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Editorial

Preface to: Submanifolds in Metric Manifolds

Cristina E. Hretcanu

Faculty of Food Engineernig, University Stefan cel Mare, 720229 Suceava, Romania; cristina.hretcanu@fia.usv.ro

The present editorial contains 11 research articles, published in the Special Issue
entitled “Submanifolds in metric manifolds” of the MDPI mathematics journal, which cover a
wide range of topics from differential geometry in relation to the theory and applications
of the structure induced on submanifolds by the structure defined on various ambient
manifolds. The geometry of some particular manifolds and their submanifolds, with
examples and applications (characterization properties and inequality or equality cases),
is studied.

The concept of Riemannian submersion between Riemannian manifolds is very popu-
lar in theoretical physics, as well as in differential geometry. In Contribution 1, the authors
consider a contact-complex Riemannian submersion, which puts the almost-contact-metric
structure from the domain manifold to the almost-Hermitian structure of the target mani-
fold. The authors provide several new results, showing mainly when the base manifold
admits a Ricci soliton when it is Einstein, when the fibres are η-Ricci solitons, and when
they are η-Einstein.

A classical challenge in Riemannian geometry is to discuss the geometrical and topo-
logical structures of submanifolds. In Contribution 2, the authors obtain some topological
characterizations for the warping function of a warped product pointwise semi-slant sub-
manifold in a complex projective space (where the constant sectional curvature c = 4).
Some important applications of this theory can be found for the singularity structure in
liquid crystals, in the system in statistical mechanics with low dimensions, and physical
phase transitions. Since paper 2 considers both the warped product manifold and the
homotopy–homology theory, its results can be used as part of physical applications.

In Contribution 3, the authors prove the non-existence of stable integral currents in a
compact oriented warped product pointwise semi-slant submanifold of a complex space
form, under extrinsic conditions, which involve the Laplacian, the squared norm gradient of
the warped function, and pointwise slant functions. The authors investigate the curvature
and topology of submanifolds in a Riemannian manifold and the usual sphere theorems
in Riemannian geometry. The second target of paper 3 is to establish topological sphere
theorems from the viewpoint of warped product submanifold geometry with positive
constant sectional curvature and pinching conditions in terms of the squared norm of the
warping function and the Laplacian of the warped function as extrinsic invariants.

The importance of spaces with constant curvature is well understood in cosmology. A
cosmological model of the universe is obtained by assuming that the universe is isotropic
and homogeneous. In Contribution 4, the authors focuse on the Z-symmetric manifold
admitting certain types of Schouten tensor and they find some properties of Z-symmetric
spacetime admitting Codazzi-type Schouten tensor.

The Kähler manifold is the subject of symplectic geometry. Contact geometry appears
as the odd dimensional counterpart of symplectic geometry, in which the almost-contact
manifold corresponds to the almost-complex manifold. In Contribution 5, the authors
study the ∗-Ricci operator on Hopf real hypersurfaces in the complex quadric. As the
correspondence to the semi-symmetric Ricci tensor, the authors give a classification of real
hypersurfaces in the complex quadric with the semi-symmetric ∗-Ricci tensor.

In Contribution 6, the author studies the geometry of the almost-paracontact and
almost-paracomplex Riemannian manifolds. The author defines the first natural connection
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and constructs a relation between this connection and the Levi–Civita connection. Moreover,
some properties of curvature tensors, torsion tensors, Ricci tensors and scalar curvatures
using these connections are given, along with an explicit five-dimensional example.

A statistical manifold can be considered as an expanse of a Riemannian manifold,
such that the compatibility of the Riemannian metric is developed to a general condition.
In Contribution 7, the authors present nearly Sasakian and nearly Kähler structures on
statistical manifolds and show the relation between these geometric notions. Moreover,
the authors study some properties of (anti-)invariant statistical submanifolds of nearly
Sasakian statistical manifolds.

The geometry of submanifolds in Golden or metallic Riemannian manifolds was
widely studied by many geometers. The notion of a Golden structure was introduced
15 years ago and has been a constant interest of several geometers. In Contribution 8,
the authors propose a new generalization (apart from that called the metallic structure),
named the almost (α, p)-Golden structure. By adding a compatible Riemannian metric, the
authors focus on the study of the structure induced on submanifolds in this setting and
its properties.

In Contribution 9, the authors study a new holonomic Riemannian geometric model,
associated with the Gibbs–Helmholtz equation from classical thermodynamics, in a canon-
ical way. Using a specific coordinate system, the authors define a parameterized hyper-
surface in R4 as the graph of the entropy function. The main geometric invariants of
this hypersurface are determined and some of their properties are derived. Using this
geometrization, the authors characterize the equivalence between the Gibbs–Helmholtz
entropy and the Boltzmann–Gibbs–Shannon, Tsallis and Kaniadakis entropies, respectively,
by means of three stochastic integral equations. They prove that some specific (infinite)
families of normal probability distributions are solutions for these equations. This particu-
lar case offers a glimpse of the more general equivalence problem between classical entropy
and statistical entropy.

The background of Contribution 10 is the total space TM of the tangent bundle
of a Riemannian manifold (M, g), endowed with a metric G, constructed as a general
natural lift of the metric from the base manifold. The author studies the conditions under
which the (pseudo-)Riemannian manifold (TM, G), endowed with the Schouten–Van
Kampen connection and associated with the Levi Civita connection of G, is a statistical
manifold admitting torsion. The results obtained in this work lead to new examples of
(quasi-)statistical structures on the tangent bundle of a Riemann manifold.

In Contribution 11, the authors investigate the properties of the induced structure
on a light-like hypersurface by a meta-Golden semi-Riemannian structure. Moreover, the
authors study the properties of the invariant and anti-invariant light-like hypersurfaces, and
screen semi-invariant light-like hypersurfaces of almost-meta-Golden semi-Riemannian
manifolds. They also provide some useful examples.

As the Guest Editor of this Special Issue, I would like to thank the MDPI publishing
editorial team, who gave me the opportunity to undertake the role of Guest Editor for the
Special Issue “Submanifolds in metric manifolds”. I am very grateful to all the authors
who have contributed through their research articles. Also, I would like to express my
gratitude to all the reviewers for their valuable suggestions and critical comments, which
have improved the quality of the papers in this Issue.

We hope that the selected research studies will have a positive impact on the interna-
tional scientific community, inspiring other researchers to study and expand on the topics
covered in this book.
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Abstract: A submersion from an almost contact Riemannian manifold to an almost Hermitian
manifold, acting on the horizontal distribution by preserving both the metric and the structure,
is, roughly speaking a contact-complex Riemannian submersion. This paper deals mainly with a
contact-complex Riemannian submersion from an η-Ricci soliton; it studies when the base manifold
is Einstein on one side and when the fibres are η-Einstein submanifolds on the other side. Some
results concerning the potential are also obtained here.

Keywords: Riemannian submersion; submanifold; almost-contact metric manifold; Ricci soliton

MSC: 53C40; 32Q15; 53D10

1. Introduction

The notion of Ricci flow was introduced by R. S. Hamilton in 1892 to find a desired
metric on a Riemannian manifold. For the metrics on a Riemannian manifold, the Ricci
flow is an evolution equation that is given by

∂

∂t
g(t) = −2Ric,

and it is a heat equation. Moreover, he showed that the self-similar solutions of Ricci flows
are Ricci solitons and that they are natural generalizations of Einstein metrics [1]).

Let (M, g) be a Riemannian manifold. If there exists a smooth vector field (so-called
potential field) ν and it satisfies

1
2
(Lνg) + Ric + λg = 0,

then (M, g) is said to be a Ricci soliton. Here, Lνg is the Lie-derivative of the metric tensor
g with respect to ν, Ric is the Ricci tensor of M, and λ is a constant. A Ricci soliton is
denoted by (M, g, ν, λ), and it is called or shrinking, steady, expanding, if λ > 0, λ = 0, or
λ < 0, respectively.

In 2009, J.T. Cho and M. Kimura introduced a more general notion called the η-Ricci
soliton. According to this definition, a Riemannian manifold (M, g) is an η-Ricci soliton if
it satisfies

1
2
(Lνg) + Ric + λg + μη ⊗ η = 0, (1)

where λ, μ are functions and η is a 1-form. It is clear that if μ is zero, then the η-Ricci soliton
becomes a Ricci soliton (see [2]).

Mathematics 2021, 9, 2996. https://doi.org/10.3390/math9232996 https://www.mdpi.com/journal/mathematics4
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Due to the geometric importance of Ricci solitons and their wide applications in
theoretical physics, they have become a popular topic studied in the literature. So, the
notion of the Ricci soliton has been studied on manifolds that are endowed with many
different geometric structures, such as contact, complex, warped product, etc. (see [3–6]).

On the other hand, the concept of Riemannian submersion between Riemannian
manifolds is very popular in theoretical physics, as well as in differential geometry, and
particularly in general relativity and Kaluza–Klein theory. For this reason, Riemannian
submersions have been studied intensively (see [7–13]).

In this paper, we consider a contact-complex Riemannian submersion π from an
almost-contact metric manifold M onto an almost Hermitian manifold such that M admits
an η-Ricci soliton. Firstly, we calculate the Ricci tensor of the almost-contact metric manifold
M, and using it, we present some necessary conditions for which any fibre of π or base
manifold B admits a Ricci soliton, η-Ricci soliton, Einstein, or η-Einstein. Moreover, we
study a contact-complex Riemannian submersion with totally umbilical fibres whose total
space M admits an η-Ricci soliton. Depending on whether the potential field ν of the
η-Ricci soliton is vertical or horizontal, we obtain some new results.

Now, we briefly describe the content of the paper. The purpose of the Preliminaries is
to review some basic notions, such as almost contact metric structure, Riemannian submer-
sion, some properties of the vertical and horizontal distributions, and of the fundamental
tensor fields. Then the main notion of our paper, namely the contact-complex Riemannian
submersion, from an almost contact metric manifold, onto an almost Hermitian manifold,
is described in Section 3. Then, the main results of the paper are contained in Section 4,
which deals with contact-complex Riemannian submersions from manifolds admitting an
η-Ricci soliton. Here we obtain conditions under which the base manifold is Einstein, the
fibres are η-Einstein, the base manifold admits a Ricci soliton, and some other related facts.

2. Preliminaries

The authors recall the following notations from [13,14].
A Riemannian manifold M of dimension (2m + 1) has an almost-contact structure

(φ, ξ, η) if it admits a vector field ξ (the so-called characteristic vector field), a (1, 1)−tensor
field φ, and a 1−form η satisfying:

η(ξ) = 1, φ2 = −I + η ⊗ ξ. (2)

As a consequence of (2), we note that φ(ξ) = 0 and η ◦ φ = 0. If M is endowed with
an almost-contact structure (φ, ξ, η), then it is called an almost-contact manifold. Moreover,
if a Riemannian metric g on M satisfies

g(φX, φY) = g(X, Y)− η(X)η(Y) (3)

for any vector fields X, Y, then the metric g is said to be compatible with the almost-
contact structure (φ, ξ, η). In this case, the manifold M is said to be endowed with the
almost-contact metric structure (φ, ξ, η, g), and (M, φ, ξ, η, g) is called an almost-contact
metric manifold.

Now, we recall the following concepts.
Let π : (Mm, g) → (Bn, g

′
) be a submersion between two Riemannian manifolds and

let r = m − n denote the dimension of any closed fibre π−1(x) for any x ∈ B. For any
p ∈ M, putting Vp = kerπ∗p, we have an integrable distribution V that corresponds to the
foliation of M determined by the fibres of π. Therefore, one has Vp = Tpπ−1(x), and V is
called the vertical distribution. Let H be the horizontal distribution, which means that H is
the orthogonal distribution of V with respect to g, i.e., Tp(M) = Vp ⊕Hp, p ∈ M. We note
that for any X′ ∈ Γ(TB), the basic vector field π-related to X′ is named the horizontal lift
of X′. Here, π∗X is denoted by the vector field X′ to which X is π-related.

A map π between Riemannian manifolds M and B is called a Riemannian submersion
if the following conditions hold:

5
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(i) π has a maximal rank;
(ii) The differential π∗p preserves the length of the horizontal vector fields at each point

of M.

For any E ∈ Γ(TM), we denote vE and hE as the vertical and horizontal components
of E, respectively.

Proposition 1. Let π : (M, g) → (B, g
′
) be a Riemannian submersion. If X, Y are the basic

vector fields, which are π-related to X
′
, Y

′
, one has

(i) g(X, Y) = g
′
(X

′
, Y

′
) ◦ π;

(ii) h[X, Y] is the basic vector field π-related to [X
′
, Y

′
];

(iii) h(∇XY) is the basic vector field π-related to ∇′
X′ Y

′
;

(iv) for any vertical vector field V, [X, V] is vertical,

where ∇ and ∇′
denote the Levi–Civita connections of M and B, respectively (see [13]).

The tensor fields T and A are said to be the fundamental tensor fields on the manifold
M that are defined by

T (E, F) = TEF = h(∇vEvF) + v(∇vEhF),

A(E, F) = AEF = v(∇hEhF) + h(∇hEvF),

for any E, F ∈ Γ(TM).

The fundamental tensor fields T and A on M satisfy the following properties:

g(TEF, G) = −g(TEG, F) (4)

and

TVW = TWV, (5)

for any E, F, G ∈ Γ(TM), V, W ∈ Γ(V).
Note the fact that the vanishing of the tensor field T or A has some geometric mean-

ings. For instance, if the tensor A vanishes identically on M, the horizontal distribution
H is integrable. If the tensor T vanishes identically, any fibre of π is a totally geodesic
submanifold of M.

Using the fundamental tensor fields T and A, one can see that

∇VW = TVW + ∇̂VW, (6)

∇V X = h(∇V X) + TV X, (7)

∇XV = AXV + v(∇XV), (8)

∇XY = h(∇XY) +AXY, (9)

where ∇ and ∇̂ are the Levi–Civita connections of M and any fibre of π, respectively, for
any V, W ∈ Γ(V) and X, Y ∈ Γ(H).

We recall the following from [11].

Definition 1. A distribution D on a Riemannian manifold (M, g) is called parallel if ∇XY ∈ Γ(D)
for any vector field X on M and any Y ∈ Γ(D), where ∇ is the Levi–Civita connection of g.

On the other hand, the mean curvature vector field H on any fibre of the Riemannian
submersion π is given by

N = rH, (10)

6
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such that

N =
r

∑
j=1

TUj Uj (11)

where r denotes the dimension of any fibre of π and {U1, U2, . . . , Ur} is an orthonormal
basis of the vertical distribution V .

Using the equality (11), we get

g(∇EN , X) =
r

∑
j=1

g
(
(∇ET )(Uj, Uj), X

)
for any E ∈ Γ(TM) and X ∈ Γ(H). We denote the horizontal divergence of the horizontal
vector field X by δ̌(X), which is given by

δ̌(X) =
n

∑
i=1

g(∇Xi X, Xi), (12)

where {Xi}1≤i≤n is an orthonormal frame of H, where n is also the dimension of B. On the
other hand, any fibre of π is totally umbilical if

TUW = g(U, W)H, (13)

is satisfied. Here, H is the mean curvature vector field of π in M for any U, W ∈ Γ(V).
Furthermore, the Ricci tensor Ric on M satisfies

Ric(X, Y) = Ric
′
(X

′
, Y

′
) ◦ π − 1

2
{

g(∇XN , Y) + g(∇YN , X)
}

(14)

+2
n

∑
i=1

g(AXXi,AYXi) +
r

∑
j=1

g(TUj X, TUjY)

Ric(U, W) = R̂ic(U, W) + g(N , TUW)−
n

∑
i=1

g
(
(∇XiT )(U, W), Xi

)
−

n

∑
i=1

g(AXi U,AXi W), (15)

for any X, Y ∈ Γ(H) and U, W ∈ Γ(V), where Ric
′

and R̂ic are the Ricci tensors of the
base manifold B and any fibre of π, and {Xi}, {Uj} are some orthonormal bases of H and
V , respectively.

3. Contact-Complex Riemannian Submersions

We recall some notations of [13] in the following.
Let (M2m+1, φ, η, g, ξ) be an almost-contact metric manifold and let (B2n,J , g

′
) be an

almost-Hermitian manifold. A Riemannian submersion π : M → B is called a contact-
complex Riemannian submersion if

J ◦ π∗ = π∗ ◦ φ.

We note here that the vertical distribution V and horizontal distribution H are of
dimensions 2r + 1 and 2n, respectively, where r = m − n.

For the contact-complex Riemannian submersion π : (M2m+1, g) → (B2n, g
′
), the

following properties are satisfied:

(i) The distributions V and H are φ-invariant,
(ii) The characteristic vector field ξ is vertical,
(iii) H ⊂ kerη, i.e., η(X) = 0, for any horizontal vector field X.

7
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Example 1. Let π : S2n+1 → Pn(C) be a projection from the total space of a principal fibre bundle
S2n+1 onto an n-dimensional complex projective space Pn(C). Then, π : S2n+1 → Pn(C) is a
contact-complex Riemannian submersion with respect to the canonical metric g on S2n+1 and the
Kaehler metric on Pn(C) (for details, see [13]).

4. Contact-Complex Riemannian Submersions Whose Total Space Admits an
η-Ricci Soliton

Now, we recall the following lemma from [15].

Lemma 1. Let π : (M, g) → (B, g′) be a Riemannian submersion between Riemannian mani-
folds.The following statements are equivalent to each other:

(i) the vertical distribution V is parallel;
(ii) the horizontal distribution H is parallel;
(iii) the fundamental tensor fields T and A vanish identically.

Throughout this paper, we make the following assumptions.

Assumption: A contact-complex Riemannian submersion π : M → B is defined from an
almost-contact metric manifold (M, φ, ξ, η, g) onto an almost-Hermitian manifold (B,J , g

′
).

Using (14) and (15), for any local orthonormal frames {Xi}1≤i≤2n and {Uj, ξ}1≤j≤2r of
H and V , respectively, we give the following:

Lemma 2. Let π : M → B be a contact-complex Riemannian submersion between manifolds. For
any U, W ∈ Γ(V) and X, Y ∈ Γ(H) that are π-related to X

′
, Y

′
, the Ricci tensor of M satisfies

Ric(U, W) = R̂ic(U, W) + g(N , TUW)− ∑ i = 12n
{

g
(
(∇XiT )(U, W), Xi

)
(16)

+g(AXi U,AXi W)
}

,

Ric(U, ξ) = R̂ic(U, ξ) + g(N , TUξ)−
2n

∑
i=1

{
g
(
(∇XiT )(U, ξ), Xi

)
(17)

+g(AXi U,AXi ξ)
}

,

Ric(ξ, ξ) = R̂ic(ξ, ξ) + g(N , Tξξ)−
2n

∑
i=1

{
g
(
(∇XiT )(ξ, ξ), Xi

)
(18)

+g(AXi ξ,AXi ξ)
}

,

Ric(X, Y) = Ric
′
(X

′
, Y

′
) ◦ π − 1

2
(
LN g

)
(X, Y) (19)

+2
2n

∑
i=1

g(AXXi,AYXi) +
2r

∑
j=1

g(TUj X, TUjY) + g(Tξ X, TξY).

Definition 2. Let (M, g, ξ, λ, η) be an η-Ricci soliton and let π : M → B be a contact-complex
Riemannian submersion. If ν is vertical, we say that ν is a vertical potential field. Similarly, if ν is
horizontal, we say that ν is a horizontal potential field.

Using equalities (16)–(18) in Lemma 2, we have the following theorem.

Theorem 1. Let (M, g, ξ, λ, η) be an η-Ricci soliton with vertical potential field ν and let π :
M → B be a contact-complex Riemannian submersion. If one of the conditions in Lemma 1 is
satisfied, then we have the following:

(i) The base manifold B is Einstein.
(ii) Any fibre of π admits an η-Ricci soliton with potential field ν.

8
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Proof. (i) Since M admits an η-Ricci soliton, one has

1
2
{

g(∇Xν, Y) + g(∇Yν, X)
}
+ Ric(X, Y) + λg(X, Y) (20)

+μη(X)η(Y) = 0,

for any horizontal vector fields X, Y. Using (8) in (20) gives

1
2
{

g(AXν, Y) + g(AYν, X)
}
+ Ric(X, Y) + λg(X, Y)

+μη(X)η(Y) = 0.

Applying (19) to the last equality, we get

1
2
{

g(AXν, Y) + g(AYν, X)
}
+ Ric

′
(X

′
, Y

′
) ◦ π − 1

2
(LN g)(X, Y) (21)

+2
2n

∑
i=1

g(AXXi,AYXi) +
2r

∑
j=1

g(TUj X, TUj Y) + g(Tξ X, TξY) + λg(X, Y)

+μη(X)η(Y) = 0.

Since η(X) = 0, for any horizontal vector field X and if one of the conditions of
Lemma 1 is satisfied, Equation (21) gives

Ric
′
(X

′
, Y

′
) ◦ π + λg(X, Y) = 0

which is equivalent to (
Ric

′
(X

′
, Y

′
) + λg

′
(X

′
, Y

′
)
)
◦ π = 0

for any vector fields X
′
, Y

′
on Γ(TB). Hence,

Ric
′
+ λg

′
= 0

is satisfied, which means that (i) is obtained.
(ii) One proof is provided in the following.
Since the total space M admits an η-Ricci soliton with vertical potential field ν, from (1),

we can write

1
2
{

g(∇Uν, W) + g(∇Wν, U)
}
+ Ric(U, W) + λg(U, W) + μη(U)η(W) = 0, (22)

for any U, W ∈ Γ(V). Using (6) in (22), it follows that

1
2
{

g(∇̂Uν, W) + g(∇̂Wν, U)
}
+ Ric(U, W) + λg(U, W) + μη(U)η(W) = 0. (23)

Applying (16) to Equation (23) gives

1
2
(Lν ĝ)(U, W) + R̂ic(U, W) + g(N , TUW)−

2n

∑
i=1

{
g((∇XiT )(U, W), Xi)

+g(AXi U,AXi W)
}
− g((∇ξT )(U, W), ξ)− g(AξU,AξW) (24)

+λg(U, W) + μη(U)η(W) = 0.

9
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Since one of the conditions in Lemma 1 is satisfied, Equation (24) is equivalent to

1
2
(Lν ĝ)(U, W) + R̂ic(U, W) + λĝ(U, W) + μη(U)η(W) = 0,

which means that any fibre of π is an η-Ricci soliton, and the proof is complete.

Using Lemma 2, we give the following theorem.

Theorem 2. Let (M, g, ξ, λ, η) be an η-Ricci soliton with horizontal potential field ν and let
π : M → B be a contact-complex Riemannian submersion. If one of the conditions in Lemma 1 is
satisfied, then any fibre of π is η-Einstein.

Proof. Case I. For any vertical vector fields U, W �= ξ, we can write

1
2
(Lνg)(U, W) + Ric(U, W) + λg(U, W) + μη(U)η(W) = 0, (25)

for any vertical vector fields U, W. Using (7) in the Lie-derivative of (25), one has

1
2
(Lνg)(U, W) =

1
2
{

g(∇Uν, W) + g(∇Wν, U)
}

=
1
2
{

g(TUν, W) + g(TWν, U)
}

= 0,

and since Lemma 1 is satisfied, the tensor field T ≡ 0. In addition, putting (16) into
Equation (25) gives

R̂ic(U, W) + g(N , TUW)− ∑
i

{
g((∇XiT )(U, W), Xi) + g(AXi U,AXi W)

}
+λg(U, W) + μη(U)η(W) = 0,

which means that

R̂ic(U, W) + λĝ(U, W) + μη(U)η(W) = 0. (26)

Case II. For any vertical vector field U �= ξ, Equation (1) gives

1
2

{
g(∇Uν, ξ) + g(∇ξν, U)

}
+ Ric(U, ξ) + λg(U, ξ) + μη(U)η(ξ) = 0.

Then, it follows that

Ric(U, ξ) + λg(U, ξ) + μη(U)η(ξ) = 0. (27)

Using (19) in (27) gives

R̂ic(U, ξ) + g(N , TUξ)− ∑
i

{
g((∇XiT )(U, ξ), Xi) + g(AXi U,AXi ξ)

}
+λg(U, ξ) + μη(U)η(ξ) = 0.

Since T ≡ 0, the last equality is equivalent to

R̂ic(U, ξ) + λg(U, ξ) + μη(U)η(ξ) = 0. (28)

Case III. Finally, choosing U = W = ξ, Equation (1) gives

g(∇ξν, ξ) + Ric(ξ, ξ) + λg(ξ, ξ) + μη(ξ)η(ξ) = 0.

10
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Through similar calculations, we have

Ric(ξ, ξ) + λg(ξ, ξ) + μη(ξ)η(ξ) = 0.

Applying (18) to the last equality and using the vanishing of the tensor field T gives

R̂ic(ξ, ξ) + λĝ(ξ, ξ) + μη(ξ)η(ξ) = 0 (29)

is obtained.
As a result of equalities (26), (28), and (29), we obtain that any fibre of π is η-Einstein.

Considering Equation (29), we can give the following corollary.

Corollary 1. Let (M, g, ξ, λ, η) be an η-Ricci soliton with horizontal potential field ν and let
π : M → B be a contact-complex Riemannian submersion. If one of the conditions in Lemma 1 is
satisfied, then the Ricci tensor of the distribution Span{ξ} is given by

R̂ic(ξ, ξ) = −(λ + μ).

Theorem 3. Let (M, g, ξ, λ, η) be an η-Ricci soliton with a horizontal potential field ν and let
π : M → B be a contact-complex Riemannian submersion. If one of the conditions in Lemma 1 is
satisfied, then the base manifold B admits a Ricci soliton with potential field ν

′
such that π∗ν = ν

′
.

Proof. For any horizontal vector fields X, Y, we can write

1
2
{

g(∇Xν, Y) + g(∇Yν, X)
}
+ Ric(X, Y) + λg(X, Y) + μη(X)η(Y) = 0. (30)

Since the vector fields X, Y are horizontal, we get η(X) = η(Y) = 0. Then, it
follows that

1
2
{

g(∇Xν, Y) + g(∇Yν, X)
}
+ Ric(X, Y) + λg(X, Y) = 0. (31)

In addition, using (19) in (31), one has

1
2
{

g(∇Xν, Y) + g(∇Yν, X)
}
+ Ric

′
(X

′
, Y

′
) ◦ π + 2

2n

∑
i=1

g(AXXi,AYXi)

+
2r

∑
j=1

g(TUj X, TUjY) + g(Tξ X, TξY) + λg(X, Y) = 0.

Since Lemma 1 is satisfied, it follows that

1
2
{

g(∇Xν, Y) + g(∇Yν, X)
}
+ Ric

′
(X

′
, Y

′
) ◦ π + λg(X, Y) = 0. (32)

Moreover, considering Proposition 1, Equation (32) gives

1
2
{

g
′
(∇′

X′ ν
′
, Y

′
) ◦ π + g

′
(∇′

Y′ ν
′
, X

′
) ◦ π

}
+ Ric

′
(X

′
, Y

′
) ◦ π

+λg
′
(X

′
, Y

′
) ◦ π = 0,

for any X
′
, Y

′ ∈ Γ(TB). Then, the last equation is equivalent to

1
2

(
L

ν
′ g

′)
(X

′
, Y

′
) + Ric

′
(X

′
, Y

′
) + λg

′
(X

′
, Y

′
) = 0,

11
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where the vector field ν on M is π-related to ν
′

on B. Therefore, the base manifold B admits
a Ricci soliton with potential field ν

′
.

Theorem 4. Let (M, g, ξ, λ, η) be an η-Ricci soliton with horizontal potential field ν and let
π : M → B be a contact-complex Riemannian submersion with totally umbilical fibres. If the
horizontal distribution H is integrable, then any fibre of π is η-Einstein.

Proof. Since the total space M admits an η-Ricci soliton, one has

1
2

(
Lνg
)
(U, W) + Ric(U, W) + λg(U, W) + μη(U)η(W) = 0, (33)

for any vertical vector fields U, W. Putting (16) into the last equation gives

1
2

(
g(∇Uν, W) + g(∇WU)

)
+ R̂ic(U, W) + g(N , TUW)

−
2n

∑
i=1

{
g((∇XiT )(U, W), Xi) + g(AXi U,AXi W)

}
+ λg(U, W)

+μη(U)η(W) = 0.

In addition, the horizontal distribution H is integrable, and it follows that

1
2

(
g(∇Uν, W) + g(∇WU)

)
+ R̂ic(U, W) + g(N , TUW)

−
2n

∑
i=1

{
g((∇XiT )(U, W), Xi) + λg(U, W) + μη(U)η(W) = 0.

Since any fibre of π is totally umbilical and by using Equations (6), (12), and (13) in
the last equality, one has

1
2

(
g(TUν, W) + g(TWν, U)

)
+ R̂ic(U, W) + (2r + 1)‖H‖2g(U, W)

−δ̌(H)g(U, W) + λg(U, W) + μη(U)η(W) = 0.

Using (4) and (5), we get

R̂ic(U, W) +
{
(2r + 1)‖H‖2 + δ̌(H)− g(H, ν) + λ

}
g(U, W)

+μη(U)η(W) = 0,

which gives that any fibre of π is η-Einstein.

5. Conclusions

The paper deals with an interesting concept, of a contact-complex Riemannian submer-
sion, which puts in relation the almost contact metric structure from the domain manifold,
to the almost Hermitian structure of the target manifold. The fundamental properties of
the Riemannian submersions are used here to link some geometric feature on the domain
manifold, with the ones on fibres and with those on the base manifold. We provide several
new results, showing mainly when the base manifold admits a Ricci soliton, when it is
Einstein, when the fibres are η-Ricci solitons, and when they are η-Einstein. Our future
study will be developed on certain well known manifolds on which we may apply the
above theory.
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C.-L.B., Ş.E.M. and E.K.; writing—original draft preparation, C.-L.B. and Ş.E.M.; writing—review
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Citation: Li, Y.; Alkhaldi, A.H.; Ali,

A.; Laurian-Ioan, P. On the Topology

of Warped Product Pointwise

Semi-Slant Submanifolds with

Positive Curvature. Mathematics 2021,

9, 3156. https://doi.org/10.3390/

math9243156

Academic Editor: Cristina-Elena

Hretcanu

Received: 9 November 2021

Accepted: 29 November 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China; liyl@hznu.edu.cn
2 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;

ahalkhaldi@kku.edu.sa
3 Department of Mathematics and Computer Science, North University Center of Baia Mare,

Technical University of Cluj Napoca, 430122 Baia Mare, Romania; Laurian.PISCORAN@mi.utluj.ro
* Correspondence: akali@kku.edu.sa
† These authors contributed equally to this work.

Abstract: In this paper, we obtain some topological characterizations for the warping function of
a warped product pointwise semi-slant submanifold of the form Ωn = Nl

T × f Nk
φ in a complex

projective space CP2m(4). Additionally, we will find certain restrictions on the warping function f ,
Dirichlet energy function E( f ), and first non-zero eigenvalue λ1 to prove that stable l-currents do not
exist and also that the homology groups have vanished in Ωn. As an application of the non-existence
of the stable currents in Ωn, we show that the fundamental group π1(Ωn) is trivial and Ωn is simply
connected under the same extrinsic conditions. Further, some similar conclusions are provided for
CR-warped product submanifolds.

Keywords: warped product submanifolds; complex projective spaces; homology groups; homotopy;
sphere theorems; stable currents; kinetic energy

1. Introduction and Main Results

A classical challenge in Riemannian geometry is to discuss the geometrical and topo-
logical structures of submanifolds. The stable currents and homology groups are the most
important characterizations of the Riemannian submanifolds because they control the
behavior of the topology of submanifolds. The notion of non-existence stable current
and vanishing homology on pinching the second fundamental form was introduced by
Lawson-Simons [1]. Xin proved in [2] as the following important form:

Theorem 1 ([1,2]). Suppose Ωn is a compact n-dimensional submanifold in a space form Ω̃(c) of
curvature c ≥ 0. Suppose l, k is any positive integer, that is, l + k = n, and the inequality

l

∑
A=1

n

∑
B=l+1

{
2||h(eA, eB)||2 − g

(
h(eA, eA), h(eB, eB)

)}
< lkc (1)

holds for all orthonormal basis
{

ei, · · · , en} of the tangent space TΩn; then there are no stable
l-currents in Ωn and

Hl(Mn,G) = Hn−l=k(Ω
n,G) = 0,

where Hi(Ωn,G) stands for i integral homology groups of Ωn, while G is a finite abelian group
with integer coefficients.

The generalized Poincaré conjecture for dimension n ≥ 5 was proved by Smale [3]
by using the nonexistence for the stable currents over compact submanifolds on a sphere.
Then, Lawson and Simons obtained the striking sphere theorem in [1], in which they
showed that an n-dimensional compact-oriented submanifold Ωn in the unit sphere Sn+k

Mathematics 2021, 9, 3156. https://doi.org/10.3390/math9243156 https://www.mdpi.com/journal/mathematics14
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is homeomorphic to the sphere Sn with n �= 3, provided that the second fundamental form
was bounded above by a constant that depends on the dimension n. Additionally, it was
proved that Ω3 is homotopic to the sphere S3. Using Theorem 1, Leung [4] proved that for a
compact connected oriented submanifold Ωn in the unit sphere Sn+k with ‖h(X, X)‖2 < 1

3
thus Ωn is homeomorphic to the sphere Sn in the case n �= 3, and also that Ω3 is homotopic
to a sphere S3. More recently, geometric, topological, and differentiable rigidity theorems
of the Riemannian submanifold connecting to parallel mean curvature in space forms such
that c + H2 > 0 have been obtained in terms of Ricci curvature in [5]. In some articles such
as [3,6–17], several results have been derived on topological and differentiable structures of
singular submanifolds and submanifolds with specific effective conditions for the second
fundamental form, sectional curvatures, and Ricci curvatures.

However, very few topological obstructions to warped product submanifolds with
positive sectional curvature are known; for example, Sahin et al. [13] verified some out-
comes for the non-existence of the stable current and vanishing homology groups into a
contact CR-warped product which immersed in a sphere with an odd dimension, by putting
suitable restrictions on the Laplacian and the gradient of the warping function. Taking
the benefits of the constant section curvature which could be zero or one, Sahin [13,14] ex-
tended this study on a class of CR-warped product in an Euclidean space and in the nearly
Kaehler six-sphere. By assuming negative constant section curvature, Ali et al. [18–20]
obtained various results on CR-warped product, especially on the complex hyperbolic
spaces, and many structures about this subject remain open.

Therefore, we shall study the warped product pointwise semi-slant submanifolds of
complex projective spaces where the constant sectional curvature c = 4 > 0 is positive.
More specifically, our motivation comes from the studies of Sahin [21]. In that paper,
Sahin investigated the warped product pointwise semi-slant submanifolds in a Kähler
manifold, and also showed that the warped product pointwise semi-slant of form Nl

T × f Nk
φ

is nontrivial. It was shown by the Ref. [21] that the warped product pointwise semi-slant
submanifold Nl

T × f Nk
φ of Kähler manifold generalized the CR-warped products [22]

and the angle φ is treated as a slant function. In this case, suppose C∗ = C− {0} and
Cm+1
∗ = Cm+1 − {0}. Additionally, assuming that the action C∗ on Cm+1

∗ can be expressed
using γ, which means (z0, z1, . . . , zm) = (γz0, γz1, . . . , γzm), then all equivalent classes
set are produced from this idea are represented using CPm. If we denote with π(z), the
equivalent classes which contains z, then Cm+1

∗ → CPm is a surjection, and it is well-known
that CPm endowed a complex structure derived by the complex construction of Cm+1 with
a Kähler metric such that the constant holomorphic sectional curvature is equal to 4 [23].
We can observe that the almost complex J on CPm(4) is determined by the almost complex
construction of Cm+1 via the Hopf fibration. Let us now recall introduce the following
Theorem 1.

Theorem 2. Let Ωn = Nl
T × f Nk

φ be a compact warped product pointwise semi-slant submanifold
with regard to the complex projective space CP2m(4), which satisfies the following condition

f Δ f + (csc2 φ + cot2 φ + k)||∇ f ||2 <
(

3l − ‖hμ‖2

k

)
f 2, (2)

where ∇ f and Δ f are the gradient and the Laplacian of the warped function f , respectively. Then
we have the following:

(a) The warped product submanifold Ωn does not exist for any stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanish; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0.

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is a simply
connected warped product manifold.
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Remark 1. To apply Theorem 2, suppose the slant function φ becomes globally constant, setting
φ = π

2 from [24]. Then, the pointwise slant submanifold Nk
φ turns into a totally real submanifold

Nk
⊥. Thus, a warped product pointwise semi-slant submanifold Ωn = Nl

T × f Nk
φ turns to CR-

warped products within a Kähler manifold of the type Ωn = Nl
T × f Nk

⊥ such that Nl
T, as well as

Nk
⊥ are holomorphic and totally real submanifolds, respectively [22].

Therefore, we deduce the following result from Theorem 2 and Remark 1 for the non-
existence of stable integrable l-currents and homology groups in the CR-warped product
submanifolds of the complex projective space CP2m(4).

Corollary 1. Let Ωn = Nl
T × f Nq

⊥ be a compact CR-warped product submanifold of the complex
projective space CP2m(4). In this case, the following conditions occur:

f Δ f + (1 + k)‖∇ f ‖2 <
(

3l − ‖hμ‖2

k

)
f 2. (3)

Then we have the following:

(a) For the CR-warped product submanifold, Ωn does not have any stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanish; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0.

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is a simply
connected warped product manifold.

Other important motivation for our study comes from the Ref. [25], where some
geometric mechanics on Riemannian manifolds were studied. From that study, we found
that for a positive differentiable function ϕ ( ϕ ∈ F (Ωn) ) defined at a compact Riemannian
manifold Ω, the Dirichlet energy of that function ϕ is given as in see [25] (p. 41), as follows:

E(ϕ) =
1
2

∫
Ωn

||∇ϕ||2dV 0 < E(ϕ) < ∞. (4)

Using the Dirichlet energy Formula (4) for a compact manifold without a boundary,
as well as Theorem 2, we give the next theorem:

Theorem 3. Under similar suppositions as in Theorem 2 with satisfied pinching condition

E( f ) <
1

(4 csc2 φ + 2k)

∫
Ωn

(
3l − ‖hμ‖2

k

)
f 2dV. (5)

Thus, the following properties hold:

(a) For the warped product submanifold Ωn, there are no stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanished; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0,

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is a simply
connected warped product manifold.

Using the result of Theorem 3, we can now recall the next sphere theorem for the
compact oriented CR-warped product submanifold of a complex projective space CP2m(4)
due to Chen [22], that is,
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Corollary 2. Let Mn = Np
T × f Nq

⊥ be a compact CR-warped product submanifold at a complex
projective space CP2m(4) satisfying

E( f ) <
( 1

2(2 + k)

) ∫
Ωn

(
3l − ‖hμ‖2

k

)
f 2dV. (6)

Then, the following properties are satisfied:

(a) For the warped product submanifold Ωn, there are no stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanished; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0.

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is simply
connected warped product manifold.

Let Ωn be an n-dimensional compact Riemannian manifold, and therefore, the Lapla-
cian is a second-order quasilinear operator on Ωn, given as

Δϕ = −div(∇ϕ). (7)

For such a Laplacian, we can found many applications in mathematics as well as
in physics, and this is possible due to the eigenvalue problem of Δ. The corresponding
Laplace eigenvalue equation is defined as follows: a real number λ is named eigenvalue if
it is a non-vanishing function ϕ, which satisfies the following equation:

Δϕ = λϕ, on Ωn, (8)

with appropriate boundary conditions. Considering a Riemannian manifold Ωn with no
boundary, the first nonzero eigenvalue of Δ, defined as λ1, includes variational properties
(cf. [26]):

λ1 = inf

{∫
Ω ||∇ϕ||2dV∫

Ω ‖ϕ‖2dV
| ϕ ∈ W1,2(Ωn)\{0},

∫
Ω

ϕdV = 0

}
. (9)

Inspired by the above characterization, using the first non-zero eigenvalue of the
Laplace operator and the maximum principle for the first non-zero eigenvalue λ1, we
deduce the following:

Theorem 4. Let Ωn = Nl
T × f Nk

φ be compact, oriented warped product pointwise semi-slant
submanifolds of the complex projective space CP2m(4); that is, f is a non-constant eigenfunction of
the first non-zero eigenvalue λ1. Assume that

λ1 <

( ∫
Ωn

(
3l − ‖hμ‖2

k

)
f 2dV

(2 csc2 φ + k)
∫

Ωn f 2dV

)
(10)

holds. Then the properties (a), (b), and (c) of Theorem 2 are satisfied.

Remark 2. Some important applications of this theory can be found for the singularity structure
in liquid crystals, in the system in statistical mechanics with low dimensions, and physical phase
transitions (see [27]). In addition, general relativity contains warped product manifolds as a
model of space-times. There are two famous warped product spaces. One is the generalization
of Robertson-Walker space-times, and the other is the standard static space-times [17,28–31].
General relativity depends heavily on the differential topological methods, especially in mathematical
physics, and particularly regarding the way that the space-time homology is used in in quantum
gravity [13,17]. On the other hand, the formulation of a theory which unifies quantum mechanics
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and the special theory of relativity, performed by Dirac nearly a century ago, required introduction
of new mathematical and physical concepts which led to models that, on one hand, have been very
successful in terms of the interpretation of physical reality but, on the other, still creates some
challenges, both conceptual and computational. A central notion of relativistic quantum mechanics
is a construct known as the Dirac operator. It may be defined as the result of factorization of a
second-order differential operator in the Minkowski space. The eigenvalues of the Dirac operator
on a curved spacetime are diffeomorphism-invariant functions of the geometry. They form an
innite set of observables for general relativity. Some recent work suggests that they can be taken as
variables for an invariant description of the gravitational field’s dynamics. Because this paper is
connected to both warped product manifold and homotopy-homology theory, its results can be used
as physical applications.

2. Some Important Background

This part includes some notations and definitions that is important to the work relay
essentially on [18,21,22]. Suppose CPm is a m-dimensional complex projective space among
the Fubini-Study metric gFS with J being its almost complex structure. In the case where
the Levi-Civita connection is defined using ∇̃, the Fubini-Study metric is Kähler, that is,
∇̃J = 0. A Kähler manifold Ω̃m for a positive constant sectional curvature c = 4 > 0 is
named a complex projective space CPm(4) and can be endowed with the Fubini-Study
metric gFS. Therefore, the curvature tensor R̃ of CPm(4) is given as:

R̃(U1, U2, V1, V2) =g(U1, V2)g(U2, V1)− g(U1, V1)g(U2, V2)

+ g(JU1, V2)g(JU2, V1)− g(JU2, V2)g(JU1, V1) (11)

+ 2g(U1, JU2)g(JV1, V2),

for all U1, U2, V1, V2 ∈ X(CPm(4)). Assume that Ωn is an isometrically immersed to an
almost Hermitian manifold Ω̃m among the induced metric g. The Gauss equation of the
submanifold Ωn is determined by:

R̃
(
U1, U2, V1, V2

)
=R(U1, U2, V1, V2) + g

(
h(U1, V1), h(U2, V2)

)
− g
(
h(U1, V2), h(U2, V1)

)
, (12)

where R̃ and R are curvature tensors at M̃m and Ωn, in the same order. The definition of
mean curvature vector H of the orthonormal frame {e1, e2, · · · en} of the tangent space TM
on Ωn is given as

H =
1
n

trace(h) =
1
n

n

∑
i=1

h
(
eA, eA

)
, (13)

where n = dim Ω.

hr
AB = g(h(eA, eB), er), ||h||2 =

n

∑
A,B=1

g(h(eA, eB), h(eA, eB)). (14)

The gradient positive function ϕ defined on Ωn and its squared norm is written as:

∇ϕ =
n

∑
i=1

ei(ϕ)ei, and ‖∇ϕ‖2 =
n

∑
i=1

(
(ϕ)ei

)2. (15)

We will provide some short definitions of different classes of submanifold Ωn accord-
ing to J conserves all tangent spaces of Ωn, such that

(i) Ωn is holomorphic submanifold if J(TxΩ) ⊆ TxΩ [22].
(ii) Ωn is named totally real submanifold in the case where J(TxΩ) ⊆ T⊥

x Ω [22].
(iii) Combining (i) and (ii) such that TΩ = DT ⊕D⊥, then Ωn is a CR-submanifold [22].
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(iv) In the case where the angle φ(X) is enclosed by JX and the tangent space is TxΩ for
any vector field X of Ωn that is not equal to zero, it is a real-valued function such that
φ : Ω → R, then Ωn is called a pointwise slant submanifold (more details in [24]). In
the same paper, the authors provided a necessary and sufficient condition for Ωn to
be a pointwise slant T2X = − cos2 φX, where T is tangential (1, 1) tensor field [24].

(v) If the tangent space TΩ is introduced as a decomposition in the form of
TΩ = DT ⊕ Dφ for J(DT) ⊆ DT and pointwise slant distribution Dφ, then Ωn is
classified as a pointwise semi-slant submanifold [21]. For some examples of pointwise
semi-slant submanifolds in a Kähler manifold, and related problems, we recommend
the Ref. [18,21].

Regarding the above study, we give some remarks as follows.

Remark 3. If we consider a slant function φ : Ωn → R that is globally constant on Ωn and
φ = π

2 , thus, Ωn is named a CR-submanifold.

Remark 4. In the case where a slant function is φ : Ωn → (0, π
2 ), then Ωn is called a proper

pointwise semi-slant submanifold.

Remark 5. The normal bundle T⊥Ω of Ω is expressed as T⊥Ω = FDφ ⊕ μ with respect to
invariant subspace μ, that is, J(μ) ⊆ μ.

2.1. Warped Product Submanifolds

Warped product manifolds Ωn = Nl
1 × f Nk

2 were originally initiated by Bishop and
O’Neill [28], where Nl

1 and Nk
2 are two Riemannian manifolds and their Riemannain metrics

are g1 and g2 in the same order. f is also a smooth function defined on Nl
1. The warped

product manifold Ωn = Nl
1 × f Nk

2 is the manifold Nl
1 × Nk

2 furnished by the Riemannian
metric g = g1 + f 2g2, and the function f is named a warping function of Ωn. The following
important consequences of the warped product manifolds are given in [28,29]. For all
U1, U2 ∈ X(TN1) and V1, V2 ∈ X(TN2), where we have

∇V1U1 = ∇U1 V1 =
(U1 f )

f
V1. (16)

R(U1, V1)U2 =
H f (U1, V1)

f
U2, (17)

where H f is a Hessian tensor of f . Furthermore, we have

g(∇ ln f , X) = X(ln f ). (18)

2.2. The Non-Trivial Warped Product Pointwise Semi-Slant Submanifolds

Based on the pointwise semi-slant submanifold definition, it is possible to define the
warped product pointwise semi-slant submanifolds of a Kähler manifold as follows:

(i) Nk
φ × f Nl

T , and (ii) Nl
T × f Nk

φ.

We will consider the second type because the first type of Nk
φ × f Nl

T is trivial (see
Theorem 4.1 in [21]). Additionally for the non-trivial case Nl

T × f Nk
φ with examples, see the

Ref. [21]. This warped product pointwise semi-slant submanifold is interesting because it
is a generalized CR-warped product [22]. The proofs of the main results are ready to be
introduced as follows.
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3. Proof of the Main Results

3.1. Proof of Theorem 2

Let Ωn = Nl
T × f Nk

φ be an n = l + k−dimensional warped product pointwise semi-
slant submanifold with dimNl

T = l = 2A and dimNk
φ = k = 2B, where Nk

φ and Nl
T

are integral manifolds of Dφ and D, in the same order. Then, {e1, e2, · · · eA, eA+1 =
Je1, · · · e2A = JeA} and {e2A+1 = e∗1, · · · e2A+B = e∗B, e2A+B+1 = e∗B+1 = sec φPe∗1, · · · el+k =
e∗k = sec φPe∗B} will be orthonormal frames of TNT and TNφ, in the same order. There-
fore, the orthonormal basis of FDφ and μ are {en+1 = ē1 = csc φFe∗1, · · · en+B = ēB =
csc φFe∗1, en+B+1 = ēB+1 = csc φ sec φFPe∗1, · · · en+2B = ē2B = csc φ sec φFPe∗B} and
{en+2B+1, · · · e2m}, respectively. Then, we arrange the terms

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)
+

l

∑
A=1

k

∑
B=1

{
||h(eA, eB)||2 − g

(
h(eB, eB), h(eA, eA)

)}
.

Then, from the Gauss Equation (12), we have

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
l

∑
A=1

k

∑
B=1

g
(

R(eA, eB)eA, eB
)

(19)

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)

+
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2,

Using the orthonormal frames
{

ei
}

1≤A≤p as well as
{

eB
}

1≤B≤q of Nl
T and Nk

φ, respec-
tively, in (17), we derive

R(eA, eB)eA =
eB
f
H f (eA, eA).

Summing up, with respect to the orthonormal frame
{

eB
}

1≤B≤q in addition to taking
into account the adoption of the opposite of the usual sign convention for the Laplacian,
one obtains:

l

∑
A=1

k

∑
B=1

g
(

R(eA, eB)eA, eB
)
= − k

f

l

∑
A=1

g
(
∇eA∇ f , eA

)
. (20)
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Thus, from Equations (19) and (20), we derive

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2 (21)

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)

− k
f

l

∑
A=1

k

∑
B=1

g
(
∇eA∇ f , eA

)
.

Firstly, the term Δ f for Ωn is computed, which is originally the Laplacian of f .

Δ f =−
n

∑
i=1

g
(
∇ei grad f , ei

)
=−

l

∑
A=1

g
(
∇eA grad f , eA

)
−

k

∑
B=1

g
(
∇eB grad f , eB

)
.

The previous equation will be rewritten using components of Nk
φ for an adapted

orthonormal frame. One obtains:

Δ f =−
l

∑
A=1

g
(
∇eA grad f , eA

)
−

B

∑
j=1

g
(
∇ej grad f , ej

)
− sec2 φ

B

∑
j=1

g
(
∇Tej grad f , Tej

)
.

It is noted that ∇ is a Levi-Civita connection on Ωn, and Nl
T is also totally geodesic in

Mn. It leads to grad f ∈ X(TNT), and then we have

Δ f
f

= − k
f

l

∑
A=1

g
(
∇eA grad f , eA

)
− k||∇(ln f )||2.

It is clear that the next equation is satisfied

− 1
f

l

∑
A=1

g
(
∇eA grad f , eA

)
= Δ(ln f ) + (k − 1)||∇ ln f ||2. (22)

This result, combined with (21) yields

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2 (23)

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)

+ kΔ(ln f ) + k(k − 1)||∇ ln f ||2.
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At this point, suppose X = eA and Z = eB for 1 ≤ A ≤ l and 1 ≤ B ≤ k, in the same
order. Thus, by the use of the bilinear form h definition according to an orthonormal basis,
we can write

2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2
=

n+2B

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)
+ ‖hμ‖2.

In the previous equation, the first term at the right-hand side is a FDφ-component,
while the second term is a μ invariant subspace. From the viewpoint of an adapted
orthonormal basis, vector fields of Nl

T and Nk
φ are summed up over the vector fields of Nl

T

and Nk
φ. Then, using Lemma 5.2 from [21] and (Equation (5.8) of Lemma 5.3 in [21]), we

conclude that

2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2
=2
(

cot2 φ + csc2 φ
) l

∑
A=1

k

∑
B=1

(
eA ln f )

)2g(e∗B, e∗B)
2

+ 2
(

cot2 φ + csc2 φ
) l

∑
A=1

k

∑
B=1

(
JeA ln f )

)2g(e∗B, e∗B)
2

+ ‖hμ‖2.

Using the squared norm definition of the gradient function f (15) (ii), one obtains:

2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2
= k
(

cot2 φ + csc2 φ
)
||∇ ln f ||2 + ‖hμ‖2. (24)

From (23) and (24), we get:

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
=kΔ(ln f ) + k(k − 1)||∇(ln f )||2 (25)

+ k
(
1 + 2 cot2 φ

)
||∇(ln f )||2 + ‖hμ‖2

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)
.

