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Preface

For the design and development of packaging structures, simulation technology has been

widely used in the electronic packaging (EP) community. Nevertheless, it has faced some

challenges in ensuring a trustworthy simulation result. In the electronics packaging community,

the design-on-simulation concept has become a trend in the design of advanced packaging, the

optimization of its structure, and the evaluation of the reliability life of these advanced packages,

which is becoming an increasingly popular design trend within the community. In this reprint,

the latest research results of simulation-based technology in advanced packaging are presented in

order to provide an overview of the latest developments in this field. Among the topics covered in

this reprint are the material characterization of electronic packaging, theoretical or empirical study,

modeling, simulation technology, design and validation, AI-assisted design on simulation technology,

and reliability life prediction. Moreover, this reprint also covered the topic of artificial intelligence

and machine learning methods in depth. The focus of some of the studies in this reprint is on

how to combine artificial intelligence/machine learning and finite element simulation to estimate the

reliability life of wafer-level packaging and obtain the best structure combination for the packaging.

Kuo-Ning Chiang

Editor
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Abstract: Several design parameters affect the reliability of wafer-level type advanced packaging,
such as upper and lower pad sizes, solder volume, buffer layer thickness, and chip thickness, etc.
Conventionally, the accelerated thermal cycling test (ATCT) is used to evaluate the reliability life of
electronic packaging; however, optimizing the design parameters through ATCT is time-consuming
and expensive, reducing the number of experiments becomes a critical issue. In recent years, many
researchers have adopted the finite-element-based design-on-simulation (DoS) technology for the
reliability assessment of electronic packaging. DoS technology can effectively shorten the design cycle,
reduce costs, and effectively optimize the packaging structure. However, the simulation analysis
results are highly dependent on the individual researcher and are usually inconsistent between them.
Artificial intelligence (AI) can help researchers avoid the shortcomings of the human factor. This
study demonstrates AI-assisted DoS technology by combining artificial intelligence and simulation
technologies to predict wafer level package (WLP) reliability. In order to ensure reliability prediction
accuracy, the simulation procedure was validated by several experiments prior to creating a large AI
training database. This research studies several machine learning models, including artificial neural
network (ANN), recurrent neural network (RNN), support vector regression (SVR), kernel ridge
regression (KRR), K-nearest neighbor (KNN), and random forest (RF). These models are evaluated in
this study based on prediction accuracy and CPU time consumption.

Keywords: FEM simulation; WLP; AI; machine learning; ANN; RNN; SVR; KRR; KNN; RF; regression
model

1. Introduction

Electronics packaging plays an important role in the semiconductor industry. Cur-
rently, the mainstream electronic packaging structures include heterogeneous packaging,
3D packaging, system-in-packaging (SiP), fan-out (FO) packaging, and wafer-level packag-
ing [1–8]. With the increasing complexity of packaging structures, manufacturing reliability
test vehicles, and conducting ATCT experiments have become time-consuming and very
expensive processes, the design-on-experiment (DoE) methodology for packaging design
is becoming infeasible. As a result of the wide adoption of finite element analysis [9–15],
accelerated thermal cycling tests are reduced significantly in the semiconductor industry,
and package development time and cost are reduced as well. In a 3D WLP model, Liu [16]
applied the Coffin–Manson life prediction empirical model to predict the reliability life of a
solder joint within an accurate range. However, the results of finite element simulations
are highly dependent on the mesh size, and there is no guideline to help researchers ad-
dress this issue. Therefore, Chiang et al. [17] proposed the concept of “volume-weighted
averaging” to determine the local strain, especially in critical areas. Tsou [18] successfully
predicted packaging reliability through finite element simulation with a fixed mesh size
in the critical area of the WLP structure. However, the results of simulation analysis are
highly dependent on the individual researcher, and the results are usually inconsistent
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between simulations. In order to overcome this problem, the present work comparatively
reviews an artificial intelligence (AI) approach in which electronic packaging design using
a machine learning algorithm [19,20]. The use of machine learning for the analysis of
electronic packaging reliability is the best way to obtain a reliable prediction result and
meet the time-to-market demand.

In recent years, AI theory has been widely used in various research domains. Machine
learning involves the use of AI theory combined with big data to guide computers for train-
ing and learning; eventually, a simple AI model with input and output relationships will be
developed to help researchers make design decisions [21–24]. Machine learning [25–28] can
be applied for regression or classification models using either supervised or unsupervised
learning. In this review, because the input datasets are labeled, the learning algorithm for
predicting the reliability life is considered supervised. Several machine learning algorithms
exist, such as artificial neural network (ANN), support vector regression (SVR), K-nearest
neighbor (KNN), kernel ridge regression (KRR), recurrent neural network (RNN), random
forest (RF), and convolutional neural network (CNN).

The ANN is one of the most common machine learning methods. McCulloch and
Pitts [29] proposed ANNs that mimic biological neural structures, using different numbers
of hidden layers and neurons to construct different neural network structures. Denoeux [30]
also explored data classification using a neural network algorithm. In this algorithm, the
data are entered at the input layer and then calculated in the hidden layer. Once the
calculation is completed, the result is shown in the output layer. RNN is a class of ANN
algorithms in which connections between nodes form a directed network along a temporal
sequence, making them more suitable for deep learning [31,32] when a large number of
nonlinear datasets is available [33,34].

SVR, proposed by Cortes and Vapnik [35], is suitable for high-dimensional features,
but it has not suited for a small amount of dataset. The concept of SVR is similar to the
support vector machine (SVM), which is used to solve classification problems. SVM finds
the best classifier by searching the hyperplane with the largest margin [36]. SVR is widely
adopted in many fields, including biological, behavioral research, image analysis, and
medical research [37–39]. Along with SVR, KRR is among the most popular kernel-based
methods. Kernel-based methods are useful for nonlinear structural datasets [40]. KRR is
simpler and faster to train with its closed-form solution, and it can outperform SVR [41].
Non-parametric calibration models eliminate the normality assumption and can represent
almost any type of data, whether they are scattered or follow a certain trend. However, the
models can exhibit only one type of prediction behavior, i.e., they cannot combine local
and general prediction. Local calibration models, such as KNN interpolation, consider
the surrounding neighborhood as input to obtain information about the output [42,43].
KNN is suitable for both classification and regression problems. The KNN classification
output is decided by the nearest neighborhood, which depends on more number of nearest
neighbors belongs to that class, whereas the regression output is decided by the average of
the nearest neighbor value [44,45].

KNN and RF are more suitable for classification tasks; these two algorithms also show
prominent performance for regression tasks. The RF algorithm was proposed in 2001 by
Breiman [46]. An RF is formed by combining multiple classifications and regression trees
(CART); it analyses [47,48] the data features and data distribution to generate multiple
decision trees with different structures and finally summarizes the prediction results of all
decision trees.

The CNN is a machine learning algorithm for image recognition and image classifica-
tion. In 2012, AlexNet, proposed by Krizhevsky et al. [49], achieved the highest accuracy in
the Image Net competition; consequently, the CNN has become a focus in academia and
has developed rapidly [50,51].

This study reviews the use of ANN, RNN, SVR, KRR, KNN, and RF for the reliability
life cycles prediction of WLP. The aim is to learn and establish a regression model for the
relationship between packaging geometries (input) and life cycle (output) results. Before
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the implementation of the above AI algorithms, an AI training database was generated
using a finite element simulation combined with the Coffin–Manson empirical equation
for WLP reliability life cycles prediction, and this standard simulation procedure was
experimentally verified before the generation of the massive simulation database.

The rest of this paper is presented as follows: Section 2 implemented the finite element
method for WLP. Section 3 discusses different types of machine learning models. Section 4
is the result and discussion for the machine learning models, and finally, we ended with
some concluding remarks in Section 5.

2. Finite Element Method for WLP

If the simulation consistently predicts the result of the experiment [52], then the simu-
lation is an experiment; the experimental work can be replaced by a validated simulation
procedure to create a large database for AI training and obtain a small and accurate AI
model for reliability life cycles prediction. Once we obtain the final AI model for a new
WLP structure, developers can simply input the WLP geometries, and then the life cycle
can be obtained. Figure 1 illustrates this procedure.

Figure 1. AI-assisted design-on-simulation procedure.

Because a huge amount of data are required to build the AI training model, this
work used a two-dimensional finite element method (FEM) model for simulation. Before
the database is built, the simulation process must be reliable. This work validated the
simulation results with five WLP test vehicles (Tables 1 and 2). All of the sizes and
specifications for different materials and the mean times to failure of the test vehicles are
presented in the tables (Tables 1 and 2) [53,54]. The simulation method mainly adopted a
fixed mesh size at a critical location, determined through appropriate mechanics concepts,
and an empirical equation was used to validate the reliability life cycles of all test vehicles.
This work used the fixed mesh size of the solder joint at the maximum distance of the
neutral point of the WLP to fix the modeling pattern and simulation procedure, as proposed
by Tsou et al. [18]. As shown in Figure 2, the width and height of the fixed mesh size were
12.5 µm and 7.5 µm, respectively. The solder joint geometry was generated using Surface
Evolver [55].
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Table 1. Dimension of WLP TV1 and TV2.

Material TV1 (mm) TV2 (mm)

Si Chip 5.3 × 5.3 × 0.33 4 × 4 × 0.33
Cu RDL 0.26 × 0.008 0.26 × 0.008

UBM – 0.24 × 0.0086
Cu Pad 0.22 × 0.025 0.22 × 0.025

SBL1 5.3 × 5.3 × 0.0075 4 × 4 × 0.0075
SBL2 0.01 0.004
PCB 10.6 × 10.6 × 1 8 × 8 × 1

Low-k 5.3 × 0.005 4 × 0.005
Ball Diameter (mm) 0.25 0.25

Ball Pitch (mm) 0.4 0.4
Ball Counts 121 100

MTTF (cycles) 318 1013

Table 2. Dimension of WLP TV3, TV4 and TV5.

Material TV3 (mm) TV4 (mm) TV5 (mm)

Si Chip 4 × 4 × 0.33 4 × 4 × 0.33 6 × 6 × 0.33
Cu RDL 0.18 × 0.004 0.2 × 0.004 0.25 × 0.0065

UBM 0.17 × 0.0086 0.19 × 0.0086 0.24 × 0.0075
Cu Pad 0.22 × 0.025 0.22 × 0.025 0.22 × 0.04

SBL1 4 × 4 × 0.0075 4 × 4 × 0.0075 6 × 6 × 0.008
SBL2 0.004 0.004 0.0065
PCB 8 × 8 × 1 8 × 8 × 1 12 × 12 × 1

Low-k 4 × 0.005 4 × 0.005 –
Ball Diameter (mm) 0.18 0.2 0.25

Ball Pitch (mm) 0.3 0.3 0.4
Ball Counts 144 144 196

MTTF (cycles) 587 876 904

Figure 2. The critical mesh size.

In the simulation process, the solder material was a nonlinear plastic material. There-
fore, PLANE182, which has good convergence characteristics and can deal with large
deformations, was used as the solder ball element. This work used PLANE42 for other
components, which had linear material properties. Table 3 presents the list of individual
material properties. The Young’s moduli at different temperatures of the solder joint are
listed in Table 4. Figure 3 shows the stress–strain curve for an Sn–Ag–Cu (SAC)305 solder
joint. The stress–strain curve [56], obtained by tensile testing and the Chabochee kinematic
hardening model, was used to describe the tensile curves at different temperatures. Once
the model is built, boundary conditions and external thermal loading are required for the
WLP simulation.
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Table 3. Material properties of WLP.

Material Young’s Modulus (Gpa) Poisson’s Ratio CTE (ppm/◦C)

Solder joint Temperature-dependent 0.35 25
Silicon chip 150 0.28 2.62

Copper 68.9 0.34 16.7
Low-k 10 0.16 5

Solder mask 6.87 0.35 19
PCB 18.2 0.19 16

Table 4. Temperature-dependent Young’s modulus of SAC solder ball.

Temperature Young’s Modulus (GPa)

233 K 45.74
253 K 42.22
313 K 31.66
353 K 24.62
398 K 16.70

Figure 3. Stress–strain curve for SAC solder.

Electronics packaging geometry is usually symmetrical; therefore, in this study, half
of the 2D structure was modeled along the diagonal, as shown in Figure 4. The X-direction
displacement on each node was fixed to zero owing to the Y-symmetry. To prevent rigid
body motion, the node at the lowest point of the neutral axis, which is at the printed circuit
board (PCB), has all degrees of freedom fixed. The complete finite element model and
the boundary conditions are shown in Figure 5. The thermal loading condition used in
this research was JEDEC JESD22-A104D condition G [57], and the temperature range was
−40 ◦C to 125 ◦C. The ramp rate was fixed at 16.5 ◦C/min and the dwell time was 10 min.
In a qualified design, its mean-cycle-to-failure (MTTF) should pass 1000 thermal cycles.
After the simulation process is completed, the incremental equivalent plastic strain in the
critical zone is substituted into the strain-based Coffin–Manson model [58] for reliable
life cycle prediction. For a fixed temperature ramp rate, this method is as accurate as the
energy-based empirical equation [59,60] but with much less CPU time.

Figure 4. Symmetrical solder ball geometry.
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Figure 5. FEM model boundary condition.

The empirical formula for Coffin–Manson equivalent plastic strain model is shown in
Equation (1):

N f = C(∆ε
pl
eq)
−η

(1)

where N f is mean cycle to failure, C and η are empirical constants, and ∆ε
pl
eq is the incre-

mental equivalent plastic strain. For SAC solder joint, C and η are 0.235 and 1.75 [61,62].
Table 5 presents the predicted reliability life cycles of the WLP structure. The results

show that the difference between the FEM-predicted life cycle and experiment result is
within a small range. Therefore, experiments can be replaced by this validated FEM
simulation to minimize the cost and time. Compared with the experiment approach, this
validated FEM simulation procedure can provide large amounts of data within much less
time and can be effectively used to generate a database for AI training.

Table 5. WLP finite element results for five test vehicles.

Test Vehicle
Experimental

Reliability
(Cycles)

Simulation
Reliability

(Cycles)
Difference

TV1 318 313 −5
TV2 1013 982 −31
TV3 587 587 0
TV4 876 804 72
TV5 904 885 19

3. Machine Learning

Machine learning is an AI methodology that processes huge datasets to guide a com-
puter for training, learning, and finally, building a simple regression model. In this study,
several different machine algorithms were used, including ANN, RNN, SVR, KRR, KNN,
and RF, implemented using the Python language. A supervised regression model, e.g., the
WLP reliability life cycle prediction model, requires both input data (geometry parameters)
and the corresponding output result (life cycles) for machine learning algorithms to build
the final AI model of the WLP package. Once the regression model is established for a new
WLP structure, the designer can simply input the WLP geometries of each component into
the AI regression model to obtain the reliability life of this new WLP. This is a powerful
and reliable technique for new packaging design.

3.1. Establishment of Dataset

The WLP structure consists of several components, including the solder mask, solder
ball, I/O pad, stress buffer layer, and silicon chip, etc. (Figure 6). For illustration purposes,
the four most influential parameters, namely silicon chip thickness, stress buffer layer
thickness, upper pad diameters, and lower pad diameters, were selected to build the AI
model and predict the reliability life cycles of new WLP structures. These four design
parameters were used to generate both training and testing datasets for AI machine learning
algorithms. Tables 6 and 7 show the generated training dataset obtained through FEM
simulation. First, the number of training features generated in this research was 576
(Table 6), and 1296 (Table 7) datasets. For testing, 54 features were selected randomly
from the interpolation of the above training dataset, which can help to build the AI

6
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training model. By increasing the training dataset, AI performance improves; however, the
CPU/GPU time also increases.

Figure 6. WLP geometry structure.

Table 6. Training data 576 of FEM for four input features.

Feature Name Level (mm)

Upper Pad Diameter 0.18, 0.20, 0.22, 0.24
Lower Pad Diameter 0.18, 0.20, 0.22, 0.24

Chip Thickness 0.20, 0.25, 0.30, 0.35, 0.40, 0.45
Stress Buffer Layer Thickness 0.0075, 0.0125, 0.0175, 0.0225, 0.0275, 0.0325

Total Number 576

Table 7. Training data 1296 of FEM for four input features.

Feature Name Level (mm)

Upper Pad Diameter 0.18, 0.19, 0.20, 0.21, 0.22, 0.23
Lower Pad Diameter 0.18, 0.19, 0.20, 0.21 0.22, 0.23

Chip Thickness 0.20, 0.25, 0.30, 0.35, 0.40, 0.45
Stress Buffer Layer Thickness 0.0075, 0.0125, 0.0175, 0.0225, 0.0275, 0.0325

Total Number 1296

3.2. ANN Model

The ANN model is based on the concept of the brain’s self-learning ability, mimicking
the human nervous system to process information. It is a multilayer neural network, as
shown in Figure 7. The model consists of three layers: the input layer, where the data
are provided; the hidden layer, where the input data are calculated; and the output layer,
where the results are displayed [63]. As the numbers of neurons and hidden layers are
increased, the ability to handle nonlinearity improves. However, these conditions may
result in high computational complexity, overfitting, and poor predictive performance.

Figure 7. Schematic diagram of artificial neural network.
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In the above ANN model, al
i is the ith activation element of the lth layer in the hidden

layer. bl
i is bias, al

i is equal to input value times weight W l
ji and add the bias in Equation (2):

zl
i =

n

∑
i=1

wl
jia

l
i + bl

i (2)

From the calculation point of view, at first, the input layer data combined with bias
and weight to obtain some value. The calculated input value, i.e., al

i , is substituted into
activation function, e.g., Sigmoid, to be converted into a nonlinear form as an input of al+1

i
for the next layer.

al+1
i = φ(zl

i) (3)

where the activation function is shown in Figure 8.

Figure 8. Sigmoid activation function.

3.3. RNN Model

RNN is a type of neural network that can model “time-like”-series data, and it com-
monly adopts a nonlinear structure in deep learning. RNN [64,65] works on the principle
that the output of a particular layer is fed back to the input layer to realize a time-dependent
neural network and a dynamic model. Consequently, an ANN with nodes connected in
a ring shape is obtained, as shown in the left half of Figure 9. The ring-shaped neural
network is expanded along the “time” axis, as shown in the right half of Figure 9, where
the “time” step t and the hidden state st can be expressed as a function of the output from
the previous (st−1) “time” steps and previous layers (xt). U, V, and W denote the shared
weights in RNN models during different “time” steps. Generally, the RNN series model
can be divided into four types according to the number of inputs and outputs in given
“time” steps; that is, one to one (O to O), one to many (O to M), many to one (M to O), and
many to many (M to M). To synchronize the input features with the output results, RNN
models can be subdivided into different series models, as shown in Figure 10 [66].

Figure 9. Schematic structure of recurrent neural network.

8
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Figure 10. Different series model for RNN.

3.4. SVR Model

This regression method evolved from the support vector machine algorithm. It
transforms data to high-dimensional feature space and adapts the ε-insensitive loss function
(Equation (4)) to perform the linear regression in feature space (Equation (5)). In this
regression method, the norm value of w is also minimized to avoid the overfitting problem.
In other words, f (X, w), which is the function of the SVR model, will be as flat as possible.
The SVR concept is illustrated in Figure 11. The data points outside the ε-insensitive zone
are called support vectors, and two slack variables, ξi and ξ∗i , are used to record the loss of
each support vector. Thus, the whole SVR problem can be seen as an optimization problem
(Equation (6)).

L(y, f (X)) =

{
0

|y− f (X)| − ε
i f |y− f (X)| ≤ ε

otherwise

}
(4)

f (X) = 〈w, φ(X)〉+ b (5)

minimize 1
2‖w‖

2 + C
1
∑

i=1
ξi + ξ∗i

subject to





yi − 〈w, φ(X)〉 − b ≤ ε + ξi
〈w, φ(X)〉+ b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

(6)

where L(y, f (X)) is the LaGrange function of a single out variable y as a function of n input
variables X using a function f (X). w is the weight parameter, b represents bias, and ∅(X)
is the transformation equation. C is a penalty factor that is used to control the accuracy of
the regression model; if C is set to infinity, it means you are only concerned about accuracy
rather than model complexity.

Figure 11. Schematic diagram of SVR.

The SVR problem can be solved easily as a dual problem, and the kernel function
K
(
xi, xj

)
, which satisfies Mercer’s condition in the objective function, is used. Here, αi and

α∗i are Lagrange multipliers, and data points with positive and non-zero αi and α∗i are
support vectors.

9
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In order to solve the optimization problem, the regression model is built as shown in
Equation (7), where b is the bias of the SVR model.

f (x) =
l

∑
i=1

(α∗i − αi)K(X, Xi) + b (7)

In Equation (7), the term K(X, Xi) is known as the kernel function, and Xi is the
training sample, with X as an input variable. This kernel function should be chosen as a
dot product in the high-dimensional feature space [67]. There are numerous types of kernel
functions. The commonly used kernel functions for SVR are the linear kernel, polynomial
kernel, radial basis function (RBF) kernel, and sigmoid kernel.

All of the kernel functions satisfy Mercer’s condition; however, the regression results
of the kernels vary. Therefore, it is essential to choose the best kernel function for the SVR
algorithm to obtain optimal performance.

3.5. KRR Model

KRR combines ridge regression with the kernel “trick”. This model can learn a linear
function in the space induced by the respective kernel and the dataset. Nonlinear functions
in the original space can be used by the nonlinear kernels. The KRR algorithm also analyzes
several kernels such as the RBF kernel, sigmoid kernel, and polynomial kernel to find the
suitable kernel function for the WLP nonlinear dataset.

The KRR is possibly the most elementary algorithm that can be kernelized to ridge
regression [68]. In this study, a linear function that models the dependencies between the
covariate input variable xiand the response variable yi is found. The classic method is
used to minimize the quadratic cost, as shown in Equation (8). However, for the nonlinear
dataset, the lower-dimensional feature space replaces the higher-dimensional feature space;
that is, Xi → Φ(Xi) . To convert lower-dimensional space to higher-dimensional space,
the predictive model undergoes overfitting. Hence, to avoid overfitting, this function
requires regularization.

C(W) =
1
2∑

i
(yi −WTXi)

2
(8)

where C(W) is the cost function of the weight-decay W and WT is the initial weight required
for the input samples for the KRR model. A simple and effective way to regularize is to
penalize the norm of W. This is called “weight-decay”, and it remains to be determined
how to choose λ that is known as regularizing factor. Another way, the algorithm can be
used cross-validation to avoid over-fitting. Hence, the total cost function becomes

C =
1
2∑

i
(yi −WTXi)

2
+

1
2

λ
∥∥∥W2

∥∥∥ (9)

Equation (9) needs to be minimized. Therefore, the derivative of the equation must be
obtained and then equated to zero.

To optimize the above cost function C, this study introduces Lagrange multipliers into
the problem. Consequently, the derivation step becomes similar to that in the SVR case.
After the optimization problem is solved, the resulting KRR regression model is shown in
Equation (10).

f (x) =
N

∑
i=1

α∗i K(x, xi) (10)

where K
(

x, xi) is the kernel function of the xi training sample with x as the input variable,
and α∗i is the weight of the KRR model and is equal to

α∗i = (K + λI)−1y (11)

10
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Hence, Equation (11) is very simple and more flexible due to introducing kernel
function K, λ is the regularize factor with the identity matrix I, and y is the response
variable. This model can also avoid both model complexity and computational time.

One big disadvantage of ridge regression is that there is no sparseness in the α vector;
that is, there is no concept of support vectors. Sparseness is useful because when a new
example is tested, only the support vectors need to be summed, which is much faster than
summing the entire training set. In SVR, the only source of sparseness is the inequality
constraints because, according to the complementary slackness conditions, if the constraint
is inactive, then the multiplier αi is zero.

3.6. KNN Model

The KNN model is a statistical tool for estimating the value of an unknown point
based on its nearest neighbors [69]. The nearest neighbors are usually calculated as the
points with the shortest distance to the unknown point [70]. Several techniques are used to
measure the distance between the neighbors. Two simple techniques are used in this study:
the Euclidean distance function d(x, y), provided in Equation (12), and the Manhattan
distance function d(x, y), provided in Equation (13).

d(x, y) = ‖x− y‖ =
√

n

∑
i=1

(xi − yi)
2 (12)

d(x, y) =
n

∑
i=1
|xi − yi| (13)

where x = (x1, . . . , xn), y = (y1, . . . , yn), and n is the vector size. The K neighbor point that
has the shortest distance to the unknown point is used to estimate its value using Equation (14).

ŷi =
n

∑
i=1

wiyi (14)

where wi is the weight of every single neighbor point yi to the query point ŷ [71].
The KNN algorithm defined in Equation (14) is the weighted average of the neighbor-

hood. The simplest KNN model is the mean of the contiguity, which is obtained in the case
of uniform weights, where all of the neighbor points have the same effect on the estimation
wi =

1
n . In contrast, when the neighbor points are assumed to have different effects on the

query point estimation, different weights can be applied. The simplest weight function is
provided in Equation (15).

wi =
di

n
∑

i=1
di

(15)

where di is the distance between the unknown point and its neighbor. The weight function
must reach its maximum value at zero distance from the interpolated point, and as the
distance increases, the function decreases [72].

The KNN estimation shown in Equation (14) depends only on the neighbor points;
therefore, it neglects the trend of the whole dataset. However, Equation (15) provides better
KNN estimations because the weighted distance considers a lower number of nearest
values. Finally, this KNN algorithm is more suitable for regression and classification
problems according to the simplest weight function.

3.7. The RF Regression Model

RF is a collection of decision trees. These tree models usually consist of fully grown
and unpruned CARTs.

The structure of the RF regression model is shown in Figure 11. This algorithm creates
an RF by combining several decision trees built from the training dataset. The CART tree

11
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selects one feature from all of the input features as the segmentation condition according to
the minimum mean square error method.

The RF algorithm procedure comprises three steps. In step 1, the bagging method
is used to create a subset that accounts for approximately 2/3 of the total data volume.
In step 2, if the data value is greater than the selected feature value, the data points are
separated to the right from the parent node, otherwise to the left of the parent node
(Figure 12). Afterward, a set of trained decision trees is created. In step 3, the RF calculates
the average value of all decision tree results to obtain the final predicted value.

Figure 12. Schematic diagram of random forest structure.

3.8. Training Methodology

To obtain the best performance and avoid overfitting of the final trained regres-
sion model, several techniques, including data preprocessing (for standardization), cross-
validation (for parameter selection), and grid search (for hyperparameter determination),
were applied during training. The AI regression model was estimated using the method in
the flowchart given in Figure 13.

Figure 13. Methodology flow chart.

3.8.1. Data Preprocessing

The dataset values are not in a uniform range. Hence, before the machine learning
model is developed, the data need to be preprocessed to standardize all of the input
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and output datasets and improve the modeling performance. Several data preprocessing
methods, including min–max scaling, robust scaling, max absolute scaling, and standard
scaling, were used in this study. Hence, of all preprocessing methods, we need to select the
one method that provides the most accurately predicted output from the input dataset.

3.8.2. Cross-Validation

Cross-validation is the most frequently used parameter selection method. The basic
idea of cross-validation is that not all of the dataset is used for training; a part of it (which
does not participate in training) is used to test the parameters generated by the training
set. The training data are trained with different model parameters and verified by the
validation set to determine the most appropriate model parameters. Cross-validation
methods can be divided into three categories: the hold-out method, k-fold method, and
leave-one-out method. Owing to the huge calculation burdens of the hold-out method and
the leave-one-out method, the k-fold method was chosen for this study (Figure 14). After
the choice of data preprocessing method was confirmed, cross-validation was performed
to avoid overfitting of the machine learning model, as shown in Figure 14. The dataset was
divided into 10 parts, and each part acted as either a validation or training set in different
training steps. The validation sets were also used to predict the training results.

Figure 14. Cross-validation model diagram from Round 1 to Round 10.

3.8.3. Grid Search Technique

Grid search is a large-scale method for finding the best hyperparameter to build the
training model. In order to determine the best parameter, the search range value needs
to be set by the model builder. Although the method is simple and easy to perform, it is
time-consuming. Therefore, to reduce the computation time, this work adopted the grid
search technique to find the best hyperparameter as compared to manually searching the
hypermeter, and eventually, the training model was fixed with the above hyperparameters
to run the best AI model.

4. Results and Discussion

This section discusses the outcomes of the different machine learning algorithms used
for the WLP structure design. In this study, we analyzed both the accuracy and CPU
time consumption of the algorithms. Regarding accuracy, the mean absolute error (MAE)
and the maximum absolute error between the FEM-predicted reliability life cycle and the
AI-predicted reliability life cycle of the WLP structure were calculated in this work. We
discuss both the training and testing error analysis for different datasets. Similarly, the
CPU time required for every regression model to predict the WLP structure reliability life is
also discussed. Training datasets comprising 576 and 1296 and a testing dataset comprising
54 WLP geometric combinations were used in this study.

Table 8 presents the ANN regression results for 576 training datasets. As shown
in the table, different numbers of neurons, from 10 to 500, and hidden layers, from 2 to
20, were tested. After the numbers of hidden layers and neurons were tuned, the best
ANN-predicted number of life cycles was calculated. Validated against the FEM results, the
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best MAE of AI prediction was five cycles, and the maximum absolute error was 28 cycles,
with 10 hidden layers and 200 neurons. Similarly, Table 9 presents the ANN regression
results for the training dataset with 1296. From the table, the best MAE was three cycles,
and the maximum absolute error was 18 cycles, with five hidden layers and 500 neurons.
Therefore, the ANN regression model based on the training dataset with 1296 numbers
showed better accuracy than that based on the dataset with 576 numbers. Moreover, the
CPU time performances for both datasets were different (Table 10). The CPU time required
for 576 datasets was 151 s, whereas 235 s was required for 1296 datasets. Thus, although
the dataset with a higher number of features resulted in higher accuracy, the CPU time
was higher.

Table 8. Comparison results of FEM and ANN models on 576 training datasets.

Hidden Layer (2) Hidden Layer (5) Hidden Layer (10) Hidden Layer (20)

Number of
Neurons

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

10 57 148 62 157 65 182 51 138
20 60 164 65 179 14 69 10 60
50 63 159 11 51 8 54 11 67

100 66 173 7 51 5 31 9 40
200 64 173 7 47 5 28 5 40
500 10 62 5 43 7 35 7 46

Table 9. Comparison results of FEM and ANN models on 1296 training datasets.

Hidden Layer (2) Hidden Layer (5) Hidden Layer (10) Hidden Layer (20)

Number of
Neurons

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

10 51 142 47 137 47 125 14 57
20 47 140 47 143 12 50 9 57
50 47 127 22 35 7 42 5 43

100 23 104 6 35 4 24 5 27
200 13 70 4 31 3 22 4 27
500 6 43 3 18 3 20 3 19

Table 10. Comparison of ANN regression result for WLP.

Training Data Set
(ANN) Neuron Number Hidden Layer

Mean
Absolute

Error in Cycle

Maximum
Absolute

Error in Cycle

CPU Time in
Second

576 200 10 5 28 151
1296 500 5 3 18 235

Table 11 presents the results of the RNN regression models for the training dataset
with 576 numbers. The RNN models considered different numbers of neurons and hidden
layers. The best MAE was six cycles, and the maximum absolute error was 37 cycles,
with 500 neurons and five hidden layers. Table 12 lists the RNN regression results for
1296 training datasets. From the table, the best MAE was three cycles, and the maximum
absolute error was 27 cycles. Therefore, the RNN regression model based on the dataset
with 1296 numbers exhibited better accuracy. However, the CPU time (698 s) was higher
than that of the model based on 576 training datasets (173 s; Table 13). Given the above,
the ANN regression model outperformed the RNN regression model in both accuracy and
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CPU time. This implies that the ANN model is more flexible than RNN because of the
RNN model’s complex structure.

Table 11. Comparison results of FEM and RNN models on 576 training datasets.

Hidden Layer (2) Hidden Layer (5) Hidden Layer (10) Hidden Layer (20)

Number of
Neuron

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

10 65 166 61 178 61 159 26 101
20 63 163 62 168 13 54 16 64
50 65 157 29 71 8 57 10 43

100 65 159 12 71 7 37 8 65
200 17 79 8 50 9 53 10 65
500 12 69 6 36 6 37 9 50

Table 12. Comparison results of FEM and RNN models on 1296 training datasets.

Hidden Layer (2) Hidden Layer (5) Hidden Layer (10) Hidden Layer (20)

Number of
Neuron

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

Mean
Absolute
Error in
Cycle

Maximum
Absolute
Error in
Cycle

10 125 355 44 141 11 61 6 44
20 69 215 21 103 10 54 10 57
50 33 154 5 28 4 30 4 30

100 10 51 3 28 4 32 4 32
200 4 36 4 32 6 43 4 32
500 3 27 3 39 159 506 159 506

Table 13. Comparison of RNN regression results for WLP.

Training Data Set
(RNN) Neuron Number Hidden Layer

Mean
Absolute

Error in Cycle

Maximum
Absolute

Error in Cycle

CPU Time in
Second

576 500 5 6 36 173
1296 500 2 3 27 698

Table 14 presents the SVR results for 576 datasets. The table presents the accuracy and
CPU time analysis results for the SVR model considering different kernel functions and
different hyperparameters. The best MAE for the testing data was 13, and the maximum
absolute error was 55 for the RBF kernel-based model. The shortest CPU time was 0.093 s.
For the training dataset with 1296 numbers, the SVR exhibited better accuracy (Table 15).
For this dataset, the best MAE for the testing data was 7.3 cycles, and the maximum
absolute error was 30 cycles.

However, the larger dataset had a higher CPU time requirement. Given the above
SVR results, we can infer that the RBF kernel plays a more important role in obtaining good
SVR performance compared with the sigmoid and polynomial kernel functions.
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Table 14. Comparison results of FEM and SVR models on 576 training datasets.

SVR Kernel Function RBF Kernel Sigmoid Kernel Polynomial Kernel Degree 3

Hyperparameter (C) 2250.97 540.31 2563
Hyperparameter (γ) 0.86 1.7 4
Hyperparameter (ε) 10 10 10
Training Score (R2) 0.996 0.97 0.976

Cross-Validation Score (R2) 0.964 0.936 0.954
Maximum Absolute Error (cycle) Train Data 68 125 142

Mean Absolute Error (cycle) Train Data 10 30 25
Maximum Absolute Error (cycle) Test Data 55 93 94

Mean Absolute Error (cycle) Test Data 13 29 20
CPU Time In Second 0.093 0.119 0.153

Table 15. SVR result comparison.

SVR Training Dataset 576 1296

Hyperparameter (C) 2250.97 3000.51
Hyperparameter (γ) 0.86 2.37
Hyperparameter (ε) 10 10
Training Score (R2) 0.996 0.998

Cross-Validation Score (R2) 0.964 0.981
Maximum Absolute Error (cycle) Train Data 68 46

Mean Absolute Error (cycle) Train Data 10 7.3
Maximum Absolute Error (cycle) Test Data 55 30

Mean Absolute Error (cycle) Test Data 13 8
CPU Time In Second 0.093 6.00

Table 16 presents the KRR results for 576 training datasets. The table presents the
accuracy and CPU time analysis for different kernel functions with hyperparameters used
in the KRR algorithm. The best MAEs for the training and testing datasets were 8.4 and
12.2 cycles, respectively, for the model with the RBF kernel function. Moreover, the KRR
model with the RBF kernel function required a short CPU time (0.093 s). The KRR model
with the larger dataset showed better performance (Table 17). The best MAE of the test
data was 5.6 cycles, and the maximum absolute error was 24 cycles for the training dataset
with 1296. However, the CPU time was higher than that for the training dataset with
576 numbers (Table 18). Similar to the SVR results, the KRR results also show that the RBF
kernel exhibited better accuracy and CPU time than the sigmoid and polynomial kernel
functions. The KRR algorithm outperformed the SVR model in terms of accuracy and CPU
time. Meanwhile, the ANN outperformed the RNN, SVR, and KRR in terms of accuracy.
However, KRR and SVR outperformed ANN and RNN in terms of CPU time, owing to the
usage of more hidden layers and a greater number of neurons are used in ANN and RNN.
The KNN results are shown in Table 19. The table presents the accuracy of KNN in terms of
the Euclidean and Manhattan distances versus the number of nearest neighbors (K) used in
this algorithm for 576 training datasets. The best MAE and maximum absolute error were
18.2 and 72 cycles with the Manhattan distance when the K value was 9. From Table 19, the
algorithm performs better in terms of the Manhattan distance than the Euclidean distance
under the same K value. Similarly, Table 20 shows the results of KNN based on the dataset
with 1296 numbers. From Table 20, the best MAE and maximum absolute error were 7.5
and 23 cycles, respectively, with the K value as 3. Table 21 compares the cases in which the
weight as the uniform is used with the Euclidean distance and the weight as the distance is
used with Euclidean distance. From the table, the case of the weight in terms of distance
showed better MAE, and maximum absolute error than the case of the uniform weight is
used for the KNN model of a WLP structure. With the increase in the number of training
datasets from 576 to 1296, the model accuracy improved, whereas the CPU times remained
similar, i.e., 0.03 and 0.034 s (Table 22). Table 23 compares the results of RF regression for
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the two training datasets. From the table, the MAE for the test data was 26.3 cycles for the
1296 dataset and 36 cycles for the 576 datasets. Therefore, the increase in the number of
training datasets improved the accuracy. However, the CPU time was higher for the larger
training dataset (Table 23).

Table 16. Comparison results of FEM and KRR models on 576 training datasets.

KRR Kernel Function RBF Kernel Sigmoid Kernel Polynomial Kernel Degree 3

Hyperparameter (α) 0.01 8.16 0.1
Hyperparameter (γ) 1 0.09 3.9

Maximum Absolute Error (Cycle) Train Data 57 149 75
Mean Absolute Error (Cycle) Train Data 8.4 38.7 18.9

Maximum Absolute Error (Cycle) Test Data 39 84 57
Mean Absolute Error (Cycle) Test Data 12.2 25.4 17.9

CPU Time In Second 0.093 0.117 0.157

Table 17. Comparison results of FEM and KRR models on 1296 training datasets.

KRR Kernel Function RBF Kernel Sigmoid Kernel Polynomial Kernel Degree 3

Hyperparameter (α) 1 ×e−10 3 ×e−9 1 ×e−9

Hyperparameter (γ) 0.19 0.02 2
Maximum Absolute Error (Cycle) Train Data 40 46 107

Mean Absolute Error (Cycle) Train Data 5.3 7.2 16
Maximum Absolute Error (Cycle) Test Data 24 29 45

Mean Absolute Error (Cycle) Test Data 5.6 7 14.5
CPU Time In Second 0.422 1.495 0.787

Table 18. KRR result comparison.

KRR Training Dataset 576 1296

Hyperparameter (α) 0.01 1 ×e−10

Hyperparameter (γ) 1 0.19
Maximum Absolute Error (Cycle) Train Data 57 40

Mean Absolute Error (Cycle) Train Data 8.4 5.3
Maximum Absolute Error (Cycle) Test Data 39 24

Mean Absolute Error (Cycle) Test Data 12.2 5.6
CPU Time In Second 0.093 0.422

Table 19. Comparison results of FEM and KNN models on 576 training datasets.

Number Nearest
Neighbor (K)

Euclidean Distance Manhattan Distance

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle

1 53.7 172 63 172
2 59.3 128 56.9 124
3 38.2 115 37.9 83
4 28.9 81 28.1 81
5 25.5 74 24.2 66
6 27.6 71 25.6 67
7 22.3 71 21.4 63
8 21.6 77 20.5 77
9 18.9 83 18.2 72

10 21.4 81 18.7 77
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Table 20. Comparison results of FEM and KNN models on 1296 training datasets.

Number Nearest
Neighbor (K)

Euclidean Distance Manhattan Distance

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle

1 2626.37 172 26.3 74
2 18.2 55 14.3 51
3 13 46 7.55 23
4 20.2 54 11.62 41
5 17.8 43 11.15 51
6 14.5 44 11.86 44
7 12.7 37 13.87 52
8 11.5 38 13.78 42
9 11.4 28 11.93 41

10 13.7 36 11.02 42

Table 21. KNN result comparison with different weights.

Number Nearest
Neighbor (K)

Weight as Uniform with Euclidean Weight as Distance with Euclidean

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle

9 2618.9 8374 18.2 72

Table 22. KNN result comparison with different datasets.

Training
Dataset(KNN)

Nearest Neighbor
Value (K)

Mean Absolute Error
in Cycle

Maximum Absolute
Error in Cycle CPU Time in Second

576 9 18.2 72 0.03
1296 3 7.5 23 0.034

Table 23. RF result comparison with different datasets.

Random Forest Training Dataset 576 1296

Random State 1 1
Number of Tree 81 81

Maximum Absolute Error (Cycle) Train Data 56 28
Mean Absolute Error (Cycle) Train Data 12 6.3

Maximum Absolute Error (Cycle) Test Data 133 103
Mean Absolute Error (Cycle) Test Data 36 26.3

CPU Time In Second 3.5 4

Finally, error analysis and CPU time analysis were conducted for the different machine
learning algorithms used to model the WLP structure. Figure 15 shows the MAE analysis
with several AI algorithms for the 576-feature training dataset. From the figure, the ANN
model exhibited the smallest error, i.e., 4, whereas the RF model exhibited the highest
error, i.e., 35.7. The other AI model errors were close to that of the ANN model. Similarly,
Figure 16 shows the MAE results for several AI algorithms with 1296 training datasets.
From the Figure 16, the ANN model had the lowest MAE, i.e., 2, whereas the RF model
had the highest error, i.e., 26.4, and the MAEs of the other AI models were close to that of
the ANN model.
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Figure 15. MAE analysis vs. AI model for 576 training datasets.

Figure 16. MAE analysis vs. AI model for 1296 training datasets.

Furthermore, the CPU times required by the different AI algorithms for the WLP
structure were investigated. Figure 17 presents the CPU time analysis results for different
AI models based on the 576- and 1296-feature training datasets.

From Figure 17, for the 576 training dataset, the KNN model required the lowest CPU
time (0.03 s), whereas the RNN model required the highest (174 s). The CPU times required
by the RF, SVR, and KRR models were close to that of the KNN model. Similarly, for the
1296 training dataset, the KNN model required the least CPU time (0.034 s), whereas the
RNN model required the highest CPU time (699 s). Again, the CPU times required by
the RF, SVR, and KRR models were close to that of the KNN model. The ANN and RNN
models required more CPU times than the KRR, SVR, KNN, and RF models because of the
usage of more neurons and hidden layers to estimate the WLP lifetimes.

Eventually, it also makes a comparison between all the above algorithms as per the
MAE in cycle and CPU time consumption for different training datasets, which is from
500 to 9000 datasets. Figure 18 shows the MAE in cycle vs. different training datasets for
all the above models. Figure 18 demonstrates the increase in the training dataset with the
decrease in the testing error for all the above algorithms. From all the algorithms, ANN,
RNN, SVR, and KRR testing errors are very close to each other. However, KNN and RF
accuracy performance are not as good as other algorithms because these two algorithms
are more suitable for classification purposes. Similarly, Figure 19 shows the CPU time
analysis with different training datasets for all the above AI models. From Figure 19, it can
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be seen that CPU time increases with the increase in the training dataset. ANN and RNN
required more CPU time due to the usage of more neurons and more hidden layers. The
SVR algorithm also required more CPU time as compared to KRR, KNN, and RF algorithms
due to the usage of more hyperparameters with the grid search technique to establish the
best hyperparameter.

Overall, the use of AI models may have a major impact on the electronic packaging
industry. However, the result of the study confirms that a validated FEM solution procedure
is crucial for generating reliable training datasets and that increasing the number of design
features increases the CPU time needed to build the AI model for the WLP structure.

Figure 17. CPU time vs. AI algorithms for 576 and 1296 training datasets.

Figure 18. Mean absolute error vs. training dataset for different AI algorithms.
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Figure 19. CPU time vs. training dataset for different AI algorithms.

5. Conclusions

The machine learning algorithms used a large database generated by a validated FEM
procedure for training analysis and obtained a structural reliability life cycle regression
model for WLP. These AI regression models can predict the reliability life cycle of WLP
structures when given the WLP geometry as the input. In terms of accuracy, the MAE
between FEM and AI was less than 10 life cycles, which is acceptable, and the AI training
CPU time consumption of several AI algorithms was small. The ANN algorithm exhibited
the best accuracy, whereas the RF regression algorithm exhibited the lowest accuracy,
presumably because RF is designed for classification purposes. Other algorithms such as
KRR and SVR also showed good accuracy owing to the usage of the RBF kernel function.
However, the KRR model slightly outperformed the SVR algorithm in terms of accuracy
because of the use of fewer hyperparameters and lower model complexity. KNN is more
suitable for classification purposes; nonetheless, the KNN regression model also exhibited
good accuracy for the WLP structure database.

The study also investigated the CPU time required for training the above-mentioned
AI algorithms to obtain a final regression model for predicting the reliability life of the
newly designed WLP structure. The KNN, KRR, and RF regression models required less
than 10 s, whereas the ANN, RNN, and SVR regression models required 150 to 1800 s.
These times are very low compared with those required by FEM modeling and simulation,
which can range from several hours to several days.

It is known by the electronic packaging community that the experiment-based design
procedure may take 8 months to a year to complete one run of the WLP test vehicle fabri-
cation and the ATCT test; this has become unacceptable for todays’ advanced packaging
development. Based on AI/machine learning algorithms and validated finite-element-
based simulation technology, this research developed an AI-assisted design-on-simulation
technology that can effectively and accurately predict the reliability life cycle of various
geometries of WLPs. In addition, after obtaining the AI-trained model of the WLP, devel-
opers only need to input geometric data of the new WLP, then the reliability life cycle can
be obtained within one second. Therefore, WLP structure optimization becomes feasible
because the reliability prediction of any geometric combination of WLP can be completed
in a few seconds. The AI-assisted design-on-simulation technology can also be applied
to other packaging types such as system-in-packaging, heterogeneous, fan-out, WLP, and
3D packaging.
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Abstract: This study attempts to investigate the warpage behavior of a flip chip package-on-package
(FCPoP) assembly during fabrication process. A process simulation framework that integrates
thermal and mechanical finite element analysis (FEA), effective modeling and ANSYS element death-
birth technique is introduced for effectively predicting the process-induced warpage. The mechanical
FEA takes into account the viscoelastic behavior and cure shrinkage of the epoxy molding compound.
In order to enhance the computational and modeling efficiency and retain the prediction accuracy
at the same time, this study proposes a novel effective approach that combines the trace mapping
method, rule of mixture and FEA to estimate the effective orthotropic elastic properties of the coreless
substrate and core interposer. The study begins with experimental measurement of the temperature-
dependent elastic and viscoelastic properties of the components in the assembly, followed by the
prediction of the effective elastic properties of the orthotropic interposer and substrate. The predicted
effective results are compared against the results of the ROM/analytical estimate and the FEA-
based effective approach. Moreover, the warpages obtained from the proposed process simulation
framework are validated by the in-line measurement data, and good agreement is presented. Finally,
key factors that may influence process-induced warpage are examined via parametric analysis.

Keywords: flip chip package on package; finite element analysis; viscoelastic behavior;
process-induced warpage; trace mapping; effective modeling

1. Introduction

In recent years, there has been explosive and continuous growth in the consumer
market for various smart products and Internet of Things (IoT) products, as well as the
developing requirements of 5G communication, artificial intelligence (AI), and autonomous
vehicles. Advanced packaging technology like flip chip packaging [1], wafer level packag-
ing [2], and flip chip chip-scale packaging (FCCSP) [3,4] was introduced to achieve high
I/O density, excellent electrical performance and miniaturization, and thus is commonly
used in high-end smart chips in recent years. However, the physical limitations of Moore's
law [5] make it difficult for electronic packaging to continuously shrink and functionally
improve, prompting the development of new packaging technologies. Among the many so-
lutions, the system-in-package (SiP) for heterogeneous integration is the current alternative,
and is one of the most feasible methods for “More than Moore” or even “Beyond CMOS”.

SiP technology may have a two-dimensional (2D) planar configuration, a three-
dimensional (3D) vertical stacking configuration, or an integrated (hybrid) configuration.
3D packaging technology can be categorized into package stacking, like package-on-
package (PoP) and package-in-package (PiP), wire-bonding [6], and through silicon via
(TSV)-based 3D IC stacking [7]. In addition to high I/O quantity and miniaturization,
further requirements of multi-functionality have aroused the development of the flip chip
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package-on-package (FCPoP) technology. This packaging technology has attracted a great
deal of attention from the semiconductor packaging industry due to its compelling fea-
tures including heterogeneous integration capability, high electrical performance, high
bandwidth, low power consumption, small form factor, low cost, etc., leading to wide
potential applications, such as high-performance application CPUs. To date, research on
FCPoP has been exceptionally limited. Among the limited literature, the focus was placed
on packaging construction [8,9]. For example, Hsieh et al. [9] proposed a PoP technology
with the flip chip structure for mobile device applications, which can be a bare die PoP
packaging technology, a molded laser PoP packaging technology, or a silicon interposer
substrate PoP technology to achieve thickness and warpage reduction.

Reliability and yield are the two most important issues in microelectronics assem-
bly [2]. Process-induced warpage during fabrication is one of the root causes for the poor
assembly reliability and yield [10–12] Although the bottom layer structure of the FCPoP
assembly employs a mature flip chip packaging technology, it is still indispensable to stack
an interposer as a bridge to connect to the memory, potentially causing a more serious
mismatch of the coefficients of thermal expansion (CTE) of the different materials. The
excessive CTE mismatch together with high process temperatures may induce considerable
residual stress/strain, which will generate not only serious warpage but also throughput
loss. Therefore, to effectively master and control the process-induced deformations of
the assembly is the key to the success of the technology. Compared with FCPoP, there
have been many studies in the past on the warpage behavior of FCCSPs [3,12]. It was
found that viscoelastic behavior of the molded underfill material would contribute to
their warpage performance. In addition, the substrate or interposer is also a crucial factor
dominating the warpage behavior. To suppress the warpage of packages, substrates with
a core material have been widely used. As portable devices become thinner, so do the
package size and substrate, coreless substrates have recently become increasingly popular
in electronic packaging [3]. However, a lack of rigid core material for structural support
may cause the warpage to be even more sensitive and pronounced.

This research aimed to establish a process simulation framework for predicting the
warpage behavior of an FCPoP assembly during fabrication. The viscoelastic behavior and
volumetric shrinkage of the epoxy molding compound (EMC) [11,12] were included in
the process modeling. The FCPoP consisted of one bottom orthotropic coreless substrate
and one top orthotropic core interposer, each of which comprised several copper (Cu)
circuit layers of multi-material and multi-scale structures and complex geometric features.
These layers may have a significant influence on process-induced warpage because of
the high modulus and CTE of Cu. Thus, in order to offer an accurate prediction, these
Cu circuitries need to be accurately modeled in the modeling. However, because of their
high geometric and structural complexity, efficiently and thoroughly modeling, these Cu
circuit layers presents great challenges. In order to greatly improve the computational and
modeling efficiency while accommodating the need for good prediction accuracy, a novel
effective approach was proposed to effectively simulate the global thermo-mechanical
behavior of the orthotropic coreless substrate and core interposer. The effectiveness of the
proposed effective approach was demonstrated by comparing the predicted effective elastic
properties with the results of other effective approaches. The proposed process simulation
model was validated using in-line warpage measurement data. Finally, parametric analysis
is performed to assess the influence of several material and geometry parameters on the
process-induced warpage of the FCPoP.

2. Structure and Fabrication Process of FCPoP

The research vehicle was an FCPoP assembly, as shown in Figure 1, that was primarily
composed of an FCCSP package, an EMC, a core interposer, and Cu core solder balls
(CCSBs). The main structure of the FCCSP package included a silicon chip, an underfill, Cu
pillar bumps, and a coreless substrate. The FCCSP package usually is used for high-end
processors. In addition, the core interposer was applied to facilitate the connection with the
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HBM for heterogeneous integration, the CCSBs were utilized to connect the bottom FCCSP
and the core interposer, and the EMC was used to protect the solder balls. To minimize
the package profile, a three-layer 100 µm embedded trace substrate (ETS) was applied, as
schematically depicted in Figure 2, which mainly included two solder mask (SM) protective
layers, two prepreg (PP) dielectric layers, and three metal (Cu) layers, with the circuitries
filled with either SM or PP material. The chip was 9.36 mm in length, 8.76 mm in width,
and 70 µm thick. The chip was connected to the coreless substrate using 2500 Cu pillar
bumps, which were 40 µm in length, 70 µm in width and 58 µm in height. The gap between
the chip and coreless substrate was filled with an underfill via the capillary action. The top
layer was stacked on a 90 µm thick two-layer core interposer. In the FCPoP assembly, there
were a total of 550 CCSBs with a diameter of 190 µm. Finally, the EMC was filled between
the substrate and interposer to form an FCPoP assembly with a length and width of 14 mm
and a thickness of 500 µm. Figure 3 describes the main fabrication process steps; i.e., the die
bonding process (steps 1–3), underfill cure process (steps 3–6), interposer bonding process
(steps 6–9), mold cure process (steps 9–12) and temperature elevation process (steps 12–13),
and also the corresponding process temperatures.
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3. Theoretical Models
3.1. Linear Viscoelasticity

The properties of viscoelastic materials can be divided into elastic and viscoelastic
parts. The elastic part can react immediately and obey Hooke's law when subjected to a
fixed load. Conversely, the viscoelastic part gradually increases the strain (creep) or reduces
the stress (relaxation), and eventually reaches stability. Polymer materials typically show
viscoelastic relaxation behavior [13–16]. The stress relaxation effect is usually dominated
by chemical phenomena at high temperatures for a long period of time. To describe the
viscoelastic relaxation behavior, the generalized Maxwell model is most commonly used. It
is composed of several Maxwell elements and an independent spring combined in parallel.
The time-dependent viscoelastic stress relaxation modulus can be expressed by a Prony
series mathematical representation [11]:

E(t) =
n

∑
k=1

Ek exp
(
− t

ςk

)
+ E∞ (1)

where n is the number of Maxwell elements, Ek denotes the modulus of each Maxwell
element, E∞ represents the relaxed modulus, ςk stands for the relaxation time, and t is the
time. Furthermore, the modulus of each Maxwell element can be described as:

Ek = ckE0 (2)

where ck denotes the weighting factor and E0 represents the unrelaxed modulus, ex-
pressed as

E0 =
n

∑
k=1

Ek + E∞ (3)

Combining Equations (1)–(3) yields:

E(t) = E0

[
c∞ +

n

∑
k=1

ck exp
(
− t

ςk

)]
(4)

The properties of polymer materials, in either a glass or a rubbery state, show a
strong relationship with temperature. The glassy state refers to the polymer material at
a temperature higher than the glass transition temperature (Tg). In contrast, the rubbery
state refers to the polymer material at a temperature lower than Tg. The Young's modulus
and CTE have a large variation during the phase transition state. The time-temperature
superposition (TTS) principle is often applied to depict the time-temperature dependence
of the linear viscoelastic behavior. The TTS principle illustrates that the relaxation curve of
the material's modulus and time (or frequency) at a certain temperature is analogous to the
relaxation curve of the adjacent temperature. The relaxation curve at each temperature,
except the reference temperature, is translated in the logarithmic time domain to form the
relaxation curve of the material at the reference temperature. The value of this translation
highly depends on the temperature, the reference temperature and the properties of the
polymer materials. The TTS principle can be simply expressed as follows:

E(t, T) = E(τ, T0) (5)

where τ stands for the reduced time when T0 < T, which can be derived below:

τ =
∫

tκT(t)dt (6)

In Equation (6), κT is the shift factor of temperature. This parameter can be approxi-
mated by the well-known Williams-Landel-Ferry (WLF) model [17] as:
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log10 κT =
−a1

(
T − Tre f

)

a2 +
(

T − Tre f

) (7)

where Tref is the reference temperature, and a1 and a2 represent the coefficients of the curve
fit. Basically, they are highly dependent on the materials and the reference temperature.

3.2. Linear Elastic Mechanics

Polymer materials, such as EMCs, will exhibit volumetric changes or chemical shrink-
age during the mold cure process due to chemical reactions. In essence, the extent of
volumetric change highly depends on the material’s cure state in an isothermal isobaric
ensemble. Consider that a polymer cube has a length of one-unit side before curing. The
volumetric change (Ṽ) of the unit cube after full curing is written as:

Ṽ ≈ 1− 3∆l (8)

where ∆l is the variation of the unit side length. The corresponding strain due to the
volumetric change εvc can be expressed as:

εvc =
1
3

Ṽ (9)

The total strain of the polymer materials is the sum of the volumetric change-inducted
strain (εvc), elastic strain (εe), and thermal strain (εthermal). According to Hooke’s law, the
relationship between the elastic strain and stress can be written as follows:

{εe} =[B]{w} − {εvc} − {εthermal} (10)

where {w} is the nodal displacement vector and [B] represents the strain-displacement matrix.

4. Numerical Modeling and Material Characterization
4.1. Effective Modeling
4.1.1. The Proposed Effective Method

To effectively capture the process-induced warpage behavior of the FCPoP assembly
relies on a dependable and accurate thermo-mechanical characterization of the core inter-
poser and coreless substrate, consisting of several Cu circuit layers with multi-material
and multi-scale structures and complex geometric features. Accurately and fully mod-
eling them presents great challenges due to the requiring extensive, tedious effort and
cost required. To ease the modeling challenges, the core interposer and coreless substrate
were approximated as an equivalent homogeneous medium and their effective elastic
properties were evaluated by using an effective approach that made use of the powerful
electronic computer-aided design (ECAD) trace mapping (TM) method together with the
rule-of-mixture (ROM) technique and finite element analysis (FEA).

The ECAD TM method enables a more efficient and accurate representation of tiny,
delicate, complex Cu traces, pads and vias surrounded by the PP dialectic material and the
SM protective material on the coreless substrate and core interposer [18]. A flowchart of
the ECAD TM method is shown in Figure 4. It is noted that the Cu circuit layers consisted
of not only Cu traces, pads and vias, but also SM or PP dielectric material. First of all, based
on the ECAD model, a uniform regular background mesh with a significant number of
very fine first-order brick elements was established on each Cu circuit layer of the coreless
substrate and core interposer. Then, the spatially non-uniformly distributed Cu circuitries
in the ECAD model were mapped onto the background mesh to obtain a high resolution
(HR) Cartesian Cu circuit map and a finite element (FE) model. Based on the volume ratio
of Cu and neighboring materials, such as PP or SM on each brick element of the background
mesh, the effective isotropic elastic properties were calculated using an ROM technique,
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by which a complete material property map of the Cu circuit layer was derived (Figure 5).
The benefits of the ECAD TM method were a very uniform regular mesh, flexible mesh
density control and close match to the geometry of the Cu circuitries.
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As soon as the material property map and 3D FE model of the Cu circuit layer
were created, FEA was applied to calculate its effective orthotropic elastic properties.
For modeling simplification, the orthotropic Cu circuit layer could be approximated as
a transversely isotropic material by averaging the effective in-plane elastic properties
and further as an isotropic material by averaging the effective in-plane and out-of-plane
elastic properties. The 3D FE models of the mapped Cu circuit layer, PP dielectric and SM
layers could be combined together to form an integrated 3D FE model of the substrate and
interposer. Finally, the effective orthotropic elastic properties of the substrate and interposer
as a whole could be derived using FEA. It is worth mentioning that the final modeling
step; i.e., approximation of the substrate and interposer as a homogeneous equivalent
continuum, may not be indispensable, since FE modeling of the substrate and interposer
could be directly carried out using the integrated 3D FE model. This effective approach is
hereinafter termed the TM/FEA effective method.

4.1.2. The ROM/Analytical Estimate

The effective in-plane and out-of-plane CTEs of the Cu circuit layers could be also
assessed using an analytical estimate integrated with an ROM method (It is alternatively
termed the ROM/analytical estimate). Specifically, the effective in-plane CTE αx,y of the
Cu circuit layers was evaluated according to the literature [19] using an energy approach,
and the effective out-of-plane CTE αz also was derived based on the work of [19], and also
as presented in [7]:

αz =
E1α1ξ1 + E2α2ξ2

ξ1E1 + ξ2E2
(11)

αx,y = (1 + υ1)α1ξ1 + (1 + υ2)α2ξ2 − αzυ (12)
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where E1(E2), α1(α2), and ξ1(ξ2) are the Young’s modulus, CTE and volume fraction of the
Cu (SM or PP), respectively. In Equation (12), the effective Poisson’s ratio υ can be simply
approximated using ROM as:

υ = υ1ξ1 + υ2ξ2 (13)

where ξ1 and ξ2 are the Poisson’s ratio of the Cu and SM or PP respectively. Likewise, the
effective in-plane elastic modulus Ex,y and out-of-plane elastic modulus Ez of the Cu circuit
layers can be also estimated as:

Ex,y =
E1E2

E1ξ2 + E2ξ1
(14)

Ez = E1ξ1 + E2ξ2 (15)

4.1.3. The FEA-Based Effective Approach

FEA using a detailed fine mesh model could be directly applied to derive the effective
orthotropic elastic properties of the Cu circuit layers. This method can be very effective in
accurately grasping the crucial parameters affecting the effective properties but require a
very tedious, time-consuming and complex procedure to model and simulate the material
models [20]. The method is briefly termed the FEA-based effective approach [7]. The
underlying idea behind this approach is that the elastic responses of the homogeneous
equivalent continuum should be consistent with those of the original continuum.

The effective CTEs of the Cu circuit layers could be simply calculated based on the
strength of the materials,

αi = δi/(∆T)Li (i = x, y, z) (16)

where δi is the thermal deformation, αi(i = x, y, z) stands for the effective CTE in the i-th
direction, ∆T denotes the temperature increment, and Li represents the side length of the
Cu circuit layers in the i-th direction.

In accordance with the generalized Hooke’s law, the stress-strain relationship of an
orthotropic material is expressed as:

εxx =
σxx

Ex
+

υyx

Ey
σyy +

υzx

Ez
σzz (17)

εyy =
υxy

Ex
σxx +

σyy

Ey
+

υzy

Ez
σzz (18)

εzz =
υxz

Ex
σxx +

υyz

Ey
σyy +

σzz

Ez
(19)

γyz =
τyz

Gyz
(20)

γxz =
τxz

Gxz
(21)

γxy =
τxy

Gxy
(22)

where ε(εx, εy, εz) and σ(σx, σy, σz) are the normal strain and stress, respectively, γ(γxy, γyz,
γxz) and τ(τxy, τyz, τxz) represent the shear strain and stress, respectively, and υ(υxy, υyz, υxz)
denotes the Poisson’s ratio. In total, there are nine independent effective elastic constants to be
determined for an orthotropic elastic material, which are Ex, Ey, Ez, υxy, υyz, υxz, Gxy, Gyz, and
Gxz. These constants can be simply derived based on Equations (17)–(22) through FEAs with a
set of different loading and boundary conditions. The rest of the effective elastic constants υyx,
υzy, υzx can be readily derived from the fact that the compliance matrix is symmetric.
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4.2. Process Modeling

In this study, a process simulation framework that incorporated the proposed TM/FEA
effective method, thermal and mechanical FEAs and the element death and birth method in
ANSYS was introduced. Due to symmetry, a quarter of the FCPoP assembly was simulated
via the proposed process simulation framework. Figure 6 reveals the constructed 3D FE
model of the FCPoP assembly, which comprised 193,401 nodes and 185,211 solid elements.
It consisted of the main components of the FCPoP assembly, including a coreless interposer,
a core substrate, an EMC, a silicon chip, solder balls, Cu pillar bumps, and an underfill. The
displacement boundary conditions are set to simulate the symmetry boundary condition,
where the out-of-plane displacement of the nodes on the symmetry planes were constrained.
In addition, the bottom node on the intersecting line of these two symmetry planes was
fixed in the z-direction to prevent rigid body motion.

Materials 2021, 14, x FOR PEER REVIEW 9 of 18 
 

 

 

 

Figure 6. 3D FE model of the FCPoP assembly. 

All the materials in the assembly were assumed to be either linearly elastic and iso-

tropic or orthotropic except the EMC, which was assumed to be linearly viscoelastic. It 

was noteworthy that the temperature dependence of these materials and the effects of 

curing shrinkage of the EMC were also taken into account in this investigation. The tem-

perature-dependent elastic properties of the components in the assembly are character-

ized using a thermal-mechanical analyzer (TMA) (TA Instruments, New Castle, DE, USA) 

and a dynamic mechanical analyzer (DMA) (TA Instruments, New Castle, DE, USA), as 

shown in Figure 7. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Temperature-dependent Young’s modulus (solid line) and CTE (dashed line) of the components: (a) Cu; (b) core 

material; (c) PP; (d) solder mask; (e) EMC; (f) underfill. 

The stress-free temperature of the EMC was defined as its cure temperature. The cur-

ing process of the EMC involved two processes: in-mold cure (IMC) and post-mold cure 

(PMC). Typically, the IMC process applies a lower temperature and a shorter curing time 

to increase the stiffness of the EMC. Subsequently, a PMC process with a higher temper-

ature and a longer duration was utilized to completely cure the EMC. However, during 

the curing, the EMC would experience a volumetric (chemical) expansion or contraction. 

The measured volumetric change data provided by the manufacturer was applied. It was 

reported that the EMC during the curing process from the gel point (where the stiffness 

of the EMC is nearly developed) to a full cure state would cause a 0.09% volumetric 

0

10

20

30

0

20

40

60

80

100

0 100 200 300

C
T

E
(p

p
m

/℃
)

E
(G

P
a

)

Temperature(℃)

0

2

4

6

8

10

15

20

25

30

0 100 200 300

C
T

E
(p

p
m

/℃
)

E
(G

P
a

)

Temperature(℃)

0

5

10

15

20

0

5

10

15

0 100 200 300

C
T

E
(p

p
m

/℃
)

E
(G

P
a

)

Temperature(℃)

0

40

80

120

160

0

1

2

3

4

5

0 100 200 300

C
T

E
(p

p
m

/℃
)

E
(G

P
a

)

Temperature(℃)

0

20

40

60

80

0

5

10

15

20

0 100 200 300

C
T

E
(p

p
m

/℃
)

E
(G

P
a

)

Temperature(℃)

0

40

80

120

0

2

4

6

8

10

0 100 200 300

C
T

E
(p

p
m

/℃
)

E
(G

P
a

)

Temperature(℃)

Chip 
Underfill                 

Substrate 
Cu Pillar Bump   

Interposer 

EMC Solder Ball 

Figure 6. 3D FE model of the FCPoP assembly.

All the materials in the assembly were assumed to be either linearly elastic and
isotropic or orthotropic except the EMC, which was assumed to be linearly viscoelastic.
It was noteworthy that the temperature dependence of these materials and the effects
of curing shrinkage of the EMC were also taken into account in this investigation. The
temperature-dependent elastic properties of the components in the assembly are character-
ized using a thermal-mechanical analyzer (TMA) (TA Instruments, New Castle, DE, USA)
and a dynamic mechanical analyzer (DMA) (TA Instruments, New Castle, DE, USA), as
shown in Figure 7.
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Figure 7. Temperature-dependent Young’s modulus (solid line) and CTE (dashed line) of the components: (a) Cu; (b) core
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The stress-free temperature of the EMC was defined as its cure temperature. The
curing process of the EMC involved two processes: in-mold cure (IMC) and post-mold cure
(PMC). Typically, the IMC process applies a lower temperature and a shorter curing time to
increase the stiffness of the EMC. Subsequently, a PMC process with a higher temperature
and a longer duration was utilized to completely cure the EMC. However, during the
curing, the EMC would experience a volumetric (chemical) expansion or contraction. The
measured volumetric change data provided by the manufacturer was applied. It was
reported that the EMC during the curing process from the gel point (where the stiffness of
the EMC is nearly developed) to a full cure state would cause a 0.09% volumetric shrinkage.
The process modeling for the warpage prediction of the FCPoP assembly during fabrication
closely adhered to the process steps shown in Figure 3.

5. Results and Discussion
5.1. Characterization of EMC Viscoelastic Properties

In this work, a DMA measurement system was applied to conduct the stress relaxation
experiments in the frequency domain through a three-point bending mode. The storage
moduli of the EMC under a 0.5% applied strain over a wide frequency scan ranging
from 0.1 Hz to 100 Hz and a broad isothermal temperature range of 25–260 ◦C with 5 ◦C
increment were derived, and some of the results are shown in Figure 8a. These stress
relaxation storage moduli were further approximated by the Ninomiya–Ferry method [21] as:

E(t) = E′(ω)− 0.4E′′ (0.4ω) + 0.014E′′ (10ω) (23)

where ω = 1/t, E represents the stress relaxation modulus, E′ is the storage modulus, and
E′′ denotes the loss modulus. It is clear that the stress relaxation storage modulus would
have a strong temperature correlation at temperatures neighboring the Tg of the EMC,
which was around 100 ◦C. In addition, the stress relaxation storage modulus near the Tg
showed a great time dependence, and at temperatures lower than 50 ◦C and higher than
200 ◦C exhibited trivial time and temperature correlations.

Materials 2021, 14, x FOR PEER REVIEW 10 of 18 
 

 

shrinkage. The process modeling for the warpage prediction of the FCPoP assembly dur-

ing fabrication closely adhered to the process steps shown in Figure 3. 

