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Emergency and critical illnesses refer to severe diseases or conditions characterized by
rapid changes in health that may endanger life within a short period [1]. With the devel-
opment of information technology [2], the storage, sharing, and use of medical data have
become more convenient. Furthermore, with the rapid development of artificial intelligence
technology [3,4], we are at the forefront of a medical information revolution. The emergence
of AI has brought new possibilities for the treatment of critically ill patients [5,6]. Through
big data analysis and machine learning, we are able to predict the progression of diseases
more accurately and adjust treatment plans in a timely manner [7–9]. This trend towards
precision medicine has had a profound impact on medical practice [10]. In this context,
we have organized a Special Issue to discuss the application of AI in the management of
critical illnesses, aiming to achieve greater advancements in future healthcare.

In this Special Issue, researchers from various countries and regions have explored
the application of artificial intelligence in critical care, covering aspects such as diagnosis,
management, and prognosis. (Figure 1) Several previous studies have explored the realm
of diagnosis. Aygun et al. (Contribution 1) aimed to develop an interpretable predictive
model based on Explainable Artificial Intelligence (XAI) to forecast sepsis and identify
significant biomarkers. Within a cohort of 1572 patients, they utilized biomarkers including
age, respiratory rate, blood oxygen saturation, procalcitonin, and positive blood culture
to predict sepsis. The results of SHapley Additive exPlanations (SHAP) indicate that
factors such as advanced age, increased respiratory rate, and decreased procalcitonin
elevate the risk of sepsis. By enhancing transparency in the decision-making process,
XAI models enable clinicians to comprehend and trust the predictive capabilities of AI
systems [11]. During the diagnostic process, multiple methods are often available to assist
physicians in making a diagnosis. Tuncyurek (Contribution 2) conducted an evaluation
using artificial intelligence methods to determine the optimal selection of methods. Acute
appendicitis stands as one of the most common causes of abdominal pain in the emergency
department and is the leading surgical emergency among children under 15, posing a
significant risk upon rupture. The selection of radiological methods is paramount for
accurate diagnosis, thereby averting unnecessary surgeries. The aim of this study is to
evaluate the effectiveness of the American College of Radiology (ACR) Appropriateness
Criteria in diagnosing acute appendicitis using multivariable decision criteria. This study’s
uniqueness lies in its provision of an analytical ranking of results for this intricate decision
problem, showcasing the merits and demerits of each alternative in different scenarios, even
accounting for the ambiguity of emergency situations concerning the diagnosis of pediatric
appendicitis. We applaud the utilization of a novel model to test the ACR qualification
criteria, aiming to minimize confusion in the diagnostic process.

Diagnostics 2024, 14, 687. https://doi.org/10.3390/diagnostics14070687 https://www.mdpi.com/journal/diagnostics1
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Figure 1. The figure provides a visual summary of the contents covered in the special issue. Through
these visual elements, readers can quickly grasp the various topics and related content featured in
the issue. XAI: Explainable Artificial Intelligence; TBI: Traumatic Brain Injury; ICU: Intensive Care
Unit; AKI: Acute Kidney Injury; COVID-19: Coronavirus Disease 2019; VAP: Ventilator-Associated
Pneumonia; NPA: Neonatal Pain Assessment; OS-NPA: on-site Neonatal Pain Assessment; ACR: the
American College of Radiology.

Figure 1 provides a visual summary of the contents covered in the Special Issue.
Through these visual elements, readers can quickly grasp the various topics and any related
content featured in the Issue. XAI: Explainable Artificial Intelligence; TBI: Traumatic Brain
Injury; ICU: Intensive Care Unit; AKI: Acute Kidney Injury; COVID-19: Coronavirus
Disease 2019; VAP: Ventilator-Associated Pneumonia; NPA: Neonatal Pain Assessment;
OS-NPA: On-Site Neonatal Pain Assessment; ACR: The American College of Radiology.

The risk of acute kidney injury (AKI) has long presented a challenge for clinicians in
the intensive care unit (ICU) [12,13]. The combined effects of serum creatinine, blood urea
nitrogen (BUN), and clinically relevant serum electrolytes have yet to be comprehensively
studied. Through a screening of the MIMIC-IV Database, the association between serum
electrolyte levels and renal function was examined (Contribution 3), revealing that levels of
serum creatinine, chloride, and magnesium emerged as the three primary factors requiring
monitoring in this patient cohort. Thus, it is imperative to undertake larger-scale studies
based on this research to strengthen and refine the clinical guidelines pertaining to AKI.

Rambaud et al. developed a clinical prediction algorithm using prospective clinical
data from 827 pediatric patients stored in a Canadian tertiary pediatric hospital database
(Contribution 4). This algorithm aims to enable the early detection of ventilator-associated
pneumonia (VAP). Notably, this study demonstrates the most accurate sensitivity achieved
by a Clinical Decision Support System (CDSS) to date in identifying VAP. We anticipate
the implementation of the results of this algorithm by Jerome Rambaud in the Pediatric
Intensive Care Unit (PICU), and we look forward to seeing its outstanding performance in
multicenter trials.
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Furthermore, artificial intelligence has numerous applications in prognosis. In the
fields of traumatic brain injury (TBI) and burn injuries, artificial intelligence (AI) tech-
nologies have significantly advanced the predictive accuracy of patient outcomes beyond
traditional models. Tu et al. and Yeh et al. conducted retrospective studies in their re-
spective areas, gathering extensive patient data to employ machine learning models in the
prediction of mortality and adverse outcomes. The researchers focused on 2260 TBI patients
in the ICU, using four machine learning models and 42 features. Their study outperformed
traditional tools like APACHE II and SOFA scores in predicting mortality risk (Contribution
5). Similarly, Yeh et al. analyzed data from 348 burn patients, demonstrating AI’s ability
to predict prolonged hospital stays, grafting needs, and other adverse outcomes more
accurately than the commonly used Baux score (Contribution 6). Both studies highlight
the role of modern AI in enhancing the stratification and assessment of patients, marking
significant progress towards intelligent healthcare in their respective domains. In another
study (Contribution 7) utilizing the MIMIC-IV Database, multiple machine learning models
were employed to predict patient mortality, with the findings indicating that the XGBoost
machine learning method outperformed traditional models through comparative analysis.

Furthermore, artificial intelligence plays a significant role in disease management [14].
Amidst the outbreak of the COVID-19 pandemic, the escalating number of critically ill
patients in global intensive care units (ICUs) has placed a strain on ICU resources. The
early prediction of ICU demand is crucial for effective resource management and allocation.
Islam et al. conducted a retrospective cohort study focusing on data collected from the
Pulmonology Department of a state hospital in Moscow (Contribution 8). Various feature
selection techniques were investigated, and a stacked machine learning model was pro-
posed. This model was compared with eight different classification algorithms to assess the
risk of ICU admission for both COVID-19 and non-COVID patients, as well as for COVID
patients separately.

Artificial intelligence also plays an important role in image recognition and assessment
in the medical fields. The assessment of neonatal pain (NPA) has not received sufficient
attention in clinical practice, leading to widespread instances of undertreatment of pain
severity. In clinical NPA, facial expressions are considered the most explicit indicators,
upon which various pain assessment scales are designed. Zhu et al. aimed to develop an
automated NPA system that meets actual clinical needs (Contributions 9 and 10). To achieve
this, a video database capturing the facial expressions of neonates during blood collection
procedures in the neonatal ward was established, and an AI-NPA method was developed
based on real-world data. The clinical utility of the automated NPA system was validated
by recruiting 232 pediatric patients from a tertiary children’s hospital in China. According
to the OS-NPA results of 232 neonates, the accuracy of the automated NPA system was
88.79%. Although video-based NPA (VB-NPA) protocols facilitate remote or post hoc pain
diagnosis by experts, serving as an equivalent alternative to the on-site NPA (OS-NPA)
gold standard, VB-NPA may suffer from partial inaccuracies due to information loss in
neonatal pain videos captured in real NICU settings. Nonetheless, it remains comparable to
OS-NPA. Video-based assessment for neonatal pain evaluation in clinical settings is feasible
and allows for the real-time, remote assessment of neonatal pain severity. We anticipate
further applications of this technology in neonates with larger-scale data and potential
migration to adult pain assessment.

Collectively, these studies illuminate the transformative impact of AI and ML in
medical diagnostics and prognostics, heralding a new era of precision medicine that
promises enhanced patient outcomes and optimized healthcare delivery [15]. Addition-
ally, in the application of artificial intelligence, there are characteristics of overfitting and
poor generalization; some models produce very precise predictions, but this precision
may not necessarily translate into clinical benefits [16]. To address these issues of general-
ization, further validation is needed through randomized controlled trials (RCTs) across
multiple centers.
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Abstract: Background: Numerous mortality prediction tools are currently available to assist patients
with moderate to severe traumatic brain injury (TBI). However, an algorithm that utilizes various
machine learning methods and employs diverse combinations of features to identify the most
suitable predicting outcomes of brain injury patients in the intensive care unit (ICU) has not yet been
well-established. Method: Between January 2016 and December 2021, we retrospectively collected
data from the electronic medical records of Chi Mei Medical Center, comprising 2260 TBI patients
admitted to the ICU. A total of 42 features were incorporated into the analysis using four different
machine learning models, which were then segmented into various feature combinations. The
predictive performance was assessed using the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve and validated using the Delong test. Result: The AUC for each model
under different feature combinations ranged from 0.877 (logistic regression with 14 features) to
0.921 (random forest with 22 features). The Delong test indicated that the predictive performance of
the machine learning models is better than that of traditional tools such as APACHE II and SOFA
scores. Conclusion: Our machine learning training demonstrated that the predictive accuracy of the
LightGBM is better than that of APACHE II and SOFA scores. These features are readily available
on the first day of patient admission to the ICU. By integrating this model into the clinical platform,
we can offer clinicians an immediate prognosis for the patient, thereby establishing a bridge for
educating and communicating with family members.

Keywords: artificial intelligence; machine learning; traumatic brain injury; mortality; intensive care
unit; computer-assisted system

1. Introduction

Traumatic brain injury is a global issue that not only impacts patients’ health but
also imposes a significant burden on social, economic, and medical resources [1]. The
age-adjusted mortality rate in Europe is 11.7 per 100,000 and 17.0 per 100,000 in the
US [2,3]. In contrast to Western countries, where TBI is often associated with war, Asia
experiences TBI due to falls and road traffic injuries [4]. As low- to middle-income countries
undergo industrial transformation leading to increased mechanization and urbanization,
the incidence of brain injuries is gradually rising. However, the slow growth of medical
resources in these countries results in more severe disabilities compared to developed
nations [4].
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Survivors of TBI typically face neurological deficits and disabilities. Those with severe
TBI receive treatment in the intensive care unit (ICU). Various efforts have been made to
predict the prognosis of TBI patients, exploring factors such as Glasgow Coma Scale (GCS),
age, pupillary reactivity, injury severity, and clinical condition (e.g., hypoxia, respiratory
distress, and hypotension) in numerous studies. The evaluation of brain injury extent and
classification using CT scans is also closely linked to mortality [5–8].

A previous retrospective study found variability in the use of a single predictive
model across populations [9]. Although studies of IMPACT and CRASH are widely
known, they may not be applicable to each individual patient [10]. The SOFA (Sequential
Organ Failure Assessment), introduced in 1996, is designed to describe the progression
of complications in critically ill patients and an elevated SOFA score is associated with
a higher likelihood of mortality [11,12]. APACHE II relies on 12 physiological variables
measured within the first 24 h of ICU admission to predict ICU patient outcomes [13].
However, the use of APACHE II and SOFA has only shown marginal improvement in
prognostic performance [14]. Therefore, we need to seek more accurate predictive models
for prognosis and mortality in ICU settings.

Machine learning (ML) approaches require more input and output data for analy-
sis, but they excel at handling complex interrelationships. Compared to classical linear
regression statistics, machine learning processes data directly, resulting in more accurate
predictions [15]. However, the “black-box” nature of AI, characterized by its lack of ex-
planation, is still the main reason for the low clinical application. In order to improve the
predictive explanation of AI models, Explanatory Artificial Intelligence (XAI) techniques
have been introduced, with SHAP (SHapley Additive exPlanations) being the most widely
used XAI technique for explaining which clinical features are important for predicting
various diseases or patient prognosis. Therefore, it is very important to use XAI to better
interpret how each feature contributes to the associated outcome in the AI prediction
model [16].

Courville E et al. reported a systematic view and meta-analysis (2013–2020) demon-
strating that much of this literature discusses in-hospital mortality and poor prognosis,
but lacks a more specific focus on the ICU population to understand the predictive power
of AIs in TBI patients [17]. In the last three years, there have been several reports on
the prognosis and mortality risk of brain injury using ML techniques. However, some of
these studies may not have selected different combinations of features based on clinical
importance, lacked comparisons with traditional tools, or were not conducted in an ICU
setting. Therefore, further investigation is needed to clarify this point [18–21].

Our goal is to use machine learning algorithms to analyze the vast amount of ICU
data to predict mortality risk after TBI, which is more tailored to patients in our country.
Additionally, it is essential to compare these ML models with the existing APACHE II
and SOFA scores. We also use the SHAP technique to explain which clinical features are
important for predicting various diseases or patient outcomes.

2. Materials and Methods

2.1. Ethics

This research received ethical approval (revision: 11106-013) from the institutional
review board at Chi Mei Medical Center in Tainan, Taiwan. The authors conducted the
study in accordance with appropriate guidelines and regulations. Since the study was
retrospective in nature, the Ethics Committee waived the requirement for informed consent.

2.2. Flow Chart and AI Device of Current Study

Our study followed the guidelines specified in the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) standard.
Figure 1 illustrates the flowchart detailing the ML training process and its integration
into the hospital system. The ML model was trained using a total of 42 selected features
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identified based on their statistically significant differences (p-value < 0.05) between the
mortality and non-mortality groups.

Figure 1. Workflow diagram for data collection and machine learning model training.

To assess model performance, a 70% training dataset was used, while the remaining
30% formed the test set via random splitting. As a result, four models were developed to
predict mortality risk.

Statistical analysis involved t-tests for numerical variables and Chi-square tests for
categorical variables. Additionally, Spearman correlation analysis was conducted to evalu-
ate the strength of the correlation between each feature and the outcome. Recognizing the
imbalanced outcome classes, particularly in mortality cases, we employed the synthetic mi-
nority oversampling technique (SMOTE) [22]. This oversampling technique was applied to
balance the number of positive outcome cases (mortality) with the negative cases (survival)
during the final model training with each machine learning algorithm.

Figure 2 illustrates the utilization of the hospital backend system to collect data from
various assessment modules, including the ICU evaluation module, vital signs module,
health status module, and medical history module. These modules provide input to the
central computer for integrated processing, and the data are then fed into the ML training
model for simulation.

Figure 2. System training architecture.
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2.3. Patient Selection

From January 2016 to December 2021, a retrospective collection of patients aged
20 years and older who were diagnosed with TBI and admitted to the ICU was conducted
using the electronic medical records of Chi Mei Medical Center. The inclusion crite-
ria included neurosurgical patients who have been admitted to the ICU with the fol-
lowing diagnostic codes. ICD-9: 800*–804*, 850*–854*, 959.0, 959.01, and 959.8–959.9;
ICD-10: S00*-T07*. Patients with missing or ambiguous values were excluded.

2.4. Feature Selection and Model Building

Under the consensus of several neurosurgeons and intensive care physicians, we
identified parameters that met the following criteria: (1) representation of the clinical
status of traumatic brain injury patients, (2) objective assessability, and (3) generalizability.
Subsequently, we employed univariate filter methods for feature selection, considering
both continuous and categorical variables. A significance level of 0.05 or lower was used
for selection. Additionally, Spearman’s correlation coefficient and expert opinions were
considered during the finalization of the feature selection process. The study utilized
42 features, as listed in Table 1. We employed four machine learning algorithms, including
Logistic Regression [23], Random Forest [24], LightGBM [25], and XGBoost [26], to construct
predictive models for mortality in ICU. To reduce concerns of overfitting that might arise
from a small dataset, we utilized the cross-validation technique to build the models.

Table 1. Characteristics and significance of traumatic brain injury patients.

Feature
Overall
n = 2260

Non-Mortality
n = 2020

Mortality
n = 240

p-Value

Female, n (%) 813 (35.97) 735 (36.39) 78 (32.50)
0.265male, n (%) 1447 (64.03) 1285 (63.61) 162 (67.50)

Age, mean (SD) 63.89 (17.74) 63.26 (17.76) 69.22 (16.65) <0.001
height, mean (SD) 162.74 (11.24) 162.75 (10.95) 162.60 (13.43) 0.862
weight, mean (SD) 63.00 (14.16) 63.24 (14.23) 61.00 (13.42) 0.016

Systolic blood pressure (SBP), mean (SD) 142.36 (29.41) 143.33 (28.40) 134.22 (35.86) <0.001
Diastolic blood pressure (DBP), mean (SD) 78.02 (17.02) 78.72 (16.36) 72.13 (20.90) <0.001
Mean Arterial Pressure (MAP), mean (SD) 100.04 (20.67) 100.99 (19.86) 92.06 (25.24) <0.001

Body temperature (BT), mean (SD) 36.55 (0.63) 36.57 (0.56) 36.39 (1.01) 0.005
pulse, mean (SD) 86.48 (16.95) 85.93 (15.90) 91.10 (23.57) 0.001

Respiratory rate (RR), mean (SD) 17.67 (4.06) 17.73 (3.95) 17.10 (4.83) 0.054
Glasgow Coma Scale_eye opening (GCS_E), mean (SD) 3.13 (1.26) 3.31 (1.15) 1.69 (1.18) <0.001

Glasgow Coma Scale_verbal response (GCS_V), mean (SD) 3.52 (1.75) 3.75 (1.66) 1.65 (1.30) <0.001
Glasgow Coma Scale_motor response (GCS_M), mean (SD) 4.99 (1.77) 5.21 (1.60) 3.08 (1.97) <0.001

Glasgow Coma Scale (GCS), mean (SD) 11.64 (4.48) 12.27 (4.11) 6.41 (4.03) <0.001
Left Pupil

Pupil reflex (−), n (%) 230 (10.18) 104 (5.15) 126 (52.50)
<0.001Pupil reflex (+), n (%) 2030 (89.82) 1916 (94.85) 114 (47.50)

Pupil size (L), mean (SD) 3.23 (0.99) 3.10 (0.77) 4.29 (1.70) <0.001
Right Pupil

Pupil reflex (−), n (%) 231 (10.22) 103 (5.10) 128 (53.33)
<0.001Pupil reflex (+), n (%) 2029 (89.78) 1917 (94.90) 112 (46.67)

Pupil size (R), mean (SD) 3.22 (0.99) 3.09 (0.76) 4.34 (1.74) <0.001
Muscle power_left upper extremity (Muscle_LUE), mean (SD) 3.03 (1.66) 3.24 (1.54) 1.30 (1.59) <0.001
Muscle power_left lower extremity (Muscle_LLEE), mean (SD) 2.93 (1.67) 3.13 (1.58) 1.24 (1.48) <0.001
Muscle power_right upper extremity (Muscle_RUE), mean (SD) 3.04 (1.66) 3.25 (1.54) 1.30 (1.57) <0.001
Muscle power_right lower extremity (Muscle_RLE), mean (SD) 2.94 (1.67) 3.14 (1.58) 1.22 (1.46) <0.001

Inspired fraction of oxygen (FiO2), mean (SD) 27.80 (11.52) 26.49 (9.08) 38.84 (20.50) <0.001
APACHE II, mean (SD) 12.92 (7.44) 11.71 (6.44) 23.10 (7.49) <0.001

Sequential Organ Failure Assessment (SOFA score), mean (SD) 3.10 (2.72) 2.64 (2.26) 6.94 (3.17) <0.001
Endotracheal tube (Endo)

No, n (%) 1283 (56.77) 1229 (60.84) 54 (22.50)
<0.001Yes, n (%) 977 (43.23) 791 (39.16) 186 (77.50)

External ventricular drain (EVD)
No, n (%) 2045 (90.49) 1823 (90.25) 222 (92.50)

0.313Yes, n (%) 215 (9.51) 197 (9.75) 18 (7.50)
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Table 1. Cont.

Feature
Overall
n = 2260

Non-Mortality
n = 2020

Mortality
n = 240

p-Value

Intracranial pressure (ICP), n (%)
No, n (%) 2025 (89.60) 1835 (90.84) 190 (79.17)

<0.001Yes, n (%) 235 (10.40) 185 (9.16) 50 (20.83)
Cerebral perfusion pressure (CPP), n (%)

No, n (%) 2025 (89.60) 1835 (90.84) 190 (79.17)
<0.001Yes, n (%) 235 (10.40) 185 (9.16) 50 (20.83)

surgery, n (%) 310 (13.72) 247 (12.23) 63 (26.25) <0.001
Drugs

vasopressors, n (%) 293 (12.96) 157 (7.77) 136 (56.67) <0.001
sedative_hypnotic, n (%) 950 (42.04) 787 (38.96) 163 (67.92) <0.001

Perdipine, n (%) 354 (15.66) 295 (14.60) 59 (24.58) <0.001
Underlying disease
Hypertension, n (%) 954 (42.21) 829 (41.04) 125 (52.08) 0.001

Diabetes mellitus, n (%) 581 (25.71) 510 (25.25) 71 (29.58) 0.169
heart disease, n (%) 363 (16.06) 320 (15.84) 43 (17.92) 0.462

Cerebrovascular disease, n (%) 206 (9.12) 181 (8.96) 25 (10.42) 0.534
Gastrointestinal disease, n (%) 168 (7.43) 151 (7.48) 17 (7.08) 0.929

Liver Disease, n (%) 161 (7.12) 135 (6.68) 26 (10.83) 0.026
kidney disease, n (%) 133 (5.88) 100 (4.95) 33 (13.75) <0.001

cancer, n (%) 110 (4.87) 97 (4.80) 13 (5.42) 0.795
Thyroid disease, n (%) 55 (2.43) 53 (2.62) 2 (0.83) 0.139

epilepsy, n (%) 45 (1.99) 40 (1.98) 5 (2.08) 0.809
asthma, n (%) 41 (1.81) 39 (1.93) 2 (0.83) 0.310

pneumonia, n (%) 38 (1.68) 32 (1.58) 6 (2.50) 0.286

Note. A t-test was used for numerical variables and the Chi-square test was used for categorical variables.
Surgical procedures are as follows: decompressive craniectomy, acute epidural hematoma removal, acute sub-
dural hematoma removal, acute intracerebral hematoma removal, and intracranial pressure monitor placement.
A patient who undergoes one of the above five surgical procedures is said to have undergone surgery.

2.5. Model Performance Measurement

In this study, we evaluated the performance of the machine learning models using
accuracy, sensitivity, specificity, and area under the curve (AUC) of the receiver operating
characteristic curve (ROC).

Specificity is an important metric to assess the ability of a test or diagnostic method to
correctly identify normal results (non-patients), while sensitivity evaluates the ability to
correctly identify positive outcomes (patients). These metrics are mutually influencing and
should be considered comprehensively in research [27].

Accuracy measures the correctness of predictions made by a classification model or
testing method and represents the proportion of correct predictions among all predictions
made. However, in certain imbalanced datasets, accuracy can be misleading and lead to
poor prediction performance for minority classes [28].

The AUC, representing the area under the ROC curve, which represents the trade-off
between sensitivity and specificity (false positive rate) at different thresholds, serves as an
effective “summary” of the ROC curves’ performance [29,30].

To assess the superiority of each machine learning model compared to traditional
tools, we specifically used the DeLong test [31].

3. Results

3.1. Characteristics and Clinical Presentations of Individuals with Traumatic Brain Injury

A total of 2260 patients were retrospectively included from the electronic medical
records system of Chi-Mei Hospital. Among them, there were 1447 males (64.03%) and
813 females (35.97%). The average age was approximately 63.89 ± 17.74 (mean ± SD)
years old. The characteristics of the patients are listed in Table 1, comprising 42 features,
including vital signs, coma scale, pupillary reflex, intubation status, external ventricular
drainage, and comorbidities. Among these, 29 features showed a significant difference in
relation to mortality (p-value < 0.05).
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3.2. The Correlation between Factors and Mortality (Spearman Correlation Coefficient)

To accurately quantify the impact of each factor on prediction within the ML model,
we conducted an analysis using the Spearman correlation coefficient. Among the factors,
22 had coefficients greater than 0.1 (italic) and showed a significant correlation with mortal-
ity, indicating their substantial influence on prediction. Moreover, among these features,
14 had coefficients greater than 0.2 (bold) and demonstrated a significant correlation with
mortality (Table 2). The top five variables exhibiting high correlation coefficients include
pupil_reflex + (R), pupil_reflex + (L), vasopressors, GCS_M, and GCS_E. Notably, while
SOFA and APACHE II were employed to compare predictive performances with the AI
model, they were not utilized as features in the AI model itself.

Table 2. The Spearman correlation coefficient for each factor.

Feature Mortality Feature Mortality

Gender 0.025 FiO2 0.294
Age 0.108 APACHE II 0.397

Hight 0.008 SOFA 0.398
Weight −0.045 Endo 0.238

SBP −0.066 EVD −0.024
DBP −0.108 ICP 0.118
MAP −0.110 CPP 0.118

BT −0.088 surgery 0.126
pulse 0.079 vasopressors 0.448

RR −0.066 Sedative−hypnotic
drugs 0.181

GCS_E −0.371 Perdipine 0.085
GCS_V −0.348 Hypertension 0.069
GCS_M −0.398 Diabetes mellitus 0.031

GCS −0.363
Cerebrovascular
disease 0.016

pupil_reflex + (L) −0.483 heart disease 0.017
pupil_size(L) 0.235 asthma −0.025

pupil_reflex + (R) −0.491 pneumonia 0.022

pupil_size(R) 0.241
Gastrointestinal
disease −0.005

Muscle_LUE −0.325 cancer 0.009
Muscle_LLEE −0.326 Liver Disease 0.050
Muscle_RUE −0.328 epilepsy 0.002
Muscle_RLE −0.331 kidney disease 0.115

Thyroid disease −0.036
Note. Italicized text: absolute value greater than 0.1; Bold text: absolute value greater than 0.2.

3.3. Predictive Models with Different Features Combinations

Table 3 presents the predictive outcomes obtained from various feature combinations
and artificial intelligence learning. Initially, there were 42 features, which were then catego-
rized based on their significant difference with mortality and their Spearman correlation
coefficient. This resulted in three groups: 29 features significantly correlated with mortal-
ity, 22 features with a Spearman correlation coefficient greater than 0.1, and 14 features
with a Spearman correlation coefficient greater than 0.2. It should be noted that the orig-
inal 15-feature model includes four features: GCS_E, GCS_V, GCS_M, and GCS. Since
GCS is the sum of GCS_E, GCS_V, and GCS_M, we therefore excluded the GCS feature
and built the 14-feature model. The results show that the impact on the model’s quality is
not significant.
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Table 3. Model performance with different feature combinations.

Algorithm Accuracy Sensitivity Specificity AUC

42 features

Logistic
Regression 0.799 0.806 0.799 0.901

Random Forest 0.829 0.833 0.828 0.914
LightGBM 0.832 0.833 0.832 0.916

XGBoost 0.794 0.806 0.792 0.900

29 significant features

Logistic
Regression 0.771 0.833 0.764 0.895

Random Forest 0.844 0.847 0.843 0.918

LightGBM 0.835 0.833 0.835 0.913

XGBoost 0.783 0.792 0.782 0.901

22 significant features and Spearman correlation coefficient > 0.1

Logistic
Regression 0.833 0.819 0.835 0.919

Random Forest 0.830 0.833 0.830 0.921

LightGBM 0.851 0.819 0.855 0.909

XGBoost 0.785 0.806 0.782 0.896

14 significant features and Spearman correlation coefficient > 0.2

Logistic
Regression 0.814 0.819 0.814 0.877

Random Forest 0.832 0.833 0.832 0.902

LightGBM 0.878 0.806 0.886 0.914

XGBoost 0.794 0.806 0.794 0.897
Note. AUC = Area under receiver operating characteristic curve. Algorithms in bold indicate the model with the
highest AUC.

Each feature combination was assessed across four different machine learning models,
and the performance of each model was evaluated using the AUC of the ROC curve to
determine the best predictive model. Regardless of the feature combination, the best-
performing machine learning model achieved an AUC greater than 0.9.

Among the 42 features, the LightGBM model performed the best with an AUC of 0.916.
In the combination of 29 features, the Random Forest model achieved the highest AUC
of 0.918. For the 22-feature combination, the Random Forest model again outperformed
others with an AUC of 0.921. Lastly, in the combination of 14 features, the LightGBM model
had the highest AUC of 0.914 (Figure 3a–d).

3.4. Comparing the Best-Performing Model with Traditional ICU Assessment Tools in Different
Feature Combinations

In the DeLong test, no significant differences (>0.05) were observed in any of the
feature combinations when compared to the combination of 42 features and the LightGBM
model. For the sake of clinical convenience, we believe that using a combination of
14 features is easier to execute. When compared to APACHE II and SOFA scores, the
p-values obtained were 0.0180 and 0.0156, respectively, indicating significant differences
(Table 4).
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All Feature (Feature = 42) Signi cant Feature (Feature = 29) 

  
(a) (b) 

Signi cant Feature and Spearman correlation  
coe cient > 0.1 (Feature = 22) 

Signi cant Feature and Spearman correlation  
coe cient > 0.2 (Feature = 14) 

 
(c) (d) 

Figure 3. Receiver operating characteristic curves (ROC), area under the curve (AUC), for mortality
prediction in the training course. (a) Using 42 features to train the ML model; (b) using 29 features
that were significant in the mortality; (c) using 22 features that were significant and Spearman
correlation coefficient >0.1; and (d) using 14 features that were significant and Spearman correlation
coefficient >0.2. Logistic regression (LR) (orange), random forest (black), LightGBM (green), and
XGBoost (pink) using the 14 feature variables.
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Table 4. The DeLong test of ML models with different feature combinations and conventional tools
(APACH II and SOFA scores).

Algorithm Accuracy Sensitivity Specificity AUC Delong Test

Feature = 42 (LightGBM) 0.832 0.833 0.832 0.916 -
Feature = 29 (Random Forest) 0.844 0.847 0.843 0.918 0.8376
Feature = 22 (Random Forest) 0.830 0.833 0.830 0.921 0.5641

Feature = 14 (LightGBM) 0.878 0.806 0.886 0.914 0.8198
APACH II 0.768 0.847 0.759 0.872 0.0180

SOFA 0.801 0.778 0.804 0.853 0.0156

3.5. Feature Importance of AI Algorithm LightGBM Using 14 Feature Variables

Feature importance was used to rank the most important attributes that significantly
contribute to the accuracy of the final prediction models [32]. To better interpret how each
feature contributes to the associated outcome, we performed SHAP (SHapley Additive
exPlanations) [33].

We ranked the significance of all variables in the LightGBM model to comprehend
the role of each better (Figure 4). In Figure 4a, the color of the SHAP plot represents the
size of the original feature values, with red indicating positive variable values and blue
indicating negative ones. The SHAP value signifies the degree of a feature’s impact on
the outcome (a positive SHAP value indicates a positive effect). A wider Feature SHAP
value suggests a more extensive influence on the outcome. As depicted, patients using
vasopressors (represented by red dots) have an increased risk of death (SHAP value is
positive), whereas the impact of GCS_M and GCS_V is the opposite. Figure 4b displays the
ranking of features’ influence on the outcome based on the absolute values of the SHAP
values. The figure shows that the top five influential feature variables are vasopressors,
GCS_M, GCS_V, pupil reflex + (R), and Muscle_RLE.

Figure 4. SHAP analysis results. (a) SHAP global explanation on the 14-feature model (LightGBM
model); (b) SHAP absolute value of each feature on the 14-feature model (LightGBM model).

Based on the contribution of each predictor to the machine learning method, it can be
presented in the form of feature importance (Figure 4).

3.6. Integration and Application of AI with Clinical Systems

After a series of analyses, we concluded that the LightGBM model with a combination
of 14 features was more lightweight. Therefore, we integrated it into the hospital system to
assist clinical doctors and nurses in treatment and facilitate communication with patients’
families. The “Original” column represents data for current status. Currently, it displays
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data from the time of admission to the ICU. The “Adjust” column allows the observer to
adjust the values of each feature to understand the effect of each feature on the risk of
mortality as a reference for treatment. (Figure 5).

Figure 5. Interface presentation of AI in practical application within the Chi Mei Hospital healthcare
system.

4. Discussion

This is the first study to demonstrate the mortality risk of TBI in ICU using a machine
learning model and compare it to the present prediction model. The novelty of the current
study is as follows. The simplified model using 14 features with the LightGBM algorithm
for mortality prediction proved to be the most practical and excellent, achieving an AUC
of 0.914. The study made significant achievements in several aspects: (a) specialized ICU
parameters improved the credibility of prediction results; (b) different feature combinations
were chosen based on clinical importance and correlation with mortality significance;
(c) a comparison was made between ML techniques and commonly used ICU prognostic
indicators and mortality assessment tools, such as APACHE II and SOFA scores (4). The
observer can adjust the values of each feature to understand the effect of each feature on
the risk of mortality as a reference for treatment.

This study employed artificial intelligence (AI) for data analysis, offering numerous
advantages. ML can handle complex interactions in vast datasets, leading to more accurate
outcome predictions. However, ML models require a larger number of input-output pair-
ings for training, and interpretability may be sacrificed compared to standard statistics [18].
In this study, we utilized AI to identify suitable models and clinically examine the mortality
of patients with brain injury admitted to the ICU.

The data from 2260 patients, including electronic medical records, clinical physiological
values, and laboratory tests, were collected and analyzed. Initially, 42 features were
included, but not all of them showed a correlation with mortality. Therefore, we performed
a direct analysis of the features and mortality, comparing their significance, and found that
29 parameters exhibited a significant difference in relation to mortality as Table 1 shows.
Further analysis involved considering Spearman’s correlation coefficient values, which led
us to identify 14 features from LightGBM that still possessed a high AUC, making it the
most accurate prediction model. Utilizing the mortality risk provided by AI, clinicians can
be assisted in making informed medical decisions.

At our hospital, we primarily use the APACHE II and SOFA assessment tools to assist
with clinical decision-making and effectively communicate with patients and their families
to explain their medical condition in the ICU. Despite the existence of more precise and
updated versions such as APACHE III and IV, APACHE II continues to be the predominant
severity grading system and mortality risk in use [34]. The SOFA score is also widely
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used by critical-care physicians due to its ability to provide rapid and accurate mortality
predictions [35]. To compare the AI models with APACHE II and SOFA scores, we employed
the DeLong test. The results revealed that the ML models generally outperformed the
traditional tools. This finding suggests the potential clinical utility of AI in this study. For
ease of clinical practice and completeness of data acquisition, we chose to use a 14-feature
LightGBM predictive model for clinical use.

Figure 4 shows that the use of vasopressors predominated and significantly influenced
the mortality risk in the LightGBM model. Maintaining the stability of mean arterial pres-
sure and cerebral perfusion pressure (CPP) has always been crucial in brain injury care. The
judicious use of vasopressors helps balance intracranial pressure and maintain a constant
CPP [36]. For intubated patients, motor evaluation was relatively more important due to
the inability to assess verbal function. The focus was primarily on the unaffected side’s
functionality to determine the patient’s prognosis [37]. A GCS score below 8 indicates
severe brain injury, often requiring intubation to protect the airway. According to the study
by Hsu SD et al., not only GCS but also systolic blood pressure (SBP) is an important prog-
nostic factor. In the emergency department, if a patient has a GCS < 6 or an SBP < 84 mmHg,
immediate life-saving measures need to be taken [19,38]. Monitoring blood pressure and
tracking changes in the GCS can be beneficial for predicting prognosis. However, in Hsu
SD’s study [19], they utilized features from the emergency department, whereas we utilized
features from the ICU, where patients have already received treatment. Consequently, the
mortality risk prediction based on ICU features tends to be more accurate at that stage.

Table 5 presents the literature comparison we conducted. In comparison to other
literature, our study examines the impact of different feature combinations on mortality
risk prediction and suggests that the predictive capability of the machine learning model
outperforms traditional tools (APACH II, and SOFA scores). In addition, the model is
currently being applied in ICU. We believe that this model can serve as an alternative
choice for routine assessment in the ICU.

Table 5. A comparative analysis of the mortality rate among patients with brain injury over the past
five years, as reviewed in our study.

Study
Current Study,

2023
Abujaber et al.

[18], 2020
Hsu et al. [19],

2021
Wang et al. [20],

2022
Wu et al. [21],

2023

Setting ICU In-hospital In-hospital In-hospital In-hospital
Patient number 2260 1620 3331 368 2804
Study models Four ML models Two ML models Seven ML models Two ML models 4 ML models

Features
Different features

(42, 29, 22, 14)
combination

20 8 21 26

Outcome Mortality Mortality Mortality Mortality Mortality
Testing result

(AUC) 0.915 0.96 0.82 0.955 0.87

Comparing with other
prediction models

APACHE II score,
SOFA score Nil. Nil. Nil. IMPACT,

CRASH

The best prediction model LightGBM
(14 features) SVM J48 XGBoost XGBoost

Generally, IMPACT and CRASH are commonly used prognostic tools for predicting
outcomes and mortality in clinical TBI cases [39,40]. In Han J et al.’s report, these two
traditional tools were found to have an AUC of 0.86 and 0.87, which is significantly lower
compared to our ML approach [41]. Wu X et al. compared XGBoost, a machine learning
algorithm, with traditional prediction tools such as IMPACT and CRASH. The results
demonstrated that machine learning (ML), specifically XGBoost, outperformed IMPACT
and CRASH the traditional tools in terms of predictive accuracy [21]. In Table 5, our AUC
is greater than Wu’s model, indicating that our model is more suitable for clinical use.
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Moreover, the AI predictive tool we propose is intended as a clinical aid, not a replace-
ment for a doctor’s judgment. Before implementing policies based on AI predictions, it is
essential to conduct comprehensive evaluations in terms of ethics, society, and policy. For
example, protecting patients’ data privacy and rights and ensuring they are not treated
unfairly because of AI predictions.

