks rely on the graph signal
processing principles, utilizing filters to define the node convolutions. The ChebNet in [18]
approximates the convolutional filters by Chebyshev polynomials of the diagonal matrix of
eigenvalues while the GCN model in [19] performs a first-order approximation of ChebNet.

Spatial-based graph convolutions, on the other hand, update a central node’s represen-
tation by aggregating the representations of its neighboring nodes. The message-passing
neural network (MPNN) [20] considers graph convolutions as a message-passing process,
whereby information is traversed between nodes via the graph edges. GraphSAGE [25]
applies node sampling to obtain a fixed number of neighbors for each node’s aggregation.
A graph attention network (GAT) [24] assumes that the contribution of the neighboring
nodes to the central one is determined according to a relative weight of importance, a task
achieved via a shared attention mechanism across nodes with learnable parameters.

During the last years, GCNs have found extensive use in a diverse range of applica-
tions, including citation and social networks [19,26], graph-to-sequence learning tasks in
natural language processing [27], molecular/compound graphs [28], and action recogni-
tion [29]. Considerable research has been conducted on the classification of remotely sensed
hyperspectral images [30–32], mainly due to the capabilities of GCNs to capture both the
spatial contextual information of pixels, as well as the long-range relationships of distant
pixels in the image. Another domain of application is the forecasting of traffic features in
smart transportation networks [33,34]. To capture the varying spatio-temporal relation-
ships between nodes, integrated models are developed in these works, which combine
graph-based spatial convolutions with temporal convolutions.

Finally, to confront the gradient vanishing effect faced by traditional graph-based
models, deep GCN networks have recently been suggested [35,36]. Particularly, in [35],
a densely connected graph convolutional network (DCGCN) is proposed for graph-to-
sequence learning, which can capture both local and nonlocal features. In addition, Ref. [36]
presents a densely connected block of GCN layers, which is used to generate effective shape
descriptors from 3D meshes of images.

1.6. Outline of Proposed Method

The existing patch-based methods exhibit several drawbacks which can potentially
degrade their segmentation performance. First, for each target voxel, these methods
construct a local patch library at a specific spatial scale, comprising neighboring voxels
from atlas images. Then, classifiers are developed by considering pairwise similarities
between voxels in that local region. This suggests that target labeling is accomplished by
relying solely on local learning while disregarding the global contextual information among
pixels. Hence, long-range relationships among distant voxels in the region of interest are
ignored, although these voxels may belong to the same class but with a different textural
appearance. Secondly, previous methods in the field resort to inductive learning to produce
voxel segmentation, which implies that the features of the unlabeled target voxels are
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not leveraged during the labeling process. Finally, some recent segmentation methods
employ graph-based approaches allowing a more effective description of voxel pairwise
affinities via sparse code reconstructions [8,37]. Despite the better data representation,
the target voxel labeling is achieved using linear aggregation rules for transferring the atlas
voxel’s labels, such as the traditional label propagation (LP) mechanism via the graph edges.
Such first order methods may fail to adequately capture the full scope of dependencies
among the voxel representations. The labeling of each voxel proceeds by aggregating
spectral information strictly from its immediate neighborhood, failing to exploit long-term
dependencies with potentially more similar patches in distant regions of the image, thus
ultimately yielding suboptimal segmentation results.

To properly address the above shortcomings, in this paper we present a novel method
for the automatic segmentation of knee articular cartilage, based on recent advances in
the field of graph-based neural networks. More concretely, we propose the dense multi-
scale adaptive graph convolutional network (DMA-GCN) method, which constructively
integrates local spatial-level learning and global-level contextual learning concurrently. Our
goal is to generate, via automatic convolutional learning, expressive node representations
by merging pairwise importance at multiple spatial scales with long-range dependencies
among nodes for enhanced volume segmentation. We approach the segmentation task as
a multi-class classification problem with the five classes: background: 0; femoral bone: 1;
femoral cartilage: 2; tibial bone: 3; tibial cartilage: 4. Recognizing the more crucial role of
the cartilage structure in the assessment of the knee joint and considering the increased
difficulty for its automatic segmentation as contrasted with that of bones, our efforts are
primarily devoted to that issue. Figure 1 depicts a schematic framework of the proposed
approach. The main properties and innovations of the DMA-GCN model are described
as follows:

Figure 1. Outline of the proposed knee cartilage segmentation approach. It comprises the atlas
subset selection (a), the graph construction part (b), a specific form of graph-based convolutional
model (c), the adaptive graph learning (d), and the MLP network providing the class estimates for
the segmentation of the target image. Black dots correspond to central nodes and colored nodes to
neighboring ones, respectively. The encircled C symbol represents an aggregation function.

Multi-atlas setting: Our scheme is tailored to the multi-atlas approach, whereby label
information from atlas images (labeled) is transferred to segment the target image (unla-
beled). To this end, at the preliminary stage, images are aligned using a cost-effective affine
registration. Subsequently, for each target image T , we generate its corresponding atlas
library {A,L} according to a similarity criterion (Figure 1a).

Graph construction: This part refers to the way in which images are represented in terms
of nodes and the organization of node data to construct the overall graph (Figure 1b). Here,
the graph node corresponds to a generic patch of size 5 × 5 × 5 around a central voxel, while
the node feature vector is provided by a 3D-HOG feature descriptor. Accordingly, the image
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is represented as a collection of spatially stratified nodes, covering adequately all classes
across the region of interest. Following the multi-atlas setting, we construct sequences of
aligned data, comprising target nodes and those for the atlases at spatially correspondent
locations. Given the node sequences, we further generate the sequence libraries which are
composed of neighboring nodes at various spatial scales. The collection of all node libraries
forms the overall graph structure, whereby both local (spatially neighboring) and global
(spatially distant) node relationships are incorporated.

Semi-supervised learning (SSL): Following the SSL scenario, the input graph data com-
prise both labeled nodes from the atlas library and unlabeled ones from the target image
to be segmented. In that respect, contrary to some existing methods, the features of un-
labeled data are leveraged via learning to compute the node embbeddings and label the
target nodes.

Local–global learning: As can be seen from Figure 1c, graph convolutions over the
layers proceed along two directions, namely, the local spatial level and the global level,
respectively. The local spatial branch includes the so-called local convolutional (Lconv)
units which operate on the subgraph of aligned neighborhoods of nodes (sequence libraries).
The node embeddings generated by these units incorporate the contextual information
between nodes at a local spatial level. To further improve local search, we integrate local
convolutions at multiple scales, so that the local context around nodes is captured more
efficiently. On the other hand, the global branch includes global convolution (Gconv) units.
These units provide the global node embeddings by taking into consideration the pairwise
affinities of distant nodes distributed over the entire region of interest of the cartilage
volume. The final node representations are then obtained by aggregating the embeddings
computed at the local spatial and the global levels, respectively.

Convolutional building models: An important issue is how the local and global hidden
representations of nodes are combined across the convolution layers. In this context, we
propose two different structures: the cross-talk building model (CT-BM) and the sequen-
tial building model (SEQ-BM). Both models comprise four convolutional units overall,
specifically, two Lconv and two Gconv units, undertaking local and global convolutions,
respectively. The CT-BM (Figure 1c) performs intertwined local–global learning, with skip
connections and aggregators. The links indicate the cross-talks between the two paths.
The SEQ-BM, on the other hand, adopts a sequential learning scheme. In particular,
local spatial learning is completed first, followed by the respective convolutions at the
global level.

Adaptive graph learning (AGL): Considering fixed graphs with predetermined adjacency
weights among nodes can degrade the segmentation results. To confront this drawback,
every Lconv and Gconv unit is equipped here with an AGL mechanism, which allows us to
automatically learn the proper graph structure at each layer. At the local spatial level, AGL
adaptively designates the connectivity relationships between nodes via learnable attention
coefficients. Hence, Lconv can concentrate and aggregate features from relevant nodes in
the local search region. Further, at the global level we propose a different AGL scheme for
Gconv units, whereby graph edges are learned from the input features of each layer.

Densely connected GCN: The proposed CT-BM and SEQ-BM can be utilized as stan-
dalone models to undertake the graph convolution task. Nevertheless, their depth is
confined to two local–global layers, since an attempt to deepen the networks is hindered by
the gradient-vanishing effect. To circumvent this deficiency, we finally propose a densely
connected convolutional network, the DMA-GCN model. The DMA-GCN considers CT-BM
or SEQ-BM as the building block of the deep structure. It exhibits a deep architecture with
skip connections whereby each layer in the block receives feature maps from all previous
layers and transmits its outputs to all subsequent layers. Overall, the DMA-GCN shares
some salient qualities, such as a deep structure with an enhanced performance rate and
better information flow, local–global level convolutions, and adaptive graph learning.

In summary, the main contributions of this paper are described as follows.
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• A novel multi-atlas approach is presented for knee cartilage segmentation from MRI
images based on graph convolutional networks which operates under the semi-
supervised learning paradigm.

• With the aim to generate expressive node representations, we propose a new learning
scheme that integrates graph information at both local and global levels concurrently.
The local branch exploits the relevant spatial information of neighboring nodes at
multiple scales, while the global branch incorporates global contextual relationships
among distant nodes.

• We propose two convolutional building models, the CT-BM and SEQ-BM. In the CT-BM,
the local and global learning tasks are intertwined along the layer convolutions, while
the SEQ-BM follows a sequential mode.

• Both local and global convolutional units, at each layer, are equipped with suitable
attention mechanisms, which allows the network to automatically learn the graph
connective relationships among nodes during training.

• Using the proposed CT-BM and SEQ-BM as block units, we finally present a novel
densely connected model, the DMA-GCN. The network exhibits a deeper structure
which leads to more enhanced segmentation results, while at the same time, it shares
all salient properties of our approach.

• We have devised a thorough experimental setup to investigate the capabilities of the
suggested segmentation framework. In this setting, we examine different test cases
and provide an extensive comparative analysis with other segmentation methods.

The remainder of this paper is organized as follows. Section 2 reviews some rep-
resentative forms of graph convolutional networks related to our work and involved in
the experimental analysis. Section 3 presents the image preprocessing steps and the atlas
selection process. In Section 4, we discuss the node feature descriptor, as well as the graph
construction of the images. Section 5 elaborates on the proposed local and global convo-
lutional units, along with their attention mechanisms. Section 6 describes the suggested
convolutional building blocks, while Section 7 presents our densely connected network.
Section 8 discusses the transductive vs. inductive learning and the full-batch vs. mini-batch
learning in our approach. In Sections 9 and 10, we provide the experimental setup and
respective comparative results of the proposed methodology, while Section 11 concludes
this study.

2. Related Work

In this section, we review some representative models in the field of graph convolu-
tional networks that are related to our work and are also included in the experiments.

Definition 1. A graph G is defined as G = (V , E , X) where V denotes the set of N nodes vi ∈ V ,
and E is the set of edges connecting the nodes (vi, vj) ∈ E . X ∈ R

N×F is a matrix subsuming the
node feature descriptors xi ∈ R

D, i = 1, . . . N with F denoting the feature vector dimensionality.
The graph is associated with an adjacency matrix A ∈ R

N×N (binary or weighted), which includes
the connection links between nodes. A larger entry Aij > 0 suggests the existence of a strong
relationship between nodes (vi, vj), while Aij = 0 signifies the lack of connectivity. The graph
Laplacian matrix L ∈ R

(N×N) is defined as L = D − A, where D is the diagonal degree matrix
with Dii = ∑N

j=1 Aij, i = 1, . . . , N. Finally, the normalized graph adjacency matrix with the
added self-connections is denoted by Ã = A + IN, with the corresponding degree matrix given by
D̃ii = ∑N

j=1 Ãij

2.1. Graph Convolutional Network (GCN)

The GCN proposed in [19] is a spectral convolutional model. It tackles the node
classification task under the semi-supervised framework, i.e., where labels are available
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only for a portion of the nodes in the graph. Under this setting, learning is achieved by
enforcing a graph Laplacian regularization term with the aim of smoothing the node labels:

L = L0 + λLreg (1)

Lreg = ∑
i

∑
j

Aij‖ f (xi)− f (xj)‖ = f (X)T L f (X) (2)

where L0 represents the supervised loss measured on the labeled nodes of the graph,
f (X, A) is a differentiable function implemented by a graph neural network, λ is a regular-
ization term balancing the supervised loss in regard to the overall smoothness of the graph,
X is the node feature matrix, and L is the graph Laplacian.

In a standard multilayer graph-based neural network framework, information flows
across the nodes by applying the following layerwise propagation rule:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(3)

where σ(·) denotes the LeakyReLU(·) activation function, W(l) is a layer-specific trainable
weight matrix, and H(l) is the matrix of activation functions in the lth layer, with H(0) = X.
The authors in [19] show that the propagation rule in Equation (3) provides a first-order
approximation of localized spectral filters on graphs. Most importantly, we can construct
multilayered graph convolution networks by stacking several convolutional layers of the
form in Equation (3). For instance, a two-layered GCN can be represented by

Z = f (X, A) = so f tmax
(

ÂReLU(ÂXW(0))W(1)
)

(4)

where Z is the network’s output, so f tmax(·) is the output layer activation function for
multi-class problems, and Â = D̃− 1

2 ÃD̃− 1
2 is the normalized adjacency matrix. The weight

matrices W(0) and W(1) are trained using some variant of gradient descent with the aid of
a loss function.

2.2. Graph Attention Network (GAT)

A salient component in GATs [24] is an attention mechanism incorporated in the
aggregation of the graph attention layers (GALs), with the aim to automatically capture
valuable relationships between neighboring nodes. Let H = {h1, . . . , hN}, hi ∈ RD and
H̃ = {h̃1, . . . , h̃N}, h̃i ∈ R

D̃ denote the inputs and outputs of a GAL, where N is the
number of nodes, while D and D̃ are the corresponding dimensionalities of the node
feature vectors. The convolution process entails three distinct issues: the shared node
embeddings, the attention mechanism, and the update of node representations. As an
initial step, a learnable transformation parameterized by the weight matrix W ∈ R

D̃×D

is applied on nodes, with the goal of producing expressive feature representations. Next,
for every node pair, a shared attention mechanism is performed on the transformed features,

gij = αT ·
(
Whi ‖Whj

)
(5)

where gij signifies the importance between nodes hi and hj, α is a learnable weight vector,
and ‖ denotes the concatenation operator. To make the above mechanism effective, the com-
putation of the attention coefficients is confined between each node −i and its neighboring
nodes −j, j ∈ Ni. In the GAT framework, the attention mechanism is implemented by a
single-layer feed-forward neural network, parameterized by LeakyReLU nonlinearities,
which provide the normalized attention coefficients:

aij =
exp

(
LeakyReLU

(
αT · [Whi||Whj]

))
∑k∈Ni

exp(LeakyReLU(αT · [Whi||Whk]))
(6)

66



Bioengineering 2024, 11, 278

Given the attention coefficients, the node feature representations at the output of the
GAT are updated via a linear aggregation of neighboring nodes’ features

h̃i = σ

(
∑

j∈Ni

αijWhj

)
(7)

To stabilize the learning procedure, the previous approach is extended in a GAT by
considering multiple attention heads. In that case, the node features are computed by

h̃i =
K
‖

k=1
σ

(
∑

j∈Ni

α
(k)
ij W(k)hj

)
(8)

where K is the number of independent attention heads applied, while α
(k)
ij and W(k) denote

the normalized attention coefficients associated with the kth attention head and its corre-
sponding embedding matrix, respectively. In this work, we exploit the principles of the
GAT-based attention mechanism in the proposed local convolutional units, with the goal to
aggregate valuable contextual information from local neighborhoods, at multiple search
scales (Section 5.1).

2.3. GraphSAGE

The GraphSAGE network in [25] tackles the inductive learning problem, where labels
must be generated for previously unseen nodes, or even entirely new subgraphs. Graph-
SAGE aims to learn a set of aggregator functions AGGRk, k = 1, . . . , K, which are used to
aggregate information from each node’s local neighborhood. Node aggregation is carried
out at multiple spatial scales (hops). Among the different schemes proposed in [25], in our
experiments, we consider the max-pooling aggregator, where each neighbor’s vector is
independently supplied to a fully connected neural network:

hk
Nv

= AGGRpool
k = max

({
σ
(

Wpoolh
k
ui
+ b

)
, ∀ui ∈ N (v)

})
(9)

where max(·) denotes the element-wise max operator, Wpool is the weight matrix of learn-
able parameters, b is the bias vector, and σ(·) is a nonlinear activation function. Further,
hk
N (v) denotes the result obtained after a max-pooling aggregation on the neighboring

nodes of node v. GraphSAGE then concatenates the current node’s representation hk−1
v with

the aggregated neighborhood feature vector hk−1
N (v) to compute, via a fully connected layer,

the updated node feature representations:

hk
v = σ

(
Wk ·

(
hk−1

v ‖hk−1
Nv

))
(10)

where Wk is a weight matrix associated with aggregator AGGRpool
k .

2.4. GraphSAINT

GraphSAINT [21] differs from the previously examined architectures in that instead
of building a full GCN on all the available training data, it samples the training graph
itself, creating subsets of the original graph, building and training the associated GCNs
on those subgraphs. For each mini-batch sampled in this iterative process, a subgraph
Gs = (Vs, Es) (where |Vs| � |V|) is used to construct a GCN. Forward and backward
propagation is performed, updating the node representations and the participating edge
weights. An initial preprocessing step is required for the smooth operation of the process,
whereby an appropriate probability of sampling must be assigned to each node and edge
of the initial graph.
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3. Materials

In this section, we present the dataset used in this study, the image preprocessing
steps, and finally, the construction of the atlas library.

3.1. Image Dataset

The MR images used in this study comprise the entirety of the publicly available,
baseline Osteoarthritis Initiative (OAI) repository, for which segmentation masks are avail-
able, consisting of a total of 507 subjects. The specific MRI modality utilized across all the
experiments corresponds to the sagittal 3D dual-echo steady-state (3D-DESS) sequence
with water excitation, with an image size of 384 × 384 × 384 voxels and a voxel size of
0.36 × 0.36 × 0.70 mm. The respective segmentation masks serving as the ground truth are
provided by the publicly available repository assembled by [38], including labels for the
following knee joint structures (classes): background tissue, femoral bone (FB), femoral
cartilage (FC), tibial bone (TB), and tibial cartilage (TC). Figure 2 showcases a typical knee
MRI, in the three standard orthogonal planes (sagittal, coronal, axial).

Figure 2. A typical knee MRI viewed in three orthogonal planes (left to right: sagittal, coronal, axial).

3.2. Image Preprocessing

The primary source of difficulties in automated cartilage segmentation stems from
the similar texture and intensity profile of articular cartilage and background tissues,
as they are depicted in most MRI modalities, a problem further accentuated by the usually
high intersubject variability present in the imaging data. To this end, the images were
preprocessed by applying the following steps:

1. Curvature flow filtering: A denoising curvature flow filter [39] was applied, with the
aim of smoothing the homogeneous image regions, while simultaneously leaving the
surface boundaries intact.

2. Inhomogeneity correction: N3 intensity nonuniform bias field correction [40] was per-
formed on all images, dealing with the issue of intrasubject variability within similar
classes among subjects.

3. Intensity standardization: MRI histograms were mapped to a common template, as de-
scribed in [41], ensuring that all associated structures across the subjects shared a
similar intensity profile.

4. Nonlocal-means filtering: A final filtering process smoothed out any leftover artefacts
and further reduced noise. The method presented in [42] offers a robust performance
and is widely employed in similar medical imaging applications. Finally, the intensity
range of all images was rescaled to [0, 100].

3.3. Atlas Selection and ROI Extraction

The construction of an atlas library for each target image T to be segmented ne-
cessitates the registration of all atlases {Ai}nA

i=1 to the particular target image. An affine
transformation was employed, registering all atlas images in the target image domain
space, accounting for deformations of linear nature, such as rotations, translations, shear-
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ing, scaling, etc. The same transformation was also applied to the corresponding label map
Li of each atlas, resulting in the atlas library {AT

i ,LT
i }NA

i=1 registered to T .
Considering the fact that the cartilage volume accounts for a very small percentage of

the overall image volume, a region of interest (ROI) was defined for every target image,
covering the entire cartilage structure and its surrounding area. A presegmentation mask
was constructed by passing the registered atlas cartilage mask through a majority voting
(MV) filter, and then expanded by a binary morphological dilation filter, yielding the ROI
for the target image. This region corresponded to the sampling volume for the target
image T and its corresponding atlas library {Ai,Li}NA

i=1. This process guaranteed that the
selected ROI enclosed the totality of cartilage tissue both in the target T , as well as in the
corresponding atlas library.

Finally, to simultaneously reduce the computational load and increase the spatial
correspondence between target and atlas images, we included a final atlas selection step.
Measuring the spatial misalignment in the ROI of every pair {T ,Ai}Ti=1 using the mean
squared difference (MSDROI

i ), we only kept the first NA atlases exhibiting the least dis-
agreement in the metric [37].

4. Graph Constructions

In this section, we describe the node representation, the construction of aligned se-
quences of nodes, and the sequence libraries, which lead to the formation of the aligned
image graphs used in the convolutions.

4.1. Node Representation

An important issue to properly address is how an image is transformed to a graph
structure of nodes. In our setting, a node was described by a generic 5 × 5 × 5 patch
pi = p(xi) surrounding a central voxel xi . The image was then represented by a collection
of nodes which were spatially distributed across the ROI volume.

Each node was described by a feature vector xi = fenc(pi) ∈ R20 implemented via
HOG descriptors [43], which aggregated the local information on the node patch. HOG
descriptors constitute a staple feature descriptor in image processing and recognition. Here,
we applied a modification suitable for operating on 3D data [44]. For each voxel xi, we
extracted an HOG feature description by computing the gradient magnitude and direction
along the x − y − z axes for each constituent voxel in the node patch. The resulting values
were binned to a (q = 20)-dimensional feature vector where each entry corresponded to
the vertex of a regular icosahedron, with each bin representing the strength of the gradient
along that particular direction.

Finally, each node was associated with a class indicator vector yi = [yi1 , . . . , yi,c] ∈ Rc,
where yi,c = 1 if voxel xi belongs in class i and 0 otherwise.

4.2. Aligned Image Graphs

The underlying principle of the multi-atlas approach is that the target image T and the
atlas library AT

i are aligned via affine registration, thus sharing a common coordinate space.
This allows the transfer of label information from atlas images towards the target one by
operating upon sequences of spatially correspondent voxels. Complying with the multi-
atlas setting, we applied a two-stage sampling process with the aim to construct a sequence
of aligned graphs, involving the target image and its respective atlases. This sequence
contained the so-called root nodes which were distinguished from the neighboring nodes
introduced in the sequel.

1. Target graph construction: This step used a spatially stratified sampling method to
generate an initial set of target voxels XT

r ∈ RnT ×D, where D denotes the feature
dimensionality. To ensure a uniform spatial covering of all classes in the target ROI, we
performed a spatial clustering step partitioning all contained voxels into nT

r clusters.
After interpolating the cluster centers to the nearest grid point, we obtained the global
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dataset XT
r = {xTr (i), i = 1, . . . , nT

r }, which defined a corresponding target graph of
root nodes GT

r . These target nodes served as reference points from which the aligned
sequences were subsequently generated.

2. Sequences of aligned data: For each xTr (i) ∈ XT
r , we defined a sequence of aligned nodes

S(i), containing the target node xTr (i) and its respective nodes from the atlas library,
located at spatially correspondent positions:

S(i) =
{

xTr (i); x
A1
r (i), . . . , x

AnA
r (i)

}
, ∀i = 1, . . . nT (11)

The entire global dataset of root nodes, containing all sampled target nodes and their
associated atlas ones, was defined as the union of all those sequences

Xr =
nT⋃
i=1

S(i) =
[
XT

r , XA
r

]
(12)

where Xr ∈ R(Nr × D) contains a total number of Nr = nT · (nA+1) root nodes, while
XT

r and XA
r denote the datasets of root nodes sampled from the target and atlases,

respectively. Accordingly, this led to a sequence of aligned graphs Gr = {GT
r ;GA1

r ,

. . . GAnA
r }, which is schematically shown in Figure 3. In this figure, we can distinguish

two modes of pairwise relationships among root nodes that should be explored.
Concretely, there are local spatial affinities across the horizontal axis between nodes
belonging to a specific node sequence. On the other hand, there also exist global
pairwise affinities between nodes of each image individually, as well as between
nodes belonging to different images in the sequence. The latter type of search ensures
that nodes of the same class located at different positions in the ROI volume and
with different textural appearance are taken into consideration, thus leading to the
extraction of more expressive node representations of the classes via learning.

Figure 3. Schematic illustration of a sequence of aligned image graphs of root nodes, including the
target graph (left) and the graphs of its corresponding atlases (right). There are local spatial affinities
at aligned positions (horizontal axis), as well as global pairwise similarities between nodes located at
different positions in the ROIs.

4.3. Sequence Libraries

It should be stressed that the cost-effective affine registration used in our method is
not capable of coping with severe image deformations. Hence, it cannot provide sufficiently
accurate alignment between the target and the atlases. To account for this deficiency,
we expanded the domain of local search by considering neighborhoods around nodes.
Specifically, for each node xi, we defined multihop neighborhoods at multiple scales:

Rs(xi) = Rs−1(xi) ∪R1(Rs−1(xi)) (13)

for s = 1, . . . , S, where Rs(xi) denotes the neighborhood at scale s, and S is the number of
scales used. R0(xi) = xi corresponds to the basic patch 5 × 5 × 5 of the node itself. R1(xi)
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and R2(xi) are the 1-hop and 2-hop neighborhoods delineated as 9× 9× 9 and 13× 13× 13
volumes around xi, respectively. In our experiments, we considered two different spatial
scales (S = 2). Figure 4 illustrates the different node neighborhoods.

Figure 4. A generic 5 × 5 × 5 patch (left) representing a node (s = 0). The corresponding 1-hop
(s = 1, middle) and 2-hop neighborhoods (s = 2, right), corresponding to 9 × 9 × 9 and 13 × 13 × 13
hypercubes, respectively. Black dots correspond to root nodes, while colored ones stand for the
neighboring nodes. All nodes are represented by 5 × 5 × 5 patches.

Next, for each sequence S(i) i = 1, · · · , nT , we created the corresponding sequence
libraries by incorporating the local neighborhoods of all root nodes belonging to that
sequence. The sequence library SLs(i) at scales s = 0, 1, · · · , S was defined by

SLs(i) = Rs(x
T
r (i)) ∪

{
Rs(x

A1
r (i)) ∪ . . . ∪Rs(x

AnA
r (i))

}
(14)

SLs(i) contains (nA + 1) · |Rs| nodes, where |Rs| denotes the size of the spatial neighbor-
hood at scale s. Figure 5 provides a schematic illustration of a sequence library.

Figure 5. Schematic illustration of a sequence library for a specific scale s = 1, comprising the aligned
neighborhoods from the target and the atlas images. Green arrows indicate the different scopes of the
attention mechanism. For a particular root node, attention is paid to its own neighborhood, as well
as the other neighborhoods in the sequence.

The collection of all SLs forms a global dataset Xs of aligned neighborhoods described
as follows:

Xs =
nT⋃
i=1

SLs(i) = Xr ∪Ns (15)

for s = 1, . . . , S. Xs is formed as union of the dataset Xr of root nodes and the dataset Ns
comprising their neighboring nodes at scale s. Its cardinality is |Xs| = Nr + |Ns|, where Nr
is the number of root nodes, and |Ns| the cardinality of Ns. Further, Xs corresponds to a
subgraph Gs(Vs, Es), with |Vs| = |Xs|. In this subgraph, connective edges are established in
Es along the horizontal axis, namely, between root nodes and the neighboring nodes across
the sequence libraries. Concluding, since the neighborhoods are by definition inclusive as
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the scale increases, the dataset XS contains the maximum number of nodes, forming the
overall dataset X̃:

X̃ = XS =
nT⋃
i=1

SLS(i) (16)

The corresponding graph G comprises an overall total number of N = |Nr|+ |NS| nodes,
including the root and neighboring nodes.

5. Convolutional Units

This section elaborates on the basic convolutional units, namely, the local convolutional
unit Lconv and the global convolutional unit Gconv which serve as structural elements to
devise our proposed models (Figure 6).

Figure 6. Outline of the convolutional units employed. (a) The local convolutional unit (Lconv),
(b) the global convolutional unit (Gconv).

5.1. Local Convolutional Unit

The local convolutional unit undertakes the local spatial learning task, operating
horizontally along the sequence libraries (SLs) of nodes. Instead of confining ourselves to
predefined and fixed weights in the graphs, we opted to apply a local attention mechanism
to adaptively learn the graph structure information at each layer. Specifically, we used
the attention approach suggested in the GAT as a means to capture the local contextual
relationships among nodes in the search area.

A functional outline of Lconv at layer l is shown in Figure 7. It receives an input

V(l−1) ∈ R
N×E(l−1)

in from the previous layer and provides its output Q(l) ∈ R
N×E(l)

o ,
where E(l−1)

in and E(l)
o denote the dimensionalities of the input and output node features,

respectively.
Figure 7 provides a detailed architecture of Lconv. The model involves S sub-modules,

each one associated with a specific spatial scale of aggregation. The sub-module s acts
upon the subgraph Gs(Vs, Es), s = 0, . . . , S, which subsumes the sequence libraries SLs of

root nodes. Its input is Vs ∈ R
|Xs |×E(l−1)

in and after a local convolution at scale s, it provides

its own output Q
(l)
s ∈ R

|Xs |×E(l)
o . In this context, the structure of Gs is adapted to the local

attention mechanism. Let us assume that a root node xi belongs to the qth sequence library:
xi ∈ SLs(q), q = 1, . . . , nA. Then, node xi pays attention to two pools of neighboring
nodes (Figure 3): (a) it aggregates relevant feature information from nodes xj of its own
neighborhood, xj ∈ Rs(xi) (self-neighborhood attention); (b) it aggregates features of
nodes belonging to the other aligned neighborhoods in SLs(q) pertaining to the atlas
images: xj ∈ SLs(q) \ Rs(xi). For these pairs of nodes, we compute normalized attention
coefficients using Equation (6). Further, pairwise affinities between nodes belonging to
different sequence libraries are disregarded, i.e., αij = 0 when xi ∈ SLs(q) and xj ∈ SLs(p),
p �= q. It should be noticed that we are primarily focused on computing comprehensive
feature representations of the root nodes. Nevertheless, neighboring nodes are also updated;
however, in this case, the attention is confined to the neighborhood of the root node
it belongs to.
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Figure 7. Detailed description of the local convolutional unit, which aggregates local contextual
information from node neighborhoods at different spatial scales.