5. Results and Discussion 

5.1. Characterization of EMC Viscoelastic Properties 

In this work, a DMA measurement system was applied to conduct the stress relaxa-

tion experiments in the frequency domain through a three-point bending mode. The stor-

age moduli of the EMC under a 0.5% applied strain over a wide frequency scan ranging 

from 0.1 Hz to 100 Hz and a broad isothermal temperature range of 25 °C–260 °C with 

5 °C increment were derived, and some of the results are shown in Figure 8a. These stress 

relaxation storage moduli were further approximated by the Ninomiya–Ferry method [21] 

as: 

( ) ( ) 0.4 (0.4 ) 0.014 (10 )E t E ω E ω E ω  (23) 

where 1/ω t , E represents the stress relaxation modulus, E  is the storage modulus, 

and E  denotes the loss modulus. It is clear that the stress relaxation storage modulus 

would have a strong temperature correlation at temperatures neighboring the Tg of the 

EMC, which was around 100 °C. In addition, the stress relaxation storage modulus near 

the Tg showed a great time dependence, and at temperatures lower than 50 °C and higher 

than 200 °C exhibited trivial time and temperature correlations. 

       

    (a)                                                   (b) 

Figure 8. (a) Stress relaxation storage moduli at different isothermal temperatures; (b) Construction of single master curve and 

its Prony series representation. 

Based on the TTS principle, a single master curve could be constructed by shifting 

these frequency-dependent storage moduli at different temperatures along the time axis, 

as shown in Figure 8b, where the reference temperature was set to the Tg of the EMC. The 

master curve could be well fitted by a Prony series equation using 22 Prony elements; the 

fitted weighting coefficients kc  and the relaxation times kς  are listed in Table 1. The 

corresponding temperature shift factors in logarithmic scale are shown in Figure 9, as a 

function of temperature. These shift factors were further fitted to the curve using the WLF 

model and the curve fitting result is also shown in Figure 9. Clearly, there also was a very 

good fit to these shift factors with the fitted constant values a1 = 208.9 and a2 = 1092.0. 
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and its Prony series representation.

Based on the TTS principle, a single master curve could be constructed by shifting
these frequency-dependent storage moduli at different temperatures along the time axis,
as shown in Figure 8b, where the reference temperature was set to the Tg of the EMC.
The master curve could be well fitted by a Prony series equation using 22 Prony elements;
the fitted weighting coefficients ck and the relaxation times ςk are listed in Table 1. The
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corresponding temperature shift factors in logarithmic scale are shown in Figure 9, as a
function of temperature. These shift factors were further fitted to the curve using the WLF
model and the curve fitting result is also shown in Figure 9. Clearly, there also was a very
good fit to these shift factors with the fitted constant values a1 = 208.9 and a2 = 1092.0.

Table 1. Fitted values of weighting coefficients and relaxation times.

k ςk ck k ςk ck k ςk ck k ςk ck

1 1.0 × 10−16 0.0241 7 1.0 × 10−6 0.0259 13 1.0 × 100 0.0743 19 1.0 × 108 0.0092
2 1.0 × 10−14 0.0128 8 1.0 × 10−5 0.0465 14 1.0 × 101 0.0474 20 1.0× 1010 0.0073
3 1.0 × 10−12 0.0139 9 1.0 × 10−4 0.0796 15 1.0 × 102 0.0233 21 1.0× 1012 0.0052
4 1.0 × 10−10 0.0162 10 1.0 × 10−3 0.0894 16 1.0 × 103 0.0089 22 1.0× 1014 0.0035
5 1.0 × 10−8 0.0169 11 1.0 × 10−2 0.1411 17 1.0 × 104 0.0208
6 1.0 × 10−7 0.0122 12 1.0 × 10−1 0.0948 18 1.0 × 106 0.0150
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5.2. Verification of the Effective Models

To demonstrate the feasibility of the TM technique, a fraction of a Cu circuit layer was
considered as a test vehicle. The fractional Cu circuit layer was modeled using both detailed
FE modeling and the TM technique, and the results are presented in Figure 10. Noticeably,
there was a high agreement between them, indicating that the TM technique could not
only robustly but also precisely distinguish the Cu circuitries from the PP dielectric or
SM material.
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Figure 10. Constructed FE models of a fractional Cu circuit layer using: (a) detailed FE modeling;
(b) TM method.

The effectiveness of the proposed TM/FEA effective method was verified by compar-
ing the predicted effective orthotropic elastic properties of the fractional Cu circuit layer
displayed in Figure 10 with the ROM/analytical estimate and with the FEA-based effective
approach. The latter was considered a benchmark model. It was worth mentioning that
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for simplification, the orthotropic elastic material is simplified as a transversely isotropic
elastic material by averaging the effective in-plane elastic moduli (Ex and Ey) and CTEs (αx
and αy) to be Ex,y and αx,y, respectively. The calculated effective properties are shown in
Tables 2 and 3. These two tables illustrate that the effective elastic moduli and CTEs showed
a strong temperature dependence, where an elevated temperature would considerably
lessen the effective elastic moduli but enlarge the CTEs. Moreover, Table 2 shows that the
calculated effective in-plane and out-of-plane elastic moduli by the proposed TM/FEA
effective method were much more consistent with those of the FEA-based effective method
over the temperature range of 25–260 ◦C, as compared to the ROM/analytical estimate.
On the other hand, the calculated effective in-plane elastic moduli by the ROM/analytical
estimate deviated considerably from those of the other two effective approaches across
the temperature range. Furthermore, a similar result could be also found for the predicted
effective CTEs, as shown in Table 3. Similar to the effective elastic moduli, there is a very
pronounced difference in the effective in-plane CTEs between the ROM/analytical estimate
and the other two effective approaches.

Table 2. Comparison of calculated effective elastic moduli (MPa) using three different approaches.

T (◦C)
FEA-Based TM/FEA ROM/Analytical

Ex,y Ez Ex,y
Diff.
(%) Ez

Diff.
(%) Ex,y

Diff.
(%) Ez

Diff.
(%)

25 40,317 56,033 40,690 0.9 55,377 −1.2 30,951 −23.2 58,444 4.3
50 39,536 54,915 39,899 0.9 54,283 −1.2 30,366 −23.2 57,274 4.3
120 37,088 51,125 37,397 0.8 50,581 −1.1 28,650 −22.8 53,272 4.2
150 36,043 49,614 36,337 0.8 49,102 −1.0 27,874 −22.7 51,688 4.2
200 33,914 46,975 34,202 0.8 46,510 −1.0 26,102 −23.0 48,976 4.3
260 30,122 42,614 30,422 1.0 42,219 −0.9 22,817 −24.3 44,546 4.5

Table 3. Comparison of the calculated effective CTEs using three different approaches.

T (◦C)
FEA-Based TM /FEA ROM/Analytical

αx,y αz αx,y
Diff.
(%) αz

Diff.
(%) αx,y

Diff.
(%) αz

Diff.
(%)

25 11.99 13.76 11.90 −0.8 13.66 −0.7 10.47 −12.6 13.87 0.8
50 12.92 14.62 12.84 −0.6 14.53 −0.6 11.47 −11.2 14.73 0.7
120 15.43 16.90 15.36 −0.5 16.81 −0.5 14.19 −8.1 17.00 0.6
150 16.27 17.58 16.21 −0.4 17.51 −0.4 15.15 −6.9 17.67 0.5
200 18.55 19.82 18.49 −0.3 19.76 −0.3 17.47 −5.8 19.90 0.4
260 20.90 22.03 20.86 −0.2 21.99 −0.2 19.92 −4.7 22.10 0.3

The orthotropic Cu circuit layer was further approximated as a transversely isotropic
material by simply averaging the effective in-plane elastic moduli (Ex and Ey) and CTEs
(αx and αy) as Ex,y and αx,y, respectively. The transversely isotropic material could be
further simplified as an isotropic material through an average of the effective in-plane and
out-of-plane elastic moduli (Ex,y,Ez) and CTEs (αx,y, αz) as Ex,y,z and αx,y,z, respectively.
The feasibility of the three constitutive models, i.e., orthotropic, transversely isotropic and
isotropic, was further examined through FEA of the fractional Cu circuit layer shown in
Figure 10 when subjected to a temperature load from 25 ◦C to 260 ◦C, and the calculated
thermal deformations in the x-, y- and z- directions are displayed in Table 4. For comparison,
the detailed FEA results, serving as benchmark data, are also listed in the table, which
shows that the effective orthotropic model presented the best consistency with the detailed
FEA, followed by the transversely isotropic and isotropic models. This result matched with
mechanical intuition. Accordingly, the effective orthotropic constitutive model was used in
the subsequent warpage process simulation.
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Table 4. Comparison of calculated thermal deformations among three different constitutive models.

Ux
(mm)

Diff.
(%)

Uy
(mm)

Diff.
(%)

Uz
(mm)

Diff.
(%)

Detailed FEA 1.14 × 10−2 - 1.17 × 10−2 - 4.56 × 10−4 -
Orthotropic 1.13 × 10−2 −0.47 1.17 × 10−2 −0.44% 4.58 × 10−4 0.52%

Transversely Isotropic 1.15 × 10−2 1.04 1.15 × 10−2 −1.90% 4.22 × 10−4 −7.52%
Isotropic 1.18 × 10−2 3.96 1.18 × 10−2 0.94% 4.34 × 10−4 −4.84%

5.3. Thermal Analysis of the Interposer Bonding Process

The temperature distribution of the FCPoP assembly during the interposer bonding
process may not be uniform across the assembly due to the uneven applied process thermal
loading, which would cause a more excessive deformation. Thus, prior to conducting the
warpage process simulation, the temperature distribution of the FCPoP assembly in natural
convection during the interposer bonding process was characterized using a 3D transient
heat conduction FEA. The natural convective heat transfer model proposed in [22] and the
standard radiative heat transfer model [23] were applied to depict the natural convective
and radiative surface heat transfer, respectively. According to the process condition, a
preheat temperature was first set on the top and bottom surfaces of the assembly for 4 s,
which were 185 ◦C and 145 ◦C, respectively, followed by a temperature increase up to 245 ◦C
in 10 s on the top surface. The ambient temperature is 25 ◦C. The thermal analysis result
at the end of the process is demonstrated in Figure 11. It is important to note that the Cu
core solder balls were arranged in two to three rows around the periphery of the substrate
and interposer. Evidently, the heat was conducted from the top coreless substrate to the
bottom core interposer mainly by way of these Cu core solder balls; as a result, the part of
the substrate and interposer adjacent to these periphery Cu core solder balls experienced a
higher temperature. In addition, there was a significant temperature non-uniformity and
gradient across the assembly. The characterized temperature distribution was imposed as
a thermal load in the warpage process simulation for a better prediction accuracy.
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5.4. Warpage Process Simulation

The calculated temperature-dependent effective orthotropic elastic properties of the
coreless substrate and core interposer using the TM/FEA effective approach are demon-
strated in Tables 5 and 6, respectively. It was interesting to see that the core interposer was
much stiffer than the coreless substrate across the temperature range; On the contrary, the
CTEs of the coreless substrate tended to slightly greater than those of the core interposer.
The warpage evolution of the FCPoP assembly during the fabrication process is shown
in Figure 12a. It can be clearly observed in the figure that the process-induced warpage
extensively varied with the process steps, and also showed a significant increase after
the die process bonding, underfill curing, and interposer bonding processes. In addition,
the maximum warpage occurred after the interposer bonding process; i.e., at around
653.7 µm, rather than after the fabrication process, i.e., at about 82.6 µm. The reason that
the interposer bonding process created the maximum warpage was the lack of the EMC
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helping to resist the shear force caused by the global CTE mismatch between the substrate
and interposer.

Table 5. Temperature-dependent effective orthotropic elastic properties of the coreless substrate (unit: MPa, ◦C/ppm).

T (◦C) Ex Ey Ez υxy υyz υxz Gxy Gyz Gxz αx αy αz

25 27,279 25,603 20,012 0.3 0.3 0.3 3195 3196 3244 12.6 12.1 6.2
50 26,709 25,039 19,631 0.3 0.3 0.3 3115 3132 3182 13.7 13.2 7.3

120 24,871 23,212 18,531 0.3 0.3 0.3 2846 2944 3001 16.4 16.0 10.7
150 24,011 22,277 18,003 0.3 0.3 0.3 2669 2841 2912 17.4 16.9 12.2
200 22,463 20,721 16,796 0.3 0.3 0.3 2411 2628 2713 19.9 19.2 14.9
260 19,991 18,347 14,604 0.3 0.3 0.3 2122 2285 2358 22.4 21.8 17.7

Table 6. Temperature-dependent effective orthotropic elastic properties of core interposer (unit: MPa, ◦C/ppm).

T (◦C) Ex Ey Ez υxy υyz υxz Gxy Gyz Gxz αx αy αz

25 37,149 37,205 33,475 0.3 0.3 0.3 4636 6028 6023 12.7 12.4 7.2
50 36,423 36,479 32,967 0.3 0.3 0.3 4533 5934 5929 13.4 13.3 7.7

120 33,884 33,940 31,178 0.3 0.3 0.3 4158 5611 5599 14.9 14.9 9.0
150 32,686 32,745 30,183 0.3 0.3 0.3 3930 5477 5445 15.3 15.2 9.6
200 30,904 30,966 27,634 0.3 0.3 0.3 3533 5295 5168 16.8 16.7 11.0
260 28,160 28,218 25,099 0.3 0.3 0.3 3212 4822 4703 18.3 18.2 12.1Materials 2021, 14, x FOR PEER REVIEW 15 of 18 
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Figure 12. Warpage evolution: (a) from die bond to mold cure process; (b) during increasing temperature process.

Figure 12b illustrates the simulated warpages during the increasing temperature
process. For comparison, the in-line warpage measurement data are also listed in Figure 12,
presented as an average value with a standard deviation (SD) (error bar). It was evident
that the simulated warpages over the temperature range of 25–260 ◦C closely followed
the measurement data. The fair difference in warpage between the measurement and
simulation could be attributed to the uncertainty in the measured temperature-dependent
Young's modulus and CTE of the EMC. Additionally, the increased temperature reduced
the warpage probably due to the softening of the EMC when exposed to temperatures
greater than the Tg. The simulated and measured warpage contour plots of the FCPoP
assembly at step 12 (after the mold cure process) are shown in Figure 13. Once again, there
were very consistent results between the simulation and measurement. Table 7 illustrates
the simulated and average measured residual warpages at 30 ◦C and 260 ◦C together with
the smallest and largest values of the measured data shown in the bracket. It is clear that
these simulation data fell in the respective ranges of the measured data, and in addition,
the results of the process simulation were very comparable to those of the measurement,

37



Materials 2021, 14, 4816

where the maximum warpage difference between them was only around 5%. Moreover,
the residual warpage at 30 ◦C is nearly double that found at 260 ◦C, and due to this, the
residual warpage at 260 ◦C was not considered in the subsequent parametric analysis.
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Table 7. Warpage comparison between the simulation and measurement.

Method
Warpage (µm)

30 ◦C 260 ◦C

Simulation 82.6 40.2
Measurement 78.4 (60,89) 42.2 (32,49)

5.5. Parametric Study
5.5.1. Effects of Component CTEs

The influences of the effective CTEs of the EMC, core interposer and coreless substrate
on the warpage of the FCPoP assembly at 30 ◦C were addressed. The parametric results
of the effect of the EMC CTE are presented in Figure 14a. In the parametric analysis, the
effective CTE of the EMC nominally varied from −10% to +10%. The figure shows that
the EMC CTE had a minor impact on the residual warpages due to the relatively rigid
substrate and interposer. Specifically, an increase in the EMC CTE somewhat decreased
the residual warpage. This could be due to an increased EMC CTE reducing its local CTE
mismatch with the core interposer and coreless substrate, thereby leading to a lessened
residual warpage.
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The effects of the effective CTEs of the core interposer and coreless substrate are
investigated, and the parametric results are also displayed in Figure 14a. Note that the
three effective CTEs (αx, αy, αz) shown in Tables 5 and 6 simultaneously underwent a
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±10% variation from the original value. The figure demonstrates that the effective CTEs
had a significant impact on the residual warpage. Specifically, an increase in the effective
interposer CTEs dramatically reduced the warpage, whereas there was a totally opposite
trend for the effective substrate CTEs. This was principally due to the effective CTEs of
the interposer being smaller than those of the substrate. This suggests that the increase in
the interposer CTEs reduced the CTE mismatch with the substrate, thereby leading to a
reduced residual warpage. Likewise, the result of the effects of the effective CTEs of the
coreless substrate can be also explained in the same way.

5.5.2. Effect of Component Orthotropic Elastic Properties

The effects of the effective orthotropic elastic properties of the core interposer and
coreless substrate on the warpage at 30 ◦C were considered. Similar to the parametric
analysis of the effective CTEs, there was a ±10% variation in these 9 independent effective
elastic property data (Ex, Ey, Ez, υxy, υyz, υxz, Gxy, Gyz and Gxz) shown in Tables 5 and 6.
The parametric results are presented in Figure 14b. They indicated that increased effective
elastic properties of the interposer and decreased effective elastic properties of the substrate
would amplify the residual warpage. This was because the core interposer is stiffer than
the coreless substrate due to its possessing greater effective elastic and shear moduli. The
growth of the effective elastic shear and elastic moduli of the interposer tended to result in
a more excessive shear force resulting from the CTE mismatch between the interposer and
substrate, thereby causing a greater warpage. On the other hand, the structural rigidity of
the FCPoP assembly increased with the increase of the effective elastic and shear moduli of
the substrate, which thus led to a reduced warpage. The results totally differed from the
effects of the effective CTEs of the interposer and substrate.

5.5.3. Effect of Component Thickness

The dependence of the warpage at 30 ◦C on the thickness of the core interposer,
coreless substrate and EMC was examined. Similarly, the thickness variation is also
±10% from their original value. Figure 14c illustrates the parametric results, where the
residual warpage would increase both with an increasing interposer thickness and with
a decreasing substrate thickness. The results were very consistent with the effects of the
elastic properties of the interposer and substrate, and the explanation for this is the same
as stated in the pervious section. In the parametric analysis of the thickness effect of the
EMC, parametrizing the EMC thickness would, in the meantime, change the height of the
CCSBs. Before conducting the parametric study of the influence of the EMC thickness,
the height effect of the CCSBs in the assembly without an EMC was first explored. The
parametric study, which is not presented here due to limited space, suggested that the
CCSBs’ height had little impact for the residual warpage. As a result, the parametric
results on the thickness effect of the EMC was barely affected by the CCSBs’ height. The
dependence of the residual warpage on the EMC thickness is also presented in Figure 14c,
which shows that the residual warpage significantly decreased with the EMC thickness.
This can be attributed to the structural stiffness of the assembly substantially increasing
with the EMC thickness, thus resulting in a less residual warpage.

6. Conclusions

This research successfully conducted an effective and robust prediction of the warpage
performance of an FCPoP assembly during the fabrication process through the proposed
process simulation framework. In this framework, the temperature-dependence of the
elastic properties of the components, as well as the viscoelastic behavior and chemical
shrinkage of the EMC were taken into account in this investigation. The temperature-
dependent elastic properties and viscoelastic properties were experimentally characterized.
In order to improve the computational and modeling efficiency while also preserving good
prediction accuracy, a novel effective approach; i.e., the TM/FEA effective method, was
introduced to assess the effective elastic properties of the orthotropic coreless substrate
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and core interposer. The effectiveness of the proposed effective method and the proposed
process simulation framework were extensively validated. Finally, a parametric analysis
was performed to investigate the dependence of the process-induced warpage on some
geometric and material parameters.

1. The ECAD TM technique was a very effective and robust way to precisely recognize
the Cu circuitries in the PP dielectric or SM material.

2. The DMA results indicated that the storage modulus of the EMC showed great time
and temperature dependence particularly at temperatures near its Tg.

3. Both the predicted effective elastic moduli and CTEs of the substrate and interposer
turned out to have a negative and a positive temperature coefficient, respectively.

4. The orthotropic constitutive assumption was shown to provide the most accurate
prediction of the thermal deformations of the substrate and interposer, as compared
to the transversely isotropic and isotropic ones.

5. The thermal analysis results showed that there was a significant temperature non-
uniformity across the assembly during the interposer bonding process, which could
potentially affect the process-induced warpage.

6. The proposed TM/FEA effective method and proposed process simulation frame-
work were found to be very effective in predicting the effective elastic properties of
the substrate and interposer and the process-induced warpage of the FCPoP assem-
bly, respectively.

7. The process-induced warpage of the FCPoP assembly experienced a dramatic change
over the process steps, and more importantly, the maximum warpage occurred after
the interposer bonding process rather than the end of the fabrication process. In
addition, the warpage at 30 ◦C was roughly twice that of 260 ◦C.

8. The warpage decreased with temperature during the increasing temperature process,
probably because the EMC material became softened at temperatures greater than
the Tg.

9. Among the parameters considered in the parametric analysis, the substrate CTE had
the greatest influence on the warpage at 30 ◦C, followed by the interposer CTE and
the EMC thickness; moreover, a smaller substrate CTE, a larger interposer CTE and a
thicker EMC brought about a reduced warpage.
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Abstract: With the increasing demand for electronic products, the electronic package gradually
developed toward miniaturization and high density. The most significant advantage of the Wafer-
Level Package (WLP) is that it can effectively reduce the volume and footprint area of the package.
An important issue in the design of WLP is how to quickly and accurately predict the reliability
life under the accelerated thermal cycling test (ATCT). If the simulation approach is not adopted,
it usually takes several ACTCs to design a WLP, and each ACTC will take several months to get
the reliability life results, which increases development time considerably. However, simulation
results may differ depending on the designer’s domain knowledge, ability, and experience. This
shortcoming can be overcome with artificial intelligence (AI). In this study, finite element analysis
(FEA) is combined with machine learning algorithms, e.g., Kernel Ridge Regression (KRR), to create
an AI model for predicting the reliability life of electronic packaging. Kernel Ridge Regression (KRR)
combined with the K-means cluster algorithm provides a highly accurate and efficient way to obtain
AI models for large-scale data sets.

Keywords: Wafer-Level Package (WLP); Finite Element Analysis (FEA); machine learning; Kernel
Ridge Regression (KRR); Cluster algorithm

1. Introduction

Reliability is an important topic in the field of electronic packaging. Solder ball reliabil-
ity analysis is the key to measuring the reliability of WLP. One main cause of package failure
is thermal-induced CTE (coefficient of thermal expansion) mismatch between different
materials. In ATCT, the first solder ball failure usually occurs at the diagonal corner of
the package; this is the location with the largest distance from the neutral point (DNP).
Although traditional ATCT tests can obtain the reliability life result, they are too time-
consuming (usually several months). The long experiment time leads to decreased R&D
efficiency, which cannot meet the market demand.

Finite element simulation is a feasible approach to reducing design cycles and time.
Lin et al. [1] built a finite element model for WLP. The reliability life can be obtained
by substituting incremental equivalent plastic strain into the Coffin–Manson model, and
simulation and experiment results are in good agreement. Because the element mesh
size in the upper right corner of the solder ball is crucial to the final simulation result,
Cheng [2] built a 3D finite element model for an area array type package. In this study, we
will build our simulation database for machine learning by following our lab modeling
experiences [1–4].

For FEA, different researchers may lead to different results. Moreover, it still takes time
(several days or weeks) to get the simulation results. Therefore, it is necessary to introduce
machine learning to lower the training threshold of simulation, unify the results, and reduce
development time. Machine learning can be divided into supervised and unsupervised
learning based on the presence or absence of artificially assigned labels. Among the two
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algorithms involved in this study, kernel ridge regression (KRR) is supervised learning, and
cluster analysis is unsupervised learning. This study uses the K-means algorithm for cluster
analysis. Arthur and Robert [5] first proposed the idea of ridge regression (RR) to solve the
multicollinearity of the data dimension. With the evolutionary progress of the algorithm,
Kernel Ridge Regression (KRR) was proposed in 2000 by Cristianini and Shawe-Taylor [6].
The essence of KRR is the combination of RR and kernel tricks. K-means clustering was
proposed by Macqueen [7]. It can perform data partitioning to reduce the workload of
KRR; this would significantly reduce the training CPU time of the prediction model.

On the other hand, many researchers have used different types of algorithms to
effectively predict the reliability of solder balls, such as Artificial Neural Network (ANN) [8],
Support Vector Regression (SVR), Random Forest (RF) [9], and so on. In this study, we
compare KRR, and KRR with K-means (K-K) with other algorithms in performance error
and training CPU time.

2. Fundamental Theory
2.1. Reliability Life Prediction Model

The reliability life prediction method of the packaging structure can be mainly divided
into two types: the energy-based method and the strain-based method. The Coffin–Manson
model [10] used in this research belongs to the strain-based method. The incremental
equivalent plastic strain is the key to evaluating the solder’s reliability life. The expression
of the Coffin–Manson model is shown in Equation (1).

N f = α
(

∆ε
pl
eq

)φ
(1)

N f is the reliability prediction life (cycle), and ∆ε
pl
eq is the incremental equivalent plastic

strain. α and φ are empirical constants. In this study, α and φ are 0.235 and −1.75.

2.2. Ridge Regression (RR)

We often use the Least Squares Method (LSM) to solve regression problems in statistics.
It is a mathematical optimization modeling method that finds the best function match of
the data by minimizing the sum of squares of the error. The squared loss function of LSM
is shown as Equation (2).

L(β) = (y− Xβ)T(y− Xβ) (2)

In Equation (2), X is the matrix expression of the data input. The row of the matrix is
the number of data samples. The column of the matrix is the data dimension. y is the output.
β is the equation coefficient. In LSM, our target value β̂ is the value that minimizes L(β).
To do this, we need to solve the partial derivative of L(β) to β. The resulting expression of
β̂ is shown as Equation (3).

β̂ =
(

XTX
)−1

XTy (3)

Training models using LSM enables them to fit known sample points quickly and
accurately, but it may cause overfitting. In Equation (3), when there is multicollinearity in
the data dimension, XTX is no longer a full-rank matrix, and it would be challenging to
solve its inverse matrix directly. RR is an algorithm proposed to solve this problem. RR is
essentially an improved LSM. By giving up the unbiasedness of the LSM, a more realistic
mathematical model is obtained at the expense of losing some information and reducing
accuracy. Equations (4) and (5) show the new loss function and target value expression.

J(β) = (y− Xβ)T(y− Xβ) + k‖β‖2 (4)

β =
(

XTX + kI
)−1

XTy (5)
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In Equations (4) and (5), k is the ridge parameter, and I is a matrix of normal numbers.
As k increases, the undetermined coefficient β would stabilize, and we were looking for the
smallest k value under the condition that the coefficient is stable.

2.3. Kernel Ridge Regression (KRR)

KRR [11–13] combines RR and kernel tricks. In many cases, it requires mapping data
into high-dimensional space to improve machine learning performance. It is found that
the same effect can be achieved directly by defining a function K. This function K is called
the kernel function. There are three commonly used kernel functions: polynomial kernel,
sigmoid kernel, and radial basis function (RBF) kernel, shown as Equations (6)–(8). As we
can see, there are three parameters in the polynomial kernel. The sigmoid kernel has two
parameters; the RBF kernel only has one parameter, which is its strength. The amount of
calculation of KRR is significantly reduced by utilizing the RBF kernel. In this study, we
focus on the RBF kernel.

K
(
xi, xj

)
=
(
γ
〈

xi, xj
〉
+ b
)d (6)

K
(

xi, xj
)
= tanh

(
γ
〈

xi, xj
〉
+ b
)

(7)

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(8)

In Equations (6)–(8), xi and xj represent two data, 〈·, ·〉 represents dot product, and
‖xi − xj‖ is the Euclidean distance between xi and xj.

We need to write the RR solution as an inner product to introduce the kernel func-
tion. Converting the original formula to a particular form requires the matrix inversion
lemma [14].

Consider a general partitioning matrix M =

(
E F
G H

)
. Assuming that both E and H

are invertible, we have:

(
E− FH−1G

)−1
= E−1 + E−1F

(
H − GE−1F

)−1
GE−1 (9)

(
E− FH−1G

)−1
FH−1 = E−1F

(
H − GE−1F

)−1
(10)

∣∣∣E− FH−1G
∣∣∣ =

∣∣∣H − GE−1F
∣∣∣
∣∣∣H−1

∣∣∣|E| (11)

We use Equation (10) to simplify the optimal solution of β. Let H−1 , k−1 I, F, XT ,
G , −X, E , I, then we obtain a new expression shown as Equation (12).

β =
(

XTX + kI
)−1

XTy = XT
(

kI + XTX
)−1

y (12)

Now, it is very close to kernelization. Our remaining task is to predict y∗ when a
new sample point x∗ comes in. We write β in the form of vector summation, and let
α ,

(
kI + XTX

)−1y. Then, we rewrite Equation (12) to Equation (13).

β = XTα =
N

∑
i=1

αixi (13)

We can find that β is just a weighted average of all samples. Thus, the predicted value
for a new sample is:

y∗ = βTx∗ =
N

∑
i=1

αixi
Tx∗ =

N

∑
i=1

αiK(x∗, xi) (14)
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The predicted value is the weighted average of the inner product of the new sample
and all the old samples. After converting the original formula to the inner product form,
we selected different kernel functions to simplify our calculations.

2.4. K-Means Clustering

K-means [15] is an algorithm that implements cluster analysis based on the principle
of minimum distance. The K value must be given in advance, representing the number of
cluster centers. For each iteration, we need to calculate the mean of the sample points in
the cluster to update the cluster center. K-means clustering divides the n samples into k
sets so that the within-cluster sum of squares (WCSS) is the smallest. The formula we use is
shown in Equation (15). The updated formula for cluster centers is shown in Equation (16).

E = ∑k
i=1 ∑p∈Ci

dist(p, ci)
2 (15)

mi(ci) = ∑n
j=1 pj/n (16)

In Equation (15), ci is the cluster center, p is one sample point, and dist(p, ci) is the
Euclidean distance from p to the cluster center.

3. WLP FEA Model Validation

It is assumed that the CTE difference between the substrate and the wafer is ∆α. The
DNP of the solder ball is L. After selecting material parameters, ∆α is fixed. Solder balls
farther from the chip’s center have a greater impact on deformation mismatch due to
thermal loading. In the case of WLP, the thermal loading failure usually occurs at the
outermost diagonal solder ball of the package. This study uses five WLP test vehicles
(TV: WLP1-5) [16–18] and one fan-out WLP (FO-WLP, [19]) for FEA model validation.
The structure component sizes, materials, and mean-time-to-failure (MTTF) reliability life
are shown in Tables 1–3 [17–19]. This research uses these data to verify our simulation
results. In order to reduce the computational time cost, this study adopts a simplified
two-dimensional finite element model and sets the following basic assumptions: each
structure is with homogeneous and isotropic materials; the temperature of the structure
is uniform; residual stress is not considered; and all the contact surface between different
materials is considered as perfect bonding.

Table 1. Dimension of WLP test vehicles [17,18].

WLP-1 WLP-2 WLP-3 WLP-4 WLP-5

Silicon Chip 5.3×0.33 (mm) 4.0×0.33 (mm) 4.0×0.33 (mm) 4.0×0.33 (mm) 6.0×0.33 (mm)

Solder Ball Diameter 250 µm 250 µm 180 µm 200 µm 250 µm

Pitch 400 µm 400 µm 300 µm 300 µm 400 µm

Number of Solder Ball 121 100 144 144 196

MTTF (Cycles) 318 1013 587 876 904

Considering that the package body is a symmetric structure, semi-diagonal two-
dimensional models were used in this study to simplify the modeling and finite element
analysis processes; examples can be seen in Figures 1–4, and PLANE 182 has been selected
as the element type in ANSYS (Figure 4). The model boundary condition is fixed for all
nodes in the center of the structure in the x-direction. The node at the bottom of the center
of the structure is fixed in the x- and y-direction to avoid rigid body motion.
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Table 2. Dimensions of fan-out WLP [19].

FO-WLP

Packaging Size 14 mm× 14 mm× 0.1 mm

Chip Size 10 mm× 10 mm× 0.1 mm

Molding Compound Thickness 190 µm

Die-attach Film Thickness 10 mm× 10 mm× 0.01 mm

Solder Ball Diameter 250 µm

Pitch 400 µm

Number of Solder Ball 540

MTTF (Cycles) 249

Table 3. Material properties for WLP [17,18].

Material E (GPa) υ CTE (ppm/◦C)

Solder Ball Figure 5 0.35 25

Silicon Chip 150 0.28 2.62

Copper 68.9 0.34 16.7

SBL 2 0.33 55

Low-k 10 0.16 5

Solder Mask 6.87 0.35 19
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Figure 4. FO-WLP and the schematic of critical mesh size.

The FEA model for WLP 1-5 includes the following materials: silicon chip; low-k layer;
stress buffer layer (SBL); redistribution layer (RDL); solder ball; under bump metallurgy
(UBM); copper pad; printed circuit board (PCB); and solder mask. In addition, to further
simplify the 2D model, the actual model simplifies the connection between UBM and the
solder ball. The element mesh size in the upper-right corner of the solder ball would affect
the final simulation result. Based on our previous research experience, the mesh size of this
key position is fixed; it is located on the upper-right corner of the outmost solder ball. The
controlled mesh size in height and width is 7.5 µm and 12.5 µm, and is shown in Figure 4.

Table 3 shows linear elastic material parameters for the WLP model. They are Young’s
Modulus €, Poisson’s Ratio (ν), and CTE. For the solder ball, we use the Chaboche Kinematic
Hardening model (Equation 17) to fit the nonlinear behavior of the solder at different
temperatures, and the obtained fitting parameter table is shown in Table 4. The stress–
strain curve for solder balls in different temperatures in this study is shown in Figure 5 [20].

α =
C
γ

(
1− e−γεpl

)
+ σ0 (17)

where α is the back stress, σ0 is initial yield stress, C is constant for proportional to hardening
modulus, γ is the rate of decrease of hardening modulus, and ∆εpl is increment plastic
strain, individually.

Table 4. Parameters for the Chaboche model.

T (K) σ0 C γ

233 47.64 8894.8 639.2

253 38.87 8573.3 660.0

313 24.06 6011.4 625.3

353 18.12 5804.2 697.7

395 14.31 4804.6 699.9

47



Materials 2022, 15, 3897

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

solder ball. The controlled mesh size in height and width is 7.5 μm and 12.5 μm, and is 

shown in Figure 4. 

Table 3 shows linear elastic material parameters for the WLP model. They are 

Young’s Modulus €, Poisson’s Ratio (ν), and CTE. For the solder ball, we use the Chaboche 

Kinematic Hardening model (Equation 17) to fit the nonlinear behavior of the solder at dif-

ferent temperatures, and the obtained fitting parameter table is shown in Table 4. The stress–

strain curve for solder balls in different temperatures in this study is shown in Figure 5 [20]. 

 � =
�

�
�1 − ��� ���

� + �� (17)

where α is the back stress, σ0 is initial yield stress, C is constant for proportional to hard-

ening modulus, γ is the rate of decrease of hardening modulus, and Δpl is increment plas-

tic strain, individually. 

Table 3. Material properties for WLP [17,18]. 

Material E (GPa)  CTE (ppm/℃) 

Solder Ball Figure 5 0.35 25 

Silicon Chip 150 0.28 2.62 

Copper 68.9 0.34 16.7 

SBL 2 0.33 55 

Low-k 10 0.16 5 

Solder Mask 6.87 0.35 19 

Table 4. Parameters for the Chaboche model. 

T(K) �� � � 

233 47.64 8894.8 639.2 

253 38.87 8573.3 660.0 

313 24.06 6011.4 625.3 

353 18.12 5804.2 697.7 

395 14.31 4804.6 699.9 

 

Figure 5. The stress–strain curve for SAC305 [19,21]. 

Finally, the thermal cycling load [22–26] was applied to our FEA model according to 

the JEDEC JESD22-A104D Condition G, with a temperature range of −40 ℃ to 125 ℃. We 

fixed the ramp rate. It is 16.5 ℃/min, and the dwell time is 10 min. The total time for a 

complete temperature cycle is 40 min. The thermal cycling temperature profile is shown 

in Figure 6. 

Figure 5. The stress–strain curve for SAC305 [19,21].

Finally, the thermal cycling load [22–26] was applied to our FEA model according to
the JEDEC JESD22-A104D Condition G, with a temperature range of −40 °C to 125 °C. We
fixed the ramp rate. It is 16.5 °C/min, and the dwell time is 10 min. The total time for a
complete temperature cycle is 40 min. The thermal cycling temperature profile is shown in
Figure 6.
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After eight cycles, the incremental equivalent plastic strain will be stabilized, and it
can be input to the Coffin–Manson equation to calculate the reliability prediction life of
WLP. The reliability life between experiment and simulation is shown in Table 5. We can
see that the difference between experiment and simulation prediction reliability life falls
within an acceptable range for five test vehicles. Therefore, the WLP simulation models can
be trusted. This study uses a validated simulation procedure and a controlled mesh size, as
well as an automatic model generation technique we developed to create a large database
of different design parameters and use it for machine learning.

Table 5. Reliability comparison for six test vehicles.

Test Vehicles
Experiment

Reliability Life
(Cycles)

Simulation
Reliability Life

(Cycles)

Difference
(Cycles) Difference (%)

WLP-1 318 319 1 0.3

WLP-2 1013 982 31 3.1

WLP-3 587 571 16 2.7

WLP-4 876 804 72 8.2

WLP-5 904 880 24 2.6

FO-WLP 249 248 1 0.4
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4. Machine Learning Prediction Results
4.1. Supervised Learning—KRR

In this study, we select four design parameters that greatly influence the reliability of
WLP in building the database. They are chip thickness (CT), SBL thickness (SBLT), upper
pad diameter (UPD), and lower pad diameter (LPD). Other structure parameters are fixed
as WLP-2. The diagram of structure design parameters is shown in Figure 7.
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The design parameters for different training sets are shown in Tables 6–11.

Table 6. Design parameters for 256 training data.

Design Parameters Parameter Values

UPD 0.18, 0.2, 0.22, 0.24 (mm)

LPD 0.18, 0.2, 0.22, 0.24 (mm)

CT 0.15, 0.25, 0.35, 0.45 (mm)

SBLT 5, 14.17, 23.33, 32.5 (µm)

Total Number of Training Data 256

Table 7. Design parameters for 625 training data.

Design Parameter Parameter Values

UPD 0.18, 0.195, 0.21, 0.225, 0.24 (mm)

LPD 0.18, 0.195, 0.21, 0.225, 0.24 (mm)

CT 0.15, 0.225, 0.300, 0.375, 0.45 (mm)

SBLT 5, 11.88, 18.75, 25.63, 32.5 (µm)

Total Number of Training Data 625

Table 8. Design parameters for 1296 training data.

Design Parameter Parameter Values

UPD 0.18, 0.192, 0.204, 0.216, 0.228, 0.24 (mm)

LPD 0.18, 0.192, 0.204, 0.216, 0.228, 0.24 (mm)

CT 0.15, 0.21, 0.27, 0.33, 0.39, 0.45 (mm)

SBLT 5, 10.5, 16, 21.5, 27, 32.5 (µm)

Total Number of Training Data 1296
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Table 9. Design parameters for 2401 training data.

Design Parameter Parameter Values

UPD 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24 (mm)

LPD 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24 (mm)

CT 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 (mm)

SBLT 5, 9.58, 14.17, 18.75, 23.33, 27.92, 32.5 (µm)

Total Number of Training Data 2401

Table 10. Design parameters for 4096 training data.

Design Parameter Parameter Values

UPD 0.18, 0.189, 0.197, 0.206, 0.214, 0.223, 0.231, 0.24 (mm)

LPD 0.18, 0.189, 0.197, 0.206, 0.214, 0.223, 0.231, 0.24 (mm)

CT 0.15, 0.189, 0.197, 0.206, 0.214, 0.223, 0.231, 0.24 (mm)

SBLT 5, 9.58, 14.17, 18.75, 23.33, 27.92, 32.5 (µm)

Total Number of Training Data 4096

Table 11. Design parameters for 1296 testing data.

Design Parameter Parameter Values

UPD 0.184, 0.194, 0.205, 0.219, 0.226, 0.234 (mm)

LPD 0.184, 0.194, 0.205, 0.219, 0.226, 0.234 (mm)

CT 0.174, 0.221, 0.289, 0.341, 0.379, 0.426 (mm)

SBLT 7.25, 12.55, 17.95, 22.65, 27.35, 30.35 (µm)

Total Number of Testing Data 1296

In Table 11, we randomly pick 100 data as testing data. Five training datasets
(Tables 6–10) are used to train the KRR model separately and use the testing dataset to test
the model’s generalization. This study applies grid search for parameter optimization, and
the data preprocessing is MinMaxScaler. The best model performance for each training set
is shown in Table 12.

Table 12. The performance of the KRR model.

Item
Training Model 256 Training

Data
625 Training

Data
1296 Training

Data
2401 Training

Data
4096 Training

Data

α 0 0.001 0.001 0.001 0.001

γ 1 1688 1969 2 2

Maximum training diff. (%) 0% 3.45% 3.88% 3.31% 3.28%

Average training diff. (cycles) 0 6.23 5.64 5.73 5.58

Maximum testing diff. (%) 3.14% 2.95% 2.26% 2.79% 2.41%

Average testing diff. (cycles) 10.30 7.25 5.70 5.31 5.29

Training CPU time (sec.) 0.2 0.8 7 15 138

We have four criteria for measuring the quality of the model. They are maximum
training difference, average training difference, maximum testing difference, and average
testing difference. The model’s generalizability is the main concern of this research, and
the testing performance of the model is shown in Figures 8 and 9.
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From Figure 8, we can see that the maximum testing difference is very stable; it shows
that our trained model will not overfit. From Figure 9, we can see that the average testing
difference gradually decreases with the increase of training data; this means the accuracy
of the model is increasing. Therefore, we can continue to add training data to improve the
model performance. On the other hand, judging from the growth curve of the training CPU
time, one can conclude that using a larger dataset would cause the model to take a long
time to train. In order to reduce the training time of the model, this study introduces the
K-means algorithm.

4.2. Supervised/Unsupervised Machine Learning—KRR Mixed with K-Means

First, to demonstrate the effectiveness of K-means, a larger training dataset should be
generated. This research mixes five training datasets (Tables 6–10) with 1296 testing data
(Table 11), and removes duplicate data; the final total data is equal to 9601. We randomly
pick 9000 data as training data, and 601 as testing data. When the pure KRR algorithm is
used for training, the total time spent is 1340 s. The specific performance of the model is
shown in Table 13.
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Table 13. The performance of the KRR model with 9000 data.

Item
Training Model

9000 Training Data with 601 Testing Data

α 0.001

γ 1.0

Maximum training difference (%) 2.49%

Average training difference (cycles) 2.33

Maximum testing difference (%) 2.30%

Average testing difference (cycles) 3.24

Training CPU time (sec.) 1340

In Table 13, we can see that the model’s prediction accuracy is further improved. The
average training and testing differences are both under five cycles. Our target now is to
reduce the model training time. Using K-means as the preprocessing step of KRR, the
training data is divided into K clusters. Each cluster corresponds to a sub-model with KRR.
When we input the testing data, the test data uses a K-means model to determine which
cluster it belongs to, and is trained on that particular sub-model. With K = 4, we show the
performance of the K-K model in Tables 14 and 15.

Table 14. The performance of the sub-models.

Item
K Number

1 2 3 4

n 2222 2225 2266 2287

m 145 153 147 156

Maximum training difference (cycles) 25 7 34 26

Average training difference (cycles) 1.88 0.87 2.43 2.03

Maximum testing difference (cycles) 36 4 38 44

Average testing difference (cycles) 4.68 0.98 5.65 4.98

Table 15. The performance of the K-K model in K = 4.

Item
Training Model

9000 Training Data with 601 Testing Data

Maximum training difference (%) 2.10%

Average training difference (cycles) 1.81

Maximum testing difference (%) 3.72%

Average testing difference (cycles) 4.05

In Table 14, “n” represents the number of training data in each cluster; the total data
number is 9000. “m” represents the number of testing data in each cluster; the total data
number is 601. The final maximum difference is the maximum value among all sub-models.
The average training difference is the weighted average. The final training and testing
results are shown in Table 15, and the accuracy is similar to the pure KRR model. In this
study, the focus of the K-K model is the training CPU time. In Table 16 and Figure 10, it can
be seen that as the value of K increases, the training time decreases rapidly.
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Table 16. The performance of the K-K model.

Item
K

4 8 16 24 32

Maximum training difference (%) 2.10 2.45 3.73 3.75 45

Average training difference (cycles) 1.81 2.45 2.91 2.06 2.90

Maximum testing difference (%) 3.72 3.44 3.66 4.57 4.57

Average testing difference (cycles) 4.05 3.69 4.13 3.71 4.47

Training CPU time (sec.) 40 15 9 8 7
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From Figure 10, we can find that the CPU time gradually decreases, and the trend
slows down as the value of K increases. The average difference remains stable; both training
and testing are under five cycles. In addition, a comparison of different machine learning
algorithms using 9000 training data and 601 testing data is presented in Table 17.

Table 17. The comparison of machine learning algorithms.

KRR K-K ANN RF SVR

Maximum training difference (%) 2.49% 4.00% 3.99% 2.61% 3.55%

Average training difference (cycles) 2.33 2.90 3.74 3.77 1.16

Maximum testing difference (%) 2.30% 4.57% 2.89% 6.06% 2.43%

Average testing difference (cycles) 3.24 4.47 4.18 10.24 2.51

Training CPU time (sec.) 1340 7 469 8 1799

In Table 17, the performance of the KRR model and the SVR model is very close in
terms of training time and training error. The K-K hybrid model achieves similar accuracy
as the pure KRR, ANN, and SVR algorithms. However, in terms of training time, it can
reach the level of the RF algorithm, which dramatically improves the training efficiency of
the algorithm.

5. Conclusions

This study, using validated FEA, created five training datasets and one testing dataset
for machine learning. In comparison with FEA, the results indicated that the KRR and
the K-K machine learning algorithms are fast and effective in predicting the reliability
life of WLP. With the increase of training data, the accuracy of the AI model is gradually
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improved. However, as the AI dataset grows, training time will increase dramatically,
making it necessary to reduce the training time. Using a hybrid model combining K-
means and KRR can significantly reduce training time while maintaining similar prediction
accuracy. When K is 32, we can obtain a data prediction model with an average error of
around four cycles, and the overall CPU training time is 7 s, much less than the pure KRR
model’s 1340 s training time. As compared with ANN, RF, and SVR, the K-K model is
undoubtedly fast and accurate.
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Abstract: A metamodeling technique based on Bivariate Cut High Dimensional Model Represen-
tation (Bivariate Cut HDMR) is implemented for a semiconductor packaging design problem with
10 design variables. Bivariate Cut-HDMR constructs a metamodel by considering only up to second-
order interactions. The implementation uses three uniformly distributed sample points (s = 3) with
quadratic spline interpolation to construct the component functions of Bivariate Cut-HDMR, which
can be used to make a direct comparison with a metamodel based on Central Composite Design
(CCD). The performance of Bivariate Cut-HDMR is evaluated by two well-known error metrics:
R-squared and Relative Average Absolute Error (RAAE). The results are compared with the perfor-
mance of CCD. Bivariate Cut HDMR does not compromise the accuracy compared to CCD, although
the former uses only one-fifth of sample points (201 sample points) required by the latter (1045 sample
points). The sampling schemes and the predictions of cut-planes and boundary-planes are discussed
to explain possible reasons for the outstanding performance of Bivariate Cut HDMR.

Keywords: bivariate cut-HDMR; semiconductor packaging; central composite design; R-squared;
relative average absolute error

1. Introduction

Numerous metamodeling techniques (also known as response surface methods, sur-
rogate models, or reduced-order models) have been developed and implemented for
engineering design optimization [1]. Metamodeling includes two parts: generation of
discrete sample points and connection of the discrete sample points. Each metamodeling
technique possesses its own characteristics that can be suited for certain applications.

For a typical engineering system, a metamodel considering up to second-order inter-
actions is often sufficient to describe system responses [2,3]. For example, a metamodeling
technique called central composite design (CCD) has been implemented widely in the
field of semiconductor packaging design community, which uses quadratic polynomial
functions for fitting sample points [4–6]. It was implemented for commercial software
such as optiSLang [7], Design-Expert [8], etc. The CCD metamodeling technique requires
P number of sample points to produce the metamodel for N number of input variables,
defined as [3]:

P = 1 + 2N + 2N (1)

As the number of input variables increases, the computational cost may become
prohibitively high due to an extremely large number of sample points required (this is
the well-known “curse of dimensionality”). This situation will be exacerbated when the
modeling requires a computationally expensive analysis such as time-dependent and
nonlinear analysis that is routinely encountered in complex semiconductor packaging
architectures [9–11].
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In order to build accurate and efficient metamodels for high dimensional input-output
systems, numerous advanced metamodeling techniques such as the high-dimensional
model representation (HDMR) technique [12–14], reduced dimensional polynomial chaos
expansion [15], and active and rank-adaptive tensor regression [16] have been developed
to enhance the efficiency of metamodeling in various engineering fields.

Among these techniques, one family of HDMR, called Cut-HDMR, possesses two
unique practical features: (1) it involves function evaluations only at sample points, and,
more importantly, (2) it determines the number of sample points from a pre-defined func-
tion of the number of input variables regardless of the nature of engineering applications,
i.e., selection of sample points is simple and straightforward [14,17,18]. Based on these
features, numerous metamodeling techniques based on Cut-HDMR have been developed
such as RBF-HDMR [19], Adaptive MLS-HDMR [20], and Kriging-HDMR [21].

HDMR decomposes a multivariate function into multiple lower-order component
functions, based on the hierarchical structure of interaction effects of the input variables.
The high performance of some of the metamodeling techniques based on Cut-HDMR
considering up to second-order component functions (this will be referred to as Bivari-
ate Cut-HDMR) has been confirmed for nonlinear numerical test functions [19,20] and
statistical analysis of multiconductor transmission line networks [22].

The objectives of this paper are (1) to introduce the cut-HDMR to the semiconductor
packaging design community and to help implement the Bivariate Cut-HDMR for those
who are not familiar with the HDMR, and (2) to investigate the performance of Bivariate
Cut-HDMR for a complex semiconductor packaging problem (10 design input valuables).
The result is compared with the performance of CCD, which has been utilized widely in
the semiconductor packaging industry.

2. Background: Bivariate Cut-HDMR

The fundamentals of HDMR are described first. A specific HDMR that uses the
Dirac measure located at a cut center, called Cut-HDMR, is presented together with its
approximated version, Bivariate Cut-HDMR, which considers up to second-order compo-
nent functions.

2.1. High-Dimensional Model Representation (HDMR)

The concept of high-dimensional expansion was implemented originally to estimate
the sensitivity of a function with respect to arbitrary groups of variables [23]. Later, the
term, HDMR, was first introduced by Rabitz and Alis [12]. They detailed and completed
the general foundations of HDMR.

The HDMR expansion is performed based on the interaction effects of input variables.
The term “interaction” employed here means that more than one variable act together to
affect the performance function. This is distinctly different from the term “correlation”
employed in statistics, which represents whether and how strongly a pair of random
variables are related.

A general form of HDMR is defined as [12]:

y(x) = y(x1, x2, . . . , xN)

≡ y0 +
N
∑

i=1
yi(xi) + ∑

1≤i<j≤N
yij
(

xi, xj
)
+ · · · + ∑

1≤i1<···<il≤N
yi1i2 ...il

(
xi1 , xi2 , . . . , xil

)
+ · · · + y12...N(x1, x2, . . . , xN)

(2)

where y(x) and the bold letter, x, represent the performance function and the vector of
input variables, (x1, x2, . . . , xN), respectively; y0 is a constant representing the mean of the
performance function, which is called zeroth-order effect or mean effect; yi(xi) represents
the effect when the variable xi acts independently on y(x), which is called first-order effect
or main effect; yij

(
xi, xj

)
is the effect on y(x) when the variables xi and xj act together,

which is called second-order effect or bivariate interaction effect. It should be noted that
yij
(
xi, xj

)
excludes the main effects of xi and xj as well as the mean effect. The subsequent
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terms indicate the higher order interaction effects of more variables acting together on y(x).
The last term y12...N(x1, x2, . . . , xN) represents the residual influence.

Each effect in the general form of HDMR is called a component function. The general
form of component functions can be expressed as [12]:

y0 ≡ My(x)
yi(xi) ≡ Miy(x)− y0

yij
(
xi, xj

)
≡ Mijy(x)− yi(xi)− yj

(
xj
)
− y0

...
y12...n(x) ≡ y(x)− y0 −∑

i
yi(xi)−∑

ij
yij
(
xi, xj

)
− . . .− ∑

12...N
y12...N(x1, x2, . . . , xN)

(3)

The functions in the above equation are defined as:

My(x) =
∫

Kn y(x)dγ(x)

Mi1i2 ...il y(x) =
∫

Kn−l y(x)

[
∏

j/∈{i1,...,il}
dγj
(
xj
)
]

(4)

where Kn = {(x1, x2, . . . , xn): 0 ≤ xi ≤ 1, i = 1, 2, . . . , n} is an n-dimensional unit cube and
γ is a measure [24]. A measure is a function that quantifies the size of sets. A measure
assigns a non-negative real number or +∞ to subsets of a certain set. Each distinct measure
embodies a different way to assess how big a set is.

There is no unique decomposition of the model output y(x1, x2, . . . , xN); all HDMR
expansions follow the general form in Equation (2). The choice of a particular HDMR
expansion depends on the application and the nature of any constraints in sampling input
variables. For example, for the uncertainty analysis of a model output (e.g., an analysis
of the variance of an output), the component functions in the HDMR should be chosen to
represent the independent contributions of input variables to the overall uncertainty of the
output. It is known as ANOVA-HDMR [12,25].

The ANOVA-HDMR is typically carried out by multi-dimensional Monte Carlo inte-
gration due to its complexity. The Monte Carlo integration needs a large number of sample
points to attain good accuracy. It is impractical for the advanced semiconductor packaging
applications where computational cost of each sample point is high. However, another
approach of HDMR, Cut-HDMR, can tackle the challenge.

2.2. Cut-HDMR and Bivariate Cut-HDMR

Cut-HDMR uses the Dirac measure [26] located at a point m = (m1, m2, . . . , mn) (also
known as cut center):

dγ(x) =
n

∏
i=1

δ(xi −mi)dxi (5)

By combining it with Equations (3) and (4), the component functions of Cut-HDMR
can be expressed as:

y0 ≡ M f (x) = y(m)

yi(xi) ≡ Miy(x)− y0 = y(m1, . . . , mi−1, xi, mi+1, . . . , mn)− y0
yij
(
xi, xj

)
≡ Mijy(x)− yi(xi)− yj

(
xj
)
− y0 = y

(
m1, . . . , xi, . . . , xj, . . . , mn

)
− yi(xi)− yj

(
xj
)
− y0

...
y12...n(x) ≡ y(x)− y0 −∑

i
yi(xi)−∑

ij
yij
(

xi, xj
)
− . . .− ∑

12...N
y12...N(x1, x2, . . . , xN)

(6)

where y(m1, . . . , mi−1, xi, mi+1, . . . , mn) is a 1D performance function along the xi direction
that passes through m; y

(
m1, . . . , xi, . . . , xj, . . . , mn

)
is a 2D performance function of the(

xi, xj
)

plane that passes through m, and so on.
Equation (6) shows that Cut-HDMR is an expression as a superposition of its values

on lines, planes, and hyperplanes of higher orders passing through the cut center, m. The
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expansions of Cut-HDMR do not contain any integral. Cut-HDMR uses only arithmetic
computation to determine the component functions, and thus it requires the least amount
of computational cost compared to other HDMRs [12,27].

For most well-defined physical systems, the high-order interactions are negligible [14,28],
and thus the multivariate performance function of such a physical system can be approx-
imated well by the sum of low-order component functions. Experience shows that an
HDMR expansion up to the second-order often provides a satisfactory description of
the function for many high-dimensional systems when the input variables are properly
chosen [14].

It has been proven that the mean values of input variables, µ, are the optimal cut
center m when only the terms up to the second-order are considered [25]. Accordingly, the
metamodel based on Bivariate Cut-HDMR can be obtained by substituting Equation (6) into
Equation (2) with the cut center being the mean values of input variables. This Bivariate
Cut-HDMR metamodel is written as [29]:

y(x) ∼= ∑
1≤i<j≤N

y
(

xi, xj, µ∼ij
)
− (N − 2)

N

∑
i=1

y
(

xi, µ∼i
)

+
(N − 1)(N − 2)

2
y0 (7)

where y0 = µ = [µ1, µ2, . . . , µN ]
T is the vector of the mean values of N input variables

(cut center); µ∼i is µ without the element µi; µ∼ij is µ without the elements µi and µj;
y
(
xi, µ∼i) is the 1D performance function along the xi direction that passes through µ

(cut-line); and y
(
xi, xj, µ∼ij) is a 2D performance function on the (xi, xj) plane that passes

through µ (cut-plane).
Figure 1 illustrates the concept of Bivariate Cut-HDMR using an arbitrary 2D function,

which is decomposed into four component functions. Figure 1a shows the 2D function,
x2 + y2 + xy− 14x− 16y + 122 = 0, as the black meshed surface, and the dot in the figure
represents the zeroth-order effect (i.e., a constant). In Figure 1b, the blue curve is the 1D
performance function along the x1 direction, in which x2 is kept as µ2. The green line is the
zeroth-order effect along the x1 direction. The main effect of x1 is the red curve, obtained
by subtracting the green line from the blue curve.

The same procedure can be applied to obtain the main effect of x2, as shown in
Figure 1c. In Figure 1d, the blue surface is obtained by the superposition of the red curves
in Figure 1b,c, which represents the performance function without any interaction effects.
The green plane is the zeroth-order effect. By subtracting the blue surface and the green
plane from the black surface, the interaction effect of the (x1, x2) pair is obtained, which is
shown as the red surface.
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Figure 1. Illustration of Bivariate Cut-HDMR using an arbitrary 2D function; (a) 2D function and the
effect of zeroth-order, (b) the main effect of x1, (c) the main effect of x2, and (d) the interaction effect
of x1 and x2.

3. Implementation for Semiconductor Packaging Application

The Bivariate Cut-HDMR technique is implemented to construct a metamodel for a
semiconductor packaging application. The application involves warpage prediction of a
thin flat ball grid array (TFBGA) package with 10 design input variables.

3.1. Description of TFBGA Package

Figure 2 shows the schematic diagram of a TFBGA package. The first chip is attached
to a substrate by the first die attach film (DAF). The second chip is attached to the first chip
by the second DAF. Then, they were encapsulated by epoxy molding compound (EMC).
A stacked die TFBGA package is often used as the top package of a Package-on-Package
(PoP). Warpage at solder pad areas is one of the most critical factors to high PoP stacking
yield [30].
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Figure 2. TFBGA package: (a) cross-sectional view and (b) bottom view.

A finite element (FE) model was constructed for warpage prediction. Figure 3 shows
details of the FE model built by a commercial FE analysis package (ANSYS®). The quarter
symmetry model of boundary conditions and the die stack configuration are shown in (a)
and (b); and the enlarged view of cross-section is shown in (c). The material properties and
the nominal dimensions used in the model are summarized in Tables 1 and 2. The nominal
dimensions of the TFBGA package are adopted from the design in Refs. [10,31].
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Table 1. Properties of materials used in the TFBGA package.

Material Young’s Modulus
(GPa)

Poisson’s
Ratio

CTE (ppm/◦C)
Tg (◦C)

A1 (<Tg) A2 (>Tg)

Silicon die 130 0.23 2.8 –

DAF
2.2 @ 25 ◦C

0.3 65.3 162.9 1380.98 @ 100 ◦C
0.008 @ 200 ◦C

Substrate 17.5 0.3
15 (in-plane) –

61.5 (out-of-plane)

EMC

29.237 @ 25 ◦C

0.21 9.12 36 137.5
14.030 @ 125 ◦C
1.932 @ 175 ◦C
1.498 @ 235 ◦C

Table 2. Dimensions of TFBGA package.

Structure Length ×Width × Thickness

1st Die (mm) 13 × 11 × 0.575

1st DAF (mm) 13 × 11 × 0.025

2nd Die (mm) 11 × 9 × 0.575

2nd DAF (mm) 11 × 9 × 0.025

Substrate (mm) 15 × 15 × 0.13

EMC (mm) 15 × 15 × 0.55

The TFBGA package was subjected to the EMC molding process at 175 ◦C, which was
used as a stress-free temperature. The conventional lead-free solder reflow profile with the
peak temperature of 260 ◦C was considered [32].
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In this implementation, 10 design variables were considered for the warpage predic-
tion of solder pad areas. The details of design variables are summarized in Table 3. The
design spaces of the package dimensions and the material properties were defined by the
values found in the literature: package dimensions in [31,33–39] and material properties
in [40–45].

Table 3. Design variables of the TFBGA package.

Variable Physical Meaning Range of Design Space Mean

x1 EMC thickness (mm) 0.25–0.85 0.55

x2 Substrate thickness (mm) 0.12–0.34 0.23

x3 1st chip thickness (mm) 0.050–0.075 0.0625

x4 2nd chip thickness (mm) 0.050–0.075 0.0625

x5 1st DAF thickness (mm) 0.02–0.025 0.0225

x6 2nd DAF thickness (mm) 0.01–0.02 0.015

x7 EMC CTE above Tg (ppm/◦C) 25–47 36

x8 Substrate CTE (ppm/◦C) 12–18 15

x9 Substrate modulus (GPa) 7.5–27.5 17.5

x10 Half of PKG width and length (mm) 7–8 7.5

3.2. Sample Points

The number of sample points to construct a Bivariate Cut-HDMR metamodel can be
generally expressed as [12]:

R = 1 + N(s− 1) +
N(N − 1)

2
(s− 1)2 (8)

where N is the number of input variables and s is the number of sample points taken
along the direction of each input variable. N(s− 1) points are used to construct 1D perfor-
mance functions, and N(N − 1)(s− 1)2/2 points are used to construct the 2D performance
functions.

For the univariate terms (i.e., s number of sample points distributed along each input
variable), the center becomes the reference point, and the remaining (s− 1) sample points
are evenly distributed on two sides with respect to the reference point. For the bivariate
terms, the sample points form a uniform gird on a plane with the center as a reference point.

Cut-HDMR, in its original form [14], states that a set of sample points can be selected
to calculate the values of corresponding component functions and to form a look-up table
that can be used to interpolate component functions at an arbitrary point in the design
domain. There has been no universally accepted sampling strategy and interpolation
algorithm. The implementation of this study uses three uniformly distributed sample
points (s = 3) with quadratic spline interpolation to construct the component functions of
Bivariate Cut-HDMR. In this way, the Bivariate Cut-HDMR metamodel can be compared
directly with the CCD metamodel.

Figure 4 and Table 4 show the number of sample points required for the CCD and
Bivariate Cut-HDMR metamodels. After N = 7, the number of sample points for CCD
becomes more than double the number of sample points for Bivariate Cut-HDMR. Consid-
ering only the number of sample points, Bivariate Cut-HDMR has a significant advantage
over CCD when a metamodeling problem has a large number of input variables.
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Figure 4. Numbers of sample points required by Bivariate Cut-HDMR and CCD as a function of the
number of variables.

Table 4. Number of sample points required for Central composite design (CCD) and Bivariate Cut
HDMR with s = 3.

Number of Sample Points
Ratio of Two Numbers
of Sample Points R/PN s CCD

P=1+2N+2N
Bivariate Cut-HDMR
R=1+2N+ N(N−1)

2 (2)2

2 3 9 9 100%

3 3 15 19 127%

4 3 25 33 132%

5 3 43 51 119%

6 3 77 73 95%

7 3 143 99 69%

8 3 273 129 47%

9 3 531 163 31%

10 3 1045 201 19%

11 3 2071 243 12%

12 3 4121 289 7%

13 3 8219 339 4%

3.3. Construction of Bivariate Cut-HDMR Metamodel
3.3.1. Obtain Sample Points

For s = 3, a total of 201 sample points (Equation (8)) are required to construct the
Bivariate Cut-HDMR metamodel. The sample points consist of one mean sample point
(cut center), 20 univariate sample points, and 180 bivariate sample points.

The mean sample point is the design point, which is the mean values of each design
variables. The 20 univariate sample points are the sample points, where one of the design
variables takes either maximum or minimum value in its design space while other design
variables keep the mean values. The 180 bivariate sample points are the sample points,
where two of the design variables take either maximum or minimum value in their de-
sign spaces while other design variables keep the mean values. The warpage values of
201 (=1 + 20 + 180) sample points were obtained by the FE model. Since the dimensions of
the FE model varies with sample points, the FE model must regenerate different meshes
for each sample point. The Supplementary Materials includes: (1) the warpage values of
201 sample points that were used to construct the Bivariate Cut-HDMR metamodel; (2) the
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warpage values of 1045 sample points that were used to construct the CCD metamodel;
and (3) the Monte Carlo simulation sample points used in Section 4.

3.3.2. Construct Performance Functions

After the warpage values at the 201 sample points are obtained, the metamodel
can be constructed by applying Equation (7). The quadratic spline interpolation scheme
was adopted with all sample points to form the 1D performance functions (cut-lines),
y
(
xi, µ∼i), and the 2D performance functions (cut-planes), y

(
xi, xj, µ∼ij) by following the

procedures below:

• 1D performance functions:

1. Select a design variable.
2. Find the three sample points along the design variable that was obtained earlier,

i.e., high, mid, and low values of the design variable and other design variables
keep the mean values.

3. Construct the 1D function of the design variable with the three sample points
using quadratic spline interpolation. This can be done by using the built-in
function that is available in commercial software (e.g., MATLAB).

4. Select another design variable and repeat steps 2–3 until all 1D performance
functions along each design variable are built.

• 2D performance functions:

1. Select a pair of design variables.
2. Find the nine sample points along two design variables that were obtained earlier

(other design variables keep the mean values) as shown in the figure.
3. Construct the 2D function of the design variable with the nine sample points

using quadratic spline interpolation. This can be done by using the built-in
function that is available in commercial software (e.g., MATLAB).

4. Select another pair of design variables and repeat steps 2–3 until all 2D perfor-
mance functions of each pair of design variables are built.

The performance functions are illustrated in Figures 5 and 6. Figure 5 shows the 1D
performance functions of EMC thickness and substrate thickness, and Figure 6 shows the
2D performance functions of two pairs of design variables. The pair of substrate thickness
and EMC CTE has the strongest second-order interaction effect among other pairs. In
contrast, the pair of package width and length and 1st chip thickness has the weakest
second-order interaction effect. Red dots indicate the sample points used to construct the
cut-lines and the cut-planes.
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Following is the example of determining the response of a random input by using the
constructed metamodel. Assuming that a random input x is (0.81, 0.25, 0.050, 0.064, 0.023,
0.013, 15.3, 10.2, 28.2, 7.69). Equation (7) can be written as:

y
(

0.81, 0.25, 0.050, 0.064, 0.023,
0.013, 15.3, 10.2, 28.2, 7.69

)
= ∑

1≤i<j≤10
y
(

xi, xj, µ∼ij
)
− (10− 2)

10

∑
i=1

y
(

xi, µ∼i
)

+
(10− 1)(10− 2)

2
y0 (9)

where the warpage at the cut center, y0 = µ = [µ1, µ2, . . . , µ11]
T, is 0.9 µm; y

(
xi, µ∼i)

and y
(
xi, xj, µ∼ij) are the values of x on all known 1D performance functions and 2D

performance functions that were constructed earlier. Thus, the warpage value at the
random input x can be calculated; it was −49.2 µm.

The above Bivariate Cut-HDMR procedure was integrated in MATLAB (R2020b) codes,
and they are available at https://www.mathworks.com/matlabcentral/fileexchange/9289
0-bivariate-cut-hdmr (accessed on 25 May 2021). Those who are interested in implementing
Bivariate Cut-HDMR metamodeling can run the script readily by following the instructions.

4. Performance Evaluation

The performance of Bivariate Cut-HDMR is evaluated using two well-known error
metrics. The performance of CCD is also evaluated for comparison.

4.1. Error Metrics

Two error metrics employed to evaluate the performance are: [46]

• Metric 1: R-squared

R2 = 1− ∑m
i=1[y(xi)− ŷ(xi)]

2

∑m
i=1[y(xi)− y(xi)]

2 (10)

where m is the number of total test sample points; y(xi) is a performance function at the ith
new sample point used for validity check; ŷ(xi) is an approximated performance function
at the ith new sample point; and y(xi) is the mean of all y(xi). R-squared indicates the
overall accuracy of a metamodel, and its maximum value is 1.

• Metric 2: Relative average absolute error (RAAE)

RAAE =
1
m ∑m

i=1|y(xi)− ŷ(xi)|
STD

(11)

where STD is the standard deviation of all y(xi). Similar to R-squared, RAAE quantifies the
overall accuracy of a metamodel. The closer a value of RAAE is to zero, the more accurate
a metamodel is.
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Monte Carlo simulation (MCS) was performed to produce 1000 additional sample
points. They were used to evaluate the performance of Bivariate Cut-HDMR using the
above metrics. The results of the performance metrics are summarized in Table 5. The
values of R-squared and RAAE are 0.9855 and 0.0880, respectively.

Table 5. Performance metrics of Bivariate Cut-HDMR and CCD.

N s Method Number of Sample Points R-Squared RAAE

10 3
Bivariate Cut-HDMR 201 0.9855 0.0880

CCD 1045 0.9662 0.1472

A metamodel based on CCD was also constructed for comparison. A total of 1045 sam-
ple points were required for the CCD metamodel, which built a 10D quadratic function
to define the warpage behavior. The additional sample points obtained from MCS were
utilized again to evaluate the performance of CCD metamodel. The results are also shown
in Table 5. The values of R-squared and RAAE are 0.9662 and 0.1472, respectively.