Despite the robust ML algorithms demonstrating promising predictive performance,
this study still has some limitations. First, it is a retrospective study, and prospective
research is needed to validate the experimental results. Second, the diagnosis of brain
injuries relies on Taiwan’s National Health Insurance regulations, which may have a small
number of miscoded diagnosis codes. However, the impact of these miscodings is relatively
minor in terms of overall influence. Third, imaging parameters such as midline shift and
presence/absence of brain ventricles have not been quantitatively incorporated into our
ML model. Fourth, the potential confounding effects of the numerous features utilized
require further exploration. Fifth, additional confounding variables such as smoking,
alcohol intake, shifts in treatment guidelines, and emerging medical practices could not
be comprehensively assessed due to the constraints of the retrospective database. Last,
the current ML training is limited to various medical centers and laboratories, and due to
differences in treatment guidelines, the generalization of ML from a single center to other
regions is not yet possible. However, we provide the logical framework for ML, and the
iterative process validates the effectiveness and value of such predictive models. Based on
this foundation, further research can be conducted to improve upon these findings.

5. Conclusions

Our research primarily focuses on training AI using ICU data and utilizing various
feature combinations to identify suitable ML models. In the end, we obtained 14 feature
combinations (with a significant correlation to mortality and Spearman > 0.2), among
which LightGBM performed exceptionally well. Not only does it demonstrate mortality
prediction capabilities on par with models using more features but it also outperforms
traditional models. These research findings can be applied in critical clinical settings to
assist physicians in assessing patients’ conditions and providing more data-driven explana-
tions during communication with family members. In the future, we advocate for more
studies that focus on incorporating additional variables to enhance model performance.
The application of AI predictions in other healthcare settings, such as emergency care and
long-term care, warrants deeper exploration.
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Abstract: Background and Objectives: Burn injuries range from minor medical issues to severe,
life-threatening conditions. The severity and location of the burn dictate its treatment; while minor
burns might be treatable at home, severe burns necessitate medical intervention, sometimes in spe-
cialized burn centers with extended follow-up care. This study aims to leverage artificial intelligence
(AI)/machine learning (ML) to forecast potential adverse effects in burn patients. Methods: This
retrospective analysis considered burn patients admitted to Chi Mei Medical Center from 2010 to 2019.
The study employed 14 features, comprising supplementary information like prior comorbidities
and laboratory results, for building models for predicting graft surgery, a prolonged hospital stay,
and overall adverse effects. Overall, 70% of the data set trained the AI models, with the remaining
30% reserved for testing. Three ML algorithms of random forest, LightGBM, and logistic regression
were employed with evaluation metrics of accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic curve (AUC). Results: In this research, out of 224 patients assessed,
the random forest model yielded the highest AUC for predictions related to prolonged hospital stays
(>14 days) at 81.1%, followed by the XGBoost (79.9%) and LightGBM (79.5%) models. Besides, the
random forest model of the need for a skin graft showed the highest AUC (78.8%), while the random
forest model and XGBoost model of the occurrence of adverse complications both demonstrated
the highest AUC (87.2%) as well. Based on the best models with the highest AUC values, an AI
prediction system is designed and integrated into hospital information systems to assist physicians
in the decision-making process. Conclusions: AI techniques showcased exceptional capabilities for
predicting a prolonged hospital stay, the need for a skin graft, and the occurrence of overall adverse
complications for burn patients. The insights from our study fuel optimism for the inception of
a novel predictive model that can seamlessly meld with hospital information systems, enhancing
clinical decisions and bolstering physician–patient dialogues.

Keywords: burn patient; prognosis; prolonged hospital stay; skin graft needed; adverse complications;
artificial intelligence; machine learning; hospital information systems

1. Introduction

A burn injury refers to the damage to the skin or underlying tissues caused by exposure
to heat, fire, chemicals, electricity, or radiation. Burn injuries can vary in severity, ranging
from mild superficial burns to severe deep burns that can be life-threatening [1,2].

Burns are typically classified into different degrees based on their depth and severity:
First-degree burns: These are superficial burns that only affect the outer layer of the

skin (epidermis). They usually result in redness, pain, and minor swelling, but do not
typically cause blistering.

Second-degree burns: These burns affect both the outer layer of the skin (epidermis)
and the underlying layer (dermis). They are characterized by blistering, severe pain, redness,
and swelling.
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Third-degree burns: These burns extend through all layers of the skin, damaging nerve
endings and underlying tissues. They may appear white, charred, leathery, or blackened.
Third-degree burns often result in numbness due to nerve damage and may require surgical
intervention for treatment [3–5].

The severity of a burn injury can also be assessed using the “Rule of Nines”, which
divides the body into different regions, each accounting for a specific percentage of the total
body surface area (TBSA). This helps in estimating the extent of the burn and determining
the need for specialized care [6].

Immediate first aid for burns typically involves removing the source of heat, cooling
the burn with running cool (not cold) water, and covering it with a clean cloth or dressing.
However, for more severe burns or burns involving critical areas such as the face, hands,
feet, or genitals, immediate medical attention is essential.

Treatment for burn injuries often includes wound cleaning, the application of topical
medications, pain management, and, in some cases, surgical procedures like skin grafting to
promote healing [4]. Additionally, rehabilitation and long-term care may be necessary for in-
dividuals with extensive burns to regain functionality and manage potential complications
such as scarring, contractures, and emotional trauma [7,8]. Furthermore, burns occurring
in specific delicate regions, such as the eyelids or penis, pose significant challenges for
healthcare practitioners in terms of both treatment and care [9].

However, the hospital faces limitations in its resources to effectively treat burns and
scalds. This becomes particularly challenging when dealing with a diverse range of burn
patients, including those who have been affected by indoor fires and outdoor dust storms,
such as the colored power fire. Therefore, it is crucial to determine the severity of each
individual’s condition and allocate appropriate medical resources accordingly. To address
this urgency, the Baux score, also referred to as the “Baux index”, was developed by Dr.
Jean Baux in 1960 [10].

The Baux score takes into account the patient’s age and the percentage of total body
surface area (TBSA) affected by burns. It is calculated using the following formula:

Baux score = age (years) + burned area (%)

rBaux score = age (years) + burned area (%) + (17 × I)

In which: I = 1 if the patient suffered inhalation injury; and I = 0 if patients did not
suffer inhalation injury.

For example, for a 35-year-old burn patient who suffered burns covering 20% of their
total body surface area (TBSA), his/her Baux score and rBaux are:

Baux score = age + burned area = 35 + 20 = 55

rBaux score = age + burned area + (17 × I) = 35 + 20 + (17 × 1) = 35 + 20 + 17 = 72

The rBaux score ranges from 0 to 216. A higher Baux score indicates a greater risk
of mortality. The score is used as a prognostic tool to assess the severity of burn injuries
and help guide treatment decisions. Scoring systems like the Baux score and its variations
provide a standardized method for assessing burn severity and predicting outcomes [11].

The rBaux scoring system has been widely and extensively utilized in clinical set-
tings, garnering widespread acceptance for its effectiveness in predicting the likelihood
of mortality in patients suffering from burns and scalds. According to Lam et al. [12], the
revised Baux score has been found to be more accurate than the Baux score. However, they
recommend its application solely for prognosis purposes in adult and elderly burn patients
within developing countries [13,14]. Nevertheless, there have been studies indicating that
the predictive power of the Baux score is limited, suggesting its inadequacy in accurately
predicting burn outcomes. One such study conducted by Roberts et al. [15] (2012) found
that the Baux score had a low sensitivity and specificity in predicting mortality in a cohort
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of burn patients in the US. Similarly, a study by Kirimi et al. [16] (2013) demonstrated that
the Baux score exhibited poor discrimination in predicting complications such as infections
and organ dysfunction.

Furthermore, alternative scoring systems, such as the Anesthesiologists Physical Status
(ASA PS) Score [17] and body mass index (BMI) [18], are employed to forecast mortality in
cases of burn injuries.

However, the aforementioned scoring methods can only provide limited clinical
predictive information and may not effectively handle the variability of changing medical
conditions and the diverse consultation requests from patients and their families, leading
to a communication and information gap between healthcare providers and patients.

Moreover, the condition of severely burned patients typically exhibits rapid fluctu-
ations, sometimes even on the scale of hours or minutes. Therefore, acquiring real-time
clinical data, such as the information provided by Volumeview [19], and effectively in-
tegrating and interpreting these data, pose significant challenges and are of paramount
importance. Consequently, we seek to harness the power of AI/ML to fully leverage this
invaluable information, thereby making a valuable contribution to the enhancement of
clinical care quality.

In view of this, it is urgent and necessary to develop more real-time and high-quality
burn prediction tools to meet the requirements of modern precision medicine. Therefore,
our study aims to develop a prediction model for high-risk burn patients and identify the
factors that potentially increase the risk for mortalities and complications using AI/ML
approaches based on a large database of burn patients in a Taiwanese center. We made a
comparison of the prediction quality with the Baux score, and a prediction system based
on our best model was implemented into practice as well.

2. Materials and Methods

2.1. Study Design, Setting, and Samples

All inpatients with burn of any degree (ICD-9: 948.XX or ICD-10: T31.XX) in the
first 6 diagnosis codes from 1 January 2010 to 31 December 2019 were included, but those
aged ≤6 years old (5 cases) were excluded. Overall, 348 raw cases were used in the study.
Figure 1 shows our research flow.

Figure 1. Research flow.
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The study was approved by the Institutional Review Board of the Chi Mei Medical
Center (IRB Serial No.: 11206-014). All methods were carried out following relevant guide-
lines and regulations. Informed consent from patients was waived due to the retrospective
nature of the study.

2.2. Feature and Outcome Variables

We chose three outcome variables for the prediction models: (1) graft surgery (opera-
tion code 62015), (2) prolonged hospital stay (hospitalization days >14 days), and (3) overall
adverse effects (sepsis, use of respirator, pneumonia, chronic kidney disease (CKD), mortal-
ity, and prolonged hospital stay).

Furthermore, we chose 12 feature variables, based on literature review and clinical
experience, for building these prediction models:

(1) Basic information: gender, age, body mass index (BMI), smoking history, and
escharotomy;

(2) Burn data: burn area, burn site—perineum, and burn site—extremities;
(3) Lab information: white blood cell (WBC), hemoglobin, creatinine, and glutamate

pyruvate transaminase (GPT).

2.3. Model Building and Performance Evaluation

We used all the variables to build the prediction models to maximize model perfor-
mance without performing any feature selection preprocessing. The data were randomly
stratified into a training dataset (70%) and a testing dataset (30%). The SMOTE method
(synthetic minority oversampling technique) [20] was used to deal with the data imbalance
due to the fewer related positive classes (outcomes to be predicted, such as mortality) in the
training dataset. The model of each outcome was built with 4 machine-learning algorithms,
including (1) logistic regression, (2) random forest, (3) LightGBM, and (4) XGBoost.

We used a grid search with 5-fold cross-validation to build the best models based on
the training dataset. We, then, used the testing dataset to evaluate the performance of the
built models with indicators of accuracy, sensitivity, specificity, and AUC (area under the
receiver operating characteristic curve).

2.4. Implementation and Deployment of the Best Models

The models with the highest AUCs were judged as the best and were used to im-
plement a web-based prediction application and deployed into practice for physicians’
decision making. The web-based predictive application was developed with the Microsoft
Visual Studio® tool (v 17.7).

3. Results

3.1. Demographics

From 1 January 2010 to 31 December 2019, a total of 384 burn inpatients who are above
6 years old were enrolled in the study. After data cleaning and missing-value deletion,
224 cases underwent analysis. Overall, 70% of the data were randomly split for model
training, and 30% for model evaluating.

Tables 1–3 show the demographics and characteristics of the patients with graft surgery,
prolonged hospital stay (>14 days), and overall adverse effects, respectively. In total, the
mean age was 45.8, and most patients were males (66.1%); about 50.4% of them were
categorized as the least mild condition of burned area rank 1, while 18.8% of them were
categorized as the most severe condition of burned area rank 4. The mean Baux score
was 69.2.
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Table 1. Demographics—patients with graft surgery.

Feature
Overall

Graft Surgery

p-ValueNo Yes

N = 224 N = 124 N = 100

Age, mean (SD) 45.8 (20.3) 46.1 (20.8) 45.4 (19.9) 0.813

Gender_Female, n (%) 76 (33.9) 42 (33.9) 34 (34.0)
1Gender_male, n (%) 148 (66.1) 82 (66.1) 66 (66.0)

Burned area rank 1 (area <10%), n (%) 113 (50.4) 90 (72.6) 23 (23.0)

<0.001
Burned area rank 2 (area 10–19%), n (%) 24 (10.7) 4 (3.2) 20 (20.0)
Burned area rank 3 (area 20–29%), n (%) 45 (20.1) 19 (15.3) 26 (26.0)
Burned area rank 4 (area >30%), n (%) 42 (18.8) 11 (8.9) 31 (31.0)

BMI (body mass index), mean (SD) 24.5 (4.8) 24.3 (4.4) 24.7 (5.3) 0.546
GPT (glutamate pyruvate transaminase),

mean (SD) 38.7 (95.2) 43.0 (124.6) 33.2 (32.5) 0.4

WBC (white blood cell), mean (SD) 11.5 (6.3) 10.3 (5.0) 12.9 (7.5) 0.003
Hemoglobin, mean (SD) 14.4 (1.8) 14.2 (1.7) 14.6 (1.9) 0.081
Creatinine, mean (SD) 1.1 (1.1) 1.1 (1.2) 1.1 (0.9) 0.988

Smoking, n (%) 32 (14.3) 16 (12.9) 16 (16.0) 0.641
Burned perineum, n (%) 37 (16.5) 22 (17.7) 15 (15.0) 0.713

Burned limb, n (%) 62 (27.7) 42 (33.9) 20 (20.0) 0.031
Underwent escharotomy, n (%) 27 (12.1) 7 (5.6) 20 (20.0) 0.002

Baux score, mean (SD) 69.2 (27.7) 64.2 (28.5) 75.4 (25.4) 0.002
Note. Significance testing approaches (p value): Chi-square test for categorical variables; t-test for continu-
ous variables.

Table 2. Demographics—patients with prolonged hospital stay.

Feature
Overall

Prolonged Hospital Stay

p-ValueNo Yes

N = 224 N = 95 N = 129

Age, mean (SD) 45.8 (20.3) 45.8 (20.5) 45.8 (20.3) 0.994

Gender_Female, n (%) 76 (33.9) 36 (37.9) 40 (31.0)
0.351Gender_male, n (%) 148 (66.1) 59 (62.1) 89 (69.0)

Burned area rank 1 (area <10%), n (%) 113 (50.4) 77 (81.1) 36 (27.9)

<0.001
Burned area rank 2 (area 10–19%), n (%) 24 (10.7) 3 (3.2) 21 (16.3)
Burned area rank 3 (area 20–29%), n (%) 45 (20.1) 7 (7.4) 38 (29.5)
Burned area rank 4 (area >30%), n (%) 42 (18.8) 8 (8.4) 34 (26.4)

BMI (body mass index), mean (SD) 24.5 (4.8) 23.8 (4.0) 25.0 (5.3) 0.044
GPT (glutamate pyruvate transaminase),

mean (SD) 38.7 (95.2) 42.1 (139.7) 36.1 (37.7) 0.687

WBC (white blood cell), mean (SD) 11.5 (6.3) 10.1 (5.1) 12.5 (6.9) 0.002
Hemoglobin, mean (SD) 14.4 (1.8) 14.2 (1.6) 14.5 (1.9) 0.219
Creatinine, mean (SD) 1.1 (1.1) 1.0 (0.2) 1.2 (1.4) 0.033

Smoking, n (%) 32 (14.3) 12 (12.6) 20 (15.5) 0.679
Burned perineum, n (%) 37 (16.5) 16 (16.8) 21 (16.3) 1

Burned limb, n (%) 62 (27.7) 33 (34.7) 29 (22.5) 0.061
Underwent escharotomy, n (%) 27 (12.1) 5 (5.3) 22 (17.1) 0.013

Baux score, mean (SD) 69.2 (27.7) 62.6 (30.1) 74.1 (24.9) 0.003
Note. Significance testing approaches (p value): Chi-square test for categorical variables; t-test for continu-
ous variables.
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Table 3. Demographics—patients with overall adverse effects.

Feature
Overall

Overall Adverse

p-ValueNo Yes

N = 224 N = 86 N = 138

Age, mean (SD) 45.8 (20.3) 44.4 (20.4) 46.6 (20.3) 0.439

Gender_Female, n (%) 76 (33.9) 33 (38.4) 43 (31.2)
0.335Gender_male, n (%) 148 (66.1) 53 (61.6) 95 (68.8)

Burned area rank 1 (area <10%), n (%) 113 (50.4) 76 (88.4) 37 (26.8)

<0.001
Burned area rank 2 (area 10–19%), n (%) 24 (10.7) 3 (3.5) 21 (15.2)
Burned area rank 3 (area 20–29%), n (%) 45 (20.1) 6 (7.0) 39 (28.3)
Burned area rank 4 (area >30%), n (%) 42 (18.8) 1 (1.2) 41 (29.7)

BMI, mean (SD) 24.5 (4.8) 23.6 (4.0) 25.0 (5.2) 0.027
GPT, mean (SD) 38.7 (95.2) 28.4 (17.9) 45.1 (120.1) 0.111
WBC, mean (SD) 11.5 (6.3) 9.3 (4.0) 12.8 (7.1) <0.001

Hemoglobin, mean (SD) 14.4 (1.8) 14.1 (1.5) 14.5 (1.9) 0.091
Creatinine, mean (SD) 1.1 (1.1) 0.9 (0.2) 1.2 (1.3) 0.014

Smoking, n (%) 32 (14.3) 11 (12.8) 21 (15.2) 0.758
Burned perineum, n (%) 37 (16.5) 14 (16.3) 23 (16.7) 1

Burned limb, n (%) 62 (27.7) 33 (38.4) 29 (21.0) 0.008
Underwent escharotomy, n (%) 27 (12.1) 1 (1.2) 26 (18.8) <0.001

Baux score, mean (SD) 69.2 (27.7) 56.2 (22.8) 77.3 (27.5) <0.001
Note. Significance testing approaches (p value): Chi-square test for categorical variables; t-test for continu-
ous variables.

3.2. Machine-Learning Modeling Results

The model performance of each predicted outcome was summarized in Table 4. In
model of graft surgery, the highest AUC was found in the random forest model with a value
of 0.757, followed by the logistic regression model, LightGBM model, and XGBoost model
with values of 0.755, 0.745, and 0.738, respectively. In the model of prolonged hospital stay,
the highest AUC was found in the XGBoost model with a value of 0.815, followed by the
random forest model, LightGBM model, and logistic regression model with values of 0.801,
0.797, and 0.720, respectively (see Table 4). Finally, in the model of overall adverse effects,
the highest AUC was found in the LightGBM model with a value of 0.845, followed by the
logistic regression model, random forest model, and XGBoost model with values of 0.832,
0.822, and 0.816, respectively.

Table 4. Model performance.

Model Algorithm Accuracy Sensitivity Specificity AUC AUC 95%CI

Graft surgery Random forest 0.765 0.833 0.711 0.756 0.639–0.874
Logistic regression 0.706 0.7 0.711 0.755 0.638–0.873

LightGBM 0.706 0.733 0.684 0.745 0.625–0.864
XGBoost 0.721 0.733 0.711 0.738 0.616–0.859

Model Algorithm Accuracy Sensitivity Specificity AUC AUC 95%CI

Prolonged hospital stay XGBoost 0.779 0.795 0.759 0.815 0.710–0.920
Random forest 0.794 0.795 0.793 0.801 0.690–0.912

LightGBM 0.706 0.769 0.621 0.797 0.688–0.905
Logistic regression 0.676 0.718 0.621 0.720 0.595–0.844

Model Algorithm Accuracy Sensitivity Specificity AUC AUC 95%CI

Overall adverse effects LightGBM 0.779 0.786 0.769 0.845 0.751–0.939
Logistic regression 0.765 0.714 0.846 0.832 0.734–0.929

XGBoost 0.765 0.786 0.731 0.822 0.724–0.921
Random forest 0.765 0.738 0.808 0.816 0.716–0.916
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3.3. Interpreting the Feature Importance

Furthermore, for a better interpretation of how each feature contributes to the associ-
ated outcome, we performed a SHAP (SHapley Additive exPlanations) [21] analysis for
each best AI model. In the SHAP global explanation plot, dots in red and blue indicate
higher and lower feature values, respectively. A dot distribution to the left of the horizontal
axis point 0 represents a negative correlation to the outcome, while a distribution to the
right represents a positive correlation. The y-axis indicates the feature name, in order
of importance from the top to the bottom of the plot. The wider the dots of the feature
distributed, the greater the influence of the feature on the outcome. Figures 2 and 3 depict
global explanations of the best models and mean absolute SHAP values, respectively. As
shown in Figure 2A, the x-axis represents the SHAP values of each of the features by which
the model predicts the graft surgery. The interpretation of the summary plot shows that
a higher burn area rank (higher values visible in red on the horizontal bar) implies an
increase in the predicted outcome; conversely, a smaller burn area rank (visible in blue) is
associated with a decrease in the predicted outcome. The feature of burn area rank was
similarly explained in predicting a prolonged hospital stay and adverse effects. The same
interpretation can be applied to the rest of the features.

Figure 3 shows the absolute SHAP value of each feature, presenting its importance
on the associated outcome. It can be interpreted that the top three critical features on graft
surgery are burned area rank, WBC, and GPT; the top three critical features on a prolonged
hospital stay are burned area rank, BMI, and creatinine; and the top three critical features
on overall adverse effects are burned area rank, WBC, and age.

3.4. Performance Comparison of AI Model and Baux Score

We compared the best AI-based model with the Baux score by the performance
indicators. For this, we first calculated the indicators of accuracy, sensitivity, specificity,
and AUC for AI models and Baux score models. We, then, performed the DeLong test
for figuring out the significance of the model difference. As shown in Table 5, AI models
have higher values for all indicators than Baux score models. AI models of prolonged
hospital stay and overall adverse effects outperformed Baux score models in a statistically
significant manner (p < 0.05).

Table 5. Comparisons of AI models and Baux score models.

Outcome Model Accuracy Sensitivity Specificity AUC AUC95%CI DeLong Test (p)

Graft surgery AI model
(random forest) 0.765 0.833 0.711 0.756 0.639–0.874 0.206

Baux score 0.574 0.433 0.684 0.641 0.509–0.774

Prolonged
hospital stay

AI model
(XGBoost) 0.779 0.795 0.759 0.815 0.710–0.920 0.023

Baux score 0.588 0.487 0.724 0.657 0.515–0.800

Overall adverse
effects

AI model
(LightGBM) 0.779 0.786 0.769 0.845 0.751–0.939 0.008

Baux score 0.559 0.524 0.615 0.619 0.484–0.754

3.5. Clinical Prediction Application Development and Deployment and User
Preliminary Evaluation

For clarifying the feasibility and acceptance of our AI models, we developed an AI
risk prediction system based on the three best models and deployed it in a burn critical care
center for assisting with the physician’s decisions. Figure 4 showed a snapshot of the AI
system (a probability ≥50% indicates a high probability of causing the adverse outcome).
Models were built in the Python programming language and the Web-based interface was
built in MS Visual Studio® with VB (v 17.7).
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(A) 

(B) 

Figure 2. Cont.
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(C) 

Figure 2. SHAP global explanation on the best model: (A) SHAP plot for model of graft surgery
(random forest); (B) SHAP plot for model of prolonged hospital stay (XGBoost); (C) SHAP plot for
model of overall adverse effects (LightGBM).

(A) 

Figure 3. Cont.
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(B) 

 
(C) 

Figure 3. Absolute SHAP value of each feature on the best model: (A) SHAP plot for model of graft
surgery (random forest); (B) SHAP plot for model of prolonged hospital stay (XGBoost); (C) SHAP
plot for model of overall adverse effects (LightGBM).
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Figure 4. A snapshot of the prediction system.

We, then, demonstrated the AI system to the pilot burn care staff (three nurses and
two physicians) and received positive feedback. They see this as a useful tool for the timely
identification of high-risk burn patients. According to the risk probability, care staff can
consider appropriate treatment plans to optimize the utilization of medical resources. It
can greatly improve the quality and efficiency of burn patient care.

4. Discussion

In this study, we collected and analyzed a comprehensive set of laboratory data and
clinical information to gain valuable insights. Our research encompassed crucial factors
such as body mass index, gender, age, blood pressure, body temperature (BT), total body
surface area (TBSA), hemoglobin levels, alanine transaminase levels, glucose levels, platelet
count, blood urea nitrogen levels, creatinine levels, and more.

By including these significant parameters in our analysis, we aimed to capture a holistic
view of the subjects and their health profiles. The diverse range of data points allowed us
to explore the relationships between various variables and draw meaningful conclusions.

In summary, our study employed a robust dataset consisting of crucial laboratory
measurements and clinical information. By considering these factors, we aimed to enhance
the depth and accuracy of our findings, providing a comprehensive understanding of the
subject population.

Moreover, we took into consideration several prevalent and significant comorbidities,
including diabetes, hypertension, and cardiovascular disease. These conditions play a
crucial role in determining patient outcomes.

We utilized all the aforementioned features to develop predictive models for various
outcomes, such as in-hospital mortality, acute respiratory failure during hospitalization,
ventilator dependence, renal failure, a prolonged hospital stay, and the need for skin graft-
ing. To obtain the necessary data, we primarily relied on the routine emergency department
(ED) charts and regular medical records. This approach eliminated the need for additional
examinations while ensuring we had an ample amount of relevant data at our disposal.

By leveraging these readily available sources, we were able to capture a comprehensive
range of information essential for our analysis. This streamlined approach allowed us to
focus on utilizing the existing data to develop robust predictive models, saving time and
resources without compromising the quality of our study.

This study stands out as one of the rare tools that aim to predict the severity of burn
injuries in patients by leveraging diverse clinical characteristic data. By employing various
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statistical models and machine-learning approaches (i.e., logistic regression, random forest,
SVM, KNN, LightGBM, ML, and Xgboost), we successfully achieved positive predictive
outcomes. These results were anticipated, and we firmly believe that they hold significant
value in terms of predicting and managing patients’ conditions effectively.

In the context of predicting the necessity of skin graft surgery using a machine-
learning model (random forest), Figures 2A and 3A indicate that the total body surface
area (TBSA) has the most significant impact on the requirement for skin graft surgery,
followed by the white blood cell count (WBC) and GPT (a liver enzyme), whereas gender
has minimal influence. Higher values in the burn area rank correlate with an increased risk
of undergoing skin graft surgery, indicating a greater likelihood of needing the procedure.
Similarly, WBC levels also influence the risk of requiring skin graft surgery. Therefore, early
and adequate fluid resuscitation is crucial in reducing the necessity of surgery.

Figures 2B and 3B reveal that the total body surface area (TBSA) has the most signif-
icant impact on prolonged hospitalization, followed by the body mass index (BMI) and
creatinine levels. The location of the burn or scald and gender have minimal influence.
Higher TBSA values indicate a higher risk of prolonged hospitalization (exceeding 14 days).
This suggests that obesity and impaired renal function are both risk factors associated with
prolonged hospital stays.

Figures 2C and 3C highlight the factors influencing different complications during
hospitalization, as indicated by the LightGBM model. Notably, the total body surface area
(TBSA) exhibits the most significant impact on overall adverse outcomes, followed by white
blood cell count (WBC) and age. On the other hand, the location of the burn or scald and
gender have minimal influence. Higher values in TBSA, WBC, and age are associated with
an increased risk of overall adverse outcomes. These findings emphasize the importance of
implementing specific preventive measures for elderly patients with extensive burn areas
and a heightened risk of dehydration.

In Table 5, we compared the predictive results of the ML models we utilized (random
forest, XGBoost, and LightGBM) with the Baux scoring in predicting the necessity of
surgery, prolonged hospitalization, and the occurrence of complications. The ML models
demonstrate superior performance over the Baux score in terms of accuracy, sensitivity,
specificity, and AUC. Notably, the results for prolonged hospitalization and occurrence of
complications exhibit significant differences based on the DeLong test.

The Baux score has traditionally been commonly employed to primarily predict the
mortality probability of burn patients, while also implying the severity of the burn injury,
with the result that it is of significant reference value and sees widespread use. However, our
model, when compared to the Baux score, demonstrates superior performance in predicting
prolonged hospital stays and complications. Consequently, it is expected to complement
the shortcomings of the Baux score in clinical settings, thus offering a synergistic effect.

Next, we conducted a thorough review of several relevant and comparable studies.
In Stylianou et al. [22]’s study, an established logistic mortality model was compared to
machine-learning methods (artificial neural network, support vector machine, random
forests, and naive Bayes) using a population-based (England and Wales) case-cohort reg-
istry. They presented the following findings: Random forests were marginally better
for a high positive predictive value and reasonable sensitivity. Neural networks yielded
slightly better prediction overall. Logistic regression gives an optimal mix of performance
and interpretability.

Liu and colleagues [23] reviewed several databases such as MEDLINE, the Cochrane
Database of Systematic Reviews, and ScienceDirect, and performed a citation review of
relevant primary and review articles—the databases were searched for studies involving
burn care/research and machine learning in the year 2015. The review conducted by Liu
and colleagues highlighted the potential of machine-learning techniques in burn care
and research. The studies reviewed in 2015 demonstrated the effectiveness of machine-
learning algorithms in various aspects of burn care, including diagnosis, treatment planning,
prognostic prediction, and wound assessment. The findings underscore the importance of
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continued research and development in this area, as the integration of machine learning
holds great promise for enhancing patient outcomes and improving the overall quality of
burn care.

A few years later, Huang et al. [24] conducted a systemic review in which thirty
articles were included. Nine studies used machine learning and automation to estimate the
percent total body surface area (%TBSA) burned, four calculated fluid estimations, nineteen
estimated the burn depth, five estimated the need for surgery, and two evaluated scarring.
In their conclusion, the utilization of machine learning as an adjunct for evaluating burn
wound severity has demonstrated promising results in improving diagnostic accuracy.
These techniques provide an objective approach by leveraging diverse data points to
enhance the assessment process. However, it is crucial to conduct further research to
validate and refine existing models, ensuring their clinical feasibility and applicability.
The integration of machine learning into burn wound evaluation has the potential to
advance the field, empowering clinicians with valuable insights and, ultimately, enhancing
patient care.

We summarized the comparison of these works in Table 6.

Table 6. A comparison with related studies.

Study This Study [22] [23] [24]

Sample size 224 66,611 6059 3264

Types of samples
High-risk patient

admitted to our burn
center

Population-based
(England and Wales)
case-cohort registry

Image in majority
Patient data in minority

Image
Animal models

Simulated patient data

Outcome

Prolonged hospital stay
(>14 days)

Skin graft needed
Adverse complications

including mortality

Mortality

(%TBSA)
Fluid estimations

Burn depth
Need for surgery

Scarring

(%TBSA)
Fluid requirements

Burn depth
Surgical candidacy

Study method Seven machine-leaning
methods

Four machine-leaning
methods Systemic review Systemic review

Real-world
implementation

Yes
A predictive

application with AI
models was

implemented and
integrated into the

existing HIS

N/A N/A N/A

Input data

Fourteen patient
demographic features,

TBSA, burned part,
vital signs, laboratory
results, comorbidities

Age, TBSA, type of
burn, comorbidities

Vital signs
Burn photos

TBSA
Inhalation

TBSA

Simulated patient data
2D image

Animal models

Testing results (AUC)

Prolonged hospital stay
(>14 days)

(0.795–0.811)
Mortality (0.945) Burn depth

(0.83)
Burn depth

(0.662–0.925)

Skin graft needed
(0.788)

Surgery determination
(0.793–1.000)

Occurrence of adverse
complications

(0.872)
Year 2023 2015 2015 2021

In recent years, global scholars have extensively utilized machine learning to aid in
judgment and decision making by utilizing various sources of information, such as burn
wound photos [25–27], patient demographics, vital signs, underlying diseases, total burn
areas, and more [28,29]. Furthermore, the utilization of animal models for comparative predic-
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tion is extensively practiced across numerous prominent research institutions [30,31]. These
advancements have significantly contributed to both basic research and clinical applications.

Moreover, we conducted a comprehensive comparison of our study with other similar
research endeavors, which we have succinctly summarized in Table 7.

Table 7. A comparison with similar studies.

Study This Study [28] [32]

Patient number 224 1585 1080

Types of patient origin High-risk patient admitted to
our burn center

Burn center inpatient in a
medical center in the US

A regional burn center
inpatient

Outcome

Prolonged hospital stay
(>14 days)

Skin graft needed
Adverse complications

including mortality

LOS (length of hospital stay)
Survival LOS (length of hospital stay)

Study method Seven machine-leaning
methods An artificial neural network Two machine-leaning

methods

Real-world implementation

Yes
A predictive application with
AI models was implemented

and integrated into the
existing HIS

N/A N/A

Input data

Fourteen patient demographic
features, TBSA, burned part,
vital signs, laboratory results,

comorbidities

TBSA, burned part, type of
transportation, burn

mechanism

Sixteen patient demographic
features, TBSA, burned part,
vital signs, laboratory results,

comorbidities, operation,
burn depth

Testing results (AUC)

Prolonged hospital stay
(>14 days)

(0.795–0.811)

LOS (length of hospital stay)
(0.72)

LOS (length of hospital stay)
(0.487–0.718)

Occurrence of adverse
complications including

mortality
(0.872)

Survival
(0.98)

Skin graft needed
(0.788)

Year 2023 1996 2010

Based on the above comparison, it can be observed that our predictive model performs
better in estimating the extended length of hospital stays. However, when it comes to pre-
dicting mortality/survival and complications, both our predictive method and Frye et al.’s
method [28] have their own merits. This difference in estimation is likely due to slight
variations in the extraction of clinical information and analysis methods.

In accordance with the achievements of previous studies, we have envisioned extract-
ing a wider range of patient data and have employed seven machine-learning methods to
generate more detailed predictions for various outcomes. By integrating this approach with
the hospital information system (HIS) [32], our research not only assists clinical healthcare
professionals in their decision-making processes but also provides objective references for
explaining medical conditions to and predicting outcomes for patients and their families.

The clinical advantages of integrating our system with the hospital information sys-
tem (HIS) lie in the enhanced convenience and efficiency of medical record and nursing
record management. This integration enables the direct retrieval of computational results
and medical staff–patient communication logs, effectively reducing the time spent on
documentation tasks. Consequently, it leads to improved operational efficiency.

We acknowledge that our study is subject to certain limitations that warrant careful
consideration. Firstly, the data for our analysis were exclusively sourced from a singular
burn care unit located in Tainan, Taiwan. To enhance the robustness and generalizability
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of our findings, it is imperative that subsequent investigations incorporate data from a
broader range of medical facilities. Secondly, it is plausible that certain granular data points
may not have been collected in their entirety, underscoring the potential for additional
insights. Thus, it becomes evident that further endeavors are essential to refine this model
and elevate its overall performance.

5. Conclusions

This study aimed to develop a versatile machine-learning model to aid physicians
in diagnosing disease progression and predicting the risk of death for burn patients. The
model utilized a combination of patients’ basic health indicators, comorbidity indicators,
and specific laboratory data as features. Additionally, we have successfully implemented
and seamlessly integrated a web-based predictive application into the existing hospital
information system (HIS) without requiring complex computational operations. This in-
tegration was well-received by physicians during the initial usage phase, indicating a
high level of acceptance. We firmly believe that utilizing machine-learning algorithms to
predict adverse outcomes in burn patients is a promising research approach that can assist
physicians in promptly assessing disease severity following hospital admission. This early
assessment enables them to select the most suitable and personalized treatment strategies,
thereby improving patient prognosis.

Furthermore, in addressing the dynamic fluctuations in injury conditions, we can
harness objective data acquisition to facilitate AI assistance in comprehensively interpreting
information and subsequently delivering it to clinical caregivers and patients. This ap-
proach enables us to respond more promptly to changes in the patient’s medical condition.

For future studies, researchers can consider incorporating additional potential vari-
ables and conducting a feature selection process to enhance the quality of the models. With
the continual emergence of novel physiological monitoring tools and laboratory diagnostic
instruments, we anticipate the ability to gather a greater volume of valuable data for uti-
lization. Simultaneously, the accumulation of clinical cases through real-world usage will
further enhance the system’s performance in future operations.
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Abstract: Objectives: Ventilator-associated pneumonia (VAP) is a severe care-related disease. The
Centers for Disease Control defined the diagnosis criteria; however, the pediatric criteria are mainly
subjective and retrospective. Clinical decision support systems have recently been developed in
healthcare to help the physician to be more accurate for the early detection of severe pathology. We
aimed at developing a predictive model to provide early diagnosis of VAP at the bedside in a pediatric
intensive care unit (PICU). Methods: We performed a retrospective single-center study at a tertiary-
care pediatric teaching hospital. All patients treated by invasive mechanical ventilation between
September 2013 and October 2019 were included. Data were collected in the PICU electronic medical
record and high-resolution research database. Development of the clinical decision support was
then performed using open-access R software (Version 3.6.1®). Measurements and main results: In
total, 2077 children were mechanically ventilated. We identified 827 episodes with almost 48 h of
mechanical invasive ventilation and 77 patients who suffered from at least one VAP event. We split our
database at the patient level in a training set of 461 patients free of VAP and 45 patients with VAP and
in a testing set of 199 patients free of VAP and 20 patients with VAP. The Imbalanced Random Forest
model was considered as the best fit with an area under the ROC curve from fitting the Imbalanced
Random Forest model on the testing set being 0.82 (95% CI: (0.71, 0.93)). An optimal threshold of
0.41 gave a sensitivity of 79.7% and a specificity of 72.7%, with a positive predictive value (PPV)
of 9% and a negative predictive value of 99%, and with an accuracy of 79.5% (95% CI: (0.77, 0.82)).
Conclusions: Using machine learning, we developed a clinical predictive algorithm based on clinical
data stored prospectively in a database. The next step will be to implement the algorithm in PICUs to
provide early, automatic detection of ventilator-associated pneumonia.