For convenience, let us consider the input node features of the form V
(l−1)
s = [v

(l−1)
s,1 ,

. . . , v
(l−1)
s,|Xs | ], where vs,i ∈ R

E(l−1)
in and similarly, Q

(l)
s ∈ [q

(l)
s,1, . . . , q

(l)
s,|Xs |], q

(l)
s,i ∈ R

E(l−1)
o . The

local-level convolution at scale s of a root node xi ∈ SLs(q), i = 1, . . . ,Nr is obtained by:

q
(l)
s,i = σ

⎛⎝ ∑
j∈Rs(xi)

α
(k)
ij W

(l)
s,kv

(l−1)
s,i + ∑

j∈SLs(q)\Rs

α
(k)
ij W

(l)
s,kv

(l−1)
s,i

⎞⎠ (17)

The first term in the above equation refers to the self-neighborhood attention, which
aggregates node features from Rs(xi) within the same image. Moreover, the second term
aggregates node information from the other aligned neighborhoods in the sequence. In an
attempt to stabilize the learning process and further enhance the local feature representa-
tions, we followed a multi-head approach, whereby K independent attention mechanisms
are applied. Accordingly, the node convolutions proceed as follows:

q
(l)
s,i =

K
‖

k=1
σ

⎛⎝ ∑
j∈Rs(xi)

α
(k)
ij W

(l)
s,kv

(l−1)
s,i + ∑

j∈SLs(q)\Rs

α
(k)
ij W

(l)
s,kv

(l−1)
s,i

⎞⎠ (18)

where α
(k)
ij denote the attention coefficients between nodes xi and xj according to the kth

attention head, while W
(l)
s,k ∈ R

E(l)
in ×E(l−1)

o are the corresponding parameter weights used
for node embeddings. The attention parameters are shared across all nodes in Gs(Vs, Es)
and are simultaneously learned at each layer l and for each spatial scale, individually.
The outputs of the different sub-modules are finally aggregated to yield the overall output
of the Lconv unit:

Q(l) = Q
(l)
1 ⊕ · · · ⊕ Q

(l)
S (19)

where ⊕ denotes the concatenation operator.
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The multilevel attention-based aggregation of valuable contextual information from
sequence libraries offers some noticeable assets to our approach: (a) it acquires comprehen-
sive node representations which assist in producing better segmentation results, (b) the
graph learning circumvents the inaccuracies caused by affine registration in severe image
deformations which may lead to node misclassification.

5.2. Global Convolutional Unit

The global convolutional unit conducts the global convolution task; it acts upon
the subgraph Gr(Vr, Er) which includes the sequence of root nodes S(i). Gconv aims at
exploring the global contextual relationships among nodes located at different positions
in the target image and the atlases (Figure 3). Accordingly, we established in Er suitable
pairwise connective weights according to spectral similarity Ãij �= 0 for nodes xi ∈ S(p),
xj ∈ S(q), p �= q. Node pairs belonging to the same sequence are processed by Lconv units;
hence, they are disregarded in this case.

The global convolution at layer l is acquired using the spectral convolutional principles
in GCN:

H(l) = σ
(

Ã(l)S (l−1)W
(l)
g

)
(20)

where S (l−1) ∈ R
(N×F(l)

in ) and H(l−1) ∈ R
(N×F(l)

o ) denote the input and output of Gconv, re-
spectively, whereas F(l−1)

in , F(l)
o are the corresponding dimensionalities. W

(l)
g is the learnable

embedding matrix and Ã(l) is the adjacency matrix, as defined in Section 2.1.
Similar to Lconv, we also incorporated the AGL mechanism to Gconv, so that global

affinities could be automatically captured at each layer via learning. More concretely, we
applied an adaptive scheme whereby the connective weights between nodes are determined
from the module’s input signals [45]. The adjacency matrix elements were computed by:

Ã = σ

[(
H̃(l−1)Wφ

)(
H̃(l−1)Wφ

)T
]
+ IN×N (21)

where S̃ (l−1) = BN (S (l−1)) is obtained after applying batch-normalization to the inputs,
σ(·) is the sigmoidal activation function applied on an element-wise operation, and Wφ is
the embedding matrix to be learned, shared across all nodes of Gr(Vr, Er). The adaptation
scheme in Equation (21) assigns greater edge values between nodes with high spectral
similarity and vice-versa.

In the descriptions above, we considered the GCN model equipped with AGL as a
baseline scheme. Nevertheless, in our experimental investigation, we examined several
scenarios whereby the global convolution task was tackled using alternative convolutional
models, including GraphSage, GAT, GraphSAINT, etc.

6. Proposed Convolutional Building Blocks

In this section, we present two alternative building models, namely, the cross-talk
building model (CT-BM) and the sequential building model (SEQ-BM). They are distin-
guished according to the way the local and global convolutional units are blended across
the layers. Every constituent local and global unit within the structures has its individual
embedding matrix of learnable parameters. Further, it is also equipped with its own AGL
mechanism for adaptive learning of the graphs, as described in the previous section.

6.1. Cross-Talk Building Model (CT-BM)

The CT-BM is shown in the outline of our approach in Figure 1. Nevertheless, a more
compact form is depicted in Figure 8. The model comprises two composite layers (l = 1, 2),
each one containing one local and one global unit. As can be seen, convolutions proceed in
an alternating manner across the layers, whereby the local unit transmits its output to the
next global unit, and vice versa. A distinguishing feature of this structure is that there are
also skip connections and aggregators which implement cross-talk links between the local
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and global components. Particularly, in addition to the standard flow from one unit to the
next, each unit’s output is aggregated with the output of the subsequent unit.

Figure 8. Illustration of the proposed cross-talk building model (CT-BM), where local and global
convolutional units are combined following an alternating scheme.

The overall workflow of the CT-BM is outlined below:

1. The first local unit yields

V(0) = X, Q(1) = Lconv(V(0)) (22)

2. The local unit’s output is passed to the first global unit to compute

S(0) = Q(1), H(1) = Gconv(S(0)) (23)

3. The second local unit receives an aggregated signal to provide its output,

V(1) = H(1) + Q(1), Q(2) = Lconv(V(1)) (24)

4. The second global unit produces

S(1) = H(1) + Q(2), H(2) = Gconv(S(1)) (25)

5. The final output of the CT-BM is the obtained by

Z = H(2) + Q(2) (26)

6.2. Sequential Building Model (SEQ-BM)

The architecture of the SEQ-BM is illustrated in Figure 9. This model also contains two
local and two global units. Contrary to the CT-BM, convolutions are conducted in the SEQ-
BM sequentially. Concretely, the local learning task is first completed using the first two
local convolutional units. The outputs of this stage are then transmitted to the subsequent
stage which accomplishes the global learning task, using the two global convolutional units.
The overall output of the SEQ-BM is formed by aggregating the resulting local and global
features of the two stages.

The workflow of the SEQ-BM is outlined as follows:

1. The local learning task is described by

V(0) = X, Q(1) = Lconv(V(0)) (27)

V(1) = Q(1), Q(2) = Lconv(V(1)) (28)
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2. The global learning task is described by

S(0) = Q(2), H(1) = Gconv(S(0)) (29)

S(1) = H(1), H(2) = Gconv(S(1)) (30)

3. The final output of the SEQ-BM is obtained by

Z = Q(2) + H(2) = Zloc + Zglo (31)

The alternating blending of the CT-BM provides a more effective integration between
local and global features at each layer, individually, as compared to the sequential com-
bination in SEQ-BM. This observation is attested experimentally as shown in Section 10.

Figure 9. Illustration of the proposed sequential building model (SEQ-BM), where the local and
global learning tasks are carried out sequentially.

7. Proposed Dense Convolutional Networks

In this section, we present two variants of our main model, the DMA-GCN network.
The motivation behind this design is based on an attempt to further expand the structures
CT-BM and SEQ-BM by including multiple layers of convolutions, to face the gradient
vanishing effect, where the gradients diminish, thus hindering effective learning or even
worsening the results. This is the reason why in the above building blocks, we are restricted
to two-layered local–global convolutions.

To tackle this problem, we resorted to the recent advancements in deep GCNs [36]
and developed the DMA-GCN model with a densely connected convolutional architecture
utilizing residual skip connections, as shown in Figure 10. As can be seen, the model
consists of several blocks arranged across M layers of block convolutions. These blocks
are implemented by either CT-BM or SEQ-BM described in Section 5, which leads to two
different alternative configurations, the DMA-GCN(CT-BM) and DMA-GCN(SEQ-BM),

respectively. Let Z
(i)
in ∈ R

(N×P(i)
in ) and Z

(i)
o ∈ R

(N×P(i)
o ) denote the input and output of

the ith block, i = 1, . . . , M, with P(i)
in , P(i)

out being the feature dimensionalities, respectively.
The properties of the suggested DMA-GCN are discussed in the following:

1. The skip connections interconnect the blocks across the layers. Concretely, each block
receives as input the outputs of blocks from all preceding layers:

Z
(i)
in = Z

(1)
o ⊕ Z

(2)
o ⊕ · · · ⊕ Z

(i−1)
o (32)

for i = 1, . . . , M, where ⊕ denotes the concatenation operator. This allows the gen-
eration of deeper GCN structures which can acquire more expressive node features.
Overall, the DMA-GCN involves 4M convolutional units. Within each block, two

76



Bioengineering 2024, 11, 278

layers of local–global convolutions are internally performed; the resulting outputs are
then integrated along the block layers to provide the final output:

Zo = Z
(1)
o ⊕ Z

(2)
o ⊕ . . . ⊕ Z

(M)
o (33)

2. The other beneficial effect of skip connections is that they allow the final output to
have direct access to the outputs of all blocks in the dense network. This assures a
better reverse flow of information and facilitates the effective learning of parameters
pertaining to the blocks. Since block operations are confined to two-layered local–
global convolutions, overall, we can circumvent the gradient vanishing problem.

3. In order to preserve the parametric complexity at a reasonable level, similar to [36],
we define the feature dimensions of each block in DMA-GCN to be the same:

P(1)
o = P(2)

o = · · · = P(M)
o = d (34)

The node feature growth rate caused by the aggregators can be defined as P(i)
in =

(i − 1) · d, i = 1, · · · , M. The input dimensions grow linearly as we proceed to deeper
block layers, with the last block showing the largest increase P(M)

in = (M − 1) · d.
To prevent feature dimensionalities from receiving too large values, we considered
initially a DMA-GCN model with M = 4 blocks. The particular number of blocks in
the above range was then decided after experimental validation (Section 10).

4. Every block in DMA-GCN is supported with its corresponding AGL process to auto-
matically learn the graph connective affinities at each layer. This is accomplished by
applying an attention-based mechanism for local convolutional units (Section 5.1) and
an adaptive construction of adjacency matrices from inputs node features (Section 5.2).

Figure 10. Description of the proposed DMA-GCN model, with densely connected block convolu-
tional structure and residual skip connections.

The output of the DMA-GCN is fed to a two-Layer MLP unit to obtain the label
estimates

Ẑo = softmax(ReLU(W1Z)W2) (35)

We adopted the cross-entropy error to penalize the differences between the model’s output
Ẑo and the corresponding node labels

L = − ∑
l∈YL

C

∑
c=1

YlcZlc (36)
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where YL denotes the subset of labeled nodes. The DMA-GCN network was trained
under either the transductive or the inductive learning methods, as discussed in the
following section.

8. Network Learning

In our setting, we considered transductive learning (SSL) as the basic learning scheme
for training the DMA-GCN models. In this case, both unlabeled data from the target
image to be segmented T and the labeled data from the atlases LB(T ) were used for
the construction of the model. Nevertheless, in the experiments, we also investigated the
inductive (supervised) learning scenario, whereby training was conducted by solely using
labeled data from the atlases.

8.1. Transductive Learning (SSL)

The SSL scheme was adapted to the context of image segmentation task elaborated
here. In regard to the data used in the learning, SSL can be carried out along two different
modes of operation, namely, mini-batch learning and full-batch learning. Next, we detail
mini-batch learning and then conclude with full-batch learning, which is a special case of
the former one.

Mini-batch learning was implemented by following a three-stage procedure. In stage 1,
an initial model was learned and used to label an initial batch of data from T . Stage 2 was
an iterative process, where out-of-sample batches were sequentially sampled from T and
labeled via refreshing learning. Finally, stage 3 labeled the remaining voxels of the target
image using a majority voting scheme.

Stage 1: Learning. In this stage, (t = 0), we started by sampling an initial unla-
beled batch XT

r (0) from the target image. Then, we used the different steps detailed
in Section 4 to construct the corresponding graph of nodes. (a) Given XT

r (0), we cre-
ated the corresponding aligned sequences (Section 4.3), giving rise to the dataset of root
nodes Xr(0) =

[
XT

r (0), XA
r (0)

]
. (b) Next, we incorporated neighborhood information

by generating sequence libraries at multiple scales (Section 4.3), leading to the datasets
Xs(0) = Xr(0) ∪Ns(0), s = 1, . . . S, where Ns(0) denotes the neighboring nodes. (c) Finally,
we considered the overall dataset X̂(0) = XS(0) that corresponded to the graph G0(V0, E0)
containing the root and neighboring nodes at that stage.

The next step was to perform convolutional learning on graph G0(V0, E0) using DMA-
GCN models. Upon completion of the training process, we accomplished the labeling
of XT

r (0),
l
(

XT
r (0)

)
= F(0)

(
X̃(0),W(0)

)
(37)

F(0) denotes the model’s functional mapping, l(·) is the labeling function of the target
nodes, and W(0) stands for the network’s weights, including the learnable parameters of
embedding matrices and attention coefficients, across all layers of the DMA-GCN.

Stage 2: iterative learning. This stage followed an iterative procedure, t = 1, · · · , T,
whereby at each iteration, out-of-sample batches of yet unlabeled nodes were sampled
from T , XT

o (t) of size no. Considering the nodes in XT
o as root nodes, we then applied

steps (a)–(c) of the previous stage, to obtain the datasets Xo,s = Xo(0) ∪ No,s(0), s =
0, . . . , S, and the overall set X̃o(t) = Xo,S(t), which corresponded to a graph of out-of-
sample nodes. In the following, data X̃o(t) were fed to the pretrained model from stage 1,
l(XT

o ) = F(t)(X̃o(t),W(t)). The model was initialized as W(t) = W0 to preserve previously
acquired knowledge. Further, it was subject to several epochs of refreshing convolutional
learning, with the aim of adapting to the newly presented data. The above sequential
process terminated at t = T when all target nodes were labeled.

Stage 3: labeling of remaining voxels. This was the final stage of target image segmen-
tation, entailing the labeling of target voxels not considered during the previous learning
stages. Given that nodes were the central voxels of a generic 5 × 5 × 5 patches, there were
multiple remaining voxels scattered within 3× 3× 3 volumes. Labeling of these voxels was
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accomplished by a voting scheme. Specifically, for each xr, the voting function accounted
for both the spectral and the spatial distance from its surrounding labeled vertices:

l(xr) = ∑
i

wr,i l(xi) (38)

wr,i = wspec
r,i × wspat

r,i (39)

where wspec
r,i and wspat

r,i are normalized weighting coefficients denoting the spectral and
spatial proximity, measured by the l2 norm (Euclidean distance) and l1 norm (Manhattan
distance), respectively.

Full-batch learning is a special case of the above mini-batch learning. In that case,
the dataset XT

r (0) is a large body of data, comprising all possible target nodes contained
in the target ROI. Under this circumstance, the iterative stage 2 is disregarded. Full-batch
learning is completed after convolutional learning (stage 1), followed by the labeling of the
rest of target voxels (stage 3).

8.2. Inductive Learning

Under this setting, the target data remain unseen during the entire training phase.
Adapting to the multi-atlas scenario, we devised a supervised learning scheme according
to the following steps. (a) For each target image T , we selected the most similar labeled
image T̂ = NN (T ) from atlases, where NN (·) is a spectral similarity function used to
identify the nearest neighbors of T . (b) The image T̂ along with its corresponding atlas
library LB(T̂ ) were used to learn a supervised model Find(T̂ ) by applying exactly stage 1
of the previous subsection. (c) Finally, the target image T was labeled by means of Find(T̃ ).
As opposed to the SSL scenario, the critical difference was that the developed model relied
solely on labeled data, disregarding target image information.

9. Experimental Setup

9.1. Evaluation Metrics

The overall segmentation accuracy achieved by the proposed methods was evaluated
using the following three, standard volumetric measures: the Dice similarity coefficient
(DSC), the volumetric difference (VD), and the volume overlap error (VOE). Denoting
Y the ground truth labels and Ŷ the estimated ones, the above measures are defined as:

DSC = 100
|Y ∩ Ŷ |
|Y |+ |Ŷ |

(40)

VOE = 100
(

1 − DSC
200 − DSC

)
(41)

VD = 100
|Ŷ | − |Y |

|Y | (42)

Taking into account that the large majority of voxels correspond to either the back-
ground class or the two bone classes, we opted to also include the precision and recall
classification measures, to better evaluate the segmentation performance on each individ-
ual structure. All measures correspond exclusively to the image content delineated by the
respective ROI of each evaluated MRI.

9.2. Hyperparameter Setting and Validation

The overall performance of the proposed method depends on a multitude of preset
parameters, the most prominent of which are the number of atlases NA comprising the atlas
library {A, L}i, i = 1, . . . , NA, the number of heads K utilized in the multi-head attention
mechanism, and the number of scales S corresponding to the different neighborhood scales.
The optimal values of the above hyperparameters, as well as the performance of the DMA-
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GCN(SEQ) and DMA-GCN(CT) segmentation methods, were evaluated through a 5-fold
cross-validation.

9.3. Experimental Test Cases

The proposed methodology comprises several components affecting its overall capac-
ity and performance. We hereby present a series of experimental test cases, aiming to shed
light on those effects.

1. Local vs. global learning: In this scenario, we aimed to observe the effect of performing
local-level learning in addition to global learning. The goal here was to determine the
potential boost in performance facilitated by the inclusion of the attention mechanism
in our models.

2. Transductive vs. inductive learning: The goal here was to ascertain whether the increased
cost accompanying the transductive learning scheme could be justified in terms of
performance, as compared to the less computationally demanding inductive learning.

3. Sparse dense adjacency matrix: Here, we examined the effect of progressively sparsifying
the adjacency matrix Ã(l) at each layer on the overall performance. We examined the
following cases: (1) the default case with a dense Ã(l) and (2) thresholding Ã(l) so that
each node was allowed connections to 5, 10, or 20 spectrally adjacent ones.

4. Global convolution models: Finally, we tested the effect of varying the design of the global
components by examining some prominent architectures, namely, GCN, ClusterGCN,
GraphSAINT, and GraphSAGE

9.4. Competing Cartilage Segmentation Methods

The efficacy of our proposed method was evaluated against several published works
dealing with the problem of automatic knee cartilage segmentation.

9.4.1. Patch-Based Methods

The patch-based sparse coding (PBSC) [8] and patch-based nonlocal-means (PBNLM) [7]
methods are two state-of-the art approaches in medical image segmentation. For consis-
tency reasons, similar to the DMA-GCN, we set the patch size for both these methods to
(5 × 5 × 5) and the corresponding search volume size to (13 × 13 × 13). The remaining
parameters were taken as described in their respective works.

9.4.2. Deep Learning Methods

Here, we opted to evaluate the DMA-GCN against some state-of-the-art deep learning
architectures that were successfully applied in the field of medical image segmentation.

SegNet [12]: A convolutional encoder–decoder architecture, utilizing the state-of-the-
art VGG16 [46] network that is suitable for pixelwise classification. Since we are dealing
with 3D data, we split each input image patch into its constituent planes (−xy,−xz,−yz)
and fed those to the network.

DenseVoxNet [13]: A convolutional network proposed for cardiovascular MRI seg-
mentation. It comprises a downsampling and upsampling sub-component, utilizing skip
connections from each layer to its subsequent ones, enforcing a richer information flow
across the layers. In our experiments, the model was trained using the same initialization
scheme for the parameters’ values as described in the original paper.

VoxResNet [14]: A deep residual network comprising a series of stacked residual
modules, each one performing batch-normalization and convolution, also containing skip
connections from each module’s input to its respective output.

KCB-Net [16]: A recently proposed network that performs cartilage and bone segmen-
tation from volumetric images, by utilizing a modular architecture, where initially, each
one of the three sub-components is trained to process a separate plane (sagittal, coronal,
axial), followed by a 3D component with the task of aggregating the respective outputs
into a single overall segmentation map.
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CAN3D [47]: This network utilizes a successively dilated convolution kernel aiming
to aggregate multi-scale information by performing feature extraction within an increas-
ingly dilating receptive field, facilitating the final voxelwise classification in full resolution.
Additionally, the loss function employed at the final layer consists of a combination of Dice
similarity coefficient DSC and DSF , a variant of the standard DSC used in evaluating seg-
mentation results.

Point-Net [15]: Point-Net is a recently proposed architecture specifically geared towards
point-cloud classification and segmentation. As an initial preprocessing step, it incorporates
a spatial transformer network (STN) [48] that renders the input invariant to permutations
and is used to produce a global feature for the whole point cloud. That global feature
is appended on the output of a standard multilayer perceptron (MLP) that operates on
the initial point-cloud features, and the resulting aggregated features are passed through
another MLP in order to provide the final segmentation map.

9.4.3. Graph-Based Deep Learning Methods

In regard to graph-based convolution models, we compared our DMA-GCN approach
to a series of baseline GCN architectures to carry out the global learning task. In addition, we
considered in the comparisons the multilevel GCN with automatic graph learning (MGCN-
AGL) method [30], used for the classification of hyperspectral remote sensing images.
The MGCN-AGL approach takes a form similar to the one of the SEQ-BM in Figure 9
to combine the local learning via a GAT-based attention mechanism and global learning
implemented by a GCN. A salient feature of this method is that the global contextual
affinities are reconstructed based on the node representations obtained after completion of
the local learning stage.

9.5. Implementation Details

All models presented in this study were developed using the PyTorch Geometric li-
brary (https://github.com/pyg-team/pytorch_geometric, accessed on 1 May 2023), specifi-
cally built upon PyTorch (https://pytorch.org) to handle graph neural networks. For the ini-
tial registration step, we used the elastix toolkit (https://github.com/SuperElastix/elastix,
accessed on 1 May 2023). The code for all models proposed in this study can be found
at (https://gitlab.com/christos_chadoulos/graph-neural-networks-for-medical-image-
segmentation, accessed on 10 March 2024).

Regarding the network and optimization parameters used in our study, we opted
for the following choices: after some initial experimentation, the parameter d controlling
the node feature growth rate (Section 7) was set to d = 128, resulting in the input feature
dimensionality progression 128 → 256 → 384 → 512 for M = 4 dense layers. All models
were trained for 500 epochs using the Adam optimizer, with an early stopping criterion
halting the training process either when no further improvement was detected on the
validation error in the span of 50 epochs, or when the validation error steadily increased
for more than 10 consecutive epochs.

10. Experimental Results

10.1. Parameter Sensitivity Analysis

In this section, we examine the effect of critical hyperparameters in the performance
of the models under examination. The numbers and figures presented for each hyperpa-
rameter correspond to results obtained while the remaining ones assumed their optimal
determined value.

10.1.1. Number of Selected Atlases NA
The number of selected atlases is a crucial parameter for all methods adopting the

multi-atlas framework. Figure 11 shows the effect on the performance of DMA-GCN(CT)
and DMA-GCN(SEQ) by sampling the following values NA = 5, ..., 20.
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Figure 11. Cartilage DSC(%) score vs. number of atlases. (a) Femoral cart, (b) tibial cart.

For both methods, the number of atlases has a similar effect on the overall performance.
The highest score in each case is achieved for NA = 10 atlases and slowly diminishes as
that number grows. Constructing the graph by sampling voxels from a small pool of atlases
increases the bias of the model, thus failing to capture the underlying structure of the data.
Increasing that number allows the image graphs to include a greater percentage of nodes
with dissimilar feature descriptions, which enhances the expressive power of features.
Accordingly, a moderate number of aligned atlases seems to provide the best overall rates,
as it achieves a reasonable balance between bias and variance.

10.1.2. Number of Attention Heads

The number of attention heads is arguably one of the most influential parameters
for the local units of our models. Figure 12 demonstrates the effect on performance
for K = 0, 4, 8, 12. The trivial case of K = 0 corresponds to the case where the local
convolutional units are disregarded, i.e., the convolution task is undertaken solely by the
global units.
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Figure 12. Cartilage DSC(%) score vs. number of attention heads. (a) Femoral cart, (b) tibial cart.

The best performance is achieved for K = 8 for either DMA-GCN(CT) or DMA-
GCN(SEQ). Most importantly, in both charts, we can notice a sharp drop in performance
when K = 0. This indicates that discarding the local convolutional units significantly
aggravates the overall efficiency of the DMA-GCN. Particularly, in that case, the model
disregards the local contextual information contained in node libraries, while the node
features are formed by applying graph convolutions at a global level exclusively.

It can also be noted that independent embeddings of the attention mechanism provide
different representations of the local pairwise affinities between nodes, which facilitates
a better aggregation of the local information. Nevertheless, beyond a threshold value,
the results deteriorate, most likely due to overfitting.
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10.1.3. Sparsity of Adjacency Matrix Ã

The adjacency matrix Ã is the backbone of graph neural networks in general, encoding
the graph structure and node connectivity. As mentioned in [30], a densely connected Ã

may have a negative impact on the overall segmentation performance. To this end, we
evaluated a number of thresholds that served as cut-off points, discarding edges that were
not sufficiently strong. A small threshold leaves most edges in the graph intact, while a
larger one creates a sparser Ã by preserving only the most significant edges. Figure 13
summarizes the effects of thresholding Ã at different sparsity levels.
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Figure 13. Cartilage DSC(%) score vs. adjacency threshold. (a) Femoral cart, (b) tibial cart.

As can be seen, large sparsity values considerably reduce the segmentation accuracy,
which suggests that preserving only the strongest graph edges decreases the aggregation
range from neighboring nodes, and hence the expressive power of the resulting models.
On the other hand, similar deficiencies are incurred for low sparsity values with dense
matrices Ã. In that case, the neighborhood’s range is unduly expanded, thus allowing
aggregations between nodes with weak spectral similarity. A moderate sparsity of the
adjacency matrices corresponding to a threshold value of 0.50 attains the best results for
both DMA-GCN(CT) and DMA-GCN(SEQ).

10.1.4. Number of Scales

The number of scales considered in conjunction with the local attention mechanism
plays an important role in the overall performance of the DMA-GCN. It defines the size
of spatial neighborhoods considered in local convolutional units, which greatly affects
the resulting node feature representations. Figure 14 shows the segmentation rates for
different values of scales s = 0, 1, 2. As can be seen, for both DMA-GCN(CT) and the
DMA-GCN(SEQ) models, the incorporation of additional neighborhoods of progressively
larger scales improves the accuracy results, consistently.

1(5x5x5) 2(9x9x9) 3(13x13x13)
0

20

40

60

80

100

82

91
95

85
92 95

(a) # branches

D
SC

(%
)

DMA-GCN(CT) DMA-GCN(SEQ)

1(5x5x5) 2(9x9x9) 3(13x13x13)
0

20

40

60

80

100

79
85

94

83
89

93

(b) # branches

D
SC

(%
)

DMA-GCN(CT) DMA-GCN(SEQ)

Figure 14. Cartilage DSC(%) score vs. number of scales. (a) Femoral cart, (b) tibial cart.
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In the trivial case of s = 0, each node aggregates local information by paying attention
solely to its aligned root nodes. Due to the restricted attention, we were led to weak local
representations of nodes, and hence degraded overall performance for the models (left
columns). Incorporating the one-hop neighborhoods (s = 1), we expanded the range of
the attention mechanism, which provided more enriched node features. This resulted in
significantly better results compared to the previous case (middle columns). The above
trend was further retained by including the two-hop neighborhoods of nodes (s = 2),
where we could notice an even greater improvement of results (right columns).

10.2. Number of Dense Layers

In this section, we examine the effect of the number M of dense layers used in the DMA-
GCN models (Section 7). It defines the depth of the networks and thus directly impacts the
size, as well as the representational capabilities of the respective models. Figure 15 shows
the results obtained by progressively using up to four dense layers. It should be noticed
that the single layer results refer to the case where DMA-GCN(CT) and DMA-GCN(SEQ)
coincide with their constituent block models, i.e., the CT-BM and SEQ-BM, respectively.
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Figure 15. Cartilage DSC(%) score vs. number of dense layers. (a) Femoral cart, (b) tibial cart.

Figure 15a clearly demonstrates an upwards trend in the obtained rates as the number
of dense layers increases. The lowest performance is unsurprisingly achieved for the
shallow network of a single layer (CT-BM). The best results are achieved for M = 3, while
the inclusion of an additional layer diminishes slightly the accuracy, an effect most likely
attributed to overfitting. A similar pattern of improvements can also be observed for
the case of DMA-GCN(SEQ) model. Concluding, the proposed densely connected block
architectures lead to deeper GCN networks with multiple local–global convolutional layers,
which can acquire more comprehensive node features, and thus offer better results.

10.3. Mini-Batch vs. Full-Batch Training

The goal of this section is twofold. First, we aim to compare the mini-batch against
full-batch learning schemes (Section 8). Secondly, we examine the effect of the batch size on
the performance of the mini-batch learning. Figure 16a,b presents the DSC metrics of the
models DMA-GCN(CT) and DMA-GCN(SEQ), respectively, for varying batch sizes. The first
four columns refer to the mini-batch learning, while the rightmost column represents the
full-batch scenario.

Both figures share a similar pattern of results. Noticeably, in the mini-batch learning,
the best results (DSC = 95%) were achieved for a batch size of 128. This value referred to
the size of the initial batch (XT

0 ) as well as the out-of-sample batches extracted from the
target T . Given these batches, we then proceeded to the formation of the sequences of
aligned nodes and the sequence libraries at multiple scales, to generate the corresponding
graphs of nodes used for convolutional learning. Finally, the full-batch learning provided a
significantly inferior performance (DSC = 81%) compared to the mini-batch scenario.
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Figure 16. Cartilage DSC(%) score vs. batch size. (a) Femoral cart, (b) tibial cart.

10.4. Global Module Architecture

In this section, we examine the effectiveness of some of the popular graph-based net-
works in our approach. Concretely, in the context of DMA-GCN structures, we considered
several model combinations, whereby the GAT-based attention and local information aggre-
gation was used to carry out the local learning task, while the global task was undertaken
by the GCN, SAGE, SAINT and ClustGCN, respectively.

Figure 17 shows the DSC measures for both DMA-GCN(CT) and DMA-GCN(SEQ)
models. Table 1 also provides more detailed results on this issue. As can be seen, for both
models, the utilization of GraphSAGE clearly provided the best performance, possibly due
to its more sophisticated node sampling method. Nevertheless, all the alternatives offered
consistently good results.
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Figure 17. Cartilage DSC(%) score vs. global module architecture. (a) Femoral cart, (b) tibial cart.

Table 1. Summary of segmentation performance measures (means ± stds) of the two cartilage classes
of our proposed method DMA-GCN (CT/SEQ) by varying the global component of the sub-modules
(GCN, SAINT, SAGE, ClustGCN). Best results for each category (CT vs SEQ) with respect to DSC
index are highlighted.