For the symmetry of the curvature tensor R, the following relation holds:

l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)
=

l

∑
A=1

k

∑
B=1

R̃
(
eA, eB, eA, eB

)
. (26)

Next, we remark that the curvature tensor Formula (11) for the complex projective
space CP2m(4) is easily given as

l

∑
A=1

k

∑
B=1

R̃
(
eA, eB, eA, eB

)
=

l

∑
A=1

k

∑
B=1

{
g(eA, eB)g(eB, eA)− g(eA, eA)g(eB, eB)

− g(JeA, eA)g(JeB, eB) (27)

+ 3g(JeA, eB)g(JeB, eA)

}
.

As we know, if eA ∈ X(TNT) and eB ∈ X(TNφ), then g(eA, eB) = 0, and g(JeA, eA) =
0(resp, g(JeB, eB) = 0), using JeA ⊥ eA(JeB ⊥ eB), respectively. Similarly, from
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(Equation (2.6) in [21]), we derive that g(JeA, eB) = g(TeA + FeA, eB) = 0 for TeA ∈ X(TNT)
and FeA ∈ X(FNφ). Thus, (27) implies that

l

∑
A=1

k

∑
B=1

R̃
(
eA, eB, eA, eB

)
= −

l

∑
A=1

k

∑
B=1

g(eA, eA)g(eB, eB) = −lk (28)

Therefore, using (26) and (28), we finally get

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
= kΔ(ln f ) + k(k − 1)‖∇(ln f )‖2 + ‖hμ‖2 (29)

+ k
(

cot2 φ + csc2 φ
)
‖∇(ln f )‖2 + lk.

Now, computing Δ ln f , we get:

Δ(ln f ) =− div(∇(ln f )) = −div
(∇ f

f

)
=− g(∇(

1
f
),∇ f ) +

1
f

Δ f (30)

=
1
f 2 ‖∇ f ‖2 +

1
f

Δ f .

Then, from (29) and (30), we find that

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
=

kΔ f
f

+
k‖∇ f ‖2

f 2

(
cot2 φ + csc2 φ + k

)
(31)

+ lk + ‖hμ‖2.

Let the pinching condition (2) be satisfied. Then, from (31), we get

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
< 4lk.

It well-known that constant sectional curvature for the complex projective spaces
CP2m(4) is equal to c = 4. Then, the last equation is implied:

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
< lkc. (32)

Therefore, using Theorem 1, we reached our promised results (a) and (b). For the
third part, let us assume that π1(Ω) �= 0. From the compactness of Ωn, it follows from
the classical theorem of Cartan and Hadamard that there is a minimal closed geodesic
in any non-trivial homotopy class in π1(Ω), which leads to a contradiction. Therefore,
π1(Ω) = 0. This is the third part of the theorem. If the finite fundamental group is null of
any Riemannian manifold, this Riemannian manifold is simply connected. As a result, Ωn

is simply connected.
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3.2. Proof of Theorem 3

In the case where Ωn is a compact Riemannian manifold with no boundary, ∂Ωn = ∅,
thus using [32], the divergence property

∫
Ωn(Δ f )dV = 0. Using this fact, we get

0 =
∫

Ωn
Δ
(

f 2

2

)
dV

=−
∫

Ωn
div
(
∇
( f 2

2

))
dV

=−
∫

Ωn
div( f∇ f )dV = −

∫
Ωn

g(∇ f ,∇ f )dV +
∫

Ωn
f Δ f dV,

which implies that ∫
Ωn

f Δ f dV =
∫

Ωn
‖∇ f ‖2dV. (33)

Using (3) with inequality (6), then it can be rewritten as:

1
2

∫
Ωn

‖∇ f ‖2dV <
( 1

2(2 csc2 φ + k)

) ∫
Ωn

(
3l − ‖hμ‖2

k

)
f 2dV. (34)

By using the trigonometric identities 1+ cot2 φ = csc2 φ and (33) in the above equation,
we get

∫
Ωn

f Δ f dV+
(

cot2 φ + csc2 φ + k)
∫

Ωn
‖∇ f ‖2dV <

∫
Ωn

(
3l − ‖hμ‖2

k

)
f 2dV.

It is equivalent to the following:

f Δ f+
(

cot2 φ + csc2 φ + k)‖∇ f ‖2 <
(

3l − ‖hμ‖2

k

)
f 2. (35)

Hence, using Theorem 3, we get the required results. This completes the proof of
the Theorem.

3.3. Proof of Theorem 4

Assuming f is a non-constant warping function, by the use of the minimum principle
on the first eigenvalue λ1, one can obtain [26] (p. 186):

λ1

∫
Ωn

( f )2dV ≤
∫

Ωn
‖∇ f ‖2dV. (36)

The equality holds if, and only if Δ f = λ1 f . On the other hand, if our assumption (10)
holds, then using the equality in (36), we get

(2 csc2 φ + k)
∫

Ωn
‖∇ f ‖2dV <

∫
Ωn

(
3l − ‖hμ‖2

k

)
f 2dV.

Utilizing (33) and rearranging this with trignometric functions, we have

(cot2 φ + csc2 φ + k)
∫

Ωn
‖∇ f ‖2dV +

∫
Ωn

f Δ f dV <
∫

Ωn

(
3l − ‖hμ‖2

k

)
f 2dV. (37)

Hence, we get the inequality

(cot2 φ + csc2 φ + k)‖∇ f ‖2 + f Δ f <
(

3l − ‖hμ‖2

k

)
f 2.
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Therefore, the assertion follows from Theorem 2. The proof is completed.
Hamiltonian at the point x ∈ Mn for the local orthonormal frame, is given as

(see [25]):

H(p, x) =
1
2

n

∑
i=1

p(ei)
2. (38)

Substituting p = dϕ into the previous equation, and since d is a differentiable operator,
we use (15) to have:

H(dϕ, x) =
1
2

n

∑
i=1

dϕ(ei)
2 =

1
2

n

∑
i=1

ei(ϕ)2 =
1
2
||∇ϕ||2. (39)

Using the previous equation leads to the next result from inequality (2), as the following:

Corollary 3. Under the same assumption in Theorem 2, it satisfies the following inequality:

H
(
d f , x

)
<

(3l − ‖hμ‖2) f 2

k(4 csc2 φ + 2k)
− f Δ f

2
, (40)

where H(d f , x) is the Hamiltonian of the warping function f , so no stable integral l-currents exist
in Ωn and Hl(Ωn,G) = Hk(Ωn,G) = 0.

Proof. Combining the Hamiltonian formula (39) and inequality (2), we have the result.

3.4. Proof of the Corollarys 1 and 2

The proof of Corollarys 1 and 2 can be obtained directly from the Theorems 2 and 3 by
substituting φ = π

2 to derive a totally real submanifold from a pointwise slant submanifold.
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Abstract: In this paper, we prove the nonexistence of stable integral currents in compact oriented
warped product pointwise semi-slant submanifold Mn of a complex space form M̃(4ε) under extrinsic
conditions which involve the Laplacian, the squared norm gradient of the warped function, and
pointwise slant functions. We show that i-the homology groups of Mn are vanished. As applications
of homology groups, we derive new topological sphere theorems for warped product pointwise
semi-slant submanifold Mn, in which Mn is homeomorphic to a sphere Sn if n ≥ 4 and if n = 3, then
M3 is homotopic to a sphere S3 under the assumption of extrinsic conditions. Moreover, the same
results are generalized for CR-warped product submanifolds.

Keywords: warped product submanifolds; complex space form; Homology groups; sphere theorem;
stable currents; Dirichlet energy

MSC: 53C40; 53A20; 53C42; 53B25; 53Z05

1. Introduction and Main Results

A traditional topic in Riemannian geometry is to find the geometrical and topological
structures of submanifolds; there has been much progress in this field. For instance,
the rigidity theorem was proved by Berger [1] for an even-dimensional complete simply
connected manifold M with sectional curvature 1

4 ≤ KM ≤ 1. Further, Gauhmen [2]
considered even n = 2m-dimensional submanifolds minimally immersed in the unit sphere
Sn+1 with a co-dimension equal to one, and showed that if ||h(u, u)||2 < 1 for any unit
vector u of Mn where h is the second fundamental form Mn, then Mn is totally geodesic
in Sn+1. If maxu∈M{||h(u, u)||2} = 1, then Mn is Sm( 1

2 )× Sm( 1
2 ) minimally embedded in

S2m+1, as described. A very famous result in this respect was formulated by Poincare [3],
who stated that every simply connected closed 3-manifold is homeomorphic to a 3-sphere.
Smale [4] generalized the Poincare conjecture and proved that for a closed C∞-manifold
Mn which has the homotopic types of an n-dimensional sphere greater than five, the
manifold Mn is homeomorphic to Sn. The differentiable sphere theorem was proven
by Brendle and Schoen [5] under Ricci flow. In recent years, much attention has been
paid to the classification of geometric function theory, topological sphere theorems, and
differentiable sphere theorems (see [6–11]). In the sequelae, the homology groups of a
manifold are important topological invariants that provide algebraic information about
the manifold. Federer-Fleming [7] showed that any non-trivial integral homology class
in Hp(M,G)) corresponds to a stable current. Motivated by the work of Federer and
Fleming [7], Lawson and Simon [9], and Xin [11] proved the nonexistence of stable integral
currents in a submanifold Mn and vanishing homology groups of Mn with non-negative
sectional curvature according to the following theorem.
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Theorem 1 ([9,11]). Let Mn be a compact n-dimensional submanifold isometrically immersed in
the space form M̃(c) of curvature c ≥ 0 with the second fundamental form h. Let l1, l2 be any
positive integers such that l1 + l2 = n and

l1

∑
α=1

n

∑
β=l1+1

{
2||h(eα, eβ)||2 − g

(
h(eα, eα), h(eβ, eβ)

)}
< l1l2c, (1)

for any x ∈ Mn and an orthonormal frame
{

ei
}

1≤i≤n of the tangent space TMn. Then, there do
not exist stable l1-currents in Mn and

Hl1(Mn,G) = Hn−l1=l2(Mn,G) = 0,

where Hi(Mn,G) stands for i-the homology group of Mn and G is a finite abelian group with
integer coefficients.

Due to these previous studies on large scales, a particular case we consider here is that
of warped product pointwise semi-slant submanifolds of complex space form where 4ε is
represented as a constant sectional curvature. In this regard, our motivation comes from
the study of Sahin [12], where he discussed the warped product pointwise semi-slant sub-
manifolds in a Kaehler manifold and showed that a warped product pointwise semi-slant
submanifold of type Nl1

T × f Nl2
θ is nontrivial when angle θ is treated as a slant function. Fur-

thermore, it was shown in [12] that the warped product pointwise semi-slant submanifold
Nl1

T × f Nl2
θ of a Kaehler manifold is a natural generalization of CR-warped products [13].

Inspired by this notion, we define the extrinsic condition to prove nonexistence-stable inte-
gral l1-currents and vanishing homology groups in a warped product pointwise semi-slant
submanifold of complex space forms M̃m(4ε). We use Theorem 1 on this basis to arrive at
our first result.

Theorem 2. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃m(4ε). If the following condition is satisfied

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2 + f Δ f +

f 2

l2
‖hμ‖2 < 3l1ε f 2, (2)

then there do not exist stable integral l1-currents in Ml1+l@ and

Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,G) = 0,

where Hi(Ml1+l2 ,G) stands for i-the homology group of Ml1+l2 with integer coefficients, ∇ f and
Δ f are the gradient and the Laplacian of the warped function f , respectively, and hμ represents the
components of the second fundamental form h in an invariant subspace μ.

Our next result is in accordance with Lemma 3.1 in [12], which states that the inner
product of the second fundamental form of Nl1

T and F-components of Nl1
θ is equal to zero.

To be precise, we have the following result.

Theorem 3. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃m(4ε). If the inequality

∥∥∇ f
∥∥2

<

{ (
4l1l2ε − ‖hμ‖2) f 2

2l2
(

csc2 θ + cot2 θ
)}, (3)
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holds, then there do not exist stable integral l1-currents in Ml1+l2 and

Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,G) = 0.

The notation is the same as in Theorem 2.

To apply Theorems 2 and 3 in [14], let the slant function θ become globally constant,
setting θ = π

2 in Theorems 2 and 3. Then, the pointwise slant submanifold Nl1
θ is turned into

a totally real submanifold Nl2
⊥ . Thus, a warped product pointwise semi-slant submanifold

Ml1+l2 = Nl1
T × f Nl2

θ becomes CR-warped products in a Kaehler manifold of type Mn =

Nl1
T × f Nl2

⊥ . Therefore, following to the motivation of Chen [13], we deduce the following
result from Theorem 2 for the nonexistence of stable integral l1-currents and vanishing
homology in a CR-warped product submanifold of complex space forms M̃m(4ε).

Corollary 1. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact CR-warped product submanifold of complex
space form M̃2m(4ε). If the following condition is satisfied

(
1 + l2

)
||∇ f ||2 + f Δ f +

f 2

l2
‖hμ‖2 < 3l1ε f 2, (4)

then there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,
G) = 0.

As an immediate consequence of Theorem 3, we have

Corollary 2. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact CR-warped product submanifold of complex
space form M̃2m(4ε) satisfying the following inequality

∥∥∇ f
∥∥2

<

{(
4l1l2ε − ‖hμ‖2) f 2

2l2

}
.

Then, there do not exist stable integral l1-currents in Ml1+l2 and we have the trivial homology
groups, i.e.,

Hl1(Ml1+l2 ,G) = Hl1(Ml1+l2 ,G) = 0.

Our next motivation comes from Calin [15] who studied geometric mechanics on
Riemannian manifolds and defined a positive differentiable function ϕ ( ϕ ∈ F (Mn) )
on a compact Riemannian manifold Mn. The Dirichlet energy of a function ϕ is defined
in [15] (see p. 41) as follows:

E(ϕ) =
1
2

∫
Mn

||∇ϕ||2dV 0 < E(ϕ) < ∞. (5)

In view of the kinetic energy formula (5) for a compact oriented manifold without
boundary along with Theorem 2, we arrive at the following result.

Theorem 4. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃2m(4ε) without boundary. If the following condition is satisfied

E
(

f
)
<

{∫
Mn

(
3l1l2ε − ‖hμ‖2

)
f 2dV

2l2(2 csc2 θ + l2)

}
, (6)
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where E( f ) is the Dirichlet energy of the warping function f with respect to the volume ele-
ment dV, then there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 ,G) =

Hl2(Ml1+l2 ,G) = 0.

An important concept relates to the geometrical and topological properties on Rieman-
nian manifolds when considering the pinched condition on its metric. It is interesting to
investigate the curvature and topology of submanifolds in a Riemannian manifold and the
usual sphere theorems in Riemannian geometry. For instance, using the nonexistence of
stable currents on compact submanifolds, Lawson and Simon [9] obtained their striking
sphere theorem, which proved that for an n-dimensional compact-oriented submanifold
Mn in a unit sphere Sn+k with the second fundamental form bounded above by a constant
which depends on the dimension n, then Mn is homeomorphic to a sphere Sn when n �= 3
and M3 are homotopic to a sphere S3.

Making use of Lawson and Simon [9], Leung [16] proved that for a compact connected
oriented submanifold Mn in the unit sphere Sn+k such that ‖h(X, X)‖2 < 1

3 , when n �= 3
and M3 are homotopic to a sphere S3, then Mn is homeomorphic to a sphere Sn. Recently,
it has been shown in [17] that if the sectional curvature satisfies some pinching condition
KM ≥ l1.sign(l1−1)

2(l1+1) for n-dimensional compact oriented minimal submanifold M in the

unit sphere Sn+l1 with co-dimension l1, then M is either a totally geodesic sphere, one
of the Clifford minimal hyper-surfaces Sk( k

n )× Sn−k( n−k
n ) in Sn+1 for k = 1, . . . , n − 1, or

a Veronese surface in S4. More recently, several results have been derived on topologi-
cal and differentiable structures of submanifolds when imposing certain conditions on
the second fundamental form, Ricci curvatures, and sectional curvatures in a series of
articles [4,10,11,18–23] by different geometers. For the warped product structure, we refer
to [20,24–30].

The second target of note is to establish topological sphere theorems from the view-
point of warped product submanifold geometry with positive constant sectional curvature
and pinching conditions in terms of the squared norm of the warping function and Lapla-
cian of the warped function as extrinsic invariants. In this sense, we work with conditions
on the extrinsic curvature (second fundamental form, warping function), which have the
advantage of being invariant under rigid motions. Motivated by Lawson and Simon [9],
(p. 441, Theorem 4), we consider a warped product pointwise semi-slant submanifold in a
complex space form M̃2m(4ε) such that the constant holomorphic sectional curvature is 4ε,
and state our main theorem of this paper.

Theorem 5. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold in a complex space form M̃2m(4ε) satisfying the condition (2). Then, Ml1+l2 is homeomorphic
to sphere Sl1+l2 when l1 + l2 ≥ 4, while M3 is homotopic to a sphere S3.

Remark 1. As a consequence of Theorem 5, we obtain the following sphere theorem for a compact
CR-warped product submanifold in a complex space form M̃2m(4ε), thanks to Chen [13].

Corollary 3. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact CR-warped product submanifold in a complex
space form M̃2m(4ε) satisfying the pinching condition (4). Then, Ml1+l2 is homeomorphic to a
sphere Sl1+l2 when l1 + l2 ≥ 4, and M3 is homotopic to a sphere S3.

Using Theorem 4 and 5, we can now obtain an important result.

Corollary 4. Let Mp+q = Np
T × f Nq

θ be a compact warped product pointwise semi-slant subman-
ifold of complex space form M̃2m(4ε). If (6) is satisfied, then Ml1+l2 is homeomorphic to sphere
Sl1+l2 when l1 + l2 ≥ 4 and M3 is homotopic to a sphere S3.
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Remark 2. The principle behind Cheng’s eigenvalue comparison theorem (see [31]) forms the basis
of the following finding. With the help of the first non-zero eigenvalue of the Laplacian operator,
Cheng has demonstrated that if M is complete and isometric to the sphere of the standard unit then
the following theorem can be inferred using the maximum principle for the first non-zero eigenvalue
λ1, provided that Ric(M)geq1 and d(M) = π.

Theorem 6. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant sub-
manifold of a complex space form M̃2m(4ε) with f being a non-constant eigenfunction of the first
non-zero eigenvalue λ1 such that the following inequality is satisfied:

λ1 <
3l1l2ε − ‖hμ‖

l1
(
2 csc2 θ + l2

) . (7)

Then, Ml1+l2 is homeomorphic to sphere Sl1+l2 when l1 + l2 ≥ 4 and M3 is homotopic to a
sphere S3 when l1 + l2 = 3.

Motivated by Bochner’s formula [32], we arrive at the following result.

Theorem 7. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃2m(4ε) such that following inequality holds:

‖∇2 f ‖2 + Ric(∇ f ,∇ f ) >

{(
‖hμ‖2 − 3l1l2ε

)
f Δ f(

2 csc2 θ + l2
) }

, (8)

where ‖∇2 f ‖2 denotes the Hessian form of the warping function f and Ric denotes the Ricci
curvature along the base manifold Nl1

T . Then, Ml1+l2 is homeomorphic to sphere Sl1+l2 when
l1 + l2 ≥ 4 and M3 is homotopic to a sphere S3 when l1 + l2 = 3.

2. Preliminaries

Let M2m(4ε) be a complex space form with the complex dimension dimR M = 2m.
Then, the curvature tensor R of M2m(4ε) with constant holomorphic sectional curvature 4ε
is expressed as

R(X2, Y2)Z2 = c
(

g(X2, Z2)Y2 − g(Y2, Z2)X2 + g(X2, JZ2)JY2

− g(Y2, JZ2)X2 + 2g(X2, JY2)JZ2

)
. (9)

The Gauss and Weingarten formulas for transforming submanifold Mn into an almost
Hermitian manifold M̃2m are provided by

∇̃X2Y2 = ∇X2Y2 + h(X2, Y2),

∇̃X2 N = −AN X2 +∇⊥
X2

N,

for each X2, Y2 ∈ X(TM) and N ∈ X(T⊥M) such that the second fundamental form and
the shape operator are denoted by h and AN . They are connected as g(h(U, V), N) =
g(ANU, V). Now, for any X2 ∈ X(M) and N ∈ X(T⊥M), we have

(i) JX2 = TX2 + FX2, (ii) JN = tN + f N, (10)

where TX2(tN) and FX2( f N) are the tangential and normal components of JX2(JN),
respectively.
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The Gauss equation for a submanifold Mn is defined as

R̃(X2, Y2, Z2, W2
)
=R(X2, Y2, Z2, W2) + g

(
h(X2, Z2), h(Y2, W2)

)
− g
(
h(X2, W2), h(Y2, Z2)

)
, (11)

for any X2, Y2, Z2, W2 ∈ X(TM), where R̃ and R are the curvature tensors on M̃2m and
Mn, respectively.

The norm of second fundamental form h for an orthonormal frame {e1, e2, · · · en} of
the tangent space TM on Mn is defined by

hr
ij = g(h(ei, ej), er), ||h||2 =

n

∑
i,j=1

g(h(ei, ej), h(ei, ej)). (12)

Let {e1, . . . , en} be an local orthonormal frame of vector field Mn. Then, we have

∇ϕ =
n

∑
i=1

ei(ϕ)ei.

and

‖∇ϕ‖2 =
n

∑
i=1

(
(ϕ)ei

)2, (13)

where ∇ϕ and ||∇ϕ||2 are the gradient of function ϕ and its squared norm.

The following classifications can be provided as:

(i) If J(Tx M) ⊆ Tx M for every x ∈ Mn, then Mn is a holomorphic submanifold.
(ii) If J(Tx M) ⊆ T⊥M for each x ∈ Mn, then Mn is a totally real submanifold.

There are four types of submanifolds of a Kaehler manifold, namely, the CR-submanifold,
slant submanifold, semi-slant submanifold, pointwise slant submanifold, and pointwise semi-
slant submanifold. The definitions and classifications of such submanifolds are discussed
in [12,13]. Moreover, for examples of a pointwise semi-slant submanifold in a Kaehler manifold
and related problems, we refer to [12]. It follows from Definition 3.1 in [12] that if we denote as
l1 and l2 the dimensions of a complex distribution DT and pointwise slant distribution Dθ of a
pointwise semi-slant submanifold in a Kaehler manifold M̃2m, then the following remarks hold:

Remark 3. Mn is invariant if l1 = 0 and pointwise slant if l2 = 0.

Remark 4. If we consider the slant function θ : Mn → R as globally constant on Mn and θ = π
2 ,

then Mn is a CR-submanifold.

Remark 5. An invariant subspace μ under J of normal bundle T⊥M, is defined as T⊥M =
FDθ ⊕ μ.

3. Warped Product Submanifolds

A product manifold of the type Mn = Nl1
1 × f Nl2

2 is a warped product manifold

if the metric is defined as g = g1 + f 2g2, where Nl1
1 and Nl2

2 are two Riemannian man-
ifolds and their Riemannian metrics are g1 and g2, respectively. It was discovered by
Bishop and O’Neill [33] that the warping function f is a smooth function defined on base
Nl1

1 . The following properties are a direct consequence of the warped product manifold
Mn = Nl1

1 × f Nl2
2 :

(i) ∇ZX = ∇XZ = (X f )
f Z,

(ii) ∇ZW = ∇′
ZW − g(Z,W)

f ∇ f ,
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for any X, Y ∈ X(TN1) and Z, W ∈ X(TN2), where ∇ and ∇′
denote the Levi-Civita

connection on Mn and N2, respectively.
The gradient ∇ f of f is written as

g(∇ ln f , X2) = X2(ln f ). (14)

The following relation is an interesting property of warped products:

R(X2, Z2)Y2 =
H f (X2, Z2)

f
Y2, (15)

where H f is a Hessian tensor of f ; the remarks below follow as a consequence.

Remark 6. A warped product manifold Mn = Nl1
1 × f Nl2

2 is said to be trivial or simply a

Riemannian product manifold if the warping function f is a constant function along Nl1
1 .

Remark 7. If Mn = Nl1
1 × f Nl2

2 is a warped product manifold, then Nl1
1 is totally geodesic and

Nl2
2 is a totally umbilical submanifold of Mn, respectively.

4. Non-Trivial Warped Product Pointwise Semi-Slant Submanifolds Nl1
T × f Nl2

θ

It is well known that warped product submanifolds of types

(i) Nl2
θ × f Nl1

T , and (ii) Nl1
T × f Nl2

θ ,

are called warped product pointwise semi-slant submanifolds, which were discovered
in [12]. They contain holomorphic and pointwise slant submanifolds of a Kähler manifold.
The first case, with Mn = Nl2

θ × f Nl1
T in a Kähler manifold, is trivial. The second is non-

trivial. Before proceeding to the second case, let us recall the following result [12].

Lemma 1. Let Mn = Nl1
T × f Nl2

θ be a warped product pointwise semi-slant submanifold of a
Kähler manifold M̃m. Then,

g(h(X2, Z2), FTZ2) =− (X2 ln f ) cos2 θ||Z2||2, (16)

g(h(Z2, JX2), FZ2) =(X2 ln f )||Z2||2, (17)

for any X2, Y2 ∈ X(TNT) and Z2 ∈ X(TNθ).

5. Proof of Main Results

5.1. Proof of Theorem 2

The crucial point of this paper is to derive an upper bound for

l1

∑
i=1

n

∑
j=l1+1

{
2||h(ei, ej)||2 − g

(
h(ei, ei), h(ej, ej)

)}
in terms of Δ f and ||∇ f ||2.

Let M = Nl1
T × f Nl2

θ be an n = l1 + l2-dimensional warped product pointwise semi-

slant submanifold with dimNl1
T = l1 = 2α and dimNl2

θ = l2 = 2β, where Nl1
θ and Nl1

T
are integral manifolds of Dθ and D, respectively. Thus, we consider {e1, e2, · · · eα, eα+1 =
Je1, · · · e2α = Jeα} and {e2α+1 = e∗1, · · · e2α+β = e∗β, e2α+β+1 = e∗β+1 = sec θPe∗1, · · · el1+l2 =

e∗l2 = sec θPe∗β} to be orthonormal frames of TNT and TNθ , respectively. Thus the orthonor-

mal frames of the normal sub-bundles FDθ and μ are {en+1 = ē1 = csc θFe∗1, · · · en+β =
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ēβ = csc θFe∗1, en+β+1 = ēβ+1 = csc θ sec θFPe∗1, · · · en+2β = ē2β = csc θ sec θFPe∗β} and
{en+2β+1, · · · e2m}, respectively. Then, from the Gauss Equation (11), we have

l1

∑
i=1

l2

∑
j=1

g
(

R(ei, ej)ei, ej
)
=

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
+ ||h(ei, ej)||2

−
l1

∑
i=1

l2

∑
j=1

g
(
h(ei, ej), h(ei, ej)

)
.

By adding the squared norm of the second fundamental terms in both side of the
above equation, we obtain

l1

∑
i=1

l2

∑
j=1

g
(

R(ei, ej)ei, ej
)
+ ||h(ei, ej)||2 =

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)

−
l1

∑
i=1

l2

∑
j=1

g
(
h(ej, ej), h(ei, ei)

)
+ 2||h(ei, ej)||2. (18)

Using the orthonormal frames
{

ei
}

1≤i≤l1
and
{

ej
}

1≤j≤l2
of Nl1

T and Nl2
θ , respectively,

in (15), we derive

R(ei, ej)ei =
ej

f
H f (ei, ei).

Summing up with an orthonormal frame
{

ej
}

1≤j≤l2
(here it should be pointed out that

we have adopted the opposite sign from the usual sign convention for the Laplacian), then

l1

∑
i=1

l2

∑
j=1

g
(

R(ei, ej)ei, ej
)
= − l2

f

l1

∑
i=1

g
(
∇ei∇ f , ei

)
. (19)

Thus, from Equations (18) and (19), we can derive

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
+

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)

= − l2
f

l1

∑
i=1

g
(
∇ei∇ f , ei

)
+

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2. (20)

First, we figure out the term Δ f for Mn, which is the Laplacian of f .

Δ f =−
n

∑
i=1

g
(
∇ei grad f , ei

)
=−

l1

∑
α=1

g
(
∇eα grad f , eα

)
−

l2

∑
β=1

g
(
∇eβ

grad f , eβ

)
.
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The above equation can be expressed as components of Nq
θ from adapted orthonormal

framel in this way, we obtain

Δ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

g
(
∇ej grad f , ej

)
− sec2 θ

β

∑
j=1

g
(
∇Tej grad f , Tej

)
.

Benefiting from ∇ being a Levi-Civita connection on Mn, we derive

Δ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

(
ejg
(

grad f , ej
)
− g
(
∇ej ej, grad f

))
.

− sec2 θ
β

∑
j=1

(
Tejg
(

grad f , Tej
)
− g
(
∇Tej Tej, grad f

))
.

From the property of the gradient of function (14), we obtain

Δ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

(
ej(ej f )− (∇ej ej f )

)

− sec2 θ
β

∑
j=1

(
Tej(Tej( f ))− (∇Tej Tej f )

)
.

After computation, we have

Δ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

(
ej

(
g(grad f , ej)

)
− g(∇ej ej, grad f )

)

− sec2 θ
β

∑
j=1

(
Tej

(
g(grad f , Tej)

)
− g(∇Tej Tej, grad f )

)
.

Starting from the hypothesis of a warped product pointwise semi-slant submanifold,
Nl1

T is totally geodesic in Mn. This implies that grad f ∈ X(TNT), and from (i)–(ii) in
Section 3, we obtain

Δ f =− 1
f

β

∑
j=1

(
g(ej, ej)‖∇ f ‖2 + sec2 θg(Tej, Tej)‖∇ f ‖2

)

−
l1

∑
i=1

g
(
∇ei grad f , ei

)
.

By multiplying the above equation by 1
f , from (3.7) of Corollary 3.1 in [12] we obtain

Δ f
f

= − 1
f

l1

∑
i=1

g
(
∇ei grad f , ei

)
− l2‖∇(ln f )‖2.

It is not difficult to check that

− 1
f

l1

∑
i=1

g
(
∇ei grad f , ei

)
=

Δ f
f

+ l2||∇ ln f ||2.
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This combines with (20) to yield

l2
2 ||∇(ln f )||2 + l2Δ f

f
+

l1

∑
α=1

l2

∑
β=1

(
hr

αβ

)2
=

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}

+
l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
. (21)

On taking X = ei and Z = ej for 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2, respectively, we have

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

=
n+2β

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2
+

2m

∑
r=n+2β+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2.

In the above equation, the first term on the right hand side is the FDθ-component and
the second term is the μ-component for the orthonormal frame for vector fields of Nl1

T and
Nl2

θ . Summing over the vector fields of Nl1
T and Nl2

θ and using (16) and (17) from Lemma 1
in the last equation, we are able to find that

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

=2
(

csc2 θ + cot2 θ
) α

∑
i=1

β

∑
j=1

(
ei ln f )

)2g(e∗j , e∗j )
2

+ 2
(

csc2 θ + cot2 θ

) α

∑
i=1

β

∑
j=1

(
Jei ln f )

)2g(e∗j , e∗j )
2

+
2m

∑
r=n+2β+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2.

From the adapted orthonormal frame for NT , the last equation can then be expressed
as follows:

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

=2
(

csc2 θ + cot2 θ
) l1

∑
i=1

(
ei(ln f )

)2 l2

∑
j=1

g(e∗j , e∗j )
2

+
2m

∑
r=n+2β+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2.

Together with the definition of the squared norm of the gradient function f from (13),
the above implies that

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

= l2
(

csc2 θ + cot2 θ
)
||∇ ln f ||2 + ‖hμ‖2. (22)
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Following (21) and (22), we arrive at

l2Δ f
f

+l2
2 ||∇(ln f )||2 + l2

(
1 + 2 cot2 θ

)
||∇(ln f )||2 + ‖hμ‖2

=
l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}

+
l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
.

Because we have the following relation for symmetry of the curvature tensor R,

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
=

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
. (23)

Next, we use the curvature tensor from Formula (9) for the complex space form
M̃m(4ε), which can be simply written as

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
= ε

l1

∑
i=1

l2

∑
j=1

{
g(ei, ej)g(ei, ej)− g(ei, ei)g(ej, ej)

− g(Jei, ei)g(Jej, ej)

+ 3g(Jei, ej)g(Jej, ei)

}
. (24)

As we know that ei ∈ X(TNT) and ej ∈ X(TNθ), then g(ei, ej) = 0, and g(Jei, ei) =
0(resp, g(Jej, ei) = 0) by the fact that for Jei ⊥ ei(Jej ⊥ ej), respectively. Similarly, from
(10)i, we can derive that g(Jei, ej) = g(Tei + Fei, ej) = 0 for Tei ∈ X(TNT) and ej ∈ X(TNθ);
thus, (24) implies that

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
= −ε

l1

∑
i=1

l2

∑
j=1

g(ei, ei)g(ej, ej).

After computation using the above equation, we can derive

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
= −l1l2ε, (25)

Therefore, following (23) and (25), we finally obtain

l2Δ f
f

+ l2
2 ||∇(ln f )||2 + l2

(
csc2 θ + cot2 θ

)
||∇(ln f )||2 + ‖hμ‖2 + l1l2ε

=
l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
. (26)

If the pinching condition (2) is satisfied, then from (26) we have

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
< 4l1l2ε
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By applying Theorem 1 with c = 4ε > 0, we obtain the following:

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
< l1l2c.

This completes the proof of Theorem 2, as the assertion follows from Theorem 1.

5.2. Proof of Theorem 4

If we consider Mn as the compact-oriented Riemannian manifold without boundary
∂Mn = ∅, then we are able to prove the strong result in terms of tthe Dirichlet energy and
pointwise slant immersion as follows. Taking the integration along the volume element dV
in (2), we obtain∫

Mn

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2dV+

∫
Mn

f Δ f dV

<
∫

Mn

(
3l2ε − ‖hμ‖2

l2

)
f 2dV. (27)

From the divergence theorem
∫

Mn(Δ f )dV = 0 in [34] without boundary. Using this
fact, we can compute the following as

0 =
∫

Mn
Δ
(

f 2

2

)
dV = −

∫
Mn

div
(
∇
( f 2

2

))
dV

=−
∫

Mn
div( f∇ f )dV = −

∫
Mn

g(∇ f ,∇ f )dV +
∫

Mn
f Δ f dV

which implies that ∫
Mn

f Δ f dV =
∫

Mn
‖∇ f ‖2dV. (28)

The inequality (27) takes its new form by virtue of (28), that is,

2
∫

Mn

(
csc2 θ||∇ f ||2

)
dV+l2

∫
Mn

||∇ f ||2dV <
∫

Mn

(
3l1ε − ‖hμ‖2

l2

)
f 2dV. (29)

Using the Dirichlet energy from Formula (5) in the above equation, we have

2
(
2 csc2 θ + l2

)
E( f ) <

∫
Mn

(
3l1ε − ‖hμ‖2

l2

)
f 2dV.

Thus, we obtain the required result (6). This completes the proof of the theorem.

5.3. Proof of Corollary 1 and 2

The proof of Corollary 1 and Corollary 3 arises directly from Theorems 2 and 5
by substituting θ = π

2 to point out a totally real submanifold from a pointwise slant
submanifold, which then provides the promised results.

5.4. Proof of Theorem 5

From Theorem 2, we can find that there do not exist stable integral l1-currents in
a warped product pointwise semi-slant submanifold Mn and that the homology groups
are zero for all positive integers l1 , l2 such that n = l1 + l2 �= 3; that is, Hl1(Mn,G) =
Hl2(Mn,G) = 0. Therefore, Mn is a homology sphere, and in addition is a homotopic
sphere following the same arguments as in [19].
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Therefore, applying the generalized Poincarẽ conjecture
(
Smale n ≥ 5 [4], Freedman

n = 4 [8]
)
, we know that Mn is homotopic to the sphere Sn as an immediate consequence

of Sjerve[10], implying that the fundamental group π1(Mn) = 0 on Mn when applying
the same arguments as above. This implies that Ml1+l2 is homeomorphic to the sphere
Sl1+l2 . Similarly, it is not hard to check that M3 is homotopic to a sphere S3 when n = 3
from [9,16]. This completes the proof of Theorem 5.

5.5. Proof of Theorem 6

From the minimum principle on the first eigenvalue λ1, we can obtain the outcome
from [32], p. 186. Let us assume that f is a non-constant warping function

λ1

∫
Mn

f 2dV ≤
∫

Mn
‖∇ f ‖2dV. (30)

where the equality holds if and only if Δ f = λ1 f . Integrating Equation (29) and Green’s
lemma, we have

(
2 csc2 θ + q

) ∫
Mn

‖∇ f ‖2dV <
∫

Mn

(
3l1ε − ‖hμ‖2

l2

)
f 2dV,

which implies that

∫
Mn

‖∇ f ‖2dV <
1(

2 csc2 θ + l2
) ∫

Mn

(
3l1ε − ‖hμ‖2

l2

)
f 2dV. (31)

By virtue of (30) in (31), we can find that

∫
Mn

{
λ1 −

(
3l1l2ε − ‖hμ‖

)
l2
(
2 csc2 θ + l2

)} f 2dV < 0.

From this, we arrive at our result (7) by combining Theorems 2 and 5, which completes
the proof.

Here, we remember the lemma below.

Lemma 2 ([12]). Assume that M̃2m is a Kaehler manifold and Ml1+l2 = Nl1
T × f Nl2

θ is a warped
product pointwise semi-slant submanifold of M̃2m. Then, we have

g
(
h(X2, Y2), FZ2

)
= 0. (32)

for any X2, Y2 ∈ X(TNT) and Z2, W2 ∈ X(TNθ).

In view of Lemma 2, we can find our next result.

5.6. Proof of Theorem 3

We can write the following from (12) as follows:

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
=2

l1

∑
i=1

l2

∑
j=1

||h(ei, ej)||2

−
l1

∑
i=1

l2

∑
j=1

g
(
h(ei, ei), ej

)2,
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or equivalently as

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}

= 2
l1

∑
i=1

l2

∑
j=1

||h(ei, ej)||2 −
l1

∑
i=1

l2

∑
j=1

g
(
h(ei, ei).Fe∗j

)2.

By virtue of (32), we have

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
= 2

l1

∑
i=1

l2

∑
j=1

||h(ei, ej)||2.

Using Equation (22) on the right hand side of the above equation, we have

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
=

2l2
f 2

(
csc2 θ + cot2 θ

)
‖∇ f ‖2 + ‖hμ‖2. (33)

If assumption (3) is satisfied, then the following inequality is implied by (33):

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
< 4l1l2ε. (34)

Thus, the proof is complete from Theorem 1 and from (34).

Based on Theorem 3 and the similar proof of Theorem 5, we reach the following result.

Corollary 5. Assume that Ml1+l2 = Nl1
T × f Nl2

θ is a compact warped product pointwise semi-slant
submanifold of a complex space form M̃2m(4ε) satisfying the following:

‖∇ f
∥∥2

<

{ (
4l1l2ε − ‖hμ‖2) f 2

2l2
(

csc2 θ + cot2 θ
)}.

Then, Mp+q is homeomorphic to a sphere Sp+q when p + q �= 3, while M3 is homotopic to a
sphere S3.

5.7. Proof of Theorem 7

In this theorem, we replace our pinching condition (2) with the Hessian of the warping
function and Ricci curvature by using the concept of the eigenvalue of the warped function.
If f is a first eigenfunction of the Laplacian of Mn associated with the first eigenvalue λ1,
that is, Δ f = λ1 f , then we an recall Bochner’s formula (see, e.g., [32]), which states that for
a differentiable function f defined on a Riemannian manifold, the following relation holds:

1
2

Δ‖∇ f ‖2 = ‖∇2 f ‖2 + Ric(∇ f ,∇ f ) + g
(
∇ f ,∇(Δ f )

)
.

By integrating the above equation with the aid of Stokes’ theorem, we obtain∫
‖∇2 f ‖2dV +

∫
Ric(∇ f ,∇ f )dV +

∫
g
(
∇ f ,∇(Δ f )

)
dV = 0.

Now, by using Δ f = λ1 f and slightly rearranging the above equation, we derive

∫
‖∇ f ‖2dV = − 1

λ1

( ∫
‖∇2 f ‖2dV +

∫
Ric(∇ f ,∇ f )dV

)
. (35)
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On combing Equations (28) and (27), we obtain

(
2 csc2 θ + l2

) ∫
Mn

‖∇ f ‖2dV +
∫

Mn

f 2‖hμ‖2

l2
dV < 3l1ε

∫
Mn

f 2dV. (36)

Following from (35) and (36), we find that

∫
Mn

(‖hμ‖2

l2
− 3l1ε

)
f 2dV <

(
2 csc2 θ + l2

)
λ1

∫
Mn

(
‖∇2 f ‖2 + Ric(∇ f ,∇ f )

)
dV,

which implies that

‖∇2 f ‖2 + Ric(∇ f ,∇ f ) >

{(
‖hμ‖2 − 3l1l2ε

)
λ1 f 2(

2 csc2 θ + l2
) }

. (37)

The proof follows from the above Equation (37) along with Theorem 2.

6. Consequences

It is well known that a complete simply-connected complex space form M̃2m(4ε) is
holomorphicaly isometric to the complex Euclidean space Cm, the complex projective
m-space CPm(4), and a complex hyperbolic m-space CHm(−4) with ε = 0, 1 & ε =
−1. Therefore, we define the following corollaries in consequence of our Theorem 2 and
Theorem 5.

Corollary 6. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant sub-
manifold in a complex Euclidean space Cm satisfying the condition

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2 + f Δ f +

f 2

l2
‖hμ‖2 < 0.

Then, there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,
G) = 0. Furthermore, Ml1+l2 is homeomorphic to a sphere Sl1+l2 when l1 + l2 ≥ 4, while M3 is
homotopic to a sphere S3.

Similarly, for the complex projective m-space CPm(4) we have the following.

Corollary 7. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant sub-
manifold in a complex projective m-space CP2m(4) satisfying the condition

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2 + f Δ f <

f 2

l2

(
3l1l2 − ‖hμ‖2).

Then, there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 , G) = Hl2(Ml1+l2 ,
G) = 0. In addition, Ml1+l2 is homeomorphic to a sphere Sl1+l2 when l1 + l2 ≥ 4, while M3 is
homotopic to a sphere S3.

7. Conclusions

The presented study is significant in light of the extant literature thanks to the new
pinching conditions presented in terms of pointwise slant functions and the Laplacian of the
warped function. We have discussed the rigidity results and investigated several topological
classifications. In addition, we have derived a number of extrinsic conditions involving
relevant geometric quantities by analyzing the extent to which the topology of warped
product submanifolds is affected by the conditions on the main intrinsic and main extrinsic
curvature invariants. A number of topological sphere theorems have been investigated
in refeence to the connection between warped product submanifolds and homotopic–
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homologic theory. The contents of the present paper can be expected to attract researchers
to the prospect of finding possible applications in various research areas of physics.
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Abstract: The paper deals with the study of Z-symmetric manifolds (ZS)n admitting certain cases of
Schouten tensor (specifically: Ricci-recurrent, cyclic parallel, Codazzi type and covariantly constant),
and investigate some geometric and physical properties of the manifold. Moreover, we also study
(ZS)4 spacetimes admitting Codazzi type Schouten tensor. Finally, we construct an example of (ZS)4

to verify our result.
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1. Introduction

Let the manifold (Mn, g) (dim M = n ≥ 3) be connected and semi-Riemannian, and
the endowed metric g is of signature (s, n − s), 0 ≤ s ≤ n. If s = n or 0 (resp., s = n − 1
or 1), then (Mn, g) is a Riemannian (resp., Lorentzian) manifold. A Riemannian manifold
is called locally symmetric [1] if ∇K = 0, where K and ∇ appear for the Riemannian
curvature tensor and the Levi-Civita connection, resectively. The class of Riemannian
symmetric manifold is very natural generalization of the class of manifold of constant
curvature. The notion of locally symmetric manifolds have been studied by many authors
in several ways to a different extent such as conformally symmetric manifolds by Chaki and
Gupta [2], recurrent manifolds by Walker [3], conformally recurrent manifolds by Adati
and Miyazawa [4], pseudo symmetric manifolds by Chaki [5], weakly symmetric manifolds
by Tamassy and Binh [6] etc.

The general relativity is the geometric theory of gravitation developed by Einstein.
In this theory, the Einstein equations relate the geometry of spacetime to the distribution
of matter within it [7]. As a consequence of the Einstein equations, the divergence of
energy-momentum tensor T vanishes [8]. In 1966, the authors Chaki and Ray [9] proved
that for a covariantly constant energy-momentum tensor, the general relativistic spacetime
is Ricci-symmetric, that is, ∇Ric = 0, where Ric denotes the Ricci tensor of the spacetime.

Approximately a decade ago, the notion of weakly Z-symmetric manifolds was
introduced by Mantica and Molinari [10], this notion generalizes weakly Ricci-symmetric
manifolds. During the last decade, Z-symmetric manifolds have been studied by var-
ious authors, for example, weakly cyclic Z-symmetric manifolds by De, Mantica and
Suh [11], pseudo Z-symmetric Riemannian manifolds by Mantica and Suh [12], almost
pseudo Z-symmetric manifolds by De and Pal [13], concircularly flat Z-symmetric man-
ifold and Z-symmetric manifold with the projective curvature tensor by Zengin and
Yavuz Tasci [14,15].

The symmetric endomorphism R corresponding to the Ricci tensor Ric of type (0, 2) is
defined through the relation

Mathematics 2022, 10, 4293. https://doi.org/10.3390/math10224293 https://www.mdpi.com/journal/mathematics44



Mathematics 2022, 10, 4293

Ric(Y, V) = g(R(Y), V), (1)

for all vector fields Y and V.
In an (Mn, g), (n > 2), a symmetric tensor of type (0, 2) is a generalized Z tensor

if [12,16]
Z(Y, V) = Ric(Y, V) + φg(Y, V), (2)

where φ is an arbitrary scalar function.
From (2), we have

Z(Y, V) = Z(V, Y),

and
Z(Y, Q) = Ric(Y, Q) + φg(Y, Q).

Here the vector field Q is called the basic vector field of the manifold corresponding to the
1-form φ.

Contraction of (2) over Y and V gives the scalar Z̃ as follows:

Z̃ = r + nφ, (3)

where r is the scalar curvature. With the choice of φ = − 1
n r, we obtain the classical Z tensor.

Here, the generalized Z tensor is referred as a Z tensor.
A Riemannian or a semi-Riemannian manifold (Mn, g), (n > 2) is said to be weakly

Z-symmetric [10] and denoted by (WZS)n, if the generalized Z tensor satisfies the condition

(∇UZ)(Y, V) = A(U)Z(Y, V) + B(Y)Z(U, V) + D(V)Z(Y, U), (4)

where A, B, D are 1-forms which are non-zero simultaneously. If A = B = D = 0, then the
manifold reduces to a Z symmetric (∇Z = 0) manifold.

On an n-dimensional Riemannian (semi-Riemannian) manifold (Mn, g), n ≥ 3, the
Schouten tensor is defined by [17]

P(Y, V) =
1

n − 2

[
Ric(Y, V)− r

2(n − 1)
g(Y, V)

]
. (5)

By combining (2) and (5), we have

P(Y, V) =
1

n − 2

[
Z(Y, V)−

{ r
2(n − 1)

+ φ
}

g(Y, V)
]
, (6)

where r is the scalar curvature and φ is a non-zero 1-form such that g(Y, Q) = φ(Y) for
every vector field Y.

The Riemannian curvature tensor K decomposes as [18]

K = P � g + C,

where C, � and P represent the Weyl tensor of g, the Kulkarni-Nomizu product and the
Schouten tensor, respectively. Since C is conformally invariant, therefore, to study the
deformation of the conformal metric, we need a good understanding of the Schouten
tensor [17,19].

The scalar P̄ is obtained by contracting (5) over Y and V as follows:

P̄ =
r

2(n − 1)
. (7)

An (Mn, g) is said to have Codazzi type Ricci tenor if its Ric( �= 0) of type (0, 2) satisfies [20,21]

(∇URic)(Y, V) = (∇YRic)(U, V). (8)
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An (Mn, g) is said to have cyclic parallel Ricci tensor if its Ric( �= 0) of type (0, 2) satisfies [20,22]

(∇URic)(Y, V) + (∇YRic)(U, V) + (∇VRic)(Y, U) = 0. (9)

An (Mn, g) is said to be Ricci-recurrent if its Ric( �= 0) of type (0, 2) satisfies the following
relation [23]

(∇URic)(Y, V) = λ(U)Ric(Y, V), (10)

where λ is non-zero 1-form.
An (Mn, g) is said to be generalized Ricci-recurrent if the following relation holds [24,25]

(∇URic)(Y, V) = λ(U)Ric(Y, V) + β(U)g(Y, V), (11)

where λ and β are two non-zero 1-forms of the manifold. If β = 0, then the generalized
Ricci-recurrent manifold reduces to a Ricci-recurrent manifold.

The paper is presented as follows: After introduction in Section 2, we investigate the
(ZS)n admitting certain cases of Schouten tensor and find out some interesting results on
corresponding Z tensor. In Section 3, we study the (ZS)4 spacetime admitting Schouten
tensor and proved some remarkable results. In Section 4, we give an example to illustrate
our result.

2. (ZS)n Admitting Schouten Tensor

In the current section, by using the concepts and definitions given in previous section,
we will prove some results on (ZS)n admitting Schouten tensor satisfying certain curvature
conditions. First we prove the following result:

Theorem 1. If the Schouten tensor in a (ZS)n is Ricci-recurrent, then the corresponding Z tensor
is generalized Ricci-recurrent.

Proof. By taking the covariant derivative of (6) along U, we find

(∇U P)(Y, V) =
1

n − 2

[
(∇UZ)(Y, V)−

{ (∇Ur)
2(n − 1)

+ (∇Uφ)
}

g(Y, V)
]
. (12)

Let the Schouten tensor be Ricci-recurrent, then by virtue of (10) we have

(∇U P)(Y, V) = λ(U)P(Y, V), (13)

which in view of (6) and (12) takes the form

(∇UZ)(Y, V)−
{ (∇Ur)

2(n − 1)
+ (∇Uφ)

}
g(Y, V)

= λ(U)
[

Z(Y, V)−
{ r

2(n − 1)
+ φ
}

g(Y, V)
]
.

(14)

By using (7), (14) can be written as

(∇UZ)(Y, V)

= λ(U)Z(Y, V) +
[
(∇U P̄)− λ(U)P̄ + (∇Uφ)− λ(U)φ

]
g(Y, V).

(15)

If we take
[
(∇U P̄)− λ(U)P̄ + (∇Uφ)− λ(U)φ

]
= β(U), then (15) transforms to

(∇UZ)(Y, V) = λ(U)Z(Y, V) + β(U)g(Y, V),

which shows that the Z-tensor is generalized Ricci-recurrent.

Next we prove the following result:
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Theorem 2. If the Schouten tensor in a (ZS)n is cyclic parallel, then the scalar curvature of (ZS)n
is constant.

Proof. If the Schouten tensor in a (ZS)n is cyclic parallel. Then by virtue of (9), we have

(∇U P)(Y, V) + (∇YP)(U, V) + (∇V P)(U, Y) = 0. (16)

The covariant differentiation of (5) over U leads to

(∇U P)(Y, V) =
1

n − 2

[
(∇URic)(Y, V)− (∇Ur)

2(n − 1)
g(Y, V)

]
. (17)

In view of (17), (16) takes the form

(∇URic)(Y, V)− (∇Ur)
2(n − 1)

g(Y, V) + (∇YRic)(U, V)

− (∇Yr)
2(n − 1)

g(U, V) + (∇VRic)(U, Y)− (∇Vr)
2(n − 1)

g(U, Y) = 0.
(18)

By contracting (18) over U and Y, we get

∇Vr = 0 =⇒ r = constant. (19)

This implies that the scalar curvature r is constant. This completes the proof

Now we prove the following:

Theorem 3. If the Schouten tensor in a (ZS)n of constant scalar curvature is of Codazzi type, then
the necessary and sufficient condition for the corresponding Z tensor to be Codazzi type is that the
associated 1-form of the manifold is constant.