More direct and quantitative comparisons are shown in Figure 7, where the absolute
errors of the MCS sample points are compared. The absolute errors of half the MCS sample
points of Bivariate Cut-HDMR are less than 5 µm. The outcome is remarkable. Bivariate
Cut HDMR used only one-fifth of sample points (201 sample points) required by CCD
(1045 sample points). However, Bivariate Cut-HDMR does not compromise the accuracy
when compared to CCD. The following section is intended to provide some insight into
this performance of Bivariate Cut HDMR.
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Figure 7. Absolute error of Bivariate Cut-HDMR and CCD of 1000 MCS.

4.2. Discussion: Bivariate Cut-HDMR vs. CCD Metamodel
4.2.1. Sampling Scheme

Figure 8 shows the sampling schemes of Bivariate Cut-HDMR and CCD for a three-
variable (N = 3, s = 3) example. In the figure, the red point is the mean point for both
Bivariate Cut-HDMR and CCD; the blue points are used to construct the functions of three
lines in the X-, Y- and Z-directions for Bivariate Cut-HDMR and the axial points for CCD;
and the yellow points together with the blue points are used to construct the functions
of three planes (X-Z plane, Y-Z plane, and X-Y plane) for Bivariate Cut-HDMR and the
factorial points for CCD. It also illustrates one of the cut-planes (green planes) and one of
the boundary-planes (magenta planes) of both metamodels.
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Figure 8. Illustration of sample points for N = 3: (a) Bivariate Cut-HDMR with s = 3 and (b) CCD,
where the red point is the mean point.

The sampling points of Bivariate Cut-HDMR are utilized to construct the first-order
and second-order component functions, i.e., every sample point is used to construct the 1D
and 2D performance functions (as illustrated in Figures 5 and 6). On the other hand, the
sample points of CCD are aimed to cover the boundaries of a design domain.

4.2.2. Prediction of Cut-Planes

As mentioned earlier, the sampling scheme of Bivariate Cut-HDMR is designed to
construct the cut-lines and cut-planes. The prediction on the cut-planes performed by both
metamodels are compared. As shown in Figure 8, Bivariate Cut-HDMR has more sample
points (9) than CCD (5) on the cut-planes (green planes).

Figures 9 and 10 show the two predicted surfaces (cut-planes), which were studied in
the TFBGA application. Each figure has the identical nine dots (warpage values obtained
from the FE model) in (a) and (b). Red dots are the sample points used to construct for
each metamodel. Blank dots are the sample points that were used to construct the Bivariate
Cut-HDMR metamodel but not used to construct the CCD metamodel.
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Figure 9. 2D performance functions of design variables of (a) Bivariate Cut-HDMR and (b) CCD,
where design variables other than EMC CTE and substrate thickness are kept at their mean values.
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Figure 10. 2D performance functions of design variables of (a) Bivariate Cut HDMR and (b) CCD,
where design variables other than package width and length and 1st chip thickness are kept at their
mean values.

The surfaces (cut-planes) in Figures 9a and 10a were constructed by Bivariate Cut-
HDMR (quadratic spline interpolation) with two sets of nine sample points shown in the
figures. There is no error between warpage values obtained from FE (dots) modeling and
the predicted surfaces.

The surfaces in Figures 9b and 10b were plotted by the CCD metamodel obtained
from 1045 sample points. The five sample points shown in Figures 9b and 10b were just
a small portion of the total 1045 sample points used to construct the CCD metamodel (a
second-order polynomial function). This attempt for CCD to fit all 1045 sample points
inevitably produces the discrepancy between true warpage values (dots) and predicted
surfaces in the entire design domain, especially in the corners, as shown in Figures 9b
and 10b.

4.2.3. Prediction of Boundary-Planes

The example in Figure 8 (N = 3) shows five sample points on the boundary-planes
of both metamodels. It is important, however, to note that there are lesser or no sample
points on the boundary-planes of both metamodels when the number of input variables
(N) increases. On the boundary-planes of the TFBGA application (N = 10), there were no
sample point for Bivariate Cut-HDMR and only four sample points for CCD.

Figure 11 shows two predicted surfaces (boundary-planes) of the TFBGA application.
Variables other than the two variables shown in the plots were kept at their maximum
values, i.e., it represents one of the boundary-planes in the design domain. Red dots in
(b) are the sample points used to construct the CCD metamodel. They also appear in (a),
although they are not used for Bivariate Cut-HDMR.

Materials 2021, 14, x FOR PEER REVIEW 14 of 17 
 

 

figures. There is no error between warpage values obtained from FE (dots) modeling and 

the predicted surfaces. 

The surfaces in Figures 9b and 10b were plotted by the CCD metamodel obtained 

from 1045 sample points. The five sample points shown in Figures 9b and 10b were just a 

small portion of the total 1045 sample points used to construct the CCD metamodel (a 

second-order polynomial function). This attempt for CCD to fit all 1045 sample points 

inevitably produces the discrepancy between true warpage values (dots) and predicted 

surfaces in the entire design domain, especially in the corners, as shown in Figures 9b and 

10b. 

4.2.3. Prediction of Boundary-Planes 

The example in Figure 8 ( 3N  ) shows five sample points on the boundary-planes 

of both metamodels. It is important, however, to note that there are lesser or no sample 

points on the boundary-planes of both metamodels when the number of input variables 
(N) increases. On the boundary-planes of the TFBGA application ( 10N ), there were no 

sample point for Bivariate Cut-HDMR and only four sample points for CCD. 

Figure 11 shows two predicted surfaces (boundary-planes) of the TFBGA application. 

Variables other than the two variables shown in the plots were kept at their maximum 

values, i.e., it represents one of the boundary-planes in the design domain. Red dots in (b) 

are the sample points used to construct the CCD metamodel. They also appear in (a), alt-

hough they are not used for Bivariate Cut-HDMR. 

  

(a) (b) 

Figure 11. 2D performance functions of (a) Bivariate Cut-HDMR and (b) CCD, where design 

variables other than EMC CTE and substrate thickness are kept at their maximum values. 

The Bivariate Cut-HDMR surface (boundary-planes) of Figure 11a are plotted by 201 

sample points, while the CCD surface of Figure 11b are plotted by 1045 sample points 

including the four sample points on the boundary-plane. It is noteworthy that the pre-

dicted 2D performance function of Bivariate Cut-HDMR is similar to the CCD surface, 

despite the fact that CCD utilizes four sample points on the boundary-plane, but Bivariate 

Cut-HDMR does not. 

5. Conclusions 

Bivariate Cut-High Dimensional Model Representation (Bivariate Cut-HDMR) was 

implemented successfully for the warpage problem of a thin flat ball grid array package 

with 10 design variables. The implementation with three uniformly distributed sample 

points (s = 3) in conjunction with quadratic spline interpolation allowed for comparing its 

performance with a metamodel based on Central Composite Design (CCD). 

The performance of both metamodels were evaluated by two well-known error met-

rics: R-squared and Relative Average Absolute Error (RAAE). The results were compared 

with the performance of CCD: the R-squared values of CCD and Cut-HDMR were 0.9662 

Figure 11. 2D performance functions of (a) Bivariate Cut-HDMR and (b) CCD, where design variables
other than EMC CTE and substrate thickness are kept at their maximum values.

68



Materials 2021, 14, 4619

The Bivariate Cut-HDMR surface (boundary-planes) of Figure 11a are plotted by
201 sample points, while the CCD surface of Figure 11b are plotted by 1045 sample points
including the four sample points on the boundary-plane. It is noteworthy that the predicted
2D performance function of Bivariate Cut-HDMR is similar to the CCD surface, despite the
fact that CCD utilizes four sample points on the boundary-plane, but Bivariate Cut-HDMR
does not.

5. Conclusions

Bivariate Cut-High Dimensional Model Representation (Bivariate Cut-HDMR) was
implemented successfully for the warpage problem of a thin flat ball grid array package
with 10 design variables. The implementation with three uniformly distributed sample
points (s = 3) in conjunction with quadratic spline interpolation allowed for comparing its
performance with a metamodel based on Central Composite Design (CCD).

The performance of both metamodels were evaluated by two well-known error met-
rics: R-squared and Relative Average Absolute Error (RAAE). The results were compared
with the performance of CCD: the R-squared values of CCD and Cut-HDMR were 0.9662
and 0.9855, respectively; the RAAE values of CCD and Cut-HDMR were 0.1472 and 0.0880,
respectively.

The outcome was remarkable. Bivariate Cut HDMR used only one-fifth of sample
points (201 sample points) required by CCD (1045 sample points); however, Bivariate
Cut-HDMR did not compromise the accuracy in both error metrics compared to CCD,
which was confirmed by more direct and quantitative comparisons using the absolute
errors of the Monte Carlo simulation (MCS) sample points.

Two technical reasons for the outstanding performance of Bivariate Cut-HDMR
were discussed:

(1) Sampling scheme: the sample points of Bivariate Cut-HDMR were utilized to con-
struct the first-order and second-order component functions, while the sample points
of CCD were aimed to cover the boundaries of a design domain.

(2) Predictions of cut-planes and boundary-planes: Bivariate Cut-HDMR predicted cut-
planes more accurately despite the smaller number of sample points, while both
techniques produced similar accuracy for boundary-plane predictions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14164619/s1, Table S1: Bivariate Cut-HDMR sample points, Table S2: CCD sample points,
Table S3: MCS sample points.
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Abstract: Equation-Informed Neural Networks (EINNs) are developed as an efficient method for
extracting the coefficients of constitutive equations. Subsequently, numerical Bayesian Inference (BI)
iterations were applied to estimate the distribution of these coefficients, thereby further refining them.
We could generate coefficients optimally aligned with the targeted application scenario by carefully
adjusting pre-processing mapping parameters and identifying dataset preferences. Leveraging
graphical representation techniques, the EINNs formulation is implemented in temperature- and
strain-rate-dependent hyperbolic Garofalo, Anand, and Chaboche constitutive models to extract the
corresponding coefficients for lead-free SAC305 solder material. The performance of the EINNs-based
extracted coefficients, obtained from experimental results of SAC305 solder material, is comparable
to existing studies. The methodology offers the dual advantage of providing the coefficients’ value
and distribution against the training dataset.

Keywords: Equation-Informed Neural Networks; advanced electronic packaging;
numerical Bayesian Inference; constitutive equations; Pb-free SAC305 solders

1. Introduction

Proper material constitutive models and related coefficients are fundamental for
reliable finite element predictions, encompassing the performance prediction model [1],
the manufacturing process [2,3], and the reliability prediction models. Non-linear material
properties, based on the temperature- and strain-rate-dependent material models, are often
necessary for modeling critical sections of electronic packaging [4,5] and further influence
the accuracy and predictability of the surrogate AI models [6–8].

Solder, a key component in electronic packaging, is often associated with potential
fatigue failures. Wilde et al. conducted a study on the rate-dependent constitutive relation-
ship of Pb-rich material [9], resulting in extracting Anand-based coefficients and identifying
kinematic hardening, also known as the Bauschinger effect. To gain a better understanding
of the creep characteristics of Pb-free solders, Xiao and Armstrong [10] performed tensile
tests on both eutectic PbSn and Sn3.9Ag0.6Cu solder. Their findings revealed substantial
microstructural alterations in the Sn3.9Ag0.6Cu with significantly lower absolute creep
rates than the PbSn eutectic. The creep measurement data were successfully fitted into the
Garofalo model [11], and the corresponding Garofalo coefficient was extracted.

Furthermore, Motalab et al. [12,13] conducted creep tests under meticulous control
of the microstructure of the SAC305 solder without an oxidized surface, yielding a set of
nine parameters for the Anand model. Basit et al. [14] utilized the Anand constitutive
model with the extracted coefficients for solder joint lifetime prediction. The Chaboche
material model [15], which considers the Bauschinger effect, was applied by Xie and
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Chen [16], Deshpande et al. [17], Wang et al. [5], and Yan et al. [18] for life prediction using
Manson–Coffin type equations.

Ma and Suhling reviewed the constitutive equation and the corresponding coefficients
of lead-free solder joint [19], and significant coefficient discrepancies have been reported.
On the other hand, finite element engineers frequently face difficulties in selecting an appro-
priate material model and its parameters, as the measurement conditions may differ from
those in practical applications. Kuczynska et al. [20] performed mechanical/dynamic tests
against the solder joint to verify the ability of these material models and their coefficients
to map the lifetime differences depending on the temperature rate under field and testing
conditions, as well as on the mean operating temperature.

Considering the many application scenarios, which may range from low to high tem-
peratures and strain rates, an emerging trend encourages users to obtain their own material
coefficients [5]. This approach emphasizes the importance of tailoring the coefficients to the
specific conditions encountered in each unique application. The least squares method and
its derivatives are frequently employed in extracting coefficients. Although this approach
is well established, matrix multiplication and inversion may diminish computational ef-
ficiency when handling extensive datasets. Moreover, the obtained coefficients based on
the least square method are sensitive to the outliers, and this method does not apply to the
censored data.

Historically, machine learning has harbored a certain resistance to rule-based inference.
However, the efficacy of neural networks in symbolic computation is gaining recognition
by integrating symbolic reasoning with continuous representations. Pioneers such as
Zaremba et al. [21] and Allamanis [22] have explored the application of neural networks
in handling mathematical objects. A significant advancement came from Lample and
Charton [23] when they proposed a representation for mathematical expressions. Sharma
et al., Chhabra et al., and Yadav et al. have applied neural network method for material
optimization studies [24–26]. As a result, the theoretical basis for representing mathematical
and symbolic equations using neural networks is well-established.

In this research, we have developed the Equation-Informed Neural Networks (EINNs)
method, synergistically incorporating the Bayesian Inference (BI) iteration technique to
extract the coefficients of constitutive equations from measurement data. As visualized in
Figure 1, the foundational concept of EINNs begins with constructing an artificial neural
network to embody the constitutive equation f , where coefficient αk is designated as their
respective weights. Subsequently, EINNs deploy a pre-processing mapping technique on
the input/output data pairs which are obtained from the experiments, a strategy rooted
in neural network learning theory, and enables exploring coefficient fitting across various
domains in-depth.

Materials 2023, 16, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. The concept of Equation-Informed Neural Networks (EINNs). 

This paper is organized as follows: the “Theory” section provides an introduction to 
the framework of Equation-Informed Neural Networks (EINNs) and the numerical Bayes-
ian Inference (BI) method. The subsequent section, “EINN Formulation”, presents the con-
version process of constitutive equations from their conventional mathematical forms to 
their EINN equivalents, complete with pre-processing mapping and post-processing 
functions. In the “Applications” section, we apply the EINN formulation to the coefficient 
extraction of the material constitutive equation pertinent to Pb-free SAC305 solder joints. 
Detailed discussions and numerical results pertaining to the EINN formulations of the 
Chaboche, hyperbolic Garofalo, and Anand material models are also included. The paper 
concludes with a concise summary of our findings. 

2. Theory 
2.1. The Framework of Equation-Informed Neural Networks (EINNs) 

Assume a constitutive equation is given by the function: 𝑦 = 𝑓(𝑥 ; 𝛼 ), (1)

where 𝑦 , 𝑥 , and 𝛼  are vectors in real space with dimensions 𝑖, 𝑗, and 𝑘, respectively. 
The 𝑥   and 𝑦   represent the input and output of the functions, while 𝛼   refers to the 
coefficients. Design pre-processing mapping functions: ℳ 𝑥 = 𝑋  and ℳ (𝑦 ) = 𝑌 , (2)

which serve to effectively modify the domains of 𝑥  and 𝑦  to optimize the precision of 
coefficient extraction. Consequently, a new function can be formulated as 𝑌 = 𝐹(𝑋 , Α ). 
Meanwhile, the corresponding neural network representations of 𝑌  are formulated, and 
the coefficient Α  is assigned as the weighting. 

The learning process of the neural network involves continuous adjustment of these 
weights or coefficients. These adjustments can be computed for each known data pair us-
ing steepest-descent-based backpropagation as Α = Α − 𝜂Δ  . Since these up-
dates are independent of each data pair, the computationally expensive matrix multipli-
cation and inversion inherent in the least squares-based approaches can be avoided. Fur-
thermore, incorporating ratios into the adjustments allows for user emphasis on specific 

data pairs. This can be implemented as Α = Α − 𝜂 ∑ 𝑟 ∙ Δ ( ) , where l is the 
coefficient adjustment from each data pair and ∑ 𝑟 = 1. 

Following several learning iterations with satisfactory accuracy, the coefficient Α  of 
the constitutive equation can be obtained. However, due to the pre-processing mapping 

Figure 1. The concept of Equation-Informed Neural Networks (EINNs).

73



Materials 2023, 16, 4922

This neural network can be incrementally trained using input and output data pairs,
facilitating the simultaneous approximation of coefficient αk. Theoretically, the steepest de-
scent algorithm of the neural network backpropagation bolsters the computation efficiency
and fosters the selective learning of data pairs. The final coefficients are obtained by the
post-processing conversion. Utilizing the coefficients obtained by EINNs as initial values,
Bayesian Inference (BI) is applied to obtain the distribution of the coefficients against the
training datasets and further enhance the accuracy of coefficient extraction.

This paper is organized as follows: the “Theory” section provides an introduction
to the framework of Equation-Informed Neural Networks (EINNs) and the numerical
Bayesian Inference (BI) method. The subsequent section, “EINN Formulation”, presents the
conversion process of constitutive equations from their conventional mathematical forms
to their EINN equivalents, complete with pre-processing mapping and post-processing
functions. In the “Applications” section, we apply the EINN formulation to the coefficient
extraction of the material constitutive equation pertinent to Pb-free SAC305 solder joints.
Detailed discussions and numerical results pertaining to the EINN formulations of the
Chaboche, hyperbolic Garofalo, and Anand material models are also included. The paper
concludes with a concise summary of our findings.

2. Theory
2.1. The Framework of Equation-Informed Neural Networks (EINNs)

Assume a constitutive equation is given by the function:

yi = f
(
xj; αk

)
, (1)

where yi, xj, and αk are vectors in real space with dimensions i, j, and k, respectively. The
xj and yi represent the input and output of the functions, while αk refers to the coefficients.
Design pre-processing mapping functions:

Mx
(
xj
)
= Xj andMy(yi) = Yi, (2)

which serve to effectively modify the domains of xj and yi to optimize the precision of
coefficient extraction. Consequently, a new function can be formulated as Yi = F

(
Xj, Ak

)
.

Meanwhile, the corresponding neural network representations of Yi are formulated, and
the coefficient Ak is assigned as the weighting.

The learning process of the neural network involves continuous adjustment of these
weights or coefficients. These adjustments can be computed for each known data pair using
steepest-descent-based backpropagation as Anew

k = Anew
k − η∆y

∂yi
∂Ak

. Since these updates
are independent of each data pair, the computationally expensive matrix multiplication
and inversion inherent in the least squares-based approaches can be avoided. Furthermore,
incorporating ratios into the adjustments allows for user emphasis on specific data pairs.

This can be implemented as Anew
k = Anew

k − η ∑l rl ·
(

∆y
∂yi
∂Ak

)(l)
, where l is the coefficient

adjustment from each data pair and ∑l rl = 1.
Following several learning iterations with satisfactory accuracy, the coefficient Ak of

the constitutive equation can be obtained. However, due to the pre-processing mapping
function (2) being applied, counteractions are required to reverse its effect. Therefore, we
define the post-processing conversion functions as follows.

ak = gk
(
xj, yi, Ak

)
. (3)

Through the combined application of pre-processing mapping functions and post-
processing conversion of coefficients, the EINN framework gains an additional degree of
freedom, bolstering the accuracy of coefficient extraction. Additionally, the steepest descent
method offers a unique opportunity to prioritize specific data pairs while maintaining high
computational efficiency.
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2.2. The Numerical Bayesian Inference (BI) Iteration

We define the mean square error (MSE) function of Equation (1) with respect to the
coefficients αk, as

ε(αk) = ∑
l

∥∥∥y(l)t,i − yi

(
x(l)j ; αk

)∥∥∥
2
, (4)

where xl
j and yl

t,i denote the input and ground truth of the l-th datapair, respectively.

Assume that the distribution of the data pairs y(l)t,i and x(l)j are normal, and so is the
error function ε(αk), denoted as ε(αk) ∼ N(µ, τ). Because the parameter τ cannot be
negative, we assume it follows the gamma distribution, so that τ ∼ G(a0, b0), where a0 and
b0 are the gamma distribution parameters of τ. Moreover, assume that all the coefficients
follow the normal distribution, say αk ∼ N(µk, τk), and µk and τk are the average and
precision, respectively. The posterior distribution after the BI remains normal distribution.
In practice, we set µk equal to αk.

Consequently, the probabilities of the coefficient τ and αk can be derived as

P(τ) =
b

a0
0 τa0−1e−b0τ

Γ(a0)
and P(αk) = (2π)−

1
2 τ

1
2

k e−
1
2 τk(αk−µk)

2
, respectively. The likelihood

with respect to coefficient τ and αk is L(αk, τ) ≡ P(data|αk, τ) = ∏L
l=1

1√
2π

τ
n
2 e−

(y(l)t,i −y(l)i )
2

2σ2 =

(2π)−
n
2 τ

n
2 e−

τ
2 ε(αk) [27].

The posterior of the τ distribution can be updated by the gamma–gamma conjugate:

anew
0 = aold

0 +
n
2

and bnew
0 = bold

0 +
1
2

ε, (5)

As Equation (1) is not always a linear function, the posterior of coefficient αk cannot
always be computed by conjugate. Therefore, under the assumption that the value of ∆αk
is relatively small, a numerical integration approach is applied:

∫ ∞

0
L(αk)·P(αk)dαk ∼∑n=N

n=1 L
(

α
(0)
k + n·∆αk

)
·P
(

α
(0)
k + n·∆αk

)
·∆αk, (6)

where α
(0)
k is the minimal value of αk and n is the number of the equal split between the

assigned maximum and minimum αk with a total of N splits. The posterior can then be
obtained using normal distribution approximation.

We employ the Markov Chain Monte Carlo (MCMC) method to compute large hi-
erarchical models requiring integration over many parameters. By applying the Gibbs
sampling, the τ distribution parameters a0 and b0 are first updated through the conjugate
(Equation (5)), and a new τ value will be sampled from the gamma distribution. Each αk
will be updated sequenently, and the new value will be accepted. Following thousands of
iterations, every αk exhibits a normal distribution. The mean value of this distribution is
computed and assigned as the updated value for αk.

3. EINN Formulation

This section outlines the development of Equation-Informed Neural Network (EINN)
formulations for the hyperbolic Garofalo, nine-parameter Anand, and Chaboche models,
including pre-processing mapping and post-processing coefficient functions.

3.1. Hyperbolic Garofalo Model

The conventional hyperbolic Garofalo constitutive equation can be written as:

.
εp = C1·[sinh(C2σ)]C3 ·e− Q

RT , (7)

75



Materials 2023, 16, 4922

where
.

εp, σ, Q, R, and T represent the plastic strain rate, stress, activation energy, gas
constant, and temperature, respectively. C1, C2, and C3 are the coefficients that need to be
extracted from the experimental data.

We introduce e =
.

εp·e
Q
RT and accumulate the data pairs of {e} and {σ} from the

experimental results. In order to proportional convert the original data to the [a, b + a]
domain, the pre-processing matching functions are defined as follows:

Mx(σ) =
σ−σm

∆σ b + a = x and
My(e) = e−em

∆e b + a = y,
(8)

where σm and ∆σ represent the minimal and maximum different values of set {σ}, and
e and ∆e correspond to set {e}. Parameters a and b are parts of pre-processing mapping,
and a = 0.001 and b = 1 are assigned for this case. The values after the pre-processing are
defined as x and y, respectively. Subsequently, a new function can be derived as:

y = C[sinhAx]n, (9)

The corresponding neural network can be defined in Figure 2. The definition of the
neurons is given in Table 1.
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Table 1. The neuron definition of the EINN representation of the hyperbolic Garofalo equation.

Neuron Net Value Activation

M1 M1,net = A·x M1 = ln(sinhM1,net)
M2 M2,net = n·M1 M2 = eM2,net

y ynet = C·M2 y = ynet

Accordingly, the post-processing conversion of the coefficients can be approximated
as C1 = C∆e·rn

2 , C2 = A·b/∆σ, and C3 = n, where r2 =
(

Ab
∆σ − Aa

)
.

3.2. Anand Model

Anand et al. [28] proposed a set of viscoplastic constitutive equations for the rate-
dependent deformation of metals. Recently, the Anand model has been extensively applied
to microelectronic solders exhibiting large viscoplastic deformations. In addition to the
activation energy, there are eight coefficients in the Anand model. A two-step approach is
commonly employed to extract these eight coefficients [9,12,13].

The governing equation for the first step of the Anand model, including the ultimate
tensile stress (σ∗), plastic strain rate (

.
εp), activation energy (Q), and temperature (T), is

expressed in Equation (10). ŝ, ξ, A, n, and m are the coefficients that need to be extracted.

σ∗ =
ŝ
ξ

( .
εp

A
·e Q

RT

)n

sinh−1

[( .
εp

A
e

Q
RT

)m]
, (10)

Utilizing the same method as in the previous section, we assume e0 =
.
εp·e

Q
RT . Since

the value of the strain rate is relatively small compared to other input parameters, a scaling
factor R is applied, such that e = e0

R . For consistency within this paper, the same activation
function as in the previous section is assumed. The data pair of {e} and {σ∗} is collected
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from the Motalab et al. [12,13]. An additional y and x are introduced to represent the output
and input parameters, and the pre-processing mapping functions are defined as

x =
e− em

∆e
be + ae and y =

σ∗ − σ∗m
∆σ∗

bσ + aσ, (11)

where em and ∆e are the minimal and maximum difference among set {e}, and so are σ∗m
and ∆σ∗ in {σ∗}. ae, be, aσ, and bσ are the mapping coefficients. By defining β = ŝ

ξ , the new
function can be written as

y = β∗
( x

A∗
)n∗

sinh−1
[( x

A∗
)m∗

]
, (12)

Based on Equation (12), the EINN representation can be formulated as Figure 3. This
network’s definitions are listed in Table 2.
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Table 2. The neuron definition of the EINN representation of the step 1 Anand equation.

Neuron Net Value Activation

M1 M1,net = 1/A∗·x M1 = ln(M1,net)

M2 M2,net = m∗·M1 M2 = ln
(

sinh−1eM2,net
)

y ynet = n∗·M1 + M2 + β y = eynet

By defining r = σ∗m − aσ
∆σ∗
bσ

, the post-processing of the coefficients can be written as
follows:

1
A

=
1

A∗

(
bbe

∆e
+

ae

avg(y)

)
· 1
R

, n = n∗, m = m∗ and β =

[
∆σ

bσ
·β∗ + r

β∗·avg(x)

]
=

ŝ
ξ

, (13)

where avg(x) and avg(y) are the averges of {e} and {σ∗}.
The governing equation of the second step of the Anand model is listed in (14),

and s0, a, and h0 are the three remaining coefficients. The parameter c is defined in (15),
and ξ is defined as the smallest positive real number to keep c < 1.

σ = σ∗ −
[
(σ∗ − cs0)

1−a + (a− 1)
{
(ch0)(σ

∗)−a
}

εp

]1/(1−a)
, (14)

c =
1
ξ

sinh−1

( .
εp

A
e

Q
RT

)m

, (15)

We assume that x = sinh−1
[( .

ε
A e

Q
RT

)m]
, y = (σ∗ − σ), l = σ∗, and z = εp, and the

pre-processing mapping functions are defined as

y =
y− ym

∆y
by + ay, l =

l − lm
∆l

bl + al , x =
x− xm

∆x
bx + axand z =

z− zm

∆z
bz + az, (16)
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By assuming 1− a = a′, the new function can be written as

y =

[(
l +
(
− s0

ξ

)∗
·x
)a′∗

− a′∗
{((

h0

ξ

)∗
·y
)
(l)a′∗−1

}
·z
]1/a′∗

, (17)

Based on Equation (17), the EINN representation can be formulated as Figure 4. This
network’s definitions are listed in Table 3. Moreover, the post-processing of coefficients can
be derived as

a′∗ = a′, s′0 =
ry

rl
·(s0), h′0 =

ry

rl
·rz(h0), (18)

where rl =
bl
∆l , rx = bx

∆x , ry =
by
∆y , and rz =

bz
∆z .
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Table 3. The neuron definition of the EINN representation of the step 2 Anand equation.

Neuron Net Value Activation

M1 M1,net = l +
(
− s0

ξ

)∗
x M1 = ln(M1,net)

M2 M2,net =
(

h0
ξ

)∗
·M1 M2 = ln(M2,net)

M3 M3,net = z M3 = ln(M3,net)
M4 M4,net = l M4 = ln(M4,net)
M5 M5,net = a′∗·M1 M5 = eM5,net

M6 M6,net = M2 + M3 + (a′∗ − 1)·M4 M6 = eM6,net

M7 M7,net = M5 − a′∗·M6 M7 = ln(M7,net)
y ynet =

1
a′∗ ·M2 y = eynet

3.3. Chaboche Model

The Chaboche model [15,29] is often applied for presenting the metallic material with
the Bauschinger effect under cyclic loading. The original function can be written as

α =
C
γ

(
1− e−γ·εp

)
+ σ0 (19)

where α and εp are the back tensile stress and the plastic strain. σ0 is the initial yielding
stress, and C and γ are the fitting coefficients. To simplify the equation, we substitute and
C/γ as β. Let x = εp, y = α, as the parameters, with the pre-processing mapping functions:

x =
εp − εp,m

∆εp
and y =

α− αm

∆α
, (20)

where εp,m and ∆εp are the minimal and maximum differences among set {εp}, and so are
αm and ∆α in {α}, and s = σ0. Hence, the new function can be re-written as

y = β∗
(

1− e−γ∗ ·x
)
+ s, (21)
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with the EINN formulation shown in Figure 5 and the neuron definition listed in Table 4.
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Table 4. The neuron definition of the EINN representation of the Chaboche equation.

Neuron Net Value Activation

M1 M1,net = (−γ∗)·x M1 = 1− eM1,net

y ynet = β∗·M1 + s∗ y = ynet

Furthermore, the post-processing of coefficients can be derived as

σ0 = xm + s∗·∆α, γ =
γ∗

∆εp
, and C =

∆α

∆εp
·(β∗·γ∗) (22)

4. Applications

Building on the EINN formulation and Bayesian Inference (BI) iteration described
in the preceding section, this chapter discusses the extraction of coefficients from the
hyperbolic Garofalo, nine-parameter Anand, and Chaboche models for the SAC305 solder
material.

4.1. Hyperbolic Garofalo Model

The experimental dataset is drawn from Xiao and Armstrong [10]. To determine
the coefficient C in Equation (9), we employ a grid search combined with a bisection
optimization technique, whereas the EINN structure for coefficients A and n is addressed
using standard backpropagation. To emphasize coefficient extraction for low temperatures
(both 318 and 353 K) and low strain rates, ratios are assigned to the datapairs, as shown in
Table 5. Table 5 also lists the input (plastic strain) and output (stress) of the EINN learning.
Utilizing the post-processing conversion formula, the EINN coefficients, C1, C2, and C3,
are obtained and presented in the middle column of Table 6. The hyperbolic model, when
compared to the experimental data, is depicted in Figure 6. The data at 388 K exhibits a
more significant difference than the others, primarily due to the ratio setting outlined in
Table 5.
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Table 5. The ratios applied to the data pair to emphasize the preference.

Data ID Temperature
(◦C) Plastic Strain Rate (

.
εp, 10−9 1/s)

Stress
(MPa) Ratio

1 45 1.4 10.54 18.0
2 45 4.0 12.30 6.0
3 45 13.6 14.25 5.0
4 45 43.9 15.92 0.5
5 80 6.6 10.43 18.0
6 80 13.1 11.59 6.0
7 80 21.2 12.40 5.0
8 80 57.8 13.80 3.0
9 80 95.0 14.46 1.0

10 115 13.4 8.73 15.0
11 115 19.8 9.35 12.0
12 115 34.2 10.07 6.0
13 115 50.5 10.61 6.0
14 115 166.0 12.41 1.0
15 150 90.1 7.51 1.0
16 150 165.0 8.63 1.0
17 150 315.0 9.82 1.0
18 150 454 10.54 0.5
19 150 810 11.52 0.5

Table 6. The comparison of the extracted coefficients of Hyperbolic Garofalo Model.

Xiao and Armstrong
[10] EINNs EINNs + BI

Q (kJ/mol) 62,000 65,000 65,000
C1 0.184 0.539 0.443
C2 0.221 0.473 0.482
C3 2.89 1.055 1.073

MSE * 37,188.5 11,794.9 10,967.4
*: defined by Equation (4).

A total of 1000 Bayesian Inference interactions were performed to obtain the distribu-
tion of the extracted coefficients. The distributions are displayed in Figure 7, represented as
the ratio of each coefficient value to the average, and are expanded by the precision τ of the
error function. As denoted by the dashed lines in Figure 7, which signify a 5% difference,
stable distributions of coefficients C2 and C3 are observed, while the large variation in C1 is
attributed to the ratio setting, which induces a higher discrepancy among the 388 K data.
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The coefficient extraction of the hyperbolic Garofalo constitutive equation highlights
the flexibility of the EINN framework, as it allows for assigning ratios to data pairs to
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prioritize specific data. The fitting accuracy of the EINN results demonstrates a significant
improvement compared to the original reports [10] as indicated by the mean square error
(MSE) of Table 6, followed by Equation (4). Although the distribution of the C1 coefficients
demonstrate a small fraction of the outliers from BI integration as Figure 7, both C2 and C3
show statistical difference within ±5% difference. Over 1000 iterations, only 58 instances of
C1 shows more than ±5% difference of the average value. Consequently, a robust set of
coefficients for the hyperbolic Garofaolo constitutive model is achieved.

4.2. Anand Model

In this section, the Anand constitutive model coefficients extraction is implemented for
the lead-free SAC305 solder. The same activation energy as in the previous section is applied
for the sake of research consistency. To extract the remaining eight coefficients of the Anand
constitutive model, the first step involves utilizing temperature and strain rate-dependent
ultimate tensile stresses to determine the initial four coefficients. Subsequently, the second
step defines the remaining parameters based on temperature and strain rate-dependent
stress and plastic strain.

The experimental data are sourced from Motalab et al. [12]. The EINN formula-
tion, following Equation (12), is applied with the pre-processing mapping coefficients
ae, be, aσ, and bσ (Equation (13)) which are 0.8, 0.15, 0.9, and 0.1. It is vital to note that the
selection of these mapping coefficients depends on the numerical characteristics of the
dataset, and it is essential for preventing numerical errors during the backpropagation-
based machine learning of the EINN formulation.

During the learning phase of the EINN formulation, the coefficients n∗, m∗, A∗, and
β of Equation (12) and Figure 3 are constrained to be positive. A grid search technique is
employed to identify optimal initial values concerning the experimental data.

Furthermore, learning ratios are implemented to emphasize the learning preference
for low strain rates and temperatures close to the working temperature of electronic compo-
nents. After hundreds of iterations, the EINN coefficients are reported in Table 7. The MSE
values indicate that the coefficients obtained from the EINN formulation exhibit similar
accuracy to those obtained using conventional methods. The obtained step 1 Anand model
is plotted in Figure 8.
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Table 7. The comparison of the extracted coefficients of step 1 Anand model.

Motalab et al. [12] EINNs EINNs + BI

A 3501 1650 1649
n 1.00× 10−2 1.54× 10−4 1.64× 10−4

m 0.25 0.54 0.53
β = ŝ/ξ 7.55 4.11 4.16
MSE * 17.03 15.96 15.78

*: defined by Equation (4).

The EINN formulation coefficients serve as initial inputs for Bayesian Inference (BI) to
analyze the statistical distribution of the coefficients. Figure 9 illustrates the distribution of
the coefficients, with dashed lines indicating differences within ±5%. Due to its low value,
the coefficient n was not examined. Both coefficients A and β exhibit distribution within
±5% difference. Out of 1500 values, only 61 cases of coefficient m exceed ±5% difference,
which can be attributed to the preference settings during the EINN learning process. The
average coefficients obtained from BI are presented in the last column of Table 7 and are
utilized for the subsequent coefficient extraction step in the Anand model.
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Figure 10. The obtained step 2 Anand model curves for different temperatures. (a–c) are the obtained 
Anand model with strain rates of 10 , 10 , and 10  (1/s). The experimental data are based on 
Motalab et al. [12]. 

Figure 9. The distribution of the coefficients from the BI iteration. (a–c) are coefficients A, m,
and β, respectively.

The temperature and strain rate dependent stress–strain curves are obtained from Mo-
talab [12]. The EINN formulation of the step 2 Anand model, as indicated in Equation (17)
and Figure 4, is applied with the pre-processing mapping parameters shown in Table 8,
based on Equation (16), while in the EINN learning procedure, the values of s0 and h0 are
forced to be positive. A grid search technique is applied to define the optimal initial coeffi-
cients. The learning ratios are implemented to emphasize the learning preference for low
strain rates and temperatures close to the working temperature of electronic components,
following the coefficient extraction strategy of Motalab et al. [12]. With Equation (18), the
optimized coefficients can be obtained, as listed in Table 9, and the stress–strain curves
at different strain rates from the Anand model are plotted against the experiment [12], as
shown in Figure 10.

Table 8. The pre-processing mapping parameters.

y l x z

a 1 0.8 0.1 0.8
b 0 0.4 0.05 0.1
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Table 9. The comparison of the extracted coefficients of step 2 Anand model.

Motalab et al. [12] EINNs EINNs + BI

ξ 4 17.66 17.66
s0 21 55.96 57.45
a 1.78 2.30 2.26

h0 18,000 828,822 828,822
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Figure 10. The obtained step 2 Anand model curves for different temperatures. (a–c) are the obtained
Anand model with strain rates of 10−3, 10−4, and 10−5 (1/s). The experimental data are based on
Motalab et al. [12].

The dataset with high preference is applied to the BI iteration to mitigate the large
coefficient shifting. Figure 11 plots the MSEs of EINNs and EINNs with BI against the
Anand coefficient obtained by Motalab et al. [12], under different temperatures and strain
rates. By adjusting the ratio of EINN network learning, the coefficient extraction can be
fine-tuned to perform better in the room to the working temperature at a low strain rate, as
indicated in Figure 11.
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4.3. Chaboche Model

To study the lifetime of the ball-grid-array-type of advanced electronic packaging, the
Chaboche material model is often applied [5,8]. The Chaboche model and its coefficients
can be extracted from the temperature-dependent stress–strain curves by a given strain rate.
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Unlike the previous sectors, this section investigates the extraction of Chaboche coefficients
from the Anand model.

The Anand coefficients from Tables 6 and 7, adjusted via Bayesian Inference (BI),
are utilized to generate inputs for the Chaboche model. A strain rate of 10−5 (1/s) is
maintained, given that the Anand coefficients have been optimized for lower strain rates, as
demonstrated in the previous section. Stress–strain curves can be generated by the Anand
model (as Equations (14) and (15)) for each temperature point, including −40 ◦C, −20 ◦C,
40 ◦C, 80 ◦C, and 122 ◦C.

The temperature-dependent stress–strain data serve as the training datasets. With
the pre-processing mapping established by Equation (20), we apply the EINN formulation
for the Chaboche model as Equation (21). Following this, the steepest-descent coefficient
optimization is applied to the EINN formulation (as illustrated in Figure 5) with the neural
definitions outlined in Table 4. The post-processing of the coefficients Equation (22) allows
for the acquisition of Chaboche coefficients at various temperatures. The resultant data are
documented in Table 10, with the mean square errors (MSE) compared to the input dataset.

Table 10. Temperature-dependent Chaboche coefficients of EINNs.

Temperature σ0 C γ MSE *

−40 ◦C 39.32 9174.1 1004.7 1.11
−20 ◦C 33.80 7535.7 964.0 0.84
40 ◦C 21.35 4216.0 840.0 0.50
80 ◦C 15.43 2988.0 824.3 0.28
122 ◦C 10.50 1886.5 759.1 0.18

*: defined by Equation (4).

The coefficients derived from the EINN formulation are subsequently incorporated
into Bayesian Inference (BI) iterations for the temperature-dependent Chaboche model.
Figure 12 delineates the distribution of coefficients σ0, C, and γ across different tempera-
tures, magnified by the precision τ of the error function. The vertical axes in this figure
represent the ratio of the coefficient value obtained at each BI iteration to the averaged
value. Table 11 contains the averaged coefficient post-BI.
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Table 11. Temperature-dependent Chaboche coefficients of EINNs and BI.

Temperature σ0 C γ MSE *

−40 ◦C 39.30 9174.1 1004.7 1.11
−20 ◦C 33.78 7535.7 964.0 0.84
40 ◦C 21.39 4216.0 840.0 0.49
80 ◦C 15.45 2988.0 824.3 0.27
122 ◦C 10.53 1886.5 759.1 0.17

*: defined by Equation (4).

While variations in all coefficients lie within a ±5% difference, a larger variety, cou-
pled with a lower MSE, as listed in Tables 10 and 11, is evident at higher temperatures.
This suggests a reduced coefficient sensitivity at these elevated temperatures. By intro-
ducing Young’s modulus obtained by linear extrapolation from the experiment [12], the
temperature-dependent stress–strain curves are plotted in Figure 13.

Materials 2023, 16, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 13. The temperature-dependent stress–stress curves from Chaboche model using the coeffi-
cients in Table 11. 

5. Conclusions 
In this study, we developed the concept of Equation-Informed Neural Networks 

(EINNs) as an efficient method for extracting the coefficients of constitutive equations. 
Subsequently, the MCMC with numerical Bayesian Inference (BI) iterations was applied 
to estimate the distribution of these coefficients, thereby further refining them. 

The EINN formulation was derived by leveraging graphical representation tech-
niques to convert the mathematical form of constitutive equations into an equivalent 
EINN format. By carefully adjusting pre-processing mapping parameters and identifying 
dataset preferences, we could generate coefficients optimally aligned with the targeted 
application scenario. 

The EINN formulation has been successfully applied to the hyperbolic Garofalo, 
Anand, and Chaboche constitutive models. This paper details the EINN formulation with 
its neural network format, the definition of each neuron, the appropriate pre-processing 
techniques, and the post-processing of the coefficients. 

The extraction of coefficients for the hyperbolic Garofalo and Anand models was con-
ducted using experimental results from lead-free SAC305 solder material studies by Xiao 
and Armstrong [10] and Motalab et al. [12,13]. Our report includes the employed pre-pro-
cessing mapping techniques and parameters. With the dataset preference, the constitutive 
equations with extracted coefficients performed better in the interested zone. 

Comparisons with coefficients of the constitutive equations from the aforementioned 
studies demonstrated that those extracted from the EINN formulation were alike. Im-
portantly, the mean square error (MSE) of the EINN formulation learning was comparable 
to those from the literature [10,12,13]. The performance of the MSE depends on many fac-
tors, such as the prescription capability of the material model and experimental measure-
ment accuracy. In this research, the MES is applied as a comparison of how the coefficients 
extracted by the EINNs perform to the ones obtained by the original methods. 

Moreover, the MCMC with numerical Bayesian Inference (BI) iteration technique was 
employed to analyze the robustness of the extracted coefficients against the experiment 
data, as shown in Figures 7, 9, and 12. A slightly higher variation was observed when the 
dataset preference was applied to the EINN learning. Nevertheless, the coefficients de-
rived from EINNs remained within a ±5% confidence interval. 

Figure 13. The temperature-dependent stress–stress curves from Chaboche model using the coeffi-
cients in Table 11.

5. Conclusions

In this study, we developed the concept of Equation-Informed Neural Networks
(EINNs) as an efficient method for extracting the coefficients of constitutive equations.
Subsequently, the MCMC with numerical Bayesian Inference (BI) iterations was applied to
estimate the distribution of these coefficients, thereby further refining them.

The EINN formulation was derived by leveraging graphical representation techniques
to convert the mathematical form of constitutive equations into an equivalent EINN for-
mat. By carefully adjusting pre-processing mapping parameters and identifying dataset
preferences, we could generate coefficients optimally aligned with the targeted application
scenario.

The EINN formulation has been successfully applied to the hyperbolic Garofalo,
Anand, and Chaboche constitutive models. This paper details the EINN formulation with
its neural network format, the definition of each neuron, the appropriate pre-processing
techniques, and the post-processing of the coefficients.

The extraction of coefficients for the hyperbolic Garofalo and Anand models was
conducted using experimental results from lead-free SAC305 solder material studies by
Xiao and Armstrong [10] and Motalab et al. [12,13]. Our report includes the employed
pre-processing mapping techniques and parameters. With the dataset preference, the
constitutive equations with extracted coefficients performed better in the interested zone.
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Comparisons with coefficients of the constitutive equations from the aforementioned
studies demonstrated that those extracted from the EINN formulation were alike. Impor-
tantly, the mean square error (MSE) of the EINN formulation learning was comparable to
those from the literature [10,12,13]. The performance of the MSE depends on many factors,
such as the prescription capability of the material model and experimental measurement
accuracy. In this research, the MES is applied as a comparison of how the coefficients
extracted by the EINNs perform to the ones obtained by the original methods.

Moreover, the MCMC with numerical Bayesian Inference (BI) iteration technique was
employed to analyze the robustness of the extracted coefficients against the experiment
data, as shown in Figures 7, 9 and 12. A slightly higher variation was observed when the
dataset preference was applied to the EINN learning. Nevertheless, the coefficients derived
from EINNs remained within a ±5% confidence interval.

In conclusion, the combined use of EINNs with BI provides a powerful tool for ex-
tracting coefficients from temperature- and strain-rate-dependent constitutive equations
with dataset preference. This is under the assumption that the SAC305 solder material char-
acteristics can be described by the material model and that the experimental measurement
is accurate enough. This approach provides the coefficients’ value and the distribution of
coefficients against the training dataset.

This study’s potential limitations may include the dataset preference assumption,
which may not universally apply across all scenarios. Additionally, the applicability of the
EINN formulation to all forms of constitutive equations remains to be fully determined,
necessitating further exploration of potential limitations. Moreover, advanced neural
network backpropagation methods, such as Levenberg–Marquardt (LM) algorithm, will be
applied to EINN frameworks.
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Abstract: Solder interconnection in three-dimensional (3D) electronic packaging is required to un-
dergo multiple reflow cycles of the soldering process. This paper elucidates the effects of multiple
reflow cycles on the solder joints of Sn-3.0Ag-0.5Cu (SAC305) lead (Pb)-free solder with the addition
of 1.0 wt.% kaolin geopolymer ceramics (KGC). The samples were fabricated using powder metal-
lurgy with the hybrid microwave sintering method. Apart from using conventional cross-sectioned
microstructure imaging, advanced synchrotron real-time in situ imaging was used to observe primary
IMC formation in SAC305-KGC solder joints subjected to multiple reflow soldering. The addition
of KGC particles in SAC305 suppressed the Cu6Sn5 IMC’s growth as primary and interfacial layers,
improving the shear strength after multiple reflow soldering. The growth rate constant for the
interfacial Cu6Sn5 IMC was also calculated in this study. The average growth rate of the primary
Cu6Sn5 IMCs decreased from 49 µm/s in SAC305 to 38 µm/s with the addition of KGC particles.
As a result, the average solidified length in the SAC305-KGC is shorter than SAC305 for multiple
reflow soldering. It was also observed that with KGC additions, the growth direction of the primary
Cu6Sn5 IMC in SAC305 changed from one growth to two growth directions. The observed results
can be attributed to the presence of KGC particles both at grains of interfacial Cu6Sn5 IMCs and at
the surface of primary Cu6Sn5 IMC.

Keywords: multiple reflows; synchrotron; composite solder

1. Introduction

Solders play a crucial role in electronic packaging via their provision of mechanical
support and continuous electrical connection between the substrates and electronic com-
ponents. Reflow soldering has been commonly used to form solder interconnection at
the component and board-level assemblies. The emergence of complex electronic pack-
agings such as System-in-Package (SiP) and Package-on-Package (POP) require multiple
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reflow soldering to form all the solder interconnections. In advanced electronic packaging,
additional solder rework is required [1], and this process will result in interconnections
undergoing more than one reflow cycle. Intermetallic compounds (IMC) will be formed
during the reactions between Cu substrates and Sn solder alloys during the soldering
process [2,3]. The formation of IMC is crucial as it influences the reliability of the solder
joints. It is also inevitable that the thickness and morphology of the IMC layer will grow
and evolve with increasing time and temperature [4,5]. Therefore, in the case of multi-
ple reflow cycle processes, the solder joints in the first reflow cycle will undergo further
changes in the thickness and morphology of the IMC layer during the subsequent reflow
cycles. Researchers reported that the thickness of the IMC layer would increase during the
multiple reflow soldering process, affecting the solder joint’s reliability [6–8]. Additionally,
a thicker formation of the IMC layer could result in a brittle fracture, which would degrade
the strength of the solder joints [9–12]. The IMCs such as Cu6Sn5 and Ag3Sn are inherently
brittle in nature. It consists of one or more covalent compounds and will be deformed in
a brittle manner under mechanical loads [13]. Thus, with a thicker layer of IMC, it can
increase the likelihood of failure in the solder joints [14]. Sn–Ag–Cu (SAC) solder alloy
is commonly used in the electronics industry [15,16] and is touted as a viable substitute
for Sn–Pb solder alloy due to its low melting point. Moreover, the Solder Value Product
Council (SPVC) has approved SAC solder alloy as one of the Pb-free solder alloys that can
replace Sn–Pb solder alloy [12]. However, a significant concern in using the SAC solder
alloy is that the IMC layer’s growth is faster than Sn–Pb solders due to the higher service
temperature in the SAC solder [9]. Therefore, controlling growth on the formation of the
IMC layer in SAC solder alloy, especially during the multiple reflow soldering process, is
vitally important to preserve the reliability of the solder joints.

As the quality and reliability of solder joints are dependent on the formation of IMC
layers, many researchers took the initiative to enhance the performance of existing Pb-free
solder alloys. One of the feasible and viable approaches was using ceramics materials
to form composite solders [17–21]. To date, there are various ceramic materials that had
been successfully added into the solder matrix, such as silicon carbide (SiC) [12], titanium
oxide (TiO2) [17,18,22], titanium carbide (TiC) [22], samarium oxide (Sm2O3) [23], alumina
(Al2O3) [24], and cerium oxide (CeO2) [25,26]. These ceramic particles did not react with the
phase of the solder matrix, thus forming no new compounds within the solder during the
melting process [27]. The added ceramic particles also functioned as a second-strengthening
phase in the solder matrix, as their properties remain intact within the solder matrix, which
strengthens the solder alloys [27]. The dispersion of ceramic particles in the solder matrix
increases nucleation rates that result in grain refinement [28]. Tang et al. [29] reported
that the grain size of Cu6Sn5 IMC increased with increasing reflow time, but the addition
of TiO2 suppressed the growth of the IMC due to TiO2 particles preventing the diffusion
between Cu and Sn atoms. It was also reported that the solder properties improved due to
the enhancement in the growth of the interfacial IMC layer [20,24,26,30]. Therefore, it can
be surmised that the growth of the IMC layers during multiple reflow soldering needs to
be controlled or limited as it improves solder properties and ensures the reliability of the
solder joints.

Geopolymers are inorganic polymers that are formed through the geopolymeriza-
tion process [31].The process of geopolymerization occurs as the aluminosilicate sources,
which consist of SiO2 and Al2O3 are dissolute in a highly alkaline activated solution. The
geopolymerization process results in the formation of a semi-crystalline structure with
Si–O–Al and Si–O–Si bonds. The geopolymers are advantageous as they can transform
to a crystalline structure using slightly low sintering temperature during the sintering
process with excellent mechanical properties compared to typical ceramics. The fabrication
of the geopolymer ceramics seems to be advantageous as it is energy efficient. Moreover,
geopolymer ceramics consists of several elements such as Si and Al which may also con-
tribute to the properties of the solder alloy. In our previous research [30,32] the effect of
the addition of kaolin geopolymer ceramic (KGC) onto the properties of Sn-3.0Ag-0.5Cu
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(SAC305) under as-reflowed and isothermal aging conditions was investigated. The results
confirmed that the addition of KGC as reinforcement particles in SAC305 enhanced its
properties in as-reflowed and isothermal aging conditions. Furthermore, the segregation of
KGC in the SAC305 matrix refined the microstructure. It suppressed excessive growth of
the interfacial IMC even in high isothermal aging temperatures for more extended periods,
which improved solder properties such as solder joint strength and the solderability of
SAC305. There are many works in the literature focussing on the interfacial reactions
between Sn–Cu-based alloys and substrates during multiple reflow soldering [8,33,34]. As
reported by S.Tikale et al. [24], the addition of Al2O3 effectively suppressed the growth of
Cu6Sn5 IMC [24]. Owing to the ability of Al2O3 particles to hinder the diffusion of Cu to the
liquid solder, results in suppression of the IMC layer under multiple reflow soldering [24].
M.A.A Mohd Salleh et al. [1] discovered that the addition of TiO2 suppressed Cu6Sn5 IMC
both as primary and interfacial during multiple reflow soldering and thus can improve the
shear strength of solder. Nevertheless, limited studies have been reported on the behavior
of primary IMC in the solder alloys with the addition of reinforcement particles during mul-
tiple cycles of reflow soldering [1]. Primary IMC such as Cu6Sn5 and Ag3Sn are relatively
brittle in the solder bulk [35,36]. Therefore, their behavior and distributions in the bulk
solder, specifically during multiple reflow soldering, significantly influence the reliability
of the joints. This paper also analyses the formation of IMC Cu6Sn5 as primary crystals and
interfacial layers in the solder during multiple reflow soldering using advanced techniques
such as in situ synchrotron X-ray imaging.

2. Materials and Methods
2.1. Materials

Figure 1 shows the flowchart of the kaolin geopolymer ceramic and composite solder
fabrication process. Sn-3.0Ag-0.5Cu (SAC305) powders were used as the solder matrix
material. It has a spherical morphology and an average size of ~25–45 µm, purchased from
Nihon Superior Co. Ltd. (Osaka, Japan). The kaolin geopolymer ceramic (KGC) powders
with an average particle size of ~18 µm were used as the reinforcement material.

2.2. Fabrication of Kaolin Geopolymer Ceramic

The kaolin geopolymer ceramic (KGC) fabrication began with the formation of kaolin
geopolymer via the geopolymerization process. Kaolin was purchased from Associated
Kaolin Industries Sdn. Bhd. and used as the raw material to produce KGC. The kaolin was
geopolymerized using an alkaline activator solution, then cured in an oven at 80 ◦C for 24 h
to produce kaolin geopolymer. Next, the product was crushed using a mechanical crusher
and compacted at a load of 4.5 tons. The compacted pellets were sintered at 1200 ◦C at
3 h of soaking time to produce KGC. Then, the KGC pellets were ball-milled for 10 h in a
planetary mill at a speed of 450 rpm with a ball to powder ratio of 10:1 to produce KGC
particles with an average size of ~18 µm.

2.3. Fabrication of Composite Solder

A composite solder was developed by reinforcing 1 wt.% of kaolin geopolymer ceramic
(KGC) with SAC305 solder powder. The composite solder was fabricated using powder
metallurgy with a hybrid microwave sintering method. The SAC305 solder powder and
1 wt.% KGC were weighed, then the mixture was mixed in an airtight container using a
planetary mill machine at 200 rpm. The product was uniaxially compacted at a load of
4.5 tons. The spherical compacted pellets were then sintered using the hybrid microwave
sintering method at ~185 ◦C under ambient conditions for ~3 min in a 50 Hz microwave
oven. A microwave susceptor material of SiC was used for sintering. A sample of SAC305
without the addition of KGC particles was also fabricated using the same approach.
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Figure 1. Fabrication process of kaolin geopolymer ceramics and composite solder.

2.4. Microstructure Analysis

The microstructure of the SAC305 and SAC305-KGC was analyzed using a scanning
electron microscope (SEM). A sintered pellet was cold-rolled using a rolling machine until
the thickness of the sheets was ~50 µm to produce a solder ball. Then, the sheets were
punched using a 3.0 mm metal puncher, dipped with rosin mildly activated flux, and
reflowed on a Pyrex glass to produce a solder ball with a diameter of ~900 µm. The solder
balls were sieved to standardize their average size, then reflowed on a Cu substrate printed
circuit board (PCB) with an organic solderability preservative (OSP) using an F4N desktop
reflow oven. A small amount of rosin mildly activated flux was applied onto the sample’s
surface. The flux helped eliminate any contaminations and oxidation before and during the
melting process. After that, the reflowed samples SAC305 and SAC305-KGC were cross-
sectioned, cold mounted, and grounded with a different grit size of SiC papers. The samples

91



Materials 2022, 15, 2758

were polished using alumina and colloidal silica suspension to obtain a clearer image of
the microstructure under SEM. The average thickness of the IMC layer was measured on
the cross-sectioned samples using ImageJ. The IMC thickness (x) was calculated according
to Equation (1). The 3D primary intermetallic in the solder joint was microstructurally
analyzed as well, where it was etched using an etchant solution from a mixture of 2%
2-nitrophenol, 5% sodium hydroxide, and 93% distilled water to prepare it for analyses.

x = A/L (1)

where x is IMC thickness, A is the area of the IMC layer and L is the length of the IMC layer.

2.5. In Situ Synchrotron X-ray Radiography Imaging

In situ synchrotron X-ray radiography imaging was conducted using beamline BL20XU
at Spring-8 synchrotron in Hyogo, Japan. The experiment was conducted according to the
solidification observation setup developed and reported in [1,37,38]. In the experiment, thin
sheets of SAC305 and SAC305-KGC were aligned vertically on the 100 µm thick copper (Cu)
printed circuit board (PCB), and a small amount of flux was applied. Then, the samples
were sandwiched between two glass plates of silica, SiO2, and polytetrafluoroethylene
(PTFE) spacer sheets with an observation window area of 10 × 10 mm2, as depicted in
Figure 2a. The PTFE sheets were also cut to form vents for flux outgassing purposes during
the soldering process. To mimic the soldering process, a furnace equipped with graphite
heating elements was used, and the reflow profile JEDEC standard (JESD22-A113D) was
used. During the soldering process, the samples were heated from room temperature to
250 ◦C at a rate of 0.33 ◦C/s, held for 30 s at the peak temperature, before being cooled
at 0.33 ◦C/s for 6 cycles as in Figure 2c–f. The X-ray energy used was 21 keV. A pla-
nar undulator was used, acting as a light source, and the radiations produced were then
monochromatized using Si double crystal monochromators. The image detector located at
~2.5–3.0 m away from the samples collected the image signals, which were converted into a
digital format of 2000× 2000 pixels, resulting in a resolution of 0.47 µm/pixel and a viewing
field of 1 mm × 1 mm. The parameters used in this experiment were selected to provide a
high degree of coherence, absorption, and phase contrast, allowing the boundaries of the
samples to be observed in the transmitted images.

2.6. Single Lap Shear Testing

Solder joint strength after multiple reflow cycles was evaluated using a single lap shear
test, performed using an Instron Machine. The specifications of the copper substrate (PCB-
FR4 type) followed the ASTM D1002 standard, as shown in Figure 2b. The fractography
of the solder joint after the test was imaged using a scanning electron microscope (SEM)
equipped with energy-dispersive X-ray spectroscopy (EDS) under secondary imaging
mode to investigate the possible fracture surface mechanism after shearing loads.
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Figure 2. (a) Schematic diagram of sample cell for the in situ soldering synchrotron observation,
(b) Schematic diagram illustrating the configuration for single lap shear test, temperature profile,
and growth behavior of primary Cu6Sn5 for (c) SAC305 1st reflow cycle, (d) SAC305-KGC 1st reflow
cycle, (e) SAC305 multiple reflow cycle (2nd to 6th cycle), and (f) SAC305-KGC multiple reflow cycle
(2nd to 6th cycle).

3. Results and Discussions
3.1. Microstructure Analysis
3.1.1. Ex Situ Microstructure Analysis of Solder Joints after Multiple Reflows

The microstructure of the solidified SAC305 and SAC305-KGC solder joints after the
first, third, and sixth cycles of reflow soldering is shown in Figure 3. The microstructure
of SAC305 solder alloys consists of fractions of β-Sn phase and eutectic phases. Based
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on Figure 3, the β-Sn and eutectic areas were observed in both materials of SAC305 and
SAC305-KGC solder joints for multiple cycles of reflow soldering. Fine dots Cu6Sn5
and needle-like Ag3Sn IMC formed in the eutectic area as observed in Figure 3. In this
study, hypoeutectic SAC305 solder was soldered on a copper substrate and as a result of
Cu diffusion and dissolution during soldering, primary Cu6Sn5 will form in the solder
joint [26,33]. Per Figure 3a,c,e, IMC particles in the eutectic areas of the SAC305 solder joints
are coarse compared to the SAC305-KGC solder, suggesting that the addition of kaolin
geopolymer ceramic (KGC) in SAC305 solder alloy suppresses further coarsening of IMCs
in the eutectic area after multiple cycles of reflow soldering.

Figure 3. Cross-sectioned microstructure at the bulk solder joints (a) SAC305 at 1st reflow cycle,
(b) SAC305-KGC at 1st reflow cycle, (c) SAC305 at 3rd reflow cycle, (d) SAC305-KGC at 3rd reflow
cycle, (e) SAC305 at 6th reflow cycle, and (f) SAC305-KGC at 6th reflow cycle.

During the soldering process, the interfacial reaction between molten solder alloy and
copper substrate will form an interfacial intermetallic compound (IMC) layer. The cross-
sectional images of solder joints were analyzed, and the thickness of the IMC layer was
measured per Figures 4 and 5 to elucidate the effects of KGC addition on the interfacial IMC
layer for multiple cycles of reflow soldering. The elongated scallop of Cu6Sn5 in the SAC305
solder joints was observed to form after reflow soldering, as shown in Figure 4a, suggesting
increased concentrations of copper atoms from the substrates to the Sn matrix [26,33]. In
the SAC305-KGC solder joints, the small and scalloped shape was formed after reflow
soldering; however, with an increasing reflow cycle, the elongated scallop in the SAC305
solder joints became coarser and grew into the solder matrix, as observed in Figure 4c,e.
The formation of the elongated scallop IMC layer in SAC305 solder joints is unfavorable, as
it could compromise the reliability of the joints by inducing crack formation [32]. However,
this trend was not observed in the solder joints of SAC305-KGC since the small and
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scalloped IMC layer was shorter and became more faceted after multiple cycles of reflow
soldering, as can be seen in Figure 4d,f.

Figure 4. Cross-sectioned microstructure at the interfacial of solder joints (a) SAC305 at 1st reflow
cycle, (b) SAC305-KGC at 1st reflow cycle, (c) SAC305 at 3rd reflow cycle, (d) SAC305-KGC at 3rd
reflow cycle, (e) SAC305 at 6th reflow cycle, and (f) SAC305-KGC at 6th reflow cycle.
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Figure 5. (a) Average thickness of interfacial intermetallic compound (IMC) layer at different reflow
cycles, (b) ln plot growth of interfacial IMC layer respected to different reflow cycles, (c) Top view of
interfacial IMC layer in SAC305-KGC after 6th cycle reflow, and (d) EDX point analysis at Point 1.

The measured average thickness of the interfacial IMC layer for different reflow cycles
was plotted and shown in Figure 5a. Initially, the interfacial IMC layer in the SAC305
solder joints grows to an average thickness of ~5.9 µm. After multiple cycles of reflow
soldering, the interfacial IMC layer grows to a maximum of ~12.6 µm in SAC305 solder
joints. Meanwhile, in the SAC305-KGC solder joints, the interfacial IMC layer grows to an
initial average thickness of ~4.5 µm and a maximum of ~9.4 µm after multiple cycles of
reflow soldering. The average thickness of the SAC305-KGC solder joints was thinner than
SAC305 solder joints, inferring that the addition of KGC might play a role in suppressing
the increasing thickness of the IMC layer during multiple cycles of reflow soldering. The
thickness of the interfacial IMC layer after multiple cycles of reflow soldering can be
generally described per the empirical power law equation [1,6,36,39]:

x = ktn (2)

where x is the thickness of the IMC layer at reaction time t, k is the growth rate constant,
and n is the time exponent. In this study, the reaction time was based on the time above
250 ◦C, which is 30 s at each reflow cycle.

According to Liu et al. [40], the interfacial IMC layer’s growth could either be con-
trolled by the grain boundary diffusion at the interface, bulk diffusion, or chemical reaction
with the values of time exponent, n, of 0.33, 0.50, or 1.0, respectively. In this study, the
values of k and n for SAC305 and SAC305-KGC for multiple cycles of reflow soldering
can be obtained by the linear fitting method of the ln-ln graph. Figure 5b shows the graph
of linear fitting obtained from the experimental data. The results revealed that the time
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exponent, n, for the growth of interfacial IMC layer in SAC305 and SAC305-KGC solder
were 0.45 and 0.41, respectively. The values obtained were near 0.5, which explains the
growth of the interfacial IMC layer during multiple cycles of reflow soldering as controlled
via bulk diffusion. Regarding the growth rate constant (k), the interfacial IMC in SAC305-
KGC has a k value of 0.37 µm2/s, compared to SAC305, which is 0.81 µm2/s for multiple
reflow cycles. This proved that the growth of the interfacial IMC layer in SAC305 is faster
than SAC305-KGC, thus leading to a thicker formation of the interfacial IMC layer after
multiple cycles of reflow soldering. Salleh et al. [1] also reported that the addition of TiO2
in Sn-0.7Cu solder resulted in the growth exponent of 0.5 with t1/2 dependence. A top view
with high magnification images of the interfacial IMC layer in the SAC305-KGC after the
sixth cycle of reflow soldering is shown in Figure 5c. EDX point analysis was performed
on the grains of Cu6Sn5 IMC. The results from the EDX point analysis at “Point 1”, per
Figure 5d, confirmed the presence of KGC particles on the surface of Cu6Sn5 IMC grains.
This observation suggests that KGC particles remained in contact with Cu6Sn5 IMC grains
after the sixth cycle of reflow soldering, thus suppressing the growth of interfacial Cu6Sn5
IMC layer during multiple reflow soldering processes. As mentioned in [34], the channels
between the Cu6Sn5 scallops provide a path for the rapid diffusion and dissolution of
copper atoms from the substrates to the molten solder, resulting in the formation of the
Cu6Sn6 interfacial layer. As the growth rate constant calculated in SAC305 was faster than
SAC305-KGC, this explains that the rapid diffusion of copper atoms during the solid–liquid
process could result in a thicker interfacial Cu6Sn5 IMC layer with an elongated scalloped
shape. Meanwhile, the growth rate constant of the SAC305-KGC solder joints was lower
since the presence of the KGC particles on the surface of Cu6Sn5 grains might block chan-
nels between the Cu6Sn5 scallop for rapid diffusion of copper atoms from the substrate
and tin atoms from the molten solder. This explains the thinner interfacial IMC layer in
the SAC305-KGC solder joints during the stipulated multiple reflow soldering. Moreover,
Tang et al. [9] suggested that the theory of adsorption of surface-active materials can be
used to determine the role of the reinforcement particles on the interfacial IMC layer and
the IMCs at the bulk solder.

3.1.2. In Situ Observation on Primary Cu6Sn5 IMC during Multiple Reflows

The growth behavior of primary Cu6Sn5 during multiple reflow soldering in SAC305
and SAC305-KGC solder joints was in situ visualized using synchrotron X-ray imaging at
Spring8, Japan. Figures 6 and 7 show the synchrotron radiation images for both SAC305 and
SAC305-KGC during multiple reflow soldering. The darker rods in the images are primary
Cu6Sn5, and a slightly brighter is the Sn liquid. Both figures showed the distribution of
primary Cu6Sn5 formed in the SAC305 and SAC305-KGC solder joints for multiple cycles
of reflow soldering. In this experiment, SAC305 and SAC305-KGC solder started to melt
at ~217 ◦C (t = 0 when the solder melts). After a peak temperature of 250 ◦C for 30 s, the
solders began cooling down. During the cooling process for the first reflow cycle of SAC305,
the primary Cu6Sn5 IMC nucleated at experimental times of 202 s to 272 s and temperatures
of ~244 ◦C to 210 ◦C as in Figure 2c. Meanwhile, in SAC305-KGC (Figure 2d), the primary
Cu6Sn5 IMC starts to nucleate at experimental times of 203 s to 262 s and temperatures of
~245 ◦C to 220 ◦C. This implies that during the first cycle of reflow soldering in SAC305-
KGC, the primary Cu6Sn5 IMC took a shorter time to grow from the first IMC nucleation
until the completion of the solidification process. The shorter time is taken for the primary
Cu6Sn5 IMC in the SAC305-KGC to grow suggested the occurrence of rapid solidification,
which affects the nucleation growth time with inhibits the tip growth of primary IMC [41].
Besides that, there are also a number of interfacial voids as in Figures 6–8. The formation of
interfacial voids was caused by flux outgassing during soldering [37,42].
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Figure 6. Synchrotron radiation images of SAC305 showing the formation of primary Cu6Sn5 IMC
for multiple cycles of reflow soldering.

Figure 7. Synchrotron radiation images of SAC305-KGC showing the formation of primary Cu6Sn5

IMC with respect to multiple cycles of reflow soldering.
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Figure 8. Sequences of the image showing the growth of IMC (denoted by ‘g’) in SAC305 solder joints
during (a) 3rd reflow cycle, (b) 4th reflow cycle, (c) 5th reflow cycle, and (d) 6th reflow cycle (t = 0 s
when the sample begins to cool).