Femoral Cartilage Tibial Cartilage

Module CT SEQ Recall Precision DSC VOE VD Recall Precision DSC VOE VD

GAT-GCN

� 88.26% 88.91% 89.23% 22.87% 7.05% 87.02% 85.36% 90.12% 25.36% 7.97%
(±0.076) (±0.041) (±0.074) (±0.058) (±0.048) (±0.032) (±0.022) (±0.038) (±0.078) (±0.055)

� 87.13% 88.12% 86.49% 23.06% 7.13% 86.88% 85.03% 84.79% 25.76% 8.01%
(±0.077) (±0.052) (±0.061) (±0.082) (±0.029) (±0.021) (±0.035) (±0.021) (±0.041) (±0.044)
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Table 1. Cont.

Femoral Cartilage Tibial Cartilage

Module CT SEQ Recall Precision DSC VOE VD Recall Precision DSC VOE VD

GAT-SAGE

� 96.17% 95.81% 95.71% 13.17% 3.94% 95.31% 94.78% 94.02% 17.98% 4.99%
(±0.021) (±0.019) (±0.039) (±0.055) (±0.091) (±0.029) (±0.045) (±0.036) (±0.047) (±0.022)

� 96.13% 95.21% 95.44% 13.21% 3.98% 95.19% 94.41% 93.87% 18.65% 5.03%
(±0.061) (±0.071) (±0.065) (±0.059) (±0.031) (±0.025) (±0.045) (±0.023) (±0.038) (±0.044)

GAT-SAINT

� 92.91% 93.43% 92.87% 14.02% 5.21% 88.81% 86.05% 88.03% 25.39% 7.87%
(±0.051) (±0.039) (±0.072) (±0.082) (±0.031) (±0.023) (±0.039) (±0.057) (±0.062) (±0.044)

� 87.13% 88.12% 86.49% 23.06% 7.13% 87.92% 86.45% 85.91% 25.32% 7.71%
(±0.066) (±0.045) (±0.061) (±0.071) (±0.049) (±0.028) (±0.056) (±0.032) (±0.033) (±0.034)

GAT-ClustGCN

� 93.29% 94.05% 92.18% 19.21% 6.02% 92.81% 93.17% 89.61% 22.13% 7.16%
(±0.075) (±0.043) (±0.071) (±0.062) (±0.039) (±0.027) (±0.041) (±0.026) (±0.033) (±0.049)

� 93.16% 93.75% 92.42% 19.09% 6.41% 92.59% 93.08% 89.24% 22.31% 7.63%
(±0.037) (±0.072) (±0.057) (±0.081) (±0.047) (±0.041) (±0.032) (±0.039) (±0.043) (±0.055)

10.5. Transductive vs. Inductive Learning

In this final test case, we investigated the efficacy of the transductive against the
inductive learning schemes (Section 8.1). Table 2 presents detailed results pertaining to
both DMA-GCN(CT/SEQ) structures.

Table 2. Summary of segmentation performance measures (means ± stds) of the two cartilage
classes of our proposed methods DMA-GCN (CT/SEQ) by varying the overall learning paradigm
(transductive vs. inductive). Best results for each category (CT vs SEQ) with respect to DSC index are
highlighted.

Femoral Cartilage Tibial Cartilage

Module SEQ CT Recall Precision DSC VOE VD Recall Precision DSC VOE VD

Inductive

� 91.78% 89.61% 89.45% 15.11% 5.98% 86.09% 84.29% 83.81% 26.02% 8.45%
(±0.051) (±0.038) (±0.086) (±0.093) (±0.067) (±0.036) (±0.053) (±0.041) (±0.094) (±0.078)

� 85.78% 87.71% 85.87% 23.61% 7.79% 85.92% 84.93% 84.05% 26.15% 8.71%
(±0.045) (±0.033) (±0.056) (±0.069) (±0.041) (±0.049) (±0.071) (±0.046) (±0.029) (±0.027)

Transductive

� 96.13% 95.21% 95.44% 13.21% 3.98% 95.19% 94.41% 93.87% 18.65% 5.03%
(±0.121) (±0.183) (±0.022) (±0.045) (±0.089) (±0.031) (±0.027) (±0.024) (±0.034) (±0.023)

� 96.17% 95.81% 95.71% 13.17% 3.94% 95.31% 94.78% 94.02% 17.98% 4.99%
(±0.117) (±0.189) (±0.032) (±0.051) (±0.094) (±0.032) (±0.025) (±0.021) (±0.034) (±0.029)

According to the results, transductive learning significantly outperforms the inductive
learning scenario, for both cartilage classes of interest and across all evaluations metrics.
This can be attributed to the following reasons. First, corroborating the well-established
finding of the literature, the superior rates underscore the importance of utilizing the SSL
features of the unlabeled nodes in the training process, combined with those of labeled ones.
Secondly, the refreshing learning stage applied in mini-batch learning (Section 10.3) allows
the network to appropriately adjust to the newly observed out-of-sampling batches. On the
other hand, the inductive model is trained once using the nearest neighbor image. This
network is then used to segment the target image, by classifying the entire set of unlabeled
batches from T .

10.6. Comparative Results

Table 3 presents extensive comparative results, contrasting our DMA-GCN models
with traditional patch-based approaches, and state-of-the-art deep learning architectures
established in the field of medical image segmentation. We also applied six graph-based
convolution networks in the comparisons. These networks were used as standalone models
solely to conduct global learning of the nodes. Finally, we applied the more integrated
MGCCN model [30]. For the DMA-GCN models, we applied the following parameter
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setting: NA = 10 atlases, K = 8 attention heads, S = 2 spatial scales, M = 3 dense layers,
and transductive learning with a mini-batch size of 128.

Based on the results of Table 3, we should notice the more enhanced rates of GAT
and MGCN compared with those of the other graph convolution networks, suggesting
that the attention mechanism combined with a multi-scale consideration of the data can
improve the model’s performance. Furthermore, the proposed deep DMA-GCN(CT) and
DMA-GCN(SEQ) models are both shown to outperform all competing methods in the ex-
perimental setup, achieving DSC f mrl = (95.71%, 95.44%) and DSC tbl = (94.02%, 93.87%),
respectively, across all evaluation metrics and in both femoral and tibial segmentation.
DMA-GCN(CT) provides a slightly better performance compared to the DMA-GCN(SEQ)
indicating that the alternating combination of local–global convolutional units is more effec-
tive. However, both methods may fail to deliver satisfactory results in certain cases where
the cartilage tissue is severely damaged or otherwise deformed. Figure 18 showcases an
example of a successful application of both DMA-GCN(SEQ) and DMA-GCN(CT) models,
along with a marginal case exhibiting suboptimal results, due to extreme cartilage thinning.

Table 3. Summary of segmentation performance measures (means ± stds) of the two cartilage
classes of our proposed methods DMA-GCN (CT) and DMA-GCN (SEQ) compared to state of the art:
1. patch-based methods, 2. deep learning methods, 3. graph deep learning methods. Best results for
all three categories (CT vs SEQ) with respect to DSC index are highlighted.

Femoral Cartilage Tibial Cartilage

Method Recall Precision DSC VOE VD Recall Precision DSC VOE VD
PBSC

83.51% 82.65% 82.23% 29.97% 11.01% 79.76% 81.45% 78.85% 34.28% 11.79%
(±0.066) (±0.045) (±0.061) (±0.082) (±0.037) (±0.021) (±0.036) (±0.027) (±0.031) (±0.041)

PBNLM
84.12% 83.28% 84.09% 26.73% 8.25% 81.22% 82.07% 80.04% 33.91% 11.41%
(±0.071) (±0.045) (±0.052) (±0.061) (±0.084) (±0.038) (±0.019) (±0.027) (±0.031) (±0.029)

HyLP 94.04% 93.16% 92.56% 15.16% 5.12% 91.08% 89.98% 89.91% 19.67% 5.85%
(±0.052) (±0.051) (±0.026) (±0.028) (±0.034) (±0.074) (±0.023) (±0.018) (±0.025) (±0.011)

SegNet 89.18% 89.48% 89.09% 20.73% 5.65% 87.22% 89.07% 86.12% 22.79% 6.23%
(±0.116) (±0.219) (±0.089) (±0.039) (±0.066) (±0.056) (±0.062) (±0.034) (±0.012) (±0.016)

DenseVoxNet 88.75% 88.67% 87.54% 21.83% 6.45% 87.45% 86.03% 85.68% 25.47% 7.98%
(±0.156) (±0.204) (±0.042) (±0.048) (±0.121) (±0.076) (±0.041) (±0.047) (±0.028) (±0.025)

VoxResNet 88.03% 88.92% 88.12% 22.71% 6.64% 87.04% 85.26% 85.12% 26.03% 8.04%
(±0.187) (±0.205) (±0.047) (±0.055) (±0.128) (±0.071) (±0.044) (±0.043) (±0.032) (±0.029)

KCB-Net 89.74% 90.12% 88.92% 23.13% 6.72% 88.12% 87.46% 87.92% 25.90% 8.04%
(±0.149) (±0.185) (±0.031) (±0.042) (±0.098) (±0.055) (±0.029) (±0.033) (±0.017) (±0.021)

CAN3D 88.04% 88.54% 87.12% 22.93% 6.59% 87.28% 85.26% 85.02% 25.76% 8.01%
(±0.156) (±0.205) (±0.03) (±0.042) (±0.098) (±0.055) (±0.029) (±0.033) (±0.017) (±0.021)

PointNet 87.13% 88.12% 86.49% 23.06% 7.13% 86.88% 85.03% 84.79% 24.92% 7.39%
(±0.121) (±0.187) (±0.023) (±0.051) (±0.104) (±0.062) (±0.031) (±0.023) (±0.024) (±0.018)

GCN 90.19% 90.84% 89.23% 19.65% 5.48% 88.92% 89.02% 88.26% 23.27% 6.78%
(±0.129) (±0.126) (±0.030) (±0.046) (±0.098) (±0.059) (±0.033) (±0.021) (±0.028) (±0.017)

SGC 91.02% 91.31% 89.84% 17.41% 5.19% 89.81% 89.54% 89.02% 22.11% 5.89%
(±0.212) (±0.132) (±0.032) (±0.064) (±0.098) (±0.061) (±0.047) (±0.032) (±0.039) (±0.028)

ClusterGCN 90.56% 91.08% 90.12% 17.33% 5.16% 90.28% 91.05% 89.93% 22.08% 5.82%
(±0.141) (±0.150) (±0.039) (±0.058) (±0.107) (±0.054) (±0.061) (±0.039) (±0.036) (±0.024)

GraphSAINT 92.61% 92.74% 90.87% 17.18% 5.16% 91.75% 91.04% 90.12% 22.04% 5.76%
(±0.132) (±0.131) (±0.027) (±0.051) (±0.102) (±0.054) (±0.029) (±0.026) (±0.022) (±0.020)

GraphSAGE 92.87% 92.91% 90.95% 17.12% 5.09% 92.04% 92.53% 90.49% 20.71% 5.66%
(±0.129) (±0.144) (±0.031) (±0.065) (±0.098) (±0.049) (±0.033) (±0.038) (±0.027) (±0.024)

GAT 93.14% 93.09% 92.87% 13.90% 4.36% 93.29% 93.81% 90.86% 19.58% 5.61%
(±0.141) (±0.203) (±0.045) (±0.051) (±0.101) (±0.055) (±0.031) (±0.019) (±0.029) (±0.026)

MGCN 94.11% 93.92% 93.27% 14.05% 4.27% 93.79% 94.06% 91.43% 19.84% 5.34%
(±0.125) (±0.181) (±0.029) (±0.045) (±0.096) (±0.041) (±0.027) (±0.024) (±0.035) (±0.021)

DMA-GCN (SEQ) 96.13% 95.21% 95.44% 13.21% 3.98% 95.19% 94.41% 93.87% 18.65% 5.03%
(±0.121) (±0.183) (±0.022) (±0.045) (±0.089) (±0.031) (±0.027) (±0.024) (±0.034) (±0.023)

DMA-GCN (CT) 96.17% 95.81% 95.71% 13.17% 3.94% 95.31% 94.78% 94.02% 17.98% 4.99%
(±0.117) (±0.189) (±0.032) (±0.051) (±0.094) (±0.032) (±0.025) (±0.021) (±0.034) (±0.029)
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(a)

(b)

(c)

Figure 18. Segmentation results for femoral (FC) and tibial (TC) cartilage for the two main proposed
models (DMA-GCN(SEQ) and DMA-GCN(CT)). The first part of the figure illustrates a case of
successful application of DMA-GCN on a healthy knee (KL grade 0), while the second and third
parts correspond to more challenging subjects with moderate (KL grade 2) and severe (KL grade
4) osteoarthritis. (Left to right: ground truth, DMA-GCN(SEQ), DMA-CGN(CT)—color coding:
pink → FC, white → TC). (a) Segmentation showcase—KL grade 0. (b) Segmentation showcase—KL
grade 2. (c) Segmentation showcase—KL grade 4.

11. Conclusions and Future Work

In this paper, we presented the DMA-GCN for knee joint cartilage segmentation. Our
models shared a number of attractive properties, such as the constructive integration of
local-level and global-level learning, a densely connected structure, and adaptive graph
learning. These features rendered the DMA-GCN capable of acquiring expensive node
representations. A comparative analysis with various state-of-the-art deep learning and
graph-based convolution networks validated the efficacy of the proposed approach. As
future research, we intend to extent the current framework by focusing on hypergraph
networks, which allow the incorporation of multiple views of graph data.
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Abstract: Human skeleton data obtained using a depth camera have been used for pathological gait
recognition to support doctor or physician diagnosis decisions. Most studies for skeleton-based
pathological gait recognition have used either raw skeleton sequences directly or gait features, such as
gait parameters and joint angles, extracted from raw skeleton sequences. We hypothesize that using
skeleton, joint angles, and gait parameters together can improve recognition performance. This study
aims to develop a deep neural network model that effectively combines different types of input data.
We propose a hybrid deep neural network framework composed of a graph convolutional network,
recurrent neural network, and artificial neural network to effectively encode skeleton sequences, joint
angle sequences, and gait parameters, respectively. The features extracted from three different input
data types are fused and fed into the final classification layer. We evaluate the proposed model on
two different skeleton datasets (a simulated pathological gait dataset and a vestibular disorder gait
dataset) that were collected using an Azure Kinect. The proposed model, with multiple types of
input, improved the pathological gait recognition performance compared to single input models on
both datasets. Furthermore, it achieved the best performance among the state-of-the-art models for
skeleton-based action recognition.

Keywords: hybrid deep neural network; feature fusion; pathological gait recognition; skeleton-based
gait analysis

1. Introduction

Gait represents crucial bioinformation, necessitating the proper integration of sen-
sory, motor, and cognitive functions, and has consequently been the subject of extensive
investigation for a considerable duration [1,2]. If the weakness of some body parts has a
negative influence on those functions, the gait pattern can become abnormal and unbal-
anced. In other words, abnormal and unbalanced gait patterns indicate disorders of some
body functions, and it is possible to find them by analyzing gait. Parkinson’s disease is a
prominent example of a condition that manifests abnormal gait patterns, with numerous
studies conducted on its gait characteristics [3–6]. It is marked by symptoms including
a gradual reduction in walking speed, diminished swinging motion of the arms, shorter
stride length, impaired balance, and a decline in the coordination of arm and trunk move-
ments during walking. Additionally, numerous studies have explored the relationship
between gait patterns and other specific diseases, including autism spectrum disorder [7,8],
stroke [9,10], Alzheimer’s disease [11], vestibular problems [12–14], and functional gait
disorders [15,16]. Furthermore, gait patterns have been used in practice to support doctor
or physician decisions for patients. There are many research groups studying gait patterns
and various research results continue to be published.
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Recognizing pathological gait patterns helps to diagnose a disease and even to find a
presymptom of a disease before it worsens. Therefore, there have been many approaches
for pathological gait recognition using various sensors, such as inertial measurement units
(IMUs), plantar foot pressure sensors, motion capture systems, and depth cameras. Sensor-
based systems have many advantages. They make it possible to automatically prescreen
for specific diseases without visiting a hospital. People hardly realize whether their gait
patterns are changed or not because they change gradually. It might be too late if they
realize their abnormal gait by themselves. On the other hand, sensor systems can analyze a
gait pattern with objective standards, so it is possible to detect abnormal gaits in the early
phase of a disease, and patients can receive proper treatment before the disease worsens.
Therefore, if a sensor-based pathological gait recognition system is installed in a home or
elderly care center and people conduct gait analysis periodically, specific diseases can be
prescreened without visiting a hospital.

A depth camera was used to recognize pathological gaits in this study. A depth camera,
such as Kinect (Microsoft Corp., Redmond, WA, USA), Astra (Orbbec 3D Technology
International, Inc., Troy, MI, USA), and Realsense (Intel Corp., Santa Clara, CA, USA),
can obtain not only RGB data but also depth data for each pixel. The collected RGB and
depth data can be used to simulate the human skeleton, which contains three-dimensional
positional information of each joint. A depth camera can measure gait data without
attaching sensors or markers, whereas an IMU and motion capture system require the
attachment of sensors or markers, which can make the walker feel uncomfortable and walk
unnaturally. Furthermore, a depth camera can obtain information on all body joints. A
depth camera-based gait analysis system is simple to operate and has a relatively low cost
and reasonable accuracy, so it can be operated in various environments. Therefore, many
studies have used human skeleton data obtained through a depth camera to recognize
pathological gaits [3,4,11,17–27].

In the domain of skeleton-based pathological recognition, numerous research studies
have been conducted utilizing machine learning algorithms. For instance, Li et al. [3]
proposed a method to classify normal individuals and patients with hemiplegia and Parkin-
son’s disease using k-nearest neighbors. They used a covariance matrix representing joint
motions and speeds extracted from the skeleton sequence. Dranca et al. [4] introduced
a machine learning-based method to classify Parkinson’s disease stages. They extracted
features from the skeleton by applying correlation-based feature selection, information
gain, or consistency subset evaluation. Seifallahi et al. [11] proposed a method to de-
tect Alzheimer’s disease by employing a support vector machine (SVM) classifier with a
Gaussian kernel. Gait parameters, such as time walking, step length, step number, stride
length, gait cycle, and stride velocity, were fed to the classification model in their work.
Bei et al. [22] proposed a method to detect movement disorders using machine learning
algorithms. Gait parameters, such as gait symmetry, step length, and gait cycle, were fed
to the classification model in their study. Chakraborty et al. [23] introduced a method for
the automatic diagnosis of cerebral palsy gait using a multi-Kinect system and SVM-based
classification model. They extracted spatiotemporal features from the skeleton and used
them as the input data to the classifier. Chakraborty et al. [24] employed a multiple adaptive
regression splines model to recognize equinus foot deformity gait. The hip, knee, and
ankle angles of both sides were extracted from the skeleton and used as the input data in
their work.

Deep neural network models have also been applied to skeleton-based pathological
gait recognition. For instance, Guo et al. [17] proposed a bidirectional long short-term mem-
ory (LSTM)-based model to classify normal, in-toeing, out-toeing, drop-foot, pronation, and
supination gaits. The lower limb skeleton was used to extract statistical features and angle
sequences in their study. Tian et al. [25] proposed a spatiotemporal attention-enhanced
gait-structural graph convolutional network (AGS-GCN) to recognize abnormal gaits. They
used the lower limb joints and spine base to extract spatiotemporal gait parameters, such
as the joint trajectory, joint angle, and gait link. Sadeghzadehyazdi et al. [26] proposed a

92



Bioengineering 2023, 10, 1133

hybrid model composed of a convolutional neural network (CNN) and LSTM to model
spatiotemporal patterns for gait anomaly recognition. They used normalized joints for
the classification. Kim et al. [27] applied a spatiotemporal GCN with an attention mech-
anism to the spatiotemporal features extracted from skeleton data for the recognition of
abnormal gaits.

Most existing methods for skeleton-based pathological gait recognition use gait fea-
tures extracted from raw skeletons, such as static gait parameters [11,22,23] and joint angle
sequences [4,17,24]. They have shown their effectiveness in recognizing pathological gaits.
Gait features effectively represent gait abnormalities, so they can be interpreted more easily
than raw skeleton data. However, this does not mean that they can represent all the impor-
tant information of the raw skeleton data. On the other hand, the raw skeleton data include
all the important information; however, it is difficult to understand a gait abnormality
because of the complicated structure and large data size. Recently, studies inputting the
skeleton itself into a model have been published [28–30]. They showed the possibility of
recognizing pathological gaits by interpreting the skeleton data, but gait features were
not considered at all. Prior studies have not extensively explored a hybrid approach that
combines the advantages of both gait features and raw skeleton data. This means that
while gait features provide valuable insights into gait abnormalities, they may not fully
exploit the richness of information contained in the raw skeleton data. Thus, there is an
opportunity to investigate novel methods that leverage both gait features and raw skeleton
data to enhance the recognition of pathological gaits. Following this observation, our moti-
vation evolved into exploring novel methods that harness the complementary strengths of
both gait features and raw skeleton data to improve pathological gait recognition.

We hypothesized that using both gait features and raw skeleton data could further
improve the performance of pathological gait recognition since they have different advan-
tages and representations. Gait parameters are the most compressed form to effectively
represent the abnormality of a gait, joint sequences are focused on showing the bending
and balancing abilities of lower limb joints, and raw skeleton sequences preserve all impor-
tant information for pathological gait recognition and show the overall movement of the
whole body during walking. Using these together can facilitate a model to converge to the
global minima since gait abnormalities can be interpreted through a variety of perspectives.
However, a method to use all of them together for pathological gait recognition has not yet
been proposed. In consideration of these factors, we have innovatively introduced a novel
methodology encompassing the concurrent utilization of gait parameters, joint sequences,
and raw skeleton sequences, marking a pioneering advancement in the field.

In this paper, we propose a novel hybrid deep learning model designed to maximize
the utilization of raw skeleton data and gait features for pathological gait recognition.
Since the input data have different characteristics, we applied different deep learning
architectures to encode each input data effectively. A graph convolutional network (GCN),
recurrent neural network (RNN), and artificial neural network (ANN) are used to encode
the raw skeleton sequences, the joint angle sequences, and the gait parameters, respectively.
Their outputs are fused together and fed into the final classification layer. This fusion of
features can be achieved through concatenation, with further performance enhancements
achievable through feature selection or weighting techniques. This involves the selection
or assignment of weights to features and matching scores that demonstrate low correlation,
as exemplified by [31], and high discrimination, as illustrated by [32].

The primary objective of this study is to demonstrate improved performance in recog-
nizing pathological gait patterns through the fusion of raw skeleton data and gait features
with our hybrid deep learning model designed to synergize diverse input types. Given the
inherent diversity in the characteristics of input data, our approach incorporates distinct
deep learning architectures tailored for encoding each specific data type. Our proposed
model stands as an innovative contribution by integrating raw skeleton sequences, joint
angle sequences, and gait parameters, marking the first of its kind in the realm of patholog-
ical gait recognition. To substantiate the efficacy of this pioneering model, comprehensive
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evaluations were conducted on diverse pathological gait datasets, including a simulated
pathological gait dataset and a vestibular disorder gait dataset, both meticulously col-
lected utilizing Azure Kinect. Furthermore, rigorous comparative analyses were conducted
against state-of-the-art models specialized in skeleton-based action recognition.

2. Materials and Methods

Most studies in the field of skeleton-based pathological gait recognition have tradi-
tionally focused on two primary approaches: utilizing raw skeleton sequences directly or
extracting gait features, such as gait parameters and joint angles, from these raw sequences.
However, these studies have often treated each data type in isolation or separately. In this
study, we aim to address the potential for improved recognition performance by effectively
combining different types of input data. To achieve this, we propose a novel deep neural
network model. This model adopts a hybrid deep neural network framework, consisting of
GCN, RNN, and ANN layers. Each of these components is specifically designed to encode
skeleton sequences, joint angle sequences, and gait parameters, respectively. The extracted
features from these three distinct data types are then fused together and input into the final
classification layer. A comprehensive illustration of this network is presented in Figure 1.
By employing this innovative approach, our research aims to enhance pathological gait
recognition performance. To demonstrate the effectiveness of our proposed model, we
collected two skeleton datasets using Azure Kinect: a simulated pathological gait dataset
and a vestibular disorder gait dataset, and subsequently conducted evaluations using
these datasets.

 

Figure 1. Structure of the proposed multi-input hybrid deep neural network. The skeleton sequences,
joint angles, and gait parameters are input to the GCN, RNN, and ANN layers, respectively. Each
encoding layer encodes the input data into a one-dimensional feature vector. The outputs of each
encoding layer are concatenated together and fed to the final classification layer.

2.1. Data Acquisition

A depth camera-based skeleton data collection system was developed in the healthcare
robotics laboratory at the Gwangju Institute of Science and Technology, Korea. An Azure
Kinect and the corresponding body tracking software development kit (SDK) developed
by Microsoft were used to collect the skeleton data. The system collected the data while
a subject walked straight forward toward the sensor approximately 4 m away. The sen-
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sor was calibrated by recognizing an ArUco marker [33] to collect the data in the same
coordinate system. The XYZ coordinate system of the sensor was transformed to the XYZ
coordinate system of the marker. The 3-dimensional position of each vertex of the marker
was measured using the sensor, and the transformation matrix was obtained. Each data
example contained 80–120 frames of skeleton data with an average collection rate of 22.7
fps. We evaluated the proposed hybrid model on two skeleton datasets (a simulated patho-
logical gait dataset and a vestibular disorder gait dataset) collected by the data acquisition
system. The evaluation encompassed the assessment of the model’s proficiency in handling
intricate gait classification tasks, specifically its ability to differentiate among six distinct
gait patterns within the simulated pathological gait dataset. Simultaneously, the vestibular
disorder gait dataset, comprising genuine patient data, facilitated an examination of the
model’s practicality and suitability in real world contexts, particularly when confronted
with datasets originating from individuals afflicted by vestibular disorders. This compre-
hensive evaluation allowed us to assess both the model’s technical capabilities and its
real-world applicability.

2.1.1. Simulated Pathological Gait Dataset

Most previous studies conducted binary classification by differentiating pathological
gaits from a healthy gait [11,22–25], and there have also been a few studies recognizing
various and complicated pathological gaits [3,17,27]. Multilabel pathological gait classifi-
cation is much more difficult than binary classification and can help to evaluate a model
from various directions. Therefore, we collected various and complicated pathological gait
data. Normal gait and five pathological gaits, i.e., antalgic, steppage, lurching, stiff-legged,
and Trendelenburg gaits, were collected through simulations of 12 healthy subjects. They
were asked to walk along a 7 m walkway, as shown in Figure 2a. The characteristics and
causes of each pathological gait are described in detail in [20]. The subjects understood
the mechanical reason for the pathological gaits before data collection, so they could sim-
ulate the pathological gaits similarly to real patients. The data collection was conducted
under strict expert supervision. The subjects were asked to walk with each gait 20 times.
Therefore, 1,440 examples (12 subjects × 6 gaits × 20 walks) were included in this dataset.
Furthermore, we augmented the dataset by reversing the left and right sides of the skeleton,
so 2,880 examples were used for the experiments. Through this dataset, the performance of
the proposed model on the classification of complicated pathological gaits was evaluated.

2.1.2. Vestibular Disorder Gait Dataset

Regardless of how well the simulated gait data were classified, it was difficult to verify
their practicality in the real world. Therefore, we collected real patient data to evaluate
the practical applicability of the proposed model. Gait data of real patients with vestibular
problems were obtained with the support of the Kosin University Gospel Hospital. The
subjects were asked to walk two laps around a 16 m track. We collected the skeleton
data while the subjects were walking on the data collecting area, as shown in Figure 2b,
because the sensor and the body tracking SDK do not guarantee high-quality skeleton
data when the human is not facing the sensor. Thirty-three healthy subjects (12 females
and 21 males, with a mean age of 38.9 ± 16.4 years) and 128 patients with a vestibular
disorder (94 females and 34 males, with a mean age of 58.5 ± 13.5 years) participated in the
data collection. Since there was a large difference in the average age between the healthy
subjects and the patients, we downsampled the patient data and made a balanced group
with 33 healthy subjects and 54 patients with a vestibular disorder (34 females and 20 males,
with a mean age of 46.1 ± 10.4 years). Ten data examples whose sequences were less than
90 were excluded from the evaluation. Therefore, we evaluated the proposed model on the
all-subject group with 312 data examples (161 subjects × 2 walks—10 exemptions) and the
balanced group with 170 data examples (87 subjects × 2 walks—4 exemptions).
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Figure 2. Data acquisition environment: (a) simulated pathological gait dataset and (b) vestibular
disorder gait dataset.

2.2. Graph Convolutional Network for Skeleton Data

CNNs are renowned for their effectiveness in tasks involving visual data analysis,
primarily due to their ability to capture intricate spatial relationships between pixels within
an image, a feature that sets them apart [34]. In contrast, a GCN is particularly well
suited for tasks such as node classification and link prediction within data structured as
graphs [35]. Examples of such data encompass social networks, chemical molecules, and
skeletal datasets. A GCN is known as the most powerful structure for skeleton-based action
recognition. Yan et al. [36] first introduced a method to apply a spatial–temporal graph
convolutional network (ST-GCN) for skeleton-based action recognition. They suggested a
way to efficiently process skeleton sequences by simultaneously understanding the spatial
and temporal characteristics of the skeleton data. Subsequently, many modified GCN
structures have been introduced, and the performance of skeleton-based action recognition
continues to improve [37–43]. In this study, we adopt the ideas and formulations of the
ST-GCN proposed in [36] to encode skeleton data.

The skeleton sequences are denoted as a spatial–temporal graph G = (V, E). The node
set V = {vti|t = 1, ..., T, i = 1, ..., N} contains all the joints in the skeleton sequences, where
T and N denote the number of sequences and the number of joints, respectively. Every
node includes three channels vti = (xti, yti, zti) since we use the 3-dimensional position
information of each joint. The edge set E is divided into two subsets, the edge set of
naturally connected human joints (intraskeleton edges) and the edge set of consecutive
frames on the same joint (interframe edges), which are denoted by ES =

{
vtivtj

∣∣(i, j) ∈ H
}

and EF =
{

vtiv(t+1)i

}
, respectively, where H is the set of naturally connected joints.

The spatial convolution operation for a joint node vti can be formulated as the follow-
ing equation:

Fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

Fin(p(vti, vtj)) · w(Mti(vtj)) (1)
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where Fout and Fin denote the output and input features of the GCN, respectively. Zti
(
vtj
)

denotes a normalization term to balance the contribution of each subset. A sampling
function p

(
vti, vtj

)
is defined on the neighbor set B(vti) =

{
vtj
∣∣d(vtj, vti

)
≤ D

}
, where

d
(
vtj, vti

)
denotes the minimum length of the path from vtj to vti. A weight function w is

defined by partitioning the neighbor set into subsets with a numeric label based on a
mapping function Mti

(
vtj
)

that maps the neighbor nodes into their subset labels.
Yan et al. [36] extended the concept of a neighborhood to cover temporally consecutive

joints by modifying the neighbor set B(vti) and defining a spatial–temporal mapping
function MST as follows:

B(vti) =
{

vqj
∣∣d(vtj, vti

)
≤ K, |q − t| ≤ �Γ/2�

}
(2)

MST
(
vqj

)
= Mti

(
vtj
)
+ (q − t + �Γ/2�)× K (3)

where K and Γ denote the number of subsets derived by mapping function Mti
(
vtj
)

and
the range of interest for temporal convolution, respectively.