Proof. We consider that the Schouten tensor in a (ZS)n is of Codazzi type. By interchanging
V and U in (12) we have

(∇V P)(Y, U) =
1

n − 2

[
(∇V Z)(Y, U)−

{ (∇Vr)
2(n − 1)

+ (∇Vφ)
}

g(Y, U)
]
. (20)

By using (12) and (20) in (8), we find

(∇UZ)(Y, V)− (∇V Z)(Y, U)

− (∇Uφ)g(Y, V) + (∇Vφ)g(Y, U) = 0,
(21)

r being constant.
Again, we assume that the Z tensor is of Codazzi type, then (21) reduces to

(∇Uφ)g(Y, V)− (∇Vφ)g(Y, U) = 0.

By contracting the foregoing equation over Y and V we infer

(∇Uφ) = 0. (22)

This implies that the 1-form φ is constant.
Conversely, if we assume that the 1-form φ is constant then from (21) it follows that

the Z tensor is of Codazzi type. This completes the proof.

Thus we have
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Corollary 1. In a (ZS)n of constant scalar curvature, if both the Z-symmetric and Schouten
tensors are of Codazzi type, then the Z-symmetric tensor is of constant trace.

Proof. By taking the covariant derivative of (3) along U, we find

(∇UZ̃) = (∇Ur) + n(∇Uφ). (23)

Now we suppose that both the Z-symmetric and the Schouten tensors in a (ZS)n of constant
scalar curvtaure tensor are of Codazzi type. Then in view of Theorem 3, (23) reduces to

(∇UZ̃) = 0.

This implies that Z̃ = constant. This completes the proof.

Further, we prove the following:

Theorem 4. If the Schouten tensor in a (ZS)n is covariantly constant, then the necessary and
sufficient condition for the Z-symmetric tensor to be (i) covariantly constant, or (ii) Codazzi type
is that φ is constant.

Proof. We consider that the Schouten tensor in a (ZS)n is covariantly constant. Then from
(5) it can be easily seen that r is constant. Thus (20) leads to

(∇UZ)(Y, V) = (∇Uφ)g(Y, V). (24)

Since Z-symmetric tensor in (ZS)n is covariantly constant, then (24) reduces to

(∇Uφ) = 0. (25)

This implies that the 1-form φ is constant.
Conversely, if the 1-form φ of the manifold is constant then from (24), it follows that

(∇UZ)(Y, V) = 0.

This implies that the Z tensor is covariantly constant.
By interchanging U and V in (24), we have

(∇V Z)(Y, U) = (∇Vφ)g(Y, U). (26)

Now subtracting (26) from (25), we have

(∇UZ)(Y, V)− (∇V Z)(Y, U) = (∇Uφ)g(Y, V)− (∇Vφ)g(Y, U). (27)

If the Z tensor is of Codazzi type, then from (27) it follows that

(∇Uφ)g(Y, V)− (∇Vφ)g(Y, U) = 0,

which on contracting over Y and V gives

(∇Uφ) = 0. (28)

Conversely, if the relation (28) holds, then from (27), we obtain

(∇UZ)(Y, V)− (∇V Z)(Y, U) = 0.

This shows that the Z tensor is of Codazzi type.
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3. (ZS)4 Spacetimes Admitting Schouten Tensor

The energy-momentum tensor T of a perfect fluid spacetime is given by [8]:

T(Y, V) = (p + σ)φ(Y)φ(V) + pg(V, Y), (29)

where p is the isotropic pressure of the fluid, σ is the energy denisty and φ is the non-zero
1-form such that

g(Y, ξ) = φ(Y), g(ξ, ξ) = −1. (30)

Here ξ being the unit timelike velocity vector field. For a perfect fluid spacetime the
Einstein’s field equation without cosmological constant is given by

Ric(Y, V)− r
2

g(Y, V) = kT(Y, V), (31)

where k as the gravitational constant.
By using (29), (31) turns to

Ric(Y, V) = k(σ + p)φ(Y)φ(V) +
( r

2
+ kp

)
g(Y, V). (32)

By contracting (32) over Y and V, we obtain

r = k(σ − 3p). (33)

By using the relation (33) in (32), we have

Ric(Y, V) = k(σ + p)φ(Y)φ(V) +
k
2
(σ − p)g(Y, V). (34)

Now combining (2) and (34), we finally obtain

Z(Y, V) = k(σ + p)φ(Y)φ(V) +
(

φ +
k
2
(σ − p)

)
. (35)

Recently, spacetimes and its properties have been studied in several ways by various
authors such as [16,26–34] and many others.

Now we prove the following:

Theorem 5. Let a (ZS)4 of constant scalar curvature tensor admit Codazzi type Schouten tensor.
If the velocity vector (∇Uφ) associated with the 1-form φ is recurrent and the matter content is a
perfect fluid whose velocity vector field is the basic vector field of (ZS)4, then the matter contents of
(ZS)4 satisfy the vacuum-like equation of state.

Proof. We consider that the Schouten tensor in (ZS)4 of constant scalar curvature is of
Codazzi type. Now by taking the covariant derivative of (33), we find

k[(∇Uσ)− 3(∇U p)] = 0. (36)

This implies that
(∇Uσ) = 3(∇U p), k �= 0. (37)

By the covariant differentiation of (35) along U, we arrive at

(∇UZ)(Y, V) = k
[
(∇Uσ) + (∇U p)

]
φ(Y)φ(V)

+ k(p + σ)
[
(∇Uφ)(Y)φ(V) + φ(Y)(∇Uφ)(V)

]
+
[
(∇Uφ)− k

2

{
(∇U p)− (∇Uσ)

}]
g(Y, V).

(38)
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Now we consider that the velocity vector ∇Uφ is recurrent, then from (37) and (38),
we obtain

(∇UZ)(Y, V) = 4k(∇U p)φ(Y)φ(V) + 2kλ(U)(σ + p)φ(Y)φ(V)

+
{
(∇Uφ) + k(∇U p)

}
g(Y, V). (39)

On contracting (39) over Y and V, we lead to

(∇UZ̃) = 4(∇Uφ)− 2kλ(U)(σ + p). (40)

Now taking the covariant derivative of (3) along U and comparing it with (40), we get

λ(U)(σ + p) = 0.

Since λ(U) is non-vanishing, therefore, we find σ + p = 0, which leads to the statement of
our theorem.

Now we prove the following theorem:

Theorem 6. Let (ZS)4 of constant scalar curvature admit Codazzi type Schouten tensor. If
the Z-symmetric tensor is covariantly constant and the matter content is a perfect fluid whose
velocity vector field is the basic vector field, then both the isotropic pressure and the energy
density are constant.

Proof. We suppose that (ZS)4 admits Codazzi type Schouten tensor and the Z tensor is
covariantly constant. Then from (2) we find

(∇URic)(Y, V) + (∇Uφ)g(Y, V) = 0,

which by contracting over Y and V, and considering r as constant gives

(∇Uφ) = 0. (41)

This shows that the 1-form φ is constant.
By virtue of (37) and (41) and the fact that Z-symmetric tensor is covariantly constant,

the relation (38) reduces to

4k(∇U p)φ(Y)φ(V) + k(∇U p)g(Y, V) = 0,

which by taking Y = V = ξ and using (30) leads to

∇U p = 0,

i.e., the isotropic pressure p is constant. Thus from (37), we lead to ∇Uσ = 0, i.e., the energy
density is constant. This completes the proof.

Now we have the following result:

Corollary 2. Let a perfect fluid (ZS)4 with constant scalar curvature admit Codazzi type Schouten
tensor. If the Z tensor is covariantly constant and the velocity vector (∇Uφ) associated with the
1-form φ is recurrent, then the spacetime reduces to an Einstein space.

Proof. We suppose that in (ZS)4, the Z tensor is covariantly constant and the Schouten
tensor is of Codazzi type. Then in view of Theorems 5 and 6, from (34), we get

Ric(Y, V) =
k
2
(σ − p)g(Y, V), (42)
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which by contracting over Y and V gives

r = 2k(σ − p). (43)

On comparing (42) and (43), we obtain

Ric(Y, V) =
r
4

g(Y, V). (44)

This shows that our spacetime is an Einstein space.

4. Example

In this section, we construct an example of Z-symmetric manifold admitting Schouten
tensor on the real number space R4. First we calculate the components of K, Ric, Z-
symmetric tensor and P. Then we verify Theorem 4(i).
Define a semi-Riemannian metric on R4 by

ds2 = −(dx1)2 + ex1
[(dx2)2 + (dx3)2 + (dx4)2]. (45)

The non-vanishing components of the Christoffel symbols are given by

Γ1
22 = Γ1

33 = Γ1
44 =

1
2

ex1
, Γ2

12 = Γ3
13 = Γ4

14 =
1
2

. (46)

The curvature tensor and the Ricci tensor are obtained as follows:

K1221 = K1331 = K1441 = −1
4

ex1
, K2332 = K2442 = K3443 = −1

4
e2x1

, (47)

R11 = −1
2

, R22 = R33 = R44 = −1
4

ex1
,

and the components enlisted by the symmetry properties. Thus we can easily show that
r = − 1

4 . The non-vanishing components of the Z tensor and the Schouten tensor are
as follows:

Z11 = −1
2
− φ, Z22 = Z33 = Z44 = ex1

(−1
4
+ φ), (48)

P11 = −13
48

, P22 = P33 = P44 = − 5
48

ex1
.

In view of the above relations, the non-zero components of the covariant derivatives of the
Z tensor are obatined as follows:

Z11,i = −φi, Z22,i = Z33,i = Z44,i = φiex1
, f or i = 1, 2, 3, 4, (49)

and the components can be easily obtained from (49) by the symmetric properties where
“, ” denotes for the covariant differentiation with respect to the metric tensor g. Hence the
manifold under the consideration has covariantly constant Schouten tensor.

If Z-symmetric tensor is covariantly constant, then

Z11,i = Z22,i = Z33,i = Z44,i = 0. (50)

Thus from (49), we obtain
φ,i = 0 f or i = 1, 2, 3, 4. (51)

This verifies Theorem 4 (i).
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5. Discussion

The importance of spaces with constant curvature is well understood in cosmology.
The simplest cosmological model of the universe is obtained by assuming that the universe
is isotropic and homogeneous. This is called the cosmological principle. Isotropy means
that all spatial directions are equivalent, whereas homogeneity means that no place in the
universe can be distinguished from another. In terms of Riemannian geometry it asserts
that the three dimensional position space is a space of maximal symmetry [35], that is,
a space of constant curvature whose curvature depends upon time. The cosmological
solution of Einstein’s equations which contain a three dimensional spacelike surface of
a constant curvature are the Robertson-Walker metrics, while four dimensional space of
constant curvature is the de Sitter model of the universe [35,36].

The current research is focused on Z-symmetric manifold admitting Schouten ten-
sor with certain investigations in general relativity by the coordinate free method of
differential geometry. In this way the spacetime of general relativity is treated as a
connected four-dimensional semi-Riemannian manifold (ZS)4 with Lorentz metric g
with signature (−,+,+,+). The geometry of the Lorentz manifold begins with the study
of the causal character of vectors of the manifold. It is due to this causality that the
Lorentz manifold becomes a convenient choice for the study of general relativity. The
general theory of relativity, which is a field theory of gravitation, is described by the
Einstein’s field equations. The Einstein’s equations [8] imply that the energy-momentum
tensor is of vanishing divergence; and in this direction the authors in [9] showed that for
a covariantly constant energy-momentum tensor, the general relativistic spacetime is
Ricci symmetric (∇Ric = 0).

As a generalization of Ricci symmetric manifold many authors such as [10–13,16,37]
studied Z-symmetric manifolds in several ways to a different extent. Motivated by above
studies and concepts, we tried to study Z-symmetric manifolds admitting certain types
of Schouten tensors, namely, Ricci-recurrent, cyclic parallel, Codazzi type and covariantly
constant; and also Z-symmetric spacetime admitting Codazzi type Schouten tensor to prove
the some results. In the future, we plan to focus on studying different kinds of curvature
tensors on the generalized cases of Z-symmetric manifold. Many problems related to this
study are still unresolved, and we hope that the readers of the present paper can do a good
amount of work on the subject.
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1. Introduction

There are many Hermitian symmetric spaces of rank 2. For example, complex two-
plane Grassmannians and complex hyperbolic two-plane Grassmannians, which are de-
noted by G2(C

m+2) = SUm+2/S(U2Um) and G∗
2 (C

m+2) = SUm,2/S(U2Um), respectively.
They are Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped
with the Kähler structure J and quaternionic Kähler structure J.

The complex quadric Qm = SOm+2/SOmSO2 is another kind of compact Hermitian
symmetric space different from the above ones. For m ≥ 2, the maximal sectional curvature
of Qm is equal to 4 (see [1,2]). It is the complex hypersurface in complex projective space
CPm+1 [3], and it is also a kind of real Grassmannian manifold with rank 2 [4]. So, we
know that apart from the Kähler structure J, there is another distinguished geometric
structure, namely, a parallel rank two vector field bundle A that contains an S1-bundle of
real structures, that is, complex conjugations A on the tangent spaces of Qm. The complex
conjugation A and the Kähler structure J anti-commute with each other, that is, AJ = −JA.

The Kähler manifold is the subject of symplectic geometry. Contact geometry appears
as the odd dimensional counterpart of symplectic geometry, in which the almost-contact
manifold corresponds to the almost complex manifold. Mathematicians are interested
in submanifolds or hypersurfaces with some certain structure or curvature properties
(see [5–11]). The real hypersurface M in the complex quadric Qm is naturally an almost
contact metric manifold. Many mathematicians have investigated it from various aspects.
For example, some classifications of M related to the parallel Ricci tensor and Reeb-parallel
Ricci tensor were obtained in Suh [12,13]. Moreover, Suh studied the real hypersurface
M with the commuting Ricci tensor and the Ricci soliton in [14,15]. In [16], Suh and his
partner Pérez gave the classification of the real hypersurface M in Qm with the killing shape
operator, and in [17], Pérez obtained some results when the structure vector field of the
almost contact structure of M was of the Jacobi type.
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The real hypersurface M is a Hopf hypersurface when the integral curves of the Reeb
vector field ξ are geodesic. Moreover, the integral curves of ξ are geodesic if and only if ξ is
a principal curvature vector of M everywhere, that is,

Sξ = αξ,

where S is the shape operator of M, and α is Reeb function. The classification of the Hopf
hypersurface M in Qm with some other geometric properties can be found in [12].

The unit normal vector field N of the real hypersurface M in Qm has a great impact on
the geometric properties of the hypersurface M. Usually, N can be put into two classes: N
is A-principal or A-isotropic. In [18], Berndt and Suh proved that if M has isometric Reeb
flow, then N is A-isotropic, and it is locally congruent to a tube over a totally geodesic CPk

in Q2k. When M is in contact with the A-principal unit normal vector field N, then the
classification of M can be found in [19].

In differential geometry, the Ricci tensor Ric is very significant to the nature of a
manifold. For example, in [12] Suh proved that there was no Hopf real hypersurface with a
parallel Ricci tensor in the complex quadric Qm, m ≥ 4. Moreover, in [20], Lee, Suh, and
Woo showed that there were not any Hopf real hypersurfaces in the complex quadric Qm

with the semi-symmetric Ricci tensor and the A-principal unit normal vector field and gave
the classification when the unit normal vector field was A-isotropic. In [21], Suh classified
the the real hypersurface in the complex quadric Qm with the Reeb-invarient Ricci tensor,
and some classification about the Reeb-parallel Ricci tensor could be found in [13]. In [22],
we obtained several properties on Lorentzian generalized Sasakian space-forms, which are
related to the Ricci tensor.

Apart from the Ricci tensor, there is another important curvature tensor for the almost-
contact manifold, that is, the ∗-Ricci tensor Ric∗. The notion of the ∗-Ricci tensor was
introduced by Tachibana in [23], and Hamada extended this notion to almost-contact
manifolds in [24]. Its definition is similar to the Ricci tensor, but its properties are different
from the Ricci tensor. For instance, it may be not symmetric since it is related to the structure
tensor φ. If the ∗-Ricci tensor is symmetric, we can directly investigate it. Many authors
has investigated the ∗-Ricci soliton, which replaced Ricci tensor with the ∗-Ricci tensor
in the Ricci soliton (see [25,26]) . In [27], we gave the classification of the trans-Sasakian
three-manifolds with the Reeb invariant ∗-Ricci opertator. In [28], we gave the notion of
the semi-symmetric ∗-Ricci tensor and investigated the properties of it on the (κ, μ)-contact
manifold.

In the present paper, we study the real hypersurface M in Qm with the Reeb invariant
and the Reeb-parallel ∗-Ricci operator. We also investigate the Hopf real hypersurfaces
with the semi-symmetric ∗-Ricci tensor.

Generally, the conditions of the Reeb invariant ∗-Ricci operator and the Reeb-parallel
∗-Ricci operator are not the same since the Reeb invariant ∗-Ricci operator is defined by
Lξ Q∗ = 0 and the Reeb-parallel ∗-Ricci operator is ∇ξ Q∗ = 0; in other words, one is a Lie
derivative and the other is a connection derivative. However, we can see from the following
theorem that they are the same for the Hopf real hypersurface in the complex quadric with
the singular-unit normal vector field.

Theorem 1. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 3, with the
A-principal or A-isotropic unit normal vector field N; then,

Lξ Q∗ = ∇ξ Q∗ = 0,

where Q∗ is the ∗-Ricci operator, ξ is Reeb vector field, L is Lie derivative, and ∇ is Riemannian
connection of M. That is, the ∗-Ricci operator on a Hopf real hypersurface in the complex quadric
Qm, m ≥ 3, with a singular-unit normal vector field that is both Reeb-flow-invariant and Reeb-
parallel.
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Aa an analogue to the notion of the semi-symmetric Ricci tensor, we consider the
notion of the semi-symmetric ∗-Ricci tensor defined by

0 = (R(X, Y)Ric∗)(Z, W) = −Ric∗(R(X, Y)Z, W)− Ric∗(Z, R(X, Y)W),

for any vector field X, Y, Z, and W on the manifold. It has been proved that there are no
Hopf hypersurfaces in the complex quadric with the semi-symmetric Ricci tensor and the
A-principal unit normal vector field in [20]. For the ∗-Ricci tensor, we draw the conclusion
that:

Theorem 2. Hopf real hypersurfaces with the semi-symmetric ∗-Ricci tensor and A-principal unit
normal vector field do not exist in the complex quadric Qm, m ≥ 3.

2. Some General Equations and Key Lemmas

As we have mentioned above, the complex quadric Qm is the complex hypersurface
in the complex projective space CPm+1. If z0, . . . , zm+1 are the homogeneous coordinates
of CPm+1, then Qm is the image of the equation z2

0 + . . . + z2
m+1 = 0. Now, we denote the

Kähler structure of CPm+1 by (J, ḡ), where ḡ is the Fubini–Study metric on CPm+1, which
has constant holomorphic sectional curvature 4. We know that the complex hypersurface
of a Kähler manifold has an induced Kähler structure; in other words, it is a Kähler
manifold. Then, the complex quadric Qm has a canonical induced Kähler structure (J, g),
where g is the Riemannian metric on Qm induced from the Fubini–Study metric ḡ. Now,
we explain why Qm is SOm+2/SOmSO2. Firstly, it is known that the complex projective
space CPm+1 = SUm+2/S(Um+1U1) because it is a Hermitian symmetric space of the
special unitary group SUm+2. As the subgroup of SUm+2, SOm+2 acts on CPm+1 with
cohomogeneity one. If the orbit of SOm+2 contains the fixed point of the action of the
stabilizer S(Um+1U1), namely, o = [0, . . . , 0, 1] ∈ CPm+1, then this orbit is a totally geodesic
real projective space RPm+1 ⊂ CPm+1. The complex quadric Qm = SOm+2/SOmSO2 is just
the second singular orbit of this action. It also gives the geometric interpretation of why
Qm is the Grassmann manifold G+

2 (Rm+2) of oriented 2-planes in Rm+2. In this paper, we
focus on the condition of m ≥ 3 because Q1 is just S1 and Q2 is S1 × S1.

Let us denote the unit normal vector field of Qm by N̄, and AN̄ is the shape operator
of Qm respect to N̄. AN̄ is anti-commuting with the Kähler structure J, and it is involution.
Then, the shape operator AN̄ is one of the complex conjugations A restricted to TQm. In
some sense, we can consider the set of all shape operators of Qm as the complex conjugations
on TQm. Then, the tangent space of Qm can be decomposed as

TQm = V(AN̄)⊕ JV(AN̄),

where V(AN̄) and JV(AN̄) are the (+1)-eigenspace and (−1)-eigenspace, respectively. So,
AN̄ defines a real structure, and since the real codimension of Qm in CPm+1 is 2, there is an
S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex conjugations.

In terms of the complex conjugations A ∈ A and the Kähler structure J, we can obtain
the curvature tensor R̄ of Qm from the Gauss equation for Qm ⊂ CPm+1

R̄(X, Y)Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y)JZ

+g(AY, Z)AX − g(AX, Z)AY + g(JAY, Z)JAX − g(JAX, Z)JAY.

A nonzero vector field Z ∈ TQm is singular if it is A-principal or A-isotropic. For these
two types of singular vector fields, we have

1. If there is a conjugation A ∈ A so that Z ∈ V(A), then Z is A-principal.
2. If there is a conjugation A ∈ A and two orthonormal vector fields X, Y ∈ V(A) so

that Z/||Z|| = (X + JY)/
√

2, then Z is A-isotropic.
Let M be the real hypersurface of Qm and (φ, ξ, η, g) be its induced almost contact

structure. Then, we have the following basic equations [29]:
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φξ = 0, η ◦ φ = 0,

φ2X = −X + η(X)ξ, η(ξ) = 1,

η(X) = g(ξ, X),

g(φX, φY) = g(X, Y)− η(X)η(Y),

where φ is the structure tensor, ξ is Reeb vector field, and η is the dual 1-form of ξ, for any
vector fields X and Y. Moreover, ξ = −JN where J is the Kähler structure of Qm and N
is the unit normal vector field of M. The structure tensor φ and the Kähler structure J are
related by

JX = φX + η(X)N.

Thus, φ and J coincide with each other when restricted to the kernel of η.
For any complex conjugation A ∈ A, we can choose two orthonormal vectors Z1, Z2 ∈

V(A), such that
N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1,

where 0 ≤ t ≤ π
4 (see [12]). The A-principal unit normal vector field N corresponds to

the value t = 0; thus, we have g(AN, N) = −g(ξ, Aξ) = 1, g(N, AY) = g(AN, Y) = 0.
The A-isotropic unit normal vector field N corresponds to the value t = π

4 , so we have
g(AN, N) = g(ξ, Aξ) = 0. Thus, AN ∈ TM.

In particular, we see that Aξ is always the tangent on M (because it holds

g(Aξ, N) = g(sin(t)Z2 + cos(t)JZ1, cos(t)Z1 + sin(t)JZ2)

= sin(t)cos(t)g(Z2, Z1) + sin2(t)g(Z2, JZ2)

+cos2(t)g(JZ1, Z1) + cos(t)sin(t)g(JZ1, JZ2)

= 0,

for two orthonormal vectors Z1z, Z2 ∈ V(A)). So, from this and the property of JA = −AJ,
we obtain

AN = AJξ = −JAξ = −φAξ − g(Aξ, ξ)N.

In fact, on a real hypersurface M in the complex quadric Qm, for any vector field X on
M, we can put

AX = BX + g(AX, N)N = BX + ρ(X)N,

here, BX denotes the tangential part of AX and 1-form ρ is given by

ρ(X) = g(X, AN) = g(AX, N)

= g(X,−φAξ − g(Aξ, ξ)N)

= −g(X, φAξ),

so

JAX = JBX + g(X, AN)JN

= JBX − g(X, φAξ)JN

= JBX + g(X, φAξ)ξ

= φBX + η(BX)N + g(X, φAξ)ξ

= φBX + η(BX)N − ρ(X)ξ,

and

(JAX)T = φBX − ρ(X)ξ,
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where (· · · )T denotes the tangential component of the vector (· · · ) in Qm.
Denote the induced Riemannian connection and the shape operator on M by ∇, S,

respectively. Then, the Gauss–Weingarten equations are

∇̄XY = ∇XY + g(SX, Y)N, ∇̄X N = −SX,

where ∇̄ is the Riemannian connection on Qm with respect to ḡ. Moreover, we have the
following two equations:

(∇Xφ)Y = η(Y)SX − g(SX, Y)ξ, ∇Xξ = φSX.

Additionally, from the Gauss–Weingarten equation, in terms of the Kähler structure J
and the complex conjugation A ∈ A, the curvature tensor R of M induced from R̄ of Qm is

R(X, Y)Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y)φZ

+g(AY, Z)(AX)T − g(AX, Z)(AY)T + g(JAY, Z)(JAX)T

−g(JAX, Z)(JAY)T + g(SY, Z)SX − g(SX, Z)SY

= g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y)φZ

+g(BY, Z)BX − g(BX, Z)BY

+g(φBY, Z)φBX − g(φBY, Z)ρ(X)ξ − ρ(Y)η(Z)φBX

−g(φBX, Z)φBY + g(φBY, Z)ρ(Y)ξ + ρ(X)η(Z)φBY

+g(SY, Z)SX − g(SX, Z)SY.

For an almost contact metric manifold, the ∗-Ricci tensor Ric∗ is (see [24,25])

Ric∗(X, Y) =
1
2

trace{Z → R(X, φY)φZ}.

So, we can calculate the ∗-Ricci tensor Ric∗ of M

Ric∗(X, Y) =
1
2

2m−1

∑
i=1

g(R(X, φY)φei, ei)

=
1
2
{g(φX, φY) + g(φX, φY) + g(φX, φY)

+g(φX, φY) + 4(m − 1)g(φX, φY)− g(φBφY, BX)

+g(φBX, BφY)− g(φ2BφY, φBX) + g(φ2BφY, ξ)ρ(X)

+g(φ2BφX, φBφY) + g(φ2BX, ξ)ρ(φY)

−g(SX, φSφY) + g(φSX, SφY)}
= 2mg(φX, φY) + 2g(φBX, BφY) + g(φSX, SφY),

where {ei} is a local orthonormal basis of M.
Generally, Ric∗ is not symmetric because it has an asymmetric part g(φBX, BφY)

and g(φSX, SφY). So, it is not a geometric invariant. The asymmetric ∗-Ricci tensor is
just a tensor on a manifold; it makes little sense of geometry or physics . Hence, when
we investigate the ∗-Ricci tensor, we only focus on the symmetric ∗-Ricci tensor or the
symmetric part of the ∗-Ricci tensor. The following theorem tells us when the ∗-Ricci tensor
is symmetric on a Hopf hypersurface in the complex quadric.

Theorem 3. Let M be a Hopf hypersurface in the complex quadric Qm, m ≥ 3. Then, the ∗-Ricci
tensor Ric∗ of M is symmetric if and only if the unit normal vector field N of M is singular, that is,
N is either A-principal or A-isotropic.

In particular, if N is A-principal, then

Ric∗(X, Y) = 2(m − 1)g(φX, φY)− g((φS)2X, Y),

if N is A-isotropic, then
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Ric∗(X, Y) = 2(m − 1)g(φX, φY)− g((φS)2X, Y)

+2g(X, Aξ)g(Y, Aξ) + 2g(X, AN)g(Y, AN),

for any vector fields X, Y on M.

Proof. In [25], it has been proved that if M is Hopf, then (φS)2 = (Sφ)2. So, we have

g(φSX, SφY) = −g((φS)2X, Y) = −g((Sφ)2X, Y) = g(φSY, SφX).

Now, we calculate g(φBX, BφY):

g(φBX, BφY) = g(JBX − η(BX)N, BφY) = g(JBX, BφY)

= g(JBX, AφY − g(AφY, N)N)

= −g(BX, JAφY − g(AφY, N)JN)

= −g(AX − g(AX, N)N, JAφY − g(AφY, N)JN)

= −g(AX, JAφY) + g(AφY, N)g(AX, JN) + g(AX, N)g(N, JAφY)

= g(X, φ2Y) + g(JY, AN)g(AX, JN)− η(Y)g(N, AN)g(AX, JN)

+g(X, AN)g(Y, AN)

= g(X, φ2Y) + g(Y, Aξ)g(X, Aξ) + η(Y)g(N, AN)g(X, Aξ)

+g(X, AN)g(Y, AN).

First, we assume the ∗-Ricci tensor is symmetric, that is, Ric∗(X, Y) = Ric∗(Y, X).
From the above equation, there must be

η(Y)g(N, AN)g(X, Aξ) = η(X)g(N, AN)g(Y, Aξ),

If g(N, AN) = 0, that is, N is A-isotropic. If g(N, AN) �= 0, putting X = ξ, Y = Aξ, we
have g(Aξ, ξ)2 = η(ξ)g(Aξ, Aξ) = 1. We know

g(Aξ, ξ) = g(sin(t)Z2 + cos(t)JZ1, sin(t)Z2 − cos(t)JZ1)

= −cos(2t),

where 0 ≤ t ≤ π
4 . According to these facts, g(Aξ, ξ) = −1, that is, t = 0. It implies that the

normal vector field N is A-principal.
Conversely, if N is A-principal, from g(AN, N) = −g(ξ, Aξ) = 1, g(N, AY) =

g(AN, Y) = 0, we have

Ric∗(X, Y) = 2mg(φX, φY) + 2g(φBX, BφY) + g(φSX, SφY)

= 2mg(φX, φY) + 2g(X, φ2Y) + g(X, ξ)g(Y, ξ)− η(Y)g(X, ξ)

+g(φSX, SφY)

= 2(m − 1)g(φX, φY)− g((φS)2X, Y).

If N is A-isotropic, from g(AN, N) = g(ξ, Aξ) = 0, we have

Ric∗(X, Y) = 2mg(φX, φY) + 2g(φBX, BφY) + g(φSX, SφY)

= 2mg(φX, φY) + 2(g(X, φ2Y) + g(Y, Aξ)g(X, Aξ)

+g(X, AN)g(Y, AN)) + g(φSX, SφY)

= 2(m − 1)g(φX, φY)− g((φS)2X, Y)

+2g(X, Aξ)g(Y, Aξ) + 2g(X, AN)g(Y, AN),

From the above two equations, we know that when the condition of N is singular, the
∗-Ricci tensor is symmetric.

When the ∗-Ricci tensor is symmetric, we can define the ∗-Ricci operator by

Ric∗(X, Y) = g(Q∗X, Y).
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The following are some important theorems that will be used in the proof of our main
theorems.

Theorem 4 ([30]). Let M be a real hypersurface in the complex quadric Qm, M ≥ 3, with
A-principal normal vector field N. Then,

(a) AφX = −φAX,
(b) AφSX = −φSX,
(c) ASX = SX − 2g(SX, ξ)ξ and SAX = SX − 2η(X)Sξ,

for any X ∈ TM.
In particular, if M is Hopf, then we obtain ASX = SAX for any tangent vector field X on M.

Theorem 5 ([12]). Let M be a Hopf real hypersurface in the complex quadric Qm, M ≥ 3. Then,
M has an A-principal singular normal vector field N if and only if M is a contact real hypersurface
with constant mean curvature and non-vanishing Reeb function in Qm.

Moreover, for a contact manifold, we have

Theorem 6 ([29]). Let M be a hypersurface of a Kähler manifold, (φ, ξ, η, g) its induced almost
contact metric structure, and S its shape operator. Then, (φ, ξ, η, g) is a contact metric structure if
and only if Sφ + φS = −2φ.

Theorem 7 ([31]). Let M be a Hopf hypersurface in the complex quadric Qm with the singular
unite normal vector field; then, the Reeb function α is the constant function.

3. Proof of Theorem 1 with A-Principal unit Normal VECTOR field

Firstly, let us calculate the derivative and Lie derivative of Q∗ along ξ. Now

Lξ(g(Q∗X, Y)) = ξ(g(X, Y)) = ∇ξ(g(Q∗X, Y)).

So, we have

(Lξ g)(Q∗X, Y) + g((Lξ Q∗)X, Y) + g(Q∗(Lξ X), Y) + g(Q∗X, LξY)
= g((∇ξ Q∗)X, Y) + g(Q∗(∇ξ X), Y) + g(Q∗X,∇ξY).

(1)

From ∇Xξ = φSX, we have

(Lξ g)(X, Y)) = g(∇Xξ, Y) + g(X,∇Yξ)

= g(φSX, Y) + g(X, φSY)

= g((φS − Sφ)X, Y).

Then, Equation (1) becomes

g((∇ξ Q∗)X, Y) + g(Q∗(∇ξ X), Y) + g(Q∗X,∇ξY)

= g((φS − Sφ)Q∗X, Y) + g((Lξ Q∗)X, Y)

+g(Q∗(∇ξ X −∇Xξ), Y) + g(Q∗X,∇ξY −∇Yξ).

From the above equation, we have

g((Lξ Q∗)X, Y) = g((∇ξ Q∗)X, Y)− g(φSQ∗X, Y) + g(Q∗φSX, Y)
= g((∇ξ Q∗)X, Y) + g(Q∗X, SφY) + g(Q∗φSX, Y)

(2)

In this section, we assume the real hypersurface M in Qm is Hopf and the unit normal
vector field is A-principal. From Theorem 3, we have

60



Mathematics 2023, 11, 90

g((Lξ Q∗)X, Y) = g((∇ξ Q∗)X, Y) + g(Q∗X, SφY) + g(Q∗φSX, Y)

= g((∇ξ Q∗)X, Y)

+2(m − 1)g(φX, φSφY)− g((φS)2X, SφY)

+2(m − 1)g(φ2SX, φY)− g((φS)2φSX, Y)

= g((∇ξ Q∗)X, Y),

we have (Lξ Q∗)X = (∇ξ Q∗)X.
Now, we prove that when N is A-principal, then (Lξ Q∗)X = (∇ξ Q∗)X = 0. The

Codazzi equation (see [12]) is

g((∇XS)Y − (∇YS)X, Z) = η(X)g(φY, Z)− η(Y)g(φX, Z)− 2η(Z)g(φX, Y)

+g(X, AN)g(AY, Z)− g(Y, AN)g(AX, Z)

+g(X, Aξ)g(JAY, Z)− g(Y, Aξ)g(JAX, Z). (3)

Putting X = ξ in (3) and in considerationation of g(AN, N) = −g(ξ, Aξ) = 1, we have

g((∇ξS)Y − (∇YS)ξ, Z) = g(φY, Z)− g(JAY, Z). (4)

Since M is Hopf, Sξ = αξ and α are constant from Lemma 7,

(∇YS)ξ = ∇Y(Sξ)− S(∇Yξ) = α∇Yξ − SφSY = αφSY − SφSY. (5)

From Equations (4) and (5), we have

g((∇ξ S)Y, Z) = g(φY, Z)− g(JAY, Z) + g((∇YS)ξ, Z)

= g(φY, Z)− g(JAY, Z) + g(αφSY − SφSY, Z). (6)

In [12], Suh proved that for a Hopf hypersurface M in Qm, the following equation:

0 = 2g(SφSY, Z)− αg((φS + Sφ)Y, Z)− 2g(φY, Z)

+2g(Y, AN)g(Z, Aξ)− 2g(Z, AN)g(Y, Aξ)

+2g(ξ, Aξ){g(Z, AN)η(Y)− g(Y, AN)η(Z)}, (7)

holds for all vector fields Y, Z on M. From Equations (6) and (7), in consideration of
g(X, AN) = 0, we have

g((∇ξ S)Y, Z) = −g(JAY, Z) + αg(φSY, Z)− α

2
g((φS + Sφ)Y, Z)

= g(AJY, Z) +
α

2
g((φS − Sφ)Y, Z). (8)

When the unit normal vector field N is A-principal, we have that the ∗-Ricci tensor
Ric∗ on M is

g(Q∗Y, Z) = Ric∗(Y, Z) = 2(m − 1)g(φY, φZ)− g((φS)2Y, Z),

from Theorem 3. Applying ∇ξ to both side of this equation, we have

g((∇ξ Q∗)Y, Z) = g((∇ξ S)φSY, φZ)− g((∇ξS)Y, φSφZ), (9)

by (∇ξφ)Y = η(Y)Sξ − g(Sξ, Y)ξ = 0. Putting Equation (8) in Equation (9), we have
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g((∇ξ Q∗)Y, Z) = g(AJφSY, φZ) +
α

2
g((φS − Sφ)φSY, φZ)

−g(AJY, φSφZ)− α

2
g((φS − Sφ)Y, φSφZ)

= g(AJφSY, φZ) + g(JAY, φSφZ)

= g(φ2SY, AφZ)− g(AY, φ2SφZ)

= −g(SY, AφZ) + g(AY, SφZ)

= g((φAS − φSA)Y, Z), (10)

by JX = φX + η(X)N and Aξ = −ξ if N is A-principal.
From Lemma 4 and Equation (10), we have

g((∇ξ Q∗)Y, Z) = g((φAS − φSA)Y, Z) = 0.

That is
(∇ξ Q∗)X = 0.

4. Proof of Theorem 1 with A-Isotropic unit Normal Vector Field

In this section, we assume the real hypersurface M in Qm is Hopf and the unit normal
vector field is A-isotropic. We have g(AN, N) = g(ξ, Aξ) = 0 and AN ∈ TM.

In [12], the authors have proved that for a Hopf hypersurface M in Qm, m ≥ 3, with
A-isotropic unit normal vector field N, the following two equations are satisfied:

SAN = 0, and SAξ = 0.

Thus, we have

g(X, AN)g(SφY, AN) = g(X, AN)g(φY, SAN) = 0,

g(X, Aξ)g(SφY, Aξ) = g(X, Aξ)g(φY, SAξ) = 0,

g(Y, AN)g(φSX, AN) = g(Y, AN)g(AN, JSX − η(SX)N)

= g(Y, AN)g(AJN, SX)

= −g(Y, AN)g(SAξ, X) = 0

g(Y, Aξ)g(φSX, Aξ) = g(Y, Aξ)g(Aξ, JSX − η(SX)N)

= −g(Y, Aξ)g(JAξ, SX)

= g(Y, Aξ)g(AJξ, SX)

= g(Y, Aξ)g(SAN, X) = 0.

Then, from Equation (2) and Theorem 3, we have

g((Lξ Q∗)X, Y) = g((∇ξ Q∗)X, Y) + g(Q∗X, SφY) + g(Q∗φSX, Y)

= g((∇ξ Q∗)X, Y)

+2(m − 1)g(φX, φSφY)− g((φS)2X, SφY)

+g(X, Aξ)g(SφY, Aξ) + g(X, AN)g(SφY, AN)

+2(m − 1)g(φ2SX, φY)− g((φS)2φSX, Y)

+g(Y, Aξ)g(φSX, Aξ) + g(Y, AN)g(φSX, AN)

= g((∇ξ Q∗)X, Y),

we obtain (Lξ Q∗)X = (∇ξ Q∗)X. From

g(Q∗X, Y) = 2(m − 1)g(φX, φY)− g((φS)2X, Y)

+2g(X, Aξ)g(Y, Aξ) + 2g(X, AN)g(Y, AN),
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we can calculate that

g((∇ξ Q∗)X, Y) = 2g(∇ξ(AN), X)g(AN, Y) + 2g(∇ξ(AN), Y)g(AN, X)

+2g(∇ξ(Aξ), X)g(Aξ, Y) + 2g(∇ξ(Aξ), Y)g(Aξ, X)

−g(φ(∇ξ S)φSX, Y)− g(φSφ(∇ξ S)X, Y), (11)

by AN ∈ TM and (∇ξ φ)X = 0.
In the following, we give the proof of

g(φ(∇ξ S)φSX, Y) + g(φSφ(∇ξS)X, Y) = 0. (12)

From Equation (7) and g(ξ, Aξ) = 0, we have

0 = 2g(SφSX, Y)− αg((φS + Sφ)X, Y)− 2g(φX, Y)

+2g(X, AN)g(Y, Aξ)− 2g(Y, AN)g(X, Aξ).

Then, we have

SφSX =
1
2

α(φS + Sφ)X + φX − g(X, AN)Aξ + g(X, Aξ)AN. (13)

From φAN = JAN = Aξ and φAξ = JAξ = −AN, we have

SφSX + φSφSφX =
1
2

α(φS + Sφ)X + φX − g(X, AN)Aξ + g(X, Aξ)AN

1
2

αφ(φS + Sφ)φX + φ3X − g(φX, AN)φAξ

+g(φX, Aξ)φAN

= 0 (14)

Putting X = ξ in Codazzi Equation (3) and in consideration of

g(AN, N) = g(ξ, Aξ) = 0,

we have

g((∇ξS)Y − (∇YS)ξ, Z) = g(φY, Z)− g(Y, AN)g(Aξ, Z)− g(Y, Aξ)g(JAξ, Z),

thus,

g((∇ξS)Y, Z) = g(φY, Z)− g(Y, AN)g(Aξ, Z)

−g(Y, Aξ)g(JAξ, Z) + g(αφSY − SφSY, Z),

by Equation (5). So, we have

(∇ξ S)Y = φY − g(Y, AN)Aξ + g(Y, Aξ)AN + αφSY − SφSY. (15)

Then, from Equations (13) and (15), we have

(∇ξS)Y = αφSY − 1
2

α(φS + Sφ)Y =
α

2
(φS − Sφ)Y.

From Equation (14), we have

g(φ(∇ξS)φSX, Y) + g(φSφ(∇ξS)X, Y)

=
α

2
g(φ(φS − Sφ)φSX, Y) +

α

2
g(φSφ(φS − Sφ)X, Y)

= 0.

Thus, we prove Equation (12).
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The derivative of AN and Aξ is

∇X(AN) = ∇̄X(AN)− g(SX, AN)N

= (∇̄X A)N + A(∇̄X N)

= q(X)JAN − ASX

= q(X)Aξ − ASX,

∇X(Aξ) = ∇̄X(Aξ)− g(SX, Aξ)N

= (∇̄X A)ξ + A(∇̄Xξ)

= (∇̄X A)ξ + A(∇̄X(−JN))

= q(X)JAξ − A((∇̄X J)N + J(∇̄X N))

= q(X)JAξ + AJSX

= q(X)JAξ − JASX,

by (∇̄U A)V = q(U)JAV for all U, V ∈ TQm, so ∇ξ(AN) = q(ξ)Aξ − αAξ and ∇ξ(Aξ) =
q(ξ)JAξ − αJAξ, to obtain Equation (11) , we have

g((∇ξ Q∗)X, Y) = 2g(q(ξ)Aξ − αAξ, X)g(AN, Y)

+2g(q(ξ)Aξ − αAξ, Y)g(AN, X)

+2g(q(ξ)JAξ − αJAξ, X)g(Aξ, Y)

+2g(q(ξ)JAξ − αJAξ, Y)g(Aξ, X)

= 2(q(ξ)− α)(g(Aξ, X)g(AN, Y) + g(Aξ, Y)g(AN, X))

+2(q(ξ)− α)(g(JAξ, X)g(Aξ, Y) + g(JAξ, Y)g(Aξ, X))

= 0

So, there must be (∇ξ Q∗)X = 0. So (Lξ Q∗)X = (∇ξ Q∗)X = 0.

5. Proof of Theorem 2

First, we assume that the ∗-Ricci tensor of the Hopf real hypersurface M2m−1 of the
complex quadric Qm is semi-symmetric, that is,

0 = (R(X, Y)Ric∗)(Z, W) = −Ric∗(R(X, Y)Z, W)− Ric∗(Z, R(X, Y)W).

Putting W = Y = ξ and from the fact that

Ric∗(R(X, ξ)Z, ξ) = 0,

and

R(X, ξ)ξ = X − η(X)ξ + g(Aξ, ξ)(AX)T − g(AX, ξ)(Aξ)T

+g(JAξ, ξ)(JAX)T − g(JAX, ξ)(JAξ)T

+αSX − α2η(X)ξ,

since the unit normal vector filed N is A-principal, we have AN = N and Aξ = −ξ,
(AX)T = BX = AX; then, the above equation becomes

R(X, ξ)ξ = X − η(X)ξ − BX − η(X)ξ + αSX − α2η(X)ξ

= X − 2η(X)ξ − AX + αSX − α2η(X)ξ.
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Then, from Theorem 3, we have

0 = Ric∗(R(X, ξ)ξ, Z)

= 2(m − 1)g(φR(X, ξ)ξ, φZ)− g((φS)2R(X, ξ)ξ, Z)

= 2(m − 1)g(φX − φAX + αφSX, φZ)

−g((φS)2X − (φS)2 AX + α(φS)2SX, Z)

= 2(m − 1)g(AX − X − αSX, φ2Z)

−g((X − AX + αSX, (φS)2Z)

= g(AX − X − αSX, 2(m − 1)φ2Z + (φS)2Z) (16)

where we have used the fact that (φS)2 = (Sφ)2 since M is Hopf.
By replacing X with AX in Equation (16) and from Lemma 4, we have

0 = Ric∗(R(AX, ξ)ξ, Z)

= g(A2X − AX − αSAX, 2(m − 1)φ2Z + (φS)2Z),

= g(X − AX − αSX + 2α2η(X)ξ, 2(m − 1)φ2Z + (φS)2Z),

= g(X − AX − αSX, 2(m − 1)φ2Z + (φS)2Z). (17)

From Equations (16) and (17), we have

0 = αg(SX, 2(m − 1)φ2Z + (φS)2Z).

By replacing Z by φZ in the above equation, we have

0 = αg(SX, 2(m − 1)φ3Z + (φS)2φZ)

= αg(SX,−2(m − 1)φZ + φ2SφSZ)

= αg(SX,−2(m − 1)φZ − SφSZ)

= αg(X,−2(m − 1)SφZ − S2φSZ).

So, we have

2(m − 1)SφZ + S2φSZ = 0, (18)

since α is a nonzero constant from Lemma 5 and the arbitrariness of vector field X.
Applying A to both sides of Equation (18), and the fact that AφSZ = −φSZ, ASZ =

SAZ from Lemma 4, we have

0 = 2(m − 1)ASφZ + AS2φSZ

= 2(m − 1)ASφZ + S2 AφSZ

= 2(m − 1)ASφZ − S2φSZ (19)

From Equations (18) and (19), we have

ASφZ + SφZ = 0. (20)

From Lemma 4, we have

ASφZ = SφZ − 2g(SφZ, ξ)ξ = SφZ,

to obatain Equation (20) , we have

SφZ = 0.

From Lemmas 5 and 6, we know the Hopf hypersurface M is in contact and SφZ +
φSZ = −2φZ. So,
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φSZ = −2φZ.

Then, we will have

0 = (Sφ)2Z = (φS)2Z = 4φ2Z.

That is, φ2 = 0, which cannot happen. Thus, we complete the proof of Theorem 2.

6. Conclusions

In our paper, we study the Hopf real hypersurface M in the complex quadric Qm,
m ≥ 3, with some certain ∗-Ricci operator properties. We give the necessary and sufficient
condition that the ∗-Ricci tensor on the Hopf real hypersurface in the complex quadric is
symetric. We know that the ∗-Ricci operator on the Hopf real hypersurface M with the
singular-unit normal vector field N is Reeb-invariant and Reeb-parallel. Moveover, we
prove that the ∗-Ricci tensor on the Hopf real hypersurface M in the complex quadric with
the A-principal unit normal vector field cannot be semi-symmetric.
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1. Introduction

In the present work, we study the differential geometry of the almost paracontact,
almost paracomplex Riemannian manifolds, called briefly Riemannian Π-manifolds [1,2].
The considered odd dimensional manifolds have a traceless induced almost product struc-
ture on the paracontact distribution, and the restriction on the paracontact distribution
of the almost paracontact structure is an almost paracomplex structure. The start of the
investigation of the Riemannian Π-manifolds is given in [1] by the name almost paracontact
Riemannian manifolds of type (n, n). After that, their study continues in a series of works
(e.g., [2–5]).

In [1], M. Manev and M. Staikova presented a classification of the Riemannian Π-
manifolds with respect to the fundamental tensor F, which contains eleven basic classes.
We consider four of these eleven basic classes, the so-called main classes, in which F is
expressed explicitly by the metrics and the Lee forms.

In differential geometry of manifolds with additional tensor structures, those affine
connections play an important role, which is to preserve the structure tensors and the
metric, known also as natural connections (e.g., [6–15]). We define a non-symmetric natural
connection, and we call it the first natural connection on a Riemannian Π-manifold. We
obtain relations between the introduced connection and the Levi–Civita connection, as well
as studying some of its curvature characteristics in the main classes.

The paper is structured as follows. After this introductory Section 1, in Section 2,
we recall some preliminary background facts about the considered geometry. In the next
Section 3, we define the concept of natural connection on the Riemannian Π-manifold, and
we prove the necessary and sufficient condition for the affine connection to be natural.
Section 4 is devoted to the first natural connection on the Riemannian Π-manifold and its
relations to the Levi–Civita connection. Moreover, in this section, we prove assertions for
relations between these two connections and their respective curvature tensors, torsion
tensors, Ricci tensors, and scalar curvatures. In the final Section 5, we support the results
with an explicit example of dimension five.

2. Riemannian Π-Manifolds

Let (M, φ, ξ, η, g) be a Riemannian Π-manifold, where M is (2n + 1)-dimensional dif-
ferentiable manifold, equipped with a Riemannian metric g and a Riemannian Π-structure

Mathematics 2023, 11, 1146. https://doi.org/10.3390/math11051146 https://www.mdpi.com/journal/mathematics68
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(φ, ξ, η). This structure consists of a (1,1)-tensor field φ, a Reeb vector field ξ and its dual
1-form η. The following basic identities and their immediately derived properties are valid:

φξ = 0, φ2 = I − η ⊗ ξ, η ◦ φ = 0, η(ξ) = 1,
tr φ = 0, g(φx, φy) = g(x, y)− η(x)η(y),

(1)

g(φx, y) = g(x, φy), g(x, ξ) = η(x),
g(ξ, ξ) = 1, η(∇xξ) = 0,

(2)

where I and ∇ denote the identity transformation on TM and the Levi–Civita connection
of g, respectively ([2,16]). Here and further, x, y, z, and w stand for arbitrary differentiable
vector fields on M or tangent vectors at a point of M.

The associated metric g̃ of g on (M, φ, ξ, η, g) is defined by g̃(x, y) = g(x, φy) +
η(x)η(y). It is an indefinite metric of signature (n + 1, n), and it is compatible with the
manifold in the same way as g. In further investigations, we use the following notations:

g∗(x, y) = g(x, φy), g∗∗(x, y) = g(φx, φy). (3)

Using ξ and η on an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g), we consider
two complementary distributions of TM—the horizontal distribution H = ker(η) and the
vertical distribution V = span(ξ). They are mutually orthogonal with respect to the both
metrics g and g̃, i.e.,

H⊕V = TM, H ⊥ V , H∩ V = {o}, (4)

where o stands for the zero vector field on M. In this way, the respective horizontal and
vertical projectors are determined by h : TM �→ H and v : TM �→ V .

An arbitrary vector field x has corresponding projections xh and xv such that

x = xh + xv, (5)

where
xh = φ2x, xv = η(x)ξ (6)

are the so-called horizontal and vertical component of x, respectively.
Let us denote by ∇ the Levi–Civita connection of g. The following tensor field F of

type (0, 3) plays an important role in the geometry of the Riemannian Π-manifolds [1]:

F(x, y, z) = g
(
(∇xφ)y, z

)
. (7)

From (1) and (7), the following general properties of F are obtained [1]:

F(x, y, z) = F(x, z, y) = −F(x, φy, φz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ),

F(x, y, φz) = −F(x, φy, z) + η(z)F(x, φy, ξ) + η(y)F(x, φz, ξ),

F(x, φy, φz) = −F(x, φ2y, φ2z),

F(x, φy, φ2z) = −F(x, φ2y, φz).

(8)

Lemma 1 ([2]). The following identities are valid:

(1) (∇xη)(y) = g(∇xξ, y);
(2) η(∇xξ) = 0;
(3) F(x, φy, ξ) = −(∇xη)(y).