Keywords: pneumonia; ventilator associated; clinical decision system; PICU

1. Introduction

Ventilator-associated pneumonia (VAP) is a common and severe complication in inten-
sive care units. VAP, as a care-related complication leads to a worsening prognosis for the
affected patients and its early diagnosis remain an ongoing challenge in intensive care. In an
attempt to enhance VAP detection, the Centers for Disease Control (CDC) issued diagnosis
criteria allowing the identification of VAP after 48h of clinical alteration (defined by worsen-
ing gas exchange, fever >38 ◦C or hypothermia, leukocytosis >15,000/mm3 or leukopenia
<4000/mm3, new onset of purulent sputum, apnea or tachypnea, wheezing/rales/rhonchi,
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cough and bradycardia <100/min or tachycardia >170/min) [1]. However, delays in
VAP diagnosis and, to some extent, in initiating anti-infectious therapy are observed and
associated with worse outcomes [2–4]. Furthermore, subjective criteria included in the
CDC pediatric definition for VAP results in a variability of VAP diagnosis and incidence
(changes in the appearance and amount of sputum, worsening of an existing cough) [5–7].
To help physicians to prospectively diagnose VAP, the CDC developed the concept of
Ventilator-Associated Events (VAE) in adults, but children have long been excluded from
this definition [1]. It is usual that for adult recommendations, children are excluded mainly
because of physiological differences between populations (normal respiratory parameters
for an adult are very different from those of a child). Cirulis et al. [8] proposed a pediatric
modified VAE definition. Chomton et al. [9] evaluated the pediatric modified VAE def-
inition to detect VAP, but the sensitivity (66%) to identify this ICU-related complication
remained disappointing.

In recent years, the number of publications dealing with the development of comput-
erized clinical decision support systems (CDSS) to improve disease diagnosis increased
and was shown to be useful for several disease in ICUs [10–14]. The emergence of high-
resolution databases supports these developments [15] which allow for a precise and
continuous analysis of clinical and biological parameters. Leisman et al. [16] recently
reported several recommendations for the development and reporting of predictive models.
They identified two categories of predictive models: (1) clinical prediction models for
bedside use, and (2) other prediction models intended for deployment across populations
for research, benchmarking, and administrative purposes. The usefulness of CDSS had
already been highlighted by Mack et al. [17] but no reports on VAP are available currently.
To that effect, our project has been developed with the main objective of developing a
predictive model to provide early diagnosis of VAP at the bedside in a pediatric intensive
care unit (PICU).

2. Materials and Methods

This single-center retrospective study was performed using the data collected in the
PICU electronic medical record (Intelligence Critical Care and Anesthesia (ICCA®); Philips
Medical, version F0.1) of a tertiary-care pediatric teaching hospital (Sainte-Justine Hospital,
Montréal, QC, Canada). To improve data quality, ICCA® was configured with drop-down
menus and critical values alerts. Furthermore, all data entered in ICCA® benefited from a
medically-endorsed validation.

The hospital database was queried using SQL Server Management Studio 18® (Microsoft,
Redmond, WA, USA) to select patients who were aged from 1 day to 18 years at PICU
admission and were mechanically ventilated for more than 48 h, between September 2013
and October 2019. We analyzed the first 30 days of invasive mechanical ventilation.

During the first step of the study, all medical files were reviewed by two senior pedi-
atric intensive care experts (JR and PJ) to classify patients into two groups: VAP patients
and free-of-VAP patients. VAP was defined according to the 2021 CDC criteria [1]: The
1st context criteria: invasive mechanical ventilation for more than 48 h, 2nd radiological
criteria: new or progressive and persistent infiltrate/consolidation/cavitation, 3rd clinical
criteria: worsening gas exchange, fever >38 ◦C or hypothermia, leukocytosis >15,000/mm3

or leukopenia <4000/mm3, new onset of purulent sputum, apnea or tachypnea, wheez-
ing/rales/rhonchi, cough and bradycardia <100/min or tachycardia >170/min.

The second step of the study consisted in the extraction of data coming from the
electronic medical record (ICCA®, Philips, Toronto, ON, Canada) and high-resolution
database (database collecting and storing data from medical devices in real time) [15].
The queried data were date, time, weight (kg), white blood cell count (/mm3), neutrophil
count (/mm3), partial pressure of carbon dioxide (PaCO2 in mmHg), partial pressure of
oxygen (PaO2 in mmHg), inspired fraction of oxygen (FiO2 in %), positive end-expiratory
pressure (PEEP in cmH2O), peak inspiratory pressure (PIP in cmH2O), mean airway pres-
sure (MAwP in cmH2O), respiratory rate (/rpm), tidal volume (mL), subjective amount
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of respiratory tract secretion (0, +, ++, +++), oxygenation (OI) and oxygen saturation
index (OSI) [18], calculated pulmonary dynamic compliance (in barometric ventilation
mode: tidal volume/(PIP–PEEP); and in volumetric ventilation mode: tidal volume/(peak
pressure–PEEP)). We also gathered PIM 2 [19] and PELOD-2 scores [20,21].

Data formatting. The data was formatted using R (version 3.6.1) as a preparation step
to train the prediction models based on different algorithms.

All times were expressed as a relative duration since ICU admission.
Data cleaning and Missing data. Incoherent data were identified and corrected according

to the scheme described in Supplementary Data S1 “Data Cleaning”. Variables consisting
of data streams of continuous values were imputed following the last observation carried
forward method. For missing data at the beginning of the stream, the first valid observation
was carried backward.

Segmenting Variables in Time Blocks. The variables data streams were first segmented
into time blocks of 6 h and then for each variable the median (mode for the discrete variable)
was calculated over each 6 h time block to avoid aberrant or missing data. Then, the 6 h
blocks were aggregated into 48 h time blocks. We chose to aggregate into 48 h time blocks to
be as close as possible to the actual VAP timing definition. For each variable, two columns
were generated. One consisted of the first non-missing value among the 6 h time blocks
and the other one the last non-missing value among the 6 h time blocks, if there was any, in
each 48 h time block (if there was no observation, the data was considered missing). For
the development of the algorithms, for each variable, the first non-missing values and the
actual difference or relative change of the values of the two columns were considered (more
details are available in Supplementary Data S2 “Segmenting variables in time blocks”).

Stratified train-test split at a patient level. VAP patients and non-VAP patients were split
into the training set (70% of each class) and the testing set (remaining 30% of each class).
Since some patients had more than one stay in the PICU, all stays of a patient in the training
set were kept in the training set (and the same for patients in the testing set). All details for
the train-test split are available in Supplementary Data S3 “train-test split”.

Imputation. Preliminary inspection of the dataset showed that around 50% of data
was missing for the variables “pulmonary dynamic compliance” and “minute ventila-
tion”. Missing values imputation in the training dataset was performed by ‘randomForest’
(v4.6-14) with the function ‘rfImpute’ [22]. The imputed values were the weighted average
of the non-missing observations, where the weights were the proximities from randomFor-
est. For data in the testing set, the missing values in each variable were replaced by the
mean of the imputed values for the variables with missing values in the training set (more
details are available in Supplementary Data S4 “Imputation”).

Predictive models. We applied six different learning algorithms to generate predictive
models. The algorithms were: Random Forest with the function ‘rfsrc’ and error rate as the
measure of performance, Imbalanced Random Forest with the function ‘imbalanced’ and
G-means as the measure of performance, Stepwise Regression and Random Forest using
5-fold cross validation (5-CV) with the ‘train’ function; ‘glmStepAIC’ and ‘rf’ methods and
accuracy were used to select the optimal model using the largest value [23]. Finally, we
implemented Elastic Net Regression (5-CV) and Weighted Elastic Net Regression (5-CV)
with the ‘glmnet’ method and ROC was used to select the optimal model using the largest
value. The hyperparameters for the Random Forest, Imbalanced Random Forest and
stepwise regression (5-CV) algorithms were ‘ntree’ (number of trees used at the tuning
step) and ‘mtry’ (number of variables randomly selected as candidates for the division
of a node) [24]. The parameters in Elastic Net regression were alpha, which controls the
relative balance between the lasso and ridge regularization, and lambda, which controls
the amount of the penalty. All these models used readily available implementations in
R [25,26]. Here, cross-validation was performed inside the training set only (more details
are available in Supplementary Data S5 “Predictive models”).

Performance measure and model choice. Models resulting from the different algorithms
were evaluated, at the level of 48 h time blocks, on the train and the test set by calculating
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their AUC score and by determining classification thresholds reaching predetermined levels
of sensitivity (80%, 85%, 90%, 95%). The final model was chosen based on the capacity
to [1] maximize specificity under these sensitivity levels, and [2] generalize the sensitivity
and specificity from the test set. The area under the ROC curve (AUC) was considered as
the primary measure of performance to choose the best model.

Per patient validation. The final model was evaluated on its capacity to correctly assess
the infection status of patients over time. The predictions’ results obtained after setting
different classification thresholds were taken. The number of patients with accurate predic-
tions (i.e., predicted class = observed VAP status) and inaccurate predictions (i.e., predicted
class �= observed VAP status) were computed over time. The number of patients for whom
the predictions contained at least one error were identified. We looked at the accuracy of
predictions by stratifying patients into two groups. We identified the patients for whom
the predictions contained at least one error for each subgroup. The global error rates were
calculated for each subgroup.

Statistics

Development of the clinical decision support was performed using open-access R soft-
ware, Version 3.6.1® (R Foundation for Statistical Computing, Vienna, Austria). Statistical
analysis of patients’ characteristics was performed using Prism X® software (version 7.05)
(GraphPad Inc. San Diego, CA, USA). Kolmogorov analysis was performed to test the
normal distribution of continuous variables. Population description used categorical vari-
ables expressed as frequency with corresponding proportion and quantitative variables
presented as mean and standard deviation. Performance evaluation was conducted using
ROC curves, AUC and their confidence intervals, and derived measures of sensitivity and
specificity. The ethical committee of Sainte-Justine University hospital approved the study
and waived the need for informed consent given the retrospective design.

The Saint-Justine ethical committee approved the study as a retrospective study and
waived the need for written consent (n◦2020–2454).

3. Results

3.1. General Description of the Population

A total of 5153 children had been hospitalized in Saint-Justine PICU during the study
period of which 40% (2077) were mechanically ventilated and 1235 episodes with more
than 48 h of mechanical invasive ventilation were identified (Figure 1). Seventy-seven
patients had at least one VAP event. Seventy-eight VAP events (6%) were diagnosed by
two experts. The patients’ general characteristics are described in Table 1.

Table 1. Population characteristics.

Population Characteristics Global Population (N: 827) VAP Patients (N: 77) No VAP Patients (N: 750) p:

Weight (kg) 15.8 ± 1.6 20.99 ± 2.7 15.25 ± 0.7 0.01

Age (days) 1308 ± 1904 1806 ± 250 1256 ± 69 0.02

Gender male (%) 475 (57%) 41 (53%) 434 (58%) 0.4

Pelod 2 score 10.1 ± 4.8 10.4 ± 0.6 9.9 ± 0.2 0.47

Pelod 2 mortality risk (%) 0.3 ± 0.3 0.3 ± 0.1 0.2 ± 0.01 0.15

Bronchoscopie (%) 70 (8%) 14 (18%) 56 (8%) 0.04

Neuromuscular blocker (%) 279 (34%) 43 (55%) 236 (31%) <0.0001

Mechanical Ventilation
duration (days) 12.5 ± 30.9 29.3 ± 5.1 10.9 ± 1.5 <0.0001

PICU length of stay (days) 26.1 ± 52.5 48.3 ± 7.1 23.4 ± 1.8 <0.0001

Survival rate (%) 740 (90%) 65 (84%) 675 (90%) 0.16

PICU: Pediatric intensive care unit; VAP: Ventilator-associated pneumonia.
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Figure 1. Flow chart. VAP: Ventilator-associated event.

Patients with less than 4 days of mechanical ventilation were removed (see
Supplementary Data S2 “Segmenting variables”) to achieve 811 episodes of invasive me-
chanical ventilation. The training set (70% of each class) and testing set (remaining 30%
of each class), resulted in a training set of 461 patients free of VAP and 45 patients with
VAP and in a testing set of 199 patients free of VAP and 20 patients with VAP. Since some
patients had more than one stay in the ICU, there could be different events for the same
patient. The training set thus had 513 stays with no VAP event and 45 stays with a VAP
event, and the testing set had 231 stays with no VAP event and 22 stays with a VAP event.
The segmenting of variables in 48 h non-overlapping time blocks generated, from these
datasets, 1852 time blocks free of VAP and 45 time blocks with VAP in the training set, and
788 time blocks free of VAP and 22 time blocks with VAP in the testing set.

We observed similar characteristics in the train and test groups (Table 2).

Table 2. Train and test groups’ characteristics.

Train and Test
Groups Characteristics

Test Group (n: 261) Train Group (n: 572) p:

Weight (kg) 16.9 ± 1.3 15.6 ± 0.8 0.40

Age (days) 1387 ± 129 1268 ± 84 0.43

Gender male, (n, %) 146 (60) 284 (58) 0.69

Pelod 2 score 10.4 ± 0.2 9.7 ± 0.5 0.16
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Table 2. Cont.

Train and Test
Groups Characteristics

Test Group (n: 261) Train Group (n: 572) p:

Pelod 2 mortality risk (%) 0.3 ± 0.1 0.2 ± 0.1 0.13

Proportion of VAP patients (n, %) 25 (10) 50 (10) 0.99

Length of mechanical ventilation
before VAP (days) 9.9 ± 2.7 9.6 ± 1.9 0.66

Length of mechanical ventilation
duration (days) 12.1 ± 1.6 11.2 ± 1.1 0.64

PICU length of stay (days) 21.3 ± 2.4 22.3 ± 2.0 0.81

Pelod: Pediatric logistic organ dysfunction, PICU: Pediatric intensive care unit; VAP: Ventilator-associated pneumonia.

3.2. Missing Data

We observed two missing values for “sf ratio” and “oxygen saturation index (OSI)” in
the test set (0.1% of total observations). For the variable “pulmonary dynamic compliance”
the proportion of missing values in the train and test sets were 0.49 and 0.54, respectively.
For the variable “minute ventilation”, the proportion of missing values in the train and test
sets were 0.49 and 0.54, respectively.

3.3. Results of Training Algorithm

The Imbalanced Random Forest model was considered as the best fit with an area
under the ROC curve of 0.86 from the train set.

Thresholds and specificities corresponding to the predetermined levels of sensitivity
are presented in Table 3. Variable importance obtained from the Imbalanced Random Forest
model are presented in Figure 2.

Table 3. Imbalanced Random Forest model. Threshold and specificity from predetermined sensitivity
for the train set.

Threshold Specificity Sensitivity

0.41 0.79 0.80

0.29 0.64 0.87

0.25 0.58 0.91

0.22 0.52 0.96

Figure 2. Variable importance used in the clinical decision system.
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3.4. Performance on Test Dataset

The area under the ROC curve from fitting the Imbalanced Random Forest model on
the test set was 0.82 (95% CI: (0.71, 0.93)) (Figure 3).

Figure 3. ROC Curve. Black curve represent the efficiency of the training of the algorithm on 2/3 of
the dataset. Red curve represents the efficiency of the test of the algorithm on the rest of the data set.

The specificity and sensitivity obtained after setting different classification thresholds
are presented in Table 4. An optimal threshold of 0.41 gave a sensitivity of 79.7% and a
specificity of 72.7%, with a positive predictive value (PPV) of 9% and a negative predictive
value of 99%, with an accuracy of 79.5% (95% CI: (0.77, 0.82)).

Table 4. Imbalanced Random Forest model. Sensitivity and specificity for the test set corresponding
to different thresholds.

Threshold Specificity Sensitivity

0.41 0.797 0.73

0.28 0.66 0.77

0.25 0.59 0.77

0.22 0.53 0.82

3.5. Per Patient Validation

Performance of the final model was evaluated over different time periods. Time
periods were defined starting from the first time block and going up to a given time block in
the future. The confusion matrices for all the time periods were constructed. False positive
rates (FPR), true positive rates (TPR), and area under the curve (AUC) were calculated. The
results are presented in Figure 4. The procedure is explained in detail in Supplementary
Data S6 “Per patient validation”.

The global error rate is presented in Table 5. We observed a lower error rate for patients
with at most three time blocks of observations, compared to the ones with at least four time
blocks of observations.
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Figure 4. False positive rate and true positive rate over different time periods for different thresholds.
Th.Default: default threshold of the model; Th80%: threshold correspond to the 80% sensitivity;
Th85%: threshold correspond to the 85% sensitivity.

Table 5. Error rates (%) for predicted classes.

G1 G2

ER.Pred ER.Pred.th80 ER.Pred.th85 ER.Pred ER.Pred.th80 ER.Pred.th85

All 11.56 19.60 31.66 79.59 83.67 95.92

VAP 23.08 23.08 23.08 66.67 66.67 88.89

NoVAP 10.75 19.35 32.26 82.50 87.50 97.50

G1: Patients with at most 3 time blocks of observations; G2: Patients with at least 4 time-blocks of observations.
E.Pred: Error rate for prediction; E.Pred.the80%: Error rate for prediction with threshold correspond to the 80%
sensitivity; E.Pred.th85%: Error rate for prediction with threshold correspond to the 85% sensitivity.

4. Discussion

Using an electronic medical record, an algorithm supporting clinicians in the early di-
agnosis of ventilator-associated pneumonia in PICU had a sensitivity of 80% and specificity
of 73%, with the threshold of 0.41. To date, it is the most accurate sensitivity achieved by a
CDSS system to provide early detection of VAP.

Ventilator-associated pneumonias is a severe health care disease [2,27,28]. To improve
the delay and accuracy of this challenging diagnosis, Cirulis et al. [8] evaluated the accuracy
of adults’ ventilator-associated events (VAE) to early diagnose pediatric VAP and developed
modified pediatric criteria for VAE (increase in FiO2 by 20% or PEEP by 2 cm H2O sustained
for more than one day). VAE and modified pediatric VAE both had a disappointing
sensitivity of 23% and 56% for Cirulis et al. [8] and 56% and 66% for Chomton et al. [9],
respectively. Our algorithm was based on machine learning methods and improved the
sensitivity in this study and could be implemented to screen in real-time patient’s data
to provide early detection of VAP in children. The prediction of the test set using the
Imbalanced Random Forest model is stored in a file and is available on Github [29].

Implementation of a clinical decision system to help physicians is a promising tech-
nology aimed at helping the physician to take medical decision [10,30], to analyze chest
X-rays [31], or to increases diagnosis sensitivity [32]. The development methodology starts
with a retrospective classification of analyzed patients to define whether they develop

44



Diagnostics 2023, 13, 2983

the studied conditions (e.g.,VAP). This step is crucial to develop an accurate algorithm
and rely on the quality of the classification method. In a large review of published CDSS,
Ostropolets et al. [33] highlight that only one manuscript addressed confounding and bias
due to misclassification. Our classification methodology included all the relevant data
from the electronic medical record clinically collected and is the best accuracy that can be
obtained currently.

In addition to the classification methodology, the main strength of this study includes
the use of continuous vital signs and the ventilatory parameters monitoring database,
limiting the number of missing data and allowing the use of the algorithm in real time in
the future [15]. The variables extracted from this monitoring included the OSI ratio, the
variation of pulmonary compliance, minute ventilation, and ventilatory median pressures.
However, the algorithm identified the variation of PEEP during the last 48 h preceding
the VAP as the most important criteria as suggested by the CDC definition. Nevertheless,
the variation of the ventilatory mean airway pressure was the second most important
variable. This result seems crucial because the ventilatory mean airway pressure that not
only includes PEEP but also the PIP, I/E ratio and instantaneous gas flow is not included in
the CDC diagnosis criteria for VAP.

Nonetheless, we noticed that our algorithm has a better efficacy to diagnose early VAP
(before day 6 of the PICU stay) versus late VAP (after day 6 of the PICU stay), with the
error rate in prediction of 23.08% vs. 66.67%, respectively. We can hypothesize that the
more time the patient stays in the PICU, the more discrete are the variations to be detected
due to the potential alteration of the patient’s condition.

This study has several strengths. First, this is the first study with a CDSS system
reaching over 80% sensitivity. Second, despite this being a single-center study, we report
one of the largest number of patients included in a study in children. Finally, we report the
highest sensitivity and specificity to diagnose VAP.

Despite these promising results, this work suffers from several limitations. First, the
invasive procedures were not considered in our algorithm (bronchoscopy, transportations)
due to the lack of data concerning the timing between these procedures and the VAP.
Second, data on the reason for invasive mechanical ventilation were not reported in all
medical files, although it is well known that brain injury and neurological disorder with
impaired swallowing predispose more to pneumonia. Third, the treatment of missing data
was conducted using data-focused approaches (last observation carried forward for missing
data mid-stream, first observation carried backward for data missing at the beginning of a
stream) which did not model the missing data process; the classifications between the VAP
and non-VAP patients were retrospectively performed which may have resulted in some
misinterpretation of the clinical data. Fourth, for generalizability, a prospective validation
of the algorithm in several PICU needs to be conducted.

5. Conclusions

We developed the first clinical predictive system dedicated to VAP diagnosis in PICUs
using a high-fidelity database. The implementation of such an algorithm in PICUs could al-
low physicians to be alerted early in cases of respiratory function impairment and to decide
whether to perform respiratory tract analysis and start anti-infective treatment. Although
this algorithm achieves a promising sensitivity and specificity level, it is still lacking power
and cannot be implanted in PICUs. Additionally, it still needs to be prospectively validated
in other PICUs to confirm its reproductivity and external power.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13182983/s1, Supplementary Data S1 “Data Cleaning”;
Supplementary Data S2 “Segmenting variables in time blocks”; Supplementary Data S3 “train-
test split”; Supplementary Data S4 “Imputation”; Supplementary Data S5 “Predictive models”;
Supplementary Data S6 “Per patient validation”.
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AUC area under the curve
CDC centers for disease control
CDSS clinical decision support systems
FiO2 inspired fraction of oxygen
FPR false positive rates
ICCA Intelligence Critical Care and Anesthesia®

MAwP mean airway pressure
OI oxygenation index
OSI oxygenation and saturation index
PaCO2 partial pressure of carbon dioxide
PaO2 partial pressure of oxygen
PELOD-2 pediatric logistic organ dysfunction score
PEEP positive end-expiratory pressure
PICU pediatric intensive care unit
PIM 2 pediatric index of mortality
PIP peak inspiratory pressure
ROC receiving operator curve
TPR true positive rates
VAE ventilator-associated event
VAP ventilator-associated pneumonia
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Abstract: Background: Neonatal pain assessment (NPA) represents a huge global problem of essential
importance, as a timely and accurate assessment of neonatal pain is indispensable for implementing
pain management. Purpose: To investigate the consistency of pain scores derived through video-
based NPA (VB-NPA) and on-site NPA (OS-NPA), providing the scientific foundation and feasibility
of adopting VB-NPA results in a real-world scenario as the gold standard for neonatal pain in clinical
studies and labels for artificial intelligence (AI)-based NPA (AI-NPA) applications. Setting: A total
of 598 neonates were recruited from a pediatric hospital in China. Methods: This observational
study recorded 598 neonates who underwent one of 10 painful procedures, including arterial blood
sampling, heel blood sampling, fingertip blood sampling, intravenous injection, subcutaneous
injection, peripheral intravenous cannulation, nasopharyngeal suctioning, retention enema, adhesive
removal, and wound dressing. Two experienced nurses performed OS-NPA and VB-NPA at a 10-day
interval through double-blind scoring using the Neonatal Infant Pain Scale to evaluate the pain level
of the neonates. Intra-rater and inter-rater reliability were calculated and analyzed, and a paired
samples t-test was used to explore the bias and consistency of the assessors’ pain scores derived
through OS-NPA and VB-NPA. The impact of different label sources was evaluated using three
state-of-the-art AI methods trained with labels given by OS-NPA and VB-NPA, respectively. Results:
The intra-rater reliability of the same assessor was 0.976–0.983 across different times, as measured by
the intraclass correlation coefficient. The inter-rater reliability was 0.983 for single measures and 0.992
for average measures. No significant differences were observed between the OS-NPA scores and the
assessment of an independent VB-NPA assessor. The different label sources only caused a limited
accuracy loss of 0.022–0.044 for the three AI methods. Conclusion: VB-NPA in a real-world scenario is
an effective way to assess neonatal pain due to its high intra-rater and inter-rater reliability compared
to OS-NPA and could be used for the labeling of large-scale NPA video databases for clinical studies
and AI training.

Keywords: neonatal pain assessment; inter-rater variability; neonatal intensive care units; neonatal
nursing; pain management
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1. Introduction

Procedural pain in newborns represents a growing concern due to the increasing num-
ber of invasive procedures these patients undergo while receiving healthcare. Advances in
neonatal care have promoted the survival of premature and sick infants; however, this has
come at the cost of repeated episodes of acute and/or prolonged pain [1–3]. In neonatal
intensive care units (NICUs), newborns are often subjected to injections and blood draws
without the use of analgesia medication [4], which results in higher sensitivity to pain
compared to older infants, children, and adults [5]. Pain can cause clinical instability, such
as changes in cardiac and respiratory frequencies, and can even lead to complications, such
as interventricular hemorrhages [6,7]. In order to ensure proper pain management, timely
and accurate neonatal pain assessment (NPA) is of essential importance [8]. However, a
cross-sectional study found that only 32.5% of pain records adopted pharmacological or
non-pharmacological intervention for pain relief [9].

As newborns cannot self-report, caregivers must assess their pain by observing specific
behavioral and physiological signs. This is usually conducted by using pediatric scales.
Currently, there are more than 40 scales designed for this purpose; however, such an
assessment approach is highly biased and is affected by several idiosyncratic factors, such
as the observer’s cognitive bias, identity, background, and culture, as well as gender,
resulting in inconsistent assessment and treatment of pain [10]. In addition, current pain
management of newborns in the NICU is manually performed, being subjective and
discontinuous, with NICU nurses treating neonates with pain management plans based
on intermittent, subjective ratings with poor inter-rater agreement [11]. Furthermore, the
current practice for assessing infants’ pain is time-consuming and requires many trained
and professional laborers.

Pain is recognized as the fifth vital sign that should be monitored in NICUs [12].
Despite the growing body of literature on pain assessment and clinical practice guidelines
that emphasize the importance of pediatric pain management, many pediatric patients
still receive inadequate pain treatment. This is mainly due to the time and effort needed
to evaluate pain, a lack of pain experts, and inadequate education on pain management
among pediatric trainees. Additionally, cultural or personal beliefs such as negative
attitudes towards pain treatment, the belief that pain builds character, and fear of adverse
effects of pain medications can lead to improper pain management [13]. Despite numerous
guidelines and standards requiring the use of standardized pain assessment tools in clinical
practice, there is still poor compliance, posing a serious global issue [11,13].

To solve the above problems, both clinical NPA studies and new NPA technologies,
such as artificial intelligence (AI)-based NPA (AI-NPA), should be developed to improve
the quality and efficiency of current NPA for effective neonatal pain management. Those
studies generally require large-scale neonatal pain data, e.g., neonatal images, videos,
and physiological signals collected in pain, with precise pain diagnosis results for clinical
statistical analysis or AI training, where neonatal pain videos with pain scores given by
a consultation group of nursing experts using a pain scale is a common and feasible data
form [11]. However, considering the real-world NICU scenario, it is difficult to carry out
such labeling work with multiple experienced nurses on-site for large-scale data.

As the video-based NPA (VB-NPA) protocol could facilitate remote or after-the-event
pain diagnosis by experts, it is widely used in clinical NPA and AI-NPA research as an
equivalent alternative to the gold standard on-site NPA (OS-NPA) and has been proven fea-
sible for ideal neonatal pain video data captured in controlled conditions; that is, intentional
controls during the data collection phase or manual data selections at the pre-processing
stage to ensure complete neonatal pain responses are captured with a correct perspective
in neonatal pain videos. Yet neonatal pain videos captured in a real-world scenario could
contain various disturbances, such as facial occlusion, pose variation, body occlusion, and
movement interference from others. These real-world noises would cause information loss
in videos, which might be crucial to NPA and further make VB-NPA lose its advantages,
even its equivalence with OS-NPA.
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In this paper, we investigated whether VB-NPA with neonatal pain videos captured
in a real-world NICU scenario is with the consistency of OS-NPA and could be used for
AI-NPA applications. A total of 598 neonates hospitalized in the NICU for more than 3 days
and scheduled for a procedural pain procedure were randomly selected and included in
the study. Both the OS-NPA and VB-NPA after 10 days were performed by two nurses in
the form of a pain score and pain grade with reference to the Neonatal Infant Pain Scale
(NIPS) [14]. Using the NIPS pain score of the OS-NPA as the golden standard, the result
showed a high intraclass correlation coefficient (ICC) and inter-rater reliability for both
single and average measures between the VB-NPA, with neonatal pain videos captured in
a real-world NICU scenario, and OS-NPA, with a highly significant correlation (p < 0.001).

Compared with the on-site evaluation, the accuracy of the NIPS pain grade given by
the VB-NPA was 96.98%, and the agreement between the two groups was compared, with
a kappa value of 0.926 (p < 0.001), thus indicating that VB-NPA with neonatal pain videos
captured in a real-world NICU scenario could cause inaccuracies in partial scoring due
to the information loss in the videos, yet it was still not inferior to OS-NPA. Meanwhile,
the test results of three state-of-the-art AI-NPA methods only showed an accuracy loss
of 0.022–0.044, which was caused by the VB-NPA labels, indicating that there was just
a limited impact of VB-NPA with neonatal pain videos captured in a real-world NICU
scenario to AI-NPA. Therefore, VB-NPA in a real-world NICU scenario is an effective way
to assess neonatal pain due to its high intra-rater and inter-rater reliability compared to
OS-NPA and could be used for the labeling of large-scale NPA video databases for clinical
studies and AI training.

2. Methods

2.1. Setting and Participants

This study was conducted at a tertiary class of a children’s hospital in eastern China
between 1 December 2021 and 30 May 2022. It was approved by the ethics committee of
the Children’s Hospital of Zhejiang University School of Medicine (2018-IRB-051) on 31
July 2018, and parental informed consent was obtained. The study flowchart is shown in
Figure 1.

Figure 1. The study design of the neonatal pain assessment (NPA).

A total of 598 neonates hospitalized in the NICU for more than 3 days and already
scheduled for a procedural pain procedure were randomly selected and included in the
study. All hospitalized newborns underwent standard neonatal disposal after admission, in-
cluding uniform clothing changing after admission. The procedures included arterial blood
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sampling, heel blood sampling, fingertip blood sampling, intravenous injection, subcuta-
neous injection, peripheral intravenous cannulation, nasopharyngeal suctioning, retention
enema, adhesive removal, and wound dressing. These procedures were characterized as
painful by doctors and nurses working in pediatrics and neonatology [3]. Exclusion criteria
referred to serious illnesses such as birth injury, asphyxia, shock, metabolic encephalopa-
thy, hypoxic-ischemic encephalopathy, severe cardiopulmonary disease, and conditions
associated with facial image acquisition, such as severe congenital malformations.

Two experienced nurses were assigned to quantify the pain of 10 types of procedures
for newborns using the NIPS on-site, with a third nurse recording the procedure simulta-
neously. The double-blind scoring results of OS-NPA performed by the two nurses were
recorded as OS-1 and OS-2, respectively. All recorded videos were encoded and stored
in the software, and the chronological sequence of the videos was randomized using a
random number table to blind the assessors. After 10 days, the same two nurses performed
VB-NPA on these randomized videos, and the double-blind scoring results were recorded
as VB-1 and VB-2, of which the index numbers denoted the same nurse.

2.2. Video Recording in Real-World Scenario

The duration of painful procedures was limited to one minute. Meanwhile, a third
nurse recorded the newborn’s behavior in a 1-min video starting 3 s before the procedure.
The video recordings were taken with a smartphone with automatic stabilization and a
resolution of 1334 × 750 from 12 megapixels. There are no special restrictions during
video shooting to guarantee recorded neonatal pain responses unaffected by occlusion,
interference from other people’s movements, or extreme postures of newborns. The sample
key frames of these neonatal pain videos are shown in Figure 2.

Figure 2. Visual representation of pain samples from neonatal pain videos captured in a real-world
NICU scenario without control.

2.3. Pain Assessment

The NIPS was developed in the early 1990s at the Children’s Hospital of Eastern
Ontario to assess six behavioral reactions to painful procedures in preterm and full-term
newborns [14]. Subsequently, the NIPS was successfully adapted and validated for use in
other countries [15,16]. Its total score ranged from 0 to 7 points: facial expression (0–1 point),
cry (0–2 points), breathing pattern (0–1 point), the position of arms (0–1 point), the position
of legs (0–1 point), and state of arousal (0–1 point), with 0 being no pain and 7 being the
most intense pain. The NIPS is easily understood and applied and is a useful tool for
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health professionals who work with neonates exposed to painful stimuli. Previous studies
demonstrated that the scale has high inter-rater reliability and internal consistency [17]. It
was also validated for construct and concurrent validity, making it a valid, reliable, and
practical tool. Cronbach’s alpha values of the Chinese version of the NIPS were found to be
0.97, 0.81, and 0.95 before, during, and after the heel lance, respectively [18].

2.4. OS-NPA and VB-NPA

In this study, we compared the consistency between the two NPA methods, i.e., OS-
NPA, which involves medical staff observing the newborn’s behavior on-site, and VB-NPA,
which involves medical staff observing the newborn’s behavior through a video recording.
For the OS-NPA, two experienced nurses evaluated the pain scores of newborns undergoing
painful procedures on-site using the NIPS. All videos captured in the real-world NICU
scenario were randomized using a random number table to obfuscate the subject and timing
information of the video. They were randomized and uploaded to in-hospital web-based
video-rating software to ensure that the OS-NPA nurses were blinded during the VB-NPA.
In order to minimize construct-irrelevant variance, VB-NPA training was conducted after
the two nurses watched and assessed 5 videos, respectively, to increase the accuracy of
the assessments, and after 10 days, the two OS-NPA nurses again evaluated neonatal pain
using the NIPS through the recorded videos to derive their corresponding VB-NPA results.

2.5. Data Analysis

Intra-rater reliability was explored by comparing the NPA results under OS-NPA with
the same assessor’s results under VB-NPA (OS-1 vs. VB-1 and OS-2 vs. VB-2). Inter-rater
reliability was explored by comparing assessments based on video recordings (VB-1 vs.
VB-2). Reliability measures were calculated using the ICC for single and average measures.
To investigate whether there was a Hawk–Dove effect between the two assessors, a paired
samples t-test was conducted to compare NIPS pain scores given between OS-1 and OS-2;
VB-1 and VB-2 statistical analysis was conducted using SPSS version 26.0 (IBM, Armonk,
NY, USA).

The ICC was used to evaluate the repeatability or consistency of different measurement
methods or assessors to the same certain measurement results. The randomized, double-
blind method was applied, considering the influence of newborns and nurses in evaluating
the reproducibility of diagnostic tests. The absolute agreement can be used to measure
whether different investigators provide the same absolute value. The analysis unit of single
measures is the results of each investigator, which can be used to estimate the situation
of an individual investigator. Average measures are the mean of the research results of
multiple investigators.

Furthermore, to investigate the impact of different label sources, i.e., OS-1, OS-2, VB-1,
and VB-2, on artificial intelligence (AI) methods, we implemented three state-of-the-art
AI-based NPA (AI-NPA) methods [19–21] to analyze the performance of these methods
trained by the above four label sources. Zamzmi et al. [19] used an ensemble machine-
learning framework to perform AI-NPA by fusing features of facial expressions, crying
sounds, body movements, and vital signs; Min et al. [20] used a CNN-LSTM scheme to
extract 2D features from neonatal videos and detect discomfort of neonates automatically;
and Salekin et al. [21] proposed a multimodal spatio-temporal deep learning approach to
analyze visual and vocal signals of neonatal videos to perform AI-NPA.

In this paper, we applied 5-fold cross-validation based on these three methods using
the 598 video data we collected. The divided training and test video data were the same for
the three methods in each fold. For each fold, we trained the methods using the training
video data with the label given by OS-1, OS-2, VB-1, and VB-2, respectively, and evaluated
the accuracy of each method using the test video data with the label given by OS-1 and
OS-2, respectively, since the current common on-site scale rating is regarded as the gold
standard for neonatal pain assessment.
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3. Results

3.1. Study Population

A total of 598 neonates, with a mean birth weight of 2372.0 ± 1000.8 g, were recruited
from a children’s hospital in China. Among them, 252 were female, and 346 were male;
270 were born by spontaneous delivery, and 328 were delivered by cesarean section. Every
newborn underwent one of the 10 kinds of the above-mentioned painful procedures. The
detailed basic characteristics are listed in Table 1.