In this study, we implemented a multilayer ST-GCN to encode the skeleton sequences
into a 1-dimensional feature vector fS. Global pooling was applied to the outputs of the ST-
GCN layers, and then a convolutional operation was conducted to extract the feature vector
with a specific size. Finally, the multichannel output was resized to a 1-dimensional vector.

2.3. Recurrent Neural Network for Joint Angles

We extracted the joint angle sequences from the skeleton sequences and used them
as another input to the proposed hybrid model. We extracted the bending angles and link
angles of specific joints according to [17], which showed their effectiveness on pathological
gait recognition. Examples of the joint angles are shown in Figure 3.

Figure 3. A sample of the joint angles. The joint angles include the link angles and the bending angles.
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The bending angle of joint α ∈{left_hip, right_hip, left_knee, right_knee, left_ankle,
right_ankle} at time t was calculated according to the following equation:

θα(t) = cos−1

((
vtβ − vtα)2 +

(
vtγ − vtα)2 −

(
vtγ − vtβ)

2

2
(
vtβ − vtα

)
· (vtγ − vtα)

)
(4)

where β and γ denote the joints connected to joint α. For example, θle f t_knee(t) was calcu-
lated using the left knee, left hip, and left ankle joints.

The link angle of link l ∈{left_thigh, right_thigh, left_shank, right_shank, left_foot,
right_foot, trunk} about x-axis at time t was calculated using the following equation:

φx
l (t) = cos−1

(
(vtm − vtn) · ux

|vtm − vtn||ux|

)
(5)

where m and n denote the joints used to construct link l. The thigh consisted of the knee
and hip joints, the shank consisted of the ankle and knee joints, the foot consisted of the
tiptoe and ankle joints, and the trunk consisted of the pelvis and head joints. ux denotes
the unit vector along x−axis. φ

y
l (t) and φz

l (t) were calculated similarly by utilizing uy and
uz instead of ux.

A total of 25 angles were extracted from each skeleton and the sequences of the
angles were fed to the RNN encoding layers. An RNN is a specialized architecture for
handling sequential data, including time series data like stock prices, audio data, and
skeletal sequences. Since the structure of a basic RNN has a long-term dependency problem
in which the influence of the previous information continues to decrease as the hidden
state is updated for long-term sequential data, we adopt LSTM to construct the RNN layers.
LSTM can solve the problem by employing a gated structure to update the hidden state
ht. The variables for the gated structure, i.e., the forget gate ft, input gate it, output gate ot,
and cell state Ct, are formulated as follows:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(6)

it = σ(Wxixt + Whiht−1 + bi) (7)

ot = σ(Wxoxt + Whoht−1 + bo) (8)

Ct = ft ◦ Ct−1 + it ◦ tan h(WxCxt + WhCht−1 + bC) (9)

where x, W, b, σ, and ◦ denote the input, weights, biases, sigmoid function, and elementwise
product, respectively. The hidden state ht and the output yt can be updated as follows:

ht = ot ◦ tan h(Ct) (10)

yt = Wy · ht + by. (11)

We constructed a multilayer LSTM to encode the joint angle sequences into a 1-dimensional
feature vector fA. The output of the multilayer LSTM operation was the last hidden state of the
final LSTM layer, which was fed to the fully connected layer to extract a feature vector with a
specific size as follows:

fA = ReLU(WALSTM(xA) + bA) (12)

where xA, WA, bA, and LSTM(·) denote the input joint angle sequences, weight, bias, and
multilayer LSTM operation, respectively.
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2.4. Artificial Neural Network for Gait Parameters

Gait parameters are important indicators to recognize pathological gaits [44–46]. We
obtained basic gait parameters, gait phase-based parameters, and angle-based parameters
using 3-dimensional skeleton sequences. These parameters encompass various aspects of
walking and are instrumental in assessing an individual’s gait.

The basic gait parameters include average step length, step length asymmetry, step
width, and walking speed. Average step length measures the typical distance a person
covers with a single step, typically from one heel to the other throughout a complete
walking cycle. Step length asymmetry highlights the difference in step lengths between the
left and right legs during walking, providing insights into the symmetry and balance of
steps. Step width assesses the lateral distance between the feet at their widest point during
the gait cycle, indicating whether steps are wide or narrow. Walking speed represents the
rate of forward movement during walking, offering information about walking pace.

The gait phase-based parameters encompass stance and swing time on both legs.
Swing time on both legs indicates the duration when the leg is not in contact with the
ground during the gait cycle, typically measured in seconds, covering the time from foot
lift off to foot strike. Stance time on both legs measures the duration of the gait cycle when
the leg is in contact with the ground, providing essential information about how long each
leg supports the body’s weight during walking.

Lastly, the angle-based parameters encompass mean, minimum, and maximum values
for frontal spine angle, lateral spine angle, knee angle, and hip angle. Frontal spine angle
measures how the spine deviates from the vertical plane when viewed from the front,
particularly relevant in posture and gait analysis for detecting deviations in the frontal
plane. Lateral spine angle quantifies spine deviation from the vertical plane when viewed
from the side, providing insights into body alignment during walking, especially lateral
deviations. Knee angle on both legs describes the angle formed at the knee joint between
the thigh and the lower leg for both legs during different phases of the gait cycle, offering
insights into knee joint flexion and extension. Hip angle on both legs measures the angle at
the hip joint between the thigh and the pelvis on both sides of the body during walking,
reflecting hip movement and positioning throughout the gait cycle.

It is important to note that all parameters, except angle-related ones, fall within the
range of 0 to 2, while angle-related parameters could potentially range from 0 to 180
degrees. To ensure consistency for input into an artificial neural network, these angle-
related parameters were normalized by dividing them by 100. This normalization process
brings them into the same 0 to 2 range as the other parameters, improving the training
stability and convergence of an artificial neural network.

We used the extracted gait parameters as the final input data to the proposed model. A
fully connected ANN was used to encode the gait parameters into a 1-dimensional feature
vector fP with a specific size as follows:

fP = ReLU(WPxP + bP) (13)

where xP, WP, and bP denote the input gait parameters, weight, and bias, respectively.

2.5. Fusion of Features and Classification

The skeleton sequences, joint angle sequences, and gait parameters were input to the
GCN-based, RNN-based, and ANN-based layers, respectively. The features extracted from
each layer were concatenated into a 1-dimensional vector, and the integrated features were
fed to the final classification layer using the following equations:

f f usion = concatenate(fS, fA, fP) (14)

y = softmax
(

Wyf f usion + by

)
(15)
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where y, Wy, and by denote the output, weight, and bias of the fully connected layer
to recognize the gait type. Batch normalization and dropout were conducted before the
operation of the fully connected layer to prevent overfitting. The index of the maximum
value in y is the recognized gait type.

A cross-entropy loss function was adopted to calculate the loss LCE, and L2 regulariza-
tions were applied to avoid overfitting as follows:

LCE(y, �y) = −
C

∑
i=1

yilog( �yi) +
λ

2
|W|2 (16)

where λ and W are the regularization parameter and trainable weights, respectively. Table 1
provides an exhaustive delineation of the intricate configuration of the multi-input hybrid
neural network.

Table 1. The detailed configuration of the hybrid deep neural network architecture.

Type Layer Configuration

GCN Encoding Layers

ST-GCN In_channels = 3, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 128, kernel_size = (9,3)
ST-GCN In_channels = 128, out_channels = 128, kernel_size = (9,3)
ST-GCN In_channels = 128, out_channels = 128, kernel_size = (9,3)
ST-GCN In_channels = 128, out_channels = 256, kernel_size = (9,3)
ST-GCN In_channels = 256, out_channels = 256, kernel_size = (9,3)
ST-GCN In_channels = 256, out_channels = 256, kernel_size = (9,3)

Average Pooling /
2D Convolution In_channels = 256, out_channels = 64, kernel_size = 1

Flatten /
ReLU Activation Hidden unit = 64

RNN Encoding Layers

LSTM Hidden unit = 128, return_sequences = True
LSTM Hidden unit = 128, return_sequences = True
LSTM Hidden unit = 128, return_sequences = True
LSTM Hidden unit = 128, return_sequences = False

Batch Normalization /
Fully Connected Layer Hidden unit = 16

ReLU Activation /

ANN Encoding Layers Fully Connected Layer Hidden unit = 16
ReLU Activation /

Classification Layers

Batch Normalization /
Dropout Ratio = 0.5

Fully Connected Layer Hidden unit = the number of classes
Softmax /

2.6. Training Environment

The experimental configurations of the computer are an Intel®Core™ i7-7700K central
processing unit, an NVIDIA GeForce RTX 2080 Ti graphics processing unit, and 64 GB of
random access memory. In this study, PyTorch and scikit-learn were adopted to implement
the deep learning and machine learning models, respectively. All deep learning models
used in the experiments were trained under the same training options (a batch size of
50, 200 training epochs, early stopping, cross-entropy loss, and the Adam [47] optimizer).
However, some training options, such as the learning rate and weight decay, were set
according to the suggested training configurations of each state-of-the-art model.

3. Results

The performance of the proposed model for skeleton-based pathological gait recogni-
tion was evaluated on the simulated pathological gait dataset and the vestibular disorder
gait dataset. They include different gait abnormalities and have different subject con-
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figurations, so it is meaningful to evaluate the proposed model using both datasets and
to compare the results. Furthermore, diverse state-of-the-art models for skeleton-based
action recognition, such as the ST-GCN [36], hierarchical cooccurrence network (HCN) [37],
decoupling GCN [38], two-stream adaptive graph convolutional network (2s-AGCN) [39],
multistream attention-enhanced adaptive graph convolutional network (MS-AAGCN) [40],
part-based graph convolutional network (PB-GCN) [41], decoupled spatial–temporal atten-
tion network (DSTA-NET) [42], and channelwise topology refinement graph convolutional
network (CTR-GCN) [43], were compared to demonstrate the effectiveness of the proposed
hybrid model.

3.1. Evaluation on the Simulated Pathological Gait Dataset

Leave-one-subject-out cross validation was applied to the simulated pathological gait
dataset to compensate for the small number of subjects. The number of skeleton and joint
angle sequences used as the input data was set to 100. We abandoned the last 10 sequences
and used the 100 sequences immediately preceding them because the skeleton data were
noisy if the distance between the human and the depth camera was too close.

We compared the performances of various models when only a single type of in-
put data was used, as shown in Table 2. Classic machine learning-based models, such
as AdaBoost, a decision tree, Gaussian Naïve Bayes, random forest, k-nearest neighbor
(k-NN), and SVM, and deep neural network-based models, such as a multilayer perceptron
(MLP), GRU [20], LSTM [20], and ST-GCN [36], were used for the comparison. For the
gait parameters, the MLP achieved the best performance with 90.49% accuracy, and the
SVM showed the second highest accuracy with 88.47% accuracy. For the joint angles, the
RNN architectures showed their powerfulness in analysis. LSTM [20] achieved the best
performance with 93.30% accuracy, and the GRU [20] showed the second highest accuracy
with 92.92% accuracy. For the skeleton data, the ST-GCN [36] achieved the best performance
with 96.94% accuracy, and the GRU [20] showed the second highest accuracy with 95.83%
accuracy. Among the three input data types, the highest accuracy was achieved when the
skeleton data were input to the ST-GCN [36] model.

Table 2. Accuracy of single input models on the simulated pathological gait dataset.

Model
Input Data

Gait Parameters (%) Joint Angles (%) Skeleton (%)

AdaBoost 76.20 56.70 55.24
decision tree 74.54 57.05 55.28

Gaussian Naïve Bayes 83.61 79.86 58.19
random forest 87.18 82.26 67.67

k-NN 83.98 76.46 74.44
SVM 88.47 78.82 72.64
MLP 90.49 79.97 86.11

GRU [20] / 92.92 95.83
LSTM [20] / 93.30 95.20

ST-GCN [36] / / 96.94

The proposed hybrid model fed with multiple types of input data achieved 99.03%
accuracy, which was higher than that of the best single input models for each data type.
The fusion of the gait features and the raw skeleton sequences improved the performance
of pathological gait classification. Figure 4 shows the confusion matrices of the results of
the single input models and the proposed hybrid model. The parameter-based classifica-
tion had poor performance in classifying normal and Trendelenburg gaits, which were
misclassified 115 and 89 times, respectively. The joint angle-based classification showed
better performance than the parameter-based classification for this dataset. However, it
showed poor performance in classifying the Trendelenburg gait with 74 misclassifications.
The skeleton-based classification showed the best performance among the single input
models. The overall gaits were well classified, but the antalgic gait classification seemed
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to need further improvement. The proposed multi-input hybrid model achieved the best
performance by classifying the normal and five pathological gaits with a few errors.

 

Figure 4. Confusion matrices of the best single input models and the proposed multi-input model on
the simulated pathological gait dataset: (a) the gait parameters were input to the MLP model; (b) the
joint angle sequences were input to the LSTM [20] model; (c) the skeleton sequences were input to
the ST-GCN [36] model; and (d) all types of inputs were input to the proposed model.

The proposed model showed the highest accuracy among the state-of-the-art mod-
els for skeleton-based action recognition, as shown in Table 3. The CTR-GCN [43] and
2s-AGCN [39] showed the second and the third most accurate performances with 98.75%
and 98.06% accuracy, respectively. The GCN-based models showed better performance
than the RNN-based models. Although the state-of-the-art GCN models showed their
powerfulness in skeleton-based pathological gait recognition, they could not surpass the
performance of the proposed hybrid model combining the skeleton data and gait features.

Table 3. Accuracy of the state-of-the-art models and the proposed model on the simulated pathologi-
cal gait dataset.

Model Accuracy (%)

LSTM [20] 95.20
GRU [20] 95.83

ST-GCN [36] 96.94
HCN [37] 96.07
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Table 3. Cont.

Model Accuracy (%)

Decouple GCN [38] 96.25
2s-AGCN [39] 98.06

MS-AAGCN [40] 97.78
PB-GCN [41] 97.53

DSTA-NET [42] 97.91
CTR-GCN [43] 98.75

Proposed 99.03

3.2. Evaluation on the Vestibular Disorder Gait Dataset

We evaluated the proposed model using a real patient dataset to verify its practical
applicability to the real world. Fivefold cross validation was applied for the evaluation of
the vestibular disorder gait dataset since it had a large number of subjects. The number
of skeleton and joint angle sequences used as the input data was set to 80. As before, we
abandoned the final 10 sequences and used the 80 sequences immediately preceding them.

The proposed model was compared with state-of-the-art models for skeleton-based
action recognition. The statistical indices (accuracy, sensitivity, specificity, and precision)
of the models were evaluated on the all-subject group and the balanced group. Table 4
shows the accuracy, sensitivity, specificity, and precision for the all-subject group with the
true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values.
The proposed model achieved 91.03% accuracy, 93.15% sensitivity, 82.81% specificity, and
95.45% precision. The accuracy and sensitivity of the proposed model were the highest
among the models. MS-AAGCN [40] and CTR-GCN [43] showed the second and third
highest accuracies of 89.74% and 89.42%, respectively. DSTA-NET [42] achieved the second
highest sensitivity of 91.94%. The specificity and precision of the proposed model were
not the highest among the models. The MS-AAGCN [40] and CTR-GCN [43] showed
higher specificity than the proposed model by achieving 85.94%. The MS-AAGCN [40],
CTR-GCN [43], and 2s-AGCN [39] showed higher precision than the proposed model by
achieving 96.15%, 96.14%, and 95.61%, respectively. In the case of HCN, we excluded it
from the comparison as it demonstrated an accuracy of less than 70% on this dataset.

Table 4. Performance on the all-subject group of the vestibular disorder gait dataset.

Model
All-Subject Group

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) TP FP TN FN

LSTM [20] 84.94 87.50 75.00 93.13 217 16 48 31
GRU [20] 85.26 87.10 78.13 93.91 216 14 50 32

ST-GCN [36] 85.90 88.31 76.56 93.59 219 15 49 29
Decouple GCN [38] 86.22 87.10 82.81 95.15 216 11 53 32

2s-AGCN [39] 87.18 87.90 84.38 95.61 218 10 54 30
MS-AAGCN [40] 89.74 90.73 85.94 96.15 225 9 55 23

PB-GCN [41] 85.26 89.52 68.75 91.74 222 20 44 26
DSTA-NET [42] 86.86 91.94 67.19 91.57 228 21 43 20
CTR-GCN [43] 89.42 90.32 85.94 96.14 224 9 55 24

Proposed 91.03 93.15 82.81 95.45 231 11 53 17

Table 5 shows the results for the balanced group. The proposed model achieved 90.59%
accuracy, 91.51% sensitivity, 89.06% specificity, and 93.27% precision. Similar to the results
for the all-subject group, the accuracy and sensitivity of the proposed model were the
highest among the models. The CTR-GCN [43] showed the second highest accuracy with
89.41%. DSTA-NET [42] achieved the second highest sensitivity of 90.57%. The specificity
and precision of the proposed model were not the highest among the models. The CTR-
GCN [43] and LSTM [20] showed higher specificity than the proposed model by achieving
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92.19% and 90.63%, respectively. The CTR-GCN [43] and LSTM [20] also showed higher
precision than the proposed model by achieving 94.90% and 93.33%, respectively.

Table 5. Performance on the balanced group of the vestibular disorder gait dataset.

Model
Balanced Group

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) TP FP TN FN

LSTM [20] 83.53 79.25 90.63 93.33 84 6 58 22
GRU [20] 84.12 83.96 84.38 89.90 89 10 54 17

ST-GCN [36] 85.88 85.85 85.94 91.00 91 9 55 15
Decouple GCN [38] 86.47 86.79 85.94 91.09 92 9 55 14

2s-AGCN [39] 87.06 87.74 85.94 91.18 93 9 55 13
MS-AAGCN [40] 88.24 88.68 87.50 92.16 94 8 56 12

PB-GCN [41] 88.24 87.74 89.06 93.00 93 7 57 13
DSTA-NET [42] 85.88 90.57 78.13 87.27 96 14 50 10
CTR-GCN [43] 89.41 87.74 92.19 94.90 93 5 59 13

Proposed 90.59 91.51 89.06 93.27 97 7 57 9

We conducted an additional experiment to verify the effectiveness of using all of
the gait parameters, joint angles, and skeleton data together. The encoding layers for the
unused input data types were deactivated during the training, so the layers for only the
used input data type affected the training. For example, the GCN layer was deactivated
when the joint angles and the gait parameters were input to the model and the skeleton
data were not used. The data of the balanced group were used for the evaluation, and
the results are shown in Table 6. When a single type of input was fed to the model, using
the skeleton data showed the best performance with 85.88% accuracy, 85.85% sensitivity,
85.94% specificity, and 91.00% precision. Using the gait parameters showed the second
highest accuracy and sensitivity, with 79.41% and 80.19%, respectively. The results of
using the joint angles showed the lowest accuracy and sensitivity of 72.35% and 64.15%,
respectively. However, they showed higher specificity and precision than the results of
using the gait parameters. When two types of input were fed to the model, the performance
was improved compared with the results using the single type of input. Using the gait
parameters and the skeleton data together showed the highest accuracy of 88.24%, which
was the same as using the joint angles and the skeleton data together. Using the gait
parameters and joint angles showed the lowest accuracy of 84.12%, which was 1.76% lower
than the accuracy of using only the skeleton data. The highest sensitivity of 92.45% was
achieved when using the joint angles and the skeleton data. The highest specificity and
precision of 85.94% and 91.35%, respectively, were achieved when using the gait parameters
and the skeleton data. When all types of input data were fed to the model, the highest
accuracy, specificity, and precision were achieved compared to the results of using one or
two types of input data. The sensitivity was lower than the results of using the joint angles
and skeleton data.

Table 6. Performance of the proposed model on the balanced group of the vestibular disorder gait
dataset when changing the combination of the inputs.

Number of
Input Types

Input Type Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

1
Gait parameters 79.41 80.19 78.13 85.86

Joint angles 72.35 64.15 85.94 88.31
Skeleton 85.88 85.85 85.94 91.00

2
Gait parameters, joint angles 84.12 84.91 82.81 89.11

Gait parameters, skeleton 88.24 89.62 85.94 91.35
Joint angles, skeleton 88.24 92.45 81.25 89.09

3 Gait parameters, joint angles, skeleton 90.59 91.51 89.06 93.27

104



Bioengineering 2023, 10, 1133

4. Discussion

4.1. Principal Findings

We have uncovered several principal findings in the evaluation of our proposed model
for skeleton-based pathological gait recognition through our experiments. We conducted
assessments on both the simulated pathological gait dataset and the vestibular disorder
gait dataset, each characterized by distinct gait abnormalities and subject configurations.
This dual evaluation approach was crucial to assess the model’s robustness and versatility.
The following findings promise to be a valuable contribution to the field of skeleton-based
pathological gait recognition.

4.1.1. Effectiveness of Integration of Gait Parameters, Joint Angles, and Skeleton Data

This study first tried to use all of the gait parameters, joint angles, and skeleton data
together for pathological gait recognition. GCN, RNN, and ANN layers were used to
effectively encode the skeleton sequences, joint angle sequences, and gait parameters,
respectively. The model showed the best stable performance among the state-of-the-art
models for skeleton-based action recognition on the different datasets. The skeleton data
contain all information, so the maximum performance could theoretically be achieved
by using the skeleton data alone. However, it is not easy for a model to understand the
characteristics of pathological gaits using sequential skeleton data since the data are large
and complicated. The gait features can be key to making a model better understand the
skeleton data and to improve the performance. The gait parameters and joint angles
are manually extracted features whose performances have been verified through various
studies. If they are input to the model together with the skeleton data, they can help the
model understand the skeleton data in a more effective way since they are the essence of
human knowledge for pathological gait recognition.

4.1.2. Performance Variation of Machine Learning Algorithms Based on Input Data Type

The machine learning algorithms were powerful when interpreting the gait param-
eters compared to the joint angles and skeleton data. Based on the results shown in
Table 2, the average accuracies of the results of all machine learning algorithms for the
gait parameters, joint angles, and skeleton data inputs were 82.33%, 71.86%, and 63.91%,
respectively. The larger the volume of information was, the lower the performance of a
machine learning-based classifier was. If the raw data were compressed to the features
while preserving the important factors, the machine learning algorithms could better un-
derstand the distinguishable characteristics of the data and achieve better classification
performance. However, there might be a loss of important factors when extracting features.
Although the extracted features were powerful for the machine learning algorithms, the
performance was lower than the results of feeding the raw skeleton sequences to the neural
network-based classifiers.

4.1.3. Differential Effects of Joint Angles and Gait Parameters Depending on Dataset

The joint angles were more effective than the gait parameters for the simulated patho-
logical gait dataset, as shown in Table 2. However, contradictory results were obtained
for the vestibular disorder gait dataset, as shown in Table 6. The effectiveness of the gait
parameters and the joint angles depends on the pathological gait type to be recognized.
The joint angle sequences could be more effective for pathological gaits related to motor
functionalities, such as joint bending, muscle compensation, and postural balancing. Gait
parameters might be more effective for pathological gaits, such as Parkinson’s disease and
vestibular disorder gaits, which are related to sensory or cognitive functions and show
irregular and unstable motions. Therefore, it is reasonable to use the gait parameters and
joint angles together for the recognition of various gait abnormalities.
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4.2. Comparison with Prior Work

The performances of existing studies for skeleton-based pathological gait recognition
are as follows. Li et al. [3] classified normal controls, patients with hemiplegia, and patients
with Parkinson’s disease with 79.0% accuracy using a k-NN classifier. They achieved high
accuracy even in noisy and low-resolution data without calibration or synchronization
requirements. Dranca et al. [4] recognized the stages of Parkinson’s disease with 93.40%
accuracy using a Bayesian network with correlation-based feature selection. The key
features for classification included left arm movement, trunk position during slightly
displaced walking, and left shin angle for straight walking. An even higher accuracy of
96.23% was attained by focusing solely on features extracted from slightly displaced and
spin walking steps. Seifallahi et al. [11] detected Alzheimer’s disease with an accuracy of
92.31%, sensitivity of 96.33%, precision of 88.62%, and specificity of 90.81% using an SVM
with a Gaussian kernel. Guo et al. [17] classified normal, in-toeing, out-toeing, drop-foot,
pronation, and supination gaits with 90.75% accuracy using bidirectional LSTM. They
integrated this algorithm into a mobile robot system with potential applications in assisting
elderly or neurologically impaired patients at home to reduce fall risks and improve their
quality of life. Chakraborty et al. [23] recognized cerebral palsy gaits with 98.59% accuracy
using an SVM with a radial basis function kernel. According to the ReliefF feature ranking
algorithm, the walking ratio was identified as the highest-ranked feature among classical
gait features, and its inclusion in the classification process substantially enhanced the
performance of all classifiers. Chakraborty et al. [24] recognized equinus foot deformity
gaits with 88.3% accuracy using a multiple adaptive regression splines model. To enhance
accuracy, they created feature vectors using six joint angles, encompassing hip, knee, and
ankle angles on both sides, and integrated these vectors over multiple time instances.

Our proposed model distinguishes itself from existing research in the field of skeleton-
based pathological gait recognition through the introduction of a novel methodology that
adeptly integrates a diverse range of input data. In terms of our model’s classification
performance, it has exhibited exceptional proficiency in categorizing a broad spectrum of
pathological gait types, encompassing normal, antalgic, steppage, lurching, stiff-legged,
and Trendelenburg gaits, achieving an impressive accuracy rate of 99.03%. Furthermore, our
model has demonstrated robust capabilities in discriminating vestibular disorder-related
gaits, achieving accuracies of 91.03% in the all-subject group and 90.59% in the balanced
group, confirming its applicability to real-world scenarios involving actual patients. How-
ever, it is essential to exercise caution when attempting to directly compare classification
accuracies with previous studies within this context. This caution is warranted due to sig-
nificant disparities in the pathological gait categories considered, the depth camera utilized
for data acquisition, and the methodologies employed for pose estimation. Therefore, while
our model’s achieved accuracy is undeniably impressive within the specialized scope of
our study, it is advisable to avoid making direct comparisons with earlier research, given
the substantial divergence in pathological gait typologies and dataset characteristics.

We have been steadily studying skeleton-based pathological gait recognition. In our
first study [18], we improved the performance of pathological gait recognition by applying
an RNN autoencoder to extract features from raw skeleton sequences. The automatically
extracted features were more effective than the raw skeleton sequences. However, it
took a long time for training since the RNN autoencoder and classification model were
trained separately. The walking gait dataset [48] used in the research was composed of
simple abnormal gait patterns created by padding a sole or attaching a weight, which were
relatively easy to classify. Furthermore, the skeleton data were collected on a treadmill,
so the subjects might not generate a natural gait pattern. For these reasons, we needed
to collect complicated pathological gait data using our Kinect system without a treadmill.
Therefore, in our second study [20], we collected complicated pathological gait patterns,
i.e., antalgic, steppage, lurching, stiff-legged, and Trendelenburg gaits. We also proposed
a GRU-based end-to-end model and applied a joint selection strategy to increase the
performance. In our third study [49], we added a foot pressure sensor to our Kinect system.
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The performance of pathological gait recognition was further improved by using foot
pressure and skeleton data together. However, the multimodal system was complicated,
and the foot pressure sensor was costly, so it was not suitable for practical use. Therefore,
we studied a method for maximizing pathological gait recognition performance using a
single Kinect sensor and eventually arrived at the hybrid model proposed in this study.

4.3. Limitations and Future Works

This study had several limitations. First, the proposed hybrid model was validated
on the limited types of pathological gaits. In the future, we should collect abnormal
gait data with diverse diseases, such as Parkinson’s disease, autism spectrum disorder,
stroke, Alzheimer’s disease, sarcopenia, and functional gait disorders, and validate the
proposed model on those data to verify the application validity on other pathological
gaits. Second, we focused on skeleton-based pathological gait recognition, so we only used
skeleton-induced gait parameters, whereas there are many other clinical parameters, such
as body composition analysis, hemanalysis, video head impulse test, videonystagmography,
Montreal cognitive assessment, mini-mental state exam, time up and go test, or the Tinetti
test. Therefore, in the future, we plan to collect those clinical parameters and apply them to
the proposed model to improve the performance of pathological gait recognition. Third, we
just concatenated the encoded features and fed them to the classification layer. In the future,
we aim to further enhance our method by implementing adaptive feature selection or
weighting techniques. This will involve the selection or assignment of weights to features
and matching scores that demonstrate low correlation and high discrimination. Fourth,
the ST-GCN, LSTM, and ANN are effective neural network architectures to encode the
skeleton data, joint angle sequences, and gait parameters, respectively, but might not be
the best neural network architectures to encode each of them. The proposed model can be
further improved by replacing the encoding layers with advanced algorithms optimized for
each input data type. In the future, we will continue to modify the current neural network
architectures with the latest algorithm and reflect on it in future works.

5. Conclusions

The proposed hybrid deep neural network, which effectively used gait parameters,
joint angles, and skeleton data, improved the performance of pathological gait recognition
on two different datasets. The proposed model not only classified the diverse pathological
gaits (simulated) but also recognized the gait abnormalities of real patients with a vestibular
disorder. The fusion of the different inputs had a positive synergy on pathological gait
recognition by integrating the features based on human knowledge and those automat-
ically extracted by artificial intelligence. The framework can provide inspiration for the
development of skeleton-based pathological gait recognition models. Furthermore, it can
be flexibly modified by replacing the encoding layers or adding clinical information, which
can further improve the performance. In the future, we will collect skeleton datasets for
patients with other diseases, such as Parkinson’s disease and sarcopenia, and evaluate the
performance when classifying different diseases to verify the practical use and expansion
of the application.
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Abstract: Taking COVID-19 as an example, we know that a pandemic can have a huge impact on
normal human life and the economy. Meanwhile, the population flow between countries and regions
is the main factor affecting the changes in a pandemic, which is determined by the airline network.
Therefore, realizing the overall control of airports is an effective way to control a pandemic. However,
this is restricted by the differences in prevention and control policies in different areas and privacy
issues, such as how a patient’s personal data from a medical center cannot be effectively combined
with their passenger personal data. This prevents more precise airport control decisions from being
made. To address this, this paper designed a novel data-sharing framework (i.e., PPChain) based
on blockchain and federated learning. The experiment uses a CPU i7-12800HX and uses Docker
to simulate multiple virtual nodes. The model is deployed to run on an NVIDIA GeForce GTX
3090Ti GPU. The experiment shows that the relationship between a pandemic and aircraft transport
can be effectively explored by PPChain without sharing raw data. This approach does not require
centralized trust and improves the security of the sharing process. The scheme can help formulate
more scientific and rational prevention and control policies for the control of airports. Additionally, it
can use aerial data to predict pandemics more accurately.