The 1-forms associated with F, known as Lee forms, are defined by

θ = gijF(ei, ej, ·), θ∗ = gijF(ei, φej, ·), ω = F(ξ, ξ, ·),
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where
(

gij) is the inverse matrix of
(

gij
)

of g with respect to a basis {ξ; ei} of TpM (i =
1, 2, . . . , 2n; p ∈ M). Using (8), the following relations for the Lee forms are obtained [1]:

ω(ξ) = 0, θ∗ ◦ φ = −θ ◦ φ2, θ∗ ◦ φ2 = θ ◦ φ. (9)

In [1], M. Manev and M. Staikova presented a classification of Riemannian Π-mani-
folds with respect to the fundamental tensor F, which contains eleven basic classes denoted
by F1, F2, . . . , F11. The intersection of the basic classes is the special class F0 determined
by the condition F = 0. Let us remark that the main objects of our consideration are the
so-called main classes of the considered manifolds among the basic eleven. These are the
classes F1, F4, F5, F11 in which the fundamental tensor F is expressed explicitly by the
metrics and the Lee forms. The characteristic conditions of these classes are [1,2]

F1 : F(x, y, z) =
1

2n
{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)

− g(x, φy)θ(φz)− g(x, φz)θ(φy)
}

;

F4 : F(x, y, z) =
θ(ξ)

2n
{

g(φx, φy)η(z) + g(φx, φz)η(y)
}

;

F5 : F(x, y, z) =
θ∗(ξ)

2n
{

g(x, φy)η(z) + g(x, φz)η(y)
}

;

F11 : F(x, y, z) = η(x){η(y)ω(z) + η(z)ω(y)}.

(10)

The (1, 2)-tensors N and N̂ defined by

N(x, y) =
(
∇φxφ

)
y − φ(∇xφ)y − (∇xη)(y)ξ

−
(
∇φyφ

)
x + φ

(
∇yφ
)
x +
(
∇yη
)
(x)ξ,

N̂(x, y) =
(
∇φxφ

)
y − φ(∇xφ)y − (∇xη)(y)ξ

+
(
∇φyφ

)
x − φ

(
∇yφ
)
x −
(
∇yη
)
(x)ξ

are called the Nijenhuis tensor and associated Nijenhuis tensor, respectively, for the Π-
structure on M [2].

It can be immediately established that we have an antisymmetric tensor N and a
symmetric N̂, i.e.,

N(x, y) = −N(y, x), N̂(x, y) = N̂(y, x). (11)

The corresponding (0, 3)-tensors of N and N̂ on (M, φ, ξ, η, g) are denoted by the
same letter and are expressed by means of F through the equalities [2]

N(x, y, z) = g(N(x, y), z)

= F(φx, y, z)− F(φy, x, z)− F(x, y, φz) + F(y, x, φz)

+ η(z){F(x, φy, ξ)− F(y, φx, ξ)},

N̂(x, y, z) = g
(

N̂(x, y), z
)

= F(φx, y, z) + F(φy, x, z)− F(x, y, φz)− F(y, x, φz)

+ η(z){F(x, φy, ξ) + F(y, φx, ξ)}.
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On the other hand, the fundamental tensor F of a Riemannian Π-manifold can be
expressed only by the pair of tensors N and N̂ as follows [2]:

F(x, y, z) =
1
4
{

N(φx, y, z) + N(φx, z, y) + N̂(φx, y, z) + N̂(φx, z, y)
}

− 1
2

η(x)
{

N(ξ, y, φz) + N̂(ξ, y, φz) + η(z)N̂(ξ, ξ, φy)
}

.
(12)

Let R denote the curvature tensor of type (1, 3) for the Levi–Civita connection ∇
generated by the metric g on (M, φ, ξ, η, g), i.e.,

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z. (13)

Let us denote the corresponding curvature (0, 4)-tensor by the same letter and let us
define it by the following equality:

R(x, y, z, w) = g(R(x, y)z, w). (14)

The following known basic properties hold for R:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z), (15)

R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w) = 0. (16)

For R, we define Ricci tensor ρ of type (0, 2) as follows:

ρ(x, y) = gijR(ei, x, y, ej), (17)

and scalar curvature τ as the trace of ρ through

τ = gijρ(ei, ej). (18)

The associated quantities ρ∗ and τ∗ corresponding to ρ and τ are determined by the
following equalities:

ρ∗(x, y) = gijR(ei, x, y, φej), τ∗ = gijρ∗(ei, ej). (19)

The notation S � P stands for the Kulkarni–Nomizu product of two tensors S and P of
type (0, 2), defined as follows:

(S � P)(x, y, z, w) = S(x, z)P(y, w)− S(y, z)P(x, w)

+ S(y, w)P(x, z)− S(x, w)P(y, z).
(20)

It is easy to see that S � P possesses the basic properties (15) and (16) of R just when S
and P are symmetric tensors.

Let T denote the torsion tensor of an arbitrary affine connection D, i.e.,

T(x, y) = Dxy − Dyx − [x, y]. (21)

Let us remark that D is symmetric if and only if its torsion tensor T is zero.
Let us denote by the same letter the corresponding (0, 3)-tensor with respect to the

metric g, i.e.,
T(x, y, z) = g(T(x, y), z). (22)

Torsion forms t, t∗ and t̂ of T we call the associated 1-forms of T defined by

t(x) = gijT(x, ei, ej), t∗(x) = gijT(x, ei, φej), t̂(x) = T(x, ξ, ξ) (23)
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with respect to a basis {ξ; ei} of TpM (i = 1, 2, . . . , 2n; p ∈ M). Obviously, the identity
t̂(ξ) = 0 holds.

3. Natural Connection on Riemannian Π-Manifolds

Let us consider an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g).

Definition 1. An affine connection D on a Riemannian Π-manifold (M, φ, ξ, η, g) is called a
natural connection for the Riemannian Π-structure (φ, ξ, η, g) if this structure is parallel with
respect to D, i.e.,

Dφ = Dξ = Dη = Dg = 0.

It is easily verified, as a consequence, that the associated metric g̃ is also parallel with
respect to the natural connection D on (M, φ, ξ, η, g), i.e., Dg̃ = 0.

Therefore, D on a Riemannian Π-manifold (M, φ, ξ, η, g) /∈ F0 plays the same role as
∇ on (M, φ, ξ, η, g) ∈ F0. Obviously, D and ∇ coincide when (M, φ, ξ, η, g) ∈ F0.

Let Q denote the difference of D and ∇ which we call the potential of D with respect
to ∇. Then we have

Dxy = ∇xy + Q(x, y). (24)

Moreover, by the same letter, we denote the corresponding (0, 3)-tensor field of Q with
respect to g, i.e.,

Q(x, y, z) = g(Q(x, y), z). (25)

Proposition 1. An affine connection D is a natural connection on the Riemannian Π-manifold if
and only if the following properties hold:

Q(x, y, φz)− Q(x, φy, z) = F(x, y, z), (26)

Q(x, y, z) = −Q(x, z, y). (27)

Proof. Using (24) and (25), we obtain the following relations:

g(Dxφy, z) = g(∇xφy, z) + Q(x, φy, z),

g(Dxy, φz) = g(∇xy, φz) + Q(x, y, φz).

We form the difference of the last two equalities and directly obtain the identity

g
(
(Dxφ)y, z

)
= F(x, y, z) + Q(x, φy, z)− Q(x, y, φz).

Then the condition Dφ = 0 is equivalent to (26).
We obtain, sequentially,

(Dxg)(y, z) = g(∇xy, z) + g(y,∇xz)− g(Dxy, z)− g(y, Dxz)

= −Q(x, y, z)− Q(x, z, y).

Therefore, the condition Dg = 0 holds if and only if (27) holds.
From (24), we obtain

g(Dxξ, z) = g(∇xξ, z) + g(Q(x, ξ), z) = g(∇xξ, z) + Q(x, ξ, z). (28)

After that, from Lemma 1 and (8), we derive the following relation:

g(∇xξ, z) = −F(x, ξ, φz).

Substituting the latter result into (28), we obtain

g(Dxξ, z) = −F(x, ξ, φz) + Q(x, ξ, z),
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i.e., the condition Dξ = 0 is equivalent to the following relation

−F(x, ξ, φz) + Q(x, ξ, z) = 0,

which is a consequence of (26).
Since the relation η(·) = g(·, ξ) holds, then, using Dg = 0, we obtain that Dξ = 0 is

valid if and only if Dη = 0.

Theorem 1. An affine connection D is natural on a Riemannian Π-manifold if and only if

Dφ = Dg = 0.

Proof. In the proof of the preceding statement, we showed that the condition Dφ = 0 is
equivalent to (26) and Dg = 0 holds if and only if (27) holds. In this way, according to
Proposition 1, we complete the proof.

4. First Natural Connection on Riemannian Π-Manifolds

Let Ḋ denote an affine connection on (M, φ, ξ, η, g) defined by

Ḋxy = ∇xy − 1
2
{
(∇xφ)φy − (∇xη)y · ξ

}
− η(y)∇xξ. (29)

Therefore, the potential Q̇ of Ḋ with respect to ∇ is defined by

Q̇(x, y) = −1
2
{
(∇xφ)φy − (∇xη)y · ξ

}
− η(y)∇xξ. (30)

Using (1), (7) and (8), we verify that Ḋφ = Ḋg = 0. Therefore, according to Theorem 1,
Ḋ is a natural connection.

Definition 2. The natural connection Ḋ, defined by (29), is called first natural connection on a
Riemannian Π-manifold (M, φ, ξ, η, g).

Obviously, Ḋ and ∇ coincide only on a manifold of class F0. Therefore, ∇ is a first
natural connection when (M, φ, ξ, η, g) ∈ F0.

Let us remark that the restriction of Ḋ on the paracontact distribution H of (M, φ,
ξ, η, g) is another studied natural connection (called P-connection) on the corresponding
Riemannian manifold equipped with an almost product structure (see [9]).

Theorem 2. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then, the first natural connection Ḋ is determined by

1. If (M, φ, ξ, η, g) ∈ F1, then

Ḋxy = ∇xy − 1
4n

{
θ(φy)φ2x − θ(φ2y)φx + g(x, φy)φ2θ� − g(φx, φy)φθ�

}
,

where θ(·) = g(θ�, ·);
2. If (M, φ, ξ, η, g) ∈ F4, then

Ḋxy = ∇xy − 1
2n

θ(ξ){g(x, φy)ξ − η(y)φx};

3. If (M, φ, ξ, η, g) ∈ F5, then

Ḋxy = ∇xy − 1
2n

θ∗(ξ)
{

g(φx, φy)ξ − η(y)φ2x
}

;
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4. If (M, φ, ξ, η, g) ∈ F11, then

Ḋxy = ∇xy − η(x)
{

ω(φy)ξ − η(y)φω�
}

,

where ω(·) = g(ω�, ·).

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

The potential Q̇ has the following form given in (30):

Q̇(x, y) = −1
2
{
(∇xφ)φy − (∇xη)y · ξ

}
− η(y)∇xξ.

Using (7), Lemma 1 and the analogous definitions of (24) and (25) for Q̇,

Ḋxy = ∇xy + Q̇(x, y), (31)

Q̇(x, y, z) = g
(
Q̇(x, y), z

)
, (32)

we obtain the corresponding form of Q̇ as a tensor of type (0, 3)

Q̇(x, y, z) = −1
2
{

F(x, φy, z) + η(z)F(x, φy, ξ)
}
+ η(y)F(x, φz, ξ).

Applying the definition condition of F in F1 from (10)

F(x, y, z) =
1

2n
{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)

− g(x, φy)θ(φz)− g(x, φz)θ(φy)
} (33)

in the latter formula and using (1) and (2), we obtain

Q̇(x, y, z) = − 1
4n
{

g(φx, φ2y)θ(φ2z)− g(x, φ2y)θ(φz)

+g(φx, φz)θ(φy)− g(x, φz)θ(φ2y)
}

.
(34)

From the latter equality and (32), we obtain

Q̇(x, y) = − 1
4n

{
θ(φy)φ2x − θ(φ2y)φx + g(x, φy)φ2θ� − g(φx, φy)φθ�

}
, (35)

where θ(·) = g(θ�, ·).
Thus, we establish the truthfulness of the first statement in the theorem, considering (31).

The other cases are proved in a similar way.

Let Ṫ denote the torsion tensor of Ḋ, i.e., according to (21), we have

Ṫ(x, y) = Ḋxy − Ḋyx − [x, y].

Then, using (29), we obtain

Ṫ(x, y) = −1
2
{
(∇xφ)φy − (∇yφ)φx − dη(x, y)ξ

}
+ η(x)∇yξ − η(y)∇xξ. (36)

Let us remark that Ḋ is not a symmetric connection since obviously Ṫ is nonzero.
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The corresponding (0, 3)-tensor with respect to g is determined as follows:

Ṫ(x, y, z) = g(Ṫ(x, y), z). (37)

Then, by (36), (7) and Lemma 1, we obtain

Ṫ(x, y, z) = −1
2
{F(x, φy, z)− F(y, φx, z)}

− 1
2

η(z){F(x, φy, ξ)− F(y, φx, ξ)}
+ η(y)F(x, φz, ξ)− η(x)F(y, φz, ξ).

(38)

We apply (12) in (38). Thus, taking into account (11), we obtain the form of the torsion
of the first natural connection with respect to N and N̂:

Ṫ(x, y, z) = −1
8
{

2N(φx, φy, z) + N(φx, z, φy)− N(φy, z, φx)

+ N̂(φx, z, φy)− N̂(φy, z, φx)
}

+
1
4

η(x)
{

2N(ξ, φy, φz)− N(φy, φz, ξ)

+ 2η(z)N̂(ξ, ξ, φ2y)− N̂(φy, φz, ξ)
}

− 1
4

η(y)
{

2N(ξ, φx, φz)− N(φx, φz, ξ)

+ 2η(z)N̂(ξ, ξ, φ2x)− N̂(φx, φz, ξ)
}

− 1
8

η(z)
{

2N(φx, φy, ξ) + N(φx, ξ, φy)− N(φy, ξ, φx)

+ N̂(φx, ξ, φy)− N̂(φy, ξ, φx)
}

.

(39)

We use (39) and the decomposition in (4)–(6) to obtain the following form of Ṫ regard-
ing the pair N and N̂ with respect to the horizontal and the vertical components of the
vector fields:

Ṫ(x, y, z) = −1
8
{
S N(xh, yh, zh) + N(xh, yh, zh)

+ N̂(yh, zh, xh)− N̂(zh, xh, yh)
}

−1
4
{

2N(xh, yh, zv) + N(yh, zv, xh) + N(zv, xh, yh)

+ 2N(xv, yh, zh) + N(yh, zh, xv) + 2N(xh, yv, zh)

+ N(zh, xh, yv) + 2N̂(yh, zh, xv)− N̂(zv, xh, yh)

− N̂(zh, xh, yv)− 2N̂(zv, xv, yh) + 2N̂(yv, zv, xh)
}

,

where S stands for the cyclic sum by the three arguments.

Theorem 3. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then, the torsion tensor Ṫ of the first natural connection Ḋ
has the form

1. If (M, φ, ξ, η, g) ∈ F1, then

Ṫ(x, y) = − 1
4n
{

θ(φy)φ2x − θ(φx)φ2y + θ(φ2x)φy − θ(φ2y)φx
}

;
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2. If (M, φ, ξ, η, g) ∈ F4, then

Ṫ(x, y) =
1

2n
θ(ξ){η(y)φx − η(x)φy};

3. If (M, φ, ξ, η, g) ∈ F5, then

Ṫ(x, y) =
1

2n
θ∗(ξ)

{
η(y)φ2x − η(x)φ2y

}
;

4. If (M, φ, ξ, η, g) ∈ F11, then

Ṫ(x, y) = {η(y)ω(φx)− η(x)ω(φy)}ξ.

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

We apply (33) in (38) and taking into account (1) and (2), we obtain

Ṫ(x, y, z) = − 1
4n

{g(φx, φz)θ(φy)− g(φy, φz)θ(φx)

−g(x, φz)θ(φ2y) + g(y, φz)θ(φ2x)
}

.

The form of Ṫ in case 1 follows from the last expression and (37).
Thus, we establish the truthfulness of the first statement in the theorem. The other

cases are proved in a similar way.

Similarly to (23), we define torsion forms ṫ, ṫ∗ and ̂̇t for Ṫ with respect to a basis {ξ; ei}
of TpM (i = 1, 2, . . . , 2n; p ∈ M):

ṫ(x) = gijṪ(x, ei, ej), ṫ∗(x) = gijṪ(x, ei, φej), ̂̇t(x) = Ṫ(x, ξ, ξ). (40)

Using (38), (40) and η(ei) = 0 (i = 1, . . . , 2n), we obtain

ṫ(x) = −1
2

gij{F(x, φm
i em, ej)− F(ei, φx, ej) + 2η(x)F(ei, φm

j em, ξ)
}

.

On the one hand, by (1) and the identities φk
i φs

j gij = gks − ξkξs and η(ei) = 0 (i =
1, . . . , 2n), for the first addend of the last equality, we obtain

gijF(x, φs
i es, ej) = gijF(x, φs

i es, φm
j φl

mel) = φs
i φl

j g
ijF(x, es, φm

l em)

= gsl F(x, es, φm
l em)− ξsξ l F(x, es, φm

l em) = gijF(x, ei, φl
j el).

On the other hand, from (8), we have for it

gijF(x, φs
i es, ej) = −gijF(x, φm

i φs
mes, φl

j el) = −gijF(x, ei, φl
j el).

Therefore, gijF(x, φs
i es, ej) = gijF(x, ei, φl

j el) = 0.
Thus, according to (23), we obtain the following formula:

ṫ(x) =
1
2

θ(φx)− θ∗(ξ)η(x). (41)
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By an analogous approach, we calculate the form of ṫ∗ and ̂̇t as follows:

ṫ∗(x) =
1
2

θ∗(φx)− θ(ξ)η(x),̂̇t(x) = ω(φx).
(42)

Taking into account (9), (41) and (42), we obtain the following relations between the
torsion forms ṫ, ṫ∗ and the Lee forms θ, θ∗:

ṫ∗ ◦ φ = ṫ ◦ φ2,

2ṫ ◦ φ = θ ◦ φ2, 2ṫ ◦ φ2 = θ ◦ φ,

2ṫ∗ ◦ φ = θ∗ ◦ φ2, 2ṫ∗ ◦ φ2 = θ∗ ◦ φ.

(43)

Corollary 3. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then the torsion tensor Ṫ of the first natural connection Ḋ is
expressed by its torsion forms ṫ, ṫ∗ and ̂̇t as follows:

F1 : Ṫ(x, y) = − 1
2n
{

ṫ(φ2y)φ2x − ṫ(φ2x)φ2y + ṫ(φx)φy − ṫ(φy)φx
}

;

F4 : Ṫ(x, y) = − 1
2n

ṫ∗(ξ){η(y)φx − η(x)φy};

F5 : Ṫ(x, y) = − 1
2n

ṫ(ξ)
{

η(y)φ2x − η(x)φ2y
}

;

F11 : Ṫ(x, y) =
{

η(y)̂ṫ(x)− η(x)̂ṫ(y)
}

ξ.

Proof. We obtain the expression of Ṫ using its form from Theorem 3 and the relations (43)
between the torsion forms and the Lee forms.

Let Ṙ denote the curvature tensor for the first natural connection Ḋ. Similarly to the
definitions (13) and (14) of R regarding ∇, we define Ṙ as a tensor of type (1, 3) and (0, 4)
for Ḋ, respectively, by

Ṙ(x, y)z = ḊxḊyz − ḊyḊxz − Ḋ[x,y]z, (44)

Ṙ(x, y, z, w) = g
(

Ṙ(x, y)z, w
)
. (45)

Theorem 4. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then, the curvature tensor Ṙ of the first natural connection Ḋ
has the form

1. If (M, φ, ξ, η, g) ∈ F1, then

Ṙ(x, y, z, w) = R(x, y, z, w)

+
1

4n
{(

g∗ � S1 − g∗∗ � S2
)
(x, y, z, w)

−θ(φθ�)
(

g∗ � g∗∗
)
(x, y, z, w)

−θ(φ2θ�)
(

g � g∗∗ + g∗ � g̃ − g̃ � g
)
(x, y, z, w)

}
,

where

S1(x, y) =
(
∇x
(
θ ◦ φ2))(y) + 1

4n
{

θ(φx)θ(φ2y) + θ(φ2x)θ(φy)
}

,

S2(x, y) = (∇x(θ ◦ φ))(y) +
1

4n
{

θ(φ2x)θ(φ2y) + θ(φx)θ(φy)
}

;
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2. If (M, φ, ξ, η, g) ∈ F4, then

Ṙ(x, y, z, w) = R(x, y, z, w)

+
1

2n
{

x
(
θ(ξ)
)
{(η ⊗ η)� g∗}(ξ, y, z, w)

−y
(
θ(ξ)
)
{(η ⊗ η)� g∗}(ξ, x, z, w)

}
− 1

8n2 (θ(ξ))
2{2(η ⊗ η)� g − g∗ � g∗}(x, y, z, w);

3. If (M, φ, ξ, η, g) ∈ F5, then

Ṙ(x, y, z, w) = R(x, y, z, w)

+
1

4n
{

x
(
θ∗(ξ)

)
{g � g}(ξ, y, z, w)

−y
(
θ∗(ξ)

)
{g � g}(ξ, x, z, w)

}
+

1
8n2 (θ

∗(ξ))2{g � g}(x, y, z, w);

4. If (M, φ, ξ, η, g) ∈ F11, then

Ṙ(x, y, z, w) = R(x, y, z, w)

− {(η ⊗ η)� S3}(x, y, z, w),

where
S3(x, y) = (∇xω)(φy) + ω(φx)ω(φy).

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

Using (44) and (45) together with (31), (32) and the analogous relation of (27) for Q̇,
we obtain the following form of Ṙ for an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g):

Ṙ(x, y, z, w) = R(x, y, z, w) + (∇xQ̇)(y, z, w)− (∇yQ̇)(x, z, w)

+ g(Q̇(x, z), Q̇(y, w))− g(Q̇(y, z), Q̇(x, w)).
(46)

Taking into account (7), (8) and (34), we obtain

(
∇xQ̇

)
(y, z, w) = − 1

4n
{

x
(
θ(φ2w)

)
g(y, φz) + x(θ(φz))g(φy, φw)

−x(θ(φw))g(φy, φz)− x
(
θ(φ2z)

)
g(y, φw)

+θ(φ2w)F(x, y, z)− θ(φ2z)F(x, y, w)

−θ(φw){F(x, y, φz) + F(x, z, φy)}

+θ(φz){F(x, y, φw) + F(x, w, φy)}

−θ(φ2∇xw)g(y, φz) + θ(φ∇xw)g(φy, φz)

+θ(φ2∇xz)g(y, φw)− θ(φ∇xz)g(φy, φw)
}

.

(47)
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Then, using (35), we obtain

g
(
Q̇(x, z), Q̇(y, w)

)
= − 1

16n2

{
θ(φz)

[
θ(φw)g(φx, φy)− θ(φ2w)g(φx, y)

+θ(φ2x)g(y, φw)− θ(φx)g(φy, φw)
]

−θ(φ2z)
[
θ(φw)g(x, φy)− θ(φ2w)g(φx, φy)

+ θ(φx)g(y, φw)−θ(φ2x)g(φy, φw)
]

+g(x, φz)
[
θ(φ2y)θ(φw)− θ(φy)θ(φ2w)

+θ(φ2θ�)g(y, φw)− θ(φθ�)g(φy, φw)
]

−g(φx, φz)
[
θ(φy)θ(φw)− θ(φ2y)θ(φ2w)

+θ(φθ�)g(y, φw)− θ(φ2θ�)g(φy, φw)
]}

.

(48)

Applying (47) and (48) into (46) and using (1) and (2) as well as the notations (3) and (20),
we obtain the form of Ṙ presented in the theorem.

Thus, we establish the truthfulness of the first statement in the theorem. The other
cases are proved in a similar way.

Similarly to the definitions (17)–(19) for ρ, τ, ρ∗ and τ∗ regarding R, we define the
corresponding ones with respect to Ṙ as follows:

ρ̇(x, y) = gijṘ(ei, x, y, ej), τ̇ = gijρ̇(ei, ej),

ρ̇∗(x, y) = gijṘ(ei, x, y, φej), τ̇∗ = gijρ̇∗(ei, ej).

Corollary 4. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then the following relations for the Ricci tensors and the scalar
curvatures with respect to Ḋ and ∇ hold:

1. If (M, φ, ξ, η, g) ∈ F1, then

ρ̇(y, z) = ρ(y, z)

+
1
2

{(
∇y(θ ◦ φ)

)
(z) +

1
4n
{

θ(φ2y)θ(φ2z) + θ(φy)θ(φz)
}}

− 1
4n

{(
div(θ ◦ φ2)− 4n2 − 4n − 1

2n
θ(φθ�)

+2(n − 1) θ(φ2θ�)

)
g(y, φz)

−
(

div(θ ◦ φ) +
8n2 − 8n + 1

2n
θ(φ2θ�)

)
g(φy, φz)

}
,

ρ̇∗(y, z) = ρ∗(y, z)

− 1
2

{(
∇y
(
θ ◦ φ2))(z) + 1

4n
{

θ(φy)θ(φ2z) + θ(φ2y)θ(φz)
}}

+
1

4n

{(
div∗(θ ◦ φ) +

(2n − 1)2

2n
θ(φθ�)

−2(n − 1) θ(φ2θ�)

)
g(φy, φz)

−
(

div∗(θ ◦ φ2)− 8n2 − 8n − 1
2n

θ(φ2θ�)

)
g(y, φz)

}
,
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τ̇ = τ + div(θ ◦ φ) +
(2n − 1)2

2n
θ(φ2θ�),

τ̇∗ = τ∗ + (n − 1) θ(φθ�)− 2n − 3
2

θ(φ2θ�),

where div(θ) = gij(∇ei θ)(ej), div∗(θ) = gij(∇ei θ)(φej);
2. If (M, φ, ξ, η, g) ∈ F4, then

ρ̇(y, z) = ρ(y, z)

− 1
2n
{

ξ
(
θ(ξ)
)

g(y, φz)− φy
(
θ(ξ)
)
η(z)
}

+
1

2n2 (θ(ξ))2{g(y, z) + (n − 1)η(y)η(z)},

ρ̇∗(y, z) = ρ∗(y, z)

+
1

2n
{

φ2y
(
θ(ξ)
)
− 2n y

(
θ(ξ)
)}

η(z)

− 2n − 1
4n2 (θ(ξ))2g(y, φz),

τ̇ = τ +
1

2n
(θ(ξ))2,

τ̇∗ = τ∗ − ξ
(
θ(ξ)
)
;

3. If (M, φ, ξ, η, g) ∈ F5, then

ρ̇(y, z) = ρ(y, z)

− 1
2n
{

ξ
(
θ∗(ξ)

)
g(y, z) + (2n − 1) y

(
θ∗(ξ)

)
η(z)
}

− 1
2n

(θ∗(ξ))2g(y, z),

ρ̇∗(y, z) = ρ∗(y, z)

− 1
2n
{

φy
(
θ∗(ξ)

)
η(z)
}
+

1
4n2 (θ∗(ξ))2g(y, φz),

τ̇ = τ − 2ξ
(
θ∗(ξ)

)
− 2n + 1

2n
(
θ∗(ξ)

)2,

τ̇∗ = τ∗;

4. If (M, φ, ξ, η, g) ∈ F11, then

ρ̇(y, z) = ρ(y, z)

+ (∇yω)(φz) + ω(φy)ω(φz)

+
{

div∗(ω) + ω(φ2ω�)
}

η(y)η(z),

ρ̇∗(y, z) = ρ∗(y, z)

+
{

div(ω) + ω(φω�)
}

η(y)η(z),

τ̇ = τ + 2
{

div∗(ω) + ω(φ2ω�)
}

,

τ̇∗ = τ∗ +
{

div(ω) + ω(φω�)
}

,

where div(ω) = gij(∇ei ω)(ej), div∗(ω) = gij(∇ei ω)(φej);

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.
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Using (1) and (2), we easily compute ρ̇ as the trace of Ṙ(x, y, z, w), given in Theorem 4 (1),
by gij for x = ei and w = ej.

Similarly, we calculate the trace of Ṙ(x, y, z, w) by gij for x = ei and w = φej, and we
obtain the form of ρ̇∗, again taking into account (1) and (2).

Finally, the values of τ̇ and τ̇∗ are obtained by calculating the traces of ρ̇(y, z) and
ρ̇∗(y, z) by gij for y = ei and z = ej.

Thus, we establish the truthfulness of the first statement in the corollary. The other
cases are proved in a similar way.

5. Example

In this section, we consider a known example of a Riemannian Π-manifold of dimen-
sion five, recalling some obtained results for it and presenting new ones related to the
studied theory.

The authors of [2] studied the so-called paracontact almost paracomplex Rieman-
nian manifolds, which are Riemannian Π-manifolds having the property 2g(x, φy) =
(∇xη)(y) + (∇yη)(x).

According to the classification of the considered manifolds from [1], we denote by F4
′

a subclass of F4, which is defined by the condition θ(ξ) = −2n. It is important to note that
F4

′ and F0 are subclasses of F4 but without common elements.
A paracontact almost paracomplex Riemannian manifold having the additional condi-

tion φx = ∇xξ is called a para-Sasakian paracomplex Riemannian manifold, and it belongs
to the class F4

′ [2].
In [3], the same class of manifolds is obtained by a cone construction of a paraholomor-

phic paracomplex Riemannian manifold. There, they are called para-Sasaki-like paracontact
paracomplex Riemannian manifolds.

Let us consider a Lie group G of dimension 5 (i.e., n = 2) which has a basis of left-
invariant vector fields {e0, . . . , e4} and the corresponding Lie algebra is defined for λ, μ ∈ R

by the following commutators:

[e0, e1] = λe2 − e3 + μe4, [e0, e2] = −λe1 − μe3 − e4,

[e0, e3] = −e1 + μe2 + λe4, [e0, e4] = −μe1 − e2 − λe3.
(49)

The defined Lie group G is equipped with an invariant Riemannian Π-structure
(φ, ξ, η, g) as follows:

ξ = e0, φe1 = e3, φe2 = e4, φe3 = e1, φe4 = e2,

η(e1) = η(e2) = η(e3) = η(e4) = 0, η(e0) = 1,

g(e0, e0) = g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = 1,

g(ei, ej) = 0, i, j ∈ {0, 1, . . . , 4}, i �= j.

(50)

It is proved that the constructed manifold (G, φ, ξ, η, g) is a para-Sasaki-like paracon-
tact paracomplex Riemannian manifold, i.e., (G, φ, ξ, η, g) ∈ F4 [3].

Using (49), (50) and the well-known Koszul equality regarding g and ∇, we calculate
the components of the Levi–Civita connection, and the nonzero ones of them are the
following:

∇e0 e1 = λe2 + μe4, ∇e1 e0 = e3,

∇e0 e2 = −λe1 − μe3, ∇e2 e0 = e4,

∇e0 e3 = μe2 + λe4, ∇e3 e0 = e1,

∇e0 e4 = −μe1 − λe3, ∇e4 e0 = e2,

∇e1 e3 = ∇e2 e4 = ∇e3 e1 = ∇e4 e2 = −e0.

(51)
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Taking into account (49)–(51), we calculate the components R_ijkl = R(e_i, e_j, e_k, e_l),
ρij = ρ(ei, ej) and ρ∗ij = ρ∗(ei, ej) as well as the values of τ and τ∗. The nonzero ones of them
are determined by the following equalities and their well-known symmetries and antisymmetries:

R0101 = R0202 = R0303 = R0404 = R1331 = R2442 = R1234 = R1432 = 1,

ρ00 = −4, ρ∗13 = ρ∗24 = −3, τ = −4.
(52)

Let us consider the first natural connection Ḋ on (G, φ, ξ, η, g) defined by (29).
Then, by the relation between Ḋ and ∇ in the case of F4 from Theorem 2, and using (51),
we obtain the components of Ḋ. The nonzero ones of them are the following:

Ḋe0 e1 = λe2 + μe4, Ḋe0 e2 = −λe1 − μe3,

Ḋe0 e3 = μe2 + λe4, Ḋe0 e4 = −μe1 − λe3.
(53)

Proposition 2. The Riemannian Π-manifold (G, φ, ξ, η, g) has a flat first natural connection Ḋ,
i.e., Ṙ = 0.

Proof. Using (44) and (53), we establish that the components of Ṙ vanish. Thus, we prove
the assertion.

Corollary 4. The Riemannian Π-manifold (G, φ, ξ, η, g) is Ricci flat and scalar flat with respect
to the first natural connection Ḋ, i.e., ρ̇ = 0 and τ̇ = 0.

Proof. The truthfulness of the corollary is obvious bearing in mind Proposition 2.

Taking into account (20), (50) and (52), Proposition 2 and Corollary 4, the presented
example confirms the statements in Theorem 4 and Corollary 4.

By virtue of (36), (37), (50) and (51), we calculate the components Ṫijk = Ṫ(e_i, e_j, e_k).
The nonzero ones of them are determined by the following equalities and their well-known
antisymmetries:

Ṫ013 = Ṫ031 = Ṫ024 = Ṫ042 = 1. (54)

Then, using (40) and (54), we calculate ṫ, ṫ∗, and ̂̇t. The only nonzero one of them is

ṫ∗(e0) = 4. (55)

The obtained results in (54) and (55) regarding the torsion properties of the studied
example confirm the assertion made in Corollary 3 in the case of the class F4.

6. Conclusions

In the present work, we defined a non-symmetric natural connection and called it
the first natural connection on a Riemannian Π-manifold. The most significant results
obtained in this work are as follows. We introduced the notion of a natural connection on
the Riemannian Π-manifolds and proved the necessary and sufficient conditions for an
affine connection to be natural on them. We defined the first natural connection Ḋ by an
explicit expression and obtained relations between Ḋ and the Levi–Civita connection ∇
in the main classes of the studied manifolds, as well as determining the relations between
their respective curvature tensors, torsion tensors, Ricci tensors, and scalar curvatures.
Finally, we supported the results with an explicit five-dimensional example.
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Abstract: In this paper, we introduce the notions of nearly Sasakian and nearly Kähler statistical
structures with a non-trivial example. The conditions for a real hypersurface in a nearly Kähler
statistical manifold to admit a nearly Sasakian statistical structure are given. We also study invariant
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conditions under which such a submanifold of a nearly Sasakian statistical manifold is itself a nearly
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1. Introduction

Information geometry, as a well-known theory in geometry, is a gadget used to peruse
spaces including of probability measures. At present, this interdisciplinary field, as a
combination of differential geometry and statistics, plays an impressive role in various
sciences. For instance, a manifold learning theory in a hypothetic space consisting of
models is developed in [1]. The semi-Riemannian metric of this hypothesis space, which
is uniquely derived, relies on the information geometry of the probability distributions.
In [2], Amari also presented the geometrical and statistical ideas used to investigate neural
networks, including invisible units or unobservable variables. To see more applications of
this geometry in other sciences, refer to [3,4].

Suppose that ζ is an open subset of Rn, and χ is a sample space with parameters
ξ = (ξ1, · · · , ξn). A statistical model S is the set of probability density functions defined by

S = {p(y; ξ) :
∫

χ
p(y; ξ)dy = 1, p(y; ξ) > 0, ξ ∈ ζ ⊆ R

n}.

The Fisher information matrix g(ξ) = [gls(ξ)] on S is given as

gls(ξ) :=
∫

χ
∂l�ξ∂s�ξ p(y; ξ)dy = Ep[∂l�ξ ∂s�ξ ], (1)

where Ep[�] is the expectation of �(y) with respect to p(y; ξ), �ξ = �(y; ξ) := logp(y; ξ) and
∂l := ∂

∂ξ l . The space S, together with the information matrices, is a statistical manifold.
In 1920, Fisher was the first to offer (1) as a mathematical purpose of information

(see [5]). It is observed that (S, g) is a Riemannian manifold if all components of g are
converging to real numbers and g is positive-definite. Therefore, g is called a Fisher metric
on S. Using g, an affine connection ∇ with respect to p(y; ξ) is described by

Γls,k = g(∇∂l
∂s, ∂k) := Ep[(∂l∂s�ξ)∂k�ξ ]. (2)
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Nearly Kähler structures on Riemannian manifolds were specified by Gray [6] to
describe a special class of almost Hermitian structures in every even dimension. As an odd-
dimensional peer of nearly Kähler manifolds, nearly Sasakian manifolds were introduced
by Blair, Yano and Showers in [7]. They showed that a normal nearly Sasakian structure is
Sasakian and a hypersurface of a nearly Kähler structure is nearly Sasakian if and only if it
is quasi-umbilical with the (almost) contact form. In particular, S5 properly imbedded in S6

inherits a nearly Sasakian structure which is not Sasakian.
A statistical manifold can be considered as an expanse of a Riemannian manifold such

that the compatibility of the Riemannian metric is developed to a general condition. By
applying this opinion in geometry, we create a convenient nearly Sasakian structure on
statistical structures and define a nearly Sasakian statistical manifold.

The purpose of this paper is to present nearly Sasakian and nearly Kähler structures
on statistical manifolds and show the relation between two geometric notions. To achieve
this goal, the notions and attributes of statistical manifolds are obtained in Section 2. In
Section 3, we describe a nearly Sasakian structure on statistical manifolds and present
some of their properties. In Section 4, we investigate nearly Kähler structures on statistical
manifolds. In this context, the conditions needed for a real hypersurface in a nearly Kähler
statistical manifold to admit a nearly Sasakian statistical structure are provided. Section 5
is devoted to studying (anti-)invariant statistical submanifolds of nearly Sasakian statistical
manifolds. Some conditions under which an invariant submanifold of a nearly Sasakian
statistical manifold is itself a nearly Sasakian statistical manifold are given at the end.

2. Preliminaries

For an n-dimensional manifold N, consider (U, xi), i = 1, . . . , n, as a local chart of the
point x ∈ U. Considering the coordinates (xi) on N, we have the local field ∂

∂xi |p as frames
on TpN.

An affine connection ∇ is called Codazzi connection if the Codazzi equations satisfy:

(∇X1 g)(X2, X3) = (∇X2 g)(X1, X3), (= (∇X3 g)(X1, X2)), (3)

for any X1, X2, X3 ∈ Γ(TN) where

(∇X1 g)(X2, X3) = X1g(X2, X3)− g(∇X1 X2, X3)− g(X2,∇X1 X3). (4)

The triplet (N, g,∇) is also called a statistical manifold if the Codazzi connection ∇
is a statistical connection, i.e., a torsion-free Codazzi connection. Moreover, the affine
connection ∇∗ as a (dual) conjugate connection of ∇ with respect to g is determined by

X1g(X2, X3) = g(∇X1 X2, X3) + g(X2,∇∗
X1

X3). (5)

Considering ∇g as the Levi–Civita connection on N, one can see ∇g = 1
2 (∇+∇∗)

and
∇∗g = −∇g.

Thus, (N, g,∇∗) forms a statistical manifold. In particular, the torsion-free Codazzi
connection ∇ reduces to the Levi–Civita connection ∇g if ∇g = 0.

A (1, 2)-tensor field K on a statistical manifold (N, g,∇) is described by

KX1 X2 = ∇X1 X2 −∇g
X1

X2, (6)

from (2) and (3), we have

K = ∇g −∇∗ =
1
2
(∇−∇∗). (7)
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Hence, it follows that K satisfies

KX1 X2 = KX2 X1, g(KX3 X2, X1) = g(X2, KX3 X1). (8)

The curvature tensor R∇ of a torsion-free linear connection ∇ is described by

R∇(X1, X2) = ∇X1∇X2 −∇X2∇X1 −∇[X1,X2]
, (9)

for any X1, X2 ∈ Γ(TN). On a statistical structure (∇, g), denote the curvature tensor of ∇
as R∇ or R for short, and denote R∇∗

as R∗ in a similar argument. It is obvious that

R(X1, X2) = −R(X2, X1), (10)

R∗(X1, X2) = −R∗(X2, X1). (11)

Moreover, setting R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), we can see that

R(X1, X2, X3, X4) = −R∗(X1, X2, X4, X3), (12)

R(X1, X2)X3 +R(X2, X3)X1 +R(X3, X1)X2 = 0, (13)

R∗(X1, X2)X3 +R∗(X2, X3)X1 +R∗(X3, X1)X2 = 0. (14)

The statistical curvature tensor field S of the statistical structure (∇, g) is given by

S(X1, X2)X3 =
1
2
{R(X1, X2)X3 +R∗(X1, X2)X3}. (15)

using the definition of R, it follows that

S(X1, X2, X3, X4) =− S(X2, X1, X3, X4),

S(X1, X2, X3, X4) =− S(X1, X2, X4, X3),

S(X1, X2, X3, X4) = S(X3, X4, X1, X2),

where S(X1, X2, X3, X4) = g(S(X1, X2)X3, X4).
The Lie derivative with respect to a metric tensor g in a statistical manifold (N, g,∇),

for any X1, X2, v ∈ Γ(TN) is given by

(£vg)(X1, X2) =g(∇g
X1

v, X2) + g(X1,∇g
X2

v)

=g(∇X1 v, X2)− g(KX1 v, X2) + g(X1,∇X2 v)− g(X1, KX2 v).

The vector field v is said to be the Killing vector field or infinitesimal isometry if
£vg = 0. Hence, using the above equation and (8), it follows that

g(∇X1 v, X2) + g(X1,∇X2 v) = 2g(KX1 v, X2). (16)

Similarly, (7) implies

g(∇∗
X1

v, X2) + g(X1,∇∗
X2

v) = −2g(KX1 v, X2).

The curvature tensor Rg of a Riemannian manifold (N, g) admitting a Killing vector
field v satisfies the following

Rg(X1, v)X2 = ∇g
X1
∇g

X2
v −∇g

∇g
X1

X2
v, (17)

for any X1, X2, v ∈ Γ(TN) [8].
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3. Nearly Sasakian Statistical Manifolds

An almost contact manifold is a (2n + 1)-dimensional differentiable manifold N
equipped with an almost contact structure (F , v, u) where F is a tensor field of type (1, 1),
v a vector field and u a 1-form, such that

F 2 = −I + u ⊗ v, Fv = 0, u(v) = 1. (18)

Additionally, N will be called an almost contact metric manifold if it admits a pseudo-
Riemannian metric g with the following condition

g(FX1,FX2) = g(X1, X2)− u(X1)u(X2), ∀X1, X2 ∈ Γ(TN). (19)

Moreover, as in the almost contact case, (19) yields u = g(., v) and g(.,F ) = −g(F , .).

Theorem 1. The statistical curvature tensor field S of a statistical manifold (N, g,∇) with an
almost contact metric structure (F , v, u, g), such that the vector field v is Killing, which satisfies
the equation

2S(X1, v)X2 = ∇X1∇X2 v −∇∇X1 X2 v +∇∗
X1
∇∗

X2
v −∇∗

∇∗
X1

X2
v,

for any X1, X2 ∈ Γ(TN).

Proof. According to (10), (12) and (14), we can write

R∗(X2, X3, X1, v) =−R∗(X3, X1, X2, v)−R∗(X1, X2, X3, v)

=R(X3, X1, v, X2) +R(X1, X2, v, X3)

=−R(X1, X3, v, X2)−R(X2, X1, v, X3).

Applying (9) to the above equation, we find

R∗(X2, X3, X1, v) =g(−∇X1∇X3 v +∇X3∇X1 v +∇[X1,X3]
v, X2) (20)

+ g(−∇X2∇X1 v +∇X1∇X2 v +∇[X2,X1]
v, X3).

Since v is Killing, by differentiating

g(∇X2 v, X3) + g(X2,∇X3 v) = 2g(KX2 v, X3),

with respect to X1, we obtain

2X1g(KX3 X2v) =(∇X1 g)(∇X3 v, X2) + g(∇X1∇X3 v, X2)

+ g(∇X3 v,∇X1 X2) + (∇X1 g)(∇X2 v, X3)

+ g(∇X1∇X2 v, X3) + g(∇X2 v,∇X1 X3).

Setting the last equation in (20), it follows that

R∗(X2, X3, X1, v) = 2g(∇X1∇X2 v, X3)− 2g(∇∇X1 X2 v, X3) + 2(∇X1 g)(∇X3 v, X2)

+ 2g(KX3 v,∇X1 X2)− 2X1g(KX3 X2, v)− 2g(KX1 v, [X3, X2])

+ 2X3g(KX1 X2, v) + 2g(KX2 v, [X1, X3])− 2X2g(KX1 X3, v)

+ 2g(KX3 v,∇X2 X1) +R(X2, X3, v, X1).

As (∇X1 g)(∇X3 v, X2) = −2g(KX1∇X3 v, X2), and using (12) in the above equation,
we can obtain
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R(X2, X3, v, X1) = −g(∇X1∇X2 v, X3) + g(∇∇X1 X2 v, X3) + 2g(KX1 X2,∇X3 v)

− g(KX3 v,∇X1 X2)− g(KX2 v, [X1, X3]) + X1g(KX3 X2, v)

+ g(KX1 v, [X3, X2])− X3g(KX1 X2, v) + X2g(KX1 X3, v)

− g(KX3 v,∇X2 X1).

Similarly, we find

R∗(X2, X3, v, X1) = −g(∇∗
X1
∇∗

X2
v, X3) + g(∇∗

∇∗
X1

X2
v, X3)− 2g(KX1 X2,∇∗

X3
v)

+ g(KX3 v,∇∗
X1

X2) + g(KX2 v, [X1, X3])− X1g(KX3 X2, v)

− g(KX1 v, [X3, X2]) + X3g(KX1 X2, v)− X2g(KX1 X3, v)

+ g(KX3 v,∇∗
X2

X1).

Adding the previous relations and using (7) and (15), we obtain the following asser-
tion.

A nearly Sasakian manifold is an almost contact metric manifold (N,F , v, u, g) if

(∇g
X1
F )X2 + (∇g

X2
F )X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1, (21)

for any X1, X2 ∈ Γ(TN) [7]. In such manifolds, the vector field v is Killing. Moreover, a
tensor field h of type (1, 1) is determined by

∇g
X1

v = FX1 + hX1. (22)

The last equation immediately shows that h is skew-symmetric and

h ◦ F = −F ◦ h, hv = 0, u ◦ h = 0,

and

∇g
vh = ∇g

vF = F ◦ h =
1
3

£vF .

Moreover, Olszak proved the following formulas in [9]:

Rg(FX1, X2, X3, X4)+Rg(X1,FX2, X3, X4)+Rg(X1, X2,FX3, X4)

+Rg(X1, X2, X3,FX4)=0, (23)

Rg(FX1,FX2,FX3,FX4)=Rg(X1, X2, X3, X4)−Rg(v, X2, X3, X4)u(X1)

+Rg(v, X1, X3, X4)u(X2), (24)

Rg(v, X1)X2 = g(X1 − h2X1, X2)v − u(X2)(X1 − h2X1), (25)

Rg(FX1,FX2)v = 0, (26)

for any X1, X2, X3, X4 ∈ Γ(TN).

Lemma 1. For a manifold N with a statistical structure (∇, g), and an almost contact metric
structure (F , v, u, g), the following holds

∇X1FX2 −F∇∗
X1

X2 +∇X2FX1 −F∇∗
X2

X1 = (∇g
X1
F )X2 + (∇g

X2
F )X1

+ KX1FX2 + KX2FX1 + 2FKX1 X2,

for any X1, X2 ∈ Γ(TN).
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Proof. (6) and (7) imply

∇X1FX2−F∇∗
X1

X2+∇X2FX1−F∇∗
X2

X1=∇g
X1
FX2+KX1FX2−F∇g

X1
X2

+FKX1 X2 +∇g
X2
FX1 + KX2FX1

−F∇g
X2

X1 +FKX2 X1

=(∇g
X1
F )X2+(∇g

X2
F )X1+KX1FX2

+KX2FX1+2FKX1 X2.

Hence, the proof is complete.

Definition 1. A nearly Sasakian statistical structure on N is a quintuple (∇, g,F , v, u) consisting
of a statistical structure (∇, g) and a nearly Sasakian structure (g,F , v, u), satisfying

KX1FX2 + KX2FX1 = −2FKX1 X2, (27)

for any X1, X2 ∈ Γ(TN).

A nearly Sasakian statistical manifold is a manifold that admits a nearly Sasakian
statistical structure.

Remark 1. A multiple (N,∇∗, g,F , v, u) is also a nearly Sasakian statistical manifold if
(N,∇, g,F , v, u) is a nearly Sasakian statistical manifold. In this case, from Lemma 1 and
Definition 1, we have

∇∗
X1
FX2 −F∇X1 X2 +∇∗

X2
FX1 −F∇X2 X1 = (∇g

X1
F )X2 + (∇g

X2
F )X1,

for any X1, X2 ∈ Γ(TN).

Theorem 2. If (N,∇, g) is a statistical manifold, and (g,F , v) an almost contact metric structure
on N; then, (∇, g,F , v) is a nearly Sasakian statistical structure on N if and only if the following
formulas hold:

∇X1FX2 −F∇∗
X1

X2 +∇X2FX1 −F∇∗
X2

X1 = u(X1)X2 + u(X2)X1 − 2g(X1, X2)v, (28)

∇∗
X1
FX2 −F∇X1 X2 +∇∗

X2
FX1 −F∇X2 X1 = u(X1)X2 + u(X2)X1 − 2g(X1, X2)v, (29)

for any X1, X2 ∈ Γ(TN).

Proof. Let (N,∇, g,F , v) be a nearly Sasakian statistical manifold. Applying (21), Lemma 1
and Definition 1, we get (28). Additionally, (29) follows from Remark 1. Conversely,
using (7) and subtracting the relations (28) and (29), we can obtain (27).

Example 1. Let us consider the three-dimensional unite sphere S3 in the complex two-dimensional
space C2. As S3 is isomorphic to the Lie group SU(2), set {e1, e2, e3} as the basis of the Lie algebra
su(2) of SU(2) obtained by

e1 =

√
2

2

(
i 0
0 ī

)
, e2 =

√
2

2

(
0 1
−1 0

)
, e3 =

1
2

(
0 i
i 0

)
.

Therefore, the Lie bracket is described by

[e1, e2] = 2e3, [e2, e3] = e1, [e1, e3] = −e2.

The Riemannian metric g on S3 is defined by the following
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g(e1, e2) = g(e1, e3) = g(e2, e3) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Assume that v = e3 and u is the 1-form described by u(X1) = g(X1, v) for any X1 ∈ Γ(TS3).
Considering F as a (1, 1)-tensor field determined by F (e1) = −e2,F (e2) = e1 and F (v) = 0;
the above equations imply that (S3,F , v, u, g) is an almost contact metric manifold. Using Koszul’s
formula, it follows that ∇g

ei ej = 0, i, j = 1, 2, 3, except

∇g
e1 e2 = v = −∇g

e2 e1, ∇g
e1 v = −e2, ∇g

e2 v = e1.

According to the above equations, we can see that

(∇g
eiF )ej + (∇g

ejF )ei = 0 = −2g(ei, ej)v + u(ei)ej + u(ej)ei, i, j = 1, 2, 3,

unless

(∇g
e1F )e1 + (∇g

e1F )e1 = −2v = −2g(e1, e1)v + u(e1)e1 + u(e1)e1,

(∇g
e1F )v + (∇g

vF )e1 = e1 = −2g(e1, v)v + u(e1)v + u(v)e1,

(∇g
e2F )e2 + (∇g

e2F )e2 = −2v = −2g(e2, e2)v + u(e2)e2 + u(e2)e2,

(∇g
e2F )e3 + (∇g

e3F )e2 = e2 = −2g(e2, e3)v + u(e2)e3 + u(e3)e2,

which gives (g,F , v, u), a nearly Sasakian structure on S3. By setting

K(e1, e1) = e1, K(e1, e2) = K(e2, e1) = −e2, K(e2, e2) = −e1,

while the other cases are zero, one see that K satisfies (8). From (6), it follows that

∇e1 e1 = e1, ∇e1 e2 = e3 − e2, ∇e1 e3 = −e2, ∇e2 e1 = −e2 − e3, ∇e2 e2 = −e1, ∇e2 e3 = e1.

Therefore, we can obtain (∇ei g)(ej, ek) = 0, i, j, k = 1, 2, 3, except

(∇e1 g)(e1, e1) = −2, (∇e1 g)(e2, e2) = (∇e2 g)(e1, e2) = (∇e2 g)(e2, e1) = 2.