It can be seen in Figure 6c–f that there is one primary Cu6Sn5 IMC (denoted with
‘g’) nucleated at the exact locations during the third to the sixth cycle of reflow soldering.
Meanwhile, in the SAC305-KGC, most primary IMCs marked as ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, and ‘f’
were observed to form at the same locations during the third to sixth cycle reflow soldering
(per Figure 7c–f). To further elucidate the finding, snapshot images for primary Cu6Sn5
IMC (denoted by ‘g’) in SAC305 and one of the primaries in SAC305-KGC are shown in
Figures 8 and 9, respectively. Primary Cu6Sn5 IMC (denoted by ‘g’) was first nucleated at
227.6 ◦C, 50 s during the cooling from peak temperature in the third cycle reflow soldering
(Figure 8a). Then, this primary IMC was fully melted during the heating process of the
fourth reflow cycle and nucleated again at a similar location during the cooling at the
following fifth and sixth reflow cycles. Additionally, this primary IMC has one growth
direction, per Figure 8, during the multiple reflow cycle. This observation can be caused
by the orientation indexed of the crystal structure. Cu6Sn5 IMC existed as a close-packed
hexagonal crystal structure at a temperature above 186 ◦C with the orientations index of
<0001> [11], and it can be inferred that the primary Cu6Sn5 IMCs in SAC305 will preferably
grow in one growth direction. Meanwhile, in the SAC305-KGC, the primary Cu6Sn5 IMC
was first nucleated after 19 s of cooling from a peak temperature of 250 ◦C, per Figure 9a.
However, it should be pointed out that during the subsequent heating process in the
fourth, fifth, and sixth cycles, the primary Cu6Sn5 IMC was not fully melted. However,
during cooling, the primary Cu6Sn5 IMC will instantly grow in two growth directions
until it solidifies, as depicted in Figure 9b–d. Generally, the fewer the crystal orientations
of the IMC, the easier for the IMC to grow and increase in size due to the lower energy
consumption during melting [11,36]. A key finding in this work is that (i) primary Cu6Sn5
IMC in SAC305-KGC nucleated earlier compared to SAC305, (ii) primary Cu6Sn5 IMC in
SAC305-KGC do not fully melt during the heating stages of fourth, fifth, and sixth reflow
cycle, and yet the primary IMCs will instantly grow during the cooling stages, and (iii) the
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additions of KGC in SAC305 causes the primary Cu6Sn5 IMCs growth in two growth
directions. Despite that, the heating and cooling conditions (time and temperature) used
during the soldering of both samples, SAC305 and SAC305-KGC, were similar. Therefore,
this observation must be explained during the multiple reflow soldering of SAC305 and
SAC305-KGC. Deep etching metallographic technique on the solder joints of SAC305 and
SAC305-KGC was conducted to evaluate the possible effects of KGC addition on the growth
of the primary Cu6Sn5 IMC.

Figure 9. Sequences of the image showing the growth of IMC in SAC305-KGC solder joints during
(a) 3rd reflow cycle, (b) 4th reflow cycle, (c) 5th reflow cycle, and (d) 6th reflow cycle (t = 0 s when the
sample begins to cool).
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The deep etching technique removed tin and partially exposed primary Cu6Sn5 IMC.
Figure 10 shows the top-down images for both the SAC305 and SAC305-KGC solder joints
after the sixth cycle of reflow soldering. It can be seen that both solder joints consist of
hexagonal rod and “in-plane” branched type of primary IMC, which aligned with the
synchrotron radiation images, per Figures 6 and 7. EDX analysis was performed on the
primary Cu6Sn5 IMC in SAC305 and SAC305-KGC solder joints, and it was determined
that the small agglomerations at the edge of primary Cu6Sn5 in SAC305-KGC are kaolin
geopolymer ceramic (KGC) particles, as confirmed by EDX analysis results shown in
Figure 10d. Al, Si, K, Mn, Fe, K, and Zr originated from the KGC systems. Based on this
observation, it is possible that the KGC particles can be in contact with primary Cu6Sn5
IMC during multiple reflow soldering. It is hypothesized that KGC particles at the primary
Cu6Sn5 IMC can explain the earlier nucleation in the SAC305-KGC solder joints. It can also
be hypothesized that the presence of KGC particles can disturb the fully dissolved primary
Cu6Sn5 IMC during the subsequent cycles of reflow soldering.

The growth behavior of primary Cu6Sn5 IMC at SAC305 and SAC305-KGC was
quantified and shown in Figure 11. The final solidified primary Cu6Sn5 IMCs’ length in
SAC305 and SAC305-KGC is shown in Figure 11. The length of the primary Cu6Sn5 was
measured from its first nucleation until it was completely solidified. Figure 11b shows
the growth rate of primary Cu6Sn5 for SAC305 and SAC305-KGC solder joints. Based on
the graph in Figure 11a, the final solidified length of primary Cu6Sn5 in SAC305-KGC is
relatively smaller than SAC305. The primary Cu6Sn5 in SAC305-KGC grew to a maximum
average length of ~602 µm. In the case of SAC305, the primary Cu6Sn5 could grow to a
maximum average length of ~ 654 µm. The differences in the maximum value of the final
average solidified length of primary Cu6Sn5 in SAC305-KGC and SAC305 were ~8%. The
long primary Cu6Sn5 in the solder joints compromised its reliability, as discussed in [36,37].
The differences in the size of primary IMCs can also be linked to the indexed orientations
of the crystal structure [36]. As mentioned previously, the fewer growth orientations for
IMCs, the easier for the IMCs to grow and increase in size due to their lower energy
consumption. Similar to the case of the SAC305-KGC, the addition of KGC can slightly
change the growth orientations of the primary Cu6Sn5, resulting in much smaller-sized
primary IMCs. Additionally, in the case of the SAC305-KGC, the primary Cu6Sn5 IMC
grew at the maximum average growth rate of ~38 µm/s, while in the case of SAC305,
the maximum average growth rate of the primary Cu6Sn5 was ~49 µm/s. This led to the
conclusion that the primary Cu6Sn5 IMC in SAC305-KGC grew to a shorter length at a
slower rate. A key finding in this work is that the solidified length of primary Cu6Sn5 IMC
in SAC305-KGC was relatively smaller, forming at a slower growth rate whilst experiencing
earlier nucleation during multiple reflow soldering compared to SAC305. This can be
attributed to the addition of KGC particles suppressing the growth of primary intermetallic.
Salleh et al. [1] reported that the reinforcement particles in Sn-0.7Cu solder decreased the
number density and total length per unit area of the primary Cu6Sn5 during multiple
reflow soldering.
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Figure 10. Top-down view of primary IMC in the bulk solder (a) Low magnification of SAC305,
(b) Low magnification of SAC305-KGC, (c) High magnification of SAC305, (d) High magnification of
SAC305-KGC. EDX point analysis at primary IMC in (e) SAC305, and (f) SAC305-KGC.
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Figure 11. (a) Average length of the primary IMC in SAC305 and SAC305-KGC, and (b) Average
growth rate of primary IMC in SAC305 and SAC305-KGC.

The results indicated that the suppression of intermetallic both as primary crystals
and interfacial intermetallic layer is evident in materials of SAC305-KGC. As suggested
by Gu et al. [24,38], the suppression of IMC was attributed to the ability of reinforcement
particles to act as surface-active materials adsorbed onto solid surfaces. The reinforcement
particles in the composite solder can be surface-active materials due to their high surface
tension [38]. It is known that the smaller the size of the particles, the larger the surface
tension and the specific surface area is. According to adsorption theory, the surface energy
of Cu6Sn5 can be expressed as follows:

∑N γN
C SN = ∑N γN

O SN − RT ∑N SN

∫ C

O

ΠN

c
dc→ min (3)

where c is the concentration of KGC particles, γN is the surface tension of Cu6Sn5 particle N,
γN

O is the surface tension of Cu6Sn5 particle without adsorption of KGC, γN
C is the surface

tension of Cu6Sn5 particle with adsorption of KGC, SN is the area of Cu6Sn5 particle N, ΠN

is the number of KGC particles adsorbed by Cu6Sn5 particle N, R is gas constant, and T is
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the absolute temperature. From Equation (3), ∑N γN
O SN is constant since it is not dependent

on the concentration of KGC. Thus, the surface energy of Cu6Sn5 can be expressed as:

∑N γN
C SN = RT ∑N SN

∫ C

O

ΠN

c
dc→ max (4)

Based on the relationship in Equation (4), it can be inferred that with an increasing
amount of adsorbed KGC, the surface energy of Cu6Sn5 decreases. As indicated by the Gibs
free energy, the decrease in the surface energy in Cu6Sn5 decreases the growth velocities of
Cu6Sn5 and the growth rate for each of Cu6Sn5.

The proposed mechanisms are shown in Figure 12 for the effects of KGC particles,
described as follows; during the reflow soldering, the KGC particles were likely to segregate
into the molten solder [32]. As a result, some KGC particles were adsorbed on the primary
Cu6Sn5 IMC and onto the copper substrate. Increasing the reflow cycle resulted in more
KGC particles adsorbed onto the primary Cu6Sn5 IMC, which causes the growth rate of the
primary Cu6Sn5 IMC to decrease from the third until the sixth cycle of reflow soldering, as
depicted in Figure 11b, compared to SAC305. The growth orientations are likely to change
with adsorbed KGC since primary Cu6Sn5 IMC exhibited two growth directions compared
to SAC305, with one growth direction along with <0001> during multiple reflow soldering.
Additionally, the adsorbed KGC is likely to disturb the melting of the primary Cu6Sn5 IMC
during the subsequent heating cycle from the third to the sixth cycle of reflow soldering.

Figure 12. Propose mechanism on adsorption of KGC particles on the surface of Cu6Sn5 during
multiple reflow soldering.

3.2. Shear Strength of Solder Joints after Multiple Reflows

The mechanical performance of the solder joints was determined using a single lap
shear test. Figure 13a shows the plot of the average shear strength for SAC305 and SAC305-
KGC subjected to multiple cycles of reflow soldering. Overall, the average shear strength in
SAC305 and SAC305-KGC decreased with increasing cycles of reflow soldering. However,
the average shear strength in SAC305-KGC solder joints is higher than SAC305 regardless
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of the reflow soldering cycle. In the SAC305-KGC solder joints, the average shear strength
showed ~13% reduction after the sixth cycle of reflow soldering compared with SAC305,
which exhibited a 27% reduction after the sixth cycle of reflow soldering. A plausible expla-
nation for the decrease in the average shear strength of the SAC305 is due to the formation
of coarser microstructure and thicker interfacial IMC layer during the multiple cycles of
reflow soldering. Meanwhile, the SAC305-KGC solder joints exhibited a lower reduction in
the average shear strength after the sixth cycle of reflow soldering. This can be explained
by the existence of KGC particles on both solder matrix and interfacial, as discussed in
previous sections. The abovementioned results showed that the controllable coarsening
in the microstructure and thinner interfacial IMC layer in SAC305-KGC benefitted the
strength of solder during multiple cycles of reflow soldering. In addition, the relatively
finer distribution of the IMCs in the solder bulk strengthened the solder matrix via disper-
sion strengthening [24]. Additionally, the smaller size of the primary IMCs in SAC305-KGC
during multiple reflow soldering contributes to the strength of the solder joints.

Figure 13. Cont.
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Figure 13. (a) Shear strength of SAC305 and SAC305-KGC subjected to multiple cycles of reflow
soldering. SEM fracture surface of (b) SAC305 at 1st reflow, (c) SAC305-KGC at 1st reflow, (d) SAC305
at 3rd reflow, (e) SAC305-KGC at 3rd reflow, (f) SAC305 at 6th reflow, and (g) SAC305-KGC at 6th
reflow cycle.

A comprehensive analysis of the failure mechanism in SAC305 and SAC305-KGC
involved using a scanning electron microscope (SEM) to elucidate the failure modes during
multiple reflow soldering. Figure 13b–g shows the fractography for SAC305 and SAC305-
KGC solder joints during the firth, third, and sixth reflow cycles. During the first reflow
cycle, SAC305 solder joints failed in the combination of brittle and ductile failure mode.
The appearance of shallow shear dimples was corresponding to the ductile region as in
Figure 13b. The cleavage fracture area indicates less energy was absorbed during the shear
test, which corresponds to the brittle region [43]. Meanwhile, SAC305-KGC solder joints
show ductile fracture mode during the first cycle of reflow soldering with the appearance
of shear dimples as in Figure 13c. Then, after the sixth cycle of reflow soldering, SAC305
solder joints showed a prominent structure of Cu6Sn5 IMC, suggesting that the failure
occurred along with the IMC in a brittle manner after the shearing indicated in Figure 13f.
On the other hand, in SAC305-KGC solder joints, a combined fractured mode (brittle and
ductile) was observed after the sixth cycle of reflow soldering, per Figure 13g.

4. Conclusions

The effects of the addition of kaolin geopolymer ceramic in SAC305 solder joints were
elucidated via the microstructural analyses at the bulk solder and the interfacial layer.
The addition of KGC in the SAC305 solder suppressed the growth of the IMC both at
the primary and interfacial layers and improved the shear strength of the solder. It can
therefore be concluded that:

1. It was observed that the KGC particles remained in contact with the grains of the inter-
facial Cu6Sn5 IMC during multiple reflow soldering, which decreased the maximum
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average thickness of the IMC layer from ~12.6 µm (SAC305) to ~9.4 µm (SAC305-
KGC). The scalloped interfacial IMC layer in SAC305-KGC became shorter and faceted
after the sixth cycle of reflow. However, in SAC305, the elongated scalloped interfacial
IMC layer grew longer into the solder’s matrix. The growth rate constant calculated
for SAC305-KGC was 0.37 µm2/s, compared to SAC305, which is 0.81 µm2/s.

2. During the in situ microstructure analysis, the primary Cu6Sn5 IMC in SAC305-KGC
nucleated earlier at higher temperatures during the cooling stage. As a result, the
maximum average growth rate achieved in the SAC305-KGC was 38 µm/s compared
to SAC305, which is 49 µm/s. The lower growth rate resulted in shorter lengths of
solidified primary Cu6Sn5 IMCs in SAC305-KGC.

3. It was also observed that after the third cycle, the primary Cu6Sn5 IMCs in SAC305-
KGC did not fully melt during subsequent heating of the fourth, fifth, and sixth cycle
of reflow soldering and grew with two growth directions, which differs from SAC305
where the primary only grows with one growth direction. The results obtained were
likely related to the mechanism of adsorption of KGC particles on the surface of
primary Cu6Sn5 IMCs during multiple reflow soldering.

4. The suppression of Cu6Sn5 IMC both as primary and interfacial layers in SAC305-
KGC resulted in a reduction of ~13% of average shear strength after multiple reflow
soldering. However, in SAC305, the average shear strength decreased by ~27% after
multiple reflows soldering and experiencing the brittle fracture mode.
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Abstract: Sintered silver paste is widely used as the die-attachment material for power semiconduc-
tors. However, sintered silver joints encounter problems, such as severe coarsening of sintered pores
and oxidation issues, in harsh high-temperature environments. These lead to the deterioration of the
die-attachment joints. In this paper, a novel method of sintering silver joints is demonstrated, where
silver–indium alloy paste is used to improve the reliability of sintered Ag joints. The silver–indium
(Ag–In) alloy paste was fabricated through mechanical alloying using the ball-milling technique.
The well-bonded sintered Ag–In alloy joints inhibited pore coarsening better than pure sintered
Ag joints and significantly enhanced the mechanical properties at high operating temperatures.
Lastly, an oxidation mechanism for the sintered joint was proposed, and strategies to prevent such
high-temperature oxidation were discussed.

Keywords: Ag–In alloy pastes; mechanical alloying; power semiconductor packaging; die attachment;
mechanical properties; oxidation mechanism

1. Introduction

In the age of pursuing energy savings and reducing carbon emissions, the popu-
larization of electric vehicles (EVs) has become the primary objective of next-generation
transportation technology because the use of EVs can significantly reduce carbon emissions,
which will diminish the greenhouse effect and global warming. Consequently, many coun-
tries advocate that internal combustion engine vehicles should be phased out and replaced
by EVs or hybrid EVs within the next decade [1]. Therefore, it is important to accelerate the
development of EVs and enhance the energy conversion efficiency of inverters, the power
module responsible for switching between alternating current and direct current power
in EVs.

Inverters need to withstand a considerable amount of current in EVs, which leads
to a substantial amount of heat generation and a harsh operating temperature of above
200 ◦C [2,3]. Given that Si-based semiconductors become conductive and can fail at such
high temperatures, wide-bandgap (WBG) semiconductors are better suited for use in
inverter power chips because of their superior properties compared to Si-based semicon-
ductors [4–6]. Silicon carbide (SiC) and gallium nitride (GaN) are two promising WBG
semiconductors for application in EV power modules because they exhibit high breakdown
voltage, high switching frequency, low switching losses, and low power conversion losses
while operating above 200 ◦C [7–9]. Therefore, WBG semiconductor-based power chips
increase the horsepower of EVs and simultaneously extend the operating duration owing
to their low power consumption.

For power chips to function well, packaging materials with high-temperature reliabil-
ity are essential for the die attachment, and they should provide power chips with excellent
mechanical support and heat dissipation. However, the conventional Pb-free Sn-based
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packaging materials used in consumer electronics cannot withstand the high temperatures
generated during power semiconductor operation due to their intrinsically low melting
points and creep resistance [10–12]. Therefore, developing reliable die-attachment materials
for high-temperature applications is crucial for EV power modules. Ag paste sintering is a
die-attachment packaging technology that has been widely used in power modules because
sintered silver joints possess outstanding mechanical reliability and heat dissipation prop-
erties at high operating temperatures. Nevertheless, sintered Ag joints have challenging
Cu substrate oxidation problems that need to be resolved. It was demonstrated that the Cu
oxide layers formed at operating temperatures above 200 ◦C deteriorated the mechanical
strength of sintered Ag joints [13–17]. Furthermore, coarsening of sintered pores in high-
temperature environments also resulted in reliability issues. To address the aforementioned
issues, Lee and coworkers pointed out that a joint comprising Ag–In intermetallic com-
pounds (IMCs) exhibited excellent properties compared to pure Ag joints [18,19]. Moreover,
our previous studies have proven that the addition of In to sintered Ag joints has positive
effects on the sintered joint [20–25]. The sintered Ag–In joint produced via the transient liq-
uid phase (TLP) bonding reaction between the Ag paste and In foil significantly improved
the mechanical properties and reduced oxidation problems of the sintered joints at high
temperatures. However, the In foils used for TLP bonding are too soft and fragile, leading
to handling difficulties during the fabrication process. The additional step of adding In foil
also increases the production costs. Hence, the fabrication process for the sintered Ag–In
joint using In foil is not fully compatible with large-scale manufacturing. Furthermore, the
sintered Ag–In joint produced via the TLP reaction needed to undergo a long-term phase
transformation from brittle Ag–In IMCs to a ductile Ag–In solid solution to achieve the
optimal mechanical properties and compositional homogenization [24,25]. Consequently,
despite the excellent properties of sintered Ag–In joints, it is not practical to use In foil in
industrial applications because it cannot be mass-produced, which restricts the application
of sintered Ag–In joints.

Herein, a novel method of directly sintering the Ag–In alloy pastes using a homo-
geneous solid solution is proposed. Through the employment of the Ag–In alloy paste,
the additional step of adding In foil can be eliminated, thereby simplifying the fabrication
process and bringing sintered Ag–In joints closer to practical industrial application. Such
Ag–In alloy pastes can retain the benefits of In foils but at much-reduced manufacturing
cost. A proper powder production method needs to be developed for the fabrication of
homogeneous Ag–In alloy pastes. Powder production methods such as gas and water
atomization are common in industrial applications because they can mass-produce metal
and alloy powders [26,27]. However, gas and water atomization are not suitable for the
early stages of research and development in Ag–In alloy powders because of the large
quantities of raw material required. Therefore, the focus should be on testing the feasi-
bility and optimizing the composition of the Ag–In alloy paste. Hence, this study uses
mechanical alloying by the ball-milling technique to produce small quantities of Ag–In
alloy powders [28]. In this way, various Ag–In alloy powders can be made and compared
to determine the optimal composition.

In this study, a novel Ag–In alloy paste was developed by directly alloying In with Ag
powder through the ball-milling process and mixing with an organic solvent. The Ag–In
alloy paste was utilized to fabricate sintered joints by a hot-pressing process. In addition, we
compared the bonding and sintering results of the fabricated Ag–In alloy joint to the pure
Ag joint. Furthermore, the high-temperature reliability of both sintered joints was evaluated
using high-temperature storage (HTS) and die shear tests, after which the microstructure
and phase were investigated. Moreover, the correlation between the mechanical properties
of both sintered joints during HTS was established. Lastly, the oxidation mechanism in the
sintered joint and strategies to prevent oxidation were discussed.

111



Materials 2022, 15, 1397

2. Experimental
2.1. Ball-Milling Process for the Fabrication of Ag and Ag–In Alloy Pastes

Figure 1 shows a schematic of the Ag and Ag–In alloy paste fabrication processes. A
high-energy planetary ball-milling machine (Pulverisette 7 Premium Line, Fritsch, Idar-
Oberstein, Germany) with two atmosphere-controlled milling jars (Fritsch, Idar-Oberstein,
Germany) was employed for the production of the Ag and Ag–In alloy powders. Initially,
10 g of Ag powder with an average particle size of 150 µm, 75 g of zirconium dioxide (ZrO2)
grinding balls, and 0.2 g of stearic acid were mixed into one of the ball-milling jars, as
illustrated in Figure 1a. In the other ball-milling jar, 8 g of Ag powder and 2 g of In powder
with an average particle size of 150 µm, 75 g of ZrO2 grinding balls, and 0.2 g of stearic
acid were mixed, as illustrated in Figure 1b. ZrO2 with a diameter of 5 mm was chosen
for the grinding balls because ZrO2 ceramic is less prone to metal powder contamination
during ball-milling. Stearic acid was added to inhibit the cold welding and agglomeration
of ductile Ag and In powders during the high-energy ball-milling process. Furthermore,
the atmosphere in both ball-milling jars was replaced with high-purity argon gas to prevent
oxidation of the Ag and In powders. The milling speed in both jars was 600 rpm for 10 h,
after which the jars were opened in a nitrogen glove box (Younme Technology Company,
Taoyuan, Taiwan) with an oxygen concentration of less than 0.1 ppm. Then, the ball-milled
Ag and Ag–In alloy powders were passed through a 500-mesh sieve. After sieving, Ag and
Ag–In alloy powders with particle sizes less than 25 µm were homogeneously mixed with
a polymer solvent to complete the preparation of the pastes.

Figure 1. Schematic of the (a) Ag and (b) Ag–In alloy paste fabrication processes.
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2.2. Experimental Bonding Procedure

Figure 2 shows a flowchart for the sample preparation process of the sintered Ag and
Ag–In alloy joints. Cu (99.9% purity) substrates were chosen as top and bottom dies. The
dimensions of top Cu substrates were 3 mm × 3 mm × 3 mm, and the dimensions of bottom
Cu substrates were 10 mm × 10 mm × 3 mm (length × width × thickness). To remove
the Cu oxide and create flat surfaces, the top and bottom Cu dies were metallographically
polished using SiC abrasive sandpapers (#4000, Struers). Then, a 300 nm thick layer of Ag
was sputtered onto the top and bottom Cu substrates as the surface finish layer, as shown
in Figure 2a. During the stencil-printing and pre-drying processes shown in Figure 2b,c,
respectively, the Ag and Ag–In alloy pastes produced by the ball-milling process were
printed onto the bottom Ag-sputtered Cu dies using a 100 µm thick stencil. The pastes
were then pre-cured on a hot plate at 130 ◦C for 25 min to volatilize the organic solvent.
Finally, Ag-sputtered top dies were put on the pre-cured pastes, and the sintered Ag and
Ag–In alloy joints were fabricated using a hot-pressing bonding machine. The bonding
condition for the thermal-compressive bonding process is presented in Figure 3. The
atmosphere in the chamber of the hot-pressing machine (Yongfa Technology Company,
Taipei, Taiwan) was replaced with inert nitrogen during heating to prevent oxidation. The
bonding temperature was set at 300 ◦C for 30 min with a compressive stress of 10 MPa or
20 MPa to promote bonding. After the bonding process, the bonded samples underwent
the furnace cooling process. Finally, the as-bonded samples of sintered Ag and Ag–In alloy
joints could be achieved after cooling.

Figure 2. Flowchart of the sintered Ag and Ag–In alloy joint bonding processes. (a) Sputtering
300 nm Ag layer on Cu substrates as surface finish metallization, (b) printing 100 µm Ag or Ag-In
alloy pastes in thickness on lower substrates, (c) pre-drying the pastes on a hot plate, (d) placing
top dies on the pastes, (e) putting the assembly samples in a hot-pressing machine for the bonding
process, and (f) obtaining as-fabricated samples after the bonding process.
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Figure 3. Temperature and pressure profiles for the sintering process.

2.3. Reliability Tests

HTS and die shear tests were performed to examine the reliability and mechanical
properties of the sintered Ag and Ag–In alloy joints. The HTS test temperature was
300 ◦C in a furnace with an atmospheric environment to test the short- and long-term
high-temperature reliability of both sintered joints. After the HTS test, die shear tests were
performed using a shear tester (Condor Sigma Lite, XYZTEC, Panningen, The Netherlands)
to measure the shear strengths and conduct the assessment for the mechanical reliability
of both sintered joints. Figure 4 depicts the schematic diagram of the die shear test. The
distance between the shear tool and the bottom die was 100 µm, and the speed for the die
shear test was 500 µm/s.

Figure 4. Schematic of the die shear test.
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2.4. Phase Identification and Compositional Analysis

The morphology and microstructure of the ball-milled Ag and Ag–In alloy powders
were characterized using a scanning electron microscope (SEM, Hitachi SU-5000, Hitachi,
Tokyo, Japan) equipped with an energy-dispersive X-ray spectrometer (EDS, Bruker, Berlin,
Germany). The phases of the Ag–In alloy powders were identified using X-ray diffraction
(XRD, Rigaku TTRAX3, Tokyo, Japan) with Cu Kα radiation (λ = 0.15418 nm). A transmis-
sion electron microscope (TEM, FEI Tecnai G2 F20, FEI, Roanoke, VA, USA) was used to
observe the crystal structure of the ball-milled powders. In addition, the size distributions
of the powders were examined using a laser-diffraction particle size analyzer (Coulter
LS230, Miami, FL, USA), with an examination range from 0.04 µm to 2000 µm. After
the hot-pressing bonding process and the HTS test, bonded samples were mounted with
epoxy resin and polished using abrasive sandpapers. For SEM observation, an artifact-
free cross-section was created by using an ion-milling system equipped with an Ar+ ion
gun (Hitachi IM-4000, Hitachi, Tokyo, Japan). Moreover, an electron probe microanalyzer
(EPMA, JEOL JXA-8530FPlus, JEOL, Tokyo, Japan) was utilized for elemental mapping and
compositional analysis.

3. Results
3.1. Characterization of the Ag and Ag–In Alloy Powders after Ball-Milling

Figure 5 shows the characterization of the raw Ag, raw In, ball-milled Ag, and ball-
milled Ag–In alloy powders. The morphology of both the ball-milled Ag and the Ag–In
alloy powders consisted of flakes after milling, and both the ball-milled powders were
refined compared to raw powders, as shown in Figure 5a–d. The ball-milled Ag–In alloy
powders exhibited nanocrystalline structure from the grain contrast of the bright-field
TEM image in Figure 5e. The generation of nanocrystalline domains was attributed to the
constant high-energy impact on the Ag and In powders during the ball-milling process,
causing the accumulation of numerous grain boundaries within the ball-milled powders.
The crystal structure of Ag–In alloy powders was determined to be face-centered cubic
(FCC) from the TEM diffraction pattern in Figure 5f. The diffraction ring of the Ag–In alloy
powder was similar to that of pure Ag; only the lattice constants were different. On the
basis of the TEM ring pattern, the lattice constant of the Ag–In alloy powder was calculated
to be 0.414 nm, which was slightly higher than that of the Ag powders (0.409 nm) [29]. The
difference in the lattice constant was due to lattice distortion in the Ag–In alloy powder
caused by the solid solution of In in the Ag matrix.

The XRD patterns for the raw Ag and Ag–In alloy powders before and after the ball-
milling process are shown in Figure 6. This measurement confirms that the crystal structure
of the Ag–In alloy powder remained FCC after the ball-milling process. There was no
change in the crystalline structure after ball-milling; only the XRD peak position shifted,
which suggested a change in the lattice constant. The lattice constant of the Ag–In alloy
powder was calculated to be 0.414 nm from the XRD pattern, which was consistent with the
TEM analysis. Moreover, no peaks of Ag–In IMCs could be identified from the XRD pattern
of the Ag–In alloy powder. This illustrates that a single phase of the Ag–In alloy powder
with a homogeneous Ag-based Ag–In solid solution could be obtained via mechanical
alloying. In other words, the solid solution and homogenization of the Ag–In alloy powder
were achieved through sufficient diffusion between the pure Ag and In powders under
such milling conditions. The SEM–EDS compositional analysis of the Ag–In alloy powder
in Figure 5d is shown in Table 1. The phase of the Ag–In alloy powder was identified to
be Ag-based Ag–In solid solution, labeled (Ag)–In. The elemental analytical result was
consistent with the XRD result. TEM–EDS also indicated that the mean composition of
the Ag–In alloy powder was 82.3 at.% Ag and 17.7 at.% In, which corresponds with the
elemental compositions determined using SEM–EDS.
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Figure 5. Raw and ball-milled powder characterizations. SEM images of (a) the raw Ag powder,
(b) the raw In powder, (c) the ball-milled Ag powder, and (d) the ball-milled Ag–In alloy powder. (e)
TEM images and (f) the corresponding TEM diffraction pattern for the ball-milled Ag–In alloy powder.

The particle size distributions (PSDs) for the Ag and Ag–In alloy powders after the
ball-milling process are shown in Figure 7. In the PSD analysis, the value D50 indicates that
50 vol.% of the powder had a diameter less than this value. Herein, we regarded D50 as
the average particle size and compared the D50 of powders before and after ball-milling.
The D50 of the raw Ag powder was 28 µm, while the D50 of the ball-milled Ag and Ag–In
alloy powders was 19 µm and 13 µm, respectively. Hence, both the ball-milled Ag and
the Ag–In alloy powders were refined through the fracturing effect during the milling.
The agglomeration and coarsening of ductile Ag and In powders caused by cold welding
could be effectively inhibited by the addition of stearic acid, which was consistent with
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previous studies [30]. The Ag and Ag–In alloy powders were sieved with a 25 µm mesh
after ball-milling. The resulting powders were mixed with the organic solvent to produce
the Ag and Ag–In alloy pastes used for sintering and bonding applications.

Figure 6. XRD patterns of the Ag–In alloy powders.

Table 1. Composition determined using EDS at the positions indicated in Figure 5d.

Position Ag (at.%) In (at.%) Phase

A 81.1 ± 0.26 18.9 ± 0.26 (Ag)–In
B 81.2 ± 0.26 18.8 ± 0.26 (Ag)–In
C 81.9 ± 0.26 18.1 ± 0.26 (Ag)–In
D 81.8 ± 0.26 18.2 ± 0.26 (Ag)–In
E 81.7 ± 0.26 18.3 ± 0.26 (Ag)–In

3.2. Microstructure of the Sintered Ag Joints during HTS at 300 ◦C

Figure 8 shows SEM images of the microstructure cross-sections of the sintered Ag
joints bonded at 10 MPa after HTS at 300 ◦C from 0 h to 2000 h. The porosity of the
sintered joint was calculated using an image threshold in ImageJ software. The porosity
was averaged across five representative positions at the sintered joint of one sample at
the same magnification in SEM. Figure 8a shows the cross-sectional microstructure of the
as-bonded Ag joint. After sintering the flake-like Ag particles with a compressive pressure
of 10 MPa, a low porosity of 4.1% could be achieved in the as-bonded Ag joint, indicating
a dense structure. Moreover, excellent wettability was observed at the interface between
the 300 nm thick sputtered Ag layer and the sintered flake-like Ag particles. However, the
porosity of the sintered Ag joint significantly increased to 9.3%, 11.3%, and 15.7% after
the HTS for 100 h, 1000 h, and 2000 h, respectively, as shown in Figure 8b–d. The sintered
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pores in the Ag joint tended to coalesce via vacancy and grain boundary diffusion during
the HTS to reduce the surface energy and achieve a more thermodynamically stable state.
Nevertheless, the coarsening of the sintered pores after the HTS severely deteriorated the
wettability of the Ag-sputtered Cu substrates, as shown in Figure 8d. Micro-voids were
formed at the Ag/Cu wetting interface because of the accumulation and coarsening of
the sintered pores in the high-temperature environment. The coarsening of the sintered
pores and the poor wettability in the sintered Ag joint after the HTS led to severe stress
concentration problems, which caused deterioration of the mechanical properties.

Figure 7. Particle size distributions for the Ag and Ag–In alloy powders after the ball-milling process.

Cu oxidation above 200 ◦C should have a considerable effect on the pure sintered
Ag joint. Although it is not deeply understood yet, many researchers have discussed
that the sintered Ag joint would suffer from Cu oxidation at high temperatures, which
detrimentally affects the mechanical properties of sintered Ag joints. However, the Cu
oxidation phenomenon was not observed in the sintered Ag joint during the HTS at 300 ◦C
in this study. The main reason is the porosity of the as-bonded sintered Ag joint. There is a
positive correlation between the porosity of the as-bonded sintered joint and the occurrence
of such high-temperature oxidation, which is described by percolation theory. Specifically,
the high porosity of the as-bonded sintered joint facilitates the oxidation process during
HTS. Assuming that the pores are compact and uniformly distributed, three different
theoretical porosity ranges can be calculated using percolation theory to describe whether
external media (e.g., O2) can invade the porous structure [31–33]. To elaborate, a theoretical
porosity of less than 3% results in fully isolated and uniformly distributed pores in the
sintered joint that are not exposed to external surfaces, isolating the sintered joint from
environmental O2. Meanwhile, isolated and interconnected pores coexist at the sintered
joint in the theoretical porosity range from 3% to 20%, while fully interconnected pores
exist to form a 3D porous network at the sintered joint for a theoretical porosity above 20%.
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Hence, when the porosity of the sintered joint is beyond or close to this theoretical limit of
20%, the 3D porous network provides abundant pathways for O2 to invade and penetrate
the sintered joint.

Figure 8. SEM images of the cross-section microstructure of the sintered Ag joints bonded at 10 MPa
after HTS at 300 ◦C for (a) 0 h, (b) 100 h, (c) 1000 h, and (d) 2000 h.

In previous studies, a low-pressure or pressureless Ag sintering process was attempted
to reduce the production cost. However, the high porosity occurring from low-pressure
bonding resulted in interconnected pores in the as-bonded sintered Ag joint; therefore, O2
could easily penetrate the edges of the sintered Ag joint during the HTS. As a result, Cu
diffusing from the substrate reacted with O2 to form a cuprous oxide (Cu2O) layer near the
interface between the sintered Ag joint and the Cu substrate owing to the high affinity of
Cu and O2. By contrast, a relatively high bonding pressure was utilized for the flake-like
Ag sintering in this study. As a result, a low porosity of 4.1% was achieved in the as-bonded
sintered Ag joint due to densification during the sintering process, and most of the pores
in the sintered joint were unconnected and isolated. Consequently, O2 was effectively
prevented from invading the sintered joint, reacting with Cu, and forming the Cu2O layer.
Although the porosity of the sintered Ag joint significantly increased during the HTS and
oxidation should occur, the tendency of the pores to coalesce instead of maintaining a
uniform distribution caused most of the pores to remain isolated despite the relatively
high porosity. However, although the oxidation issue during the HTS could be effectively
addressed by increasing the applied pressure, the sintered pore coarsening phenomenon in
the sintered Ag joint would still cause degradation of the mechanical properties.

3.3. Microstructure and Phase Identification of the Sintered Ag–In Alloy Joints during HTS at
300 ◦C

Figure 9 depicts SEM images of the cross-sectional microstructure of the sintered
Ag–In alloy joint bonded at a bonding pressure of 10 MPa during the 2000 h HTS test
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at 300 ◦C. The microstructures of the sintered Ag–In alloy joint bonded at 10 MPa were
quite different in the side and the central regions of the joint at the early stage of the
HTS. Figure 9a,e,i,m indicate the observation positions for the joint after different HTS
periods: as-bonded and after 50, 100, and 2000 h, respectively. SEM images of the side
(Figure 9b,f,j,n) and central regions (Figure 9c,g,k,o) are shown for the joints. In the same
bonding condition, the average porosity of the as-bonded Ag–In alloy joint in Figure 9b,c
was 18.9%, which was much higher than that of the as-bonded Ag joint in Figure 8a. This
implied that the sinterability of Ag–In alloy powders was worse than that of pure Ag
powders. Additionally, micro-voids could be observed at a few regions of the wetting
interfaces, as shown in Figure 9d, indicating that the wettability of the as-bonded Ag–In
alloy joint was not as good as the as-bonded Ag joint. The composition of the as-bonded
Ag–In alloy joint in the sintering zone was also determined to be the homogeneous Ag-
based Ag–In solid solution phase from EDS analysis, labeled (Ag)–In in Figure 9b–d.

The porosity of the Ag–In alloy joint did not increase as dramatically as that of the
pure Ag joint after the HTS at 300 ◦C for 50 h and 100 h, as shown in Figure 9f,g and
Figure 9j,k, respectively. The porosity of the sintered Ag–In alloy joint was 17.6% and 17.1%
after the HTS for 50 h and 100 h, respectively, which was similar to the porosity of the
as-bonded Ag–In alloy joint. In other words, the sintered pore coarsening phenomenon
was not evident in the Ag–In alloy joint at high temperatures, in contrast to the sintered Ag
joint. The most likely reason for the inhibition of the pore coarsening in the Ag–In alloy
joint during the HTS was the solute drag effect that restricted the migration of the Ag grain
boundaries [34–36]. According to the sintering theory, the grain growth is accompanied by
the coarsening of sintered pores, and this process is highly dependent on grain boundary
diffusion. However, the indium element as the solute alloying in the Ag–In alloy joint
would prohibit the movement of grain boundaries. Consequently, the sintered pores could
not coalesce via grain boundary diffusion. Hence, the pore coarsening phenomenon during
the HTS could be effectively inhibited by adding In. However, severe oxidation issues still
occurred in the Ag–In alloy joint bonded at 10 MPa because the porosity of the as-bonded
Ag–In alloy joint was close to the percolated porosity limit of 20%.

The EPMA elemental mapping of the Ag–In alloy joint after HTS at 300 ◦C for 100 h is
shown in Figure 10. The elemental content of the area indicated in Figure 10a is listed in
Table 2. After the HTS for 50 h and 100 h, a lamellar Cu2O layer could be identified between
the Ag–In alloy joint and the substrate near the side regions of the joint in Figure 9f,j. In
addition, we observed that the Cu2O layer converged and ended near the central region
of the joint, as shown in Figure 9g,k. This revealed that O2 entered the Ag–In alloy joint
through the interconnected pores from the edges of the joint. At the beginning of the
HTS, the O2 concentration was too low to form a lamellar Cu2O layer near the central
region of the joint. Instead, Cu2O clusters with dark-gray contrast were formed around the
sintered pores in the central region of the joint, as shown in Figure 9g,h. In2O3 clusters with
light-gray contrast were also found around the sintered pores. However, In2O3 clusters
were identified around the pores in all sintered regions of the joint after the HTS, which
was not the case for the Cu2O clusters. Furthermore, owing to the interdiffusion of Ag
and Cu at the wetting interface, the 300 nm thick sputtered Ag was transformed into the
Ag-based Ag–Cu solid solution phase, labeled (Ag)–Cu in Figure 9f,h,j,l,n,p. After the
long-term HTS for 2000 h, adequate O2 could reach the central region of the Ag–In alloy
joint and form a continuous lamellar Cu2O layer. The formation and growth of the thick
Cu2O layers generated cracks at the interface between the continuous Cu2O layer and the
substrate, which negatively affected the mechanical properties.
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Figure 9. SEM images of the cross-section microstructure of the sintered Ag–In alloy joints bonded
at 10 MPa after HTS at 300 ◦C. (a,e,i,m) Schematics of the cross-section of the Ag–In alloy joints
as-bonded and after HTS for 50 h, 100 h, and 2000 h, respectively. The dashed boxes in (a,e,i), and
(m) indicate the regions near the edge shown in (b,f,j), and (n), as well as the regions away from the
edge shown in (c,g,k), and (o), respectively. Zoomed-in images of the regions indicated in (b,g,j) and
(n) are shown in (d,h,l), and (p), respectively.

Figure 11 shows SEM images of the cross-sectional microstructure of the sintered
Ag–In alloy joint bonded at a bonding pressure of 20 MPa during the 2000 h HTS test
at 300 ◦C. As shown in Figure 11a, the porosity of this joint was dramatically lower at
10.6%. Compared to the as-bonded Ag–In alloy joint bonded at 10 MPa, not only did
the porosity decrease but the wettability also increased at the higher bonding pressure.
Although interconnected pores still existed at this porosity according to the predictions
of the percolation theory, the relatively low porosity could still reduce the penetration of
O2. After 50 h to 2000 h of HTS, as shown in Figure 11b–e, no continuous Cu2O layer was
found in the sintered joint, which indicated that the amount of O2 entering the joint bonded
at 20 MPa was significantly reduced compared to the joint bonded at 10 MPa. Nevertheless,
clusters of Cu2O and In2O3 could still be observed around the sintered pores after the HTS;
interconnected pores were still present in the as-bonded Ag–In alloy joint, which provided
pathways for O2 penetration. Although the Cu2O and In2O3 clusters were formed in the
Ag–In alloy joint, the oxide clusters around the sintered pores had a negligible effect on
the mechanical properties of the joints compared to the lamellar oxides and cracks. More
importantly, the pores in the sintered Ag–In alloy joint bonded at 20 MPa did not coarsen,
which was consistent with the results at 10 MPa.
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Figure 10. (a) Cross-section microstructure of the middle of the Ag–In alloy joint bonded at 10 MPa
after HTS at 300 ◦C for 100 h. (b–e) Elemental distributions of (a).

Table 2. Composition determined using EPMA at the positions indicated in Figure 10a.

Position Ag (at.%) In (at.%) Cu (at.%) O (at.%) Phase

A 92.6 0 7.4 0 (Ag)–Cu
B 7.8 2.9 58.2 30.1 Cu2O
C 0.9 38.2 1.2 59.7 In2O3
D 86.7 9.4 2.7 1.2 (Ag)–In
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Figure 11. SEM images of the cross-section microstructure of the sintered Ag–In alloy joints bonded
at 20 MPa after HTS at 300 ◦C for the (a) as-bonded joints and sintered joints after HTS for (c) 50 h,
(e) 100 h, (g) 1000 h, and (i) 2000 h. Magnified images of (a,c,e,g), and (i) are shown in (b,d,f,h), and
(j), respectively.

3.4. Mechanical Properties of the Sintered Ag and Ag–In Alloy Joints during HTS at 300 ◦C

The shear strength variations of the sintered Ag and Ag–In alloy joints with the HTS
treatment time are illustrated in Figure 12. Each data point was averaged over four sintered
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joints. The gray dashed line in Figure 12 depicts the change in shear strength of the sintered
Ag joint at a bonding pressure of 10 MPa during the HTS. The mean shear strength of
the as-bonded Ag joint bonded at 10 MPa was 73 MPa, which was higher than that of the
as-bonded Ag–In alloy joint with the same bonding condition due to the lower porosity
and the better wettability. However, the shear strength of the Ag joint bonded at 10 MPa
dramatically decreased after the HTS. The deterioration of mechanical properties was
attributed to the sintered pore coarsening and the correspondingly poor wettability, which
gave rise to stress concentration that significantly deteriorated the mechanical reliability
of the sintered Ag joints. The green dashed line in Figure 12 depicts the change in shear
strength of the sintered Ag joints at the bonding pressure of 20 MPa during the HTS. The
shear strength of the as-bonded Ag joint bonded at 20 MPa was 106 MPa. This value
was better than that of the as-bonded Ag joint bonded at 10 MPa, demonstrating that
the mechanical properties can be improved by increasing the bonding pressure. The
reinforcement of the sintered Ag joint was attributed to the lower porosity and better
wettability. Nevertheless, although the as-bonded sintered Ag joint was strengthened by
the higher pressure, the mechanical strength was still compromised during the HTS due to
the coarsening of the sintered pores and the wettability issues.
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The blue dashed line in Figure 12 illustrates the change in shear strength of the
sintered Ag–In alloy joints bonded at 10 MPa during the HTS. The shear strength of the
as-bonded Ag–In alloy joints bonded at 10 MPa was 53 MPa, which was slightly lower
than that of the as-bonded Ag joints with the same bonding conditions owing to the higher
porosity. The mechanical properties of the Ag–In alloy joints bonded at 10 MPa were
found to significantly deteriorate during the 2000 h HTS. The reason for the decrease in
shear strength of the Ag–In alloy joints was different from that of the sintered Ag joints.
The deterioration of the Ag–In alloy joint shear strength was not due to the coarsening of
the sintered pores but rather from the formation of continuous Cu2O layers and cracks.
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The red dashed line in Figure 12 illustrates the change in shear strength of the sintered
Ag–In alloy joints bonded at 20 MPa during the HTS. The shear strength of the as-bonded
Ag–In alloy joints bonded at 20 MPa was better than that of the as-bonded Ag–In alloy
joints bonded at 10 MPa owing to the lower porosity at the higher bonding pressure. The
mechanical properties of the Ag–In alloy joints bonded at 20 MPa were found to exhibit
excellent shear strengths and stable mechanical properties during the 2000 h HTS. The low
porosity of the Ag–In alloy joints achieved at a bonding pressure of 20 MPa was sufficient
to prevent a large amount of external O2 from entering the interior of the sintered joint and
forming fragile Cu2O layers and cracks. Furthermore, the addition of In was proven to help
prevent sintered pore coarsening. Consequently, the Ag–In alloy joint with the optimal
bonding condition was the most mechanically reliable at high temperatures because it
simultaneously overcame the oxidation and pore coarsening issues.

The surface fracture analyses of the sintered Ag joints are shown in Figure 13. Large
quantities of micro-dimples were formed on the fracture surfaces of the as-bonded Ag joints,
indicating a ductile deformation of the joint, as shown in Figure 13b,c. Figure 13d depicts
the schematic drawing of the fracture failure pattern of the as-bonded Ag joint; the failure
was along the sintering zone in the sintered Ag joint after the die shear test. Although a few
dimples could still be observed on the fracture surfaces after the HTS for 100 h and 2000 h,
as shown in Figure 13f,g,j,k, the density of dimples on the fracture surfaces gradually
decreased as the HTS time increased. This was due to sintered pore coarsening, which led
to stress concentration in the sintered Ag joint. Hence, cracks originated from these large
pores when subjected to external forces, resulting in the deterioration of the shear strength,
a tendency to cleave, and a decrease in the density of dimples on the fracture surfaces.
Figure 13h,l show schematics of the fracture failure pattern of the Ag joint after the HTS for
100 h and 2000 h, respectively. Although the sintered pores dramatically coarsened after
the HTS, cracks still propagated along the sintering zone in the Ag joint.

Figure 13. Surface fracture analysis of the sintered Ag joints bonded at 10 MPa. Fracture planes of the
sintered Ag joints (a) as-bonded and after (e) 100 h and (i) 2000 h of HTS at 300 ◦C. (b,c), (f,g), and
(j,k) are magnified images of the fracture plane areas marked in (a,e), and (i), respectively. Schematic
of the crack propagation in the sintered Ag joints (d) as-bonded and after (h) 100 h and (l) 2000 h of
HTS at 300 ◦C.
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The fracture surface analysis of the sintered Ag–In alloy joints bonded at 10 MPa and
20 MPa is shown in Figures 14 and 15, respectively. Ductile deformation characteristics
could be identified on the fracture surfaces of the as-bonded Ag–In alloy joints, as shown
in Figures 14a–c and 15a–c. The composition was determined to be (Ag)–In on the fracture
surfaces of both as-bonded Ag–In alloy joints. However, Cu surfaces were observed on
the fracture surfaces of the Ag–In alloy joint bonded at 10 MPa after the HTS for 100 h, as
shown in Figure 14e–g. At the early stages of the HTS, the Cu2O layers mainly formed
near the edges of the sintered joints. Hence, the Cu surfaces were near the edges of the
fracture plane, which was consistent with the cross-sectional SEM analysis. This indicated
that cracks tended to propagate along the fragile Cu2O layers near the edges, rather than
along the sintered joints, as illustrated in Figure 14h. After 2000 h of HTS, continuous
Cu2O layers were formed throughout the sintered joint, and the cracks only propagated
along the Cu2O layers, as shown in Figure 14i–l. By contrast, a Cu layer could not be
located on the fracture surfaces of the Ag–In alloy joint bonded at 20 MPa after the HTS
for 100 h and 2000 h, as shown in Figure 15e–l. The compositions of the fracture surfaces
were mainly the (Ag)–In solid solution. This again demonstrated that the oxide clusters
had little impact on the mechanical properties, and that the continuous oxide layer was not
formed in the Ag–In alloy joint bonded at 20 MPa after the HTS due to the low porosity.
Moreover, micro-dimples could be identified on all the fracture planes of the Ag–In alloy
joint after the HTS, indicating that the Ag–In alloy joint maintained excellent ductility at
high temperatures.

Figure 14. Surface fracture analysis of the sintered Ag–In alloy joints bonded at 10 MPa. Fracture
planes of the Ag–In alloy joints (a) as-bonded and after (e) 100 h and (i) 2000 h of HTS at 300 ◦C. (b,c),
(f,g), and (j,k) are magnified images of the fracture plane areas marked in (a,e), and (i), respectively.
Schematic of the crack propagation in the sintered Ag–In alloy joints bonded at 10 MPa (d) as-bonded
and after (h) 100 h and (l) 2000 h of HTS at 300 ◦C.
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Figure 15. Surface fracture analysis of the sintered Ag–In alloy joints bonded at 20 MPa. Fracture
planes of the Ag–In alloy joints (a) as-bonded and after (e) 100 h and (i) 2000 h of HTS at 300 ◦C. (b,c),
(f,g), and (j,k) are magnified images of the fracture plane areas marked in (a,e), and (i), respectively.
Schematic of the crack propagation in the sintered Ag–In alloy joints bonded at 20 MPa (d) as-bonded
and after (h) 100 h and (l) 2000 h of HTS at 300 ◦C.

4. Discussion
4.1. Oxidation Mechanism of the Ag–In Alloy Joint Bonded at 10 MPa

Two types of Cu2O and one type of In2O3 were observed in the Ag–In alloy joint
bonded at 10 MPa after the HTS, including a Cu2O layer, Cu2O clusters, and In2O3 clusters,
as shown in Figure 9. The porosity of the Ag–In alloy joint for this bonding condition was
not sufficiently low to completely block external O2; therefore, O2 could still attack the
sintered Ag–In alloy joint through interconnected pores and react with Cu and In. This
resulted in the formation of a Cu2O layer, which led to severe reliability issues.

Herein, a mechanism for the oxidation process in the sintered Ag–In joint was estab-
lished, as illustrated in Figure 16. The diffusion of four elements (Ag, Cu, In, and O) in
and around the sintered Ag–In alloy joint needs to be considered during the HTS. Initially,
O2 from the environment entered the Ag–In alloy joint via the interconnected pores at
the edges of the joints; the high porosity favors the penetration of O2. Consequently, the
concentration of O2 near the edges would be higher than that near the middle of the joint at
the beginning of the HTS. Therefore, continuous Cu2O layers were observed between the
Ag–In alloy joint and the Ag-sputtered Cu substrate near both edges of the sintered joints,
as shown in Figure 16b. Cu entering the Ag–In alloy joint through Cu–Ag interdiffusion
from the substrate contacts O2 and immediately reacts to form the Cu2O layer near the
wetting interfaces at both edges of the joint. From the EPMA analysis, it was found that
the 300 nm thick sputtered Ag layer was transformed into a Ag-rich Ag–Cu solid solution
phase, labeled (Ag)–Cu, which was the evidence for the Ag–Cu interdiffusion during the
HTS. In addition, near the middle region of the Ag–In alloy joint at the early stages of the
HTS, the convergence of the Cu2O layer can be seen, as shown in Figure 16b. This indicates
that the external O2 was not sufficient to form a Cu2O layer in the middle region of the
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joint at this stage. Therefore, Cu from the substrate needed to diffuse a relatively long
distance before it formed the Cu2O layer near the middle region of the join, as illustrated in
Figure 16b. Cu2O also existed in the form of clusters located around the sintered pores in
the middle region of the joint. The Cu2O clusters were mainly formed there in the early
stages of the HTS because O2 that had reached the middle region via the interconnected
pores was not sufficient to form a continuous Cu2O layer. However, Cu2O clusters could
not be found near the edges of the joint; the Cu2O layer caused the Cu diffusing from the
substrates to continue to react with O2, forming a thick layer. In addition to the two types
of Cu2O contained in the joint, In2O3 clusters were found in all sintered regions of the joint
after the HTS. In2O3 clusters precipitated around the sintered pores in the Ag–In alloy joint
because of the O2, which entered the joint through the interconnected pores, similar to the
case for the Cu2O clusters. Additionally, mixed In2O3 and Cu2O clusters precipitated in the
middle region of the joint because O2 reacted with both In from the joint and Cu diffusing
from the substrates. After the long-term HTS in Figure 16c, continuous Cu2O layers and
cracks were formed at both interfaces between the Ag–In alloy joint and the substrate. At
this stage of the HTS, a considerable amount of O2 diffused into the middle of the joint
over a long period, causing the Cu2O layers near the edges to merge and form continuous
Cu2O layers. Having developed a complete understanding of the oxidation mechanism in
the sintered joint, it is now important to find solutions for overcoming oxidation issues.

4.2. Strategies to Overcome Oxidation and Enhance Mechanical Properties of Sintered Joints at
High Temperatures

Sintered nano- and micro-Ag materials are promising for die attachment of power
chips. In recent years, many studies have focused on pursuing low-pressure or pressureless
bonding processes for Ag sintering to achieve cost reductions. However, the porosity of the
sintered joint would unavoidably increase when a low-pressure or pressureless bonding
was attempted. Consequently, this would significantly increase the risk of high-temperature
oxidation, which affects the mechanical properties of the sintered joint. Therefore, develop-
ing a strategy for overcoming oxidation problems is a critical and urgent issue for sintered
joints. Meanwhile, it is also crucial to inhibit the sintered pore coarsening phenomenon at
high temperatures because the pore coarsening also decreases mechanical strength. Alloy-
ing the Ag joint has become the primary strategy to combat this issue in pure sintered Ag
joints.

In this study, we found a positive correlation, described by percolation theory, between
the porosity of the as-bonded sintered joint and the occurrence of such high-temperature
oxidation. In other words, the sintering porosity of the as-bonded sintered joint is an
important reliability evaluation metric for high-temperature oxidation. According to the
predictions of the percolation theory, high-temperature oxidation can be completely pre-
vented when the porosity is below approximately 3%. Hence, reducing the porosity of the
as-bonded sintered joint as much as possible helps prevent high-temperature oxidation.
Previous studies have proven that the TLP bonding reaction can help prevent oxidation
because the introduction of low-melting-point liquid metals during bonding can fill the
gaps between the nano- and micro-Ag particles and form isolated pores. This not only re-
solves the oxidation problem but also addresses the sintered pore coarsening phenomenon.
However, the TLP bonding method is not favored in industrial applications. Hence, in
this study, the sintering behavior of the Ag–In alloy paste developed by ball-milling was
investigated. The results demonstrated that increasing the bonding pressure is another ef-
fective method to lower the porosity. The low-porosity Ag–In alloy joint with the optimized
bonding condition exhibited excellent reliability because it simultaneously avoided the
oxidation and sintered pore coarsening problems. Consequently, the Ag–In alloy joint could
retain its outstanding mechanical properties at high operating temperatures. In addition to
reducing the porosity, enhancing the heat dissipation of power chip modules is another
way to avoid oxidation. If the heat dissipation is sufficient to keep the working temperature
from exceeding 200 ◦C, then the oxidation problem can also be avoided because the driving
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force to form the Cu2O layer in the sintered joints is insufficient. Lastly, another potential
strategy is to introduce a surface finish as a diffusion barrier to prevent the diffusion of Cu
from the substrate at high temperatures.

Figure 16. Proposed mechanism for the oxidation process of the sintered Ag–In alloy joints at a
bonding pressure of 10 MPa. Schematic drawings for the cross-section of the sintered Ag-In alloy
joints after the HTS at 300 ◦C for (a) 0 h, (b) 100 h, and (c) 2000 h.
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5. Conclusions

In this study, pure Ag and In powders were refined to make flake-like Ag and Ag–
In alloy powders using a high-energy ball-milling process. Homogeneous Ag–In alloy
powders in solid solution could be obtained via mechanical alloying. Moreover, Ag and Ag–
In alloy pastes containing particle sizes less than 25 µm were synthesized for power chip
attachment after sieving and mixing with an organic solvent. The graphical summary of
the sintered Ag joints and Ag-In alloy joints is exhibited in Figure 17. The Ag joint bonded
at 10 MPa exhibited excellent mechanical properties. In comparison to low-pressure
or pressureless Ag bonding in previous studies, the Ag joint bonded at an optimized
pressure significantly reduced the porosity, preventing the joint from being oxidized at
high temperatures. However, the well-bonded Ag joint with low porosity still could not
avoid the sintered pore coarsening issue in a high-temperature application environment,
which significantly deteriorated the mechanical properties. Conversely, the as-bonded
Ag–In alloy joint bonded at 10 MPa exhibited outstanding mechanical properties with a
shear strength of 53 MPa as well. Sintered pore coarsening was inhibited in the Ag–In
alloy joint during the HTS. However, the Ag–In alloy joint bonded at 10 MPa suffered from
oxidation problems because it had relatively high porosity and interconnected pores, which
provided pathways for O2 to enter the joint from the edges and deteriorated the sintered
joint. Increasing the bonding pressure to 20 MPa significantly reduced the porosity of the
Ag–In alloy joint, blocking external O2 at high temperatures. Therefore, the robust Ag–In
alloy joint possessed the most stable shear strength and reliable mechanical properties
by maintaining high shear strength of above 76 MPa without deterioration in a high-
temperature environment because it inhibited the sintered pore coarsening and oxidation
issues simultaneously. Lastly, the mechanism for the oxidation process in sintered joints
was established in this study and used to formulate strategies to prevent such oxidation.
In conclusion, a novel ball-milling method was employed in this study to produce the Ag
and Ag–In alloy pastes for die attachment through mechanical alloying, and a promising
and reliable Ag–In alloy material was developed for power electronic packaging. It is
considered that the materials and technologies developed in this study have great potential
for practical application in power-chip attachment and can meet the urgent requirements
of future industries for highly reliable power semiconductor packaging materials for EVs
or aerospace technology.

Figure 17. Graphical summary of the benefits of robust Ag–In alloy joints bonded with 20 MPa
compared to other joints in 300 ◦C high-temperature applications.
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Abstract: Low-temperature co-fired ceramics (LTCCs) have been attracting attention due to rapid
advances in wireless telecommunications. Low-dielectric-constant (Dk) and low-dissipation-factor
(Df ) LTCCs enable a low propagation delay and high signal quality. However, the wide ranges
of glass, ceramic filler compositions, and processing features in fabricating LTCC make property
modulating difficult via experimental trial-and-error approaches. In this study, we explored Dk and
Df values of LTCCs using a machine learning method with a Gaussian kernel ridge regression model.
A principal component analysis and k-means methods were initially performed to visually analyze
data clustering and to reduce the dimension complexity. Model assessments, by using a five-fold
cross-validation, residual analysis, and randomized test, suggest that the proposed Dk and Df models
had some predictive ability, that the model selection was appropriate, and that the fittings were
not just numerical due to a rather small data set. A cross-plot analysis and property contour plot
were performed for the purpose of exploring potential LTCCs for real applications with Dk and Df
values less than 10 and 2 × 10−3, respectively, at an operating frequency of 1 GHz. The proposed
machine learning models can potentially be utilized to accelerate the design of technology-related
LTCC systems.

Keywords: low-temperature co-fired ceramics (LTCCs); dielectric constant; dissipation factor;
machine learning

1. Introduction

Low-temperature co-fired ceramics (LTCCs) have been attracting attention over recent
decades due to rapid advances in wireless telecommunications, including the 5th genera-
tion (5G) tactile internet and the Internet of Things (IoT) [1]. LTCCs have characteristics
that require sintering at temperatures of less than 1000 ◦C in order to be co-fired with
electrode materials, such as Cu (melting point: 1083 ◦C), Ag (melting point: 961 ◦C), or
Au (melting point: 1061 ◦C) [2]. LTCC devices provide a solution for integrating passive
components, e.g., capacitors and resistors, with these electrodes into a three-dimensional
module at the same time. A more recent review article from Sebastian et al. suggested that
new LTCCs with ultra-low sintering temperatures (e.g., <700 ◦C) are becoming popular
when pursing applications at a much lower temperature [3]. In recent years, the develop-
ment of millimeter wave (mmWave) systems with typical frequencies above 24 GHz has
led to performance benefits in 5G systems [4]. In the meantime, the increasing operating
frequency from the current 4G systems at 3.5 GHz requires more reliable LTCC devices
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with a low dielectric constant (Dk), low dissipation factor (Df ), and comparable mechan-
ical strengths [1]. Wang et al. had pointed out that Dk and Df values should be lower
than 10 and 2 × 10−3, respectively, for real applications at high frequency operation [5].
Ohsato et al. recently reviewed the current status and prospects of LTCC applications in
microwave and mmWave telecommunications [6]. These low Dk and Df values enable a
low propagation delay and high signal quality in 5G systems.

LTCC fabrications are mostly based on glass-ceramic (GC) and glass/ceramic com-
posite (GCC) in order to lower the sintering temperature [7]. Al2O3-based glass/ceramic
composites are extensively used due to their good electrical and physical properties [8].
CaO-B2O3-SiO2-Al2O3/Al2O3 composites have been reported to be promising materials
due to their low firing temperature and low dielectric loss [9]. B2O3-SiO2-Al2O3 glass
and ZnO-B2O3-SiO2 glass/Al2O3 composites have been shown to exhibit a low dielec-
tric loss and good mechanical and thermal performance [10]. La2O3-B2O3-CaO-P2O5
glass/cordierite [5] or La2O3-B2O3-CaO glass/LaBO3 composites [11] have recently been
reported as potential candidates for real LTCC applications. Sebastian and Jantunen had
made a thorough review on the material selections, fabrication methods, and properties of
LTCCs [12]. The review suggests that LTCC fabrications involve modulating a wide range
of glass, ceramic composition, and sintering conditions to meet the desired physical proper-
ties. The modulation is mainly carried out via experimental trial-and-error processes, and
thus is time consuming and economically unfeasible. The wide ranges of input parameters
make optimization even more difficult.

Theoretical modeling is an effective way to guide an experimental design. While there
have been no existing models to properly simulate Df values, intrinsic Dk can be simulated
via the density functional theory (DFT) in terms of polarizability. Peng et al. performed DFT
calculation and the classical Clausius–Mossotti equation to model the dielectric constant of
Li2(Mg1−xNix)SiO4 (x = 0.00–0.10) [13] and (Zn1−xNix)3B2O6 (x = 0.00–0.07) ceramics [14].
However, microstructure and processing features make extrinsic contributions which are
not easily simulated. Therefore, a more reliable simulation method is required. Recently,
machine learning methods are considered powerful tools to predict material properties
which do not have existing physical models, e.g., effective charges in electromigration [15],
permittivity of microwave dielectric ceramics [16], and dielectric constants of crystals [17].
Morgan and Jacobs had made a thorough review of recent applications of machine learning
methods used in the field of materials science [18]. In this study, we thus employed the
machine learning method to explore Dk and Df properties of LTCC. We used the glass
phase content, ceramic filler content, and GC content as well as the processing features
(e.g., calcination temperature and time) to fit the experimentally-determined Dk and Df
data. Gaussian kernel ridge regression was used as it is powerful for interpolating data
points which has fewer hyperparameters than typical deep learning method (e.g., neural
network). Fitting to fewer hyperparameters is beneficial to a small-scale data set. We
assessed the model using a cross-validation, randomized test, and cross-plot analysis. The
results suggest that the proposed models had a reasonable predictive ability. We explored
the composition and processing feature spaces to find potential LTCC systems with low Dk
and Df values. The proposed models may serve as a quick guideline for new LTCC material
design in future technology-related systems. To the best of the author’s knowledge, this is
the first paper to use a machine learning method to explore Dk and Df of LTCC systems.

2. Methods
2.1. Data Set

The data set used in this study was provided by the Industrial Technology Research
Institute (ITRI), Hsinchu, Taiwan. We refer to the database in this study as “ITRI-LTCC
database.” The database is focused on exploring potential LTCC systems with low Dk
and Df values that can be applied in real 5G applications using various GC, GCC, and
fabrication methods. The database consists of glass phase content, ceramic filler con-
tent, GC content, processing parameters (e.g., calcination temperature and time), and Dk
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and Df measurements at various operating frequencies. The glass phases comprise two
categories—(1) commercial glass and (2) and glass self-fabricated by ITRI. Commercial
glasses consist of MgO-Al2O3-SiO2 glass (MASG), CaO-B2O3-SiO2 glass (CBSG), borosili-
cate glass (BG), and borosilicate glass + filler (BGF). For CBSG, the database includes two
different compositions—one with higher SiO2 content and the other with higher B2O3
content. For the convenience of reference in the following discussion, we refer to the
CBSG with higher SiO2 content as “CBSG-S,” and the one with higher B2O3 content as
“CBSG-B.” Self-fabricated glass comprises mainly of MgO-Al2O3-SiO2-based glass (MAS),
with a few data points for Li2O-Al2O3-SiO2-based glass and Al2O3-SiO2-based glass. MAS
consists of different oxide compositions, i.e., different compositions of MgO, Al2O3, SiO2,
and other relevant oxides. The ceramic filler and GC in the database are alumina and
cordierite, respectively. A given self-fabricated glass might be chosen with a given mole
percent and added into a glass or GCC comprising commercial glass, ceramic filler, and/or
GC in order to tailor the microstructure and the corresponding properties. For example,
2 mol% MAS was added in a GCC composed of 30 wt.% alumina, 20 wt.% cordierite, and
50 wt.% CBSG-S. Processing parameters consist of three stages of calcination at various
temperatures and times. We used T1, T2, and T3 throughout this article to represent the
first to third calcination temperatures, while used time_1, time_2, and time_3 to represent
the first to third calcination times, respectively (e.g., T1 and time_1 represent the first stage
calcination temperature and time). Dk and Df values were measured at four different oper-
ating frequencies in the database, including 0.1, 1, 10, and 11 GHz, but mainly at 1 GHz. In
the present study, the data measured at 1 GHz was pulled out to become an initial data
set, which had a total number of 116 data points. Table 1 shows the feature information of
these 116 data points. A principle component analysis (PCA) and k-means method from
the scikit-learn library [19] were used for analyzing the data clustering in the initial data
set. The proposed machining learning models for Dk and Df were thus developed on one
of the clusters (see Section 3.1) with 63 data points. The proposed machine learning models
are referred to as “the proposed models” in the following discussion.

Table 1. The feature information of the initial data set (number of data points = 116).

Feature Maximum Minimum Average Standard
Deviation Unit Category

Dielectric constant (Dk)
at 1 GHz 7.8 2.71 5.33 1 - Target feature

Dissipation factor (Df )
at 1 GHz 16.7 × 10−3 0.07 × 10−3 2.7 × 10−3 3.4 × 10−3 - Target feature

Al2O3 (Alumina) 50 0 8.5 16.1 wt.% Ceramic filler
Mg2Al4Si5O18 (Cordierite) 72.9 0 9.9 19.8 wt.% Glass-ceramic

Borosilicate glass + filler (BGF) 100 0 3.7 18.4 wt.% Glass phase
MgO-Al2O3-SiO2 glass

(MASG) 100 0 7.7 26.7 wt.% Glass phase

CaO-B2O3-SiO2 glass (high
SiO2, CBSG-S) 100 0 25.8 31.6 wt.% Glass phase

Borosilicate glass (BG) 55 0 6.7 14.4 wt.% Glass phase
CaO-B2O3-SiO2 glass (high

B2O3, CBSG-B) 100 0 26.5 39.6 wt.% Glass phase

MgO-Al2O3-SiO2-based
ceramic (MAS) 100 0 5.6 15.6 mol% Glass phase

First stage calcination
temperature (T1) 1650 27 373.7 386.0 ◦C Processing

parameter
Second stage calcination

temperature (T2) 750 27 599.3 263.8 ◦C Processing
parameter

Third stage calcination
temperature (T3) 1200 27 852.0 85.6 ◦C Processing

parameter
First stage calcination time

(time_1) 3 0 2.7 0.7 h Processing
parameter

Second stage calcination time
(time_2) 2 0 1.6 0.8 h Processing

parameter
Third stage calcination time

(time_3) 2 0 1.3 0.8 h Processing
parameter
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Table 2 shows the feature information of the 63 data points after the PCA and k-means
analysis used in developing the proposed models. The input features consisted of the glass
phase content, GC (i.e., cordierite) content, ceramic filler (i.e., alumina) content, and the
processing parameters. The glass phases were MASG, CBSG-S, CBSG-B, BG, and MAS.
MAS had a constant composition of MgO, Al2O3, SiO2, and other relevant oxides. T1
and time_1 was constant at 750 ◦C and 3 h, respectively, while T2, T3, time_2 and time_3
remained variables. Note that, in Table 2, we defined two further features labeled as the X
stage calcination reaction product (TX_R) and X stage calcination temperature and time
product (TX_time), where X = second (2) or third (3). TX_R was defined as the calcination
time multiplied by exp

(
−1

calcination temperature

)
, while TX_time was defined as the calcination

time multiplied by the calcination temperature. We found that these features showed a
better model fit, for which the details are discussed in Section 3.1.