Keywords: blockchain; federated learning; pandemic prevention and control; privacy-preserving

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) had a huge impact on the world
economy and people’s lives. It is in the interest of all mankind to contain a pandemic at an
early date. However, the spread of the pandemic is affected by many factors. Pandemic
prevention policies and pandemic prevention psychology in different countries will have
different effects [1], thus having a significant impact on the model parameters of virus
transmission. Raffetti et al. [2] demonstrated that national policies are the most important
factor affecting the spread of the pandemic. Sweden adopted a “natural” herd-immunity
strategy to deal with the pandemic, but this model resulted in a COVID-19 death rate
10 times higher in Sweden than that in neighboring Norway [3]. Mishra et al. [4] compared
Denmark, Britain, and Sweden under different policy models. They concluded that domes-
tic policy effects are affected by inter-country population flows and that similar policies
may even produce different effects.

Therefore, it is necessary to include population flow between countries and regions
when designing strategies for the prevention and control of a pandemic, as well as develop
effective policies about population flow to contain the outbreak. This paper aims to study
the impact of air network transmission on the pandemic and how to formulate shipping
policies to contain the pandemic. However, at present, most national medical centers are
often unable to know the flight status of confirmed patients, and most airline companies
cannot obtain the illness status of passengers due to different national policies. Meanwhile,
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federated learning [5] can realize multi-party data integration without sharing data. In this
paper, federated learning is chosen instead of other distributed learning frameworks.

The main reason is that the compute nodes have absolute control over the data in
federated learning, and the central server cannot directly or indirectly operate the data
of the compute nodes. The compute nodes can stop computing and communication at
any time and exit the learning process. However, in other distributed machine-learning
frameworks (such as MapReduce, etc.), the central server has a high level of control over
the compute nodes and their data. The compute nodes are completely controlled by the
central server and receive instructions from the central server. For instance, MapReduce’s
central server can issue instructions to the compute nodes to exchange data with each
other. This can potentially compromise the privacy of user data and may add additional
communication overhead. Meanwhile, the raw data of federated learning can be kept
locally, which is an advantage over other distributed machine-learning approaches.

The traditional federated learning model often requires an aggregator. This will
lead to privacy and model failure problems [6] if the center aggregator is attacked. Our
work is dedicated to enabling federated learning in association with blockchain to engage
safely with collaborative training without a central aggregator and apply it to pandemic
prevention.

In this paper, we present the following: First, we design a pandemic prevention and
control model based on a blockchain. The characteristics of blockchain such as decen-
tralization and security ensure the reliability and effectiveness of the learning process.
This causes federated learning to not depend on the third-party central server, but rather
depend on the consensus mechanism for better data protection and security. The scheme
implements the integration of pandemic data and airline data through federated learning.
Second, the impact of aviation network transmission on pandemic prevention and control
is obtained, thus providing support for scientific predictions of pandemic changes and
auxiliary policy making.

The rest of this article is organized as follows: Section 2 investigates the current
situation related to the use of federated learning for pandemic prevention and control.
Section 3 mainly elaborates on the main architecture of the model. Section 4 introduces the
experiment and analysis. Section 5 summarizes the main work of this paper.

2. Related Work and Prior Knowledge

2.1. Application of Federated Learning in Epidemic

Qian et al. [7] described real-world cases of using federated learning in COVID-19
as well as non-COVID-19 scenarios and analyzed its limitations and practical challenges.
References [8–13] used federated learning to assist in the diagnosis and intelligent mon-
itoring of COVID-19. However, the above schemes only improved the accuracy of the
diagnosis of suspected patients but did not discuss how to evaluate the effect of the policy.
Chen et al. [14] constructed a COVID-19 vulnerability prediction map using federated
learning synergy to identify high-risk areas and reduce the spread of the disease. However,
the method is mainly oriented toward the collaboration of organizations in the same field
and does not provide a cross-domain collaboration approach. Samuel et al. [15] proposed
a privacy architecture based on federated learning and blockchain technology to support
the cross-domain interaction regarding COVID-19 information and protect the authenticity
and privacy of this information. Pang et al. [16] fused urban digital twins between multiple
cities through federated learning technology and constructed a collaborative urban crisis
management paradigm to explore and formulate effective prevention and control policies.
However, the method lacks the competence to analyze the impact of population movement
between regions on pandemic prevention.

2.2. Blockchain Technology

In 2008, Satoshi Nakamoto published a white paper on Bitcoin [17], marking the birth
and landing of blockchain technology. Blockchain technology integrates P2P networks,
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confidential algorithms, consensus mechanisms, and other technologies that can be used
for secure and trusted data storage, transmission, and operation. Today, the blockchain has
developed into the “blockchain 3.0” era [18], and it is integrated with various industries
through smart contracts [19]. The essence of blockchain technology is a distributed shared
ledger. In an environment of incomplete trust, a P2P network is built to verify and store
data through a chain data structure, and a consensus mechanism and encryption algorithm
are adopted to achieve trusted transmission and operation of data. A smart contract is
an automatically executed association deployed on the blockchain based on established
rules [20], which is another form of blockchain consensus. Once the condition is met,
execution is triggered and cannot be terminated. Smart contracts have evolved from scripts
to programming languages. Bitcoin’s scripting support is limited to programming and is
not Turing-complete. Ethereum [21] provides users with a Turing-complete programming
language but requires users to learn additional specific languages. Hyperledger [22]
supports users to write smart contracts in programming languages such as GO, and uses
Docker containers as the running environment, lowering the development threshold for
writing smart contracts. Basetty Mallikarjuna et al. [23] applied deep neural network
(DNN) analysis in healthcare and the COVID-19 pandemic and presented smart contract
procedures to identify feature data (FED) extracted from existing data. Shan Jiang et al.
proposed BlocHIE [24], a Blockchain-based platform for healthcare information exchange.
They also designed a bloom filter [25] to select a low-frequency keyword from the multiple
keywords input by the ITS data owner.

2.3. Application of Blockchain in Federated Learning

Chen et al. [26] analyzed the privacy and security issues of the learning model and
designed a federated learning system that supports privacy protection based on blockchain,
replacing the central server with parameter aggregation. Ramanan et al. [27] proposed
a federated learning environment based on blockchain which uses blockchain to store
and share global models and perform model aggregation tasks through smart contracts.
Rehman et al. [28] proposed a set of blockchain-based federated learning frameworks for
mobile edge computing networks, redefining the model’s storage mode, training process,
and consensus mechanism. Anik Islam et al. [29] presented a federated learning-based
data-accumulation scheme that combines drones and blockchain. Zhu et al. [30] compre-
hensively surveyed challenges, solutions, and future directions for blockchain-empowered
federated learning.

To summarize, federated learning for pandemic analysis is currently mainly used to
integrate knowledge in the field and relies on blockchain technology to strengthen the
robustness and credibility of federal learning. However, the research on the interaction
between regional policies is still insufficient. On the other hand, the storage overhead of a
blockchain is large, which has a great impact on efficiency when federated learning requires
more model parameters. Therefore, it is necessary to study how to integrate cross-domain
information while protecting the rights and interests of data owners. Through this method,
we aim to identify the impact of inter-regional population flow on pandemic prevention
and control to better develop pandemic predictions and policy making.

3. PPChain

In this section, we propose a blockchain for COVID-19 prevention and control based
on federated learning. With blockchain technology, data can be trusted and distributed
among multiple parties without a third-party central authority, reducing the risk of data
leakage. There are two main types of participants in the network: regional pandemic
management centers and individual airlines. Using the federated learning technique, the
two groups of entities can figure out how the disease is spreading through flights without
sharing raw data, which allows for the development of targeted containment policies and
predictions. The system uses smart contracts to act as aggregators. In addition, to ensure
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the efficiency of the blockchain network, the models are trained locally and the blockchain
only utilizes parameter information flow. The system architecture is shown in Figure 1.

Figure 1. The system architecture.

According to the above analysis, the pandemic mainly spreads and spreads rapidly
through the transportation network. Therefore, we choose the representative transportation
route with the widest spread and fastest speed, namely the flight, to study the transmis-
sion mode of the pandemic, to better predict and prevent the pandemic. This can also
be extended to multiple transport networks. The transmission of the pandemic should
be coupled with the transportation network, but the traditional pandemic analysis and
prediction models such as SIR Do not consider the factors of the transportation network.
However, the current research on the effect of transportation networks on pandemic trans-
mission does not have the support of pandemic transmission dynamics. Therefore, this
paper hopes to train the SIR model in collaboration with the communication model of
the traffic network, to better predict and prevent the pandemic. Specifically, federated
learning enables collaborative learning of two different domain models without sharing
their respective training data. In addition, the effect of traffic network changes can be
directly transmitted to the change in epidemic model parameters without lag. Blockchain
provides the building blocks for trusted collaboration and protects the security of training.
The traditional combination of blockchain and federated learning is mostly collaborative
training between the same models, and this paper is inclined to study collaborative training
between different models.

Using the framework shown in Figure 1, the training process of federated learning is
divided into two parts. First, the sample space is aligned based on people with the same
identity information who are distributed to different parties. Using the user ID alignment
technique based on encryption ensures that the original data of each party do not need
to be exposed. In the second phase, the encryption model training is performed based on
these aligned entities as follows:

• After identifying the shared entity, the blockchain triggers the smart contract to create
the key pair and send the public key to regional pandemic management centers and
individual airlines.

• Regional pandemic management centers and individual airlines encrypt and exchange
intermediate results, which are used to help calculate gradients and loss values.

• Regional pandemic management centers and individual airlines calculate the encryp-
tion gradient and add additional masks, respectively. Regional pandemic management
centers also calculate the encryption loss. The two parties then write the encrypted
results into the blockchain’s ledger through the SDK.

• Smart contracts on the blockchain decrypt the gradients and losses newly written into
the ledger and send the results back to both parties. Regional pandemic management
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centers and individual airlines unmask the gradient information and update the model
parameters according to the gradient information.

• Meanwhile, the parameters trained by the model are written into the blockchain. Then,
the parameters can be read for better pandemic prediction and prevention and can
help control policy formulation.

Through the above process, the spread of infection caused by the flight flow between
different regions can be calculated. In this study, we used the SIR model (susceptible–
infected–removed) as the model to be trained.

3.1. Pandemic Transmission Model Based on SIR

The SIR model mainly simulates the evolution of susceptible population S, infected
population I, and removed population R (including those with immunity, those who are
no longer infected, or those who have died after being cured). The key parameters of the
model are shown in Table 1, where effective reproduction number R is the core parameter
trained by federated learning.

Table 1. The specifications of SIR model’s symbols

Symbol Meaning

R Effective reproduction number (= β
γ (1 − C

N ));
the average number of infections per patient

R0 Basic reproduction number (= β
γ )

β Average frequency of exposure (per day)
γ Average removal frequency (per day)

N Total population (also used as initial
susceptible population)

Rall Final outbreak size (replaced by final recovery)
Slast The rest of the uninfected population

RMSE Root-mean-square error

The SIR model is calculated as follows:

dS
dt

= − β

N
IS (1)

dS
dt

=
β

N
IS − γI (2)

dR
dt

= γI (3)

where t is time, S(t) is the number of susceptible persons at t, I(t) is the number of infected
persons at t and R(t) is the number of cured persons at t.

N = S + I + R (4)

In the initial state, S(0) = S0, I(0) = I0 and R(0) = R0. According to Formulas (1)
and (3):

S = S0e[
β

Nγ (R−R0)] (5)

Eventually, I(t) approaches zero according to Formulas (4) and (5); thus, it can be
solved with:

Rall = N − S0e[
β

Nγ (Rall−R0)] (6)
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We accumulate the time series C(t) that is formed by the daily data, as shown in
Formula (7).

C(t) = I(t) + R(t) = N − S0e[
β

Nγ (R−R0)] (7)

Therefore, the least squares method is used to conduct regression analysis on the time
series formed by the confirmed data and obtain the estimation of each parameter, as shown
in Formula (8).

argmin
β,γ

(‖ Ct − Ĉt(β, γ, S0) ‖) (8)

To protect the patients’ private information in the electronic medical record data, we
adopted the federal learning method to fine-tune the model training. Formula (8) is the
objective function of federated learning.

3.2. Aviation Network Transmission Model

To determine the influence of air traffic network propagation, the probability of
cities being affected by diffusion is calculated according to the parameters transmitted by
federated learning. The susceptibility probability of flights taking off from each city is
approximated as follows:

Pplane = Rplane ·
Iplane

Nplane
(9)

Rplane is the effective reproduction number of the flight, Iplane represents the presence
of cases on the flight and Nplane is the total number of people on the flight. Thus, the
probability of city k being affected by the imported spread of the pandemic can be calculated,
as shown in Formula (10).

Pk = 1 − Pk = 1 −
numk

∏
n=1

[
fn

∏
m=1

(1 − Pm)] (10)

numk represents the number of cities which have flights to city k, fn represents the
number of flights from city n and Pm is the susceptibility probability of flight m.

Based on the probability of city k being affected, the importance of airports is ranked
by measuring the location of airport nodes and the airline flow of airports. A weighted
proximity algorithm is used to highlight the influence of path distance between nodes on
recognition results.

PC
i = Pk · (M − 1/

M

∑
j=1

f (dij)) (11)

M represents the number of airports in the network, and dij represents the minimum
number of transit times from airport i to airport j, where f () is a logarithmic function. The
importance output matrix of adjacent nodes is set for evaluation:

H =

⎡⎢⎢⎢⎣
1 δ12D2/k2 . . . δ1MDM/k2

δ12D2/k2 1 . . . δ2MDM/k2

...
... . . .

...
δM1D1/k2 δM2D2/k2 . . . 1

⎤⎥⎥⎥⎦ (12)

In the matrix, δij is the contribution allocation parameter. If two nodes are connected,
the value is 1; otherwise, the value is 0. The element on the diagonal is 1, which means that
the contribution ratio of the node to itself is 1. Di is the degree of the airport i and k is the
average degree of the node:

k =
M

∑
i=1

Di/M (13)
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Then, the weight Si of each airport node is calculated:

Si = ∑
j∈Ni

Wij (14)

Ni is the neighbor node set of node i and Wij is the weight of the edge directly
connected to node i. According to Formulas (11)–(14), the importance of each airport node
is obtained as Ci.

Ci =
M

∑
i=1,j �=i

PC
j δijSjDj/k2 (15)

3.3. Federated Learning Training Process Assisted by Blockchain

The workflow of PPChain mainly includes four stages: initializing the collaborative
training alliance, writing the encrypted results to the ledger, reading and sending the
results, and updating the model parameters.

In the stage of initializing the collaborative training alliance, let us assume that the par-
ticipants of N1 (CDC (Centers For Disease Control And Prevention) pi, i ∈ {1, 2, . . . , N1}),
and the participants of N2 (airlines qi, i ∈ {1, 2, . . . , N2}) join the blockchain network and
obtain a configuration file containing predefined information such as a collaboration model
and initialization parameters to form a collaborative training alliance. The blockchain
network randomly selects M(M = M1 + M2, where M1 = N1/2, M2 = N2/2) participants
to form a certification consortium to enable the system’s consensus algorithm.

It is a remarkable fact that smart contracts will be deployed on the blockchain to create
a key pair for each entity that joins the network and will return the public key as a means of
identification and encryption, while the private key will be stored in the blockchain ledger
along with the entity’s characteristic information. It will be read by the smart contract for
decryption during the result reading and sending phase.

To ensure communication efficiency and make collaborative training and node identity
information easy to maintain, the channel mechanism is applied to the blockchain network.
The channel is a dedicated subnet for specific members to communicate with each other.
Different types of transactions will be executed in different task channels. Therefore, a
relatively independent ledger will be formed for easy management and maintenance, and
finally, communication efficiency will be improved.

In this paper, two types of channels were designed in which the identity channel is
used for the storage of private keys and entity characteristic information. We designed
an identity form for the registration of information for nodes joining the network. Forms
consist of normalized data containing entity identity information that circulates in channels
in the form of smart contracts. The typical data structure is shown in Table 2.

Table 2. The typical data structure of an identity form.

Symbol Explanation

ID The identity number of the entity
type Categories of entities (medical, aviation)
name Name of entity
time The time that the entity joins the blockchain network
state Whether the entity is incorporated into an authentication consortium

sk The entity’s private key information

The other channel is used for the collaborative training of the federated learning
method, where relevant entities join and complete business on the channel after authentica-
tion and authorization. Additionally, the channel ledger records the complete process of
collaborative training. When the training is completed, the ledger data of the channel are
hashed to form a hash value and stored in the system’s general ledger. Similarly, collabora-
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tive training is also implemented via forms in the channel through smart contracts. Table 3
shows the form structure of the co-training process.

Table 3. The form structure of the co-training process.

Symbol Explanation

MissionID Serial number of the cooperative training task
Owner The entity that provides the gradient
epoch The number of rounds iterated by cooperative training
param Encrypted gradient information

timestamp The timestamp of the gradient written to the ledger
collaborators A collection of entities that participate in the corresponding collaboration

mask Mask information

In the stage of writing the encryption results to the ledger, the entity that uploads
the model fills in the corresponding form information and iteratively updates the epoch
field. The form is broadcast on the channel. The certification consortium verifies and
signs off on transactions. The transactions are handed over to channel members for con-
sensus. If a consensus is reached, the transaction-committing channel is packaged into
transaction blocks.

After the above steps, the smart contracts on the blockchain decrypt the gradients
and losses newly written to the ledger and send the results back to both parties, which are
the results of the reading and sending phase. The pandemic control centers and airlines
will uncover the gradient information. In the model parameter update stage, the model
parameters are updated according to the gradient information, and the above process can
be summarized as the collaborative training step in Table 4.

Table 4. The proceedings of collaborative training.

Step CDC Airport
Smart Contracts on

Blockchain

1 Initialize β, γ Initialize Rplane

Create an encryption
key pair and send the

public key to both
parties

2

Calculate ‖ ΓA ‖=‖
Ct − Ĉt(β, γ, S0) ‖
and send it to the

blockchain

Calculate ‖ ΓB ‖=‖
Ct − Ĉt(Rplane, S0) ‖

and send it to the
blockchain

Create the
collaboration form
and write ‖ Γ ‖=‖

ΓA ‖ + ‖ ΓB ‖

3
Calculate ∂Γ

∂R0
, then

encrypt it and write it
to the blockchain

Calculate ∂Γ
∂Rplane

, then
encrypt it and write it

to the blockchain

Read the contents of
the ledger, decrypt
them and send to

both parties
4 Update β, γ Update Rplane Update block

Obtainedcontent β, γ Rplane
The ledger of

co-training results

4. Experiment and Analysis

This section introduces the experimental environment of PPChain and evaluates the
system performance from four aspects: training accuracy, time cost, transaction processing
efficiency, and transaction latency.

Hyperledger Fabric was used to build the blockchain network in the system, and the
federated learning parameters were transmitted through smart contracts. The main body
of the system model was realized under the chain, and SDK was used to read and write the
data on the chain.
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4.1. Experiment Settings

To evaluate the system performance of the proposed PPChain, experiments were run
on real datasets. Global pandemic data published by John Hopkins University were used as
the pandemic data, and public datasets of flight connections were used as the inter-regional
flight information.

In this experiment, the two types of datasets were randomly divided into 10 subsets
with equal numbers and assigned 20 participants to create local datasets.

The experiment was run on a laptop equipped with a 4-core, 8-thread Intel CPU i7-
12800HX and 32 GB of memory. The Python programming language was used to develop
SDKs to implement the business logic of the system. Smart contracts were written in the
Go language. The learning model was written using Python 3.9 and PyTorch 1.4.0 and
executed on the NVIDIA GeForce GTX 3090Ti GPU.

4.2. Performance Evaluation

Table 5 describes the parameters for co-training.

Table 5. The parameters for co-training.

Parameter Value

numbero f epochs 10
numbero f iterations 1500

learningrate 0.015
batchsize 64

After collaborative training, the training-obtained R0 is fitted with the actual infection
curve, and the accuracy of the training is judged by RSME, as shown in Figure 2. It can be
seen that the system can better implement collaborative training.

Figure 2. Infection curve fitting graph.

In this paper, a more accurate impact of the aviation network on the spread of the
pandemic is obtained through collaborative training because this method realizes the
data alignment between common entities without exposing privacy. Based on the Rplane,
we applied it to the designed aviation network propagation model to obtain a directed
network diagram of the pandemic’s propagation through the aviation network, as shown
in Figure 3.
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Figure 3. Directed network of pandemic transmission in aviation network.

This paper explores the impact of the aviation network on the COVID-19 pandemic to
assist in the formulation of effective prevention and control policies. In this paper, the top
20 airports with the highest importance and the top 20 airports with median importance
were selected for comparison.

After airport closures, the data can be applied back into the model that has been
trained for calculation. By closing these airports, the number of cities affected daily by
the imported spread of the pandemic is as shown in Figure 4. From the results, it can
be seen that the effect of closing 20 generally important airports is small, but closing
the top 20 most important airports will significantly reduce the number of affected cities.

Figure 4. Comparison of the impact of airports on the spread of COVID-19.

Next, the changes in the transaction efficiency and transaction latency in the collabora-
tive training process of the system were recorded. The transaction processing efficiency is
reflected by the system running time, which includes the process of reading data, verifying
signatures, completing transactions, achieving consensus, and obtaining data on-chain.
Transaction latency mainly includes consensus delay and communication delay between
nodes and is divided into maximum delay, average delay, and minimum delay due to
network jitter.

In this paper, the number of network nodes was changed to test the changes in
transaction efficiency and transaction latency, as shown in Figures 5 and 6.
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Figure 5. The effect of the number of nodes on transaction efficiency in cooperative training.

Figure 6. The effect of the number of nodes on transaction delay in cooperative training.

5. Conclusions

In this study, based on the problem that medical centers and airlines cannot fully
obtain the flight information of confirmed patients or the illness status of passengers due to
privacy protection, we designed PPChain without sharing the original data. The system
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combines federated learning with a blockchain, improving the security of shared processes
without the need for centralized trust. Through experiments, we have verified that effective
data-sharing can be achieved without destroying privacy by simulating the impact of
aviation policies. Thus, we can formulate prevention and control policies more scientifically
and rationally, and predict the spread of a pandemic more accurately.

Author Contributions: Conceptualization, T.C.; methodology, T.C. and Y.P.; software, T.C.; validation,
T.C.; formal analysis, T.C.; resources, T.C. and J.Z.; data curation, T.C.; writing—original draft
preparation, T.C. and Y.P.; writing—review and editing, T.C.; visualization, Y.P. and T.H.; supervision,
H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bavel, V.; Cichocka, A.; Capraro, V. National identity predicts public health support during a global pandemic. Nat. Commun.
2022, 13, 517. [CrossRef] [PubMed]

2. Raffetti, E.; Mondino, E.; Baldassarre, G. Epidemic risk perceptions in Italy and Sweden driven by authority responses to
COVID-19. Sci. Rep. 2022, 12, 9291. [CrossRef] [PubMed]

3. Brusselaers, N.; Steadson, D.; Bjorklund, K. Evaluation of science advice during the COVID-19 pandemic in Sweden. Humanit.
Soc. Sci. Commun. 2022, 9, 91.

4. Mishra, S.; Scott, J.A.; Laydon, D.J. Comparing the responses of the UK, Sweden and Denmark to COVID-19 using counterfactual
modelling. Sci. Rep. 2021, 11, 16342. [CrossRef]

5. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Vertical Federated Learning. In Federated Learning; Synthesis Lectures on
Artificial Intelligence and Machine Learning; Springer: Cham, Switzerland, 2020; pp. 69–81.

6. Zhou, X.; Xu, M.; Wu, Y.; Zheng, N. Deep Model Poisoning Attack on Federated Learning. Future Internet 2021, 13, 73.
7. Qian, F.; Zhang, A. The value of federated learning during and post-COVID-19. Int. J. Qual. Health Care 2021, 33, mzab010.

[CrossRef]
8. Kallel, A.; Rekik, M.; Khemakhem, M. Hybrid-based framework for COVID-19 prediction via federated machine learning models.

J. Supercomput. 2022, 78, 7078–7105. [CrossRef]
9. Salam, M.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573.
10. Wang, R.; Xu, J.; Ma, Y.; Talha, M.; Al-Rakhami, M.S.; Ghoneim, A. Auxiliary Diagnosis of COVID-19 Based on 5G-Enabled

Federated Learning. IEEE Netw. 2021, 35, 14–20. [CrossRef]
11. Zhang, W.; Zhou, T.; Lu, Q.; Wang, X.; Zhu, C.; Sun, H.; Wang, Z.; Lo, S.K.; Wang, F.-Y. Dynamic-Fusion-Based Federated Learning

for COVID-19 Detection. IEEE Internet Things J. 2021, 8, 15884–15891. [CrossRef]
12. Elshabrawy, K.M.; Alfares, M.M.; Salem, M.A.M. Ensemble Federated Learning for Non-II D COVID-19 Detection. In Proceedings

of the 2022 5th International Conference on Computing and Informatics (ICCI), Cairo, Egypt, 9–10 March 2022; pp. 57–63.
13. Alam, U.; Mahbub, R. Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking

Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application. Sensors 2021, 21, 5025.
[CrossRef]

14. Chen, J.J.; Chen, R.; Zhang, X.; Pan, M. A Privacy Preserving Federated Learning Framework for COVID-19 Vulnerability Map
Construction. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Xiamen, China, 14–23 June
2021; pp. 1–6.

15. Samuel, O.; Omojo, A.B.; Onuja, A.M.; Sunday, Y.; Tiwari, P.; Gupta, D.; Hafeez, G.; Yahaya, A.S.; Fatoba, O.J.; Shamshirband,
S. IoMT: A COVID-19 Healthcare System driven by Federated Learning and Blockchain. IEEE J. Biomed. Health Inform. 2023, 8,
823–834. [CrossRef]

16. Pang, J.; Huang, Y.; Xie, Z.; Li, J.; Cai, Z. Collaborative City Digital Twin for the COVID-19 Pandemic: A Federated Learning
Solution. Tsinghua Sci. Technol. 2021, 26, 759–771.

17. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. In Proceedings of the Nakamoto 2008 BitcoinAP, Nakamoto, Japan,
31 October 2008.

18. Maesa, D.F.; Damiano; Mori, P. Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [CrossRef]
19. Dai, H.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [CrossRef]
20. Wu, C.; Xiong, J.; Xiong, H.; Zhao, Y.; Yi, W. A Review on Recent Progress of Smart Contract in Blockchain. IEEE Access 2022, 10,

50839–50863. [CrossRef]

122



Bioengineering 2023, 10, 965

21. Chen, J.; Xia, X.; Lo, D.; Grundy, J.; Luo, D.X.; Chen, T. Defining Smart Contract Defects on Ethereum. IEEE Trans. Softw. Eng.
2022, 48, 327–345. [CrossRef]

22. Yamashita, K.; Nomura, Y.; Zhou, E.; Pi, B.; Jun, S. Potential Risks of Hyperledger Fabric Smart Contracts. In Proceedings of the
2019 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE), Hangzhou, China, 14 March 2019;
pp. 1–10.

23. Mallikarjuna, B.; Shrivastava, G.; Sharma, M. Blockchain technology: A DNN token-based approach in healthcare and COVID-19
to generate extracted data. Expert Syst. 2022, 39, e12778. [CrossRef] [PubMed]

24. Jiang, C.J.; Wu, H.; Yang, Y.; Ma, M.; He, J. BlocHIE: A BLOCkchain-Based Platform for Healthcare Information Exchange. In
Proceedings of the 2018 IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 18–20 June 2018;
pp. 49–56. [CrossRef]

25. Jiang, S.; Cao, J.; Wu, H.; Chen, K.; Liu, X. Privacy-preserving and efficient data sharing for blockchain-based intelligent
transportation systems. Inf. Sci. 2023, 635, 72–85. [CrossRef]

26. Chen, X.; Ji, J.; Luo, C. When machine learning meets blockchain: A decentralized, privacy preserving and secure design. In
Proceedings of the IEEE International Conference on Big Data, Pisca Taway, NJ, USA, 10–13 December 2018; pp. 1178–1187.

27. Ramanan, P.; Nakayama, K. BAFFLE: Blockchain based aggregator free federated learning. In Proceedings of the 2020 IEEE
International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 72–81.

28. Rehman, M.H.; Salah, K.; Damiani, E. Towards blockchain based reputation-aware federated learning. In Proceedings of the
International Symposium on Edge Computing Security and Blockchain, Toronto, ON, Canada, 6 July 2020; pp. 183–188.

29. Islam; Amin, A.A.; Shin, S.Y. FBI: A Federated Learning-Based Blockchain-Embedded Data Accumulation Scheme Using Drones
for Internet of Things. IEEE Wirel. Commun. Lett. 2022, 11, 972–976. [CrossRef]

30. Zhu, J.; Cao, J.; Saxena, D.; Jiang, S.; Ferradi, H. Blockchain-empowered Federated Learning: Challenges, Solutions, and Future
Directions. ACM Comput. Surv. 2023, 55, 240. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

123



Citation: Tagmatova, Z.;

Abdusalomov, A.; Nasimov, R.;

Nasimova, N.; Dogru, A.H.; Cho, Y.-I.

New Approach for Generating

Synthetic Medical Data to Predict

Type 2 Diabetes. Bioengineering 2023,

10, 1031. https://doi.org/10.3390/

bioengineering10091031

Academic Editors: Hongqing Yu,

Alaa AlZoubi, Yifan Zhao

and Hongbo Du

Received: 31 July 2023

Revised: 28 August 2023

Accepted: 30 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

New Approach for Generating Synthetic Medical Data to
Predict Type 2 Diabetes

Zarnigor Tagmatova 1, Akmalbek Abdusalomov 1,*, Rashid Nasimov 2, Nigorakhon Nasimova 2,

Ali Hikmet Dogru 3 and Young-Im Cho 1,*

1 Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-Si 461-701, Republic of Korea
2 Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan
3 Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249-0667, USA;

alihikmet.dogru@utsa.edu
* Correspondence: bobomirzaevich@gmail.com (A.A.); yicho@gachon.ac.kr (Y.-I.C.)

Abstract: The lack of medical databases is currently the main barrier to the development of artificial
intelligence-based algorithms in medicine. This issue can be partially resolved by developing a
reliable high-quality synthetic database. In this study, an easy and reliable method for developing
a synthetic medical database based only on statistical data is proposed. This method changes the
primary database developed based on statistical data using a special shuffle algorithm to achieve a
satisfactory result and evaluates the resulting dataset using a neural network. Using the proposed
method, a database was developed to predict the risk of developing type 2 diabetes 5 years in advance.
This dataset consisted of data from 172,290 patients. The prediction accuracy reached 94.45% during
neural network training of the dataset.