Table 1. Patients’ characteristics in this study.

Variables Total Amount (Proportion, %)

Gender
Female 252 (42.14)
Male 346 (57.86)

Delivery mode
Spontaneous delivery 270 (45.15)

Cesarean section 328 (54.85)
Pain procedure

Arterial blood sampling 81 (13.55)
Heel blood sampling 61 (10.20)

Fingertip blood sampling 85 (14.21)
Intravenous injection 12 (2.01)

Subcutaneous injection 46 (7.69)
Peripheral intravenous cannulation 76 (12.7)

Nasopharyngeal suctioning 65 (10.87)
Retention enema 73 (12.21)

Adhesive removal 68 (11.37)
Wound dressing 31 (5.18)

3.2. Intra-rater Reliability and Inter-Rater Reliability

The goodness of fit for the linear regression model between VB-2 and OS-1 was 0.976,
as shown in Figure 3. The NIPS pain scores are represented by the size and color of the
circles, with the frequency of the ratings determining the size and darkness. The larger and
darker the circles are, the more frequent the ratings, indicating a high level of consistency
between the two. Additionally, when comparing the results from OS-1 with VB-1, we
found an intra-rater reliability of 0.976, which was strongly significant (p < 0.001). When
comparing the results from OS-1 with VB-2, the inter-rater reliability was 0.976 for single
measures (p < 0.001) and 0.988 for average measures (p < 0.001). As shown in Table 2, there
was no significant difference in the means between the two assessors’ raters (p > 0.05). Both
assessors had higher means in some types of scores, indicating a discriminative ability
between the different procedures.

3.3. Comparison of the NIPS Pain Grades between OS-NPA and VB-NPA

According to the pain grade criteria of the NIPS, the OS-NPA showed no pain in
98 patients (16.38%), mild pain in 15 patients (2.50%), moderate pain in 36 patients (6.02%),
and severe pain in 449 patients (75.08%). On the other hand, the VB-NPA showed no
pain in 97 patients (16.22%), mild pain in 10 patients (1.67%), moderate pain in 42 patients
(7.02%), and severe pain in 447 patients (74.74%). Compared with the on-site evaluation,
the accuracy of the NIPS pain grade given by the VB-NPA was 96.98% (580/598), and
the agreement between the two label sources was compared, with a kappa value of 0.926
(p < 0.001), as shown in Table 3.
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Figure 3. Scatter diagrams of NIPS pain scores of OS-NPA and VB-NPA: (A) arterial blood sampling,
(B) fingertip blood sampling, (C) heel blood sampling, (D) intravenous injection, (E) subcutaneous
injection, (F) peripheral intravenous cannulation, (G) retention enema, (H) nasopharyngeal suctioning,
(I) adhesive removal, and (J) wound dressing. “NIPS” stands for the Neonatal Infant Pain Scale,
“OS-NPA” refers to the on-site neonatal pain assessment, and “VB-NPA” refers to the video-based
neonatal pain assessment.

Table 2. ICCs for scoring ratings given by OS-NPA and VB-NPA.

Label Source 1 Label Source 2 ICC 95% CI p-Value

OS-1 VB-1 0.976 (single)
0.988 (averages)

0.972–0.980
0.986–0.990

<0.001
<0.001

OS-2 VB-2 0.983 (single)
0.992 (averages)

0.980–0.986
0.990–0.993

<0.001
<0.001

OS-1 VB-2 0.976 (single)
0.988 (averages)

0.972–0.979
0.986–0.990

<0.001
<0.001

OS-1 OS-2 0.986 (single)
0.993 (averages)

0.984–0.986
0.992–0.994

<0.001
<0.001

OS-2 VB-1 0.976 (single)
0.988 (averages)

0.972–0.979
0.986–0.990

<0.001
<0.001

VB-1 VB-2 0.983 (single)
0.992 (averages)

0.980–0.986
0.990–0.993

<0.001
<0.001

“ICC” stands for intraclass correlation coefficient, “CI” stands for the confidence interval, “OS-NPA” refers to the
on-site neonatal pain assessment, and “VB-NPA” refers to the video-based neonatal pain assessment.
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Table 3. Consistency analysis of NIPS pain grading by OS-NPA and VB-NPA.

VB-NPA
Kappa Value p-Value

No Pain Mild Moderate Severe

OS-NPA

No pain 97 1 0 0

0.926 <0.001
Mild 2 8 4 1

Moderate 0 1 32 3
Severe 0 0 6 443

The background is highlighted for the diagonal of the confusion matrix.

3.4. Impact of Different Label Sources on AI Methods

The five-fold cross-validation accuracies for different AI-NPA methods trained and
tested using different label sources, i.e., OS-1, OS-2, VB-1, and VB-2, for training with OS-1
and OS-2 for testing, are summarized in Table 4. For different AI algorithms, the highest
average accuracies were all achieved when the training and testing labels were sourced
from the same labeling conditions and labeling individuals (OS-1 training for the OS-1
test and OS-2 training for the OS-2 test), followed by the same labeling conditions and
different labeling individuals (OS-1 training for the OS-2 test and OS-2 training for the OS-1
test), followed by different labeling conditions and the same labeling individuals (VB-1
training for the OS-1 test and VB-2 training for the OS-2 test), and the lowest accuracies
were reached when the labeling conditions and labeling individuals were both different
(VB-1 training for the OS-2 test and VB-2 training for the OS-1 test). However, considering
the standard deviations of the accuracies for the five-fold cross-validation, the difference in
the accuracies for the AI methods with different label sources was relatively small, with an
accuracy loss of 0.022–0.044. Meanwhile, this phenomenon could be described as a domain
migration problem in artificial intelligence and optimization based on mature domain
migration methods. Therefore, we believed that the impact of different label sources on the
AI methods was still limited in this study.

Table 4. Accuracies of different AI methods trained and tested using different label sources.

Label Source Test OS-1 OS-2

Training Method [19] [20] [21] [19] [20] [21]

OS-1
average 0.759 0.783 0.828 0.752 0.779 0.826

std 0.044 0.040 0.036 0.034 0.031 0.028

OS-2
average 0.756 0.769 0.824 0.776 0.786 0.826

std 0.036 0.039 0.035 0.028 0.024 0.035

VB-1
average 0.746 0.769 0.819 0.732 0.754 0.803

std 0.038 0.038 0.028 0.022 0.023 0.027

VB-2
average 0.737 0.747 0.801 0.749 0.761 0.808

std 0.037 0.042 0.023 0.019 0.031 0.021

‘std’ stands for standard deviation.

4. Discussion

4.1. High Evaluation Consistency of the VB-NPA

The above findings demonstrated that NPA could be accurately and reliably performed
based on videos captured in a real-world NICU scenario, thus greatly advancing NICU
pain management. This has important implications for the direct observation of neonatal
care, as it could provide a more precise way to assess and manage pain in newborns.
Pain assessment in newborns is often challenging due to their inability to communicate
the discomfort, which can eventually result in inadequate pain management and serious
consequences for the infant’s health and well-being. Using the NIPS pain score of the
OS-NPA as the golden standard, the ICC value of OS-1 and VB-2 was 0.976, with a highly
significant correlation (p < 0.001). The inter-rater reliability was 0.983 for the single measures

56



Diagnostics 2023, 13, 2661

(p < 0.001) and 0.992 for the average measures (p < 0.001). The same result was seen between
OS-2 and VB-1. The small difference between the two groups indicated that the NIPS is
suitable for repeated measurements, consistent with previous studies [14,15]. The previous
studies generally compared the differences between different assessors in the same clinical
scenario. In this study, we still found a high consistency by comparing the OS-NPA score
and the VB-NPA score, which indicated that the results obtained by the two NPA methods
are equivalent, thus making it possible to use NIPS pain scores derived by VB-NPA with
neonatal pain videos captured in a real-world NICU scenario in the future.

4.2. VB-NPA for NIPS Pain Grades

We included 598 children and 10 different procedures consistently evaluated as painful
in the clinic. The results in Table 3 show that compared with the on-site evaluation,
the accuracy of the NIPS pain grade given by the VB-NPA with neonatal pain videos
captured in a real-world NICU scenario was 96.98%, and the agreement between the
two groups was compared, with a kappa value of 0.926 (p < 0.001), thus indicating that,
although the accuracy of VB-NPA was affected by real-world noises in the videos, it was
not inferior to OS-NPA. Previous studies have shown that compared to OS-NPA, VB-NPA
could significantly reduce the time spent on pain evaluation [22–25]. Meanwhile, with
the advances in technology and operating equipment, it is easier to video-record painful
procedures. The administrator staff can then use these recordings to review the pain level
by observing the painful procedure video remotely for in-hospital nursing quality control
purposes.

In addition, VB-NPA can reduce the stressful surroundings of a clinical setting, the
contextual noise, and other elements that could shift the focus of the trainees from the rating.
There has been an increasing interest in using machine-learning methods for understanding
human behavioral responses to pain based on the analysis of facial expressions [26,27],
crying sounds [28], and body movement. Several automated methods have been introduced
to automatically assess infants’ pain based on behavioral or physiological pain indicators
analysis. By using AI-NPA, the nursing staff can also use these recordings to judge the
pain level by observing the painful procedure video in the nurse station and taking timely
intervention measures, which could greatly reduce the bedside observation time and
improve work efficiency. We have already developed an artificial intelligence-based NPA
(AI-NPA) tool in the early stage for 232 newborns during blood sampling in neonatal wards;
the accuracies of the NIPS pain score and pain grade given by the automated NPA system
were 88.79% and 95.25% [24].

4.3. VB-NPA for AI-NPA

In the clinical environment, one of the benefits of VB-NPA compared to OS-NPA is the
possibility of using blinded assessments to reduce assessor bias. Various factors can affect
the reliability and accuracy of the video rating of newborn pain assessment, such as video
quality, shooting distance, shooting angle, shooting time, and the personal characteristics
of the assessor [11]. While the personal factors associated with previous pain assessment
experiences and the personality of the assessor cannot be removed with the blinding of
VB-NPA, recording the procedure opens up the possibility of allowing multiple assessors to
evaluate the same procedure to ensure the accuracy of the VB-NPA. Meanwhile, to reduce
the risk of inaccurate scoring, we assigned two nurses to perform the OS-NPA in this study
to avoid assessor bias, as one nurse may tend to score more strictly than others. After
10 days, the VB-NPA was conducted, allowing the nurses to forget the results of the OS-
NPA and avoid any interference. These measures made the VB-NPA as accurate as possible,
resulting in more reliable results. All video data were included in our pain identification
database, providing the possibility of establishing a neonatal pain identification database
for AI-NPA in the future.

However, considering the inaccuracy and uncertainty of data labels, which are in-
evitable when labels are conceptual entities and manually annotated [29] like in the NIPS,
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the results of this study indicate a high consistency between VB-NPA and OS-NPA, and
we believe that in OS-NPA, experts can adjust their own observation perspectives appro-
priately and selectively evaluate whether the pain representations in the scale exist in
individual newborns. While VB-NPA can be performed through multiple replays, the
established shooting perspective cannot be changed after data collection, making it difficult
for the experts to evaluate certain scale items. At the same time, we could see that the label
sources of different labeling conditions and individuals would still introduce cross-domain
problems in AI analysis, resulting in the loss of algorithm performance. Therefore, we
believe that further studies for improving the accuracy of current VB-NPA to achieve a
higher consistency with OS-NPA is still necessary.

4.4. Strengths and Limitations

The strength of this study is that it shows the real-world experience of a tertiary NICU,
where the strain of everyday duties and work overload can sometimes lead to the omission
of pain assessment. As a result, VB-NPA could provide a more reliable and accurate way
to assess and manage pain in newborns, which could have important implications for the
direct observation of neonatal care. Furthermore, it could reduce the burden on healthcare
professionals, as it provides a more efficient way to assess and manage pain in newborns.

This study has some limitations. The recorded operation videos are limited by the
environment, personnel, and shooting angle. Additionally, other pain operations in clinical
practice were not recorded due to their low operating frequency. In the future, we hope to
increase the sample size and expand the pain-causing operation database.

5. Conclusions

The accurate assessment of pain in the NICU is essential due to the high prevalence
of painful experiences. Our results showed that the video-based assessment of neonatal
pain could be reliably used, as confirmed by the high intra-rater and inter-rater reliability
between direct observation and the video-based assessment, as well as the AI method-
based performance evaluation, even with various disturbances in real-world NICUs. These
results suggest that video-based assessment is viable for neonatal pain assessment in a
clinical setting, and the extent of neonatal pain can be evaluated remotely in real-time,
which can better identify and treat it and thus improve the neonatal pain condition.
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Abstract: Assessing the risk of acute kidney injury (AKI) has been a challenging issue for clinicians in
intensive care units (ICUs). In recent years, a number of studies have been conducted to investigate
the associations between several serum electrolytes and AKI. Nevertheless, the compound effects of
serum creatinine, blood urea nitrogen (BUN), and clinically relevant serum electrolytes have yet to
be comprehensively investigated. Accordingly, we initiated this study aiming to develop machine
learning models that illustrate how these factors interact with each other. In particular, we focused
on ICU patients without a prior history of AKI or AKI-related comorbidities. With this practice, we
were able to examine the associations between the levels of serum electrolytes and renal function in
a more controlled manner. Our analyses revealed that the levels of serum creatinine, chloride, and
magnesium were the three major factors to be monitored for this group of patients. In summary, our
results can provide valuable insights for developing early intervention and effective management
strategies as well as crucial clues for future investigations of the pathophysiological mechanisms
that are involved. In future studies, subgroup analyses based on different causes of AKI should be
conducted to further enhance our understanding of AKI.

Keywords: acute kidney injury; serum electrolyte; intensive care unit; machine learning

1. Introduction

Acute kidney injury (AKI) is a condition frequently encountered in medical care [1].
The underlying pathophysiological processes of AKI ultimately lead to a decline in renal
function. As a result, the patients suffer from the accumulation of waste products, an
imbalance of electrolytes, and a widespread inflammatory response that affects organs
beyond the kidneys [2]. According to a recent study, 20% to 50% of the patients in an
intensive care unit (ICU) suffered from AKI [3]. Therefore, how to assess the risk of AKI is
a critical issue for clinicians in an ICU [4]. However, several early signs of AKI, including
edema, hypertension, and oliguria, are non-specific. Therefore, the current practice only
monitors the level of serum creatinine and the volume of urine output in order to assess
the risk of AKI [5,6].

Due to the observation above, scientists have been investigating the physiological
signs that may be associated with the development of AKI. Leaf et al. conducted a review
of the pathophysiology of dysregulated mineral metabolism, specifically focusing on
calcium, phosphate, parathyroid hormone, and vitamin D metabolites in the context of
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AKI [7]. A review conducted by Yokota et al. found that the most common comorbidities
associated with AKI in elderly patients included respiratory failure, cardiovascular disease,
hypertension, diabetes, surgical complications, and liver disease [8].

As the kidneys play a crucial role in regulating the balance of calcium, phosphate, and
magnesium, it is conceivable that an imbalance of serum electrolytes may be associated with
the development of AKI. In this respect, a previous study reported that acute phosphate
nephropathy was an early condition of AKI and might subsequently progress to chronic
renal failure [9]. Furthermore, a number of studies were conducted to investigate how
the levels of serum electrolytes, including chloride, phosphorus, magnesium, potassium,
sodium, and calcium, were associated with the development of AKI [10–12]. Suetrong
et al. observed a linear correlation between the concentration of serum chloride and the
development of AKI among sepsis/septic shock patients [13]. Marttinen et al. reported a
similar result and showed that the temporal chloride level was associated with an increased
risk of AKI [14]. The work by Moon et al. revealed that a high level of serum phosphorus
increased the risk of AKI [15]. Cheungpasitporn et al. showed that both hypomagnesemia
and hypermagnesemia led to an increased risk of in-hospital AKI [16]. Thongprayoon
et al. observed a U-shaped association between the level of serum ionized calcium and
in-hospital AKI. Furthermore, both hypocalcemia and hypercalcemia were reported to
be associated with an increased risk of hospital-acquired AKI [17,18], and Chen et al.
discovered that abnormal levels of serum sodium or potassium before an AKI diagnosis
were more likely to lead to AKI progression and a poor prognosis [19]. Nevertheless,
Yessayan et al. reported that the concentration of hyperchloremia and the onset of AKI
within 72 h of admission were not correlated [20]. Finally, Morooka et al. divided pediatric
patients into three groups based on their serum magnesium values and investigated the
association between magnesium levels and outcomes [21].

In addition to the studies addressed above, the latest trend is to exploit various machine
learning algorithms, including artificial neural networks [22], support vector machines
(SVMs) [23], Bayesian networks [24], random forests (RFs) [25], etc., to predict incidences
of AKI, and Song et al. reviewed how the conventional logistic regression (LR) and various
machine learning methods performed in this respect [26]. A representative study was
conducted by Tomasev et al. [27]. In their study, the authors employed a recurrent neural
network to build their prediction models based on a cohort of 703,782 cases collected from
the medical facilities of the U.S. Department of Veterans Affairs.

Though the effects of several serum electrolytes on the development of AKI have been
well reported, a comprehensive investigation into how these serum electrolytes interact in
the context of the development of AKI has not been conducted [28–34]. It is conceivable
that such studies can provide crucial clues for developing new clinical guidelines to assess
the risk of AKI. Accordingly, we initiated this study aiming not only to illustrate how
these factors interact with each other but also to provide new insights for developing new
clinical practices. Our analyses focused on ICU patients who had no prior history of AKI
and were free of AKI-related comorbidities such as diabetes and hypertension as well as
common causes of AKI such as hypovolemia and heart failure. By focusing on this group
of patients, we were able to eliminate the confounding influences of these conditions and
examine the associations between the levels of serum electrolytes and renal function in a
more controlled manner.

In this study, we exploited decision tree (DT) models [28–30] and RF models [31,32].
Compared to the other commonly exploited machine learning models, such as SVMs [23]
and deep neural networks (DNNs) [22], DT and RF models are favorites in many appli-
cations due to the interpretable decision rules exhibited by these models. Figure 1 shows
a DT structure that summarizes the main results of this study. A user can figure out the
decision rules by traversing the tree structure from the root node, which is at the top of the
structure and colored yellow. They can proceed by following the branch originating from
the root node that matches the condition of the case. The path ends at one of the leaf nodes
at the bottom level of the tree. The “n+” and “n−” symbols at each node denote the number
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of positive cases and the number of negative cases, respectively, in our study cohort that
met the criteria specified along the path from the root node to this particular node. If a path
ends at a red node, the prediction is positive. On the other hand, if a path ends at a green
node, the prediction is negative. Based on these interpretable decision rules, physicians
can have a comprehensive understanding of how these key factors interact with each other
and develop new clinical guidelines accordingly. On the other hand, due to the non-linear
transformations and the large number of coefficients involved in the prediction process, it
is essentially impossible for a user to interpret the mathematics equations that an SVM or
DNN model follows to make a prediction.

Figure 1. A DT structure that summarizes the main results of this study. The root node is colored
yellow.

2. Materials and Methods

2.1. Study Cohort

Our study cohort was extracted from the Medical Information Mart for Intensive
Care (MIMIC)-IV database, version 1.0, published in March 2021 [33,34]. The MIMIC
database has been carefully de-identified to protect patient privacy. Its use for research
purposes has been approved by the institutional review boards of the Massachusetts
Institute of Technology (Protocol No. 0403000206) and Beth Israel Deaconess Medical
Center (Protocol No. 2001-P-001699/14). These approvals indicate that the appropriate
ethical considerations have been taken into account to ensure the responsible and lawful
use of the database for research purposes.

Figure 2 shows the flow that we followed to generate our study cohort. Initially,
the dataset contained 256,878 clinical records collected at the emergency department and
the intensive care unit between 2008 and 2019. According to the 2012 Kidney Disease:
Improving Global Outcomes (KDIGO) recommendation statements [35–38], AKI is defined
by any of the following criteria: (1) an increase in the level of serum creatinine by 0.3 mg/dL
(26.5 μmol/L) or more within 48 h or (2) an increase in the level of serum creatinine to
1.5 times the baseline level within 7 days. As the guideline requires two readings of the
serum creatinine level and our study focused on patients in ICUs, 205,482 records in the
database were excluded due to a lack of required information after admission into ICUs.
As a result, only 51,396 records, all of which corresponded to the first available data after
ICU admission, were included for subsequent analyses.
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Figure 2. The flow for generating the study cohort. Table 1 lists the ICD-9 and ICD-10 codes employed
to exclude the cases with AKI-related comorbidities/diseases. Criterion (1): (i) For a patient who had
suffered from AKI, we included only the record corresponding to his/her stay in the ICU during
which the patient suffered from AKI the first time. (ii) For a patient who had never suffered from
AKI, we included only the record corresponding to his/her first stay in the ICU. Criterion (2): (i) the
record of the case did not include all the readings listed in Table 2; (ii) one or more readings in the
record were in the highest 0.1% or the lowest 0.1% of the distributions; or (iii) one or more readings
in the record were not measured within 168 h of admission.

Table 1. Excluding criteria for the cases with AKI-related comorbidities/diseases.

Comorbidities/Diseases ICD-9 ICD-10

Renal failure 1 403.11, 403.91, 404.12, 404.92, 584.5–584.9,
585.1–585.9, 586, V42.0, V45.1, V56.0, V56.8

I12.0, I13.1, N17.0–N17.2, N17.8, N17.9,
N18.1–N18.9, N19, N25.0, Z49.0–Z49.2,

Z94.0, Z99.2

Congestive heart failure 398.91, 402.11, 402.91, 404.11, 404.13, 404.91,
404.93, 428.0–428.9

I09.9, I11.0, I13.0, I13.2, I25.5, I42.0,
I42.5–I42.9, I50.0–I50.9, P29.0

Diabetes 250.0–250.7, 250.9 E10.0–E10.9, E11.0–E11.9, E12.0–E12.9,
E13.0–E13.9, E14.0–E14.9

Fluid and electrolyte disorders 276.0–276.9 E22.2, E86.0, E86.1, E86.9, E87.0–E87.8
1 Including end-stage renal disease, AKI, and chronic kidney disease.
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Since one patient could be admitted into the ICU more than one time, for a patient
who had suffered from AKI, we included only the record corresponding to his/her stay in
the ICU during which the patient suffered from AKI the first time. On the other hand, for
a patient who had never suffered from AKI, we included only the record corresponding
to his/her first stay in the ICU. As a result, only 41,878 records corresponding to 41,878
individual cases remained. In the next step, we employed the criteria provided in Table 1
to exclude those patients whose medical records showed AKI-related comorbidities [39] so
that the interferences from other factors such as renal impairment, cardiac failure, diabetes,
and electrolyte imbalances would be avoided. After this step, only 17,085 cases remained
in the dataset. Finally, we employed the following excluding criteria to further screen the
dataset: (1) the record of the case did not include all the readings listed in Table 2; (2) one or
more readings in the record were in the highest 0.1% or the lowest 0.1% of the distributions;
and (3) one or more readings for the case were not made within 168 h of admission. In the
end, our study cohort contained 550 AKI-positive cases and 12,152 AKI-negative cases. A
demographic analysis of the study cohort is presented in Table 2.

Etiologically, the causes of AKI can be classified into three broad categories: pre-
renal azotemia, intrinsic renal parenchymal damage, and post-renal obstruction. Tailoring
treatment plans according to the specific causes of renal injury are crucial for improving
patient outcomes. For instance, hypovolemia, often diagnosed by assessing a fluid status
imbalance, insufficient renal perfusion, or inferior vena cava collapse, is a common clinical
presentation associated with pre-renal azotemia. On the other hand, post-renal injury
occurs when the urinary tract is partially or completely blocked due to functional or
structural derangements anywhere from the renal pelvis to the tip of the urethra. Since the
treatment plans for post-renal AKI patients are significantly different from the plans for
non-post-renal AKI patients, we classified the AKI patients in our study cohort into two
categories: post-renal AKI and non-post-renal AKI. According to several previous studies,
the incidences of post-renal AKI accounted for less than 5% of all AKI cases [1,40,41]. In our
study cohort, 24 out of 550 AKI cases, i.e., 4.4%, were post-renal, and the percentage was in
line with the previous studies. Supplementary Table S1 shows the ICD-9 and ICD-10 codes
employed to identify post-renal AKI cases. Table 3 shows the statistics of the post-renal
AKI patents and non-post-renal AKI patients with respect to the features listed in Table 2.

Table 2. Demographic analysis of the study cohort.

Feature
550 Cases with AKI

(Mean ± SD)
12,152 Cases without AKI

(Mean ± SD)
p-Value

Age (years) 65.68 ± 14.69 60.34 ± 17.67 p < 0.001 *
Gender p < 0.001 *

Male (%) 349 (63.45%) 6757 (55.60%)
Female (%) 201 (36.55%) 5395 (44.40%)

Serum
BUN (mg/dL) 26.74 ± 15.39 18.06 ± 8.90 p < 0.001 *

Creatinine (mg/dL) 1.36 ± 0.64 0.86 ± 0.26 p < 0.001 *
Chloride (mEq/L) 110.37 ± 6.60 107.39 ± 5.28 p < 0.001 *

Potassium (mEq/L) 4.79 ± 0.75 4.47 ± 0.63 p < 0.001 *
Sodium (mEq/L) 142.81 ± 5.77 141.23 ± 4.59 p < 0.001 *

Magnesium (mg/dL) 2.53 ± 0.52 2.28 ± 0.44 p < 0.001 *
Phosphorus (mg/dL) 4.40 ± 1.34 3.80 ± 0.93 p < 0.001 *
Non-ionized calcium

(mg/dL) 8.76 ± 0.73 8.73 ± 0.71 0.346

The symbol * indicates statistical significance. For categorical variables, the p-values were calculated based on the
χ2 test [42,43]. For continuous variables, the p-values were calculated based on the t-test [42,43]. SD represents
standard deviation.
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Table 3. Statistical analysis of the characteristics of the post-renal AKI patients and the non-post-renal
AKI patients in our study cohort.

Feature
24 Cases with

Post-Renal AKI
(Mean ± SD)

526 Cases with
Non-Post-Renal AKI

(Mean ± SD)
p-Value

Age (years) 74.16 ± 12.54 65.30 ± 14.66 0.0037 *
Gender 0.0007 *

Male (%) 23 (95.66%) 326 (61.98%)
Female (%) 1 (4.34%) 200 (38.02%)

Serum
BUN (mg/dL) 27.54 ± 10.72 26.70 ± 15.55 0.7944

Creatinine (mg/dL) 1.40 ± 0.57 1.36 ± 0.64 0.7459
Chloride (mEq/L) 110.08 ± 7.30 110.38 ± 6.57 0.5228

Potassium (mEq/L) 4.58 ± 0.56 4.80 ± 0.76 0.2258
Sodium (mEq/L) 142.81 ± 5.28 142.84 ± 5.79 0.9599

Magnesium (mg/dL) 2.54 ± 0.38 2.53 ± 0.53 0.1666
Phosphorus (mg/dL) 4.07 ± 0.93 4.41 ± 1.36 0.5254
Non-ionized calcium

(mg/dL) 8.66 ± 0.54 8.76 ± 0.74 0.8278

The symbol * denotes statistical significance. The p-values were calculated based on the two-sample t-test. SD
stands for standard deviation.

2.2. Machine Learning Models

As mentioned earlier, we used DT and RF models in order to investigate the compound
impacts of two or more factors and provide a clear picture of how these factors interact
with each other. In particular, we focused on the compound effects of serum creatinine,
BUN, and the 6 serum electrolytes listed in Table 2. The serum creatinine and BUN were
included because in medical practice the levels of serum creatinine and BUN as well
as the BUN-to-creatinine ratio are measured to clarify different types of renal function
impairment, including pre-renal azotemia, intrinsic renal parenchymal disease, and post-
renal obstruction. The 6 serum electrolytes listed in Table 2 were included because previous
studies had reported their associations with the development of AKI.

In order to address the needs in different clinical scenarios, we generated prediction
models with varying levels of sensitivity and examined the prediction rules embedded in
these models. In this respect, we set the parameters of the machine learning packages to
various combinations and then employed a 5-fold cross-validation [22] to evaluate the levels
of sensitivity delivered by the prediction models generated with these alternative parameter
settings. In the 5-fold cross-validation process, the study cohort was randomly and evenly
partitioned into 5 subsets. For each combination of parameter settings, every subset was
employed to evaluate the prediction models generated with the other 4 subsets. Then,
the evaluation results of these 5 subsets were collected to calculate the performance data,
i.e., the sensitivity, specificity, positive predictive value (PPV), etc., corresponding to this
particular parameter combination. Supplementary Table S2 shows the software packages
employed to generate the DT and RF models as well as the alternative parameter settings
employed to generate the prediction models in the 5-fold cross-validation process. In this
respect, we tried a large number of possible parameter combinations in order to generate
prediction models that delivered sensitivity at the levels of 0.95 and 0.80. Furthermore, as
we had only 550 positive cases in our study cohort, we employed the 5-fold cross-validation
process instead of the 10-fold cross-validation process, which may be more commonly
used in machine learning research, so that each partition would contain a good number of
positive cases.

3. Results

As mentioned above, in order to address the needs in different clinical scenarios,
we generated prediction models with varying levels of sensitivity. In the subsequent
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discussions, we will focus on the prediction models with sensitivity at the levels of 0.95 and
0.80. Table 4 summarizes the performances of the DT, RF, and LR models observed during
the 5-fold cross-validation procedure. The performances of the LR models were included
to provide a reference because LR models are widely employed in biomedical research
communities. Detailed performance data are presented in Supplementary Table S3.

Table 4. Summary of the performances observed during the 5-fold cross-validation process.

Level of
Sensitivity

Model Sensitivity Specificity PPV AUC
Relative

Risk

0.95
DT 0.949 0.479 0.076 0.767 16.893
LR 0.949 0.414 0.068 0.855 13.872
RF 0.949 0.382 0.065 0.666 13.012

0.80
DT 0.798 0.721 0.116 0.823 9.84
LR 0.799 0.773 0.137 0.857 11.982
RF 0.799 0.732 0.119 0.766 10.141

PPV stands for positive predictive value, also known as precision. AUC stands for the area under the receiver
operating characteristic curve.

The performance data in Table 4 reveal that with respect to the specificity, the positive
predictive value (PPV), the relative risk, and the area under the receiver operating charac-
teristic curve (AUC), the DT model that delivered sensitivity at the level of 0.95 performed
significantly superior to the RF model that delivered the same level of sensitivity. It was
also observed that the RF model that delivered sensitivity at the level of 0.80 performed
marginally superior to the rival DT model in terms of specificity, PPV, and relative risk but
performed inferior to the rival DT model in terms of AUC. Based on these observations, we
concluded that the overall performance of the DT models was superior to that of the RF
models. Therefore, in the subsequent discussions, we will focus on the DT models and the
decision rules embedded in the models.

Figure 3a,b show the DT models generated by feeding the entire study cohort into
the decision tree package with the combinations of parameters cp and prior set to (0.005
and 0.5835) and (0.01 and 0.744), respectively. According to the 5-fold cross-validation
addressed above, with cp and prior set to these two combinations, the generated DT
models should deliver sensitivity at the levels of 0.80 and 0.95, respectively. One interesting
observation regarding the DT model shown in Figure 3a is that the model predicts a patient
with a serum creatinine level higher than 1.25 mg/dL to be at high risk. This prediction rule
comes very close to the serum creatinine level of 1.3 mg/dL commonly used by physicians
to determine whether a patient is at high risk of progression to AKI. It is also observed
that the DT model shown in Figure 3b predicts a patient with a serum creatinine level
higher than 0.95 mg/dL to be at high risk. This observation implies that 0.95 mg/dL can be
employed as an alternative threshold if the physician wants to increase the sensitivity of
his/her medical judgment.

The DT model shown in Figure 3a further reveals that for a patient with a serum
creatinine level between 0.95 and 1.25 mg/dL, his/her level of serum magnesium can be
used as a warning sign. If the reading is higher than 2.45 mg/dL, the patient is at high risk.
If not, we should further examine his/her level of serum chloride. If the patient’s level of
serum chloride is over 106.5 mEq/L, the patient is at high risk.

The blue polygons in Figure 3a,b encircle the structure shared by these two DT models.
According to the shared structure, for a patient with a serum creatinine level between
0.75 and 0.95 mg/dL, we should further examine his/her levels of serum magnesium and
chloride. A patient is at high risk if (1) his/her level of serum chloride is higher than
113.5 mEq/L or (2) his/her level of serum chloride is between 105.5 and 113.5 mEq/L
and his/her level of serum magnesium is higher than 2.35 mg/dL. Finally, since only a
very limited number of positive cases in our study cohort met the criteria defined by the
lower right parts of the tree structures in Figure 3a,b, we should be able to ignore the
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corresponding decision rules. In summary, the structures of the two DT models shown
in Figure 3 illustrate that the levels of serum creatinine, chloride, and magnesium are the
three major factors associated with the development of AKI. Though the level of serum
phosphorus is present in these DT models, the nodes corresponding to the level of serum
phosphorus are located in the lower parts of the structures, which implies that these nodes
play less significant roles in the decision rules.

(a) 

(b) 

Figure 3. DT models with two different levels of sensitivity. (a) The DT model with sensitivity at the
level of 0.80. (b) The DT model with sensitivity at the level of 0.95. The blue polygons encircle the
structure shared by these 2 DT models. The root node is colored yellow.
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4. Discussion

As of today, the clinical practice to assess the risk of AKI is based on the 2012 KDIGO
Clinical Practice Guideline for Acute Kidney Injury, which monitors only the level of serum
creatinine and the volume of urine output. Since AKI could lead to many complications
and even fatality, identifying the risk factors of AKI and exploiting machine learning
technologies to predict AKI incidences have attracted a lot of attention in biomedical
research communities. In this respect, several serum electrolytes have been reported to
be associated with the development of AKI. Nevertheless, the compound effects of serum
creatinine, BUN, and clinically relevant serum electrolytes have yet to be thoroughly
investigated. With this observation, we initiated this study aiming not only to illustrate
how these factors interact with each other but also to provide new insights for developing
new clinical practices for assessing AKI risk. In particular, we focused on ICU patients who
had no prior history of AKI and were free of AKI-related comorbidities. By focusing on
this specific group of patients, we were able to eliminate the confounding influences of
these conditions and examine the associations between the levels of serum electrolytes and
renal function in a more controlled manner. Furthermore, our results can provide valuable
insights for developing early intervention and effective management strategies as well as
for investigating the pathophysiology of AKI.

The performance data in Table 4 show that for those patients without a prior history of
AKI or AKI-related comorbidities, the relative risks with these alternative prediction models
were fairly high, ranging from 9.84 to 16.89. This implies that the group of patients predicted
to be positive suffered significantly higher risk than the groups of patients predicted to
be negative. However, the low PPVs suggest that there would be a large number of false
positives if these prediction models were put into practical use. Nevertheless, according to
the numbers shown in Figure 3a, this particular DT model, if put into practical use, should
predict around 57% of the patients to be negative and deliver a sensitivity around 80%.
Meanwhile, according to the numbers shown in Figure 3b, this particular DT model, if put
into practical use, should predict around 51% of the patients to be negative and deliver a
sensitivity around 95%. Therefore, a physician who employs the DT models developed
in this study to assess the risks of AKI for his/her patients only needs to focus on about
50% of the patients, while the physician can expect this group of patients to suffer about
10 times the risk of the group of patients predicted to be at low risk.

Among the 10 variables listed in Table 2, only serum creatinine, chloride, magnesium,
and phosphorus are present in the DT models shown in Figure 3a,b. It must be noted that
this observation does not imply that serum potassium, sodium, and non-ionized calcium are
not associated with the development of AKI. In fact, as mentioned earlier, previous studies
have reported that serum potassium, sodium, and non-ionized calcium are all associated
with the development of AKI. What happened must be that when building the prediction
model, the DT algorithm figured out that the levels of serum chloride, magnesium, and
phosphorus provided more information than the levels of serum potassium, sodium, and
non-ionized calcium. The DT algorithm further figured out that the additional information
provided by the levels of serum potassium, sodium, and non-ionized calcium after the levels
of serum chloride, magnesium, and phosphorus had been incorporated was insignificant.

The DT models shown in Figure 3a,b identify the levels of serum creatinine, chloride,
and magnesium as the three major factors associated with the development of AKI. Though
the level of serum phosphorus is present in these two figures, all three nodes corresponding
to the level of serum phosphorus are located in the lower levels of the structures. Further-
more, only a very limited number of positive cases in our study cohort met the criteria
defined by these low-level structures. Therefore, in practice, we can ignore the role of
serum phosphorus.

Since the level of serum creatinine is one of the major factors monitored in the current
clinical practice, our study suggests that for those patients without a prior history of AKI
or AKI-related comorbidities, the levels of serum chloride and magnesium should be taken
into consideration in order to enhance the clinical guidelines. In this respect, the current
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clinical guideline, which monitors only the level of serum creatinine and the volume of
urine output, may lead to misdiagnoses and/or delayed treatments in some cases because
the level of serum creatinine generally reflects the degree of renal damage and should
be considered as a delayed indicator of AKI. Furthermore, decreased urine output is a
non-specific symptom and may only be evident once the AKI has progressed. Therefore,
by incorporating the assessments of the serum chloride and magnesium levels into the
enhanced clinical guideline, healthcare professionals can obtain a more comprehensive
understanding of a patient’s renal function and the risk of AKI. Furthermore, the numbers
shown in Table 2 reveal that the distributions of the levels of serum creatinine for patients
with AKI and patients without AKI must overlap to a large degree because the standard
deviation of the level of serum creatinine for patients with AKI, which is 0.64, is larger
than the difference between the means of these two groups of patients, which is 0.5. This
implies that additional assessments must be incorporated if we would like to evaluate
the risk of AKI of a patient more accurately. Finally, with respect to the decrease in urine
output among AKI patients, it is a non-specific symptom and may only be evident once the
AKI has progressed. Together, these observations imply that for an ICU patient without
a prior history of AKI or AKI-related comorbidities, healthcare professionals can obtain
a more comprehensive understanding of the patient’s renal function and risk of AKI by
incorporating assessments of serum chloride and magnesium levels into the enhanced
clinical guideline. Accordingly, healthcare professionals will be able to evaluate and manage
treatments more precisely and ultimately prevent disease progression and deterioration.