Hence, (∇, g) is a statistical structure on S3. Moreover, the equations

Ke1F (e1) + Ke1F (e1) = 2e2 = −2FKe1 e1,

Ke1F (e2) + Ke2F (e1) = 2e1 = −2FKe1 e2,

Ke2F (e2) + Ke2F (e2) = −2e2 = −2FKe2 e2,

hold. Therefore, (S3,∇, g,F , v, u) is a nearly Sasakian statistical manifold.

Proposition 1. For a nearly Sasakian statistical manifold (N,∇, g,F , v, u), the following condi-
tions hold:

(i) FKvv = 0,

(ii) FKFX1 v = 0,

(iii) KvX1 = u(X1)Kvv,

(iv) ∇X1 v = ∇g
X1

v + u(X1)Kvv,

(v) ∇∗
X1

v = ∇g
X1

v − u(X1)Kvv,

for any X1 ∈ Γ(TN).

90



Mathematics 2023, 11, 2644

Proof. Setting X1 = X2 = v in (27), it follows (i). For X2 = v in (27), we have

KFX1 v = −2FKX1 v. (30)

Putting X1 = FX1 in the last equation and using (18), we can obtain

KX1 v = u(X1)Kvv + 2FKFX1 v. (31)

Applying F yields

FKX1 v = −2KFX1 v + 2u(KFX1 v)v.

(30) and the last equation imply that

3KFX1 v = 4u(KFX1 v)v,

which gives us FKFX1 v = 0, so (ii) holds. This and (31) yield (iii). From (6), (7) and (iii),
we have (iv) and (v).

Corollary 1. A nearly Sasakian statistical manifold satisfies the following

u(X2)KX1 Kvv = u(X1)KX2 Kvv = u(KX1 X2)Kvv,

for any X1, X2 ∈ Γ(TN).

Proof. (6) and (30) imply
−F2(∇X1 v −∇g

X1
v) = 0,

which gives us
∇X1 v = ∇g

X1
v + g(∇X1 v, v)v.

Similarly,
∇∗

X1
v = ∇g

X1
v + g(∇∗

X1
v, v)v.

Then, subtracting the above two equations yields

KX1 v = g(∇X1 v, v)v,

which gives us Kvv = g(∇vv, v)v. Thus, we obtain

u(X2)KX1 Kvv = u(X2)g(∇vv, v)KX1 v = u(X1)u(X2)g(∇vv, v)Kvv = u(X1)KX2 Kvv.

Moreover, (iii) implies

u(KX1 X2)Kvv = g(KX1 X2, v)Kvv = g(KX1 v, X2)Kvv = u(X1)u(X2)g(∇vv, v)Kvv.

Therefore, the assertion follows.

Corollary 2. In a nearly Sasakian statistical manifold N, let X1 ∈ Γ(TN) and X1⊥v. Then,

1. KX1 v = 0,
2. ∇X1 v = ∇∗

X1
v = ∇g

X1
v.

Proposition 2. On a nearly Sasakian statistical manifold, the following holds

g(∇X1 v, X2) + g(∇X2 v, X1) = 2u(X1)u(X2)g(Kvv, v),

for any X1, X2 ∈ Γ(TN).
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Proof. Since v is a Killing vector field in a nearly Sasakian manifold (see [7]); hence, we have

g(∇g
X1

v, X2) + g(∇g
X2

v, X1) = 0.

Setting (6) in the above equation, we have the following assertion.

Lemma 2. Let (N,∇, g,F , v) be a nearly Sasakian statistical manifold. Then, the statistical
curvature tensor field satisfies

S(v, X1)X2 = g(X1 − h2X1, X2)v − u(X2)(X1 − h2X1),

for any X1, X2 ∈ Γ(TN).

Proof. According to (6), (7) and Theorem 1, we can write

∇X1∇X2 v −∇∇X1 X2 v = ∇X1∇
g
X2

v +∇X1(u(X2)Kvv)−∇g
∇X1 X2

v − u(∇X1 X2)Kvv

= KX1∇
g
X2

v +∇g
X1
∇g

X2
v + (∇X1 u)X2Kvv

+ u(X2)(KX1 Kvv +∇g
X1

Kvv)−∇g
∇g

X1
X2

v −∇g
KX1 X2

v.

Applying (17) in the above equation, we have

∇X1∇X2 v −∇∇X1 X2 v = Rg(X1, v)X2 + KX1∇
g
X2

v + (∇X1 u)X2Kvv

+ u(X2)(KX1 Kvv +∇g
X1

Kvv)−∇g
KX1 X2

v.

We can similarly conclude that

∇∗
X1
∇∗

X2
v −∇∗

∇∗
X1

X2
v = Rg(X1, v)X2 − KX1∇

g
X2

v − (∇∗
X1

u)X2Kvv

+ u(X2)(KX1 Kvv −∇g
X1

Kvv) +∇g
KX1 X2

v.

The above two equations imply

∇X1∇X2 v −∇∇X1 X2 v +∇∗
X1
∇∗

X2
v −∇∗

∇∗
X1

X2
v

= 2Rg(X1, v)X2 − 2u(KX1 X2)Kvv + 2u(X2)KX1 Kvv,

from this and Theorem 1, we have

S(X1, v)X2 = Rg(X1, v)X2 − u(KX1 X2)Kvv + u(X2)KX1 Kvv. (32)

Thus, the assertion follows from (25), (32) and Corollary 1.

Corollary 3. On a nearly Sasakian statistical manifold N, the following holds

S(X1, X2)v = g(−X1 + h2X1, X2)v + u(X2)(X1 − h2X1) (33)

+ g(X2 − h2X2, X1)v − u(X1)(X2 − h2X2),

S(FX1,FX2)v=0, (34)

for any X1, X2 ∈ Γ(TN).

Proof. We have

S(X1, X2)v = −S(v, X1)X2 − S(X2, v)X1.
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Applying Lemma 2 in the last equation, it follows that (33). To prove (34), using
X1 = FX1 and X2 = FX2 in the above equation and using the skew-symmetric property
of h, we can obtain

S(FX1,FX2)v =g(−FX1 + h2FX1,FX2)v + g(FX2 − h2FX2,FX1)v = 0.

Proposition 3. The statistical curvature tensor field S of a nearly Sasakian statistical manifold N
satisfies the following

S(FX1, X2, X3, X4)+S(X1,FX2, X3, X4) + S(X1, X2,FX3, X4)

+ S(X1, X2, X3,FX4) = 0, (35)

S(FX1,FX2,FX3,FX4) = S(X1, X2, X3, X4) + u(X2)Rg(v, X1, X3, X4)

− u(X1)Rg(v, X2, X3, X4), (36)

for any X1, X2, X3, X4 ∈ Γ(TN).

Proof. Applying (7) in (15), it follows that

S(X1, X2)X3 = Rg(X1, X2)X3 + [KX1 , KX2 ]X3. (37)

Thus, using (23) and (37) , we can write

S(FX1, X2, X3, X4)+S(X1,FX2, X3, X4) + S(X1, X2,FX3, X4)

+ S(X1, X2, X3,FX4)

= g(KFX1 KX2 X3 − KX2 KFX1 X3 + KX1 KFX2 X3

− KFX2 KX1 X3 + KX1 KX2FX3 − KX2 KX1FX3, X4)

+ g(KX1 KX2 X3 − KX2 KX1 X3,FX4). (38)

On the other hand, (27) implies

g(KX1FX2 + KX2FX1, X3) = 2g(KX1 X2,FX3),

which gives us

g(KFX1 KX2 X3 − KX2 KFX1 X3 + KX1 KFX2 X3 − KFX2 KX1 X3 + KX1 KX2FX3

− KX2 KX1FX3, X4) + g(KX1 KX2 X3 − KX2 KX1 X3,FX4)

= 2g(KX2 X3,FKX1 X4)− 2g(KX1 X3,FKX2 X4) + 2g(FKX2 X3, KX1 X4)

− 2g(FKX1 X3, KX2 X4)

= 0.

Using the above equation in (38), we obtain (35). Considering X1 = FX1 in (35) and
using (18), it follows that

−S(X1, X2, X3, X4)+u(X1)S(v, X2, X3, X4)+S(FX1,FX2, X3, X4)

+S(FX1, X2,FX3, X4) + S(FX1, X2, X3,FX4)= 0. (39)

Similarly, setting X2 = FX2, X3 = FX3 and X4 = FX4, respectively, we have

S(FX1,FX2,X3, X4)− S(X1, X2, X3, X4)+u(X2)S(X1, v, X3, X4)

+S(X1,FX2,FX3, X4)+S(X1,FX2, X3,FX4)= 0, (40)
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S(FX1, X2,FX3, X4)+ S(X1,FX2,FX3, X4)− S(X1, X2, X3, X4)

+ u(X3)S(X1, X2, v, X4)+ S(X1, X2,FX3,FX4)= 0, (41)

and

S(FX1, X2,X3,FX4)+ S(X1,FX2, X3,FX4)+ S(X1, X2,FX3,FX4)

− S(X1, X2, X3, X4)+ u(X4)S(X1, X2, X3, v)= 0. (42)

By adding (39) and (40), and subtracting the expression obtained from (41) and (42),
we obtain

2S(FX1,FX2, X3, X4)− 2S(X1, X2,FX3,FX4) + u(X1)S(v, X2, X3, X4)

+ u(X2)S(X1, v, X3, X4)− u(X3)S(X1, X2, v, X4)− u(X4)S(X1, X2, X3, v) = 0.

Replacing X1 and X2 by FX1 and FX2, we can rewrite the last equation as

2S(F 2X1,F 2X2, X3, X4)− 2S(FX1,FX2,FX3,FX4)

− u(X3)S(FX1,FX2, v, X4)− u(X4)S(FX1,FX2, X3, v) = 0.

Applying (34) in the above equation, we obtain

S(F 2X1,F 2X2, X3, X4) = S(FX1,FX2,FX3,FX4).

On the other hand, using (18), it can be seen that

S(F 2X1,F 2X2, X3, X4) = S(X1, X2, X3, X4)− u(X2)S(X1, v, X3, X4)

− u(X1)S(v, X2, X3, X4).

According to Corollary 1 and (32), we have

Rg(v, X1, X3, X4) = Rg(X3, X4, v, X1) = S(X3, X4, v, X1) = S(v, X1, X3, X4).

The above three equations imply (36).

Corollary 4. The tensor field K in a nearly Sasakian statistical manifold, N, satisfies the relation

F [KFX2 , KFX1 ]F = [KX1 , KX2 ],

for any X1, X2 ∈ Γ(TN).

Proof. Using (24) and (37), we obtain

S(FX1,FX2,FX3,FX4)− S(X1, X2, X3, X4)− u(X2)Rg(v, X1, X3, X4)

+ u(X1)Rg(v, X2, X3, X4)

= g(KFX1 KFX2FX3 − KFX2 KFX1FX3,FX4)− g(KX1 KX2 X3 − KX2 KX1 X3, X4)

= g(F [KFX2 , KFX1 ]FX3 − [KX1 , KX2 ]X3, X4).

Comparing this with relation (36) yields the following assertion.

A statistical manifold is called conjugate symmetric if the curvature tensors of the
connections ∇ and ∇∗, are equal, i.e.,

R(X1, X2)X3 = R∗(X1, X2)X3,

for all X1, X2, X3 ∈ Γ(TN).
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Corollary 5. Let (N,∇, g,F , v) be a conjugate symmetric nearly Sasakian statistical manifold.
Then, the following holds

R(FX1,FX2,FX3,FX4)−R(X1, X2, X3, X4)

= u(X2)R(X3, X4, v, X1)− u(X1)R(X3, X4, v, X2),

R(X1, X2)v = Rg(X1, X2)v,

R(FX1,FX2)v = 0,

for any X1, X2, X3, X4 ∈ Γ(TN).

4. Hypersurfaces in Nearly Kähler Statistical Manifolds

Let Ñ be a smooth manifold. A pair (g̃, J) is said to be an almost Hermitian structure
on Ñ if

J2 = −Id, g̃(JX1, JX2) = g̃(X1, X2),

for any X1, X2 ∈ Γ(TÑ). Let ∇̃g denote the Riemannian connection of g̃. Then, J is Killing
if and only if

(∇̃g
X1

J)X2 + (∇̃g
X2

J)X1 = 0.

In this case, the pair (g̃, J̃) is called a nearly Kähler structure and if J is integrable, the
structure is Kählerian [7].

Lemma 3. Let (∇̃, g̃) be a statistical structure, and (g̃, J) a nearly Kähler structure on Ñ. We
have the following formula:

∇̃X1 JX2− J∇̃∗
X1

X2 + ∇̃X2 JX1 − J∇̃∗
X2

X1= K̃X1 JX2 + K̃X2 JX1+ 2JK̃X1 X2,

for any X1, X2 ∈ Γ(TÑ), where K̃ is given as (8) for (∇̃, g̃).

Remark 2. A multiple (Ñ, ∇̃∗, g̃, J) is also a nearly Kähler statistical manifold if (Ñ, ∇̃, g̃, J) is a
nearly Kähler statistical manifold. In this case, from the above lemma, we have

∇̃∗
X1

JX2− J∇̃X1 X2 + ∇̃∗
X2

JX1 − J∇̃X2 X1= −(K̃X1 JX2 + K̃X2 JX1+ 2JK̃X1 X2),

for any X1, X2 ∈ Γ(TÑ).

Definition 2. A nearly Kähler statistical structure on Ñ is a triple (∇̃, g̃, J), where (∇̃, g̃) is a
statistical structure, (g̃, J) is a nearly Kähler structure on Ñ and the following equality is satisfied

K̃X1 JX2 + K̃X2 JX1 = −2JK̃X1 X2,

for any X1, X2 ∈ Γ(TÑ).

Let N be a hypersurface of a statistical manifold (Ñ, g̃, ∇̃, ∇̃∗). Considering n and
g as a unit normal vector field and the induced metric on N, respectively, the following
relations hold

∇̃X1 X2 = ∇X1 X2 + h(X1, X2)n, ∇̃X1 n = −AX1 + τ(X1)n, (43)

∇̃∗
X1

X2 = ∇∗
X1

X2 + h∗(X1, X2)n, ∇̃∗
X1

n = −A∗X1 + τ∗(X1)n, (44)
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for any X1, X2 ∈ Γ(TN). It follows that

g(AX1, X2) = h∗(X1, X2), g(A∗X1, X2) = h(X1, X2), τ(X1) + τ∗(X1) = 0. (45)

Furthermore, the second fundamental form hg is related to the Levi–Civita connections
∇̃g and ∇g by

∇̃g
X1

X2 = ∇g
X1

X2 + hg(X1, X2)n, ∇̃g
X1

n = −AgX1,

where g(AgX1, X2) = hg(X1, X2).

Remark 3. Let (Ñ, g̃, J) be a nearly Kähler manifold, and N be a hypersurface with a unit normal
vector field n. Let g be the induced metric on N, and consider v, u and F as a vector field, a 1-form
and a tensor of type (1, 1) on N, respectively, such that

v =− Jn, (46)

JX1 =FX1 + u(X1)n, (47)

for any X1 ∈ Γ(TN). Then, (g,F , v) is an almost contact metric structure on N [7].

Lemma 4. Let (Ñ, ∇̃, g̃, J) be a nearly Kähler statistical manifold. If (N, g,F , v) is a hypersurface
with the induced almost contact metric structure as in Remark 2, and (∇, g) is the induced statistical
structure on N as in 42, then the following holds

(i) FAv = 0,

(ii) g(AX1, v) = u(Av)u(X1),

(iii) AX1 = ∇vFX1 −F∇∗
vX1 −F∇∗

X1
v + u(X1)Av,

(iv) τ(X1) = g(∇∗
X1

v, v)− g(X1,∇vv)− u(X1)τ(v),

(v) ∇X1FX2 −F∇∗
X1

X2 +∇X2FX1 −F∇∗
X2

X1 = −2g(AX1, X2)v + u(X2)AX1

+ u(X1)AX2,

(vi) g(∇X1 v, X2) + g(∇X2 v, X1) = g(FA∗X1, X2) + g(FA∗X2, X1)− u(X1)τ(X2)

− u(X2)τ(X1),

for any X1, X2 ∈ Γ(TN). For the induced statistical structure (∇∗, g) on N, we have

(i)∗ FA∗v = 0,

(ii)∗ g(A∗X1, v) = u(A∗v)u(X1),

(iii)∗ A∗X1 = ∇∗
vFX1 −F∇vX1 −F∇X1 v + u(X1)A∗v,

(iv)∗ τ∗(X1) = g(∇X1 v, v)− g(X1,∇∗
vv)− u(X1)τ

∗(v),

(v)∗ ∇∗
X1
FX2 −F∇X1 X2 +∇∗

X2
FX1 −F∇X2 X1 = −2g(A∗X1, X2)v + u(X2)A∗X1

+ u(X1)A∗X2,

(vi)∗ g(∇∗
X1

v, X2) + g(∇∗
X2

v, X1) = g(FAX1, X2) + g(FAX2, X1)− u(X1)τ
∗(X2)

− u(X2)τ
∗(X1).

Proof. According to Definition 2 and (46), we can write

0 =∇̃X1 Jv − ∇̃X1 n = J∇̃∗
X1

v − ∇̃v JX1 + J∇̃∗
vX1 − ∇̃X1 n.

Applying (43), (44) and (47) in the above equation, we have
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0 = J(∇∗
X1

v + g(AX1, v)n)− ∇̃v(FX1 + u(X1)n) + J(∇∗
vX1 + g(Av, X1)n)

+ AX1 − τ(X1)n

= F (∇∗
X1

v)− g(AX1, v)v −∇vF (X1) + u(X1)Av +F (∇∗
vX1)− g(Av, X1)v + AX1

+ {u(∇∗
X1

v)− g(A∗v,FX1)− v(u(X1))− u(X1)τ(v) + u(∇∗
vX1)− τ(X1)}n. (48)

The vanishing tangential part yields

AX1 = ∇vFX1 −F∇∗
vX1 −F∇∗

X1
v + 2g(AX1, v)v − u(X1)Av. (49)

Setting X1 = v in the above equation, it follows that

Av = u(Av)v, (50)

hence, FAv = 0 and implies (i), from which (ii) follows because 0 = g(FAv,FX1) =
g(Av, X1)− u(Av)u(X1). From (49) and (50) we have (iii). Vanishing vertical part in (48),
and using (i)∗ and

v(u(X1)) = g(∇∗
vX1, v) + g(X1,∇vv),

we obtain (iv). As

∇̃X1 JX2 − J∇̃∗
X1

X2 + ∇̃X2 JX1 − J∇̃∗
X2

X1 = 0;

thus, (43), (44), (46) and (47) imply

∇X1FX2 − u(X2)AX1 −F (∇∗
X1

X2) + g(AX1, X2)v +∇X2FX1 − u(X1)AX2 −F (∇∗
X2

X1)

+ g(AX2, X1)v + {g(A∗X1,FX2) + g(∇X1 v, X2) + u(X2)τ(X1) + g(A∗X2,FX1)

+ g(X1,∇X2 v) + u(X1)τ(X2)}n = 0.

From the above equation, (v) and (vi) follow. In a similar fashion, we have (i)∗–
(vi)∗.

Theorem 3. Let (Ñ, ∇̃, g̃, J) be a nearly Kähler statistical manifold and (N,∇, g,F , v) be an
almost contact metric statistical hypersurface in Ñ given by (43), (44), (46) and (47). Then,
(N,∇, g,F , v) is a nearly Sasakian statistical manifold if and only if

AX1 = X1 + u(X1)(Av − v), (51)

A∗X1 = X1 + u(X1)(A∗v − v), (52)

for any X1 ∈ Γ(TN).

Proof. Let (∇, g,F , v) be a nearly Sasakian statistical structure on N. According to
Definition 1, we have

∇X1FX2 −F∇∗
X1

X2 +∇X2FX1 −F∇∗
X2

X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1,

which gives us

∇vFX1 −F∇∗
X1

v −F∇∗
vX1 = −u(X1)v + X1.

Placing the last equation in part (iii) of Lemma 4, we obtain (51). Similarly, we can
prove (52). Conversely, let the shape operators satisfy (51). Part (v) of Lemma 4 yields
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∇X1FX2 −F∇∗
X1

X2 +∇X2FX1 −F∇∗
X2

X1 = −2g(X1 + u(X1)(Av − v), X2)v

+ u(X2)(X1 + u(X1)(Av − v))

+ u(X1)(X2 + u(X2)(Av − v))

= −2g(X1, X2)v + u(X1)X2 + u(X2)X1.

In the same way, (v)∗ and (52) imply

∇∗
X1
FX2 −F∇X1 X2 +∇∗

X2
FX1 −F∇X2 X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1.

According to the above equations and Theorem 2, the proof is completed.

5. Submanifolds of Nearly Sasakian Statistical Manifolds

Let N be a n-dimensional submanifold of an almost contact metric statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ, ũ). We denote the induced metric on N by g. For all U1 ∈ Γ(TN) and
ζ ∈ Γ(T⊥N), we put F̃U1 = FU1 + FU1 and F̃ζ = Fζ + Fζ, where FU1,Fζ ∈ Γ(TN)
and FU1,Fζ ∈ Γ(T⊥N). If F̃ (TpN) ⊂ TpN and F̃ (TpN) ⊂ T⊥

p N for any p ∈ N, then N is
called F̃ -invariant and F̃ -anti-invariant, respectively.

Proposition 4 ([10]). Any F̃ -invariant submanifold N embedded in an almost contact metric
manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) in such a way that the vector field ṽ is always tangent to N, induces an
almost contact metric structure (g,F , v, u).

For any U1, U2 ∈ Γ(TN), the corresponding Gauss formulas are given by

∇̃U1U2 = ∇U1U2 + h(U1, U2), ∇̃∗
U1

U2 = ∇∗
U1

U2 + h∗(U1, U2). (53)

It is proved that (∇, g) and (∇∗, g) are statistical structures on N, and h and h∗ are
symmetric and bilinear. The mean curvature vector field with respect to ∇̃ is described by

H =
1
m

trace(h).

The submanifold N is a ∇̃ totally umbilical submanifold if h(U1, U2) = g(U1, U2)H
for all U1, U2 ∈ Γ(TN). The submanifold N is called ∇̃-autoparallel if h(U1, U2) = 0
for any U1, U2 ∈ Γ(TN). The submanifold N is said to be dual-autoparallel if it is both
∇̃- and ∇̃∗-autoparallel, i.e., h(U1, U2) = h∗(U1, U2) = 0 for any U1, U2 ∈ Γ(TN). If
hg(U1, U2) = 0 for any U1, U2 ∈ Γ(TN), the submanifold N is called totally geodesic.
Moreover, the submanifold N is called ∇̃-minimal (∇̃∗-minimal) if H = 0 (H∗ = 0).

For any U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N), the Weingarten formulas are

∇̃U1 ζ = −AζU1 + DU1 ζ, ∇̃∗
X1

ζ = −A∗
ζ U1 + D∗

U1
ζ, (54)

where D and D∗ are the normal connections on Γ(T⊥N) and the tensor fields h, h∗, A and
A∗, satisfy

g(AζU1, U2) = g(h∗(U1, U2), ζ), g(A∗
ζ U1, U2) = g(h(U1, U2), ζ).

The Levi–Civita connections ∇g and ∇̃g are associated with the second fundamental
form hg by

∇̃g
U1

U2 = ∇g
U1

U2 + hg(U1, U2), ∇̃g
U1

ζ = −Ag
ζ U1 + Dg

U1
ζ, (55)

where g(Ag
ζ U1, U2) = g(hg(U1, U2), ζ).
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On a statistical submanifold (N,∇, g) of a statistical manifold (Ñ, ∇̃, g), for any tan-
gent vector fields U1, U2 ∈ Γ(TN), we consider the difference tensor K on N as

2KU1U2 = ∇U1U2 −∇∗
U1

U2. (56)

From (7), (53) and the above equation, it follows that

2K̃U1U2 = 2KU1U2 + h(U1, U2)− h∗(U1, U2). (57)

More precisely, for the tangential part and the normal part, we have

(K̃U1U2)
� = KU1U2, (K̃U1U2)

⊥ =
1
2
(h(U1, U2)− h∗(U1, U2)),

respectively. Similarly, for U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N) we have

K̃U1 ζ = (K̃U1 ζ)� + (K̃U1 ζ)⊥,

where
(K̃U1 ζ)� =

1
2
(A∗

ζ U1 − AζU1), (K̃U1 ζ)⊥ =
1
2
(DU1 ζ − D∗

U1
ζ).

Now, suppose that (N, g) is a submanifold of a nearly Sasakian statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ). As a tensor field, h̃ of type (1, 1) on Ñ is described by ∇̃gṽ = F̃ + h̃; we can
set h̃U1 = hU1 + hU1 and h̃ζ = hζ + hζ where hU1, hζ ∈ Γ(TN) and hU1, hζ ∈ Γ(T⊥N) for
any U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N). Furthermore, if h̃(TpN) ⊂ TpN and h̃(TpN) ⊂ T⊥

p N,
then N is called h̃-invariant and h̃-anti-invariant, respectively.

Proposition 5. Let N be a submanifold of a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ),
where the vector field ṽ is normal to N. Then,

g(F̃U1, U2) = g(U1, h̃U2), ∀U1, U2 ∈ Γ(TN). (58)

Moreover,
(i) N is a h̃-anti-invariant submanifold if and only if N is a F̃ -anti-invariant submanifold.
(ii) If h̃ = 0, then N is a F̃ -anti-invariant submanifold.
(iii) If N is a h̃-invariant and F̃ -invariant submanifold, then hU1 = −FU1, for any U1 ∈ Γ(TN).

Proof. Using (22) and Proposition 1 for any U1, U2 ∈ Γ(TN), we can write

g(F̃U1 + h̃U1, U2) = g(∇̃g
U1

ṽ, U2) = g(∇̃U1 ṽ, U2).

(54) and the above equation imply

g(F̃U1 + h̃U1, U2) = g(−AṽU1 + DU1 ṽ, U2) = −g(AṽU1, U2) = −g(ṽ, h∗(U1, U2)).

As h∗ is symmetric and the operators h̃ and g are skew-symmetric, the above
equation yields

g(F̃U1 + h̃U1, U2) = g(F̃U2 + h̃U2, U1) = −g(F̃U1 + h̃U1, U2).

Hence, g(F̃U1 + h̃U1, U2) = 0, which gives (58). If N is a h̃-anti-invariant submanifold,
we have g(U1, h̃U2) = 0. Thus, (i) follows from (58). Similarly, we have (ii) and (iii).

Lemma 5. Let (N,∇, g) be a F̃ -anti-invariant statistical submanifold of a nearly Sasakian statis-
tical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) such that the structure (F , v, u) on N is given by Proposition 4.
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(i) If ṽ is tangent to N, then

∇U1 v = u(U1)Kvv = −∇∗
U1

v, h(U1, v) = FU1 + hU1 = h∗(U1, v), ∀U1 ∈ Γ(TN).

(ii) If ṽ is normal to N, then

Aṽ = 0 = A∗
ṽ , DU1 ṽ = FU1 + hU1 = D∗

U1
ṽ, ∀U1 ∈ Γ(TN).

Proof. Applying (22), (53) and Proposition 1, and using K̃vv = Kvv = g(∇vv, v)v, we have

FU1 + hU1 + u(U1)Kvv = ∇̃g
U1

v + u(U1)Kvv = ∇̃U1 v = ∇U1 v + h(U1, v).

Thus, the normal part is h(U1, v) = FU1 + hU1 and the tangential part is ∇U1 v =
u(U1)Kvv. Similarly, we can obtain their dual parts. Hence, (i) holds. If ṽ is normal to N,
from (22) and (54), it follows that

FU1 + hU1 = ∇̃g
U1

ṽ = ∇̃U1 ṽ = −AṽU1 + DU1 ṽ.

Considering the normal and tangential components of the last equation, we obtain (ii).
Since ∇̃U1 v = ∇̃g

U1
v = ∇̃∗

U1
v, we have the dual part of the assertion.

Lemma 6. Let (N,∇, g) be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly
Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ). Then, for any U1 ∈ Γ(TN), if
(i) ṽ is tangent to N, then

∇U1 v = FU1 + hU1 + u(U1)Kvv, ∇∗
U1

v = FU1 + hU1 − u(U1)Kvv,

h(U1, v) = 0 = h∗(U1, v).

(ii) ṽ is normal to N, then

AṽU1 = −FU1 − hU1 = A∗
ṽU1, Dṽ = 0 = D∗ṽ.

Proof. The relations are proved using the method applied to the proof of Lemma 5.

Theorem 4. On a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ), if N is a F̃ -anti-invariant
∇̃ totally umbilical statistical submanifold of Ñ and ṽ is tangent to N, then N is ∇̃-minimal in Ñ.

Proof. According to Lemma 5, h(v, v) = 0. As N is a totally umbilical submanifold,
it follows that

0 = h(v, v) = g(v, v)H = H,

which gives us the assertion.

Theorem 5. Let N be a F̃ -invariant submanifold of a nearly Sasakian statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ, ũ), where the vector field ṽ is tangent to N. If

hg(U1,FU2) =F̃hg(U1, U2), (59)

h(U1,FU2)− h∗(U1,FU2) =F̃h∗(U1, U2)− F̃h(U1, U2), (60)

for all U1, U2 ∈ Γ(TN), then (∇, g,F , v, u) forms a nearly Sasakian statistical structure on N.

Proof. According to Proposition 4, N induces the almost contact metric structure (g,F , v, u).
Furthermore, (53) shows that (∇, g) is a statistical structure on N. By applying (55), we
can write
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∇̃g
U1
F̃U2 =∇g

U1
FU2 + hg(U1,FU2)

=(∇g
U1
F )U2 +F∇g

U1
U2 + hg(U1,FU2).

As hg is symmetric, from (59), we have hg(FU1, U2) = hg(U1,FU2). Hence, the
above equation implies

∇̃g
U1
F̃U2 + ∇̃g

U2
F̃U1 =(∇g

U1
F )U2 + (∇g

U2
F )U1 +F∇g

U1
U2 +F∇g

U2
U1 + 2hg(U1,FU2).

On the other hand, since Ñ has a nearly Sasakian structure, we have

∇̃g
U1
F̃U2 + ∇̃g

U2
F̃U1

= (∇̃g
U1
F̃ )U2 + (∇̃g

U2
F̃ )U1 + F̃ (∇̃g

U1
U2 + ∇̃g

U2
U1)

= (∇̃g
U1
F̃ )U2 + (∇̃g

U2
F̃ )U1 + F̃ (∇g

U1
U2 +∇g

U2
U1 + 2hg(U1, U2))

= −2g(U1, U2)v + u(U1)U2 + u(U2)U1 + F̃ (∇g
U1

U2 +∇g
U2

U + 2hg(U, U2))

= −2g(U1, U2)v + u(U1)U2 + u(U2)U1 +F∇g
U1

U2 +F∇g
U2

U1 + 2F̃hg(U1, U2).

(59) and the above two equations yield

(∇g
U1
F )U2 + (∇g

U2
F )U1 =− 2g(U1, U2)v + u(U1)U2 + u(U2)U1.

Thus, (N,∇g, g,F , v, u) is a nearly Sasakian manifold. For the nearly Sasakian statisti-
cal manifold Ñ, using (27), we have

K̃U1FU2 + K̃U2FU1 = −2F̃ K̃U1U2,

for any U1, U2 ∈ Γ(TN). Applying (57) in the last equation, it follows

KU1FU2 +
1
2
(h(U1,FU2)− h∗(U1,FU2)) + KU2FU1 +

1
2
(h(U2,FU1)− h∗(U2,FU1))

= −2FKU1U2 + F̃h∗(U1, U2)− F̃h(U1, U2).

From the above equation and (60), we obtain

KU1FU2 + KU2FU1 = −2FKU1U2.

Therefore, (N,∇g, g,F , v, u) is a nearly Sasakian statistical manifold. Hence, the proof
is completed.

Proposition 6. Let N be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly Sasakian
statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ), such that ṽ is tangent to N. Then,

(∇̃U1 h)(U2, v) = (∇̃∗
U1

h)(U2, v) = (∇̃g
U1

h)(U2, v) = −h(U2,FU1 + hU1),

and

(∇̃U1 h∗)(U2, v) = (∇̃∗
U1

h∗)(U2, v) = (∇̃g
U1

h∗)(U2, v) = −h∗(U2,FU1 + hU1),

for any U1, U2 ∈ Γ(TN).

Proof. We have

(∇̃U1 h)(U2, v) = ∇̃U1 h(U2, v)− h(∇̃U1U2, v)− h(U2, ∇̃U1 v),
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for any U1, U2 ∈ Γ(TN). According to Proposition 1, part (i) of Lemma 6 and the above
equation, we have

(∇̃U1 h)(U2, v) = −h(U2, ∇̃U1 v) = −h(U2,FU1 + hU1 + u(U1)Kvv) = −h(U2,FU1 + hU1).

Similarly, other parts are obtained.

Corollary 6. Let N be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly Sasakian
statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ). If ṽ is tangent to N, then the following conditions are
equivalent
(i) h and h∗ are parallel with respect to the connection ∇̃;
(ii) N is dual-autoparallel.
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Abstract: The notion of a golden structure was introduced 15 years ago by the present authors and
has been a constant interest of several geometers. Now, we propose a new generalization apart from
that called the metallic structure, which is also considered by the authors. By adding a compatible
Riemannian metric, we focus on the study of the structure induced on submanifolds in this setting
and its properties. Also, to illustrate our results, some suitable examples of this type of manifold
are presented.

Keywords: almost product structure; almost complex structure; Φα,p structure; Riemannian manifold;
submanifold

MSC: 53B20; 53B25; 53C42; 53C15

1. Introduction

The real metallic number, denoted by σp,q := p+
√

p2+4q
2 , is the positive solution of the

equation x2 − px − q = 0, where p and q are positive integers and p2 + 4q > 0 [1]. These
σp,q numbers are members of the metallic means family, defined by V.W. de Spinadel in [2,3],

which appear as a natural generalization of the golden number φ = 1+
√

5
2 . Moreover, A.P.

Stakhov gave some new generalizations of the golden section and Fibonacci numbers and
developed a scientific principle called the Generalized Principle of the Golden Section
in [4,5].

The golden and metallic structures are particular cases of polynomial structures on
a manifold which were generally defined by S. I. Goldberg, K. Yano and N. C. Petridis
in [6,7].

If M is a smooth manifold, then an endomorphism J of the tangent bundle TM is
called a metallic structure on M if it satisfies J2 = pJ + qId, where Id stands for the identity
(or Kronecker) endomorphism and p and q are positive integers [1]. Moreover, the pair
(M, J) is called an almost metallic manifold. In particular, for p = q = 1, the metallic structure
J becomes a golden structure as defined in [8].

The complex version of the above numbers (namely the complex metallic numbers),

σc
p,q =

p+
√

p2−6q
2 , appears as a solution to the equation x2 − px + 3

2 q = 0, where p and q
are now real numbers satisfying the conditions q ≥ 0 and p2 < 6q. Moreover, an almost
complex metallic structure is defined as an endomorphism JM which satisfies the relation
J2
M − pJM + 3

2 qId = 0 [9]. For p = q = 1, the almost complex metallic structure becomes a
complex golden structure.

F. Etayo et al. defined in [10] the α-metallic numbers of the form p+
√

α(p2+4q)
2 , where

p and q are positive integers which satisfy p2 + 4q > 0 and α ∈ {1,−1}. Moreover,
they introduced the α-metallic metric manifolds using the α-metallic structure, defined by
the identity

Mathematics 2023, 11, 3046. https://doi.org/10.3390/math11143046 https://www.mdpi.com/journal/mathematics103
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ϕ2 = pϕ +
p2(α − 1) + 4qα

4
Id. (1)

Some similar manifolds, such as holomorphic golden Norden–Hessian manifolds [11],
almost golden Riemannian manifolds [12,13] and α-golden metric manifolds [14], have
been studied.

The geometry of submanifolds in Riemannian manifolds was widely studied by many
geometers. The properties of the submanifolds in golden Riemannian manifolds were
studied in [15]. By generalizing the geometry of the golden Riemannian manifods, we
presented in [1,16] the properties of the submanifolds in metallic Riemannian manifolds.
The properties of the submanifolds in almost complex metallic manifolds were studied
in [17].

The aim of the present paper is to propose a new generalization of the golden structure
called the almost (α, p)-golden structure and to investigate the geometry of a Riemannian
manifold endowed by this structure. This manifold is a natural generalization of the golden
Riemannian manifold, presented in [8] and of almost Hermitian golden manifold, studied
in [18].

In Section 2, we consider several frameworks in which almost product and almost
complex structures are treated in our language of the (α, p)-golden structure. These two
structures can be unified under the notion of the α-structure, denoted by Jα, which was
defined and studied in [10,19].

In Section 3, we study the properties of a Riemannian manifold endowed by a Φα,p
structure and a compatible Riemannian metric g, called an almost (α, p)-golden Riemannian
manifold.

In Section 4, we obtain a characterization of the structure induced on a submanifold by
the almost (α, p)-golden structure. Finally, we find the necessary and sufficient conditions
of a submanifold in an almost (α, p)-golden Riemannian manifold to be an invariant
submanifold.

2. The Almost (α, p)-Golden Structure

In order to state the main results of this paper, we need some definitions and notations.
Let us consider the (α, p)-golden means family, which contains the (α, p)-golden numbers

obtained as the solutions of the equation

x2 − px − 5α − 1
4

p2 = 0, (2)

where α ∈ {−1, 1} and p is a real nonzero number. The (α, p)-golden numbers have the form

ϕα,p = p
1 +

√
5α

2
, ϕα,p = p

1 −
√

5α

2
. (3)

Using these numbers, we define a new structure on a smooth manifold M (of even
dimensions) which generalizes both the almost golden structure and the almost complex
golden structure.

An endomorphism J1 of the tangent bundle TM, such as J2
1 = Id, is called an almost

product structure, where Id is the identity or Kronecker endomorphism. Moreover, the pair
(M, J1) is called an almost product manifold.

An endomorphism J−1 of the tangent bundle TM is called an almost complex structure
on M if it satisfies J2

−1 = −Id, and (M, J−1) is called an almost complex manifold. In this case,
the dimension of M is even (e.g., 2m).

Definition 1. An endomorphism Jα of the tangent bundle TM is called an α-structure on M if it
satisfies the equality

J2
α = α · Id, (4)
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on the even dimensional manifold M, where α ∈ {−1, 1} [19].

Using the Equation (1), for q = p2, we obtain the following definition:

Definition 2. An endomorphism Φα,p of the tangent bundle TM is called an almost (α, p)-golden
structure on M if it satisfies the equality

Φ2
α,p = pΦα,p +

5α − 1
4

p2 · Id, (5)

where p is a nonzero real number and α ∈ {−1, 1}. The pair (M, Φα,p) is called an almost (α,
p)-golden manifold.

In particular, the Φα,1 structure is named an α-golden structure, and it was studied
in [14].

Remark 1. The eigenvalues of the almost (α, p)-golden structure Φα,p are ϕα,p and ϕα,p =
p − ϕα,p, given in Equation (3).

In particular, for α = 1, we obtain ϕ1,p = p 1+
√

5
2 = pφ as a zero of the polynomial

X2 − pX − p2, and we remark that ϕ1,p is a member of the metallic numbers family, where
q = p2 and φ is the golden number.

For α = −1, we obtain ϕ−1,p = p 1+i
√

5
2 = pφc as a zero of the polynomial X2 − pX+ 3

2 p2,
and ϕ−1,p is a member of the complex metallic numbers family, where q = p2 and φc is the
complex golden number.

Moreover, if (α, p) = (1, 1), then one obtains the golden structure determined by an
endomorphism Φ with Φ2 = Φ + Id, as studied in [8]. The same structure was studied
in [12], using the name of the almost golden structure. In this case, (M, Φ) is called the almost
golden manifold.

If (α, p) = (−1, 1), then one obtains the almost complex golden structure determined by
an endomorphism Φc, which verifies Φ2

c = Φc +
3
2 Id. In this case, (M, Φc) is called the

almost complex golden manifold, as studied in [11,18].
An important remark is that (α, p)-golden structures appear in pairs. In particular, if

Φα,p is an (α, p)-golden structure, then Φα,p = pId − Φα,p is also an (α, p)-golden structure.
Thus is the case for the almost product structures (J1 and −J1) and for the almost complex
structures (J−1 and −J−1).

We point out that the almost (α, p)-golden structure Φα,p and the α-structure Jα are
closely related. Thus, we obtain the correspondence Φα,p ←→ Jα, and we have

Φα,p = pId − Φα,p ←→ J̄α = −Jα,

where Φα,p =: Φ+
α,p, Φα,p =: Φ−

α,p, Jα =: J+α and Jα =: J−α .

Proposition 1. Every α-structure Jα on M defines two almost (α, p)-golden structures, given by
the equality

Φ±
α,p =

p
2
(Id ±

√
5Jα); (6)

Conversely, two α-structures can be associated to a given almost (α, p)-golden structure
as follows:

J±α = ± 2
p
√

5

(
Φα,p −

p
2

Id
)

. (7)
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Proof. First of all, we seek the real numbers a and b such that Φα,p = aId+ bJα. Considering

Φ2
α,p, from the identities (4) and (5), we obtain a = p

2 and b = ±
√

5p
2 , which implies identity

(6). Moreover, Φ±
α,p verifies the identity (5).

On the other hand, if Φ±
α,p verifies identity (6), then we obtain that J±α verifies identities

(4) and (7). Conversely, if J±α verifies identity (7), then Φ±
α,p verifies the identity (6).

Example 1. (i) An almost product structure J1 induces two almost (1, p)-golden structures:

Φ±
1,p = p

Id ±
√

5J1

2
; (8)

(ii) An almost complex structure J−1 induces two almost (−1, p)-golden structures:

Φ±
−1,p = p

Id ±
√

5J−1

2
. (9)

A straightforward computation using the Equations (5) and (6) gives us the following
property:

Proposition 2. An (α, p)-golden structure Φα,p is an isomorphism on the tangent space of the
manifold Tx M for every x ∈ M. It follows that Φα,p is invertible, and its inverse is a structure
given by the equality

Φ−1
α,p =

4
p2(5α − 1)

Φα,p −
4

p(5α − 1)
Id. (10)

Lemma 1. A fixed α-structure Jα yields two complementary projectors P and Q, given by

P =
1
2
(Id +

√
αJα), Q =

1
2
(Id −

√
αJα). (11)

Then, we can easily see that

P + Q = Id, P2 = P, Q2 = Q, PQ = QP = 0, (12)

and √
αJα = P − Q. (13)

Taking into account the identities (11) and (12), one has the following remark:

Remark 2. The operators P and Q are orthogonal complementary projection operators and define
the complementary distributions D1 and D2, where D1 contains the eigenvectors corresponding to
the eigenvalue

√
α and D2 contains the eigenvectors corresponding to the eigenvalue −√

α.
If the multiplicity of the eigenvalue

√
α (or −√

α) is a (or b), where a + b = dim(M) = 2m,
then the dimension of D1 is a, while the dimension of D2 is b.

Conversely, if there exist in M two complementary distributions D1 and D2 of dimensions
a ≥ 1 and b ≥ 1, respectively, where a + b = dim(M) = 2m, then we can define an α structure Jα

on M, which verifies identity (13).

A straightforward computation using the identities (7), (11) and (12) gives us the
following property:

Proposition 3. The projection operators Pα,p and Qα,p on the almost (α, p)-golden manifold
(M, Φα,p) have the form

Pα,p =

√
5α

5p
· Φα,p +

5 −
√

5α

10
Id, Qα,p = −

√
5α

5p
· Φα,p +

5 +
√

5α

10
Id (14)
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which verifies

Pα,p + Qα,p = Id, P2
α,p = Pα,p; Q2

α,p = Qα,p, Pα,p · Qα,p = Qα,p · Pα,p = 0 (15)

and

Φα,p =
pα

√
5α

2
(Pα,p − Qα,p)−

p
2

Id. (16)

Remark 3. The operators Pα,p and Qα,p given in the identities (14) are orthogonal complementary
projection operators and define the complementary distributions D1 and D2 on M, which contain
the eigenvectors of Φα,p, corresponding to the eigenvalues ϕα,p and ϕα,p = p − ϕα,p, respectively.

3. Almost (α, p)-Golden Riemannian Geometry

Let M be an even dimensional manifold endowed with an α-structure Jα. We fix a
Riemannian metric g such that

g(JαX, Y) = αg(X, JαY), (17)

which is equivalent to
g(JαX, JαY) = g(X, Y), (18)

for any vector fields X, Y ∈ Γ(TM), where Γ(TM) is the set of smooth sections of TM.

Definition 3. The Riemannian metric g, defined on an even dimensional manifold M and endowed
with an α-structure Jα which verifies the equivalent identities (17) and (18), is called a metric
(α, Jα)-compatible.

Thus, by using the identities (7) and (17), we obtain that the Riemannian metric g
verifies the identity

g(Φα,pX, Y)− αg(X, Φα,pY) =
p
2
(1 − α)g(X, Y), (19)

for any X, Y ∈ Γ(TM).
Moreover, from identities (7) and (18), we remark that g and (Φα,p) are related by

g(Φα,pX, Φα,pY) =
p
2
(

g(Φα,pX, Y) + g(X, Φα,pY)
)
+ p2g(X, Y), (20)

for any X, Y ∈ Γ(TM).

Definition 4. An almost (α, p)-golden Riemannian manifold is a triple (M, Φα,p, g), where M is
an even dimensional manifold, Φα,p is an almost (α, p)-golden structure and g is a Riemannian
metric which verifies identities (19) and (20).

Remark 4. For α = 1 in the identities (19) and (20), we obtain

g(Φ1,pX, Y) = g(X, Φ1,pY)), (21)

which is equivalent to

g(Φ1,pX, Φ1,pY) = pg(Φ1,pX, Y) + p2g(X, Y), (22)

and the triple (M, Φ1,p, g) is a particular case of an almost metallic Riemannian manifold, which
was studied in [1,16].
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Remark 5. For α = −1 in the identities (19) and (20), we have

g(Φ−1,pX, Y) + g(X, Φ−1,pY) = pg(X, Y), (23)

which is equivalent to

g(Φ−1,pX, Φ−1,pY) =
3
2

p2g(X, Y), (24)

and the triple (M, Φ−1,p, g) is a particular case of an almost complex metallic Riemannian manifold,
which was studied in [9].

Proposition 4. If (M, Φα,p, g) is an almost (α, p)-golden Riemannian manifold of dimmension
2m, then the trace of the Φα,p structure satisfies

trace(Φ2
α,p) = p · trace(Φα,p) +

5α − 1
2

mp2. (25)

Proof. If we denote a local orthonormal basis of TM by {E1, E2, ..., E2m}, then from the
identity (5), we obtain

g(Φ2
α,pEi, Ei) = pg(Φα,pEi, Ei) +

5α − 1
4

p2g(Ei, Ei),

and by summing this equality for i ∈ {1, . . . 2m}, we obtain the claimed relation.

Example 2. Using ϕα,p and ϕα,p, defined in Equation (3), let us consider the endomorphism
Φα,p : R2m → R2m, given by

Φα,p(Xi, Yi) := (ϕα,pX1, . . . , ϕα,pXm, ϕα,pY1, . . . , ϕα,pYm), (26)

where (Xi, Yi) := (X1, . . . , Xm, Y1, . . . , Ym) and i ∈ {1, . . . , m}.
Using identities (2) and (26), a straightforward computation yields

Φ2
α,p(Xi, Yi) := (ϕ2

α,pXi, ϕ2
α,pYi) = (pϕα,pXi +

5α − 1
4

p2Xi, pϕα,pYi +
5α − 1

4
p2Yi).

Thus, we obtain

Φ2
α,p(Xi, Yi) = p(ϕα,pXi, ϕα,pYi) +

5α − 1
4

p2(Xi, Yi) = pΦα,p(Xi, Yi) +
5α − 1

4
p2(Xi, Yi)

and hence Φα,p verifies Equation (5).
Let us consider the structure Jα associated with Φα,p by identities (6) and (7):

Jα(Xi, Yi) := (X1, . . . , Xm, αY1, . . . , αYm).

Using the identity (17), we remark that the Euclidean metric g := 〈 , 〉 on R2m verifies

g(JαZ, Z′) = αΣm
i=1(XiX′i + YiY′i) = αg(Z, JαZ′),

for any Z := (X1, . . . , Xm, Y1, . . . , Ym), Z′ = (X′1, . . . , X′m, Y′1, . . . , Y′m) ∈ Γ(R2m). Thus, it
is (α, Jα)-compatible. Using the identity (7), we obtain

g(Φα,pZ, Φα,pZ′) =
p
2
(g(Φα,pZ, Z′) + g(Z, Φα,pZ′)) + p2g(Z, Z′).

Therefore, g verifies the identity (20), which implies that (R2m, Φα,p, g) is an almost (α, p)-golden
Riemannian manifold.
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Definition 5. If ∇ is the Levi-Civita connection on (M, g), then the covariant derivative ∇Jα is a
tensor field of the type (1, 2), defined by

(∇X Jα)Y := ∇X JαY − Jα∇XY, (27)

for any X, Y ∈ Γ(TM).

Hence, from the identity (6), we obtain

(∇XΦα,p)Y =
p
√

5
2

(∇X Jα)Y. (28)

Let us consider now the Nijenhuis tensor field of Jα. Using a similar approach to that
in [19] (Definition 2.8 and Proposition 2.9), we obtain

NJα(X, Y) = J2
α [X, Y] + [JαX, JαY]− Jα[JαX, Y]− Jα[X, JαY], (29)

for any X, Y ∈ Γ(TM), which is equivalent to

NJα(X, Y) = (∇JαX Jα)Y − (∇JαY Jα)X + (∇X Jα)JαY − (∇Y Jα)JαX. (30)

The Nijenhuis tensor field corresponding to the (α, p)-golden structure Φ := Φα,p is
given by the equality

NΦ(X, Y) := Φ2[X, Y] + [ΦX, ΦY]− Φ[ΦX, Y]− Φ[X, ΦY]. (31)

Thus, from the identity (31), we obtain

NΦ(X, Y) = (∇ΦXΦ)Y − (∇ΦYΦ)X − Φ(∇XΦ)Y + Φ(∇YΦ)X, (32)

for any X, Y ∈ Γ(TM). Moreover, from identities (28), (30) and (32), we obtain

NΦ(X, Y) =
5p2

4
NJα(X, Y). (33)

Recall that a structure J on a differentiable manifold is integrable if the Nijenhuis tensor
field NJ corresponding to the structure J vanishes identically (i.e., NJ = 0). We point out
that necessary and sufficient conditions for the integrability of a polynomial structure
whose characteristic polynomial has only simple roots were given in [20].

For an integrable almost (α, p)-golden structure (i.e., NΦα,p = 0), we drop the adjective
“almost” and then simply call it an (α, p)-golden structure. From Equation (6), it is found
that Φα,p is integrable if and only if the associated almost α structure Jα is integrable. The
distribution D1 is integrable if Qα,p

[
Pα,pX, Pα,pY

]
= 0 and also analogous, the distribution

D2 is integrable if Pα,p
[
Qα,pX, Qα,pY

]
= 0, for any X, Y ∈ Γ(TM).

Let us consider now the second fundamental form Ω, which is a 2-form on (M, Jα, g),
where Jα is an α structure defined in Equation (4) and the metric g is (α, Jα)-compatible.
The 2-form Ω is defined as follows:

Ω(X, Y) := g(JαX, Y), (34)

for any X, Y ∈ Γ(TM). From Equaitons (17) and (34), we obtain the following property:

Proposition 5. If M is a Riemannian manifold endowed by an α structure Jα and the metric g,
which is (α, Jα)-compatible, then for any X, Y ∈ Γ(TM), we have

Ω(X, Y) = αΩ(Y, X). (35)
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By using the correspondence between Φα,p and Jα given in the identities (6) and (7),
we obtain the following Lemma:

Lemma 2. If (M, Φα,p, g) is an almost (α, p)-golden Riemannian manifold, then

Ω(X, Y) = ± 2
p
√

5
[g(Φα,pX, Y)− p

2
g(X, Y)], (36)

Ω(Φα,pX, Y) =
p
2

Ω(X, Y) +
pα

√
5

2
g(X, Y), (37)

for any X, Y ∈ Γ(TM).