Keywords: synthetic medical data; type 2 diabetes; prediction of diseases; shuffling

1. Introduction

Currently, AI algorithms are widely used in medicine to solve many problems, such as
classification, disease prediction, risk evaluation, medical image segmentation, and image
detection. However, most AI algorithms, particularly deep learning (DL) methods, require
considerable data. The size of the dataset plays a crucial role in increasing the accuracy of
the algorithms. The highest-performance milestone algorithm relies on a large database.
Moreover, there is also a large open-access database, such as ImageNet, containing more
than 1.5 million images, and the Open Image Dataset includes more than 9 million data
points. However, in the medical field, although there are millions of data collected from
various major hospitals around the world, there are still very few databases open to the
public. As medical data include the personal information of patients, they cannot be shared
for maintaining privacy. However, certain programmers are allowed to use them, keeping
the identity of the patients confidential.

In existing algorithms, the number of recorded patients is either not satisfactory for
training DL algorithms or not labeled. For example, the Pima Indian Diabetes Database,
which is the most widely used program for training diabetes detection algorithms, con-
tains data from only 768 patients (females). Annual survey: The Behavioral Risk Factor
Surveillance System (BRFSS) of the US consists of more than 100,000 annual patient records,
but the data are incomplete. Furthermore, finding an appropriate database for training
AI models is difficult. In particular, it is almost impossible to find a database required
to train predictive algorithms because the data collection process is time consuming and
difficult. For example, there is hardly any open-access database that can be used to predict
diabetes or its potential complications 5–6 years ahead. Therefore, over the past decade,
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considerable research has been conducted on the development of synthetic medical data.
There are many reviews of these works [1–5].

Typically, there are three types of synthetic data: fully synthetic, semisynthetic, and
hybrid. To develop a semi-synthetic database, the main features and statistical distribution
of the specific dataset were imitated, that is, a new database that preserves the statistical
distribution of the real one was developed. The main purpose of this method is to hide
patient data from real databases and thus make the data close to that in the public database
open to everyone without compromising privacy. The second method is a hybrid method, in
which a large database is developed using a specific small dataset. The goal of such methods
is to synthetically increase the amount of data in a small dataset via data augmentation. The
third method involves developing a completely new dataset without using a real database.
This method is typically used in cases where a database is unavailable in a particular field.

While studying the literature, it is clear that most studies have been conducted in the
first and second directions. Only a few methods have been developed in the third research
area, most of which are highly complex. In addition, most of these studies were aimed
at developing electronic health records, and almost no research has been conducted on
predicting the disease in advance.

Furthermore, the traditional approach to generating fully synthetic medical data
involved manual input from medical professionals, who had to painstakingly extract the
necessary rules from the guidelines and books to create datasets. This process was not
only time consuming but also prone to errors and inconsistencies. Additionally, it relied
heavily on the availability and cooperation of medical personnel, which further hindered
its efficiency. To overcome these challenges, our proposed method utilizes neural network
algorithms and shuffling techniques. By leveraging these technologies, we can automate
the process of generating synthetic medical data with minimal human intervention. This
not only saves time but also ensures accuracy and consistency in the generated datasets.

Moreover, our method allows for scalability, making it suitable for large-scale studies
that require extensive amounts of data. It also enables researchers to easily customize the
generated datasets according to their specific research requirements. This method also
addresses privacy concerns associated with sensitive medical data. Since the database
is created using statistical information rather than individual patient records, it ensures
anonymity while still providing valuable insights into disease identification.

The main concept of this method is as follows. Many types of statistical medical data
are currently available. Most of them are open to use, and much of their data are detailed
in special reports or in research papers. In the first stage, a primary dataset was developed
using these statistics. Subsequently, a neural network (NN) was trained using this dataset.
After every five training epochs, the data were shuffled using a special shuffling operation.
The developed dataset was saved after each shuffle. The dataset for which NN showed the
highest accuracy was selected. From the calculations, it was estimated that the resulting
dataset obtained by this method was satisfactory for practical use. The database created
using our method can be a valuable tool in training various AI algorithms for identifying
and predicting type 2 diabetes 5 years in advance. Today, such database does not exist or is
not open for use, but only statistical data are available.

2. Related Works

Medical data can be in the form of images, numbers, texts, or comments. In addition,
they can be single data or time-series data. Therefore, the methods proposed for generating
synthetic medical data differ. For example, generational neural diffusion models, variation
autoencoders, and a generative adversarial network (GAN) are mainly used to develop
synthetic medical images/data [6–8], whereas algorithms such as Bayesian networks [9]
and classification and regression trees [10,11] are used to develop numerical (quantitative)
and non-numerical (qualitative), and recurrent deep learning models are used to build
time-series databases [12]. Because this study aims to develop a numerical database, the
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issues of generating images and developing non-numerical databases are beyond the scope
of this study. Further information can be found in [13].

As we examine methods for generating numerical data, it becomes clear that the major-
ity of the works that have been proposed recently are based on real databases. Their main
purpose is to increase the security of the real database, hide the patients’ personal data,
and, more precisely, change the data to such an extent that the patient’s identity cannot be
recognized; this resembles high-level encryption. Synthetic databases that properly depict
the original data distribution, for instance, would significantly minimize patient privacy
concerns and may be freely shared in place of the original patient data. To develop a differ-
entially private synthetic database, the authors of [14] presented deep learning algorithms
that can capture the relationships between various variables. Ref. [15] has developed a
high-fidelity open generator that generates synthetic data using a probabilistic relational
model. This generator met certain privacy requirements and produced an imitation of the
large French insured patients (SNDS) database. The most common method for generating
synthetic data based on real data is to use GAN. Various modifications of GANs have
been used to generate synthetic medical data, including HC_GAN, medWGAN, AC_GAN,
MC_medGAN, EMR_WGAN [16], and EEG_GAN [17]. A synthetic replica of numerous
databases was produced as a result of the studies described above and made accessible
for public use, such as the NIH National COVID Cohort Collaborative (N3C), the CMS
Data Entrepreneur’s Synthetic Public Use files, and synthetic variants of the French public
health system claims and hospital dataset (SNDS) [18–20].

However, little research has been conducted to construct fully synthetic data. Rubin was
the first to propose a method to develop a fully synthetic database [21]. Ragunathan et al. (2003)
proposed methods based on combining point and variance estimates from multiple synthetic
datasets that were closely related but slightly different from the combining rule for multiple
nonresponse imputations [22]. Later, Drechsler et al. developed an improved version of this
method to overcome its shortcomings [23]. Walonski developed a method for replicating health
records using statistical data and medical records [24]. A statistically valid random shuffle
method was developed to increase the cardinality of the heart failure dataset [25]. Although
this is not a fully synthetic method, it is likely to be an image-augmentation method. Most of
the aforementioned methods for developing a full synthetic dataset are complex; therefore, we
propose a relatively easy method in this study.

3. Methodology

When we searched for studies on diabetes prediction or risk factor assessment, we
found many statistical studies. Most of these authors have conducted large surveys to assess
the risk of diabetes 5–10 years in advance to study the factors that lead to diabetes. For
example, in [26], 260,000 people; in [27], 63,000 people; and in [28], more than 93,000 people
were surveyed/observed over 5 to 10 years. The most important aspect of these studies is
the relationship between risk factors and their possibility of causing the disease is written
down in the smallest detail.

After studying these papers, we developed a synthetic database based on the statistics
presented in this study. The steps for implementing this concept are illustrated graphically
in Figure 1.

1. Development of a primary database based on statistical rules and the given statistical data.
Based on the selected statistics, the general statistical data were converted into individual
patient data. Further details are provided in Section Developing Primary Database.

2. Primary and Secondary shuffling of the data. Usually, the distribution of the data in
the initially generated database is highly unbalanced; therefore, it is difficult to bring
them to the desired point using the proposed shuffling algorithm during the training
process. A primary shuffle should be performed to distribute data uniformly in the
database; this method is discussed in detail in Section 4.

3. The database was fed into a loop consisting of the main shuffling and training pro-
cesses; this step is the main part of our proposed method, in which the primary and
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secondary shuffled dataset is trained on the neural network. The dataset was shuffled
using a special shuffle function and fed again to the neural network depending on
the test accuracy value of the neural network; this process was continued until a
satisfactory value was obtained for the neural network. The database with the highest
performance was selected and saved every time it was tested in the neural network.

4. Evaluation of trained data, and performance enhancement. We will discuss these
processes in detail in Section 5.

Figure 1. Block diagram of shuffling algorithm.

Developing Primary Database

We have chosen the case in [28] for this study; this work contains the most detailed
information and interconnections of the data. In this paper, the China Cardio Metabolic
Disease and Cancer Cohort Study survey was analyzed. This survey was conducted with
93,781 non-diabetic participants nationwide between 2011 and 2016. They examined 14 risk
factors for diabetes. These risk factors include education, occupation, unhealthy diet,
physical inactivity, current alcohol consumption, current smoking, poor sleep, general or
central obesity, insulin resistance, prediabetes, hypertension, and dyslipidemia, gender,
age. Age dependence of 13 risk factors was studied in groups, namely (40–55, 55–65, 65–75,
and ≥75 years old).

However, we selected 8 factors for this study: age, gender, unhealthy diet, physical
inactivity, current alcohol consumption, poor sleep, general or central obesity, and hyper-
tension. We have carefully selected eight factors for our study because they are easily
accessible and can be compiled into a comprehensive database. This allows for future
verification and comparison, ensuring transparency and credibility. To be more precise, the
factors we chose in this work were chosen not because they were the most important, but
because they were easy to implement as a proof of concept. That is, the approach does not
underestimate the significance of other potentially critical factors, such as insulin resistance
and prediabetes. However, just it takes into account that, it is not always possible to find
such data of patients, especially data within 5 years. Therefore, if we used all the factors in
the article, the possibility of comparing our work with the real database and estimating
accuracy would be reduced. Thus we used easily available risk factors. Once a proof of
concept has been established using easily available factors, we can expand our database
by incorporating more elements in subsequent phases effortlessly, as our method is easy
to implement. Moreover, if we want, we can generate a database with more than 14 risk
factors, for example, we can add factors such as ethnicity and cardiac disorder. However,
for this we should use other survey with more statistical information.
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First, the number of patients in each age group was determined. The average age of
the patients, standard deviation, and age limits are given for each group. Patient age was
calculated using the following formula:

F(x) =
1√
2π

∫ x2

x1

e−t2/2dt (1)

where x1 and x2 are the age boundaries for each group at t-time in the year. We used the
following approach to generate the remaining data. The hazard ratios were calculated for
each parameter. For incident diabetes associated with risk factors and risk scores according
to age group, hazard ratios (HRs) and 95% confidence intervals (Cis) were calculated using
Cox proportional hazards models. It is known that the hazard ratio is determined by the
following formula:

HR =

(
Od
Ed

)
Oh
Eh

(2)

where Od is the observed number of events in the group of diabetes, Oh is the observed
number of events in the group of healthy people, Ed is the expected number of events
in the group of diabetes, and Eh is the expected number of events in the healthy group.
Formula (2) was used to arrange the statistical values into groups. It is important to say
that, from the beginning, we divided the patients’ data in each age group into 2 subgroups:
those who developed diabetes within 5 years and those who did not develop diabetes
within 5 years/healthy patients. This study aimed to prevent changes in the statistical
values of the dataset. Next, we recorded the values in each subgroup based on Formula (2),
using the ratio given in the statistics for diabetic and healthy people.

Although in these statistics, the numbers of men and women were given for each age
group, they were adjusted for gender. In other words, the significance of gender has not yet
been studied. When we analyzed other studies on the importance of gender, we ascertained
that the relationship between diabetes and gender was still under investigation. The
risk of developing diabetes among women and men depends on nationality and age [20].
Although it is more common among men in the US, it is also more common among women
in East Asian countries. For this reason, we did not use the HR formula to develop the
gender data but directly developed the data based on the numbers. As we divided the age
group into subgroups and information on the proportion of women and men for subgroups
was not given, we also kept the age group proportion within the subgroups.

In addition, it is important to note that all of our data were in the form of zero or one,
except for age. Information about the age of the participants was in the range of 40–100.
Age was divided by 100 to normalize them to other data.

4. Shuffling the Data

4.1. Primary and Secondary Shuffling

When the synthetic data were generated based on statistics, it was observed that the
data were unevenly distributed. If this database is fed into a loop consisting of a neural
network and a special shuffle function, it is possible to develop a database with the desired
form. Therefore, primary shuffling was performed before feeding into the neural network.
This step includes two shuffling methods: primary and secondary. As the primary shuffling
method, we used the Fisher–Yates shuffling method; as the secondary shuffling method,
we used a new simple shuffling method. Because the dataset consists mainly of zeroes
and ones, shuffling using the Fisher–Yates method does not produce the expected result.
Therefore, in addition to the Fisher–Yates shuffle method, we used a secondary shuffling
method. This secondary shuffle method operates according to Formulas (3) and (4):

a[i] = a[semilength − i] (3)
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a[semilength] = a[i] (4)

4.2. Main Shuffling Algorithm

The main shuffling process begins after the primary and secondary shuffling pro-
cesses. It is worth noting that while the primary and secondary shuffling processes are
accomplished only once, the main shuffling process is accomplished in every cycle.

The input data of the function are subgroup data, and their main parameters are the
percentage (P parameter) and starting point (B parameter). Based on these parameters, the
function shuffles the data within a specific interval of the incoming subgroup database.
More precisely, the starting point of the part to be shuffled was determined by parameter
B, and its ending point was determined by parameter P. Parameter P determines the
percentage of the length of the data to be shuffled. Each time a database is trained and
evaluated in a neural network, its value is modified by a special function depending on the
accuracy of the network. We initially set these two parameters to 0 and 0.1. This special
function is similar to that of the Adam optimizer with slight modifications and is defined
by the following formula:

vt = β1 ∗ vt−1 − (1 − β1) ∗ gt (5)

st = β2 ∗ st−1 − (1 − β2) ∗ g2
t (6)

Δωt =

∣∣∣∣η vt√
st + ε

∗ gt

∣∣∣∣ (7)

ωt+1 = ωt + Δωt (8)

Here,

η : Initial learning rat

gt : Gradient at time t along ωj

vt : Exponential average of gradients along ωj

st : Exponential average of squares of gradients along ωj

β1β2 : Hyperparameters

We gave the following values to the hyperparameters: Initial Learning Rate = 1,
β1 = 0.95, β2 = 0.99, ε = 0.0001. The coefficient B is increased by 0.12 after each cycle. If the
value of coefficient B exceeds 1, the operation B = B − 1 will be performed. If the endpoint
exceeds the length of the array, the value of coefficient B is set to zero.

After the start and end points of the shuffling were determined, the numbers in
between were shuffled using the main shuffle function. Let the data be expressed in the

form of matrix A where A =

∣∣∣∣∣∣∣∣
a11 a21 . . . a81

a12 a22 . . . a81

. . . . . . . . . . . .
a1i a2i . . . a8i

∣∣∣∣∣∣∣∣. All elements of the array, except for the

first, were 0 or 1. The last row shows the diagnostic values; therefore, the main shuffle
function is only performed on columns 2–7 for each column separately. The values in the
first column were shuffled according to the French–Yates algorithm in a given interval. The
main shuffling function is defined as follows:

aout(j, k) =

∣∣∣∣∣∣∣∣
1

1

. . .
1

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
aj1
aj1
. . .
ajk

∣∣∣∣∣∣∣∣ (9)
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Here, aj,k—is the jth column of the subgroup data obtained in the given interval. This
function converts 0 s to 1 s and 1 s to 0 sin in the given interval. However, the statistical
distribution of the database was distorted. To avoid this, the number of 1 s in a given
interval is compared with the previous interval as follows:

Δa(j, m) = ∑k
m=0

a0(j, m)− ∑k
m=0

aout(j, m) (10)

N = |Δa(j, m)|
If Δa(j, m) is greater than 0, this means there are N more 0 s converted to 1 s than 1 s

converted to 0 s. Therefore, the next interval is selected from the endpoint to the end of
the array, and the N interval within this interval is converted to zero. If Δa(j, m) is less
than zero, the reverse operation will be carried out, that is, N zeroes within this interval are
converted to one. Therefore, the statistical distribution of the database was preserved.

4.3. Training for Loop

The database contained information on two categories of patients: 87,610 patients
were followed up and remained healthy; 6171 patients developed diabetes during this time.
As shown, the dataset was highly unbalanced. Typically, neural networks are likely to
overfit when trained using such databases. Therefore, we multiplied the data for a small
number of classes several times. Considering that the data are not real and unique and will
be shuffled several times in the next step, we simply added the same data several times.
After increasing the data, the number of people with diabetes was 84,692. Subsequently,
the data were used for the next step. It is worth mentioning once again that the data that
passed through the first step were not in the form of a single dataset but in the form of
separate subgroups. The number of data points in these subgroups is presented in Table 1.

Table 1. Information about subgroup data.

Age Group,
Years

40 to <55 55 to <65 65 to <75 ≥75

Subgroup
Did not
develop
diabetes

Developed
diabetes

Did not
develop
diabetes

Developed
diabetes

Did not
develop
diabetes

Developed
diabetes

Did not
develop
diabetes

Developed
diabetes

Number of
patients 42,825 2306 31,355 2478 11,570 1176 1851 203

Number of
male patients 12,505 673 10,786 852 4766 484 795 87

Number of
female patients 30,320 1633 20,569 1626 6804 692 1056 116

The second step consists of two processes: shuffling the data and training the neural
network on the prepared data. A special main function is used for shuffling.

After shuffling, the subgroup data were combined into a single database and divided
by a ratio of 8:2 into training and test databases. The training dataset was then transferred
to the NN, which comprised 16, 64, and 32 consecutive hidden layers. After each linear
layer, a ReLU activation layer was formed. The neural network was trained over five
epochs and evaluated using the test dataset. These two processes (shuffling and training)
were repeated until the desired results were achieved.

5. Results and Discussion

In each cycle, the neural network was trained for five epochs, and its performance was
assessed using a test database. The test accuracy was sent to the optimizer to determine the
percentage and starting points. When the new values of the percentage and starting point
are determined, the cycle starts again, and the data are reshuffled and transmitted to the
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NN. This cycle was repeated 100 times. The training, validation, and test accuracies at the
end of each cycle are shown in Figure 2. A database was saved after each cycle. Among
these, the one with the highest number of test results was selected. When training NN with
this dataset, the training accuracy was 100%, and the test accuracy was 94.4%.

(a) 

(b) 

Figure 2. Training, validation (a) and test (b) accuracy at the end of each training cycle.

As mentioned above, at the end of each cycle, the P- and B-coefficient values change
according to (7). Their values over 100 cycles are shown in Figure 3.
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Figure 3. Values of P and B coefficients at the end of each cycle.

5.1. Evaluation of the Method

Various methods have been proposed to evaluate synthetic databases. However, because
the proposed method is completely synthetic, these evaluation methods are unsuitable for
evaluating our method. The following methods were used to evaluate the method.

First, the database that exhibited the best results when the neural network that was
trained was selected. Subsequently, the selected database was trained in a completely new
neural network to evaluate the real value of the dataset, as this dataset was intended to
train the AI algorithms. The network architecture is presented in Table 2, and the training
process is illustrated in Figure 4. The database was split randomly with random state 46, in
an 8:2 portion, into the training and test sets.

Table 2. Layers parameters of neural network.

# Layer Name Properties

1 Input layer 8 nodes
2 Hidden layer 16 nodes
3 Dropout layer 0.2 coefficient
4 ReLu
5 Hidden layer 64 nodes
6 Dropout layer 0.2 coefficient
7 ReLu
8 Hidden layer 32 nodes
9 Dropout layer 0.2 coefficient
10 ReLu
11 Hidden layer 16 nodes
12 ReLu
13 Hidden layer 1 nodes
14 Output (Sigmoid) layer
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Figure 4. Training and validation accuracy of the neural network trained on the generated dataset.

As shown in Figure 3, the test accuracy reached 90% at the 10th epoch; while at the
20th, it reached 94%; and after that, it remained approximately the same. We extracted the
dataset that showed the highest accuracy (94.4%) in these cycles and uploaded it to Kaggle
for public use.

Second, they were plotted in the form of a histogram to determine the distribution of
the data in the database. For this purpose, we divided the data into two groups: those who
developed diabetes within five years and those who remained healthy. We then obtained
two matrices of the forms (84,692, 8) and (87,598, 8). The first seven columns of these
matrices show the disease risk factors and the last column shows the diagnosis. We initially
added seven columns, separated the resulting columns by values, and represented them
in the form of 100 histograms (Figure 4). For a comparative study of the data distribution,
histograms of the dataset before shuffling and the dataset with the highest results during
shuffling are shown in Figure 5.

 
(a) (b) 

Figure 5. Data distribution in raw dataset (a) and generated dataset (b).

As can be seen from the above, the data of different classes in the synthetic dataset
generated by the proposed method were well distinguished from each other, and because of
this, it was possible to achieve high accuracy when using them to train the neural network.
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5.2. Discussion

In this study, we propose a method for generating a synthetic dataset without complex
mathematical operations or an initial database. This technique is superior to the previously
proposed strategies in numerous respects.

Firstly, most works [22,23] that generated a fully synthetic database calculated the
desired statistical distribution from the real database and then used it to generate synthetic
data. However, it is important to note that using real datasets in research can be challenging
due to privacy concerns and legal restrictions. Accessing and utilizing such datasets may
require permissions and agreements that are not always easy to obtain. Therefore, having a
method that does not rely on real datasets would greatly simplify the process and make it
more accessible for researchers [29–32].

While our proposed method utilizes only the given statistics of the desired database, by
using the proposed method with these given statistics, we can generate synthetic data that
closely resembles the original dataset without compromising privacy or legal constraints.

Moreover, this approach allows for greater control over the generated data. Re-
searchers can manipulate and experiment with different scenarios by adjusting the statisti-
cal parameters provided. This flexibility enables them to explore various possibilities and
test hypotheses without being limited by an existing dataset.

Secondly, although the work in [24] has several advantages and is a highly reliable
method, it uses a complicated method. In order to create the dataset, medical conclusions
and guidelines were used. While this ensures accuracy and credibility, extracting the correct
and necessary medical instructions and rules can be both time consuming and expensive.
One of the main challenges in using medical conclusions and guidelines is their sheer
volume. The vast amount of information available makes it difficult to sift through and
extract only what is relevant for creating the dataset. This requires extensive research and
analysis, which can be a time-consuming process.

Moreover, obtaining accurate medical instructions and rules often involves consulting
experts in the field. These experts may charge high fees for their services, making it ex-
pensive to gather the necessary information for creating the dataset. Additionally, medical
knowledge is constantly evolving with new research findings and updated guidelines
being published regularly. This means that maintaining an up-to-date dataset requires
continuous effort and investment.

However, our proposed method offers the possibility of generating databases in a
semi-automatic way with minimal human intervention, and most importantly, without
the involvement of medical professionals. Thus, it can significantly reduce the time and
effort required. Moreover, eliminating the involvement of medical professionals further
streamlines the process. Additionally, cost plays a crucial role in any project implementation.
Traditional methods involving medical professionals can be expensive due to their expertise
and time commitment. However, with our semi-automated approach, costs are significantly
reduced as there is no need for specialized personnel or extensive training. Furthermore,
speed is a critical factor in today’s fast-paced world. Our proposed method ensures the
rapid generation of databases. This enables researchers and programmers to access up-to-
date databases promptly for analysis and decision-making purposes.

Another advantage is that, in contrast to [25], we used a rule-based shuffle method instead
of a random shuffle method to achieve this goal; this helped us achieve our goals faster.

Now, if we turn to the issue of evaluating the quality of the developed method, it is
known that today various methods have been developed for the evaluation of synthetic
data. However, some are designed to evaluate synthetic images [33], others to determine
the level of security [34], and others to evaluate the difference between the distributions
of synthetic and real images [35]. However, none of the above methods were suitable for
evaluating the proposed method. As we do not have a real database, there is no privacy
issue, and simultaneously, there is no possibility of comparing the statistical distribution
with that of the real dataset. In such cases, certain authors have suggested the use of specific
evaluation methods. For example, a unique evaluation method was used in the work [24],
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and some statistical data in the database were compared with those of other real statistical
information. Similarly, we used a unique approach to evaluate the results of our study. Our
goal was to develop a database for training disease classification and prediction algorithms
with two main goals. The first was to preserve the statistical distribution of the survey used
to construct the dataset, and the second was to ensure that the synthetic data belonging to
two different classes were maximally different from each other. In our method, actions at
all stages of the proposed method assume the preservation of the statistical distribution
of the survey; that is, the generated synthetic dataset is identical to the statistical data of
the survey. We expressed the data distribution as a histogram to evaluate the dissimilarity
between different classes. As shown in Figure 5, the data in the created database are
satisfactorily separated.

One major limitation of the proposed method is relying solely on one survey. Different
surveys often focus on different aspects or variables related to a particular topic. Com-
bining these various perspectives allows for a more comprehensive analysis and provides
researchers with a broader understanding of the subject matter. Additionally, incorporating
data from multiple surveys enhances the generalizability of findings. It helps in identifying
patterns and trends across diverse populations or contexts. This broader scope strengthens
the validity and reliability of the database. To address this limitation, future research should
aim to modify this method to integrate data from multiple surveys seamlessly.

6. Future Work

Currently, much work is being conducted to extract medically important characteristics
from existing datasets [36], the main goal of which is to define and evaluate the main risk
factors that cause the disease and to use them in disease prediction or diagnosis. By contrast,
our proposed method aims to generate a dataset based on given risk factors. In the future,
by analyzing the dependence of risk factors and information in the dataset using these
two methods, it will be possible to develop an algorithm that determines the relationship
between them, which will be an important tool for diagnosis [37–43].

7. Conclusions

In this study, with the help of a special shuffle operator, a synthetic dataset was generated
that fully represented the statistical data of the survey conducted by [44] over five years. This
database contains two classes: data on patients who developed type 2 diabetes and data on
those who remained healthy during a 5-year follow-up. This generated dataset can be used to
train AI algorithms designed to predict type 2 diabetes five years in advance. To assess the
suitability of the database for this purpose, a neural network was trained using this dataset,
and a test accuracy of 94.4% was achieved. From the above, it can be concluded that the
accuracy, reliability, and simplicity of the proposed method are important.

While relying on one survey is the limitation of the method, considering information
from different surveys is crucial. Future research should focus on creating methods that
can encounter several research/survey papers’ information to enhance accuracy, compre-
hensiveness, generalizability, and reliability of the generated database. In conclusion, the
proposed easy and semi-automotive method offers a solution by utilizing a neural network
and special shuffling function. This approach not only reduces the difficulty associated
with generating synthetic medical data but also provides satisfactory results in a more
efficient manner.
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Abstract: (1) Background: Persistent hyperglycemia in diabetes mellitus (DM) increases the risk of
death and causes cardiovascular disease (CVD), resulting in significant social and economic costs.
This study used a machine learning (ML) technique to build prediction models with the factors of
lifestyle, medication compliance, and self-control in eating habits and then implemented a predictive
system based on the best model to forecast whether blood glucose can be well-controlled within
1 year in diabetic patients attending a DM nutritional clinic. (2) Methods: Data were collected from
outpatients aged 20 years or older with type 2 DM who received nutrition education in Chi Mei
Medical Center. Multiple ML algorithms were used to build the predictive models. (3) Results: The
predictive models achieved accuracies ranging from 0.611 to 0.690. The XGBoost model with the
highest area under the curve (AUC) of 0.738 was regarded as the best and used for the predictive
system implementation. SHAP analysis was performed to interpret the feature importance in the best
model. The predictive system, evaluated by dietitians, received positive feedback as a beneficial tool
for diabetes nutrition consultations. (4) Conclusions: The ML prediction model provides a promising
approach for diabetes nutrition consultations to maintain good long-term blood glucose control,
reduce diabetes-related complications, and enhance the quality of medical care.

Keywords: diabetes mellitus (DM); machine learning; artificial intelligence; feature importance;
predictive system; glycosylated hemoglobin (HbA1c); well-controlled HbA1c; diabetes-related
disease; nutrition education

1. Introduction

Type 2 diabetes mellitus (T2DM) is a significant public health concern, placing a
substantial burden on human life and health. It not only affects an individual’s quality
of life but also increases the risk of mortality and complications such as cardiovascular
disease, cerebrovascular disease, diabetic nephropathy, retinopathy-induced blindness,
and peripheral vascular neuropathy leading to amputation. These complications impose
substantial social and economic costs [1]. Managing T2DM requires ongoing interventions,
including nutritional therapy, exercise routines, medication management, self-care practices,
psychological support, and smoking cessation [2]. Nutrition education plays a crucial role
in the long-term management of diabetes, involving discussions, assessments, lifestyle
adjustments, and ongoing monitoring for complications [3]. With guidance from a medical
team, lifestyle changes and self-care knowledge taught by educators can contribute to
improved prognosis, health conditions, and quality of life for patients [4].
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HbA1c (glycated hemoglobin) reflects an individual’s blood sugar fluctuations over
the past three months before measurement and serves as an essential predictor of dia-
betes complications. It helps assess whether patients and their treatment are achieving
or maintaining glycemic control goals [5]. HbA1c control within the first year of diabetes
diagnosis strongly correlates with the occurrence of major and minor vascular diseases and
mortality ten years later [6]. Accurately predicting whether a patient’s HbA1c level can
be less than 7% (well-controlled) within one year after the primary diagnosis can greatly
assist in tailoring a long-term nutritional care plan for the patient. This approach aligns
with the principles of personalized medicine and precision medicine advocated in recent
years [7]. However, currently, no available tool offers personalized and accurate long-term
predictions for diabetes. Recent advancements in machine learning (ML) algorithms and
computing speed present an opportunity to address this gap using artificial intelligence
(AI)/ML technology.

In Taiwan, the National Health Insurance Administration (NHIA) implemented a
regulation in 1995 that facilitated the rapid sharing of medical information across hospitals.
In 2001, the government introduced the pay-for-performance program [8], which enables
the systematic monitoring and treatment of diabetic patients over an extended period. Chi
Mei Medical Center, as one of Taiwan’s largest hospitals, has accumulated extensive data
on diabetes treatment over the past 13 years, including comprehensive records of dietitian
interventions and outcomes.

In this study, we leveraged this big medical data to develop an AI system that predicts
whether HbA1c levels can be well-controlled below 7% within a year after the initial
diabetes diagnosis because an HbA1c level with a value of 7% is regarded as a well-
controlled HbA1c level in practice [5,9]. We identified feature variables based on the
medical literature and expert clinical experience. AI models often have complex nonlinear
or network structures, presenting challenges in terms of interpretability. That is, explainable
AI (XAI) is needed during AI development [10]. To address this, we utilized SHAP
(SHapley Additive exPlanations) analysis [11], a method of XAI, to visually demonstrate
the importance of each feature variable in the built prediction model.

Our AI prediction system empowers clinical health educators to understand and
predict changes in HbA1c levels for diabetic patients based on their current physiological
statuses. It serves as a valuable reference for clinical care and nutrition education inter-
ventions, enhancing patients’ disease awareness, reinforcing the importance of lifestyle
changes, and motivating positive behavioral modifications. Furthermore, by considering
the AI prediction results, medical teams can intervene early; supplement their advice
regarding medications, disease-specific diets, and exercise requirements; promote shared
decision making; and improve the quality of medical care.