Table 2. The feature information of the data set used in the proposed models (number of data points = 63).

Feature Maximum Minimum Average Standard
Deviation Unit Category

Dielectric constant (Dk)
at 1 GHz 7.8 2.79 5.3 0.97 - Target feature

Dissipation factor (Df )
at 1 GHz 17.6 × 10−3 0.34 × 10−3 2.74 × 10−3 3.57 × 10−3 - Target feature

Al2O3 (Alumina) 50 0 20.16 19.6 wt.% Ceramic filler
Mg2Al4Si5O18 (Cordierite) 70 0 14.29 21.27 wt.% Glass-ceramic

MgO-Al2O3-SiO2 glass
(MASG) 100 0 7.94 27.03 wt.% Glass phase

CaO-B2O3-SiO2 glass (high
SiO2, CBSG-S) 100 0 37.6 30.61 wt.% Glass phase

Borosilicate glass (BG) 55 0 7.72 14.88 wt.% Glass phase
CaO-B2O3-SiO2 glass (high

B2O3, CBSG-B) 75 0 7.54 19.6 wt.% Glass phase

MgO-Al2O3-SiO2-based
ceramic (MAS) 100 2 8.49 20.54 mol% Glass phase

Second stage calcination
temperature (T2) 760 650 711.1 42.5 ◦C Processing

parameter
Third stage calcination

temperature (T3) 1200 27 848.8 116.0 ◦C Processing
parameter

Second stage calcination time
(time_2) 2 0.5 1.93 0.32 h Processing

parameter
Third stage calcination time

(time_3) 2 0 1.60 0.71 h Processing
parameter

Second stage calcination
reaction product (T2_R) 2 0.5 1.93 0.32 h/K Processing

parameter
Third stage calcination
reaction product (T3_R) 2 0 1.6 0.71 h/K Processing

parameter
Second stage calcination

temperature and time product
(T2_time)

2400 0 1382.54 613.73 ◦C × h Processing
parameter

Third stage calcination
temperature and time product

(T3_time)
1500 375 1368.65 237.04 ◦C × h Processing

parameter

2.2. Machine Learning Modeling

The machine learning model used in this work was the Gaussian kernel ridge regres-
sion (GKRR). The GKRR model uses the radial basis function kernel, where a hyperparam-
eter γ represents the length scale between two given features. The Gaussian kernel has the
form shown in Equation (1):

kij = exp
(
−γ‖ xi − xj ‖2

)
(1)

where xi and xj are given features vectors for LTCC i and j. kij ranges from 0, which occurs
when all the LTCCs j are infinitely far from LTCC i as measured by the kernel, to 1, which
occurs when all the LTCCs j are infinitely close to LTCC i as measured by the kernel. The
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ridge regression uses a hyperparameter α as the coefficient of the L2-norm to penalize the
fitting coefficients. The cost function Φ thus has the matrix form shown in Equation (2):

Φ = ||Y− Kβ||22 + αβTKβ (2)

where Y is the target feature, K is the Gaussian kernel, and β are the kernel regression coef-
ficients. The model analysis and exploration were primarily performed with the MAterials
Simulation Toolkit for Machine Learning (MAST-ML, version 3.x, University of Wisconsin-
Madison Computational Materials Group, Madison, WI, USA.) [20], an open-source Python
package with scikit-learn [19] library to automate machine learning workflows and model
assessments. The hyperparameters (α, γ) of the GKRR model were optimized using a
genetic algorithm (GA) with the five-fold cross validation (CV) root-mean-square error
(RMSE) as the scoring metric. Table 3 shows the optimized hyperparameters of Dk and
Df models.

Table 3. The optimized hyperparameters of Dk and Df models.

Model α γ

Dk model 0.0012 0.3530
Df model 0.0420 3.2551

2.3. Model Assessment

A five-fold CV was used to assess the predictive ability of the model. The five-fold
CV randomly partitioned the data set into five folds and took four of them as the training
sub-dataset to build a GKRR model, with the remaining fold was used as the validation
sub-data set. The CV process was repeated five times in one iteration, with each of the folds
used exactly once as the validation dataset. The five-fold CV was repeated for 20 iterations.
The 20 results were averaged to yield one prediction for each data point, and the average
RMSE of these predictions was called the five-fold CV RMSE. The error bar for the five-fold
CV RMSE was the standard deviation of the distribution of the RMSE values from the
20 iterations. The R2 score of the model was calculated, for which the method can be found
elsewhere [15]. A randomized test was used to determine whether the model fitted to
physical correlations that are not real. A randomized test involves randomly associating
each Dk or Df with a given feature vector, but not the correct one. This gives a new data
set that is exactly like the original one in terms of the actual values, where all the physical
associations of the features and Dk or Df were removed. A five-fold CV was then performed
for these randomized data to show the RMSE and R2 score. The interpolative quality of
the model was examined using a cross-plot analysis, which shows how well the model
predicted the target against a given variable with all the other variables held constant. A
pair plot was generated using Python Library Seaborn [21].

3. Results and Discussion
3.1. Model Development

We intended to use the initial data set with 116 data points (see Table 1) to develop
machine learning models for Dk and Df ; however, we failed to develop decent models.
In developing the model for Dk, the best five-fold CV RMSE was 0.64; the CV RMSE
over the standard deviation of the data set (RMSE/σ) was 0.12, and the R2 was only 0.28.
The optimal input feature vector was found to be T1, T2, T3, alumina, cordierite, MASG,
CBSG-S, CBSG-B, BG, BGF, and MAS. Two issues were raised: (1) The model did not
capture the calcination time; (2) in the initial data set, because MgO, Al2O3, SiO2, and the
other relevant oxides content were not constant in MAS, the oxide composition should
also be considered as part of the input features. Nevertheless, the model did not capture
the oxide composition either. Similar circumstances were found when developing the
Df model. We suspected that there was data bias due to clustering originated from the
unbalancing weight of the limited data sampling. To examine the clustering issue, we
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performed the PCA and k-means method and show the cluster plot in Figure 1. There were
two groups that were apparent in the cluster plot, i.e., the green group and the red group.
Red points were found much closer to the clustering center than the green one. After
careful examination of the data set, we found that the red group shared the same oxide
composition in MAS, while the green group did not. In other words, the oxide composition
in MAS could be held constant when using the red group data as the training data set. On
the other hand, the first stage of the calcination temperature and time (i.e., T1 = 750 ◦C,
time_1 = 3 h), as well as the BGF content (i.e., BGF = 0 wt.%) were also constant in the red
group. Figure 2 shows a pair plot of the glass, ceramic filler, and GC content distribution
in the red group data. The scattered points in the plot show how the data sampled along
the composition spaces. We thus pulled out the red group data with a total number of 63
data points to build Dk and Df models (see Table 2 for the feature information). By using a
cluster plot analysis, feature dimensions and complexity were reduced although we paid
the price of losing some data. Nevertheless, it was still better than having models that were
not consistent with the actual experimental fabrication process.
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When developing Dk and Df models using the red group data, we firstly explored the
optimal input feature vector. Figure 3 shows the five-fold CV RMSE vs. the top 12 input
features, where the plot was sorted based on the CV RMSE values. The x-axis shows the
input feature used in building the model. We showed only the processing parameters in
the x-axis label because the glass, ceramic filler, and GC content (i.e., alumina, cordierite,
MASG, CBSG-S, CBSG-B, BG, and MAS) remained the same in each feature vector. For
instance, “T3_R” in Figure 3a means we used T3_R, alumina, cordierite, MASG, CBSG-S,
CBSG-B, BG, and MAS as the input for building Dk model. This input feature showed the
lowest CV RMSE for Dk model. “T2_time, T3_time” in Figure 3b means we used T2_time,
T3_time, alumina, cordierite, MASG, CBSG-S, CBSG-B, BG, and MAS as the input for
building Df model and that this input feature showed the lowest CV RMSE for Df model.
Note that, in Figure 3a, even though “T2_R, T3_R” showed the third-lowest CV RMSE, the
difference in the RMSE between the lowest one was only 0.01. On the other hand, using the
“T2_R, T3_R” feature set would be more consistent with actual experimental conditions.
We felt that the model was actually capturing the real processing parameters, but due to
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the limited sampling of the data set, a numerical fitting issue occurred. Therefore, we
manually selected the T2_R, T3_R, alumina, cordierite, MASG, CBSG-S, CBSG-B, BG, and
MAS as the input for building Dk model. We did our best to explore as many processing
parameter combinations as possible to see if the models could be further improved. For
instance, we attempted to multiply the T2 term by the T3 term to see if coupling between
the processing temperatures occurred. Nevertheless, it turned out that these CV RMSEs
were not further improved. Overall, the designed features of T2_R, T3_R, T2_time, and
T3_time worked better than using T2, T3, time_2, and time_3 directly. This may suggest
some underlying physics in terms of Dk and Df function that works against the processing
parameters although the physics is not easily examined directly using a machine learning
model. Using “T2_R, T3_R” or “T2_time, T3_time” also helped to reduce the number of
feature dimensions and helped avoid the overfitting issue. In the meantime, the models
built on these features were consistent with the real processing circumstances.
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3.2. Model Assessment

Figure 4a,b show the parity plots of the full-fit for the proposed Dk and Df models
fitted to the optimal features, respectively. The RMSE was 0.37, the RMSE/σ was 0.38, and
the R2 was 0.82 for Dk model. The RMSE was 0.39 × 10−3, the RMSE/σ was 0.11, and
the R2 was 0.99 for Df model. Figure 4c,d show the parity plots of the five-fold CV for
the proposed Dk and Df models, respectively. The CV RMSE was 0.59, the CV RMSE /σ
was 0.61, and the R2 was 0.57 for the Dk model. The CV RMSE was 1.12 × 10−3, the CV
RMSE/σ was 0.31, and the R2 was 0.91 for the Df model. Overall, the RMSE/σ values
were all less than one, which suggests that our models captured the complex Dk and Df
properties by providing information only for the glass, ceramic filler, GC content, and the
processing parameters. Figure 4e,f show the residual plots of the five-fold CV, for which
the results showed an approximately normal distribution. This suggests that the choice of
the GKRR model was appropriate.
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Due to a rather small scale of the data set with limited sampling (see Figure 2), it is
conceivable that the model may not fit the correct physical correlations. To investigate this,
we performed a randomized test [15]. Figure 5a,b shows the parity plots of the randomized
tests for Dk and Df models, respectively. The RMSE was 1.19, the RMSE/σ was 1.22, and
the R2 was −1.58 for Dk model in the randomized test. The RMSE was 4.33 × 10−3; the
RMSE/σ was 1.21, and the R2 was −0.94 for Df model in randomized test. All models for
the randomized test were significantly worse than the models for the original data fits. The
results suggest that the models for the original data were physically meaningful.
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3.3. Dk and Df Exploration

Because the data set was rather small and sampling was less homogeneous, it would
be difficult to obtain an accurate prediction from extrapolation. Nevertheless, exploring
potential LTCC candidates within the composition range of the data set as an interpolation
would be still beneficial, especially in the relatively uniform composition spaces shown in
Figure 2, e.g., in the alumina, cordierite, and CBSG-S spaces. To see how Dk and Df evolved
along these feature spaces within the data set range, we performed a cross-plot analysis. We
chose T2 = 700 ◦C, time_2 = 2 h, T3 = 850 ◦C, time_3 = 2 h (i.e., T2_R, and T3_R (T2_time, and
T3_time) were set at 1.9979, and 1.9982 h/K (1400, and 1700 ◦C × h)), CBSG-S = 50 wt.%,
MAS = 2 mol%, and all the other glass phases = 0 wt.% for the analysis because a series of
LTCCs was fabricated at this range in the data set. Figure 6 shows the cross plot of Dk and
Df against alumina and cordierite content. We found that Dk increased when the alumina
content increased, as shown in Figure 6a. Df in general increased when the alumina content
was increased until 40 wt.% and then decreased when alumina content was higher than
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40 wt.%, as shown in Figure 6b. A small hump of Df increase at the alumina content of 0
to 5 wt.% was also found. Prediction for Df was slightly higher than the measured data
but the difference was minor. Overall, the trend between the real measurements and the
machine learning prediction agreed well with each other. From the cross plots, one would
expect to obtain low Dk and Df values at a low (high) alumina (cordierite) content.
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was 50 wt.%. All the other glass phase contents were zero.

As the goal for the proposed models is to explore potential LTCCs which have both
low Dk and Df values to control signal delay and energy loss, a property contour plot
would be visually useful to define the region fulfilling the given criteria. We followed
the criteria provided in Ref [5], i.e., the notion that Dk and Df should be lower than 10
and 2 × 10−3, respectively. We therefore set these criteria for the property contour plot
and explored potential candidates within the alumina, cordierite, and CBSG-S content.
MAS was again chosen at 2 mol%, and T2_R, T3_R (T2_time, T3_time) were set at 1.9979,
1.9982 h/K (1400, 1700 ◦C × h), respectively. All the other glass phase contents were set at
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zero. Figure 7 shows the property contour plot. The blue and red regions represent the
LTCCs that fulfilled one, and fulfilled both criteria, respectively. This contour plot reveals
that if one chooses the compositions in the red region and calcinates them in three different
stages, i.e., (1) 750 ◦C for 3 h, (2) 700 ◦C for 2h, and then (3) 850 ◦C for 2 h, these LTCCs will
be likely to have Dk and Df values less than 10 and 2 × 10−3, respectively, at an operating
frequency of 1 GHz. The plot provides a quick guideline for developing potential LTCCs
with low Dk and Df values, as well as for saving both time and cost. Once more data
become available, the proposed models could be further improved and extended to more
complex systems.
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glass was 2 mol%, and the first to third calcination temperatures (time) were 750 ◦C, 700 ◦C, and
850 ◦C (3 h, 2 h, and 2 h), respectively. All the other glass phase contents were zero. The operating
frequency was set at 1 GHz.

4. Conclusions

In this paper, we built machine learning models for predicting Dk and Df, and explored
potential LTCCs with low Dk and Df values. Data at an operating frequency of 1 GHz
were pulled out from the ITRI-LTCC database to build models. PCA and k-means methods
were initially performed to visually analyze data clustering and to reduce the dimension
complexity that inherently caused the model to fail. In optimizing the input features, we
found that using the calcination reaction product (i.e., T2_R and T3_R), as well as the
calcination temperature and time product (i.e., T2_time and T3_time), led to a better model
performance (i.e., a lower five-fold CV RMSE) as opposed to using temperature and time
separately (i.e., T2, T3, time_2 and time_3) for building Dk and Df models, respectively. The
five-fold CV RMSE was 0.59, the CV RMSE/σ was 0.61, and the R2 was 0.57 for the Dk
model. The CV RMSE was 1.12 × 10−3, the CV RMSE/σ was 0.31, and the R2 was 0.91
for the Df model. CV results suggest that the proposed models captured the complex Dk
and Df properties. Randomized test showed a worse model performance than that for
the original data fits. It suggests that the proposed models were not only numerical due
to the rather small data set, but were physically meaningful. Cross-plot analysis showed
that the machine learning prediction agreed well with the real measurements. Cross-plot
analysis suggests that the proposed models had the potential to predict Dk and Df within
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the input feature ranges as an interpolation. A property contour plot was built to explore
LTCCs for real applications with Dk and Df values less than 10 and 2 × 10−3, respectively,
at an operating frequency of 1 GHz. Explorative models were obtained in the current work,
and the models can be further improved as new data become available in the future. The
proposed machine learning models can potentially be utilized to accelerate the design of
LTCCs used in fifth-generation telecommunications.

Author Contributions: Methodology, Y.-c.L.; Software, Y.-c.L.; Validation, Y.-c.L. and T.-Y.L.; Formal
Analysis, Y.-c.L.; Investigation, Y.-c.L. and T.-Y.L.; Writing—Original Draft Preparation, Y.-c.L.;
Writing—Review & Editing, Y.-c.L., T.-Y.L. and S.-k.L.; Project Administration, T.-Y.L., T.-H.H., K.-C.C.
and S.-k.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan with project
number of 109-3111-8-006-001, 110-2622-8-006-017-SB, 110-2634-F-006-017, 110-2636-E-006-016 and
110-2222-E-006-008; by the Ministry of Education, Taiwan, in Higher Education Sprout Project; by the
Ministry of Economic Affairs, Taiwan, and ITRI/MCL, Taiwan with project number of L301AR4700.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ITRI-LTCC database is not publicly available and therefore this
data is not included in any of the shared files. Requests for the ITRI-LTCC database should be directly
sent to Tzu-Yu Liu at jill.t.y.liu@itri.org.tw.

Acknowledgments: Y.-c.L. and S.-k.L. gratefully acknowledge the financial supports from the Min-
istry of Science and Technology (MOST) in Taiwan (109-3111-8-006-001, 110-2622-8-006-017-SB,
110-2636-E-006-016 and 110-2222-E-006-008). This work was also partially supported by the Hier-
archical Green-Energy Materials (Hi-GEM) Research Center, from The Featured Areas Research
Center Program within the framework of the Higher Education Sprout Project by the Ministry of
Education (MOE) and MOST (110-2634-F-006 -017) in Taiwan. T.-Y.L., T.-H.H. and K.-C.C. gratefully
acknowledge funding from the Ministry of Economic Affairs (MEA), and ITRI/MCL of Taiwan.
(Project No. L301AR4700).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marley, P.M.; Tormey, E.S.; Yang, Y.; Gleason, C. Low-K LTCC Dielectrics: Novel High-Q Materials for 5G Applications. In

Proceedings of the 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and
THz Applications (IMWS-AMP), Bochum, Germany, 16–18 July 2019; pp. 88–90.

2. Sebastian, M.T. Chapter Twelve—Low Temperature Cofired Ceramics. In Dielectric Materials for Wireless Communication; Sebastian,
M.T., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 445–512. [CrossRef]

3. Sebastian, M.T.; Wang, H.; Jantunen, H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review. Curr.
Opin. Solid State Mater. Sci. 2016, 20, 151–170. [CrossRef]

4. Mahon, S. The 5G Effect on RF Filter Technologies. IEEE Trans. Semicond. Manuf. 2017, 30, 494–499. [CrossRef]
5. Wang, F.; Zhang, W.; Chen, X.; Mao, H. Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite

composites for LTCC application. Ceram. Int. 2019, 45, 7203–7209. [CrossRef]
6. Ohsato, H.; Varghese, J.; Vahera, T.; Kim, J.S.; Sebastian, M.T.; Jantunen, H.; Iwata, M. Micro/Millimeter-Wave Dielectric

Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects. J. Korean
Ceram. Soc 2019, 56, 526–533. [CrossRef]

7. Zhou, J. Towards rational design of low-temperature co-fired ceramic (LTCC) materials. J. Adv. Ceram. 2012, 1, 89–99. [CrossRef]
8. Yu, M.; Zhang, J.; Li, X.; Liang, H.; Zhong, H.; Li, Y.; Duan, Y.; Jiang, D.L.; Liu, X.; Huang, Z. Optimization of the tape casting

process for development of high performance alumina ceramics. Ceram. Int. 2015, 41, 14845–14853. [CrossRef]
9. Ren, L.; Zhou, H.; Li, X.; Xie, W.; Luo, X. Synthesis and characteristics of borosilicate-based glass–ceramics with different SiO2

and Na2O contents. J. Alloys Compd. 2015, 646, 780–786. [CrossRef]
10. Shang, Y.; Zhong, C.; Xiong, H.; Li, X.; Li, H.; Jian, X. Ultralow-permittivity glass/Al2O3 composite for LTCC applications. Ceram.

Int. 2019, 45, 13711–13718. [CrossRef]
11. Wang, F.; Zhang, W.; Chen, X.; Mao, H.; Liu, Z.; Bai, S. Low temperature sintering and characterization of La2O3-B2O3-CaO

glass-ceramic/LaBO3 composites for LTCC application. J. Eur. Ceram. Soc. 2020, 40, 2382–2389. [CrossRef]
12. Sebastian, M.T.; Jantunen, H. Low loss dielectric materials for LTCC applications: A review. Int. Mater. Rev. 2008, 53, 57–90.

[CrossRef]

145



Materials 2021, 14, 5784

13. Peng, R.; Su, H.; An, D.; Lu, Y.; Tao, Z.; Chen, D.; Shi, L.; Li, Y. The sintering and dielectric properties modification of Li2MgSiO4
ceramic with Ni2+-ion doping based on calculation and experiment. J. Mater. Res. Technol. 2020, 9, 1344–1356. [CrossRef]

14. Peng, R.; Su, H.; Li, Y.; Lu, Y.; Yu, C.; Shi, L.; Chen, D.; Liao, B. Microstructure and microwave dielectric properties of Ni doped
zinc borate ceramics for LTCC applications. J. Alloys Compd. 2021, 868, 159006. [CrossRef]

15. Liu, Y.-c.; Afflerbach, B.; Jacobs, R.; Lin, S.-k.; Morgan, D. Exploring effective charge in electromigration using machine learning.
MRS Commun. 2019, 9, 567–575. [CrossRef]

16. Qin, J.; Liu, Z.; Ma, M.; Li, Y. Machine learning approaches for permittivity prediction and rational design of microwave dielectric
ceramics. J. Mater. 2021. [CrossRef]

17. Morita, K.; Davies, D.W.; Butler, K.T.; Walsh, A. Modeling the dielectric constants of crystals using machine learning. J. Chem.
Phys. 2020, 153, 024503. [CrossRef] [PubMed]

18. Morgan, D.; Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 2020, 50,
71–103. [CrossRef]

19. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. 2011, 12, 2825–2830.

20. Jacobs, R.; Mayeshiba, T.; Afflerbach, B.; Miles, L.; Williams, M.; Turner, M.; Finkel, R.; Morgan, D. The Materials Simulation
Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research. Comput.
Mater. Sci. 2020, 176, 109544. [CrossRef]

21. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]

146



materials

Article

Investigation of Adhesive’s Material in Hermetic MEMS
Package for Interfacial Crack between the Silver Epoxy and the
Metal Lid during the Precondition Test

Mei-Ling Wu * and Jia-Shen Lan

����������
�������

Citation: Wu, M.-L.; Lan, J.-S.

Investigation of Adhesive’s Material

in Hermetic MEMS Package for

Interfacial Crack between the Silver

Epoxy and the Metal Lid during the

Precondition Test. Materials 2021, 14,

5626. https://doi.org/10.3390/

ma14195626

Academic Editor: Arkadiusz Żak
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Abstract: A hermetic Micro-Electro-Mechanical Systems (MEMS) package with a metal lid is investi-
gated to prevent lid-off failure and improve its reliability during the precondition test. While the
MEMS package benefits from miniaturization and low cost, a hermetic version is highly sensitive to
internal pressure caused by moisture penetration and the reflow process, thus affecting its reliability.
In this research, the finite element method is applied to analyze the contact stress between the
metal lid and the silver epoxy by applying the cohesive zone model (CZM). Moreover, the red dye
penetration test is applied, revealing a microcrack at the metal lid/silver epoxy interface. Further
analyses indicate that the crack is caused by internal pressure. According to the experimental testing
and simulation results, the silver epoxy material, the curing process, the metal lid geometry, and the
bonding layer contact area can enhance the bonding strength between the metal lid and the substrate.

Keywords: Micro-Electro-Mechanical Systems; moisture sensitivity level test; reflow process; finite
element method; cohesive zone model; bonding strength; precondition test

1. Introduction

The MEMS package is widely used in automotive, medical, and consumer electronic
devices for measuring the mechanical, thermal, optical, and magnetic phenomena. There-
fore, it needs to be highly reliable to maintain its functionality and safety for several years.
A metal lid is included in the MEMS package to provide protection from the external
environment, while also reducing the cost, weight, and size, thus improving production
efficiency. While the hermetic MEMS package offers considerable benefits, it also causes re-
liability issues for the lid bonding technology and hermeticity. Hsu et al. [1] investigated the
characteristics of polymeric materials in the CMOS image sensor (CIS). They found that the
hygroscopic swelling of polymer material is induced by absorbing the moisture in humid
environments, which weakens the interfacial strength and causes delamination failure. To
improve performance and reliability in RF-MEMS applications, Jeong et al. [2] developed
novel wafer-level hermetic package technology. As a part of their study, low-temperature
bonding technology was applied through gold/tin eutectic solder at the peripheral edge.
The results revealed that thermal cycling, high-temperature storage, high-humidity storage,
and a pressure cooker test failed to induce failure. Zhang et al. [3] investigated the bond-
ing strength of a nanosilver sintered hermetic cavity with copper and silicon lids. Their
results showed that the copper lid suffered delamination in the bonding layer, whereas the
silicon lid exhibited great bonding quality. Farisi et al. [4] developed a low-temperature
wafer-level hermetic packaging technology based on thermal compression bonding. Their
analyses revealed that the bonding shear strength of the newly proposed technology ex-
ceeded 100 MPa and its leak rate was below 1.67 × 10−15 Pa·m3·s−1. Huang et al. [5] also
developed low-cost and low-temperature hermetic technology based on a eutectic PbSn
solder and Cr/Ni/Cu bonding pad. The bonding strengths of glass–glass, silicon–glass,
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and silicon–silicon pairs were measured at 4.5, 7, and 5.3 MPa, respectively. Jang et al. [6]
proposed a diffusion-based governing equation to investigate the effects of polymer seal
diffusion properties and geometries on the MEMS package performance. The numerical
results revealed that both factors affected the lag time. Premachandran et al. [7] developed
a wafer-level vacuum package with a wafer cap under the vacuum (1 mTorr). The package
performance measured up to standard, evaluated via shear test and reliability tests. Jiang
et al. [8] used a laser-assisted bonding method for a cavity-based package with a liquid
crystal polymer (LCP). Their results showed that both silicon and glass substrates had high
bonding quality. They also measured shear strength in the 20.8–26.1 MPa range, depending
on the bonding assembly (glass–glass, silicon–glass, silicon–silicon, and silicon–package).
Sandvand et al. [9] analyzed the bonding material stress in the MEMS pressure sensor
for the glass-frit bonding process by conducting a finite element analysis. The authors
observed microcracks at the outer perimeter of the glass-frit material due to the high stress
levels induced by the thermal cycling test. As can be seen from the above, the bonding
strength and the hermeticity of the MEMS package with the vacuum cavity have been
thoroughly investigated. Nonetheless, the MEMS package reliability needs to be improved
further for its greater use in automotive, medical, and consumer applications.

In the present research, the reliability of a hermetic MEMS package with a metal lid is
evaluated through the precondition test. The hermetic MEMS package adopted for this
purpose comprises of a ceramic substrate, two dies, and a metal lid. The metal lid and
the ceramic substrate are bonded together with silver epoxy under atmospheric pressure,
as the aim is to reduce cost and improve the fabrication process efficiency. However, as
moisture inside the MEMS package cavity is a potential risk, during the reliability test, the
aim is to prevent the lid-off and improve the bonding strength between the metal lid and
the ceramic. Thus, in the analyses, focus is given to the curing process, the silver epoxy
material, the metal lid geometry, and the bonding layer contact area.

2. Fabrication Process

The hermetic MEMS package with the metal lid used in this study was fabricated as
shown in Figure 1. As can be seen from the diagram, once the stacked dies were bonded to
the ceramic substrate with silver epoxy, the lid attachment and the precondition test were
conducted.

(a) Lid attachment: The metal lid is attached to the ceramic substrate with silver epoxy,
which is applied between the metal lid and the ceramic substrate of the peripheral
MEMS package. To fully cure silver epoxy, it is exposed to the 175 ◦C temperature for
2 h. Subsequent evaluations confirm that silver epoxy fully adheres with the metal lid
and the ceramic substrate.

(b) Moisture sensitivity level (MSL) 1 test: The MSL 1 test is carried out to determine the
sensitivity level of the hermetic MEMS package under humid conditions. For this pur-
pose, the hermetic MEMS package is exposed to high humidity and high temperature
(85 ◦C/85% RH). When the moisture penetrates into the MEMS package cavity via
silver epoxy, it weakens the metal lid/silver epoxy and the ceramic substrate/silver
epoxy bonding strength.

(c) Reflow process: During the reflow process, the moisture concentration inside the
MEMS package causes damage to the metal lid/silver epoxy interface. When the
MEMS package is exposed to the maximum temperature of 265 ◦C for three cycles,
vapor pressure and thermal pressure are induced by the residual moisture in the
hermetic cavity. Furthermore, thermal stress is generated at the metal lid/silver epoxy
and the ceramic substrate/silver epoxy interface due to the coefficient of thermal
expansion (CTE) mismatch.
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Figure 1. The fabrication process of MEMS package with metal lid.

3. Root Cause

As shown in Figure 2, the precondition test results in an interfacial crack on the
exterior of the hermetic MEMS package. The crack extends from the exterior along the
metal lid/silver epoxy interface. This causes a phenomenon known as “lid-off” indicating
that the metal lid is separated from the ceramic substrate. In the MEMS package, lid-off
failure occurs because upward force is applied on the metal lid. To determine its root cause
in the precondition test, the experimental design shown in Figure 3 was adopted in this
study. The shear test and the red ink penetration test were performed to record the results,
which are denoted as Result A (only reflow), Result B (only MSL-1), and Result C (reflow
and MSL-1).
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Figure 3. The process flow of investigating root cause.

The shear test and the red dye penetration test results are presented in Figure 4. As
can be seen from Result A (only reflow), the red ink is located at the outside of the MEMS
package, indicating that no cracks have occurred at the interface or in the silver epoxy
under the reflow process. When the MEMS package is exposed to high humidity, the
moisture penetrates into the silver epoxy. As the residual moisture weakens the metal
lid/silver epoxy bonding strength, the red ink penetrates inside the silver epoxy and the
package, as indicated by both Result B (only MSL-1) and Result C (MSL-1 and reflow). The
maximum shear force also decreases as a result of moisture penetration. Result C further
reveals that the metal lid has separated from the silver epoxy, as the moisture inside the
MEMS package cavity vaporizes and generates vapor pressure during the reflow process.
Hence, the vapor pressure and the thermal pressure have a potential to cause the lid-off.
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Reflow at 265 °C ×3

MSL-1 (85 °C/85 %RH)

Result A (No Penetration)

Reflow at 265 °C ×3

Result B (Penetration) Result C (Penetration)

Figure 4. The shear test and red dye penetration test for investigating the root cause.

4. The Shear Test in the Different Manufacture Condition

In the shear test, the thrust force is applied on the bottom side of the metal lid to
remove it from the MEMS package. During this process, the maximum shear force is
measured to determine the shear strength of both the metal lid and the silver epoxy. To
investigate the influence of the internal pressure on the likelihood of lid-off failure, a
hermetic MEMS package with vent hole was designed, as shown in Figure 5. The vent hole
was drilled at the corner and the top of the metal lid, allowing the internal pressure to be
released during the reflow process. To analyze the maximum shear force under different
manufacturing conditions, the hermetic MEMS package with a vent hole was compared
to that without a vent hole, as shown in Figures 6 and 7. As can be seen from Figure 6,
the maximum shear force of the hermetic MEMS package without a vent hole after the
precondition test (1.39 kgf) is lower than that measured for the hermetic MEMS package
without a vent hole before the precondition test (3.18 kgf). However, the maximum shear
force of hermetic MEMS package with a vent hole measured before the precondition test is
similar to that obtained after the test. These results indicate that the internal pressure is a
critical factor for lid-off failure under the reflow process.
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To improve the maximum shear force of the hermetic MEMS package, additional tests
were performed while controlling for the degree of curing and the pre-heat conditions, as
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these factors affect the material characteristics and the interfacial contact strength of the
silver epoxy. To obtain fully cured and incompletely cured epoxy, the following conditions
were respectively applied: 175 ◦C/1 h + 190 ◦C/1 h and 175 ◦C/1 h. As fully cured silver
epoxy is harder and has a higher Young’s modulus, its maximum shear force is higher
than that of the partially cured epoxy. Our analyses further indicate that when the fully
cured epoxy is used in the hermetic MEMS package with a vent hole and the pre-heat
(110 ◦C/0.5 h) step is performed, the maximum shear force increases by about 60% relative
to the partially cured epoxy. In addition, when the fully cured epoxy is used in the hermetic
MEMS package without a vent hole, the maximum shear force increases by about 48.5%
after pre-heating. By observing the experimental testing results, the pre-heat does not have
an effect on the hermetic MEMS package with a vent hole. The pre-heat condition can
relieve the internal pressure applied on the metal lid without a vent hole in the curing
process.

5. Finite Element Method

The metal lid detaches from the ceramic substrate because of internal pressure during
the reflow process. To analyze the stress and the deformation of the hermetic MEMS
package with a metal lid under the reflow process, a finite element model was adopted by
using ANSYS APDL. Specifically, the CZM method was used to calculate the contact stress
at the metal lid/silver epoxy interface, which were denoted as contact and target elements.
The MEMS package structure comprised of stacked dies, a die attach, a ceramic substrate, a
metal ring, a silver epoxy, and lid metal, as shown in Figure 8. For modeling this structure,
a two-dimensional finite element model with quadratic elements was established and was
matched with scanning electron microscope (SEM) cross-section images. The material
properties of the finite element model are presented in Table 1. During modeling, internal
pressure was applied on the inside surface of the metal lid to simulate air pressure and
vapor pressure in the cavity under the reflow process.
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Table 1. The material properties of the finite element model.

E (MPa) ν CTE (ppm/K)

Die 131 × 103 0.27 2.8

Lid 190 × 103 0.30 16.3

Substrate 310 × 103 0.30 7.1

Au 77.2 × 103 0.42 14.4

Die Attach 7.1 × 103 @25 ◦C
0.6 × 103 @260 ◦C

0.30 18 < 175 ◦C
35 > 175 ◦C

Silver Epoxy
3900@25 ◦C

2000@150 ◦C
300@250 ◦C

0.30 40 < 120 ◦C
150 > 120 ◦C

The internal pressure inside the cavity can be obtained by using the ideal gas equation,
as the following equations:

PV = nRT (1)

PInternal = PAir + PVapor (2)

PAir_265◦C = PAir_25◦C · T265◦C
T25◦C

(3)

PVapor_265◦C = P85◦C/85%RH · T265◦C
T85◦C

= (0.85 · P85◦C,SAT) · T265◦C
T85◦C

(4)

where P is the pressure, V is the volume, n is the number of moles of gas, R is the idea
gas constant (8.317 J · mol−1 · K−1), T is the absolute temperature, PInternal is the internal
pressure, PAir is the air pressure, PVapor is the vapor pressure, PAir_25◦C is the air pressure at
25 ◦C, P85◦C,SAT is the saturated vapor pressure at 85 ◦C, and RH is the relative humidity.

The findings pertaining to the hermetic MEMS package with and without a vent hole
were once again contrasted to investigate the contact stress and SEM observations, as
shown in Figure 9. For evaluating the crack location, contact stress was defined as normal
interface stress. In the hermetic MEMS package without a vent hole, the highest contact
stress was located at the bottom of the metal lid. The fracture occurred at the same location
during experimental testing. In the hermetic MEMS package with a vent hole, the contact
stress was negligible and no fracture could be observed on the SEM images.
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6. Optimization
6.1. One Factor Design

To decrease the contact stress at the metal lid/silver epoxy interface, one factor design
was performed, considering lid thickness, connecting angle, epoxy height, lid height, lid
size, and substrate height as factors, as presented in Figure 10. These design factors were
chosen to evaluate the contact area effect, the lid geometry effect, and the material property
effect, as indicated in Table 2. The lid thickness, the connecting angle, and the epoxy height
are considered to exhibit the contact area effect since these factors are related to the contact
interface area. The lid geometry not only affects the lid size but also has an influence on
the cavity volume. Therefore, a lid of greater size would have higher contact stress due to
withstanding higher internal pressure.

Materials 2021, 14, x FOR PEER REVIEW 8 of 12 
 

 

Figure 9. The contact stress (simulation result) and the SEM observation (experimental testing result) of the hermetic 

MEMS package with a vent hole and without a vent hole. 

6. Optimization 

6.1. One Factor Design 

To decrease the contact stress at the metal lid/silver epoxy interface, one factor design 

was performed, considering lid thickness, connecting angle, epoxy height, lid height, lid 

size, and substrate height as factors, as presented in Figure 10. These design factors were 

chosen to evaluate the contact area effect, the lid geometry effect, and the material prop-

erty effect, as indicated in Table 2. The lid thickness, the connecting angle, and the epoxy 

height are considered to exhibit the contact area effect since these factors are related to the 

contact interface area. The lid geometry not only affects the lid size but also has an influ-

ence on the cavity volume. Therefore, a lid of greater size would have higher contact stress 

due to withstanding higher internal pressure. 

 

Figure 10. The schematic diagram of design factors. 

Table 2. The design factors for analyzing the contact stress. 

 Factors Range 

The Contact Area Effect 

A. Lid thickness 0.1~0.2 (mm) 

B. Connecting angle 50~70 (°) 

C. Epoxy height 0.7~0.9 (mm) 

The Lid Geometry Effect 

D. Lid height 0.8~1.1 (mm) 

E. Lid size 2.5~6.1 (mm) 

F. Substrate height 0.2~0.5 (mm) 

The Material Property Effect 
G. Lid modulus 120~160 (GPa) 

H. Epoxy modulus 3~9 (GPa) 

The one factor designs for the contact area, the lid geometry, and the material prop-

erty effects are shown in Figures 11–13, respectively. According to the assessments related 

to the contact area effect, greater lid thickness, and epoxy height, and a lower connecting 

angle reduce the contact stress by increasing the contact interface area. The lowest contact 

stress (2.45 MPa) is obtained with the connecting angle of 50°. According to the lid geom-

etry effect, the lid size is sensitive to contact stress because the force induced by internal 

pressure is based on the lid size. Specifically, the contact stress increases from 1.36 to 7.15 

MPa when the lid size increases from 2.5 to 6.1 mm. Finally, the results related to the 

material property effect indicate that the Young’s modulus of the silver epoxy and the lid 

do not exert significant changes on contact stress. Thus, even though Young’s modulus of 

Figure 10. The schematic diagram of design factors.

Table 2. The design factors for analyzing the contact stress.

Factors Range

The Contact Area Effect
A. Lid thickness 0.1~0.2 (mm)

B. Connecting angle 50~70 (◦)

C. Epoxy height 0.7~0.9 (mm)

The Lid Geometry Effect
D. Lid height 0.8~1.1 (mm)

E. Lid size 2.5~6.1 (mm)

F. Substrate height 0.2~0.5 (mm)

The Material Property Effect G. Lid modulus 120~160 (GPa)

H. Epoxy modulus 3~9 (GPa)

The one factor designs for the contact area, the lid geometry, and the material property
effects are shown in Figures 11–13, respectively. According to the assessments related to the
contact area effect, greater lid thickness, and epoxy height, and a lower connecting angle
reduce the contact stress by increasing the contact interface area. The lowest contact stress
(2.45 MPa) is obtained with the connecting angle of 50◦. According to the lid geometry
effect, the lid size is sensitive to contact stress because the force induced by internal pressure
is based on the lid size. Specifically, the contact stress increases from 1.36 to 7.15 MPa
when the lid size increases from 2.5 to 6.1 mm. Finally, the results related to the material
property effect indicate that the Young’s modulus of the silver epoxy and the lid do not
exert significant changes on contact stress. Thus, even though Young’s modulus of the
silver epoxy is not the critical factor, the moisture absorption, shear strength, and the
material curing characteristics are important for the contact stress.
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6.2. Responsed Surface Method

The response surface method was also adopted to establish the relationship between
the factors that are most influential on contact stress, as shown in Figures 14 and 15. As
lid thickness, lid size, and the connecting angle are the critical factors for contact stress,
their values were considered when interpreting the response surface results. By observing
the relationship between lid thickness and lid size, it is evident that the slope of lid size is
linear and is greater than the lid thickness. While the impact of lid thickness on contact
stress is low, the curve flattens with increasing lid thickness. These results indicate that lid
size is more significant than lid thickness. In addition, according to the response surface
results based on the relationship between the connecting angle and the lid size, both factors
exhibit linear distribution. Thus, for improving the contact stress, lid thickness should be
increased, while its size and the connecting angle should be reduced.
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7. Conclusions

In the research reported here, a hermetic MEMS package with a metal lid was designed
and its reliability was tested. During the precondition test, lid-off failure occurred because
moisture weakens the interfacial bonding strength and increases the internal pressure
during the reflow process. The finite element method, which was adopted to simulate the
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contact stress of the metal lid/silver epoxy interface and the deformation of the metal lid,
revealed that lid thickness, lid size, and the connecting angle are the critical factors for the
contact stress. Although the Young’s modulus of the silver epoxy is not the critical factor,
the moisture absorption, shear strength, and material curing characteristics are important
for the contact stress. In the experimental testing, the pre-heat step and fully curing the
epoxy can enhance the maximum shear force by 60% and 48.5% under the precondition
test. The findings further indicate that increasing the lid thickness, and decreasing the lid
size and the connecting angle can decrease the contact stress, thus reducing the likelihood
of lid-off failure under the precondition test.
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Abstract: This study introduces an effective and efficient dynamic electro-thermal coupling analysis
(ETCA) approach to explore the electro-thermal behavior of a three-phase power metal–oxide–
semiconductor field-effect transistor (MOSFET) inverter for brushless direct current motor drive
under natural and forced convection during a six-step operation. This coupling analysis integrates
three-dimensional electromagnetic simulation for parasitic parameter extraction, simplified equiv-
alent circuit simulation for power loss calculation, and a compact Foster thermal network model
for junction temperature prediction, constructed through parametric transient computational fluid
dynamics (CFD) thermal analysis. In the proposed ETCA approach, the interactions between the junc-
tion temperature and the power losses (conduction and switching losses) and between the parasitics
and the switching transients and power losses are all accounted for. The proposed Foster thermal
network model and ETCA approach are validated with the CFD thermal analysis and the standard
ETCA approach, respectively. The analysis results demonstrate how the proposed models can be
used as an effective and efficient means of analysis to characterize the system-level electro-thermal
performance of a three-phase bridge inverter.

Keywords: electro-thermal coupling analysis; power MOSFET inverter; power loss; circuit simulation;
computational fluid dynamics; Foster thermal network

1. Introduction

Power electronics are widely used as powertrain components in the increasingly
popular electric vehicles (EVs) and hybrid EVs, such as in electronic switches, converters,
and inverters, to control and regulate electricity. In particular, three-phase voltage source
inverters applied to control three-phase asynchronous induction motors are widely used in
alternating current (AC) motor drives. Power semiconductors/modules inside inverters are
the most crucial devices controlling the power conversion efficiency. In response to the ur-
gent need for high-performance power conversion applications, the power semiconductor
industry has recently seen rapid technological developments, such as insulated-gate bipolar
transistors (IGBTs) [1,2], metal-oxide semiconductor field effect transistors (MOSFETs) [3,4],
and even wide bandgap (WBG) silicon carbide (SiC) [5,6] and gallium nitride (GaN) power
devices [7]. In contrast to IGBTs, MOSFETs comprise a number of advantageous features,
such as a higher switching frequency and lower switching loss; accordingly, they have been
used in a wide range of industrial applications, such as converters and inverters.

Power devices unavoidably result in great losses in power during operation, including
conduction losses resulting from the on-state resistance and switching losses stemming
from simultaneous current and voltage waveforms and the influence of input/output
capacitances and inductances. The trend for high power and downsizing in power devices
is likely to bring about high power densities [8] and thus great power losses. Furthermore,
a high power loss together with extreme operating conditions may potentially give rise to
a high device junction temperature [6,7], which can cause various thermal and mechanical
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challenges, such as thermal instability and even unreliability in terms of thermal fatigue.
For example, as a result of increased phonon concentration and lattice scattering, a high
device junction temperature may lower the carrier mobility and thus raise the temperature-
sensitive on-state resistance, which, in turn, increases the conduction loss and further
elevates the device junction temperature. This process may, in the worst case, trigger
thermal runaway reactions, ultimately leading to device breakdown. As well as this, a
high device junction temperature can deteriorate the electrical performance and even
be detrimental to the thermal–mechanical reliability of power devices (see, e.g., [5,9,10]).
Hence, the temperature is one of the most important issues for power device applications.
In order to ensure the safe and normal operation of power devices, the device junction
temperature should be operated below the nominal rated temperature [11].

Pulse width modulation (PWM) three-phase bridge inverters are used in AC motor
drive systems to convert the direct current (DC) power of batteries to a three-phase AC
output with variable frequency and voltage for speed control. In conjunction with the
high power density trend in power electronics, the wide variation in the frequency and
phase current during load cycles can drive the device junction temperature beyond the
temperature limit of power electronics, i.e., the maximum junction temperature rating,
which would cause damage to or the failure of the inverters. Thus, there is a critical
need for a more thorough comprehension of the thermal behavior of the power devices of
inverters during operation. Before looking into the thermal issues of the inverters, a more
in-depth understanding of their switching characteristics and power losses during load
cycles is required. Several studies have reported that, in addition to supply voltage and
gate resistance in the current loop, parasitic parameters are highly susceptible to the ringing
and overshoots in the switching transients and, thus, can impact the switching loss [4,12,13].
For example, Cheng et al. [4] explored the switching characteristics and power losses of
a silicon (Si) power MOSFET packaged in SOT-227 and a three-phase MOSFET bridge
inverter during a switching operation in an effective compact circuit simulation model.
They found that parasitic parameters have a considerable influence on the switching loss
because of their effect on the switching waveform and speed. In addition to the parasitic
effect, temperature also plays an important role in the switching and conduction losses
of power devices (see, e.g., [1,14]). The device junction temperature during load cycles
greatly influences the switching transients and power losses of power devices, which are,
in turn, highly dependent on their device junction temperatures and parasitics. Thus,
an accurate understanding of electromagnetic and dynamic electro-thermal (ET) coupled
behaviors over a long-term operation is crucial for the safe operation of power components
and systems.

According to previous studies from the literature, there have been extensive efforts
heavily focused on the component-level exploration of the electromagnetic (EM), switching
(power loss), and thermal behaviors (see, e.g., [2,15–19], but very limited work has been
done on the system level, such as on three-phase bridge inverters. Heat generation in
a three-phase inverter fluctuates at two widely different frequencies: the load current
modulation frequency at the level of tens to hundreds of Hz and the switching frequency
at the level of 10–100 kHz, where the switching time is only about a few hundred nanosec-
onds. Precisely modeling the PWM and switching events so as to thoroughly capture
the switching transients and power losses of the three-phase inverter during the six-step
operation requires an extremely small time step and thus enormous computing time. The
problem becomes even more severe for high-operation-frequency applications. Moreover,
the device junction temperature generally needs between hundreds and thousands of
seconds to reach a steady state, depending on the thermal time constant. Directly coupling
the electrical circuit analysis with three-dimensional (3D) transient computational fluid
dynamics (CFD) thermal analysis to calculate the ET coupled behavior presents a great
computational challenge because of limitations on storage space and computational power.
In the literature, the problem has been successfully eased using resistance–capacitance (RC)
thermal networks [20–22], such as Foster and Cauer networks, instead of directly carrying
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out the CFD thermal analysis. RC thermal networks can be an effective and favorable
means for junction temperature estimation due to their unparalleled computational effi-
ciency and flexibility for both thermal and electrical models [22]. A direct coupling of the
detailed circuit simulation model and an RC thermal network model forms the so-called
standard ET coupling analysis (ETCA) approach [23–27]. The standard ETCA approach still
cannot fully address the circuit simulation difficulty in the two widely different frequencies,
which even makes it impossible to explore the ET coupled behavior of the three-phase
PWM inverter in a long-term operation. Accordingly, a more effective approach that can
ameliorate the circuit simulation difficulty is critical needed. Reichl et al. [23] attempted
to improve the computational efficiency of the standard ETCA approach using a four-
step iterative process and an average dissipated power over an electrical cycle. Later
on, Reichl et al. [28] alternatively presented a full 3D multilayer and multichip thermal
component model with asymmetrical power distributions for dynamic ET simulation,
where the 3D heat conduction equation is solved using finite difference methods, and the
thermal component model is parameterized in terms of structural and material properties
to facilitate the development of a library of component models for any available power
module. It has been found, however, that the circuit simulation difficulty still cannot be
removed. Accordingly, this study proposes a more effective and efficient dynamic ETCA
approach, in which a simplified equivalent circuit simulation model is developed and fully
coupled with a Foster thermal network model to account for the effect of the instantaneous
junction temperature on the instantaneous power losses (switching and conduction). The
proposed, simplified equivalent circuit simulation model can address the computational
difficulty associated with the two significantly different frequencies and, therefore, can
greatly reduce the computational cost and make the multi-temporal and long-term ETCA
of a power conversion system much more feasible. In addition, to address the effects of
parasitics on the switching transients and power losses, the proposed ETCA approach
can be integrated with a 3D EM model. The proposed ETCA approach is demonstrated
through the estimation of the ET coupled behavior of a voltage source three-phase bridge
MOSFET inverter (see Figure 1) for brushless DC (BLDC) motor drive under natural and
forced convection during a six-step operation. The established Foster thermal network
model and the proposed ETCA approach are validated using CFD thermal analysis and
the standard ETCA approach, respectively.
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Figure 1. (a) Three-phase bridge inverter and (b) power MOSFET module and explosive view.

2. Three-Phase MOSFET Bridge Inverter

The voltage source three-phase bridge inverter, which transforms DC power from a
DC source into AC power for an AC load, is shown in Figure 1a. It comprises three parallel
legs for phases a, b, c, and each of them contains two semiconductor switches (100 V and
350 A SOT-227 power MOSFET modules, as illustrated in Figure 1b): one at the upper
side and the other at the lower side. These two switches in each leg are complimentarily
operated. In total, there are six switches (S1–S6) in the inverter to create a three-phase
bridge circuit with six switching arms that turn the current on and off, as displayed in
Figure 2a. In detail, three of these six switches (S1, S3, and S5) are connected to a high-
voltage-side DC voltage (hereinafter referred to as “upper-side switches”) and the others
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(S2, S4, and S6) to a low-voltage one (hereinafter referred to as “lower-side switches”).
These arms are linked to each other through a connection bridge. In each modulation
cycle, there is an electrical cycle (360◦) with six switching steps, each with a duration of
60◦, creating a cyclic three-phase pattern, as depicted in Figure 2b. At any commutation
sequence in the six-step commutation logic, only one upper switch and one lower switch
are turned on to energize two motor phase windings. The upper-side switches’ switching
signals are kept discontinuously “on” (i.e., PWM “on”) with a duty cycle whereas the
lower-side switches’ switching signals are always continuously “on” [29]. Thus, the upper
switches are, alternatively, termed PWM power MOSFETs. The conduction sequence of one
six-step commutation cycle is S1S4–S1S6–S3S6–S3S2–S5S2–S5S4, and the corresponding
current states are ab, ac, bc, ba, ca, and cb.
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Figure 2. (a) Three-phase inverter circuit with parasitic inductances and (b) six-step SWPWM signal sequence.

In order to enhance the current rating [14,30], three Si power MOSFET chips connected
in parallel are embedded in the power MOSFET module. When controlling the PWM
power modules, the common rectangular-wave PWM (RWPWM) technique is employed
to generate a square-wave pulse via a signal generator, and a microcontroller is used to
supply the gate pulses to these semiconductor switches. The current supplied to the power
MOSFET modules is PWM-regulated through the rapid switching on and off of these
switches. The ratio of the pulse width to the total signal period is defined as the duty cycle
(D). When D = 50%, it is a square wave PWM (SWPWM). An increased duty cycle raises
the electrical power supply to the semiconductor devices. The temperature-dependent
on-state resistance and the output, transfer, and body diode characteristics of the power
MOSFET module provided in the manufacturer’s datasheet and also in [4] are presented in
Figure 3. Figure 3a,d reveal that the I–V characteristics of the power MOSFET and body
diode show a strong temperature coefficient.
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Figure 3. Characteristics of the power MOSFET and body diode presented in the manufacturer’s datasheet and also in [4]:
(a) power MOSFET output characteristic; (b) power MOSFET transfer characteristic; (c) power MOSFET on-state resistance;
(d) diode characteristic.

To facilitate heat dissipation, these six SOT-227 power MOSFET modules are bonded
onto a thick heat spreader made of aluminum (Al) metal. The power MOSFET module
contains one gate, one drain, and two source terminals for electrical connection. In addition,
it is primarily composed of three Si power MOSFET chips; an Al2O3-based direct bonded
copper (DBC) substrate; Al bond wires; bond pads made of Al metal; a Cu base plate; Cu
terminal leads; three Sn-3.0Ag-0.5Cu (SAC305) solder layers for the bonding between the
Si power MOSFET chips and the Cu terminal leads, between the Cu terminal leads and the
DBC substrate, and between the DBC substrate and the Cu base plate; a polyphenylene
sulfide (PPS) housing; and a quick-drying rubber-based adhesive applied to fill the cavity
between the housing and the DBC/Cu terminal leads. The power MOSFET chips, DBC
substrate, terminal leads, pads, and base plate have thicknesses of 0.33, 0.45, 0.8, 0.01, and
2.0 (mm). The thicknesses of the three solder layers are 0.05, 0.1, and 0.1 (mm). In total,
there are twelve Al wires with the same lengths and cross-sectional areas on the Al pads of
these three power MOSFET chips.

3. Power Loss Prediction

The main types of power loss generated from power MOSFETs during operation in-
clude conduction, switching, and current leakage losses and diode conduction and reverse
recovery losses. The leakage current loss is typically much lower than the conduction loss
at low junction temperatures [14] and thus can be negligible if the junction temperature is
appropriately controlled. The estimation of the conduction loss and switching loss of power
MOSFETs, i.e., PC and PS, during operation can be briefly demonstrated in the following.
When power MOSFETs are switched on by the gate voltage, drain-source current flows
across the resistive components, causing Joule heating and resulting in heat conduction
loss. For a particular switching period, the conduction loss can be calculated from the
drain-source current Ids, on-state resistance Rds(on), and duty cycle D as

PC =
D
ts

∫ ts

0
I2
ds(t)Rds(on)(T)dt (1)
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Since the on-state resistance has a large and positive temperature correlation, as seen in
Figure 3c, the conduction loss is a strong function of temperature. For modeling simplicity,
an average power loss is generally utilized in computation through the application of a
root-mean-square (RMS) average current (IRMS) during a PWM operation. For an SWPWM
control technique, Irms is denoted as

Irms = Ids
√

D (2)

With the RMS average current, the corresponding conduction loss can be expressed as

PC = I2
rmsRds(on)(T) (3)

As a result of the simultaneous rise in current, from the leakage current to the on-state
current IDS, and fall in voltage, from the off-state voltage to the on-state voltage, power
devices can induce considerable switching loss. Moreover, the PWM switching frequency
has a positive and almost linear effect on the switching loss. A higher switching frequency
causes a greater switching loss. As mentioned earlier, in addition to the device parameters,
reverse recovery current, and gate drive current, the parasitic effect plays a significant
role in the switching loss. Figure 4 shows typical voltage and current transients during
turn-on and turn-off periods, where Vgs is the gate-source voltage; VTH is the threshold
voltage; Vgp is the gate-plateau voltage; VDD is the supply voltage; Ipeak is the current spike
(overshoot); VON is the conduction voltage, which is equal to IDSRDS(on); VGS is the gate
drive voltage; and Vspike is the voltage spike. The time increments t2 − t1 and t6 − t5 are
defined as the rise time tir and fall time ti f of the on-state current Ids, respectively, and the
time increments t3 − t2 and t5 − t4 are defined as the fall time tv f and rise time tvr of the
drain-source voltage Vds. Accordingly, the turn-on switching period ton

s is equal to t3 − t1,
and the turn-off switching period to f f

s is equal to t6 − t4. These switching transients are
largely determined by parasitic parameters, such as the gate-drain capacitance Cgd, the gate-
source capacitance Cgs, the drain-source capacitance Cds, the drain inductance Ld, the gate
inductance Lg, and the source inductance Ls. These parasitic capacitances are closely related
to the input capacitance Ciss (Ciss = Cgs + Cgd), output capacitance Coss (Coss = Cgd + Cds),
and reverse transfer capacitance Crss (Crss = Cgd). Basically, they somewhat vary with the
drain-source voltage Vds, as shown in Figure 5. Finally, the switching energy loss ES during
a switching cycle is given as

ES = Eon + Eo f f =
∫ ton

s

0
Vds(t)Ids(t)dt +

∫ to f f
s

0
Vds Ids(t)dt (4)
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The body diode can also contribute to the conduction loss and reverse recovery power
loss. The former is produced when the upper switches (i.e., PWM power MOSFETs) are
switched off and the current passes via the complementary lower switches (i.e., freewheel-
ing diodes (FWDs)) [31]. The body diode conduction loss PBD

C across the switching period
tS can be written as

PBD
C =

1
tS

∫ tS

0

(
V0

BD IBD(t) + RBD(t)IBD
2(t)

)
dt (5)

where IBD is the current passing through the body diodes, VBD is the voltage of the
body diodes, and V0

BD and RBD are the on-state zero-current voltage and resistance of the
body diodes, respectively, which can be read from the diagrams in the package datasheet.
Furthermore, when the body diodes are switched off, the charge stored in the drain-source
capacitor of the FWDs must be released. The reverse recovery current is absorbed by the
PWM power MOSFTs when they are switched on again. In fact, the reverse recovery effect
is included in the power loss calculation for the upper-side switches that are turned on.

4. EM Electro-Thermal Analysis
4.1. EM Modeling

Maxwell’s equations, consisting of a set of coupled partial differential equations,
are generally used to depict macroscopic electromagnetism phenomena. The equations
indicate that EM waves moving along a field depend on time, space, the electric field, and
the magnetic field [32]:

∇ · D = ρ (6)

∇ · B = 0 (7)

∇× E = −∂B
∂t

(8)

∇× H = J +
∂D
∂t

(9)

where D denotes the electric displacement field or electric flux density, B the magnetic
field density, E the electric field, ρ the free charge density (not including the bound charge),
H the magnetic field intensity, and J the free current density (not including the bound
current). Equations (1)–(4) are called Gauss’s law, Gauss’s law for magnetism, the Maxwell–
Faraday equation, and the Ampère circuital law. The Ampère circuital law is also known
as the Maxwell–Ampère law. The left-hand side of the Ampère circuital law possesses
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zero divergence due to the div–curl identity. Further expanding the divergence of the
right-hand side, exchanging the derivatives, and applying Gauss’s law yields:

0 = ∇ · (∇× H) = ∇ · J +∇ · ∂D
∂t

(10)

This leads to
∇ · J = −∂ρ

∂t
(11)

The free charge density does not vary with time (i.e., ∂ρ/∂t = 0) for a stable current,
and thus Equation (11) can be re-expressed as

∇ · J = 0 (12)

Note that J = σE and E = −∇V based on Ohm’s law. If the conductivity σ of
the conductor material is assumed to be constant and evenly distributed, the equation
governing the steady-state electric field can be derived as

∇2V = 0 (13)

4.2. CFD Modeling

The mass, momentum, and energy conservation laws are solved in the CFD analysis
using finite volume method. The conservation equations, namely mass, momentum, and
thermal energy, in the Cartesian coordinate system under the assumption of Newtonian,
incompressible, and steady fluid can be described as

∇ · v = 0 (14)

ρ
Dv
Dt

= −∇p + µ∇2v+ρg (15)

ρ
De
Dt

= −p∇ · v+∇ · (k∇T) + Φ (16)

In the above equations, v is the velocity; D/Dt = ∂/∂t + (v · ∇), the so-called material
derivative; p is the pressure; ρ is the density; µ is the viscosity; g is the gravity; T is the
temperature; k is the thermal conductivity; e is the internal energy; and Φ is the dissipation
function, defined as

Φ = ∇ · (τij · v)− (∇ · τij) · v =τij
∂vi
∂xj

(17)

where τij is the viscous stress component

τij = µ

(
∂vi
∂xj

+
∂vj

∂xi
− 2

3
∂vk
∂xk

δij

)
(18)

The body-force term in the Navier–Stokes equation, i.e., ρg, can be neglected for
natural convection.

4.3. Foster Thermal Network Model

For a multiple-chip power system containing n power semiconductor devices, these
devices will be subjected to temperature rise due to self-heating and cross-heating effects.
More specifically, any chip in the module with a power dissipation P will undergo self-
heating, causing a junction temperature rise Tj, whereas the other devices will experience
cross-heating, likewise leading to junction temperature elevation. In this work, a compact
RC thermal network model in the form of a Foster network is applied for quick thermal
simulation and easy implementation. The Foster network comprises a number of RC
elements, where R is the thermal resistance (K/W) and is C the thermal capacitance (J/K).
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The Foster thermal network model does not have any physical meaning or represent the
physical structure of power devices. In order to develop a Foster thermal network, it is
necessary to obtain the transient thermal impedance curves for both the self- and cross-
heating responses. In the transient thermal characterization, the thermal impedance Z(t) at
a time t is used to determine the temperature variations ∆T(t)

Z(t) =
∆T(t)
P(t)

=
Tj(t)− Ta

P(t)
(19)

Using a Foster RC model, the above time-dependent thermal impedance Z(t) can be
described as

Z(t) =
n

∑
i=1

Ri

(
1− exp(− t

τi
)

)
(20)

where τi(i = 1, . . . , n) are the i-th time constants, equivalent to the product of RiCi in the
Foster network. For the three-phase inverter, consisting of six switching devices, the value
of n is 6. The thermal impedance matrix of the three-phase inverter is shown below





T1(t)
...

Tn(t)





=




Z11(t) · · · Z1n(t)
...

. . .
...

Zn1(t) · · · Znn(t)








P1(t)
...

Pn(t)





+





Ta
...

Ta





(21)

where Ta is the ambient temperature. In the thermal impedance matrix, the diagonal
components, namely Zii, denote the self-heating impedance of the i-th switching device and
the off-diagonal components, namely Zij(i 6= j), stand for the cross-impedance between
the i-th and j-th switching devices. The thermal impedance matrix can be established
by applying a power step to the switching devices one by one and then measuring the
corresponding temperature responses of each of them.

In this work, the CFD code ANSYS Icepak (ANSYS Icepak 2020R2, Canonsburg, PA,
USA) was used for the transient heat transfer simulation. The ANSYS Icepak CFD 3D
model of the three-phase inverter is presented in Figure 6. The initial power at time
zero (t = 0) was set to the estimated total power loss of the inverter at room temperature
Ta. Subsequently, curve fits of the simulated transient heating curves were performed to
identify the parameters (i.e., R and C) and thus produce RC networks for all six of the
power MOSFET switching devices in the inverter, with which the time-dependent thermal
impedance matrix, as listed in Equation (21), was built. Using the characterized time-
dependent thermal impedance matrix, the junction temperatures of these switching devices
can be simply estimated with given power losses. In fact, this approach implies limitations.
For example, the thermal model is established based on a linear system assumption, and the
accuracy of the prediction actually relies on the degrees of nonlinearity, such as convection,
radiation, and temperature-dependent material nonlinearity.
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5. Electro-Thermal Coupling Analysis (ETCA)

The analysis flow of the proposed ETCA platform is shown in Figure 7 and comprises
three analysis layers: EM modeling, electrical simulation, and thermal analysis based on an
RC thermal network model. In order to account for the temperature effect on the switching
transients and even power losses (conduction and switching), the latter two analysis
layers, i.e., electrical simulation and thermal analysis, are fully coupled to co-simulate the
ET coupled behavior of the three-phase power MOSFET inverter. In the switching loss
estimation, the parasitic capacitances are also considered Vds-dependent.
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In the platform, the ETCA starts with the parasitic extraction (inductances) using
ANSYS® Q3D Extractor, which is followed by the CFD thermal analysis and the fitting of
the simulated heating curves in the time domain to establish the Foster thermal network
model. ANSYS Icepak CFD software is responsible for solving the thermal problems in
natural convection or forced convection and for deriving the transient thermal impedance
curves. Instead of directly and iteratively performing the CFD analysis of natural or
forced convection, the developed Foster thermal network model allows a rapid estimation
of the junction temperature with different power conditions. Subsequently, with the
characterized parasitic inductances together with the package model, including the output
and transfer characteristics of the power MOSFET device, the diode characteristics, and
the Vds-dependent parasitic capacitances, a detailed circuit simulation model of the three-
phase inverter can be developed using ANSYS Simplorer to predict the switching transients
and switching loss during the six-step operation. The detailed circuit simulation model
of the three-phase inverter, together with the parasitic parameters (inductances) to be
determined, is shown in Figure 2a.

The proposed ETCA approach can be applied to improve the computational efficiency
of standard ETCA. In addition to the Foster thermal network model, it incorporates a
simplified equivalent circuit model, as shown in Figure 7b, where the inverter switches
(S1–S6) are simply modeled by resistors. The temperature-dependent equivalent electrical
resistances of the resistors (R1–R6) are used to simulate the temperature dependence of the
corresponding power losses (P1–P6) of the inverter switches during the six-step operation.
The power loss of each of these inverter switches is composed of the conduction and
switching losses of the power MOSFET modules and the conduction loss of the body
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diodes. Once the power loss–temperature relationships of these resistors are known,
the power losses of each of these inverter switches at any temperature can be readily
determined, which suggests that there is no longer a need to perform a tedious and
complex detailed circuit simulation to predict the temperature-dependent power losses.
The established power loss–temperature relationships of these resistors are implemented
in the simplified equivalent circuit model. The interactions between the Foster thermal
network model and the simplified equivalent circuit model, which exchanges the power
and temperature data, are fulfilled through ANSYS Simplorer as the linking layer. It is
important to note that for the common 120-degree square-wave commutation, each inverter
switch conducts for 120 electrical degrees in each periodic cycle, indicating that the inverter
switch is turned off in the rest of the periodic cycle. The calculated power losses of these
power switches during the 120 electrical degrees are averaged across the periodic cycle. In
this work, the temperature-dependent power losses of these power switches during one
PWM six-step commutation cycle are derived using the abovementioned detailed circuit
model under different temperature conditions, and with these the equivalent electrical
resistance–temperature relationship can be determined based on Ohm’s law.

6. Results and Discussion
6.1. Construction of Foster Thermal Network Model

Transient CFD thermal analysis of the three-phase inverter under natural convection
was carried out using ANSYS Icepak. Then, constant power levels were sequentially set
for each of the six switches, constituting six different power conditions. Accordingly, six
parametric transient CFD analyses under natural convection associated with these six
power conditions were performed using ANSYS Icepak and the corresponding transient
junction temperature history profiles were collected. These temperature history profiles
were further converted into transient thermal impedance curves. Two examples of the
transient thermal impedance curves associated with Z1i(t) and Z2i(t) (i = 1, . . . 6) are
presented in Figure 8. Subsequently, these transient thermal impedance curves were used
to extract the corresponding parameters in Equation (21), namely the time constants and
resistances, by curve fitting in the time domain. The fit of the least squares regression
analysis was outstanding, with a calculated multiple determination coefficient over 0.998,
suggesting that the variation in the thermal impedance data was well-explained. Two
examples of the curve-fitted values of these parameters associated with the transient
thermal impedance curves Z1i(t) and Z2i(t) (i = 1, . . . 6) shown in Figure 8 are presented in
Table 1. According to Equation (21), these 36 time-dependent thermal impedance elements
form the thermal impedance matrix, which was used to predict the junction temperatures
of the power MOSFET chips under natural convection during load cycles.
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Figure 8. Two examples of the transient thermal impedance curves: (a) Z1i(t), i = 1, . . . 6 and (b) Z2i(t), i = 1, . . . 6.
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Table 1. Curve-fitted resistances and time constants associated with thermal impedances Z1i and Z2i

(i = 1, . . . 6).

Z11 Z12 Z13 Z14 Z15 Z16

Ri 1.82 1.211 1.199 1.173 1.147 1.137
τi 1151 1605 1629 1678 1730 1749

Z21 Z22 Z23 Z24 Z25 Z26

Ri 1.207 1.791 1.175 1.213 1.139 1.153
τi 1600 1253 1677 1604 1745 1707

The feasibility of the developed Foster network thermal model based on the linear
system assumption was demonstrated by comparing it with the CFD thermal analysis
results associated with these six inverter switches (S1–S6) obtained using ANSYS Icepak at
two different power settings, i.e., [13.2, 13.2, 13.2, 20.1, 20.1, 20.1] (W) with a total power
(PT) of 99.9 W and [11.4, 13.2, 15.9, 21.3, 24, 18] (W) with a total power of 103.8 W. The
steady-state thermal analysis results are shown in Table 2. Note that the total power of
the first power setting, i.e., PT = 99.9 W, was the same as the initial preset power level
used in the construction of the Foster thermal network model, while that of the second
power setting (PT = 103.8 W) was about 4% or 3.9 W larger than the initial preset power
level. It can be clearly seen that for the first power setting, the developed Foster thermal
network model produced a result that was very consistent with the CFD thermal analysis.
By contrast, for the second power setting, there was a maximum deviation of 3% from
the result of the CFD thermal analysis. If the discrepancy is over 5%, the Foster thermal
network model may need to be updated or re-established for better accuracy, according to
the power loss presented during the ETCA analysis. In other words, as long as the total
power of applied power settings is similar to that used to create the Foster thermal network
model, the derived result should be sufficiently accurate.