Hence, by inverting X ↔ Y in Equation (37), we obtain

Ω(Φα,pY, X) =
p
2

Ω(Y, X) +
pα

√
5

2
g(X, Y). (38)

Using the identity (35) in the equality (38) and multiplying by α = ±1, we obtain

Ω(X, Φα,pY) =
p
2

Ω(X, Y) +
p
√

5
2

g(X, Y). (39)

Proposition 6. Let (M, Φα,p, g) be an almost (α, p)-golden Riemannian manifold. Then, we have

Ω(Φα,pX, Y)− Ω(X, Φα,pY) =
p(α − 1)

√
5

2
g(X, Y), (40)

Ω(Φα,pX, Y) + Ω(X, Φα,pY) = pΩ(X, Y) +
p(α + 1)

√
5

2
g(X, Y), (41)

for any X, Y ∈ Γ(TM).

Remark 6. Let (M, Φα,p, g) be an almost (α, p)-golden Riemannian manifold. In particular, for
any X, Y ∈ Γ(TM), we have the following:
(1) For α = 1, we have

Ω(Φ1,pX, Y) = Ω(X, Φ1,pY) =
p
2

Ω(X, Y) +
p
√

5
2

g(X, Y) (42)

(2) For α = −1, we have

Ω(Φ−1,pX, Y) + Ω(X, Φ−1,pY) = pΩ(Y, X). (43)

Lemma 3. Let M be a Riemannian manifold endowed with an α structure Jα and the metric g,
which is (α, Jα)-compatible. Then, for any X, Y, Z ∈ Γ(TM), we obtain

g((∇X Jα)Y, Z) = αg(Y, (∇X Jα)Z). (44)

Also, from Equations (28) and (44), we obtain the following:

Proposition 7. If (M, Φα,p, g) is an almost (α, p)-golden Riemannian manifold, then for any
X, Y, Z ∈ Γ(TM), the structure Φα,p satisfies

g((∇XΦα,p)Y, Z) = αg(Y, (∇XΦα,p)Z). (45)
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4. Submanifolds in the Almost (α, p)-Golden Riemannian Manifold

In this section, we assume that M is a 2n-dimensional submanifold isometrically
immersed in a 2m-dimensional almost (α, p)-golden Riemannian manifold (M, Φα,p, g).
We study some properties of the submanifold M in the almost (α, p)-golden Riemannian
geometry regarding the structure induced by the given Φα,p structure.

We shall denote with Γ(TM) the set of smooth sections of TM. Let us denote with
Tx M (and with T⊥

x M) the tangent space (and the normal space) of M in a given point
x ∈ M. For any x ∈ M, we have the direct sum decomposition:

Tx M = Tx M ⊕ T⊥
x M.

If g is the induced Riemannian metric on M, then it is given by g(X, Y) = g(i∗X, i∗Y)
for any X, Y ∈ Γ(TM), where i∗ is the differential of the immersion i : M → M. We shall
assume that all of the immersions are injective. In the rest of the paper, we shall denote
with X the vector field i∗X for any X ∈ Γ(TM) in order to simplify the notations.

From Equations (17) and (18), we remark that the induced metric on the submanifold
M verifies the following equalities:

(i) g(JαX, Y) = αg(X, JαY), (ii) g(JαX, JαY) = g(X, Y), (46)

for any X, Y ∈ Γ(TM).
The decomposition into the tangential and normal parts of Φα,pX and Φα,pV for any

X ∈ Γ(TM) and U ∈ Γ(T⊥M) is given by

(i) Φα,pX = T X +NX, (ii) Φα,pU = tU + nU, (47)

where T : Γ(TM) → Γ(TM), N : Γ(TM) → Γ(T⊥M), t : Γ(T⊥M) → Γ(TM) and
n : Γ(T⊥M) → Γ(T⊥M).

In the next considerations, we denote with ∇ and ∇ the Levi-Civita connections on
(M, g) and on the submanifold (M, g), respectively.

The Gauss and Weingarten formulas are given by the respective equalities

(i)∇XY = ∇XY + h(X, Y), (ii)∇XU = −AUX +∇⊥
X U, (48)

for any tangent vector fields X, Y ∈ Γ(TM) and any normal vector field U ∈ Γ(T⊥M),
where h is the second fundamental form and AU is the shape operator of M with respect
to U, while ∇⊥ is the normal connection to the normal bundle Γ(T⊥M). Furthermore, the
second fundamental form h and the shape operator AU are related as follows:

g(h(X, Y), U) = g(AUX, Y), (49)

for any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M).
For the α structure Jα, the decompositions into tangential and normal parts of JαX and

JαU for any X ∈ Γ(TM) and U ∈ Γ(T⊥M) are given by the respective formulas

(i) JαX = f X + ωX, (ii) JαU = BU + CU, (50)

where f : Γ(TM) → Γ(TM), f X := (JαX)T , ω : Γ(TM) → Γ(T⊥M), ωX := (JαX)⊥,
B : Γ(T⊥M) → Γ(TM), BU := (JαU)T and C : Γ(T⊥M) → Γ(T⊥M), CU := (V)Jα⊥.

Direct calculus shows that the maps f , ω, B and C satisfy the following identity:

(i) g( f X, Y) = αg(X, f Y), (ii) g(CU, V) = αg(U, CV) (51)

g(ωX, V) = αg(X, BV), (52)

for any X, Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M). Using Equation (47), we obtain the following
lemma:
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Lemma 4. Let (M, g) be a Riemannian manifold endowed with an α structure Jα, and let Φα,p be
the almost (α, p)-golden structure related by Jα through the relationships in Equation (6). Thus,
we obtain

(i) T X =
p
2

X ±
√

5α

2
f X, (ii)NX = ±

√
5α

2
ωX (53)

(i) tV = ±
√

5α

2
BV, (ii) nV =

p
2

V ±
√

5α

2
CV, (54)

for any X ∈ Γ(TM) and V ∈ Γ(T⊥M).

Now, by using Equations (53) and (54) in the Equations (51) and (52), respectively, we
obtain the following property:

Proposition 8. Let (M, g) be a Riemannian manifold endowed with an almost (α, p)-golden
structure. Thus, for any X, Y ∈ Γ(TM), the maps T and n satisfy

g(T X, Y) = αg(X, T Y) +
p(1 − α)

2
g(X, Y), (55)

g(nU, V) = αg(U, nV) +
p(1 − α)

2
g(U, V). (56)

Moreover, for any U, V ∈ Γ(T⊥M), N and t satisfy

g(NX, U) = αg(X, tU). (57)

Definition 6. The covariant derivatives of the tangential and normal parts of Φα,pX (and Φα,pV)
are given by

(i) (∇XT )Y = ∇XT Y − T (∇XY), (ii) (∇XN )Y = ∇⊥
XNY −N (∇XY), (58)

(i) (∇Xt)U = ∇XtU − t(∇⊥
X U), (ii) (∇Xn)U = ∇⊥

XnU − n(∇⊥
X U), (59)

for any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

Remark 7. Let M be an isometrically immersed submanifold of a Riemannian manifold (M, g)
endowed by a Jα structure and a Φ(α,p)-golden structure. Then, for any X, Y, Z ∈ Γ(TM),
we obtain

(i) g((∇X f )Y, Z) = αg(Y, (∇X f )Z), (ii) g((∇XT )Y, Z) = αg(Y, (∇XT )Z). (60)

The identities (60) result from Equations (51)(i) and (53)(i).
Let M a submanifold of co-dimension 2r in M. We fix a local orthonormal basis

{N1, ..., N2r} of the normal space T⊥
x M for any x ∈ M. Hereafter, we assume that the

indices i, j and k run over the range {1, ..., 2r}.
Let Φα,p := Φ be the almost (α, p)-golden structure. Then, we obtain the decomposi-

tion

(i) ΦX = T X +
2r

∑
i=1

ui(X)Ni, (ii) ΦNi = ξi +
2r

∑
j=1

AijNj, (61)

for any X ∈ Tx M, where ξi represents the vector fields on M, ui represents the 1-forms on
M and A := (Aij)2r is a 2r × 2r matrix of smooth real functions on M.

Moreover, from Equations (47) and (61), we remark that

NX =
2r

∑
i=1

ui(X)Ni, (62)
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for any X ∈ Tx M and

(i) tNi = ξi, (ii) nNi =
2r

∑
k=1

Aik Nk. (63)

Therefore, we find the structure Σ = (T , g, ui, ξi,A) on the submanifold M through
Φα,p, and we shall obtain a characterization of the structure induced on a submanifold M
by the almost (α, p)-golden structure in a similar manner to that in Theorem 3.1. from [15].

Theorem 1. The structure Σ = (T , g, ui, ξi,A) induced on the submanifold M by the almost
(α, p)-golden structure Φα,p on M satisfies the following equalities:

T 2X = pT X +
5α − 1

4
p2X −

2r

∑
i=1

ui(X)ξi, (64)

Aij = αAji +
p(1 − α)

2
δij, (65)

ui(X) = αg(X, ξi), (66)

T ξi = pξi −
2r

∑
j=1

Aijξ j, (67)

uj(ξi) =
5α − 1

4
p2δij + pAij −

2r

∑
k=1

AikAkj, (68)

for any X ∈ Γ(TM), where T is a (1,1)-tensor field on M, ξi represents the tangent vector fields on
M, ui represents the 1-form M and the matrix A is determined by its entries Aij, which are real
functions on M (for any i, j ∈ {1, . . . , 2r}).

Proof. Using Φα,p := Φ in the identity (47)(i) and (5), we obtain pΦX + 5α−1
4 p2 · X =

ΦT X + ΦNX. Moreover, using identities (47)(i) and (61)(i), we obtain

pT X + p
2r

∑
i=1

ui(X)Ni +
5α − 1

4
p2 · X = T 2X +NT X +

2r

∑
i=1

ui(X)ΦNi (69)

By using the identity (62) and equalizing the tangential part of the identity (69), we
obtain equality (64).

Now, using the identity (56), we obtain

g(nNi, Nj) = αg(Ni, nNj) +
p(1 − α)

2
g(Ni, Nj)

and from the equality (63)(ii), we obtain the identity (65).
From the identity (57), we obtain g(NX, Nj) = αg(X, tNj) and by using identities (62)

and (63)(i), we obtain the equality (66).
From the Equation (5), we obtain Φ2Ni = pΦNi +

5α−1
4 p2 · Ni and from the identity

(61)(ii), we obtain

Φ(ξi +
2r

∑
j=1

AijNj) = p(ξi +
2r

∑
j=1

AijNj) +
5α − 1

4
p2 · Ni,

Moreover, using identities (61)(i) and (61)(ii), we obtain

T ξi +
2r

∑
j=1

uj(ξi)Nj +
2r

∑
j=1

Aij(ξ j +
2r

∑
k=1

Ajk Nk) = pξi + p
2r

∑
j=1

AijNj +
5α − 1

4
p2 · Ni.
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When comparing the tangential and normal parts of both sides of this last equality,
respectively, we infer the identities (67) and (68).

By using identities (61)(i) and (61)(ii), we obtain the following remark:

Remark 8. If (M, Φ, g) is an almost (α, p)-golden Riemannian manifold and X, Y ∈ Γ(TM),
then for any i, j ∈ {1, . . . , 2r}, we obtain

g(ΦX, ΦY) = g(T X, T Y) +
2r

∑
i=1

ui(X)ui(Y), (70)

g(ΦNi, ΦNj) = g(ξi, ξ j) +
2r

∑
k=1

AikAkj, (71)

If M is an invariant submanifold of M (i.e., Φ(Tx M) ⊂ Tx M and Φ(T⊥
x M) ⊂ T⊥

x M for
all x ∈ M), then from identities (61), we obtain ΦX = T X, which implies ui(X) = 0 and
ξi = 0 for any i ∈ {1, 2, . . . , 2r}. Therefore, using the identities (64) and (68), we obtain the
following property:

Proposition 9. Let M be an invariant submanifold of co-dimension 2r of the almost (α, p)-golden
Riemannian manifold (M, Φ, g), and let Σ = (T , g, ui = 0, ξi = 0,A) be the structure induced
on the submanifold M. Then, T is an (α, p)-golden structure on M; in other words, we have

T 2X = pT X +
5α − 1

4
p2X, (72)

for any X ∈ Γ(TM), where p is a real nonzero number and α ∈ {−1, 1}. Moreover, the quadratic
matrix A satisfies the equality

A2 = pA+
5α − 1

4
p2 I2r, (73)

where its entries Aij are real functions on M (i, j ∈ {1, . . . , 2r}) and I2r is an identical matrix of
the order 2r.

Theorem 2. A necessary and sufficient condition for the invariance of a submanifold M of co-
dimension 2r in a 2m-dimensional Riemannian manifold (M, g) endowed with an almost (α, p)-
golden structure Φ is that the structure T on (M, g) is also an almost (α, p)-golden structure.

Proof. If T is an almost (α, p)-golden structure, then from Equation (64), we obtain

2r

∑
i=1

ui(X)ξi = 0, (74)

for any X ∈ Γ(TM). By taking the g product with X in Equation (74), we infer that

2r

∑
i=1

ui(X)g(X, ξi) = ∑
i
(ui(X))2 = 0,

which is equivalent to ui(X) = 0 for every i ∈ {1, . . . , 2r}, and this fact implies that M
is invariant.

Conversely, if M is an invariant submanifold, then from Equation (72), we obtain that
the structure T on (M, g) is also an almost (α, p)-golden structure.

5. Conclusions

The world of quadratic endomorphisms of a given manifold is enriched now with a
new class. If a Riemmanian metric is added through a compatibility condition, then a new
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geometry is developed. Its submanifolds also carry remarkable structures, and new studies
are expected to enrich this domain of differential geometry.
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Abstract: By replacing the internal energy with the free energy, as coordinates in a “space of ob-
servables”, we slightly modify (the known three) non-holonomic geometrizations from Udriste’s
et al. work. The coefficients of the curvature tensor field, of the Ricci tensor field, and of the scalar
curvature function still remain rational functions. In addition, we define and study a new holonomic
Riemannian geometric model associated, in a canonical way, to the Gibbs–Helmholtz equation from
Classical Thermodynamics. Using a specific coordinate system, we define a parameterized hypersur-
face in R4 as the “graph” of the entropy function. The main geometric invariants of this hypersurface
are determined and some of their properties are derived. Using this geometrization, we characterize
the equivalence between the Gibbs–Helmholtz entropy and the Boltzmann–Gibbs–Shannon, Tsallis,
and Kaniadakis entropies, respectively, by means of three stochastic integral equations. We prove that
some specific (infinite) families of normal probability distributions are solutions for these equations.
This particular case offers a glimpse of the more general “equivalence problem” between classical
entropy and statistical entropy.

Keywords: Gibbs–Helmholtz equation; free energy; pressure; volume; temperature; Boltzmann–Gibbs–
Shannon entropy; heat (thermal) capacity; thermal pressure coefficient; chemical thermodynamics

MSC: 53B25; 53B50; 53B12; 58A17; 80-10

1. Introduction

1.1. Motivation

Classical Thermodynamics is conducted by the Gibbs–Helmholtz (GH) equation,
which relates some macroscopic observables of a closed system: the volume, the free energy
(or, alternatively, the internal energy), the pressure, the temperature, and the entropy. We
can interpret it as a Pfaff equation in (an open subset of) R5, i.e., by equating an exterior
differential one-form with zero. Its kernel is a non-integrable (non-holonomic) regular
four-dimensional distribution, because it does not admit integral manifolds through all the
points of R5. The non-holonomy forbids the standard (and canonical) application of Rie-
mannian geometric tools on integral (sub)manifolds, so we must appeal to non-holonomic
geometrizations. Better than nothing, these non-holonomic tools cannot, however, catch all
the relevant information hidden in the physical model, via the associated distribution.

Our paper has two main goals. Firstly, we make a slight variation of three known
Riemannian non-holonomic geometrizations of the GH equation and compare the old and
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new approaches. Secondly, we avoid the lack of integrability of the previous distribution
by choosing other coordinates. This allows us to consider a holonomic geometrization of
the GH equation, which greatly simplifies the framework.

1.2. History

At the end of the 19th Century, the Gibbs–Helmholtz (GH) equation emerged from
the papers of J.W. Gibbs and H. Helmholtz and established the rigorous (mathematical)
foundation of (Chemical) Thermodynamics. Its interesting story may be read in [1–5] and
in the lively blog of Peter Mander [6]. The GH equation is a specific Pfaffian equation, a
mathematical notion which was already defined by J.F. Pfaff 100 years before, and involves,
among other observables, the so-called “thermodynamic entropy” (also known as “Gibbs-
Helmholtz (GH) entropy” or “macroscopic entropy”).

Approximately at the same time, L. Boltzmann (and soon after M. Planck and J.W.
Gibbs) introduced another kind of entropy, suitable for Statistical Mechanics; later, Shannon
adapted it for Information Theory. Today, it is known as Boltzmann–Gibbs–Shannon (BGS)
entropy (also known as “Gibbs entropy”, “Shannon entropy”, “information entropy”, or
“statistical entropy”) [4].

Both types of entropy notions have common epistemological roots in Carnot’s pa-
pers on heat engines at the beginning of 19th Century and in Clausius’s work in the
mid-19th century [4]. One century after, their study split into two (apparently) divergent
theories. Now, an important open problem is to decide if the two kinds of entropy are equivalent; in
case they are, it would be interesting to establish a “dictionary” between the two theories,
and to search for a single “Grand Unified Theory” of entropy. This equivalence problem
is similar—in some sense—to the equivalence of the inertial and the gravitational mass
in the Theory of Relativity (the “Equivalence Principle”). In the (physical, mathematical,
epistemological) literature, arguments have been brought for both pro and con variants
(equivalence vs. non-equivalence) [1,7–27].

The task to decide where the truth is is all the more difficult, as the mathematical meth-
ods of approach differ. Thermodynamic entropy is a deterministic notion, mainly studied by
means of the GH equation, whose modelization is based on contact
geometry ([28–38] and references therein) and/or on different non-holonomic associated
invariants. The BGS entropy study rests on probability and statistical tools; there exist,
however, some geometric objects associated to it, e.g., the Fisher metrics, the statistical
manifolds, etc. (see [39–41] and references therein), but all these notions are of recent
birth, when one compares them with the two-century-old Pfaffian forms. Their long-range
relevance and applicability are still to be confirmed.

The roots of Riemannian non-holonomic geometrization can be found in the third
decade of the 20th Century, with the papers of Gh. Vranceanu [42–44] and, independently,
of Z. Horak (apud [45]). Some Riemannian invariants, similar to those from the holonomic
known models, were associated with Pfaffian systems, which determine a non-integrable
distribution D of interest in physics (especially in mechanics). Soon after, the theory evolved
in many directions, notably in the theory of connections in fiber spaces of E. Cartan and C.
Ehresmann.

Through a higher-dimensional analogue of Descartes’ trick, a complementary orthog-
onal distribution D⊥ w.r.t. a Riemannian metric gD establishes an “orthogonal frame”
(D, D⊥), which allows a “decomposition” in two parts; the Riemannian machinery can
be now exploited, producing metric invariants. Given the distribution D, there exist an
infinite number of such possible non-holonomic Riemannian models (D, D⊥, gD) (and
many more in the semi-Riemannian setting). The versatility of this approach may be an ad-
vantage, but sometimes a disadvantage, for both the glory and the limits of non-holonomic
geometry. (We avoid entering here in this debate, which deserves more care and a more
appropriate framework).
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A highly original geometrization path for dynamical systems, via Pfaffian equations
and non-holonomic geometry, is the Geometric Dynamics of C. Udriste [46]. In particular,
this tool was applied also in the study of the GH equation ([28,47–51], to quote but a few).

1.3. Our Contribution

Our paper deals with three (apparently unrelated) topics: classical thermodynam-
ics and the geometrization of the Gibbs–Helmholtz equation (via holonomic and non-
holonomic models); the detailed study of a hypersurface S in R4, from both the intrinsic
and the extrinsic geometry; the equivalence problem between classical (thermodynamical)
entropy and statistical entropy. The unity of the three topics consists in the double role
played by the hypersurface S: firstly, to prove the advantages of the holonomic approach
versus the non-holonomic one; secondly, to be used as a tool for characterizing analytically
the (eventual) equivalence between the previous entropy notions.

In Section 2, we recall three (non-holonomic) Riemannian geometrizations of the GH
equation, due to Udriste and collaborators. By replacing the internal energy with the free
energy, we obtain three new analogous non-holonomic geometrizations, related to the
previous ones. The new Riemannian invariants are expressed by rational functions, too.

In Section 3, we make a new holonomic geometrization of the GH equation, using a
special parameterized hypersurface S in R5. We calculate the matrices of the fundamental
forms of this hypersurface, its mean curvatures, its principal curvatures, and some of its
intrinsic invariants (geodesics, curvature coefficients, Ricci coefficients, scalar curvature).
In contrast with the partial/incomplete tools offered by the non-holonomic models, the
geometry of S offers access to the whole Riemannian machinery, which can be used to
understand and control the thermodynamic systems.

In Section 4, we use the model from Section 3 and we compare the GH entropy with
the BGS, the Tsallis, and the Kaniadakis entropies, respectively, from Statistical Mechanics.
Their equivalence is characterized by specific stochastic integral equations. Examples of
solutions of these equations are provided.

We compare our approach with the recent result of Gao et al. [52,53], which states that
(under a set of specific physical assumptions) the BGS (and, eventually, the Tsallis) entropy
equals the thermodynamic entropy only for generalized Boltzmann distributions.

In Section 5, we give some thermodynamic interpretation of our results.

1.4. Conventions

Some of our definitions and results can be easily extended to deal with generalized
Gibbs–Helmholtz equations [2,5,24]. We preferred to limit our study and keep the discourse
as elementary as possible, so as not to hide the forest behind the trees.

We suppose all the physical quantities suitably normalized, so that all the equations
make sense from the physics viewpoint.

2. Avatars of Three Non-Holonomic Riemannian Geometrizations for the GH Equation

Consider a closed thermodynamic system with (Gibbs) free energy G, pressure p,
entropy S, temperature T, internal energy U, and volume V. We know that [28,54]

U = G − pV + TS. (1)

The mutual interconnections between these observables are described by the
Gibbs–Helmholtz equation

dG + SdT − Vdp = 0. (2)

Via Relation (1), this equation may be written in the equivalent form

dU + pdV − TdS = 0. (3)
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The GH equation is one of the fundamental equations in thermodynamics, as it
relates-in a subtle manner-the main observables. It is subject to many approaches, interpre-
tations, and generalizations ([6]). We shall study it mainly from a mathematical viewpoint,
maybe losing some of its physical flavor.

Define two differential one-forms ω := dG + SdT − Vdp and η := dU + pdV − TdS,
on two suitable open subsets (as “configurations spaces”) D and E in R5 , respectively,
w.r.t. coordinates (G, p, S, T, V) and (U, p, S, T, V). Then, Equations (2) and (3) can be
modeled by the Pfaff equations ω = 0 and η = 0, respectively, and by their associated
four-dimensional (regular and non-integrable) distributions kerω and kerη. We have

kerω = span
{ ∂

∂S
,

∂

∂V
,

∂

∂p
+ V

∂

∂G
,

∂

∂T
− S

∂

∂G

}
(4)

and

kerη = span
{ ∂

∂p
,

∂

∂T
,

∂

∂S
+ T

∂

∂U
,

∂

∂V
− p

∂

∂U

}
. (5)

Remark 1. Holonomic distributions are integrable, i.e., they admit integral manifolds of maximal
dimension through all the points; each such submanifold inherits a canonical induced Riemannian
structure which geometerizes the solutions of the initial equation. In the non-holonomic case, the
distributions lack this important property.

The non-holonomy of the distribution kerω (or, alternatively, kerη) is the fundamental cause
of the difficulty encountered when one tries to integrate the GH equation. For this reason, empirical
or more elaborate attempts were invented, and many particular cases were considered, by “slicing”
the configuration space or by using idealized models (e.g., in Carnot-like attempts).

From (2), we obtain

S = V
∂p
∂T

− ∂G
∂T

(6)

and
V = S

∂T
∂p

+
∂G
∂p

. (7)

By analogy, from (3), we obtain

p = T
∂S
∂V

− ∂U
∂V

(8)

and
T = p

∂V
∂S

+
∂U
∂S

. (9)

Udriste and collaborators used the formalism based on (3) and associated to the dis-
tribution ker η three Riemannian metrics ([46–48,51] and references therein), by means of
specific techniques of non-holonomic geometry. One of them is the systems of congru-
ences method, developed by Gh. Vranceanu [44]. They considered global coordinates
(x1, x2, x3, x4, x5) := (U, T, S, p, V) and they determined the respective curvature invari-
ants (Riemann curvature, Ricci curvature, and scalar curvature) as rational functions of
variables xi, i = 1, 5. This property eases the calculations, especially the integration of the
geodesics system.

Remark 2. An alternative and analogous method is to start from Equation (2). W.r.t. the new
coordinates (G, p, S, T, V), we can obtain three analogous non-holonomic geometrizations with
their corresponding Riemannian invariants. The change of coordinates is non-linear, but involves
only rational functions; it follows that the previous curvature invariants are also rational functions,
but of variables G, p, S, T, and V. General covariance laws establish correspondences between the
curvature invariants, when calculated in these two systems of coordinates. This simple remark
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might be important when, in applications, we want to consider the free energy instead of the internal
energy of a system. From the theoretical viewpoint, these two formalisms associated to the equivalent
forms of the Gibbs–Helmholtz Equations (2) and (3) lead to the same geometrization. This global
object can be viewed, locally, in two different coordinate systems, with a “dictionary” between them.

Remark 3. Let V be a domain in R3 of coordinates (p, G, V) (the “configurations space”). Then,
the entropy function S in Formula (6) looks like a “Lagrangian” on V, i.e., S : TV → R, w.r.t. the
temperature T, instead of w.r.t. time. Here, this “Lagrangian” similarity of the entropy is purely
speculative, but it might be related to eventual hints in the literature (e.g., [55]).

We can determine, via formal Euler–Lagrange equations, the “stationary” curves of the system,
of the form

T → (p0, G(T), V0),

where both the pressure and the volume are constant. We do not enter this path, because this ge-
ometrization is also non-holonomic, even if the non-holonomy is better hidden behind the “velocities
space” TV.

In the next section, we leave the realm of non-holonomic geometry and look for
geometric properties of thermodynamic systems, with an holonomic associated model.

3. A Holonomic Geometrization for the GH Equation

With the previous notations, consider p̃ the temperature derivative of the pressure
(also known as the thermal pressure coefficient [56]) and G̃ the heat (also known as thermal)
capacity, i.e., the speed of the free energy w.r.t. T. (The notation for the heat capacity is not
the usual one !) We can use Formula (6) in order to express the entropy as a function of p̃,
G̃, and the volume, i.e., S = S( p̃, G̃, V). Consider coordinates (x1, x2, x3) := ( p̃, G̃, V) on an
open subset U of R3. The entropy function S(x1, x2, x3) = x1x3 − x2 on U defines a (regular,
Monge-type, 3D) hypersurface in R4. The image of this parameterized hypersurface is a
hyperquadric S, namely a special hypercylinder in R4. In Figure 1, one sees how the level
sets of S foliate R3.

Figure 1. The level sets of S.
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The first and the second fundamental forms of S are, respectively,

(gij)i,j=1,3 =

⎛⎝1 + (x3)2 −x3 x1x3

−x3 2 −x1

x1x3 −x1 1 + (x1)2

⎞⎠, (10)

(hij)i,j=1,3 = a−1 ·

⎛⎝ 0 0 −1
0 0 0
−1 0 0

⎞⎠, (11)

where a(x1, x3) :=
√

2 + (x1)2 + (x3)2. The unit normal vector field is

N = a−1 · (x3,−1, x1,−1). (12)

The mean curvature functions of S are the coefficients of the characteristic polynomial
of the second fundamental form w.r.t. the first fundamental form (Figure 2), namely

det(hij − tgij) = 0,

written
t3 − 3H1t2 + 3H2t − H3 = 0.

We calculate
H1 =

6
a3 · x1x3 , H2 = − 6

a4 , H3 = 0. (13)

Figure 2. The first mean curvature function (red) and the second mean curvature function (blue).
Notation: x := x1, y := x3.

We represent graphically, separately, the first two mean curvature functions, at large
scale (only the x3 > 0 zone must be retained from the graphics in Figures 3 and 4).
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Figure 3. The first mean curvature function at large scale. Notation: x := x1, y := x3.

Figure 4. The second mean curvature function at large scale. Notation: x := x1, y := x3.
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The roots of the previous characteristic polynomial are the principal curvature func-
tions of S (Figure 5). We calculate them:

λ1 =
1
a3 ·
{

x1x3 +
√
(2 + (x1)2)(2 + (x3)2)

}
,

λ2 =
1
a3 ·
{

x1x3 −
√
(2 + (x1)2)(2 + (x3)2)

}
,

λ3 = 0.

Figure 5. The first principal curvature function (red) and the second principal curvature function
(green). Notation: x := x1, y := x3.

The mean curvature functions are symmetric expressions of the principal curvature
functions. Together (and separately), they “control” the shape of the hypersurface S and
“measure” how much S differs from a hyperplane in R4.

Proposition 1. The hypersurface S has the following properties:

(i) Its geometric invariants depend on x1 and x3 only.
(ii) It is not minimal, totally geodesic, or totally umbilical. Moreover, it has no umbilical points.
(iii) It has a null, a positive, and a negative smooth principal curvature function. The positive

principal curvature function λ1 ≤
√

2
2 , with equality if and only if x3 = x1 = 0. The negative

principal curvature function λ2 ≥ −
√

2
2 , with equality if and only if x3 = x1 = 0.

(iv) It is asymptotically flat.
(v) There do not exist extremal values for H1, which is unbounded around (0, 0); instead, H2 ≤ 0

and it has a global minimum − 3
2 at x3 = x1 = 0.

The intrinsic Riemannian geometry of S can be derived from the first fundamental
form only. The Riemannian manifold (S, g) can be studied in an abstract way, by “forget-
ting” the embedding of S as a hypersurface in R4. The (non-null) Christoffel symbols are

Γ1
13 = Γ1

31 =
x3

a2 , Γ2
13 = Γ2

31 = − 1
a2 , Γ3

13 = Γ3
31 =

x1

a2 .
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The geodesics are solutions of the following ODE system:

d2xi

dt2 + Γi
jk

dxj

dt
dxk

dt
= 0, i = 1, 2, 3,

which may be written in detailed form:

d2x1

dt2 +
2x3

a2 · dx1

dt
· dx3

dt
= 0, (14)

d2x2

dt2 − 2
a2 · dx1

dt
· dx3

dt
= 0,

d2x3

dt2 +
2x1

a2 · dx1

dt
· dx3

dt
= 0.

Locally, the geodesics minimize the length of the curves with common ends. Globally,
the geodesics behavior is related, in a subtle way, with curvature properties.

Remark 4. (i) By contrast with the mean and the principal curvature formulas, the previous ODE
system depends (formally) on the variable x2.

(ii) Any geodesic is uniquely determined by two initial conditions: the starting point and its
velocity through it. Numerically solving ODE system (14), with initial conditions

x1(0) = x2(0) = x3(0) = 1 ,
dx1

dt
(0) =

dx3

dt
(0) = 1 ,

dx2

dt
(0) = 10,

and

x1(0) = x2(0) = x3(0) = 1 ,
dx1

dt
(0) =

dx3

dt
(0) = 10 ,

dx2

dt
(0) = 1,

respectively, produces the geodesics in Figures 6 and 7.
(iii) As the ODE system (14) is non-linear, integrating it for exact solutions is a difficult task.

We consider only the non-degenerate geodesics. A general result in global Riemannian geometry
assures us that all geodesics are complete ([57], p. 149, Cor.2.10). It follows that any two points of
S can be joined by a minimizing geodesic.

A first family of geodesics is of the form

x1(t) = k1t + k2 , x2(t) = k3t + k4 , x3(t) = 0,

where k1, k2, k3, and k4 are arbitrary constants, with (k1)
2 + (k3)

2 �= 0. Another analogous family
of geodesics is

x1(t) = 0 , x2(t) = k5t + k6 , x3(t) = k7t + k8,

where k5, k6, k7, and k8 are arbitrary constants, with (k5)
2 + (k7)

2 �= 0.
Suppose x1 = x1(t) and x3 = x3(t) cannot be null on some open interval of the real line.

Then, we have another family of geodesics, with x1 = x3; the function x1 must satisfy an implicit
equation of the form

x1(t)
√
(x1(t))2 + 1 + ln

(
x1(t) +

√
(x1(t))2 + 1

)
= k9t + k10,

where k9, k10 are arbitrary constants. The second component of the geodesics can be recovered from
the second equation in (14), as the anti-derivative

x2(t) =
∫ { ∫ [ 1

(x1(t))2 + 1
·
(dx1

dt
(t)
)2]

dt
}

dt .

The variable x2 will depend on two other arbitrary constants.
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The two particular geodesics in Figures 6 and 7 (plotted after numerical integration) belong to
this last family.

Figure 6. The first geodesic. Notation: x := x1, y := x2, z := x3.

Figure 7. The second geodesic. Notation: x := x1, y := x2, z := x3.

We calculate now the (non-null) (0,4)-Riemann curvature coefficients,

R1313 = −R1331 = −R3113 = R3131 = − 1
a2 ,
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the (non-null) Ricci coefficients,

Ric11 = −2 + (x3)2

a4 , Ric13 = Ric31 = − x1x3

a4 , Ric33 = −2 + (x1)2

a4 ,

and the scalar curvature,

ρ = − 4
a4 .

The scalar curvature function is “a trace of a trace” object, obtained by contracting
the Riemann curvature tensor field twice. As a “mean of a mean”, is contains information
about how S bends, but this information is somehow encoded twice. The eventual “reverse
engineering” process is difficult; this is why finding Riemannian manifolds with prescribed
properties of the scalar curvature functions is challenging.

Proposition 2. The scalar curvature of S is asymptotically flat, and is bounded −1 ≤ ρ < 0. Its
unique global minimum point is (0, 0, 0) and ρ(0, 0, 0) = −1. Moreover, ρ = 2

3 H2.

Due to the last property, the graph of the scalar curvature is very similar to the graph
of the second mean curvature, and we do not represent it in a separate figure. More
interesting seems to be the foliation of R3 by its level sets, which are cylinders along the x2

axis. Points on a fixed leaf correspond to thermodynamic measurements characterized by
“linear/longitudinal” heat capacity (x2) and “circular/transversal” thermal pressure (x1)
coefficient and volume (x3).

It must be stressed that the geometry of S may also have an interest per se; as stated
previously, it is difficult to construct examples of Riemannian manifolds with prescribed
properties of the scalar curvature function. In this case, the foliation by cylinders induced by
the level sets of the scalar curvature provides exactly such a remarkable example (Figure 8).

Figure 8. The level sets of ρ. Notation: x := x1, y := x2, z := x3.

4. Characterization of the Equivalence between the GH Entropy and the BGS, the
Tsallis, and the Kaniadakis Entropy

Consider a thermodynamical system as in Section 3. Let M be an open set in Rn,
f = f (x, y) be a parameterized family of probability distributions (PDFs), f : U× M → R,
with

∫
y∈M f (x, y)dy = 1, f ≥ 0.
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Postulate of entropy equivalence. We suppose that the GH entropy coincides with the BGS
entropy. (For simpler calculations, the Boltzmann constant is normalized to 1).

This property is characterized by the following equivalence equation:

x1x3 − x2 +
∫

y∈M
f (x, y) · log f (x, y)dy = 0. (15)

The first two terms describe the GH entropy (via the formalism in Section 3); the
(minus) integral is the BGS entropy associated to f . This stochastic integral equation
may be useful when we want to determine an unknown PDF f , suitable for a given
thermodynamic model. It may act as a bridge between the classical (deterministic) setting
and the statistical one.

Example 1. Let

σ(x) :=
1√
2π

exp
{

x1x3 − x2 − 1
2

}
(16)

and an arbitrary real valued function μ = μ(x), defined on U. Consider the family of parameterized
normal PDFs on the real line, given by

f (x, y) :=
1√

2πσ(x)
exp
{
− 1

2

(y − μ(x)
σ(x)

)2}
. (17)

A short calculation shows that f is a solution of Equation (15). We remark that the means
may depend arbitrarily on the thermodynamic variables. Instead, the dispersion depends inversely
proportionally on the GH entropy function.

Similar solutions of Equation (15) may be looked for w.r.t. other generalized logarithms,
instead of the Neperian one. The next two examples use the Tsallis logarithm and the
Kaniadakis logarithm, respectively.

Example 2. We look for solutions for the equivalence equation

x1x3 − x2 +
∫

y∈M
f (x, y) · logT

q f (x, y)dy = 0, (18)

which is the analogue of Equation (15), where the BGS entropy and the Neperian logarithm were
replaced by the Tsallis entropy and the Tsallis q-logarithm ([41])

logT
q (z) :=

z1−q − 1
1 − q

, q �= 1.

Suppose q < 2 and let

σ(x) :=
1√
2π

(2 − q)
1

2(q−1) ·
[
1 + (q − 1)(x1x3 − x2)

] 1
q−1

(19)

and an arbitrary real valued function μ = μ(x), defined on U. Consider the family of parameterized
normal PDFs on the real line, given by (17). One verifies easily, by a direct calculation, that f is a
solution of Equation (18). We remark that the means may depend arbitrarily on the thermodynamic
variables. The dispersion depends on the GH entropy function in a more subtle way than in
Example 1.

When q ≥ 2, some (entropy) integrals in (18) may become divergent and the previous reasoning
does not work anymore.
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Example 3. We look now for solutions for the equivalence equation

x1x3 − x2 +
∫

y∈M
f (x, y) · logK

k f (x, y)dy = 0, (20)

which is the analogue of Equation (15), where the BGS entropy and the Neperian logarithm were
replaced by the Kaniadakis entropy and the Kaniadakis k-logarithm ([41])

logK
k (z) :=

zk − z−k

2k
, k ∈ (−1, 1) , k �= 0.

Consider

σ(x) :=
1√
2π

·
{ k

√
1 − k2(x1x3 − x2) +

√
k2(1 − k2)(x1x3 − x2)2 +

√
1 − k2

√
1 + k

} 1
k (21)

and an arbitrary real valued function μ = μ(x), defined on U. Consider the family of parameterized
normal PDFs on the real line, given by (17). A similar calculation proves f is a solution of
Equation (20). We remark that the means may depend arbitrarily on the thermodynamic variables.
The dispersion depends on the GH entropy function, but in a more complicated way than in
Examples 1 and 2.

Remark 5. (i) The previous three examples suggest the following natural question: Which are the
families of PDFs F (not necessarily normal !) and the generalized “logarithms” ϕ ([41]), such that

x1x3 − x2 +
∫

y∈M
F(x, y) · ϕ(F(x, y))dy = 0 ? (22)

This equation establishes the equivalence of the thermodynamic entropy given by the first two terms
and the (statistical) generalized entropy associated to the generalized “logarithm” ϕ. Solving it is
much more difficult, as the unknowns are both deterministic (ϕ) and stochastic (F).

In a previous remark, we explained why we consider only the classical GH equation, and not
a generalized one. In the case of generalized GH equations, the first two terms in (22) are to be
replaced by another expression in, eventually, more generalized coordinates (corresponding to more
thermodynamic state functions and possibly other statistical quantities). The nature of the problem
remains unchanged; all complications arise only as a consequence of the complexity of calculations
in a space with more dimensions.

(ii) Recently ([52,53]), Gao at al. proved that, under three specific assumptions (of physical
inspiration), the only PDF in which the GBS entropy equals the (classical) thermodynamic entropy
is the generalized Boltzmann distribution (i.e., a distribution of exponential type). A hint points out
that the result may be extended to include the Tsallis entropy as well. This remarkable result gives a
partial answer to problem (22).

However, the three assumptions of Gao significantly restrict (from the mathematical perspective)
the framework, and weaker hypotheses are desirable. Moreover, hidden necessary conditions exist
behind Equation (22), such as the extensivity property; it follows that the thermodynamic entropy
and the statistic entropy (equal to the previous one) must be both extensive or both non-extensive
(e.g., for the Tsallis and Kaniadakis entropies [58]).

(iii) We must make a clarification of terminology. Common language identifies “entropy” as
a functional E = E[ f ] defined of the set of PDFs, with “entropy” as a specific value E[ f0] of this
functional. (At a more elementary level, this happens when we speak about “the function sint”,
instead of “the function sin”).

Denote the BGS, the Tsallis, and the Kaniadakis entropy functionals with EBGS, ET, and
EK, respectively. Denote by fBGS, fT, fK the parameterized families of PDFs obtained in the three
previous examples. We showed that the thermodynamic entropy S = S(x) coincides (as a function
of x) with EBGS[ fBGS(·, y)], ET [ fT(·, y)] and EK[ fK(·, y)]. This does not mean that S (which is
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a function!) coincides with the functionals (!) EBGS, ET, EK. This is the true meaning of the
equivalence stated in (15) and (22).

Remark 6. Denote f = f (x, y) a family of PDFs on U× M, ϕ a generalized logarithm [59] and

H[ f ](x) := −
∫

y∈M
F(x, y) · ϕ(F(x, y))dy (23)

a parameterized family of arbitrary generalized entropy functionals. In particular, ϕ may be any
of the Neperian, the Kaniadakis, or the Tsallis logarithms previously considered. Denote gH, f a
Riemannian generalized Fisher metric on U, canonically associated to H and f [41].

The thermodynamic entropy S is called metrically equivalent with the entropy H[ f ] if the first
fundamental form g in (10) coincides with gH, f . Variants may include the following:

• g and gH, f are homothetic;
• g and gH, f are conformal;
• g and gH, f are in geodesic correspondence.

The new “equivalence problem” can now be stated: Find H and f such that S is metrically
equivalent with H[ f ].

This equivalence of entropies is not more general than the previous one in (22), nor an extension
or a particularization of it; it is of a different nature, a kind of intermediate equivalence by means of
derived objects. The equivalence in (22) and the “metrical equivalence” are logically unrelated. We
do not enter into further detail here, as the study requires the whole machinery behind the generalized
Fisher metrics [41].

5. Thermodynamic Interpretations and Applications

The previous sections were more mathematically oriented. Now, we will focus on
some physical interpretations of the holonomic model from Sections 3 and 4. Because
our claims may seem too speculative to some physicists, we encourage criticism and
reasoned rebuttals.

(i) First, we remark that we use somehow atypical variables, as coordinates for the
“space of configurations” U (in addition to the volume x3, which is commonly and
frequently used), namely the thermal pressure coefficient x1 and the thermal capacity
x2. However, even if these variables/observables are less common in the literature,
they are not completely absent (e.g., [60,61]).
As a consequence, the results and the conclusions we obtained are not covariant,
because they rest in an essential manner on the particular chosen coordinates system.

(ii) The intrinsic geometry and the extrinsic geometry of the hypersurface S do not
depend on the variable x2, so they are independent of the heat capacity G̃. Instead,
the set properties of this hypersurface depend on x2. The hypersurface S may have
set theoretic or differential properties which cannot be explained geometrically.
On another hand, a challenging question is the following: What thermodynamical
properties may be characterized through intrinsic properties of S and what through
extrinsic ones? For example, as remarked previously, optimal paths joining two given
states can be modeled as geodesics, which are intrinsic objects.

(iii) Our formalism may be useful when one develops a calculus on the hypersurface S, for
example, by taking higher-order derivatives of the pressure w.r.t. temperature (see [62]
for second-order ones). Geometrization of higher-order derivatives involves, in gen-
eral, the use of fiber bundles over a manifold; here, the holonomy of the model proves
again its superiority over an eventual non-holonomic model, where the manifold
machinery is weaker.

(iv) Translations can be made between geometric and physical properties. For example,
the only points where the first mean curvature function H1 vanishes are the critical
points for the pressure function (w.r.t. the temperature); the minimum value for H2
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and the “unbounded” behavior of H1 arise only for extreme physical conditions (very
small volume and thermal pressure coefficient).
The level sets for the entropy function S (see Figure 1) have deep physical meaning.
We look for their intersection with the level sets of the scalar curvature function ρ
(see Figure 8), which have interesting mathematical meaning. Namely, let R ≥

√
2

and a be a real constant. Consider the points (x, S(x)) ∈ S, such that

S(x) = a, ρ(x) = − 4
R2 + 2

.

The intersection curve of the two level sets satisfies the system of two implicit equations
and an inequation

x1x3 − x2 = a, (x1)2 + (x3)2 = R2, x3 > 0.

There exists a unique θ ∈ (0, π), such that

x1 = Rcosθ, x2 =
1
2

R2sin2θ − a, x3 = Rsinθ.

The parameterized intersection curve θ → (Rcosθ, 1
2 R2sin2θ − a, Rsinθ) has the graph

in Figure 9.

Figure 9. The intersection of the two level sets.

The second coordinate of the intersection curve (which corresponds to the heat capacity
G̃ restricted along the intersection curve) suggests a point

(
1
2

R2cos2θ,
1
2

R2sin2θ − a),

situated on a virtual circle of center (0,−a) and radius R2

2 . Formally, we denote G̃d :=
1
2 R2cos2θ and call it the mate heat capacity along the intersection curve. The following formula
holds:

(G̃d)2 + (G̃2 + a)2 =
1
4

R4.
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We do not know if this quantity can be extended to a (formal, speculative, and exotic)
new state variable; anyhow, it has an interesting intrinsic interpretation.

(v) The parameterized PDFs, which arise as solutions of the special stochastic equations
in Section 4, are encountered in the literature, in different frameworks (see, for exam-
ple, [63]). Moreover, the geometrization of such parameter spaces leads to the study of
statistical manifolds and of Fisher-like Riemannian metrics in information geometry
(see [39–41] and reference therein).

(vi) The ODE system (14) allows the determination of the geodesics lying on the hyper-
surface S. As pointed out in Remark 4 (iii), any geodesic local minimizes the arc
length between two points, which can be interpreted as two events in the space of
thermodynamic states x1, x2, x3, and S. We have here a possible control tool, useful to
“drive” a thermodynamic engine from a starting state to a nearby final state.

More precisely, consider the “state” in S at time t0, characterized by p̃(t0), G̃(t0), V(t0)
and S(t0). We want to reach the “state” (A, B, C, S(A, B, C)) ∈ S, by the “shortest” path.
Remark 4, (iii) ensures us that there exists a unique “minimal” geodesic

γ = γ(t) : [t0, t0 + b] → S , γ(t0) = ( p̃(t0), G̃(t0), V(t0), S(t0)), (24)

such that γ(t0 + b) = (A, B, C, S(A, B, C)). Here, “minimal” refers to the Riemannian
distance w.r.t. the first fundamental form, not to the Euclidean distance (as the coordinates
are not position coordinates). In practice, the geodesic γ must be determined numerically,
from (14).

Such an approach is, of course, determined/limited by the choice we made, by the
particular Riemannian geometry we found on S. There exist other alternative Riemannian
metrics with similar claims ([64–66]), associated to the GH equation, and a comparison of
their practical efficiency and relevance deserves another detailed study.

(vii) The maximum entropy (MaxEnt) problem is a fundamental area of investigation in
Statistical Mechanics and information theory. Its classical thermodynamics counterpart
is less studied and, in any case, with totally different tools ([67], Ch.5); mathematical
optimization with non-holonomic constraints is a difficult theory, which emerged only
recently (see [68–70] and references therein).
Our holonomic geometrization allows a direct study, with geometric visualization, of
(thermodynamic) entropy fluctuations, including extremum points, on subsets of the
hypersurface S.

(viii) The geometric model in Section 3 does not take into account the (eventual) positiveness
of the entropy. Such an additional condition, if necessary, restricts the framework to
an open set of U.

(ix) Like other fundamental equations in physics, the GH equation does not remain valid
outside “normal conditions”, for example, for long-range interactions. Our holonomic
model in Section 4 can be refined to cover scale fluctuations. As the coordinates we use
are not the “spatial” ones, the Euclidean distance r (such as the length of the position
vector field in spherical coordinates) no longer has applicability. We replace the r-scale
by the V-scale, because there is a direct (nonlinear) proportionality between them.

Let ν : (0, ∞) → (0, ∞) be a smooth function, strictly increasing, with the following
properties:

lim
t→∞

ν(t) = ∞ , lim
t→0

ν(t) = 0.

Obviously, there exists a unique t0 such that ν(t0) = 1. Relevant examples are ν(t) =
tα, for a fixed positive α; ν(t) = atb − 1, for fixed positive b and a > 1.

Consider the ν-GH equation

dG + S(ν) · dT − ν(V) · dp = 0.

131



Mathematics 2023, 11, 3934

We derive the formula for the ν-entropy

S(ν) = ν(V) · p̃ − G̃.

In particular, for ν = id, we obtain S = S(id) and we recover Formula (6).
By analogy with the computations in Section 3, we obtain a hypersurface S(ν), we

derive a first fundamental form g(ν), a second fundamental form h(ν), the mean curvature
functions, the principal curvature functions, and the scalar curvature function, and we can
write the equations of the geodesics.

Each member of this infinite family of models “parameterized” by ν deserves a similar
study as those in Sections 4 and 5. The techniques will be similar but with distinctive
outcomes. At “infinity” will dominate the long-range interactions with specific (local) en-
tropies; near “zero”, for tiny-range interactions, we shall obtain different specific entropies.

(x) The non-holonomic character of the Gibbs–Helmholtz Equation (2) (or its equivalent
counterpart (1)) obstructs the description of solutions as global integral hypersurfaces
in R5. Moreover, the versatility of the theromdynamics formalism and “idioms” hides
an apparent paradox; the phase functions G, p, S, T, V depend on each other, but,
when considered as coordinates, they are supposed to be independent. This is why, in
the literature, one often uses a particular (and implicit) case; the Gibbs internal energy
G is supposed to be a function of the temperature and pressure only, i.e., G = G(p, T).
This loss of generality seems a fair price to pay, but (unfortunately) there are more
hidden additional “taxes”. For example, from (2) and (6), one derives S = − ∂G

∂T and
∂p
∂T = 0; it follows that the thermal pressure coefficient p̃ is always null!

Of course, all our previous results work also in the special case G = G(p, T), where they
are significantly simplified.

6. Discussion

The first part of the paper contains a short incursion into the realm of non-holonomic
geometrizations of GH equations. We did not intend to develop this path, because compar-
ing the possible approaches and further studies would take too much space. This may be
an interesting project for the future. The same remark is valid for an eventual critical study
about the pros and the cons of the non-holonomic modelization, when compared to the
holonomic one.

The results in Section 4 originate in our belief that entropy must be described in
a unified way in Classical Thermodynamics, as in statistical mechanics or information
theory. We avoided the temptation to postulate it firmly, because we are aware that this
hypothesis might look too speculative, from the viewpoint of both theoretical or applied
scientists. Our mathematical results are expressed in a neutral approach, leaving open doors
toward unlimited future conclusions. The powerful local and global differential geometric
tools and, especially, the Riemannian machinery, may bring new insights concerning
the abstract “phase spaces” from thermodynamics. A more ambitious goal would be a
(differential geometry-based) “Grand Unifying Theory” for thermodynamics, to include
the non-holonomic models for the GH equation, the holonomic ones (as such in Section 3),
and—eventually—the statistical manifolds approach [39,40].

In addition to the content of Sections 4 and 5, more physical interpretations are
needed, in order to confirm or to reject our claims. We must investigate if our speculative
ideas correspond not only to (possible) “gedanken experiments”, but also to real life
thermodynamic systems with significant applications. For example, it would be interesting
to know if the geodesic movement on the hypersurface S corresponds to the most efficient
path into the “phase space” of a thermodynamic system.

Developments may include solving the analogue of Equations (15), (18), and (20),
for other remarkable families of entropies (Renyi, Sharma–Taneja–Mittal, Naudts, etc).
New examples are needed, in addition to the PDF solutions of normal type ([71–74]).

132



Mathematics 2023, 11, 3934

Rethinking the basic thermodynamics postulates may, in particular, impose restrictions on
the “equivalence problem” for entropy and forbid some PDFs to be solutions.