In the past, most AI/ML studies have centered on evaluating model quality, with only
a limited number of predictive systems developed for medical condition prognosis [12–14].
Furthermore, predictive systems in the realm of nutrition and healthcare AI remain
sparse [15]. Consequently, this study significantly adds to the advancement in this domain.

2. Materials and Methods

2.1. Research Design

In this research, we sought to develop AI models that predict whether an individual
outpatient with T2DM can maintain HbA1c levels below 7% within a year of their initial
diabetes diagnosis. We identified feature variables based on the medical literature and
expert clinical experience. This retrospective study received approval from the institutional
review board of Chi Mei Medical Center (no. 10901-014). To ensure the protection of patient
privacy, all patient data were de-identified. As this study is retrospective, the need for
informed consent from the patients was waived. The flowchart outlining the study process
is presented in Figure 1.
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Figure 1. Research flowchart.

2.2. Setting

The data for this study were obtained from the Nutrition Education System Database
of Chi Mei Medical Center in Taiwan. This study included T2DM outpatients, including
those with gestational diabetes and those aged 20 years and older who participated in the
pay-for-performance (P4P) program and received health education in the diabetes nutrition
clinic from 2007 to the end of 2019. We ensured that there was no selective inclusion
of participants, thus maintaining fairness and avoiding selection bias. Patients with a
current HbA1c level of below 6.5% were excluded from this study. A total of 8411 patients
were enrolled.

2.3. Definition of the Model’s Outcome Variable

Maintaining HbA1c levels below 7% is clinically regarded as well-controlled blood
glucose in DM patients [5,9]. Thus, we decided to set the cutoff threshold at 7% as the
target to predict, with the binary outcome variable coded ‘1’ for maintaining HbA1c levels
below 7% or less after one year, and coded ‘0’, otherwise. Patients whose current HbA1c
levels were below 6.5, indicating not being diagnosed as DM, were excluded.

2.4. Feature Variables and Selection

A total of 18 feature variables, or impact factors, were proposed based on the relevant
medical literature [16–20] and expert clinical experience. These variables included demo-
graphic information (age, gender, BMI, and length of illness), physical activity (exercise
or no exercise), dietary intake (daily calories, average meals per day, protein, lipids, and
carbohydrates), and blood biochemistry values (fasting blood glucose (glucose AC), HbA1c,
total cholesterol, triglycerides (TGs), LDL cholesterol, HDL cholesterol, C-reactive protein
(CRP), and estimated glomerular filtration rate (eGFR)). The feature “length of illness”
denoted the duration for which a patient had been afflicted with diabetes prior to their first
visit to our diabetes outpatient clinic.
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2.5. Data Preprocessing and Machine Learning Modeling

The required data were extracted from the outpatient diabetic nutrition counseling
system, and data with ambiguous values were checked and corrected. We observed
that the pattern of missing data was consistent and appeared to be random, with each
feature having a missing ratio of less than 4%. Thus, we opted to exclude the missing
data without resorting to any imputation techniques. The dataset was divided into a
training set (70% of the data) and a validation set (30% of the data) for model training
and evaluation, respectively. Accuracy, sensitivity, specificity, and the area under the
curve (AUC) were used as evaluation metrics. Prior to the model training, the training
set underwent preprocessing to address data imbalances in the positive outcome using
the synthetic minority over-sampling technique (SMOTE) [21]. Five supervised machine
learning algorithms, including logistic regression (LR), random forest (RF), multilayer
perceptron (MLP), light gradient boosting machine (Light GBM), and extreme gradient
boosting (XGBoost), were used to build the models.

2.6. Prediction System Implementation and Trial Use

The best model was determined based on the AUC values, and the information
technology engineers implemented the model into a prediction system for trial use by
dietitians. The model was built using the Python programming language with the scikit-
learn machine learning library, while the web-based user interface was created using
MS Visual Studio®software (v 17.7). Both components were then integrated into an AI
prediction system aimed at supporting nutrition education.

3. Results

3.1. Basic Case Information and Lifestyle Analysis

After excluding missing values, a total of 8411 patients from the diabetes nutrition
clinic (DNC) at Chi Mei Medical Center were included in the machine learning model.

An analysis of basic information and daily living habits revealed 3171 patients with
HbA1C levels below 7% within one year (37.7%) of their first visit, and 5240 otherwise
(37.7%). There were significantly higher trends in age and average meals per day in the <7%
group, indicating that older patients had a greater chance of maintaining their HbA1c levels
after one year. Meanwhile, in comparison, patients with HbA1c levels greater than 7% after
one year exhibited longer lengths of illness and significantly lower trends in exercise, cho.
total, TG, glucose AC, and current HbA1c levels. The features of gender, BMI, protein,
lipids, carbohydrates, daily calories, cho. LDL, cho. HDL, eGFR, and CRP/hs-CRP did
not show significant differences between the two groups. The details are summarized in
Table 1.

Table 1. Demographics and feature significance.

Variable
Overall

(n = 8411)

One Year Later, HbA1c
Level is Greater Than

or Equal to 7
(62.3%, n = 5240)

One Year Later, HbA1c
Level is Less Than 7

(37.7%, n = 3171)
p-Value *

Length of illness, mean (SD) 7.1 (7.3) 8.2 (7.4) 5.2 (6.7) <0.001
Age, mean (SD) 59.5 (12.2) 59.1 (12.1) 60.0 (12.2) 0.001
Gender, n (%)

Female 3933 (46.8) 2466 (47.1) 1467 (46.3) 0.491
Male 4478 (53.2) 2774 (52.9) 1704 (53.7)

BMI, mean (SD) 26.0 (4.3) 26.1 (4.4) 25.9 (4.2) 0.100
Exercise, n (%)

No 4098 (48.7) 2662 (50.8) 1436 (45.3) <0.001
Yes 4313 (51.3) 2578 (49.2) 1735 (54.7)
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Table 1. Cont.

Variable
Overall

(n = 8411)

One Year Later, HbA1c
Level is Greater Than

or Equal to 7
(62.3%, n = 5240)

One Year Later, HbA1c
Level is Less Than 7

(37.7%, n = 3171)
p-Value *

Average meals per day, mean (SD) 2.7 (1.1) 2.7 (1.2) 2.8 (1.1) 0.004
Protein (g), mean (SD) 61.9 (23.8) 62.0 (21.7) 61.7 (26.8) 0.669
Lipids (g), mean (SD) 61.4 (26.6) 61.7 (24.8) 60.9 (29.3) 0.206
Carbohydrates (g), mean (SD) 191.0 (62.8) 190.7 (62.1) 191.4 (64.0) 0.652
Daily calories, mean (SD) 1602.1 (559.4) 1607.9 (554.1) 1592.5 (568.2) 0.224
Cho. total, mean (SD) 187.9 (47.3) 189.5 (47.6) 185.3 (46.7) <0.001
TG, mean (SD) 169.0 (171.9) 174.9 (174.2) 159.3 (167.5) <0.001
Cho. LDL, mean (SD) 114.0 (39.7) 114.6 (39.9) 112.9 (39.4) 0.056
Cho. HDL, mean (SD) 47.6 (13.5) 47.8 (13.7) 47.3 (13.2) 0.136
eGFR, mean (SD) 72.8 (22.8) 72.9 (23.4) 72.7 (21.8) 0.685
CRP/hs-CRP_group, n (%)

<1 6698 (79.6) 4148 (79.2) 2550 (80.4) 0.335
1 ≤ CRP ≤ 10 772 (9.2) 487 (9.3) 285 (9.0)
>10 941 (11.2) 605 (11.5) 336 (10.6)

Glucose AC, mean (SD) 167.1 (70.8) 175.3 (72.4) 153.5 (66.0) <0.001
HbA1c, mean (SD) 9.0 (2.3) 9.3 (2.2) 8.6 (2.3) <0.001

Note: * For an alpha level of 0.05, categorical variables (gender, exercise, and CRP/hs-CRP) were evaluated using
the chi-squared test approach, whereas numerical features were assessed using the two-sample t-test approach.

3.2. Analysis of Blood Biochemistry Results

As shown in Table 1, the blood biochemical values determined were 167.1 ± 70.8
mg/dL for fasting blood glucose, 114.0 ± 39.7 mg/dL for LDL cholesterol, 47.6 ± 13.5
mg/dL for HDL cholesterol, 187.9 ± 47.3 mg/dL for total cholesterol, 169.0 ± 171.9 mg/dL
for TGs, 9.0 ± 2.3% for current glycosylated hemoglobin (HbA1c), and 72.8 ± 22.8 for the
estimated glomerular filtration rate (e-GFR). Moreover, Spearman’s correlation analysis
identified the correlation between the outcome and each feature variable (Table 2). It
revealed that length of illness and current HbA1c levels had the highest correlations with
the outcome, while gender, carbohydrates, and eGFR had the lowest correlations.

Table 2. Spearman’s correlations between each feature and outcome (1-year HbA1c levels < 7).

Feature Correlation Coefficient

Length of illness −0.244

Age 0.031

Gender 0.008

BMI −0.016

Exercise 0.053

Average meals per day 0.022

Protein (g) −0.010

Lipids (g) −0.016

Carbohydrates (g) 0.005

Daily calories −0.011

Cho. total −0.047

TG −0.059
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Table 2. Cont.

Feature Correlation Coefficient

Cho. LDL −0.021

Cho. HDL −0.011

eGFR 0.002

CRP/hs-CRP_group −0.016

Glucose AC −0.198

HbA1c −0.215

3.3. Prediction Model Building and Feature Importance Analysis

In this study, several common and advanced machine learning algorithms were em-
ployed to predict whether patients would control HbA1c levels below 7% after one year
using the 18 feature variables. The algorithms used included logistic regression (LR), ran-
dom forest (RF), multilayer perceptron (MLP), light gradient boosting machine (light GBM),
and extreme gradient boosting (XGBoost). A grid search with five-fold cross-validation
for hyperparameter (Table 3) tuning for each algorithm was conducted to obtain the opti-
mal model.

Table 3. Hyperparameter range for experiments.

Method and Hyperparameter Value

XGBoost
learning_rate 1e-3, 1e-2, 1e-1

gamma 0, 1e-2, 1e-3, 1e-4, 1e-5
n_estimators 200, 500, 750, 900, 1000
max_depth 3, 15, 25, 30, 50

num_parallel_tree 2, 5, 15
random_state 8, 16, 29, 42

objective binary:logistic
LightGBM

learning_rate 1e-3, 1e-2, 1e-1
n_estimators 120, 200, 500, 750, 1000
max_depth 7, 9, 15, 30, 50, 100

random_state 8, 16, 30, 42
Random forest
n_estimators 110, 250, 500, 750, 950, 1000
max_depth 7, 9, 15, 30, 45, 50, 100

min_samples_split 2, 5, 10, 15
max_features auto, sqrt, 0.5, 1.0, 1.5, 2.5
random_state 8, 16, 30, 42

MLP

hidden_layer_sizes (125), (125, 35), (100, 75, 30), (100, 55), (100, 75),
(100, 45), (100), (96), (90, 60), (90)

max_iter 1000, 500, 250, 200, 100, 50, 30
learning_rate_init 1e-3, 1e-2, 1e-1

early_stopping True, False
Logistic regression

penalty l1, l2
C np.logspace (−3, 3, 7), 1, 5, 10

max_iter 7, 9, 10, 15, 50, 75, 100
Note: The hyperparameters that are not described in this table are set to the default values used in the scikit-
learn library.

The accuracy of the prediction methods ranged from 0.611 to 0.690. Among these
algorithms, XGBoost demonstrated the highest accuracy of 0.690, sensitivity of 0.684,
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specificity of 0.693, and an area under the curve (AUC) value of 0.738. The sensitivity,
specificity, and AUC values for all the algorithms are presented in Table 4.

Table 4. Performance comparison of the machine learning methods (using the XGBoost model as
a basis).

Algorithm Accuracy Sensitivity Specificity AUC p-Value

XGBoost 0.690 0.684 0.693 0.738 -
LightGBM 0.682 0.682 0.682 0.735 0.097

Random forest 0.670 0.670 0.670 0.724 <0.001
MLP 0.633 0.632 0.633 0.667 <0.001

Logistic regression 0.611 0.611 0.611 0.634 <0.001
Note. (1) The DeLong test was utilized for significance testing. (2) The LightGBM model does not exhibit
significant differences compared with the XGBoost model, whereas notable differences are observed with other
models, with the XGBoost model demonstrating superior quality.

To visualize the results, the receiver operating characteristic (ROC) curves and the
precision–recall curves were plotted, as shown in Figure 2 These curves provide graph-
ical representations of the performances of the prediction models and their abilities to
discriminate between positive and negative outcomes. Overall, the XGBoost algorithm
was identified as the best prediction model in terms of accuracy, sensitivity, specificity, and
AUC. The ROC curves and precision–recall curves provide additional insights into the per-
formances of the models and their potential usefulness in predicting HbA1c reduction after
one year. We performed the DelongTest to compare the model qualities. The results show
that there was no significant difference between the LightGBM model and the XGBoost
model, but the remaining models were significantly different from the XGBoost model.

Figure 2. The receiver operating characteristic curves and the precision–recall curve.

Furthermore, we conducted a SHAP analysis for feature importance to interpret how
each feature contributed to the prediction in a visual manner. A SHAP value of >0 means
that it is positively related to the outcome, and vice versa. For example, in Figure 3a, the
smaller the length of illness one year later, the higher the probability of controlling HBA1
below 7%, and patients with exercise habits have a higher chance of having HBA1 levels of
<7 one year later. This analysis helps us understand why certain features were considered
more or less important in the best XGBoost model. The feature importance plot shown in
Figure 3 allows us to identify the order of importance of the model features. According to
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the feature importance plot of the XGBoost model (Figure 3b), we can clearly observe that
the top three influential factors in the best model for predicting 1-year HbA1c levels of <7%
are the length of illness, current HbA1c levels, and glucose AC.

 
(a) Summary plot of SHAP values in the best model 

 
(b) Absolute SHAP value of each feature in the best model 

Figure 3. The feature importance plots of SHAP analysis.

3.4. Prediction System Implementation and User’s Acceptance

The best model was successfully implemented in a web-based forecasting system. The
system screen, as depicted in Figure 4, displays the graphical interface and user-friendly
design of the prediction system. This visual representation of predictions adds value by
providing a clear and intuitive understanding of the patient’s expected outcomes. At
present, the AI prediction system has been integrated into the workflow of dietitians and
provides real-time and automatic prediction without manual input. Overall, the feedback
received from the dietitians indicates positive acceptance and appreciation of the prediction
system. The system’s graphical interface and specific prediction rates were identified
as valuable tools for personalized patient care and effective communication within the
medical team.

Seven nutritionists were given the opportunity to use the system and provide feedback.
We collected and analyzed their experiences and suggestions to assess user acceptance
of the system. We asked three structured questions (on a five-point scale, one point
indicating strongly disagree, and five points strongly agree): (1) Is it easy to operate? (2) Is
it clinically useful? (3) Are you willing to use it? They were also encouraged to provide
other comments. The survey results show that they were positive about the prediction
system (the mean values of ease-of-use, usefulness, and use intention were 4.4, 3.9, and 4.1,
respectively), but the score for usefulness was only 3.9, showing that the nutritionists were
still not very satisfied with the system’s functions. Moreover, they expressed particular
appreciation for the graphical interface, which provides specific prediction rates that allow
for personalized and accurate predictions of potential improvement in a patient’s condition.
The dietitians found that the tool could improve communication between the healthcare
team and patients, facilitating discussions about subsequent nutritional treatment plans.
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Figure 4. Prediction system picture.

3.5. Comparative Models Utilizing Alternative Feature Selection Methods

We conducted a comparison between the best all-feature model (18 features) and the
significant-feature model (8 features, as indicated in Table 1) using the DeLong test. As
illustrated in Table 5, although the all-feature model exhibited a slightly better performance
compared with the significant-feature model, the difference did not reach statistical signifi-
cance (p = 0.085). This suggests that the significant-feature model could be considered for
clinical use, particularly when healthcare resources are limited.

Table 5. Performance comparison between all-feature model and significant-feature model.

Model Accuracy Sensitivity Specificity AUC
DeLong Test

(p-Value)

All-feature model
(18 features) 0.690 0.684 0.693 0.738 -

Significant-feature
model (8 features) 0.678 0.679 0.678 0.734 0.058

Note: The 8 features utilized were length of illness, age, exercise, average meals per day, cho. total, TGs, glucose
AC, and HbA1c.

4. Discussion

The use of AI models to develop a chronic disease nutritional status monitoring
system for assessing prognostic risk is an area that lacks extensive research. However,
there have been some studies exploring the use of machine learning techniques to predict
the individual risk of cardiometabolic disease based on dietary or supplement intake.
One such study by Panaretos et al. [22] utilized the KNN algorithm and RF decision tree
to evaluate cardiometabolic risk over a 10-year period. They found that these AI/ML
techniques explained a significant portion of the cardiometabolic risk, with the RF decision
tree outperforming the KNN algorithm. The study also highlighted the advantages of
machine learning techniques over logistic regression classification for predicting health
disease risk.
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The present study aligns with this research trend and contributes to it by building the
best model, specifically an XGBoost-based model, which surpasses the results obtained by
Panaretos et al. This study is, to the best of our knowledge, the first implementation study
to utilize AI/ML technologies to predict the control of changes in HbA1c levels after one
year in patients with diabetes and successfully apply it in clinical practice. By leveraging
the power of AI/ML, this study expands the possibilities for personalized medicine and
the use of AI in improving patient outcomes in diabetes management [23].

To explore the model’s explainability, a feature importance plot was generated, re-
vealing 12 prominent factors in the best XGBoost model. Notably, some of these factors,
including current HbA1c levels, age, BMI, HDL, and eGFR, were also identified as leading
factors in other models such as RF, LR, and Light GBM. This information empowers dieti-
tians to provide targeted recommendations to patients, aiming to strengthen positive factors
and mitigate negative factors, thereby increasing the likelihood of long-term reductions in
HbA1c levels [24].

Based on the important features identified, we can modify them in our AI prediction
system to simulate probability changes and elucidate them to patients, a process known as
shared decision making (SDM). However, it is pivotal to recognize that while some elements
like exercise and average meals per day can be altered through lifestyle modifications,
inherent factors like age and gender remain immutable. For example, a dietitian can
illustrate to a specific patient how altering the exercise feature from “No” to “Yes” can
shift the probability from 45% (indicating a tendency to not achieve an HbA1c level of
<7%) to 56% (indicating a tendency to achieve an HbA1c level of <7%). This visualization
can motivate the incorporation of regular exercise routines, such as partaking in physical
activities at least thrice a week. By concentrating on adaptable significant factors and
offering tailored advice, dietitians can aid patients in effectuating substantive lifestyle
modifications and enhancing long-term glycemic control.

In recent years, the digitization of medical data has revolutionized healthcare by
enabling clinicians to access vast amounts of historical medical data and develop accurate
predictive models for clinical decision making. This predictive tool can also be utilized by
healthcare professionals to provide patients with a more precise understanding of their
future outcomes, allowing them to actively participate in the decision-making process
and improving communication between patients and doctors [19]. This, in turn, enhances
patients’ confidence in implementing the recommended changes [7].

The AI model developed in this study has been integrated into the existing DNC
information system. As a result, when dietitians collect data on patients’ diets, lifestyles,
medication intakes, and nutritional assessments during consultations, they can utilize the
predictive model seamlessly without the need for manual input. The model automatically
processes the collected data to estimate the patient’s HbA1c improvement one year later.
This streamlined approach enables dietitians to provide timely interventions and person-
alized guidance on diet and lifestyle modifications, fostering effective communication
between clinicians and patients in outpatient clinics [25–28].

In clinical practice, we set blood sugar control goals based on a patient’s condition.
Factors such as pre-meal and post-meal blood sugar levels, HbA1c values, age, and the
patient’s motivation to improve diabetes through lifestyle changes are all taken into account
when predicting their HbA1C reduction target for the following year. With this AI predic-
tion tool, we can assess the likelihood of achieving those goals and adjust nutritional or
therapeutic plans accordingly [3]. For instance, for patients who are very likely to have their
blood sugar controlled to HbA1c levels of <7% a year later (with a predicted probability
of ≥50%), we intensify health education on significant features like exercise and dietary
habits. We encourage them to maintain good dietary and living habits once they are back
home. For patients with a tougher challenge of controlling their HbA1c levels to <7% a
year later (with a predicted probability of <50%) who may struggle with consistent lifestyle
and dietary habits, nutritionists not only provide active nutritional education but might
also need to discuss with the attending physician about adjusting medication timings and
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treatment modalities. Overall, this AI prediction system serves as a smart and useful tool
to achieve shared decision making between healthcare professionals and patients.

Overall, the AI system in this study stands as a pivotal tool to enhance patient aware-
ness and motivate lifestyle alterations for optimized blood glucose control. It aids in
mitigating the risks associated with both macrovascular and microvascular complica-
tions by maintaining stable glucose levels [9], ultimately serving as a facilitator in shared
decision-making processes between healthcare providers and patients [29].

We recommend that practitioners integrate AI predictive models into the routine
care of diabetic patients to identify high-risk individuals early and tailor interventions
more effectively. Medical institutions should utilize such models to optimize resource
allocation and enhance healthcare delivery, requiring proper training for practitioners in
using these models. Regarding policy, it is essential to formulate and implement strategies
that integrate AI technologies into healthcare protocols, advocating for the utilization of
advanced technologies like IoT and wearables for real-time data acquisition and monitoring,
thus improving overall disease management and mitigating the risks of complications.

5. Conclusions

In conclusion, our AI prediction system, utilizing the valuable big data accumulated
at Chi Mei Medical Center, presents a novel approach for predicting a patient’s 1-year
HbA1c change and aiding nutritionists in making informed decisions regarding appro-
priate nutritional interventions. The system holds significant potential for establishing a
personalized health education system, facilitating shared decision making, and enhancing
the effectiveness of diabetes nutrition counseling and health education. The feature impor-
tance analysis provided a clear understanding of each feature’s impact on the prediction
outcome, contributing to the system’s transparency and interpretability.

Furthermore, this study represents an innovative application of AI/ML technology
in healthcare practice, particularly in investigating diabetic dietary habits and long-term
glycemic control. It aligns with the principles of personalized precision medicine and
carries substantial clinical value. We firmly believe that our prediction system can con-
tribute to improving long-term glycemic control, reducing the incidence of diabetes-related
complications, and enhancing the overall quality of medical care.

Though patients in this study were enrolled in the P4P program, the results of this
study are also applicable to non-P4P patients. However, patients not enrolled in the
P4P program receive fewer long-term case management follow-ups and reminders. As
a consequence, their disease awareness and adherence to medical instructions may be
reduced, which could subsequently impact their chances of improving their HbA1c levels.

Despite the rigorous procedure followed in this study, certain limitations should be
acknowledged. Firstly, this study relied on retrospective data from a single medical center
in Taiwan, potentially limiting the generalizability of the findings. Additionally, the sample
was restricted to patients who participated in the P4P project, and the authenticity of
nutrition counseling records, primarily relying on questions asked by medical staff and
self-reported patient data, may be challenging to verify. Finally, patients’ varying opinions
and responses to nutrition education questions may have introduced common method bias.

Based on our results, we propose several future research directions. Firstly, the effect
of medication on predictive models is an interesting but complex research topic that
deserves further exploration. Secondly, gathering new patient records, referred to as a
testing dataset, is valuable for estimating the expected accuracy of the proposed models
to ensure generalizability. Thirdly, expanding the model’s applicability and value by
including patients and healthy individuals in the analysis would be beneficial. Fourthly,
investigating diabetic outpatients with cardiovascular disease, cerebrovascular disease,
diabetic nephropathy, and other related complications could yield valuable insights. Fifthly,
considering the long-term impact of diabetes health interventions, incorporating time-
series AI algorithms such as RNN and LSTM to develop long-term (multi-year) prediction
models holds promise. Sixthly, prospective studies can be designed to explore patients’
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compliance with lifestyle changes using AI approaches [30,31]. Lastly, for real-time and
continuous prediction, embracing the IoT, wearable technology, and smart technology to
directly capture physiological data and daily life records (e.g., diet photos for calorie in-take
determination and continuous glucose monitors (CGMs)) from patients through wearable
devices and mobile apps would be a valuable avenue to pursue. However, considerations of
stability, seamless connectivity, privacy, security, user-friendly interfaces, and affordability
are crucial.

Author Contributions: Conceptualization: M.-Y.L. and C.-F.L.; data curation: Y.-S.M.; formal
analysis: Y.-S.M. and T.-C.L.; methodology: M.-Y.L. and T.-C.L.; project administration: C.-F.L.;
writing—original draft: M.-Y.L. and C.-F.L.; writing—review and editing: Y.-S.M., T.-C.L., and C.-F.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Chi Mei Medical Center (protocol
code: 10901-014; date of approval: 31 January 2020).

Informed Consent Statement: Patient consent was waived due to this study’s retrospective nature.

Data Availability Statement: The original contributions presented in this study are included in this
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes–Global Burden
of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [CrossRef] [PubMed]

2. Contreras, I.; Vehi, J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J. Med. Internet
Res. 2018, 20, e10775. [CrossRef]

3. García-Molina, L.; Lewis-Mikhael, A.M.; Riquelme-Gallego, B.; Cano-Ibáñez, N.; Oliveras-López, M.J.; Bueno-Cavanillas, A.
Improving type 2 diabetes mellitus glycaemic control through lifestyle modification implementing diet intervention: A systematic
review and meta-analysis. Eur. J. Nutr. 2020, 59, 1313–1328. [CrossRef] [PubMed]

4. Joachim, S.; Forkan, A.R.M.; Jayaraman, P.P.; Morshed, A.; Wickramasinghe, N. A Nudge Inspired AI-Driven Health Platform for
Self-Management of Diabetes. Sensors 2022, 22, 4620. [CrossRef] [PubMed]

5. American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl.
S1), S66–S76. [CrossRef] [PubMed]

6. Laiteerapong, N.; Ham, S.A.; Gao, Y.; Moffet, H.H.; Liu, J.Y.; Huang, E.S.; Karter, A.J. The Legacy Effect in Type 2 Diabetes: Impact
of Early Glycemic Control on Future Complications (The Diabetes & Aging Study). Diabetes Care 2019, 42, 416–426. [PubMed]

7. Hargraves, I.G.; Montori, V.M.; Brito, J.P.; Kunneman, M.; Shaw, K.; LaVecchia, C.; Wilson, M.; Walker, L.; Thorsteinsdottir, B.
Purposeful SDM: A problem-based approach to caring for patients with shared decision making. Patient Educ. Couns. 2019, 102,
1786–1792. [CrossRef]

8. Hsieh, H.M.; Chiu, H.C.; Lin, Y.T.; Shin, S.J. A diabetes pay-for-performance program and the competing causes of death among
cancer survivors with type 2 diabetes in Taiwan. Int. J. Qual. Health Care 2017, 29, 512–520. [CrossRef]

9. American Diabetes Association. Glycemic Targets: Standards of Medical Care in Diabetesd 2021. Diabetes Care 2021, 44
(Suppl. S1), S73–S84. [CrossRef]

10. Samek, W.; Wiegand, T.; Müller, K.R. Explainable Artificial Intelligence: Understanding Visualizing and Interpreting Deep
Learning Models. arXiv 2017, arXiv:1708.08296.

11. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017.