It must be noted that our results can only be immediately applied to ICU patients
without a prior history of AKI or AKI-related comorbidities. For ICU patients with AKI-
related comorbidities, further studies are needed. In this respect, we can partition the
patients into several groups depending on the types of comorbidities that they suffer
from so that patients in the same group have similar pathophysiological mechanisms.
Then, we can apply the procedure presented in this article to each group of patients
in order to develop a specific prediction model for each group and identify the critical
factors accordingly.

One of the major limitations of our study is due to the different causes of AKI. As the
causes of AKI are essential for physicians to develop effective treatment plans, in-depth
subgroup analyses based on different categories of renal injury should be conducted to gain
valuable insights into the different pathophysiological mechanisms involved and guide
appropriate treatment strategies tailored to each subgroup. In this study, based on the
information available in the MIMIC-IV dataset, we classified the AKI patients into two
categories: post-renal and non-post-renal. The statistics in Table 3 reveal that there were no
statistical differences between the levels of the eight serum ingredients for the post-renal
and non-post-renal AKI patients. Therefore, our prediction models should be generally
applicable to both post-renal and non-post-renal AKI patients. Nevertheless, in-depth
subgroup analyses should be conducted in the future.

In addition to the limitation addressed above, this is a retrospective study based on
data extracted from the MIMIC-IV database. Therefore, the results derived from this study
should not be extensively applied in the decision process without taking into consideration
the ethnic composition of the patients and the medical interventions that these patients may
have received. Furthermore, our study was based on clinical records collected in ICUs. This
implies that the patients involved had serious health conditions. The data in Table 2 also
show that these patients were relatively old. Therefore, the results observed in our analyses
should not be generalized to patients with different health conditions and in different age
groups. Finally, our results only illustrate the associations between the investigated risk
factors and the incidences of AKI. In other words, causal inferences have yet to be studied.

5. Conclusions

This study has led to an in-depth understanding of the compound effects of serum
creatinine, chloride, and magnesium with respect to the development of AKI in ICUs. As
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we focused on patients who had no prior history of AKI and were free of AKI-related
comorbidities, our study provides valuable insights for developing early intervention and
effective management strategies. Furthermore, this understanding provides crucial clues
not only for future enhancement of clinical practices but also for future investigation of the
pathophysiological mechanisms that are involved.
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Abstract: Acute appendicitis is one of the most common causes of abdominal pain in the emergency
department and the most common surgical emergency reason for children younger than 15 years
of age, which could be enormously dangerous when ruptured. The choice of radiological approach
is very important for the diagnosis. In this way, unnecessary surgery is avoided. The aim of this
study was to examine the validity of the American College of Radiology appropriateness criteria
for radiological imaging in diagnosing acute appendicitis with multivariate decision criteria. In
our study, pediatric patients who presented to the emergency department with abdominal pain
were grouped according to the Appendicitis Inflammatory Response (AIR) score and the choice
of radiological examinations was evaluated with fuzzy-based Preference Ranking Organization
Method for Enrichment Evaluation (PROMETHEE) and with the fuzzy-based Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) model for the validation of the results. As a
result of this study, non-contrast computed tomography (CT) was recommended as the first choice for
patients with low AIR score (where Φnet = 0.0733) and with high AIR scores (where Φnet = 0.0702)
while ultrasound (US) examination was ranked third in patients with high scores. While computed
tomography is at the forefront with many criteria used in the study, it is still a remarkable practice
that US examination is in the first place in daily routine. Even though there are studies showing
the strengths of these tools, this study is unique in that it provides analytical ranking results for
this complex decision-making issue and shows the strengths and weaknesses of each alternative
for different scenarios, even considering vague information for the acute appendicitis diagnosis in
children for different scenarios.

Keywords: appendicitis; diagnosis; fuzzy logic; decision making

1. Introduction

Acute appendicitis is the most common indication reason requiring emergency ab-
dominal surgery [1–3]. Acute appendicitis (AA) is the most common surgical emergency
in younger than 15 years old children [4]. Surgical treatment is the first option for this
diagnosis. Although the treatment options are improved, there are 510 morbidity and 1–5%
mortality rates, while there is a 5–42% negative appendectomy rate [2,3,5]. This causes
3 billion dollars of annual hospital spending according to USA data. Many biomarkers
such as blood or urine analysis have been defined for diagnosis, but they are not definitive
methods [6,7]. It can benefit from ultrasound, CT, and MRI in the diagnosis of appendicitis.

Diagnostics 2022, 12, 2915. https://doi.org/10.3390/diagnostics12122915 https://www.mdpi.com/journal/diagnostics73
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Diagnosing acute appendicitis (AA) in children remains challenging for physicians due
to atypical presentations [8–10]. Proper diagnosis of AA can prevent complications such
as perforation and abscess [11]. Ultrasound is an imaging technique with high specificity
in diagnosis in the pediatric group. However, it is operator-dependent [12]. However,
CT, which has higher specificity, has a narrow area of use due to X-ray exposure [13] and
MRI for claustrophobia. US scanning was used initially, but CT scanning has become
increasingly used as a diagnostic tool in adults as well as children to make a more accurate
diagnosis and rule out appendicitis [14]. However, it is a controversial issue, as it is known
that exposure to CT scanning increases the risk of cancer in the long term, especially in
children [15]. There are many scoring systems for appropriate diagnostic techniques and
surgical decisions in the management of right lower quadrant pain in pediatric patients
in the emergency department [16]. The Appendicitis Inflammatory Response (AIR) score
is AUROC 0.96 in the widest age range and enables us to avoid CT application [17]. The
AIR score is one of the two scores (the other one is ‘Adult Appendicitis Score’, AAS) recom-
mended by the 2020 World Society of Emergency Surgery clinical practice guidelines for
the diagnosis and treatment of acute appendicitis [18]. The parameters of the AIR score
are vomiting, right lower quadrant (RLQ) pain, rebound tenderness, body temperature,
polymorphonuclear leukocytes (PNL), WBC count, and C-reactive protein (CRP) level [19]
(Table 1). However, literature information on the applicability of these scores and their
compatibility with the ACR eligibility criteria in the field is limited.

Table 1. Appendicitis Inflammatory Response (AIR) score.

Diagnosis Score

Vomit 1
Pain in RLQ 1
Rebound tenderness low 1
Rebound tenderness mild 2
Rebound tenderness severe 3
Temperature > 38.5 ◦C 1
PNL 70–84% 1
PNL > 85% 2
Leukocytes (WBC) > 10.0–14.9 × 109/L 1
Leukocytes (WBC) > 15.0 × 109/L 2
CRP 10–49 g/L 1
CRP > 50 g/L 2

AIR: if sum 0–4 = low probability; if sum 5–8 = mild probability; if sum 9–12 = high probability.

Many multivariate decision criteria have been developed in medical studies for
many machine learning algorithms and approaches. For diagnostic and classification
purposes, conceptual decision-making models are most often used. Decision trees pro-
vide a useful and effective decision-making technique with high classification precision
and these models are easy to compare to most classification algorithms. For the diagnosis
of acute appendicitis, the sensitivity and specificity values of ultrasound are 78% and
83%, respectively [18], 100% and 94.8% for contrast-enhanced CT, and 90.5% and 100%
for non-contrast CT, respectively [19]. The sensitivity and specificity values for 1.5 T
MRI are 96.6% and 95.8%, respectively [20], and 100% and 98% for 3T MRI, respectively.
Tseng et al. [21] showed that ultrasound was the cause of the highest rate of negative
appendectomy. When CT imaging was added, there was a 0.6% reduction. Data from the
National Surgical Quality Improvement Program (NSQIP) were used in this recent study.
We wanted to test the ACR eligibility criteria with a new model that has not been studied
in the literature before, in order to minimize the confusion in the diagnostic process. The
purpose of this study is to determine which examination is the most appropriate for
patients with low/high AIR score in the diagnosis of acute appendicitis.

Table 1 displays the score of the appendicitis inflammatory response for various
diagnosis occurrence conditions.
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In order to achieve our aim, we applied multi-criteria decision-making analysis ap-
proaches, specifically the fuzzy-based Preference Ranking Organization Method for Enrich-
ment Evaluation (PROMETHEE) and the fuzzy-based Technique for Order of Preference
by Similarity to an Ideal Solution (TOPSIS), to discover the strengths and weaknesses
of each diagnosis technique for the acute appendicitis diagnosis in children using the
multi-parameters assigned with the alternative’s medical tools for the diagnosis.

2. Material and Method

2.1. Study Design

After Institutional Review Board approval was obtained (YDU/2020/85-1186), data of
all cases under 16 years of age admitted 2019–2020 with diagnosis of the acute abdominal
pain were collected. The diagnosis of the patients was confirmed by two researchers
through analysis of all records of the patients. All patients were free of tumor, infection,
and hematological diseases. As data for the analysis, the examinations were assessed
by two expert observers (O.T., K.K.) in terms of imaging time, easy applicability of the
examination, duration of the examination, specificity, sensitivity, user dependency, fee,
diagnostic precision, request duration, and radiation exposure, and with their joint decision.
Their answers were defined as five scale linguistic triangular fuzzy scales. The model made
an examination selection ranking according to the AIR score data. This analysis was made
for US, non-contrast CT, contrast-enhanced CT, 1.5 T MRI, and 3T MRI. Furthermore, the
PROMETHEE and the TOPSIS techniques were applied for this evaluation. The Gaussian
preference function was used for the PROMETHEE analysis for each criterion. Linguistic
fuzzy scale was applied for the determination of the importance weights of the criteria and
selected criteria and Yager index was used for the defuzzification of the defined triangular
fuzzy values.

Figure 1 shows the linguistic fuzzy sets and their assigned fuzzy numbers used for
the expression of the fuzzy parameters. VH: Very high; H: High; M: Medium; L: Low; and
VL: Very low are defined as the linguistic expressions used for determination of the data.
Each linguistic expression and the importance given to parameters selected by experts are
assigned to triangular fuzzy values as shown in detail at Table 2 below.

 

Figure 1. Linguistic fuzzy sets.
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Table 2. Linguistic fuzzy scale.

Linguistic Scale for Evaluation Triangular Fuzzy Scale Criteria of the Decision Alternatives

VH (0.75, 1, 1)
specificity, diagnostic precision, time of
imaging, user dependency, radiation
dose, comfortability

H (0.50, 0.75, 1) sensitivity, air score, disposition
M (0.25, 0.50, 0.75) time of order, result time, cost
L (0, 0.25, 0.50) -
VL (0, 0, 0.25) -

VH: Very high; H: High; M: Medium; L: Low; VL: Very low.

Using the fuzzy scale enables the expert to determine the weights or degrees of
importance of the parameters used for the comparison of the medical diagnosis tools for
acute appendicitis in pediatric patients. Then, after the defuzzification process, the decision
matrix is constructed for use in MCDM approaches. Yager index is a value that provides
the defuzzified point for the triangular fuzzy numbers, proposed by Ronald Yager as one
of the most important ranking methods for fuzzy sets.

Data: Data included demographics, preoperative clinical findings for AIR score such
as vomiting, pain in RLQ, rebound tenderness or muscular defense, body temperature,
polymorphonuclear leukocytes rate, white blood cell count, and C-reactive protein con-
centration. Radiological data were not included in generator operator-independent data.
Parental consent was obtained both of surgical approach and publication of the data. Di-
agnosis and management of appendicitis were determined through clinical, laboratory,
radiological, and surgical findings.

Statistical analysis: Statistical analysis was performed with IBM SPSS Statistics 26.0.0
(Chicago, IL, USA). The characteristics of the study sample were analyzed by descriptive
statistics, with dichotomous or ordinal data presented as percentage, and continuous
data as means with SD. The Kolmogorov–Smirnov test was used to demonstrate normal
distribution. One-way ANOVA was used for homogeneity of variables, while Student’s
t test was used. Statistical associations were considered significant if the p value was <0.05.
In our daily life, we face many problems in different fields, the most common ones are the
problems related to choosing or evaluating something included in groups of other choices.
In some cases, the evaluation of the situations could be complex and needs to consider many
factors with different weights or levels of importance for these factors for the evaluation. To
solve this problem, multi criteria decision making (MCDM) is used and this principle refers
to making decisions in the presence of multiple, usually conflicting, criteria [21]. Although
MCDM problems are very common and popular, MCDM as a discipline has a short history
of about 30 years. It developed relatively to computer advancements and development and
because of this relation, computers gave us the ability to conduct complex and big MCDM
problems which expands the applications of MCDM.

On the other hand, the popularity of computers and mobiles generated an enormous
amount of data in several fields which makes MCDM more important and dominant in
supporting design makers in different sectors with usable data [21]. The MCDM problems
have three main components which are the decision maker/s (DMs), alternatives, and
criteria. In general, the classification of MCDA problems depends on types of these three
elements. Decision maker/s (DMs): in problems, we may have one decision maker which is
responsible for determining what to do or multiple decision makers such as several people
or organizations who are involved in the processes of MCDM. In case of multiple decision
making, many different preferences, goals, criteria, and objectives appear so the results
might not satisfy every DM [22]. In this case, obtaining usable outcomes depends mainly
on the range of cooperation between the DMs. In case of the presence of multiple DMs
with different preferences and priorities, the problem of their presence could be included
in MCDM problems to be solved [23]. Alternatives: these are the things or possibilities
that the decision maker/s should choose from. These possibilities could be identified
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previously or could be created through process. It is important to know that the decision
space is the definition of the set of all possible alternatives [22]. Criteria: the specifications
or requirements that each element of decision space should have or possess and depending
on these requirements, each element is rated and evaluated by how well it possesses one of
the process criteria [22].

There are many ways to classify the methods of multi criteria decision making. One
of these ways is to classify according to decision makers which could be one decision
maker or group of decision makers; the methods could also be classified according to
the type of data used in the process, such as deterministic data which are accurate and
clear data, stochastic which means the data are random and the opposite of deterministic
data, and in some cases the data presented as fuzzy information which are not clear or
vague. There are some subsidiary classifications such as in case of a deterministic, single
decision maker. The classification problem considers the type of information and the
number of decision makers [24]. Multi criteria decision making has many techniques such
as Analytic Hierarchy Process (AHP) method, Preference Ranking Organization Method for
Enrichment Evaluation (PROMETHEE), Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), Analytical Network Process (ANP), Compromise ranking method
(VIKOR), Elimination Et Choix Traduisant la Realité (ELECTRE) [25,26], etc. In this study,
two types of analytical methods were used, specifically F-PROMETHEE and F-TOPSIS.

2.2. Fuzzy PROMETHEE (F-PROMETHEE)

This definition or technique contains two main parts, fuzzy and PROMETHEE. With
the fuzzy logic process, the vague and linguistic data could be defined and with the
PROMETHEE process, the ranking of the alternatives under the fuzzy conditions can be
obtained. The PROMETHEE method was created by Brans et al. (1984) in order to present
a rational and clear method to rank alternatives [27,28]. The first part of the technique is
the fuzzy process, which refers to mathematical means used to explain the non-numerical
data or uncertain information mathematically. Distinguishing the real value depends on
if it is completely true or false. This manner facilitates the utilizing, interpreting, and
manipulating the data when there is a lack of certainty or clearance [29]. The second part is
PROMETHEE and this method is used for evaluating and arranging the alternatives with
different criteria to get a specific aim. This technique has two parts, PROMETHEE I and II;
the first one used for obtaining the partial raking results and the second one used to get
the net ranking results between the alternatives [9]. PROMETHEE is one of the outranking
methods, which is well understood and has a lot of applications in many fields. There are
mainly six steps of this method as shown below [30,31] after the decision matrix, the matrix
that contains alternatives and the criterion, is constructed:

Step 1. Determination of the preference function for each criterion (pk).
Step 2. Determination of the importance weights for each criterion (wk).
Step 3. Calculation of the outranking relation/preference index π(.) for each pair of

alternatives with the Equation (1):

π(at, at′) =
K

∑
k=1

wk.[pk( fk(at)− fk(at′))], AXA → [0, 1] (1)

π(at, at′) stands for the preference index of the alternative at compared to alternative
at′ by considering each criterion simultaneously and fk(ai) denotes the value of the k-th
criterion of i-th alternative.

Step 4. Calculations of the entering/negative outranking flow and leaving/positive
outranking flow for each alternative using the Equations (2) and (3), respectively.

Φ−(at) =
1

n − 1

n

∑
t′=1 t′ �=t

π(at′ , at) (2)
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Φ+(at) =
1

n − 1

n

∑
t′=1 t′ �=t

π(at, at′) (3)

where n denotes the number of alternatives.
The leaving flow indicates how good the alternative at is over other alternatives, while

the entering flow indicates how much all other alternatives are better or more preferred
than alternative at and it shows how weak the alternative at is.

Step 5. Generating the partial order of the alternatives based on the following statements:
at should be preferred to at′ (atPat′) if

{
Φ+(at) > Φ+(at′) and Φ−(at) ≤ Φ−(at′) Φ+(at) = Φ+(at′) and Φ−(at) < Φ−(at′) (4)

at is equally preferred to at′ (at Iat′) if

(at Iat′)if : Φ+(at) = Φ+(at′) and Φ−(at) = Φ−(at′) (5)

at is incomparable to at′(atRat′ ) if

{
Φ+(at) > Φ+(at′) and Φ−(at) > Φ−(at′) Φ+(at) < Φ+(at′) and Φ−(at) < Φ−(at′) (6)

The last statement occurring in this PROMETHEE I process the total ranking can be
obtained by applying to PROMETHEE II method.

Step 6. The net ranking results should be determined by using Equation (7)

Φnet(at) = Φ+(at)− Φ−(at) (7)

Total ranking results can be obtained with the following statements.

(atPat′) if Φnet(at) > Φnet(at′) (8)

(at Iat′) if Φnet(at) = Φnet(at′) (9)

The higher net flow (Φnet(.) means a better alternative and that demonstrates the aim
of PROMETHEE II (10).

2.3. TOPSIS

The TOPSIS method was created as an alternative to the ELECTRE method by Yoon
and Hwang 1979 [11,32]. This method is based on the principle of when the alternative has
the shortest distance to the ideal solution, that indicates that it is the best choice.

In the classical TOPSIS method, in the presence of one decision maker, the assumption
is that the ratings and the weights are well represented by numerical data. The assumption
differs and is more complex if there are many decision makers, because the preferences and
vision differ. There are mainly 5 steps for the TOPSIS process as follows [12]:

Step 1: Creation of decision matrix X =
[
xij

]
mxn and the importance weights (wj) where

∑n
1 wj = 1 (10)

Step 2. Calculate the normalized decision matrix; the commonly used normalization
data can be calculated by using the Equation (11):

nij=
Xij√

∑m
i=1 X2

ij

(11)

Step 3. Calculate the weighted normalized decision values ( vij) to obtain the weighted
normalized matrix using the Equation (12).

vij= wjnij (12)
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where i = 1, . . . , m; j = 1, . . . , n.
Step 4. Determine the positive ideal solution (PIS/A+) and negative ideal solution

(NIS/A−). In this step, two extreme sides (negative and positive) are identified as given in
Equations (13) and (14).

A+=
(
v+1 , v+2 , . . . , v+n )=

[[
vij

∣∣j ∈ I
]
,
[
vij

∣∣j ∈ J
]]

(13)

A−=
(
v−1 , v−2 , . . . , v−n )=

[[
vij

∣∣j ∈ I
]
,
[
vij

∣∣j ∈ J
]]

(14)

where i = 1, . . . , m; j = 1, . . . , n, I denotes the beneficial criteria and J denotes the non-
beneficial criteria.

Step 5. Calculate the distance measures from the positive ideal solution (d+i ) and the
negative ideal solution (d−i ) for each alternative by using the n dimensional Euclidean
metric using the following equations:

d+i =
√

∑n
j=1 (vij − v+j )

2, i = 1, 2, . . . , m (15)

d−i =
√

∑n
j=1 (vij − v−j )

2, i = 1, 2, . . . , m (16)

Step 6. Rank the alternatives based on the relative closeness to the positive ideal
solution (Ri) in descending order where:

Ri =
d−i

d−i + d+i
(17)

3. Results

Of 51 patients, who were admitted in 2019–2020 to the Emergency Department with
abdominal pain, ultrasound (US) was performed in 96% (n: 49) patients. Computed
tomography (CT) was performed in 0.7% (n: 4) patients. In 69% (n: 34) of the patients, the
US result was acute appendicitis. In 31% (n: 15) patients, appendicitis was not detected
on ultrasound. The mean AIR score of patients diagnosed with acute appendicitis by
US (n: 34) was 6 ± 1.8 (mean ± SD), and the patients not diagnosed with appendicitis
(n: 15) were 4.6 ± 2.3 (mean ± SD) (p = 0.03). The mean AIR score of patients diagnosed
with acute appendicitis with CT was 7.5 ± 1.3 (mean ± SD), and the patients without
CT were 5.5 ± 2 (mean ± SD) (p = 0.04). 72% (n = 37) of the patients had undergone
surgery. The AIR score was 6.3 ± 1.6 (mean ± SD), and the 14 patients who did not
undergo appendectomy were 3.9 ± 2.2 (mean ± SD) (p = 0.00). For the cost of 51 patients,
it was an average of 752.3 ± 549 USD (mean ± SD), while the AIR score value of 52%
(n = 27) patients costing more than 750 USD was 6.37 ± 1.6, the mean AIR score value of
the remaining 24 patients was found to be 4.96 ± 2.3 (p = 0.01). The mean duration of
hospital stay was 1.92 ± 2.1 days for 51 patients, while the mean AIR score value of 30
patients staying more than two days was 6.43 ± 1.7, and the mean AIR score value of 21
patients staying one day was 4.67 ± 2.1 (p = 0.00). In addition, four patients without any
findings of appendicitis in the US were operated on. One of them was diagnosed with
appendicitis on CT and the air score was 6. The other three patients were operated on
due to an increase in AIR score (mean AIR score: 7) without additional cross-sectional
imaging. In two patients, patients who did not accept surgery (mean AIR score: 5.5)
even though the US diagnosis was appendicitis were discharged with medical treatment.

Multi Criteria Decision Making Theory Results (MCDM)

If the patient’s AIR score is below 6, non-contrast CT
(
Φnet = 0.0733

)
should be selected

as the first display option. The second option was contrast enhanced CT
(
Φnet = 0.0535

)
,

then US
(
Φnet = 0.1305

)
and MRI

(
Φnet = −0.0432

)
, in that order, based on the fuzzy-

PROMETHEE ranking result as displayed in Table 3.
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Table 3. Ranking of the acute appendicitis diagnosis for low AIR score by F-PROMETHEE approach.

Rank Alternatives Φnet

1 CT non-contrast 0.0733

2 CT contrast 0.0535

3 US 0.1305

4 MRI −0.0432

The graphic in Figure 2 shows which test to choose for the patient group with low AIR
score based on the F-PROMETHEE approach.

Figure 2. Evaluation of the acute appendicitis diagnosis for low AIR score with F-PROMETHEE.

The detailed ranking results by the F-TOPSIS method are shown in Table 4, where the
patients’ air score is low. Using the F-TOPSIS technique, we obtained the ranking results,
where the air score is low, as the best option is CT-non-contrast (Ri = 0.6315), and the last
option is MRI (Ri = 0.5217) as similar to F-PROMETHEE results.

Table 4. Ranking of the acute appendicitis diagnosis for low AIR score by F-TOPSIS approach.

Rank Alternatives d+
i d−i Ri

1 CT non-contrast 0.0927 0.1588 0.6315

2 CT contrast 0.0946 0.1561 0.6227

3 US 0.1210 0.1435 0.5425

4 MRI 0.1288 0.1405 0.5217

If the patient’s AIR score is above 6, F-PROMETHEE results shows that non-contrast
CT

(
Φnet = 0.0702

)
should be chosen as the first imaging option. The second option was

US
(
Φnet = 0.0617

)
, contrast-enhanced CT

(
Φnet = 0.0503

)
, or MRI

(
Φnet = 0.0456

)
, in

that order, as displayed in Table 5.
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Table 5. Ranking of the acute appendicitis diagnosis for high AIR score by F-PROMETHEE approach.

Rank Alternatives Φnet

1 CT non-contrast 0.0702

2 US 0.0617

3 CT contrast 0.0503

4 MRI 0.0456

The graphic in Figure 3 shows which test to choose for the patient group with high
AIR score based on the F-PROMETHEE approach.

Figure 3. Evaluation of the acute appendicitis diagnosis for high AIR score patients with
F-PROMETHEE.

As seen in Table 6. using the F-TOPSIS technique, we obtained the ranking results,
where the air score is high, as the best option is CT-non-contrast (Ri = 0.6191), and the last
option is MRI (Ri = 0.5153) as similar to the F-PROMETHEE results.

Table 6. Ranking of the acute appendicitis diagnosis for high AIR score by F-TOPSIS approach.

Ranking Alternatives d+
i d−i Ri

1 CT non-contrast 0.0977 0.1588 0.6191
2 CT contrast 0.0995 0.1561 0.6107
3 US 0.1210 0.1468 0.5481
4 MRI 0.1316 0.1399 0.5153

4. Discussion

The result we found in the appendicitis diagnosis algorithm matches the pediatric
patient group of our sample group. With this study, mathematical modeling was used for
the first time in the literature for the diagnosis of acute appendicitis in pediatric patients.
There are no similar studies in the literature. The method is a support system with which
imaging will be more appropriate when pediatric patients suffer from appendicitis. In this
study, a radiology and an emergency medicine specialist entered the MCDM program in
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line with the ACR appropriateness criteria. Consistent with the result in the study group,
if ultrasound is preferred in the group with low AIR score, treatment can be performed
quickly. The use of a cross-sectional imaging method, CT or MRI, is seen as a method
that will facilitate diagnosis and treatment in patients with high AIR scores for whom US
examination may be insufficient. This model is a decision support system that allows for
which examination to choose for diagnosis in the emergency department. In this model,
the weight of importance can be updated according to the expert doctor. According to
the literature update, the criteria for this decision support system can be expanded, new
imaging technologies can be added and easily renewed.

The criteria chosen in our study were imaging time, easy applicability of the examina-
tion, duration of the examination, time to result, specificity, sensitivity, user dependency,
cost, diagnostic precision, request time, and radiation exposure level. Benabbas [4] et al.
showed that while testing the superiority of ED point-of-care US over MR and CT, they
did not use such factors as treatment cost, applicability of imaging method, and length
of hospital stay, but we also included these factors in our study. Results depend on the
observer. The advantage of this is that it enables experienced people to share their clinical
practice approach. Thus, data can be globalized. Local differences are important. However,
it is easy to update the program for these as well.

Aydın et al. [33] used blood tests decision trees for acute appendicitis diagnosis. We
compared imaging techniques for diagnosis. With a similar thought, we tested which of
the imaging methods used for diagnosis was more helpful in our study.

We did not use only one model in our study. We proved the accuracy of the results with
the second model. In this way, we had an objective approach. It has been observed that the
criteria of MRI devices for abdominal imaging are identical. Therefore, no difference was
observed in the order of these devices. The first limitation of the study is the limited number
of observers. We aimed to convey the experiences of both the emergency service and the
radiology specialist in our own sample group. The second limitation is the retrospective
analysis of the sample group. In conclusion, while computed tomography is at the forefront
with many criteria used in the study, it is still a remarkable practice that US examination is
in the first place in daily routine.

In conclusion, CT is the most reliable method for diagnosis with our model. Although
it contains radiation that reduces the use of this examination, it is superior to the US
examination in daily practice in order to minimize the damage that the patients may
experience during the treatment process.
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Abstract: With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive
care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU
requirement is crucial for efficient resource management and distribution. Early-prediction scoring
systems for critically ill patients using mathematical models are available, but are not generalized
for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable
prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best
feature combination from the patient data at admission. A retrospective cohort study was conducted
on a dataset collected from the pulmonology department of Moscow City State Hospital between
20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom
100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID
positive patients and 75 non-COVID patients. Different feature selection techniques were investigated,
and a stacking machine learning model was proposed and compared with eight different classification
algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients
combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT),
lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission
were found to be important features for ICU-requirement risk prediction. The best performance
was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity,
and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of
patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only.
The proposed work can help doctors to improve management through early prediction of the risk of
need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for
both types of patients.

Keywords: intensive care unit; COVID-19; early prediction; machine learning; clinical biomarkers

1. Introduction

The COVID-19 pandemic began in Wuhan, China at the end of 2019, and spread
quickly throughout the world [1]. Some countries experienced more than one wave of the
pandemic. As of 11 July 2022, globally there have been around 560 M confirmed cases and
around 6.3 M deaths caused by COVID-19 [2]. This novel coronavirus mostly affects a
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patient’s lungs, resulting in pneumonia [3]. The majority of individuals have a mild form of
the illness, with typical respiratory symptoms [4]. The most frequent clinical signs are fever
and cough; however, some patients develop severe illness, which results in intensive care
unit (ICU) admission and even death [5]. During the pandemic, along with the non-COVID
critically ill patients, COVID-19 patients were also transferred to ICU [6], which resulted
in the demand for ICU resources substantially increasing, exceeding the capacity in many
healthcare systems [7]. ICUs are costly and time-sensitive resources, and if their capacity
is challenged, it can have a major consequence for healthcare services [8]. In addition,
as the number of critically ill patients continues to increase, their stays in the ICU have
become even longer [9,10], especially during the COVID-19 situation. To solve this issue,
some scoring systems have been used for the early identification of ICU requirements.
Scoring techniques rely on the identification of prognostic markers associated with the
severity of the disease [11]. Similar scoring systems are available for ICU admission risk
prediction among non-COVID patients. Analysis of coagulation parameters has been very
useful in identifying the severity of non-COVID-related pneumonia [12]. The severity of
COVID-19 can also be identified from a similar analysis of blood-profile deviations, includ-
ing lymphopenia, thrombocytopenia, and coagulopathies, such as prolonged prothrombin
time [13–16]. However, these studies could be improved further by increasing their robust-
ness by training on a larger dataset, and also by providing an approach that could be used
for both COVID and non-COVID patients [17]. A model that can be generalized for both
types of patients is not available in the literature, to the best of the authors’ knowledge.

The research implication of this study is the development of a novel framework
that reliably and accurately helps in calculating the risk of ICU admission among two
types (COVID and non-COVID) of patients. The severity scoring systems can be used to
predict adverse outcomes for initial triage and treatment [18]. This can help in the efficient
management of ICU resources for timely intervention. During the peak of the pandemic,
it may even be crucial to predict and manage the ICU requirement beforehand so that
potential capacity challenges can be managed.

The rest of the paper is organized in the following manner: Section 1 is the introduc-
tion outlining the motivation for the study, along with the potential research implication.
Section 2 summarizes the relevant works in this domain and also summarizes the contri-
bution of this work. Section 3 provides the methodology, which includes the details of
the dataset description, statistical analysis, data preprocessing, feature ranking techniques,
machine learning (ML) techniques, and performance metrics used in this study. Section 4
provides the results of the investigations followed by a detailed discussion. Finally, the
conclusion is provided in Section 5.

2. Related Work

Radiological images, such as chest X-rays (CXR) and computed tomography (CT)
images, have been extensively used in the stratification of COVID-19 patients [19–24]. Poly
et al. [25] have performed a systematic review with a meta-analysis of relevant studies
to quantify the performance of deep learning algorithms in the automatic stratification
of COVID-19 patients using CXR images. It is reported that the deep learning models
provided satisfactory results and can be used in the fast screening of COVID-19 patients.
However, these models should be further validated using independent unknown test sets.
Several studies have reported the usefulness of CT images for COVID-19 detection and
severity stratification and in follow-on studies. CXR- or CT-based approaches cannot be
used as prognostic models.

Clinical biomarkers from electronic health records have shown great promise in de-
veloping a prognostic model and scoring technique as an early predictor of severity or
mortality for COVID-19 patients [26–28]. Thus, clinical biomarkers can be used as reliable
predictors for COVID-19 stratification, severity detection, and mortality risk prediction.
Most importantly, these prognostic models can make reliable predictions based on the
data at admission. Electronic health records have been utilized in developing machine
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learning models for predicting the length of stay (LOS) in patients suffering from sepsis and
COVID-19 in ICU [29–32]. Alabbad et al. [33] used a random forest classifier to predict the
ICU requirement of COVID-19 patients and estimated their LOS in ICU with an accuracy
of 94.16%, using data from King Fahad University Hospital, Saudi Arabia. The Kuwait
Progression Indicator (KPI) Score is an ICU admission risk prediction scheme for COVID-19
patients [34], which uses three biomarkers—lactic dehydrogenase (LDH), lymphocytes, and
high-sensitivity C-reactive protein (hs-CRP). Yan et al. [35] were able to predict a patient’s
mortality with over 90% accuracy 10 days in advance. It was reported that a high LDH
level is a crucial indicator for the vast majority of patients who require urgent medical care.
However, it does not include any scoring system that could help doctors to objectively
stratify individuals at risk. Chowdhury et al. [36] proposed a nomogram scoring system
for early mortality prediction for COVID-19 patients using five biomarkers. The proposed
model provided the area under the curve (AUC) of 0.961 and 0.991 for the derivation and
validation cohort, respectively. However, the model requires some bio-markers that are
not routinely monitored in a resource-limited setup [37]. This can pose a restriction on the
wide usage of the proposed scoring system. Moreover, this is a mortality prediction system
and cannot be used for ICU-admission risk prediction. Similarly, Lorenzoni et al. [38] used
data from 25 ICUs from the Veneto ICU network between 28 February 2020 to 4 April 2021
to predict ICU mortality risk among COVID-19 patients. The reported performance was
0.72–0.90 on the test set, while scores of 0.75–0.85 were observed on an external validation
set. Magunia et al. [39] developed a model to stratify patient risk and predict ICU survival
and outcomes using data collected in a retrospective and prospective manner from dif-
ferent parts of Germany for COVID-19 ICU patients. Age, inflammatory and thrombotic
activity, and severity of acute respiratory distress syndrome (ARDS) at ICU admission were
reported as strong contributing factors.

Although machine learning approaches have been utilized for ICU admission risk
prediction using clinical biomarkers [40–45], to the best of our knowledge, no machine
learning model has been developed that can be applied for both COVID-19 and non-
COVID patients. Identification and prioritization of the patients at high risk are essential
for resource planning as well as treatment planning. Patients can be continuously monitored
for ICU admission risk during their hospital stay using an easy-to-use and reliable scoring
system. This proposed study can help clinicians make early predictions regarding patients
at risk of ICU admission; for patients at risk of organ dysfunction, providing early treatment
could save their lives. This study proposed a machine-learning-based model that can
reliably predict ICU admission risk among both COVID-19 and non-COVID patients using
patient data at hospital admission. This work may help in the development of a framework
of prognostic models using machine learning approaches, adding to the body of knowledge.

3. Materials and Methods

The methodology adopted in the study is presented in this section. The study at-
tempted to investigate ICU admission risk prediction for (i) both COVID-19 and non-
COVID-19 patients and (ii) COVID-19 patients only. For both experiments, the impacts of
combined features and individual features were investigated in terms of ICU prediction.
Firstly, different imputation techniques were used in a preprocessing step to impute the
missing data. This missing data imputation technique is very common in clinical studies.

After preprocessing the dataset, three different feature selection methods (Pearson
correlation coefficient, chi-square test, and recursive feature elimination) were used for
ranking all the parameters in the dataset. Later on, these three techniques were combined
to rank the features using the combined scores from three models. A stacking ML model
was proposed and compared with the different ML classifiers to predict ICU-requirement
risk among COVID-19 and Non-COVID patients. The dataset was divided into training,
validation, and testing sets, where the training and validation sets were used to determine
the best-performing combination of (i) imputation technique, (ii) combination of features
using the feature ranking techniques, and (iii) machine learning model. The testing set was

87



Diagnostics 2022, 12, 2144

used to state the classification performance. The details of the complete methodology are
provided below and can also be referred to in Figure 1.

Figure 1. Methodology of the study.

3.1. Study Population

In this study, we used a dataset that contained COVID-19 and non-COVID-19 pa-
tients’ data collected from the pulmonology department of Moscow City State Hospital
between 20 April 2020 and 5 June 2020 [46]. The dataset contained data from 231 patients;
among them, 100 patients were transferred to ICU and 131 patients were non-ICU pa-
tients. Of the 231 patients, 156 patients were COVID-19-positive and 75 patients were
COVID-19-negative.

Among the COVID-19 patients, confirmed by real-time reverse-transcriptase–polymerase-
chain-reaction (RT-PCR) assay of nasal and pharyngeal swab probes, 82 developed refrac-
tory respiratory failure (RRF) or severe acute respiratory distress syndrome (SARDS) and
were transferred to ICU, and 74 patients had a stable course of the disease and were not
transferred to ICU, as shown in Figure 2. Clinical, radiological, and laboratory parameters
present upon admission were extracted from electronic health records (EHR). Some of the
parameters were present for longitudinal evaluation. However, since all the parameters
were not collected longitudinally, longitudinal data could not be considered for the investi-
gation. Only data present at hospital admission were considered. Patients who regularly
received anticoagulant therapy before admission, as well as patients with pregnancy (or in
lactation period), oncological diseases (in the last 5 years), chronic liver diseases, human
immunodeficiency virus (HIV) infection, syphilis, or hepatitis, were excluded from the study.