Equations (7)–(9) can be used in order to construct similar holonomic geometriza-
tions of the GH equation. In these cases, one needs a completely different approach to
characterize the equivalence of the GH entropy and entropies from statistical mechanics
(BGS, Tsallis, Kaniadakis, etc). Instead of the “simple” stochastic integral equivalence
in Equations (17), (20), and (22), one presumably will obtain more complicated stochastic
functional and integral equivalence equations.

We restricted our study to the physics domain, but we must stress that there exists
another active field of research, which translates (via a specific dictionary) the thermody-
namical notions and results into economic ones [49–51,75,76]. For example, the internal
energy, the temperature, and the pressure are translated to the growth potential, the internal
politics stability, and the price level, respectively; the entropy conserves its meaning. All
the contents of our paper have a direct correspondence within this economic theory, which
remains to be more precisely developed in a future paper.

In several places in the paper, we emphasized the multitude of Riemannian geometries
which can be associated, in various ways, to holonomic or to non-holonomic models for the
GH equation. There exist at least two tools to compare any two such geometries. The first
one is by means of the deformation algebra associated to the Levi–Civita connections of
the respective Riemannian metrics (see [77] and references therein). The second one is the
geodesic correspondence, which eventually occurs between two Riemannian manifolds and
can translate the geodesic dynamics from one space into the other (see, for example, [78]).
The comparison results are important in differential geometry, as they establish sufficient
(and sometimes also necessary) conditions, in order that a “space” be homeomorphic,
diffeomorphic, isometric, conformal, etc., with a standard one (for example, a plane or a
sphere). The deformation results establish “how far” a ”space” is from a standard one.

7. Conclusions

The paper reviews some known non-holonomic geometric tools and develops some
new holonomic ones, in order to model the solutions of the Gibbs–Helmholtz equation
from thermodynamics. Beyond the mathematical results, at the border of differential
geometry with statistics, we make some speculative claims about possible applications in
physics and in information theory. The key notion is the use of entropy, through both the
classical and the statistical approaches. This combined study is facilitated by the choice of a
new coordinate system in the phase space R4, parameterizing the entropy as a function
depending on the thermal pressure coefficient, the heat capacity, and the volume.
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Abstract: We determine the general natural metrics G on the total space TM of the tangent bundle of
a Riemannian manifold (M, g) such that the Schouten–van Kampen connection ∇ associated to the
Levi-Civita connection of G is (quasi-)statistical. We prove that the base manifold must be a space
form and in particular, when G is a natural diagonal metric, (M, g) must be locally flat. We prove that
there exist one family of natural diagonal metrics and two families of proper general natural metrics
such that (TM,∇, G) is a statistical manifold and one family of proper general natural metrics such
that (TM \ {0},∇, G) is a quasi-statistical manifold.
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1. Introduction

Statistical manifolds, whose points correspond to probability distributions, provide
a natural framework for information geometry, which uses differential geometry in the
study of probability theory and statistics and which was initiated by C. R. Rao in [1],
who was the first to treat a Fisher matrix as a Riemannian metric. The notion of statis-
tical manifold, introduced in 1987 by S. L. Lauritzen in the paper [2] and studied, e.g.,
in [2–32] and the references therein, has various applications in information science, neural
networks, and statistical physics.

According to T. Kurose [14], a statistical manifold is a differentiable manifold endowed
with a symmetric linear connection ∇ and a (pseudo-)Riemannian metric h such that the
covariant derivative ∇h is totally symmetric. A couple (∇, h) with this property is called
a statistical structure or a Codazzi pair, while the metric h and the connection ∇ are said
to be Codazzi-coupled (see [2,9,12,23]). Alternatively, the notion of statistical manifold
was defined by H. Furuhata and I. Hasegawa in [11] as a (pseudo-)Riemannian manifold
endowed with a pair of torsion-free conjugate connections. For the pairs of connections
compatible with a g–structure, we go back in the literature to V. Cruceanu and R. Miron [33].

A classical example of statistical manifold is a (pseudo-)Riemannian manifold (M, h)
endowed with the Levi-Civita connection of the metric h. The statistical manifolds genera-
lize the (pseudo-)Riemannian manifolds by extending the parallelism of the metric h under
the Levi-Civita connection to the Codazzi coupling of the metric with a torsion-free linear
connection. Moreover, relaxing the Codazzi coupling to the case when the linear connection
has nonzero torsion, T. Kurose introduced in [15] the notion of statistical manifold admitting
torsion, also called quasi-statistical manifold (see [17]), which is the subject of quantum
information geometry.

Codazzi couplings of an affine connection with a pseudo-Riemannian metric, a nonde-
generate 2-form, and a tangent bundle isomorphism on smooth manifolds and in particular
on an almost (para-)Hermitian manifold (M, g, L) endowed with the 2-form ω given as

Mathematics 2023, 11, 4614. https://doi.org/10.3390/math11224614 https://www.mdpi.com/journal/mathematics136
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ω(X, Y) = g(LX, Y), were studied by T. Fei and J. Zhang in [9]. They proved that the Co-
dazzi couplings of ∇ with both g and L lead to a (para-)Kähler structure, and subsequently,
they defined Codazzi-(para-)Kähler manifolds as (para-)Kähler statistical manifolds. In [12],
the study was extended to torsion couplings between an affine connection ∇ of nontrivial
torsion and both g and L on an almost (para-)Hermitian manifold. The authors proved that
the pair (∇, L) is torsion-coupled if and only if ∇ is (para-)holomorphic and the almost
(para-)complex structure L is integrable. Statistical structures on almost anti-Hermitian
(or Norden) manifolds were studied in [26,27] by A. Salimov and S. Turanli, who intro-
duced the notion of anti-Kähler–Codazzi manifolds, then by L. Samereh, E. Peyghan, and
I. Mihai in [28], and very recently by A. Gezer and H. Cakicioglu, who provided in [10]
an alternative classification of anti-Kähler manifolds with respect to a torsion-free linear
connection. Codazzi pairs on almost para-Norden manifolds were treated by S. Turanli
and S. Uçan in [29]. F. Etayo et al. proved in [8] that Kähler–Codazzi type manifolds reduce
to Kähler type manifolds in all the four types of (α, ε)-manifolds teated in an unified way
in [34]. In [30], G. E. Vîlcu introduced the notion of para-Kähler-like statistical manifold
and proved that if a manifold of this type has constant curvature in the Kurose’s sense,
then the statistical structure of the manifold is a Hessian structure.

Statistical structures on the tangent bundle of differentiable manifolds were treated in
recent papers, such as [4,13,19,22,24].

The background of the present work is the total space TM of the tangent bundle of a
Riemannian manifold (M, g), endowed with a metric G introduced by V. Oproiu in [35] as
a general natural lift of the metric from the base manifold, by using Kowalski–Sekizawa’s
classification from [36] and the results in [37]. This metric, called a general natural metric,
depends on six coefficients which are smooth real functions of the energy density t of a
tangent vector y. We study the conditions under which the (pseudo-)Riemannian manifold
(TM, G) endowed with the Schouten–van Kampen connection ∇ associated to the Levi-
Civita connection of G is a statistical manifold admitting torsion (SMAT). A necessary
condition for (TM,∇, G) to be a SMAT is that the base manifold is a space form. We
prove that (TM \ {0},∇, G) is a SMAT if and only if (M, g) has negative constant sectional
curvature and the metric G depends on the energy density t, the constant sectional curvature
of (M, g), an arbitrary nonzero real constant κ2 and an arbitray smooth real function of t
which is not − κ2

2t2 . On the other hand, (TM,∇, G) is a statistical manifold (without torsion)
if and only if the base manifold is locally flat and the metric G is of natural diagonal type
(depending on two arbitrary nonzero smooth real functions of the energy density t and on
an arbitrary nonzero real constant, satisfying the nondegeneracy conditions of the metric) or
a proper general natural metric with two possible expressions. In one case, the expression
of G depends on an arbitrary smooth real function c3 of t different from const√

t
for every

const ∈ R, t > 0, such that c3(0) �= 0, and on two arbitrary nonzero real constants whose
product is different from 1. In the other case, the metric G depends only on two arbitrary
smooth real functions c2, c3 of the energy density, such that c2(0)c3(0) �= 0, c3(t) �= const√

t
for every const ∈ R, t > 0. If c2(t) �= κ(c3(t))2 for every κ ∈ R, t ≥ 0, then the Levi-Civita
connection of G is different from its associated Schouten–van Kampen connection, and
hence (TM,∇, G) is a nontrivial statistical manifold.

The results obtained in this work lead to new examples of (quasi-)statistical structures
on the tangent bundle of a Riemann manifold. Unlike the majority of previous studies (see,
e.g., [4,13,19,22,24]), which produce new examples of statistical structures on the tangent
bundle by lifting a given statistical structure on the base space, the present article does
not assume the a priori existence of a statistical structure on the base manifold. The new
structures are, thus, uncorrelated with the ones from the base, therefore constituting a more
convenient geometric setting to investigate the statistical behavior in depth. Thus, new
opportunities are opened for applications in information theory, machine learning, neural
networks, statistical mechanics and geometry of Ricci solitons, for which we cite [38–41]
and the references therein.
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We mention that in the present paper the manifolds, tensor fields, and other geometric
objects are considered to be smooth and the Einstein summation convention is used, the
range of the indices always being {1, . . . , n}.

2. The Schouten–van Kampen Connection of a General Natural Metric on
T M Revisited

In this section, we recall some results from our previous paper [42] concerning the
Schouten–van Kampen connection associated to the Levi-Civita connection of a general
natural metric on the total space TM of the tangent bundle of a Riemannian manifold. For
the geometry of the tangent bundle we cite the monograph [43].

Let (M, g) be a Riemannian manifold of dimension n and let (xi)n
i=1 and (xi, yj)n

i,j=1 be

the local coordinates on an open subset U of M and on τ−1(U) ⊂ TM, respectively, where
τ : TM → M is the tangent bundle of M.

Denoting, by a slight abuse, the set of all vector fields tangent to TM by TTM, we
have its direct sum decomposition, that is:

TTM = VTM ⊕ HTM, (1)

into the vertical distribution VTM = ker τ∗ and the horizontal distribution HTM, lo-
cally generated, respectively, by { ∂

∂yi }n
i=1 and { δ

δxj
}n

j=1, the horizontal generators being
δ

δxj =
∂

∂xj − ylΓh
lj

∂
∂yh , where Γh

lj are the Christoffel symbols of the metric g. Then, the local

frame field adapted to the direct sum decomposition (1) is { ∂
∂yi ,

δ
δxj }n

i,j=1, denoted also by

{∂i, δj}n
i,j=1. Its Lie brackets satisfy the identities:

[∂i, ∂j] = 0, [∂i, δj] = −Γh
ij∂h, [δi, δj] = −Rh

lijy
l∂h, (2)

where Rh
lij are components of the curvature tensor field of (M, g) in a local chart (U, xi)n

i=1.

The horizontal and vertical lifts of a vector field X = Xi ∂
∂xi from M to TM are denoted

by XH and XV and with respect to the adapted local frame field, they have the expressions

XH = Xi δ

δxi , XV = Xi ∂

∂yi .

The kinetic energy or energy density of any tangent vector y ∈ τ−1(U) with respect to
the Riemannian metric g is given as:

t =
1
2
‖y‖2 =

1
2

gτ(y)(y, y) =
1
2

gik(x)yiyk ≥ 0. (3)

An important tool in the geometry of the tangent bundle are the metrics constructed as
natural lifts of the Riemannian metric from base manifold to the total space of the tangent
bundle, classified by O. Kowalski and M. Sekizawa in [36]. By using this classification and
the results in [37], V. Oproiu defined in [35] a general natural metric on TM, given locally as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

G
(

δ
δxi ,

δ
δxj

)
= c1gij + d1g0ig0j = G(1)

ij

G
(

∂
∂yi ,

∂
∂yj

)
= c2gij + d2g0ig0j = G(2)

ij

G
(

∂
∂yi ,

δ
δxj

)
= G
(

δ
δxi ,

∂
∂yj

)
= c3gij + d3g0ig0j = G(3)

ij ,

(4)

where ci, di (i = 1, 2, 3) are smooth real functions of the energy density on TM and
g0i = gliyl .
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The invariant expression of the metric G is:⎧⎪⎨⎪⎩
G(XH

y , YH
y ) = c1(t)gτ(y)(X, Y) + d1(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YV

y ) = c2(t)gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),
G(XV

y , YH
y ) = c3(t)gτ(y)(X, Y) + d3(t)gτ(y)(X, y)gτ(y)(Y, y),

(5)

for all X, Y ∈ T 1
0 (M), y ∈ TM, where t is the energy density of y.

The nondegeneracy conditions for the metric G are as follows:

c1c2 − c2
3 �= 0, (c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)

2 �= 0. (6)

The metric G is positive definite if:

c1 + 2td1 > 0, c2 + 2td2 > 0, (c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)
2 > 0. (7)

When the horizontal and vertical distributions are orthogonal with respect to the
metric G, we say that G is a metric of natural diagonal lift type or a natural diagonal metric on
TM (see [44]). This type of metric has the expression (5), with c3 = d3 = 0. We say that a
metric given by (5) is a proper general natural metric if it is not a natural diagonal metric.

The matrix of the metric G with respect to the adapted local frame field {δi, ∂j}n
i,j=1

and the inverse matrix are, respectively:⎛⎜⎜⎝
(

G(1)
ij

) (
G(3)

ij

)
(

G(3)
ij

) (
G(2)

ij

)
⎞⎟⎟⎠

i,j∈{1,...,n}

,

⎛⎜⎜⎝
(

Hjk
(1)

) (
Hjk
(3)

)
(

Hjk
(3)

) (
Hjk
(2)

)
⎞⎟⎟⎠

j,k∈{1,...,n}

,

where:

Hkl
(1) = p1gkl + q1ykyl , Hkl

(2) = p2gkl + q2ykyl , Hkl
(3) = p3gkl + q3ykyl , (8)

with:

p1 = c2
c1c2−c2

3
, p2 = c1

c1c2−c2
3
, p3 = − c3

c1c2−c2
3

(9)

q1 = − c2d1 p1−c3d3 p1−c3d2 p3+c2d3 p3+2d1d2 p1t−2d2
3 p1t

(c1+2d1t)(c2+2d2t)−(c3+2d3t)2 ,

q2 = (c3+2d3t)[(d3 p1+d2 p3)(c1+2d1t)−(d1 p1+d3 p3)(c3+2d3t)]
(c2+2d2t)[(c1+2d1t)(c2+2d2t)−(c3+2d3t)2]

− d2 p2+d3 p3
c2+2d2t ,

q3 = − (d3 p1+d2 p3)(c1+2d1t)−(d1 p1+d3 p3)(c3+2d3t)
(c1+2d1t)(c2+2d2t)−(c3+2d3t)2 .

(10)

Inspired by the Schouten–van Kampen connection associated to a linear connection
on a smooth manifold with two globally complementary distributions (see [45] and [46]),
we defined in [42] the Schouten–van Kampen connection ∇ associated to the Levi-Civita
connection ∇ of a general natural metric G by the relation:

∇XY = V∇XVY + H∇X HY, (11)

for any vector fields X, Y on TM, where V and H are the projection tensor fields corre-
sponding to VTM and HTM, respectively.
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Proposition 1. (Proposition 3.1 [42]) The Schouten–van Kampen connection ∇ associated to the
Levi-Civita connection ∇ of a general natural metric G on TM has the following expression in the
adapted local frame field {∂i, δj}n

i=1:⎧⎪⎨⎪⎩
∇ ∂

∂yi

∂
∂yj = Qh

ij
∂

∂yh , ∇ δ
δxi

∂
∂yj =

(
Γh

ij + Uh
ji

)
∂

∂yh

∇ ∂
∂yi

δ
δxj = Uh

ij
δ

δxh , ∇ δ
δxi

δ
δxj =

(
Γh

ij + Sh
ij

)
δ

δxh ,
(12)

where Γh
ij are the Christoffel symbols of the metric g of the base manifold M:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Qh
ij =

1
2 (∂iG

(2)
jk + ∂jG

(2)
ik − ∂kG(2)

ij )Hkh
(2) +

1
2 (∂iG

(3)
jk + ∂jG

(3)
ik )Hkh

(3),

Uh
ij =

1
2 (∂iG

(3)
jk − ∂kG(3)

ij )Hkh
(3) +

1
2 (∂iG

(1)
jk + Rl

0jkG(2)
li )Hkh

(1),

Uh
ij =

1
2 (∂iG

(3)
jk − ∂kG(3)

ij )Hkh
(2) +

1
2 (∂iG

(1)
jk + Rl

0jkG(2)
li )Hkh

(3),

Sh
ij = − 1

2 (∂kG(1)
ij + Rl

0ijG
(2)
lk )Hkh

(3) + c3Ri0jk Hkh
(1),

(13)

where Rh
kij are the components of the curvature of the base manifold and:

Rl
0ij = Rl

hijy
h, Ri0jk = Rihjkyh.

The torsion tensor field T of the connection ∇ is defined by the formula:

T(X, Y) = ∇XY −∇YX − [X, Y], ∀X, Y ∈ T 1
0 (TM). (14)

Proposition 2. The torsion tensor field of the Schouten–van Kampen connection ∇ given in
Proposition 1 has the following components with respect to the adapted local frame field {∂i, δj}n

i=1:⎧⎨⎩ T
(

∂
∂yi ,

∂
∂yj

)
= 0, T

(
δ

δxi ,
δ

δxj

)
= Rh

0ij
∂

∂yh ,

T
(

∂
∂yi ,

δ
δxj

)
= −T

(
δ

δxj ,
∂

∂yi

)
= Uh

ij
δ

δxh − Uh
ij

∂
∂yh .

(15)

Proof. We showed in [42] Proposition 3.2 that the torsion tensor field of the Schouten–van
Kampen connection ∇ has the components:⎧⎪⎪⎪⎨⎪⎪⎪⎩

T
(

∂
∂yi ,

∂
∂yj

)
= (Qh

ij − Qh
ji)

∂
∂yh ,

T
(

δ
δxi ,

δ
δxj

)
=
(

Sh
ij − Sh

ji

)
δ

δxh + Rh
0ij

∂
∂yh ,

T
(

∂
∂yi ,

δ
δxj

)
= −T

(
δ

δxj ,
∂

∂yi

)
= Uh

ij
δ

δxh − Uh
ij

∂
∂yh .

(16)

From the first expression in (13) it follows that Qh
ij is symmetric in i and j, and hence,

from (16), we have:

T
(

∂

∂yi ,
∂

∂yj

)
= 0.

By substituting into the last relation (13) the components of the metric G from (4) and
the entries of the inverse matrix form (8), then using in turn (10) and (9), we obtain that:

Sh
ij − Sh

ji =
c2c3

c1c2 − c2
3

(
Rh

ij0 + Rh
j0i + Rh

0ij

)
,

which vanishes due to the first Bianchi identity, and hence, the second relation in (16)
reduces to:

T
(

δ

δxi ,
δ

δxj

)
= Rh

0ij
∂

∂yh .
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Thus, the components of the torsion tensor field of the Schouten–van Kampen connec-
tion ∇ on (TM, G) are those given in the statement.

Theorem 1. (Theorem 3.4 [42]) The Schouten–van Kampen connection on (TM, G), given in
Proposition 1, is torsion-free if and only if the base manifold (M, g) is locally flat and the metric G
has the expression:⎧⎪⎨⎪⎩

G(XH
y , YH

y ) = κ1gτ(y)(X, Y),
G(XV

y , YV
y ) = c2(t)gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = c3(t)gτ(y)(X, Y) + c′3(t)gτ(y)(X, y)gτ(y)(Y, y),
(17)

where κ1 is a real constant and c2, d2, c3 are smooth functions depending on the energy density on
TM, such that one of the following two sets of conditions is satisfied:

(i) κ1c2 − c2
3 �= 0, κ1(c2 + 2td2)− (c3 + 2tc′3)

2 �= 0,

(ii) κ1 > 0, c2 + 2td2 > 0, κ1(c2 + 2td2)− (c3 + 2tc′3)
2 > 0.

In the first case, G is a pseudo-Riemannian metric and in the second one it is a Riemannian metric.

Proposition 3. (Proposition 3.5 [42]) The torsion-free Schouten–van Kampen connection char-
acterized in Theorem 1 coincides with the Levi-Civita connection of a pseudo-Riemannian general
natural metric G given by (17) if and only if the coefficients of G fall in one of the instances:

(i) c3(t) = 0, ∀t ≥ 0, c2, d2 are some smooth functions of t such that:

κ1c2(t) �= 0, c2(t) + 2td2(t) �= 0, ∀t ≥ 0;

(ii) c2(t) = d2(t) = 0, ∀t ≥ 0 and c3 is an arbitrary nonzero smooth function of t,
c3(t) �= const√

t
, for all const ∈ R and all t > 0;

(iii) c2(t) = κ2 ∈ R, c3(t) = κ3 ∈ R, such that κ1κ2 − κ2
3 �= 0, d2(t) = 0, for all t ≥ 0;

(iv) c2(t) = κ(c3(t))2, d2(t) = 2κc′3(t)(c3(t) + tc′3(t)), where κ is a nonzero real constant, such
that κ1κ �= 1 and c3 is an arbitrary nonzero smooth function of t, c3(t) �= const√

t
, for all

const ∈ R and all t > 0.

If the coefficients of the metric G from Proposition 3 have the expressions (iv) extended
to the situation when κ is an arbitrary real constant such that κ1κ �= 1, then by taking
κ = 0, we get the coefficients from (ii), and by taking c3(t) = κ3 ∈ R \ {0}, we get the
coefficients from (iii) for a proper general natural metric. Thus, we can state the following
characterization of the proper general natural metrics on TM whose Levi-Civita connection
coincides with the associated Schouten–van Kampen connection.

Proposition 4. The proper general natural metrics G on TM for which the Levi-Civita connection
coincides with its associated Schouten–van Kampen connection are given by (17), where c3 is an
arbitrary nonzero smooth function of t, c3(t) �= const√

t
for every t > 0, const ∈ R, and the functions

c2 and d2 have the particular expressions:

c2(t) = κ(c3(t))2, d2(t) = 2κc′3(t)(c3(t) + tc′3(t)),

where κ is an arbitrary real constant such that κ1κ �= 1.

3. General Natural Metrics Torsion-Coupled with the Schouten–van Kampen
Connection

Statistical manifolds, the main tool of classical information geometry, were defined
in [14] as follows:

141



Mathematics 2023, 11, 4614

Definition 1. Let (M, h) be a pseudo-Riemannian manifold, and let ∇ be a torsion-free affine
connection on M. The triplet (M,∇, h) is called a statistical manifold if the tensor field ∇h is
totally symmetric, that is:

(∇Xh)(Y, Z) = (∇Yh)(X, Z), ∀X, Y, Z ∈ T 1
0 (M). (18)

A metric h and an affine connection ∇ satisfying (18) are called Codazzi-coupled. In this case, the
couple (∇, h) is called a Codazzi pair or a statistical structure on M and ∇ is called a statistical
connection on (M, h).

Extending the condition (18) to the case when the affine connection has nontrivial
torsion, T. Kurose defined in [15] the statistical manifolds admitting torsion, also known
as quasi-statistical manifolds (see [17]), which represent the subject of quantum informa-
tion geometry.

Definition 2. Let (M, h) be a pseudo-Riemannian manifold, and let ∇ be an affine connection of
torsion T∇ on M. If the metric h and the connection ∇ satisfy the relation:

(∇Xh)(Y, Z)− (∇Yh)(X, Z) = −h
(

T∇(X, Y), Z
)

, ∀X, Y, Z ∈ T 1
0 (M), (19)

then the triplet (M,∇, h) is called a statistical manifold admitting torsion or a
quasi-statistical manifold.

We say that a metric h and an affine connection ∇ with nonzero torsion T∇ satisfying (19)
are torsion-coupled. In this case the couple (∇, h) is called a statistical structure admitting torsion
on M or a quasi-statistical structure on M and ∇ is called a quasi-statistical connection on (M, h).

In particular, if TM is the total space of the tangent bundle of a Riemannian manifold
(M, g), endowed with a general natural metric G and with the corresponding Schouten–van
Kampen connection ∇, we say that the metric G and the connection ∇ are torsion-coupled,
(∇, G) is a statistical structure admitting torsion on TM or a quasi-statistical structure on TM, ∇
is a quasi-statistical connection on (TM, G), and the triplet (TM,∇, G) is a statistical manifold
admitting torsion or a quasi-statistical manifold if:

(∇XG)(Y, Z)− (∇YG)(X, Z) + G(T(X, Y), Z) = 0, ∀X, Y, Z ∈ T 1
0 (TM), (20)

where T is the torsion tensor field of ∇.
If the connection ∇ is torsion-free, then the relation (20) reduces to:

(∇XG)(Y, Z)− (∇YG)(X, Z) = 0, ∀X, Y, Z ∈ T 1
0 (TM). (21)

If the metric G and the connection ∇ satisfy the relation (21), we say that G and ∇
are Codazzi-coupled, (∇, G) is a Codazzi pair or a statistical structure on TM, ∇ is a statistical
connection on (TM, G) and the triplet (TM,∇, G) is a statistical manifold.

For simplicity of notations, we consider a (0, 3)-tensor field T on TM:

T (X, Y, Z) = (∇XG)(Y, Z)− (∇YG)(X, Z) + G(T(X, Y), Z), (22)

for every X, Y, Z ∈ T 1
0 (TM). Thus, the relation (20) which characterizes the statistical

manifold admitting torsion (TM,∇, G) takes the simpler form:

T (X, Y, Z) = 0, ∀X, Y, Z ∈ T 1
0 (M). (23)
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Taking into account the expressions (15) of the torsion of ∇ and the relation (22) which
gives the tensor field T , we obtain the components of T with respect to the adapted local
frame field {δi, ∂j}n

i,j=1:

T (∂i, ∂j, ∂k) = (∇∂i
G)(∂j, ∂k)− (∇∂j

G)(∂i, ∂k); (24)

T (∂i, ∂j, δk) = (∇∂i
G)(∂j, δk)− (∇∂j

G)(∂i, δk); (25)

T (∂i, δj, ∂k) = (∇∂i
G)(δj, ∂k)− (∇δj G)(∂i, ∂k) + Uh

ijG
(3)
hk − Uh

ijG
(2)
hk ; (26)

T (∂i, δj, δk) = (∇∂i
G)(δj, δk)− (∇δj G)(∂i, δk) + Uh

ijG
(1)
hk − Uh

ijG
(3)
hk ; (27)

T (δi, δj, ∂k) = (∇δi G)(δj, ∂k)− (∇δj G)(δi, ∂k) + Rh
0ijG

(2)
hk ; (28)

T (δi, δj, δk) = (∇δi G)(δj, δk)− (∇δj G)(δi, δk) + Rh
0ijG

(3)
hk . (29)

Proposition 5. Let (M, g) be a connected Riemannian manifold of dimension n > 2 and let TM
be the total space of the tangent bundle, endowed with a general natural metric G given by (5). If
the metric G and the corresponding Schouten–van Kampen connection are torsion-coupled, then the
base manifold is a space form when c2(0)c3(0) �= 0 and locally flat when c3(t) = 0 for every t ≥ 0.

Proof. By using the relations (24), (4), (12), (13), and (8), we obtain:

T (∂i, ∂j, ∂k) =
1
2
[(2c′3 − 2d3 − c′1c3 p1 + c3d1 p1 − 2c3c′3 p3 + 2c3d3 p3 (30)

+ 2d1d3 p1t − 2c′3d3 p3t + 2d2
3 p3t + 2c3d1q1t − 2c3c′3q3t

+ 2c3d3q3t + 4d1d3q1t2 − 4c′3d3q3t2 + 4d2
3q3t2)·

(gjkg0i − gikg0j)− c2c3 p1(Rlijk − Rljik)yl

+ c2(d3 p1 + c3q1 + 2d3q1t)(Rlikmg0j − Rljkmg0i)ylym].

The connection ∇ and the metric G are torsion-coupled if and only if the tensor
field T vanishes, that is all its components with respect to the adapted local frame field
{δi, ∂j}n

i,j=1 vanish, and hence, a necessary condition for the torsion coupling between ∇
and G is T (∂i, ∂j, ∂k) = 0. Differentiating the expression (30) with respect to the tangential
coordinates yl and taking the value of this derivative in y = 0, since the curvature of the
base manifold does not depend on the tangent vector y, for c2(0)c3(0) �= 0 we obtain that:

Rlijk − Rljik =
2(1 − c3 p3)(c′3 − d3)− c3 p1(c′1 − d1)

c2c3 p1

∣∣∣∣
t=0

(gligjk − gljgik). (31)

Due to the anti-symmetry of the Riemann-Christoffel tensor field in the last two
arguments, the left-hand side of relation (31) becomes Rlijk + Rljki, and from the first
Bianchi identity it follows that:

Rlkij = c(gligjk − gljgik),

where the function c depends on x1, . . . , xn, only, having the expression:

c = − 2(1 − c3 p3)(c′3 − d3)− c3 p1(c′1 − d1)

c2c3 p1

∣∣∣∣
t=0

.

Since the manifold M is connected and of dimension n > 2, from Schur’s theorem we
obtain that c is constant, i.e., M is a space form.
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Now, we study the situation when c3(t) = 0 for every t ≥ 0. In this case, by using (10)
and then (9), the expression (30) becomes simpler:

T (∂i, ∂j, ∂k) =
−2d2

3t(c2 + c′2t)
c1c2 + 2t(c2d1 + c1d2) + 4t2(d1d2 − d2

3)
(gjkg0i − gikg0j), (32)

and its condition of vanishing does not involve the curvature of (M, g).
Analyzing the other components of the tensor field T in the same manner, we obtain:

T (δi, δj, ∂k) =
d2

3t
c1c2 + 2t(c2d1 + c1d2) + 4t2(d1d2 − d2

3)
· (33)

[c1(gjkg0i − gikg0j) + c2(Rhjkl g0i − Rhikl g0j)yhyl ]

− c2Rhkijyh,

whose derivative with respect to yh computed in y = 0 is c2(0)Rhkji.
Since c3(t) = 0 for every t ≥ 0, from the nondegeneracy condition (6) of the metric G

it follows that c2(0) �= 0, and hence, c2(0)Rhkji vanishes if and only if Rhkji = 0, that is the
base manifold is locally flat.

One can easily prove the following lemma, which will be used to obtain the main
results of the paper.

Lemma 1. Let (M, g) be a Riemannian manifold of dimension n > 2 and α1, α2, α3, α4 be four
smooth real functions of the energy density on TM. If these functions satisfy the following relation:

α1(t)gjkg0i + α2(t)gikg0j + α3(t)gijg0k + α4(t)g0ig0jg0k = 0, ∀t > 0,

where g0i = ghiyh, then α1(t) = α2(t) = α3(t) = α4(t) = 0, for all t ≥ 0.

Theorem 2. Let (M, g) be a connected Riemannian manifold of dimension n > 2 and let the total
space TM of the tangent bundle be endowed with a general natural metric G given by (5) such that
c3(t) = 0 for every t ≥ 0. The following assertions are equivalent:

(i) The metric G and the Schouten–van Kampen connection ∇ associated to the Levi-Civita
connection ∇ of G are torsion-coupled;

(ii) The triplet (TM,∇, G) is a statistical manifold;
(iii) The base manifold is locally flat and the metric G is of natural diagonal lift type, given by:⎧⎪⎨⎪⎩

G(XH
y , YH

y ) = κ1gτ(y)(X, Y),
G(XV

y , YV
y ) = c2(t)gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = 0,
(34)

for all X, Y ∈ T 1
0 (M), y ∈ TM, κ1 ∈ R \ {0}, where c2, d2 are some arbitrary nonzero

smooth real functions of energy density t of y such that c2(t) + 2td2(t) �= 0, for every t ≥ 0;
(iv) The Schouten–van Kampen connection ∇ coincides with the Levi-Civita connection ∇.

Proof. According to Proposition 5, if a metric G given by (5) such that c3(t) = 0 for every
t ≥ 0 is torsion-coupled with the Schouten–van Kampen connection ∇, then the base
manifold (M, g) is locally flat. Thus, the expression (33) of the component T (δi, δj, ∂k)
reduces to:

T (δi, δj, ∂k) =
c1d2

3t
c1c2 + 2t(c2d1 + c1d2) + 4t2(d1d2 − d2

3)
(gjkg0i − gikg0j). (35)
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Applying Lemma 1, one has T (δi, δj, ∂k) = 0 for every t ≥ 0 if and only if c1d2
3 = 0.

Since c3(t) = 0 for every t ≥ 0, from the nondegeneracy condition (6) of the metric G it
follows that c1(t) �= 0 for every t ≥ 0, and hence, the expressions (35) of T (δi, δj, ∂k) and (32)
of T (∂i, ∂j, ∂k) vanish simultaneously if and only if d3 = 0, i.e., the metric is of natural
diagonal lift type. We compute the other components of the tensor field T with resect to
the adapted local frame field {δi, ∂j}n

i,j=1 by imposing the conditions already obtained, that
is c3 = d3 = 0 and the locally flatness of the base manifold, and we have that:

T (∂i, ∂j, δk) = 0, T (∂i, δj, ∂k) = 0, T (δi, δj, δk) = 0,

T (∂i, δj, δk) =
1
2
(c′1gjkg0i + d1gikg0j + d1gijg0k + d′1g0ig0jg0k).

By using Lemma 1, it follows that T (∂i, δj, δk) = 0 if and only if c1(t) = κ1 ∈ R and
d1(t) = 0 for every t ≥ 0. For the nondegeneracy of the metric G the real constant κ1 and
the functions c2 and c2 + 2td2 must be nonzero. Thus, we prove that all the components of
the tensor field T corresponding to the general natural metric G with c3 = 0 vanish if and
only if the base manifold (M, g) is locally flat and the metric G has the form (34). Hence,
we proved the equivalence of the items (i) and (iii).

If assertion (iii) holds, i.e., the base manifold is locally flat and the metric G is
given by (34), we obtain by using Theorem 1 that the Schouten–van Kampen connec-
tion ∇ associated to the Levi-Civita connection ∇ of G is torsion-free. On the other
hand, we showed that (iii) is equivalent to (i), and since ∇ is torsion-free, items (i), (ii),
and (iii) are equivalent. Moreover, since the metric G given by (34) is the metric from
Proposition 3 (i), it follows that ∇ coincides with ∇, i.e., the items (iii) and (iv) in the
statement are equivalent.

Remark 1. Let (M, g) be a locally flat connected Riemannian manifold of dimension n > 2. A
natural diagonal metric whose corresponding Schouten–van Kampen connection is a statistical
connection on TM depends on an arbitrary nonzero real constant and on two arbitrary nonzero
smooth real functions c2 and d2 of the energy density t, such that c2(t) + 2td2(t) �= 0 for all
t ≥ 0. For every metric in this family the Levi-Civita connection and its associated Schouten–van
Kampen connection are identical, and hence, there is no natural diagonal metric G on TM such that
(TM, G) endowed the corresponding Schouten–van Kampen connection is a statistical manifold
admitting torsion.

Theorem 3. Let (M, g) be a connected Riemannian manifold of dimension n > 2 and let TM
be the total space of the tangent bundle, endowed with a proper general natural metric G given
by (5) such that c2(0)c3(0) �= 0 and with the Schouten–van Kampen connection ∇ associated to
the Levi-Civita connection ∇ of G. The following assertions hold:

(a) (TM,∇, G) is a statistical manifold if and only if the base manifold (M, g) is locally flat and
the metric G has one of the following expressions:

(i)

⎧⎪⎪⎨⎪⎪⎩
G(XH

y , YH
y ) = κ1gτ(y)(X, Y),

G(XV
y , YV

y ) = κ2(c3(t))2gτ(y)(X, Y)
+2κ2c′3(t)(c3(t) + c′3(t)t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = c3(t)gτ(y)(X, Y) + c′3(t)gτ(y)(X, y)gτ(y)(Y, y),
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for every X, Y ∈ T 1
0 (TM), y ∈ TM, where κ1, κ2 are some arbitrary nonzero real constants

such that κ1κ2 �= 1 and c3 is an arbitrary smooth function of the energy density t of y, such
that c3(0) �= 0, c3(t) �= const√

t
for all const ∈ R and all t > 0;

ii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G(XH

y , YH
y ) = 0,

G(XV
y , YV

y ) = c2(t)gτ(y)(X, Y)

+
c′2(t)c3(t)2+2c′2(t)c3(t)c′3(t)t−2c2(t)c′23 (t)t

c2
3(t)

gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = c3(t)gτ(y)(X, Y) + c′3(t)gτ(y)(X, y)gτ(y)(Y, y),

for every X, Y ∈ T 1
0 (TM), y ∈ TM, where c2, c3 are some arbitrary smooth functions of the

energy density t of y ∈ TM such that c2(0)c3(0) �= 0, c3(t) �= const√
t

for all const ∈ R and
all t > 0.
The Levi-Civita connection ∇ of G and its associated Schouten–van Kampen connection ∇
coincide for every metric G given by i).
The connections ∇ and ∇ are different, i.e., (TM,∇, G) is a nontrivial statistical manifold if
the metric G has the expression ii) with c2(t) �= κ2c2

3(t) for every t ≥ 0 and every κ2 ∈ R.
(b) (TM \ {0},∇, G) is a quasi-statistical manifold if and only if the base manifold (M, g) has

constant sectional curvature c < 0 and the metric G has the following expression:⎧⎪⎨⎪⎩
G(XH

y , YH
y ) = − cκ2

t gτ(y)(X, y)gτ(y)(Y, y),
G(XV

y , YV
y ) = κ2

t gτ(y)(X, Y) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G(XV
y , YH

y ) = ±
[

κ2
√
−2c√
t

gτ(y)(X, Y)− κ2
√
−2c

2t
√

t
(t)gτ(y)(X, y)gτ(y)(Y, y)

]
,

for every X, Y ∈ T 1
0 (TM), y ∈ TM, where κ2 is an arbitrary nonzero real constant and d2

is an arbitrary smooth real function of the energy density t of y such that d2(t) �= − κ2
2t2 , for

every t > 0.

Proof. Our purpose is to determine the proper general natural metrics G such that the
manifold (TM,∇, G) is a statistical manifold admitting torsion. To this aim, we study the
conditions of vanishing for all the components of the tensor field T given by (22) with
respect to the adapted local frame field {δi, ∂j}n

i,j=1.

From Proposition 5, a necessary condition for (TM,∇, G) to be a statistical manifold
admitting torsion is that the base manifold (M, g) has constant sectional curvature c, and
hence, we take from the beginning:

Rh
kij = c(δh

i gkj − δh
j gki),

where δh
i is the Kronecker delta.

By using the expressions (24)–(29), in which we substitute the components of the
metric from (4), the components of the torsion T from (15), the expressions (12) of the
Schouten–van Kampen connection, its coefficients from (13), the entries of the inverse
matrix H from (8) and their coefficients from (10) and (9), we obtain that the components of
the tensor field T have the forms:

T (∂i, ∂j, ∂k) = A1(t)(gjkg0i − gikg0j); T (∂i, ∂j, δk) = A2(t)(gjkg0i − gikg0j);
T (∂i, δj, ∂k) = A3(t)gjkg0i + Ã3gikg0j + B3(t)gijg0k + C3(t)g0ig0jg0k;
T (∂i, δj, δk) = A4(t)gjkg0i + Ã4gikg0j + B4(t)gijg0k + C4(t)g0ig0jg0k;
T (δi, δj, ∂k) = A5(t)(gjkg0i − gikg0j); T (δi, δj, δk) = A6(t)(gjkg0i − gikg0j),

where Ai, i = 1, . . . , 6 and Ãj, Bj, j = 3, 4, are some rational functions depending on the
coefficients of the metric G, their derivatives, the constant sectional curvature c of (M, g),
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and the energy density t. Since the expressions of Ai and Bi are quite long, we present here
the shorter ones:

B3(t) =
c′1c2c3 + c1(c′2c3 − c2c′3)− c2

3c′3 + (c2
3 − c1c2)d3

2(c1c2 − c2
3)

,

B4(t) = 1
2 (cc2 + d1).

(36)

From Lemma 1, we have that all the components of the tensor field T from above vanish if
and only if Ai(t) = 0, i = 1, . . . , 6, Ãj(t) = 0, Bj(t) = 0, j = 3, 4.

From the conditions of vanishing of B3(t) and B4(t) given in (36), we obtain two
necessary conditions for (TM,∇, G) to be a quasi-statistical manifold:

d3 =
c′1c2c3 + c1(c′2c3 − c2c′3)− c2

3c′3
c1c2 − c2

3
, (37)

d1 = −cc2. (38)

After substituting the value obtained for d1 into the expression of Ã3(t) this turns into:

Ã3(t) =(2cc1c3
2c3 + c2

1c2c′′2 c3 − 2cc2
2c3

3 − c1c′2c3
3 − 2c2

1c2c3d2 (39)

+ 2c1c3
3d2 + 2c2

1c2
2d3 − 2c1c2c2

3d3 − 4c2c4
2c3t − 2cc1c2

2c′2c3t

+ 2cc2c′2c3
3t + 8cc1c2

2c3d2t − 4cc2c3
3d2t − 4cc1c3

2d3t + 2c2
1c2c′2d3t

− 4cc2
2c2

3d3t − 2c1c′2c2
3d3t − 8c2c3

2c3d2t2 − 4cc1c2
2c′2d3t2

+ 4cc2c′2c2
3d3t2 − 8cc2

2c3d2
3t2)/[2(c1c2 − c2

3)(c1c2 − c2
3

− 2cc2
2t + 2c1d2t − 4c3d3t − 4cc2d2t2 − 4d2

3t2)],

To obtain the necessary and sufficient conditions for Ã3(t) = 0, we have to treat the
following cases:

(Case I) c1 − 2cc2t �= 0 and c1c2 − c2
3 �= 2cc2

2t;
(Case II) c1 − 2cc2t = 0;
(Case III) c1c2 − c2

3 = 2cc2
2t.

Next, we study each case separately.
(Case I) When c1 − 2cc2t �= 0 (i.e., c1 + 2td1 �= 0) and c1c2 − c2

3 �= 2cc2
2t, from (39) we

obtain that Ã3(t) = 0 if and only if:

d2 =
1

2c3(c1 − 2cc2t)(c2
3 − c1c2 + 2cc2

2t)

{
4c2c4

2c3t − c1(c1c2 − c2
3)[2c2d3 (40)

+ c′2(c3 + 2d3t)] + 2cc2{c1c2[c′2t(c3 + 2d3t)− c2(c3 − 2d3t)]

+ c3[c2(c2
3 + 2c3d3t + 4d2

3t2)− c′2c3t(c3 + 2d3t)]}
}

.

By using (40) and then (37) and (38), we obtain that the numerators of Ã4(t) and A6(t)
become, respectively:

NÃ4
(t) =2cc3

1c4
2 − c2

1c′1c2
2c2

3 − 4cc2
1c3

2c2
3 − c3

1c2c′2c2
3 + c1c4

3(c1c2)
′ (41)

+ 2cc1c2
2c4

3 + 2c3
1c2

2c3c′3 − 2c2
1c2c3

3c′3 − 4c2c2
1c5

2t + 2cc3
1c3

2c′2t

+ 4c2c1c4
2c2

3t − 2cc2
1c2

2c′2c2
3t − 2cc2c4

3t(c1c2)
′ − 4cc2

1c3
2c3c′3t

+ 8cc1c2
2c3

3c′3t − 4c2c2
1c4

2c′2t2 − 4c2c′1c4
2c2

3t2 + 8c2c1c4
2c3c′3t2,
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NA6(t) =c3
1c′1c2

2 + 2cc3
1c3

2 − 2c2
1c′1c2c2

3 − 2cc2
1c2

2c2
3 + c1c′1c4

3 − 2cc1c2c4
3 (42)

+ 2cc6
3 − 4cc2

1c′1c3
2t − 4c2c2

1c4
2t + 2cc3

1c2
2c′2t + 6cc1c′1c2

2c2
3t

− 2cc2
1c2c′2c2

3t − 6cc′1c2c4
3t + 4c2c2

2c4
3t − 4cc1c′2c4

3t + 4cc1c2c3
3c′3t

+ 4cc5
3c′3t + 4c2c1c′1c4

2t2 − 4c2c2
1c3

2c′2t2 − 12c2c′1c3
2c2

3t2

− 4c2c1c2
2c′2c2

3t2 + 8c2c1c3
2c3c′3t2 + 8c2c2

2c3
3c′3t2.

Studying the simultaneous vanishing of Ã4 and A6 we distinguish the following
subcases of Case I:

(I.1) c2
3 �= 2cc2

2t and c1 �= 0;
(I.2) c1 �= 0, c > 0 and c3 = ±

√
2ctc2;

(I.3) c1 = 0.

We treat each subcase separately.
(I.1) When c2

3 �= 2cc2
2t and c1 �= 0, solving the system of equations given by

NÃ4
(t) = 0 and NA6(t) = 0, we obtain that the derivatives of the functions c1 and c2

have the expressions:

c′1 =
2c(c1c2c2

3 + c4
3 + 2c1c2c3c′3t + 2c3

3c′3t)
(c1 − 2cc2t)(2cc2

2t − c2
3)

, (43)

c′2 =
2c2[cc2

1c2
2 + cc4

3 + c2
1c3c′3 + 2c(c2

3 − c1c2)(cc2
2 + c3c′3)t + 4c2c2

2c3c′3t2]

−c1(c1 − 2cc2t)(2cc2
2t − c2

3)
. (44)

Substituting (43) and (44) into the expression of T (∂i, δj, δk), this reduces to:

T (∂i, δj, δk) =
cc3(2c1c2 + c2

3 − 2cc2
2t)(c3 + 2c′3t)

(c1 − 2cc2t)(2cc2
2t − c2

3)
gjkg0i (45)

+
c2c2c3(c2

3 + 2cc2
2t)(c3 + 2c′3t)

c1(c1 − 2cc2t)(2cc2
2t − c2

3)
g0ig0jg0k,

and it vanishes, according to Lemma 1, if and only if the involved coefficients vanish
simultaneously. Since the metric G is proper general natural, i.e., c3 �= 0, d3 �= 0, the
coefficient of g0ig0jg0k vanishes if and only if one of the following instances happens:

(I.1.i) c = 0, which together with (37), (38), (40), (43), (44) leads to:

c1 = κ1 ∈ R \ {0}, d1 = 0, c′2 =
2c2c′3

c3
, i.e., c2 = κ2c2

3, d2 = 2κ2c′3(c3 + c′3t), d3 = c′3,

where κ2 is an arbitrary nonzero real constant and c3 is an arbitrary smooth nonzero real
function of t such that c3(0) �= 0 and the nondegeneracy conditions (6) of the metric G
are satisfied, i.e., κ1κ2 �= 1 and (κ1κ2 − 1)(c3 + 2tc′3)

2 �= 0, and hence, c3(t) �= const√
t

for
all const ∈ R and all t > 0. By substituting the values of the coefficients of the metric G
obtained in Case I.1.i) and c = 0 into each component of the tensor field T with respect to
the adapted local frame filed {δi, ∂j}n

i,j=1, we obtain, by using Mathematica, that T = 0. On
the other hand, the obtained metric satisfies Proposition 4, and hence, the Schouten–van
Kampen connection ∇ coincides with the Levi-Civita connection of the metric G, i.e., in
Case (I.1.i), (TM,∇, G) is obviously a statistical manifold.

(I.1.ii) c3 + 2c′3t = 0, i.e., c3(t) = κ3√
t
, for every κ3 ∈ R \ {0}, t > 0, but together

with (38), (40), (37), and (43), which would imply d2 = − c2
2t , i.e., c2 + 2td2 = 0 and d3 = c′3,

i.e., c3 + 2td3 = 0, and hence, the second nondegeneracy condition (6) of the metric G
would not be satisfied.

(I.1.iii) c2 = 0 does not satisfy the condition c2(0)c3(0) = 0 from the hypothesis.
(I.1.iv) c < 0 and c2

3 = −2cc2
2t, which substituted into (45), turns the factor

2c1c2 + c2
3 − 2cc2

2t from the coefficient of gjkg0i into 2c2(c1 − 2cc2t) and this vanishes if and
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only if c2 = 0 (see I.1.iii) or c1 = 2cc2t, which together with d1 = −cc2 yields c1 + 2td1 = 0,
which does not hold in Case I.

We conclude that the only favorable subcase of Case I.1 is (I.1.i), rended in the state-
ment at a (i). We already showed that in Case (I.1.i) the Schouten–van Kampen connection
∇ coincides with the Levi-Civita connection of G.

(I.2) c1 �= 0, c > 0 and c3 = ±
√

2ctc2, i.e., c2 = ± c3√
2ct

for every t > 0. Substituting

c2 = ε c3√
2ct

(where ε = 1 or ε = −1) into NÃ4
we obtain:

NÃ4
(t) =

√
cc3[c1(2c2

1 − 5εc1c3
√

2ct + 10cc2
3t)(c3 + 2c′3t)

− 2c′1c3t(c2
1 − εc1c3t

√
2ct + 4cc2

3t)],

which vanishes if and only if one of the following instances happens:

(I.2.i)
{

c2
1 − εc1c3t

√
2ct + 4cc2

3t = 0,
(2c2

1 − 5εc1c3
√

2ct + 10cc2
3t)(c3 + 2c′3t) = 0.

If c3 + 2c′3t = 0, i.e., c3(t) =
κ3√

t
for every t > 0, κ3 ∈ R \ {0}, then the first relation in

(I.2.i) turns into:
c2

1 − εκ3
√

2ctc1 + 4κ2
3ct = 0,

which is not satisfied by any real function c1 of t.
If 2c2

1 − 5εc1c3
√

2ct + 10cc2
3t = 0, since the first relation in (I.2.i) holds, it follows that

3c2
1 + 10cc2

3t = 0, where c > 0, and hence c1 = c3 = 0, which do not satisfy neither the
nondegeneracy condition (6) for the metric G nor the conditions (I.2).

(I.2.ii)
{

c1 = κ1 ∈ R \ {0},
(2c2

1 − 5εc1c3
√

2ct + 10cc2
3t)(c3 + 2c′3t) = 0.

In this case, the first factor in the second relation of I.2.ii) becomes:

10ctc2
3 − 5εκ1

√
2ctc3 + 2κ2

1 �= 0

for every real function c3 of t. On the other hand, if the first relation in (I.2.ii) is satisfied
and c3 + 2c′3t = 0, i.e., c3 = κ3√

t
, for every t > 0, κ3 ∈ R \ {0}, by taking into account the

expressions (38), (40), (37) of the coefficients d1, d2, d3 and the expression of c2 in Case I.2,
it follows that:

(c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)
2 = 0,

hence, the second nedegeneracy condition (6) is not satisfied.

(I.2.iii)

⎧⎪⎨⎪⎩
c2

1 − εc1c3t
√

2ct + 4cc2
3t �= 0

c′1 =
2c3

1c3 − 5εc2
1c2

3

√
2ct + 10cc1c3

3t + 4c3
1c′3t − 10εc2

1c3c′3t
√

2ct + 20cc1c2
3c′3t2

2c3t(c2
1 − εc1c3t

√
2ct + 4cc2

3t)
,

for every t > 0. By using the expressions (38), (40), (37) of d1, d2, d3, the expression of c′1 in
Case (I.2.iii) and that of c2 in Case I.2, we obtain that the component T (δi, δj, δk) reduces to:

T (δi, δj, δk) =
2ε
√

c(c2
1 − ε

√
2ctc1c3 + 4cc2

3t)√
t(
√

2c1 − 6ε
√

ctc3)
�= 0,

for every c1, c3 nonzero smooth real functions of t. Subsequently, a general natural metric
G whose coefficients satisfy Case (I.2.iii) is not torsion-coupled with the corresponding
Schouten–van Kampen connection.
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(I.3) c1 = 0, which substituted into the expression of T (∂i, δj, δk) together
with (38), (40), (37) turns the coefficient A4(t) into:

A4(t) =
ct(2c2c′3 − c′2c3)(c3 + 2c′3t)

c3(c3 + 2tc′3) + 2cc2t(c2 + 2tc′2)

and this vanishes if and only if one of the following situations happens:
(I.3.i) c = 0, which turns relation (38) into d1 = 0. In this subcase, it follows that the

first condition of Case I, c1 + 2td1 �= 0 is not satisfied, and hence, the subcase (I.3.i) is not
possible.