Table 2. Comparison of steady-state junction temperatures in the CFD analysis and Foster network
(unit: ◦C).

PT(W) Method S1 S2 S3 S4 S5 S6

99.9
Foster 149.8 154.7 150.1 155.3 149.1 154.1
CFD 149.8 154.2 150.0 154.9 149.6 155.0

103.8
Foster 148.6 156.1 150.6 158.2 151.2 153.5
CFD 153.2 159.6 154.6 161.7 155.9 158.4

6.2. ECTA Analysis of Three-Phase Inverter

The frequency-dependent parasitic parameters of the power MOSFET module and
the three-phase inverter in a frequency sweep were explored using ANSYS® Q3D 3D
quasi-static EM field solvers with various assigned conducting nets. In this parasitic
analysis, three conducting nets were defined to describe the current paths of the power
MOSFET module, i.e., drain, source, and gate (i.e., Ld, Lg and Ls), and ten conducting
nets were assigned for the three-phase inverter in accordance with the switching sequence
of the three-phase inverter, i.e., L1–L7 and L10–L12, as shown in Figure 2a. In the figure,
L8 and L9 denote the drain and source inductances (Ld and Ls) of the power MOSFET
module, respectively. It is worth mentioning that Ls represents the sum of the parasitic
inductances of the source terminal leads and Al wires. Furthermore, the three-phase load
is modeled as a resistor (R)–inductor (L) series impedance, i.e., Ra-La, Rb-Lb, and Rc-Lc, in
Figure 2a. The parasitic inductances of the power MOSFET module extracted from the
preceding inductive double-pulse test (DPT) circuit simulation at the working frequency
of 20 kHz were 8.60, 5.47, and 7.53 nH and were associated with the gate, drain, and
source terminals. As mentioned above, the source inductance is the sum of the parasitic
inductances of the source terminal leads (i.e., 5.92 nH) and Al wires (i.e., 1.61 nH). The
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parasitic inductances associated with L1–L7 and L10–L12 were calculated in the authors’
previous work [4], and they are 23.34, 14.74, 25.52, 31.31, 6.93, 3.67, 54.89, 19.79, 19.52,
and 19.78 (nH). These parasitic inductances, together with the package model (the output
and transfer characteristics), the diode characteristics, and the Vds-dependent parasitic
capacitances, were applied in the detailed circuit simulation model, with which, together
with the Foster thermal network model, the standard ETCA approach was constructed. The
load condition of the inverter was a power supply voltage of 50 V, an SWPWM (D = 50%)
switching frequency of 10 kHz, and an output frequency of 55 Hz. The inductance and
resistance for these three-phase loads were 20 µH and 0.125 Ω, respectively. In addition,
the switching frequency, gate resistance Rg, gate voltage Vg, gate inductance Lg, inductive
load, and resistive load were set to 10 kHz, 1.6 Ω, 10 V, 8.6 nH, 20 µH, and 0.125 Ω. The
ambient temperature was set to 25 ◦C.

The power losses of the switches in the first switching state of the six-step switching
sequence were assessed first. The characterized power losses could then be applied to
the other switching steps. The first switching state involved three inverter switches: S1,
S2, and S4. Basically, S1 was a PWM power MOSFET in which the switching signal was
discontinuously “on” (i.e., PWM “on”) with a duty cycle of 50%, S2 was an FWD switch in
the commutation step, and S4 was a commutation power MOSFET in which the switching
signal was continuously “on”. Accordingly, switching loss occurred only in S1 (power
MOSFET) and S2 (diode), whereas conduction loss took place in all these three inverter
switches. This switching state comprised two current loops during a single PWM cycle:
PWM “on” and PWM “off”. The parasitic inductances involved in the PWM “on” loop
were L1, L8, L9, L10, L11, L8, L9, L5, and L7 and those in the PWM “off” loop were L11, L8,
L9, L4, L9, L8, and L10. Next, circuit simulations of the power MOSFET inverter during the
first switching state at eight different temperatures, i.e., 25, 50, 75, 100, 125, 150, 175, and
200 ◦C, were performed with the detailed circuit simulation model shown in Figure 2a.
The calculated power losses of the inverter switches, S1, S2, and S4, in the first switching
state as a function of temperature are displayed in Figure 9a. In the figure, the legend
of the light blue solid line with rectangle symbols, i.e., “Diode power loss”, indicates the
sum of the switching and conduction losses of the FWD switch. The results demonstrate
that the switching and conduction losses of S1, the diode power loss of S2 (FWD), and
the conduction loss of S4 in the first switching state were around 10.8, 19.8, 51.6, and
17.7 W at 25 ◦C and increased or decreased to around 11.2, 25.7, 41.3, and 30.2 W at 200 ◦C.
Specifically, in contrast to the diode power loss of S2, the switching and conduction losses
of the S1 and S4 switches tended to increase with increasing temperature. Noticeably, the
diode conduction loss (S2) showed a relatively strong and negative temperature coefficient,
predominantly due to the diode characteristics shown in Figure 3d, where an increased
temperature revealed a reduced drain-source voltage under the same drain-source current,
thereby leading to a decreased conduction loss. Furthermore, it is interesting to note
that temperature had a much smaller impact on the switching loss as compared to the
conduction loss, that the switching loss of S1 was much smaller than its conduction loss,
and that the diode power loss outperformed the PWM (S1) and commutation (S4) power
MOSFET modules.
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Figure 9. (a)Temperature-power loss dependence in the first switching state and (b) a comparison of the transient maximum
junction temperatures of the switches S3 and S4 for the standard and proposed ETCAs during a one-second operation.

The total power loss of the inverter in the first switching state increased from about
99.9 W at 25 ◦C to about 108.4 W at 200 ◦C. The insignificant increase in the total power
loss was mainly due to the negative temperature coefficient of the diode power loss. The
total power loss at 25 ◦C was used as the initial power level for the development of the
Foster thermal network model. Similarly, the power losses of these inverter switches at the
other five switching states of the six-step switching sequence could also be derived in the
temperature range of 25–200 ◦C. The calculated power losses during one PWM six-step
commutation cycle at 25 and 200 ◦C are presented in Tables 3 and 4. It can be clearly
seen that each inverter switch conducted for 120 electrical degrees in each periodic cycle
for the common 120-degree square-wave commutation. For each inverter switch at each
temperature, the power losses that occurred in the six switching states were averaged, and
the results at 25 and 200 ◦C are also listed in the tables; with these, the equivalent electrical
resistances (R1–R6) can be derived and the results at 25 and 200 ◦C are also demonstrated
in the tables. The average power loss across one PWM six-step commutation cycle was
used in the subsequent ETCA analysis.

Table 3. Power losses and equivalent resistances of these six inverter switches during one PWM
six-step commutation cycle at 25 ◦C.

— S1 S3 S5 S2 S4 S6 Total

Step 1 30.62 0.00 0.00 51.56 17.73 0.00 99.92
Step 2 30.62 0.00 0.00 51.56 0.00 17.73 99.92
Step 3 0.00 30.62 0.00 0.00 51.56 17.73 99.92
Step 4 0.00 30.62 0.00 17.73 51.56 0.00 99.92
Step 5 0.00 0.00 30.62 17.73 0.00 51.56 99.92
Step 6 0.00 0.00 30.62 0.00 17.73 51.56 99.92

Average (W) 10.21 10.21 10.21 23.10 23.10 23.10 —

Ri (Ω) 0.00102 0.00102 0.00102 0.00231 0.00231 0.00231 —
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Table 4. Power losses and equivalent resistances of these six inverter switches during one PWM
six-step commutation cycle at 200 ◦C.

— S1 S3 S5 S2 S4 S6 Total

Step 1 36.90 0.00 0.00 41.31 30.17 0.00 108.38
Step 2 36.90 0.00 0.00 41.31 0.00 30.17 108.38
Step 3 0.00 36.90 0.00 0.00 41.31 30.17 108.38
Step 4 0.00 36.90 0.00 30.17 41.31 0.00 108.38
Step 5 0.00 0.00 36.90 30.17 0.00 41.31 108.38
Step 6 0.00 0.00 36.90 0.00 30.17 41.31 108.38

Average (W) 12.3 12.3 12.3 23.8 23.8 23.8 —

Ri (Ω) 0.00123 0.00123 0.00123 0.00238 0.00238 0.00238 —

Using the proposed ETCA approach, the transient maximum junction temperature
profiles of the six inverter switches under natural convection over a time span of one second
were calculated and compared with those of the standard ETCA approach. Two examples
of the results associated with the inverter switches S3 and S4 are shown in Figure 9b. The
reason for simply conducting the one-second test was that it is very difficult to perform
the standard ETCA analysis for a longer period or to solve for the steady-state solution;
hence, the more feasible ETCA approach was proposed. Evidently, there was a close
agreement between them, suggesting the effectiveness of the proposed analysis approach.
The calculated transient maximum junction temperature profiles of these inverter switches
using the proposed ETCA are shown in Figure 10a for the time interval [0, 12000 s], and
the corresponding temperature distributions in the power MOSFET chips of the inverter
at the end of the simulation (t = 12,000 s) are illustrated in Figure 10b. Figure 10a reveals
that the maximum junction temperatures of the power MOSFET chips would approach
a steady state at around 4000 s. The maximum steady-state junction temperatures of the
lower-side switches (namely S2, S4, and S6) would be reached around 160 ◦C, while those
of the upper-side switches (i.e., S1, S3, and S5) would be reached at about 152 ◦C. These
maximum junction temperatures exceed the maximum junction temperature rating of
150 ◦C and would not be permitted for device reliability and performance concerns. Active
convection cooling, such as fans, or passive convection cooling, such as heat sinks and heat
pipes, can be effective means to reduce the device junction temperature.
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Figure 10. Thermal behavior of the six inverter switches: (a) transient maximum junction temperature profiles and (b)
temperature distribution in the MOSFET chips.

The predicted maximum device junction temperatures of the three-phase inverter
during the six-step operation unfavorably exceed the maximum junction temperature
rating of 150 ◦C. The issue can be solved by active cooling with forced air. The CFD
analysis of forced convection heat transfer was carried out with two wind speeds, 1.5
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and 3.0 (m/s). The direction of the air flow was set to be horizontal, i.e., the x-axis in
Figure 6. It can be noted that the Foster thermal network model derived above is no longer
be applicable in this ETCA analysis due to its having different transient thermal impedance
responses. Thus, a new Foster thermal network model was constructed. The total power
loss at 25 ◦C, i.e., 99.9 W, was also applied as the initial power level to create the Foster
thermal network model. The analysis results are displayed in Figure 11. For comparison,
the natural convection result (i.e., wind speed = 0 m/s in the figure) is also demonstrated.
The device junction temperature under natural convection is around 160 ◦C, and it is
greatly reduced down to about 135 ◦C under forced convection with an air flow rate of
3 m/s. In addition, the increase in the air flow rate elevates the heat removal performance
and thus lowers the device junction temperature.
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7. Conclusions

This article presented an effective and efficient ETCA approach to characterize the ET
coupled behavior of power systems under natural and forced convection during load cycles,
which cannot be achieved using the conventional standard ETCA approach. The effect of
temperature on the power losses and the influence of parasitics on the switching transients
and power losses were all taken into account in the investigation. With this approach, the ET
performance of a three-phase power MOSFET inverter for brushless DC motor drive under
natural and forced convection during load cycles was explored. Additionally, both detailed
and simplified circuit models were introduced, where the former was applied to develop
the standard ETCA approach as well as the power loss–temperature relationship, while
the latter was used to establish the proposed ETCA approach. Moreover, a Foster thermal
network model for the three-phase inverter was created using the thermal impedance
curves, which were derived through parametric transient CFD thermal analysis. The
validity of the developed Foster thermal network model and the proposed ETCA approach
was confirmed through the CFD thermal analysis and a standard ETCA approach.

The detailed circuit simulation demonstrated that the power losses (switching and
conduction) of the PWM switches (e.g., S1 in the first switching state) and the commutation
switches (e.g., S4 in the first switching state) had a positive temperature correlation while
that of the PWM switches and the FWD switches (e.g., S2 in the first switching state)
had a negative temperature correlation. Moreover, in comparison with the PWM and
commutation switches, the FWD not only had the largest power loss but also a relatively
strong and negative temperature coefficient. This explains why the total power loss of the
inverter would only slightly increase as temperature increases from 25 ◦C to 200 ◦C. It was
also found that temperature played a much greater role in the conduction loss than the
switching loss, and the switching loss of the PWM switches was considerably lower than
its conduction loss.
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The proposed ETCA analysis revealed that the maximum junction temperatures of
the inverter switches would approach a steady state at around 4000 s, and the lower-
side switches (namely S2, S4, and S6) outperformed the upper-side switches (i.e., S1, S3,
and S5) in terms of the maximum steady-state junction temperature. Furthermore, these
maximum junction temperatures of the inverter switches under natural convection with
the specific load condition all exceeded the maximum junction temperature rating, and
forced convection cooling with air was judged to be a very effective means to decrease the
maximum junction temperatures.
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Abstract: Stress-induced performance change in electron packaging architecture is a major concern
when the keep-out zone (KOZ) and corresponding integration density of interconnect systems and
transistor devices are considered. In this study, a finite element analysis (FEA)-based submodeling
approach is demonstrated to analyze the stress-affected zone of through-silicon via (TSV) and its
influences on a planar metal oxide semiconductor field transistor (MOSFET) device. The feasibility
of the widely adopted analytical solution for TSV stress-affected zone estimation, Lamé radial
stress solution, is investigated and compared with the FEA-based submodeling approach. Analytic
results reveal that the Lamé stress solution overestimates the TSV-induced stress in the concerned
device by over 50%, and the difference in the estimated results of device performance between
Lamé stress solution and FEA simulation can reach 22%. Moreover, a silicon–germanium-based
lattice mismatch stressor is designed in a silicon p-type MOSFET, and its effects are analyzed and
compared with those of TSV residual stress. The S/D stressor dominates the stress status of the device
channel. The demonstrated FEA-based submodeling approach is effective in analyzing the stress
impact from packaging and device-level components and estimating the KOZ issue in advanced
electronic packaging.

Keywords: MOSFET; TSV; annealing process; finite element analysis; carrier mobility estimation

1. Introduction

Moore’s law has been adopted for half a century, and it is still regarded as the target
of transistor device performance. Silicon (Si) is the mainstream material for current semi-
conductor technology because of its low cost, mature fabrication process and acceptable
performance. In the past decade, several advanced materials have been studied and used
to replace Si as the new mainstream material in the semiconductor industry. Among
the promising materials, germanium (Ge) and groups III–V are the most feasible due to
their superior initial carrier transmission capability [1,2]. Strain engineering has been
proposed to further enhance device performance under the same technology node through
the lattice-mismatch mechanism. The four-point-bending technique is commonly utilized
to extract the piezoresistance behaviors of device materials and estimate the stress-induced
performance variation quantitatively [3–5]. Notably, the measured piezoresistance on
bulk wafer and wafer with actual devices can differ considerably depending on the de-
vice type [3,5]. The stress sensitivity of different semiconductor materials has also been
studied [4]. In electronic packaging architecture, the interconnect system plays an im-
portant role in signal transmission and delay time; notably, the overall delay time of an
electronic packaging is determined by device and interconnect scaling [6]. Hence, the
stability of the interconnect system is also an issue of electronic packaging. Through-silicon
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via (TSV) is the main interconnect architecture in 3D integrated circuit packaging, and the
current mainstream TSV is fabricated with electroplated copper (Cu) [6–11]. Protrusion
and thermal stress are the major mechanical reliability issues in TSV. The protrusion and
thermal stress of TSV generally depend on the fabrication and annealing procedure and
can generate cohesive and interfacial cracking on TSV [12–16]. Raman spectroscopy is
widely used to estimate experimentally the residual stress of Cu TSV and the stress impact
on the surrounding wafer [17–19]. In the fabrication procedure of Cu TSV, the annealing
process is a critical step to manage the material characteristics, residual stress and Cu
pumping. Cu annealing promotes interdiffusion, grain growth and re-crystallization to
accomplish the abovementioned goals in thermomechanical reliability management. The
TSV procedure is of three types, namely, TSV-first, TSV-middle and TSV-last, and the
fabrication step of the via depends on the front-end (FE) and back-end (BE) processes. In
the TSV-first procedure, the TSV is etched and filled, followed by FE and BE processes
and wafer thinning. In comparison, TSV etching and filling are performed between the
FE and BE in the TSV-middle procedure, and the TSV-last procedure means the FE/BE
processes and wafer thinning are performed before TSV fabrication. The annealing effects
on Cu’s characteristics, including microstructure, elastic modulus and hardness, have
been explored [20]. The critical temperature of zero stress impact transferred from Cu
TSV to the surrounding Si wafer has been studied through simulation and experimental
measurement [21–23]. For the diameter-dependent stress status of narrow Cu TSV, whose
diameter is below 8 µm, the measured mean hydrostatic stress ranges from 150MPa to
200 MPa [24]. In a previous study, residual tensile stress values of 234 and 167 MPa before
and after 200 ◦C of annealing, respectively, were separately extracted through synchrotron
X-ray microdiffraction, and the mechanism of residual stress relaxation was generated by
the lattice reorganization behavior [25]. Another study revealed that residual stress can
be increased to around 600–700 MPa after 420 ◦C of annealing and cooling down to room
temperature [26]. A transient selective annealing technology was presented in another
work, and its influence on the thermomechanical reliability of Cu TSV was analyzed [27].
The layout design dependence of the thermomechanical behavior of TSV has also been
investigated [28–30]. The concept of keep out zone (KOZ) has been proposed to obstruct the
stress influence of TSV on the surrounding wafer and improve the transistor performance,
and many structural and material designs have been studied since then. A novel structural
design of TSV called annular-trench-isolated TSV was designed in previous research to
reduce the volume of filled Cu and decrease the corresponding coefficient of thermal
expansion (CTE, α) mismatch between Cu TSV (α =16.7 ppm/K) and Si (α =2.3 ppm/K)
wafer [31,32]. In the TSV architecture, the barrier is adopted to prevent Cu diffusion into
the surrounding wafer, and several barriers can function as stress buffer layers at the same
time [33–39]. Different barrier materials with various deposition pressures and rates have
been investigated [38]. The advantages of using metal-based barriers in Cu TSV protrusion
and thermal stress have been studied [39]. The results have shown that a barrier with
high modulus and similar CTE as that of Cu can significantly reduce the protrusion of
TSV, but high stresses transfer from TSV to the surrounding Si. Several analytical formulas
have been utilized to investigate the stress impact of the TSV core and adjacent region,
and their results have been compared with experimental and simulation results [40–43].
However, previous studies on KOZ estimation generally considered the actual transistor
as a simple bulk Si. This means the layout design of the nano-scaled device was not
considered, and the stress transfer efficiency from the TSV core to the device might have
been overestimated or underestimated. A finite element analysis (FEA)-based submodeling
technique is developed in this study, and its results are compared with analytical results.
Moreover, device strain engineering is considered in the constructed FEA model for inves-
tigating the comprehensive performance change of the device under lattice strain and TSV
residual stress.
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2. Fundamental Theories of 2D Analytical Stress Solution, Lattice Stress Estimation
Approach and Piezoresistance Behavior for Stress-Induced Performance Investigation
2.1. 2D Analytical Solution for Stress Estimation of TSV and the Surrounding Substrate

The Lamé analytical stress model is widely adopted to estimate the influence of TSV-
induced stress and the corresponding KOZ. The model assumes an infinite TSV surrounded
by an infinite interposer when investigating the stress magnitude in the interposer under
the impact of temperature change in the entire TSV interposer. A schematic of the Lamé
radial stress solution is illustrated in Figure 1. Under the plane strain assumption, the
entire structure is integrated with the core and surrounding material on the basis of the
superposition principle. Assuming that the core is in a triaxial and uniform stress field,
this stress field can be further separated into two stress components, namely, longitudinal
stress (σL) along the out-of-plane axis and transverse stress (σT) for any two perpendicular
axes. Through a derivation based on elasticity theory, the Lamé radial stress solution for
the TSV stress-affected zone can be expressed as follows [40]:

σr =
−ECu(αCu − αSi)∆T

1 − 2νCu +
1+νSi
1+νCu

ECu
ESi

(
DTSV

2r
)

2
, (1)

σr = σxx, σθ = σyy, σr = −σθ , (2)

where σr and σθ denote radial and circumferential stresses, respectively. Figure 2 shows
a detailed diagram of how TSV-induced stress influences the concerned device location.
Labels DTSV and r, respectively, denote the diameter of TSV and the distance between the
TSV origin and the concerned device location for KOZ estimation. E, α and ν pertain to
Young’s modulus, CTE and Poisson’s ratio, respectively. ∆T is the temperature variation
resulting from the fabrication and treatment process, and the ∆T considered in this study is
generated from the annealing procedure.
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Figure 1. Schematic of Lamé radial stress solution based on the superposition principle. The
stress field is integrated by the intrinsic stressed TSV core and reacted stress from the surrounding
Si substrate.
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These theoretical stresses are calculated based on analytical formulas integrated with
structural and material parameters. On the basis of the foregoing equations, a semi-
empirical formula with a similar form is presented for TSV stress-affected zone estimation.
The semi-empirical formula is written as follows [19]:

σSi,xx = σTSV · (cos2 θ − sin2 θ) · (DTSV
2r

)
2
, (3)

σSi,yy = σTSV · (sin2 θ − cos2 θ) · (DTSV
2r

)
2
. (4)

The advantage of this form is that the experimentally measured residual stress of TSV can
be interpolated directly. The sign θ is the angle between the x-axis and r.

Many assumptions are made in the aforementioned model and cause a significant dif-
ference from the real TSV interposer architecture. First, the analytical model only considers
the filler material of TSV and surrounding interposer and does not include the components
adjacent to the core of TSV. Second, the analytical model does not consider the relative
orientation between the concerned device channel and TSV core. These simplifications
influence the efficiency of stress transfer from the TSV core to the surrounding components
from a mechanical perspective and make the accuracy of the estimated performance varia-
tion in excepted transistor location controversial. Accordingly, this research utilizes the
FEA-based submodeling simulation approach to explore the stress impact of the TSV core
on the surrounding interposer and compares this approach with the classic Lamé radial
stress solution.

2.2. Theotical Calculation of Lattice Mismatch Strain on the Absis of Vegard’s Law

Lattice mismatch strain simulation is performed in the present study to estimate
the efficiency of lattice strain in device-level design and further compare it with the TSV
stress-induced KOZ effect from the packaging-level structure. Lattice strain generation
concentrates one element into another one to introduce volume expansion/shrinkage and
corresponding stress; this phenomenon is approximated as the thermal stress mechanism.
Accordingly, the virtual thermal strain approach has been proposed and validated, and
it can be utilized to simulate lattice mismatch strain [44]. Its accuracy and feasibility
have been validated through a comparison with literature data and analytically derived
stress/strain formulas [45,46]. The lattice constant of concerned materials is calculated
to estimate the subsequent lattice mismatch strain. Consequently, the formula for lattice
parameter estimation of the concentrated component is computed in accordance with
Vegard’s law as follows:

aA1−xBx = aA × (1 − x) + aB × (x), (5)

where aA and aB refer to the lattice constant of the materials in pure form and aA1−xBx is the
lattice constant of the combined components mixed by pure materials A and B. The sign
x denotes the mole fraction of concentrated material B. Thus, the lattice mismatch strain
amount, defined as parameter f, can be estimated as follows:

f =
aA − aA1−xBx

aA1−xBx

. (6)

From the abovementioned equation, the lattice mismatch strain generated from the de-
signed lattice mismatch stressor is estimated and can be used to investigate the influence
on device performance through the utilization of piezoresistance behavior.
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2.3. Piezoresistance Characteristics of Semiconductor Material for Estimating Stress-Induced
Carrier Mobility Variation

Piezoresistivity is a material characteristic in terms of stress and electric resistance.
From the electric performance view, the increment in performance is proportional to the
decrease in electric resistance. Accordingly, the approximation effect of stresses on device
performance can be estimated through the integration of stresses in the device channel
region and piezoresistance parameters. The detailed formula is expressed as follows:

∆µ

µ0
= −∆ρ

ρ0
= −(σxxπxx + σyyπyy), (7)

where ∆µ and µ0, respectively, denote the stressed and initial mobilities of the device
channel. Parameters π and σ are the piezoresistivity coefficient along the concerned
direction of the device channel. With reference to the piezoresistance of the Si transistor, the
piezoresistance values in longitudinal (x-direction) and transverse (y-direction) directions
are significantly larger than that in the vertical (z-direction) direction. Two major stress
components (σxx and σyy) of the device channel are extracted to investigate the stress-
induced carrier mobility variation in Si pMOSFET in this study. The piezoresistance
coefficients of Si pMOSFET for mobility change calculation are obtained from Literature [5].

3. FEA Modeling of Global TSV Interposer Packaging Architecture and Local
Transistor De-Vice Model Based on the Submodeling Technique

Generally, the submodeling technique is a modeling approach to overcome the dif-
ficulty in the modeling and meshing of an FEA model with a significant size difference
between concerned components. In this study, the approach is utilized to consider the
stress influence and transfer efficiency of a micro-scaled TSV interposer and a nano-scaled
transistor device in the same model. The micro-scaled TSV interposer is defined as the
global model in the present submodeling procedure and illustrated in Figure 3. A single
TSV unit in the entire symmetric array-type TSV interposer is extracted and constructed
as an FEA model. The TSV unit model is composed of Cu-filled TSV, adjacent titanium
nitride barrier layer and surrounding silicon dioxide (SiO2) dielectric layer as shallow
trench isolation (STI). The designed thickness of STI and the barrier layer are 0.16 µm and
40 nm, respectively. Notably, the features of STI prevent electronic signal leakage, and
the barrier layer prevents the diffusion of the TSV core material from contaminating the
surrounding Si interposer. In this study, the distance between the origin of the TSV core
and the concerned device location is fixed at 20 µm (labeled as symbol r in Figure 3); this
value is also referred to as the half of TSV pitch, and the TSV depth is fixed at 50 µm.
Several TSV diameters, namely, 5, 10, 15 and 30 µm, are designed to estimate the stress
influences on the transistor device by using the analytical Lamé radial stress solution and
FEA-based submodeling simulation approach.

In the global TSV interposer model, the characteristics of the device region (labeled
as the local model in Figure 3) is considered similar to the material of the device channel,
Si, in this study. According to the procedure of the submodeling technique, a detailed
transistor device local model also needs to be constructed, and the corresponding transistor
model is shown in Figure 4. A half-symmetry FEA model of the device is constructed,
but only a quarter model is illustrated in Figure 4 to introduce the structural parameters
and structure components clearly. The components of the gate stacking structure of the
device include the gate, liner, spacer and gate oxide, and the corresponding materials of the
components considered in this study are poly-Si, SiO2, silicon nitride and SiO2, respectively.
The thickness of the spacer, liner and gate oxide are 20, 2 and 1.5 nm, respectively. The
heights of the gate and spacer are 70 nm, and the length of the gate is in accordance with
the technology node of the 28 nm transistor device. The concerned device is fabricated on
the (001)[110] lattice orientation of Si wafer.
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and components.

A general design for lattice strain generation incorporates the favorable element into
the base material. In the Si pMOSFET architecture, Ge is adopted in Si and forms the silicon–
germanium (Si1−xGex) concentrated alloy in the source/drain (S/D) region, which is a
widely used and effective approach to introduce the preferred stress status of Si pMOSFET.
The concentration of Ge in the Si1−xGex stressor in this study is fixed at 25%, which is the
most common design for Si pMOSFET. The S/D’s length and thickness are fixed at 300
and 60 nm, respectively. As the functional isolation, STI length and thickness are fixed
at 700 and 160 nm, respectively. Hence, the constructed local model can be regarded as
a single unit in a device array layout. The gate width of the device channel is the major
design parameter in analyzing the gate width dependence on stress influence from TSV
residual stress and the relationship of lattice mismatch stress with performance variation.
After constructing the global TSV interposer model and local transistor device model, the
procedure of submodeling for linking the mechanical response between the TSV interposer
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and transistor device is illustrated in Figure 5 and described in detail as follows. All
surfaces, expect for the top surface of the TSV interposer model, is regarded as symmetric
planes for boundary condition consideration.
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Figure 5. Schematic of how to introduce the TSV stress influence into the transistor device region
based on the submodeling technique.

The annealing process-induced stress field of the TSV interposer should be generated
in the FEA model by incorporating the considered residual stress (RS) magnitudes, 167
and 700 MPa, which, respectively, refer to the RS of Cu-filled TSV after 200 ◦C [25] and
420 ◦C [26] of annealing. Then, the displacement field around the device region of the
global TSV interposer model is extracted and further interpolated into the local device
model. Afterward, the TSV’s RS impact is introduced to the concerned Si pMOSFET and
can be integrated with the S/D lattice strain stressor comprehensively. The mechanical
characteristics of all materials and the parameters for annealing stress calculation for
analytical solution and FEA simulation are summarized in Table 1.

Table 1. Material characteristics utilized in this study for analytical stress calculation and FEA
stress simulation.

Model Components E, GPa ν α, ppm/K

Global TSV interposer

TSV (Cu) 117 0.30 16.7

Barrier (TaN) 186 0.342 6.48

Interposer (Si) 169 0.26 2.3

STI (SiO2) 71.7 0.16 0.51

Local transistor device

Gate (Poly-Si) 160 0.22 2.3

Liner (SiO2) 71.7 0.16 0.51

Spacer (SiN) 123.3 0.30 3.05

S/D (Si0.75Ge0.25) 161 0.265 3.2

Substrate (Si) 169 0.26 2.3

STI (SiO2) 71.7 0.16 0.51
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4. Results and Discussions
4.1. Comparison of Analytical and FEA Submodeling Results on the Longitudinal and Trasnverse
Stress of the Si pMOSFET Device Channel

The feasibility of the analytical/semi-empirical stress estimation formula and its
difference from the FEA submodeling results are explored. From the viewpoint of the
piezoresistance of Si pMOSFET, the stress sensitivity in the vertical direction of the device
channel is at least 13 times lower than those in the longitudinal and transverse direc-
tions [10]. Moreover, because the 2D Lamé stress model cannot generate the analytic results
of vertical directional stress, the two other major stress components (longitudinal and trans-
verse stresses) are estimated and discussed using the aforementioned approaches. The TSV
diameter-dependent channel stress is calculated and illustrated in Figure 6. Considering
the 420 ◦C annealing process’ impact on Cu-filled TSV with 30 µm diameter, the stress-free
temperature is defined as the designed annealing temperature and subsequently cooled
down to room temperature of 200 ◦C. The parameters ∆T = −400 ◦◦C and RS = 700 MPa
are, respectively, interpolated into Equations (1) and (3). Thus, the estimated longitudinal
stress introduced into the device channel provided by Equations (1) and (3) is 353.95 and
393.75 MPa, respectively. The two analytic results show similar magnitudes under the same
temperature loading condition. The calculated stress magnitudes reveal that the stress
estimation feasibility of Equations (1) and (3) is highly comparable, and a 10% difference
exists between the pure analytic result [from Equation (1)] and semi-empirical formula
result [from Equation (3)]. Moreover, the calculated results from Equation (1) are lower
than the results from Equation (3) for all designed TSV diameters, but the variation for the
narrow TSV whose diameter is less than 15 µm is small.
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When the 200 ◦C annealing process-induced stress impact (∆T = −180 ◦C and
RS = 167 MPa) generated by the 30 µm Cu-TSV on the Si device is considered, the estimated
longitudinal stress in the device channel based on Equations (1) and (3) is calculated as
159.28 and 93.94 MPa, respectively. An opposite trend is observed compared with the
situation that considers the 420 ◦C annealing stress impact. This phenomenon can be
attributed to the pure analytic formula, which relies on the assumption that Cu-TSV is
ideally stress-free under the considered annealing temperature. However, extant litera-
ture indicates that RS is not effectively relaxed by only the 200 ◦C annealing procedure,
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and −196 MPa (the minus mark refers to the compressed stress status) is measured at
200 ◦C [25]. Meanwhile, almost zero stress at 420 ◦C was experimentally obtained in
another study [26]. Accordingly, the pure analytic and semi-empirical formulas show
reasonable consistency when a high annealing temperature of over 400 ◦C is considered.
However, when a relatively low-temperature (below 400 ◦C) annealing process is designed,
the semi-empirical formula is more suitable for estimating the impact of RS on transistor
device performance compared with the pure analytic formula.

The FEA submodeling results are also presented in Figure 6 to compare the estimated
stress magnitudes with the analytic stress results. In consideration of packaging-level and
device-level layout design, TSV diameter and channel gate width, the FEA submodeling
stress results are much lower than the stress magnitudes calculated from Equations (1)
and (3). When the 30 µm TSV diameter and 70 nm gate width are designed, 225.77 MPa
of longitudinal stress is introduced into the Si pMOSFET channel. This result means that
the analytical and semi-empirical formulas overestimated 56% of the longitudinal channel
stress compared with the FEA submodeling simulation result. This mechanism can be
explained by the stress buffer behavior of the barrier and STI structure between the TSV
core and Si pMOSFET. Moreover, the layout design of Si pMOSFET plays a role in TSV
stress transfer efficiency. When the channel gate width increases from 70 nm to 700 nm, the
introduced longitudinal channel stresses decrease from 225.77 MPa to 186.83 MPa. These
results indicate that the increased gate width leads to an increment in the structural stiffness
of Si pMOSFET and further obstructs the RS influence from the TSV introduced into the
device channel. Thus, the effects of TSV diameter and device gate width on longitudinal
channel stress are systemically discussed.

The dependence of transverse channel stress on TSV diameter and channel gate width
is illustrated in Figure 7. The same stress magnitude of transverse-direction channel stress
but different stress status from tensile to compressive are calculated by the analytical and
semi-empirical formulas. However, the channel gate width shows a positive influence
on the increment in compressive transverse channel stress. The transverse channel stress
is enhanced from −90.63 MPa to −163.52 MPa when the channel gate width increases
from 70 nm to 700 nm. These results reveal that the enlarged gate width is beneficial
to the stress obstruction in the longitudinal direction, but it aggravates the compression
in the transverse direction because of its slim geometry with a large aspect ratio. The
distance-to-radius ratio is also an important parameter to investigate annealing-induced
thermal stress from TSV. In this study, the TSV pitch is fixed at 40 µm, which means
the foregoing ratio is managed by the variation of TSV diameter. The distance-to-radius
ratios of the four designed TSV diameters are calculated as 7, 3, 1.66 and 0.33, which
correspond to 5, 10, 15 and 30 µm diameters, respectively. These ratios are attributed to the
estimation of the critical criteria, which prevent the harsh thermal stress impact of TSV on
the concerned device. For longitudinal and transverse channel stresses, the stress impact is
suddenly increased when a distance-to-radius ratio of below 1 is considered. Accordingly,
the aforementioned ratio is crucial for thermal stress management. On the basis of the
piezoresistance of Si pMOSFET, the tensile and compressive stresses have a negative effect
on stress-induced performance, which means the optimized gate width should be designed
carefully to minimize the KOZ region under the annealing RS impact of Cu-filled TSV.
Thus, KOZ estimation of Si pMOSFET is presented and discussed in the following section.
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4.2. Stress-Induced Hole Carrier Mobility Gain Change and KOZ Estimation Based on Analytical
and FEA Submodeling Results

When the distance between the TSV origin and Si pMOSFET is fixed at 20 µm, the
criterion for KOZ determination is considered to be a 10% change in carrier mobility
gain [45]. As shown in Figure 8, the hole carrier mobility gain change is apparently
unfavorable for the 30 µm TSV diameter design with 700 MPa RS. Carrier mobility gains
of −36.46% and −40.56% are estimated by the analytical solution and semi-empirical
formula, respectively. In comparison, the FEA submodeling results reveal nearly −18%
hole carrier mobility gain change under the same TSV diameter and RS magnitude. This
nearly −18% mobility gain change is not linearly proportional to the designed gate width
because the longitudinal and transverse stress-induced mobility gain changes compete
with each other. For the TSV diameter below 15 µm, the estimated mobility gain changes
meet the design criteria of KOZ determination (10% mobility change) under 700 MPa RS
impact (corresponding to the 420 ◦C annealing procedure). Notably, the nearly 22 µm TSV
diameter design is acceptable according to the FEA submodeling results. The KOZ region
can be further determined by the distance between the designed r (20 µm) and the edge of
TSV. Therefore, the KOZ regions are, respectively, estimated as 12.5 µm (for DTSV = 15 µm)
and 9 µm (for DTSV = 22 µm) by the analytical solution/semi-empirical formula and FEA
submodeling approach. Moreover, the estimated results provided by the semi-empirical
formula are similar to the FEA submodeling results when 167 MPa RS magnitude and 15 µm
TSV diameter are considered; however, a −1.8% mobility change is still overestimated.
Moreover, the mobility gain variation is almost independent of the designed DTSV when
the 167 MPa RS is considered. This phenomenon can be attributed to the piezoresistive
behavior of Si pMOSFET, and the compressive and tensile stresses are attributed to the
stress-induced performance. However, the longitudinal and transverse channel stresses are
positively and negatively proportional to the increment of DTSV, respectively, which means
the positive and negative influences on device performance generated by longitudinal and
transverse stresses are countervailed. Accordingly, the final carrier mobility gain is almost
independent of channel gate width variation. These results indicate that the estimated hole
carrier mobility change provided by the analytical solution and semi-empirical formula is
significantly overestimated compared with the value from the FEA submodeling approach,
which considers the actual structural characteristics of the layout design on packaging
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and device levels. These results are beneficial to accurately estimating the KOZ region
and further increasing the integration density from packaging-level design in the TSV
interposer architecture.
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Figure 8. Comprehensive stress-induced impact on Si pMOSFET performance under different
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behavior of Si.

4.3. FEA Submodeling Results on the Longitudinal and Transverse Stresses of the Si pMOSFET
Device Channel under the Integrated Effect of TSV RS and Strain Engineering S/D Lattice Stressor

The influence of TSV RS on device performance is systemically discussed in this
section. On the basis of an unstrained Si pMOSFET, the TSV RS-induced performance
degradation is estimated to be 0.05 % to 18.93 % depending on the designed TSV diameter
and channel gate width. This phenomenon is not favorable because the performance
degradation of pMOSFET is difficult to determine using nMOSFET with a high initial carrier
transport capability. For this reason, the S/D lattice-strained Si0.75Ge0.25 stressor is used in
this study to analyze the comprehensive effect on stress-induced performance variation
under the integrated stresses of TSV RS and S/D lattice mismatch. As shown in Figure 9,
the S/D lattice stress dominates the longitudinal stress magnitudes in the Si pMOSFET
channel. This dominance is attributed to the high stress transfer efficiency between S/D and
the device channel in accordance with the direct contact between the foregoing components.
According to the analytic results presented in Figure 7, the longitudinal channel stress
impact introduced by 5 µm diameter TSV is almost zero. Hence, the longitudinal stress
magnitude for the S/D strained Si pMOSFET with 5 µm TSV diameter (shown in Figure 9)
can be regarded as the lattice mismatch stress generated by the S/D stressor. The lattice
mismatch strain amount is proportional to the increment in gate width because an increased
gate width enlarges the width of the S/D region and generates more lattice mismatch strain
subsequently. For a narrow TSV design with a 5 µm diameter, the longitudinal channel
stress is completely determined by the S/D lattice stress when the two different TSV RS
magnitude (167 and 700 MPa) are considered. However, given that the design TSV diameter
is enlarged from 5 µm to 30 µm, the longitudinal channel stress varies from −870.43 MPa
to −647.66 MPa for a Si pMOSFET with a 70 nm gate width. These results are due to the
enlarged TSV diameter shrinking the relative distance between TSV and the device location,
thereby enhancing the tensile RS impact of TSV introduced into the device channel and
weakening the compressive stress induced by the S/D stressor. Moreover, the narrow
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gate width cannot obstruct the tensile RS impact of TSV transferred to the concerned Si
pMOSFET channel. Accordingly, the longitudinal channel stresses of lattice-strained Si
pMOSFET are mainly dominated by the S/D stressor, but the RS impact of TSV also plays
an important role when enlarged TSV diameters and RS magnitudes are utilized.

Materials 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

−870.43 MPa to −647.66 MPa for a Si pMOSFET with a 70 nm gate width. These results are 

due to the enlarged TSV diameter shrinking the relative distance between TSV and the 

device location, thereby enhancing the tensile RS impact of TSV introduced into the device 

channel and weakening the compressive stress induced by the S/D stressor. Moreover, the 

narrow gate width cannot obstruct the tensile RS impact of TSV transferred to the con-

cerned Si pMOSFET channel. Accordingly, the longitudinal channel stresses of lattice-

strained Si pMOSFET are mainly dominated by the S/D stressor, but the RS impact of TSV 

also plays an important role when enlarged TSV diameters and RS magnitudes are uti-

lized.  

 

Figure 9. Dependence of the layout and annealing process design on the longitudinal channel stress 

of Si pMOSFET estimated by the analytical formula, semi-empirical formula and FEA submodeling 

simulation approach. 

The transverse channel stress introduced by the TSV RS impact and S/D strained 

Si0.75Ge0.25 stressor is further illustrated in Figure 10. Similar to the stress trend shown in 

Figure 9, the transverse channel stress remains stable because the RS impact generated by 

the Cu-filled TSV is limited to almost zero when the TSV diameter of below 15 μm is 

utilized. For a narrow gate width of 70 nm, a significant tensile transverse channel stress 

is observed. This stress status can be attributed to the Poisson’s ratio mechanism based on 

generalized Hooke’s law. When the gate width is enlarged from 70 nm to 700 nm, the 

aspect ratio of the device channel increases and limits the Poisson’s ratio mechanism. The 

enlarged gate width also extends the width of the channel and further degrades the uni-

formity and concentration of S/D-induced lattice mismatch stress. Notably, the compres-

sive and tensile stress status along the longitudinal and transverse directions is favorable 

for stress-induced performance enhancement in accordance with the piezoresistance char-

acteristics of Si pMOSFET. The optimized mobility gains of the considered Si pMOSFET 

are not linearly proportional to the increase or decrease in gate width. Thus, the gate 

width-dependent carrier mobility gains under the integrated stress generated by RS of 

TSV and the S/D lattice stressor are estimated and discussed in the following section.  

4.4. Stress-Induced Hole Carrier Mobility Gain Change in the S/D Lattice-Strained Si 

pMOSFET Under the RS Impact Generated by Cu-Filled TSV  

On the basis of the longitudinal and transverse channel stresses presented in Figures 

9 and 10, the stress-induced carrier mobility gain generated by the RS of TSV and lattice 
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simulation approach.

The transverse channel stress introduced by the TSV RS impact and S/D strained
Si0.75Ge0.25 stressor is further illustrated in Figure 10. Similar to the stress trend shown
in Figure 9, the transverse channel stress remains stable because the RS impact generated
by the Cu-filled TSV is limited to almost zero when the TSV diameter of below 15 µm is
utilized. For a narrow gate width of 70 nm, a significant tensile transverse channel stress is
observed. This stress status can be attributed to the Poisson’s ratio mechanism based on
generalized Hooke’s law. When the gate width is enlarged from 70 nm to 700 nm, the aspect
ratio of the device channel increases and limits the Poisson’s ratio mechanism. The enlarged
gate width also extends the width of the channel and further degrades the uniformity and
concentration of S/D-induced lattice mismatch stress. Notably, the compressive and tensile
stress status along the longitudinal and transverse directions is favorable for stress-induced
performance enhancement in accordance with the piezoresistance characteristics of Si
pMOSFET. The optimized mobility gains of the considered Si pMOSFET are not linearly
proportional to the increase or decrease in gate width. Thus, the gate width-dependent
carrier mobility gains under the integrated stress generated by RS of TSV and the S/D
lattice stressor are estimated and discussed in the following section.
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4.4. Stress-Induced Hole Carrier Mobility Gain Change in the S/D Lattice-Strained Si pMOSFET
Under the RS Impact Generated by Cu-Filled TSV

On the basis of the longitudinal and transverse channel stresses presented in
Figures 9 and 10, the stress-induced carrier mobility gain generated by the RS of TSV
and lattice mismatch stress of the S/D Si0.75Ge0.25 stressor is illustrated in Figure 11. The
RS of TSV significantly degrades the hole carrier mobility of Si pMOSFET, and its influence
is proportional to the increment in the designed TSV diameter and RS magnitude. In
accordance with the gate width-dependent stresses discussed in the previous section, the
optimized gate width is determined to be 300 nm. In consideration of the 420 ◦C annealing
procedure for TSV (corresponding to 700 MPa RS) and 300 nm gate width for Si pMOSFET,
the carrier mobility gain varies from 83.54% to 65.89% when the TSV diameter is enlarged
from 5 µm to 30 µm. A −17.65% difference in carrier mobility gain results from the RS
impact of TSV, and a similar change of nearly −18% to −19% is observed for all designed
gate widths. Notably, the adopted piezoresistance parameter is regarded as constant, but
in actual experimental measurements on piezoresistance extraction from transistors, it is
simultaneously influenced by the doping density of the device channel, gate effective field,
applied drain voltage and measurement uncertainty. On the basis of the piezoresistance of
the Si pMOSFET in Literature [5], a maximum of 20% estimation uncertainty is explored.
These results reveal that the performance of lattice-strained Si pMOSFET is dominated by
the designed S/D stressor adjacent to the concerned device channel. However, a narrow
TSV diameter and pitch design are the main factors for further increasing the integration
density in electronic packaging. The TSV-induced stress impact on the performance of
an advanced device will be harsh if the relative distance between TSV and the concerned
device is narrowed to a few micrometers. The major contribution of the present study is
that it demonstrates an FEA submodeling-based approach to estimate the stress-induced
performance impact under the integration of packaging-level and transistor-level stresses.
Moreover, the feasibility of the widely adopted analytical solution for TSV stress-affected
zone estimation, the Lamé radial stress solution, and its derived semi-empirical formula
are utilized and discussed in comparison with the present FEA submodeling approach.
The analytic results presented in this study reveal that the abovementioned analytical
solutions significantly overestimate the stress transfer efficiency from TSV to the device.
The FEA submodeling technique demonstrated in this study provides an effective approach
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to analyze the stress-induced performance impact for high-integration-density design in
electronic packaging and overcomes the difficulty of FEA model construction with a signifi-
cant size difference between considered components from micro- to nano-level dimensions.
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5. Conclusions

An FEA-based submodeling approach was demonstrated to estimate the stress impact
from a packaging-level interconnect to a nano-scaled transistor device. The widely utilized
Lamé radial stress solution and its derived semi-empirical formula were adopted to analyze
the stress-affected zone generated by Cu-filled TSV design, and their results were compared
with the results of the FEA-based submodeling approach. The analytic results revealed
that the Lamé analytical solution overestimated the stresses transferred from TSV to the
concerned device by over 50%. This result means that the stress transfer efficiency between
TSV and the transistor device was overestimated because the stress buffer mechanism from
the barrier, STI and the layout of the device are neglected in the abovementioned analytical
solution. Under the same layout and RS impact of the designed TSV interposer packaging,
−36.46%, −40.56% and −18% carrier mobility gains were estimated by the analytical
solution, semi-empirical formula and FEA-based submodeling approach, respectively.
The highly accurate estimation of the TSV stress-affected zone and its impact on device
performance by the presented submodeling approach is due to the analysis of the KOZ
region and increased integration density of the device with good usage of the wafer area.
Moreover, the comprehensive stress impact generated by the RS of TSV and device-level
strain engineering was investigated. The S/D lattice-strained Si0.75Ge0.25 stressor was
utilized to generate a favorable stress status in Si pMOSFET, and its effect was compared
with the RS impact from the Cu-filled TSV. The results showed the S/D lattice stressor
dominated the status of stress components in the device channel, but the stress impact
generated by TSV could be harsh if the integration density of devices and TSV interconnects
is further increased. These issues can be further investigated using advanced 3D device
architectures and the present FEA-based submodeling approach.
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Abstract: Solder joint fatigue is one of the critical failure modes in ball-grid array packaging. Because
the reliability test is time-consuming and geometrical/material nonlinearities are required for the
physics-driven model, the AI-assisted simulation framework is developed to establish the risk
estimation capability against the design and process parameters. Due to the time-dependent and
nonlinear characteristics of the solder joint fatigue failure, this research follows the AI-assisted
simulation framework and builds the non-sequential artificial neural network (ANN) and sequential
recurrent neural network (RNN) architectures. Both are investigated to understand their capability
of abstracting the time-dependent solder joint fatigue knowledge from the dataset. Moreover,
this research applies the genetic algorithm (GA) optimization to decrease the influence of the initial
guessings, including the weightings and bias of the neural network architectures. In this research, two
GA optimizers are developed, including the “back-to-original” and “progressing” ones. Moreover,
we apply the principal component analysis (PCA) to the GA optimization results to obtain the PCA
gene. The prediction error of all neural network models is within 0.15% under GA optimized PCA
gene. There is no clear statistical evidence that RNN is better than ANN in the wafer level chip-scaled
packaging (WLCSP) solder joint reliability risk estimation when the GA optimizer is applied to
minimize the impact of the initial AI model. Hence, a stable optimization with a broad design
domain can be realized by an ANN model with a faster training speed than RNN, even though solder
fatigue is a time-dependent mechanical behavior.

Keywords: solder joint fatigue risk estimation; wafer level chip-scaled packaging; artificial neural net-
work; recurrent neural network; generic algorithm; principle component analysis; time/temperature-
dependent nonlinearity

1. Introduction

Solder joint reliability is one of the most critical issues for most ball-grid array pack-
aging types. The time dependency of this failure mechanism requires considerable ex-
periment time to obtain statistically reliable results. On the other hand, the nonlinear
material/geometry properties are required for the finite element (FE) modeling to retrieve
trustable results, which can be validated by the experimental results. Hence, both the
reliability experiment and numerical modeling require unique expertise to conduct the
relevant tasks, which creates a technical barrier for the design for reliability.

The neural network (NN)-based AI algorithms were applied to assist the design and
simulation of the solder joint risk assessment. Chou and Chiang [1] and Hsiao and Chi-
ang [2] developed an AI-assisted design and simulation framework. It includes the virtual
prototyping of solder fatigue failure mode with the geometrical/material nonlinearity and
the proper validation by the experimental results. The training database is generated from
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the parametric FE model. Next, AI modeling is trained by the selected data points from the
database and validated by the rest. Careful validation works should be conducted to prove
the representation capability of the AI model to the FE dataset.

The NN approaches of AI modeling received more and more attention due to the
capability of abstracting the knowledge from the database without the pre-defined frame-
work nor prior knowledge/experience. ANN is a basic architecture of NN with weak
representation capability for sequential events. However, the solder joint fatigue mecha-
nism is highly time-dependent. Accordingly, the sequential NN techniques, including the
recurrent neural network (RNN), GRU, and LSTM, are successfully applied to the time-
dependent failure mechanism for electronic packaging. However, these sequential NN
methods consider the recurrent parameters and iterations that induce learning difficulties
and require considerable computation resources. Yuan and Lee [3] applied the sequential
NN to model the time-dependent nature of the solder joint fatigue, and the average error
norms below 1.213× 10−4 were achieved. Yuan et al. [4] developed a gated neural network
technique to learn the performance shifting of the solid-state lighting (SSL) lamp over
time. Meszmer et al. [5] applied many NN techniques to study which is the best for the
electronic packaging, and the sequential NN performed best, including the gate recurrent
unit (GRU) and long short-term memory (LSTM) architectures because of their capability
to capture the characteristics of the sequential dataset. Selvanayagam et al. [6] applied
the AI-assisted modeling concept for the improvement of the packaging warpage. Tabaza
et al. [7] applied the non-sequential NN to simulate the time-dependent hysteretic response
of a viscoelastic material. The possibility of using the non-sequential NN, such as NN,
upon a time-dependent engineering problem remains a challenge.

Considering the learning procedure, NN is a parametric AI modeling method. In
addition to the network structure, NN utilizes the parameter, including the weightings
and bias, to learn the knowledge from the database. However, NN requires the initial
guessing of parameters to start the learning process, and the improper selection of the
initial parameter results in a slow convergence speed and bumpy learning procedure. The
genetic algorithm (GA) is always applied. A genetic algorithm (GA) is an optimization
method proposed by John Holland to find the approximate solutions. This algorithm is
a specific form of an evolutionary algorithm in which evolutionary biology techniques
such as inheritance and mutation are used. In genetic algorithms, to obtain the optimal
solution, the appropriate responses of a generation are combined based on the principle of
the survival of the fittest environment [8]. White and Ligomenides proposed a topology
and weighting optimization algorithm for neural networks [9]. Juang [10] hybrids the GA
and particle swarm optimization (PSO). The new generation of the GA can be generated not
only by the crossover and mutation but also by PSO. Ding et al. [11], Ahmadizar et al. [12]
and Arabasadi et al. [13] apply the GA for weighting optimization of NN. However, few
literature had covered GA for the sequential network nor utilized the continuously evolving
nature of the NN backpropagation.

Based on the AI-assisted simulation framework, this research investigates the possibil-
ity of using the ANN instead of the RNN in physically sequential issues, such as the solder
joint fatigue mechanisms. Secondly, this research develops a genetic algorithm method to
obtain the optimal parameters for NN learning.

This paper is organized as follows: the fundamental scientific issues and the literature
review are described in the Introduction. The following section, Theory, provides the
basic theoretic approaches that have been applied in this research. The execution of the
AI-assisted simulation framework is explained in the sections The AI-assisted simulation
framework and FE dataset preparation and The design of the AI modeling. The AI model
training with GA optimized initial parameters section summarizes the learning experience
of the AI modeling. The conclusion of this paper is given in the last section.
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2. Theory

In GA, the fitness criterion is first defined to quantify the members of the current
generation with more compatibility are more likely to generate the next population [8,9].
The fitness criterion (F) is set as follows:

F = 1/r (1)

where the r is the error norm of learning. The members with higher F values are more
likely to generate the next population by the crossover and mutation operators.

The member is also called the chromosome, which is made up of many genes. The
gene is constructed by many base-pairs (bps) [12]. Given a pair of parent chromosomes with
m genes, the crossover operator will generate 2m different offsprings by the recombination
of the genes that are from the parent [13]. To cover the genetic representation ultimately,
the whole 2m offsprings are forming to the next generation without any possibility. As
illustrated in Figure 1, there is one pair of parents with three genes. Eight (= 23) offsprings
are generated by the recombination of the parents’ gene, which is the definition of the
crossover operator.
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Therefore, if the top n chromosomes are selected, there are n(n−1)
2 parent combinations

and there are maximum n(n−1)
2 × 2m offsprings possibilities. However, if the parent chro-

mosomes consisted of many similar genes, it might induce many duplicated offsprings.
These offsprings with the same genes will be removed to save the computation resource.

The mutation operator [13] is used to make changes in the genes of a member of the
current generation to produce a new member. The mutation occurs at the bps level and
is controlled by the mutation rate [12]. When the mutation is invoked at certain bps, the
representation bps will be replaced by the opposite parent bps. For example, as illustrated
in Figures 1 and 2, the 9th bps of the first gene of offspring 7 will mutate, and the original
bps will be replaced by the 9th bps of the first gene of parent 1 (P1).
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After few completed genetic algorithm iterations, these best chromosomes of each
iteration are not the same due to the nature of the neural network. The principal compo-
nent analysis (PCA) algorithm is applied to build a super chromosome based on these
best chromosomes. If the complete chromosome, including the weightings and bias, are
considered as vectors, and the covariance matrix K of all the chromosomes are formed
based on the squared exponential kernel function:

K
(
x, x′

)
= σ· exp

(
−‖ x− x′ ‖2

2l2

)
(2)

where the x and x′ are the chromosome vectors. The parameter σ and the characteristic
length l are both set as 1. An eigenvector analysis is applied to the K matrix. The super
chromosome, called the PCA gene, is obtained as the inner product of the best chromosomes
and the eigenvector of the first eigenvalue.

3. The AI-Assisted Simulation Framework and FE Datasets Preparation

In this section, a practical engineering case will be applied to analyze the capability of
GA and PCA to generate the initial parameters of the ANN and RNN. However, due to the
multiphysical and multiscaled characteristics of the engineering questions, this research
obeys a reliable AI-assisted simulation framework [1–3], illustrated in Figure 3, to improve
the predicting accuracy of the AI model.
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Due to the limited resources, only limited actual samples with very few design pa-
rameter combinations are made for the experiments. The FE modeling method is applied
to expand the design domain. Based on the experimental results (Figure 3a), a FE model
(Figure 3b) can be established and validated. The validated FE model then can be param-
eterized, and the FE datasets (Figure 3c) can be obtained. However, the specified design
parameter combination might induce bad aspect ratios of the elements, which cause the
instability of the FE analysis results. The NN model is expected to broaden the design
domain. The NN will be carefully designed (Figure 3d) based on the characteristics of the
FE dataset and supervised trained (Figure 3e). Moreover, the AI model training’s accuracy
requirement(s) should be carefully defined based on the FE dataset. The datapairs that
have not been included in the training procedure will be applied to validate the NN model.
The validated NN model can be used for design and optimization (Figure 3f). When the
new experimental result is available (Figure 3g), the whole procedure can be relaunched.
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Figure 4 shows the G-WLCSP structure [14], where the IC is placed on a glass substrate
with metal traces and solder bumps Figure 4a for redistribution purposes. Figure 4a’,b
show the device’s top view and cross-section view, respectively. Moreover, Figure 4b
depicts the key structural components in G-WLCSP, including the glass substrate, the
adhesive, the IC, polyimide (PI) for the stress buffer layer, solder mask, and the solder.
After the wafer has been diced, individual packaging can be obtained.
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device [15] (Copyright 2020 EuroSimE).

An actual G-WLCSP structure was made for reliability testing. The sample consisted
of a chip with the size of 5.77 × 10.38 × 0.3 mm3 and a glass thickness of 0.5 mm. The
sample was attached to a 1.2 mm-thick test board, as shown in Figure 5a. The cross-section
view shows the bonding condition, and no defect has been detected (Figure 5b). A 0.45 mm-
diameter 63Sn/37Pb solder ball was applied onto the 0.37 mm die-side pad. The stand-off
height for solder joints was reduced to 0.35 mm after reflow.

Thermal cycle testing of this G-WLCSP is performed between −40 ◦C and 125 ◦C with
a ramp rate of 11 ◦C/min and a dwelling time of 15 min. Figure 5c shows the Weibull
solder fatigue failure experimental result of 21 samples; the 63.2% fatigue cycle number is
approximately 1444.

We develop a two-dimensional FE model with a plane strain assumption to estimate
the G-WLCSP solder joint risk under the thermal cycle loading by the incremental plastic
strain. The initial stress-free reference temperature equals 25 ◦C. In the finite element model,
all materials except the solder joint and the PI are linear, as shown in Table 1. Moreover, the
solder joints and PI are treated as temperature-dependent, elastic-plastic materials [15,16],
as shown in Figures 6 and 7, respectively. As seen in Liu et al. [16], the solder joint failure
risk can be estimated at a certain accuracy level without the time-dependent material
properties. Due to the symmetrical condition, one-half of the full-scaled two-dimensional
FE model is used, and the analysis result is obtained by the commercial finite element code
ANSYS® (version 15, ANSYS, Inc., Canonsburg, PA, USA). The mesh density of the most
critical solder is shown in Figure 8.
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Table 1. Material properties [14].

Young’s Modules (MPa) CTE (ppm) Poission’s Ratio

Solder joint Temperature dependent and
nonlinear (Figure 6) 23.90 0.35

Copper 76,000 17.00 0.35
Solder mask 3400 30.00 0.35

FR4 PCB 18,200 16.00 0.19
PI (Stress Buffer

Layer)
Temperature dependent and

non-linear (Figure 7) 150.00 0.40

BCB 3000 50.00 0.34
Silicon 112,400 2.62 0.28

Adhesive 0.7 300.00 0.45
Glass 63,000 3.25 0.28
Epoxy 80 250.00 0.34
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By fine-tuning the mesh density and the solution parameters, the FE model can
achieve good agreement with the experimental results by the empirical Coffin–Mason
equation [17–19], shown in Table 2. Afterward, the validated FE with the solution parame-
ters can be parametrized.

Table 2. Finite element model validation.

Experimental Result (Cycles) Simulation Prediction (Cycles)

Cycles 1007 1444

Key parameters with the levels and noise factors are listed in Table 3. These three key
design parameters have been chosen in response to the packaging industry requirements
and manufacturing capabilities. A finite element model based on experimental validation
is first used to broaden the domain of parameters, and then the neural network model is
applied. Each simulation comprises a complete five thermal cyclic loading. To build the FE
dataset, 81 parametric finite element models, according to the parameters in Table 3, are
executed with a controlled mesh density of the most critical solder joint.

Table 3. Parametric model settings.

Parameter Name Parameter Alias Level 1 Level 2 Level 3 Noise Factor Levels

Die thickness 1 0.25 mm 0.375 mm 0.5 mm ±0.015 mm
Glass thickness 2 0.3 mm 0.5 mm 0.8 mm ±0.03 mm

PI thickness 3 0.04 mm 0.025 mm 0.015 mm ±0.005 mm

Figure 9 shows the averaged incremental plasic strain of each loading cycle, where the
plastic strain is only induced by plasticity deformation. After the third cycle, the averaged
incremental plastic strain incremental becomes stable. From these 81 data points, the
average strain increment is 3.01% (∆εavg), with a standard deviation of 1.17% (σε). The
empirical Coffin–Mason equation [17–19] converts to the reliability cycles, as

N f
(
∆εp

)
= 0.4405·

(
∆εp

)−1.96 (3)
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On the other hand, Table 2 indicates that the difference between the experimental and
simulation result is 437 cycles. Based on Equation (3), we define a max-min problem:

f = arg︸︷︷︸
∆εaccu∈R

{
min

[
max

(
∆N f − ∆

)]}
(4)

where ∆N f is defined as
∣∣∣N f (ε + ∆εaccu)− N f (ε− ∆εaccu)

∣∣∣, ε = N
(
∆εavg, σε

)
, andN (·, ·)

represents the Gaussian distribution. The | f | in Equation (4) is expected to be zero. By the
regression computation, ∆εaccu ∼ 0.18% is obtained, and it is assigned as the accuracy
requirement for machine learning.

4. The Design of the AI Model

Figure 10 schematically illustrates the characteristics of the datapairs. There are three
design parameter inputs, including the die, glass, and PI thickness. Since the FE model
is under five thermal cycle loadings, denoted as the cycle 1–5 illustrated in Figure 10. At
each cyclic thermal loading, there is an equivalent plastic strain (∆εpl) with respect to each
temperature.
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Hence, the ANN structure is designed as follows: the three geometric design parame-
ters are considered as the inputs. Referring to the plastic strain incremental of the 81 data
points shown in Figure 9, the average equivalent plastic strain increment of the last three
loading cycles is selected as the output. The design concept of ANN is to capture the
relationship directly from the design parameters to the solder joint fatigue cycle, which is
represented by the equivalent plastic strain and converted by the Coffin-Manson equation
(Equation (3)).

The ANN structure is designed as “3,4,4,1”. There are three inputs and one output,
and there are two hidden layers, including the weightings and bias, to capture the feature
characteristics of the training datasets. The sigmoid is selected as the activation function
because it is stable for the initial parameter studies in the next paragraph. To keep the
simplicity during learning, the ANN optimizer is limited to forward computation and
backpropagation. The data normalization is applied to the datasets.

Each prediction error is defined as e = o− t, where o is the prediction obtained from
the ANN output, and t is the ground truth from the FE datasets. The cost function is
defined as the Euclidian sum of each prediction error:

C =

√
∑n

i=1 ei

n
(5)

where ei is the prediction error of ith prediction and there are total n predictions.
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On the other hand, the plastic strain accumulated from the previous cycle will impact
the system’s mechanical response. Hence, RNN is applied to predict the equivalent plastic
strain at each cycle. The equivalent plastic strain (per cycle) is the output. Moreover, there
are five inputs, including the three geometrical design parameters, the temperature of the
current cycle, and one recurrent parameter. Referring to the top-right schematic drawing
in Figure 3, the recurrent parameter of RNN converts the previous output of equivalent
plastic strain into the input of the next cycle.

The structure of RNN is set to “5,4,3,1”. There are five outputs and one input, and
two hidden layers with four and three neurons, respectively. The design concept of
the hidden layer is to keep similar numbers of weightings and bias, to compare to the
ANN results directly. The sigmoid is selected as the activation function. To maintain the
simplicity during learning, the ANN optimizer is limited to forward computation and
backpropagation through time. The data normalization is applied to the datasets. One
extra post-processing is applied to the ANN. Only the average of the last three outputs is
considered to compare to the ANN prediction accuracy directly.

5. AI Model Training with GA Optimized Initial Parameters

In neural network-based AI modeling, the initial parameters are required to launch
the machine learning process. This initial parameter is usually chosen randomly in the
literature. In this paper, a GA is proposed to achieve the best initial parameter for the AI
modeling. The GA chromosome is defined as the combination of genes. Each gene is the
combination of the weightings or bias between two layers [12]. For instance, if there are
two layers with lm−1 and lm neurons, the gene occupies lm·lm−1 individuals as illustrated
in Figure 11. Each individual in the gene is defined as a base-pair (bps). The chromosome
is a combination of genes from various layers.
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The GA optimization procedure is illustrated in Figure 12. Each GA step starts with
the old population of many chromosomes (Ch). The fitness ranking by Equation (1) limits
that only m the best chrmosomes can enter the next population. By the crossover and
mutation operators, a new population can be generated. The backpropagation of NN
learning provides new fitness rankings for the next GA step.
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In the AI-learning algorithm, the parameters, including the weightings and bias,
are updated each iteration by the backpropagation process. Hence, there is an option
to select which parameter sets generate the next GA generation. In this research study,
two conditions are considered:

• “back-to-original” condition: only the parameters that initially input to the AI model
are applied to generate the next generation.

• “progressing” condition: the parameters that after n backpropagation iterations are
applied.

5.1. The “Back-to-Original” GA Optimizer

Due to the design of the neural network structure, 2000 initial parameter sets are firstly
generated by the random generator, which follows a zero-mean Gaussian distribution of
the standard deviation of

√
2/(lm·lm+1) (0 ≤ m ≤ n), where n is the total layer number,

and lm is the neuron numbers at mth layer. It also indicates that 2000 initial chromosomes
have been generated for each case to initialize the GA optimization procedure. The learning
rate of ANN is fixed to 0.3 with the sigmoid activation function, and backpropagation is
selected as the learning optimizer.

When the RNN architecture is applied with the “back-to-original” GA optimizer,
Figure 13 shows convergence curves among random select chromosomes from the 2000 mem-
bers (random selection), the best chromosome from the first generation (generation 1 best),
and the best one from the whole GA optimization (GA best). A clear contribution of the
GA optimization to the convergence speed can be confirmed.

A typical performance of the GA generations under the “back-to-original” optimizer
is illustrated in Figure 14, where the lightest grey curve is best of the 2000 initials, and
it evolves continuously from the light grey to the darker ones by the GA. The mutation
rate for generating the next generation is fixed by 0.001. After the seventh generation, the
evolving of the best chromosome stops. The inset of Figure 14 shows the average error
norm among the GA generation and generation size of the GA. The average error norms
reduce through each generation. The size of GA generation reduces accordingly as the
duplicated chromosomes in the generation are removed. Moreover, the standard derivation
of average norm varies during the GA optimization, but it dramatically decreases when
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the GA evolving stops (GES). This is because the optimized chromosome dominates the
next GA generation.
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Figure 14. The performance of the GA generations under the “back-to-original” optimizer.

We conducted four GA optimization procedures and listed them in Table 4, where the
“Run-time error norm” column indicates the error norm of the best chromosome against
the training sets after the 500 cycle training and before the denormalization.

Table 4. The ANN training result under GA “back-to-original” optimizer.

The Best Chromosomes for
the Next Generation GES Run-Time Error Norm Denormalized

Difference

Case 1 4 6 7.47 0.001530
Case 2 4 6 7.48 0.001287
Case 3 6 7 7.42 0.001225
Case 4 6 7 7.39 0.001098

PCA gene – – 1.72 0.001264

Case 1 and 2 introduce the four best chromosomes to the next generation, and Case 3
and 4 introduce six. Due to that, the initial 2000 members were generated independently
by the random number generator for each case in Table 4, a different optimization result
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is achieved under the same learning parameters. This phenomenon is clearly depicted in
column “Run-time error norm” of Table 4.

After the GA optimization procedure, a PCA process is applied based on these four
best chromosomes. The covariance matrix K is formed by Equation (2). An eigenvector
analysis is applied to the K matrix. Then, The eigenvector of the first eigenvalue is selected
and applied to those four best chromosomes. The PCA gene can be obtained by

[ch1, ch2, ch3, ch4]·
→
ve (6)

where ch1, ch2, ch3, and ch4 are the best chromosomes from the GA optimization, and
→
ve

is the eigenvector of the first eigenvalue. The convergence curve is shown in Figure 15,
where a relatively fast convergence can be achieved. Moreover, from the inset of Figure 15,
which extended the convergence curve to 100k iteration, one can identify that these best
chromosomes approach similar error norm levels after considerable iteration numbers.
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Figure 15. The convergence of 4 GA “back-to-original” optimized chromosomes and PCA gene
under ANN architecture.