 
Figure 2. Population details of the study.

Figure 3 shows the distribution of nine features in the dataset: (i) Gender; (ii) Age;
(iii) Admission2Hosp (admission to hospital); (iv) CRP (C-Reactive Protein); (v) INR (inter-
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national normalized ratio); (vi) PT (Prothrombin Time); (vii) Fibrinogen; (viii) Chest CT
lung tissue affected, and (ix) Platelet count for ICU and non-ICU patients. The distribution
plots confirm that the values for the features were well distributed. For example, the dataset
contained patients of all ages, with a higher number of patients in ICU being over 70 years
of age while for non-ICU, the average was 60 years. Similarly, CRP among the ICU-patients
showed a significantly different distribution compared to that for non-ICU patients. Pro-
thrombin time for the patients varied from 10 to 20 s, with most of the patients having a
prothrombin time of around 13 s for both ICU and non-ICU patients. Figure 4 shows the
details of demographic variations (age and gender) between the ICU and non-ICU patients.
Patients from both categories (ICU and non-ICU patients) are normally distributed among
males and females.

 

Figure 3. Histogram plots depicting the distributions of nine features at admission among the ICU
and non-ICU patients. Here, ‘0′ represents ‘female’ and ‘1′ represents ‘male’.

 
Figure 4. Demographic feature (gender and age) distributions for ICU and non-ICU cases. The blue
and orange areas correspond to negative and positive cases, respectively.

3.2. Statistical Analysis

Statistical analysis was performed using Python programming language (version 3.7,
Creator-Guido van Rossum, The Netherland), where the chi-square univariate test and
rank-sum test were conducted to identify the statistically significantly different features
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among the ICU and Non-ICU (stable) groups. The difference was considered significant if
the p-value was <0.05. Table 1 summarizes continuous variables, age, and other clinical
data reported with a mean and standard deviation of the data, and frequency for each
biomarker among the ICU and Non-ICU groups.

Table 1. Statistical characteristic analysis of all patients in ICU and Non-ICU groups using the dataset.

Item ICU Non-ICU Total Method χ2 = 17.5 p Value

Gender
Chi-square test χ2 = 17.5 <0.05 *Male (%) 57 (57%) 74 (56.5%) 131 (57%)

Female (%) 43 (43%) 57 (43.5%) 100 (43%)

Age (years)

Rank-sum test Z = −6.2 <0.05 *
N(missing) 100 (0) 131 (0) 231 (0)
Mean ± SD 61.6 ± 13.8 55.9 ± 15.7 58.4 ± 15.1
Q1, Q3 53, 70.2 44, 68.5 48.0, 69.0
Min, Max 28, 93 20, 94 20, 94

The time between the disease and
admission to hospital (Admission
2Hospital) (Days)

Rank-sum test Z = −6.2 <0.05 *N(missing) 99 (1) 128 (3) 227 (4)
Mean ± SD 7.9 ± 7.45 9.1 ± 5.68 8.6 ± 6.53
Q1, Q3 4, 8 6, 11 5.0, 10.0
Min, Max 1, 50 1, 45 1, 50

C-reactive protein 1(CRP1) (mg/L)

Rank-sum test Z = −4.34 <0.05 *
N(missing) 97 (3) 128 (3) 225 (6)
Mean ± SD 123 ± 67.1 78 ± 61.7 97 ± 67.9
Q1, Q3 64, 166 26, 134 40, 157
Min, Max 4, 328 1, 207 1, 328

International normalized ratio (INR)

Rank-sum test Z = 6.53 0.78
N(missing) 86 (14) 122 (9) 208 (23)

Mean ± SD 1.32 ±0.18 1.25 ± 0.14 1.28 ± 0.16
Q1, Q3 1.17, 1.4 1.16, 1.3 1.17, 1.36
Min, max 1.07,1.92 0.98, 1.9 0.98, 1.92

Prothrombin time 1 (PT1) (s)

Rank-sum test Z = 3.27 <0.05 *
N(missing) 86 (14) 122 (9) 208 (23)
Mean ± SD 14.39 ± 1.91 13.63 ± 1.52 13.95 ± 1.73
Q1, Q3 12.9, 15.3 12.7, 14.2 12.8, 14.9
Min, max 11.7, 20.6 10.7, 20.4 10.7, 20.6

Fibrinogen 1 (mg/L)

Rank-sum test Z = −5.89 <0.05 *
N(missing) 68 (32) 113 (18) 181 (50)
Mean ± SD 4.9 ± 1.44 4.99 ± 1.25 4.9 ± 1.32
Q1, Q3 4.2, 5.3 4.18, 5.45 4.2, 5.4
Min, max 1.2, 11.5 2.68, 9.21 1.2, 11.5

Chest CT lung tissue affected (%)

Rank-sum test Z = −1.11 <0.05 *
N(missing) 88 (12) 110 (21) 198 (33)
Mean ± SD 59.9 ± 19 46.1 ± 14.1 52.2 ± 17.8
Q1, Q3 49.5, 75 40, 60 40, 60
Min, max 24, 92 10, 75 10, 92

Platelet count 1 (109/L)

Rank-sum test Z = 4.74 0.44
N(missing) 100 (0) 131 (0) 231 (0)
Mean ± SD 182 ± 83.2 183 ± 68.8 183 ± 75.2
Q1, Q3 126, 233 138, 216 129, 219
Min, max 47, 493 38, 436 38, 493

Outcome 100 (43%) 131 (57%) 231 (100%)

* p value less than 0.05 is significant.
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3.3. Data Preprocessing
3.3.1. Missing Data Imputation

Only the first-day data were used for model training and validation in identifying the
primary predictors for ICU admission. Figure 5 shows the count of different features in the
dataset, and it can be seen that some parameters were missing for some patients, such as the
time between the disease onset and admission to the hospital (days), CRP1, prothrombin
time upon admission (PT1 in second), fibrinogen upon admission (Fibrinogen1), and lung
tissue affected (%) from chest computed tomography (CT).

 

Figure 5. Count of different features in the dataset.

Missing data issues are a constant challenge in clinical data analysis, and this can
lead to biased models or degraded model performance. Similarly, a model can produce a
biased result if the rows of the missing data are deleted from the study [47]. In this study,
three common imputation techniques to tackle the missing data problem were investigated:
(i) multiple imputations using the chained equations (MICE) [45], (ii) random forest [48,49],
and (iii) nearest neighbor [50] imputation techniques. One of the most common techniques
for clinical data imputation is the MICE data imputation technique, which uses logistic
regression for binary variables and statistical mean matching for continuous variables. On
the other hand, the random forest algorithm has a built-in routine to handle the values that
are missing by weighing the frequency of values with the proximity of a random forest
after the training of an initially imputed mean dataset. This approach requires a response
variable that is useful for random forest training. K-nearest neighbor can predict both
discrete attributes (the most frequent value among the k-nearest neighbors) and continuous
attributes (the mean among the k-nearest neighbors). The k-nearest neighbor can be easily
adapted to work with any attribute as a class, by just modifying which attributes will be
considered in the distance metric.

3.3.2. Balancing the Dataset

An imbalanced dataset can result in a biased model, and therefore, the dataset needs
to be balanced. The synthetic minority oversampling technique (SMOTE) is a powerful
approach to tackling the imbalance problem [51]. This study investigated two different
phases. Firstly, all data were used to predict ICU-admission-risk patients, where ICU and
non-ICU patients were 100 and 131, respectively. For the investigation with only COVID-19
patients, ICU and non-ICU patients numbered 82 and 74, respectively. SMOTE technique
was used to balance the dataset for different investigations. Rather than using simple
replication of minor class data using an over-sampling technique, SMOTE was used to
create synthetic data to avoid data imbalance among the classes.
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3.4. Feature Reduction

Nine different features were present in the dataset. After preprocessing, the correlation
among different features was checked to identify and remove highly correlated features, as
removing them has always helped in improving the classifier performance in the author’s
previous works [52,53]. As seen in Figure 6, there was no high correlation between the
features, and all the features could be used in this study.

Figure 6. Color map of correlation among different features.

3.5. Feature Selection

In this study, three different feature selection techniques, namely the chi-square
test [54], Pearson correlation coefficient [55], and recursive feature elimination (RFE) [56],
were used for detecting ICU admission risk. Additionally, we utilized an average of the
feature importance score as a threshold for choosing the features for each technique, after
calculating the feature importance score for each feature using each of the three feature se-
lection techniques. Finally, we chose the features for the classification model that exceeded
the threshold (feature importance score ≥3) for all three feature selection procedures.

3.6. Stacking-Based Machine Learning Model

The study proposed a stacking-based approach and compared the performance with
conventional ML classifiers. This approach consisted of a two-step learner comprising a
base learner and meta learner; this approach has produced good results in the author’s pre-
vious works [20,53,57]. Eight different ML classifiers were investigated in this study, namely
random forest [45], support vector machine (SVM) [46], K-nearest neighbor (KNN) [47],
XGBoost [48], extra trees [43], gradient boosting [49], MLP [50], and logistic regression [50].
Three feature selection strategies were used to choose the top features, which were then
used to compare the different classifiers’ performance. The stacking architecture was used
on the three top-performing classifiers (C1, C2, C3) as the base-learner model, and logistic
regression was used as the meta-learner model (Cf ) in the second phase of the stacking
model to provide the best performance. Figure 7 shows the architecture of the proposed
stacking model, which combines n numbers of best-performing classifiers C, . . . . . . , Cn
using an input dataset D, which had a feature vector (xi) and corresponding label (yi). In
the first step, N base level ML classifier produced the prediction probabilities y1, . . . . . . , yp.
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Finally, the prediction probabilities of the best performing base learners fed to a logistic
regression-based meta-learner classifier (Cf ) for the final prediction.

Figure 7. Proposed stacking model architecture.

3.7. Development and Validation of Classification Model

In this study, various machine learning models were examined using 5-fold cross-
validation, where 80% of the subjects’ data were used in training and validation and 20%
were used in the testing set for a single fold. This was repeated 5-fold, with a new test set on
each fold. Several performance criteria, such as sensitivity, specificity, precision, accuracy,
and F1-score, were used to assess the performance of several models on the test dataset.
Mathematical representations of the different metrics are shown in Equations (1)–(5). The
areas under the curve (AUC) for individual predictors, as well as combinations of them,
were assessed to ascertain how well-ranked parameters performed in stratifying ICU and
non-ICU patients. The performances of unseen (test) folds were combined to create the
overall confusion matrix for the 5-fold cross-validation. It is worth noting that leave-one-
out cross-validation (LOOCV) was also investigated, where all the subjects apart from one
were used for training and validation while one subject’s data were used in testing, and the
procedure was repeated based on the number of subjects in the experiment.

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(1)

Sensitivity =
(TP)

(TP + FN)
(2)

Specificity =
(TN)

(FP + TN)
(3)

Precision =
(TP)

(TP + FP)
(4)

F1 Score =
(2∗TP)

(2∗TP + FN + FP)
(5)

The number of patients with ICU outcomes classified as ICU is denoted as True
Positive (TP), the number of non-ICU patients identified as Non-ICU is denoted as True
Negative (TN), the number of non-ICU patients incorrectly identified as ICU is denoted
as False Positive (FP), and the number of ICU patients incorrectly identified as Non-ICU
is denoted as False Negative (FN). The performance of the ML classifier was assessed
using different evaluation metrics with 95% confidence intervals (Cis), calculated using
Equation (6).

r = z
√

metr(1 − metric)/N (6)

where, N is the number of test samples and z is the level of significance that is 1.96 for
95% CI.
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4. Results

4.1. Characteristics and Outcomes

Two different investigations were conducted in this study: (i) an investigation of the
ICU admission risk of all patients (n = 231), where 156 patients were COVID-19-positive
and 75 were COVID-19-negative, and (ii) an investigation of the ICU admission risk of
COVID-19-positive (n = 156) patients alone. Each investigation was used to identify the
best feature combination and individual best feature for detecting ICU admission risk
using eight different machine learning classifiers. Three different imputation techniques
were used in this study, where the MICE data imputation technique outperformed KNN
and random forest for identifying the best feature combination from the ranked features
in both investigations. It was found that age, gender, admission-to-hospital time, CRP,
fibrinogen, chest CT lung tissue affected (%), and PT had statistically significant differences
between ICU and non-ICU groups, while differences between INR and platelet count were
statistically insignificant across the groups (Table 1).

4.2. Best Feature Combination for Early Prediction of ICU

In both experiments, three different feature selection approaches were used to select a
feature combination supported by all these techniques. All of the three feature selection
techniques selected five features—CRP, chest CT lung tissue affected (%), age, admission to
hospital, and fibrinogen to classify ICU and non-ICU patients, as shown in Table 2.

Table 2. Ranked Features by different algorithms.

Features
Pearson Correlation

Coefficient
Chi-Square

Test
Recursive Feature

Elimination
Total

CRP 3
Chest CT lung tissue

affected (%) 3

Age 3
Admission2Hospital 3

Fibrinogen 3
Platelet Count 2

Gender 2
PT 2

INR 2

4.3. Development and Validation of the Stacking Model

The five selected features were used in both the investigations using the eight different
ML classifiers, and then the stacking approach was implemented to boost the performance
further. A logistic regression model was used as a meta-learner in the stacking model. The
top three performing classifiers were random forest, gradient boosting, and extra trees.
The accuracies obtained from these models were 82.33%, 81.03%, and 79.74% respectively,
as shown in Table 3. These three models were used to train the meta-learners logistic
regression classifier, which boosted the performance and provided weighted precision,
sensitivity, F1-score, specificity, and accuracy of about 84.45%, 84.48%, 83.64%, 84.47%, and
84.48%, respectively. It is evident from Table 3 that the stacking approach improved the
accuracy by more than 2%. With 90% AUC, the stacking approach clearly outperforms
other ML classifiers, as can be seen in Figure 8.
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Table 3. Performance comparison between different ML classifiers using all (both COVID-19 and
non-COVID-19) patients’ data.

Classifier
Overall Weighted with 95% CI

Accuracy Precision Sensitivity Specificity F1-Score

Support Vector Machine (SVM) 61.21 ± 1.99 63.17 ± 1.97 61.21 ± 1.99 63.09 ± 1.97 61.29 ± 1.99

XGBoost (XGB) 65.52 ± 1.94 65.92 ± 1.93 65.52 ± 1.94 65.15 ± 1.94 65.64 ± 1.94

MLP 71.12 ± 1.85 70.98 ± 1.85 71.12 ± 1.85 69.4 ± 1.88 71.02 ± 1.85

Logistic Regression (LR) 71.12 ± 1.85 70.92 ± 1.85 71.12 ± 1.85 68.67 ± 1.89 70.86 ± 1.85

K-Nearest Neighbors (KNN) 71.55 ± 1.84 71.55 ± 1.84 71.55 ± 1.84 70.45 ± 1.86 71.55 ± 1.84

Extra Trees (ET) 79.74 ± 1.64 79.68 ± 1.64 79.74 ± 1.64 78.11 ± 1.69 79.64 ± 1.64

Gradient Boosting (GB) 81.03 ± 1.6 80.98 ± 1.6 81.04 ± 1.6 79.81 ± 1.64 80.98 ± 1.6

Random Forest (RF) 82.33 ± 1.56 82.33 ± 1.56 82.33 ± 1.56 80.55 ± 1.61 82.2 ± 1.56

Stacking model (RF+ GB+ ET) 84.48 ± 1.48 84.45 ± 1.48 84.48 ± 1.48 83.64 ± 1.51 84.47 ± 1.48

Figure 8. ROC curves using all (both COVID-19 and non-COVID-19) patients’ data.

Similarly, for COVID-19 patients only, random forest, extra trees, and K-nearest neigh-
bors were the top three performing classifiers. The accuracies obtained from these models
were 83.44%, 82.8%, and 82.17%, as shown in Table 4. The stacking model employed a logis-
tic regression model as a meta-learner. This approach boosted the performance to weighted
precision, sensitivity, F1-score, specificity, and overall accuracy of 85.34%, 85.35%, 85.11%,
85.34%, and 85.35%, respectively. Table 4 shows an overall improvement in accuracy of 2%
using the stacking model. With 91% AUC, the stacking approach clearly outperforms other
ML classifiers, as can be seen in Figure 9.

Figure 10 shows the confusion matrix for the best-performing stacking model to
identify ICU risk patients using all (both COVID-19 and non-COVID-19) patients’ data and
using only COVID-19 patients’ data. In Figure 10A it is clearly shown that the stacking
model correctly identified 81 out of 100 ICU patients from both COVID-19 and non-COVID-
19 patients, while the stacking model correctly identified 71 out of 82 COVID-19 ICU
patients (Figure 10B).
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Table 4. Performance comparison between different ML classifiers using only COVID-19 patient data.

Classifier
Overall Weighted with 95% CI

Accuracy Precision Sensitivity Specificity F1-Score

XGBoost (XGB) 67.52 ± 2.32 67.86 ± 2.32 67.52 ± 2.32 67.82 ± 2.32 67.56 ± 2.32

Support Vector Machine (SVM) 71.97 ± 2.23 72.4 ± 2.22 71.97 ± 2.23 72.42 ± 2.22 72 ± 2.23

MLP 77.71 ± 2.07 77.92 ± 2.06 77.71 ± 2.07 77.93 ± 2.06 77.73 ± 2.06

Gradient Boosting (GB) 78.98 ± 2.02 79.34 ± 2.01 78.98 ± 2.02 79.4 ± 2.01 79 ± 2.02

Logistic Regression (LR) 80.25 ± 1.98 80.25 ± 1.98 80.25 ± 1.98 79.97 ± 1.99 80.25 ± 1.98

K-Nearest Neighbors (KNN) 82.17 ± 1.9 82.26 ± 1.9 82.16 ± 1.9 81.45 ± 1.93 82.09 ± 1.9

Extra Tree (ET) 82.80 ± 1.87 82.90 ± 1.87 82.80 ± 1.87 82.90 ± 1.87 82.82 ± 1.87

Random Forest (RF) 83.44 ± 1.84 83.49 ± 1.84 83.44 ± 1.84 83.45 ± 1.84 83.45 ± 1.84

Stacking model (RF + ET+ KNN) 85.35 ± 1.75 85.34 ± 1.76 85.35 ± 1.75 85.11 ± 1.77 85.34 ± 1.76

Figure 9. ROC curves using only COVID-19 patient data.

Figure 10. Confusion matrix for ICU and Non-ICU classification using the best performing stacking
model for (A) all (both COVID-19 and non-COVID-19) patients’ data, and (B) only COVID-19
patient data.
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4.4. Individual Feature as ICU Admission Predictor

The study also investigated individual feature performance with the best-performing
stacking classification model to ascertain the top individual feature simultaneously for all
(both COVID-19 and non-COVID-19) patients and only COVID-19 patients.

For both COVID-19 and non-COVID-19 patients, chest CT lung tissue affected (%) is
the most important feature for the stacking classifier. Table 5A provides the performance
metrics with a 95% confidence interval to identify the contribution of the individual features.
Chest CT lung tissue affected (%) produced the best performance with overall accuracy and
weighted precision, sensitivity, specificity, and F1-score of 74.43%, 77.65%, 74.43%, 74.43%,
and 71.75%, respectively.

Table 5. Comparison of performance evaluation parameters to identify the best classifier for individ-
ual feature impact to predict ICU admission risk patients using (A) both COVID-19 and non-COVID-
19 patients’ data, and (B) only COVID-19 patients’ data.

(A)

95% Confidence Interval Results

Feature
Overall

Accuracy
Weighted
Precision

Weighted
Recall

Weighted
Specificity

Weighted
F1-Score

CRP 71.11 ± 1.85 70.56 ± 1.86 71.11 ± 1.85 71.11 ± 1.85 70.58 ± 1.86

Chest CT lung tissue affected (%) 74.43 ± 1.78 77.65 ± 1.7 74.43 ± 1.78 74.43 ± 1.78 71.75 ± 1.84

Age 61.01 ± 1.99 36.46 ± 1.96 61.01 ± 1.99 61.01 ± 1.99 45.34 ± 2.03

Admission2Hospital 62.41 ± 1.98 37.86 ± 1.98 62.41 ± 1.98 62.41 ± 1.98 46.74 ± 2.03

Fibrinogen 65.31 ± 1.98 65.62 ± 1.97 65.31 ± 1.98 65.31 ± 1.98 65.47 ± 2.04

Platelet Count 67.01 ± 1.92 42.46 ± 2.02 67.01 ± 1.92 67.01 ± 1.92 51.34 ± 2.04

Gender 64.21 ± 1.95 61.51 ± 1.98 64.21 ± 1.95 64.21 ± 1.95 62.65 ± 2.04

PT 57.91 ± 1.9 43.36 ± 2.02 57.91 ± 1.9 57.91 ± 1.9 52.24 ± 2.04

INR 59.81 ± 2 35.26 ± 1.95 59.81 ± 2 59.81 ± 2 44.14 ± 2.02

(B)

95% Confidence Interval Results

Feature
Overall

Accuracy
Weighted
Precision

Weighted
Recall

Weighted
Specificity

Weighted
F1-Score

CRP 64.29 ± 2.38 64.6 ± 2.37 64.29 ± 2.38 64.29 ± 2.38 64.29 ± 2.38

Chest CT lung tissue affected (%) 68.77 ± 2.3 71.79 ± 2.23 68.77 ± 2.3 68.77 ± 2.3 67.88 ± 2.32

Age 55.95 ± 2.46 56.51 ± 2.46 55.95 ± 2.46 55.95 ± 2.46 55.75 ± 2.46

Admission2Hospital 73.9 ± 2.18 73.99 ± 2.18 73.9 ± 2.18 73.9 ± 2.18 73.92 ± 2.18

Fibrinogen 57.24 ± 2.46 57.15 ± 2.46 57.24 ± 2.46 57.24 ± 2.46 57.17 ± 2.46

Platelet Count 47.62 ± 2.48 47.96 ± 2.48 47.62 ± 2.48 47.62 ± 2.48 47.2 ± 2.48

Gender 52.75 ± 2.48 53.19 ± 2.48 52.75 ± 2.48 52.75 ± 2.48 52.57 ± 2.48

PT 51.47 ± 2.48 50.64 ± 2.48 51.47 ± 2.48 51.47 ± 2.48 50.43 ± 2.48

INR 53.39 ± 2.48 53.68 ± 2.47 53.39 ± 2.48 53.39 ± 2.48 53.37 ± 2.48

By contrast, for COVID-19 patients, the time between the disease onset and admission
to the hospital (days) was the most important feature for the stacking classifier. Table 5B
shows the overall accuracies and weighted average performance with a 95% confidence
interval for the other matrices to identify the contribution of individual features using all
features for five-fold cross-validation with the best performing classifier. The time between
the disease onset and admission to the hospital (days) produced the best performance, with
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overall accuracy, weighted precision, sensitivity, specificity, and F1-score of 73.9%, 73.99%,
73.9%, 73.9%, and 73.92%, respectively. We also developed and validated all ML models
and stacking approaches with the leave-one-out cross-validation (LOOCV) approach, and
compared the performances. Supplementary Tables S1 and S2 represent the performances
of all models for the two different studies using the LOOCV approach. The stacking
approach produced the best performance for both studies, which was comparable with
the five-fold CV (see Tables 3 and 4 for five-fold CV results). However, the experimental
time for the stacking model with the LOOCV technique was 25–30 times longer than the
five-fold CV technique.

5. Discussion

The primary goal of the present study was to accurately identify the ICU admission
risk of the hospital patients on the first day of hospital admission using a few clinical
parameters. In addition to this, the correlation between ICU admission risk and clinical
data for both COVID-19-positive and negative patients and COVID-19-positive patients
alone was also investigated. Based on all patients’ data, it was found that five important
features (chest CT lung tissue affected (%), CRP, fibrinogen, age, and admission-to-hospital
time) in combination performed better than others, and produced 84.48% sensitivity using
the stacking model. Similarly, for COVID-19-positive patients alone, it was found that these
five features combined using the stacking model outperformed other ML classifiers and
produced 85.35% sensitivity. It is evident from this study that for all data or data from
COVID patients alone, carefully selected multiple parameters can provide better sensitivity
in predicting the ICU admission risk.

In addition, the most important individual feature for detecting ICU admission risk
using combined and COVID-19 patients’ data was also investigated. Based on all patients’
data, it was found that the most impactful feature was the chest CT lung tissue affected
(%) which individually can predict ICU patients with 74.43% sensitivity. In [46], it was
reported that prothrombin time is a good predictor of ICU admission risk; however, in this
study, it was found that PT was a weak predictor, with 57.91% prediction sensitivity for the
combined data. For COVID-19-positive patients alone, the time between the disease onset
and admission to the hospital (days) was the most impactful feature, individually predicting
ICU admission risk with 73.9% sensitivity, while CRP predicted with 64.29% sensitivity. As
reported in [46], PT is a good predictor, but this was not observed in this study. Therefore,
it is evident that machine-learning-based study can provide better prediction accuracy
in comparison to standard statistical analysis. Moreover, the parameters found to be
strong contributors in this machine-learning-based study were also reported in other recent
studies as strong contributors for COVID mortality prediction, which is highly related to
ICU admission risk prediction.

Age is one of the most commonly agreed risk factors for predicting the outcomes and
severity of COVID-19, where patients older than 60 years of age have the highest fatality
rates [58]. This is related to the associated risk factors in this particular age group, including
renal disease, coronary heart disease/cerebrovascular disease, hypertension, diabetes, low
immunity, and previous respiratory disease. Likewise, patients with older age (>60 years)
and comorbidity had worse outcomes in severe acute respiratory syndrome (SARS) [59].
However, in this dataset, this trend was not evident, which could be because this dataset
was small and the ICU patient group had a widely distributed age range. If this model can
be validated on a large population, the effect of age will be pronounced, and the model
performance could be further enhanced.

Several reports have shown a trend toward abnormal hemostasis and coagulation
profile in patients with COVID-19 [5]. Hospitalized patients with particularly higher
levels of fibrinogen and D-dimer typically develop disseminated intravascular coagulation
and lung embolism, and also have worse outcomes [14,60]. Higher serum fibrinogen
levels were noted in patients in the early stages of acute respiratory distress syndrome
(ARDS). However, these factors were typically explored after hospitalization and were
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not used as early predictors to determine the patients with potentially severe forms of
COVID-19 based on their initial presentation [61]. Hospitalized patients with severe
COVID 19 show a trend toward hyperfibrinolysis and loss of coagulation factor (fibrinogen).
Furthermore, fibrinogen is an acute phase reactant that increases during infection and
provokes hypercoagulation. It is a glycoprotein that covers fibrin when exposed to thrombin
leads to clot formation to stop bleeding. Zou et al. [30] concluded that fibrinogen greater
than 7.0 g/L is more prevalent in patients with severe COVID-19 disease (around 19.1%)
compared to patients with mild COVID-19 disease (around 5.7%). At later stages of the
disease, fibrinogen levels decrease, and fibrinogen less than 2.0 g/L is considered an
indicator of thromboprophylaxis and cause for hospital admission [62]. In the current
study, since we used the data at admission, most of the patients were not severe at that
time, and therefore, while fibrinogen was found to be a useful predictor, it was not the best
predictor. However, if we had had longitudinal data, we could have evaluated the model
performance when the patients were admitted to ICU.

Serum C-reactive protein (CRP) is a critical indicator that changes considerably in
patients with severe COVID-19 [30]. CRP is an early marker of inflammation and infection
and is produced by the liver [63]. CRP binds to phosphocholine, which is expressed on the
surfaces of damaged cells and which modulates phagocytic activities [64]. It was found that
CRP changes significantly at the early stages of the disease in patients with COVID-19, as
reported previously [15], and patients who died from the disease had levels of serum CRP
10 times greater in comparison to those who recovered [16]. This is in line with the finding
of this study. In both of the investigations, CRP was found to be an important biomarker.

Chest CT is a widely available and noninvasive modality for pneumonia detection and
monitoring. When RT-PCR was utilized as the gold standard tool, CT chest was shown to
have 97% sensitivity and 68% accuracy in diagnosing COVID-19 [14]. Furthermore, follow-
up CT chest showed that 42% of the patients had their lung abnormalities resolved before
RT-PCR became negative [14]. Furthermore, CT chest is effective in diagnosing COVID
in the absence of symptoms, and is considered an early marker for possible worsening of
disease severity [65]. Likewise, changes in CT findings were shown to be an early predictor
for speeding up the diagnostic workup in symptomatic patients [66]. The typical findings
include bilateral, multi-lobe, posterior peripheral ground-glass opacities, as defined by
the Radiological Society of North America (RSNA) Consensus statement [67]. Several CT
severity scoring systems are valid for evaluating disease severity and burden [68,69]. It is
evident from the above discussion that lung infection manifestation is a vital parameter for
later-stage COVID-19 infection detection and quantification. However, in the early infection
stage, it could be a good predictor for COVID-19 patients, but not the best predictor.

Predicting the ICU risk for patients when they are admitted to the hospital can greatly
aid the hospital management team in allocating the proper resources to the appropriate
patient during a crisis. Ineffective management of resources and distribution during the
early stages of the pandemic in many countries has led to extremely high patient mortality
rates as no ML-based prediction tool was used. In contrast, patients who do not require
ICU admission but who are at risk can receive care in the special ward, lessening the strain
on hospitals and healthcare facilities. The proposed model is deployed as a web application
that can be used by clinicians. The details of the deployment are outside of the scope of
this work; however, the link (https://qu-mlg.com/projects/qu-ukm-icucare, accessed on 1
March 2022) is shared here, so that clinicians and interested readers can use it.

The limitation of the proposed tool is that it takes into consideration several clinical
and biological parameters and does not integrate symptoms, vitals, and treatments, and
therefore, has a risk of bias. The model presented in this work utilizes several clinical
variables that can be acquired in most clinics and hospitals, making this work potentially
suitable for deployment in a wide range of patient evaluations. However, some further
useful biomarkers (e.g., procalcitonin, D-dimers, neutrophils, lymphocytes, etc.) could
be investigated, as these were not present in this dataset. Lastly, the number of patients
studied was not high, which may cause the developed model to be less generalizable. The
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overall model performance and generalizability could be significantly improved if these
concerns could be resolved.

6. Conclusions

In conclusion, the proposed model in this study can predict the ICU admission risk
for patients with good discrimination for COVID-19 or non-COVID patients, with 90%
AUC, and with 91% AUC for COVID-19 cases alone. Five predictors (chest CT lung tissue
affected (%), CRP, fibrinogen, age, and admission-to-hospital time) were required for both
studies. The model can predict the risk of admission to ICU based on the hospital admission
data; i.e., predicting it much earlier than the real clinical outcome. This study evaluated
the various combinations of feature selection approaches, features, and machine learning
classifiers. Classical machine learning classifiers are computationally inexpensive and easy
to deploy [52], while they can provide better performance in tabular values, such as the
data from electronic health records (EHRs). Thus, the proposed study can help physicians
in patient stratification in the early stages, which will ultimately facilitate better and more
efficient resource management and thereby lessen strain on healthcare resources, reducing
mortality risk by supporting seriously ill patients earlier. The proposed framework is
deployed as a web application, which can be easily used by clinicians. Considering the
potential of this application for pandemic/non-pandemic situations, the authors plan to
collect more patient data from the Hamad General Hospital (HGH) to make the model
more generalized, and to externally validate the model on a larger dataset. The authors will
also continue to work on making the model robust and suitable for a different population.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12092144/s1, Table S1: Performance comparison
between different ML classifiers using all (both COVID-19 and non-COVID-19) patients’ data with
LOOCV. Table S2: Performance comparison between different ML classifiers using only COVID-19
patient data with LOOCV.
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Abstract: Background: Accurate neonatal pain assessment (NPA) is the key to neonatal pain man-
agement, yet it is a challenging task for medical staff. This study aimed to analyze the clinical
practicability of the artificial intelligence based NPA (AI-NPA) tool for real-world blood sampling.
Method: We performed a prospective study to analyze the consistency of the NPA results given by
a self-developed automated NPA system and nurses’ on-site NPAs (OS-NPAs) for 232 newborns
during blood sampling in neonatal wards, where the neonatal infant pain scale (NIPS) was used for
evaluation. Spearman correlation analysis and the degree of agreement of the pain score and pain
grade derived by the NIPS were applied for statistical analysis. Results: Taking the OS-NPA results
as the gold standard, the accuracies of the NIPS pain score and pain grade given by the automated
NPA system were 88.79% and 95.25%, with kappa values of 0.92 and 0.90 (p < 0.001), respectively.
Conclusion: The results of the automated NPA system for real-world neonatal blood sampling are
highly consistent with the results of the OS-NPA. Considering the great advantages of automated
NPA systems in repeatability, efficiency, and cost, it is worth popularizing the AI technique in NPA
for precise and efficient neonatal pain management.

Keywords: neonatal pain; on-site assessment; artificial intelligence; blood sampling; real-world data

1. Introduction

Pain assessment and management is one of the research hotspots in the neonatal care
field. Although premature and full-term infants usually experience a high frequency of
painful stimuli during hospitalization, neonatal pain assessment (NPA) has not been given
adequate attention in clinical practice, where painful clinical procedures with a severe
degree of pain are prevalent [1]. The operations, such as blood sampling, sputum suction,
and indwelling needle puncture, are the major procedures in neonatal care that occur most
frequently [2]. These painful procedures are mostly performed on infants within the first
3 days of admission, and no pharmacological interventions are applied for them in most
cases [3]. Assessments of continuous pain occurred in less than one-third of neonates, and
daily in only 10% [4]. As neonatal pain has a great impact on the short-term and long-term
development of newborns [5,6], more attention should be paid to pain management in
routine neonatal care.
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Accurate NPA is the key to effective pain management. In clinical NPA, the facial
expression is considered to be the most explicit indicator, on which a number of pain-
assessment scales have been designed, such as the neonatal facial coding system (NFCS) [7],
children and infants postoperative pain scale (CHIPPS) [8], premature infant pain profile
(PIPP) [9], and neonatal infant pain scale (NIPS) [10]. These NPA scales mainly consider the
facial-expression characteristics of newborns, and some of them also integrate factors such
as crying, limb movement, and vital signs. Traditional scale-based on-site NPA (OS-NPA)
is a process that requires dynamic monitoring by nurses rather than an instantaneous
operation. Therefore, regular OS-NPA for pain management is time consuming and labori-
ous. Meanwhile, the results of the OS-NPA could be affected by many factors, including
subjective differences in observers [2], interruption from other clinical procedures, a lack
of time [11], the gender difference [12], the interference of neonatal activity, inadequate
pain-assessment tools [1], and the loss of some transient behaviors.

With the rapid development of artificial intelligence (AI), deep learning has been
integrated into neonatal pain-expression-recognition technology [13]. The automatic recog-
nition of neonatal pain expressions has undergone a process from static images to dynamic
videos, and from theoretical experiments to system development [14], which has enabled
AI-based NPA (AI-NPA). On the one hand, AI-NPA could make up for the shortcomings
of the OS-NPA performed by medical staff, and it has the advantages of convenience and
efficiency. On the other hand, AI-NPA requires a large number of accurately labeled neona-
tal pain data to build a model with strong anti-interference ability and high robustness for
real-world data.

Unfortunately, the current public reported neonatal pain-expression databases [15–18]
still suffer from a limited number of newborns and samples, deficient population infor-
mation, limited types of pain stimuli that have large differences with painful clinical
procedures, the coarse labeling granularity of pain, etc. Moreover, these state-of-the-art
databases and many AI-NPA methods [19–22] focus on ideal neonatal pain samples, which
are samples with restrictions on the neonatal activities and facial posture in the data-
collection stage, or with manual screening to avoid disturbed neonatal pain data. These
methods make it difficult to meet the clinical requirements regarding accuracy, and they
are not feasible for processing neonatal pain data collected in real-world clinical scenes.
Hence, there is still a large gap between the current AI-NPA methods and the actual clinical
needs in terms of the pain-analysis objectives and scenarios, which has resulted in limited
clinical applications.

In order to realize an automated NPA system for actual clinical needs, we previously
established a video database of neonatal facial expressions during painful clinical proce-
dures in neonatal wards [23], and we developed an AI-NPA method for real-world data.
Our AI-NPA method is robust to facial occlusion and pose variations. Concretely, the
method applied generative adversarial networks (GANs) to learn how to recover ideal
facial images from real-world facial images with variant poses and occlusion for obtaining
modified facial features that enable subsequent interference-adaptive fine-grained neonatal
pain assessment. Based on our AI-NPA method, we further completed the design of an
automated NPA system for neonatal pain on a mobile platform with an in-hospital server.

In this paper, we propose a prospective study to analyze the consistency of the NPA
results given by the automated NPA system and OS-NPA in a real-world clinical operation
scenario, thus verifying the clinical practicability of automated NPA systems. A total
of 232 newborns who underwent blood-sampling operations in the neonatal wards of
the Children’s Hospital of Zhejiang University School of Medicine were recruited and
participated in this experiment. Both the OS-NPA performed by two nurses and the AI-
NPA given by our automated NPA system were applied during the implementation of
four types of blood-sampling operations (i.e., venous, arterial, heel, and fingertip blood
sampling) to give their own NPA results in the form of a pain score and pain grade with
reference to the NIPS. The correlation and consistency of the OS-NPA and AI-NPA results,

105



Diagnostics 2022, 12, 1831

as well as the performance of our automated NPA system on real-world clinical neonatal
pain data, were derived and analyzed.