(I.3.ii) c3 + 2tc′3 = 0, i.e., c3 = κ3√
t
, for all κ3 ∈ R \ {0}, t > 0, which together with

c1 = 0 and the expressions (38), (40), and (37) leads to c2 + 2td2 = c3 + 2td3 = 0, i.e., the
second nondegeneracy condition in (6) is not satisfied, and hence, there is no metric G
whose coefficients satisfy Case I.3.ii).

(I.3.iii) 2c2c′3 − c′2c3 = 0, i.e., c2 = κ2c2
3, for every κ2 ∈ R \ {0}. Together with (38), (40),

and (37), the expression obtained for c2 yields:

T (∂i, δj, δk) = − cκ2c3(c3 + 2tc′3)
2t

g0ig0jg0k. (46)

The expression (46) vanishes if and only if c = 0 or c3 + 2tc′3 = 0, relations which are
not possible in Case I.3 (see the discussion from I.3.i and I.3.ii).

(Case II) When c1 − 2cc2t = 0, i.e., c1 + 2td1 = 0, by using (37), we obtain that the
coefficient B4(t) from the expression of T (∂i, δj, δk) reduces to:

B4(t) =
2c2c3

2
c2

3 − 2cc2
2t

,

and hence, it vanishes if and only if one of the following subcases holds:
(II.1) c = 0, which due to relations (38) and (37) yields c1 = d1 = 0 and d3 = c′3, then

the expression of the component T (∂i, ∂j, ∂k) reduces to:

T (∂i, ∂j, ∂k) =
c′2c2

3 − c2
3d2 + 2c′2c3c′3t − 2c2c′23 t

c3(c3 + 2tc′3)
(gjkg0i − gikg0j),

and according to Lemma 1 it is zero if and only if:

d2 =
c′2c2

3 + 2c′2c3c′3t − 2c2c′23 t
c2

3
.

If the coefficients of the metric G have the expressions obtained in Case II.1 and the
base manifold is locally flat, we verify by using Mathematica that all the components of
the tensor field T with respect to the adapted local frame field {δi, ∂j}n

i,j=1 vanish. The
metric whose coefficients are those in Case II.1 is the metric from item a ii) in the statement.
From Theorem 1, it follows that the Schouten–van Kampen connection associated to the
Levi-Civita connection of the metric G given at a ii) is torsion-free, and since we proved
that T = 0, the triplet (TM,∇, G) is a statistical manifold. If in the expression a (ii)
we take c2(t) = κ(c3(t))2, where κ is an arbitrary nonzero real constant, it follows that
d2(t) = 2κc′3(t)(c3(t) + tc′3(t)), and hence, the metric G satisfies Proposition 4. It follows
that the Levi-Civita connection of the metric G given at a ii) coincides with the associated
Schouten–van Kampen connection only when c2(t) = κ(c3(t))2 for every t ≥ 0, κ ∈ R \ {0}.

If the metric G has the expression from a ii) with c2(t) �= κ(c3(t))2 for every t ≥ 0,
κ ∈ R, then the Levi-Civita connection of G and its associated Schouten–van Kampen
connection do not coincide, and hence, the statistical manifold (TM,∇, G) is nontrivial.

(II.2) c2 = 0 doest not verify the condition c2(0)c3(0) = 0 from the hypothesis.
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(Case III) When c1c2 − c2
3 = 2cc2

2t, it follows from the nondegeneracy condition (6) of
the metric G that the base manifold (M, g) is not locally flat, c2(t) �= 0 and t �= 0, and hence,
in Case III, the metric G is defined on TM \ {0}, the total space of the bundle of nonzero
vector fields tangent to the space form (M, g). In this case, one has:

c1 =
c2

3 + 2cc2
2t

c2
(47)

and then the expression (37) of d3 reduces to:

d3 =
c2c3 + 2c′2c3t − c2c′3t

c2t
. (48)

Substituting the expressions (38), (47), and (48) into the expression of T (δi, δj, δk), we
obtain that the numerator of its coefficient is:

NA6(t) =c2
3[8c2

2c3
3 − 8cc4

2c3t + 27c2c′2c3
3t − 18c2

2c2
3c′3t − 14cc3

2c′2c3t2

+ 20c′22 c3
3t2 + 4cc4

2c′3t2 − 26c2c′2c2
3c′3t2 + 8c2

2c3c′23 t2

− 8cc2
2c′22 c3t3 + 4cc3

2c′2c′3t3 − 2c2c3d2t(c2
3 + 2cc2

2t)].

To obtain necessary and sufficient conditions for NA6(t) = 0, we have to study two
subcases of Case III:

(III.1) If c2
3 + 2cc2

2t �= 0, then NA6(t) = 0 if and only if:

d2 =(8c2
2c3

3 − 8cc4
2c3t + 27c2c′2c3

3t − 18c2
2c2

3c′3t − 14cc3
2c′2c3t2 (49)

+ 20c′22 c3
3t2 + 4cc4

2c′3t2 − 26c2c′2c2
3c′3t2 + 8c2

2c3c′23 t2

− 8cc2
2c′22 c3t3 + 4cc3

2c′2c′3t3)/[2c2c3t(c2
3 + 2cc2

2t)].

Taking into account the expressions (38), (47), (48), and (49), we obtain that the numer-
ator of the coefficient of gikg0j involved in the expression of T (∂i, δj, ∂k) is of the form:

NÃ3
(t) = c3(c2

3 + 2cc2
2t)(2c2c3 + 3c′2c3t − 2c2c′3t).

Since c2
3 + 2cc2

2t �= 0 and G is a proper general natural metric, NÃ3
(t) = 0 if and only

if:

c′3 =
2c2c3 + 3c′2c3t

2c2t
,

which yields a simpler form of the coefficient of gjkg0i in the same component of T , namely:

A3(t) =
c3(c2

3 + 3cc2
2t)(c2 + c′2t)

4cc3
2t2

, (50)

while the coefficient involved in the expression of T (∂i, ∂j, δk) becomes:

A2(t) =
c3(cc2

2t − c2
3)(c2 + c′2t)

4cc3
2t2

. (51)

The expressions (50) and (51) vanish simultaneously if and only if c2 + c′2t = 0 or
c2

3 + 3cc2
2t = cc2

2t − c2
3 = 0.

If c2 + c′2t = 0, i.e., c2 = κ2
t for every t > 0, where κ2 is an arbitrary nonzero real

constant, then by taking into account (38), (47), (48) and (49) it follows that the second
nondegeneracy condition (6) for the metric G is not satisfied.

If c2
3 + 3cc2

2t = cc2
2t − c2

3 = 0, i.e., c2
3 = cc2

2t = 0, then under the condition of Case
III, it follows that c1c2 − c2

3 = 0, i.e., the metric G is degenerate. We conclude that in
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Case III.1, there is no proper general natural metric G torsion-coupled with the correspon-
ding Schouten–van Kampen connection ∇.

(III.2) The subcase c2
3 + 2cc2

2t = 0 holds for c < 0 and t > 0, and due to (47), it reduces
to the condition c1 = 0. Then, the relation (37) turns into d3 = c′3, and together with (38),
it yields:

T (∂i, ∂j, δk) = 0, T (δi, δj, ∂k) = 0,

T (δi, δj, δk) =
cc3(c3 + 2c′3t)2

c2
3 + 4c3c′3t + 2cc2t + 4c′23 t2 + 4cc2d2t2

(gikg0j − gjkg0i).

Then, T (δi, δj, δk) = 0 if and only if c3(t) =
κ3√

t
, for every t > 0, κ3 ∈ R \ {0}.

By using (38) and the coefficients obtained in Case III.2:

c1 = 0, c3 =
κ3√

t
, d3 = − κ3

2t
√

t
, (52)

we have:

T (∂i, ∂j, ∂k) =
c2 + c′2t

2t
(gjkg0i − gikg0j),

T (∂i, δj, δk) = − c(c2 + c′2t)
2t

g0ig0jg0k,

T (∂i, δj, ∂k) =
κ2

3 + 2cc2
2t2

4κ3t2
√

t
(g0ig0jg0k − 2tgikg0j),

which vanish simultaneously if and only if:

c2 =
κ2

t
, κ3 = ±κ2

√
−2c, ∀t > 0, κ2 ∈ R \ {0}. (53)

Subsequently, in Case III.2, all the components of the tensor field T with respect to the
adapted local frame field {δi, ∂j}n

i,j=1 vanish simultaneously if and only if the coefficients
of the metric G satisfy the relations (38), (52), and (53) and d2 is an arbitrary smooth real
function of t, such that d2(t) �= − κ2

2t2 , because if d2(t) = − κ2
2t2 , then the nondegeneracy

condition (6) for the metric G would not be satisfied. Thus, we proved that the triplet
(TM \ {0},∇, G) is a statistical manifold admitting torsion if and only if the metric G has
the expression given in the statement at item (b).

Remark 2. Let (M, g) be a locally flat connected Riemannian manifold of dimension n > 2. There
are two families of proper general natural metrics on TM such that the Schouten–van Kampen
connection associated to the Levi-Civita connection of a metric is a statistical connection on TM.
One family of metrics depends on an arbitrary smooth function c3 of the energy density t, different
from const√

t
with const ∈ R, c3(0) �= 0, and on two nonzero arbitrary real constants, provided that

their product is not 1. The other family of metrics depends on two nonzero arbitrary smooth real
functions c2, c3 of t, provided that c2(0)c3(0) �= 0, c3(t) �= const√

t
for every t > 0, const ∈ R.

If, moreover, c2(t) �= κ2c2
3(t) for every t ≥ 0, κ2 ∈ R, then the statistical structure on TM

is nontrivial.

Remark 3. Let (M, g) be a connected n > 2–dimensional Riemannian manifold of constant
sectional curvature c < 0. The family of proper general natural metrics on TM \ {0} such that
the Schouten–van Kampen connection associated to the Levi-Civita connection of a metric is a
quasi-statistical connection on TM \ {0} depends on the constant sectional curvature c of (M, g),
the energy density t, an arbitrary nonzero real constant κ2 and an arbitrary smooth function of t,
different from − κ2

2t2 .
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4. Conclusions

Investigating the quasi-statistical Schouten–van Kampen connection ∇ associated to
the Levi-Civita connection of a general natural metric G given by (5) on the total space TM
of the tangent bundle of a Riemannian manifold (M, g), we conclude the following:

(1) The base manifold must be a space form when c2(0)c3(0) �= 0 and locally flat when
c3(t) = 0. Implicitly, when the metric G is of natural diagonal lift type, (M, g) must be
locally flat.

(2) There exists one family of natural diagonal metrics such that (TM,∇, G) is a statistical
manifold. The metrics in this family depend on two arbitrary nonzero smooth real
functions of the energy density t and on an arbitrary nonzero real constant such that
the nondegeneracy conditions of the metric are satisfied.

(3) When G is a proper general natural metric G on TM, ∇ is a statistical connection if
and only if (M, g) is locally flat and the metric G has two possible expressions. Hence,
there are two families of proper general natural metrics such that (TM,∇, G) is a
statistical manifold. The metrics in the first family depend on two arbitrary nonzero
real constants, κ1, κ2, and on an arbitrary smooth nonzero real function c3 of the energy
density t such that c3(0) �= 0, while the metrics in the second family depend only on
two arbitrary smooth nonzero real functions of t, c2 and c3, for which c2(0)c3(0) �= 0,
such that the nondegeneracy conditions of the metric are satisfied in each case.

(4) If c2(t) �= κ2c2
3(t), then the statistical manifold (TM,∇, G) is nontrivial, i.e., the Levi-

Civita connection is different from its associated Schouten–van Kampen connection.
(5) The manifold (TM \ {0},∇, G) is quasi-statistical if and only if (M, g) has constant

sectional curvature c < 0 and the metric G depends on c, t, on an arbitrary nonzero
real constant κ2 and on an arbitrary smooth real function of t, different from − κ2

2t2 .

In a forthcoming paper we will determine the conditions under which the general natural
α-structures characterized in [47] are torsion coupled (in particular Codazzi coupled) with
the (quasi-)statistical Schouten–van Kampen connection ∇ associated to the Levi-Civita
connection ∇ of a general natural metric G on TM. Another goal will be to characterize the
para-Kähler-like statistical manifolds (TM,∇, P, G), where the almost product structure P
and the metric G are of general natural lift type on TM.
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Abstract: In this research, we embark on the examination of lightlike hypersurfaces within an almost
meta-Golden semi-Riemannian manifold. We investigate the properties of the induced structure on a
lightlike hypersurface by meta-Golden semi-Riemannian structure. Then, we introduce invariant
lightlike hypersurfaces, anti-invariant lightlike hypersurfaces and screen semi-invariant lightlike
hypersurfaces of almost meta-Golden semi-Riemannian manifolds and give examples.

Keywords: Chi ratio; golden structure; meta-Golden structure; lightlike hypersurface

MSC: 53C15; 57R15

1. Introduction

It has been shown that there is a close connection between the transition from New-
tonian physics to relativity mechanics and the Golden ratio. Moreover, the Golden ratio
was also used to derive the special theory of relativity, Lorentz contraction of lengths and
expansion of time intervals. This case reveals the research on numberless objects that
satisfy the Golden ratio necessity through the world. One of the results was the view that
a logarithmic spiral provides the Golden ratio. Recently, however, Barlett [1] has shown
that this assertion is untrue. It was also proved that an important class of logarithmic
spirals delivers the meta-Golden Chi ratio wonderfully. In [1], the same fulfillment was

built around the meta-Golden Chi ratio given by χ =
1+
√

4ϕ̇+5
2ϕ̇ , where ϕ̇ = 1+

√
5

2 .
In Riemannian (also semi-Riemannian ) manifolds, different geometric structures

allow important consequences to occur while investigating the geometric and differential
properties of submanifolds. Manifolds with such differential geometric structures have
been studied by several authors (see [2–7]).

A major shortcoming in manifold theory is the limited study of isometries between
manifolds with non-positive metrics. This is a significant gap, particularly in the context
of applications in physics and engineering. In fact, Riemannian submersions and isomet-
ric immersions are extensively studied topics, but degenerate cases have received scant
attention due to the challenges posed by metric complexities. Nevertheless, transitioning
from the non-degenerate case to the degenerate one, both in terms of applications and
mathematics, holds the potential to yield more general and robust results. The degeneracy
version of isometric immersions has been examined by a large group of geometers under
the name of lightlike submanifolds which were firstly defined by Duggal and Bejancu [8],
(see also [9–11]).

Recently, Şahin [12] introduced a new type of manifold and named it the meta-Golden
Riemannian manifold. This manifold was constructed by means of the meta-Golden Chi
ratio and the Golden manifolds.

Mathematics 2023, 11, 4798. https://doi.org/10.3390/math11234798 https://www.mdpi.com/journal/mathematics156
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In this research, we embark on the study of lightlike geometry in meta-Golden semi-
Riemannian manifolds.

2. Preliminaries

A structure similar to the Golden ratio is presented as follows (see Hylebrouck [13]):
From Figure 1 in [12], we obtain χ̇ = 1

ϕ̇ + 1
χ̇ , which suggests that χ̇2 − 1

ϕ̇ χ̇ − 1 = 0. Thus,

the roots are found as
1
ϕ̇ ∓
√

4+ 1
ϕ̇2

2 . The correlation between the meta-Golden Chi ratio χ̇
and continued fractions was found in [13]. By denoting the positive and negative roots by

χ̇ =

1
ϕ̇ +
√

4+ 1
ϕ̇2

2 and χ̈ =

1
ϕ̇ −
√

4+ 1
ϕ̇2

2 , respectively, we have [13]

χ̈ =
1
ϕ̇
− χ̇, (1)

ϕ̇χ̇2 = ϕ̇ + χ̇, (2)

and
ϕ̇χ̈2 = ϕ̇ + χ̈. (3)

In [3], it was stated that an endomorphism β̌ on a manifold M̌∗ is an almost Golden
structure , if

β̌2
X1 = β̌X1 +X1, (4)

for X1 ∈ Γ(TM̌∗). Hence, let ǧ be the semi-Riemannian metric on M̌∗; then, (ǧ, β̌) is called
an almost Golden semi-Riemannian structure if

ǧ(β̌X1,Y1) = ǧ(X1, β̌Y1), (5)

where for X1,Y1 ∈ Γ(TM̌∗). Therefore, (M̌∗, ǧ, β̌) is called an almost Golden semi-
Riemannian manifold. In view of (5), we obtain [3]

ǧ(β̌X1, β̌Y1) = ǧ(X1, β̌Y1) + ǧ(X1,Y1). (6)

Definition 1. Let �̌ be a (1, 1) tensor field on an almost Golden manifold (M̌∗, β̌) which satisfies

β̌�̌2
X1 = β̌X1 + �̌X1, (7)

for every X1 ∈ Γ(TM̌∗). Then, �̌ is called an almost meta-Golden structure and (M̌∗, β̌, �̌) is
called an almost meta-Golden manifold [12].

Theorem 1. A (1, 1) tensor field �̌ on an almost Golden manifold (M̌∗, β̌) is an almost meta-
Golden structure if

�̌2 = β̌�̌ − �̌+ I (8)

where I is the identity map [12].

We give the following definition inspired by the definition given in [12].

Definition 2. Let �̌ be an almost meta-Golden structure on (M̌∗, β̌, ǧ). If �̌ is compatible with
semi-Riemannian metric ǧ on M̌∗, namely,

ǧ(�̌X1,Y1) = ǧ(X1, �̌Y1), (9)

or
ǧ(�̌X1, �̌Y1) = ǧ(β̌X1, �̌Y1)− ǧ(X1, �̌Y1) + ǧ(X1,Y1), (10)
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then (M̌∗, β̌, �̌, ǧ) is called an almost meta-Golden semi-Riemannian manifold where for X1,
Y1 ∈ Γ(TM̌∗).

We note that an almost meta-Golden semi-Riemannian manifold is called a meta-
Golden semi-Riemannian manifold if ∇̄�̌ = 0 where ∇̄ is the Levi-Civita connection of
M̌∗. In this case, we also have ∇̄β̌ = 0.

From here throughout the paper, an almost meta-Golden semi-Riemannian manifold
(resp., meta-Golden semi-Riemannian manifold) will be denoted as AMGsR manifold
(resp., MGsR manifold).

Let M̌∗ be an (n + 2)-dimensional semi-Riemannian manifold with index q,
0 < q < n + 1, and M∗ be a hypersurface of M̌∗, with g = ǧ |M∗ . Then, M∗ is a lightlike
hypersurface of M̌∗, if the metric g is of rank n and the orthogonal complement TM∗⊥ of
TM∗, given as

TM∗⊥ =
⋃

p∈M∗
{Vp ∈ TpM̌

∗ : gp(Up,Vp) = 0, ∀ Up ∈ Γ(TpM
∗)},

is a distribution of rank 1 on M∗ [8]. Here, TM∗⊥ ⊂ TM∗ and then it coincides with the
distribution called the radical distribution given by Rad(TM∗) = TM∗ ∩ TM∗⊥.

A complementary bundle of TM∗⊥ in TM∗ is a non-degenerate distribution of con-
stant rank (n − 1) over M∗, which is known as a screen distribution and demonstrated with
S(TM∗).

Theorem 2 ([8]). Let (M∗, g, S(TM∗)) be a lightlike hypersurface of a semi-Riemannian manifold
M∗. Then, there exists a unique rank 1 vector sub-bundle ltr(TM∗) of TM̌∗, with base space N,
such that for every non-zero section ξ of Rad(TM∗) on a coordinate neighbourhood ℘ ⊂ M∗, there
exists a section N of ltr(TM∗) on ℘ satisfying:

ǧ(N,W) = 0, ǧ(N,N) = 0, ǧ(N, ξ) = 1, for W ∈ Γ(S(TM∗)) |℘ .

Here, ltr(TM∗) is called the the lightlike transversal vector bundle.

Via the previous theorem, we obtain:

TM∗ = S(TM∗)⊥Rad(TM∗), (11)

and

TM̌∗ = TM∗ ⊕ ltr(TM∗)

= S(TM∗)⊥{Rad(TM∗)⊕ ltr(TM∗)}. (12)

For U,V ∈ Γ(TM∗), N ∈ Γ(ltr(TM∗)), from the equations of Gauss and Weingarten
formulas, we have

∇̄UV = ∇UV+ h(U,V), (13)

∇̄UN = −ANU+∇t
U
N . (14)

3. Lightlike Hypersurfaces of Almost Meta-Golden Semi-Riemannian Manifolds

In this study, since there are both almost Golden structure and almost meta-Golden
structure in AMGsR manifolds, we will obtain two structures that are induced on the
lightlike hypersurface.

Throughout this paper, we will consider the structure that is induced from the almost
Golden structure on the ambient manifold to the lightlike hypersurface is being an almost
Golden structure and invariant, that is, β̌(TM∗) ⊆TM∗ and β̌(TM∗⊥) ⊆TM∗⊥.
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Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Consider a (1, 1) tensor field � and a 1-form v on M̌∗. For any X1 ∈ Γ(TM∗), we have

�̌X1 = �X1 + v(X1)N, β̌X1 = βX1 + u(X1)N, (15)

and
�̌N = V+ v(N)N, β̌N = U+ u(N)N, (16)

where U,V ∈ Γ(TM∗), N ∈ Γ(ltr(TM∗)), v(.) = ǧ(., �̌ξ), u(.) = ǧ(., β̌ξ) and

� : Γ(TM∗) → Γ(TM∗), �X1 = (�̄X1)
�.

In this case, the second parts of Equations (15) and (16) are in the form of β̌X1 = βX1,
u(X1) = 0 and U = 0 due to our assumption. If β̌ is applied to both sides of the second
equation in (16), we have u(N) = ϕ̇ and u(N) = 1 − ϕ̇.

Therefore, we have the following theorem.

Theorem 3. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
In this case, we have a structure (β, g, u,U) induced on M∗ by the almost Golden structure β̌,
satisfies the following equalities:

β2
X1 = βX1 +X1,

u(βX1) = 0,

βU = 0,

(u(N))2 − u(N)− 1 = 0,

g(βX1, βY1) = g(βX1,Y1) + g(X1,Y1),

where for X1,Y1 ∈ Γ(TM̌∗), N ∈ Γ(ltr(TM∗)).

Now, we give some characterizations for the structure induced to the lightlike hyper-
surface from the AMGsR manifold.

Theorem 4. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
In this case, the structure Π = (�, β, g, v,V) satisfies the following equalities:

�2
X1 = β�X1 − �X1 +X1 − v(X1)V, (17)

v(�X1) = (u(N)− v(N)− I)v(X1), (18)

�V = βV − (1+v(N))V, (19)

(v(N))2 = v(N)(u(N)− 1) + I − v(V), (20)

g(�X1,Y1) = g(X1, �Y1) + v(Y1)τ(X1)− v(X1)τ(Y1), τ(X1) = g(X1,N), (21)

g(�X1, �Y1) =

⎛⎝ g(βX1, �Y1)− g(X1, �Y1) + g(X1,Y1)
+v(Y1)τ(βX1)− v(Y1)τ(X1)
−v(Y1)ζ(�X1)− v(X1)ζ(�Y1)

⎞⎠, ζ(�X1) = g(X1, �N). (22)

Proof. If we apply �̌ to the first part of Equation (15) and consider Equations (8), (15) and
(16), we have

β̌�̌X1 − �̌X1 +X1 = �̌�X1 + v(X1)�̌N.

By using (15) and (16) in the last equation, we obtain

β̌�X1 + v(X1)β̌N− �X1 − v(X1)N+X1 = �2
X1 + v(�X1)N (23)

+v(X1)V+ v(N)v(X1)N,
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which implies(
β�X1 + v(X1)u(N)N
−�X1 − v(X1)N+X1

)
=

(
�2X1 + v(�X1)N

+v(X1)V+ v(N)v(X1)N

)
. (24)

If we take the tangential and transversal components of Equation (24), we obtain (17) and
(18), respectively.

On the other hand, if we apply �̌ to Equation (16), we have

�̌2
N = �̌V+ v(N)�̌N,

which gives

β(V+ v(N)N)− (V+ v(N)N) +N = �V+ v(V)N+ v(N)V+ (v(N))2
N,

via (8), (15) and (16). Again, equating the tangential and transversal components of the
above equation, we obtain (19) and (20), respectively. In addition, if we use (9), (15) and
(16), we obtain (21). Applying (8) and (9) in (15), we find (22).

If we use �̌X1 instead of X1 in Equation (7), we have:

Proposition 1. Let (M̌∗, β̌, �̌, ǧ) be an MGsR manifold. Then, we have ∇̄β̌�̌ = 0.

Theorem 5. Let M∗ be a lightlike hypersurface of an MGsR manifold (M̌∗, β̌, �̌, ǧ). Then, we have

(∇X1�)Y1 = v(Y1)ANX1 + B(X1,Y1)V, (25)

(∇X1 v)Y1 = B(X1,Y1)v(N)− B(X1, �Y1)V− v(Y1)τ(X1), (26)

∇X1V = −�ANX1 + τ(X1)V+v(N)ANX1, (27)

X1(v(N)) = −B(X1,V)− v(ANX1). (28)

Proof. Since ∇̄�̌ = 0, by using (15) and (16) and Gauss–Weingarten formulas, we write( ∇X1�Y1 + B(X1, �Y1)N
+X1(v(Y1))N−v(X1)ANX1

)
=

(
�∇X1Y1 + v(∇X1Y1)N

+B(X1,Y1)V+B(X1,Y1)v(N)N

)
,

for X1,Y1 ∈ Γ(TM̌∗).
If the tangential and transversal parts of the above equation are equalized, we find (25)
and (26). In a similar way, for X1 ∈ Γ(TM∗), N ∈ Γ(ltrTM∗), if we use ∇̄�̌ = 0, the
Equations (15) and (16) and also Gauss–Weingarten formulas, we obtain( ∇X1V+B(X1,V)N+X1(v(N))N

−v(N)ANX1 + v(N)τ(X1)V

)
=

( −�ANX1 − v(ANX1)N
+τ(X1)V+v(N)τ(X1)V

)
.

Therefore, if the tangential and transversal parts of above equation are equalized, we find
the Equations (27) and (28).

Theorem 6. Let (M̌∗, β̌, �̌, ǧ) be an MGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then, we have the following equations:

∇β = 0,

B(X1, βY1) = B(X1,Y1)u(N),

βANX1 = u(N)ANX1,

X1(u(N)) = 0.
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Now, using ∇̄β̌�̌ = 0, we can give the following theorem regarding the conditions
provided by the structures reduced on the lightlike hypersurface of the MGsR manifold
(M̌∗, β̌, �̌, ǧ) .

Theorem 7. Let (M̌∗, β̌, �̌, ǧ) be an MGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then, we have

(∇X1 β�)Y1 = B(X1,Y1)βV−v(Y1)u(N)ANX1,

u(N)(∇
X1

v)Y1 = −B(X1, β�Y1)−v(Y1)u(N)τ(X1)

+ B(X1,Y1)v(N)u(N),

∇X1 βV = β∇X1V = v(N)u(N)ANX1 − β�ANX1 + τ(X1)βV,

X1(v(N))u(N)= −v(ANX1)u(N)−B(X1, βV)− v(N)u(N)τ(X1).

Proof. For X1,Y1 ∈ Γ(TM∗), N ∈ Γ(ltrTM∗), if we use ∇̄β̌�̌ = 0 and Equations (15) and
(16), we have⎛⎜⎜⎝

∇X1 β�Y1 + B(X1, β�Y1)N
+[X1(v(Y1))u(N)+v(Y1)X1(u(N))]N

−v(Y1)u(N)ANX1
+v(Y1)u(N)τ(X1)N

⎞⎟⎟⎠ =

⎛⎝ β�∇X1Y1 + v(∇X1Y1)u(N)N
+B(X1,Y1)βV

+B(X1,Y1)v(N)u(N)N

⎞⎠.

By taking the tangential and transversal parts of this equation, the first two of the equations
specified in the theorem are obtained. For X1 ∈ Γ(TM∗), N ∈ Γ(ltrTM∗), by using
∇̄β̌�̌ = 0 and Equations (15) and (16), we obtain⎛⎜⎜⎝

∇X1 βV+ B(X1, βV)N
+[X1(v(N))u(N)+v(N)X1(u(N))]N

−v(N)u(N)ANX1
+v(N)u(N)τ(X1)N

⎞⎟⎟⎠ =

⎛⎝ −β�ANX1 − v(ANX1)u(N)N
+τ(X1)βV+τ(X1)v(N)V

+τ(X1)v2(N)N

⎞⎠,

which implies that the last two of the equations specified in the theorem are obtained. Thus,
the proof is completed.

Now, we define some special lightlike hypersurfaces.

Definition 3. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then,

1. if β̌�̌(TM∗) ⊂ TM∗, M∗ is called as an invariant,
2. If β̌�̌(Rad(TM∗)) ⊂ S(TM∗) and β̌�̌(ltrTM∗) ⊂ S(TM∗), M∗ is called a screen semi-

invariant,
3. If β̌�̌(Rad(TM∗)) ⊂ ltrTM∗, M∗ is called a radical anti-invariant,

lightlike hypersurface.

Example 1. Let M̌∗ = R5
1 be an almost Golden semi-Riemannian manifold with a coordinate

system (x1, x2, x3, x4, x5), a semi-Euclidean metric ǧ of signature (−,+,+,+,+) and an almost
Golden structure defined by

β̌(x1, x2, x3, x4, x5) = (ϕ̇x1, ϕ̇x2, ϕ̇x3, (1 − ϕ̇)x4, (1 − ϕ̇)x5).

Also, we define a (1, 1) tensor field �̌ on M̌∗ by

�̌(x1, x2, x3, x4, x5) = (χ̇x1, χ̇x2, χ̇x3,−χ̃x4,−χ̃x5),
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where χ̃ =
ϕ+

√
ϕ2+4

2 and χ̃2 = ϕχ̃ + I, (I is an identity map.)
One can see that �̌ satisfies (8)–(10) which imply that (M̌∗, β̌, �̌, ǧ) is an AMGsR manifold. Now,
we consider a hypersurface M∗ of M̌∗ given by

x1 = u3, x2 = −(sin α)u1 + (cos α)u3,

x3 = (cos α)u1 + (sin α)u3, x4 = u2, x5 = u4.

Then, TM∗ is spanned by

Z1 = − sin α
∂

∂x2
+ cos α

∂

∂x3
, Z2 =

∂

∂x4
,

Z3 =
∂

∂x1
+ cos α

∂

∂x2
+ sin α

∂

∂x3
, Z4 =

∂

∂x5
.

So, M∗ is a lightlike hypersurface of M̌∗. In this case, Rad(TM∗) and S(TM∗) are given by

Rad(TM∗) = Span{Z3},

and
S(TM∗) = Span{Z1,Z2,Z4},

respectively, where β̌Z4 = (1 − ϕ̇)Z4 ∈ Γ(S(TM∗)), β̌Z3 = ϕ̇Z3 ∈ Γ(Rad(TM∗)),
β̌Z1 = ϕ̇Z1 ∈ Γ(S(TM∗)) and β̌Z2 = (1 − ϕ̇)Z2 ∈ Γ(S(TM∗)). Thus, Rad(TM∗) and
S(TM∗) are β̌-invariant distributions. Also, we obtain

ltr(TM∗) = Span
{
N =

1
2

(
− ∂

∂x1
+ cos α

∂

∂x2
+ sin α

∂

∂x3

)}
,

and β̌N =ϕ̇N ∈ Γ(ltr(TM∗)), which imply that M∗ is a β̌−invariant lightlike hypersurface of
M̌∗. Since

�̌Z1 = χ̇Z1 ∈ Γ(S(TM∗)), �̌Z2 = −χ̃Z2 ∈ Γ(S(TM∗)),

�̌Z4 = −χ̃Z4 ∈ Γ(S(TM∗)), �̌Z3 = χ̇Z3 ∈ Γ(Rad(TM∗)),

and
�̌N = χ̇N ∈ Γ(ltr(TM∗)).

Then, M∗ is an invariant lightlike hypersurface of an AMGsR manifold M̌∗.

Theorem 8. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of M̌∗.
Then, the followings are equivalent;

1. M∗ is �̌-invariant, so β̌�̌ is invariant;
2. v vanishes on M∗;
3. � is an almost meta-Golden structure on M∗.

Proof. We know that if M∗ is �̌-invariant, then for any X1 ∈ Γ(TM∗) we write �̌X1 = �X1.
From (15), we obtain v(X1) = 0. Conversely, if v vanishes on M∗, then (1) is satisfied. Hence,
(1)⇐⇒(2). The necessary and sufficient condition for v = 0 on M∗ is that �̌X1 = �X1. Then,
we obtain

�2
X1 = β�X1 − �X1 +X1.

Here, we also have
g(�X1,Y1) = g(X1, �Y1).

Therefore, � is an almost meta-Golden structure on M∗.

Theorem 9. There is no radical anti-invariant lightlike hypersurface of an AMGsR manifold.
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Proof. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a radical anti-invariant lightlike
hypersurface of M̌∗. From the definition of radical anti-invariant lightlike hypersurface,
for any ξ ∈ Γ(Rad(TM∗)), we have �̌ξ ∈ Γ(ltr(TM∗)), which implies

ǧ(�̌ξ, �̌ξ) = 0, ǧ(�̌ξ, �̌N) �= 0, ǧ(�̌N, �̌N) = 0.

Therefore, there is no radical anti-invariant lightlike hypersurface.

4. Screen Semi-Invariant Lightlike Hypersurfaces of Almost Meta-Golden
Semi-Riemannian Manifolds

Let (M̌∗, β̌, �̌, ǧ) be an (m + 2)-dimensional AMGsR manifold and (M∗, g) be a screen
semi-invariant lightlike hypersurface of M̌∗. Taking DT = �Rad(TM∗), D⊥ = �ltr(TM∗)
and D = D◦⊥Rad(TM∗)⊥�Rad(TM∗), we have the following decompositions:

S(TM∗) = D◦⊥(DT ⊕ D⊥), (29)

TM∗ = D ⊕ D⊥, (30)

TM̌∗ = D ⊕ D⊥ ⊕ ltr(TM∗), (31)

where D◦ is an (m − 2)-dimensional distribution, V = �̌N and Z = �̌ξ.

Example 2. Let M̌∗ = R5
2 be a semi-Riemannian manifold with coordinate system (x1, x2, x3, x4, x5)

and signature (−,+,−,+,+). Taking an almost Golden structure

β̌(x1, x2, x3, x4, x5) = (ϕ̇x1, ϕ̇x2, ϕ̇x3, ϕ̇x4, ϕ̇x5),

with a meta-Golden structure

�̌(x1, x2, x3, x4, x5) = (χ̇x1, χ̇x2, χ̈x3, χ̇x4, χ̈x5),

then (R5
2, β̌, �̌, ǧ) is an AMGsR manifold.

Now, we consider a hypersurface M∗ of M̌∗ given by

x5 = χ̈x1 + χ̈x2 + x3,

Then, TM∗ is spanned by {Z1,Z2,Z3,Z4}, where

Z1 =
∂

∂x1
+ χ̈

∂

∂x5
, Z2 =

∂

∂x2
+ χ̈

∂

∂x5
,

Z3 =
∂

∂x3
+

∂

∂x5
, Z4 =

∂

∂x4
.

So, M∗ is a 1-lightlike hypersurface of M̌∗ with

Rad(TM∗) = Span{ξ = χ̈
∂

∂x1
− χ̈

∂

∂x2
− ∂

∂x3
− ∂

∂x5
},

and
S(TM∗) = Span{W1,W2,W3},

where
W1 =

∂

∂x4
, W2 = −χ̈

∂

∂x1
+ χ̈

∂

∂x2
+

∂

∂x3
+

∂

∂x5
,

W3 = −χ̈
∂

∂x1
− χ̈

∂

∂x2
+

∂

∂x3
− ∂

∂x5
.
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Then, we write DT = Span{W2} and D⊥ = Span{W3}. Also, we obtain

ltr(TM∗) = Span
{
N =

1
2(1 − χ̈2)

(
χ̈

∂

∂x1
+ χ̈

∂

∂x2
− ∂

∂x3
+

∂

∂x5

)}
,

which implies that M∗ is a β̌−invariant lightlike hypersurface of M̌∗. Furthermore, we obtain

�̌ξ = χ̈W2 ∈ Γ(DT),

�̌N =
χ̈

2(1 − χ̈2)
W3 ∈ Γ(D⊥).

Therefore, M∗ is a screen semi-invariant lightlike hypersurface of (R5
2, β̌, �̌, ǧ).

Proposition 2. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, �̌, ǧ). Then, for X1,Y1 ∈ Γ(TM∗), V ∈ Γ(D⊥) and Z ∈ Γ(DT), we have

v(�X1) = v(X1)(u(N) + I),

�v = βv − v,

v(V) = 1, (32)

u(N)(∇
X1

v)Y1 = −B(X1, β�Y1)− v(Y1)u(N)τ(X1),

∇X1 βV = −β�ANX1 + τ(X1)βV,

v(ANX1)u(N) = −B(X1, βV),

(∇X1 v)Y1 = −B(X1, �Y1)−v(Y1)τ(X1),

B(X1, �Y1) =
1

u(N)
B(X1, β�Y1),

(∇X1 β�)Y1 = B(X1,Y1)βV,

u(ANX1)u(N) = C(X1, �ξ)u(N) = −B(X1, βV),

B(X1,V) = −C(X1,Z), (33)

∇X1Z = −�A∗
ξX1−τ(X1)Z,

C(X1,V) = 0. (34)

Corollary 1. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant lightlike
hypersurface of M̌∗. Then, for X1,Z ∈ Γ(TM∗), we have

B(X1,Z) = 0. (35)

Corollary 2. There is no DT−valued component of A∗
ξ in a screen semi-invariant lightlike hyper-

surface of an AMGsR manifold.

Proof. In view of (35), we state

B(X1,Z) = −g(A∗
ξX1, �̌ξ) = −g(A∗

ξX1,Z) = 0,

for X1,Z ∈ Γ(TM∗), which gives our assertion.

Corollary 3. There is no D⊥− valued component of AN in a screen semi-invariant lightlike
hypersurface of an AMGsR manifold.
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Proof. In view of (34), we write

C(X1,V) = −g(ANX1, �̌N) = −g(ANX1,V) = 0,

which completes the proof.

Proposition 3. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, for the distribution D◦, we have �̌D◦ ⊂ S(TM∗).

Proof. For X1 ∈ Γ(D◦), ξ ∈ Γ(Rad(TM∗)) and N ∈ Γ(ltr(TM∗)), we obtain

ǧ(�̌X1, ξ) = ǧ(X1, �̌ξ) = 0,

and
ǧ(�̌X1,N) = ǧ(X1, �̌N) = 0.

Moreover, for V ∈ Γ(D⊥) and Z ∈ Γ(DT), we obtain

ǧ(�̌X1,V) = ǧ(X1, �̌V) = ǧ(X1, �̌2
N)

= ǧ(X1, β̌�̌N− �̌N+N)

= ǧ(β̌X1, �̌N)

and

ǧ(�̌X1,Z) = ǧ(X1, �̌Z) = ǧ(X1, �̌2ξ)

= ǧ(X1, β̌�̌ξ − �̌ξ + ξ)

= ǧ(β̌X1, �̌ξ).

So, there is no component of �̌X1 on ltr(TM∗) and Rad(TM∗).

Corollary 4. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, �̌, ǧ). Then, D◦ is an �̌-invariant distribution.

Theorem 10. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant light-
like hypersurface of M̌∗. Then, the vector fieldZ is parallel on M∗ if B(X1,Y1) = −g(�̌A∗

ξX1, β̌Y1)
and τ = 0.

Proof. Assume that the vector field Z is parallel. From (25), for X1 ∈ Γ(TM∗), we obtain

∇X1Z = −�̌A∗
ξX1 − τ(X1)Z = 0. (36)

Applying �̌ to (36) and using (15) with (16), we obtain

−�̌2 A∗
ξX1 − τ(X1)�̌2ξ = −β̌�̌A∗

ξX1 + �̌A∗
ξX1 − A∗

ξX1

− τ(X1)β̌�̌ξ+τ(X1)�̌ξ−τ(X1)ξ. (37)

From (36) with (37), we arrive at

−β̌�̌A∗
ξX1 − A∗

ξX1 − τ(X1)β̌�̌ξ−τ(X1)ξ = 0,

which gives τ = 0 and β̌�̌A∗
ξX1 = −A∗

ξX1. So, the proof is completed.

Theorem 11. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, �̌, ǧ) and the vector field Z be parallel on M∗. Then, either � or V are parallel on M∗ if
B(X1,V) = 0 and ANX1 = 0.

165



Mathematics 2023, 11, 4798

Proof. Assume that � is parallel on M∗. From (25), for X1,Y1 ∈ Γ(TM∗), we obtain

0 = (∇X1�)Y1 = v(Y1)ANX1 + B(X1,Y1)V,

from which we have
B(X1,Y1)V = −v(Y1)ANX1. (38)

Since Z is parallel, we state

ǧ(�̌A∗
ξX1, β̌Y1)V = v(Y1)ANX1.

In the last equation, replacing Y1 with V and using (32), we obtain

ǧ(�̌A∗
ξX1, β̌V)V = v(V)ANX1 = ANX1,

which gives
ǧ(�̌A∗

ξX1, β̌V) = g(ANX1,V) = C(X1,V).

By use of (34), we obtain B(X1,V) = 0.
Similarly suppose that V is parallel on M∗, i.e., ∇X1V = 0. So, we write

−�ANX1 + τ(X1)V = 0,

from which
− �̌ANX1 + v(ANX1)N+ τ(X1)V = 0. (39)

Applying �̌ to (39) and using (15), we obtain

0 = −�̌2 ANX1 + v(ANX1)�̌N+ τ(X1)�̌V (40)

= −β�ANX1 + �ANX1 − ANX1

+ (v(ANX1)− τ(X1))V

+ ((1 − u(N)v(ANX1) + τ(X1))N.

From (39) with (40), we arrive at

−β�ANX1 − ANX1 + v(ANX1)V+ ((1 − u(N)v(ANX1) + τ(X1))N = 0. (41)

From (41), we obtain

−β�ANX1 − ANX1 + v(ANX1)V = 0, (42)

(1 − u(N))v(ANX1) + τ(X1) = 0.

Since Z is parallel, we know that τ(X1) = 0, which gives rise to ANX1 = 0, via (42). So,
the proof is completed.

Theorem 12. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, �̌, ǧ). If � is parallel with respect to the induced connection ∇ on M∗, then D is parallel
with respect to ∇. Furthermore, M∗ has M1 ×M2 local product structure, where M1 is a null
curve tangent to �̌ltr(TM∗) and M2 is a leaf of distribution D.

Proof. Assume that � is parallel with respect to the induced connection ∇ on M∗. D is
parallel with respect to ∇ if and only if

g(∇X1 ξ, �̌ξ) = g(∇X1�̌ξ, �̌ξ) = g(∇X1Y1, �̌ξ) = 0, (43)
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for X1 ∈ Γ(TM∗) and Y1 ∈ Γ(D◦). From (13)–(15), we obtain

g(∇X1 ξ, �̌ξ) = g(�̌∇X1 ξ, ξ) = g(∇X1�̌ξ, ξ) = B(X1,Z), g(∇X1�̌ξ, �̌ξ) = 0, (44)

and

g(∇X1Y1, �̌ξ) = g(∇̄X1Y1, �̌ξ)

= g(�̌∇̄X1Y1, ξ)

= g(∇̄X1�̌Y1, ξ)

= −g(�̌Y1, ∇̄X1 ξ)

= g(�̌Y1, A∗
X1

ξ)

= B(X1, �̌Y1). (45)

From (35), we know that B(X1,Z) = 0. By use of (38), we obtain

B(X1, �̌Y1)V = −v(�̌Y1)ANX1 = 0.

If we consider this equation in (45), we obtain the proof of our assertion.

Definition 4. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a lightlike hypersurface of
M̌∗. If the second fundamental form B of M∗ satisfies

B(X1,Y1) = 0, X1,Y1 ∈ Γ(D⊥),

then we say that M∗ is a D⊥- totally geodesic lightlike hypersurface.

Definition 5. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. If the second fundamental form B of M∗ satisfies

B(X1,Y1) = 0, X1 ∈ Γ(D), Y1 ∈ Γ(D⊥),

then M∗ is called a mixed geodesic lightlike hypersurface.

Theorem 13. Let M∗ be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̌∗, β̌, �̌, ǧ). Then, the following assertions are equivalent:

(i) M∗ is a mixed geodesic lightlike hypersurface.
(ii) There is no DT-valued component of AN.
(iii) There is no D⊥-valued component of A∗

ξ .

Proof. Suppose that M∗ is a mixed geodesic lightlike hypersurface. Then from (33),
for X1 ∈ Γ(D),V ∈ Γ(D⊥) and Z ∈ Γ(DT), we have

B(X1,V) = −C(X1,Z) = −g(ANX1,Z) = 0

which implies the equivalence of (i) and (ii).
The equivalence of (ii) and (iii) follows from

B(X1,V) = −C(X1,Z) ⇒ −g(ANX1,Z) = g(A∗
ξX1,V) = 0,

which completes the proof.

Theorem 14. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, the distribution D is integrable if and only if

B(�̌Y1, �̌X1) = B(X1, �̌β̌Y1)− B(X1, �̌Y1) + B(X1,Y1), (46)
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for any X1,Y1 ∈ Γ(D).

Proof. It is known that, for X1 ∈ Γ(D), if the D is invariant then �̌X1 ∈ Γ(D). So the D is
integrable if and only if

v([�̌X1,Y1]) = 0.

From the above equation, we obtain

v([�̌X1,Y1]) = g([�̌X1,Y1], �̌ξ)

= g(∇̄�̌X1
Y1, �̌ξ)− g(∇̄Y1�̌X1, �̌ξ)

= g(∇̄�̌X1
�̌Y1, ξ)− g(�̌∇̄Y1X1, �̌ξ)

= g(∇�̌X1
�̌Y1 + B(�̌X1, �̌Y1)N, ξ)

− g(∇X1�̌β̌Y1, ξ) + g(∇X1�̌Y1, ξ)− g(∇X1Y1, ξ)

= B(�̌Y1, �̌X1)− B(X1, �̌β̌Y1)

+ B(X1, �̌Y1)− B(X1,Y1),

which gives (46).

Theorem 15. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, the following assertions are equivalent:

(i) The distribution D is parallel.
(ii) The distribution D is totally geodesic.
(iii) (∇X1�)Y1 = 0, for any X1,Y1 ∈ Γ(D).

Proof. The distribution D is parallel if for any X1,Y1 ∈ Γ(D) and Z ∈ Γ(DT)

v(∇X1Y1) = 0.

From the above equation, we obtain

v(∇X1Y1) = g(∇X1Y1, �̌ξ)

= g(∇̄X1Y1, �̌ξ)

= g(�̌∇̄X1Y1, ξ)

= g(∇̄X1�̌Y1, ξ)

= B(X1, �̌Y1)

which gives the equivalence of (i) and (ii).
In view of (25), the equivalence of (ii) and (iii) follows from

(∇X1�)Y1 = v(Y1)ANX1 + B(X1,Y1)V ⇒(∇X1�)Y1 = B(X1,Y1)V,

which completes the proof.

Theorem 16. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, M∗ is totally geodesic if for any X1 ∈ Γ(TM∗), Y1 ∈ Γ(D)
and V ∈ Γ(D⊥)

(∇X1�)Y1 = 0, (47)

(∇X1�)V = ANX1. (48)

Proof. Suppose that M∗ is totally geodesic; then for Y1 ∈ Γ(D), we obtain

v(Y1) = g(Y1, �̌ξ) = g(�̌Y1, ξ) = 0.
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From (25), we have

(∇X1�)Y1 = v(Y1)ANX1 + B(X1,Y1)V =0.

Similarly, for V ∈ Γ(D⊥), we have v(V) = 1. In Equation (25), replacing Y1 by V, we obtain

(∇X1�)V = v(V)ANX1 + B(X1,V)V = ANX1.

Conversely, we suppose that Equations (47) and (48) are satisfied. In view of decomposition
(30), for any Y1 ∈ Γ(TM∗) we find a function f such that Y1 = Yd + fV, where Yd ∈ Γ(D).
So we write

B(X1,Y1) = B(X1,Yd) + f B(X1,V). (49)

In (25), replacing Y with Yd and using (47), we obtain

0 = (∇X1�)Yd

= v(Yd)ANX1 + B(X1,Yd)V,

which gives B(X1,Yd) = 0.
Similarly in (25), replacing Y with V and using (48), we have

0 = (∇X1�)V

= v(V)ANX1 + B(X1,V)V

= ANX1 + B(X1,V)V

which implies B(X1,V) = 0. So, from (49) we arrive at B(X1,Y1) = 0. This completes the
proof.

Theorem 17. Let M∗ be a totally umbilic screen semi-invariant lightlike hypersurface of an
AMGsR manifold (M̌∗, β̌, �̌, ǧ). Then, M∗ is totally geodesic on M̌∗.

Proof. Suppose that M∗ is a totally umbilic screen semi-invariant lightlike hypersurface of
M̌∗. From (35), for any X1 ∈ Γ(TM∗) we have

B(X1,Z) = λg(X1,Z).

Replacing X1 with V in the last equation, we obtain

B(V,Z) = λg(V,Z) = 0,

which yields λ = 0. In this case, we obtain B = 0.

Theorem 18. Let (M̌∗, β̌, �̌, ǧ) be an AMGsR manifold and M∗ be a screen semi-invariant
lightlike hypersurface of M̌∗. Then, if screen distribution S(TM∗) is totally umbilic, then S(TM∗)
is totally geodesic.

Proof. Suppose that S(TM∗) is totally umbilic. From (34), for any X1 ∈ Γ(TM∗), we have

C(X1,V) = δg(X1,V).

Replacing X1 with Z in the above equation, we obtain

C(Z,V) = δg(Z,V) = 0,

which gives δ = 0. In this case, we obtain C = 0. So, the proof is completed.
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5. Conclusions

In this study, we found structures reduced from the meta-Golden structure of an
almost meta-Golden semi-Riemannian manifold onto the tangent and transversal bundles
of the lightlike hypersurface. We gave the definitions of invariant, anti-invariant and screen
semi-invariant lightlike hypersurfaces of the meta-Golden semi-Riemannian manifold.
We have obtained the necessary and sufficient conditions for the distributions of these
hypersurfaces to be integrable and totally geodesic.

Working with manifolds with a polynomial structure with constant coefficients allows
the definition of many results from classical algebra and geometry, tools that make calcu-
lations and proofs simpler (tensor fields, 1-forms, reduced structures, etc.). For example,
the fundamental theorem of algebra states that any polynomial with complex coefficients
is factored by linear equations, and this result is used to prove that certain manifolds are
topologically equivalent to a sphere. These types of manifolds are also important for the
differential geometry of manifolds because the properties offered by these structures make
geometric structures and curves much easier to examine and understand.

Hypersurfaces and submanifolds are special types of general manifolds and have
certain geometric properties. These structures allow the achievement of more specific and
meaningful results in mathematical analysis. Submanifolds represent situations where
certain parts of the manifold have flatter and simpler geometry. This is important for its
flattenability and minimalism properties. Submanifolds provide the ability to better model
and understand physical phenomena. For example, they can be used to model physical
quantities such as time, which is a submanifold of spacetime. Hypersurfaces and subman-
ifolds are widely used in physics, engineering, computer science and other applications.
For example, these structures are frequently encountered concepts in fields such as image
processing, graphic design and data analysis. In physics, the integrability of distributions
of submanifolds of a manifold provides the ability to better model and understand physical
phenomena. It is particularly important for the analysis of physical quantities such as
energy distributions or currents on submanifolds of spacetime. An integrable surface
provides advantages in calculating center of gravity, moment and similar quantities. Such
calculations are important in engineering and physics, especially for analyzing the geomet-
ric properties of objects. The concept of parallelism plays an important role in fields such
as differential geometry on manifolds and general relativity. For example, it is important
in physics, especially in the general theory of relativity, for describing the trajectories of
objects in a gravitational field.
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