12. Tsai, W.C.; Liu, C.F.; Ma, Y.S.; Chen, C.J.; Lin, H.J.; Hsu, C.C.; Chow, J.C.; Chien, Y.W.; Huang, C.C. Real-time artificial intelligence
system for bacteremia prediction in adult febrile emergency department patients. Int. J. Med. Inform. 2023, 178, 105176. [CrossRef]
[PubMed]

13. Li, Y.Y.; Wang, J.J.; Huang, S.H.; Kuo, C.L.; Chen, J.Y.; Liu, C.F.; Chu, C.C. Implementation of a machine learning application in
preoperative risk assessment for hip repair surgery. BMC Anesthesiol. 2022, 22, 116. [CrossRef] [PubMed]

14. Liao, K.M.; Ko, S.C.; Liu, C.F.; Cheng, K.C.; Chen, C.M.; Sung, M.I.; Hsing, S.C.; Chen, C.J. Development of an Interactive AI
System for the Optimal Timing Prediction of Successful Weaning from Mechanical Ventilation for Patients in Respiratory Care
Centers. Diagnostics 2022, 12, 975. [CrossRef] [PubMed]

149



Bioengineering 2023, 10, 1139

15. Katsimpris, A.; Brahim, A.; Rathmann, W.; Peters, A.; Strauch, K.; Flaquer, A. Prediction of type 2 diabetes mellitus based on
nutrition data. J. Nutr. Sci. 2021, 10, e46. [CrossRef] [PubMed]

16. Gong, Q.H.; Kang, J.F.; Ying, Y.Y.; Li, H.; Zhang, S.H.; Wu, Y.H.; Xu, G.Z. Lifestyle interventions for adults with impaired glucose
tolerance: A systematic review and meta-analysis of the effects on glycemic control. Intern. Med. 2015, 54, 303–310. [CrossRef]

17. Zhang, X.; Devlin, H.M.; Smith, B.; Imperatore, G.; Thomas, W.; Lobelo, F.; Ali, M.K.; Norris, K.; Gruss, S.; Bardenheier, B.; et al.
Effect of lifestyle interventions on cardiovascular risk factors among adults without impaired glucose tolerance or diabetes: A
systematic review and meta-analysis. PLoS ONE 2017, 12, e0176436. [CrossRef]

18. Jiang, Q.; Li, J.T.; Sun, P.; Wang, L.L.; Sun, L.Z.; Pang, S.G. Effects of lifestyle interventions on glucose regulation and diabetes risk
in adults with impaired glucose tolerance or prediabetes: A meta-analysis. Arch. Endocrinol. Metab. 2022, 66, 157–167. [CrossRef]

19. Selya, A.; Anshutz, D.; Griese, E.; Weber, T.L.; Hsu, B.; Ward, C. Predicting unplanned medical visits among patients with diabetes:
Translation from machine learning to clinical. BMC Med. Inform. Decis. Mak. 2021, 21, 111. [CrossRef]

20. Dong, Z.; Wang, Q.; Ke, Y.; Zhang, W.; Hong, Q.; Liu, C.; Liu, X.; Yang, J.; Xi, Y.; Shi, J.; et al. Prediction of 3-year risk of diabetic
kidney disease using machine learning based on electronic medical records. J. Transl. Med. 2022, 20, 143. [CrossRef]

21. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

22. Panaretos, D.; Koloverou, E.; Dimopoulos, A.C.; Kouli, G.M.; Vamvakari, M.; Tzavelas, G.; Pitsavos, C.; Panagiotakos, D.B. A
comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year
cardiometabolic risk (2002-2012): The ATTICA study. Br. J. Nutr. 2018, 120, 326–334. [CrossRef] [PubMed]

23. Afsaneh, E.; Sharifdini, A.; Ghazzaghi, H.; Ghobadi, M.Z. Recent applications of machine learning and deep learning models in
the prediction, diagnosis, and management of diabetes: A comprehensive review. Diabetol. Metab. Syndr. 2022, 14, 196. [CrossRef]
[PubMed]

24. Sadeghi, S.; Khalili, D.; Ramezankhani, A.; Mansournia, M.A.; Parsaeian, M. Diabetes mellitus risk prediction in the presence of
class imbalance using fexible machine learning methods. BMC Med. Inform. Decis. Mak. 2022, 22, 36. [CrossRef] [PubMed]

25. Chen, Y.M.; Kao, Y.; Hsu, C.C.; Chen, C.J.; Ma, Y.S.; Shen, Y.T.; Liu, T.L.; Hsu, S.L.; Lin, H.J.; Wang, J.J.; et al. Real-time interactive
artificial intelligence of things-based prediction for adverse outcomes in adult patients with pneumonia in the emergency
department. Acad. Emerg. Med. 2021, 28, 1277–1285. [CrossRef]

26. Zhang, P.I.; Hsu, C.C.; Kao, Y.; Chen, C.J.; Kuo, Y.W.; Hsu, S.L.; Liu, T.L.; Lin, H.J.; Wang, J.J.; Liu, C.F.; et al. Real-time AI
prediction for major adverse cardiac events in emergency department patients with chest pain. Scand. J. Trauma Resusc. Emerg.
Med. 2020, 28, 93. [CrossRef]

27. Chang, Y.J.; Hung, K.C.; Wang, L.K.; Yu, C.H.; Chen, C.K.; Tay, H.T.; Wang, J.J. A Real-Time Artificial Intelligence-Assisted System
to Predict Weaning from Ventilator Immediately after Lung Resection Surgery. Int. J. Environ. Res. Public Health 2021, 18, 2713.
[CrossRef]

28. Lian, X.; Qi, J.; Li, X.; Wang, M.; Li, G.; Yang, T.; Zhong, J. Study on risk factors of diabetic peripheral neuropathy and establishment
of a prediction model by machine learning. BMC Med. Inform. Decis. Mak. 2023, 23, 146. [CrossRef]

29. Ye, J.; Yao, L.; Shen, J.; Janarthanam, R.; Luo, Y. Predicting mortality in critically ill patients with diabetes using machine learning
and clinical notes. BMC Med. Inform. Decis. Mak. 2020, 20 (Suppl. S11), 295. [CrossRef]

30. Cha, E.; Clark, P.C.; Reilly, C.M.; Higgins, M.; Lobb, M.; Smith, A.L.; Dunbar, S.B. Educational needs for improving self-care in
heart failure patients with diabetes. Diabetes Educ. 2002, 38, 673–684. [CrossRef]

31. Sharma, A.; Mentz, R.J.; Granger, B.B.; Heitner, J.F.; Cooper, L.B.; Banerjee, D.; Green, C.L.; Majumdar, M.D.; Eapen, Z.; Hudson,
L.; et al. Utilizing mobile technologies to improve physical activity and medication adherence in patients with heart failure and
diabetes mellitus: Rationale and design of the TARGET-HF-DM Trial. Am. Heart J. 2019, 211, 22–33. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

150



Citation: Chu, J.; Chang, Y.-T.; Liaw,

S.-K.; Yang, F.-L. Implicit HbA1c

Achieving 87% Accuracy within 90

Days in Non-Invasive Fasting Blood

Glucose Measurements Using

Photoplethysmography.

Bioengineering 2023, 10, 1207.

https://doi.org/10.3390/

bioengineering10101207

Academic Editors: Hongqing Yu,

Alaa AlZoubi, Yifan Zhao and

Hongbo Du

Received: 6 September 2023

Revised: 4 October 2023

Accepted: 12 October 2023

Published: 16 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Implicit HbA1c Achieving 87% Accuracy within 90 Days
in Non-Invasive Fasting Blood Glucose Measurements
Using Photoplethysmography

Justin Chu 1,2, Yao-Ting Chang 3, Shien-Kuei Liaw 1 and Fu-Liang Yang 2,*

1 Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology,
No. 43, Sec. 4, Keelung Rd., Taipei City 10607, Taiwan; nk95061313@gmail.com (J.C.);
skliaw@mail.ntust.edu.tw (S.-K.L.)

2 Research Center for Applied Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang,
Taipei City 115-29, Taiwan

3 Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical
Foundation, No. 289, Jianguo Rd., Xindian Dist., New Taipei City 231-42, Taiwan; necrosparkeps@tzuchi.com.tw

* Correspondence: flyang@gate.sinica.edu.tw

Abstract: To reduce the error induced by overfitting or underfitting in predicting non-invasive
fasting blood glucose (NIBG) levels using photoplethysmography (PPG) data alone, we previously
demonstrated that incorporating HbA1c led to a notable 10% improvement in NIBG prediction
accuracy (the ratio in zone A of Clarke’s error grid). However, this enhancement came at the cost
of requiring an additional HbA1c measurement, thus being unfriendly to users. In this study, the
enhanced HbA1c NIBG deep learning model (blood glucose level predicted from PPG and HbA1c)
was trained with 1494 measurements, and we replaced the HbA1c measurement (explicit HbA1c) with
“implicit HbA1c” which is reversely derived from pretested PPG and finger-pricked blood glucose
levels. The implicit HbA1c is then evaluated across intervals up to 90 days since the pretest, achieving
an impressive 87% accuracy, while the remaining 13% falls near the CEG zone A boundary. The
implicit HbA1c approach exhibits a remarkable 16% improvement over the explicit HbA1c method
by covering personal correction items automatically. This improvement not only refines the accuracy
of the model but also enhances the practicality of the previously proposed model that relied on an
HbA1c input. The nonparametric Wilcoxon paired test conducted on the percentage error of implicit
and explicit HbA1c prediction results reveals a substantial difference, with a p-value of 2.75 × 10–7.

Keywords: photoplethysmography; HbA1c; blood glucose

1. Introduction

1.1. Non-Invasive Blood Glucose (NIBG) Measurements

Diabetes poses a great threat to global health care. The number of people with diabetes
rose from 108 million in 1980 to 422 million in 2014 [1]. More than 1.4 million cases of
newly diagnosed diabetes mellitus were documented in US adults aged 18 or older in 2019
alone, and diabetes was also responsible for more than 6.7 million deaths worldwide in
2021 [2,3]. Diabetes has a prevalence of about 1 in 10 adults and causes disability and
severe end-organ damage, including renal failure, retinopathy, and nerve damage, if not
well controlled. The introduction of insulin and anti-diabetic medications reduces the
microvascular complications of diabetes in clinical trials but also raises the concern of
hypoglycemia [4]. Thus, to achieve tight glycemic control, the use of easy, convenient,
point-of-care devices to supervise glucose levels is pivotal in diabetes care.

Non-invasive blood glucose (NIBG) measurement refers to the process of determining
blood sugar levels without the need for traditional methods that require pricking the skin
to obtain a blood sample. Traditional finger-prick measurements can cause pain and carry
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a risk of infection, which might discourage individuals who need to monitor their blood
glucose regularly. NIBG measurement offers a more comfortable and less intrusive way to
monitor glucose levels.

Numerous methods based on diverse technologies have been explored for NIBG mea-
surement. These include enzymatic methods that test saliva, tears, and body sweat [5–7],
electromagnetic wave sensing methods that cover a wide area of the electromagnetic
spectrum [8–10], and transdermal methods that measure the user’s bioimpedance [11].

Among these, photoplethysmography (PPG) stands out as a highly promising technol-
ogy due to the fact that it is very easy to use and has very versatile applications [12]. PPG is
a technology that monitors the light-absorption changes on the measured site. PPG sensors
consist of a light-emitting diode (LED) that provides a stable light source, and light sensors
that monitor the light intensity. While the blood volume at the measured site changes with
pulsation, the light intensity also changes due to absorption and scattering. PPG allows
unobtrusive continuous measurement while requiring only a single point of contact. Recent
studies have even presented a breakthrough with contactless camera PPG for long-term,
contactless, and continuous monitoring [13]. Various PPG-based applications are already
being incorporated into commercially available products for the measurement of SpO2,
stress levels, and blood pressure, and the detection of arrhythmias like atrial fibrillation.

Although the potential of relying on PPG alone to accurately estimate fasting blood
glucose has frequently been explored via promising experimental results, a definitive
answer remains elusive. We are of the opinion that the primary challenge stems from the
missing variable or correction factor that addresses personal deviation. Every individual
is inherently distinct, not only genetically but also in terms of their lifestyle and diet.
Consequently, this gives rise to significant and undocumented variations among individuals
when attempting to construct models for precise blood glucose level estimation.

Numerous NIBG studies based on PPG technology have been published over the
past decades, employing a variety of different methods [14]. However, many of these
studies suffer from small sample sizes and potentially compromise their generalizability.
The most commonly employed PPG-extracted features are the morphological and heart
rate variance features, which are correlated with an individual’s vascular function and
autonomic neuropathy [15,16]. Many studies also explore features in different domains,
utilizing techniques such as fast Fourier transform (FFT), Kaiser–Teager energy (KTE), and
spectral entropy [17]. It is worth noting that using an excessive number of features can
lead to overfitting, while using too few features may result in a lack of vital information
required for accurate blood glucose level estimation. To date, the quest for an accurate yet
simple standard for a medical NIBG meter remains unfulfilled.

1.2. From Measured HbA1c to Implicit HbA1c

In our previous studies, we showcased that a universal model incorporating quar-
terly HbA1c measurements as input features could substantially enhance model accuracy.
However, we also observed that the presence of various medications had a detrimental
impact on model performance. As a result, despite the incorporation of HbA1c, our ability
to generate accurate estimations remains restricted for subjects not influenced by the effects
of medication [18].

HbA1c, also known as glycated hemoglobin and sometimes referred to as hemoglobin
A1C, is a crucial metric used to assess long-term blood glucose control and an important
indicator for diagnosing diabetes [19]. It reflects the average blood glucose level over the
preceding two to three months. Over time, the glucose in the bloodstream binds itself to
the hemoglobin protein. The higher the blood glucose concentration, the more glucose is
bound to the protein. While HbA1c is proven to be a strong feature that can significantly
enhance prediction accuracy, it is not without shortcomings. Our previously proposed
HbA1c model faces the challenge of a difficulty in taking HbA1c measurement. HbA1c
measurements are not as easily acquired as a finger-prick blood glucose test. HbA1c
measurements are generally only available in hospitals or specialized clinics. They require
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more specialized equipment compared to a conventional finger-prick BGL measuring
device that in comparison is already commonly available for household use. The ability to
acquire a simple alternative HbA1c could significantly improve the usability of prediction
models that utilize HbA1c.

To address this challenge, we herein introduce an implicit HbA1c technology aimed to
achieve accurate measurement of fasting blood glucose levels using photoplethysmography
alone. In Figure 1 we present a schematic depiction of the concept for this work. When
working with a model that only employs PPG-extracted features to estimate blood glucose
levels, sparse prediction results often emerge due to overfitting or underfitting, symbolized
by the large size of the circle. To refine the circle size of the predicted blood glucose
levels using the PPG feature vector, we incorporate HbA1c into the model. This addition
significantly reduces the overfitting or underfitting of the dispersed BGL prediction from
PPG. HbA1c is the single most meaningful variable with a significant impact on model
accuracy as it is correlated to the actual BGL. It is important to clarify our terminology: in
this study, we refer to the measured actual HbA1c as “explicit HbA1c” since we use this
measured value from the user’s result directly as it is. This is in contrast to our proposed
“implicit HbA1c”. Implicit HbA1c is related to explicit HbA1C but is acquired through
a novel use of the same HbA1c-enhanced model to measure BGL. Table 1 showcases the
straightforward nature of the implicit HbA1c method by outlining the required information
input from users to operate this model. Users only need to perform a single finger-prick
measurement as a pretest to derive their implicit HbA1c, which encompasses systematic
correction elements that account for personal deviations, thereby further enhancing the
accuracy of blood glucose level predictions.

Figure 1. Schematic illustration of the concept of overfitting or underfitting using circle size, along
with the transition from explicit HbA1c to implicit HbA1c for an improved machine learning pre-
diction of blood glucose levels. To reduce the circle size of the predicted blood glucose level with
the PPG feature vector, we introduce pretest HbA1c. It significantly reduces instances of overfitting
or underfitting that lead to scattered blood glucose level predictions derived solely from PPG data
(from 1© to 2©). Implicit HbA1c is related to pretest HbA1c but contains systematic correction items
to account for personal deviation, thereby further enhancing the accuracy of blood glucose level
prediction (from 2© to 3©). The input features for each stage are as follows: 1© PPG features, 2© PPG
features and pretest HbA1c, 3© PPG features and implicit HbA1c.
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Table 1. Summary of the information input and output for each section of the process for the proposed
implicit HbA1c method.

Model training

User

Featuring HbA1c
(Pretest)

In
te

rv
a
l

u
p

to

9
0

d
a
y

s

Testing

Required Input
• PPG signal
• Reference HbA1c
• Reference BGL

PPG signal
Reference BGL

PPG signal
Implicit HbA1c

Outcome • BGL prediction model Implicit HbA1c Predicted BGL

From the user’s perspective, the processes of determining implicit Hba1c are all carried
out seamlessly behind the scenes. The users only need to take a single finger-prick BGL test
at their initial pretest stage. The HbA1c values are all hidden from the user’s view, which is
why the term “implicit HbA1c” is appropriate.

2. Experiments and Method

2.1. Experimental Set-Up

From the original dataset comprising 2632 entries, a subset of 856 entries of data
consisting of data from subjects not undergoing drug treatment was meticulously chosen
for this study. The dataset is collected from twenty local healthcare centers across Taipei
and Taoyuan County with random voluntary participants. During the data collection
phase, most of the lower blood glucose subjects were unwilling to participate in the second
testing, thus their data were used in model training exclusively. On the other hand, higher
blood glucose subjects displayed greater enthusiasm for further testing after a few weeks
to monitor changes in their blood glucose levels, as shown in Table 2. Each entry within
this subset comprises two consecutive 60 s segments of PPG measurement at a 250 HZ
sampling rate collected through transmissive PPG finger clips (infrared, wavelength of
940 nm) on the index finger with the TI AFE4490 Integrated Analog Front End, along with
corresponding measurements of blood glucose levels via finger-pricking using the Roche
Accu-Chek mobile, HbA1c using the Siemens DCA Vantage Analyzer, and blood pressure
using the Omron HEM-7320. The subjects were first asked to sit on the chair in a relaxed
position for at least 5 min before the measurements started. During measurement, the blood
pressure and finger-prick blood glucose level measurements were taken first, immediately
followed by the 60 s long PPG measurement. The collection of these samples received
approval from the Institutional Review Board of the Academia Sinica, Taiwan (Application
No: AS-IRB01-16081). It is noteworthy that all subjects were comprehensively informed
and consented to the collection of the data and their usage.

Table 2. Characteristics of the subjects in the training and testing sets with their mean ± standard
deviation.

Dataset
Interval between
Test and Pretest

BG
(mg/dL)

HbA1c
(%)

Age
(Years)

BMI
(kg/m2)

Total
856

entries

Training
(747 entries) No pretest 99.9 ± 12.9 5.7 ± 0.53 57.9 ± 9.7 23.4 ± 3.2

Testing
(61 pairs) 45 ± 19 days 154.9 ± 50.8 7.7 ± 1.76 62.7 ± 3.95 28.4 ± 4.3

The 60 s long PPG signals are segmented into windows with a width of 400 data points
(equivalent to 1.6 s) based on each pulse valley. A total of 11 features are extracted, encom-
passing both morphological and heart rate variance (HRV) features. The morphological
features include the width of the pulse at half-height, the time taken from pulse valley to
pulse peak, the sum of the pulse area of the minute, the average pulse area, and the median
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of the pulse area. The HRV features include the high, low, and total frequency power from
fast Fourier transform (FFT), the percentage of pulse successive interval changes exceeding
20 ms, and the standard deviation of pulse successive interval changes.

In this study, our primary focus is exclusively on subjects who are not undergoing
treatment with drugs. This approach serves as a follow-up to our previously proposed
method, with the intent of enhancing its effectiveness. Our previous work achieved over
90% accuracy on cohorts not affected by medication with measured HbA1c employed
as a feature.

For this work, subjects with multiple entries are deliberately reserved for use as the
testing set, while the remaining subjects constitute the training set. The characteristics of
both the training and testing sets are concisely outlined in Table 2. To align our approach
with practical usage scenarios, a total of 61 pairs, each with a time interval not exceeding
90 days, are utilized for testing. Evaluating performance beyond the three-month validity of
HbA1c would be both impractical and devoid of meaningful insights. Thus, the data pairs
with intervals exceeding 90 days were further excluded from the testing. Within the testing
set, each subject’s multiple rounds of measurements are meticulously paired together in
a sequential manner to establish the testing data structure. Each pair is composed of a
pretest and a test measurement, collected from different measurement rounds, thereby
forming varying time intervals. The valid time interval between the pretest and test spans
from 11 to 90 days. Notably, none of the measurements belonging to subjects designated
for the testing set are used in the training set. This meticulous separation ensures the
establishment of the strictest testing condition, where the model has not yet been influenced
by any prior measurements of the intended test subjects.

2.2. Method

The methodology proposed in this study revolves around the utilization of a pretest
round to derive an implicit HbA1c value, subsequently enhancing the accuracy of blood
glucose level (BGL) predictions during the testing round.

The workflow of this method is depicted in Figure 2. Firstly, a set of three BGL
prediction models are trained employing PPG signals, PPG-extracted features, and HbA1c
as inputs. These models use identical structures and will be the only prediction models
used throughout the method. The three models’ purpose is to validate outcomes by
cross-referencing with each other. During the pretest phase, a PPG measurement with a
corresponding finger-prick BGL reading is taken and inversely applied to the prediction
model. The pretest PPG data are then input into the model with varying HbA1c values
ranging from 4 to 12 in increments of 0.1. Consequently, a series of BGL predictions is
generated, as exemplified in Figure 3. Among these predictions, the value closest to the
measured finger-prick BGL reading is identified, and the corresponding HbA1c value is
selected as the implicit HbA1c. This process is repeated independently for each of the
three models. The disparities among the outcomes from the three models are assessed to
ensure they fall within an acceptable threshold for consistency. Among the three results,
the median value is chosen to serve as the designated implicit HbA1c.

During the testing phase, only the PPG measurement is collected and then joined
with the pretest-determined implicit HbA1c as input for the model to generate the BGL
prediction. Once more, both the PPG measurement and implicit HbA1c are independently
input into the three models, and the differences among the prediction outcomes are assessed
to ensure their consistency. In the event that the differences among models with identical
structures and the same input data exceed a certain threshold, the results are deemed
unreliable and should be disregarded. This process represents a straightforward and
simple approach, leveraging preexisting models to obtain an alternative HbA1c value that
enhances the accuracy of BGL predictions.

155



Bioengineering 2023, 10, 1207

Figure 2. Illustration of the sequential workflow, starting from the pretest phase to derive the
implicit HbA1c, followed by its application during testing to generate the final blood glucose level
prediction. During pretest, the required inputs are PPG measurement and a finger-prick blood
glucose level. The finger-prick value is only used at the final step of the pretest to determine implicit
HbA1c value. During testing, the required inputs are the pretest determined implicit HbA1c and a
PPG measurement.

Figure 3. Illustrative example of the process for determining implicit HbA1c. A range of HbA1c
values, ranging from 4 to 12, is employed to estimate blood glucose levels (BGL). Among these values,
the HbA1c value corresponding to the predicted BGL closest to the pretest reference BGL is identified
and designated as the implicit HbA1c value.

In this study, we utilized Python version 3.9.13 and Keras version 2.7 with tensorFlow
version 2.7 as the backend for model building. The BGL prediction model utilized in
this study used an identical structure to our prior HbA1c-based method, thus facilitating
objective comparisons. The detailed model structure design with every layer can be
found in Supplementary Figure S1. The model comprises two parallel one-dimensional
convolutional neural network (CNN) blocks, each featuring different filter lengths to
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encompass both micro and macro perspectives of the input signal window. The CNN
outputs are subsequently concatenated with a manually extracted feature vector, which
includes the HbA1c measurement. This combined information is then passed through
several fully connected layers to generate the BGL prediction output. A comprehensive
depiction and in-depth design of the model’s structure can be found in our earlier work,
where the model achieved a prediction accuracy of over 94% within Clarke’s error grid
(CEG) zone A for subjects not influenced by any form of medication.

3. Results

In this study, Clarke’s error grid (CEG) analysis is used as the main performance
indicator, as the ISO 15197:2013 (International Organization for Standardization) recom-
mendation requires personal use glucose meters to have 99% of the measurement within
CEG’s zones A and B [20]. Clarke’s error grid analysis is a graphical method used to
evaluate the accuracy of blood glucose meters developed by David Clarke in 1987 as a way
to assess the clinical significance of errors in glucose measurements. CEG consists of five
zones from A to E, each reflecting different clinical significance [21]. Zone A represents an
accurate prediction where any differences between the prediction and reference values are
considered negligible. Zone B reflects a prediction with a clinically acceptable error which
could lead to unnecessary treatment but does not have a significant impact. As for Zones
C to E, they represent different degrees of danger to users; if the result is used for clinical
purposes, it could lead to severe harm or even death.

In Figure 4a, we presented the difference between implicit HbA1c and its correspond-
ing measured reference HbA1c. The graph exhibits a rough alignment with the diagonal
line, while implicit HbA1c values appear systematically higher than their corresponding
explicit HbA1c values. Implicit HbA1c reflects the HbA1c value that the model anticipates
given a specific blood glucose level. This phenomenon can be attributed to the fundamental
difference between the training and testing sets we used. As a result, the training set we
used (subjects without multiple entries of measurement) is predominantly composed of
subjects with lower blood glucose level. In contrast, the testing set is predominantly com-
posed of individuals with prediabetes and diabetes. Due to the methodology employed, the
testing set required the test subjects to have two measurements (pretest and test), but the
training set did not require a pretest for model training. This makes it impossible to mix the
data between training and testing sets to achieve a more balanced distribution between the
two sets. Table 2 provides a glimpse of the notable differences in average HbA1c and blood
glucose levels between the training and testing datasets. From Figure 4b we can see the
clear difference in the distribution of the BG–HbA1c relation between our training and test-
ing datasets. Consequently, as we proceed with the process of calculating implicit HbA1c,
the elevated fasting blood glucose levels observed within the testing subjects contribute to
higher implicit HbA1c values. The systematic deviation between the explicit and implicit
HbA1c values does not reflect the error; instead, it shows the amount of correction items
adjusted by the methodology to bridge the population for an accurate BGL estimation.

For comparison, a set of predictions was also conducted using explicit HbA1c. This
comparative analysis was carried out using the same testing dataset. The overall prediction
performances by CEG’s zone ratios are documented and summarized in Figure 5 shown
below. In the figure, we can see the difference in prediction ability between using the newly
proposed implicit HbA1c and the previously used explicit HbA1c. Overall, while using
implicit HbA1c, the model not only alleviates the inconvenience associated with HbA1c
measurement, but also leads to a substantial 16% improvement in prediction accuracy. This
outcome is an indication that implicit HbA1c can be more effective than measured HbA1c.
This intriguing phenomenon is hypothesized to stem from the implicit HbA1c calculation
process which also introduced a degree of adjustment of personal deviation.

157



Bioengineering 2023, 10, 1207

  
(a) (b) 

Figure 4. (a) Difference in implicit HbA1c and corresponding measured reference HbA1c, and
(b) distribution of the BG–HbA1c (measured) relationship for the training and testing sets.

 

Figure 5. CEG analysis of using implicit HbA1c and explicit HbA1c for model prediction on subjects
not affected by drugs.

The distribution of the prediction percentage error of using the implicit HbA1c and
explicit HbA1c methods is presented in Figure 6. In the figure, we can see the prediction
percentage errors from the implicit HbA1c method exhibit a normal distribution, while
those from the explicit HbA1c method displayed a left-skewed distribution with systemi-
cally lower prediction. To ascertain the significance of the difference in model performance,
a nonparametric Wilcoxon signed-rank test was conducted based on the percentage errors.
The statistical result revealed that there are significant differences in prediction accuracy
between the two methods, with a p-value of 2.75 × 10–7, much smaller than the significance
level of 0.05.
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Figure 6. Percentage error distribution of the prediction while using implicit and explicit HbA1c for
conducting the nonparametric Wilcoxon signed-rank test. The implicit HbA1c method demonstrates
a distribution pattern that resembles a normal distribution. The explicit HbA1c method exhibits a
left-skewed distribution with systemically lowered prediction.

4. Discussion

The accurate estimation of blood glucose levels (BGL) from non-medicated subjects
can be achieved through a machine learning (ML) model that utilizes both photoplethys-
mography and HbA1c input, as we have previously demonstrated in our work published
in Sensors. In that study, the HbA1c measurements used were taken simultaneously un-
der the assumption that they could represent any recently measured HbA1c value with
limited degradation in performance, given that HbA1c reflects a three-month average of
blood glucose concentration. The less-than-ideal performance on the prediction results
when using explicit HbA1c in this study was expected due to the previously mentioned
disparities between the training and testing sets, as well as the increased time interval
when compared to our prior work. Despite these increased challenges, the implicit HbA1c
method effectively generates accurate predictions. This highlights the efficacy of implicit
HbA1c in covering correction items from personal deviations.

A machine learning model for BGL estimation can generally be represented as
Equation (1). Here, the function ML() symbolizes the machine learning model, while
F1 through Fn correspond to the diverse set of features that collectively contribute to
achieving an accurate prediction of the blood glucose level.

BGL = ML(F1, F2, F3 . . . Fn) (1)

While different methods may employ different features, our prior work demonstrated
that BGL can be accurately estimated by a machine learning model with PPG and HbA1c in-
put, albeit under certain conditions. This leads us to modify Equation (1) into Equation (2a):

BGL = ML(PPG, HbA1c) (2a)

However, it is important to acknowledge the intricate interplay of variables such as
medication, individual differences, lifestyle variations, and more, which may not have been
fully accounted for. This realization prompts us to introduce the correction item ∑Ci into
the equation. For subjects not undergoing treatment with drugs, the effects of ∑Ci may not
be significant enough to seriously hinder the prediction performance, but it is undeniable
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that these effects still exist. Consequently, we further revise the equation into Equation (2b).

BGL = ML(PPG, HbA1c, ∑Ci) (2b)

These personal difference effects were dealt with by using a personalized deduc-
tion learning model that required multiple measurements from the user in our previous
work [22]. Other works sought to account for these deviations by utilizing numerous
personal profiles [23]. In this study, we leverage the concept of implicit HbA1c to achieve a
similar effect.

Implicit HbA1c is determined by substituting HbA1c and BLG in Equation (2). It
is like solving a multi-variate polynomial function with only one unknown variable. To
solve for the unknown HbA1c value, the model is provided with a range of HbA1c inputs,
generating a series of predictions. By cross-reference these predictions with the known
BGL value, we can determine which corresponding HbA1c produces the most accurate
estimation. This process not only yielded an HbA1c estimate, but it also accounted for the
aforementioned correction items ∑Ci. In other words, implicit HbA1c is the HbA1c value
that has been adjusted to accommodate an individual’s specific correction items. Thus, this
refinement further transforms Equation (2b) into Equation (3)

BGL = ML(PPG, HbA1cimp) (3)

HbA1c reflects an average BGL, and its correlation with fasting BGL is influenced
by individual lifestyle, such as constant high BGL during the day and multiple meals.
Consequently, the relationship between each individual’s HbA1c and fasting blood glucose
follows a unique curve. For instance, individuals with prediabetes may still have a pancreas
capable of producing a sufficient amount of insulin to maintain normal fasting BGL, but
their daily BGL may fluctuate in a big range depending on diet and lifestyle. We anticipation
that the proposed method will demonstrate effectiveness across various demographics,
including different races, ages, and genders, as it effectively compensates for personal
deviations arising from miscellaneous correction factors.

The self-monitoring of blood glucose (SMBG) serves as an indicator of daily sugar
control status in modern diabetes treatment, and its importance might be introducing
behavior changes, improving glycemic control, and optimizing therapy [24]. Intensive
insulin therapy is usually accompanied by daily SMBG and has proved to reduce the
end-organ damage in patients with insulin-dependent diabetes mellitus [25]. There is also
evidence suggesting the benefit in pre-diabetic patients or those under oral anti-diabetic
drugs [26]. Some diabetes guidelines suggest SMBG use not only while fasting but also
in the post-prandial stage, because the post-prandial glucose excursion, measured by the
delta change in fasting and post-prandial sugar, has been demonstrated to correlate with
cardiovascular risk [24]. Hence, the structured SMBG protocol by performing glucose
tests before and after a meal in pairs has been evaluated in clinical trials and improves
glycemic control [27]. Our implicit HbA1c method may increase the frequency of sugar
monitoring compared to the guideline-suggested 2~3 times of SMBG per week in non-
insulin-treated T2DM; the usage of this novel non-invasive glucose monitor technology
might help diabetologists to optimize diabetic therapy in the future. However, our original
dataset was collected in a fasting population; thus, the reliability of post-prandial sugar
use remains uncertain. In addition, our prediction model in the insulin-treated population,
whose SMBG assessments are in most demand, is less powerful than those not undergoing
drug treatment. A further improvement of our algorithm and studies including a broader
spectrum of diabetic populations are mandatory.

5. Conclusions

The significance of HbA1c as a valuable feature for non-invasive blood glucose pre-
diction is widely acknowledged, although the inconvenience of acquiring HbA1c mea-
surements remains. The HbA1c measurements are generally only available in hospitals
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or specialized clinics. To tackle this issue, this study introduced an innovative approach
known as implicit HbA1c value which derives an alternative HbA1c that only requires
a single finger-prick blood glucose measurement and can be easily conducted at home
by the users. Implicit HbA1c was introduced as a solution to enable accurate glucose
predictions without the need for direct HbA1c measurements with specialized equipment,
and it also demonstrated the ability to further improve the prediction performance. The
implicit HbA1c method achieved 87% of the prediction results within CEG’s zone A, and
the remaining 13% close to the zone A boundary. The implicit HbA1c approach not only
exhibited a remarkable 16% improvement over the measured HbA1c method by covering
personal correction items automatically, but also demonstrated an extended prediction
validity period with testing data from 11 up to 90 days. The nonparametric Wilcoxon
paired test conducted on the percentage error suggests a statistically significant difference
between their performances with a p-value of 2.75 × 10−7.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering10101207/s1, Figure S1: Detailed neural network structure
of our deep learning model. The model uses two input layer for signal vector and feature vector. The
signal vector takes in the segmented PPG waveform data while feature vector takes in the HbA1c
value and other PPG extracted features.
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