The experiment results show that, according to the OS-NPA results on 232 newborns,
the accuracy of the automated NPA system was 88.79%, with kappa values of 0.92 and
95.25%, and a kappa value of 0.90 for the NIPS pain score and pain grade, both with
p < 0.001. This indicates that the NPA results have a high consistency between the on-
site evaluation and the AI inference, even in the neonatal pain data in the real-world
blood-sampling scenario. This study could provide a performance baseline for the clinical
application of automated NPA systems.

2. Materials and Methods

2.1. Study Design

This prospective study was approved by the ethics committee of the Children’s Hos-
pital of Zhejiang University School of Medicine (2018-IRB-051), and parental informed
consent was obtained. Newborns who underwent blood-sampling operations in the De-
partment of Neonatology between 1 July 2018 and 30 June 2019 were studied, and the
duration of the blood-sampling operations were controlled within 1 min. As shown in
Figure 1, when the neonates needed four types of blood sampling (i.e., venous, arterial,
heel, and fingertip blood sampling) for clinical diagnosis and treatment, two nurses used
the NIPS to perform the respective OS-NPA. Meanwhile, a third nurse used our automated
NPA system to shoot the responses of the newborns during the procedure at the bedside,
and to retrieve pain scores and pain grades with reference to the NIPS generated by the
system. The NIPS pain scores and pain grades of the OS-NPA performed by the two nurses
and the AI-NPA performed by the automated NPA system were collected for subsequent
statistical analysis.

Figure 1. The study design of the clinical practicability of automated NPA systems.

2.2. Inclusion and Exclusion Criteria

Neonates who were hospitalized in the Department of Neonatology for more than
3 days and who underwent the abovementioned four types of blood sampling were in-
cluded in this prospective study. Exclusion criteria included: serious illness conditions, such
as serious birth injury, severe asphyxia, shock, metabolic encephalopathy, moderate and
severe hypoxic-ischemic encephalopathy, and severe cardiopulmonary disease; newborns
with conditions affecting facial-image acquisition, such as severe congenital malformations,
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facial malformations, facial nerve injury, and facial surgery. Neonates should not have used
sedative or analgesic drugs within 72 h to avoid inaccurate NPA results in the experiment.

2.3. OS-NPA Performed by Nurses

Two experienced nurses were assigned to quantitatively assess the pain of the four
types of blood sampling for newborns using the NIPS [10]. The pain indicators of the NIPS
are defined by the following parameters, with a total score range from 0 to 7 points: facial
expression (0–1 point), cry (0–2 points), breathing pattern (0–1 point), position of arms
(0–1 point), position of legs (0–1 point), and state of arousal (0–1 point). This is suitable
for acute pain assessment, and the pain severity can be classified into mild pain with a
score of 0–2, moderate pain with a score of 3–4, and severe pain with a score of 5–7. The
Spearman correlation analysis was used to analyze the independent pain-score results of
the two nurses, and the correlation coefficient was 0.89 with p < 0.001, which indicates the
high confidence of the OS-NPA results. Data with a difference in two independent pain
scores were further reviewed by these two nurses. They checked the corresponding on-site
video to obtain a consistently confirmed pain score as the final OS-NPA result.

2.4. AI-NPA Performed by the Automated NPA System

The automated NPA system was implemented with the client–server model. The
application was designed to run on the mobile nursing personal digital assistant (MNPDA)
device. When performing the AI-NPA, the nurse could use the application to record
videos of the newborns’ behavior during blood sampling. Specifically, the nurse pressed
the shooting key 3 s before the blood-sampling operation and the end key 57 s after the
operation to achieve a 60 s video for each operation. The heads and faces of the infants
were required to be completely presented in the video frame during the whole process.
Figure 2 presents the typical image sequence of the neonatal pain video. The video stream
was then transmitted to the in-hospital server hosting the AI-NPA model for real-time
NPA inference.

Figure 2. Samples of image sequence in a neonatal pain video.
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The AI-NPA model of our automated NPA system in this study was pretrained on a
larger expression-recognition database and was further modulated by a self-built neonatal
facial-pain database based on our previous work [23]. Our AI-NPA method includes
two parts: unsupervised feature modification and self-attention pain classification. In the
unsupervised-feature-modification part, we apply a generative adversarial network (GAN)
to modify the facial features toward the direction of face frontalization and deocclusion.

Specifically, we use the latent vector of the generator as the modified facial features.
That is, we only need the encoder network of the generator to extract facial features during
the testing phase. The generator of the GAN has two paths, focusing on the reasoning of
the global shapes and the transformation of the local details [24]. The discriminator of the
GAN is responsible for learning to distinguish between the output of the generator and
the normal (frontal and nonoccluded) face images, which pushes the facial features into
the manifold of a normal face. We further employed four loss functions: symmetry loss,
adversarial loss, identity-preserving loss, and total variation regularization, to train the
generator network and discriminator network jointly, as shown in Figure 3.

Figure 3. The framework of the unsupervised-feature-modification part in our AI-NPA model.

For the self-attention pain classification, considering that the modified facial features
still contain many useless, redundant, and even wrong features, we choose the self-attention
mechanism to further filter and enhance the modified features. Specifically, we build an
attention branch parallel to the residual branch, which is based on the bottom-up top-down
structure [25], and which can output the same size-attention mask that softly weights the
facial features.

In the pretraining stage, a total of 12,271 basic expression images in the RAF-DB [26]
were applied to obtain the initial model parameters. We then trained this model on 508
neonatal pain images from our real-world neonatal pain database, and we adjusted the
parameters to the optimal through the backpropagation algorithm. The samples of our
neonatal pain database are shown in Figure 4. The AI-NPA model is deployed on an
in-hospital server. The software platform of the server is Ubuntu 16.4.7 with Python 3.6.8,
and the hardware configuration is Intel® Xeon® CPU E5-2678 v3 (12/24 cores/threads,
2.5/3.1 GHz base/turbo), 112 GB 2400 MHz DDR4 RAM, and two Nvidia® GeForce® RTX
2080Ti GPUs (1350/1454 MHz base/boost with 11GB GDDR 6 VRAM).
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Figure 4. Samples of neonatal pain data with different blood-sampling operations and pain scores.

After the video is transmitted to the server, the AI-NPA model detects the face region
of each frame of the image in the video by a built-in algorithm, and it crops the facial
image with the size of 224 × 224. Based on the NIPS, the pain scores and pain grades
are automatically generated, paired with the images, and stored on the server. The final
AI-NPA results are determined as the highest pain score and the corresponding pain grade
during one blood-sampling operation, which are used for the subsequent validation of
the accuracy of the automated NPA system. The AI-NPA results could be pushed to the
application on the MNPDA for on-site nurses or could be checked by the attending doctor
for further neonatal pain management, as shown in Figure 5.

Figure 5. The framework of the automated NPA system and its application.
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2.5. Statistical Analysis

Descriptive statistics for the categorical variables were reported as numbers and
percentages, and a chi-square test was used for the comparison between groups; statistics
were reported as means and standard deviations for continuous variables, and a t-test
or nonparametric test was used for the group comparison. To analyze the correlation
and consistency of the AI-NPA and OS-NPA results, the Spearman correlation analysis,
receiver operating characteristic curve (ROC), and kappa coefficient test were used. SAS
9.4 statistical software was used for data analysis, and p < 0.05 was considered statistically
significant. Because the NIPS pain scores are discrete-integer results, we used the confusion
matrix to show the number of cases in which the results were different between the OS-NPA
and AI-NPA in detail.

3. Results

3.1. Study Population

A total of 232 newborns were included in this study, with a mean gestational age of
33.93 ± 4.77 weeks, a mean age of 21 (8.5, 41) days, and a mean birth weight of 2250 ± 1010
g. The detailed demographic characteristics are listed in Table 1. Two nurses performed a
total of 464 independent OS-NPAs during 232 neonatal blood-sampling operations for each
newborn. As a result, one set of consensus NIPS pain scores and grades was given by the
two nurses for every OS-NPA and was used as the gold standard.

Table 1. Demographic characteristics of newborns in this study.

Metrics Number of Cases
Composition Ratio

(%)

Sex
Male 86 37.07

Female 146 62.93

Delivery
mode

Spontaneous delivery 95 41.13
Cesarean section 136 58.87

Main
diagnosis

Respiratory disorders 113 48.71
Digestive disorders 63 27.15

Nervous-system disorders 22 9.48
Infection disease 34 14.66

Operation
type

Venous blood sampling 36 15.52
Arterial blood sampling 75 32.33

Heel blood sampling 75 32.33
Fingertip blood sampling 46 19.82

3.2. Comparison of NIPS Pain Scores between OS-NPA and AI-NPA

The NIPS pain scores of the OS-NPA and AI-NPA were 5.06 ± 1.85 and 5.17 ± 1.84,
respectively. The Spearman correlation analysis showed a correlation coefficient of 0.95
(p < 0.001) when comparing the NIPS pain scores of the OS-NPA and AI-NPA. The agree-
ment between the two groups was compared, with a kappa value of 0.92 (0.88, 0.95)
(p < 0.001). The accuracy of the pain score given by the automated NPA system was 88.79%
(206/232), and the confusion matrix of the NIPS pain scores for the two methods is shown
in Table 2.
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Table 2. Confusion matrix of the NIPS pain scores for OS-NPA and AI-NPA.

OS-NPA
AI-NPA Given by the Automated NPA System

0 1 2 3 4 5 6 7

0 5 1 0 0 0 0 0 0
1 1 5 0 0 0 0 0 0
2 0 0 13 1 0 1 0 0
3 0 0 0 15 1 1 1 0
4 0 0 1 1 21 4 2 0
5 0 0 0 0 0 37 2 4
6 0 0 0 0 0 2 47 2
7 0 0 0 0 0 0 1 63

The background is highlighted for the diagonal of the confusion matrix.

3.3. Comparison of the NIPS Pain Grades between OS-NPA and AI-NPA

According to the pain-grade criteria of the NIPS, the OS-NPA showed mild pain in
27 patients (8.94%), moderate pain in 47 patients (20.26%), and severe pain in 158 pa-
tients (68.10%). The AI-NPA derived mild pain in 26 patients (11.21%), moderate pain in
39 patients (16.81%), and severe pain in 167 patients (71.98%). Compared with the on-site
evaluation, the accuracy of the NIPS pain grade given by the AI-NPA was 95.25% (221/232),
and the agreement between the two groups was compared, with a kappa value of 0.90 (0.84,
0.96) (p < 0.001). See Table 3 for details.

Table 3. Consistency analysis of NIPS pain grading by OS-NPA and AI-NPA.

OS-NPA
AI-NPA Kappa Value

and 95%CI
p Value

Mild Moderate Severe

Mild 25 1 1
0.90 [0.84,

0.96] < 0.001Moderate 1 38 8
Severe 0 0 158

The background is highlighted for the diagonal of the confusion matrix.

We further investigated the cases of the severe-pain grade. Using the results of the
OS-NPA as the criterion, the sensitivity and specificity of the AI-NPA for identifying severe
pain were 100% and 87.84%, respectively. The corresponding kappa values and areas under
the ROC curve (AUC) of the AI-NPA for identifying severe pain were calculated with
different types of blood-sampling operations, as listed in Table 4.

Table 4. Consistency analysis of AI-NPA and OS-NPA of severe pain.

Operation Type

Number of Subjects with Severe
Pain (Proportion %) Kappa Value and

95% CI
AUC and 95% CI p Value

OS-NPA AI-NPA

Venous blood
sampling 32 (88.8) 32 (88.8) 1.00 [1.00, 1.00] 1.000 [1.000, 1.000] <0.001

Arterial blood
sampling 57 (76.0) 60 (80.0) 0.88 [0.76, 1.00] 0.967 [0.924, 1.000] <0.001

Heel blood
sampling 43 (57.3) 46 (61.3) 0.92 [0.83, 1.00] 0.984 [0.959, 1.000] <0.001

Fingertip blood
sampling 26 (56.5) 29 (63.3) 0.86 [0.72, 1.00] 0.957 [0.899, 1.000] <0.001
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4. Discussion

4.1. High Evaluation Consistency of the Automated NPA System

The kappa value was used to test the degree of agreement between the results of
the different NPA methods. The kappa value ranged from −1 to U+1; the larger the
value, the higher the degree of agreement between the two, where the kappa value of the
consistency between the NIPS pain scores of the OS-NPA and AI-NPA was 0.92 (0.88, 0.95)
(p < 0.001). Using the NIPS pain score of the OS-NPA as the gold standard, the accuracy of
the pain score given by the automated NPA system was 88.79%. The comparison between
the AI-NPA and OS-NPA showed that the correlation coefficient between the two was
0.95 (p < 0.001), which was highly positive. These results indicated that there was high
consistency in the NIPS pain scores between the AI-NPA and OS-NPA.

Meanwhile, the accuracy of the NIPS pain grade given by the AI-NPA was 95.25%,
with a kappa value of 0.90 (0.84, 0.96) (p < 0. 001). The AI-NPA was also highly consistent
with the OS-NPA regarding the evaluation of the degree of pain. Because the guidelines
recommend a stepped approach for neonatal pain management, including environmental,
nonpharmacological, and pharmacological interventions, provided that a standardized
approach is used to assess the pain [27], in addition to judging the presence or absence of
pain, it is also necessary to distinguish the pain grade.

4.2. AI-NPA of Severe Pain

The statistical results in Table 4 show that most of the four types of blood-sampling
operations in this study were with severe pain, and especially for the venous sampling,
of which 88.8% belongs to severe pain. The AI-NPA of severe pain showed an AUC of
0.974, with a 95% confidence interval (0.952, 0.995), and the kappa value was greater than
0.75. The sensitivity and specificity of the AI-NPA for identifying severe pain were 100%
and 87.84%, respectively. The relatively low specificity of the AI-NPA of severe pain was
due to the fact that the AI assessment mostly focused on the facial expression, while the
assessment parameter “crying” of the NIPS varied the most, with corresponding scores of
0–2 assigned to “not crying”, “sobbing”, and “crying”, respectively.

In real-world complex clinical operation scenarios, neonatal crying is easily interfered
with by noisy environments, the alarms of monitors, and the occlusion of respiratory-
support devices, and there was also an objective difference in the assessment of the “crying”
by the nurses. Although the range of scores for “crying” is the largest of all the items in the
NIPS, “facial expression” has been proven to be the most specific indicator of pain, and
additional information such as “crying” and “physiological signals” could not provide
stable performance increments for the AI-NPA methods [28–31]. The main bottleneck for
highly accurate AI-NPAs is still the volume of the current training data.

While it is currently not possible to accurately assess pain scores or pain grades by
AI technology, it is feasible to tune an AI model to make a tradeoff between the sensitiv-
ity and specificity of pain assessments according to the clinical requirements. Based on
the views of our neonatal care experts, we prefer sensitivity so that as many neonates as
possible who are suffering from pain can be screened for diagnosis and possible analgesia
by physicians. Therefore, the overestimation of severe pain by our AI-NPA method is
currently a purposeful choice driven by clinical needs. Although further improvement
is required for our AI-NPA method, it is superior to those reported in the relevant liter-
ature [19–22,30,31], and especially in real-world scenarios. Nevertheless, the specificity
of the automated NPA system for identifying severe pain in this study was completely
acceptable in clinical practice.

4.3. Strengths and Limitations of the Automated AI-NPA System

The strengths of our automated AI-NPA system are threefold: It could enable 24 h
real-time pain-status monitoring, saving laborious human assessment by medical staff; it
is robust to occlusion and extreme facial-pose-change disturbance compared with other
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automated methods; recorded videos and their automated assessment results in the system
could facilitate research and education related to clinical pain assessment.

The main limitation of our automated AI-NPA system is that the videos evaluated
by the AI-NPA method are currently recorded by nurses using mobile nursing personal
digital assistants. Considering that it is not feasible for medical staff to perform both the
medical operation and video filming, the automated NPA system currently requires an
additional nurse to record the video. This conflicts with our desire to significantly reduce
the workload of medical staff through automated pain assessment, given the fact that
healthcare resources are valuable and limited. Therefore, as the AI technology further
matures and works with automatic face-tracking algorithms, we will automate the entire
process by recording video with bedside cameras in the future.

5. Conclusions

Accurate NPA is the premise of standardized neonatal pain management. The AI
technique in NPA based on facial recognition can provide convenience for medical staff.
This study showed that the automated NPA system could obtain real-time dynamic pain-
evaluation results for blood sampling in a real-world neonatal ward scene, which is helpful
to implementing the stepped analgesia program for neonatal pain management. Combined
with the concept of closed-loop management, the AI technology embedded in the electronic-
medical-record (EMR) system in the future will realize the real-time medical intervention for
pain by medical staffs. The EMR system can cooperate with the MNPDA to enable bedside
nurses to implement care measures in accordance with an automatically generated nursing
plan. The downstream health education system can further perform pain-knowledge
education for newborns’ family members so as to realize the traceability, standardization,
and intelligence of the whole process of pain management.
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Abstract: This study aims to develop an interpretable prediction model based on explainable artificial
intelligence to predict bacterial sepsis and discover important biomarkers. A total of 1572 adult
patients, 560 of whom were sepsis positive and 1012 of whom were negative, who were admitted to
the emergency department with suspicion of sepsis, were examined. We investigated the performance
characteristics of sepsis biomarkers alone and in combination for confirmed sepsis diagnosis using
Sepsis-3 criteria. Three different tree-based algorithms—Extreme Gradient Boosting (XGBoost),
Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost)—were used for sepsis
prediction, and after examining comprehensive performance metrics, descriptions of the optimal
model were obtained with the SHAP method. The XGBoost model achieved accuracy of 0.898
(0.868–0.929) and area under the ROC curve (AUC) of 0.940 (0.898–0.980) with a 95% confidence
interval. The five biomarkers for predicting sepsis were age, respiratory rate, oxygen saturation,
procalcitonin, and positive blood culture. SHAP results revealed that older age, higher respiratory
rate, procalcitonin, neutrophil–lymphocyte count ratio, C-reactive protein, plaque, leukocyte particle
concentration, as well as lower oxygen saturation, systolic blood pressure, and hemoglobin levels
increased the risk of sepsis. As a result, the Explainable Artificial Intelligence (XAI)-based prediction
model can guide clinicians in the early diagnosis and treatment of sepsis, providing more effective
sepsis management and potentially reducing mortality rates and medical costs.

Keywords: sepsis; machine learning; explainable artificial intelligence; biomarker

1. Introduction

Sepsis is a complex syndrome characterized by a dysregulated host response to infection,
leading to severe and potentially fatal organ dysfunction. The syndrome’s lethality signifi-
cantly surpasses that of simple infections, highlighting the imperative for swift recognition and
intervention. Early stages of sepsis, even with minor organ dysfunction, are associated with
an in-hospital mortality rate exceeding 10% [1,2], emphasizing the critical need for prompt
and accurate identification of the syndrome [3]. Sepsis is caused by an imbalance between
pro-inflammatory and anti-inflammatory mediators, resulting in a systemic inflammatory
response syndrome (SIRS) that can impair the function of multiple organs, such as the lungs,
kidneys, liver, heart, and brain. The severity of sepsis is classified according to the presence
and number of organ failures, as well as the degree of hypotension and lactate elevation [1].
The diagnosis of sepsis is based on clinical criteria, such as fever, tachycardia, tachypnea, and
altered mental status, as well as laboratory tests, such as blood cultures, inflammatory markers,
and lactate levels [3]. The treatment of sepsis consists of early administration of appropriate
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antibiotics, fluid resuscitation, vasopressors, and supportive care for organ dysfunction. The
timely initiation of these interventions can reduce the mortality and morbidity associated with
sepsis [3,4].

Sepsis is a major challenge for healthcare systems in Turkey and worldwide, requiring
prompt diagnosis, appropriate antimicrobial therapy, and supportive care to improve out-
comes and reduce mortality. According to the World Health Organization (WHO) data, sepsis
affects about 50 million people every year and 11 million of them lose their lives. In Turkey,
the prevalence of sepsis varies roughly between 0.5% and 1% [5]. Despite the absence of a
universally accepted gold standard for diagnosis, various definitions and scoring systems
have been devised to aid in the rapid detection and diagnosis of sepsis. The Sequential
Organ Failure Assessment (SOFA) score is a widely validated tool for assessing mortality risk
and provides clear bedside criteria for identifying sepsis in adults [1]. Organ dysfunction is
indicated by an acute change in the total SOFA score, specifically an increase of two or more
points consequent to an infection. Typically, patients with no pre-existing organ dysfunction
are presumed to have a baseline SOFA score of zero, and a score of two or higher correlates
with a mortality risk of about 10% in a general hospital population with suspected infection.
The potential for rapid deterioration even in cases of modest dysfunction underscores the
urgency of timely and appropriate clinical responses [6].

For patients with suspected infection and the risk of prolonged intensive care unit (ICU)
stays or adverse outcomes, the Quick Sequential Organ Failure Assessment (qSOFA) criteria
can be used for early bedside evaluation [6]. These criteria include changes in mental status,
systolic blood pressure of 100 mm Hg or less, or a respiratory rate of 22/min or more. However,
the sensitivity of qSOFA for detecting early-stage sepsis in certain patient populations has
been questioned, potentially delaying the initiation of necessary treatments [7]. Consequently,
the 2021 Surviving Sepsis Campaign guidelines recommend against the exclusive use of
qSOFA as a solitary screening tool for sepsis. In clinical practice, the integration of blood
biomarkers may provide additional valuable information for identifying high-risk patients
or those progressing toward organ failure, even when presenting with low SOFA scores [4].
From this clinical point, the SOFA scale is a clinical marker for sepsis prognosis [8]. Similarly,
the Acute Physiology and Chronic Health Evaluation II (APACHE II) score exhibits efficacy in
prognosticating the mortality risk associated with sepsis, with a positive correlation observed
between score elevation and increased likelihood of death [9].

Recent advancements in Explainable Artificial Intelligence (XAI) have shown promising
results in the early prediction of sepsis, a critical area in healthcare that demands timely and
accurate decision-making. XAI models, by offering transparency in their decision processes,
enable clinicians to understand and trust the predictions made by AI systems [10]. This
is particularly vital in sepsis prediction, where the interpretability of AI models aids in
identifying the onset of sepsis, potentially improving patient outcomes. Furthermore, XAI
facilitates the identification of key clinical variables and their interactions, enhancing the
ability of healthcare professionals to make informed decisions [11]. The integration of XAI in
sepsis prediction not only augments the accuracy of diagnoses but also aligns with the ethical
need for transparency and accountability in AI applications in healthcare [10]. Recognizing
these benefits, the current study focuses on leveraging the capabilities of XAI to develop a
more effective and reliable tool for healthcare professionals in the battle against sepsis. In
addition, although there are many studies on machine learning-based sepsis classification in
the literature, there are very few studies on classification with explainable artificial intelligence
and candidate biomarkers [12–15]. This study would contribute to the literature in this respect.
Therefore, the study aims to construct an XAI classification model for predicting the status of
sepsis based on the candidate biomarker features.

2. Materials and Methods

2.1. Data Source

In this study, an open-access dataset of a prospective observational study on adult
patients with and without sepsis was used. All patients aged 18 years and older (18–100) who
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presented to the emergency department with suspected sepsis were included [16]. A total of
1572 adult patients were studied; of these, 560 tested positive for sepsis, while 1012 tested
negative. Using the Sepsis-3 criteria, we examined the diagnostic performance characteristics
of sepsis biomarkers, both individually and in combination, for confirmed sepsis diagnosis.
This study received ethical approval from the Inonu University Non-Interventional Clinical
Research Institutional Review Board (decision no: 2023/5215). Informed consent was obtained
from all subjects participating in the study.

2.2. Outcome Measures

The current study evaluated the presence and absence of sepsis as outcome measure-
ments based on Sepsis-3 criteria. Sepsis was assessed as follows [16].

• Organ dysfunction was identified as an acute change in total SOFA score ≥ 2 points
consequent to the infection.

• The baseline SOFA score was assumed to be zero in patients not known to have
pre-existing organ dysfunction.

• The confirmed bacterial infection for Sepsis-3 was defined as a clinical infection,
identification of relevant bacteria through culture, and a positive blood culture for
bacteremia.

2.3. Biostatistical Analyses

Analytical (Shapiro–Wilk test) and visual (histogram and probability graphs) tech-
niques were used to assess the quantitative characteristic eligibility for a normal distribution.
The interquartile range (IQR) and median were used to describe the quantitative data since
they were not normally distributed, and the Mann–Whitney U test was employed to com-
pare the two groups. If a p-value was less than 0.05, it was deemed statistically significant.
Cohen’s D was used to calculate the effect size. The following thresholds were taken into
account while determining the effect size: Cohen proposed that an impact size of d = 0.2 be
categorized as “small”, 0.5 as “medium”, and 0.8 as “large” [17]. For qualitative measures,
frequency (n) and percentage (%) values were computed, and the chi-square test was used
to look at the associations between these features. The statistical analysis was carried out
with IBM Corp.’s SPSS 28.0, located in Armonk, NY, USA.

2.4. ML Models and Validation

The methodology for assessing the predictive power of machine learning techniques
for sepsis is described in this section. The random forest approach was used to approximate
the missing values. Within the research, there was an issue of class imbalance in the
distribution of sepsis (560 patients with sepsis and 1012 patients without sepsis). The
class imbalance problem was resolved by applying the Synthetic Minority Oversampling
Technique for Nominal and Continuous (SMOTE-NC). When dealing with real-world data,
class imbalance is a prevalent issue that can be characterized as one in which the number of
instances in the majority class is much more than the number of cases in the minority class.
Balanced data are important because machine learning models might be biased towards
the majority class, leading to problems with underfitting or overfitting. SMOTE-NC was
applied only to the training set. The second phase was identifying the most important
sepsis biomarkers using the ML-based Least Absolute Shrinkage and Selection Operator
(LASSO) approach. A popular regularization and feature selection strategy in machine
learning and linear regression is called LASSO. Its purpose is to keep regression models
from overfitting by choosing a subset of the most pertinent characteristics from a wider
range of features. Following preprocessing, the data were split into 80% training and 20%
testing, with 10-fold cross-validation (CV) serving as the resampling technique throughout
the training phase. This allowed the ML models to be validated. Three models were trained
and evaluated using the tree-based AdaBoost, LightGBM, and XGBoost algorithms to find
the best model for sepsis prediction. The optimal hyperparameters of each model were
determined by Grid Search with 5-fold and 10 repeated k-Fold CV. Accuracy, sensitivity,
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specificity, F1 score, positive predictive value (PPV), and negative predictive value (NPV)
were computed to evaluate and contrast the efficacy of the best ML model in predicting
sepsis among various techniques.

2.5. Synthetic Minority Over-Sampling Technique (SMOTE)

The “Synthetic Minority Over-sampling Technique”, or SMOTE for short, is a method
used in data mining and ML to solve the issue of unbalanced datasets. One class (the
minority class) contains substantially fewer examples than another (the majority class)
in datasets that are unbalanced. As a result, ML models may perform poorly if they
have a bias in favor of the majority class. SMOTE is a resampling method that generates
artificial instances of the minority class in an effort to balance the distribution of classes.
It functions by creating artificial samples that resemble instances of minority classes that
already exist. SMOTE improves the dataset suitability for training ML models by reducing
class imbalance and increasing the amount of samples from minority classes [18,19].

2.6. Extreme Gradient Boosting (XGBoost)

XGBoost is a powerful and versatile ML algorithm, renowned for its exceptional
performance in various predictive modeling tasks. It falls under the category of gradient
boosting algorithms, which sequentially combine a set of weak predictive models to create a
strong ensemble model. The remarkable success of XGBoost can be attributed to several key
innovations. First, it employs a novel regularization term that mitigates overfitting, enhanc-
ing model generalization. Furthermore, it optimizes computational efficiency by utilizing a
data structure known as a “sparsity-aware block structure” and a technique called “column
block compressed sparse column”. These innovations enable XGBoost to efficiently handle
large datasets. The algorithm also utilizes a weighted quantile sketch, improving accuracy
when selecting splitting points during tree construction. Overall, XGBoost’s combination
of regularization, computational efficiency, and accurate splitting point selection has made
it a popular choice for a wide range of machine-learning applications [20,21].

2.7. Light Gradient Boosting Machine (LightGBM)

LightGBM represents another cutting-edge gradient-boosting algorithm designed for
efficient and high-performance ML tasks. It sets itself apart through its unique approach to
tree construction, which differs from traditional depth-first or level-wise strategies. LightGBM
utilizes a histogram-based approach, in which data are divided into histograms during tree
construction, allowing for more efficient computation of gradient and Hessian values. This
approach significantly reduces memory usage and speeds up the training process. LightGBM
also introduces exclusive features such as “Gradient-based One-Side Sampling” and “Exclu-
sive Feature Bundling”, which further enhance training efficiency and enable the algorithm
to tackle high-dimensional data effectively. Its ability to handle large datasets efficiently
and its focus on minimizing memory consumption have made LightGBM a popular choice,
particularly in real-time and large-scale ML applications [22,23].

2.8. Adaptive Boosting (AdaBoost)

AdaBoost is a classical ensemble learning technique that emphasizes adaptive model
combinations to improve predictive accuracy. The central idea behind AdaBoost is to
iteratively train a series of weak learners and assign them different weights based on
their performance. In each iteration, AdaBoost assigns higher weights to the misclassified
instances from the previous iteration, effectively forcing the algorithm to focus on the most
challenging data points. By giving more weight to the errors, AdaBoost continually adapts
and evolves its ensemble of weak learners, ultimately leading to a stronger, more accurate
model. The final prediction is a weighted combination of the individual weak learner
predictions, with higher-performing weak learners having more influence. AdaBoost has
proven effective in boosting the performance of various base classifiers, making it a valuable
tool in the ensemble learning toolbox [24,25].
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2.9. Metrics Used to Evaluate the Performance of ML Models

Accuracy: Accuracy is a classification metric that measures the overall accuracy of a
prediction model’s decisions. This criterion is simple and intuitive, but may not be suitable
for unbalanced data sets where one class is significantly superior to the other [26].

F1-Score: The F1-Score is a statistic that yields a single number by combining recall
(sensitivity) and precision. When working with unbalanced datasets, it is helpful. The
model’s recall—its capacity to recognize all pertinent occurrences of the positive class—and
precision—its capacity to prevent false positives—are both balanced by the F1-Score [27].

Sensitivity: This metric calculates the proportion of true positive samples that are
predicted as positive by the ML model [26].

Specificity: Specificity measures the proportion of actual negative instances that are
correctly predicted as negative by the model. It is the ratio of true negatives to the total
number of actual negatives [26].

Negative Predictive Value (NPV): NPV measures the proportion of instances predicted
as negative that are actually true negatives. It is the ratio of true negatives to the total
number of instances predicted as negative [28].

Positive Predictive Value (PPV): PPV is a classification metric that measures the
proportion of instances predicted as positive by a model that are actually true positive
instances. In other words, PPV assesses the accuracy of the positive predictions made by a
model. It is particularly relevant when the cost or consequences of making false positive
predictions are significant [28].

Area Under the Receiver Operating Characteristic Curve (AUC): AUC is a metric that
evaluates the ability of a classification model to distinguish between classes, particularly
in binary classification problems. The ROC curve is a graphical representation of the true
positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold
settings. AUC calculates the area under this curve, providing a single value that summarizes
the model’s ability to discriminate between positive and negative instances. A higher AUC
value (closer to 1) indicates better discrimination and performance of the model [26,29].

Brier Score: The Brier Score measures the accuracy of probabilistic predictions made
by a model. It is commonly used for assessing the calibration of predicted probabilities
in binary or multi-class classification problems. The Brier Score is calculated as the mean
squared difference between predicted probabilities and the actual outcomes. It penalizes
both overconfidence (assigning high probability to the wrong class) and under confidence
(assigning low probability to the correct class). The Brier Score ranges from 0 to 1, with
0 indicating perfect accuracy and 1 indicating the worst possible accuracy. Lower Brier
Scores are preferable, indicating better-calibrated probability predictions [26,30].

3. Results

In the study, 1572 patients aged between 18 and 100 were examined. Of the patients,
44.3% were female and 55.7% were male. The median haemoglobin (g/L) of female patients
was 126 and the median haemoglobin (g/L) of male patients was 135, while statistical tests
showed that hemoglobin (g/L) levels were significantly higher in males than in females
(p < 0.001). Age, systolic blood pressure (mmHg), respiratory rate (breaths/min), oxygen
saturation (%), heart rate (beats/min), body temperature (◦C), hemoglobin (g/L), leukocyte
particle concentration (×109 cells/L), C-reactive protein(mg/L), procalcitonin (ng/mL),
neutrophil–lymphocyte count ratio, lactate (mmol/L), intensive care unit, positive blood
culture, and systemic inflammatory response syndrome are important biomarkers in sepsis
following LASSO.

Table 1 provides a detailed summary of the descriptive statistics and effect size estima-
tions for the sepsis biomarkers found after applying LASSO. The robustness of the feature
selection procedure and the potential importance of these biomarkers in the setting of sepsis
were reinforced when it was discovered that p values for every one of the chosen biomark-
ers were statistically significant with p < 0.05. On examining Table 1, it was seen that the
group with sepsis had a considerably greater median age than the group without sepsis.
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The sepsis group had substantially higher levels of respiratory rate (breaths/min), heart
rate (beats/min), body temperature (◦C), leukocyte particle concentration (×109 cells/L),
C-reactive protein(mg/L), procalcitonin (ng/mL), neutrophil–lymphocyte count ratio, and
plaque (mmol/L) (p < 0.05). Conversely, the sepsis group had substantially lower levels of
hemoglobin (g/L), oxygen saturation (%), and systolic blood pressure (mmHg) (p ≤ 0.05).
Procalcitonin (ng/mL) had the largest significant effect size (ES: 0.0891) among the chosen
biomarkers, according to our study. This implies that procalcitonin (ng/mL) functions as
an effective sepsis-positive and sepsis-negative group discriminator and, as such, merits
more research as a possible target for therapy or diagnostic biomarker.

Table 1. Descriptive statistics for the clinical biomarkers of sepsis.

Variable

Group

p-Value ESReference Values
for No Sepsis

No Sepsis
(n = 1012)

Reference Values
for Sepsis

Sepsis
(n = 560)

Age (years) 68 (25) 76.5 (18) <0.001 0.0669 (Small)
Systolic blood pressure (mmhg) 120–180 136 (31) <90 or >140 130 (36) <0.001 0.0115 (Small)
Respiratory rate (breaths/min) 12–20 22 (6.915) >20 or <12 25.35 (8) <0.001 0.0677 (Small)
Oxygen saturation (%) 95–100 96 (3) <92 94 (6) <0.001 0.0709 (Small)
Heart rate (beats/min) 60–100 95 (24.625) >100 or <60 100 (26) <0.001 0.00991 (Small)
Body temperature (◦C) 36.5–37.5 37.8 (1.4) <36 or >38 38 (1.5) 0.01 0.00418 (Small)
Haemoglobin (g/L) 13.5–17.5 (Male) 132 (24.812) <13.5 128 (24) 0.001 0.00701 (Small)
Leukocyte particle concentration
(×109 cells/L) 4–10 11.3 (6.3) <4 or >12 13.1 (7.65) <0.001 0.0307 (Small)

C-reactive protein(mg/L) <5 91.5 (120.25) >10 126 (148.25) <0.001 0.0194 (Small)
Procalcitonin (ng/mL) <0.5 0.13 (0.498) >2.0 0.51 (3.88) <0.001 0.0891 (Small)
Neutrophil–lymphocyte count ratio <3.5 8 (9.45) >10 13.013 (14.3) <0.001 0.0755 (Small)
Lactate (mmol/L) <2.0 1.6 (0.883) >2.0 1.9 (1.253) <0.001 0.039 (Small)

The values are reported by median (IQR); IQR: interquartile range; ES: effect size.

In Table 2, the optimum values of the parameters optimized by Grid Search for the
three ML models are given.

Table 2. The optimal hyper-parameters of models determined by Grid Search.

Model Optimal Hyper-Parameters

LightGBM n_estimators = 1000, learning_rate = 0.1, colsample_bytree = 0.8, subsample = 0.8
AdaBoost n_estimators = 100, learning_rate = 0.1
XGBoost n_estimators = 1000, learning_rate = 0.1, max_depth = 2, subsample = 0.8

Three different ML models (AdaBoost, LightGBM, and XGBoost) were created using
the important biomarkers of sepsis determined with the help of LASSO, and the prediction
performances of these models were compared. Based on the findings of accuracy, F1 score,
sensitivity, specificity, PPV, NPV, AUC, and Brier score, all the prediction models performed
comparably. Optimum prediction was performed using the XGBoost model, one of the
three tree-based ML classifiers. The performances of the models using the original data
were lower than the models created after SMOTE-NC, and when the performance measures
in the models using the original data were examined, it was observed that the results were
biased and inconsistent. After SMOTE-NC, with a 95% confidence range, the XGBoost
model produced accuracy of 0.898 (0.868–0.929) and an AUC of 0.940 (0.898–0.980).

Furthermore, the XGBoost model demonstrated exceptionally high specificity of 0.891
(0.837–0.932) and sensitivity of 0.905 (0.854–0.943). A lower false negative (FN) value is
associated with a greater sensitivity rating. In comparative biological studies, mistakes
including false positives and false negatives are frequent. This finding is significant since
one of the primary objectives of this study was to reduce the number of false negatives, or
missing sepsis patients (Table 3).