The “Denormalized difference” column in Table 4 indicates the difference between
the best chromosome against the whole 81 datasets after 100,000 training cycles and after
the denormalization process. Moreover, no matter the “Run-time error norm”, the best
chromosomes can consistently achieve the 0.18% requirement. Moreover, when more best
chromosomes are put into the next generation, the denormalized difference improves.

Under the similar GA condition of “back-to-original”, the RNN architecture has been
implemented. Each GA generation is optimized by 1000 backpropagation through time
iterations. The rest of the learning parameters remain the same as the ANN case. Table 5
lists the learning results of the four GA optimizations. Note that the run-time error norm
is much higher than the ANN ones (listed in Table 4); this is because the definition of the
run-time error norm in RNN consists of all recurrent cycles. Figure 10 shows that there are
15 recurrent cycles.

Table 5. The RNN training result under GA “back-to-original” optimizer.

The Best Chromosomes for
the Next Generation GES Run-Time Error Norm Denormalized

Difference

Case 1 4 6 69.92 0.002017
Case 2 4 2 70.72 0.001189
Case 3 6 4 69.61 0.001343
Case 4 6 3 70.05 0.001226

PCA gene – 37.57 0.001090
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The PCA analysis procedure is applied to these four GA optimization listed in Table 5.
The performance of the PCA gene, obtained by Equation (6) is listed in the last row of
Table 5 and Figure 16. Case 1 in Table 5 does not satisfy the accuracy requirement, but case
2 does. Both cases 1 and 2 use the same GA parameters but different initial GA generation.
Hence, the GA optimization results are influenced by the initial GA generation.

Materials 2021, 14, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 16. The convergence of 4 GA “back-to-original” optimized chromosomes and PCA gene un-
der RNN architecture. 

5.2. The “progressing” GA Optimizer 
The converging behavior of the “progressing” GA optimization demonstrates much 

difference from the “back-to-original” one. As illustrated in Figure 17, which is the per-
formance of the GA generations under the “progressing” optimizer under an ANN archi-
tecture. It clearly depicts the evolving of the chromosomes moving along the backpropa-
gation process. The dashed line of Figure 17 is the convergence curve of the randomly 
selected 2000 initial GA generation. Comparing the dashes curve to the solid ones, one 
can identify the continuous optimizing characteristics of the “progressing” GA. The inset 
of Figure 17 shows the average error norm and size of the generation with respect to the 
GA generation. Although a continuous convergence of the average error norm can be 
found, the size of the generation is larger than the “back-to-original” one. This is because 
the backpropagation algorithm provides various gene combinations with few duplica-
tions for the next generation, which might increase the optimization capability of GA with 
considerable computation resources. 

 
Figure 17. The performance of the GA generations under the “progressing” optimizer. 
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On the other hand, one can identify the fast convergence capability of the PCA gene,
shown in Figure 16. To decrease the impact of the initial GA generation, it is recommended
that one should execute multiple GP optimization processes and then extract these best
chromosomes to the PCA gene. Moreover, although RNN provides more information than
ANN, both give similar final prediction accuracy, as listed in the last row of Tables 4 and 5.

5.2. The “Progressing” GA Optimizer

The converging behavior of the “progressing” GA optimization demonstrates much
difference from the “back-to-original” one. As illustrated in Figure 17, which is the perfor-
mance of the GA generations under the “progressing” optimizer under an ANN architec-
ture. It clearly depicts the evolving of the chromosomes moving along the backpropagation
process. The dashed line of Figure 17 is the convergence curve of the randomly selected
2000 initial GA generation. Comparing the dashes curve to the solid ones, one can identify
the continuous optimizing characteristics of the “progressing” GA. The inset of Figure 17
shows the average error norm and size of the generation with respect to the GA generation.
Although a continuous convergence of the average error norm can be found, the size of the
generation is larger than the “back-to-original” one. This is because the backpropagation al-
gorithm provides various gene combinations with few duplications for the next generation,
which might increase the optimization capability of GA with considerable computation
resources.

The complete training results are listed in Table 6. All of the denormalized differences
satisfy the accuracy requirement of 0.18%. Among all four cases, case 3 performs worse
than the other three in terms of the denormalized difference, but it performs well in the run-
time error norm. This is because the run-time error norm only reports the learning results
of the chromosomes after 500 iterations, but the denormalized difference reflects the 100k
learning. This phenomenon depicts the dilemma of selecting how many backpropagation
iterations for each GA generation member.
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Table 6. The ANN training result under GA “progressing” optimizer.

The Best Chromosomes for
the Next Generation GES Run-Time Error Norm Denormalized

Difference

Case 1 4 6 6.87 0.001058
Case 2 4 4 6.58 0.001037
Case 3 6 6 4.93 0.001573
Case 4 6 8 1.70 0.001175

PCA gene – – 1.87 0.001098

Figure 18 shows the convergence of the four cases and the PCA gene obtained by
the same method mentioned above. Although case 4 reveals a low run-time error at the
beginning of the learning process, the PCA gene still performs well after approximately
750 learning cycles.
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5.3. The Impact of the Initial GA Generation

The learning results of the RNN architecture with the “progressing” GA optimizer
are shown in Table 7 and Figure 19. Although the overall characteristics, including the
convergence curves, the denormalized difference, PCA gene, etc., behave similarly to the
previous cases, the overall performance is not good enough, compared to the same RNN
architecture with the “back-to-original” GA optimizer, shown in Table 5 and Figure 16.

Table 7. The RNN training result under GA “progressing” optimizer.

The Best Chromosomes for
the Next Generation GES Run-Time Error Norm Denormalized

Difference

Case 1 4 8 42.29 0.003281
Case 2 4 6 47.31 0.001663
Case 3 6 6 45.31 0.001592
Case 4 6 7 46.03 0.001254

PCA gene – – 26.78 0.001493
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Figure 19. The convergence of 4 GA “progressing” optimized chromosomes and PCA gene under
RNN architecture.

In order to investigate the impact of the initial GA generation, the ones belonging to
Table 5 are applied to the “progressing” GA optimizer, and the learning results are listed
in Table 8 and Figure 20. The PCA gene shows fast convergence capability, as illustrated
in Figure 20. Comparing Tables 7 and 8, a clear difference can be identified under the
“progressing” GA optimizer with the same GA optimization parameters in terms of run-
time error norm and denormalized difference. The influence of the initial GA generation is
proven to be significant. Therefore, the recommendation of using the independent initial
GA generation for all cases is made.

Table 8. The RNN training result under GA “progressing” optimizer by the same initial 2000 GA generation in Table 5.

The Best Chromosomes for
the Next Generation GES Run-Time Error Norm Denormalized

Difference

Case 1 4 4 22.70 0.001406
Case 2 4 9 21.46 0.001022
Case 3 6 9 21.78 0.001263
Case 4 6 6 22.00 0.001204

PCA gene – – 20.07 0.001110
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6. Conclusions

In this research, the WLCSP solder joint reliability risk is modeling by an AI model, fol-
lowing the AI-assisted simulation framework. ANN and RNN architectures are conducted
to investigate their capability of abstracting the time-dependent solder joint fatigue knowl-
edge from the dataset. The GA optimization is applied to decrease the influence of the initial
guessings, including the weightings and bias of the neural network architectures. Due to
the continuous learning characteristics of the backpropagation, the “back-to-original” and
“progressing” GA optimizers are developed.

Both ANN and RNN architectures, with two hidden layers, are conducted with
similar neural network structures. Two GA optimizers are applied to both ANN and
RNN architectures with four and six best chromosomes to the next generation. Each
GA optimization case starts with an independent 2000 initial GA generation, and each
component of the chromosomes follows a zero-mean Gaussian distribution. Moreover, a
PCA is applied to the GA optimization results to obtain the PCA gene. PCA gene shows
high-speed convergence capability in all cases.

The investigation of the GA optimization shows that increasing the number of the
best chromosomes to the next generation and choosing the “progressing” GA optimizer
improve the GA optimization results. However, both increase a significant computation
resource to conduct. The influence of the initial GA generation is proven to be significant.
Therefore, using the independent initial GA generation for all cases and using the PCA
gene obtained by several GA optimization processes are recommended.

Because ANN and RNN learnings are more robust due to the GA, these neural net-
works are suitable for generating response surfaces, as seen in Figure 3g. The predictability
of the neural network model enables the exploration of the domain that is outside the train-
ing domain (the FEM domain) at a certain range due to the contribution of the nonlinear
activation functions [3]. Moreover, due to the continuity of the neural network model,
these models are feasible for the optimization procedure.

No matter ANN nor RNN architecture, after 100 k learning iterations, all the AI
learning results satisfy the accuracy requirement of 0.18% when the PCA gene is applied as
the initial parameter. Moreover, there is no clear evidence that RNN is statistically better
than ANN in the WLCSP solder joint reliability risk estimation if the PCA gene is applied.
Although RNN provides more information than ANN, RNN is influenced by the noise
in the dataset during the learning, which limited the RNN to perform much better than
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ANN. However, RNN learning requires more computation resources than ANN because
of the backpropagation process under a similar neural network structure. Hence, a stable
optimization with a broad design domain can be realized by an ANN model with PCA gene
with a faster training speed than RNN, even though solder fatigue is a time-dependent
mechanical behavior.
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Abstract: Epoxy with low viscosity and good fluidity before curing has been widely applied in the
packaging of electronic and electrical devices. Nevertheless, its low flexibility and toughness renders
the requirement of property improvement before it can be widely acceptable in dynamic loading
applications. This study investigates the possible use of 2-hydroxyethyl methacrylate (HEMA)
toughening agent and nano-powders, such as alumina, silicon dioxide, and carbon black, to form
epoxy composites for dynamic property improvement. Considering the different combinations of the
nano-powders and HEMA toughener, the Taguchi method with an L9 orthogonal array was adopted
for composition optimization. The dynamic storage modulus and loss tangent of the prepared
specimen were measured by employing a dynamic mechanical analyzer. With polynomial regression,
the curve-fitted relationships of the glass transition temperature and storage modulus with respect
to the design factors were obtained. It was found that although the raise in the weight fraction of
nano-powders was beneficial in increasing the rigidity of the epoxy composite, an optimal amount of
HEMA toughener existed for its best damping improvement.

Keywords: electronic packaging; dynamic storage modulus; loss tangent; optimization

1. Introduction

Epoxy is one of widely used synthesized resins for general purposes and industrial
applications. Due to its low viscosity and good fluidity before curing and excellent strength
and stiffness after curing, epoxy resin is commonly thought of as a good candidate for
packaging use in electrical and electronic applications. However, with the increase in
degree of crosslinking among its molecular chains after the reaction with hardener agent
finished, the cured epoxy often becomes too brittle to be applied in some circumstances
which require material toughness, such as the environments involving dynamic loading
or vibrations.

By adding some “reinforcements” into the epoxy resin to form composites, the me-
chanical properties of the resin can be tuned. Liu and coworkers [1] investigated the effects
on fracture toughness by adding nano-powders of silicon dioxide and rubber into the
epoxy resin. The uni-axial tensile performance of the composite revealed both the increase
in Young’s modulus and fracture toughness. The incorporation of nano-rubber powder
demonstrated a clear improvement on its fracture toughness. The other SiO2 nano-powder
has 3D network molecular structure and forms a floccular ball-like particle, which is com-
monly used as a reinforcement in composite [2]. The combination of SiO2 nano-powder and
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glass fiber in a composite laminate has been reported to raise the fatigue life by 3–4 folds
compared to its pristine epoxy resin counterpart [3]. The study by Chen et al. [4] also
reported the increase in both stiffness and fracture toughness of epoxy composite by adding
spherical SiO2 nano-powders. However, the glass transition temperature was lowered if
the content of SiO2 nano-powder was greater than 5 wt.%.

In addition to simply adding inorganic powder for reinforcement, the interface usually
needs treatment to improve the compatibility between phases. Liu and coworkers [5] used
MXene (Ti3AlC2 and Ti3C2Tx) to treat the acidified short graphite fibers and reported
the 100% and 67% increases in tensile and flexural strengths of the epoxy composite,
respectively. The SiO2 nano-powders also had good compatibility with the epoxy resin
and its epoxy composite showed the improvements in tensile compressive strengths and
fracture toughness [6,7]. Moreover, these well dispersed nano-powders between the
reinforced fibers and the resin even presumed as the buffers for absorbing energy in the
interfacial bonding [8].

The other approach for toughening the epoxy resin is by modifying its structure
with interpenetrating polymer networks (IPNs). This structural modification down to
the molecular level with uniform interlacing of toughening phase and the crosslinked
epoxy phase could promote the material compatibility. Around the 1980s, Sperling and
coworkers [9,10] used different monomers and polymers to prepare toughened epoxy with
different types of IPNs, such as full-IPNs and semi-IPNs. They also studied the chemical
compositions, microstructural morphology, phase behavior and the correlation with their
mechanical property by employing various precision instruments. It was reported that
the toughener and the epoxy resin were uniformly mixed at the molecular level or in
microscopic phase separation. Since there was no chemical bonding between these two
phases, the individual properties from these constituents were to be retained. However,
since these two phases were intertwined closely, the cooperative effect emerged as an
improvement in its toughness over its mechanically mixed counterpart.

The further modification on the microstructure of IPNs was proposed by Hsieh and
Han [11] with the introduction of PU based on polybutylene adipate, PU(PBA) and PU
based on polyoxypropylene, PU(PPG), into diglycidyl ether bisphenol A, DGEBA, to form
grafted IPNs. The tensile test result revealed that the grafted IPNs could increase the α-and
β-transition domain of the epoxy and PU and, subsequently, its tensile strength. Lin and
Lee [12] based on the DGEBA matrix added ethylene dimethacrylate and 2-hydroxymethyl
methacrylate (HEMA) to form full-IPNs and semi-IPNs. Their experimental results showed
the material with full-IPNs had a higher Young’s modulus, larger percent elongation and
better fracture toughness to absorb more energy in dynamic loading. When the added
reinforcement was the nano-powder, the epoxy composite not only had increases in tensile
strength but also the toughness in impact.

Mimura and coworkers [13] reported the preparation of toughened epoxy with semi-
IPNs by using synchronized polymerization of polyethersulfone (PES) and epoxy resin. A
60% increase in fracture toughness was obtained. Sometimes, the addition of toughener
could create non-uniform phase separation and crosslinking density. In the work by Kwon
and coworkers [14], the appearance of additional side peak in the tanδ of a viscoelastic
measurement on the polytriazoleketone (PTK) and polytriazolesulfone (PTS) toughened
epoxy resin demonstrated the probable concern.

In the electronic packaging applications, the use of different materials to tune the
mechanical property was a common practice. However, the collateral effect arisen from
the mismatch in the thermal expansion of its constituents could worsen or even fail the
packaging function [15]. The other concern may lie on the viscosity of resin. Oh and
coworkers [16] used two micro-fillers, Al2O3 and SiO2, to tune the thermal conductivity
of the epoxy resin. However, considering the Al2O3 filler had higher specific gravity than
SiO2, less volumetric fraction of the former could have similar weight fraction with the
latter. The partial substitution of Al2O3 for the SiO2 would keep the epoxy resin lower
in viscosity or higher in fluidity, which was beneficial in packaging. The other report by
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Khalil et al. [17] illustrated the incorporation of Al2O3 nano-powder within 2.0 wt.% in
epoxy would improve the wetting behavior and tensile shear strength of the epoxy resin.
Thus, the addition of nano-powders within 2.0 wt.% in the epoxy resin was adopted in
this study.

As reviewed from the previous studies, the incorporation of inorganic nano-powders
in epoxy resin seems beneficial to its packaging applications. However, the underlined
mechanisms have not been well investigated. Moreover, the reliability performance of
epoxy composites with different compositions are susceptible to the service temperature
and loading conditions. Therefore, by using the dynamic mechanical analyzer, the main
focus of this study is to investigate the viscoelastic behavior and energy dissipation from
the internal friction within its microstructure of the epoxy composite over a specified
temperature range. Three nano-powders of Al2O3, SiO2, and carbon black were chosen
to be the reinforcements of the epoxy resin in addition to a HEMA toughener. The design
of experiments by using the Taguchi method was adopted and the analysis of variables
(ANOVA) was performed to find the optimal compositions for the dynamic property
improvement. The prediction of the dynamic properties of the prepared epoxy composite
was established for the design purpose in packaging.

2. The Theory
2.1. The Reaction Mechanism of Epoxy

In this study, a simultaneous polymerization reaction was adopted to prepare the
epoxy with IPNs. Three reactions were proceeded simultaneously in the crosslinking of
epoxy, as presented in Figure 1. Firstly, the crosslinking started with the ring-opening
reaction of the epoxide group in epoxy and the primary amine of hardener agent to form
the hydroxyl group and the formation of secondary amine from the primary amine of the
hardener as described in Figure 1a. The thus formed secondary amine could also take
part in the ring-opening reaction with the epoxide group as denoted in Figure 1b. In the
meantime, the hydroxyl group started a self-catalyzed ring-opening reaction as denoted in
Figure 1c, which is also known as etherification, and was the least reactive among the three
mentioned reactions. Subsequently, a crosslinkage in spatial dimensions was obtained with
the described reactions.

Figure 1. The ring-opening reactions involved in polymerization of epoxy: (a) the ring-opening
reaction of the epoxide group and the primary amine of hardener agent; (b) the ring-opening reaction
of the epoxide group with the secondary amine formed in (a); (c) the self-catalyzed ring-opening
reaction from the hydroxyl group.
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Secondly, benzoyl peroxide as a thermal initiator disintegrated into two free radicals
upon being heated and are described in Figure 2. The generation of these free radicals
induced the polymerization of 2-hydroxyethyl methacrylate to form the PHEMA polymer
as denoted in Figure 3. These PHEMAs constituted the interpenetrating polymer network
in the already spatially crosslinked structure of epoxy. Due to the thermoplastic property of
the PHEMA, the thus prepared epoxy resin could improve the toughness over the pristine
brittle nature.

Figure 2. The disintegration reaction of benzoyl peroxide into free radical.

Figure 3. The polymerization reaction of 2-hydroxyethyl methacrylate to form the PHEMA polymer.

2.2. Dynamic Mechanical Property

A dynamic mechanical analyzer (TA DMA 2980) was used in this study to measure the
dynamic properties of the prepared specimens in different time, temperature and loading
frequency. In the measurement, the specimen was installed in a specified configuration,
such as three-point bending and cantilevered fixture, and was subjected to a vibrational
stress or strain. The responses of the specimen in deformation or loading were recorded
both in magnitude and phase. Accordingly, the storage modulus E′, loss modulus E”, and
coefficient of loss tangent tanδ of the specimen can be calculated as follows.

Storage modulus E′ is calculated as follows.

E′ =
(σ
ε

)
cos δ (1)

The loss modulus E” is calculated as follows.

E′′ =
(σ
ε

)
sin δ (2)

The coefficient of loss tangent, tanδ, is calculated as follows.

tan δ =
E′′

E′
(3)

In the above equations, ε and σ represent the amplitudes of the applied strain and the
measured stress, respectively. The larger the peak of tan, the more viscous the material
behaves. In other words, the specimen with larger tanδ has more damping in response to
dynamic loading. Moreover, the temperature where the tanδ attains its peak magnitude
denotes the corresponding glass transition temperature of the specimen.
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2.3. Design of Experiment Using Taguchi Method

Table 1 presents the L9(34) orthogonal table for this study. There were four design
factors, i.e., the weight contents of A: nano-alumina powder; B: nano-silica powder; C:
nano-carbon black powder; and D: HEMA toughener, respectively. Three levels for each
factor were selected, which were 0, 1, and 2 wt.% and 0, 5, and 10 wt.% for the nano-
powders and the toughener, respectively. Accordingly, the dynamic properties of the
specimens were measured by using the DMA analyzer and the S/N ratios were calculated
from the quality equation.

Table 1. L9(34) orthogonal table for the design of experiments.

No. of
Specimen Factor A Factor B Factor C Factor D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

The-higher-the-better (HB) characteristics were employed with decibels (db) as its
unit, shown in the following.

S/NLTB = −10× log10

(
1
n

n

∑
i=1

1
y2

i

)
(4)

2.4. Coefficient of Variance

Three specimens for each measurement were employed in this study in order to
evaluate the variation of the results. Therefore, the coefficient of variance (C.V.) was
calculated accordingly:

C.V. =
S
X

(5)

where X and S are the mean and standard deviation for each set of measurements.

2.5. Multiple Regression Analysis

With the storage moduli as a substitute for the machining process factor, the regression
fit of the object function could be preceded. For simplicity, the dependence of the object
function on the factors was assumed to be quadratic and the coupling among the factors
was neglected. These assumptions will be checked with the verification example presented
later in this study. Thus, the regression function Y is written as follows:

Y =
G

∑
i=A

(
ci2X2

i + ci1Xi

)
+ c0 (6)

where Xi denotes the value of the ith factor and ci2 and ci1 are the coefficients for the
quadratic and linear terms, respectively. The constant term for the relationship is summed
up in c0. The object functions that will be evaluated later include the storage moduli.

2.6. Coefficient of Determination for Regression

The validity of the regression function needs to be examined. Herein, a coefficient
of determination R2 was adopted. The larger the R2 is, the more accurate the regression
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function becomes. The coefficient of determination was defined as the ratio of regression
variance to total variance. It can be expressed as follows:

R2 =
SST

SSR
(7)

where SST is the total sum of squares and SSR is the regression sum of squares. The
magnitude of R2 lies between 0 and 1, i.e., 0 < R2 < 1. The closer the R2 approaches 1, the
better the regression function represents the physical relationship.

3. Experimental
3.1. Materials

A diglycidyl ether of bisphenol A type epoxy resin (an epoxide equivalent weight
of 180 g/equiv.) was purchased from Chang-Chun Plastics Co. Ltd. (Taipei, Taiwan).
The epoxy resin was cured with the incorporation of an amine type epoxy curing agent
(the amine hydrogen weight of 65 g/equiv. and amine value 430 g/equiv.). When the
nano-powder used was a silicon dioxide (silica) powder, the surface of the fumed silica
was chemically modified with a poly(dimethyl siloxane) coupling agent. The hydrophobic
fumed silica had a specific surface area (BET) of 100 m2/g, an average primary particle
diameter of 14 nm, and a tapped density (according to DIN ISO 787/XI, August 1983)
of 60 g/L. For the other nano-powders, the aluminum oxide (γ-Al2O3, alumina) had an
average particle diameter of 50 nm and density 2.414 g/cm3. The nano carbon black
powder was with a specific surface area (BET) of 90 m2/g, average particle diameter of
28 nm, and density of 1.719 g/cm3. Moreover, the toughening agent was 2-hydroxyethyl
methacrylate (HEMA) with a mass density of 1.106 g/mL, which was an acrylate with
polar substations that was purchased from TCI Co. Ltd. Benzoyl peroxide (BPO) was used
as a thermal initiator. It should be mentioned that all the purchased materials were used
as-received without further purification.

3.2. Specimen Preparation

Firstly, the epoxy resin and HEMA toughener with specified weight fraction were put
in a container of a deaerator and thoroughly mixed. Subsequently, the nano-powders with
specified weight fractions were added and agitated mechanically. The well mixed solution,
which was mixed with an ultrasonic and centrifugal mixer, was obtained as the pre-mixture
for next process. In our previous study [18], the prepared material was found to have a well
dispersion of nano-powders in the epoxy matrix. On the other hand, a specified amount of
hardener and thermal initiator were mixed in the other container. This mixed hardener was
then added into the epoxy pre-mixture and agitated in the centrifugal mixer. Subsequently,
the prepared mixture was poured into a DMA specimen mold manufactured according to
the ASTM D4065 standard. This casted mold was cured in a 120 ◦C oven for 1 h and the
removed specimen was then post-cured at 140 ◦C for another 1 h. The prepared specimen
has to be placed at room temperature for more than 24 h before it can be employed in the
material testing.

Table 2 lists the compositions of the 9 types of specimens adopted from an L9(34)
orthogonal array of the Taguchi method. Four control factors were employed in the
experiments: nano-alumina powder, nano-silica powder, nano-carbon black powder, and
HEMA toughener. Three levels for each factor were selected, which were 0, 1, 2 wt.% and
0, 5, 10 wt.% for the nano-powders and the toughener, respectively.
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Table 2. The compositions of the specimens used in an L9 orthogonal array.

Specimen Epoxy Hardener Al2O3 SiO2 Carbon Black HEMA BPO
(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%)

T1 74.64 24.86 0 0 0 0 0
T2 69.04 23.02 0 1 1 5 0.5
T3 63.46 21.19 0 2 2 10 0.5
T4 65.27 21.74 1 0 1 10 0.5
T5 70.97 23.71 1 1 2 0 0
T6 68.18 22.68 1 2 0 5 0.5
T7 67.23 22.42 2 0 2 5 0.5
T8 64.37 21.44 2 1 0 10 0.5
T9 70.14 23.35 2 2 1 0 0

3.3. DMA Measurements

Dynamic mechanical analysis (DMA) was performed according to ASTM D4065-01 to
determine storage modulus (E′), loss modulus (E′, loss tangent (tanδ), and glass transition
temperature (Tg) of the epoxy composites. The tests were conducted in the dual cantilever
beam mode with a vibration frequency of 1 Hz and a displacement amplitude of 10 µm
in a DMA analyzer (DMA 2980, TA Instruments). The temperature was ramped from
30 to 140 ◦C at a rate of 2 ◦C/min. At least three specimens of each type were tested and
the data were analyzed. The DMA testing purpose was to simulate the loading conditions
of the epoxy composite used in the packaging and subjected to periodic vibration from
the surroundings.

4. Results and Discussion
4.1. The Dynamic Properties at Different Temperatures

Figure 4 presents the dynamic properties of Specimen T1 measured with the temper-
ature sweeping from 30 ◦C to 140 ◦C. There are three results for each specimen: storage
modulus, loss modulus, and loss tangent. As mentioned previously, there were three
specimens denoted as T1-1, T1-2, and T1-3 that were tested for each specimen type of the
design factors specified in Table 1. It is obviously observed that the test results had good
repeatability. As observed in the figure, the storage modulus E′ decreased sharply when the
temperature reached near 60 ◦C while the loss modulus E” increased to a maximum and
dropped subsequently. According to these results, the loss tangent defined as tanδ = E”/E′

attained a maximum around 83 ◦C. The temperature at which the loss tangent has a maxi-
mum is usually defined as the glass transition temperature of the material, Tg. As far as
the dynamic property is concerned, the loss tangent denotes the damping coefficient of
the material. Larger material damping is always required for controlling the vibration of
structure near resonance.

Similar test results are shown in Figure 5 for Specimen T2. The monotonous decreases
in E′ and a dome-shaped E” with respect to the raise in temperature are observed, as shown
in Figure 4. However, the loss tangent curve shows a plateau with two distinct peaks.
Although the peak value of the loss tangent was not as high as the Specimen T1, the plateau
became wider in the temperature range. In other words, Specimen T2 was more effective
than Specimen T1 in reducing the vibration by material damping over a wider working
temperature range. If the definition of glass transition temperature was recalled from the
previous discussion, Specimen T2 had two Tg’s at around 67 ◦C and 83 ◦C. The appearance
of two loss tangent peaks is related to the HEMA toughener added in the epoxy composite,
which will be discussed in more detail afterwards.
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Figure 4. The dynamic properties of Specimen T1 measured with the temperature sweeping from
30 ◦C to 140 ◦C.

Figure 5. The dynamic properties of Specimen T2 measured with the temperature sweeping from
30 ◦C to 140 ◦C.

As observed from Table 2, Specimen T3 had an even higher concentration of HEMA
toughener compared to the previous two specimens. The measured dynamical properties
are similarly shown in Figure 6. Without too much surprise, there were also two peaks
observed in the loss tangent curve with an even wider temperature range of the plateau or
the lower Tg moving to lower temperatures. Similar measurements for the rest of the six
specimens were also performed and the Tg’s are summarized in Table 3.
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Figure 6. The dynamic properties of Specimen T3 measured with the temperature sweeping from
30 ◦C to 140 ◦C.

Table 3. Glass transition temperatures of the specimens.

Specimen Tg1 (◦C) Tg2 (◦C)

T1 - 83.08 ± 0.31
T2 67.42 ± 1.13 83.34 ± 0.80
T3 52.60 ± 2.28 81.34 ± 1.44
T4 55.93 ± 3.29 78.43 ± 1.76
T5 - 87.63 ± 1.13
T6 68.68 ± 2.29 83.86 ± 0.47
T7 65.92 ± 2.29 84.15 ± 0.42
T8 54.05 ± 1.69 78.77 ± 1.19
T9 - 90.26 ± 2.50

4.2. Glass Transition Temperatures

Table 3 lists the glass transition temperatures of nine specimens obtained from the
previous measurements. By cross-referencing the compositions of the specimens reported
in Table 3, those listed in Table 4 with only single Tg are specimens without adding
the HEMA toughener. The specimens with the inclusion of HEMA toughener in the
compositions revealed the lower Tg peak. In more detail, Specimens T2, T6, and T7, which
all have a 5 wt.% of HEMA, had lower Tg’s at 67.42, 68.68, and 65.92 ◦C, respectively.
Moreover, with further increases in HEMA content to 10 wt.%, Specimens T3, T4, and T8
lowered their corresponding Tg’s to 52.60, 55.93, and 54.05 ◦C, respectively. It is known
that the glass transition temperature reflects the cross-linking density of its molecular
chains inside the polymer material. Those specimens without HEMA inclusion in their
compositions revealed only one Tg peak. The introduction of a thermoplastic HEMA into
the microstructure somewhat hindered the cross-linking of epoxy during curing and the
molecular chains of HEMA started to move locally at lower temperature. Minor or shoulder
peaks may appear due to the phase separation between the epoxy resin and the toughening
agent or inhomogeneous crosslinking density [14]. However, all specimens demonstrated
the Tg peak at higher temperature around 78.77~90.26 ◦C, which reflected the movement
of the molecular chains in the microstructural regions unaffected by the HEMA. With more
HEMA contents, the regions affected by the HEMA enlarged and, consequently, further
lowered the Tg. Of course, the movement of the molecular chain was still influenced by
other nano-powders included in the composite. Therefore, the variation in Tg was measured
for specimens with other different compositions but with less significance. The lowering
of the resistance for the molecular chains to move at lower temperatures created more

219



Materials 2021, 14, 4193

flexibility to the material and, therefore, alleviated the brittleness. That is the mechanism
for using toughener in epoxy resin to raise its toughness. Since the main purpose of this
study is to investigate the effects of the nano-powders on the dynamic property of the
epoxy composite, only the second Tg is referred to specifically afterwards.

Table 4. Analysis on the measured results of the main glass transition temperature.

Specimen Y1 (◦C) Y2 (◦C) Y3 (◦C) YAvg (◦C) C.O.V. (%) S/N (dB)

T1 82.84 82.94 83.45 83.08 0.39 38.39
T2 82.31 83.91 83.81 83.34 1.08 38.42
T3 80.14 83.01 80.87 81.34 1.83 38.20
T4 76.44 78.91 79.95 78.43 2.30 37.89
T5 86.71 88.96 87.21 87.63 1.35 38.85
T6 84.46 83.52 83.59 83.86 0.62 38.47
T7 83.88 83.87 84.71 84.15 0.57 38.50
T8 77.21 79.52 79.58 78.77 1.72 37.92
T9 91.54 87.12 92.11 90.26 3.03 39.10

Table 4 lists the main glass transition temperatures of all specimens and their calculated
statistical properties. According to these measurements, the S/N ratio of the glass transition
temperature for each control factor was summarized and presented in Table 5. It is observed
that all nano-powders had higher effect (S/N ratio) on the glass transition temperature
with higher level of doping concentration. Among them, SiO2 had the most significant
effect while Al2O3 had the least. It is worth mentioning that the amount of HEMA doping
decreased the glass transition temperature drastically, which was mainly caused by the
rotation and vibration of the organic molecules of HEMA toughener under the influence of
heating. Moreover, the reaction from the added toughener in the epoxy also hindered its
crosslinking and reduced the crosslinking density between the molecular chains. Therefore,
the molecular chains had more space for moving and the Tg decreased accordingly. These
nano-powders usually have higher stiffness than the epoxy matrix. The reinforcement
demonstrates its effect with the raise in glass transition temperature. On the other hand,
the HEMA toughener showed an opposite trend because of its interference with the cross-
linking density, as discussed previously. Among the control factors, HEMA had the highest
influence on the glass transition temperature followed by silica, alumina and carbon
black, sequentially.

Table 5. Reaction table for the S/N ratio of glass transition temperature (unit: dB).

Control Factor Al2O3 SiO2 Carbon Black HEMA

Level 1 38.34 38.26 38.26 38.78
Level 2 38.40 38.40 38.47 38.46
Level 3 38.51 38.59 38.52 38.00

Effect 0.17 0.33 0.26 0.78

With the obtained experimental data presented in Table 4, a multi-variable regression
analysis by using SPSS software was performed on the relationship of the glass transition
temperature of the epoxy composite with respect to the four control factors. The following
polynomial equation was obtained for the prediction of the glass transition temperature Y
of the epoxy composite.

Y = 83.08 + 0.537 XA+0.183 X2
A+1.087 XB+0.273 X2

B+2.978 XC−0.832 X2
C−0.535 XD−0.210 X2

D (8)

In the above equation, XA, XB, XC, and XD are the wt.% of the silica nano-powder, alumina
nao-powder, carbon black nano-powder, and HEMA toughener, respectively. In order to
check the validity or accuracy for the prediction equation, the specimen with the optimal
combination of the control factors (A3, B3, C3, and D1 as revealed in Table 5) to maximize
the glass transition temperature was fabricated and tested. The predicted 90.61 ◦C from
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Equation (8) was close to the measured 90.91 ◦C. The 0.33% difference between the predic-
tion and measurement showed good accuracy of the regression model in predicting the
glass transition temperature of the epoxy composite.

4.3. Storage Modulus

The storage modulus of the material used in packaging denotes the material’s measure
to withstand deformation due to dynamic loading. The higher the storage modulus, the
better the resistance to dynamic deformation. Table 6 presents the analysis on the measured
results of the storage modulus at 30 ◦C for the nine specimens. Following the similar data
processing of the previous glass transition temperature, the S/N ratios of storage modulus
for each control factor at different levels were obtained and listed in Table 7. The results
showed that the S/N ratio of the storage modulus increases with the doping content of each
nano-powder. Among the three nano-powders studied, the carbon black is more effective
in raising the storage modulus, while the Al2O3 has the least effect. However, the HEMA
toughener played a different role of lowering the storage modulus with increasing doping
content. The lowering effect was more pronounced than its nano-powder counterparts in
raising the storage modulus of the epoxy composite as the S/N ratio was twice larger in
magnitude. As mentioned previously, the incorporation of thermoplastic HEMA molecules
into the epoxy polymer chains impedes the cross-linking and reduces the local cross-linking
density. Thus, the storage modulus reduced with higher HEMA contents. On the other
hand, the nano-powders filled in the epoxy matrix act as the reinforcement phase in the
composite. Moreover, the dispersion of hard inorganic nano-powders in the microstructure
of epoxy also serves as the pin-point sites to increase the resistance of chain movement.
Thus, deformation reduced and the stiffness of the composite increased. It should also be
mentioned that the insertion of HEMA molecules in blocking the crosslinking of the epoxy
network and the incorporation of nano-powders in the microstructure could interfere with
crack propagation in the epoxy composite. Therefore, the toughness of the epoxy composite
can be enhanced.

Table 6. Analysis on the measured results of the storage modulus at 30 ◦C.

Specimen E′1 (MPa) E′2 (MPa) E′3 (MPa) E′Avg
(MPa) C.O.V. (%) S/N (dB)

T1 2081 2107 2009 2066 3.21 66.30
T2 2184 2051 2178 2138 3.12 66.59
T3 2094 1969 2016 2026 3.26 66.13
T4 1688 1709 1764 1720 3.76 64.71
T5 2516 2485 2465 2489 2.73 67.92
T6 2166 2118 2173 2152 3.10 66.66
T7 2373 2285 2425 2361 2.86 67.45
T8 1963 1849 1818 1877 3.49 65.45
T9 2618 2557 2672 2616 2.61 68.35

Table 7. Reaction table for the S/N ratio of storage modulus (unit: dB).

Control Factor Al2O3 SiO2 Carbon Black HEMA

Level 1 66.34 66.15 66.14 67.52
Level 2 66.43 66.65 66.55 66.90
Level 3 67.09 67.04 67.17 65.43

Effect 0.75 0.89 1.03 2.09

Similar regression fit using SPSS software was conducted relative to the relationship
between the storage modulus and the control factors. The storage moduli measured from
the nine specimens were employed in the regression fit with the content wt.% of the control
factors. The obtained equation is listed as follows.

E′ = 2066− 16.667 XA+60.333 X2
A+130.167 XB−11.167 X2

B+122.500 XC+3.833 X2
C−17.733 XD−3.387 X2

D (9)
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In order to check the accuracy of the above prediction function for the storage modulus,
a specimen with the optimal combination of control factors (A3 B3 C3 D1 from Table 6
with maximum S/N ratio) was fabricated and tested. The prediction from Equation (9)
was 2749.5 MPa while the measured one was 2770.3 MPa. A small deviation of 0.76% from
prediction to measurement illustrates the model depicted in Equation (9). Equation (9). can
be considered as a good model in the design of this epoxy composite for use in dynamic
loading environments.

5. Conclusions

When material is used in vibrational environment, the capability to estimate its
dynamic mechanical property is critical during the design to prevent the unexpected
dynamic response from external excitation. The dynamic property such as the stiffness and
damping coefficients are crucial for the packaging materials used in the delicate electronic
devices. This study explored the feasibility to predict the storage modulus and glass
transition temperature of an epoxy composite that incorporated the nano-powders of silica,
alumina, and carbon black in a HEMA toughened epoxy matrix. The use of nano-powders
as reinforcements was shown to increase both the Tg and the storage modulus, while
the addition of HEMA toughener lowered both dynamic characteristics. With only the
incorporation of each nano-powder of silica, alumina, and carbon black by 2 wt.%, the
storage modulus of the epoxy composite at 30 ◦C showed a 34% increase from its pristine
counterpart. On the other hand, the addition of 10 wt.% of HEMA into the epoxy could
widen the damping plateau of the loss tangent spectrum from a temperature span around
its Tg from 20 ◦C to 50 ◦C. This wider plateau denoted that the material damping could be
operative in larger temperature span or frequency span. Finally, the prediction equations
for the glass transition temperature and storage modulus were obtained from regression
fits of the measured data, respectively. These equations could be used for design purpose
and showed <1% deviation from the measurement within the range of control factors
investigated in this study.
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Abstract: The thermal warpage problems in integrated circuit (IC) packaging exist in both flip-
chip and two-and-a-half dimensional integrated circuits (2.5D IC) packages during manufacturing
processes and thermal cycling service. This study proposes a simple and easy-to-use strain gauge
measurement associated with a beam model theory to determine the thermally induced deformations
and warpages of both packages. First, validation and limitations of the beam model theory are
presented. Then, the thermally induced out-of-plane deformations for both packages are well
described by the finite element method (FEM) simulation with a good consistency to full-field shadow
moiré experimental results. The strain gauge measurements were implemented experimentally, and
the thermal strain results were found to be well consistent with validated FEM ones. As a result,
out-of-plane thermal deformations and warpages of the packages, calculated from the beam model
theory with extracted curvature data from the strain gauge, were in reasonably good agreement with
those from FEM analysis and shadow moiré measurements. Therefore, the strain gauge method
of featuring point strain measurement combined with the beam model theory proved feasible in
determining the thermal deformations and warpages of both IC packages.

Keywords: flip-chip package; 2.5D package; thermal warpage; strain gauge

1. Introduction

The flip-chip packages and the two-and-a-half dimensional integrated circuits (2.5D
IC) packages are popularly used in advanced integrated circuits (IC) packaging [1–3].
However, those packages suffer from thermal warpage problems, which may cause solder
joint defects, shown in Figure 1a, during manufacturing processes and thermal cycling
service due to mismatches of coefficients of thermal expansion (CTE) between the inherent
materials [3–7]. Unlike the conventional flip-chip packages, which use a silicon chip to
directly bond to the substrate, the 2.5D IC packaging technology uses an additional silicon
interposer as a platform to interconnect and integrate heterogeneous or homogeneous
chips horizontally and vertically before flip-chip bonding to the substrate [1,3]. Such
technology gained more attention in advanced IC packaging for heterogeneous integrations
recently. For strain measurement, electrical resistance strain gauges were widely used
for point (or local) mechanical strain measurements for more than a century in various
engineering applications [8]. Its advantage over other full-field optical methods such as
shadow moiré [4,9,10], Twyman–Green interferometry [9,11], or digital image correlation
(DIC) [12,13] is that it is easy to use and can provide in-situ and real-time thermal strain
measurements, especially for complex printed circuit boards (PCB) during the heating at
a solder reflow oven [14]. Some preliminary results of thermal deformations of the 2.5D IC
package were presented in an international conference [15]. In this study, the conventional
strain gauges were employed for measuring the curvatures of the flip-chip package and
the 2.5D IC package reinforced with a metal frame (as shown in Figure 1b,c) under thermal
loads. Then, those curvature data were converted to deformations (or warpages) data using
a beam model theory. Note that the thermal deformation of the package here is presented
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by its out-of-plane displacement referred to fixed center point, while the warpage is the
out-of-plane displacement of a certain point. Feasibility and validity of this strain gauge
method are thoroughly discussed herein by comparing the obtained thermal deformation
and warpage results with those from the full-field shadow moiré and the FEM analysis in
this study.

Figure 1. Cont.
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Figure 1. Schematics of (a) thermal warpage induced solder joint defects, (b) a flip-chip package
and (c) a 2.5D IC package with detailed materials and dimensions.

2. Methodologies

The methods used in this study for determining the thermal deformations and
warpages of the IC packages are briefly illustrated in this section, including the combina-
tion of strain gauge and a beam model theory, the finite element analysis, and a shadow
moiré measurement.

2.1. Deformation Measurement by Stain Gauges Associated with A Beam Model

The typical strain gauge measurement [8] can be described as

εa = εt +
(γg + γw)

Sg
∆T (1)

where εa is an apparent strain which is directly obtained from strain gauge measurement
system, εt is a true strain which is an actual strain on the measured point of the specimen, Sg
is a gauge factor, ∆T is thermal loading, and γg and γw are the temperature coefficients of
resistivity of gauge-grid metal material and connected lead wire, respectively. Back-to-back
strain gauges were adhered at a specific position on both top and bottom surfaces of the
IC package for measuring the thermal strains on the package during heating and cooling
processes. The apparent strains on the top and the bottom surfaces (εa,top and εa,bot) of the
package can be written individually in terms of the true strains on the top and the bottom
surfaces (εt,top and εt,bot) as

εa,top = εt,top +
(γg + γw)

Sg
∆T (2)

εa,bot = εt,bot +
(γg + γw)

Sg
∆T (3)

The strain data at various temperatures could be further converted into bending strains
(εb) and bending curvatures (k) of the IC package by Equations (4) and (5), respectively.
Then, the out-of-plane displacement (deformation) of the IC package under different
temperatures could be further calculated by Equation (6) with a given curvature and
distance x from the center.

εb = (εa,bot − εa,top)/2 = (εt,bot − εt,top)/2 (4)
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k = 2εb/t = (εt,bot − εt,top)/t (5)

W = kx2/2 (6)

where t is the package thickness, and W is the out-of-plane displacement (deformation) at
the given distance x with a constant curvature k.

Since the curvature of the package may not be constant across the entire surface of
the package, a beam model theory, as shown in Figure 2, with multiple curvatures for the
out-of-plane displacement calculation is proposed in this study. This model is based on
a beam theory with an assumption of a small deflection. The ki is a constant curvature
on the segment i between the length li−1 and li. The k1 represents the curvature of the
center segment. The associated equations of an out-of-plane displacement (or deflection)
Wi within the segment i are listed [14] as follows:

W0 = 0, x = 0 (7a)

W1(x) =
1
2

k1x2, 0 ≤ x ≤ l1 (7b)

W2(x) = W1(l1) + k1l1(x− l1) +
1
2

k2(x− l1)
2, l1 ≤ x ≤ l2 (7c)

W3(x) = W2(l2) + [k1l1 + k2(l2 − l1)](x− l2) +
1
2

k3(x− l2)
2, l2 ≤ x ≤ l3 (7d)

Figure 2. Schematic of the beam with constant curvatures k1, k2, and k3 at different segments.

2.2. FEM Simulation

An isothermal linear FEM analysis was performed to calculate the thermally induced
package deformation and warpage due to the CTE mismatch between the inherent materials
properties. The schematics of the FEM models are also shown in Figure 3a,b for the flip-
chip and the 2.5D IC packages, respectively, with related boundary conditions and meshes
in a quarter model. Material mechanical properties used in the finite element analysis
are shown in Table 1, in which most data are provided by material vendors. Since the
obtained strain data from the FEM analysis were in the x–y coordinate, the transformation
of strain vector {ε}x from the x-y coordinate to {ε}1,θ in the 1–2 coordinate with a rotation
angle of θ was needed during the data process and is illustrated in Figure 4, in which [T]
is a transformation matrix as a function of θ. It is noted that this strain transformation
was used for calculating a normal (or axial) strain in the 1-axis direction, such as the
diagonal direction of the package or the strain gauge direction during the data process.
Then, the FEM simulation results were further used to compare with those from strain
gauge measurements in terms of curvatures and from moiré measurement in terms of
deformations for both packages. In addition, there were two 2D FEM models—plane
stress and axisymmetric models—implemented in this study for validating the beam
model theory.

2.3. Shadow Moiré Measurements

The shadow moiré method [4,9,10] is widely used to measure the out-of-plane dis-
placement of the specimens. The systems with the sensitivity of 12.7 µm/fringe and
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25.4 µm/fringe were used for the thermal deformation measurement of the flip-chip and
the 2.5D IC packages, respectively. An oven or a hot plate were used to heat the specimens
and provided thermal loading from room temperature to 260 ◦C. The present thermal
cycling test plus data recording in general took about one hour from room temperature to
260 ◦C and longer for cooling by natural cooling. Two test samples, a flip-chip package
with a size of 31 × 31× 1.94 mm3 and a 2.5D IC package with a size of 55 × 55 × 2.73 mm3

(shown in Figure 1b,c), were tested in the moiré experiments by measuring surfaces on
their substrates in this study.

Figure 3. A quarter model and meshes of (a) a flip-chip package and (b) a 2.5D IC package used in
the finite element analysis.
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Table 1. Material mechanical properties for flip-chip and 2.5D IC packages used in the finite element
analysis and provided by material vendors (* note that the effective composite material properties
were used based on the rule of mixture).

Package Type Material E (MPa) ν α (ppm/◦C) Tg (◦C)

Flip-chip Package
Si 131,000 0.28 2.8 -

Bump/UF * 7600/100 0.32 29/98 120
Substrate 26,000 0.39 14.4 -

2.5D IC Package

Si 169,000 0.28 2.3 -
EMC 23,000/2300 0.69 10.8/24 140

µBump/UF1 * 7200/72 0.28 28/97 140
C4 Bump/UF2 * 7600/76 0.28 29/98 140

Substrate 20,000 0.42 13.2
Metal Frame 117,000 0.3 16.9

Adhesive 100/20 0.3 125/170 50

Figure 4. Transformation of strain vector {ε}x from the x–y coordinate to {ε}1,θ in the 1–2 coordinate
with a rotation angle of θ.

3. Results and Discussion

The obtained results of the flip-chip package and the 2.5D IC package are extensively
discussed individually in this section, including the beam model verification, the strain
gauge measurement, the moiré measurement, and the FEM analysis.

The Case of Flip-Chip Package

(a) Validation of beam model with FEM simulation

A beam with two curvatures (k1 and k2) over the entire length was considered.
A schematic of the out-of-plane displacements of the beam with given constant curva-
tures k1 and various k2 is shown in Figure 5. The normalized curvature was λ = k2/k1 and
the normalized beam length was β = l2/l1. From the beam theory (Equations (7b) and (7c)),
W2(l2)λ = 1 and W2(l2)λ, representing the out-of-displacements (warpages) for λ = 1 and
any value, respectively, at x = l2, could be described as follows:

W2(l2)λ=1 =
1
2

k1l2
2 (8)

W2(l2)λ =
1
2

k1l2
1 + k1l1(l2 − l1) +

1
2

k2(l2 − l1)
2 (9)
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Figure 5. Schematic of the out-of-plane displacement of the beam with given constant curvatures k1

and various k2 (or various λ = k2/k1).

It can be also seen from Figure 5 that W2(l2)λ, the out-of-displacement at x = l2, was
larger than W2(l2)λ = 1 when λ > 1, otherwise it was smaller. Thus, in order to reduce the
warpage of the beam, the λ < 1 had to be selected. That meant the beam with k2 < k1 was
preferred. In addition, from Equation (9), the curvature k1 played a more important (or
dominant) role than k2 in the value of W2(l2)λ because it had an additional slope term
k1l1(l2 − l1) affecting W2(l2)λ. For parametric demonstrations, the normalized W2(l2)λ by
the value of W2(l2)λ = 1 is shown as

W2(l2)λ

W2(l2)λ=1
= (

l1
l2
)

2
+

2l1(l2 − l1)
l2
2

+
k2

k1

(l2 − l1)
2

l2
2

(10)

The above equation could be further expressed in terms of λ and β, as described by

W2(l2)λ

W2(l2)λ=1
=

2
β
− 1

β2 + λ (1− 1
β

)2
(11)

For validation of this beam theory, Equation (11) is plotted against β and λ in Figure 6
and was compared with the results from the plane stress and the axisymmetric models of
2D FEM analyses. It is shown that the results from the beam theory and the plane stress
model were very consistent, but they were slightly different from the axisymmetric model,
which represented a plate (with a Poisson effect) rather than a beam (without a Poisson
effect). Moreover, for λ = 1, the results from the beam theory and the plane stress model
were close to those from the axisymmetric model; for λ < 1, they were overestimated, but
for λ > 1, they were underestimated. In order to understand this mechanism, curvature
distributions for the β = 2 case from the beam theory are plotted in Figure 7 along the
entire length of the beam with various values of normalized curvature (λ) in comparison
with those from the 2D plane stress and the axisymmetric models of the FEM analyses. It
was found that, unlike consistent and constant curvatures (k1 and k2) over each segment
between the beam theory and the plane stress model, the axisymmetric model (representing
the plate case) gave smaller curvature k1 and non-uniform k2 values as λ < 1. In other
words, the out-of-plane displacement (or warpage) caused by smaller curvature k1 and
non-uniform k2 resulting from the Poisson effect in the axisymmetric model was lower
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than that in the beam theory and the plane stress model. As a result, both beam and plane
stress models gave an overestimated value of the displacement or the warpage as λ < 1.
However, for λ > 1, this was reversed. Furthermore, to examine the detailed warpages,
the out-of-displacement of the beam along the entire length of the beam for the β = 2
case is plotted for those three models in Figure 8. It can be also seen that the out-of-plane
displacement curves were very consistent for the three models for λ = 1, but the curves from
both beam theory and plane stress model started deviating from those in the axisymmetric
model with increasing values for λ < 1 and decreasing values for λ > 1. Based on the above
observations, it was proven that the beam theory described in Equation (7) coincided with
the 2D plane stress model but had some deviations from the 2D axisymmetric model due
to the Poisson effect. The question is whether the beam theory can be used for calculating
the out-of-displacement of the plate-like IC packages with the curvature data obtained
from the strain gauge measurements. That is answered later in this paper.

Figure 6. Normalized warpage (W2(l2)λ/W2(l2)λ = 1) vs. normalized beam length (β = l2/l1) for the
beam theory (in solid lines) with various values of normalized curvature (λ = k2/k1) compared with
the results from the plane stress (in dot points) and the axisymmetric models (in dash lines) of 2D
FEM analyses.

Figure 7. Curvature distributions along the length of the beam for the β = 2 case from the beam
theory (in dash lines) with various values of normalized curvature (λ), compared with the results
from plane stress (in dash lines) and axisymmetric models (in solid lines) of 2D FEM analyses.
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Figure 8. Out-of-plane displacement of the beam along the length of the beam for the β = 2 case from
the beam theory (in dash lines) with various values of normalized curvature (λ) compared with the
results from 2D plane stress (in dash lines) and axisymmetric (in solid lines) models of FEM.

(b) Validation of FEM simulation with shadow moiré

To verify the result from the 3D FEM analysis, the out-of-plane displacements of the
flip-chip package along the diagonal line ac at room temperature (T = 25 ◦C) and T = 260 ◦C
are shown in Figure 9 from the 3D FEM analysis and the moiré measurement. It can be
seen that the 3D FEM model effectively and precisely described the thermal deformation
of the flip-chip package based on those consistent results. However, whether the 2D FEM
(with axisymmetric model) or the strain gauge measurement associated with the beam
model theory can do the same is discussed later.

Figure 9. Out-of-plane displacement of the package along the diagonal line ac and with a full field at
room temperature (T = 25 ◦C) and T = 260 ◦C from the 3D FEM analysis compared with moiré results.

(c) Implementation of gauge measurement

The back-to-back gauges G1/G1′ , G2/G2′ , and G3/G3′ were attached on the top and
the bottom surfaces of the flip-chip package at the points a, b, and c (representing center
point, near die corner, and substrate corner points), respectively, for the strain measurement.
The measured strain data with various temperatures are shown in Figure 10. The data
indicate that the difference of the strain data between the bottom and the top gauges was
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large at point a (the center point), while it was small at point c (near substrate corner).
That meant there existed the bending strains (εb) with a large value at the center point,
an intermediate value at the near die corner, and a small value near the substrate corner
based on Equation (4). Furthermore, by Equation (5), those bending strain data could be
converted to the curvature data, which are shown in Figure 11a, for various temperatures
with curvatures ka, kb, and kc at the measured points a, b, and c, respectively. It was found
that there existed a kinked point on the curve of ka but not on other curves near T = 120 ◦C,
which was the glass transition temperature (Tg) of the underfill material. This resulted
from the elastic modulus (E) of the underfill material with about two orders of magnitude
decrease at a temperature above its Tg [5]. Additionally, at this Tg, the curvature on every
point on the flip-chip package was almost zero based on the observation of flatness of
the package in moiré experiments. Thus, all curvature curves could be further shifted
to T = 120 ◦C with the predefined zero curvature (shown in Figure 11b). It was evident
that there existed the apparent value of kb (near the corner of the chip) but with the close
zero value of kc near the substrate corner. This was due to the Poisson effect, which was
consistent with the case of λ = 0 with the axisymmetric model in Figure 7. Moreover, the
curvature data from T = 120 ◦C cooling to 25 ◦C in Figure 11b were used to calculate the out-
of-plane displacement of the package at room temperature (T = 25 ◦C) along the diagonal
line ac using Equation (7), and this displacement result obtained from the strain gauge was
compared with those from moiré and FEM (with 2D axisymmetric and 3D models), as
shown in Figure 12. It was shown that, due to an inherent limitation of the beam theory
(Equation (7)), the displacements obtained from strain gauge were closer to those of the 2D
axisymmetric FEM model than those from moiré and 3D FEM models. Furthermore, the
thermally induced warpages of the package at the point c (the corner of the package) from
the strain gauge measurement are plotted in Figure 13 against temperature in comparison
with those from moiré data and FEM results (with 2D axisymmetric and 3D models).
Results also indicated that the gauge result was consistent with the 2D axisymmetric result
but was slightly off from results of moiré and 3D FEM models. However, in the engineering
applications, the strain gauge measurement associated with the beam model theory was
accordingly proved to be feasible and good enough to determine the thermally induced
out-of-plane deformations and warpage of the flip-chip packages.

Figure 10. The strain data from the back-to-back gauges with various temperatures and with gauges
G1/G1′ , G2/G2′ , and G3/G3′ at the points a, b, and c (representing center point, near die corner, and
substrate corner points), respectively, during the strain measurement under thermal loading from
25 ◦C to 260 ◦C in heating.
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Figure 11. The curvature data at the points a, b, and c (representing center point, near die corner, and
substrate corner points, respectively) with various temperatures from the strain gauge measurement
(a) before shift and (b) after shift to 120 ◦C with the zero curvature.

Figure 12. Out-of-plane displacement of the package at room temperature (T = 25 ◦C) along the
diagonal line ac from the strain gauge measurement compared with the results from moiré data (with
a sensitivity of 12.7 µm/fringe) and FEM results (with 2D axisymmetric and 3D models).
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Figure 13. The thermally induced warpage of the package at the point c (the corner of the package)
with various temperatures from the strain gauge measurement compared with the results from moiré
data and FEM results (with 2D axisymmetric and 3D models).

4. The Case of 2.5D IC Package

(a) Validation of FEM simulation

Moiré measurement of the 2.5D IC package with a metal frame under thermal loading
from 25 ◦C to 260 ◦C in heating and cooling was performed, and its moiré fringe patterns
(out-of-plane displacement contours with a sensitivity of 25.4 µm/fringe) are shown in
Figure 14 [16]. It was obvious that, during the heating process, the spherically convex
shape of the specimen at 25 ◦C became less warped as the temperature increased and then
turned out to be flat at 140 ◦C. Upon continuous heating, the specimen became concave
above 140 ◦C and increasingly up to 260 ◦C. On the other hand, the specimen deformed
in the reverse way during the cooling process and then came back to the same deformed
shape at 25 ◦C. Such thermal elastic deformations of the package along the diagonal line oa
at 25 ◦C and 260 ◦C are plotted and shown in Figure 15 in detail in comparison with those
from the FEM analysis. The consistent results between moiré and FEM analysis indicated
that the FEM model was valid and precise enough to describe the thermal deformations of
the 2.5D IC package.

Figure 14. Moiré fringe patterns of the 2.5D IC package with a metal frame under thermal loading
from 25 ◦C to 260 ◦C in heating and then from 260 ◦C to 25 ◦C in cooling (with a sensitivity of
25.4 µm/fringe) [16].
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Figure 15. Out-of-plane deformation along the diagonal line oa for 2.5D IC package at the tempera-
tures of 25 ◦C and 260 ◦C from moiré and FEM results.

(b) Beam model verification

After the FEM model was validated, this model was then employed for verifying the
beam model theory, which was applied to calculate the thermal deformations of the 2.5D IC
package with the strain gauge data later. Curvature distribution along the diagonal line oa
of the package under thermal loading ∆T = −115 ◦C (from 140 ◦C cooling down to 25 ◦C)
from the FEM analysis is shown in Figure 16a with the average curvatures of k1, k2, and
k3 over the gauge length at the corresponding segment. These gauge-assumed curvature
data extracted from the FEM model were put into the beam model theory as described
in Equation (7) to calculate the out-of-plane displacement. The thermally induced out-of-
plane displacement of the 2.5D IC package obtained is shown in Figure 16b compared with
that from the FEM analysis. The almost identical results of both methods revealed that
the method of using the point-wise data of strain gauge associated with the beam model
theory was feasible for measuring the thermal deformation of the 2.5D IC package.

Figure 16. Cont.

236



Materials 2021, 14, 3723

Figure 16. (a) Curvature distribution along the diagonal line oa of the 2.5D IC package and the
average curvatures k1, k2, and k3 over the gauge length at each segment from FEM analysis,
and (b) comparison of out-of-plane displacements of the 2.5D package from FEM and beam model
associated with the average curvatures k1, k2, and k3.

(c) Implementation of strain gauge measurement

The strain gauge measurement was further carried out for determining the bending
curvatures and deformations of the 2.5D IC package under thermal loading from 140 ◦C
to 25 ◦C in the cooling process. Note that the strain gauge readings were reset at zero
at 140 ◦C. In Figure 17, the back-to-back strain gauges were attached at the centers of
lines AB, BC, and CD along half of a diagonal line with the gauge pairs of G1/G2, G3/G4,
and G5/G6, respectively. The axial thermal strains of each reading from those six gauges
are also shown in Figure 17 in comparison with those from the FEM simulation. The
consistency between both data indicated that the strain gauges could measure the thermal
strains of the package. The bending curvature data under this thermal loading were further
extracted using Equations (4) and (5) and are shown in Figure 18 in a detailed comparison
with the FEM results. Almost identical results revealed that the curvature data for k1, k2,
and k3, corresponding to those on lines AB, BC, and CD, increased positively for k2 and k3
but increased negatively for k1 in the cooling process. Their maximum curvatures occurred
at 25 ◦C. The differences of the maximum curvatures between strain gauge measurement
and FEM simulation were within 8% (listed in the left table). Moreover, the out-of-plane
displacement at 25 ◦C was plotted using Equation (7) of the beam model theory associated
with the curvature data (k1, k2, and k3) from the gauge measurement and is shown in
Figure 19 in comparison with those from shadow moiré measurement and FEM simulation.
The results indicated that the out-of-plane displacement of the 2.5D IC package from gauge
measurement reasonably agreed with the other two with a minor difference. The warpages
of the 2.5D IC package at various temperatures are further plotted in Figure 20 from the
strain gauge measurement, the shadow moiré measurement, and the FEM simulation.
Those results also showed a reasonably good agreement between each other. Overall, this
study demonstrated that the strain gauge measurement associated with the beam model
theory can be used for characterizing the out-of-plane thermal deformation and warpage
of the 2.5D IC package.
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Figure 17. Axial strains from gauge measurements and FEM simulation along the diagonal line of
the 2.5D IC package under thermal loading from 140 ◦C to 25 ◦C in cooling.

Figure 18. Comparison of the curvature data (k1, k2, and k3) extracted from strain gauge measurement
and FEM simulation for the 2.5D IC package at various temperatures.

Figure 19. Comparison of the out-of-plane displacement of the 2.5D IC package at temperature of
25 ◦C (∆T = −115 ◦C) from strain gauge measurement, shadow moiré, and FEM simulation.
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Figure 20. Comparison of warpages of the 2.5D IC package at various temperatures from strain
gauge measurement, shadow moiré, and FEM simulation.

(d) Effect of segment curvature variation on warpage

It is interesting to know how the curvature data k1, k2, and k3 at each segment affected
the warpage of the 2.5D IC package. The plus and the minus 10% variations of each
curvature data in Figure 16a used in plotting displacement using the beam model were
analyzed, and the obtained warpage results and their difference are listed in Table 2. Note
that k1, k2, and k3 were normalized values and defined as unity for reference. It could be
seen that the warpage was the most sensitive to k1, rather than k2 and k3, with increases or
decreases of ~15% of warpage value by changing ±10% of k1 values, respectively. This was
consistent with the above-mentioned finding that k1, the curvature of the center segment,
was a dominant value in the warpage of the packages. Therefore, the precisely defined or
measured k1 was more important than the other two (k2 and k3) for the warpage calculation
or the measurement of the 2.5D IC package.

Table 2. The warpage difference of the 2.5D IC package with a variation of segment curvatures at
each segment.

k1 1 1.1 1 1 0.9 1 1

k2 1 1 1.1 1 1 0.9 1

k3 1 1 1 1.1 1 1 0.9

Warpage (µm) −226 −260 −215 −224 −191 −236 −227

Difference (%) 0 15.34 −4.75 −0.60 −15.35 4.75 0.60

(e) Effect of gauge misalignment on warpage

Since the precise measurement of k1 was critical for determining the warpage of the
2.5D IC package, it was desired to understand how the misalignment of k1 gauges affected
the warpage. Various angle misalignments (with ±5◦ and ±10◦) of top and bottom strain
gauges in the 45◦ direction in segment AB (the center segment) were analyzed using a beam
model for calculating the package warpage through the measurement of k1 curvatures.
The results are shown in Table 3, in which the warpage determined from the top and the
bottom gauges in the angle of 45◦ was used as a based (or reference) value. It could be
seen that, for ±5◦ misalignments, the obvious warpage differences occurring at the angle
pairs of 50◦/50◦ and 40◦/40◦ were 3.57% and −3.76%, while the other pairs were below
3%. However, for ±10◦ misalignments, the warpage difference increased by more than
double. As a result, as long as the gauge alignment on the top and the bottom surfaces was
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under control with less than ±5◦ misalignments, the results of the warpage measurement
were acceptable with less than 5% error.

Table 3. The warpage (with a unit of µm) and the warpage difference of the 2.5D IC package with
various angle misalignments (±5◦ and ±10◦) of top and bottom strain gauges for measuring k1

curvatures in segment AB (the center segment).

±5◦ Top Strain Gauge

Bottom strain
gauge

Degree 50◦ 45◦ 40◦

50◦ −234 (3.57%) −231 (2.38%) −229 (1.3%)
45◦ −228 (0.96%) −226 (Reference) −223 (−1.31%)
40◦ −222 (1.49%) −220 (−2.68%) −217 (−3.76%)

±10◦ Top Strain Gauge

Bottom strain
gauge

Degree 55◦ 45◦ 35◦

55◦ −243 (7.49%) −237 (5.06%) −233 (3.02%)
45◦ −231 (2.21%) −226 (Reference) −221 (−2.26%)
35◦ −220 (−2.48%) −215 (−4.91%) −210 (−6.95%)

5. Conclusions

This study proposed the strain gauge method associated with a beam model theory for
determining the thermally induced deformations and warpages of the flip-chip and the 2.5D
IC packages. The beam model theory was thoroughly evaluated in this study, and it was
found that the theory coincided with the 2D plane stress model but had some deviations
from the 2D axisymmetric model due to the Poisson effect. The finite element method (FEM)
resulted with good consistency with the full-field shadow moiré experiment, showing good
prediction of thermally induced out-of-plane deformations for both packages. Furthermore,
the strain gauge measurement with the beam model theory was actually implemented for
both packages. It was found that the obtained thermal strain data were in good agreement
with the FEM data. The gauge-determined thermal deformations and warpages of both
packages also showed reasonably good agreement with those from the FEM analyses and
the shadow moiré measurements. Moreover, the curvature in the center segment of the 2.5D
IC package was found to be a dominant value in control of thermal warpages of the package.
The gauge misalignment effect was also evaluated and discussed in detail. Overall, it was
proven that the strain gauge method of featuring point strain measurement associated
with the beam model theory can be feasible for measuring the thermal deformations and
warpages of both packages.
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Abstract: The use of scaled-down micro-bumps in miniaturized consumer electronic products has
led to the easy realization of full intermetallic solder bumps owing to the completion of the wetting
layer. However, the direct contact of the intermetallic compounds (IMCs) with the adhesion layer
may pose serious reliability concerns. In this study, the terminal reaction of the Ti adhesion layer with
Cu–Sn IMCs was investigated by aging the micro-bumps at 200 ◦C. Although all of the micro-bumps
transformed into intermetallic structures after aging, they exhibited a strong attachment to the Ti
adhesion layer, which differs significantly from the Cr system where spalling of IMCs occurred
during the solid-state reaction. Moreover, the difference in the diffusion rates between Cu and Sn
might have induced void formation during aging. These voids progressed to the center of the bump
through the depleting Cu layer. However, they neither affected the attachment between the IMCs
and the adhesion layer nor reduced the strength of the bumps. In conclusion, the IMCs demonstrated
better adhesive behavior with the Ti adhesion layer when compared to Cr, which has been used in
previous studies.

Keywords: micro-joints; solid-state reaction; intermetallic; adhesion layer

1. Introduction

Micro-joints play an important role in three-dimensional integrated circuit (3D IC)
technology in the realization of vertical chip stacking. However, the micro-joint volume is
significantly little, nearly six orders of magnitude less than that of the conventional ball
grid array joints or flip-chip joints and is a critical issue. With the miniaturization of solder
joints and thickness reduction of under-bump metallurgy (UBM), it is observed that both Sn
and Cu present limited amounts in micro-joints. This results in a large portion, or even the
entire micro-joint, being occupied by intermetallic compounds (IMCs) after assembly [1].
Hence, this phenomenon introduces new reliability concerns.

The adhesion layer, such as Cr and Ti, is the main component of the UBM used in the
electronics industry. Owing to the rapidly consumed solder joints and wetting layer, the
IMCs would attach to the adhesion layer with limited Cu during the solid–liquid reaction.
This condition causes spalling, which is reported in numerous studies [2–7]. Spalling of
the IMCs causes a significant reduction in bonding strength and affects the reliability of
electronic products. In addition, the formation of IMCs in Cu–Sn reactions with limited Sn
has been reported previously [1,8–12]. These studies only focused on the micro-structural
evolution in the early stages of interfacial reactions, which were abundant with either Cu
or Sn during the experiment. However, fewer studies have investigated the same when the
constraint volume of Cu and Sn is simultaneously converted into the full IMC joints in the
terminal solid-state reaction. In a previous study, Tsai et al. [13] found that when the IMCs
were attached to the Cr adhesion layer, Cu6Sn5 and Cu3Sn detached and left the substrate
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during the terminal solid-state reaction. In addition, this spalling process did not dominate
the ripening or gravity effects of Cu6Sn5 compared to regular spalling. It was confirmed
that the spalling was due to the high interfacial energy between the Cu and Sn intermetallic
and Cr. Furthermore, void formation during the reaction was also observed, which was
attributed to Cu diffusion. In contrast, the widespread usage of the Ti adhesion layer in the
electronics industry is well-known, but no study has discussed the phenomenon when the
IMCs contact the Ti adhesion layer during the solid-state reaction.