SHAP annotations were examined to interpret sepsis prediction results of the three
tree-based models. With the help of SHAP, we were able to determine the levels of biomarkers
important in predicting sepsis, identified by LASSO. The SHAP annotations of the optimal
model XGBoost (Figure 1) and the LightGBM (Figure 2) model were more similar compared
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to the annotations for AdaBoost (Figure 3). According to the explanations of the XGBoost
model, age, respiratory rate (breaths/minute), oxygen saturation (%), procalcitonin (ng/mL)
and positive blood culture were determined as the five most important biomarkers in the early
diagnosis of sepsis. In addition to old age there were higher respiratory rate (breaths/minute),
procalcitonin (ng/mL), neutrophil–lymphocyte count ratio, C-reactive protein (mg/L), lactate
(mmol/L), leukocyte particle concentration (×109 cells/L) It was determined that body
temperature (◦C) levels were associated with the risk of sepsis. Additionally, SHAP findings
revealed that low oxygen saturation (%), systolic blood pressure (mmHg) and hemoglobin
(g/L) levels increased the risk of sepsis (Figure 1).

Figure 1. XGBoost model SHAP annotations; The importance of biomarkers is ranked by average
(|SHAP value|); the graph’s points are colored based on the normalized values of each patient’s level
of biomarker value. The feature value increases as it gets closer to pink and drops as it gets closer to
blue. Sepsis is more likely when a feature’s SHAP value is greater. The SHAP plot background for
the optimal prediction model is drawn in grey.
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Table 3. Results of ML models on original and SOMOTE-NC applied data in sepsis (Values in
parentheses are 95% confidence interval (CI)).

Model/Metric Accuracy F1-Score Sensitivity Specificity PPV NPV AUC Brier Score

AdaBoost
Orijinal 0.732

(0.682–0.783)
0.813

(0.769–0.858)
0.92

(0.871–0.954)
0.407

(0.314–0.506)
0.729

(0.667–0.784)
0.746

(0.616–0.85)
0.782

(0.663–0.902)
0.121

(0.091–0.189)

SMOTE-NC 0.869
(0.835–0.903)

0.871
(0.837–0.905)

0.882
(0.827–0.925)

0.856
(0.797–0.903)

0.859
(0.802–0.905)

0.879
(0.823–0.923)

0.917
(0.869–0.966)

0.027
(0.022–0.038)

LightGBM Orijinal 0.746
(0.696–0.795)

0.824
(0.78–0.867)

0.936
(0.891–0.966)

0.417
(0.323–0.515)

0.735
(0.674–0.79)

0.789
(0.661–0.886)

0.799
(0.676–0.923)

0.104
(0.097–0.134)

SMOTE-NC 0.888
(0.856–0.92)

0.89
(0.858–0.922)

0.895
(0.842–0.935)

0.88
(0.825–0.924)

0.885
(0.832–0.927)

0.89
(0.835–0.932)

0.931
(0.887–0.974)

0.025
(0.02–0.036)

XGBoost
Orijinal 0.766

(0.718–0.814)
0.834

(0.791–0.876)
0.925

(0.878–0.958)
0.491

(0.393–0.589)
0.759

(0.698–0.813)
0.791

(0.674–0.881)
0.815

(0.708–0.923)
0.080

(0.062–0.098)

SMOTE-NC 0.898
(0.868–0.929)

0.901
(0.87–0.931)

0.905
(0.854–0.943)

0.891
(0.837–0.932)

0.896
(0.844–0.935)

0.901
(0.848–0.94)

0.94
(0.898–0.98)

0.018
(0.014–0.021)

AdaBoost: adaptive boosting; LightGBM: light gradient boosting; XGBoost: extreme gradient boosting; SMOTE-
NC: Synthetic Minority Oversampling Technique for Nominal and Continuous; PPV: positive predictive value;
NPV: negative predictive value; AUC: area under of the ROC curve; CI: confidence interval.

Figure 2. LightGBM model SHAP annotations.
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Figure 3. AdaBoost model SHAP annotations.

4. Discussion

Sepsis is a critical health condition triggered by an over-activation of the immune
system to maintain its normal function, exceeding its capacity to fight widely disseminated
infections. This pathophysiological state is characterized by an immune system response to
prevent a local infection from having a systemic impact. Sepsis can lead to severe organ
dysfunction and life-threatening complications caused by an excessive immune response.
This complex process involves important factors that determine the clinical course of
sepsis, affecting the ability to control infection and maintain a balanced inflammatory
response [31,32]. Economically, sepsis has serious negative impacts due to high treatment
costs, prolonged hospitalizations, and rehabilitation processes. An increase in sepsis cases
puts financial pressure on health systems, strains hospital resources, and can push intensive
care units to their limits. Globally and in Turkey, sepsis is challenged by expenditures
and resource allocations that negatively impact economic growth. This emphasizes that
sepsis is a significant burden on national economies as well as the health of individuals.
In this context, the development of sepsis prevention strategies and effective treatment
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modalities is critical both to protect the health of individuals and to strengthen economic
sustainability [33]. APACHE II and SOFA are two different clinical scales used to assess
the severity and prognosis of intensive care unit patients. Both are designed to monitor
and guide the treatment of patients in intensive care. The SOFA assesses the function of
various organ systems and is used to identify patients with organ failure. The SOFA score is
based on six different parameters that assess the function of the respiratory, cardiovascular,
hepatic, coagulation, neurological, and renal systems. On the other hand, APACHE II is
a scoring system based on the patient’s physiologic status, chronic health status, and age.
The APACHE II score is used to predict the patient’s mortality risk and includes many
parameters such as the oliguria system, cardiovascular system, neurologic status, and other
physiologic measures. Sepsis is among the leading causes of infection-related deaths, such
as COVID-19, and scoring systems such as SOFA and APACHE II are used to assess the
severity and prognosis of the disease in patients who develop sepsis. Especially in patients
with the severe form of COVID-19, these scoring systems can play an important role in
directing intensive care resources and determining the treatment plan [34–36].

Anticipating sepsis can lower medical expenses and save lives by delaying the onset
of multi-organ failure, decreasing admissions to critical care units, and enhancing patient
outcomes. Therefore, early prediction of sepsis and initiation of treatment is vital to prevent
mortality. Early identification of patients at high risk of sepsis with artificial intelligence
(AI) algorithms can significantly improve health outcomes and treatment processes by
enabling rapid intervention in intensive care units and halting disease progression. In this
study, an artificial intelligence model (XGBoost, LightGBM, AdaBoost) was used to predict
bacterial sepsis classified according to SOFA score. XGBoost has the highest performance
metrics compared to the other two methods, with accuracy, F1-score, sensitivity, specificity,
positive predictive value, negative predictive value, AUC, and Brier score values being
89.8%, 90.1%, 90.5%, 89.1%, 89.6%, 90.1%, 94.0%, and 0.018, respectively. According to the
XGBoost model, the five possible biomarkers that can be used to predict sepsis are age,
respiratory rate (breath/min), oxygen saturation (%), procalcitonin (ng/mL), and positive
blood culture.

Age is an important factor that determines the resistance of individuals to infections.
Advanced age is characterized by a series of changes that often lead to an age-related
weakening of the immune system. Age-related immunosenescence involves a functional
decline in immune cells, which can lead to a reduction in an effective defense mechanism
against infections [37]. With advanced age, the increasing incidence of chronic diseases
(especially diabetes, cardiovascular disease, and chronic renal failure) can reduce the body’s
defense capacity against bacterial infections. This can increase the risk of developing
sepsis. With advanced age, the increasing incidence of chronic diseases (especially diabetes,
cardiovascular disease, and chronic renal failure) can reduce the body’s defense capacity
against bacterial infections. This can increase the risk of developing sepsis [38]. On the other
hand, the decline in the function of many organs such as the heart, lungs, and kidneys with
increasing age can reduce the effectiveness in fighting infections. Affecting these organs can
increase the severity of the sepsis process. Furthermore, in a systematic review of 17 articles,
age was reported to be one of the most important predictors among 194 predictors [39].

Sepsis causes widespread inflammation, leading to increased metabolism and oxygen
demand. This can result in elevated respiratory rate due to increased oxygen needs and
tissue damage. Acidosis from lactic acid accumulation prompts faster breathing to remove
excess acid. Lung damage or hypoxemia can occur, further increasing respiratory rate to
compensate. Additionally, stress responses trigger hormonal release, boosting respiratory
rate. Overall, the elevated respiratory rate in sepsis reflects efforts to combat infection, tissue
repair, and oxygen demand, but it also indicates a serious condition requiring close clinical
assessment, as lung damage and circulatory failure can impede oxygen exchange and
utilization, leading to decreased oxygen saturation [40,41]. During sepsis, the metabolism
of cells can increase, which can lead to acidosis. This can affect oxygen transport and lower
oxygen saturation. Sepsis can often cause low blood pressure (hypotension). Low blood
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pressure can prevent enough blood from reaching the organs in the body, which can lower
oxygen saturation. Therefore, it can be said that regular monitoring of oxygen saturation
levels in a patient with sepsis and adjusting treatment, if necessary, will allow sepsis to be
detected and prevented at an early stage.

Procalcitonin (PCT) is a host-directed biomarker used in the management of sepsis.
PCT levels are used in many clinical situations, such as assessing the severity and extent of
bacterial infections, differentiating sepsis from other inflammatory conditions, monitoring
response to treatment, and managing antibiotic use. PCT levels can help in the early
diagnosis of bacterial infections and in the differential diagnosis of sepsis from other
inflammatory conditions. High PCT levels may indicate the presence of bacterial infections.
Higher PCT levels can often indicate more serious bacterial infections. A further decline
in PCT levels may indicate that the treatment is effective, and the infection is under
control [42]. PCT levels can help manage the start and duration of antibiotic treatment.
High PCT levels may indicate that bacterial infections persist, in which case antibiotic
treatment can continue. However, low PCT levels may suggest that antibiotic treatment is
unnecessary. PCT is considered a more specific marker, especially in bacterial infections.
This may reduce the likelihood of PCT levels being confused with other conditions, such as
viral infections [43,44]. Hence, PCT can be a timely, perfect, and effective diagnostic marker
for sepsis brought on by bacterial infection [45].

There is a strong association between sepsis and positive blood cultures, and they
play a critical role in the diagnosis of sepsis. Blood cultures are used to identify the
causative microorganisms of an infection in the body. Positive blood cultures indicate that
an infection in the body has spread into the bloodstream and bacteria have entered the
blood. Positive blood cultures are also very useful in determining the severity of sepsis
and how widespread the infection is. Different types and amounts of bacteria can affect
the severity of sepsis. Positive blood cultures can also help to identify the source of focal
infection [46–48].

Artificial intelligence studies, that contribute positively to the survival rates and
treatment outcomes of patients by increasing the chances of early diagnosis and intervention
in sepsis prediction, are frequently used in the literature [14,49,50]. However, in the current
study, the performance criterion of the artificial intelligence model used to predict sepsis
was significantly higher than the others. Therefore, XGBoost has a very high performance
in predicting sepsis and the five proposed biomarkers will be very useful in the clinic for
early diagnosis, treatment, and monitoring response to treatment.

5. Conclusions

The tree-based XGBoost algorithm proposed in this study can accurately distinguish
and evaluate sepsis through selected biomarkers. A combination of XGBoost and XAI can
provide a clear interpretation of the global risk estimate for sepsis and allow physicians to
intuitively understand the impact of key biomarkers in the proposed model. As a result,
research in which prediction models are used together with XAI is crucial, especially in
medical applications, as it enhances the transparency and trustworthiness of the model pre-
dictions. It allows healthcare professionals to interpret and validate the model’s decisions,
ultimately aiding in the decision-making process.
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Abstract: Objective: The mortality rate of critically ill patients in ICUs is relatively high. In order to
evaluate patients’ mortality risk, different scoring systems are used to help clinicians assess prognosis
in ICUs, such as the Acute Physiology and Chronic Health Evaluation III (APACHE III) and the
Logistic Organ Dysfunction Score (LODS). In this research, we aimed to establish and compare
multiple machine learning models with physiology subscores of APACHE III—namely, the Acute
Physiology Score III (APS III)—and LODS scoring systems in order to obtain better performance for
ICU mortality prediction. Methods: A total number of 67,748 patients from the Medical Information
Database for Intensive Care (MIMIC-IV) were enrolled, including 7055 deceased patients, and the
same number of surviving patients were selected by the random downsampling technique, for a
total of 14,110 patients included in the study. The enrolled patients were randomly divided into a
training dataset (n = 9877) and a validation dataset (n = 4233). Fivefold cross-validation and grid
search procedures were used to find and evaluate the best hyperparameters in different machine
learning models. Taking the subscores of LODS and the physiology subscores that are part of the
APACHE III scoring systems as input variables, four machine learning methods of XGBoost, logistic
regression, support vector machine, and decision tree were used to establish ICU mortality prediction
models, with AUCs as metrics. AUCs, specificity, sensitivity, positive predictive value, negative
predictive value, and calibration curves were used to find the best model. Results: For the prediction
of mortality risk in ICU patients, the AUC of the XGBoost model was 0.918 (95%CI, 0.915–0.922), and
the AUCs of logistic regression, SVM, and decision tree were 0.872 (95%CI, 0.867–0.877), 0.872 (95%CI,
0.867–0.877), and 0.852 (95%CI, 0.847–0.857), respectively. The calibration curves of logistic regression
and support vector machine performed better than the other two models in the ranges 0–40% and
70%–100%, respectively, while XGBoost performed better in the range of 40–70%. Conclusions: The
mortality risk of ICU patients can be better predicted by the characteristics of the Acute Physiology
Score III and the Logistic Organ Dysfunction Score with XGBoost in terms of ROC curve, sensitivity,
and specificity. The XGBoost model could assist clinicians in judging in-hospital outcome of critically
ill patients, especially in patients with a more uncertain survival outcome.

Keywords: machine learning; postoperative death; prediction model

1. Introduction

As the number of critically ill patients is increasing, the demand for intensive care
units (ICUs) has also substantially increased. Increasing demand for critical care has made
capacity limitations commonplace in ICUs [1]. Critically ill patients admitted to ICUs are
at a high risk of mortality [2]. Previous studies have indicated that the overall mortality
rate was 20.5–43% among patients with an ICU stay, and the most common causes of death
among patients in ICUs were sepsis, cardiac arrest, pneumonia, and cardiac arrhythmia [3].
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Previous evidence has suggested that the severity and extent of disease upon admission to
the ICU are strongly associated with ICU in-hospital mortality [4]. Therefore, the outcome
of ICU patients predicted by multifactorial scores upon admission to the ICU is critical
for long-term treatment and humanistic care [5]. At present, when patients are admitted
to the ICU, they are scored with scales such as the Acute Physiology and Chronic Health
Evaluation III (APACHE III) score, the Logistic Organ Dysfunction Score (LODS), and the
Sequential Organ Failure Assessment (SOFA) [6,7]. Some scales, including SOFA, Systemic
Inflammatory Response Syndrome (SIRS), and APACHE II, have been used to predict
outcomes in critically ill patients and achieved adequate results [8,9].

Machine learning techniques have been widely used in clinics, ranging from diagnosis
to predicting survival outcomes [10,11]. For ICU mortality prediction, the current prognosis
models employ the logistic regression classifier or the single long short-term memory
(LSTM) classifier [12] and single scoring system [13]. However, logistic regression constructs
linear decision boundaries, and therefore, nonlinear problems may have relatively poor
prediction results with logistic regression [14]. Previous research showed that an ensemble
machine learning algorithm could have better prediction performance with Simplified
Acute Physiology Score (SAPSII) and SOFA scores as input variables compared with
logistic regression [15]. The XGBoost algorithm has been used to predict mortality based
on the MIMIC-III database. A study used admission and laboratory variables to construct
an XGBoost model to predict in-hospital mortality among patients with heart failure and
achieved a high AUC of 0.84 [16]. Another study used the XGBoost algorithm to predict all-
cause mortality based on the MIMIC-III database with some acute physiology variables and
chronic conditions and achieved the highest AUC of 0.86 compared with other models [17].

It remains to be seen if we can achieve higher accuracy of survival outcome prediction
by taking each score of both APS III and LODS scoring systems as the input features of
nonlinear classifiers based on an ensemble machine learning algorithm. There were a few
studies that used APS II or LODS to predict mortality in the ICU. A study on assessing the
physiological instability of pediatric intensive care unit patients found that APS III could
be sensitive to small changes in physiological status [18]. A previous study based on the
MIMIC-III database used APS III data as input variables to construct a model to predict
mortality among trauma patients with acute respiratory distress syndrome and found that
the model achieved an AUC of 0.718 [19]. Another study used LODS to predict all-cause
30-day mortality and achieved an AUC of 0.733 among intensive care patients with sepsis
based on the MIMIC-III database. As a result, we chose two kinds of scoring systems to
construct models and achieve higher prediction performance [20]. There are few other
research works that combine two scoring systems to predict mortality in ICUs.

We aimed to integrate the physiology subscores of APACHE III—namely, the APS
III scoring system—and the LODS scoring system, and compare four different machine
learning models (XGBoost [21], logistic regression, SVM, and decision tree) based on the
data of 14,110 patients in the MIMIC-IV database [22] to predict the different performances
of ICU patient mortality.

2. Methods

2.1. Data Source and Population

The study data were taken from the Medical Information Mart for Intensive Care
(MIMIC)-IV database [22]. MIMIC-IV is a large, single-center database with more than
70,000 patients. For this study, we selected 67,748 adult patients with LODS scores and
acute physiology subscores as part of APACHE III scores in the MIMIC-IV database and
performed a retrospective review.

The inclusion criteria were patients admitted to the ICU for the first time who were
older than 18 years. The first ICU admission was considered when a subject had multiple
admissions to the ICU. The exclusion criteria were patients with admission to an ICU
two or more times, patients younger than 18 years, and patients with the same hospital
admission IDs. We did not exclude patients with any diseases, similar to the method used
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in previous studies [23]. Class imbalance is a major problem in ICU datasets, as the number
of deceased patients (7055, 10.4%) is much lower than the number of living patients (60,693,
89.6%). Methods for dealing with datasets with class imbalance include resampling [24,25]
and classifying cost functions [26]. Downsampling is a kind of resampling that entails
decreasing the number of records in the majority class with more samples. We used random
downsampling to randomly select the same number of positive samples as the negative
samples from the original dataset of 60,693 patients [27]. After random downsampling,
a total of 14,110 patients (7055 in-hospital deceased patients and 7055 surviving patients)
were considered in the study. The sample size was sufficiently large, and no sample size
calculation was undertaken. The flow chart of the study is shown in Figure 1. PostgreSQL
was used to extract clinical information, including age, sex, weight, admission type, Lo-
gistic Organ Dysfunction Score (LODS), and Acute Physiology Score III (APS III) on the
PostgreSQL database server (version 10).

 

Figure 1. Flow chart.

2.2. Selection of Variables

The LODS score is based on six different scores, one each for the respiratory, cardiovas-
cular, hepatic, coagulation, renal, and neurological systems. APS III scores include heart rate
score, mean blood pressure score, temperature score, respiratory rate score, PaO2-aadO2
score, hematocrit score, white blood count score, serum creatinine score, urine output score,
blood urea nitrogen score, sodium score, albumin score, bilirubin score, glucose score, acid
base score, Glasgow Coma Scale score, and total APS III score.

2.3. Data Analysis and Model Construction

After employing the random downsampling technique to select surviving patients,
the dataset was partitioned into the training set (70%) and the testing set (30%). After
the completion of the feature engineering, the machine learning algorithms, including
XGBoost, support vector machine (SVM), logistic regression (LR), and decision tree, were
used to construct the models [28]. Receiver operating characteristic (ROC) curve analysis
was considered as a metric to tune model parameters. Grid search and 5-fold cross-
validation [29] were performed for hyperparameter optimization and the construction of
prediction models. The AUCs, sensitivity, specificity, positive predictive rate, and negative
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predictive rate were calculated, and calibration curves [30] were plotted to evaluate the
advantages or disadvantages of the models.

We performed statistical analyses using the sklearn machine learning package (0.24.2),
xgboost package (1.5.0), and shap package (0.40.0) in Python 3.7.4 and R 4.1.0 programs.
The normality of continuous variables was analyzed by the normality test. Continuous
variables with normal distribution were expressed as mean ± standard deviations and
continuous variables with non-normal distribution were expressed as median [IQR]. Cat-
egorical data are shown as numbers (percent). Group comparisons for continuous data
with normal distribution were calculated with Student’s t-test, while continuous data with
non-normal distribution were calculated with the Kruskal–Wallis test, and categorical data
were compared using χ2 or Fisher’s exact test with the tableone package in R 4.1.0. Effects
with p-values smaller than 0.05 were considered significant.

3. Results

The pre- and post-sampling characteristics of the study subjects are presented in
Table 1. The data show significant differences between surviving and in-hospital deceased
patients in terms of admission type, weight, neurological score, cardiovascular score, renal
score, pulmonary score, hematological score, hepatic score, total LODS score in the LODS
scoring system, heart rate score, mean blood pressure score, temperature score, PaO2-
aadO2 score, white blood count score, serum creatinine score, urine output score, blood
urea nitrogen score, blood sodium score, albumin score, bilirubin score, glucose score, acid
base score, Glasgow Coma Scale score, and total APS III score in the APS III scoring system
(p < 0.001). However, there were no statistical differences between surviving and in-hospital
deceased patients in respiratory rate score, hematocrit score, and gender.

Table 1. Baseline data of participants.

Variable (Score)

Dataset before Downsampling Dataset after Downsampling

Survived
(60,693)

Dead
(7055)

p Survived
(7055)

Dead
(7055)

p

Female 1 26,774 (44.1) 3235 (45.9) 0.006 3193 (45.3) 3235 (45.9) 0.488
Age 3 64.37 ± 17.10 71.44 ± 15.23 <0.001 64.25 ± 17.32 71.44 ± 15.23 <0.001

Weight 3 81.48 ± 26.00 77.34 ± 23.89 <0.001 81.08 ± 26.33 77.34 ± 23.89 <0.001
Emergency 1 43,724 (72.0) 6016 (85.3) <0.001 5102 (72.3) 6016 (85.3) <0.001

LODS 2 3.00 [2.00, 5.00] 8.00 [5.00, 11.00] <0.001 3.00 [2.00, 6.00] 8.00 [5.00, 11.00] <0.001
Neurologic 2 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001

Cardiovascular 2 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001
Renal 2 1.00 [1.00, 3.00] 3.00 [1.00, 5.00] <0.001 1.00 [1.00, 3.00] 3.00 [1.00, 5.00] <0.001

Pulmonary 2 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001
Hematologic 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001

Hepatic 2 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001
APS III 2 39.00 [29.00, 52.00] 73.00 [53.00, 95.00] <0.001 39.00 [29.00, 52.00] 73.00 [53.00, 95.00] <0.001

Heart rate 2 1.00 [0.00, 5.00] 5.00 [0.00, 7.00] <0.001 1.00 [0.00, 5.00] 5.00 [0.00, 7.00] <0.001
Mean pressure 2 9.00 [7.00, 15.00] 15.00 [7.00, 15.00] <0.001 9.00 [7.00, 15.00] 15.00 [7.00, 15.00] <0.001
Temperature 2 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001

Respiratory rate 2 6.00 [6.00, 8.00] 6.00 [6.00, 8.00] <0.001 6.00 [6.00, 8.00] 6.00 [6.00, 8.00] 0.001
PaO2-aadO2

2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001
Hematocrit 2 3.00 [3.00, 3.00] 3.00 [3.00, 3.00] 0.670 3.00 [3.00, 3.00] 3.00 [3.00, 3.00] 0.735
White blood

count 2 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] <0.001

Creatinine 2 0.00 [0.00, 3.00] 4.00 [0.00, 7.00] <0.001 0.00 [0.00, 4.00] 4.00 [0.00, 7.00] <0.001
Urine output 2 4.00 [0.00, 5.00] 5.00 [4.00, 8.00] <0.001 4.00 [0.00, 5.00] 5.00 [4.00, 8.00] <0.001
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Table 1. Cont.

Variable (Score)

Dataset before Downsampling Dataset after Downsampling

Survived
(60,693)

Dead
(7055)

p Survived
(7055)

Dead
(7055)

p

Blood urea
nitrogen 2 2.00 [0.00, 7.00] 7.00 [7.00, 11.00] <0.001 2.00 [0.00, 7.00] 7.00 [7.00, 11.00] <0.001

Blood sodium 2 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001
Albumin 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001
Bilirubin 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001
Glucose 2 0.00 [0.00, 3.00] 0.00 [0.00, 3.00] <0.001 0.00 [0.00, 3.00] 0.00 [0.00, 3.00] <0.001

Acid base 2 0.00 [0.00, 2.00] 3.00 [0.00, 9.00] <0.001 0.00 [0.00, 2.00] 3.00 [0.00, 9.00] <0.001
Glasgow Coma

Scale 2 0.00 [0.00, 3.00] 3.00 [0.00, 29.00] <0.001 0.00 [0.00, 3.00] 3.00 [0.00, 29.00] <0.001

Hypertension 1 38,236 (63.0) 4608 (65.3) <0.001 4399 (62.4) 4608 (65.3) <0.001
Ischemic heart

disease 1 20,317 (33.5) 2568 (36.4) <0.001 2307 (32.7) 2568 (36.4) <0.001

Diabetes 1 18,001 (29.7) 2135 (30.3) 0.301 2053 (29.1) 2135 (30.3) 0.136
Chronic

pulmonary
disease 1

15,248 (25.1) 1916 (27.2) <0.001 1721 (24.4) 1916 (27.2) <0.001

Cerebrovascular
disease 1 8919 (14.7) 1630 (23.1) <0.001 1072 (15.2) 1630 (23.1) <0.001

Data are number of subjects (percentage) or median [IQR]. 1 Chi-square test or Fisher’s exact test was used to
compare the percentage between participants between surviving and deceased patients. 2 Kruskal–Wallis test
was used to compare the median [IQR] between surviving and deceased patients. 3 Student’s t-test was used to
compare the mean ± standard deviations between surviving and deceased patients.

For the prediction of mortality in ICU patients (Figure 2), the AUC of the XGBoost
model was 0.918 (95%CI, 0.915–0.922). The AUCs of logistic regression, SVM, and deci-
sion tree were 0.872 (95%CI, 0.867–0.877), 0.872 (95%CI, 0.867–0.877), and 0.852 (95%CI,
0.847–0.857), respectively (Table 2). XGBoost showed better accuracy, sensitivity, specialty,
positive predictive value, and negative predictive value compared with SVM, logistic
regression, and decision tree. The calibration curves of logistic regression and SVM per-
formed better than the other two models in the low and high probability range (0–40%
and 70–100%), while the calibration curve of XGBoost performed better in the medium
probability range of 40–70% (Figure 3). The XGBoost feature importance plot shows that
apart from total LODS score, total APS III score, weight, and age, the three most important
characteristics in predicting ICU mortality were Glasgow Coma Scale score, respiratory
rate score, and acid base score (Figure 4). The SHAP bee swarm plot shows the SHAP value
importance of all features in the XGBoost model (Supplementary Figure S2), and the results
show that in the plot, the Glasgow Coma Scale score, acid base score, and urine output score
were the three most important features in predicting mortality [31]. The hyperparameters
of the models are shown in Supplementary Table S1.

Table 2. AUC, accuracy, sensitivity, specialty, positive predictive value, and negative predictive value
of different models.

Models ROC (95%CI) Accuracy SEN SPE PPV NPV

XGBOOST 0.918 (0.915–0.922) 0.834 0.822 0.846 0.842 0.826
SVM 0.872 (0.867–0.877) 0.789 0.773 0.805 0.799 0.780

Logistic regression 0.872 (0.867–0.877) 0.787 0.756 0.818 0.806 0.771
Decision Tree 0.852 (0.847–0.857) 0.776 0.727 0.825 0.806 0.752
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Figure 2. ROCs of different models.

Figure 3. Calibration curve.
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Figure 4. Feature importance plot of XGBoost.

4. Discussion

Critical illness in the ICU is associated with in-hospital mortality and substantial
economic burden. The in-hospital mortality in ICUs accounts for 20–50% of all in-hospital
deaths [32,33], and the ICU accounts for 22% of the aggregate costs [34] for all hospi-
talizations, or nearly USD 81.3 billion in 2005 [35]. Early aggressive therapy can retard
progression and control disease. However, it is difficult for clinicians to predict which
patients will worsen and to evaluate the risk of not treating patients or if they will respond
to specific therapy. As a result, better prediction models are needed to predict the mortality
risk of critically ill patients in the ICU. Several prognostic scoring systems in ICUs have
been developed to predict the outcome of patients. The advantages of such scoring systems
are that they are easy to measure and interpret and are less prone to measurement and
calculation errors. In this study, we used two prognostic scoring systems (LODS and APS
III, the physiology subscore part of the APACHE III scoring system) as input variables, as
more variables could provide better prediction performance [36,37]. The Logistic Organ
Dysfunction Score (LODS) system is a common and important scoring system. LODS
scores are used to assess six organ or system states and record the worst score within
24 h after admission to the hospital. The organ scoring system assesses for dysfunction of
neurological, cardiovascular, renal, pulmonary, hematological, and hepatic systems [38].
As a weighted system, LODS is summed by six subscores, ranging from 0 to 5, and each
subscore represents an organ or system’s function or state. However, for the respiratory
and hematological systems, the highest score is 3 points, and for the hepatic system, the
highest is 1 point. Since its development in 1996 [39], it has been widely used for assessing
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mortality in ICUs. The Acute Physiology and Chronic Health Evaluation system was
introduced in the early 1980s and has experienced three major revisions [40]. Although the
APACHE II model is old, and new scoring systems have been developed using more recent
cohorts and better features, APACHE II is still widely used in clinical practice [41]. The
APACHE III scoring system was developed in 1991. Compared to the APACHE II scoring
system, APACHE III performs better in terms of correct classification and the AUCs [42].
The APACHE III scores several factors, including clinical complications, vital signs, and
partial blood biochemical examination results [43]. A higher score of LODS or APACHE III
is associated with high mortality in the ICU. Although some studies took APACHE III as
features to establish machine learning models, there is little literature on using LODS or
APS III data as partial input variables at present.

Our study aimed to compare the predictive power mortality between four different
machine learning models using subscores of LODS and APS III in predicting in-hospital
mortality of ICU patients. In the dataset, the mortality rate of ICU patients was 10.4%. Of
the four models, XGBoost showed the best performance in predicting mortality, followed
by SVM, logistic regression, and decision tree. Moreover, calibration curves were plotted to
evaluate the clinical usefulness of different mortality ranges. The results showed that in the
uncertain medium mortality risk range (40–70%), XGBoost was more valuable than logistic
regression and SVM models.

As the most widely used model, logistic regression has been used to diagnose diseases
and predict outcomes. A study based on a Spanish ICU database revealed that a logistic
regression model could achieve an AUC of 0.82 with APACHE III data as input variables,
which showed prediction ability to some extent [36]. Another study based on an American
ICU database found that using APACHE IV data as input variables could achieve high
prediction results [44]. Previous studies found that logistic regression and artificial neural
network (ANN) had similar performance when the sample size was adequate [45]. Al-
though logistic regression could not provide a nonlinear decision boundary, it still achieved
suitable prediction results. However, more studies revealed that, compared with logis-
tic regression, ANN demonstrated a better degree of discrimination in complex clinical
situations [46]. And another research revealed that using ANN to predict early hospital
mortality in acute pancreatitis in MIMIC-III could achieve higher prediction performance
compared with logistic regression [47]. This may be because ANNs have an inherently
flexible nature that suits more complicated interactions between the clinical input variables.
In comparison, logistic regression lacks modeling for complex interactions in clinical issues.
Some studies found that logistic regression had a relatively worse performance in AUCs,
prediction accuracy, or other metrics [36]. Meanwhile, there is research revealing a better
discrimination in predicting ICU mortality using XGBoost and gradient-boosted decision
trees (GBDT) models compared to SVM [48]. However, a better performance using SVM
classification to predict mortality risk for ICU patients with sepsis compared with logistic
regression has also been shown [49]. That might be because, depending on the particular
dataset or subject population, nonlinear classifiers (XGBoost and SVM) could obtain better
predictive performance compared with linear classifiers (logistic regression), which means
researchers need to take practical issues into account and select the optimal model.

Some previous studies used vital signs and laboratory variables available in conven-
tional clinical scoring systems as input features to predict mortality based on the MIMIC-III,
MIMIC-IV, and eICU databases with recurrent neural networks and achieved similar pre-
diction performance [31]. Another study used partial vital signs and Glasgow Coma Scale
scores at different time points after admission to the hospital as input features to predict
mortality based on the MIMIC-III database with a convolutional neural network-based pre-
diction model for multivariate time series [50]. The above studies used SHAP or heatmaps
to interpret the importance or contribution of the models. However, the studies used a
single scoring system as input variables. In contrast, our study selected all subscores of
LODS and APS III scoring systems as input variables, as they were completed within the
first 24 h of admission to ICU [51], and we used SHAP to explore the features’ importance
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following the method employed in previous studies. Additionally, we used the calibration
curve to find the best prediction range of different models. Previous studies showed that
constructing models based on SVM, neural network, and logistic regression with SOFA
scores as input variables to predict ICU mortality all performed well [23]. A study using
APACHE III as variables to construct an XGBoost model based on the MIMIC-III database
showed that XGBoost could perform better in accuracy, sensitivity, specificity, and AUC [52],
and the comparisons between XGBoost and other models (including logistic regression
and multilayer perceptron models) were statistically significant. Our research drew a
similar conclusion, as XGBoost had advantages in accuracy, AUCs, and discrimination
ability compared with SVM, logistic regression, and decision tree. However, among the
population with high mortality probability (more than 70%) and low mortality probability
(less than 40%), the calibration of SVM and logistic regression was better than XGBoost,
while among the population with medium mortality probability (40–70%), XGBoost had
advantages in calibration and discrimination compared with SVM and logistic regression.
As a result, in terms of ROC curve, sensitivity, and specificity, for patients whose prognosis
is difficult to predict by clinical experience, XGBoost performs better.

Although the importance of variables in XGBoost is shown in Figure 4, the recognition
of variables’ importance and mortality in the ICU could not be completely explained.
However, the reason why the variables of weight, age, and APS III total score had high
importance was because the values of the three variables were relatively large compared
with other scores. The three variables of the Glasgow Coma Scale score, respiratory rate
score, and acid base score were the most important variables. The SHAP bee swarm plot
shown in Supplementary Figure S2 showed a similar result, that the Glasgow Coma Scale
score, respiratory rate score, and acid base score were the three most important variables.
As a result, special attention should be paid to these physiological indices. This result is
consistent with previous studies. A study by Daniel found that the Glasgow Coma Scale
score dominates in predicting 30-day mortality in a mixed ICU with admission Sequential
Organ Failure Assessment scores as input variables [53]. Another study revealed that the
Glasgow Coma Scale was more suitable for early in-hospital death assessment among
patients with acute head injury [54]. A study by Piotr found that in multivariate analysis,
the Glasgow Coma Scale score was the most important variable in critically ill surgical and
nonsurgical patients [55]. There are few studies about respiratory rate predicting value for
mortality. A multicenter study developed a machine learning analysis with age, heart rate,
and respiratory rate as input features and found that the two most important prediction
factors were respiratory rate and heart rate [56]. Considering acid base, a study by Anja
found that in the ICU, some acid base imbalance factors (including lactate, base excess, and
pH) were all suitable predictors of mortality [57].

Compared with previous related studies, our study introduced each score in the APS
III and LODS scales to predict mortality in the ICU based on a newly released database
and achieve better prediction performance and used calibration curves to judge the best
prediction range of different patients with different mortality risk. In the SHAP plots of
value importance and feature importance of XGBoost, we explained the most influential
physiological conditions for survival. Clinicians can judge patients’ mortality probability
by whether the patients were at high or low mortality risk.

The strengths of this study rest on several aspects. First, we used the updated MIMIC-
IV database with complex and comprehensive information. Second, relatively novel
machine learning methods were used to replace the traditional logistic regression, and
the results showed better performance of XGBoost methods than the conventional logistic
regression model. Third, better statistical methods were used to replace traditional meth-
ods, such as 5-fold cross-validation to evaluate the model, and the results showed that
XGBoost had better performance. Fourth, we plotted calibration curves and found that
patients with different mortality risks could be assessed with different machine learning
models. In our study based on the MIMIC-IV database, the relatively certain in-hospital
outcome of patients with high or low mortality probability (0–40% and 70–100%) could be
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predicted with a logistic regression model or SVM, while the relatively uncertain survival
outcome of patients with medium mortality probability (40–70%) could be predicted with
XGBoost. Fifth, we used the SHAP bee swarm to explain the importance of all input
features. Additional different machine learning models should be developed, aiming to
predict the outcomes of critically ill patients with different scores.

However, there were also limitations in the present study. First, it was a single-center
retrospective study. Thus, further prospective multicenter studies are needed to validate
the current results. Second, this observational study used the random downsampling
technique to select surviving patients, which might result in some information loss and
potential bias. A better sampling technique or more datasets in order to obtain balanced
datasets can achieve better performance [58].

5. Conclusions

Compared with models with a single scoring system to predict mortality, our models
of data analysis provide strong evidence for the accuracy of predicting mortality in the
ICU with the APS III–LODS-based scoring system. In conclusion, this study showed that
a machine learning method based on XGBoost could perform better than conventional
logistic regression and support vector machine models. The Glasgow Coma Scale, acid base
score, urine output, and respiratory rate should be considered in order to improve clinical
prognosis. The XGBoost model could assist clinicians in judging in-hospital outcome of
critically ill patients, especially in patients with a more uncertain survival outcome.
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