This study aims to investigate the micro-structure evolution of ultrathin Sn/Cu micro-
bumps at the terminal reaction and observe the phenomenon when the IMCs directly
contact the Ti layer during the solid-state reaction. In addition, the relationship between
the voids and the reactive layer thickness are proposed and illustrated. Furthermore, since
IMC formation and void nucleation deteriorate the reliability of micro-bumps [14–19], a
die shear test was conducted to study the mechanical properties of the micro-bumps with
different aging times. Finally, the correlations between the shear strength and evolution of
IMCs during the aging process are discussed.

2. Experimental

Figure 1 presents a schematic of the dimensions of the Sn/Cu/Ti structure used in this
study. The detailed procedure for sample preparation has been presented previously [13].
In brief, the samples were first fabricated by electroplating Cu and Sn, sequentially on the
Ti adhesion layer, to form micro-bumps and then aged at 200 ◦C, which could accelerate
the IMCs formation to reach the terminal stage of interfacial reaction, for 0, 24, 36, and 42 h
to observe the evolution between layers.

Figure 1. (a) Schematic drawing of the configuration of the Sn/Cu/Ti structure in this study;
(b) Micrograph showing the top view of micro-bumps.

After aging, the samples were cross-sectioned and polished using an ion-milling sys-
tem (Hitachi IM4000Plus) with an Ar+ ion beam for subsequent analysis. These samples
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were examined using a scanning electron microscope (SEM, Hitachi SU5000) by BSE detec-
tor and transmission electron microscope (TEM, FEI Tecnai G2 F20) to observe the sample
morphology and micro-structural evolution of the Cu–Sn IMCs. The chemical composition
of the IMCs was analyzed by energy-dispersive X-ray spectrometry (EDX). The shear
strengths at different aging times were determined by the die shear tests (Xyztec sigma)
using a bonding tester with a 1 µm shear tool height from the substrate and a 10 µm/s
shear speed. For each aging time, the corresponding shear strengths for 15 specimens were
averaged. After the shear test, the fracture surfaces were analyzed using optical microscopy,
SEM and EDX.

3. Results and Discussion
3.1. Micro-Structure Evolution of Sn/Cu Micro-Bumps before and after Aging at 200 ◦C

Figure 2a shows a backscattered image of the as-fabricated Sn/Cu micro-bump after
the electroplating process. The average thicknesses of the Cu and Sn layers were 2.6 µm
and 3 µm, respectively. In this stage, a thin Cu6Sn5 layer (0.63 µm) formed immediately at
the Sn/Cu interface after the deposition process. The formation of the thin Cu6Sn5 layer is
similar to that reported in the literature [20]. The study indicated that the Cu6Sn5 formed
during or immediately after the deposition of Sn on Cu in bimetallic Cu–Sn films [20].

Figure 2. (a) Cross-section SEM image of the as-fabricated Sn/Cu micro-bump, and the zoomed-in
image in a region near the (b) middle region, (c) right edge, and (d) interface between Cu and Ti layer.
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Figure 2b,c shows the zoomed-in images of the Sn/Cu micro-bump at different places,
as represented by the red rectangle in Figure 2a. It was evident that Cu, Ti and Si were in
contact with each other and no defects, such as cracks, were observed along their interfaces.
However, apparent voids existed at the interface of the sputtered Cu and the electroplated
Cu, as shown in Figure 2d. The formation of these voids would be discussed in Section 3.3.

Figure 3 shows the micro-structure of the Sn/Cu micro-bumps aged at 200 ◦C for
24 h. At this stage, Sn is completely converted into Cu6Sn5 and Cu3Sn. As shown in
Figure 3b, since the Cu layer was still in contact with the IMC and Ti layer, it demonstrated
good adhesion properties in the middle of the bump. Furthermore, because of the surface
diffusion [21–23], the bump edge developed IMCs more rapidly than the middle. In
addition, the Cu layer was completely consumed at the edge of the bump. Therefore, the
IMCs touched the Ti adhesion layer effortlessly at the bump edge. As shown in Figure 3c,
even when all the Cu layers were fully depleted, the right edge of the bump exhibited good
adhesion between the IMCs and the Ti layer, without any obvious cracks. Similarly, the
left edge of the bump shows the same phenomenon. This result indicates that no spalling
effect occurred between the IMCs and the Ti layer, implying that the IMCs adhered to the
Ti layer more stably on mutual contact.

Figure 3. (a) Cross-section SEM image of the Sn/Cu micro-bump after aging at 200 ◦C for 24 h and
the zoomed-in image in a region near the (b) middle region and (c) right edge.
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Figure 4 shows the micro-structure of the Sn/Cu bump aged for 36 h. The Cu3Sn
layer enlarged because of the reaction between Cu and Cu6Sn5. At this stage, as most of
the Cu converted into Cu3Sn, the Cu layer became discontinuous and formed a series of
isolated regions. Compared to the result of aging for 24 h, the interface of Cu3Sn/Cu/Ti
exhibited more voids in the middle region after aging for 36 h. As shown in Figure 4b,
although many voids appeared, no continuous cracks formed. In addition, Figure 4c shows
a zoomed-in image on the right edge of the bump. Although the contact area between the
IMC and the Ti layer grew owing to further Cu depletion, it still exhibited good adhesion
without any cracks. Therefore, spalling did not occur between the Cu3Sn and Ti layers
when accompanied by the formation of voids.

Figure 4. (a) Cross-section SEM image of the Sn/Cu micro-bump after aging at 200 ◦C for 36 h and
the zoomed-in image in a region near the (b) middle region and (c) right edge.

Figure 5 shows the micro-structure of the Sn/Cu bump aged at 200 ◦C for 42 h. In
this stage, Cu was completely consumed and reacted with Cu6Sn5 to form Cu3Sn and the
IMCs came in direct contact with the Ti layer through all the bumps. Although many voids
formed at the Cu3Sn/Ti interface, no continuous gaps or detachments between the IMCs
and the substrate were observed. Besides, Figure 6 exhibits the TEM observation at the
interface between Cu–Sn IMCs and Ti layer. After the higher resolution was examined,
the full IMC structure of micro-bump still had excellent adhesion on the Ti adhesion layer.
This demonstrated a significant difference from the system of the Cr adhesion layer, which
spalled IMCs from the substrate at this stage. This implies that using the Ti adhesion layer
succeeded in preventing the spalling of the IMC from the substrate. This phenomenon is
discussed in detail in the next section.
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Figure 5. (a) Cross-section SEM image of the Sn/Cu micro-bump after aging at 200 ◦C for 42 h and
the zoomed-in image in a region near the (b) middle region and (c) right edge.

Figure 6. The TEM observation of the micro-bump aging after 42 h in (a) the region at the interface
between Cu–Sn IMCs and Ti layer, and the enlarged view into the (b) Cu6Sn5 interface and (c) Cu3Sn
interface from (a).

3.2. Phenomenon between Cu3Sn/Ti Interface

Cu–Sn IMCs may spall from the Cr and Ti surfaces when the Cu film is consumed
in solid–liquid reactions [2–7]. In addition, the spalling phenomenon between the IMCs
and Cr adhesion layer has also been observed during the solid-state reaction, which was
confirmed by the high interfacial energy between the IMCs and Cr [13]. However, in this
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study, the SEM cross-sectional results illustrate that the Cu6Sn5 and Cu3Sn compounds
stably adhered to the Ti surface, as shown in Figure 7. The IMCs attached to the Ti layer
did not spall in the same manner as the Cr system. It is assumed that this phenomenon
might result from the lower interfacial energy between the Cu and Sn intermetallic and Ti
in the solid-state reaction. The relationship between interfacial energies can be described
by the following inequality:

γCu–Sn IMC+γTi > γCu–Sn IMC/Ti (1)

where γCu–Sn IMC is the surface free energy of the intermetallic, γTi is the surface free
energy of Ti and γCu–Sn IMCs/Ti represents the interfacial energy between the Cu and Sn
intermetallic and Ti. When Cu was depleted and the IMC came in contact with the Ti
adhesion layer, the interfacial energy between the Cu and Sn intermetallics and Ti was
still lower than that of the individuals. Therefore, the IMC layers did not leach from the
Ti adhesion layer. In other words, spontaneous spalling did not occur in the Ti system.
However, further studies are required to elucidate this mechanism.

Figure 7. Schematic drawing of a Sn/Cu micro-bump (a) using the Ti adhesion layer; (b) using the
Cr adhesion layer after aging at 200 ◦C with Cu existence.

3.3. Correlation of Void Formation with Reactive Metal Layers

According to the above results, micro-voids are often observed at the Cu3Sn/Ti in-
terface after isothermal aging tests. In addition, many micro-voids coalesce into larger
voids, as shown in Figure 8. This phenomenon could strongly weaken the properties of
micro-bumps, such as their electrical and mechanical properties. Therefore, these voids are
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key factors that threaten the reliability of electronic packages and it is important to realize
the formation of these voids.

Figure 8. The zoomed-in image of voids formation and voids growth at the Cu3Sn/Cu interface after
aging at 200 ◦C for 36 h.

There are two common ways of void formation in the Sn/Cu system. One is a series
of voids that were formed between the sputtered Cu and the electroplated Cu, as shown in
Figure 2. This phenomenon is described as the introduction of several impurities into the
deposited Cu film during the electroplating. Organic additives in the electroplating solution
may be the main reason for the void formation [24–27]. However, the total volume of this
voiding would not change with aging time [25,28]. The other method of void formation is
the Kirkendall voids, which is observed at the Cu3Sn layer. This voiding could be related
to the Kirkendall effect, which was attributed to the unequal diffusion rates of Cu and Sn
in the IMC [29] and impurity segregation [30–34]. It is generally believed that Cu is the
dominant diffusing species in Cu3Sn, a larger diffusion flux of Cu would occur from the Cu
substrate [35–37]. If the vacancies, left by the diffusing-out of Cu atoms, cannot be occupied,
they would gather to form new micro-voids with impurity [30–34]. Consequently, if the
unequal diffusion rate between Cu and Sn exists, the voids would increase continuously.

From Figures 2–4, it is obvious that the voids became larger with the increase in
aging time. Based on previous research [38,39], the voids tended to agglomerate together
and became large, since agglomeration could reduce the surface energy. However, the
voids becoming larger did not symbolize the increase in voids. Therefore, the relationship
between the void quantities and the aging time is required to be determined. Two methods
were used to calculate the void percentage in the experiment.

Porosity 1 (%) =
Pores Area (µm2)

Total Micro − bump Area (µm2)
(2)

Porosity 2 (%) =
Pores Area (µm2)

Cu3Sn Area (µm2)+Pores Area (µm2)
(3)

where Equation (3) is used to calculate the relationship between Cu3Sn layer and pores
because the voids are all found in the Cu3Sn/Ti interface.

Based on Equations (2) and (3), the blue and black curves, respectively, exhibit a similar
trend in Figure 9a,b. First, it is evident that the curves increased rapidly in region II (Sn
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depleted/Cu remaining region), which is the region where Sn was completely consumed
and only the Cu remained. This phenomenon demonstrated that the voids kept growing
due to the unequal diffusion flux, forming more Kirkendall voids. Second, in region III
(Cu-depleted region), which is the region that Sn and Cu were all completely consumed,
because the entire Cu was depleted, the porosity did not change with time. Consequently,
no more Cu diffused to form voids.

Figure 9. The correlation of porosity and (a) Cu thickness, (b) Cu3Sn thickness with different
aging times.

Figure 9 also shows the relationship between the remaining Cu thickness (orange
line) and Cu3Sn growth thickness (red line) versus the two porosities mentioned in
Equations (2) and (3). Figure 9a shows that the porosity increased rapidly when the re-
maining Cu thickness decreased steeply. This strongly indicated again that the void
formation was caused by the Cu diffusion, which is referred to as Kirkendall voids. In
Figure 9b, although the Cu3Sn growth thickness did not fully correspond to the trend of
the porosity, it showed a similar change with the porosity curve.
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3.4. Shear Strength and Fracture Surface of Sn/Cu Micro-Bumps

Although the interfacial IMCs and void formation at the interface typically have a
significant effect on the solder joint reliability [14–19], a die shear test was conducted to
evaluate the effect of interfacial reactions of Sn/Cu micro-bumps in a solid-state reaction.

Figure 10 shows the SEM images and EDX mapping analysis of the fracture surface of
the bump at various aging times. Shear tests were conducted from left to right. Based on
previous studies, the Sn/Cu6Sn5 interface is the main factor affecting the fracture location
in the as-fabricated sample [40]. Therefore, as shown in Figure 10a, the bump was broken at
the Sn/Cu6Sn5 interface without aging. However, as shown in Figure 2, there were a series
of voids and the formation of small cracks between the sputtered Cu and the electroplated
Cu without aging. These defects do not affect the mechanical properties at this stage. From
the SEM images, the fracture surface did not pass through these voids, so the mechanical
strength was determined by the Sn/Cu6Sn5 interface.

Figure 10. The fracture surfaces of solder joints after aging at 200 ◦C for: (a) 0 h, (b) 24 h, (c) 36 h and
(d) 48 h with their elemental area distribution of Ti (green), Cu (red), Sn (blue).

Figure 10b–d shows the fracture surface after aging for 24–48 h and Figure 11 shows
the phase percentages of the fracture surface with different aging times. To ensure the
full IMC structure in micro-bumps, the sample aging after 48 h was used in the die shear
test. In the analysis of the fracture surface, four main layers, Cu6Sn5, Cu3Sn, Cu and Ti,
were exposed at different aging times. The Cu3Sn layer was only slightly exposed in these
SEM images. Interestingly, the exposed Ti layer increased with decreasing Cu6Sn5 layer
thickness as the aging time increased.
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Figure 11. The phase percentages of fracture surface against aging time.

Figure 12 shows the correlation between the aging time and the shear strength. The
strength was approximately 9 MPa without aging. This means that the Sn/Cu6Sn5 would
be the main weak interface in the as-fabricated micro-bump. However, the shear strength
steeply increased to 32 MPa after aging for 24 h and then remained constant after aging for
36 h and 48 h. During this period, the Cu3Sn layer thickened and was the major component
of IMCs attached to the Ti layer through aging. In addition, the number of voids increased
with the growth of Cu3Sn. However, we found that the number of voids has little effect on
the strength. Thus, the shear strength was dominated by Cu3Sn/Ti adhesive interface but
not by voids. This phenomenon is finally discussed below.

By combining the findings from the cross-sectional observation, fracture surface ob-
servation and strength measurement, a schematic summarizing the results of the fracture
analysis is presented in Figure 13. After electroplating, a thin Cu6Sn5 layer was formed
between the Cu and Sn layers; thus, the fracture occurred through the Sn/Cu6Sn5 interface
with a very smooth fractured surface. When the aging time reached 24 h, the shear strength
increased with the growth of Cu3Sn. In addition, according to the phenomenon mentioned
above, the outer edge of the micro-bump formed some voids at the Cu3Sn/Ti interface.
The stress concentration would be developed around these voids, which could more easily
cause the crack growth. Therefore, the crack propagated along with the Cu6Sn5 layer and
extended to the Cu3Sn/Ti interface. Furthermore, when the aging time increased to 36 and
48 h, the Cu3Sn layer grew increasingly with the depletion of the Cu layer, and the void for-
mations also increased at the Cu3Sn/Ti interface. Thus, the cracks propagated more easily
and extended to the Cu3Sn/Ti interface. This led to an increase in the percentage of the ex-
posed Ti area on the fracture surface with increasing aging time. However, since the fracture
surface mainly occurred at the Cu3Sn/Ti interface, the adhesion between Cu3Sn and Ti was
the main factor controlling the shear strength. Therefore, the strength did not change with
increasing aging time and the number of micro-voids. The micro-structural characterization
suggested that the key reason for determination of the micro-bump strength was not the
void formation but the types of the IMC interface. Therefore, it is important to realize
the interfacial reaction and IMC formation during the miniaturization of micro-bumps to
achieve better joint strength.
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Figure 12. Variation of the shear strength with the aging time at 200 ◦C.

Figure 13. Cont.
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Figure 13. Schematic drawing showing the crack propagation of Sn/Cu micro-bumps (a) as-fabricated,
and after (b) 24 h, (c) 36 h, and (d) 48 h of aging.

4. Conclusions

In this study, the micro-structural evolution of Sn/Cu micro-bumps during the solid-
state reaction with the Ti adhesion layer at 200 ◦C was investigated. Based on the results,
the following conclusions are drawn.

1. Under the as-fabricated condition, a thin layer of Cu6Sn5 was formed at the Cu and
Sn interfaces. In addition, after the aging time increased from 24 to 42 h, the Cu6Sn5
and Cu3Sn phases primarily thickened and extended towards the substrate.

2. With the complete consumption of Sn and Cu, voids could be found and extended
to the entire bump at the Cu3Sn/Ti interface; however, these voids could not induce
cracks or gaps.

3. After aging for 42 h, the micro-bumps transformed into intermetallic (IMC) struc-
tures. Owing to the lower interfacial energy between the Cu and Sn IMCs and the
Ti layer, they all attached well to each other and the micro-bump did not exhibit
spontaneous spalling.

4. The correlation of void formation is related to the unbalanced diffusion rate in Cu3Sn.
Since the trend of porosity had highly corresponding with Cu thickness consumption,
these voids could be indicated as the Kirkendall voids.

5. In the die shear test analysis, the strength of the bumps was determined by the type
of the IMC interface. In addition, after aging, the voids extended to the entire bump,
and the fracture surface exposed more Ti area. This phenomenon could be attributed
to the fact that the voids would only influence the fracture path.

Finally, compared to the Cr system, the Ti adhesion layer imparted excellent properties
to the full IMC joints. Therefore, the Ti system can be used to obtain reliable micro-
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joints as an UBM layer, as it prevents spalling of the IMCs produced during the terminal
solid-state reaction.
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Abstract: This study successfully established a strip warpage simulation model of the flip-chip
process and investigated the effects of structural design and process (molding, post-mold curing,
pretreatment, and ball mounting) on strip warpage. The errors between simulated and experimental
values were found to be less than 8%. Taguchi analysis was employed to identify the key factors
affecting strip warpage, which were discovered to be die thickness and substrate thickness, followed
by mold compound thickness and molding temperature. Although a greater die thickness and mold
compound thickness reduce the strip warpage, they also substantially increase the overall strip
thickness. To overcome this problem, design criteria are proposed, with the neutral axis of the strip
structure located on the bump. The results obtained using the criteria revealed that the strip warpage
and overall strip thickness are effectively reduced. In summary, the proposed model can be used to
evaluate the effect of structural design and process parameters on strip warpage and can provide
strip design guidelines for reducing the amount of strip warpage and meeting the requirements for
light, thin, and short chips on the production line. In addition, the proposed guidelines can accelerate
the product development cycle and improve product quality with reduced development costs.

Keywords: flip-chip process; strip warpage; bump

1. Introduction

Integrated circuit (IC) packaging technology is continually innovating, with chips
becoming lighter, thinner, and shorter. Due to the reduced size and an unmatched coefficient
of thermal expansion (CTE) between the materials of the package, warpage occurring after
completion of the thermal process can cause numerous problems. Large deformation results
in the weak attachment of bumps or copper rods to the circuit board, which could even
damage the structure and signal. Therefore, many studies have addressed warpage-related
issues, and finite element (FE) simulation methods have been employed to analyze warpage
behavior.

In the related literature on warpage theory because IC packages are composed of
composite materials, the warpage behavior generated by thermal processes has been
concluded to be complicated. Timoshenko [1] proposed a theory to explain the warpage
caused by temperature changes in two bonded materials. Chen [2] discussed the effect
of two bonding materials on warpage at different temperatures, theoretically analyzed
a bimaterial structure, and sketched a multilateral structure. Garrett [3], of the technical
department of Akrometrix, used Timoshenko’s biomaterial warpage theory [1] to derive the
variables of warpage after an IC molding process: material properties (Young’s modulus
and CTE), mold compound, substrate thickness, and temperature of the molding process.
Wu et al. [4,5] discussed how the material properties of epoxy composites affected the
performance of electronic devices and discovered the desirable dielectric and thermal
properties for their design; they also studied the microwave absorption for nanorod and
spinel structures [6,7]. Although some studies have analyzed package warpage theoretically,
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they simplified the structure into only the mold compound and substrate. A package also
contains complex structures such as a die, wire bonding, copper rods, and bump solder
balls. Thus, this simplification cannot fully reflect the actual situation.

Some scholars have recently employed FE simulation to analyze package warpage.
Dudek et al. [8] used FE simulation to analyze the effects of the mechanical and thermal
properties of the material body on warpage. In addition, Hu et al. [9] employed FE simula-
tion to investigate plastic ball grid array packaging technology and developed a bimaterial
warping model, where the substrate and mold compound in the package were used to
discuss the effect of the molding process on warpage. Moreover, Huang et al. [10] used FE
simulation to explore the effect of geometric die and substrate thicknesses on warpage. For
packaging technology, they employed a single-sample window ball grid array, and they
obtained simulated values consistent with the trend described by Timoshenko’s bimaterial
theory [1] for the effect of the reflow process on warpage. Chae and Ouyang [11] discussed
the effect of molding temperature on strip warpage for flip-chip strip packaging technology.
They discovered that a high molding temperature will cause large strip warpage. In addi-
tion, they proposed the use of mechanics of composite materials theory for calculating the
CTE of a substrate and mold compound at 25, 150, and 260 ◦C. Huber et al. [12] employed
an FE simulation to determine the effect of mold compound on warpage after a long period
of thermal aging. Bin et al. [13] applied FE simulation to fine pitch ball grid array packaging
technology; they also discussed the effect of the geometric thickness of the mold compound
and die on warpage when a strip was subjected to the molding process. The results revealed
a negative correlation between the strip warpage and geometric thickness of the mold
compound and die. Zheng et al. [14] proposed a reference temperature calibration of the
flip-chip warping simulation model, obtaining consistency and small errors between the
simulated and experimental warpage values. Chen et al. [15] employed FE simulation to
investigate embedded silicon fan-out wafer-level package technology. The technique does
not require EMC materials, and its structure is relatively simple. Therefore, the proposed
simulation model achieved relatively good agreement with experimental and theoreti-
cal value, and the error between the experimental and the simulation results was only
approximately 9%. However, this method is not feasible for a more complex simulation
model with an EMC structure. Tsai et al. [16] proposed a new Suhir-solution-based theory
for predicting the thermal deformation of flip-chip packages with the capillary underfill
process and discussed the effect of the temperature of the reflow process on warpage. The
deviation between the model and experimental results was approximately 25%. They also
proposed a strain gauge measurement associated with a beam model theory to determine
the thermally induced warpages of packages. The thermal strain results were consistent
with those of validated FEM. Therefore, the strain gauge method proved feasible in de-
termining the thermal warpages of packages [17]. Yao et al. [18] proposed an analytical
model to evaluate the pore and superficial permeability of an underfill porous medium in a
flip-chip packaging; they also presented an approach to predict the flow front and the filling
time [19]. Chiang et al. [20] proposed an overview of artificial intelligence assisted design
on simulation technology for reliability life prediction of advanced packaging. Developers
only need to input geometric data of the package structures, and then the reliability life
cycle can be obtained by this AI-trained model. Lin et al. [21] presented a finite element
method to predict the final warpage of an ultra-thin flip chip scale package based on chem-
ical shrinkage and cure-dependent viscoelasticity of molded underfill. Errors between the
experimental and simulation results were approximately 10%. Cheng et al. [22] investigated
the warpage behavior of a flip chip package-on-package (FCPoP) assembly during the
fabrication process. They took some effects into account, such as the viscoelastic behavior
and cure shrinkage of the epoxy molding compound. The results showed that simulation
data fell within the ranges of the measured data.

The flip-chip is a commonly used packaging technique. Figure 1 shows the flip-chip
process flow investigated in this study, and Figure 2 shows a schematic of a single flip-chip
unit. As shown in Figure 1, the bonding process involves 12 steps:
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1. Wafer Grinding: the wafer is first processed by grinding before any fabrication proce-
dure is conducted.

2. Wafer Saw: the wafer is diced into small dies of target size.
3. Flip-chip Bond: the cut die obtained from Step 2 is placed on the substrate with the

help of bumps and soldering flux, but these are not completely fused together.
4. Reflow: through the reflow process, the bumps and soldering flux on the substrate

are fused so that the die can be fixed on the substrate.
5. Flux Cleaning: plasma cleaning can remove contaminants formed during the produc-

tion process, thereby effectively enhancing the strength of the bond between the die
and substrate.

6. Pre-MD Baking: this refers to the baking before molding, where water moisture
subsequently formed in the die, substrate, and bumps must be completely removed to
ensure that the mold compound fits tightly to protect the die, substrate, and bumps.

7. Pre-MD Plasma Cleaning: the plasma surface is cleaned to remove impurities on the
surface so that gaps between the internal components can be filled during molding.

8. Molding: a mold compound is injected into the package to seal all the components,
protecting the die and bumps inside the device.

9. Post-molding cure (PMC): the sealed device is cured again to enhance its structural
stability.

10. Pre-treatment: pre-heat treatment before implantation of solder balls.
11. Ball Mounting and Reflow: solder balls are implanted underneath the base substrate

for future signal connection with the external circuit.
12. Package Saw: the strip is diced into single wafers for packaging and shipping.

Because of the CTE mismatch between the packaging material, strip warpage often
occurs during processes that require heating. Among the procedures, Steps 3–4, 6, and 8–11
are all performed at high temperatures. However, based on manufacturing experience, the
strip is almost completely flat during Steps 3–7. No strip warpage occurs, even during
the molding process in Step 8, when the strip is sealed by the mold compound and other
materials at 175 ◦C. At this point, the strip remains almost flat. As discussed in several
papers [3,9,11,14], strip warpage mainly occurs when the device is cooled to room tem-
perature at 25 ◦C after the molding process. Severe strip warpage occurring during the
post-molding period reduces product yield. The literature [8–14,20–22] indicates that FE
simulation is frequently used to solve packaging warpage problems. Material parameters
are crucial for determining whether consistency between simulated and experimental
values is achieved. In particular, the mold compound is a high molecular polymer with a
Young’s modulus and CTE that exhibit large temperature-based variations. In addition,
few scholars have simultaneously simulated the effects of different geometric structures
and process temperatures on warpage.

The present study input the temperature variation curve of the material properties
into the simulation model and simulated the effects of different steps in the continuous
process on warpage. The effects of the process temperature and geometric thickness of
the mold compound, substrate, and die on warpage were also determined. Therefore, this
study simulated a more realistic situation than previous studies. The proposed model and
warpage analysis method can be used by designers to predict warpage under a continuous
process and identify the optimal parameter design conditions for reducing strip warpage.
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2. Research Method

The research method was divided into three steps: strip model, Taguchi method, and
structural design.

2.1. Strip Simulation Model
2.1.1. Model Establishment

This study used the COMSOL Multiphysics software to establish a strip model. Table 1
lists the specifications of the strip structure. The shape of the strip included a long side
(x-direction) and a short side (y-direction). When the molding process was cooled to room
temperature (25 ◦C), the amount of warpage on the short side of the strip was relatively
small; only the direction of the long axis exhibited severe warpage (Figure 3). Table 2
lists the experimental values of the strip warpage (with compound 1). As shown in the
table, no warpage occurred on either the long or short side during the molding process
(Step 8) at 175 ◦C. However, as the strip was cooled to 25 ◦C, the CTE mismatch between
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the packaging materials caused a severe warpage of 7 mm but no measurable warpage on
the short side. Until the end of Step 11 (ball mount), only minor warpage was observed
on the short side. Therefore, strip warpage mainly occurred on the long side. To identify
the main cause of warpage and reduce the simulation time required, this study simplified
the 3D strip model to a 2D strip model. Subsequently, because a strip is a symmetrical
structure, a quarter of the 2D strip model was used in this study. Figure 4 illustrates the
quarter 3D strip model and 2D strip models. Figure 2 shows a structural diagram of a
single unit in the strip, where each strip contained a total of 119 single-unit chips, and the
structures included a mold compound, die, bump, and substrate. As shown in Table 3, we
also validated the feasibility of a 2D simulation model. The results obtained from the 2D
simulation model were found to be consistent with the experimental values, suggesting
that it is possible to simplify the 3D model to a 2D model.

Table 1. Specifications of the strip structure.

PKG Information

PKG size (mm2) 7 × 7
Mold compound thickness (µm) 450

Die size (mm2) 6.3 × 6.34
Die thickness (µm) 150

Bump type SAC405
Bump pitch (µm) 190
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Figure 3. Actual strip warpage on the production line.

Table 2. Experimental values of strip warpage.

Process Flow
Strip Warpage (mm)

Long Side
(x-Direction)

Short Side
(y-Direction)

8. Molding 175 ◦C 0 0
25 ◦C 7 0

9. PMC 5 N/A
10. Pre-treatment 7 N/A

11. Ball mount 7.5 N/A

Table 3. Experimental values vs. simulation values of strip warpage.

Process Flow
Strip Warpage (mm)

Experimental Value Simulation Value

8. Molding 175 ◦C 0 0
25 ◦C 7 7.36

9. PMC 5 5.14
10. Pre-treatment 7 6.73

11. Ball mount 7.5 6.90
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2.1.2. Establishing Material Parameters

Material parameters are crucial to ensure that the simulation results of a model match
the actual situation. As illustrated in Figure 2, four materials were present in the structure:
bump, die, substrate, and mold compound. To match the materials on the production line,
the bump was simulated as SAC405 (95.5Sn:4.0Ag:0.5Cu) and the die as being silicon. As
shown in Tables 4 and 5, the most important issue was based on [8–10,12]. The mold com-
pound is a polymer material, whereas the substrate is composed of different materials, so it
has varying mechanical and thermal properties due to differences in ambient temperature.
The mold compounds employed in this study were the mold compounds 1 and 2, which
are used on the production line. A dynamic mechanical analyzer (DMA) was employed
to measure the Young’s modulus of the mold compounds and substrate. The range of
temperatures used was 25–260 ◦C, and the Young’s modulus curves (E(T) curves) of the
substrate and mold compounds are presented in Figures 5a and 6a, respectively. The
Young’s modulus curve is steep and has a negative slope at ambient temperatures of both
mold compounds 1 and 2, close to its glass transition temperature (Tg; ca. 165 ◦C and
130 ◦C for mold compounds 1 and 2, respectively). A thermal mechanical analyzer (TMA)
was employed to measure the CTE of the substrate and mold compounds 1 and 2 over
the temperature range of 25–260 ◦C (Figures 5b and 6b, respectively). The CTE curves of
mold compounds 1 and 2 are steep and have a positive slope at ambient temperatures close
to Tg. The CTE measurement results obtained for the substrate agree with the IPC-4101
specification [23]. Unlike related studies [8–14], this study input the temperature variation
curves E(T) and α(T) of mold compounds and the substrate into the simulation model,
which ensured that the material parameters of the simulation model were close to the
actual situation.

Table 4. Material parameters of bump, silicon, and substrate.

Bump-SAC405 Die (Silicon100) Substrate

Young’s modulus (GPa) 53 131 Figure 5a
Poisson’s ratio 0.40805 0.27 0.2

Density (kg/m3) 7445.45 2330 1938
CTE (ppm/◦C) 20 2.8 Figure 5b
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Table 5. Material parameters of mold compounds.

Mold Compound 1 Mold Compound 2

Young’s modulus (GPa) Figure 6a Figure 6a
Poisson’s ratio 0.3 0.3

Density (kg/m3) 2010 1990
CTE (ppm/◦C) Figure 6b Figure 6b
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Figure 5. (a) Young’s modulus E(T) and (b) CTE α(T) of substrate.

As illustrated in Figure 2, the bump was located between the die and the substrate
and was used for signal connection. According to the mechanics of materials [24], when the
stress of a material exceeds the yield stress, the material is no longer a linear elastic material,
and it undergoes plastic deformation. The stress–strain diagram of an SAC405 bump
was presented in [25]. The stress–strain diagram obtained in the present study (Figure 7)
indicates a yield stress of 26 MPa and was input into the simulation model. According
to [26], a creep effect can occur in a metal when the ambient temperature exceeds one-third
of its melting point, and one-third of the melting point of an SAC405 bump is 72.28 ◦C. The
flip-chip considered in this study had a process temperature of ≥175 ◦C. This study was
different from other related studies [8–14] as the plastic effect of a bump [25] and the creep
effect [26] were considered in this model. Both effects were input into the simulation model
to match a realistic situation.
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2.1.3. Boundary Condition Settings

The process flow of the flip-chip on the production line consisted of twelve steps, as
illustrated in Figure 1. The issue was warpage generation due to the unmatched CTEs
of the package materials. Warpage mostly occurred after thermal processes. The six
steps involving thermal processes were reflow, pre-MD (molding) baking, molding, PMC,
pretreatment, and ball mounting. However, according to experience from production line
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workers, strips are almost flat after Steps 3–7, as illustrated in Figure 8a. Even when the
mold compound is combined with the other materials into the strip package at 175 ◦C
during molding, warpage had not yet occurred, and the strip was almost flat. However,
severe warpage occurred when the strip was cooled to a room temperature of 25 ◦C, as
shown in Figure 8b. In related studies [8–14], the simulation model was set for a stress-free
state at a molding temperature of 175 ◦C. As illustrated in Figure 8, the stage and strip at
both ends of the strip model were defined as contact points at position A, and the stage was
a simple support. For any end point A located between y = 0 and w (where w is the width
of the strip), the following 2D boundary condition can be imposed: point A is allowed
to move freely along the x-direction with an arbitrary displacement (displacement along
the x-direction is ux = constant) but fixed along the z-direction (displacement along the
z-direction is uz = 0).
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According to [8,9,11,13,14], warpage mainly occurs during molding. Therefore, the
simulation model starts from the molding process (Step 8). Continuous simulation calcula-
tions of different processes were conducted to simulate Steps 8–11 of the thermal process.
Table 6 details the process temperature ranges and times for these steps. First, the molding
process was simulated (Step 8) by cooling the system from 175 ◦C to a room temperature
of 25 ◦C. Subsequently, the temperature was increased to and then maintained at 175 ◦C
for 240 min during the PMC process (Step 9) to completely cure the mold compound and
eliminate internal stress. Finally, in Steps 10 and 11, the reflow process for pretreatment of
the solder ball and implantation of the ball into the substrate was simulated.

Table 6. Process temperature ranges and times for flip-chip.

Process Flow Temperature Range (◦C) Process Time (s)

8. Molding 175→ 25 30
9. PMC 25→ 175→ 25 20,040

10. Pre-treatment 25→ 238→ 25 935
11. Ball mount 25→ 238→ 25 935

2.2. Taguchi Method

Various variables, such as geometric structure and process temperature, can affect
the warpage during the process. Few scholars have simultaneously studied the effects of
different geometric structures and process temperatures on strip warpage. Therefore, this
study explored the effects of process temperature and geometric thickness of the mold
compound, substrate, and die on strip warpage. The process temperature was changed
mostly in Steps 8 and 9. Hence, this study used Taguchi’s orthogonal arrays to establish
an L16 variable combination. Table 7 lists the control factors and their settings. This
study explored five factors: three related to structural thickness (thickness of the mold
compound, die, and substrate) and two related to process temperature (molding and
PMC temperatures).

265



Materials 2022, 15, 323

Table 7. Control factors and their settings.

Name of Control Factors Level 1 Level 2 Level 3 Level 4

Mold compound thickness(µm) 150 450 750 1100
Die thickness (µm) 75 150 250 400

Substrate thickness (µm) 100 180 300 500
Molding temp. (◦C) 150 165 175 185

PMC temp. (◦C) 175 185

2.3. Structural Design

IC packages are composed of numerous different materials and geometrical shapes.
This study used the neutral axis theory of composite materials [24] as the structural design
criteria. Severe strip warpage occurs when the strip is cooled to room temperature (25 ◦C).
Therefore, this study investigated the relationship between the zn-coordinate of the neutral
axis and warpage at 25 ◦C. Equation (1) was used to calculate the neutral axis z-coordinate
formula of the composite material, where AMold compound, ADie, ABump, and ASubstrate are the ar-
eas of the mold compound, die, bump, and substrate, respectively. Table 8 lists the Young’s
modulus of each material at 25 ◦C. The Young’s moduli were normalized by dividing each
by the minimum. n represents the transformation factor, and nMold compound, nDie, nBump,
and nSubstrate represent the proportional Young’s moduli of the materials. Furthermore,
zMold compound, zDie, zBump, and zSubstrate are the centroid z-coordinates of the mold compound,
die, bump, and substrate, respectively. Substituting the values in Table 8 into Equation (1),
the z-coordinate zn of the neutral axis of the 2D strip in Figure 3 was obtained as 280.61 µm.

zn =
A1 × n1 × z1 + A2 × n2 × z2 + A3 × n3 × z3 + A4 × n4 × z4

A1 × n1 + A2 × n2 + A3 × n3 + A4 × n4
(1)

were

A1 = AMold compound, n1 = nMold compound, z1 = zMold compound.
A2 = ADie, n2 = nDie, z2 = zDie;
A3 = ABump, n3 = nBump, z3 = zBump;
A4 = ASubstrate, n4 = nSubstrate, z4 = zSubstrate.

Table 8. Transformation factor n for each material.

Material Young’s Modulus (GPa) n = Material (E)/Substrate (E)

Substrate 10.75 1
Bump 53 4.93

Die 131 12.18
Mold compound 1 18.66 1.73

3. Results
3.1. Experimental Results

Figure 9 indicates eight points (D1–D8) as the measuring positions along the strip. D4
and D8 were in the middle of the long side of the strip, while D2 and D6 were in the middle
of the short side of the strip. A ruler was used to measure the warpage at the start of the
molding process at 175 ◦C and the end of the process at 25 ◦C. Table 9 lists the experimental
values of strip warpage at the reference points during the molding process. The results
show that D4 and D8 are the positions at which the maximum warpage occurred. A similar
process was applied to obtain the maximum warpage of the strip during the post-mold
curing, pre-treatment, and ball mount processes. These results are listed in Table 10.
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Table 9. Experimental values of strip warpage at reference points.

Process Flow

Strip Warpage (mm)

Long Side
(x-Direction)

Short Side
(y-Direction) Corner

D4 D8 D2 D6 D1 D3 D5 D7

8. Molding 175 ◦C 0 0 0 0 0 0 0 0
25 ◦C 7 7 0 0 0 0 0 0

Table 10. Comparison of strip warpage simulation and experimental values using mold compound 1.

Process Flow
Strip Warpage (mm)

Experimental Value Simulation Value Error (%)

8. Molding 7 7.36 5.14
9. PMC 5 5.14 2.8

10. Pre-treatment 7 6.73 3.85
11. Ball mount 7.5 6.90 8.00

3.2. Simulation Results
3.2.1. Experimental and Simulation Results

Most related studies only considered a single process step (molding and reflow) [8–14];
in contrast, this study successfully simulated the continuous flip-chip process from molding
to ball mounting (Steps 8–11). Table 10 presents a comparison of the simulation results
and experimental values, and Figure 10 illustrates the simulation results of strip warpage
after each process for mold compound 1. The warpage trends are consistent, revealing a
concave shape facing downwards. The simulated and experimental values were similar,
with differences all lower than 8%. Therefore, the model established in this study is feasible
for simulating the flip-chip process.
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3.2.2. Comparison of Mold Compounds

To investigate the effect of mold compounds for strip warpage on the production line,
the strip warpage of different mold compounds (mold compounds 1 and 2) was compared
under the same geometry and process conditions. Table 11 presents a comparison of strip
warpage for mold compounds 1 and 2, and the results demonstrate that the strip containing
mold compound 2 warped less than mold compound 1, regardless of the specific process
step. The two main factors affecting warpage under the same geometric structure and
process conditions are as follows:

1. The CTE difference between the mold compound and substrate had a greater impact,
the larger the difference, the larger the strip warpage.

2. The Young’s modulus of the mold compound exerted an effect, the larger the young’s
modulus, the greater the structural rigidity of the strip and the lower the warpage.

Table 11. Comparison of strip warpage simulation values for mold compounds 1 and 2.

Process Flow
Strip Warpage (mm)

Mold Compound 1 Mold Compound 2

8. Molding 7.36 5.02
9. PMC 5.14 3.48

10. Pre-treatment 6.73 4.65
11. Ball mount 6.90 4.71

As shown in Figures 5b and 6b, the CTE difference between mold compound 2 and the
substrate was smaller than that between mold compound 1 and the substrate. In addition,
Figure 6a indicates that the Young’s modulus of mold compound 2 was slightly larger than
that of mold compound 1. The use of mold compound 2 resulted in less strip warpage for
each process than the use of mold compound 1.

4. Discussion
4.1. Taguchi Analysis

Since the degree of warpage that occurs during ball mounting (Step 11) directly affects
the single-chip yield in the singulation step (Step 12) of the flip-chip process, this study
focused on the strip warpage that occurred during the ball mounting process. Figure 11
displays the Taguchi analysis’ main effect diagram of the ball mounting warpage. Ac-
cording to Figure 11, the main factors affecting strip warpage are the die and substrate
thickness, followed by mold compound thickness and molding temperature. The least
influential factor is PMC temperature. This study investigated the effects of these five
factors sequentially. First, the effect of die thickness was evaluated. The Young’s modulus
of the die was relatively high (131 GPa), which indicates that the die was the most rigid
material in the strip. Therefore, when the die thickness was increased, the structural rigid-
ity of the strip notably increased, reducing the amount of warpage. Second, the effect of
substrate thickness factor was determined. When the substrate thickness was increased
to 300–500 µm, the amount of warpage rose sharply to >7 mm; thus, substrate thickness
was positively correlated with warpage (Figure 11). Third, the effect of mold compound
thickness was investigated. A higher mold compound thickness resulted in greater strip
rigidity. However, the warpage was considerably reduced only when the thickness was
increased to 1100 µm; thicknesses of 150, 450, and 750 µm were unable to cause large
warpage reduction. Fourth, the effect of molding temperature factor was evaluated. The
smaller difference between the molding process temperature and room temperature of
25 ◦C resulted in the lower warpage. Nonetheless, the molding process temperature must
be higher than the Tg of the mold compound. Finally, the effect of PMC temperature
factor was determined. The results clearly demonstrate that a change in the PMC process
temperature has no strong effect on warpage.

268



Materials 2022, 15, 323

Materials 2022, 15, x FOR PEER REVIEW 13 of 16 
 

 

According to Figure 11, the main factors affecting strip warpage are the die and substrate 
thickness, followed by mold compound thickness and molding temperature. The least in-
fluential factor is PMC temperature. This study investigated the effects of these five factors 
sequentially. First, the effect of die thickness was evaluated. The Young’s modulus of the 
die was relatively high (131 GPa), which indicates that the die was the most rigid material 
in the strip. Therefore, when the die thickness was increased, the structural rigidity of the 
strip notably increased, reducing the amount of warpage. Second, the effect of substrate 
thickness factor was determined. When the substrate thickness was increased to 300–500 
µm, the amount of warpage rose sharply to >7 mm; thus, substrate thickness was posi-
tively correlated with warpage (Figure 11). Third, the effect of mold compound thickness 
was investigated. A higher mold compound thickness resulted in greater strip rigidity. 
However, the warpage was considerably reduced only when the thickness was increased 
to 1100 µm; thicknesses of 150, 450, and 750 µm were unable to cause large warpage re-
duction. Fourth, the effect of molding temperature factor was evaluated. The smaller dif-
ference between the molding process temperature and room temperature of 25 °C resulted 
in the lower warpage. Nonetheless, the molding process temperature must be higher than 
the Tg of the mold compound. Finally, the effect of PMC temperature factor was deter-
mined. The results clearly demonstrate that a change in the PMC process temperature has 
no strong effect on warpage. 

For the current flip-chip structure design, the following four process condition de-
signs can reduce the amount of strip warpage: 
1. greater die thickness (>150 µm). 
2. greater mold compound thickness (>1100 µm). 
3. smaller substrate thickness (<100 µm); and 
4. lower molding temperature, although it should not be lower than the Tg of the mold 

compound. 

 
Figure 11. Main effect diagram of factors affecting warpage during ball mounting. 

4.2. Structural Design Criteria 
According to the Taguchi analysis presented in Section 4.1, a greater die thickness, 

greater mold compound thickness, smaller substrate thickness, and lower molding tem-
perature are ideal for reducing warpage. However, the trend in manufacturing is for thin-
ner, lighter, and shorter chips, and increasing the die and mold compound thicknesses to 
reduce warpage is not optimal. Therefore, this study constructed a structural strip design 
based on composite material neutral axis theory [24,27] and investigated the relationship 
between zn and warpage. Table 12 lists the ball mounting warpage simulation results, 

Figure 11. Main effect diagram of factors affecting warpage during ball mounting.

For the current flip-chip structure design, the following four process condition designs
can reduce the amount of strip warpage:

1. greater die thickness (>150 µm).
2. greater mold compound thickness (>1100 µm).
3. smaller substrate thickness (<100 µm); and
4. lower molding temperature, although it should not be lower than the Tg of the

mold compound.

4.2. Structural Design Criteria

According to the Taguchi analysis presented in Section 4.1, a greater die thickness,
greater mold compound thickness, smaller substrate thickness, and lower molding temper-
ature are ideal for reducing warpage. However, the trend in manufacturing is for thinner,
lighter, and shorter chips, and increasing the die and mold compound thicknesses to reduce
warpage is not optimal. Therefore, this study constructed a structural strip design based on
composite material neutral axis theory [24,27] and investigated the relationship between zn
and warpage. Table 12 lists the ball mounting warpage simulation results, where the origi-
nal parameters reflect the original conditions on the production line, and zn is the neutral
axis z-coordinate of each structural condition. The positions of the structural neutral axis
zn-coordinates were divided into three categories: (1) neutral axis on the mold compound
(No. 13), (2) neutral axis on the die (Nos. 2, 3, 4, 5–12, and 14–16), and (3) neutral axis on
the bump (No. 1).

First, the neutral axes on the mold compound (No. 13) and die (Nos. 2, 3, 4, 5–12, and
14–16) are discussed. Three characteristics were identified after comparing with the main
effect analysis diagram in Figure 11:

1. less warpage occurred when the substrate thickness was <180 µm (e.g., Nos. 16, 12, 6,
11, and 15) and the warpage was <5.15 mm.

2. greater warpage occurred when the substrate thickness was ≥300 µm (e.g., Nos. 14, 7,
9, and 10) and the warpage was >7.92 mm; and

3. Nos. 5 and 8 were special because the substrate thickness was only 180 µm (in No. 5),
and the die thickness was only 75 µm, which caused insufficient structural rigidity,
resulting in a warpage of 7.63 mm.
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Table 12. Warpage simulation results obtained with production-line and L16 parameters.

No.

Mold
Compound
Thickness

(µm)

Die
Thickness

(µm)

Substrate
Thickness

(µm)

Molding
Temp.
(◦C)

PMC Temp.
(◦C)

Ball Mount
Warpage

(mm)
zn (µm)

Original 450 150 180 175 175 6.36 280.61

1 150 75 100 150 175 4.69 156.18
2 150 150 180 165 175 6.21 258.21
3 150 250 300 175 185 7.71 410.69
4 150 400 500 185 185 7.47 661.20
5 450 75 180 175 185 7.63 264.51
6 450 150 100 185 185 4.47 205.25
7 450 250 500 150 175 8.31 602.85
8 450 400 300 165 175 4.75 479.12
9 750 75 300 185 175 9.36 434.78
10 750 150 500 175 175 9.79 620.90
11 750 250 100 165 185 4.81 276.04
12 750 400 180 150 185 2.94 394.61
13 1100 75 500 165 185 8.98 703.36
14 1100 150 300 150 185 7.92 524.47
15 1100 250 180 185 175 5.15 421.30
16 1100 400 100 175 175 1.91 373.81

In contrast, although the substrate and die thicknesses of No. 8 were 300 and 400 µm,
respectively, the structural rigidity was sufficient, and thus the warpage was only 4.75 mm.
For No. 1 (bump on the neutral axis), even if the mold compound and die thicknesses
were only 150 and 75 µm, respectively, with the substrate thickness being only 100 µm,
a relatively small warpage of 4.69 mm occurred. Therefore, the group with neutral axis
coordinates below the die and above the bump resulted in relatively small warpage.

In summary, the die and substrate thicknesses have a strong effect on warpage in the
structural design. This study discovered that in the flip-chip process design, in addition to
meeting the production requirement that the mold compound should nearly completely
cover the die, two conditions must be fulfilled to minimize the amount of strip warpage:
(1) neutral axis on the bump and (2) neutral axis on the die with a die thickness of >150 µm
and substrate thickness of <180 µm. If one of these conditions is met, the strip will have a
smaller warpage of <5.15 mm. The authors suggest that designers set the neutral axis of
the strip structure on the bump, which is more suitable for the current production trend of
thin, light, and short design.

5. Conclusions

This study successfully established a strip warpage simulation model of the flip-
chip process and investigated the effects of structure design and process (molding, PMC,
pretreatment, and ball mounting) on strip warpage. The errors between model and exper-
imental values were less than 8%, indicating that the simulation method can be applied
to the flip-chip process steps and can be extended to strip warpage analysis of different
mold compounds in the future. In addition, Taguchi analysis was employed to identify
the key factors affecting strip warpage, which were discovered to be die thickness and
substrate thickness, followed by mold compound thickness and molding temperature.
Although greater die and mold compound thicknesses result in less warpage, they cause
a substantially greater overall strip thickness, which does not comply with the current
trend towards thin, light, and short chips. To overcome this problem, this study proposed
the design concept of setting the neutral axis of the strip structure on the bump, which
reduces the amount of strip warpage and the overall strip thickness. In summary, the model
proposed in this study can be used to evaluate the effect of structural design and process
parameters on strip warpage and can provide strip design guidelines for minimizing strip
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warpage to requirements of the production line. Moreover, the guidelines can accelerate the
product development cycle and improve product quality with reduced development costs.
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Abstract: The appropriate distribution of temperature in the growth system is critical for obtaining a
large size high quality aluminum nitride (AlN) single crystal by the physical vapor transport (PVT)
method. As the crystal size increases, the influence of the crucible on the temperature distribution
inside the growth chamber becomes greater. In order to optimize the field of temperature and
study the specific effects of various parts of the crucible on the large size AlN single crystal growth
system, this study carried out a series of numerical simulations of the temperature field of two
crucibles of different materials and put forward the concept of a composite crucible, which combines
different materials in the crucible parts. Four composite crucible models were established with
different proportions and positions of tantalum carbide (TaC) parts and graphite parts in the crucible.
Calculations reveal that different parts of the crucible have different effects on the internal temperature
distribution. The axial temperature gradient at the crystal was mainly governed by the crucible wall,
whereas the temperature gradient was determined by the integrated effect of the crucible lid and
the crucible wall in the radial direction. One type of composite crucible was chosen to minimize the
thermal stress in grown AlN crystal, which is applicable to the growth of large sized AlN crystals in
the future; it can also be used to grow AlN single crystals at present as well.

Keywords: numerical simulation; thermal design; thermal stress; PVT growth; AlN single crystals

1. Introduction

As a third-generation semiconductor material, AlN has the advantages of a wide band
gap, high resistivity, and high thermal conductivity [1]. Furthermore, both AlN and gallium
nitride (GaN) crystals have a wurtzite structure, and their lattice and thermal expansion
coefficients are quite close. Thus, compared with sapphire and silicon carbide (SiC), AlN is
ideal for III-nitrides epitaxial growth and the ternary compounds [2]. However, at present,
due to the lack of ideal III-nitride single crystal substrates, it has severely restricted the
improvement of the lifetime and performance of III-nitride lasers and microelectronic
devices. Therefore, it is necessary to research and develop the growth technology of AlN
bulk single crystals to provide lattice-matched substrate materials for the epitaxial growth
of devices and materials.

Due to the fact that the melting points of AlN are theoretically calculated to be as high
as 2800 ◦C and the dissociation pressure to be 20 MPa, it is challenging to apply the melt
Czochralski method to grow an AlN single crystal [3]. An AlN bulk single crystal generally
grows at a high temperature via the PVT method [4]. Since the performing experiments
are too time-consuming and expensive, numerical simulations allow preliminarily studies
of the growth mechanism of an AlN bulk single crystal and the design of optimization
schemes for the crystal growth process [5]. Some valuable simulation studies on the growth
and material properties of AlN bulk single crystals have been conducted after Slack and
Mcnelly [6] reported high purity A1N single crystal growth by the PVT method at an
early stage. Dryburgh [7] estimated the maximum possible rate of substance transport and
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determined the possible rate-limiting steps by simple kinetic theory during sublimation.
Inspired by this, Segal et al. [8] formulated the first one-dimensional model considering
the convection and diffusion transport, as well as the kinetic constraints on the desorption
and adsorption of N2. After that, Liu [9] developed an elaborate 2D model containing both
Stefan flow and thermal convection. Then, Bogdanov et al. [10] evaluated mass transport
in the crucible to learn the species interchange effect upon the aluminum nitride growth
rate about the environment and the crucible. The first global model was developed by
Liu and Edgar [11] for simulating AlN sublimation growth including surface kinetics.
To summarize the research mentioned earlier, Wu and Zhang [12] set out the model of
diffusive transport, the model ruled by Al vapor, and the model ruled by N2, and the
operational terms that allow the implementation of different models were determined.
Moreover, Cai et al. [13] accomplished the simulation by developing an internal integrated
model to characterize conductive, radiative, and inductive heat transfer. Furthermore, Lee
et al. [14] adopted a 3D numerical finite element modeling method to provide a detailed
comparison of the distributions of residual interfacial thermal stress induced in AlN crystals
deposited upon various substrates. Wolfson [15] investigated the growth rate dependence
on the N2 pressure. In the last decade, the numerical model has been constantly improved.
Gao et al. [16] designed a compressible flow model, which is full-coupled to investigate
the mass and sublimation transfer during the AlN crystal growth. Wang et al. [17,18]
developed a completely 2D incompressible flow model and a 3D thermoelastic stress
model to examine the effects of the crucible configuration on the mass distribution and
transport and development of the total resolved shear stress of AlN crystal with numerical
experiments.

The above research was all based on the small size AlN single crystal, which is below
50 mm. Since the growth process generates dislocations and defects, it is challenging
to grow a larger-size AlN single crystal under the current experimental conditions. A
numerical study can overcome this obstacle. The problem is solved and optimized to
provide guidance and ideas for subsequent lab tests and commercial production of the
AlN single crystal. The crucible is the main component used for crystal growth, and
as the crystal size increases, the crucible has an increasing influence on the temperature
distribution inside the cavity. Since crystals grown by the PVT method are very sensitive
to temperature, and changes in temperature distribution can seriously affect the crystal
growth quality, it is also necessary to study the effect of the crucible on the temperature
distribution during the growth of large size AlN crystals.

Based on the above, the numerical simulations are conducted to accurately restore
the temperature distributions of two crucibles with different materials, graphite crucible
and TaC crucible, when growing a 90 mm AlN single crystal. Furthermore, the concept of
the composite crucible combining two crucible materials is proposed, and the influence
of different crucible parts on the temperature distribution is obtained by changing the
proportion of the two crucible materials in the crucibles. Finally, one type of composite
crucible that can reduce the internal thermal stress of the AlN crystal while maintaining a
regular growth rate is carried out.

2. Simulation

The basic process of the PVT method for growing AlN crystal can be described as
follows: In a high-temperature field, AlN charge powder decomposes and sublimates
to produce the gaseous components aluminum vapor (A1) and N2 vapor, driven by the
negative axial temperature gradient; the gas phase components move to the AlN seed with
relatively low temperature, and adsorb, migrate, crystallize, and desorb on the growth
interface. This process continues. Then, the growth interface continues to move to the
AlN powder region and grows into an AlN bulk crystal. Figure 1 presents a sketch of the
growth cell of AlN crystal grown via the PVT method. In addition, the growth chamber is
in a nitrogen atmosphere, it is heated by an induction coil (10 kHz), and the crucible needs
to be covered by graphite felt to keep the temperature [19,20].
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Figure 1. A sketch of the growth cell of AlN crystal.

Since the principal objective of this study deals with the optimization and simulation
of the temperature field, according to [21], the gas convective heat transfer plays a small
role in the temperature field. It can be negligible during the computation. Due to the
symmetry of the crystal structure as well as the structure of the growth furnace system,
the model can be simplified to a two-dimensional axisymmetric model in a cylindrical
coordinate system. The models are analyzed by the finite element method (FEM). Assuming
that the growth is in a steady-state equilibrium, the simulation steps can be summarized
below: First, the temperature profile of the growth furnace is calculated with an established
heat transfer model that considers heat conduction and heat radiation. Then, the first
step temperature profile is taken as a boundary condition to calculate the intact model,
including thermal stress.

The heat transfer governing equation is characterized as [22]:

ρCp
∂T
∂t

+∇(k∇T) = Q (1)
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where ρCp is the effective heat capacity, T is the Kelvin temperature, t is the time, k is the
thermal conductivity, Q is the radiative heat flux, εj, εk is the emissivity, Fj,k is the view
factor, and σ is the Stefan Boltzmann constant.

The thermal physical and material properties of the system components are shown in
Table 1 [23].

Table 1. Physical parameters of the materials in the growth chamber for simulation.

Material Thermal Conductivity
(W/m·K)

Density
(kg/m3)

Heat Capacity
(J/kg·K)

Graphite Crucible 115 1760 720
TaC Crucible 22 14,300 60.65

Insulation 0.5 170 2100
AlN powder 22.55 27, 0.34 11, 72.7

AlN seed 320 3250 1197

Since AlN crystal growth is in a nonequilibrium state, thermal stress is induced within
the crystal throughout the growth process, which is the main driving force for the creation,
slip, and proliferation of dislocations in the AlN crystal [24].
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Assuming that the material is a linear elastic body, the governing equations of the
thermal stress field are [25]:

1
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(rσrr) +

∂τrz
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where σrr, σϕϕ and σzz denote the normal stresses; τrz denotes the shear stress.
In addition, according to Hooke’s law of thermoelastic solids, AlN crystal is a thermoe-

lastic anisotropic body, and the stress–strain relation of AlN crystal can be taken as [26]:




σrr
σϕϕ

σzz
τrz


 =




c11 c12 c13 0
c12 c22 c23 0
c13 c23 c33 0
0 0 0 c44


×




εrr − αr

(
T − Tre f

)

εϕϕ − αϕ

(
T − Tre f

)

εzz − αz

(
T − Tre f

)

εrz




(5)

where cij represents the elastic constant, εrr, εϕϕ, εzz, εrz represent the strain components, αr,
αϕ, αz represent the thermal expansion coefficients, and due to the hexagonal structure, the
thermal expansion coefficient of AlN crystal has only two independent components, α r= αϕ.
Tref represents the reference temperature, which is chosen as the lowest temperature in the
AlN seed.

The strain components can be described as [27]:

εrr =
∂u
∂r

εφφ = u
r

εzz =
∂w
∂z

εrz =
∂u
∂z + ∂w

∂r

(6)

where u and w represent the horizontal and vertical displacements, respectively.

3. Results and Discussions
3.1. Effect of Crucible Material on Temperature Distribution

Two growth systems were set up in simulation with a difference in crucible materials.
According to the literature [28,29], the two most commonly used crucible materials for
AlN growth by PVT are high-purity tungsten (W) metal and tantalum carbide, which are
selected based on the fact that the two crucible materials do not interact with each other and
do not have the same heat transfer capacity. Since W reacts with TaC at high temperatures
to form WC, which affects the quality and lifetime of the composite crucible, graphite
and TaC were chosen to meet both conditions and were easy to prepare. The temperature
distributions of the two crucibles under the same heating conditions are displayed in
Figure 2. In general, the temperature distributions of both crucibles were quite similar.
The temperature distribution in the crystal growth region exhibited a trend of the lower
high and upper low. Thus, a negative temperature gradient formed axially in the gas area
between the AlN crystal and the powder source (the growth region). It was the major
driving force of the AlN crystal growth. In contrast, at the bottom part, the temperature
distribution in the graphite crucible was gentler than that in the TaC crucible. At the
top part, it was the exact opposite condition. The influence of the crucible material on
the temperature distribution was different in various parts. This difference was mainly
related to the thermal conductivity of the crucible material itself. The higher the thermal
conductivity inside the material, the higher the temperature gradient will be.
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During the simulation of AlN crystal growth, the influence of impurities was ignored.
The crucible mainly contains two vapor species, Al and N2. The crystal growth rate Vg is
deduced from the growth kinetics, which is expressed as follows [30]:

Vg = kg

exp
(

A− B
T

)

P1.5T1.2
∆T
z

(7)

where kg is the growth rate coefficient obtained from the experiment, kg = 407.539, A and B
are the constants based on the thermodynamic data, A = 27.055, B = 75788, P is the internal
pressure of the furnace, and ∆T and z are the difference of temperature and the length
between the AlN powder and AlN seed, respectively.

As the gas convective is neglected in the calculation, the pressure P is regarded as a
fixed value in this research, P = 300 Torr. According to Equation (8), only the temperature
distribution dictates the growth rate. We set the center of the crystal surface as the tempera-
ture control point. Then the growth rate of the AlN crystal was mainly related to the axial
gradient of temperature in the growth region.

Figure 3 illustrates the growth rates of AlN crystals grown in the two crucibles. The
growth rate was linearly related to the reciprocal of the temperature. The profiles reveal that
AlN crystal grew faster in the TaC crucibles than in the graphite crucibles. From Figure 2,
the formation of a higher temperature gradient is evident on the longitudinal wall of the
TaC crucible. So, the growth rate of the AlN crystal grown in it is higher than that of the
graphite crucible.

For the purpose of increasing the diameter of the epitaxial growth crystals, it is
essential to establish a reasonable temperature distribution of the as grown AlN crystal
in the radial direction as well. An excessively large radial temperature gradient causes
anisotropic thermoelastic stress of the crystal, resulting in the formation and propagation of
various defects, such as low-angle grain boundaries (LAGB), basal plane dislocations (BPD),
and so on. The multiple defects formulated during growth are the dominant limitations
to AlN single crystal growth. Therefore, to successfully grow a 90 mm aluminum nitride
single crystal, the thermal stress generated within it should be minimized.
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Figure 3. Growth rates of the AlN crystal grown in different crucibles.

Current theory believes that the resolved shear stress (RSS) due to the inhomogeneous
radial temperature distribution is the main driving force for creating, slipping, and prolif-
eration of the dislocations in the grown AlN single crystal. As a reference, the Von Mises
stress (VMS) can be applied to evaluate the level of the stress inside the crystal [31].

σMises =

√
1
2

[
(σzz − σrr)

2 +
(
σzz − σϕϕ

)2
+
(
σϕϕ − σrr

)2
+ 6τrz

]
(8)

When the VMS stress of the AlN crystal excels the critical resolved shear stress (CRSS),
dislocations or even cracks occur. Therefore, reducing the VMS stress is an effective method
to reduce the risk of dislocation defect formation minimizing the density of dislocations as
well as the macro cracks in AlN crystal.

It is assumed that the crystal surface attached to the crucible lid is rigid, while the
other two surfaces of the crystal are not in contact with the crucible wall and stress-free.
The boundary conditions for thermal stress calculations can be expressed as:

u = 0, v = 0 at z = 0
u = 0, ∂v

∂r = 0 at r = 0
σ · n = 0 at the two free moving surfaces

(9)

The Von Mises stress distributions inside the grown AlN crystals in the two crucibles
are shown in Figure 4. The maximum stress appeared at the crystal top edge on account of
the rigid body. The minimum stress occurred at the center of the crystal surface attached to
the crucible lid, where the temperature was the lowest, and the stress distributions near the
crystal surfaces tended to be flat. The stress level of the AlN crystal grown in the graphite
crucible was relatively high. As for the TaC crucible, since the internal radial temperature
distribution is more uniform, the influence of the rigid body constraint was reduced. So, the
stress of the fixed AlN crystal grown inside it is smaller. In addition, the high temperature
at the free surface of the crystal led to higher stress there.

From the above calculations, the high thermal resistance of the TaC crucible allows
for more uniform temperature distribution in the radial direction, which results in lower
thermal stress.
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(b) TaC crucible.

The difficulty in growing a large-sized AlN single crystal lies in the huge thermal
stresses generated during the lateral growth of the crystal. As a result, the crystal defects
and dislocations increase, which leads to failure growth. Judging by the calculation of this
study, when a material with low thermal conductivity is used as a crucible, the crystal
growth rate is high and the growth quality is high, so there is a greater potential to grow
large size crystals.

3.2. Effect of Crucible Parts on Temperature Distribution

During the calculation, it was found that the various crucible parts had different effects
on the distribution of temperature inside the crucible. Therefore, as shown in Figure 5,
the above two materials (graphite and TaC) were combined into composite crucibles to
determine the impact of the different crucible components on the temperature field. The
main difference between these four crucibles is the different proportions of TaC and graphite
forming the crucible. It can be seen as replacements of parts of the graphite crucible by
TaC, and the replacements change from top to bottom. The details are explained in the
description of Figure 5. As this study targets optimizing the growth conditions for large
sized AlN single crystal, the dimensions follow the previously designed growth chambers
for growing 90 mm AlN single crystal.
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Figure 5. Schematic diagrams of the composite crucibles (a) Composite crucible A, (b) Composite
crucible B, (c) Composite crucible C, (d) Composite crucible D.

Figure 6 shows the growth rates of the AlN crystals grown in four composite crucibles.
Compared with the monomaterial crucibles, the growth rates of the four composite cru-
cibles were higher, of which composite crucible C had the highest growth rate and A the
lowest. As mentioned above, the crystal growth rate in this study was mainly affected
by the axial temperature gradient. From a partial view, when the crucible parts were of
varying thermal conductivity, the stronger thermally conductive part had a higher heat
flux. Therefore, the growth rates of AlN crystals in the composite crucibles were higher
than in the graphite crucible. On the whole, the combination of two materials with different
thermal conductivity generated additional thermal resistance on the contact surface and
increased the temperature difference, so that the growth rates were higher than that of the
pure TaC crucible also.
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Because the longitudinal length of TaC in the composite crucible A and B occupied
a very low proportion of the entire crucible, the axial temperature gradients in those two
crucibles were lower. However, the gas area of the crucible is the main region for crystal
growth, so variations in crucible material in this part significantly affected either the axial
temperature distribution or the growth rate. Therefore, the growth rate of crucible C was
the largest among the four crucibles. As for the composite crucible D, only the material of
the crucible bottom is graphite, which has higher thermal conductivity, so its heat transfer
effect was worse than that of C, resulting in a relatively low temperature gradient in the
axial direction.

Figure 7 shows the radial temperature distributions of the horizontal free surfaces
in the four composite crucibles. The radial temperature gradient turned from positive
to negative as the proportion of TaC in the crucibles increased. However, when the TaC
crucible part exceeded the AlN powder region, the negative temperature distribution
tended to become flat again. It implies that the temperature distribution in the radial
direction was not only dependent on the crucible lid, but also on the axial part of the crucible.
The radial temperature profile on the surface of crystal grown in the composite crucible B
was affected most, which was even flatter than that of the TaC crucible. It indicates that the
crystal and its vicinity are the main components that govern the temperature distribution
of the AlN crystal in the radial direction.
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Figure 7. Radial temperature distributions of the AlN crystal horizontal free surface grown in four
composite crucibles.

As Figure 8 shows, the AlN crystal grown in the composite crucible A had a thermal
stress distribution resembling that of the W crucible but with a lower stress level. The
thermal stress distributions of the crystals in the other three composite crucibles were
similar to that of the TaC crucible. Among them, only the thermal stress level of the crystal
in the composite crucible B was lower than that of the TaC crucible. Moreover, it is worth
noting that the positive and negative radial temperature distributions had a remarkable
impact on the level of thermal stress inside the crystals, and the negative radial temperature
distribution produced a much higher minimum thermal stress. This was mainly attributed
to a shift in the location where the minimum temperature occured. The implication is that
a negative temperature gradient of the radial direction should be avoided to minimize the
thermal stress generated in the as grown AlN single crystal.

The above discussion reveals that different crucible parts seriously impact the temper-
ature distribution within the growth chamber. The crucible wall significantly influences
the axial temperature distribution, while the joint action of the crucible lid and the crucible
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wall affects the radial temperature distribution. Since the bottom of the crucible is far
from the growth region, it has less influence on the temperature distribution within the
growth region. Moreover, for the current as well as the future growth of AlN single crystal,
the composite crucible formed by the crucible parts covering the crystal region with low
thermal conductivity materials and the rest of the high thermal conductivity crucible part
has excellent potential for the growth of larger size and higher quality AlN single crystal
given the extremely low internal thermal stress in the crystal.
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4. Conclusions

Concerning the problem of growing an AlN single crystal with a larger size and
higher quality in the future, this paper used a numerical simulation to compare the two
most suitable materials for growing 90 mm AlN single crystal concerning thermophysical
properties and analyzed the influence of different crucible materials on the temperature
field in the AlN crystal growth cell via the PVT method. The results showed that materials
with weak thermal conductivity were more suitable as crucibles for growing large size
and high quality AlN crystals because of the rapid crystal growth rate as well as the
lower thermal stress level of the grown crystal. Moreover, the concept of composite
crucible combining graphite and TaC to examine the effect of various crucible parts on
the temperature distribution of the AlN crystal growth cell was put forward. According
to the result, the temperature distribution in the axial direction was strongly influenced
by the crucible wall. In contrast, the temperature distribution in the radial direction
was mainly influenced by the joint action of the crucible lid and the crucible wall. The
composite crucible formed by the TaC part covering the crystal region and the remaining
part graphite minimized the thermal stress in the AlN crystal while ensuring a high growth
rate. This study also suggests that a negative radial temperature gradient is not conducive
to reducing the thermal stress inside the crystal. It provides a new direction for optimizing
the temperature field for growing large-size AlN single crystal in the future.
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